
1

A Real-Time Multi-Agent System Architecture
for E-Commerce Applications*

Lisa Cingiser DiPippo, Victor Fay-Wolfe,
Lekshmi Nair, Ethan Hodys and Oleg Uvarov

The University of Rhode Island
Kingston, RI USA 02881
lastname@cs.uri.edu

* This work is partially supported by the U.S. Office of Naval Research grant N00014-00-1-0060.

Abstract
This paper describes an architecture for real-time

multi-agent systems (RTMAS) that builds upon an existing
real-time CORBA architecture. The RTMAS architecture
provides real-time agent services for real-time agent
communication, real-time agent scheduling and real-time
agent facilitation. These services work together to allow
for the expression and enforcement of real-time agent
interactions. The paper describes the design of these
services, along with a prototype implementation of the
RTMAS architecture that is based upon an existing agent
communication implementation.

1. Introduction

Electronic commerce systems have become
increasingly pervasive in the business world. Businesses
and consumers are relying more and more on automated
processes to handle the buying and selling of goods and
services. Many of these systems such as real-time auction
systems, stock market quoting systems, and goods pricing
systems, have inherently autonomous features as well as
tight constraints on when and how they can execute
specific tasks. These types of applications could benefit
from a real-time multi-agent system in which agents
communicate, coordinate and negotiate to meet their
goals, within specified timing and quality constraints.

An agent is a computer system, situated in some
environment, that is capable of flexible autonomous
action in order to meet its design objectives [1]. A real-

time agent must meet its objectives within specified
timing constraints, possibly trading-off the quality of its
results. For example, a real-time agent might be
employed to monitor stock prices to look for certain
changes in the market, and report on these changes within
a deadline. In order to express and enforce the timing and
other quality of service (QoS) constraints of individual
agents, a real-time multi-agent system (RTMAS) must
provide services that allow the real-time agents to
communicate, coordinate, and cooperate to meet the goals
of their particular application and the specified QoS
constraints.

This paper presents an architecture for RTMASs that
provides for the expression and enforcement of QoS
constraints among real-time agent communications. This
architecture is based on a RTMAS model that allows
agents to specify QoS capabilities and requirements on
their communications. Our RTMAS architecture relies on
an underlying real-time CORBA infrastructure to provide
seamless distributed communication among agents.
Using a CORBA framework to provide this functionality
in a multi-agent system relieves the agent developer from
providing low-level interagent communication. Our
architecture builds on dynamic real-time CORBA
middleware services to provide real-time communication,
real-time scheduling and real-time facilitation services to
the agents in the system.

The remainder of this paper is organized as follows:
Section 2 provides background in the areas of agent
communication, real-time agents, existing agent
architectures, and the dynamic real-time CORBA

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
A Real-Time Multi-Agent System Architecture for E-Commerce
Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Rhode Island,Department of Computer
Science,Kingston,RI,02881

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper describes an architecture for real-time multi-agent systems (RTMAS) that builds upon an
existing real-time CORBA architecture. The RTMAS architecture provides real-time agent services for
real-time agent communication, real-time agent scheduling and real-time agent facilitation. These services
work together to allow for the expression and enforcement of real-time agent interactions. The paper
describes the design of these services, along with a prototype implementation of the RTMAS architecture
that is based upon an existing agent communication implementation.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

infrastructure that forms the foundation for our RTMAS
architecture. Section 3 presents our model for RTMASs
on which our architecture and real-time agent services are
based. We describe an example electronic commerce
application to illustrate the features of the model and the
RTMAS architecture. Section 4 presents the RTMAS
architecture and describes the layers and the services in
detail. Section 5 describes our preliminary
implementation of this architecture, along with some
ideas for future improvements to the implementation.
Finally, Section 6 concludes with a summary of the
contributions of this work and a discussion of future
work.

2. Background

In this section we present some key areas that form
the background for our RTMAS development. We
present work in agent communication and facilitation
that defines the languages and mechanisms that agents
utilize to coordinate to meet their goals. We go on to
describe previous work in the area of real-time agents.
This work has developed some of the defining
characteristics of real-time agents that we have built into
our model. We also discuss existing agent architectures
and how they relate to our RTMAS architecture. Finally,
we describe the dynamic real-time CORBA architecture
on which our RTMAS architecture is built. This
underlying architecture provides the means for
enforcement of timing constraints in the scheduling and
communication among CORBA objects.

2.1. Agent Communication and Facilitation

Most multi-agent systems provide a specialized
agent, called a facilitator, which is tasked with finding
agents to fulfill services required by requestor agents.
There are two types of facilitators that can be employed.
In both models, each agent registers with the facilitator
and advertises the services that it can perform on behalf
of other agents. When an agent requests a service from a
broker facilitator, the broker passes the request along to
the agent that provides the requested service. If no such
agent exists, that is, if the requested service has not been
advertised to the broker by any agent, the broker responds
to the requesting agent with a message. A matchmaker
facilitator works in much the same way as an agent
broker. However, when a request for service is made to a
matchmaker, the matchmaker agent passes along a
reference to the agent that can provide the service. That
is, the matchmaker puts together, or matches, agents that
can work together. Once this match is made, the agents

can communicate with each other directly without the use
of the matchmaker.

Communication among agents and facilitators is
typically achieved through an agent communication
language, such as the Knowledge Query Manipulation
Language (KQML) [2]. KQML provides performatives
to define the kind of interactions a KQML-speaking agent
can have. A KQML message consists of three layers: the
content layer, the message layer and the communication
layer. The content layer bears the actual content of the
message in the agent’s own representation language. The
communication layer encodes a set of message features,
which describe the lower-level communication
parameters, such as the identity of the sender and
recipient, and a unique identifier associated with the
communication. The message layer is used to encode a
message that one application would like to transmit to
another. The message layer forms the core of the KQML
language, and determines the kinds of interactions one
can have with a KQML-speaking agent. The
performatives of a KQML message include those to
request that an agent perform a task (ask-one), to
provide other agents with certain information (tell), to
watch another agent for a particular condition
(monitor), and to register capabilities with another
agent (advertise).

