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* FOREWORD

In 1976 development of the NSWC library of general purpose numerical mathematics
subroutines began. The subroutines are written in ANSI standard Fortran. This manual
describes the subroutines in the 1990 edition of the library. The manual supersedes NSWC
TR 86-251 (1987). The development of the NSWC library is funded by the Computing
Systems and Networks Division, Engineering and Information Systems Department, NSWC.

| -R. T. RYLAND, JR., He
Engineering and Information
Systems Department

I iI
I

I

I:

I
I iiiD



-SWC D- --COICAL LIBRARY

lII0i 15l42i 3l1ll llI l aliili 1Il l ll

NSWC TR 90-21

3/1i f0 D 

DI, DX A,-1 O Zy A1

D)a 1 , -YW, 01 S, P 0
outac t d-1

.D- AIts 1

NSWC LIBRARY OF MATHEMATICS SUBROUTINESE231 X

BY ALFRED H. MORRIS, JR.

ENGINEERING AND INFORMATION SYSTEMS DEPARTMENT

JANUARY 1990

Approved for public release; distribution unlimited.

DESTRUCTION NOTICE - For classified documents, follow procedures as
outlined in Chapter 17 of OPNAVINST 5510.1H. For unclassified, limited
documents, destroy by any method that will prevent disclosure of contents
or reconstruction of the document.

NAVAL SURF.A.C.E WARFARE rCENTER

Dahlgren, Virginia 22448-5000 0 Silver Spring, Maryland 20903-5000

I 

I !Q
Ii e



CONTENTS

Page

Introduction ......................... ..................................... 1
Elementary Operations

Machine Constants - SPMPAR,DPMPAR,IPMPAR ........ .................... 3I Sorting Lists - ISHELL,SHELL, AORD, RISORT,SHELL2,DSORT,
DAORD,DISORT,DDSORT. 5

Cube Root - CBRT,DCBRT. 7I : Four Quadrant Arctangent - ARTNQ,DARTNQ ........... .................... 7
Length of a Two-Dimensional Vector - CPABS,DCPABS. 7

a Reciprocal of a Complex Number - CREC,DCREC. 9
Square Root of a Double Precision Complex Number - DCSQRT. 9
Conversion of Polar to Cartesian Coordinates - POCA .11
Conversion of Cartesian to Polar Coordinates - CAPO .11
Rotation of Axes - ROTA .................................................... 11
Planar Givens Rotations - SROTG,DROTG ........... ....................... 13
Three Dimensional Rotations - ROT3 ......... I ................................ 15
Rotation of a Point on the Unit Sphere to the North Pole - CONSTR ...... ... 17
Hyperbolic Sine and Cosine Functions - SNHCSH ......... .................... 19
Exponentials - REXPDREXP ................................................. 21

| Logarithms - ALNREL,RLOG,RLOG1,DLNREL,DRLOG,DRLOG1 ........... 23

Geometry
I Determining if a Point is Inside or Outside a Polygon - LOCPT ...... ......... 25

The Convex Hull for a Finite Planar Set - HULL .......... .................... 27
Areas of Planar Polygons - PAREA .................... ....................... 29

| Hamiltonian Circuits - HC ..................................... ............... 31

Special Functions
Error Function - CERF,CERFC,ERF,ERFC,ERFC1,DCERF,DCERFC,I ~~~~~~~~DERFDE RFC,DERFC1......35|1 DERFDERFCDERFCI ................................ ................ 3Inverse Error Function - ERFINV ............................................ 41
Normal Probability Distribution Function - PNDF .......... .................. 43
Inverse Normal Probability Distribution Function - PNINV ....... ............ 45
Dawson's Integral - DAW ................................................. 47
Complex Fresnel Integral - CFRNL1 .......................................... 49
CmReal Fresnel Integrals - FRNL ................................................. 51
Exponential Integral Function - CEXPLI,EXPLI,DEI,DEI1 ....... ............ 53
Sine and Cosine Integral Functions - SICIN .............. .................... 57I Dilogarithm Function - CLIALI .............................................. 59
Gamma Function - CGAMMA,GAMMA,GAMLN,DCGAMA,

DGAMMA,DGAMLN ................................................. 61I Digamma Function - CPSI,PSI,DCPSI,DPSI .............. .................... 65

v



Logarithm of the Beta Function - BETALN,DBETLN ...... .................. 67
Incomplete Gamma Ratio Functions - GRATIORCOMP ....... ............... 69
Inverse Incomplete Gamma Ratio Function - GAMINV ....... ................ 71

| Incomplete Beta Function - BRATIO,ISUBX,BRCOMP ....... ................ 73
Bessel Function J4(z) - CBSSLJBSSLJ,BESJ .................... I............. 75
Bessel Function Y,(z) - BSSLY ................................................ 77
Modified Bessel Function l,,(z) - BSSLI,BESI .......... ....................... 79
Modified Bessel Function K.>(z) - CBSSLK,BSSLK ........ ................... 81
Airy functions - CAI,CBIAIAIE,BIBIE ............ ......................... 83
Complete Complex Elliptic Integrals of the First and Second Kinds -

CK,CKE . 87
Real Elliptic Integrals of the First and Second Kinds -

ELLPI,RFVAL,RDVAL,DELLPI,DRFVAL,DRDVAL ...... ............. 91
Real Elliptic Integrals of the Third Kind - EPI,RJVAL,

DEPI,DRJVAL .95
Jacobian Elliptic Functions - ELLPFELPFC1 .99
Weierstrass Elliptic Function for the Equianharmonic

and Lemniscatic. Cases - PEQJPEQ1,PLEM,PLEM1 .103
Integral of the Bivariate Density Function over Arbitrary

Polygons and Semi-infinite Angular Regions - VALR2 ...... ........... 107
Circular Coverage Function - CIRCV .......... I............................ 109
Elliptical Coverage Function - PKILL,PKILL3 .......... ..................... 111

Polynomials

Copying Polynomials - PLCOPYDPCOPY ............ ...................... 113
Addition of Polynomials - PADD,DPADD ............. .................. I.... 115
Subtraction of Polynomials - PSUBTDPSUBST .......... ................... 117
Multiplication of Polynomials - PMULT,DPMULT ......... .................. 119
Division of Polynomials - PDIV,DPDIV ............... ...................... 121
Real Powers of Polynomials - PLPWR,DPLPWR ......... ................... 123

I Inverses of Power Series - PINV,DPINV ............... ..................... 125
Derivatives and Integrals of Polynomials - MPLNMV .......... ............... 127

| Evaluation of Chebyshev Expansions - CSEVLDCSEVL ....... .............. 129
Lagrange Polynomials - LGRNGNLGRNGV,LGRNGX ....... ............... 131
Orthogonal Polynomials on Finite Sets - ORTHOS,ORTHOV,

ORTHOX . 133

Solutions of Nonlinear Equations

Zeros of Continuous Functions - ZEROIN . 135
Solution of Systems of Nonlinear Equations - HBRD .137
Solutions of Quadratic, Cubic, and Quartic Equations -

QDCRT,CBCRT,QTCRT,DQDCRT,DCBCRT,DQTCRT .... .......... 139
Double Precision Roots of Polynomials - DRPOLY,DCPOLY .141
Accuracy of the Roots of a Real Polynomial - RBND . 143

Vector Is

Copying Vectors - SCOPY,DCOPYCCOPY .145

vi

I
I
I

I
I
I
I
I
I

I
I
I
I
I
I
I
I



Interchanging Vectors - SSWAPDSWAPCSWAP . ........................... 147
Planar Rotation of Vectors - SROT,DROT,CSROT ....................... I ... 149
Dot Products of Vectors - SDOT,DDOT,CDOTC,CDOTU .151
Scaling Vectors - SSCALDSCAL,CSCAL,CSSCAL .153
Vector Addition - SAXPY,DAXPY,CAXPY .155
L1 Norm of a Vector - SASUMDASUM,SCASUM .157
L2 Norm of a Vector - SNRM2,DNRM2,SCNRM2 .159
Loo Norm of a Vector - ISAMAX,IDAMAX,ICAMAX .161

Matrices
Packing and Unpacking Symmetric Matrices - MCVFS,DMCVFS,

MCVSF,DMCVSF .163
Conversion of Real Matrices to and from Double Precision

Form - MCVRDMCVDR .165
Storage of Real Matrices in the Complex Matrix Format -

MCVRC .167
The Real and Imaginary Parts of a Complex Matrix -

CMREAL,CMIMAG .169
Copying Matrices - MCOPY,SMCOPY,DMCOPY,CMCOPY .171
Computation of the Conjugate of a Complex Matrix - CMCONJ .173
Transposing Matrices - TPOSE,DTPOSE,CTPOSE,TIP,DTIP,CTIP .175
Computing Adjoints of Complex Matrices - CMADJ,CTRANS .177
Matrix Addition - MADD,SMADD,DMADDCMADD .179
Matrix Subtraction - MSUBT,SMSUBT,DMSUBT,CMSUBT .181
Matrix Multiplication- MTMS,DMTMS,CMTMSMPROD,DMPROD,

