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1 Elementary Concepts

Recent research has established that it is possible to exercise extraordinary control of the
velocity of propagation of light pulses through a material system. Both extremely slow prop-
agation (much slower than the velocity of light in vacuum) and fast propagation (exceeding
the velocity of light in vacuum) have been observed. This article summarizes this recent
research, placing special emphasis on the description of the underlying physical processes
leading to the modification of the velocity of light.

To understand these new results, it is crucial to recall the distinction between the phase
velocity and the group velocity of a light field. These concepts will be defined more precisely
below; for the present we note that the group velocity gives the velocity with which a pulse
of light propagates through a material system. One thus speaks of “fast” or “slow” light
depending on the value of the group velocity vg in comparison to the velocity of light c in
vacuum.

Slow light refers to the situation vg � c. In fact group velocities smaller than 17 m/c
have been observed experimentally (Hau, Harris, Dutton, and Behroozi [1999]). Fast light
refers to light traveling faster then the speed of light in vacuum. This circumstance can occur
either when vg > c or when vg is negative. A negative group velocity corresponds to the
case when the peak of the pulse transmitted through an optical material emerges before the
peak of the incident light field enters the medium, (Garrett and McCumber [1970]), which
is indeed fast!

Some of these ideas can be understood in terms of the time sequences shown in Fig. 1.
It is also worth noting that the transit time T through an optical medium can in general be
represented as

T = L/vg , (1)
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where L is the physical length of the medium. Thus, when vg is negative, the transit time
through the medium will also be negative. The validity of the description given here and
leading to Fig. 1 assumes that the pulse does not undergo significant distortion in propagating
through the material system. We shall comment below on the validity of this assumption.

We next review the basic concepts of phase and group velocity. We begin by considering
a monochromatic plane wave of angular frequency ω propagating through a medium of
refractive index n. This wave can be described by

E(z, t) = Aei(kz−ωt) + c.c. (2)

where k = nω/c. We define the phase velocity vp to be the velocity at which points of
constant phase move through the medium. Since the phase of this wave is clearly given by

φ = kz − ωt, (3)

points of constant phase move a distance ∆z in a time ∆t, which are related by

k∆z = ω∆t . (4)

Thus vp = ∆z/∆t or

vp =
ω

k
=

c

n
. (5)

Let us next consider the propagation of a pulse through a material system. A pulse is
necessarily composed of a spread of optical frequencies, as illustrated symbolically in Fig. 2.
At the peak of the pulse, the various Fourier components will tend to add up in phase. If
this pulse is to propagate without distortion, these components must add in phase for all
values of the propagation distance z. To express this thought mathematically, we first write
the phase of the wave as

φ =
nωz

c
− ωt (6)

and require that there be no change in φ to first order in ω. That is, dφ/dω = 0 or

dn

dω

ωz

c
+

nz

c
− t = 0 , (7)

which can be written as z = vgt where the group velocity is given by

vg =
c

n + ω dn/dω
=

dω

dk
. (8)

The last equality in this equation results from the use of the relation k = nω/c. Alternatively,
we can express this result in terms of a group refraction index ng defined by

vg =
c

ng

(9)
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with

ng = n + ω
dn

dω
. (10)

We see that the group index differs from the phase index by a term that depends on the
dispersion dn/dω of the refractive index.

Slow and fast light effects invariably make use of the rapid variation of refractive index
that occurs in the vicinity of a material resonance. Slow light can be achieved by making
dn/dω large and positive (large normal dispersion), and fast light occurs when it is large and
negative (large anomalous dispersion).∗

1.1 Pulse Distortion

What is perhaps most significant about recent research in slow and fast light is not the size
of the effect (that is, how fast or how slow a pulse can be made to propagate) but rather
the realization that pulses can propagate through highly dispersive medium with negligible
pulse distortion. Let us examine why it is that pulse distortion effects can be rendered so
small.

In theoretical treatment of pulse propagation (Boyd [1992]), it is often convenient to
expand the propagation constant k(ω) in a power series about the central frequency ω0 of
the optical pulse as

k(ω) = k0 + k1(ω − ω0) +
1

2
k2(ω − ω0)

2 + . . . (11)

where k0 = k(ω0) is the mean wavevector magnitude of the optical pulse,

k1 =
dk

dω

∣∣∣∣∣
ω=ω0

=
1

vg

=
ng

c
(12)

is the inverse of the group velocity, and

k2 =
d2k

dω2

∣∣∣∣∣
ω=ω0

=
d(1/vg)

dω
=

1

c

dng

dω
(13)

is a measure of the dispersion in the group velocity. Since the transit time through a material
medium of length L is given by T = L/vg = Lk1, the spread in transit times is given
approximately by

∆T � Lk2∆ω, (14)

where ∆ω is a measure of the frequency bandwidth of the pulse.

∗We use the terms normal dispersion and anomalous dispersion to describe the change in the refractive
index as a function of frequency (the traditional usage). In more recent texts on optical fiber communication
systems, the terms normal or anomalous dispersion refers to the change in the group index as a function of
frequency. Normal (anomalous) group velocity dispersion is the case when dng/dω > 0 (dng/dω < 0).
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The significance of each of term of the power series can be understood, for example, by
considering solutions to the wave equation for a transform-limited Gaussian-shaped pulse (of
characteristic pulse width T0) incident upon a dispersive medium (Agrawal [1995]). When
the propagation distance through the medium is much shorter than the dispersion length

LD =
T 2

0

|k2|
, (15)

the pulse remains essentially undistorted and travels at the group velocity. For longer prop-
agation distances (or shorter T0 and larger ∆ω), the pulse broadens but retains its Gaussian
shape, as shown in Fig. 3(a). In addition, the pulse acquires a linear frequency chirp; that is,
the instantaneous frequency of the light varies linearly across the pulse about the central car-
rier frequency of the pulse. Red (blue) components travel faster than blue (red) components
in the normal (anomalous) group-velocity dispersion regime where k2 > 0 (k2 < 0).