The Foundation for Intelligent Physical Agents
(FIPA) [3] is developing an agent communication
language known as FIPA-ACL. This language is very
similar to KQML, with some differences in its semantics.
We have chosen to use KQML in our architecture because
it is more well-developed. However, most of the work
that we have done in real-time agent communication can
easily be applied to FIPA-ACL as well.

2.2. Existing Agent Architectures

Many agent architectures have been developed to
support multi-agent systems. Here we highlight a few
and describe how they relate to our work. The DECAF
(Distributed, Environment-Centered Agent Framework)
Agent Framework [4] is a Java-based multi-agent system.
It provides a matchmaker agent that accepts KQML
performatives to allow for agent communcation. SRI
International has developed an agent architecture called
Open Agent Architecture (OAA) [5]. Agent interaction in
OAA is done through an agent facilitator using a language
called Interagent Communication Language (ICL). Both
of these architectures have been developed from the
ground up. That is, they each provide their own
underlying communication mechanism. Our work relies
on a CORBA infrastructure to provide this.

3

Several agent architectures have been developed
using CORBA [6] as the underlying communication
framework. Broadcom has developed the Agent Services
Layer (ASL) as a layer on top of a CORBA framework
[7]. The ASL provides services specific to agent
interaction and coordination, and uses CORBA as the
underlying distributed communication middleware.
KCobalt [8] is an agent framework based on KQML and
CORBA. The implementation of KQML on CORBA
provides a complete communication layer that can
support cooperation in multi-agent systems. The system
provides a mapping from the agent language KQML to
the CORBA interface definition language (IDL). We
have chosen to expand on the KCobalt implementation to
build the real-time agent communication module of our
system because the KQML to IDL mapping is
straightforward and easily extensible with real-time
features.

There has been recent work towards developing
mechanisms to support real-time agents. Several
architectures have been proposed for real-time agents, as
well as research in scheduling agent tasks within the
architecture. Much of the real-time agent scheduling work
relies on the assumption that in order to perform a task, an
agent or set of agents may have multiple ways of solving
the same problem, each with varying time required to
compute the result, and varying quality of the result
produced. Typically, the more time available to solve the
problem, the higher the quality of the result. This
becomes very useful in real-time agent scheduling
because it allows for a trade-off between the quality of the
result and the amount of time required in order to meet
specified timing constraints.

In [9], a design-to-time scheduling algorithm for
incremental decision-making is described. It presents a
model that provides a hierarchical abstraction of the
problem solving processes which describe alternative
methods for solving a specific goal depending upon the
available amount of time. The allocation of resources can
be dynamically adjusted in order to meet system-wide
timing constraints. Design-to-criteria scheduling [10] is
an extension of the design-to-time algorithms. The model
here is more general in that it can take into account any
scheduling criteria, such as time, cost, and quality, and it
can use uncertainty as part of the decision-making
process. The DECAF architecture described above [4] is
incorporating scheduling algorithms based on the design-
to-criteria model. ASTRO [11] is a model for real-time
agents in which each goal is divided into subgoals that
each have a deadline. The scheduling algorithm used by
the ASTRO schedules all subgoals with their minimal
duration. It then increases the duration of the highest

priority subgoal to result in maximal satisfaction (highest
quality result for the subgoal). Soto et. al. [12] have
developed the AMSIA agent architecture which provides
a representation of plans allowing different reasoning
activities to create plans that guide the future behavior of
an agent. When deciding among sequences of tasks to
schedule, the control mechanism scores them based on
importance, deadline and the quality offered by the tasks

2.3. Dynamic Real-Time CORBA

Our RTMAS architecture relies on a dynamic real-
time CORBA architecture that we are developing in a
concurrent project. This section describes the ongoing
standardization of real-time CORBA by the OMG, and
our current dynamic real-time CORBA implementation.

2.3.1. OMG Standard. The Object Management Group
(OMG) has recently begun the specification of a standard
for real-time distributed object management. In 1999 a
specification for Realtime CORBA for static scheduling
was published [13]. This specification defines the
required features that a CORBA implementation must
have to support hard real-time applications in which
timing constraints must be met. These features include
priority, bounding priority inversion and protocol
selection. The specification also includes an optional
scheduling service that uses the primitives of the RT ORB
to achieve a uniform scheduling policy in the CORBA
system. Currently the OMG is working on a specification
for Dynamic Realtime CORBA. This specification will
be an extension of the static specification to support
dynamic scheduling, where clients and servers
dynamically enter and exit the system and priorities may
change over time. The Dynamic RT CORBA standard
will support the specification of policy and parameters to
be used to schedule each task. That is, instead of each
task carrying with it a CORBA Priority, as is required in
the current RT CORBA standard, tasks will carry a richer
description that includes parameters, such as deadline,
importance, delay, and period.

2.3.2. Our Dynamic Real-Time CORBA Architecture.
We have been involved in the development of an
implementation of a dynamic real-time CORBA system
that is based on some of the ideas that have come from
the standardization process of the OMG [14]. This
implementation relies on a real-time ORB based on the
developing dynamic standard, and it focuses on the
development of services that support dynamic real-time
requirements. These services include a Scheduling
Service and a real-time (RT) Trader Service. These two

4

services work together to ensure that client requests are
scheduled to meet their deadlines.

