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ABSTRACT

Recent technological advances have significantly im-
proved the capabilities of micro-air vehicles (MAV).
This is evidenced by their expanding use by govern-
ment, police, and military forces. A MAV can provide
a real-time surveillance capability to even the smallest
units, which provides commanders with a significant
advantage.

This capability is a result of the availability of minia-
turized autopilot systems which typically combine in-
ertial, pitot-static, and GPS sensors into a feedback
flight-control system. While these autopilots can pro-
vide an autonomous flight capability, they have some
limitations which impact their operational effective-
ness. One of the primary issues is poor image geolo-
cation performance, which limits the use of these sys-
tems for direct measurements of target locations. This
poor geolocation performance is primarily a conse-
quence of the relatively large attitude errors charac-
teristic of low-performance inertial sensors. In pre-
vious efforts, we have developed a tightly-coupled
image-aided inertial navigation system to operate in
areas not serviced by GPS. This system extracts nav-
igation information by automatically detecting and
tracking stationary optical features of opportunity in
the environment. One characteristic of this system is
vastly reduced attitude errors, even with consumer-
grade inertial sensors.

In this paper, the benefits of incorporating image-
based navigation techniques with inertial and GPS
measurements is explored. After properly integrat-
ing GPS with the image-aided inertial architecture,
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the system is tested using a combination of Monte-
Carlo simulation and flight test data. The flight test
data was flown over Edwards AFB using represen-
tative hardware. The experimental results are com-
pared with validated truth data. The effects of vari-
ations in sensor quality and integration methods are
investigated and shown to greatly improve the over-
all performance of the tightly-coupled image-aided
sensor over the reference GPS/INS sensor.

INTRODUCTION

Virtually all UAVs and aircraft are flying with electro-
optical (EO), infrared (IR), or video cameras. Even
the smallest can now be equipped with an integrated
Global Positioning System (GPS) and inertial naviga-
tion system (INS). Unfortunately, there is a very lim-
ited set of vehicles that provide the level of navigation
and timing precision to the imaging path sufficient for
generating high-quality geospatial-intelligence prod-
ucts. This is due to a variety of reasons such as cost
or payload restrictions that mandate small low cost
inertial navigation systems; or, to difficulties in pre-
cise timing of the metadata to the epoch of the frame
exposure; or, to the expense and complications in-
volved with establishing accurate GPS positions us-
ing dual frequency phase difference processing with
associated communications links.

In order to address the issue of poor georegistration
performance for small uavs, a number of research
projects have been conducted. The most prominent
approaches address the issue in three primary ways.
The first, and probably most obvious, approach is to
simply improve the quality of the inertial and GPS
sensors until the desired target location accuracy is
achieved. The advantage of this approach is its sim-
plicity. The disadvantages are the increased cost and
weight requirements for improved sensors (especially
gyroscopes) that make this approach of limited ap-
peal for small UAV operations. A variation on this
theme was proposed by Hirokawa [5] where three
very low-cost GPS sensors with displaced antennas
were used to greatly improve the attitude perfor-
mance of the navigation sensor, resulting in improved
geolocation accuracy. The second approach [1] uti-
lizes previously-surveyed reference targets in the im-
ages to automatically update and correct the naviga-
tion errors in the UAV. This system has the capability
to eliminate inertial sensor drift when the aircraft re-
mains in an operations area with visible reference tar-
gets. The final approach uses post-flight image reg-
istration software to correct each image to a known
set of ground control points. This process can be per-
formed manually or automatically and tends to be

used in an open-loop, postflight mode (i.e., naviga-
tion error estimates are not fed back to the vehicle for
correction).

The motivation for this paper is to determine if the
position and orientation of camera frames can be sig-
nificantly improved by augmenting the camera nav-
igation system with an image-aided algorithm that
reliably tracks image features across frames in a ro-
bust manner. This implies that the image-aiding al-
gorithms add to the solution across a wide variety
of terrain types, thus allowing for additional esti-
mates of the camera position and orientation in the
dynamic adjustment. As an additional benefit, the
system should be able to continue to navigate in the
presence of GPS dropouts.