For situations where k2 � 0 or for large ∆ω, higher-order terms in the power series expan-
sion (11) must be considered. It is found that an incident Gaussian pulse become distorted
significantly, as shown in Fig. 3b, when the pulse propagates farther than a characteristic
distance

L′
D =

T 3
0

|k3|
(16)

associated with higher-order dispersion, where k3 = d3k/dω3.
To observe pulse propagation through a dispersive medium without significant pulse

distortion, it is necessary that the spread of transit times ∆T given by Eq. (14) be much
smaller than the characteristic pulse duration T0. As discussed below, experiments on slow
and fast light are typically conducted under conditions such that the group index ng is an
extremum, so that dng/dω = 0 and hence k2 vanishes. It is for this reason that slow- and
fast-light experiments are accompanied by negligible distortion so long as the propagation
distance through the dispersive medium is much less than L′

D (implying a narrow spectral
bandwidth for the pulse).

2 Optical Pulse Propagation in a Resonant System

Propagation of light pulses through resonant atomic systems has attracted great interest
since the early 1900’s because of the possibility of fast light behavior and its implications
for Einstein’s Special Theory of Relativity. Sommerfeld, independently (Sommerfeld [1907],
Sommerfeld [1914]) and together with his student Brillouin (Brillouin [1914]), developed a
complete theory of pulse propagation through a collection of Lorentz oscillators. Their work
was published during World War I and is not widely available. For this reason, Brillouin
compiled and augmented their earlier work in a beautiful treatise entitled “Wave propagation
and group velocity” (Brillouin [1960]). They were most interested in the case in which
the carrier frequency of the pulse coincides with the atomic resonance so that the pulse
experiences anomalous dispersion and consequently vg > c. They considered the case of an
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optical pulse that has an initial rectangular shape so that its amplitude vanishes before the
beginning of the pulse - the so-called front of the pulse. They found that the speed of the front
of the pulse is always equal to the speed of light in vacuum even in the anomalous-dispersion
regime where vg > c or vg < 0, and that the pulse experiences substantial distortion. In
hind sight, the fact that the pulse experiences distortion is due to the wide bandwidth of the
pulse resulting from the infinitely sharp turn on.

To understand the unusual slow and fast light properties of pulse propagation through
resonant systems, we review the solutions to the wave equation, paying particular attention
to the manner in which the refractive index is modified in the immediate vicinity of each
transition frequency. We express the refractive index as

n =
√

ε =
√

1 + 4πχ (17)

where ε is the dielectric constant, and the susceptibility is given (in Gaussian units) by

χ =
Ne2/2mω0

(ω0 − ω) − iγ
, (18)

for a near resonant light field. The transition frequency is denoted by ω0, 2γ is the width
(FWHM) of the atomic resonance, and e (m) denote the charge (mass) of the electron. For
an atomic number density N that is not too large, the refractive index n = n′ + in′′ can be
expressed as n � 1 + 2πχ, whose real and imaginary parts are given by

n′ = 1 +
πNe2

2mω0γ

2(ω0 − ω)γ

(ω0 − ω)2 + γ2
≡ 1 + δn(max) 2(ω0 − ω)γ

(ω0 − ω)2 + γ2
(19)

n′′ =
πNe2

2mω0γ

γ2

(ω0 − ω)2 + γ2
≡ δn(max) γ2

(ω0 − ω)2 + γ2
(20)

where δn(max) is the maximum deviation of the phase index from unity. These functional
dependences are shown in Fig. 4, along with the group index ng = n′ + ω dn′/dω. Note that
the scale of the variation of the group index from unity is given by the quantities

δn(max)
g =

ω δn(max)

8γ
δn(min)

g = −ω δn(max)

γ
. (21)

Typical values for an atomic vapor are ω = 2π (5 × 1014) s−1, δn(max) = 0.1, and γ =
2π (1 × 109) s−1, leading to the value

δn(max)
g = 5 × 104. (22)

This is a remarkable result! Even though phase indices of atomic vapors are rarely larger
than 1.5 (and is 1.1 for the numerical example just given) the group index can be of the order
of 5 × 104. Group indices this large are not routinely measured in atomic vapors because of
the large absorption that occurs at frequencies where ng is appreciable. As one can deduce
from Eq. (20), the linear absorption coefficient α = 2n′′ω/c is of the order of 104 cm−1 under
the same conditions used to obtain result (22).
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2.1 Early Observations of ‘Slow’ and ‘Fast’ Light Propagation

While there was considerable theoretical interest in pulse propagation through resonant
system over 100 years ago, experimental investigations in the optical spectral region increased
substantially with the advent of the laser. In 1966, Basov, Ambarsumyan, Zuev, Kryukov and
Letokhov [1966a] and Basov and Letokhov [1966b] investigated the propagation of a pulse
propagating through a laser amplifier (a collection of inverted atoms) for the case in which
the intensity of the pulse was high enough to induce a nonlinear optical response. They found
that nonlinear optical saturation of the amplifier gave rise to fast light, a surprising result
since the linear dispersion is normal at the center of an amplifying resonance so that vg < c
is expected for low intensity pulses. They attributed the pulse advancement to a nonlinear
pulse reshaping effect where the front edge of the pulse depletes the atomic inversion density
so that the trailing edge propagates with much lower amplification. In addition, they found
that the effects of dispersion give a negligible contribution to the pulse propagation velocity
in comparison to the nonlinear optical saturation effects. Such pulse advancement due to
amplifier saturation is now commonly referred to as superluminous propagation. Throughout
this review, we are mainly concerned with propagation of pulses that are sufficiently weak
so that the linear optical properties of the medium need only be considered, although these
properties may be modified in a nonlinear fashion by the application of an intense auxiliary
field.