Scheduling Service. The Scheduling Service assigns
priority to servers and to client requests using an earliest
deadline first (EDF) priority assignment policy. It
employs a load shedding heuristic when all requested
tasks cannot be scheduled to meet deadlines. That is,
whenever a new request enters the system, the scheduling
service performs an EDF schedulability analysis to
determine if it can be scheduled. If it cannot, the load
shedding heuristic determines, based on a weighted sum
of importance and remaining execution time, which
currently scheduled task(s) can be shed in order to
maintain schedulability of the system [14]. When a task
is shed, the Scheduling Service reduces the priority of the
task below a specified threshold and raises an exception
to indicate to the client that requested the task that it has
been shed.

RT Trader Service. In a CORBA system, the
Trader Service assigns bindings to server objects based on
the requirements of a client’s request. Our RT Trader
service extends this capability by allowing clients to
specify timing parameters, such as deadline and
importance. When the RT Trader Service receives a
request for service from a client, it determines which
server object can respond to the request within the
specified timing constraints. Further, the RT Trader
Service employs a probabilistic algorithm to find the
server object that can meet the current request and the
next likely request. See [15] for more details on this
algorithm.

Figure 1 displays how our dynamic real-time
CORBA implementation works. Any server that provides
a service must first register its capabilities (including
execution times) with the RT Trader Service (1). The
Scheduling Service receives a request from a client to
execute a method on a server (2). The request includes a
deadline and an importance parameter. The Scheduling
Service and the RT Trader Service work together to
schedule the request (3). First the RT Trader Service
attempts to find a server object that can best handle the
request. If it cannot find any servers on which the task
can be scheduled, then the Scheduling Service performs
its load shedding heuristic on the server suggested by the
RT Trader Service as most likely to allow the request. If
a task is shed, an exception is raised to the corresponding
server object. This is not depicted in Figure 1, which
shows the process of a specific request that has not been
shed. If the requested task is found to be schedulable, the
Scheduling Service responds to the client with a priority
at which to execute the method call (4). Finally, the client

calls the method on the server (5) with the specified
deadline and priority.

Scheduling
Service

Server Client

RT Trader Service

1

2

3

4

5

Register
tasks

Request(D,I,E)

Schedulability
analysis and load

shedding

Assign
priority

Method call (D,P)

Schedulability
Analyzer

Σ

Figure 1 - Dynamic Real-Time CORBA

3. Real-Time Multi-Agent System Model

In this section we describe our model of RTMASs on
which our RTMAS architecture and its real-time agent
services are based. We first present an example
electronic commerce application in which a RTMAS
would be useful, and then we present the elements of the
model, using the example to illustrate important points.

3.1. Example Stock Trading RTMAS

Here we present an example RTMAS that allows
multiple real-time agents to coordinate to make intelligent
recommendations, purchases and sales of stocks. Each of
the agents involved employs some degree of intelligence
to perform its tasks. However, for the purposes of this
paper, we will not be concerned with exactly how the
agents perform their tasks, but rather, how they are
designed so that they can work together to meet their
goals, and their specified QoS requirements.

We will discuss four different types of agents: a
UserAgent, a QuotingAgent, a TrendWatchingAgent, and
a BuySellAgent. The UserAgent communicates with the
human user to determine her requirements, such as risk
level, amount of money to spend, and market sector
preferences. The UserAgent also communicates with the
other agents in the system to be able to make
recommendations to the user.

Each QuotingAgent has the ability to get quotes on
stocks on a particular sector of the market. It can also
monitor a particular stock for a particular price range.

5

QuotingAgents communicate with the other agents that
require information about stock prices. They can also
communicate with each other if a request is made to one
QuotingAgent for a stock that it cannot quote.

A TrendWatchingAgent looks for particular trends in
the market. Each specific TrendWatchingAgent may be
responsible for a particular kind of trend, such as a long-
term increase in biotechnology stocks. When a
TrendWatchingAgent recognizes a trend that might be of
interest to another agents, it notifies them. The
TrendWatchingAgent communicates with a UserAgent if
the UserAgent has expressed interest in a particular trend.
It communicates with the QuotingAgents in order to get
quotes on specific stock prices.

The BuySellAgent is responsible for actual purchases
and sales of stocks. This kind of agent can act
autonomously if the human user has expressed to the
UserAgent that transactions can be made automatically.
In this case, the UserAgent utilizes the user’s profile and
information from the other agents in the system to specify
buy and sell transactions to the BuySellAgent. If the user
wants to be involved in each transaction, then the
UserAgent can make the recommendation to the user, get
her approval, and then notify the BuySellAgent to perform
the transaction.

The timing constraints on this RTMAS stem from the
volatility of prices in the stock market. For example, if
the UserAgent determines that the user should purchase
100 shares of Techno stock because the price is currently
relatively low, then it must specify a deadline to the
BuySellAgent by which the transaction must be made in
order to realize the desired benefit

3.2. RTMAS Model

Our RTMAS model embodies the features and
functionality required to express and enforce timing
constraints on real-time agent interactions. The model is
based on the assumption that many agents can perform
their tasks in multiple ways. Each of the methods of
execution of an agent’s task is associated with a worst
case execution time and an expected amount of quality
returned. This assumption follows from much of the
previous work discussed in Section 2 [9,10].

Our RTMAS model made up of a set of real-time
agents (RTAgent) and a set of communications among the
real-time agents (Request).

RTAgent. A real-time agent can be defined as
follows:

RTAgent = {S1, S2, …, Sn}

Each RTAgent is comprised of a set of solvables, {S1,
S2, …, Sn}, where a solvable is a problem that the agent is
designed to solve. Each solvable within the agent is
represented by an optimal result (O) and a set of
execution strategies (ES):

Si = < O, ES>

The optimal result for a solvable may vary from
environment to environment depending upon the
developer, the user, and the intended use of the agent.
This is an objective, system-specific definition of what is
considered to be the absolute best result for this problem.
For instance, in the stock trading example, the
BuySellAgent may have a solvable, BuyStock, to purchase
a particular stock. The optimal solution in this scenario
might be to buy the stock at the current price with no fee.