CMPROD .183
Product of a Packed Symmetric Matrix and a Vector -

SVPRD,DSVPRD . .................................................... 185
Transpose Matrix Products - TMPROD .187
Symmetric Matrix Products - SMPROD .189
Kronecker Product of Matrices - KPROD,DKPROD,CKPROD .191
Inverting General Real Matrices and Solving General

Systems of Real Linear Equations - CROUTKROUT,
NPIVOT,MSLV,DMSLV ....................... 193

Solutions of Real Equations with Iterative Improvement -
SLVMP ....................... 197

Solution of Almost Block Diagonal Systems of Linear
Equations- ARCECO,ARCESL ....... ................ 199

Solution of Almost Block Tridiagonal Systems of Linear
Equations - BTSLV ............. 201

Inverting Symmetric Real Matrices and Solving Symmetric
Systems of Real Linear Equations - SMSLV,DSMSLV .203

Inverting Positive Definite Symmetric Matrices and
Solving Positive Definite Symmetric Systems of
Linear Equations - PCHOL,DPCHOL .207

Solution of Toeplitz Systems of Linear Equations -
TOPLX,DTOPLX .209

vii



Inverting General Complex Matrices and Solving General Systems
of Complex Linear Equations - CMSLV,CMSLV1,
DCMSLV .......................................... 211

Solution of Complex Equations with Iterative Improvement -
CSLVMP ................ ............................... 215

Singular Value Decomposition of a Matrix - SSVDC,DSVDC,
CSVDC ............... ................................ 217

Evaluation of the Characteristic Polynomial of a Matrix -
DET,DPDET,CDET ............................................... 219

Solution of the Matrix Equation AX + XB = C - ABSLV,
DABSLV ...................... 221

Solution of the Matrix Equation AtX + XB = C when C is
Symmetric - TASLV,DTASLV ...................... 223

Solution of the Matrix Equation AX2 + XB + C = 0 -
SQUINT ...................... 225

Exponential of a Real Matrix - MEXP,DMEXP .......... .................... 227 I
Large Dense Systems of Linear Equations

Solving systems of 20G-400 Linear Equations - LEDPLE,CLE ...... ......... 229

Banded Matrices

Band Matrix Storage ..................................................... 231
Conversion of Banded Matrices to and from the Standard I

Format - CVBRCVBC,CVRB,CVCB,CVRB1,CVCB1 ....... ......... 233
Conversion of Banded Matrices to and from Sparse Form -

MCVBS,CMCVBS,MCVSB,CMCVSB .................. .............. 235
Transposing Banded Matrices - BPOSE,CBPOSE ............. ............... 237
Addition of Banded Matrices - BADDCBADD ............... ............... 239
Subtraction of Banded Matrices - BSUBT,CBSUBT ........... .............. 241 I
Multiplication of Banded Matrices - BPROD,CPROD ............. ........... 243
Product of a Real Banded Matrix and Vector - BVPRD,BVPRD1,

BTPRD,BTPRD1 .................... 245 I
Product of a Complex Banded Matrix and Vector - CBVPD,

CBVPD1,CBTPD,CBTPD1 .................... 247
Solution of Banded Systems of Real Linear Equations - I

BSLV,BSLV1 .............. 249
Solution of Banded Systems of Complex Linear: Equations -

CBSLVCBSLV1 ........... ..................... . .... 251
Sparse Matrices

Storage of Sparse Matrices ................................................. 253
Conversion of Sparse Matrices to and from the Standard

Format - CVRS,CVDS,CVCSCVSR,CVSD,CVSC .......... I .......... 255
Conversion of Sparse Real Matrices to and from Double 3

Precision Form - SCVRD,SCVDR ................. ................... 257
The Real and Imaginary Parts of a Sparse Complex Matrix -

CSREAL,CSIMAG ........ ...................................... 259

viiiI

. .~~~~~~~



* : Computing A + iB for Sparse Real Matrices A and B - SCVRC ...... ........ 261
Copying Sparse Matrices - RSCOPY,DSCOPY,CSCOPY ....... ............. 263
Computing Conjugates of Sparse Complex Matrices - SCONJ ....... ......... 265

* Transposing Sparse Real Matrices - RPOSE,RPOSE1 ........ ................ 267
Transposing Sparse Double Precision Matrices - DPOSE,

DPOSE1 .269I Transposing Sparse Complex Matrices - CPOSE,CPOSE1 .271
Addition of Sparse Matrices - SADD,DSADD,CSADD .273
Subtraction of Sparse Matrices - SSUBT,DSSUBT,CSSUBT .275I Multiplication of Sparse Matrices - SPRODDSPROD,CSPROD .277
Product of a Real Sparse Matrix and Vector - MVPRD,MVPRD1,

MTPRDMTPRD1 .279
Product of a Double Precision Sparse Matrix and Vector -

I DVPRD,DVPRD1,DTPRD,DTPRD1 .281
,Product of a Complex Sparse Matrix and Vector - CVPRD,I | ............CVPRD1,CTPRDCTPRD.283.......... .............. . 283
Ordering the Rows of a Sparse Matrix by Increasing

Length - SPORD .285I Reordering Sparse Matrices into Block Triangular Form -

BLKORD .287
Solution of Sparse Systems of Real Linear Equations -

SPSLVRSLVTSLV .*----------------------------------- 289
Double Precision Solution of Sparse Systems of Real Linear

Equations - DSPSLV,DSLV,DTSLV ................................. 293
Solution of Sparse Systems of Complex Linear Equations -

CSPSLV,CSLV,CTSLV .297

Eigenvalues and Eigenvectors

Computation of Eigenvalues of General Real Matrices -
EIG,EIG1 .301

Computation of Eigenvalues and Eigenvectors of General
Real Matrices - EIGV,EIGV1 .303

Double Precision Computation of Eigenvalues of Real
Matrices - DEIG .305

Double Precision Computation of Eigenvalues and
Eigenvectors of Real Matrices - DEIGV .307

Computation of Eigenvalues of Symmetric Real Matrices -*ISEIGSEIG1 ............................................... 309
Computation of Eigenvalues and Eigenvectors of Symmetric

Real Matrices - SEIGVSEIGV1 ...................................... 311I Computation of Eigenvalues of Complex Matrices - CEIG .................... 313
Computation of Eigenvalues and Eigenvectors of Complex

Matrices - CEIGV .315I Double Precision Computation of Eigenvalues of Complex
Matrices - DCEIG .317

Double Precision Computation of Eigenvalues andI~~~~~~~~~~~~~~~~Eigenvectors of Complex Matrices - DCEIGV .319

ix



4 Solution of Linear Equations

f, Solution of Systems of Linear Equations with Equality
and Inequality Constraints - CLI ........................ 321

Least Squares Solution of Linear Equations

Least Squares Solution of Systems of Linear Equations -

LLSQ,HFTI,HFTI2 ............. 323 |
Least Squares Solution of Overdetermined Systems of Linear

Equations with Iterative Improvement - LLSQMP ........ .............. 327
Double Precision Least Squares Solution of Systems of I

Linear Equations - DLLSQ,DHFTI,DHFTI2 .......... ................ 329
Least Squares Solution of Systems of Linear Equations with

Equality and Inequality Constraints - LSEI .......... ................. 333
Least Squares Solution of Systems of Linear Equations with

Equality and Nonnegativity Constraints - WNNLS ........ ............ 337
Least Squares Iterative Improvement Solution of Systems of

Linear Equations with Equality Constraints - L2SLV ........... ...... 341
Iterative Least Squares Solution of Banded Linear

Equations - BLSQ ......................................... ..... 345
Iterative Least Squares Solution of Sparse Linear

Equations - SPLSQ,STLSQ . ........................................... 347

Optimization I
Minimization of Functions of a Single Variable - FMIN ....................... 349

I Minimization of Functions of n Variables - OPTF ........... ................. 351
Unconstrained Minimum of the Sum of Squares of Nonlinear

Functions - LMDIFF ........................ 353
Linear Programming - SMPLX,SSPLX .............................. 355
The Assignment Problem - ASSGN ........... ................... 359 I
0-1 Knapsack Problem - MKP .............................. 361

Transforms l
I Inversion of the Laplace Transform - LAINV .... I. ............................ 363
Fast Fourier Transform - FFT,FFT1 .............. ....................... 367
Multivariate Fast Fourier Transform- MFFT,MFFT1 ........ ................ 369
Discrete Cosine and Sine Transforms- COSQI,COSQBCOSQF,

SINQB,SINQF ...................................................... 371

Approximation of Functions

Rational Minimax Approximation of Functions - CHEBY ...... .............. 375
Lp Approximation of Functions - ADAPT . .................................. 377 I
Calculation of the Taylor Series of a Complex Analytic

Function - CPSC,DCPSC ............ I................................ 381

Curve Fitting I
Linear Interpolation - TRP .......................... I........................ 385
Lagrange Interpolation - LTRP ....................... . 387

x

:~~~~~~~~



Hermite Interpolation - HTRP .389
Conversion of Real Polynomials from Newton to Taylor