Soon after the experiment of Basov, Ambarsumyan, Zuev, Kryukov and Letokhov [1966a],
Icsevgi and Lamb [1969] performed a theoretical investigation of the propagation of intense
laser pulses through a laser amplifier. They attempted to resolve the apparent paradox of
pulses propagating “faster than the velocity of light” predicted in the work of Basov and
Letokhov [1966b], and it appears that Icsevgi and Lamb were unaware of the earlier work
by Brillouin [1914] discussing the distinction between group velocity and front velocity and
its implications for the Special Theory of Relativity. Icsevgi and Lamb distinguish between
two types of pulses in their work. A pulse is said to have compact support if its amplitude is
nonzero only over some finite range of times, and is said to have infinite support if the pulse
is nonzero for all times. By way of example, a hyperbolic secant pulse has infinite support.
Icsevgi and Lamb find in their numerical solutions of the pulse propagation equation that
pulses with infinite support can propagate with group velocities exceeding that of light in
vacuum c. However, there is no violation of causality because the input pulse exists for all
values of time. For a pulse with compact support, they find that the region of the pulse where
it first becomes nonzero cannot propagate faster than c (the front velocity in the terms of
Brillouin [1914]). Their results are consistent with the work of Brillouin [1914] and extend
the analysis to a nonlinear optical medium.

These issues have been clarified further in the work of Sherman and Oughstun [1981], who
present a simple algorithm for the description of short pulse propagation through dispersive
systems in the presence of loss. More recently, Diener [1996] shows that in cases in which a
pulse propagates superluminally, that part of the pulse which propagates faster than the c
can be predicted my means of analytic continuation of that part of the pulse that lies within
the “light cone,” that is, the extreme leading wing of the pulse. In subsequent work, Diener
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[1997] introduced an energy transport velocity

cf =
2n

1 + n2
c (23)

which is less than or equal to c for any value of n.
Subsequent experiments conducted in the late 1960’s by Carruthers and Bieber [1969] and

Frova, Duguay, Garrett and McCall [1969], and in early 1970’s by Faxvog, Chow, Bieber and
Carruthers [1970] on weak pulses propagating through amplifying media observed slow light
as expected for a linear amplifier. However, the effect was small because of the smallness of
the available gain. Using a high-gain 3.51-µm xenon amplifier, Casperson and Yariv [1971]
were able to achieve group velocities as low as c/2.5.

In this same period, Garrett and McCumber [1970] made an important contribution to
the field when they investigated theoretically the propagation of a weak Gaussian pulse
through either an amplifier or absorber. They were the first to point out that the pulse
remains substantially Gaussian and unchanged in width for many exponential absorption
or gain lengths and that the location of the maximum pulse amplitude propagates at vg,
even when vg > c or vg < 0. For this distortion-free propagation, the spectral bandwidth of
the pulse has to be narrow enough so that higher-order dispersive effects are not important,
as discussed in Sec. 1.1. Note that a Gaussian pulse is of infinite support and hence the
predictions of Garrett and McCumber [1970] are consistent with the ealier work of Icsevgi
and Lamb [1969].

Following up on the predictions of Garrett and McCumber [1970], Chu and Wong [1982a]
investigated experimentally both slow and fast light for picosecond laser pulses propagating
through a GaP:N crystal as the laser frequency was tuned through the absorption resonance
arising from the bound A-exciton line. Typical experimental traces are shown in Fig. 5
and are summarized in Fig. 6. Both positive and negative group delays are observed and
the pulse shape remains essentially unchanged. The data points are found to be in good
agreement with the theoretical predictions, which were obtained from a model that is a
slight generalization of the model presented above. Note that the fast light observed in this
experiment was obtained in the presence of a large absorptive background. This report is of
significance in that it is one of the first studies to establish experimentally that the group
velocity is a robust concept in the optical part of the spectrum even under conditions of
significant pulse advance or delay.

We note that the pulse shapes observed by Chu and Wong [1982a] and shown in Fig. 5
are effected by the measurement process, as pointed out by Katz and Alfano [1982]. The
pulse shapes were measured using an autocorrelation method, which is insensitive to pulse
asymmetries or oscillations, but is sensitive to pulse compression. Katz and Alfano find
that the pulses shown in Fig. 5 experience significant compression, which may be due to
true compression or due to pulse asymmetries. In response, Chu and Wong [1982b] agree
that pulse compression is present in their data and can be explained theoretically by the
inclusion of higher order dispersion. However, they also point out that the group velocity
remains a meaningful concept even in the presence of pulse compression. Later numerical
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simulations by Segard and Macke [1985] of the experiments of Chu and Wong [1982a] show
that the pulses experience significant ringing, not just compression as suggested by Chu
and Wong [1982b]. In the same paper, Segard and Make [1985] also describe a fast light
experiment via a millimeter wave absorption resonance in OCS. They observe significant
pulse advancement and negative group velocities with essentially no pulse distortion using
a detector that directly measured the pulse shape, confirming the theoretical predictions of
Garrett and McCumber [1970]. As in the previous experiments, the pulses experienced large
absorption.

3 Nonlinear Optics for Slow Light

The conclusion of the previous sections is that in linear optics the group refractive index can
be as large as

δng = 1 +
ωδn(max)

8γ
where δn(max) =

πNe2

mω2
0γ

, (24)

but is accompanied by absorption of the order of

α � 4πδn(max)

λ
, (25)

where λ is the vacuum wavelength of the radiation. Recent demonstrations of slow light
have been enabled by nonlinear optical techniques which can be used to decrease the ef-
fective linewidth γ of the atomic transition and also to decrease the level of absorption
experienced by the pulse. A typical procedure for producing slow light is to make use of
electromagnetically induced transparency (EIT), a technique introduced by Harris, Field and
Imamoglu [1990] to render a material system transparent to resonant laser radiation, while
retaining the large and desirable optical properties associated with the resonant response of
a material system. See also review articles by Harris, Yin, Jain, Xia, and Merriam [1997]
and by Harris [1997a].

The possibility of modifying the linear dispersive properties of an atomic medium using
an intense auxiliary electromagnetic field was first noted by Tewari and Agarwal [1986]
and by Harris, Field and Imamoglu [1990]. In addition, Scully [1991] pointed out that the
refractive index can be enhanced substantially in the absence of absorption using similar
methods, with possible applications in magnetometry [1992]. In a later paper, Harris, Field,
and Kasapi [1992] performed detailed calculations to estimate the size of the slow light effect.
They estimate that vg = c/250 could be obtained for a 10-cm-long Pb vapor vapor cell at an
atom density of 7 × 1015 atoms/cm3 and probed on the 283-nm resonance transition. This
small group velocity is accompanied by essential zero absorption and zero group-velocity
dispersion. More recently, Bennink, Boyd, Stroud, and Wong [2001] have predicted that
slow- and fast-light effects can be obtained in the response of a strongly driven two-level
atom.