In the model of a solvable, ES represents a set of
execution strategies that can be used to produce a result
for the solvable:

ES = {es1, es2, …, esf}

For example, the solvable BuyStock may have an
execution strategy, BS1, that uses a discount broker with a
low fee. This execution strategy may come close to the
no fee requirement of the optimal result, but if the
discount broker typically has a longer turn around time,
then the deadline of the BuyStock request may be violated
and the price of the stock may have changed. On the
other hand, an execution strategy, BS2, that uses a more
expensive broker may be able to handle the request more
quickly.

Each execution strategy of a solvable is comprised of
three elements:

esi = <ex, q, tv>

The execution time, ex, represents the amount of time
it takes a strategy to run. The level of quality, q, is a
rating of the result of an execution strategy. Quality is
calculated as a percentage of the optimal result such that q
= (strategy result / optimal result). This definition for
quality is conditional upon the ability to quantify the
result of a task. In the example above, we quantify the
optimal result of the BuyStock solvable by specifying zero
fee for the transaction. While this optimal result may be
impossible to achieve, it provides a metric by which to
measure the results of the actual execution strategies.

In this model, the quality of an execution strategy
must be known ahead of time. In some cases, an average
quality will have to be used to represent the actual quality
returned by an execution strategy in a specific scenario.

6

For example, in the BuyStock solvable, it may not be
possible to know the exact quality returned by its
execution strategies if the fee is based on a percentage of
the exact stock price. Instead, we can determine a
statistical delta from the requested stock price for the
particular broker, and compute the fee based on this
estimate. This estimate may be updated based on the
actual use of the system in which the real-time agent
exists.

The last component of an execution strategy is the
tradeoff value (tv). This parameter provides a measure of
how much value will be lost by reducing the execution
strategy of a solvable. The tradeoff value is defined as
the change in quality between two execution strategies,
divided by the change in time. More precisely, for any
esi, we have:

1

1

+

+

−

−

=
ii

i

ii

i exex

q

qq

tv

The tradeoff value for the execution strategy with the
shortest execution time (esf) is undefined. This is because
reducing from the shortest execution strategy amounts to
shedding the task altogether.

Request. Communication among agents in this
model is performed through requests for service from one
agent to another. The formal specification for a request R
is:

R = <A, V, I, D, H>

A represents the name of the real-time agent to which
the request is directed. V is the name of the solvable that
the client is requesting to be performed. I is the level of
importance of the request. This value is based on some
system-wide scale of importance agreed-upon by all
agents. D represents the deadline by which the request
must be completed. In our model, this deadline can be
either a soft deadline, or a firm deadline, depending upon
the requirements of the application. Finally, H specifies
the quality threshold for the request. That is, the
requesting agent expresses through H, the minimum
quality required by the request. If the servicing agent
cannot provide this amount of quality, then the requesting
agent may choose to abort the request.

As an example of a real-time agent request, consider
a UserAgent in the stock trading example. It may send a
request to the QuotingAgent for the price of Intel stock
(GetPrice). The deadline that the UserAgent specifies on
this request may be based on the requirements of some
other transaction that the UserAgent is performing. The

UserAgent may specify a quality threshold that allows for
a quarter of a point difference from the actual stock price
in order to meet its deadline. The importance of the
request depends upon the overall transaction that the
UserAgent is attempting to perform. If the transaction
involves spending a few hundred dollars, then the
importance may be low. But if it involves thousands of
dollars, the importance may be higher.

4. Real-Time Multi-Agent System
Architecture

Our RTMAS architecture is a multi-layered
architecture as depicted in Figure 2. At the lowest layer,
we assume a POSIX-compliant real-time operating
system [16]. Above that, the real-time ORB layer
consists of the required features of the developing
dynamic real-time CORBA standard. Since this standard
is not yet completely defined, we rely on the real-time
ORB standard of the current static Realtime CORBA
standard. The real-time middleware services layer
consists of the Scheduling Service and the RT Trader
Service described in Section 2.3. Finally, the real-time
agent services layer extends the Scheduling Service and
the RT Trader Service of the previous layer to provide a
Real-Time Agent Scheduling Service and a Real-Time
Facilator Service. The agent services layer also provides
a service for Real-Time Agent Communication.

Real-Time Operating System

RT Scheduling ServiceRT Trader Service

Real-Time Middleware Services

Real-Time ORB

RT Facilitator

RT
Requestor

Agent

RT Service
 Agent

RT ACL RT ACL

Real-Time Agent Services

 RT Agent Scheduling

RT Agent Communication

Figure 2 - RTMAS Architecture

The key to our architecture lies in building real-time
agent services on top of existing services at the RT
CORBA layer. While other agent architectures have been
built upon CORBA [6], our work is unique in its reliance

7

on RT CORBA and RT CORBA services as a foundation
for the RTMAS architecture. In this section we will
describe each of the services that we have developed. We
will then describe a preliminary prototype implementation
that we have designed based on our RTMAS architecture.

4.1. Real-Time Agent Communication Service

In order to express timing constraints in a RTMAS,
we have extended the expressibility of the agent
communication language KQML. There are two types of
communication that we have currently identified as
requiring extension: (1) a request from one agent to
another, and (2) an advertisement of capabilities from a
servicing agent to a facilitator. We have extended the
language to allow for expression of QoS requirements and
capabilities through new performative parameters. We
have chosen not to include this information as part of the
content of the KQML performative because expression of
Qos is independent of content, and should be treated as
part of the communication between agents, and not as part
of the specific message being sent to the receiving agent.
Also, the QoS information needs to be used by the
scheduling mechanism, and would not be available if it
were embedded in the content.

