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Abstract. We present a line search multigrid method based on Nash’s MG/OPT multilevel
optimization approach for solving discretized versions of convex infinite dimensional optimization
problems. Global convergence is proved under fairly minimal requirements on the minimization
method used at all grid levels. In particular, our convergence proof does not require that these
minimization, or so-called “smoothing” steps, which we interpret in the context of optimization,
be taken at each grid level in contrast with multigrid algorithms for PDEs, which fail to converge
without such steps. Preliminary numerical experiments show that our method is promising.
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1. Introduction. Infinite dimensional optimization problems are a major source
of large-scale finite dimensional optimization problems [13, 27]. Since it is not pos-
sible or very hard to obtain explicit solutions for these problems, they are usually
solved numerically either by a “discretize-then-optimize” strategy or an “optimize-
then-discretize” strategy. In this paper, we follow the first strategy and consider a
class of problems whose discretized versions have the form:

(1.1) min
xh∈Ωh

fh(xh)

where h is an index used to specify the resolution or discretization of the optimization
problem, xh is a vector of dimension nh and fh is a real valued and twice continuously
differentiable convex function on a domain Ωh ∈ R

nh .

Multigrid methods [9, 11, 12, 19, 25, 34, 35, 36] are iterative methods that were
originally proposed for linear elliptic partial differential equations (PDEs). In this
approach, coarser grid corrections are recursively imbedded in an iterative process,
in combination with so called “relaxation” or “smoothing” steps, to accelerate the
convergence on the target grid. Several extensions for nonlinear PDEs have been well
studied. One is the global linearization method [20, 34], which uses the multigrid
method within Newton’s method for nonlinear equations to solve the system of linear
equations that provides the Newton step at each iteration. The second is the local
linearization method, such as the full approximation scheme (FAS) [10] and the closely
related nonlinear multigrid method (NMGM) [19], in which the multigrid methodology
is directly applied to the original system of nonlinear equations and its corresponding
system of nonlinear residual equations. A combination of global and linearization is
studied in [37] and a projection multilevel method is proposed for quasilinear elliptic
PDEs in [23, 24, 26], where the system of nonlinear equations is reformulated as a
least-squares problem.
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2 ZAIWEN WEN AND DONALD GOLDFARB

Multigrid methods for infinite dimensional optimization problems have also re-
ceived considerable attention [1, 3, 4, 6, 7, 14, 33]. However, until recently the essential
thrust of these methods was based on employing multigrid methods for solving the
nonlinear equations derived from the optimality condition of problem (1.1). In a new
approach, Nash [21] (see also [22, 29]) proposed a multigrid optimization framework
for solving problem (1.1), where fh(xh) is a convex function of xh. A proof of the
global convergence of Nash’s method was given in [5]. This proof requires that at
least one iteration of the optimization algorithm that is used at each level be per-
formed either before going to a coarser level or after returning from a coarser level
during a multigrid cycle. These iterations of the optimization algorithm are similar to
prior smoothing or post smoothing steps in multigrid methods for PDEs. Expanding
on Nash’s approach, Gratton, Sartenaer and Toint [18, 16, 17] proposed a recursive
trust region method that converges to a first-order optimal point without doing such
smoothing steps at each multigrid cycle.

In this paper, we propose a line search multigrid optimization method that adopts
some of the features of both Nash’s method and the method of Gratton, Sartenaer
and Toint. We show that the search direction generated by our multigrid approach
is always a descent direction when the objective function fh(xh) is convex. We inter-
pret smoothing steps as steps in an optimization algorithm, and prove that our line
search method does not require such steps at each multigrid cycle to guarantee global
convergence in the convex case. We aslo prove that the convergence rate is at least
R-linear. Smoothing steps can be Newton steps and we show that convergence is still
guaranteed without solving the Newton systems exactly. If each Newton system is
solved by the linear multigrid method, our algorithm can be viewed as a combination
of the global linearization method and the FAS scheme for nonlinear PDEs.

This paper is organized as follows. In section 2, we briefly review multigrid meth-
ods for PDEs. In section 3, a multigrid method for solving unconstrained convex
problems is developed. A proof of global convergence as well as a proof of R-linear
convergence for uniformly convex problems are presented in section 4.1. Global con-
vergence for general convex function is proved in section 4.2. In section 5, we dis-
cuss some techniques to enhance our mulitigrid method, including the full multigrid
method, different ways to generate search directions, and other ways to do smoothing
steps. Finally preliminary numerical results are given in Section 6.

We adopt the following notation in this paper: fh,k ≡ fh(xh,k),∇fh,k ≡ ∇fh(xh,k).
Here xh,k is a vector where the first subscript h denotes the discretization level of the
multigrid and the second subscript k denotes the iteration count. If a vector has only
one subscript, as for example xh, the subscript h either refers to the level of the multi-
grid, and thus xh itself is a vector or it refers the fact that xh is the hth component
of the vector x. When it is not clear from the context, we will point out the specific
meaning. We use letter H to denote the next coarsest level h − 1 from level h. N is
reserved for the index of the finest level and N0 for the coarsest level.

2. Multigrid Methods for PDEs. Consider solving the system of linear equa-
tions

(2.1) Ahxh = bh,

where Ah is a symmetric positive definite matrix and h is the discretization level. Let
Bh be an approximate inverse of Ah. Define Rh to be the restriction operator from
level h to level H and Ph be the prolongation operator from level H to level h. As in
standard multigrid methods, we assume that:
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Assumption 2.1. The prolongation operator Ph and the restriction operator Rh

satisfy:

(2.2) σhPh = R⊤
h .

For simplicity, we take σh = 1, which does not affect our convergence analysis.
Assumption 2.2. The coarser level matrix Ah−1 relates to the finer level matrix

Ah through Ah−1 = RhAhPh.
Given an approximate solution xh,k, a multigrid cycle [19, 35] for solving problem

2.1 can be stated as follows:

Algorithm 1. Multigrid-cycle: xh,k+1 = MGCY CLE(h,Ah, bh, xh,k)

-Pre-smoothing: Compute x̄h,k = xh,k + Bh(bh − Ahxh,k).
-Coarse Grid Correction:

Compute the residual r̄h,k = bh − Ahx̄h,k.
Restrict the residual r̄h−1,k = Rhr̄h,k.
-Solve the Coarse Grid Residual Equation Ah−1eh−1,k = r̄h−1,k

If h − 1 = N0, solve eh−1,k = A−1
h−1r̄h−1,k,

Else call eh−1,k = MGCY CLE(h − 1, Ah−1, r̄h−1,k, 0).
Interpolate the correction: eh,k = Pheh−1,k.
Compute the new approximation solution: xh,k+1 = x̄h,k + eh,k.

As a result, we have the following iterative algorithm:

Algorithm 2. Multigrid Algorithm MG(Ah, bh, ǫ)

Initialization: Let xh,0 and ǫ be given.

For k = 0, 1, 2, · · · until ‖Ahxh,k − bh‖ ≤ ǫ DO

Call xh,k+1 = MGCY CLE(h,Ah, bh, xh,k).

Since understanding the two-grid version of Algorithm 2 is sufficient for under-
standing the general algorithm, we only consider the two-grid algorithm here. From
Algorithm 1, with h − 1 = H, we have

xh,k+1 = x̄h,k + PheH,k = x̄h,k + PhA−1
H Rhr̄h,k,

where r̄h,k = bh − Ahx̄h,k is the residual at the point x̄h,k. Note that the step eH,k

involves A−1
H . This is true for the two-grid version, where level H is the coarsest level.

Assume that x∗
h is the solution of (2.1). Then at x̄h,k, the error is x̄h,k−x∗

h = S1(xh,k−
x∗

h) and the residual is r̄h,k = S2rh,k, where rh,k = bh −Ahxh,k, S1 = Ih −BhAh and
S2 = Ih − AhBh. Hence, the error at the new point xh,k+1 is:

xh,k+1 − x∗
h = (I − PhA−1

H RhAh)S1(xh,k − x∗
h),

and the residual at xh,k+1 is

rh,k+1 = bh − Ahxh,k+1 = (I − AhPhA−1
H Rh)S2rh,k.

Therefore, the two-grid multigrid algorithm converges uniformly if the spectral radius
ρ((I − AhPhA−1

H Rh)S2) < 1. Note that the coarse grid correction alone will not lead
to convergence, since usually ρ(I − AhPhA−1

H Rh) > 1.
The smoothing steps of the two-grid multigrid algorithm smooth the residual rh,k

on the fine level h and the coarse grid correction steps damp the error on the coarse
level H. Different choices of Bh result in different iterative methods. Specifically, if
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we decompose Ah as Ah = Dh − Lh − Uh, where Dh is the diagonal of Ah and −Lh

and −Uh are the lower and upper triangular parts of Ah, respectively, then common
choices for Bh are:

Bh =





D−1
h , Jacobi;

ωD−1
h , Damped Jacobi (0 < ω < 2/ρ(D−1

h Ah);

(Dh − Lh)−1, Gauss − Seidel;

ω(Dh − Lh)−1, SOR (0 < ω < 2).

Let us now study the idea of multigrid from the point view of optimization.
Solving the system of linear equations (2.1) is equivalent to solving the strictly convex
quadratic minimization problem:

(2.3) min
xh

fh(xh) =
1

2
x⊤

h Ahxh − b⊤h xh.