Following an approach similar to that used by Harris, Field, and Kasapi, we review the
relation between EIT and slow light using a density matrix calculation. We consider the
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situation shown in Fig. 7, and for simplicity assume that in the absence of the applied laser
fields all of the population resides in level a. We want to solve the density matrix equations
to first order in the amplitude E of the probe wave and to all orders in amplitude Es of the
saturating wave. In this order of approximation, the only matrix elements that couple to ρaa

(which can be taken to be constant) are ρba and ρca, which satisfy the equations

ρ̇ba = − (iωba + γba) ρba −
i

h̄
(Vbaρaa + Vbcρca) (26)

ρ̇ca = − (iωca + γca) ρca −
i

h̄
(Vcbρba) . (27)

In the rotating-wave and electric-dipole approximations, Vba = −µbaEe−iωt and Vbc =
−µbcEse

−iωst. We now solve these equations in the harmonic steady state, that is, we find
solutions of the form

ρba = σbae
−iωt ρca = σcae

−i(ω−ωs)t , (28)

where σba and σca are time-independent quantities. We readily find that

σba =
−i(Ω/2)[i(δ − ∆) − γca]

(iδ − γba)[i(δ − ∆) − γca] + |Ωs/2|2
, (29)

where δ = ω − ωba, ∆ = ωs − ωbc, and Ωs = 2µbcEs/h̄ is the Rabi frequency associated with
the strong drive field. From this equation, we determine the susceptibility for the probe wave
by means of the equations P = Nµabσba = χ(1)E, which, when solved for χ(1), yields

χ(1) =
−iN |µba|2

h̄

[i(δ − ∆) − γca]

(iδ − γba)[i(δ − ∆) − γca] + |Ωs/2|2
. (30)

Let us recall why this result leads to the prediction of EIT. For simplicity we assume that
the strong saturating wave is tuned to the ωbc resonance so that ∆ = 0. One finds that as the
intensity of the saturating field (which is proportional to |Ωs|2) is increased, the absorption
line splits into two components separated by the Rabi frequency |Ωs|. Figure 8(a) shows
α(δ, ∆ = 0) for the experimental conditions of Hau, Harris, Dutton, and Behroozi [1999] for
two values of Ωs to show the emergence of the EIT spectral “hole” at line center (i.e., δ = 0).
In detail, one finds that (for δ = ∆ = 0)

χ(1) =
iN |µba|2γca/h̄

γcaγba + |Ωs/2|2
. (31)

Note that χ(1) is purely imaginary, that χ(1) is a monotonically decreasing function of |Ωs|2,
and for |Ωs|2 >> γcaγba that χ(1) is proportional to γca, which under many experimental
conditions has very small value. Thus the presence of the strong saturating field leads to
transparency at the frequency of the probe field, although only over a narrow range of
frequencies.
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Let us also estimate the value of the group refractive index under EIT conditions. To
good approximation, we ignore the first contribution in the expression ng = n′ + ω dn′/dω
(here n′ is the real part of the phase index n) and approximate the phase index by its low-
density expression n � 1 + 2πχ(1). We take the expression for χ(1) in the limit of large field
amplitude |Ωs| and vanishing strong-field detuning (∆ = 0) so that

χ(1) =
−iN |µba|2

h̄

iδ − γca

|Ωs/2|2
. (32)

By combining these equations we find that

ng �
8πωN |µba|2

h̄|Ωs|2
. (33)

Equation (33) was used by Hau, Harris, Dutton, and Behroozi [1999] in the analysis of
their experimental results. They find that it gives predictions that are in reasonably good
agreement with their experimental data. Note, however, from their Fig. 4, that the scaling
of group velocity with drive-field intensity is not accurately described by Eq. (33) for a range
of temperatures slightly above the Bose-Einstein transition temperature.

Figure 8(b) shows ng(δ, ∆ = 0) for two values of Ωs. For Ωs=0, the group index is
extremely large and negative, but this is accompanied by extremely large absorption (see
Fig. 8(a)). The curve is dramatically different for Ωs/2π=12 MHz, taking on a large positive
value of the order of 106 with little dispersion and absorption. The group velocity at δ=0
corresponds to approximately 300 m/s. For lower Ωs, vg as low as 17 m/s were observed by
Hau, Harris, Dutton, and Behroozi, although with slightly increased absorption.

3.1 Kinematics of Slow Light

While we noted above that a smooth pulse can propagate undistorted through a medium
with an EIT hole, the fact that the pulse travels with such slow speed implies that the
light pulse undergoes an enormous spatial compression, as pointed out by Harris, Field, and
Kasapi [1992] and illustrated schematically in Fig. 9. In particular, the pulse undergoes a
spatial compression by the ratio of the group velocities inside and outside of the optical
medium. Since the group velocity in vacuum is equal to c, this ratio is just the group index
ng of the material medium, which as we have seen can be as large as � 107. Since the energy
density of a light wave is given (in SI units) by

u =
1

2
ε0ng|E|2 (34)

one sees that the energy density increases by this same factor. However, the intensity (power
per unit area) of the beam remains the same as the pulse enters the medium, as one can see
from the relation

I = uvg (35)
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One also sees that the electric field strength remains (essentially) constant as the pulse enters
the material medium, as can be seen from the relation

I =
1

2
ε0cn|E|2 , (36)

and there is little if any discontinuity in n at the boundary of the medium. These results
have been discussed in greater detail by Harris and Hau [1999]. Their report also notes that
large nonlinear optical effects often accompany the creation of slow light. One sees from the
discussion just given that the linear response tends to be large not because the electric field
is enhanced within the optical medium but rather because the conditions that produce slow
light also tend to produce a large nonlinear optical susceptibility.