Agent Request. In our RTMAS model described in
Section 3, there are three kinds of constraints that are
expressed: deadline, importance, and quality. We extend
the KQML performatives to include these constraints to
produce a real-time KQML (RT KQML). For example,
consider a request from the UserAgent to a
TrendWatchingAgent, to report on current trends in
internet stocks within 15 seconds. The KQML request
may look like the following:

(ask-one
:sender UserAgent
:content Watch(internet)
:receiver TrendWatchingAgent
:reply-with Trend
:QoS_requirement (dl 15, imp 4, qual 75)
:language Java
:ontology Stock)

The QoS_requirement parameter (highlighted in
bold) is added to the KQML ask-one performative to
allow for the expression of the deadline (dl), the
importance (imp) and the quality threshold (qual) for
this request. We have included all of these constraints as
part of a single QoS_requirement parameter in order
to allow for the addition of further quality of service
constraints in the future.

The TrendWatchingAgent will respond to this request
with a message like the following:

(tell
:sender TrendWatchingAgent
:content +35%
:receiver UserAgent
:in-reply-to Trend
:QoS_requirement (dl 5, imp 4, qual 75)
:language Java
:ontology Stock)

The tell message also expresses a
QoS_requirement parameter. This is because agent
communication is asynchronous, and therefore all
messages must be sent explicitly. This message must be
scheduled in order to meet the requirements specified in
the ask-one request. The QoS parameters may be
derived from the parameters specified in the original
message. For example, the tell message above has a
deadline of 5 seconds, indicating that there are only 5
seconds left to meet the 15 second deadline of the original
ask-one message. All KQML performatives may
express QoS constraints in the form of the
QoS_requirement parameter, so that they can be
scheduled to meet their constraints. For a full description
of the RT KQML extension, see [17].

Facilitator Advertisement. Communication
between agents and facilitators must also be extended to
allow for expression of timing capabilities. The facilitator
and the scheduler are responsible for determining which
execution strategies of which agents will provide a
solution to a requesting agent. Therefore, all agents that
provide services to other agents must advertise with a
facilitator. For example, the BuySellAgent has a solvable
to buy a stock (BuyStock). It has two execution strategies,
each with a specific execution time and quality. The
facilitator message to advertise the capabilities of this
agent is as follows:

(advertise
:sender BuySellAgent
:receiver Facilitator
:ontology Stock
:language Java
:content BuyStock(A)
:QoS_capabilities(

(ex 5, qual 85)
(ex 2, qual 65)))

In this example, the BuySellAgent specifies through
the QoS_capabilities parameter that it has two
execution strategies, one that can execute in 5 seconds
with a returned quality of 85, and the other that can
execute in 2 seconds with a returned quality of 65. Again,
we use a single parameter, QoS_capabilities, to

8

express the quality of service characteristics so that it can
be easily extended.

4.2. Real-Time Agent Scheduling Service

The scheduling of agent requests is the key to
enforcing expressed timing and other QoS constraints.
Our scheduling model relies on the fact that real-time
agents can have multiple execution strategies that provide
varying levels of quality given varying amounts of time to
execute. Our real-time agent scheduling algorithm is
similar to the algorithm described in Section 2.3 for
dynamic real-time CORBA. It uses earliest deadline first
(EDF) scheduling of agent tasks, but rather than load
shedding, it relies on a load reduction heuristic that
determines which currently scheduled tasks to reduce in
quality and time, in order to maintain schedulability of the
system.

Scheduling Algorithm. Our real-time agent
scheduling algorithm processes requests for service
between agents. It performs schedulability analysis, and
reduces the execution time of one or more agent
execution strategies if necessary to maintain
schedulability.

To illustrate how the algorithm works, assume that
there is currently a set of scheduled tasks. A requesting
agent makes a request for a solvable in a servicing agent.
The request is accepted by the RT Agent Scheduling
Service and the task is created and added to the list of
tasks to be scheduled. The execution time for the task
initially defaults to the execution time of the execution
strategy with the highest quality.

The Scheduling Service performs an EDF
schedulability analysis on all tasks including the new
request. If all the tasks are found to be schedulable, then
the requesting agent is given permission to make the
request to the servicing agent. If the tasks are not
schedulable, then the schedulability analysis returns a set
of critical points representing the tasks that miss their
deadlines. This critical point information is provided as
input to the load reduction heuristic that will identify
tasks for load reduction to yield a feasible schedule.

Load Reduction Heuristic. For each critical point,
there is a set of tasks with shorter or equal deadline that
are candidates for reduction. That is, reducing the
execution time of these candidate tasks may allow the
task at the critical point to become schedulable. For each
critical point, the load reduction heuristic sorts all
candidate tasks by cost. It reduces the task with the
lowest cost and then determines if any more reduction is

necessary. That is, if the difference between the amount
of time required at this critical point, and the amount of
time gained through this reduction is greater than zero,
then further reduction is required for this critical point.

The key to this heuristic is in how we calculate cost.
Our current implementation uses the tradeoff value of the
current execution strategy multiplied by the importance of
the request to determine the cost. Thus, the more
important the request, and the higher the tradeoff value,
the less likely the task will be reduced. However, other
factors could be used in calculating cost. For example,
we could use parameters, such as remaining execution
time or time gained by performing a reduction in the
computation. Further, we could weight each of these
parameters in varying ways to get different results.
Details of this scheduling algorithm, and results of
performance tests can be found in [18].