Series Form - PCOEFF .............................................. 391I Least Squares Polynomial Fit - PFIT ......................... ............... 393
Weighted Least Squares Polynomial Fit - WPFIT ............ ................ 395
Cubic Spline Interpolation - CBSPL,SPLIFT .... I ............................ 397
Weighted Least Squares Cubic Spline Fitting - SPFIT ......... .............. 399
Cubic Spline Evaluation - SCOMPSCOMP1,SCOMP2 . 401
Cubic Spline Evaluation and Differentiation - SEVAL,

SEVAL1,SEVAL2 .............. ......................... 403
Integrals of Cubic Splines - CSINT,CSINT1,CSINT2 ............ ............. 405
N-Dimensional Cubic Spline Closed Curve Fitting - CSLOOP,I LOPCMP,LOPDF ................................. 407
Spline under Tension Interpolation - CURV1 ................................. 409
Spline under Tension Evaluation - CURV2 ................................. 411
Differentiation and Integration of Splines under Tension -

CURVD,CURVI ................ ......................... 413
Two Dimensional Spline under Tension Curve Fitting -

KURV1,KURV2 .......... 415
Two Dimensional Spline under Tension Closed Curve

Fitting - KURVP1,KURVP2 .417
Three Dimensional Spline under Tension Curve Fitting -

QURV1,QURV2 .419
B-Splines .421
Piecewise Polynomial Interpolation - BSTRP .423
Conversion of Piecewise Polynomials from B-Spline to

Taylor Series Form - BSPP .425
Piecewise Polynomial Evaluation - PPVAL ............. 427
Weighted Least Squares Piecewise Polynomial Fitting -

BSL2 . 429

Surface Fitting over Rectangular Grids

Bi-Splines under Tension ................. ........................ 431
Bi-Spline under Tension Surface Interpolation - SURF .......... ............. 433
Bi-Spline under Tension Evaluation - SURF2,NSURF2 .......... ............. 435

Surface Fitting over Arbitrarily Positioned Data Points
Surface Interpolation for Arbitrarily Positioned Data

Points - BVIPBVIP2 ................................................ 437

Manifold Fitting
Weighted Least Squares Fitting with Polynomials of

n Variables - MFIT,DMFIT,MEVAL,DMEVAL ........... ............. 441

Numerical Integration
Evaluation of Integrals over Finite Intervals - QAGS

QSUBA,DQAGS .................... .......................... 445

xi



Evaluation of Integrals over Infinite Intervals - QAGI,
DQAGI ................................................................ 449

Evaluation of Double Integrals over Triangles - CUBTRI ....... .............. 453

Integral Equations

Solution of Fredholm Integral Equations of the Second
Kind - IESLV . ....................................................... 455

Ordinary Differential Equations/initial Value Problems

The Initial Value Solvers - Introductory Comments .......... I ............... 459
Adaptive Adams Solution of Nonstiff Differential

Equations - ODE ........... 461
Adaptive RFK Solution of Nonstiff Differential Equations -

RFK45 .465
Adaptive RFK Solution of Nonstiff Differential Equations

with Global Error Estimation - GERK .469
Adaptive Solution of Stiff Differential Equations - SFODE, I

SFODE1 ............................ 473
Fourth-Order Runge-Kutta - RK .......................... 477
Eighth-Order Runge-Kutta - RK8 ........................................... 479

Partial Differential Equations

Separable Second-Order Elliptic Equations on Rectangular I
:: ~~Domains - SEPDE ...................................... 481

Random Number Generation

Uniform Random Number Generator - URNG ........... .................... 485
Gaussian Random Number Generator using the Box-Muller

Transformation - NRNG ................ ............................... 487 I
Appendix. Installation of the NSWC Library ................... .................... 489

Index ........................................................ 491 |

Distribution

xiI

I

0 : ~~~~~~~~~~~I

I
xii

.



INTRODUCTION

In 1976 development of the NSWC library of numerical mathematics subroutines began.
The objective was to form a library of general purpose subroutines that would provide a

* basic computational ability in a variety of mathematical activities. The subroutines were
,to be written in Fortran. Even though the subroutines were intended for use on the CDC
6000-7000 series computers, emphasis was to be placed on their transportability. Currently,I the library is used on a variety of computers, ranging from mainframes such as the CDC
Cyber 995 to personal computers, such as the IBM PC. The 1990 edition of the NSWC
library contains 870+ functions and subroutines. This manual describes the 453 functionsI and subroutines in the library that are available for general use. (The remaining functions
and subroutines are supportive, normally being of little interest to most users.) A brief
appendix is included, which provides information for installing the library.

All functions and subroutines are examined before being accepted for the NSWC li-
brary. Primary considerations are the reliability and transportability of the function or
subroutine, its efficiency and ease of use, and its generality. In regard to reliability, the
major concerns are accuracy, the stability and robustness of the algorithm being used, and
the overall quality of the code. All routines are tested before being accepted for the library.
The functions and subroutines in the library are always subject to reexamination and pos-
sible modification. When better routines are obtained, the older routines are normally
eliminated.

In regard to transportability, it is clear that machine dependent constants and preci-
sion dependent algorithms cannot be avoided. However, machine dependent code and I/O
statements are not permitted. For a function or subroutine to be acceptable, it is requiredI that the coding satisfy the 1966 and 1977 ANSI Fortran standards, the only exception being
the declaration of assumed size arrays, where the standards conflict. In this case, state-
ments such as REAL A(1) and REAL A(*) are equally acceptable for declaring as arraysI arguments A of a function or subroutine. Two versions of the code for the NSWC library
are maintained, providing the appropriate assumed size array declarations for the 1966 and
1977 standards.

The ease of use criterion is of considerable importance. The main purpose of the
library is to provide a service to as broad an audience as is possible. Hence, it is important
that duplicate abilities be kept to a minimum, and that the functions and subroutines be
as simple to use and as comprehensive in scope as is practical. Development of software
that satisfies the ease of use criterion can be characterized as a packaging problem, the
objective being to package mathematical theory and formulae into comprehensive, simple
to use functions and subroutines. To help meet this criterion, many specialized routines
are incorporated into the NSWC library at a subordinate level, being referenced by driver

| functions or subroutines.

The testing of the functions and subroutines serves many purposes, including deter-
mination of the accuracy and efficiency of the software, checking for defects in the code,
and searching for regions of numerical instability. In most cases, the testing must be highly

1
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selective, being used to locate and examine weaknesses in the algorithm and code. After the
testing is finished, an assessment is made of the utility and overall performance of the code.
When the precision of a function or subroutine can be established, then this information is
given with the description of the routine. All precision estimates are for the CDC 6000-
7000 series 14-digit single and 28-digit double precision arithmetics. The estimates do not
include inherent error. Thus, the accuracy of a code may be better than the inherent
error of the mathematical function that it is computing.

The functions and subroutines in the NSWC library originate from a variety of sources.
Hence, standards concerning in-line documentation and the style of code cannot be imposed.
In general, all supportive routines not intended for general usage are not described in
the manual. This makes it possible to modify or replace the code without bothering the
programmer. This capability is extremely important. In the last decade, a vast amount
of research has resulted in the development of new, more powerful algorithms for a variety
of problems. Many of the results affect current codes, occasionally making some codes
obsolete.

Distribution of the NSWC library. The NSWC functions and subroutines are available for
general use. The library contains no proprietary code.

2
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I

MACHINE CONSTANTS

Assume that the integer arithmetic being used has base b, and that the integers are
represented in the form

±(ko. + kib + *+ kn- b-l)
where kok 1, *-, Jc.. are integers such that 0 < kI < b (i = O,1 . .. ,n - 1). The value
n is the number of base b digits kI, and b6 - 1 and -(ba - 1) are the largest positive and
negative integers that occur.

It is assumed that the single and double precision arithmetics being used have the sameI base, say A, and that the nonzero numbers can be represented in the form

± (ki + .. + k- Vp

where ki, ... ,km are integers such thatO C< J, < 6 (i= 1,...,m),k > 1, and t is anI integer such that tmin < A < t max. The value m is the number of base ,8 digits ki, and
k1 > 1 is the requirement that the floating point numbers are normalized. The values
Emin and t max are the largest negative and positive exponents that arise where the floating
point numbers maintain full m digit accuracy. Then xmin = f-i4 -- is the smallest positive
number that is represented and xmx = (1 - l the largest.

Associated with m is the constant e = c 6-+1, called the relative precision of theI 0 floating point arithmetic being used. Theoretically, e is the smallest number for which 1 + e,
when stored in memory, is stored exactly and has a value greater than 1. Normally e will
be the smallest number that satisfies these conditions. However, there do exist computerI arithmetics (such as the CDC 6000-7000 series double precision arithmetics) for which this
is not the case. In such arithmetics, some arithmetic results are able to be stored more

* accurately than others.