4 Experimental Studies of Slow Light

One of the first experiments to measure the dispersive properties of an EIT system was
performed by Xiao, Li, Jin, and Gea-Banacloche [1995] using a gas of hot rubidium atoms
and using a slightly different energy level configuration than that considered in the previous
section. They directly measured the phase imparted on a wave propagating through the
rubidium vapor and tuned near the 5S1/2 → 5P3/2 transition using a Mach-Zehnder inter-
ferometer. A strong continuous wave laser beam tuned near the 5P3/2 → 5D5/2 transition
(the so-called ‘ladder’ configuration) and counterpropagating with the probe beam created a
Doppler-free EIT feature, thereby reducing α and increasing ng. While they did not directly
measure the delay of pulses propagating through the vapor, they indirectly determined that
vg = c/13.2 for their experiment via the measurement of the phase shift of the wave.

Soon thereafter, Kasapi, Jain, Yin, and Harris [1995] measured the temporal and spatial
dynamics of nanosecond pulses propagating through a hot, dense 10-cm-long Pb vapor cell
in an EIT configuration similar to that described in the previous section. In the absence of
a coupling field, they inferred a probe-beam absorption coefficient of 600 cm−1. With the
coupling field applied, they measured a probe-beam transmission of 55% (corresponding to
α=0.026 cm−1) and vg=c/165.

These initial experiments demonstrated that it is possible to achieve slow light with
dramatically reduced absorption, and they set the stage for later experiment on ultraslow
light where the group velocities are extremely small. The key to achieving lower group
velocities was to reduce significantly the dephasing rate γca of the ground-state coherence,
thereby narrowing the width of the EIT feature and increasing dn/dω. As mentioned in Sec.
1.1, narrowing the EIT feature requires the use of significantly longer pulses in comparison
to the nanosecond pulsed used by Kasapi, Jain, Yin, and Harris [1995].

Ultraslow Light in a Ultracold Atomic Gas

Hau, Harris, Dutton, and Behroozi [1999] performed an experiment in 1999 that is largely
responsible for the recent flurry of interest in slow light. This experiment made use of a
laser-cooled sodium atomic vapor at a temperature of 450 nK near that of the transition to
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a Bose-Einstein condensation. The experimental setup for this study is shown in Fig. 10.
Briefly, they laser-cool and trap a cloud of atoms, spin-polarize the atoms by optically
pumping them into the |F = 1, mF = −1〉 3S1/2 ground state, and load the atoms into a
magnetic trap at an approximate temperature of 50 µK and a density of ∼ 6×1011 cm−3. At
such low temperatures, the Doppler width of the optical transitions is less than the natural
(spontaneous) with of the transition and hence the stationary-atom theory presented in Sec.
3 is applicable. The temperature is further decreased via evaporative cooling of the cloud,
resulting in fewer trapped atoms but slightly higher atomic number densities and hence lower
vg. We note that the magnetic trap is asymmetric, leading to an oblong cloud of cold atoms.

In the slow light phase of the experiment, a strong coupling laser at frequency ω0 drives
the |1〉 → |3〉 transition of the sodium D2 resonance line (see Fig. 10(b)) and propagates
along one of the short axes of the cloud, as shown in Fig. 10(a). The group velocity of a
pulse of light of center-frequency ωp is then determined as it propagates along the long axis
of the cloud. The group velocity is monitored as probe beam frequency is scanned through
the |2〉 >→ |3〉 transition.

The conceptual understanding of this method is illustrated in the theoretical simulations
of the experiment shown in Fig. 11. The upper part of this figure shows that a narrow
transparency feature has been induced by the coupling field into the broad absorption profile
of the gas. Note that this induced feature is of the order of 2 MHz in spectral width. Under
their experimental conditions, the width of this feature is determined by power broadening
effects (that is, the (Ωs/2)2 term in Eq. (38), although fundamentally the narrowness of this
feature is limited by the relaxation rate between the |1〉 and |2〉 levels). The lower part of
this figure shows the resulting modification of the refractive index of the vapor. Note the
steep, nearly linear increase of refractive index with frequency near the transition frequency.
It is this behavior that leads to the large group index of this system. In fact, Hau, Harris,
Dutton, and Behroozi [1999] shows that the group index is given (in the power-broadened
limit) by the expression

vg =
h̄c

8πωp

|Ωc|2
|µ13|2N

. (37)

Note that the group velocity decreases with decreasing control field intensity so long as this
expression is valid. Some of the results of this experiment are shown in Fig. 12. Here the
open circles show a transmitted pulse propagating at the velocity of light in vacuum and the
closed circles show the pulse induced to propagate slowly. Note that the induced pulse delay
is considerably greater than the duration of the pulse. In this example, the group velocity
was measured to be 32.5 m/s corresponding to a group index of the order of 107. In other
measurements, these researchers observed group velocities as low as 17 m/s.

Slow Light in Hot Vapors

One might incorrectly deduce that the experiment of Hau, Harris, Dutton, and Behroozi
was enabled through use of a cold atomic gas. In fact, very similar experimental results
have been obtained by Kash, Sautenkov, Zibrov, Hollberg, Welch, Lukin, Rostovtsev, Fry,
and Scully [1999] in a coherently driven hot (T = 360 K) gas of rubidium atoms using the
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apparatus shown in Fig. 13. The key idea is that a narrow EIT resonance can be obtained by
suppressing line-broadening mechanisms arising from the motion of the atoms and Zeeman
splitting of the magnetic sublevels arising from stray magnetic fields.

The dominant broadening mechanism in a hot gas is the Doppler effect. The EIT reso-
nance can be rendered Doppler free by making the strong continuous-wave coupling beam
copropagate precisely with the probe beam. To see why this is the case, recall that the
susceptibility for a hot gas is given by

χ(1) =
−iN |µba|2

h̄

〈
{i[δ − ∆ + (�k − �ks) · �v)] − γca}

[i(δ + �k · �v) − γba]{i[δ − ∆ + (�k − �ks) · �v)] − γca} + |Ωs/2|2

〉
D

. (38)

where �k (�ks) is the propagation vector for the probe (saturating) beam, �v is the velocity
of an atom, and 〈· · ·〉D denote an average over the thermal velocity distribution. It is seen
that the term in the numerator, primarily responsible for the EIT resonance, contains the
difference of the two propagation vectors. A narrow EIT resonance can thus be obtained for
copropagating, nearly equal frequency probe and saturating waves so that (�k−�ks) essentially
vanishes. For this configuration, the condition for the formation of a well-defined EIT hole is
given approximately by |Ωs|2 >> γca∆ωD, where ∆ωD is the Doppler width of the transition.
Therefore, it is imperative to reduce γca as much as possible.