4.3. Real-Time Agent Facilitation Service

Agent facilitation provides a mechanism for agents to
find out about each other’s capabilities. In a RTMAS,
this includes timing and other QoS capabilities such as
number of execution strategies, and the execution time
and quality returned by each of the execution strategies.
In our RTMAS architecture, there is a tight coupling
between the RT Agent Facilitation Service and the RT
Agent Scheduling Service because the facilitator knows
about the agent capabilities, which the scheduler needs to
use in order to make scheduling decisions.

Our RT Agent Facilitation Service implements a
matchmaker type of facilitator. However, each request
for service must go through the RT Agent Scheduling
Service which may need to communicate with the
facilitator to assign priority. The facilitator also provides
other information to aid in the determination of which
agents to schedule. When a request for a solvable on a
servicing agent is made, there may be more than one
agent that can provide the required service. For example,
in the stock trading system described above, there are
likely multiple agents that can monitor stock prices. The
RT Agent Facilitation Service provides mechanisms to
help determine which of these agents would provide the
best solution. Of course, if only one of the servicing
agents would provide a schedulable solution, then the
facilitator would choose that agent. However, if more
than one of the agents could provide a feasible solution,
the facilitator could use its knowledge of the system to
find the best agent to solve the problem. For instance, if
enough statistical information is available about usage of
the agents in the system, the facilitator uses an algorithm
similar to the RT Trader Service algorithms described in

9

Section 2.3 to determine which of the candidate agents
could service the current request as well as certain likely
future requests.

The specifics of the real-time facilitation algorithms
are not complete at the time of this writing. We are
currently considering other properties that the real-time
agent facilitator might use to make the selection of a
servicing agent more intelligent, such as quality of service
properties like available bandwidth, security, and fault
tolerance.

RT Agent
Scheduler

Servicing
 Agent

Requesting Agent

RT Agent Facilitator

solvable

execution
strategies

1

2

3

4

5

Register
tasks

Request
task

Sched
analysis
and load
reduction

Assign
priority
and QoS

Call agent
task

Schedulability
Analyzer

Σ

Figure 3 - RT Agent Scheduling and Facilitation

Figure 3 illustrates how the RT Agent Facilitation
Service and the RT Agent Scheduling Service work
together, with the scheduler using information available
in the facilitator, such as timing capabilities and current
load, to make scheduling decisions. Note the similarities
with the dynamic real-time CORBA system described in
Section 2.3. The Servicing Agent first registers its
capabilities with the RT Agent Facilitation Service (1).
When a Requesting Agent makes a request (2), the RT
Agent Scheduling Service communicates with the RT
Agent Facilitation Service to determine if any registered
agents can respond to the request, within the specified
QoS constraints. If not, the RT Agent Scheduling Service
performs load reduction using the servicing agent that the
facilitator determined to be most likely to be able to
handle the request (3). The load reduction is
implemented through exceptions to the agents involved,
and is not depticted in Figure 3. The RT Agent
Scheduling Service returns to the Requesting Agent the
priority assigned to the request, and any other necessary
QoS parameters, such as the execution time of the chosen
execution strategy (4). Finally, the Requesting Agent
makes the request to the Servicing Agent (5).

5. RTMAS Prototype Implementation

This section describes the implementation of a
prototype RTMAS based on the architecture that we have
described in Section 4. The implementation is
preliminary. Some parts are complete while other parts
are still in early phases of implementation. The initial
design is based on the implementation of the KCobalt
system [8] that maps KQML messages to CORBA IDL.
In this section we give a brief description of the Kcobalt
system. We then go on to describe our current
implementation. And we finish with a discussion of how
we will enhance the implementation for improved real-
time performance.

5.1. KCobalt Implementation

In the implementation of the KCobalt system [8],
agents are represented as CORBA objects. The IDL for
each of the objects includes the following specification.
Here we show only two performatives, but the IDL for the
other performatives is similar.

interface CoreS {
// ask-one //
void askOne (in string sender,

in string receiver,
in string inReplyTo,
in string replyWith,
in string language,
in string ontology,
in string content);

// tell //
void tell (in string sender,

in string receiver,
in string inReplyTo,
in string replyWith,
in string language,
in string ontology,
in string content);

...
}

The interface for the agent object includes a method
for each KQML performative, with parameters to
represent each KQML parameter. Thus, the only
mechanism for communication with an agent object is
through its KQML performative methods. Agent
communication is expressed as a KQML string. That is,
when an agent object wishes to communicate with
another agent object, it expresses a KQML string with the
desired performatives. The string is sent to a parser
object that parses the string and creates a performative
class object to represent the specific performative being
requested . The parser then sends the performative object
to a dispatcher object which determines to what agent the

10

performative should be directed. The dispatcher object is
responsible for calling the method on the agent object that
corresponds to the performative in the message. For
details about this implementation, see [8].

5.2. Real-Time Agent Communication
Implementation

Our current implementation is based on the KCobalt
implementation described above. As is the case in
KCobalt, all agents in our implementation are represented
as objects. The IDL for an agent object in our
implementation includes the following specifications:

struct QoSInfo {
int priority;
int exec_time;

}
interface CoreS {

// ask-one //
void askOne (in string sender,

in string receiver,
in string inReplyTo,
in string replyWith,
in string language,
in string ontology,
in string content,
in QoSInfo qos_Info);

... }

The interface for an agent object is similar to the
interface for agent objects in KCobalt. Each performative
is represented as a method on the interface. The main
difference is that our performative methods provide
parameters for expression of QoS constraints, in the form
of the QoSInfo structure. When a real-time agent object
expresses a RT KQML string, the dispatcher object parses
the string and determines the performative and its
parameters. It then calls a method (schedule()) on
the RT Agent Scheduling Service object to determine the
schedulability of the request. For example, assume that a
real-time agent specifies the following RT KQML string
message:

(ask-one
:sender UserAgent
:content Watch(internet)
:receiver TrendWatchingAgent
:reply-with Trend
:QoS_requirements (dl 15, imp 4,

 qual 75)
:language Java
:ontology Stock)