The reduction in the value of the objective function obtained by moving from xh,k to
xh,k+1 is

(2.4) fh(xh,k) − fh(xh,k+1) = [fh(xh,k) − fh(x̄h,k)] + [fh(x̄h,k) − fh(xh,k+1)],

where x̄h,k, the outcome of the presmoothing step is

x̄h,k = xh,k + ph,k, ph,k = −Bh∇fh,k,

and ∇fh,k is the gradient of fh at xh,k. The reduction of the objective function value
between xh,k and x̄h,k is

fh(xh,k) − fh(x̄h,k) = −(
1

2
p⊤h,kAhph,k + p⊤h,k∇fh,k)(2.5)

= −1

2
(∇fh,k)⊤B⊤

h AhBh∇fh,k + (∇fh,k)⊤B⊤
h ∇fh,k

= (∇fh,k)⊤B⊤
h (B−1

h − 1

2
Ah)Bh∇fh,k.

The reduction of the objective function values between x̄h,k and xh,k+1 is

fh(x̄h,k) − fh(xh,k+1) = −(
1

2
e⊤h,kAheh,k + e⊤h,k∇f̄h,k)(2.6)

= −1

2
(∇f̄h,k)⊤PhA−1

H RhAhPh︸ ︷︷ ︸
AH

A−1
H Rh∇f̄h,k + (∇f̄h,k)⊤PhA−1

H Rh∇f̄h,k

=
1

2
(∇fh,k)⊤S⊤

2 PhA−1
H RhS2∇fh,k

since ∇f̄h,k = ∇f(x̄h,k) = S2∇fh,k. Combining (2.4), (2.5) and (2.6), we have that

fh(xh,k) − fh(xh,k+1) =
1

2
(∇fh,k)⊤S⊤

2 PhA−1
H RhS2∇fh,k(2.7)

+(∇fh,k)⊤B⊤
h (B−1

h − 1

2
Ah)Bh∇fh,k.

If Bh is the Gauss-Seidel operator, we have:

B−1
h − 1

2
Ah = Dh − Lh − 1

2
Ah =

1

2
Dh − 1

2
(Lh − Uh),



A LINE SEARCH MULTIGRID METHOD 5

where u⊤(Lh − Uh)u = 0 for u ∈ R
nh , as Lh − Uh is antisymmetric. Hence,

(∇fh,k)⊤B⊤
h (B−1

h − 1

2
Ah)Bh∇fh,k

=
1

2
(∇fh,k)⊤B⊤

h DhBh∇fh,k ≥ 1

2
λmin(B⊤

h DhBh)‖∇fh,k‖2 > 0.

Therefore the reduction of the objective function value on each multigrid cycle is at
least

(2.8) fh(xh,k) − fh(xh,k+1) ≥ βh‖∇fh,k‖2,

where the constant βh = 1
2λmin(B⊤

h DhBh) > 0 follows from the positive definiteness
of Ah. Summing (2.8) over k from 0 to j, we have:

fh(xh,0) − fh(xh,j+1) ≥
j∑

k=0

βh‖∇fh,k‖2.

Then taking the limit as j goes to +∞, we obtain

lim
k→+∞

∇fh,k = 0,

as fh(xh) is bounded below.
Consider now the two-grid version of Algorithm 2 without pre-smoothing steps.

Suppose we start from a point xh,k that satisfies:

(2.9) ‖Rh∇fh,k‖ ≥ κ‖∇fh,k‖,

where κ is a constant. Then the gradient at xh,k+1 is

∇fh,k+1 = (I − AhPhA−1
H Rh)∇fh,k.

Now using the fact that AH = RhAhPh,

Rh∇fh,k+1 = Rh∇fh,k − RhAhPhA−1
H Rh∇fh,k = 0,

which means that the next coarse grid correction eH,k+1 = 0. Therefore, the two grid
algorithm can no longer make any progress at the point xh,k+1 by taking steps in the
coarse grid.

If we do a line search along the direction eh,k = −PhA−1
H Rh∇fh,k to find the best

point along that direction, i.e., we solve

min
α∈R

fh(xh,k + αeh,k),

we obtain

α =
−e⊤h,k∇fh,k

e⊤h,kAheh,k
=

(∇fh,k)⊤PhA−1
H Rh∇fh,k

(∇fh,k)⊤PhA−1
H RhAhPh︸ ︷︷ ︸

AH

A−1
H Rh∇fh,k

= 1.

Hence, using a step length of one along eh,k is optimal1. Moreover, we have from (2.6)
and (2.9) that

fh(xh,k) − fh(xh,k+1) =
1

2
(∇fh,k)⊤PhA−1

H Rh∇fh,k ≥ βh,k‖∇fh,k‖2,

1For the use of steplength optimization in linear multigrid methods see [31].
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where βh,k = 1
2κ2/λmax(AH). Although matrix PhA−1

H Rh is not of full rank, the
reduction of the objective function value is still bounded below by the square of the
norm of the gradient multiplied by the positive constant βh,k. Hence, the recursive
step eh,k is a good step.

The two-grid algorithm can avoid a break down if it does pre-smoothing steps
until a point x̄h,k is generated that satisfies

(2.10) ‖Rh∇f̄h,k‖ ≥ κ‖∇f̄h,k‖, and fh(x̄h,k) < fh(xh,k).

Then a recursive step can be taken and the sequence {xh,k} will converge to the
optimal solution. The two-grid algorithm with traditional smoothing steps guarantees
(2.10) and the smoothing steps also ensure that the norm of the gradient decreases,
i.e., ‖∇fh,k+1‖ ≤ νh‖∇fh,k‖ for some constant 0 < νh < 1.

Generating the coarse grid correction step eH,k can also be viewed as solving a
coarser level minimization problem that is closely related to the finer level problem
(2.3). From the coarse grid residual equation, we have

AHeH,k = rH,k = −Rh∇fh,k

⇐⇒ AH(xH,k + eH,k) − bH = AHxH,k − bH − Rh∇fh,k

⇐⇒ AH(xH,k + eH,k) = bH + (∇fH,k − Rh∇fh,k).

(The above construction for the coarse grid residual equation is also what is done
in the FAS [19, 34]). Hence eH,k is identical to eH,k = x∗

H − xH,k, where x∗
H is a

minimizer of the problem

(2.11) min
xH

{ψH(xH) ≡ fH(xH) − (vH)⊤xH}

and vH = ∇fH,k −Rh∇fh,k. This interpretation provides a motivation for extending
the multigrid Algorithm 2 to an algorithm for minimizing a general convex function.

3. A Multigrid Method for Unconstrained Convex Optimization. In
this section, we develop a multigrid method for the uppermost finest level problem

(3.1) min
xN

fN(xN).

Without loss of generality, we shall explain the basic idea underlying this method
starting from the kth iteration xh,k at level h. Whenever possible, we will compute
a search direction dh,k by resorting to problems on coarser levels recursively. If the
current level is the coarsest level or the coarser level model is not a good choice, a
direction dh,k will be computed directly on the current level h.

If a “recursive search” direction is chosen, we first move to the next coarsest
level H with an initial point xH,0 = Rhxh,k. Next we compute the minimizer (or
approximate minimizer) xH,i∗ of the coarse level problem

min ψH(xH),

where ψH is an approximation of the original problem (1.1) on the coarse level H.
The function ψH , which we will define below, depends on the point xh,k and the level
h and will be different for different points. To simplify our notation, we will omit this
dependence when referring to ψH(·) or its derivatives as this should not cause any
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confusion. Then we project the direction d∗H = xH,i∗ − xH,0 on level H back to level
h to obtain the recursive search direction

(3.2) dh,k = Phd∗H = Ph

(
i∗−1∑

i=0

αH,idH,i

)
,

where αH,i and dH,i are the step size and search direction, respectively, for the ith
iteration on level H. Here each search direction dH,i from xH,i to xH,i+1 for i =
0, · · · , i∗ − 1 is also computed recursively whenever possible.

If a “direct search” direction is chosen, dh,k is computed directly on level h. Many
possibilities exist for how to compute such a direction. To illustrate our algorithm,
we solve the Newton system:

(3.3) Gh,kdh,k = −gh,k

exactly or inexactly to obtain dh,k, where we have used the notation gh,k = ∇ψh,k =
∇ψh(xh,k) and Gh,k = ∇2ψh,k = ∇2ψh(xh,k). As stated above, we must use this
direct search direction when the coarse level model is not appropriate. Specifically.
we restrict the use of the recursive search direction at the point xh,k to the case where

(3.4) ‖Rhgh,k‖ ≥ κ‖gh,k‖, ‖Rhgh,k‖ ≥ ǫh.

The reason for this is that Rhgh,k may be zero even though gh,k is not zero if gh,k

lies in the null space of Rh; hence the current iterate appears to be a stationary point
for ψH whereas it is not for ψh. These conditions are the same as those used in the
multigrid algorithm proposed in [18, 16, 17].

Let us now define the coarse level approximation ψH explicitly. To ensure con-
vergence and efficiency, the coarse level problem is not simply the discretized problem
(1.1) for the coarse level H, but rather:

(3.5) min
xH

{ψH(xH) ≡ fH(xH) − (vH)⊤xH},

where vH = ∇fH,0 − Rhgh,k. Furthermore, if we define vN = 0, then model (3.5) can
be naturally extended to all levels and the uppermost level model problem is exactly
problem (3.1). Moreover, (3.5) enforces a certain coherence between the fine level
problem ψh and the corresponding coarse level problem ψH .

Lemma 3.1. If we choose the recursive scheme to generate the direction dh,k =
Phd∗H , where the minimization on the coarse level H starts from the initial point
xH,0 = Rhxh,k, then the problems of the two consecutive levels h and H are first-
order coherent in the sense that

(3.6) gH,0 = Rhgh,k, (dh,k)⊤gh,k = (d∗H)⊤gH,0.