For a single stationary atom, γca/2π can be of the order of 1 Hz or less since transitions
between the ground state of alkali-metal atoms are electric-dipole forbidden. In a hot dense
gas, the observed widths are much greater, due primarily to the finite time an atom spends
in the laser beam as it moves through the vapor cell and, to a lesser extent, due to collisions
with surrounding atoms that can induce transitions between the states. The transit time
broadening can be reduced significantly by introducing a buffer gas to the vapor cell that
reduces the mean-free-path of the alkali-metal atoms. Noble gas elements are preferred
because there is little interaction between the buffer gas atoms and the alkali-metal atoms,
thereby minimizing collision-induced transitions. Typical buffer gas pressures are of the
order of 10 Torr for a 1 mm diameter laser beam.

The final step in achieving narrow EIT resonances involves magnetic shielding. The
energy level structure of an alkali-metal atom is more complex than that shown in Fig. 14(a);
for each level there are (2F + 1) degenerate quantum states in zero magnetic field, where
F is the total angular momentum quantum number. Because of the Zeeman effect, these
state experience a shift in energy of the order of 1 MHz/Gauss. Therefore, to realize an
approximation to the idealized three-level atomic system considered in Sec. 3, stray magnetic
fields must be reduced to better than 1 mGauss for γca of the order of 1 kHz. Well designed
containers for the vapor cell constructed from high-permeability metals can achieve such low
ambient fields.

Using all of these techniques, Kash, Sautenkov, Zibrov, Hollberg, Welch, Lukin, Rostovt-
sev, Fry, and Scully [1999] were able to attain γca � 1 kHz in the laser-pumped rubidium
vapor with a 30 Torr neon buffer gas and magnetic shielding. They measured directly the
dispersive properties of the vapor using a modulation technique and from this data inferred
a group velocity as low as 90 m/s. They did not directly launch pulses of light through the
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vapor and hence did not address issues related to possible pulse distortion discussed in Sec.
1.1. Some of their results are summarized in Fig. 14 where it is seen that the group velocity
decreases with decreasing laser power, for reasons mentioned above. We note that group
velocities as low as 8 m/s have been inferred in a rubidium experiment by Budker, Kimball,
Rochester, and Yashchuk [1999] using a similar technique.

“Stopped” Light

Liu, Dutton, Behroozi, and Hau [2001] have provided experimental evidence that a light
pulse can effectively be brought to a halt in a material medium by proper control of the cou-
pling field in an EIT configuration. Such processes hold considerable promise for applications
such as coherent optical storage of information.

The coupling configuration used in this work is shown in Fig. 15. The propagation of a
probe beam tuned near the |1〉 − |3〉 transition is monitored in the presence of a coupling
beam tuned to the |2〉−|3〉 transition. This experiment can be understood by noting that the
probe beam would be very quickly absorbed were it not for the presence of the coupling beam.
This experiment was performed in a laser-cooled atomic sodium vapor near the temperature
for Bose-Einstein condensation.

Some of the experimental results of Liu, Dutton, Behroozi, and Hau are shown in Fig. 16.
The upper panel shows three traces. The sharp peak centered at t = 0 (dotted line) shows
a time reference obtained from the transmission of an input pulse so far detuned from the
atomic resonance that it propagates essentially at the velocity of light in vacuum. The smaller
peak centered at 12 µs is the transmitted, delayed pulse obtained under EIT conditions (solid
line). The dashed curve shows the time evolution of the saturation field (referred to as the
coupling field in the figure).

The lower panels of Fig. 16 shows data illustrating the storage of the probe pulse. In
this experiment, the coupling field is turned on before the arrival of incident probe pulse.
However, at time t = 10 µs after the pulse has fully entered the interaction region but before
it has emerged from the exit side, the coupling field is abruptly turned off and is left off until
t = 45 µs, at which point it is turned back on. During the time interval in which the coupling
pulse is turned off, the probe pulse cannot propagate and remains stored in the medium. We
see from the graph that in this case the pulse has been delayed by 25 µs, the time that the
coupling beam has been turned off. In other experiments, Liu, Dutton, Behroozi, and Hau
have observed pulse delays as long as 1 ms.

The interpretation of this experiment is that when the coupling field is turned off the
probe beam is almost immediately absorbed. The excitation associated with the incident
probe beam is not however thermalized; phase and amplitude information regarding the
pulse is stored as a coherent superposition of state |1〉 and |2〉, that is, knowledge of the
incident probe pulse is stored as a ground-state spin coherence. The energy of the probe
pulse is coherently scattered into the direction of the coupling field. When the coupling field
is later turned on again, light from the coupling field scatters coherently from the ground
state spin coherence to re-create the probe pulse.

Note that the spatial compression of the light pulse as it enters the material medium (as
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described above in section 3.1 above) is crucial to the process of light storage, as it is necessary
that the entire pulse be contained within the interaction region. It is largely a matter of
semantics whether the light has been temporarily “stopped” within the medium (the wording
of the original workers) or whether the light pulse has temporarily been transformed to a
material degree of freedom and later turned back into an optical field. It is also worth noting
that the physics of the process of light storage is quite similar to that of the generation of
Raman echos (Hartmann, [1968]; Hu, Geschwind and Jedju [1976]).

As in the case of the creation of slow light, one might mistakenly assume that the use
of a cold atomic vapor was crucial to the success of the temporary storage of light pulses.
In fact, Phillips, Fleischhauer, Mair, Walsworth, and Lukin [2001] have demonstrated very
similar results through use of a hot Rb vapor.