The proof of concept testing will involve both simu-
lations and generation of accuracy estimates that will
conclude with testing a MAV prototype flown over a
test area with visible survey control points that will
be compared to derived coordinates from the sys-
tem. Additionally, Geo-TIFFs will be generated from
the camera/MAV system and compared to control.
The overall goal of the project is to deliver a proto-
type small-UAV imagery collection system to the Na-
tional Geospatial-Intelligence Agency (NGA) for fur-
ther testing and use in generating Geo-Intelligence
and Geo-Security products. The purpose of this pa-
per is to outline the method used to fuse the image,
inertial, and GPS measurements with a simple terrain
database. The algorithm is tested using Monte Carlo
simulation and experimental flight data collected us-
ing prototype hardware. Results and lessons learned
will be addressed and incorporated into future de-
signs.

This paper is organized as follows. First, a develop-
ment of the assumptions and sensor models regard-
ing the specific problem of interest is presented. In
addition, the extended Kalman filter used to tightly-
couple the image tracking and GPS/INS functionality
is described. Next, the performance of the integrated
navigation technique is compared to the stand-alone
GPS/INS technique using a Monte-Carlo simulation
and flight test data. Finally, conclusions are drawn re-
garding the performance of the technique and future
work is presented.

DEVELOPMENT

As mentioned in the previous section, the goal of this
research effort is to investigate the navigation and
target location accuracy improvements achievable by
tightly integrating an image-based feature tracking
algorithm with GPS and a consumer-grade inertial



sensor. In this section, the overall design of the ex-
tended Kalman filter [8, 9] is presented along with a
description of the sensor models.

Assumptions

This method is based on the following assumptions.

• A strapdown inertial measurement unit (IMU)
and GPS antenna are rigidly attached to one
or more calibrated cameras. Synchronized raw
measurements are available from all sensors.

• The inertial, GPS and optical sensors’ relative po-
sition and orientation are known (see [13] for a
discussion of boresight calibration procedures).

• The camera images areas in the environment
which contain some stationary objects.

• A statistical terrain model is available which pro-
vides an initial indication of range to objects in
the environment.

Reference Frames

In this paper, four reference frames are used. Vari-
ables expressed in a specific reference frame are indi-
cated using superscript notation. The Earth-Centered
Earth-Fixed (ECEF, or e frame) is a Cartesian system
with the origin at the Earth’s center, the x̂e axis point-
ing toward the intersection of the equator and the
prime (Greenwich) meridian, the ẑe axis extending
through the North pole, and the ŷe axis is the orthog-
onal compliment (in this paper, a carat symbol, ,̂ de-
notes a unit vector).

The Earth-fixed navigation frame (n-frame) is an or-
thonormal basis in <3, with origin located at a pre-
defined location on the Earth, typically very close to
the current operations area. The Earth-fixed naviga-
tion frame’s x, y, and z axes point in the north, east,
and down (NED) directions relative to the origin, re-
spectively. Down is defined as the direction of the
nominal gravity vector at the origin. In contrast to the
body-fixed navigation frame, the Earth-fixed naviga-
tion frame remains fixed to the surface of the Earth.
While this frame is not useful for very-long distance
navigation, it can simplify the navigation kinematic
equations for local navigation routes and is especially
appropriate for micro-air vehicle flight profiles. The
Earth-fixed navigation frame is shown in Figure 1.

The vehicle body frame (or b frame) is a Cartesian sys-
tem with origin at the vehicle center of gravity, the x̂b

Figure 1: Earth-fixed navigation frame. The Earth-fixed
navigation frame is a Cartesian reference frame which is
perpendicular to the gravity vector at the origin and fixed
to the Earth.

axis extending through the vehicle’s nose, the ŷb axis
extending through the vehicle’s right side, and the ẑb

axis points orthogonally out the bottom of the vehi-
cle. The inertial measurements are expressed in the b
frame.

The camera frame (or c frame) is a Cartesian system
with origin at the center of the camera image plane,
the x̂c axis is parallel to the camera image plane and
defined as “camera up”, the ŷc axis is parallel to the
camera image plane and defined as “camera right”,
and the ẑc axis points out of the camera aperture, or-
thogonal to the image plane. The camera frame is
shown in Fig. 2.

Figure 2: Camera frame illustration. The camera reference
frame originates at the optical center of the camera.



Algorithm Description

The system parameters (see Table 1) consist of the
navigation parameters (position, velocity, and atti-
tude), inertial sensor biases, GPS clock bias and drift,
and a vector describing the location of landmarks of
interest (tn) in the navigation frame. The navigation
parameters are calculated using body-frame velocity
increment (∆vb) and angular increment (∆θb

ib) mea-
surements from the inertial navigation sensor which
have been corrected for bias errors using the current
filter-computed bias estimates. These measurements
are integrated from an initial state in the navigation
(local-level) frame using mechanization algorithms
described in [12].