Proof. The first part of (3.6) comes from the fact that

gH,0 = ∇fH,0 − vH = ∇fH,0 −∇fH,0 + Rhgh,k = Rhgh,k.

This together with (3.2) and (2.2) and our assumption that σh = 1, implies that

(dh,k)⊤gh,k = (Phd∗H)⊤gh,k = (d∗H)⊤Rhgh,k = (d∗H)⊤gH,0.
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The following lemma shows, the recursive search direction dh,k is a descent direc-
tion for ψh at xh,k if fH(xH) is a convex function.

Lemma 3.2. Suppose fH(xH) is a convex function. If we choose the recursive
scheme to generate the direction dh,k = Phd∗H , where the minimization on the coarse
level H starts from the initial point xH,0 = Rhxh,k and stops at the point xH,i∗ with
ψH(xH,i∗) < ψH(xH,0), then dh,k is a descent direction; that is (dh,k)⊤gh,k < 0.
Moreover, the directional derivative (dh,k)⊤gh,k satisfies

(3.7) −(dh,k)⊤gh,k ≥ ψH,0 − ψH,i∗ .

Proof. Since fH(xH) is convex, so is ψH(xH); hence

(3.8) ψH(xH,i∗) ≥ ψH(xH,0) + (xH,i∗ − xH,0)
⊤gH,0.

Hence we conclude that inequality (3.7) holds, and from the fact that ψH(xH,i∗) <
ψH(xH,0), it follows that (d∗H)⊤gH,0 < 0.

In our algorithm, we chose a step size αh,k along the direction dh,k that satisfies
the Armijo-Wolfe conditions

ψh(xh,k + αh,kdh,k) ≤ ψh,k + ρ1αh,k(gh,k)⊤dh,k,(3.9a)

(∇ψh(xh,k + αh,kdh,k))⊤dh,k ≥ ρ2(gh,k)⊤dh,k,(3.9b)

where 0 < ρ1 < ρ2 < 1 are two controlling parameters. The smaller ρ2 is, the stricter
the line search is. To select a step size αh,k to satisfy (3.9a) and (3.9b), we refer the
reader to Algorithms 3.2 and 3.3 in [30], which are based on interpolation and/or
bisection. For a more detailed description of these kind of strategies, see, for example
[28].

Our multigrid algorithm stops when the norm of the gradient is smaller than a
given tolerance , i.e. ‖gh,k‖ ≤ ǫh. It also limits the number of iterations to at most K
at all levels h other than the finest level h = N.

Algorithm 3. xh = MLS(h, xh,0, g̃h,0)

Step 1. If h < N, compute vh = ∇fh,0 − g̃h,0, set gh,0 = g̃h,0;
Else set vh = 0 and compute gh,0 = ∇fh,0.

Step 2. For k = 0, 1, 2, · · ·
2.1. If ‖gh,k‖ ≤ ǫh or if h < N and k ≥ K,

Return solution xh,k;

2.2. If h > N0 and ‖Rhgh,k‖ ≥ κ‖gh,k‖ and ‖Rhgh,k‖ ≥ ǫh

-Recursive Search Direction Computation

Call xh−1,i∗ = MLS(h − 1, Rhxh,k, Rhgh,k) to return a solution (or ap-
proximate solution ) xh−1,i∗ of “minxh−1

ψh−1(xh−1)”.
Compute dh,k = Ph(xh−1,i∗ − Rhxh,k) = Phd∗h−1.

Else

-Direct Search Direction Computation

Solve Gh,kdh,k = −gh,k exactly or inexactly to obtain dh,k.

2.3. Call line search to obtain a step size αh,k that satisfies the Armijo-Wolfe
conditions (3.9a) and (3.9b).

2.4. Set xh,k+1 = xh,k + αh,kdh,k.
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Remark 3.3. Algorithm 3 automatically chooses between the direct search direc-
tion and the recursive direction based on condition (3.4). Therefore it can be viewed
as a combination of the global linearization method and the FAS scheme when applied
to nonlinear PDEs.

One element in Algorithm 3 that we have not fully specified is how to solve the
Newton system (3.3) in the direct search direction computation. The most straight-
forward way is to solve (3.3) exactly using factorization methods [15]. However, doing
this is very expensive on the finer levels. A very natural adaptive strategy is the
following. Whenever we are on levels where the total number of variables is not too
large and the corresponding Hessian is sparse, compute the Hessian and its Cholesky
factorization directly, i.e., (3.3) is solved exactly; for all other cases, we only solve
(3.3) to a certain accuracy by using a (preconditioned) conjugate gradient method
[15] or the multigrid Algorithm 2.

4. Convergence Analysis. Throughout this section, we define

(4.1) ̟
def
= max{1, max

i=1,··· ,N
‖Pi‖} = max{1, max

i=1,··· ,N
‖Ri‖} < ∞,

and adopt some concepts and notation from [18, 16, 17].
1. We shall refer to the kth iteration on level h as iteration (h, k). We define the

iteration (h, k) as the predecessor of a minimization sequence that consists
of all successive iterations on level h − 1 until a return is made to level h.
If iteration (h − 1, l) is in this minimization sequence, we use the notation
(h, k) = π(h − 1, l) to indicate this.

2. For iteration (h, k), we define the set

(4.2) R(h, k)
def
= {(j, l) | iteration (j, l) occurs within iteration (h, k)}

and the deepest level in R(h, k) by

(4.3) p(h, k)
def
= min

(j,l)∈R(h,k)
j

3. We denote by T (h, k) the subset of iterations (j, l) ∈ R(h, k) in which dj,l is
a direct search direction, i.e.,

(4.4) T (h, k)
def
= {(j, l) ∈ R(h, k) | dj,l is a direct search direction }.

4.1. Uniformly Convex Problems. In this subsection, we assume
Assumption 4.1. fh(x) is twice continuously differentiable and uniformly con-

vex; that is, there exist constants 0 < mh < Mh < ∞ such that

(4.5) mh‖d‖2
2 ≤ d⊤∇2fh(x)d ≤ Mh‖d‖2

2, ∀d ∈ ℜnh ,

for all x ∈ {x | fh(xh) ≤ fh(xh,0)}. Moreover, let m = minh{mh},M = maxh{Mh}.
Since ψh(x) differs from fh(x) only by a linear term, Assumption 4.1 also holds

for ψh(x). In the following, we state some useful properties of convex functions.
Lemma 4.2. ([32]: Lemma 5.3.4) Suppose fh(x), and hence ψh(x), satisfy As-

sumption 4.1.
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1. If ψh(y) ≤ ψh(x), then

(4.6) ‖∇ψh(x)‖ ≥ m

2
‖y − x‖.

2. For all x,

(4.7)
m

2
‖x − x∗‖2 ≤ ψh(x) − ψh(x∗) ≤ 1

m
‖∇ψh(x)‖2,

where x∗ is the unique minimizer of ψh(x).
Lemma 4.3. ([32]: Theorem 2.5.8) Suppose ψh(x) satisfies Assumption 4.1. If

α is a step size that satisfies the Armijo condition (3.9a) along a descent direction d,
then the decrease of ψh(x) satisfies ψh(x)−ψh(x+αd) ≥ c1‖αd‖2 with c1 = ρ1m

1+
√

M/m
.

We will also make use of the following inequality.
Lemma 4.4. Let d1, d2, · · · , dk be vectors in R

n. Then
∑k

j=1 ‖dj‖2 ≥ 1
k‖

∑k
j=1 dj‖2.

Proof. We prove this lemma by induction on k. The result is trivial if k = 1.
Suppose the inequality is true for k − 1; we now prove that it is also true for k.

k∑

j=1

‖dj‖2 − 1

k
‖

k∑

j=1

dj‖2

≥ 1

k − 1
‖

k−1∑

j=1

dj‖2 + ‖dk‖2 − 1

k


‖

k−1∑

j=1

dj‖2 + ‖dk‖2 + 2




k−1∑

j=1

dj




⊤

dk




=
1

k




1

k − 1
‖

k−1∑

j=1

dj‖2 + (k − 1)‖dk‖2 − 2




k−1∑

j=1

dj




⊤

dk




≥ 0,

where the last inequality comes from the Cauchy-Schwartz inequality and the fact
that 1

ǫ a2 + ǫb2 ≥ 2ab for arbitrary scalars a and b and ǫ > 0. This proves the lemma.

Based on the curvature condition (3.9b) and the uniform convexity of ψh, we have

αj,lM‖dj,l‖2 ≥ (dj,l)
⊤[∇ψh(xj,l + αj,ldj,l) −∇ψh(xj,l)]

≥ −(1 − ρ2)(gj,l)
⊤dj,l

for any iteration (j, l) ∈ R(h, k). Hence, the step size αj,l is bounded below by:

(4.8) αj,l ≥ (1 − ρ2)
|(gj,l)

⊤dj,l|
M‖dj,l‖2

.

We will now show that for certain search directions both αj,l and cos(θj,l), where θj,l

is the angle between dj,l and the steepest descent direction −gj,l, are bounded away
from zero. Therefore, for such choices, the minimization sequence generated by Algo-
rithm 3 on the uppermost finest level is globally convergent whereas the minimization
sequences on all other coarser levels are either globally convergent or stop after at
most K steps.