An additional physical mechanism for stoping the propagation of light has recently been
proposed by Kocharovskaya, Rostovtsev and Scully [2001]. This mechanism is based on the
spatial dispersion of the refractive index in a Doppler-broadened atomic medium.

5 Experimental Studies of Fast Light

As described above in the discussion of slow light, a practical requirement for the production
of slow light is the attainment of a very large normal dispersion in the absence of higher-
order dispersion and absorption. The natural question arises as to whether it is possible to
obtain large anomalous dispersion, also with low absorption and low higher-order dispersion,
and thereby produce fast (superluminal) light. Recall the work of Chu and Wong [1982]
described above where they observed large anomalous dispersion but in the presence of very
large absorption. This work has been extended recently by Akulshin, Barreiro, and Lezama
[1999] who used electromagnetically induced absorption in a driven two-level atomic system
to obtain very large anomalous dispersion (with an inferred vg of -c/23,000), but still in
the presence of large absorption. Another demonstration of superluminal effects, also in the
presence of large absorption, has been observed by Steinberg, Kwiat, and Chiao [1993] in
the context of single-photon tunnelling through a potential barrier.

One possible approach for avoiding absorption is to use the nonlinear (saturating) op-
tical response of an amplifier as in the work of Basov, Ambarsumyan, Zuev, Kryukov
and Letokhov [1966a] describe above. Alternatively, one can make use of the cooperative
(superfluorescence-like) response of a collection of inverted two-level atoms to produce su-
perluminal propagation (Chiao, Kozhekin, and Kurizki [1996]). Both of these appraoches
necessarily require the use of intense pulses. Another approach, described by Bolda, Gar-
rison and Chiao [1994], is to make use of a nearby gain line to create a region of negative
group velocity. In the present section, we describe a related scheme that has recently been
realized experimentally based on the use of a pair of gain lines.

Gain Assisted Superluminal Light Propagation

We have seen above how EIT can be used to eliminate probe wave absorption, and in
doing so produces slow light. An alternative procedure, proposed initially by Steinberg and
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Chiao [1994] and recently demonstrated by Wang, Kuzmich, and Dogariu [2000] makes use
of a pair of Raman gain features to induce transparency and to induce a large dispersion of
the refractive index. The sign of dn/dω in this circumstance is opposite to that induced by
EIT, with the result that the group velocity is negative in the present case.

The details of this procedure are shown in the accompanying figures. Figure 13 shows
the energy level description of the experiment. Two pump fields E1 and E2 with a frequency
separation of 2 MHz are sufficiently detuned from a particular Zeeman component of the
cesium resonance line that the dominant interaction is the creation of two Raman gain
features. These gain features and the resulting modification of the refractive index are
shown in Fig. 18. The probe wave is turned midway between these gain features to make
use of the maximum dispersion of the refractive index.

Some experimental results are shown in Fig. 19. Here the solid curve shows the time
evolution of the probe pulse in the absence of the pump beams, and the dashed curve shows
the time evolution in the presence of the pump beams. One sees that in the presence of the
pump beams the probe pulse is advanced by 62 ns, corresponding to vg = −c/310. The ratio
of the pulse advancement to pulse width in this case is of the order of 1.5%. The fractional
size of the effect clearly is not large. One of the motivations for performing this experiment
was to demonstrate that superluminal light propagation can occur under conditions such
that the incident laser pulse undergoes negligible reshaping. Indeed, it is remarkable how
closely the input and output pulse shapes track one another. At one time, it had been
believed that severe pulse reshaping necessarily accompanies superluminal propagation.

While these experimental results are consistent with semi-classical theories of pulse prop-
agation through an anomalous-dispersion media, there is continued discussion about the
propagation of pulses containing only a few photons where quantum fluctuations in the pho-
ton number are important. Aharonov, Reznik, and Stern [1998] argue that quantum noise
will prevent the observation of a superluminal group velocity when the pulse consists of a
few photons. In a subsequent analyses, Segev, Milonni, Babb, and Chiao [2000] find that
a superluminal signal will be dominated by quantum noise so that the signal-to-noise ratio
will be very small, and Kuzmich, Dogariu, Wang, Milonni, and Chiao [2001] have introduced
a “signal” velocity defined in terms of the signal-to-noise velocity that should be useful for
describing the propagation of few-photon pulses. More recently, Milonni, Furuya, and Chiao
[2001] predict that the peak probability for producing a “click” at a detector can occur sooner
than it could if there were no material medium between it and the single-photon source. We
await experimental verification of these concepts and predictions.

5.1 Causality

One might fear that the existence of negative group velocities would lead to a violation of
the nearly universally accepted notion of causality. Considerable discussion of this point has
been presented in the scientific literature, with the unambiguous conclusion that there is
no violation of causality, as discussed by Chiao [1993] and by Peatross, Glasgow, and Ware
[2000]. Thorough reviews of the extended scientific discussion can be found in Chiao [1996]
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and in Chiao and Steinberg [1997].
One can reach this conclusion by noting that the prediction of negative group velocity

follows from a frequency-dependent (linear, for simplicity) susceptibility that is the Fourier
transform of a causal time-domain response function. Thus, there is no way that the predic-
tions of such a theory could possibly violate causality. But this argument does not explain
how causality can be preserved, for instance, for situations in which the (peak of a) pulse
emerges from a material medium before the (peak of the) same pulse enters the medium. The
explanation seems to be that any physical pulse will have leading and trailing wings. The
distant leading wing contains information about the entire pulse shape, and this information
travelling at normal velocities such as c will allow the output pulse to be fully reconstructed
long before the peak of the input pulse enters the material medium. For any physical pulse
that has a non-compact support, the front velocity is limited to c while the group velocity,
signal velocity, etc. can exceed c. For the case in which the front is located close to but
before the peak of the pulse and vg > c or vg < 0, pulse distortion will occur leading to a
“pile-up” of the pulse at the front as discussed by Icsevgi and Lamb [1969].