Table 1: System Parameter Definition

Parameter Description
pn Vehicle position in navigation frame

(northing, easting, and down)
vn Vehicle velocity in navigation frame

(north, east, down)
Cn

b Vehicle body to navigation frame DCM
ab Accelerometer bias vector
bb Gyroscope bias vector
tn
m Location of landmark m in the

navigation frame (one for each landmark
currently tracked)

δtgps GPS clock bias
δṫgps GPS clock drift

The position, velocity, and attitude errors were mod-
eled as a stochastic process based on the well-known
Pinson navigation error model [12]. The accelerome-
ter and gyroscopic bias errors were each modeled as
a first-order Gauss-Markov process [8], based on the
specification for the inertial measurement unit (IMU).
The GPS clock drift is modeled as a random bias. The
landmarks are modeled as stationary with respect to
the Earth. A small amount of process noise is added
to the state dynamics to promote filter stability [9].

EKF Mechanization

Because both the system dynamics model and mea-
surement models are non-linear stochastic differential
equations, an extended Kalman filter algorithm is em-
ployed. While other recursive estimation techniques
have been proposed which have superior character-
istics when dealing with non-linear models (e.g., un-
scented Kalman filters or particle filters [4]), the ex-
tended Kalman filter is still widely used for integrat-
ing inertial and GPS sensors.

In this paper, the extended Kalman filter is an error-
state with feedback formulation which estimates the
errors about the nominal trajectory produced by
the nonlinear filter dynamics model. In addition,
this nominal trajectory serves as the operating point
where the nonlinear dynamics and measurement
models are linearized [9]. Finally, the feedback na-
ture attempts to constrain the inevitable departure of
the nominal trajectory by periodically removing error
estimates. This feedback process improves the per-
formance of the extended Kalman filter by reducing
linearization errors due to errors in the nominal tra-
jectory. For more information regarding methods for
integrating GPS and inertial sensors, see [11]. A block
diagram of the system is shown in Figure 3.

Figure 3: Image-aided GPS/IMU navigation filter block
diagram. In this filter, the location of stationary objects
are tracked and used to estimate and update the errors in a
GPS-aided inertial navigation system. The inertial naviga-
tion system is, in turn, used to support the feature tracking
loop.

GPS Model and Updates

The navigation filter is based on single-frequency
pseudorange measurements, which can be corrected
using a differential reference station at a surveyed lo-
cation. A typical pseudorange measurement from the
mobile receiver to satellite k is modeled by

ρk
m = ‖pn

k − pn
m‖+ cδtmgps +T k

m + Ik
m +νm +mm (1)

where pn
k is the satellite location vector in the n-frame,

pn
m is the mobile receiver location vector in the n-

frame, c is the speed of light, δtmgps
is the mobile re-

ceiver clock error, T k
m is the tropospheric code delay

from the mobile receiver to satellite k, Ik
m is the iono-

spheric code delay from the mobile receiver to satel-
lite k, νm is the code measurement noise, and mm is
the code multipath.



The pseudorange measurement from the reference
station to satellite k is modeled similarly as

ρk
r = ‖pn

k − pn
r ‖+ cδtrgps

+ T k
r + Ik

r + νr + mr (2)

Because the reference station is at a known location,
the equation can be rewritten as

ρk
r − ‖pn

k − pn
r ‖ = cδtrgps + T k

r + Ik
r + νr + mr (3)

Subtracting (3) from (1) and grouping common error
terms yields the differentially corrected pseudorange
measurement

ρk
corr = ‖pn

k − pn
m‖+cδtgps+∆T k+∆Ik+ν+∆m (4)

If the distance between the reference and mobile
receivers is small, the differential atmospheric and
satellite position errors become insignificant. Group-
ing the error terms into a common random variable,
ν, yields the nonlinear measurement equation

ρk
corr = ‖pn

k − pn
m‖+ cδtgps + ν (5)

Note this is of the general form

z = h [x] + ν (6)

where x is the navigation state vector and ν is mod-
eled as zero-mean additive white Gaussian noise with
variance

σ2
ν = E

[
ν2

]
(7)

where E [·] is the expectation operator. For this simu-
lation, a variance of σ2

ν = 2.6m2 was chosen as a con-
servative estimate of the pseudorange errors found in
a consumer-grade, single-frequency GPS receiver. In
the next section, the automatic feature detection and
tracking algorithm is presented.