The functions SPMPAR, DPMPAR, and IPMPAR are available for obtaining the above
constants. IPMPAR is the only subprogram in the NSWC library that is machine depen-

I dent.
SPMPAR(i)

I SPMPAR is a real valued function. It is assumed that i = 1, 2, or 3. SPMPAR provides
the following constants for the single precision arithmetic being used:

I SPMPAR(1) = c, the relative precision
SPMPAR(2) = xmin, the smallest positive number

SPMPAR(3) = xmn, the largest positive number

Programming. SPMPAR was written by A. H. Morris. The function IPMPAR is used.I
3



:~~~
DPMPAR(s)

DPMPAR is a double precision valued function. It is assumed that i = 1, 2, or 3.
DPMPAR provides the following constants for the double precision arithmetic being used:

DPMPAR(1) = e, the relative precision

DPMPAR(2) = xmin, the smallest positive number,
DPMPAR(3) = m:ax),the largest positive number

DPMPAR must be declared in the calling program to be of type DOUBLE PRECISION.

Programming. DPMPAR was written by A. H. Morris. The function IPMPAR is used.

IPMPAR(i)

IPMPAR is an integer valued function. It is assumed that: = 1, . . . ,10. IPMPAR
provides the following constants: I

Integer arithmetic
IPMPAR(1) = b, the base of the arithmetic
IPMPAR(2) = n, the number of base b digits
IPMPAR(3) = b- - 1, the largest integer

Base for the floating arithmetics
IPMPAR(4) = |

Single precision arithmetic
IPMPAR(5) = m, the number of base . digits
IPMPAR(6) = , the largest negative exponent I
IPMPAR(7) = emax, the largest positive exponent

Double precision arithmetic x

IPMPAR(8) = m, the number of base ,8 digits
IPMPAR(9) = imin, the largest negative exponent
IPMPAR(10) = Amax, the largest positive exponent

Programming. IPMPAR is an adaptation by A. H. Morris of the function IlMACH, de-
signed by P. A. Fox, A. D. Hall, and N. L. Schryer (Bell Laboratories). The constants for I
the various computers are from Bell Laboratories, NSWC, and other sources.

:40 I

I
: u ~~~I
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SORTING LISTS

Let A be an array containing n > 1 elements al, . . , a,". Then the following subroutines
are available for reordering the elements of A.

CALL ISHELL(A,n)

It is assumed that A is an integer array. When ISHELL is called, the elements of A
are reordered so that ai < ai+l for i = 1, . .. ,n - 1.

Algorithm. The Shell sorting algorithm with increments (3 k - 1)/2 is employed.

Programmer. A. H. Morris

Reference. Knuth, D. E., The Art of Computer Programming.Vol. 3, Sorting and Search-
ing. Addison-Wesley, Reading, Mass., 1973, pp. 84-95.

CALL SHELL(A,n)
CALL AORD(A,n)

It is assumed that A is a real array. If SHELL is called, then the elements of A are
reordered so that ai < ai+I for i = 1, ... , n - 1. Otherwise, if AORD is called, then the
elements of A are reordered so that Iaai < Iai+11 for i = 1,..., n - 1.

Programmer. A. H. Morris

CALL RISORT(A,L,n)

It is assumed that A is a real array and L an integer array containing n elements. When
RISORT is called, the elements of A are reordered so that ai < ai+l for i = 1, .. .,n - 1.I The same permutations are performed on L as on A, thereby reordering the elements of L
so as to correspond with the new ordering of A.

Remark. RISORT is normally used for obtaining the indices of the reordered elements of
A. If L initially contains the values 1, . .. , n and ai,, . .. , ai. is the reordered sequence of
elements of A, then L contains the indices il. .. .,in when RISORT terminates.

Programmer. A. H. Morris

CALL SHELL2(A, B, n)

It is assumed that A and B are real arrays containing n elements. When SHELL2 is
called, the elements of A are reordered so that a, < aj+1 for i = 1, .. ., n - 1. The same
permutations are performed on B as on A, thereby reordering the elements of B so as to
correspond with the new ordering of A.

Programmer. A. H. Morris

5
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CALL DSlRT(A)
CALL DAORD(A,n)

It is assumed that A is a double precision array. If DSORT is called, then the elements
of A are reordered so that ai < ai+1 for i = 1, .. ., n - 1. Otherwise, if DAORD is called,
then the elements of A are reordered so that lail < jai+11 for i = 1, .. ., n - 1.

Programmer. A. H. Morris I
CALL DISORT(A,L,n)

It is assumed that A is a double precision array and L an integer array containing n
elements. When DISORT is called, the elements of A are reordered so that ai < a÷ij for
i = 1, . . . , n - 1. The same permutations are performed on L as on A, thereby reordering I
the elements of L so as to correspond with the new ordering of A.

Programmer. A. H. Morris

CALL DDSORT(A,Bn)

It is assumed that A and B are double precision arrays containing n elements. When I
DDSORT is called, the elements of A are reordered so that ai < ai+l for i = 1, .. ., n - 1.
The same permutations are performed on B as on A, thereby reordering the elements of B
so as to correspond with the new ordering of A. I
Programmer. A. H. Morris
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CUBE ROOT

* The following functions are available for computing the real cube root of a real number.

CBRT(x)
DCBRT(z)

CBRT is used if z is a single precision number, and DCBRT is used if z is a double
precision number. CBRT is a single precision function and DCBRT a double precision
function. The value of the function is ,6/.

Remark. DCBRT must be declared in the calling program to be of type DOUBLE
PRECISION.

Programmer. A. H. Morris

FOUR QUADRANT ARCTANGENT

The function ARTNQ is similar to the ATAN2 function, the differences being that its
value lies in the interval t0, 2;r) and its value at the origin is 0. DARTNQ is the doubleI precision counterpart of ARTNQ.

ARTNQ(y,x)
DARTNQ(y, z)

ARTNQ is used if z and y are single precision values, and DARTNQ is used if z and
y are double precision values. ARTNQ is a single precision function and DARTNQ is a
double precision function.

If (x, y) is a point in the plane other than the origin (0,0), let L denote the straight
line connecting the points (0, 0) and (x, y). Then the function is assigned the value 9 where
0 is the angle between L and the positive x-axis measured in a counterclockwise direction.
Here 0 < 0 < 2ir. Otherwise, if (z, y) is the origin (0,0), then the function is assigned the
value 0.

Remark. DARTNQ must be declared in the calling program to be of type DOUBLE
PRECISION.

Programmer. Richard Pasto

LENGTH OF A TWO-DIMENSIONAL VECTOR

The following functions are available for computing the length of a real vector (X, y).

CPABS(z, y)
DCPABS(x, y)

7
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CPABS is used if z and y are single precision values, and DCPABS is used if x and y
are double precision values. CPABS is a single precision function and DCPABS is a double
precision function. The value of the function is I/Fjy.

Remark. DCPABS must be declared in the calling program to be of type DOUBLE
PRECISION.

Programmer. A. H. Morris

8

:l

I
I
I
I
I
I
I
I

I

I
I
I

I
I
I



RECIPROCAL OF A COMPLEX NUMBER

The following subroutines are available for computing the reciprocal of a complex
number.

CALL CREC(z,y,u,v)
CALL DCREC(z,y,u,v)

CREC is used if x and y are single precision real numbers and u and v real variables,
and DCREC is used if x and y are double precision numbers and u and v double precision
variables. It is assumed that x and y are the real and and imaginary parts of a nonzero
complex number z. When CREC or DCREC is called, u and v are set to the real and
imaginary parts of l/z, respectively.

I Programmer. A. H. Morris

* SQUARE ROOT OF A DOUBLE PRECISION COMPLEX NUMBER

The following subroutine is available for computing the square root of a double precisionI complex number.

CALL DCSQRT(Z,W)

I Z and W are double precision arrays of dimension 2. It is assumed that Z(1) and Z(2)
are the real and imaginary parts of a complex number z. When DOCSQRT is called, if z = 0
then W(l) and W(2) are set to 0. Otherwise, if z 54 0 then the square root w = +/E where
*-r/2 < arg(w) < 7r/2 is computed and stored in W. W(l) and W(2) contain the real and
imaginary parts of w, respectively.

i Note. Z and W may reference the same storage area.

Programming. DCSQRT calls the function DCPABS. DCSQRT was written by A. H.
i Morris.

S II
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CONVERSION OF POLAR TO CARTESIAN COORDINATES

The following subroutine is available for converting polar coordinates (r, 6) to cartesian
coordinates (x, y).

CALL POCA(r, 6, , y)

Let (r, 9) be the polar coordinates of a point in the plane and let x, y be variables.
When the routine is called, x and y are assigned the values z = r cos 6 and y = rsin 6.

I CONVERSION OF CARTESIAN TO POLAR COORDINATES

The following subroutine is available for converting cartesian coordinates (z, y) to polarU coordinates (r, 9).

CALL CAPO(z, y, r, 6)

Let (z, y) be the cartesian coordinates of a point in the plane and let r, 6 be variables.
If (z, y) is the origin then CAPO sets r = 0 = 0. Otherwise, if (z, y) is a point other than
the origin, let L denote the straight line connecting the points (0,0) and (x, y). Then when
CAPO is called, r is assigned the value V/2iTY and 6 is defined to be the angle between

and the positive x axis. Here - r < 9 < r.