A LINE SEARCH MULTIGRID METHOD 11

Let us first consider the direct search direction. Specifically, we show that these
particular choices for this direction satisfy:

Condition 4.5. If iteration (j, l) ∈ T (h, k), the step direction dj,l and the step
size αj,l satisfy

(4.9) αj,l ≥ αT , ‖dj,l‖ ≤ βT ‖gj,l‖ and − (dj,l)
⊤gj,l ≥ ηT ‖gj,l‖2,

where αT , δT and ηT are positive constants.
Note that the last two inequalities in (4.9) imply that cos(θj,l) ≥ ηT /βT . The

steepest descent search direction dj,l = −gj,l obviously satisfies Condition 4.5. The
following lemma shows that the exact Newton step satisfies Condition 4.5.

Lemma 4.6. If iteration (j, l) ∈ T (h, k) and the step direction dj,l satisfies
Gj,ldj,l = −gj,l exactly, then Condition 4.5 is satisfied with parameters

(4.10) αT = (1 − ρ2)
m2

M2
, βT =

1

m
and ηT =

1

M
,

Proof. Since the step dj,l satisfies Gj,ldj,l = −gj,l exactly and Assumption 4.1
holds, we have

−(dj,l)
⊤gj,l = |(gj,l)

⊤G−1
j,l gj,l| ≥ M−1‖gj,l‖2

2

and

‖dj,l‖2
2 = (gj,l)

⊤G−2
j,l gj,l ≤ m−2‖gj,l‖2

2,

which together with (4.8) yields (4.9) with parameters (4.10).
Now consider the inexact Newton step generated by the conjugate gradient method

(CG) method. Given initial values s0 = 0, r0 = g and p0 = −r0, the CG method for
solving the system linear equations Gd = −g generates

si+1 = si + αipi, ri+1 = ri + αiGpi, pi+1 = −ri+1 + βi+1pi, for i = 0, 1, · · · ,

where αi =
r⊤

i ri

p⊤

i
Gpi

and βi+1 =
r⊤

i+1ri+1

r⊤

i
ri

. The solution is set to d = si when a certain

accuracy is achieved. The CG method is invariant under an orthogonal transformation
[38]. Define ḡ = Q⊤g and Ḡ = Q⊤GQ, where Q is any given orthogonal matrix. Let
(si, ri, pi) and (s̄i, r̄i, p̄i) be iterates generated by the CG method applied to Gd = −g
and Ḡd̄ = −ḡ, respectively. Then, it can be shown that s̄i = Q⊤si, r̄i = Q⊤ri

and p̄i = Q⊤pi. In particular, for any given g ∈ R
nj and any symmetric matrix G,

there exists an orthogonal matrix Q such that Q⊤g is parallel to the first coordinate
direction and Q⊤GQ is a tridiagonal matrix. Specifically, we have

(4.11) ḡ = ‖g‖e⊤1 , Ḡ =




u1 v1 0 · · · 0 0
v1 u2 v2 · · · 0 0
0 v2 u3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · unj−1 vnj−1

0 0 0 · · · vnj−1 vnj




,

where ei is a vector whose ith element is one and all other elements are zero. We also
denote the submatrix of the first i rows and i columns of Ḡ by Ḡi. Then Lemma 3 in
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[38] shows us that

(4.12) s̄i+1 = −‖g‖
(

(Ḡi)−1e1

0

)
, r̄i+1 = (−1)iei+1‖g‖

∏i
l=1 vl

Det(Ḡi)
.

Using the facts mentioned above, the following lemma shows that the inexact
Newton step generated by the CG method satisfies Condition 4.5.

Lemma 4.7. If iteration (j, l) ∈ T (h, k) and the step dj,l is generated by the
conjugate gradient method, then Condition 4.5 is satisfied with parameters (4.10).

Proof. For ease of notation, we temporarily drop the subscripts (j, l). Since
the CG method is invariant under an orthogonal transformation, we can analyze its
behaviour when applied to the system of equations Ḡd̄ = −ḡ, where Ḡ and ḡ have
the form given in (4.11). Because an orthogonal transformation does not change the
eigenvalues of a matrix, Assumption 4.1 holds for Ḡ. The well-known interlacing
eigenvalue theorem for bordered matrices also implies that Assumption 4.1 holds for
all submatrices Ḡi. From the relationship between (gi, si) and (ḡi, s̄i) and the fact
(4.12), it follows that

−g⊤si+1 = −(ḡ)⊤s̄i+1 = ‖g‖2e⊤1 (Ḡi)−1e1 ≥ M−1‖g‖2.

In addition,

‖si+1‖ = ‖s̄i+1‖ = ‖g‖ ‖(Ḡi)−1e1‖ ≤ m−1‖g‖.

Therefore, since d = si+1 when the algorithm exits, we obtain (4.9) with parameters
(4.10) similar to Lemma 4.6.

The following lemmas show that the recursive steps satisfy properties that enable
us to prove convergence of our multigrid method if the direct search directions satisfy
Condition 4.5.

Lemma 4.8. Suppose iteration (j, l) ∈ R(h, k)\T (h, k) and Condition 4.5 is
satisfied by all direct search steps. Then the step size αj,l is bounded below:

(4.13) αj,l ≥ αI =
c1(1 − ρ2)

MK̟2
,

where K, defined in Algorithm 3, is the maximum number of iterations of the min-
imization sequence at level j − 1. Therefore, αj,l ≥ α∗ = min{αT , αI} for any
(j, l) ∈ R(h, k).

Proof. From the inequality (3.7), it follows that

−(dj,l)
⊤gj,l ≥ ψj−1,0 − ψj−1,i∗ .

Since the minimization sequence is monotonically decreasing, the reductions of the
function value satisfy

ψj−1,0 − ψj−1,i∗ ≥
i∗−1∑

k=0

ψj−1,k − ψj−1,k+1.

Since ψj−1 is uniformly convex, it follows from Lemma 4.3 that

ψj−1,k − ψj−1,k+1 ≥ c1‖αj−1,kdj−1,k‖2.
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Using Lemma 4.4 and the fact that the total number of iterations at level h−1 is less
than K, we have

(4.14) −(dj,l)
⊤gj,l ≥ c1

1

i∗
‖

i∗−1∑

k=0

αj−1,kdj−1,k‖2 ≥ c1

K
‖d∗j−1‖2 ≥ c1

K̟2
‖dj,l‖2,

where the last inequality comes from the fact that dj,l is a prolongation of d∗j−1 and

‖dj,l‖ = ‖Pjd
∗
j−1‖ ≤ ‖Pj‖ ‖d∗j−1‖ ≤ ̟‖d∗j−1‖.

Therefore, combining (4.8) and (4.14), we obtain

αj,l ≥
c1(1 − ρ2)

MK̟2
,

which completes the proof.
Lemma 4.9. Suppose iteration (j, l) ∈ R(h, k)\T (h, k) and Condition 4.5 is

satisfied by all direct search steps. Let p be the deepest level in R(j, l) such that

(4.15) gp,0 = Rp+1gp+1,0 = · · · = Rp+1 · · ·Rjgj,l.

Then for any iteration (q, k) = (q, 0), where p < q < j, and for iteration (q, k) = (j, l),
we have

(4.16) cos(θq,k) ≥ δq−p and − (dq,k)⊤gq,k ≥ ηq−p‖gq,k‖2,

where δq−p = m
2 ηq−p and ηi =

(
α∗ρ1κ

2
)i

ηT .
Proof. 1. We will prove (4.16) for (q, k) = (q, 0) where p < q < j by induction

on q. First, let us consider iteration (p + 1, 0) which is computed recursively. From
inequality (3.7), it follows that

(4.17) −(dp+1,0)
⊤gp+1,0 ≥ ψp,0 − ψp,i∗ ≥ ψp,0 − ψp,1 ≥ −αp,0ρ1(dp,0)

⊤gp,0,

where the last inequality comes from the Armijo condition (3.9a) for iteration (p, 0).
Since (p, 0) is computed directly,

−(dp,0)
⊤gp,0 ≥ ηT ‖gp,0‖2

2.

From (4.15) and the first condition in (3.4), we obtain

(4.18) ‖gp,0‖2
2 = ‖Rp+1gp+1,0‖2

2 ≥ κ2‖gp+1,0‖2
2.

Combining all of these facts together, we get

−(dp+1,0)
⊤gp+1,0 ≥ α∗ρ1κ

2ηT ‖gp+1,0‖2
2,

which proves the second inequality of (4.16) for q = p + 1. From Lemma 4.2, we
obtain

‖gp+1,0‖2 ≥ m

2
‖dp+1,0‖,

which completes the proof of the first inequality of (4.16).
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Now, suppose (4.16) holds for p < q < j − 1; we prove that (4.16) also holds for
q + 1. Similar to the case q = p + 1, we have

−(dq+1,0)
⊤gq+1,0 ≥ ψq,0 − ψq,i∗ ≥ ψq,0 − ψq,1 ≥ −ρ1αq,0(dq,0)

⊤gq,0

≥ ρ1α
∗
(
α∗ρ1κ

2
)q−p

ηT ‖gq,0‖2

≥ ρ1α
∗
(
α∗ρ1κ

2
)q−p

ηT κ2‖gq+1,0‖2

= ηq+1−p‖gq+1,0‖2,

since relationship (4.18) also holds with p replaced by q. Using Lemma 4.2 again, we
obtain (4.16).

2. For iteration (j, l), inequality (4.16) holds by simply repeating, in an analogous
fashion, the above proof:

−(dj,l)
⊤gj,l ≥ ψj−1,0 − ψj−1,i∗ ≥ ψj−1,0 − ψj−l,1 ≥ −ρ1αj−1,0(dj−1,0)

⊤gj−1,0

≥ ρ1α
∗
(
α∗ρ1κ

2
)j−p−1

ηT ‖gj−1,0‖2

≥ ηj−p‖gj,l‖2.