Automated Feature Tracking

Significant navigation information can be extracted
by tracking stationary optical features over multi-
ple images [14]. In order to accomplish this task,
a number of issues must be addressed, namely, fea-
ture detection, feature correspondence matching, and
correcting the navigation state. An overview of the
image-aided inertial navigation algorithm is shown
in Figure 4.

Feature detection is the process of automatically lo-
cating objects in an image and building some descrip-
tor that allows the feature to be located in subsequent
images. The optimal feature has three characteristics:

• easy to detect (i.e., strong)

Figure 4: Overview of image-aided inertial algorithm. In-
ertial measurements are used to aid the feature correspon-
dence search which, in turn, is used to correct the naviga-
tion state.

• unique (i.e., there exist significant differences
which make this feature different from other fea-
tures)

• ego-motion invariant (i.e., the feature descriptor
does not change as a result of camera motion)

One popular algorithm that partially addresses these
issues is Lowe’s scale-invariant feature transforma-
tion (SIFT) [6]. The SIFT algorithm selects features
which have a strong gradient in both x and y direc-
tions. Once the features are selected that meet the
gradient threshold, a 128-byte descriptor is calculated
such that it is invariant to rotation and scale changes.
Additionally, the SIFT descriptor has been empiri-
cally shown to be distinct and appropriate for robust
feature matching. One drawback of the SIFT algo-
rithm is the features are only partially invariant to
affine (i.e., perspective) changes. The other drawback
of the SIFT algorithm is the computational complex-
ity which can lead to difficulties implementing the
algorithm in real-time. One solution to this issue is
to leverage the use of general-purpose graphical pro-
cessing units (GPGPU) to speed up the feature extrac-
tion task [3]. Our research has shown processing time
reductions of up to 30x when using a GPU to extract
robust features.

Once features of interest have been identified, the
next step is to determine the correspondence between
each feature and a matching feature in multiple im-
ages. When an inertial sensor is available, the method
of employing stochastic constraints becomes attrac-
tive [15]. This technique is illustrated in Figure 5. The
inertial measurements are used to statistically predict



the location of a current-image feature into a future
image in order to reduce the search space and elimi-
nate statistically-unlikely false matches.

Figure 5: Stochastic feature projection. Optical features of
interest are mapped into future images using inertial mea-
surements and stochastic projections.

Once the correspondence has been determined be-
tween the predicted location of a feature and the mea-
sured location in the current image, the navigation
state is corrected using a Kalman filter update. The
update is calculated using the projected feature lo-
cations in Eqns. (8) and (9) with an additive, white
Gaussian noise. The Jacobian of the nonlinear mea-
surement is calculated about the nominal trajectory
in terms of the system states described previously.

In the next section, the camera model is defined
mathematically along with the feature extraction and
tracking methodology.

Imaging Model and Updates

In addition to the GPS and inertial sensors, a digi-
tal camera is used to track features of interest. The
first item of interest is the definition of the camera
projection model. After properly compensating for
the effects of nonlinear distortions (see [2] or [7]), the
camera is modeled as a pin-hole device. The pin-hole
camera model is shown in Figure 6. This implies that
the location of a feature on the image plane is simply
the projection of the true location vector of the fea-
ture expressed in the camera frame. Thus, given a
point source at location sc the resulting location of the
point source in the image plane, relative to the optical
center of the camera is given by

sproj =
(

f

sc
z

)
sc (8)

where sc
z is the distance of the point source from the

Figure 6: Camera projection model. The pinhole camera
model is represented by placing a virtual image plane one
focal length in front of the optical center.

optical center of the camera in the ẑc direction. The
pinhole camera model is discussed in more detail
in [7].

Given the location of a feature relative to the naviga-
tion frame, (tn), and the current position and orien-
tation of the vehicle, (pn,Cn

b ), the line-of-sight vector
in the camera frame can be calculated as

sc =
(
Cn

b Cb
c

)T
(tn − pn) (9)

where Cb
c is the camera-to-body frame direction co-

sine matrix (DCM).

In the next section, the experimental simulation and
flight test results are presented.