ROTATION OF AXES

| Let (zx, yi) be the (cartesian) coordinates for a point in the plane. The following
subroutine computes the new coordinates (z 2,/2) for the point after the z, y axes have
been rotated by an angle 9.

CALL ROTA(xi,y 1 ,6,z 2 ,y 2 )

The arguments Z2 and Y2 are variables. When ROTA is called, X2 and Y2 are assigned
the values:

X2 = ZX COS 9 + y1 sin 9

Y2= =-1 sin 9 + yj cos 9

Programmer. A. H. Morris.
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PLANAR GIVENS ROTATIONS

If a and b are real numbers where a 2 + b2 $ 0, then there is an orthogonal matrix

c 9) such that ( C ) (L.) = () In this case r2 = a2 + 2 ,c=a/r, and s = b/r.

The matrix ( ) represents what is called a Givens rotation. Given a and b, the

matrix is uniquely defined up to the sign of r. For any real a, let sgn(a) = 1 if a > 0 and
sgn(a) = -1 if a < 0. If we define r = a l where

-sgn(a) if Ial > JbI

| sgn(b) if jal < JbI

then for r :A 0 we note that Icl > Isl implies c > 0, and that Icl < IsI implies s > 0. For
convenience, when r = 0 we set c = 1 and s = 0.

The value a- is not needed for the constuction of a Givens rotation matrix, but its use
permits the representation of c and s by a single value z. For each c and 8, Z is defined as
follows:

fs if Isl < c or c = 0
Z l/c if O < Icl < s

The mapping (c, s) '-+ z is 1-1. If the user wishes to reconstruct c and s from z, then this
can be done as follows:

If z = 1 then set c = 0 and s = 1.
if Izl < 1 then setC 1 -Z 2 and s = z.

If jzj > 1 then set c = 1/z and s = VYII7O.

The subroutines SROTG and DROTG are available for computing c, s, r, and z. SROTG
is used when a and b are single precision real numbers, and DROTG is used when a and b
are double precision numbers.

CALL SROTG(AR,BZ,C, S)
CALL DROTG(AR,BZ,C, S)

When SROTG is used then AR, BZ, C, and S are real variables. Otherwise, when
DROTG is used then AR, BZ, C, and S are double precision variables. On input, AR = a
and BZ = b. When the routine terminates AR = r, BZ = z, C = c, and S = s.

Programming. These routines are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. SROTG
and DROTG were coded by Charles Lawson (Jet Propulsion Laboratory).
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THREE DIMENSIONAL ROTATIONS

If A = (aij) is a 3 x 3 orthogonal matrix, then A can be represented in the form
A = R3R2R1E where

-sin 0i)
(COS 02

R2 = 0

Si 0

a -sin 02

1 0)
o COSeD2

COS 0

R3 = sin 03
0

-sin 03

COS 03

a

0) E =(0 1 

RI represents a rotation around the z-axis, B2 a rotation around the y-axis, and R3 a
rotation around the z-axis. Since A is orthogonal the determinant det(A) = ±1. If det(A)
= 1 then E is the identity matrix and A is the combined rotation Rs R2 RI . If det (A) = - 1
then A is composed of the rotation R3R 2 RI and the reflection E = diag(1, 1, -i). The
following subroutine is available for finding the angles 01, 02, 03 where -X- < 01 • A*, 1021 <
r/2, and -?r < 03 <rV.

CALL ROT3(A, THETA)

THETA is an array of dimension 3 or larger. When ROT3 is called, the angles 01, 02,03
are computed and stored in THETA.

Algorithm. If all = a21 0 then let 03 = 0. Otherwise, let Os = ATAN2(al, all). Then

a 31

a 12

a22

a 3 2

Ials
I = Ala23

ass

where rl = Va~1 + a~1. Alo if 02 = ATAN2(al, ri) then
11~~~~~~~~~~/I

r2a 12

0 a4s2

a1 3

=~ A"'
4I

where r2 = VR1I1- ~a2 . Since r2 Ž 0, by orthogonality it follows thalt r2 = 1 and a"4 =
a"= 0. Finally, if 01 = ATAN2a (42, a22) then

where r3 = V'('4~2)2 + ~(a42)~2. Since T3 Ž
and a"g3 = ± 1.

( 1 CO
o r3 a"2 3 )
o a"3

0, by orthogonality we obtain T3 = 1, a' '=0,

15
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Programmer. A. H. Morris

I
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RI = 0 Cos 01
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ROTATION OF A POINT ON THE UNIT SPHERE TO THE NORTH POLE

Given the point (x, y, z) where Z2 + y2 + Z2 = 1. Then there exist orthogonal matrices

1 0 0 CY 0 -sy

I. = C5 -S,) and R =(0 1 0
° a:C rS 0 Cy

such that Ry (R ) = ( ). R represents a rotation about the x-axis and As a rotation

about the y-axis. The following subroutine is available for obtaining the values ca, s=, cy, si.

CALL CO NSTR(x, y, z, CXSXCYSY)

CX,SX,CY,SY are variables. When CONSTR is called, these variables are assigned
the values C.IS=,Cy,Sy.

Programmer. Robert J. Renka (Oak Ridge National Laboratory)
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HYPERBOLIC SINE AND COSINE FUNCTIONS

The following subroutine is available for computing sinh(z) - z, cosh(z) - 1, and
cosh(z) - 1 - X2 /2 for real z.

CALL SNHCSH(S,C,x,IND)

S and C are variables, and IND is an input argument which specifies the functions to
be computed. IND takes the values:

IND =-1
IND= 0
IND= 1
IND= 2
IND= 3

if only sinh(x) - z is desired.
if sinh(x) - z and cosh(x) - 1 are desired.
if only cosh(x) - 1 is desired.
if only cosh(z) - 1 - x2 /2 is desired.
if sinh(z) - x and cosh(x)-1 - z2/2 are desired.

S is assigned the value sinh(x) - x if this function is requested. When cosh(x) - 1 or
cosh(z) - 1 - X2 /2 is computed then the value is stored in C.

Precision. For all z, sinh(x) - x has a relative error less than 2.3E-14, cosh(z) - 1 has a
relative error less than 2.2E-14, and cosh(z) -1 z2/2 has a relative error less than 3.8F,14.

Programming. Written by
Modified by A. H. Morris.

A. K. Cline and R. J. Renka (University of Texas at Austin).

I
I
I
I

I
IU

19

I
I
I
I
I



EXPONENTIALS

The functions REXP and DREXP are available for computing e' - 1. DREXP is a
* double precision function.

REXP(X)

5 REXP(z) = e- 1 for real x.

Algorithm. See pages 378-379 and appendix B of the reference.

Precision. REXP(x) is accurate to within 2 units of the 1 4 th significant digit when REXP(x)
io.

I Reference. DiDonato, A. R., and Morris, A. H., 'Computation of the Incomplete Gamma
Function Ratios and Their Inverse," ACM Trans. Math Software 12 (1986), pp. 377-393.

Programmer. A. H. Morris

DREXP(z)

The argument z is a double precision number. DREXP(z) is the double precision value
for e' - 1.

Remark. DREXP must be declared in the calling program to be of type DOUBLE
PRECISION.

Precision. DREXP(x) is accurate to within 1 unit of the 28th significant digit when
DREXP(x) 0 0.

* Programming. DREXP was written by A. H. Morris. The function DPMPAR is used.

I
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I LOGARITHMS

The functions ALNREL, RLOG, RLOG1, DLNREL, DRLOG, and DRLOG1 are avail-
able for computing ln(1 + a), z - 1 - In(z), and a - In(1 + a). DLNREL, DRLOG, andI DRLOG1 are double precision functions.

ALNREL(a)

ALNREL(a) = ln(1 + a) for a > -1.

Algorithm. See page 378 and appendix A of the reference.

Precision. ALNREL(a) is accurate to within 2 units of the 1 4th significant digit when3 ALNREL(a) $ 0.

Reference. DiDonato, A. R., and Morris, A. H., 'Computation of the Incomplete Gamma3 Function Ratios and Their Inverse," ACM Trans. Math Software 12 (1986), pp. 377-393.

Programmer. A. H. Morris

RLOG(x)

RLOG(x) = z-1-ln(F) for z > 0.

I Algorithm. See page 379 and appendix E of the reference.

Precision. RLOG(x) is accurate to within 3 units of the 14th significant digit when
RLOG(z) $4 0.

Reference. DiDonato, A. R., and Morris, A. H., 'Computation of the Incomplete Gamma
* Function Ratios and Their Inverse," ACM2Trans. Math Software 12 (1986), pp. 377-393.

Programmer. A. H. Morris

RLOG1(a)

RLOG1(a) = a - ln(l + a) for a > -1.

Algorithm. See page 379 and appendix E of the reference.

Precision. RLOG1(a) is accurate to within 3 units of the 14 th significant digit when
RLOG1(a) $A 0.

Reference. DiDonato, A. R., and Morris, A. H., "Computation of the Incomplete Gamma
Function Ratios and Their Inverse," ACM Trans. Math Software 12 (1986), pp. 377-393.

I Programmer. A. H. Morris
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I
DLNREL(a)

The argument a is a double precision number where a > -1. DLNREL(a) is the double
precision value for ln(1 + a).