We can now prove the global convergence of Algorithm 3.
Theorem 4.10. Suppose Condition 4.5 is satisfied by all direct search steps.

Then the iterative sequence {xN,k} generated by Algorithm 3 at the uppermost level
converges to the unique minimizer of fN(xN).

Proof. The step size αN,k at the uppermost level is bounded from below by a
constant α∗ > 0 from Lemma 4.8. From the Armijo condition (3.9a), we have

ψN,k − ψN,k+1 ≥ −αN,kd⊤N,kgN,k.

Therefore, since by Assumption 4.1 ψ(·) is bounded below, limk→∞ d⊤N,kgN,k = 0.
From Lemma 4.9, we have

−d⊤N,kgN,k ≥ σ‖gN,k‖2

for some constant σ. This shows that

(4.19) lim
k→∞

‖∇fN(xN,k)‖ = 0

holds, since ∇fN(xN,k) = gN,k (recall that vN = 0). The uniqueness of the minimizer
is from the strict convexity of fN(xN) in Assumption 4.1.

We now prove R-linear convergence.
Theorem 4.11. Suppose Condition 4.5 is satisfied by all direct search steps.

Assume that the iterative sequence {xN,k} generated by Algorithm 3 at the uppermost
level converges to the unique minimizer {x∗

N} of fN(xN). Then the rate of convergence
is at least R-linear.

Proof. Again from Condition 4.5 and Lemma 4.9, we have

(4.20) fN(xN,k+1) − fN(xN,k) ≤ −α∗ηN‖∇fN(xN,k)‖2.

From the second inequality of (4.7) in Lemma 4.2, we get

‖∇fN(xN,k)‖2 ≥ m (fN(xN,k) − fN(x∗
N)) .
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Hence

fN(xN,k+1) − fN(xN,k) ≤ −α∗ηNm (fN(xN,k) − fN(x∗
N)) ,

where 0 < α∗ηNm < 1 can be verified straightforwardly. By subtracting fN(x∗
N) from

both sides of the above inequality, we have:

fN(xN,k+1) − fN(x∗
N) ≤ (1 − α∗ηNm) (fN(xN,k) − fN(x∗

N)) .

From the first inequality of (4.7) in Lemma 4.2, we obtain that

fN(xN,k) − fN(x∗
N) ≥ m

2
‖xN,k − x∗

N‖2.

Hence

‖xN,k − x∗
N‖ ≤

√
2

m
(fN(xN,k) − fN(x∗

N))
1
2

≤
√

2

m
(1 − α∗ηNm)

1
2 (fN(xN,k−1) − fN(x∗

N))
1
2

≤
√

2

m
(1 − α∗ηNm)

k
2 (fN(xN,0) − fN(x∗

N))
1
2 .,

Corollary 4.12. For any ǫ > 0, after at most

τ =
log((fN(xN,0) − fN(x∗

N))/ǫ)

log(1/c)

iterations, where 0 < c = 1 − mα∗ηN

2 < 1, we have fN(xN,k) − fN(x∗
N) ≤ ǫ.

Proof. With the help of inequality (4.20) and from the standard convergence
analysis for convex functions [8], we have the result immediately.

4.2. Relaxing the Uniform Convexity Assumption. In this subsection, we
prove the global convergence of Algorithm 3 for general convex functions. Let us
replace Assumption 4.1 by the following assumption.

Assumption 4.13. ,
1. The level set Dh = {xh : ψh(xh) ≤ ψh(xh,0)} is bounded.
2. The objective function ψh is convex and continuously differentiable, and there

exists a constant L > 0 such that

(4.21) ‖∇ψh(xh) −∇ψh(x̃h)‖ ≤ L‖xh − x̃h‖, for all xh, x̃h ∈ Dh.

3. The Hessian matrix is bounded

(4.22) ‖Gh(xh)‖ ≤ M

for all xh in the level set Dh.
This assumption implies that there is a constant γ such that

(4.23) ‖∇ψh(xh)‖ ≤ γ, for all xh ∈ Dh.

Let us first consider the direct search direction. Since the Hessian Gh,k is only pos-
itive semi-definite, the direction dh,k generated by solving the system of equations
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Gh,kdh,k = −gh,k may not satisfy Condition 4.5. One strategy is to add a small posi-

tive multiple of the identity matrix Ih to Gh,k so that G̃h,k = Gh,k + mIh º mIh for
some constant m > 0. Then dh,k can be computed by solving the modified Newton
system

(4.24) G̃h,kdh,k = −gh,k.

As in the proofs of Lemmas 4.6 and 4.7, we can easily show that the exact Newton
step and the inexact Newton step generated by the conjugate gradient method satisfies
Condition 4.5. We also make the following assumption:

Assumption 4.14. The step size ah,k is bounded from above for any iteration
(h, k); i.e., αh,k ≤ α̃.

The following lemma shows that the norm of the search direction is uniformly
bounded from above.

Lemma 4.15. Suppose Condition 4.5 is satisfied by all direct search steps. Then
‖dj,l‖ ≤ γ̃ for all iterations (j, l) ∈ R(h, k).

Proof. 1. If iteration (j, l) ∈ T (h, k), we obtain

‖dj,l‖ ≤ βT ‖gj,l‖ ≤ γβT

from Condition 4.5 and the fact (4.23).
2. Now consider iteration (j, l) ∈ R(h, k)\T (h, k). Let p be the deepest level in

R(j, l) such that

(4.25) gp,0 = Rp+1gp+1,0 = · · · = Rp+1 · · ·Rjgj,l.

We prove this part by induction on levels. Since p is the coarsest level and the total
number of iterations at level p is less than K, we obtain

‖dp+1,l‖ = ‖Pp+1(

i∗−1∑

k=0

αp,kdp,k)‖ ≤ ̟α̃

i∗−1∑

k=0

‖dp,k‖ ≤ ̟α̃KγβT

which proves the case q = p + 1. Suppose the lemma is true for level q − 1, we prove
that it is also true for level q. Similarly, we have

‖dq,l‖ = ‖Pq(

i∗−1∑

k=0

αq−1,kdq−1,k)‖ ≤ ̟α̃

i∗−1∑

k=0

‖dq−1,k‖ ≤ ̟α̃Kγ̃.

For ease of notation, we still denote the right hand side by γ̃, which is finite and
bounded from above since there is only a finite number of levels and the number of
iterations of each minimization sequence on the coarser levels is at most K. This
completes the proof.

The following lemma shows that the directional derivative along a recursive search
direction and the step size are bounded from below by the norm of the gradient raised
to some power.

Lemma 4.16. Suppose iteration (j, l) ∈ R(h, k)\T (h, k) and Condition 4.5 is
satisfied by all direct search steps. Let p be the deepest level in R(j, l) such that (4.25)
satisfies. Then for any iteration (q, k) = (q, 0), where p < q < j, and for iteration
(q, k) = (j, l), we have

−d⊤q,kgq,k ≥
(

ρ1(1 − ρ2)

L

)(2i−1
−1)

(ρ1αT ηT κ2(j−p)‖gj,l‖2)2
i−1

γ̃2i−2
,(4.26)

αq,k ≥ ρ
(2i−1

−1)
1

(
1 − ρ2

L

)(2i−1)
(ρ1αT ηT κ2(j−p)‖gj,l‖2)2

i−1

γ̃2i ,(4.27)
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where i = q − p.
Proof. 1. We prove this lemma by induction on level q. First, let us consider

iteration (p + 1, 0). From inequality (3.7) and Condition 4.5, it follows that

−d⊤p+1,0gp+1,0 ≥ ψp,0 − ψp,1 ≥ −ρ1αp,0d
⊤
p,0gp,0

≥ ρ1αT ηT ‖gp,0‖2

≥ ρ1αT ηT κ2(j−p)‖gj,l‖2

which proves inequality (4.26). Based on the curvature condition (3.9b) and the
Lipschitz continuity of ∇ψh, the step size αp+1,0 is bounded from below

αp+1,0 ≥ −(1 − ρ2)
d⊤p+1,0gp+1,0

L‖dp+1,0‖2
.

From Lemma 4.15, we obtain

αp+1,0 ≥ (1 − ρ2)
ρ1αT ηT κ2(j−p)‖gj,l‖2

Lγ̃2
,

which proves inequality (4.27). Now suppose inequalities (4.26) and (4.27) hold for
p < q < j − 1; we prove that they also hold for q + 1. As in the case of q = p + 1, we
have

−d⊤q+1,0gq+1,0 ≥ ψq,0 − ψq,1 ≥ −ρ1αq,0d
⊤
q,0gq,0

≥ ρ1ρ
(2i−1

−1)
1

(
1 − ρ2

L

)(2i−1)
(ρ1αT ηT κ2(j−p)‖gj,l‖2)2

i−1

γ̃2i

·
(

ρ1(1 − ρ2)

L

)(2i−1
−1)

(ρ1αT ηT κ2(j−p)‖gj,l‖2)2
i−1

γ̃2i−2

=

(
ρ1(1 − ρ2)

L

)(2i
−1)

(ρ1αT ηT κ2(j−p)‖gj,l‖2)2
i

γ̃2i+1−2
.

Using Lemma 4.15 again, we obtain inequality (4.27).
2. For iteration (j, l), inequalities (4.26) and (4.27) hold by simply repeating, in

an analogous fashion, the above proof.
Now we establish the global convergence of Algorithm 3.
Theorem 4.17. Suppose Condition 4.5 is satisfied by all direct search steps.