EXPERIMENT

The data collection system consisted of a consumer-
grade MEMS IMU and two digital cameras. The IMU
was a Microbotics MIDG consumer-grade MEMS unit
(see [10]) which measured acceleration and angular
rate at 50 Hz. The digital cameras were both Pix-
elink A-741 machine vision cameras which incorpo-
rated a global shutter feature and a Firewire inter-
face. The lenses were wide-angle lenses with approx-
imately 90 degrees field of view. The sensors were
mounted on an aluminum bracket and calibrated us-
ing procedures similar to those described in [13]. Im-
ages were captured at approximately 2.5 Hz. The
cameras were pointed down and forward at a 45-
degree angle, respectively. For this paper, only the
downward-pointing camera was used.

The data collection system was mounted on a C-12
Huron aircraft, owned by the USAF Test Pilot School
(USAF TPS). A number of data collections were flown



START 

END

Source: Digital Globe

Figure 7: Flight path for Palmdale data collection. The seg-
ment used in this research was flown over a combination of
urban and desert terrain. Map imagery: c©Digital Globe,
NextView.

by USAF TPS in order to present the sensor with vari-
ations in terrain, airspeed, and altitude. For this test,
a segment of flight data was used that consisted of a
combination of urban and rural terrain (see Figure 7).
Further variations in terrain and feature quality will
be tested in future efforts. A GAINR-Lite (GLITE)
Time-Space Positioning Information (TSPI) unit was
mounted on the aircraft and served as the position,
velocity, and orientation truth source. The GLITE
system consists of a HG-1700 tactical-grade inertial
sensor coupled with differentially-corrected pseudo-
range measurements from a dual-frequency GPS re-
ceiver. The sensors are integrated using a post-flight
smoother algorithm.

Simulation

A Monte Carlo simulation was used to evaluate the
performance and stability of the GPS-aided inertial
navigation algorithm both with and without image-
aiding. The simulations were performed using a stan-
dard flight profile, based as closely as possible to the
experimental flight data. The simulated trajectory
was generated based on a semi-circular path with no
overlapping portions. The trajectory was flown at
approximately 1000 meters above relatively flat ter-
rain above Palmdale, California. A five-minute seg-
ment of the profile was chosen with a combination of
straight-and-level and turning portions.

For each Monte Carlo simulation, the inertial mea-
surements and GPS measurements were generated
with random errors consistent with the relevant er-
ror model. In addition, a collection of ground land-

marks was generated using a digital terrain elevation
database. In order to simulate the effects of uncer-
tainty in the terrain model, a random elevation error
was added to the landmark elevations. These sim-
ulated landmarks were then projected into the im-
age plane and used to generate synthetic SIFT fea-
tures, complete with localization and a randomized
descriptor component. This method was chosen in
order to stimulate the feature tracking algorithm as
accurately as possible without going to the difficult
step of generating simulated images with enough fi-
delity to exercise the feature tracking algorithm. As a
result the Monte Carlo simulations should be an op-
timistic predictor of the true system performance as
they correspond to a ”best-case” scenario where there
is virtually perfect feature tracking and a perfect cam-
era distortion model. Thus, when the results are in-
terpreted using this perspective, they can help to val-
idate the concept and model, while serving as a lower
bound performance expectation for this particular al-
gorithm.

As mentioned previously, the target location error is
a function of the position and attitude errors of the
navigation system, camera boresight and uncorrected
optical errors, and any errors in the terrain elevation
database used to initialize the height estimate of the
landmark. The horizontal target error can be thus ap-
proximated by expressing the horizontal target loca-
tion, yh, as:

yh = ph + hv/ tan θ (10)

where ph represents the horizontal position of the air-
craft, hv is the height of the aircraft above the terrain,
and θ is the depression angle from horizontal to the
target. Linearizing about the mean, represented us-
ing the overbar notation, results in the following first-
order approximation

δyh ≈ δph +
1

tan θ̄
δhv −

h̄v

sin2 θ̄
δθ (11)

Assuming independence, the horizontal target loca-
tion variance, σ2

yh
, is

σ2
yh

= σ2
ph

+
1

tan2 θ̄
σ2

hv
+

h̄2
v

sin4 θ̄
σ2

θ (12)

Examining Eq. 12 shows a dependence on the posi-
tion and attitude uncertainty, as expected. Thus, for
a given imaging scenario, the relative contribution of
each error source can be determined. Assuming one
meter of horizontal position error and three meters
of vertical position error, the expected target location
accuracy is a function of the height above terrain, ele-
vation angle, and attitude errors. The resulting target
location accuracy given variations of these parame-
ters is shown in Figure 8.
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Figure 8: Predicted Horizontal Target Location Error. The
predicted horizontal target location error (TLE) is shown
for depression angles of 30, 60, and 90 degrees. The effects
of attitude accuracy and height above terrain demonstrates
the critical importance of reducing attitude errors in order
to improve target location accuracy. The figures assume
a 1-meter horizontal and 3-meter vertical position error of
the aircraft.