The dispatcher object parses this string and produces
the following method call to the RT Agent Scheduling
Service object:

schedule(“TrendWatchingAgent”,
 “Watch(internet)”,15,4,75)

The scheduling service returns a priority and the
execution time allotted to the agent to execute this
request. With this information, the dispatcher calls the
method on the servicing agent that corresponds to the
requested performative. In the above example, if the RT
Agent Scheduling Service returns with a priority of 20
and an execution time of 10, the dispatcher calls the ask-
one method on the TrendWatchingAgent as follows:

ask-one(“UserAgent”,
 “TrendWatchingAgent”,

 “”,“Trend”,“Java”,“Stock”,
 “Watch(internet)”,qos_Info);

where qos_Info contains the priority and execution
time information provided by the RT Agent Scheduling
Service.

5.3. Real-Time Agent Scheduling Service
Implementation

The RT Agent Scheduling Service object has a single
method on its interface.

QoSInfo schedule(
 RTAgent ServicingAgent,
 Solvable RequestedSolvable,
 int deadline, int importance,
 int quality)

The parameters for this method include the servicing
agent on which the request is being made, the solvable
being requested from the servicing agent, and the QoS
parameters for the request (deadline, importance and
quality). In the example above, the servicing agent is
TrendWatchingAgent, the solvable is Watch(internet), and
the QoS parameters are 15, 4 and 75. Notice that the
specified performative is not included as a parameter in
this method. This is because the RT Agent Scheduling
Service is not concerned with what performative is being
used, only with the solvable on the agent that is being
requested. The dispatcher object is responsible for
determining which solvable is being specified by the RT
KQML performative.

The return type of the schedule() method is
QoSInfo, as specified in the IDL shown above. The
scheduling service takes the QoS information specified in

11

the method, communicates with the RT Agent Facilitation
Service, and performs its scheduling algorithm and load
reduction heuristic if necessary. The schedule()
method returns to the dispatcher the priority at which the
requested solvable should execute, and the amount of
time that the servicing agent has been allotted to execute
the solvable in the form of the QoSInfo structure.

5.4. Real-Time Agent Facilitation Service
Implementation

The implementation of the RT Agent Facilitation
Service is not yet complete because we are still working
on the details of some of the algorithms. The
implementation will have features of both a real-time
agent object, and the RT Trader Service described in
Section 2.3. On the interface of the RT Agent Facilitation
Service will be a method for each RT KQML
performative, like all other RT agents. These
performatives will include special facilitator
performatives such as broker() and recruit().
These will allow the RT Agent Scheduling Service to
communicate with the facilitator in order to determine the
best agent to provide a particular service. The
implementation of these methods will include the
algorithms that we are developing based on the RT Trader
Service work.

Currently, our implementation does not employ the
RT Agent Facilitation Service. Instead, the RT Agent
Scheduling Service performs schedulability analysis on
the agent specified in its schedule() method.
However, once the facilitation service is complete, it will
easily fit into the system implementation with minor
changes.

5.5. Implementation

Figure 4 displays our implementation design. To
specify its capabilities, a servicing agent sends a RT
KQML “advertise” string to the parser object, through its
parse() method (1). The parser parses the message
and creates a performative object to send to the dispatcher
object (2). The dispatcher calls the advertise()
method on the RT Agent Facilitation Service object (3).
When a requesting agent requires a service from a
servicing agent, the requesting agent sends a RT KQML
string with the specified performative to the parser object
(4). The parser parses the string and sends the associated
performative object to the dispatcher object (5). The
dispatcher extracts the specified agent, solvable and QoS
information, and calls the RT Agent Scheduling Service

schedule() method with these parameters (6). The
scheduling service communicates with the RT Agent
Facilitation Service through its recruit() method to
determine which servicing agent to consider in the
schedulability analysis (7). After the RT Agent
Scheduling Service performs the scheduling algorithm
and determines the priority and execution time for the
required solvable, it returns this information to the
dispatcher object (8). Finally, the dispatcher calls the
method on the servicing agent corresponding to the
requested performative with the QoS parameters
determined by the scheduling service (9).

dispatch

ask ask

tell tell

parse

advertise
schedule

Requesting
Agent
Object

Servicing
Agent
Object

Dispatcher
Object

RT Agent
Scheduling

Service

RT Agent
Facilitation

Service

...
...

7

6

5

4

3

2

1
RT KQML

string “ask…”

RT KQML string
“advertise...”

recruit

Parser
Object

8

9

Figure 4 – RTMAS Prototype Implementation

5.6. Future Implementation Improvements

Our initial implementation is a prototype system to
demonstrate the utility of our RTMAS architecture. We
have built it upon the existing KCobalt implementation
for several reasons. First, the model is very close to our
model of building the agent layer on top of the CORBA
layer. Second, it was relatively easy to extend the
KCobalt implementation to allow for the expression of
QoS constraints. It was a matter of revising the parser to
recognize the additions that we have made to KQML, and
extending the implementation of agent objects to allow
for QoS parameters in the performative methods.
However, this implementation is not efficient for a real-
time system because each time a RT KQML performative
is expressed as a string, it must be parsed on-the-fly.
While we could determine a worst case bound on the
parsing time, this technique severely impedes real-time
performance.

We are currently working on developing techniques
that are similar to the KCobalt parsing techniques, but
that do not require on-the-fly parsing of strings. This new

12

technique will allow real-time agent programmers to
implement their agent objects in exactly the same way as
in the current implementation. It will employ a pre-
processor that performs the role of the parser object and
the dispatcher object. That is, the pre-processor will parse
the KQML strings specified in the real-time agents, and
build the calls to the RT Agent Scheduling Service
directly into the real-time agent objects. Thus, the final
code for a real-time agent will not send a string to a
parser, but rather, it will make a call to the schedule()
method of the RT Agent Scheduling Service, bypassing
the parser and the dispatcher altogether.