Then in Algorithm 3 at the uppermost level

lim infk→∞‖∇fN(xN,k)‖ = 0.

Proof. The proof is by contradiction. Assume that ‖gN,k‖ is bounded away from
zero; that is, there is a constant ǫ > 0 such that

(4.28) ‖∇fN,k‖ = ‖gN,k‖ ≥ ǫ > 0, for all k sufficiently large.

From Condition 4.5 and Lemma 4.16, it follows that each iteration satisfies

(4.29) −αN,kd⊤N,kgN,k ≥ σ‖gN,k‖i,
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where σ is a positive constant and the order i can only be selected from a finite set
of integers {21, 22, · · · , 2N−N0+1}, whether or not the direction dN,k is a direct search
direction or a recursive search direction. Let Bj be the subset of indices k such that
inequality (4.29) is satisfied with power i = 2j . From the Armijo condition (3.9a), we
have

ψN,k − ψN,k+1 ≥ −αN,kd⊤N,kgN,k.

Summing over k and taking limits, we obtain

∞ > ψN,0 − ψN,∞ ≥ −
∞∑

k=0

αN,kd⊤N,kgN,k ≥
N−N0∑

j=1

∑

k∈Bj

σ‖gN,k‖2j

.

Since at least one index set Bl is infinite, we have

∑

k∈Bl

σ‖gN,k‖2j ≥
∑

k∈Bl

σǫ2
l

= ∞,

which is a contradiction.
Remark 4.18. Theorem 4.17 still holds if the bound of the step size for direct

search directions in Condition 4.5 is relaxed to αj,l ≥ αT ‖gj,l‖2.
Theorem 4.17 shows that there exists a subsequence of {xN,k} converging to a

stationary point x∗
N of problem (3.1). However, since fN is convex and the sequence

fN(xN,k) converges, every accumulation point of {xN,k} is a global optimal solution
of problem (3.1).

Corollary 4.19. Suppose Condition 4.5 is satisfied by all direct search steps.
Let {xN,k} be the sequence generated by Algorithm 3 at the uppermost level. Then the
whole sequence {∇fN,k} converges to zero and every accumulation point of {xN,k} is
a global optimal solution of problem (3.1).

5. Practical Issues. In this section, we discuss some other components of the
multigrid method, including different ways to generate search directions, different
strategies for doing smoothing steps and ways to define prolongation and restriction
operators. Finally, the full multigrid method, which is used to enhance the perfor-
mance of the multigrid method for solving PDEs, is extended to our optimization
context.

5.1. Direct Search Directions. In our multigrid algorithm, the direct search
direction dh,k can be computed by minimization algorithms (combined with a proper
line search scheme) other than Newton’s method or the steepest descent method.
These methods can be applied to compute dh,k without any difficulty because they
are totally independent of any information from previous iterates xh,0, · · · , xh,k−1.
History dependent methods, such as nonlinear conjugate gradient methods and quasi-
Newton methods, need to be carefully tailored here since dh,k−1 may be computed
recursively. One simple strategy is to start from scratch every time these methods
are called after a recursive step. But how to utilize these incompatible recursive steps
dh,i needs more study.

5.2. Smoothing Steps. Traditionally, the use of smoothing steps is motivated
by their ability to smooth errors. Generally speaking, multigrid methods [19, 35]
for PDEs will not converge without pre- and post-smoothing. While we can prove
convergence of Algorithm 3 without using smoothing steps after each recursive step,
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we computationally explore the possibility of improving the efficiency of Algorithm 3
by incorporating smoothing steps in section 6.

For quadratic functions, we only require smoothing steps to satisfy condition
(2.10) to guarantee global convergence. For general convex functions, we require
Condition 4.5 to be satisfied. Adding smoothing steps in the framework of Algorithm
3 is fairly easy. One simple strategy is to do some smoothing direct search steps after
a recursive step. When doing smoothing, we don’t want to spend too much time,
especially for the expensive problems at the finer levels. Several iterations of the
steepest descent method or a conjugate gradient method or a limited memory BFGS
method are appropriate in this case. However, in our preliminary computational tests,
we used a Newton’s Method as a smoother but only solved the Newton equation
inexactly.

5.3. Prolongations and Restrictions. The mechanics of prolongation and
restriction are similar to their counterparts in multigrid methods for PDEs [19, 34, 35].
For example, the nine-point prolongation Ph is often represented by the stencil

Ph
def
=




1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4


 .

We require that the restriction Rh be compatible with the prolongation Ph in the
sense that σhPh = Rh. First, define the discretized version of the continuous L2 inner
product at level h

(5.1) 〈uh, vh〉h = ωx
hωy

h

∑

(i,j)∈Ωh

uh(i, j) vh(i, j),

where the scaling factor ωx
hωy

h [19, 34] allows us to compare the grid functions on
different grids and the corresponding continuous function on Ωh. Let uh = PhuH ,
then

〈uh, vh〉h = 〈PhuH , vh〉h = 〈uH , P ∗
hvh〉H ,

where P ∗
h is the adjoint of Ph with respect to the inner product (5.1). Therefore,

restriction can be defined as

Rh = P ∗
h .

For the nine point prolongation, we have Rh = 1
4P⊤

h where P⊤
h is the transpose of Ph.

5.4. Full Multigrid Method. The basic multigrid method solves problem (3.1)
by calling xN,i∗ = MLS(N, xN,0, 0). Since starting from a good initial point usually
reduces the total number iterations required, the idea underlying the “full multigrid
method” is the use of the multilevel approach itself to provide a good initial point.
Suppose we start at a level N0 where the discretized problem is very easily solved.
We interpolate this solution to the next finer level h + 1 as an initial approximation.
Thereafter, Algorithm 3 is applied to the discretized problem at level h + 1. This
process is then repeated over and over until we reach the uppermost level. The
detailed algorithm is as follows.

Algorithm 4. Full Multigrid Method FMLS

Step 1. For h = N0 < N, set initial approximation xh
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Fig. 5.1. An illustration of the full multigrid Algorithm 4
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Step 2. For k = 0, 1, 2, · · · ,N − 1

2.1. Interpolate xh to the next finer working level xh+1,0 = Phxh.

2.2. Call xh+1 = MLS(h+1, xh+1,0, 0) starting with xh+1,0, i.e., apply multigrid
Algorithm 3 to solve the discretized problem on level h + 1

min
xh+1

fh+1(xh+1)

To illustrate the full multigrid Algorithm 4, we simulate some steps of the algo-
rithm running on a problem from level 1 to level 3 and show the relationship between
the level and the iteration history in Figure 5.1. The x-axis denotes the index of the
iteration in the whole minimization procedure whereas the y-axis denotes the level
at which the minimization procedure takes places at a given iteration. We denote
a direct search direction by →, a recursive search direction by 99K, a prolongation
operation by ր and a restriction operation by ց. We mark each iteration in each
minimization sequence by a circle and also record its order in the corresponding min-
imization sequence. For example, there are two minimization sequences on level 2
that we applied to functions that differ by only a linear term. The first minimization
sequence on level 2 first resorts to the coarse level model and initializes a minimization
sequence on that level to compute a recursive step. This recursive step direction is
marked by 99K from the point 0 to the point 1 at level 2. At the point 1, a direct
search direction has to be called to compute the point 2 since the switching condition
(3.4) fails. It is possible that the switching condition (3.4) still fails at point the 2,
then another direct search direction has to be computed. This procedure continues
until the convergence condition is satisfied and the algorithm interpolates the solution
to level 3 as an initial point.

6. Numerical Tests.

6.1. Test Problems and Discretization Issues. In this section, we apply our
multigrid approach to infinite dimensional unconstrained minimization problems of
the form

(6.1) min
u∈U

F(u) =

∫

Ω

L(∇u, u, x) dx
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Table 6.1

Variants of Algorithm

Name Direct Search Direction Smoothing Steps
NEWTON PCG 0

FMLS0-PCG PCG 0
FMLS1-PCG PCG 1
FMLS0-MG MG 0
FMLS1-MG MG 1

subject to proper boundary conditions, where U is the functional space wherein u
resides. Such problems arise in a wide range of applications, such as variational
formulations of nonlinear PDEs, image processing problems, optimal control problems
and inverse problems.

For the sake of simplicity, only the finite difference case and only the two dimen-
sional case of a simple domain Ω = [0, 1] × [0, 1] with Dirichlet boundary conditions
are treated. Neumman conditions and other boundary conditions can be handled in
a similar way by first eliminating the boundary nodes. We discretize Ω at level h as
a square grid

Ωh = {(i, j) def
= (xi, yj) | xi = iωx

h, yj = jωy
h, i = 0, 1, · · · , nx

h; j = 0, 1, · · · , ny
h},

where the mesh size ωx
h = 1/nx

h and ωy
h = 1/ny

h and we take nx
h = ny

h = 2h for the
sake of simplicity. Then the objective functional is discretized as

(6.2) F (u) =
1

2

nx
h−1∑

i=0

ny

h
−1∑

j=0

L(δ+
x ui,j , δ

+
y ui,j , ui,j) + L(δ−x ui,j , δ

−
y ui,j , ui,j).

where δ+
x ui,j , δ

+
y ui,j and δ−x ui,j , δ

−
y ui,j are, respectively, the forward and backward

finite differences with respect to x and y.