Remark. DLNREL must be declared in the calling program to be of type DOUBLE
PRECISION.

Precision. DLNREL(a) is accurate to within 1 unit of the 2 8 th significant digit when
DLNREL(a) zA 0.

Programming. DLNREL was written by A. H. Morris. The function DPMPAR is used.

DRLOG (x) |

The argument z is a positive double precision number. DRLOG(z) is the double pre-
cision value for z - 1 - ln(x). I
Remark. DRLOG must be declared in the calling program to be of type DOUBLE
PRECISION.

Precision. DRLOG(x) is accurate to within 2 units of the 2 8 th significant digit when
DRLOG(z) $ 0.

Programming. DRLOG was written by A. H. Morris. The function DPMPAR is used.

DRLOGI(a)

The argument a is a double precision number a > -1. DRLOG1(a) is the double
precision value for a - ln(1 + a).

Remark. DRLOG1 must be declared in the calling program to be of type DOUBLE
PRECISION.

Precision. DRLOG1(a) is accurate to within 2 units of the 2 8th significant digit when
DRLOG1(a) $ 0.

Programming. DRLOG1 was written by A. H. Morris. The function DPMPAR is used.

l
I
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DETERMINING IF A POINT IS INSIDE OR OUTSIDE A POLYGON

Given a sequence of points vi = (xi, yi) (i = 1, . .. , n). Let r denote the polygonal line
which begins at point vi, traverses the points vi in the order that they are indexed, and
is the straight line segment connecting vi to i+ 1 for each i = 1, ... , n - 1. It is assumed
that vn = j1 , or that there is also a straight line segment from Vn to vi1 when Vn :, $ -'.
Consequently, the polygonal path r is a loop beginning and ending at vi1 .

For any point vo = (xo, yo) not on the path r, let tF(r, vo) denote the winding number
of the path r around the point Po. Then 'q(r, is0 ) = 0 if Po is outside the polygon whose
boundary is r. If v0 is inside the path then 7(r, i 0) = m where m is an integer. If m > 0 then
the path r loops m times in a counterclockwise direction around the point P0 . Otherwise,
if m < 0 then r loops Iml times in a clockwise direction around s0 .

Given an arbitrary point vo = (x0 , yo), the following subroutine is available for deter-
mining whether vo is on the path, outside the path, or inside the path. If the point .' is
inside r then the winding number q(T, isO) = m is also computed.

CALL LOCPT(xoyO,X,Y,n,t,m)

It is assumed that n > 1. X and Y are arrays containing x1 ..* ., zn and yi, *.. Yn.
The arguments £ and m are variables. When LOCPT terminates t has one of the following
values:

e= -1 if (z0 , YO) is outside the path
e = 0 if (xo, yo) lies on the path
e 1 if (zo, yo) is inside the path

The variable m is assigned the value 0 if (xo, yo) is on or outside the path. If (xo, yo) is
inside the path then m = the winding number of the path r around the point (x0,yo).

Remark. There are no restrictions on the points (xi, yi). Consequently, the path may
intersect itself.

Programming. The function SPMPAR is used. LOCPT was written by A. H. Morris.
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THE CONVEX HULL FOR A FINITE PLANAR SET

If (z', y1), .. . , (Zm tym) are m distinct points in the plane, then the following subrou-
tine is available for finding the smallest convex polygon which with its interior contains the
points.

CALL HU LL(X, Y. m, BX,BY, k, VX,VY, n)

It is assumed that m > 2. X and Y are arrays containing the abscissas z1, .x. , Xm and
ordinates ye., . . ,tm, respectively. When HULL is called the points are reordered so that
yi < *-- < y,. Thus X and Y may be modified when the routine terminates.

BX and BY are arrays of dimension m + 1 or larger, and k is a variable. When HULL
terminates, BX and BY contain the abscissas and ordinates of the points (xi, yi) which lie
on the boundary of the desired convex polygon, and k = the number of points stored in
BX and BY. If BX and BY contain the abscissas z4, . xZ and ordinates yl, .... , yk, then
the points (x', y') are indexed in the order they occur when traversing the boundary in a
counterclockwise manner. Also (Zxt4) = (z4 y').

VX and VY are arrays of dimension m + 1 or larger, and n is a variable. When
HULL terminates, VX and VY contain the abscissas and ordinates of the vertices of the
desired convex polygon, and n = the number of points stored in VX and VY. If VX and
VY contain the abscissas x"f, .. . , z' and ordinates y", . . ., y%, then the vertices (z'', y,') are
indexed in the order they occur when traversing the boundary of -the convex polygon in a
counterclockwise manner. Also (4I, y'') = (Xi y).

Example. Assume that we are given the points
(-1,-3), (1,1), (0,3), (2,2), (-2,4), (-1,-I).
When HULL is called X and Y are reordered
and we obtain:

X contains -1,-1,1,2,0,-2
Y contains -3, -1,1,2,3,4
BX contains -1,2,0,- 2,-1
BY contains -3,2,3,4,-3
VX contains -1,2, -2, -
VY contains -3,2, 4,-3

Programming. HULL calls the
written by A. H. Morris.

I

I

subroutine RRSORT and function SPMPAR. HULL was
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AREAS OF PLANAR POLYGONS

Given a sequence of points vi = (zi, yi) (i = 1, . . .,n + 1) where n > 1 and vn+ = vI.
Let r denote the polygon whose boundary Or is a polygonal line which begins at point vi,I traverses the points vu in the order that they are indexed, and is the straight line segment
connecting vi to vi+1 for i = 1, .. ., n. Then the function PAREA is available for computing
A(r) = f Jr dxdy. If the boundary Or is a positively (negatively) oriented simple closedU curve, then A(r) is positive (negative) and IA(r)I = the area of r. However, Or need not be
simple. It may be self-intersecting or have overlapping line segments.

3
| ~~~~~~PAR EA(X, Y, N3

X and Y are arrays containing the abscissas xi, ... ,xN and ordinates Yl, ... ,YN,

respectively. The argument N may have the value n or n + 1. Since Vn+1 = v1, xn+I and
Yn+1 are not required to appear in X and Y. PAREA(X, Y, N) is assigned the value A(r).

Programmer. A. H. Morris

Reference. DiDonato, A. R. and Hageman, R. K., Computation of the Integral of the Bi-
variate Normal Distribution over Arbitrary Polygons, Report TR 80-166, Naval Surface
Weapons Center, Dahlgren, Virginia, 1980.

I
I

I 

* 29

I 2



HAMILTONIAN CIRCUITS

Given a directed graph G containing n vertices, denoted by the integers 1, ... , n. Then
any circuit of n arcs which traverses the n vertices, say in the order il,. ,inx is called a
Hamiltonian Circuit. For convenience, it is assumed that for any two vertices i and j, no
more than one arc exists which begins at i and ends at j. Then the following subroutine is
available for finding the Hamiltonian circuits of G, if any exist.

CALL HC(IND,m, n, P. A, NB, S, IWK,NUM)

The argument m is the number of arcs in the graph G. P is an integer array of
dimension n + 1 and A an integer array of dimension m. The graph is stored in P and A
as follows: For i =1, . . ., n let

R= {j: there exists an arc which begins at i and ends at j}.

Then the vertices in R, I. . ., Rn are stored in A, where the data in R, precedes the data in
R.Il for i = 1, . . ., n - 1. For each i, the vertices in R, may be given in any order in A.
The array P contains the data

P(1) = 0
P(i + 1) = the total number of vertices in R1, . . ., R. (i = 1, . . .

Hence, if P(i) < P(i+ 1) then the vertices in R. are found in locations P(i) + 1, . .. , P(i+ 1)
of A. Otherwise, if P(i) = P(i + 1) then R, = + (the empty set); i.e., there are no arcs in
G which begin at i (and no Hamiltonian circuits exist). Also, P(n + 1) = m since there are
m arcs in G.

Example. Consider the graph where 4 3
m = 5, n = 4
R1 = {2,4} R3 =
R 2 = {1,3} R4 = {3}-

Then A contains 4,2,1,3,3 1 2
P contains 0,2,4,4,5.

When HC is called, a depth-first tree search employing backtracking is used. NB is a
variable for controlling the backtracking. If NB > 0 on input, then it is assumed that NB is
the maximum number of backtracks that may be performed to find a Hamiltonian circuit.
Otherwise, if NB < 0 then it is assumed that no restriction is placed on the backtracking.
When HC terminates, NB = the number of backtracks that were actually performed.

S is an integer array of dimension n. When HC is called, if a Hamiltonian circuit is
found which traverses the vertices, say in the order ii, .i.n. , , then the ordered vertices
ii, . .. are stored in S.

IWK is an array of dimension NUM that is a work space for the routine. It is assumed
that NUM > m + 8n + 20.
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Only one Hamiltonian circuit will be obtained on a call to HC. However, this routine I
can be repeatedly called to obtain all the Hamiltonian circuits. IND is a variable which
controls the operation of the routine on input, and reports the status of the results on
output. It is assumed that IND = 0 on the first call to HC. When the routine terminates, I
if no input errors are detected then IND has one of the following values:

IND = 1 A Hamiltonian circuit was found and the ordered vertices traversed
by the circuit stored in S. To find another circuit, reset NB and I
recall the routine.