The nature of superluminal velocities can also be understood from a frequency domain de-
scription of pulse propagation. In such a description, each frequency component is present at
all times; the coherent superposition of these frequency components constitute a a pulse that
is localized in time. When such a pulse enters a dispersive medium, the various components
propagate with different phase velocities, leading to pulse distortion and/or propagation with
a modified group velocity.

While these ideas have not been tested experimentally for propagation of electromagnetic
waves, Mitchell and Chiao [1997] have studied the propagation of voltage pulses through a
very low frequency bandpass electronic amplifier. They show that the amplifier transmits
Gaussian-shaped pulses with a negative group delay as large as several milliseconds with
little distortion, as shown in Fig. 20(a). They also created an abrupt discontinuity (a front)
on the waveform and found that it propagates in a causal manner, as shown in Fig. 20(b). It
is seen that the peak of the output is produced in response to earlier input, which does not
include the input peak. This result is expected for a causal system where the output depends
on the input at past and present, but not on future times. For a front at the beginning of
the pulse, they observe that the reaches the output no earlier than it reaches the input and
that no signal precedes the front, as expected.

In summary, even though vg > c or vg < 0, relativistic causality is not expected to
be violated in electromagnetic wave propagation experiments. Specifically, the front of any
physical pulse of compact extent should travel at a speed less than c, and it should distort
to avoid overtaking the front, consistent with the dispersion properties of the medium.

6 Discussion and Conclusions

This very recent research on slow and fast light demonstrates that our understanding of
atom-field interactions has truly developed to a high degree. It is now possible to tailor the
absorption, amplification, and dispersion of multi-level atoms using intense electromagnetic
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fields. The developments are of fundamental interest, and they hold promise for advances
in practical areas from optical communications and devices to quantum computing. Funda-
mentally, they challenge our understanding of century-old physical laws.
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Figure 1: Schematic representation of a pulse propagating through a medium for various
values of the group velocity. In each case we depict the spatial variation of the pulse intensity
for increasing values of time.
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Figure 2: Schematic representation of an optical pulse in terms of its various spectral com-
ponents. Note that these contributions add in phase at the peak of the pulse.
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(a) (b)

Figure 3: Effects of group velocity dispersion and higher-order dispersion on a Gaussian
shaped pulse, from Agrawal [1995]. (a) Dispersion-induced broadening of a Gaussian pulse
propagating through glass at z = 2LD and z = 4LD. The dashed curve shows the incident
pulse envelope. (b) Influence of higher-order dispersion. Pulse shapes at z = 5L′

D for an
initially Gaussian pulse at z = 0 are shown. The solid curve is for the case when k2 = 0 (β2

in the notation of Agrawal) in the presence of higher-order dispersion and the dashed curve
is the case when the characteristic length associated with group-velocity dispersion LD and
higher-order dispersion L′

D are equal. The dotted line shows the incident pulse envelope.
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Figure 5: Experimental results of Chu and Wong [1982] showing the transmitted pulse shapes
as their laser frequency is tuned through an exciton resonance line in GaP:N.
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Figure 6: Summary of the experimental results of Chu and Wong demonstrating that the
group delay can be either positive or negative (solid line). For comparison the absorption
spectrum of their sample is also shown (dashed line).
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Figure 7: Energy level structure utilized in a typical EIT, slow-light experiment.
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Figure 8: Frequency dependence of (a) the absorption coefficient and (b) the group index in
the absence (dashed line) and in the presence (solid line) of the intense coupling field that
induces the EIT effect. The parameters are estimated from the conditions of the experi-
ments of Hau, Harris, Dutton, and Behroozi [1999] and are given by 2πN |µba|2/γbah̄=0.013,
γba/2π=5 MHz, γca=0.038 MHz, and ω/γba=1.02 × 108.
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Figure 9: Schematic illustration of pulse compression that occurs when a pulse enters a
medium with a low group velocity.
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Figure 10: Experimental setup (a) and energy levels and laser frequencies (b) used in the
slow-light experiment of Hau, Harris, Dutton, and Behroozi [1999].
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Figure 11: Theoretically predicted probe absorption spectrum (a) and resulting modification
of the phase refractive index (b) under the experimental conditions of Hau, Harris, Dutton,
and Behroozi [1999].
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Figure 12: Some of the experimental results of Hau, Harris, Dutton, and Behroozi [1999]
demonstrating ultra-slow propagation of a light pulse. The open circles show the input pulse
and the filled circles show the transmitted, delayed pulse.
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Figure 13: Experimental set-up of Kash, Sautenkov, Zibrov, Hollberg, Welch, Lukin, Ros-
tovtsev, Fry, and Scully [1999] for creating EIT features in a dense hot atomic vapor of
rubidium. Note that their notation for the atomic energy levels (part a of the figure) is
different from that of Section 3 of the present document.
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Figure 14: Experimental results of Kash, Sautenkov, Zibrov, Hollberg, Welch, Lukin, Ros-
tovtsev, Fry, and Scully [1999] demonstrating slow light propagation in a hot atomic vapor.
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Figure 15: Energy levels and laser frequencies used in the stopped-light experiment of Liu,
Dutton, Behroozi, and Hau [2001].
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Figure 16: Experimental results of Liu, Dutton, Behroozi, and Hau [2001] showing the
stopping of light in an ultra-cold atomic medium. See text for details.
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Figure 17: Energy levels and laser frequencies used in the superluminal pulse propagation
experiment of Wang, Kuzmich, and Dogariu [2000].
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Figure 18: Theoretically predicted gain spectrum and associated variation of the phase
refractive index under the experimental conditions of Wang, Kuzmich, and Dogariu [2000].
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Figure 19: Experimental results of Wang, Kuzmich, and Dogariu [2000], demonstrating
superluminal propagation without absorption or pulse distortion. The solid line shows the
pulse propagating through vacuum and the dashed line shows the transmitted pulse. The
insets are blow-ups of the leading and falling edges of the pulse.
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Figure 20: Experimental results of Mitchell and Chiao [1997] demonstrating negative group
delays, but causal propagation. (a) Input/output characteristic of a chain of low-frequency
bandpass amplifiers. (b) Input/output characteristics for a pulse with a sharp “back.”
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