6.2. Performance of the Multigrid Methods. We mainly focus on the per-
formance of the full multigrid Algorithm 4 with zero or one smoothing step. When
we specify that a particular version of Algorithm 3 does k smoothing steps, we mean
that before considering doing a recursive step, the algorithm first takes k direct search
steps. It may take additional direct search steps if the test for doing a recursive step
is not met. The direct search directions on the coarsest level are obtained by fac-
torizing the Hessian. The direct search directions on other levels are computed by
a preconditioned conjugate gradient method (PCG) using an incomplete Cholesky
factorization pre-conditioner. We denote the version of the method that does not use
smoothing steps by “FMLS0-PCG” and the version that uses one smoothing step by
“FMLS1-PCG”. If the direct search directions on all but the coarsest level are com-
puted by the multigrid Algorithm 2 (MG) for solving the linear equations, we denote
these methods by “FMLS0-MG” and “FMLS1-MG”, respectively. (See Table 6.1 for
a summary of these methods). We construct the matrices Ah for the various levels so
that Assumption 2.2 is satisfied for the linear multigrid method. We also give results
obtained using Newton’s Method with PCG on the finest level for a comparison.

In our test problems the grid spacing is set to 2−3 at the coarsest level and to 2−8

at the finest level. This gives a 257×257 grid on the finest level. How we computed the
gradient and the Hessian is explained in the Appendix. The initial point in Algorithm
4 is taken to be the zero vector. For the multigrid Algorithm 3, we set

κ = 10−4, ǫh = 10−4, K = 20, ρ1 = 0.01, ρ2 = 0.2.
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Table 6.2

Summary of computational costs for Problem 6.3

FMLS0-PCG
nh 92 172 332 652 1292 2572

nls 2 4 2 1 1 1
nge 4 8 4 2 2 2

nhe 2† 4 2 4 5 6
‖g∗

N
‖2 6.197382e-07

CPU 6.787156

FMLS1-PCG
92 172 332 652 1292 2572

0 1 1 1 1 1
0 2 2 2 2 2
0 2 3 4 5 6

6.196731e-07
6.736728

FMLS0-MG
nh 92 172 332 652 1292 2572

nls 3 6 3 1 1 1
nge 6 11 5 2 2 2

nvc 3† 6 4 2 2 2
‖g∗

N
‖2 1.028328e-05

CPU 3.565317

FMLS1-MG
92 172 332 652 1292 2572

1 3 2 1 1 1
2 5 3 2 2 2

1† 4 4 2 2 2
1.028328e-05

3.328619

Newton
nh nls nge nhe ‖g∗

N
‖2 CPU

2572 1 2 20 1.074113e-06 8.10042

Note that these parameters could also be set adaptively for each level.
The algorithm described above has been implemented in MATALAB (Release

7.3.0); the line search method is adapted from the code “DCSRCH” [28] with an
initial step size of one. All experiments were run on a Dell Precision 670 workstation
with an Intel xeon(TM) 3.4GHZ CPU and 6GB of RAM.

6.2.1. Nonlinear PDE 1. We study the nonlinear PDE [2]

(6.3)
−∆u − u2 = f(x) in Ω,

u = 0 on ∂Ω,

where f(x) = x6 and Ω = [0, 1] × [0, 1]. The corresponding variational problem is

minF(u) =

∫

Ω

1

2
|∇u|2 − 1

3
u3 − f u dx.

The stopping tolerance for PCG and MG is 10−3.
In Tables 6.2-6.5, we summarize the computational costs of the various methods

on this and the other problems. Specifically, nh denotes the number of variables on
level “h”; “nls”, and “nge” denote the total number of line searches and the total
number of gradient evaluations at that level, respectively; “nhe” denotes the total
number of Hessian evaluations on the coarsest level (marked with †) and the total
number of matrix-vector products on other levels if a PCG is used; for all levels other
than the coarsest, “nvc” denotes the total number of multigrid cycles on that level;
on the coarsest level, “nvc” means the total number of Hessian evaluations (marked
with †). Since the total number of objective function evaluations is equal to “nge” in
our implementation, we do not include it in the table. Both PCG methods work well
for this problem because on the finer levels, only one Newton’s step is needed.

From Table 6.2, we can see that the counts “nls”, “nge” and “nhe” at the coarse
levels for method “FMLS0-PCG” are larger than those at the finer levels. This shows
that most of the function value, gradient and Hessian evaluations occur mainly on
the coarser levels. Table 6.2 also gives the total CPU time measured in seconds and
the accuracy attained, which is measured by the 2-norm ‖g∗N‖2 of the gradient at
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Fig. 6.1. Iteration history for Problem 6.3. Left: “FMLS0-PCG”; Right: “FMLS1-PCG”
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the final iteration. Both PCG methods achieve very good accuracy. It is interesting
to note that the difference between CPU times is very small. This confirmed the
property of multilevel methods that their cost does not increase very much if there
are more function, gradient and Hessian evaluations at the coarser levels. We can
observe similar behavior for method “FMLS0-MG” and method “FMLS1-MG”. All
of these methods only take one Newton step at the finest level.

Table 6.2 shows that different inexact solvers for the direct search direction com-
putation lead to quite different results. MG performs better than PCG in this example
in terms of CPU time. Although they are not that different in terms of “nls” and
“nge”, they are different in terms of the operations involving the Hessian (however,
it is hard to compare the two quantities “nhe” and “nvc” directly).

To illustrate the multilevel behavior of methods “FMLS0-PCG” and “FMLS1-
PCG” we plot the level versus iteration history for them in Figure 6.1, which is
a simplified version of Figure 5.1. We can see that a recursive step is not always
performed; it is only performed if it is necessary. Although “nls” indicates that there
are iterations on the coarsest level, Figure 6.1 shows that the multigrid method never
returns to the coarsest level once the minimization procedure is running on the finer
levels.

6.2.2. Nonlinear PDE 2. We study the nonlinear PDE [20]:

(6.4)
−∆u + λueu = f in Ω,

u = 0 on ∂Ω,

where

f =
(
9π2 + λe((x2

−x3) sin(3πy))(x2 − x3) + 6x − 2
)

sin(3πy),

λ = 10, Ω = [0, 1] × [0, 1] and the exact solution is u = (x2 − x3) sin(3πy). The
corresponding variational problem is

minF(u) =

∫

Ω

1

2
|∇u|2 − λ(ueu − eu) dx.



24 ZAIWEN WEN AND DONALD GOLDFARB

Table 6.3

Summary of computational costs for Problem 6.4

FMLS0-PCG
nh 92 172 332 652 1292 2572

nls 5 6 3 2 1 1
nge 9 12 6 4 2 2

nhe 5† 4 5 2 3 3
‖g∗

N
‖2 1.303290e-05

CPU 6.211418

FMLS1-PCG
92 172 332 652 1292 2572

1 3 2 1 1 1
2 5 3 2 2 2

1† 4 4 2 3 3
1.362962e-05

6.172631

FMLS0-MG
nh 92 172 332 652 1292 2572

nls 5 8 5 3 1 1
nge 9 15 9 5 2 2

nvc 5† 9 6 4 2 2
‖g∗

N
‖2 2.898190e-05

CPU 3.091660

FMLS1-MG
92 172 332 652 1292 2572

1 5 3 2 1 1
2 8 5 3 2 2

1† 9 4 4 2 2
2.898191e-05

2.855589

Newton
nh nls nge nhe ‖g∗

N
‖2 CPU

2572 2 3 32 3.133664e-07 14.39141

Fig. 6.2. Iteration history for Problem 6.4. Left: “FMLS0-PCG”; Right: “FMLS1-PCG”
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The stopping tolerance for PCG and MG is 10−3. From Table 6.3, both “FMLS0-
PCG” and “FMLS1-PCG” work well because both methods only need one Newton
step at the finest level. But “FMLS0-PCG” spends more time at the coarse level
especially at the beginning looking for a good initial point. Both methods achieve
very good accuracy and the difference between CPU times is also very small. From
Figure 6.2, we see that the multigrid method also never returns to the coarsest level
once the minimization procedure is running on levels close to the finest level. We can
observe similar behaviors for method “FMLS0-MG” and method “FMLS1-MG”. MG
performs better than PCG in this example in terms of CPU time.

6.2.3. Minimal Surface Problem. Consider the minimal surface problem

(6.5)
min f(u) =

∫

Ω

√
1 + ‖∇u(x)‖2 dx

s.t. u(x) ∈ K = {u ∈ H1(Ω) : u(x) = uΩ(x) for x ∈ ∂Ω},
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Table 6.4

Summary of computation costs for Problem 6.5 with boundary u1

Ω

FMLS0-PCG
nh 92 172 332 652 1292 2572

nls 8 11 3 2 1 1
nge 15 23 6 4 2 2

nhe 8† 9 5 4 4 3
‖g∗

N
‖2 2.261061e-06

CPU 7.068329

FMLS1-PCG
92 172 332 652 1292 2572

2 5 1 1 1 1
4 10 2 2 2 2

2† 7 3 3 4 3
1.999010e-06

6.931453

FMLS0-MG
nh 92 172 332 652 1292 2572

nls 8 13 5 3 1 1
nge 15 26 9 5 2 2

nvc 8† 18 6 4 2 2
‖g∗

N
‖2 1.811500e-05

CPU 3.982122

FMLS1-MG
92 172 332 652 1292 2572

2 6 3 2 1 1
4 12 5 3 2 2

2† 17 4 4 2 2
1.811409e-05

3.809665

Newton
nh nls nge nhe ‖g∗

N
‖2 CPU

2572 5 16 73 2.136139e-06 38.81010

where Ω = [0, 1] × [0, 1]. We will test two sets of boundary data [17, 29]:

(Surf1): u1
Ω(x) =

{
x(1 − x), y = 0, 1,

0, otherwise,

(Surf2): u2
Ω(x) =





−sin(2πy), x = 0,

sin(2πy), x = 1,

sin(2πx), y = 0,

−sin(2πx), y = 1.