IND = 2 The maximum number of backtracks were performed. To continue,
reset NB and recall the routine. I

IND = 4 No more circuits exist. The array A has been restored (see the
remark on the storage of A below) and the procedure is finished.,

We note in passing that on an initial call to the routine, the setting IND = 4 on output I
indicates that the graph contains no Hamiltonian circuits.

After a call to HC, if IND = 1 or 2 on output then the search procedure can be I
continued by resetting NB and recalling the routine. Do not modify IND when the tree
search is to be continued. In this case, the storage of A has been temporarily modified
and IWK contains information needed for the search. If a new Hamiltonian circuit is found I
when HC is recalled, then the vertices traversed by the new circuit will now be stored in S.

After a call to HC, if IND = 1 or 2 on output and it is desired that the search procedure
be terminated, then reset IND = 3 and recall the routine. In this case, the array A will be
restored and IND = 4 when HC terminates.

Storage.of A. When A is restored, the order of the vertices of Ra in A may be modified U
for each i.

Error Return. If an input error is detected then IND is set to one of the following values: I
IND =-1 IND < 0 or IND > 3 on input.
IND = -2 IND was modified, being assigned a value 0 3 when HC was re-

called. Reset IND to its previous output value, reset NB, and
recall HC if another circuit is wanted.

IND =-3 The input setting IND = 3 is not needed when the previous output
value for IND was 4. In this case, nothing was done.

IND =-4 NUM < m+8n+20.
IND =-5 P(1) :A 0 or P(n + 1) :A m.
IND = -6 P(i) > P(i + 1) for some i.

Remarks.

(1) It is assumed that G contains no loops.
(2) Normally, few backtracks are needed when the number of vertices in each R, is small,

say 10 or less. Consequently, the setting NB = -1 is generally appropriate in such
cases.
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Programming. HC employs the subroutines HC1, IPATH, FUPD, BUPD, IUPD, and
RARC. The search procedure in these routines was written by Silvano Martello (University
of Bologna, Italy). The user interface involving the variable IND was written by A. H.
Morris.

Reference. Martello, S., 'Algorithm 595. An Enumerative Algorithm for Finding Hamilto-
nian Circuits in a Directed Graph," ACM fVans. Math Software 9 (1983), pp. 131-138.

I. 

I

I
. I
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I ERROR FUNCTION

For any complex z the error function is defined by

I erf(z) =2 =fZ e-t2

and its complement by erfc(z) = 1 - erf(z). The subroutines CERF, CERFC, DCERF,
and DCERFC are available for computing erf(z) and erfc(z) when z is complex, and the
functions ERF, ERFC, ERFC1, DERF, DERFC, and DERFC1 are available for computingI erf(z) and erfc(z) when z is real. DCERF, DCERFC, DERF, DERFC, and DERFC1 are
double precision routines.

CALL CERF(MO,z,w)

MO is an integer, z a complex number, and w a complex variable. When CERF is
called, w is assigned the value erf(z) if MO = 0 and the value erfc(z) if MO # 0.

Algorithm. For z = z + iy where z > 0, if z satisfies Izi < 1 or both of the inequalities
1 < Izi < V and z2

- y2 + .064X 2 y 2 < 0, then the series

(1) erf~~~~~~z)(-)= E+
(1) T erf(z) = n>O n!(2n+ 1)

is used. If 1 < jzj < 8 and Z2
- y

2 + .064z 2 y2 > 0 then

(2) erf(z) = 1 a ndr E

is employed. n and rn are the poles and residues of the rational function approximation
for the complex Fresnel integral E(z) given in the reference. The error function is related
to E(z) by erf(z) = 1- ivfE(-z 2 ) for jarg(z)I < 2r/2. If Izj > v3 and x > .01 then erf(z)
is computed by the asymptotic expansion erf(z) = 1 - +k(z) where