6. Conclusion

In this paper we have presented a RTMAS
architecture that builds on the strengths of an existing
real-time CORBA architecture, and adds a layer of real-
time agent services. These agent services work together
to provide support for the expression and enforcement of
QoS constraints in the RTMAS, while relying on the RT
CORBA services and ORB layers to provide the
underlying communication support.

Our RT Agent Communication Service extends the
KQML agent communication language with the ability to
express QoS parameters in each performative. The design
of these extensions is extensible in that new QoS features,
such as security and network latency, can easily be added
in the future. The RT Agent Scheduling Service builds on

the scheduling mechanism that we have developed for
real-time CORBA. It uses the same EDF scheduler and
schedulability analysis, but it employs a load reduction
heuristic when overload conditions exist. This heuristic
capitalizes on the ability of our real-time agents to
perform a task in more that one way, with varying
execution times and levels of quality. While the design
and implementation of our RT Agent Facilitation Service
are not complete, its placement in the RTMAS
architecture is sound. It provides the ability to request
real-time agent services without specifying the exact
agent that will perform the service.

Our prototype implementation of the RTMAS
architecture correctly implements all of the services that
we have designed. It provides a mechanism to implement
real-time agents as CORBA objects. We are developing
updates to this implementation to improve its real-time
performance.

The RTMAS architecture described in this paper is a
general architecture for real-time agent applications. It
will provide a platform upon which to develop real-time
e-commerce agent applications such as the stock trading
system described throughout the paper. It provides agents
with the ability to express and enforce the kinds of real-
time and QoS constraints that occur in many real-world
applications. It also provides a platform for
experimenting with new techniques in real-time agent
development that will further the advancement of many
applications in the realm of electronic commerce.

References
[1] Nicholas R. Jennings, Katia Sycara, Michael

Wooldbridge. A Roadmap of Agent Research and
Development. In Autonomous Agents and Multi-
Agent Systems, 1, 275-306 (1998), Kluwer
Academic Publishers, Boston..

[2] Tim Finin, Richard Fritzson, Don McKay, Robin
McEntire. KQML as an Agent Communication
Language. In The Proceedings of the Third
International Conference on Information and
Knowledge Management (CIKM), ACM Press,
November 1994.

[3] FIPA. FIPA 98 Specification. 1998.
http://www.fipa.org/spec/fipa98.html.

[4] John Graham and Keith Decker. Towards a
Distributed, Environment-Centered Agent
Framework. In Proceedings of the 1999 Intl.
Workshop on Agent Theories, Architectures, and
Languages [ATAL-99], Orlando, July 1999.

[5] David L. Martin, Adam J. Cheyer, Douglas B.
Moran. The Open Agent Architecture: A
Framework for Building Distributed Software
System. Applied Artificial Intelligence. vol. 13, pp.
91-128. Jan-Mar 1999.

[6] OMG. Common Object Request Broker
Architecture – Version 2.2. OMG, Inc., 1998.

[7] Fergal Somers, Richard Evans, David Kerr.
Scalable Low-Latency Network Management Using
Intelligent Agents. Communicate: Broadcom’s
Technical Journal. vol. 3, issue 2.

[8] D. Benech, T. Desprats. A KQML-CORBA based
Architecture for Intelligent Agents Communication

13

in Cooperative Service and Network Management.
In Proceedings of IFIP/IEEE International
Conference on Management of Multimedia
Networks and Services ’97 July 8-10, 1997.

[9] Alan Garvey, Victor Lesser. Design-to-time Real-
Time Scheduling. IEEE Transactions on Systems,
Man and Cybernetics – Special Issue on Planning,
Scheduling and Control. vol. 23, no. 6, 1993.

[10] Thomas Wagner and Victor Lessor. Design-to-
Criteria Scheduling: Real-Time Agent Control.
Proceedings of the 2000 AAAI Spring Symposium
on Real-Time Systems.

[11] Michel Occello, Yves Demazeau and Christof
Baeijs. Designing Organized Agents for
Cooperation with Real-Time Constraints. First
International Collective Robotics Workshop
(CRW’98), July 4-5, 1998, Paris, Collective
Robotics, pp. 25-37, Springer-Verlag, 1998.

[12] Ignatio Soto, Mercedes Garijo, Carlos A. Iglesias,
Manuel Ramos. An Agent Architecture to fulfill
Real-Time Requirements. In Proceedings of the
Fourth International Conference on Autonomous
Agents, June 2000.

[13] OMG. Realtime CORBA. Electronic document at
http://www.omg.org/docs/orbos/98-10-05.pdf.

[14] Oleg Uvarov. Dynamic Real-Time Scheduling and
Load Shedding for QoS Middleware, University of
Rhode Island – Department of Computer Science
thesis proposal.

[15] Steven Wohlever, Victor Fay-Wolfe, Bhavani
Thuraisingham, R. Freedman, John Maurer.
CORBA-based Real-time Trader Service for
Adaptable Command and Control Systems. In
Proceedings of the Second IEEE International
Symposium on Object-oriented Real-time
Distributed Computing (ISORC 99). May 1999.

[16] IEEE, IEEE Standard Portable Operating System
Interface for Computer Environments (POSIX)
1003.1, IEEE, New York, 1990.

[17] Lekshmi S. Nair. RT KQML – A Real-Time Agent
Communication Language, University of Rhode
Island Technical Report – Department of Computer
Science thesis proposal.

[18] Ethan Hodys. A Scheduling Algorithm for a Real-
Time Multi-Agent System, University of Rhode
Island Technical Report – TR00-275.