The stopping tolerance for PCG and MG is 10−3 for boundary condition u1
Ω(x) while

it is 10−1‖gh,k‖ for boundary condition u2
Ω(x).

From Table 6.4, both “FMLS0-PCG” and “FMLS1-PCG” work well for the
boundary condition u1

Ω(x). But “FMLS0-PCG” spends more time at the coarser
levels, especially at the beginning looking for a good initial point. Both methods
achieve very good accuracy and the difference between CPU times is also very small.
From Figure 6.3, we see that the multigrid method also never returns to the coarsest
level once the minimization procedure is running on levels close to the finest level. We
can observe similar behaviors for method “FMLS0-MG” and method “FMLS1-MG”.
MG performs better than PCG in this example in terms of CPU time.

From Table 6.5, we see that “FMLS0-PCG” and “FMLS1-PCG” also work well,
but they require recursive steps quite often for the boundary condition u2

Ω(x). The
difference between the achieved accuracy is small but the difference between CPU
time is not. They behave like two level methods as we can see in Figure 6.4. This
fact is of great advantage because the bounds estimated in the convergence analysis
are much smaller in this case. Therefore, we can still anticipate a fast convergence
rate. However, “FMLS0-MG” and “FMLS1-MG” do not work well in this case. One
reason perhaps is that the linear multigrid method we implemented can not handle
the nonlinearity well in this case.

7. Discussion. The multigrid Algorithm 3 provides an automatic way to alter-
nate between recursive steps and direct search steps. Usually, different inexact solvers
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Table 6.5

Summary of computation costs for Problem 6.5 with boundary u2

Ω

FMLS0-PCG
nh 92 172 332 652 1292 2572

nls 16 32 23 16 12 7
nge 31 62 46 33 25 17

nhe 16† 47 48 54 98 26
‖g∗

N
‖2 1.081637e-05

CPU 29.53286

FMLS1-PCG
92 172 332 652 1292 2572

3 9 6 5 4 3
5 15 12 8 7 7

3† 20 13 23 31 24
3.840665e-05

20.78162

FMLS0-MG
nh 92 172 332 652 1292 2572

nls 17 37 29 20 18 19
nge 33 71 55 41 40 41

nvc 17† 56 55 72 115 103
‖g∗

N
‖2 1.838892e-05

CPU 72.68670

FMLS1-MG
92 172 332 652 1292 2572

3 10 9 9 10 13
5 18 16 19 22 31

3† 25 27 55 83 78
5.439764e-05

54.00278

Newton
nh nls nge nhe ‖g∗

N
‖2 CPU

2572 6 12 91 4.671913e-05 47.45587

Fig. 6.3. Iteration history for Problem 6.5 with boundary u1
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for the direct step leads to quite different results. Our algorithm can be viewed as
a combination of the global linearization method and the FAS scheme if the direct
search step is solved by the linear multigrid method. Applying the multigrid frame-
work from the point view of optimization provides us with new opportunities for
designing efficient algorithms.

Appendix. Computing Derivatives Efficiently . For the sake of simplicity,
we only consider a discretization of the objective functional (6.1) using forward finite
differences

(A.1) F (u) = ωx
hωy

h

nx
h−1∑

i=0

ny

h
−1∑

j=0

L(δ+
x ui,j , δ

+
y ui,j , ui,j) = ωx

hωy
h

nx
h−1∑

i=0

ny

h
−1∑

j=0

L+
i,j ,
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Fig. 6.4. Iteration history for Problem 6.5 with boundary u2
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where L+
i,j = L(δ+

x ui,j , δ
+
y ui,j , ui,j). Then, the gradient of F (u) with respect to interior

points are

(A.2)

∇F (1 : nx
h − 1, 1 : ny

h − 1)

=
(
g+

x (0 : nx
h − 2, 1 : ny

h − 1) − g+
x (1 : nx

h − 1, 1 : ny
h − 1)

)

+
(
g+

y (1 : nx
h − 1, 0 : ny

h − 2) − g+
y (1 : nx

h − 1, 1 : ny
h − 1)

)

+ gu(1 : nx
h − 1, 1 : ny

h − 1),

where

g+
x = ωy

h

∂L(δ+
x u, δ+

y u, u)

∂(δ+
x u)

, g+
y = ωx

h

∂L(δ+
x u, δ+

y u, u)

∂(δ+
y u)

, gu = ωx
hωy

h

∂L(δ+
x u, δ+

y u, u)

∂u
.

Similarly, we collect partial derivatives
∂2L+

i,j

∂(δ+
x ui,j)2

,
∂2L+

i,j

∂(δ+
x ui,j)∂(δ+

y ui,j)
,

∂2L+

i,j

∂(δ+
y ui,j)2

and

∂2L+

i,j

∂u2
i,j

into the matrices

G+
xx =

ωy
h

ωx
h

∂2L(δ+
x u, δ+

y u, u)

∂(δ+
x u)2

, G+
xy =

∂2L(δ+
x u, δ+

y u, u)

∂(δ+
x u)∂(δ+

y u)
,

G+
yy =

ωx
h

ωy
h

∂2L(δ+
x u, δ+

y u, u)

∂(δ+
y u)2

, Guu = ωx
hωy

h

∂2L(δ+
x u, δ+

y u, u)

∂u2
i,j

.

Then, by using the notation in the Matlab language and using the function “spdiags”
which creates sparse matrix, the lower triangular part G of the Hessian ∇2F (u) for
the interior points can be computed as follows.

Algorithm 5. Compute the lower triangular part of Hessian ∇2F
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G1 = (G+
xx(0 : nx

h − 2, 1 : ny
h − 1) + G+

xx(1 : nx
h − 1, 1 : ny

h − 1))

+(G+
yy(1 : nx

h − 1, 0 : ny
h − 2) + G+

yy(1 : nx
h − 1, 1 : ny

h − 1))

+2G+
xy(1 : nx

h − 1, 1 : ny
h − 1) + Guu(1 : nx

h − 1, 1 : ny
h − 1);

G2 = −G+
xx(1 : nx

h − 1, 1 : ny
h − 1) − G+

xy(1 : nx
h − 1, 1 : ny

h − 1);

G3 = G+
xy(1 : nx

h − 1, 1 : ny
h − 1);

G4 = −G+
xy(1 : nx

h − 1, 1 : ny
h − 1) − G+

yy(1 : nx
h − 1, 1 : ny

h − 1);

G1 = G1(:); G2(n
x
h − 1, :) = 0; G2 = G2(:);

G4 = G4(:); G3(n
x
h − 1, :) = 0; G3 = G3(:); G3 = [0;G3(1 : end − 1)]

G = spdiags([G4, G3, G2, G1], [−(nx
h − 2), −(nx

h − 3), −1, 0], (nx
h − 2)2, (ny

h − 2)2);

Matrix-vector products involving the Hessian can be computed as

[∇2F (u)] v = ωx
hωy

h

nx
h−1∑

i=0

ny

h
−1∑

j=0

[∇2L+
i,j ] v.

Remark A.1. For many PDE constrained problems, one can eliminate the state
variable and transform the problem into an unconstrained one. The gradient and
matrix-vector products involving the Hessian can then be computed by the adjoint
method. When the objective function is in the form of least squares or it involves
a Total Variation regularization term, one can also approximate the Hessian by a
Gauss-Newton approximation.

REFERENCES

[1] U. M. Ascher and E. Haber, A multigrid method for distributed parameter estimation prob-
lems, Electron. Trans. Numer. Anal., 15 (2003), pp. 1–17 (electronic). Tenth Copper
Mountain Conference on Multigrid Methods (Copper Mountain, CO, 2001).

[2] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.

McInnes, B. F. Smith, and H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 -
Revision 2.1.5, Argonne National Laboratory, 2004.

[3] M. Benzi, E. Haber, and L. Hanson, Multilevel algorithms for large-scale interior point
methods in bound constrained optimization, tech. rep., 2006.

[4] A. Borz̀ı, Multilevel methods in optimization with partial differential equations. Lecture notes,
Insitut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität Graz.

[5] , On the convergence of the mg/opt method, in Proceedings GAMM Annual Meeting,
no. 5, 2005, pp. 735–736.

[6] A. Borz̀ı and K. Kunisch, A multigrid scheme for elliptic constrained optimal control prob-
lems, Comput. Optim. Appl., 31 (2005), pp. 309–333.

[7] , A globalization strategy for the multigrid solution of elliptic optimal control problems,
Optim. Methods Softw., 21 (2006), pp. 445–459.

[8] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, Cam-
bridge, 2004.

[9] J. H. Bramble, Multigrid methods, vol. 294 of Pitman Research Notes in Mathematics Series,
Longman Scientific & Technical, Harlow, 1993.

[10] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31
(1977), pp. 333–390.

[11] , Multigrid techniques: 1984 guide with applications to fluid dynamics, vol. 85 of GMD-
Studien [GMD Studies], Gesellschaft für Mathematik und Datenverarbeitung mbH, St.
Augustin, 1984.

[12] W. L. Briggs, V. E. Henson, and S. F. McCormick, A multigrid tutorial, Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, PA, second ed., 2000.



A LINE SEARCH MULTIGRID METHOD 29
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