Simulation Results

The simulation results for the baseline GPS/IMU (no
image aiding) case illustrates the difficulty in ob-
taining a high-quality target location from a UAV
equipped with a low-cost inertial sensor. As shown
in Figure 9, the attitude errors, especially in heading,
have standard deviations on the order of 100 mrad.
This results in a high target location errors, especially
at longer slant ranges.

Incorporating the automated image-based feedback
improves the attitude errors greatly. The resulting
simulated attitude errors are shown in Figure 10. The
standard deviation are on the order of 5 mrad, which
is a significant improvement.

Flight Test

The image-aided GPS/IMU algorithm was applied
to a five-minute segment of the Palmdale, CA flight
profile. The flight profile consisted of a semi-circular
path, flown over a combination of urban and desert
terrain. A sample image from the image-aiding al-
gorithm illustrates the typical terrain observed by the
sensor as well as a depiction of the camera field-of-
view overlayed on the moving-map display (see Fig-
ure 11). For purposes of comparison, the navigation
solution was calculated using the baseline GPS/IMU
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Figure 9: Simulated attitude errors for consumer-grade
GPS/IMU integration. As expected, the Monte Carlo sim-
ulation predicts relatively large heading errors. These er-
rors would have a significant effect on target location accu-
racy.
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Figure 10: Simulated attitude errors for consumer-grade
GPS/IMU integration with image aiding using landmarks
of opportunity. Incorporating the image-based measure-
ments significantly improves the predicted attitude errors,
resulting in an improvement in target location accuracy.



Figure 11: Sample feature track display from the Palmdale
data collection. The currently-tracked features are depicted
with red ’+’ symbols. Each feature is surrounded by a pro-
jection of the two-sigma error ellipse. In the right pane, the
current features, quality, and field-of-view are overlayed on
a moving-map display. Map imagery: c©Digital Globe,
NextView.

and using the image-aided GPS/IMU. The position
and attitude errors are compared in Figures 12 and 13,
respectively. A detailed view of the experimental at-
titude errors is shown in Figure 14. Although the de-
viations are larger than predicted by simulation, the
estimate appears to be consistent with the filter’s pre-
dicted one-sigma bounds.

As expected, the automatic image aiding significantly
improves the attitude errors of the system. In addi-
tion, the position errors are consistent, which indi-
cates the GPS measurements are dominating the po-
sitioning performance and that the image updates do
not degrade this capability.

CONCLUSIONS

In this article, an algorithm was presented that
improves the target location accuracy of a UAV
equipped with a low-cost GPS/IMU and imaging sys-
tem. The method is implemented recursively for on-
line operation and only requires a terrain database.
No a prori imagery is required over the area of oper-
ations. The system automatically selects and tracks
stationary features in the field-of-view and uses these
tracks to update the navigation state. The system was
shown using a combination of simulation and flight
test data to improve the attitude accuracy by an or-
der of magnitude. This results in a corresponding im-
provement in target location accuracy.

The next step of this project is to build a smaller sen-
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Figure 12: Position errors for Palmdale flight test. The po-
sition errors were calculated for the GPS/IMU system with
(represented by the dashed green trace) and without image
aiding (represented by the solid blue trace). The dashed
red lines indicate the one-sigma uncertainty bounds of the
EKF for the non-image aided case. Note the image aiding
does not significantly affect the positioning accuracy of the
system.
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Figure 13: Attitude errors for Palmdale flight test. The at-
titude errors were calculated for the GPS/IMU system with
(represented by the dashed green trace) and without image
aiding (represented by the solid blue trace). The dashed red
lines indicate the one-sigma uncertainty bounds of the EKF
for the non-image aided case. As predicted by simulation,
the attitude errors are significantly improved by incorpo-
rating automatic image aiding to the GPS/IMU system.
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Figure 14: Image-aided attitude errors for Palmdale flight
test (detail). The attitude errors calculated using the
image-aided GPS/IMU system show significant improve-
ment over the non-image aided results. The estimates are
reasonably consistent with the EKF predicted one-sigma
bounds (red dashed lines).

sor suitable for incorporation in our micro-UAV plat-
form.
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