(3) +(z) = -+ E(-1) n nZ2+l
~~~~~~~~~~_] Lzn>1 2nn+

I Otherwise, if Izi > V3 and 0 < x < .01 then erf(z) = -O(z) is employed. When x < 0
then the relation erf(-z) = -erf(z) is applied.

Programming. Written by Allen V. Hershey and A. H. Morris.

Reference. Hershey, A. V., Approzimation of Functions by Sets of Poles, Report TR-I 2564, Naval Weapons Laboratory, Dahlgren, Virginia, 1971.
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CALL CERFC(MO, z, w) I
MO is an integer, z a complex number, and w a complex variable. When CERFC is

called, uo is assigned the value erfc(z) if MO = 0 or Re(z) < 0. Otherwise, if MO :# 0 and
Re(z) > 0 then tv is assigned the value e'erfc(z). H
Precision. For MO = 0, Re(w) and Im(w) are accurate to within 1 unit of the 1 2 th signifi-
cant digit when IRe(w)l > 10-280 and Im(w) :A 0.

Programming. CERFC employs the subroutine CREC and functions EXPARG and IPM-
PAR. CERFC was written by Allen V. Hershey and A. H. Morris.

Reference. Hershey, A. V, Approzimation of Functions by Sets of Poles, Report TR-
2564, Naval Weapons Laboratory, Dahlgren, Virginia, 1971.

ERF(z)

ERF(z) = erf(z) for any real x.

Precision. ERF(x) is accurate to within 2 units of the 14t" significant digit for x t 0. 1
Programmer. A. H. Morris i
Reference. Cody. W. J., 'Rational Chebyshev Approximations for the Error Function,"
Math Comp. 23 (1969), pp. 631-637.

ERFC(z)

ERFC(x) = erfc(z) for any real x.

Precision. If x < 3 then ERFC(x) is accurate to within 2 units of the 14 th significant digit.
Otherwise, if z > 3 then ERFC(z) is accurate to within 4 units of the 14t significant digit
when ERFC(z) 0 0.

Programmer. A. H. Morris

Reference. Cody. W. J., "Rational Chebyshev Approximations for the Error Function,"
Math Comp. 23 (1969), pp. 631-637.

ERFC1(IND, z)

IND is an integer and x a real number. ERFCI(IND,z) = erfc(x) when IND = 0, and U
ERFC1(IND,x) = eerfc(z) when IND =A 0.

Precision. If z < 3 then ERFC1(0,x) is accurate to within 2 units of the 14th significant
digit. Otherwise, if x > 3 then ERFC1(0,z) is accurate to within 4 units of the 14 th
significant digit when ERFC1(0,z) :A 0. If IND $ 0 then ERFC1(IND,z) is accurate to
within 2 units of the 14th significant digit for z > -1. I
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Programmer. A. H. Morris

Reference. Cody. W. J., "Rational Chebyshev Approximations for the Error Function,"
Math Comp. 23 (1969), pp. 631-637.

CALL DCERF(MO,Z,W)

MO is an integer, and Z and W are double precision arrays of dimension 2. It is
assumed that Z(1) and Z(2) are the real and imaginary parts of a complex number z. If
MO = 0 then the double precision value for tv = erf(z) is computed, and if MO :• 0 then
the double precision value for us = erfc(z) is computed. W(1) and W(2) contain the real
and imaginary parts of tw, respectively.

Algorithm. For z = x + iy where x > 0, if jzi < 1 then (1) is used, and if Iz - 21 < 1 and
x < 2 then the Taylor series

2 - )/! a=2
(4) erfc(z) = erfc(a) + +Fe-a E (-1)nHI,-.(a)(z-ain n! (a= 2)

is employed. Here Hn(a) are the Hermite polynomials. If I < Izi < 2.5 then (4) and the
Pade approximation An(z2 )/B.(z 2 ) for x/W(2z)-leZ2 erf(z) are used where

Ao(l) = 1 Ai(z) =I+ 4 z

Bo(l) = I Bi(z) = 1-5 2z

and An and Bn satisfy

(6) Bn+1 (z) =1 (4 + )4n5 Bn (Z) + 4n(4n + 2) z2 Bnz
-(4n + 1)(4n + 5)] (4n - 1) (4n + 1)2 (4n + 3)

(see pp. 191,192, and 422 of the reference). Also, if 2.5 < jzI < 12 then An(Z 2 )/Bn(z 2 ) and
the Pade approximation GZ(z2 )/Hn(z 2 ) for Vifzez2erfc(z) are employed where

I (7) Go(z) = = T(z)= 2 + 2z
Ho(z) =1 IFi(z)= 3 + 2z

and Qn and HEn satisfy

(8) H,,+(z) = (2z + 4n + 3)Hn(z) - 2n(2n + 1)H,,_1 (z)

(see pp. 201 and 422 of the reference). Otherwise, if gri > 12 and x > .01 then the
asymptotic expansion erfc(z) = *(z) is used where +k(z) is given by (3). Also, if fzj > 12
and 0 < z < .01 then erf(z) = -+(z) is employed. When z < 0 the relation erf(-z) -

-erf(z) is applied.

Programming. DCERF calls the subroutines ERFCM2, CDIVID, and DCREC. DCERF
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and ERFCM2 were written A. H. Morris. The function DPMPAR is also used.

Reference. Luke, Yudell L., The Special Functions and Their Approximations, Vol 2,
Academic Press, New York, 1969. I

CALL DCERFC(MOZ,W)

MO is an integer, and Z and W are double precision arrays of dimension 2. It is
assumed that Z(1) and Z(2) are the real and imaginary parts of a complex number z.
If MO = 0 or Re(z) < 0 then the double precision value for w = erfc(z) is computed.
Otherwise, if MO : 0 and Re(z) > 0 then the double precision value for w = ez erfc(z) is
computed. W(1) and W(2) contain the real and imaginary parts of us, respectively.

Precision. For MO + 0 and Re(z) > 0, W(1) and W(2) are accurate to within 3 units of 1
the 26 th significant digit when W(2) :A 0.

Programming. DCERFC employs the subroutines ERFCM2, DCIVID, and DCREC, and U
functions DXPARG, DPMPAR,and IPMPAR. DCERFC and ERFCM2 were written by A.
H. Morris.

DERF(x)

The argument x is a double precision real number. DERF(z) is the double precision
value for erf(x).

Remark.DERF must be declared in the calling program to be of type DOUBLE PRECISION.

Algorithm. If jZI < 1 then the power series corresponding to the Chebyshev expansion
given in the SLATEC library by Wayne Fullerton (Los Alamos) is used. The power series I
was obtained by A. H. Morris. If ljx > 1 then Chebyshev expansions derived by J. L.
Schonfelder (University of Birmingham, England) are used.

Precision. DERF(z) is accurate to within 2 units of the 28th significant digit for x $ 0. U
Programming. DERF calls the functions DCSEVL and DPMPAR. DERF was written by
A. H. Morris. I
Reference. Schonfelder, J. L., "Chebyshev Expansions for the Error and Related Func-
tions,' Math Comp. 32 (1978), pp. 1232-1240.

DERFC(z)

The argument x is a double precision real number. DERFC(x) is the double precision
value for erfc(x).

Remark. DERFC must be declared in the calling prograrr, to be of type DOUBLE
PRECISION.
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Algorithm. If Iz < 1 then the power series corresponding to the Chebyshev expansion
given in the SLATEC library by Wayne Fullerton (Los Alamos) is used. The power series
was obtained by A. H. Morris. If jxI > 1 then Chebyshev expansions derived by J. L.
Schonfelder (University of Birmingham, England) and the standard asymptotic expansion
for erfc(z) are used.

Precision. DERFC(x) is accurate to within 2 units of the 2 8th significant digit for x < 2.

Programming. DERFC calls the functions DCSELV and DPMPAR. DERFC was written
by A. H. Morris.

Reference. Schonfelder, J. L., 'Chebyshev Expansions for the Error and Related Func-
tions," Math Comp. 32 (1978), pp. 1232-1240.

DERFCI(IND, z)

IND is an integer and z a double precision real number. DERFC1(IND,x) is the dou-
ble precision value for erfc(x) when IND = 0, and DERFC1(IND,z) is the double precision
value for ez2erfc(x) when IND 56 0.

Remark. DERFC1 must be declared in the calling program to be of type DOUBLE
PRECISION.

Precision. DERFCI(IND,z) is accurate to within 2 units of the 28th significant digit when
IND = 0 and x < 2, and when IND 0 0 and x > -1

Programming. DERFC1 calls the functions DCSEVL and DPMPAR. DERFC1 was written
by A. H. Morris.
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INVERSE ERROR FUNCTION

For any 0 < x < 1, the following function is available for obtaining the value w > 0 for
which erf(w) = x.

ERFINV(x, y)

It is assumed that 0 < z < 1 and y = 1-x. If y $ 0 then ERFINV(x, y) = W where
uw > 0 and erf(w) = x. Otherwise, if y = 0 then ERFINV(z,y) = the largest positive
number in the floating arithmetic being used.

Error Return. ERFINV(z, y) < O if z < 0, y < 0, or x+y$ 1.

Precision. For z 7$ 0 and y + 0, ERFINV(z,y) is accurate to within 3 units of the 1 4 th
* significant digit.

Programming. ERFINV was written by Armido R. DiDonato and modified by A. H. Mor-I * ris. The function SPMPAR is used.

Reference. Blair, J. M., Edwards, C. A., and Johnson, J. H., 'Rational Chebyshev Approx-
* imations for the Inverse of the Error Function," Math Comp. 30 (1976), pp. 827-830.

I 

:.
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NORMAL PROBABILITY DISTRIBUTION FUNCTION

For any real x, the normal probability distribution function P(z) (of mean 0 and
variance 1) is defined by

P(z) = 7 [ e- d

and its complement by Q(z) = 1 - P(z). The following function is available for computing
P(z) and Q(z).

PNDF(z,IND)

IND is an integer and x a real number. If IND = 0 then

P(z) if z > -8
PNDF(xQ0)= P'(rx) if x <-8

where P'(z) is the derivative of P(x). Otherwise, if IND 0 0 then

Q(x) if x < 8
PNDF(x, IND)= Q'W() if x>8

where Q'(z) is the derivative of Q(x).

Algorithm. The identities P(x) = 2 erfc(-x/IV) and Q(Z) = 2 erfc(x/v'2) are used.

Programming. PNDF calls the function ERFC1. PNDF was written by A.H. Morris.
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INVERSE NORMAL PROBABILITY DISTRIBUTION FUNCTION

For any real w, the normal probability distribution function P(w) (of mean 0 and
,variance 1) is defined by

P(W) = 21 et2/2dt

and its complement by Q(w) = 1 - P(w). For any 0 < p < 1 and q = 1 - p, the following
function is available for obtaining the value w for which P(w) = p and Q(w) = q.

PNINV(p,q,z,IERR)

It is assumed that 0 < p < 1, q = 1 -p, and z = p - q. IERR is a variable. When
PNINV is used, if no input errors are detected then IERR is set to 0. If p :A 0 and q 7 0I 0 then PNINV(p, q, z,IERR) = w where P(w) = p and Q(w) = q. Otherwise,

PNINV(p, q, z, IERR) = { rmax if q=O

where xmax is the largest positive number in the floating arithmetic being used.

Error Return. If an input error is detected, then IERR is set to one of the following values:

IERR= 1 Either p < 0,q < 0, orp+q 4 1.I IERR=2 zip-q
In these cases, PNINV is assigned the value 0.

Algorithm. For y > 0, let y = erf-' (x) when x = erf(y). If P(w) = p then the identities

(~~~~~~~~~~~~~F I-erf- 1( - 2p) if 0 < p< 1/2
t lVf2erf-1(2p-1) ifl>p>1/2

* are applied.

Precision. For p :A 0, q :A 0, and z 0 0 PNINV is accurate to within 3 units of the 1 4th

significant digit.

Programming. PNINV employs the functions ERFINV and SPMPAR. PNINV was written
* by Armido R. DiDonato.
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DAWSON'S INTEGRAL

For any real z, Dawson's integral is defined by

: F(x) = e- 2 f et dt.

The following function is available for computing F(z).

DAW(x)

I DAW(x) = F(z) for any real z.

Precision. DAW(x) is accurate to within 2 units of the 1 4 th significant digit for x A 0.

Programming. DAW belongs to the FUNPACK package of subroutines developed at Ar-U gonne National Laboratory. The function was modified by A. H. Morris.

Reference. Cody, W. J., Paciorek, K. A., and Tacher, H. C., 'Chebyshev Approximations
for Dawson's Integral," Math Comp. 24 (1970), pp. 171-178.

I
I

I
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COMPLEX FRESNEL INTEGRAL

For any complex z not on the positive real axis the complex Fresnel
be defined by

41 o etE(z) = p] dt.

integral E(z) can

Here it is assumed that 0 < arg(z) < 2ir and arg(J q) = 1/2 arg(z). E(z) can be extended
to the positive real axis by letting 0 < arg(z) < 2-r. Then erf(z) = 1 - iVrE(-z 2 ) for
-r/2 < arg(z) < ?r/2 where erf(z) is the error function and arg(-z 2) = vr + 2 arg(z). The
following subroutine is available for computing E(z).

CALL CFRNLI(MO,z,w)

MO is an integer, z a complex number, and w a complex variable. When CFRNLI is
called, w is assigned the value E(z) if MO = 0 and the value e-zE(z) if MO # 0.

Algorithm. If z = x + iy satisfies jzj < 1 or both of the inequalities 1 < Izj < 38 and
-x + .016y2 < 0, then the series

E(z)=--I--+ 2z/2rZ 
:2X n>0 n!(2n + 1)

is used. If 1 < IzI < 38 and -x + .016y2 > 0 then

18

E(z) = ageZ Emr

is employed. If |zX > 38 and Im V/'7r > .008 then E(z) is computed by the asymptotic
expansion E(z) = i/'(z) where

+(Z)~~~~~~O = , 1 (2z)n ]

Otherwise, if jzj > 38 and Im z/i7r < .008 then E(z) = -i/v + iP(z) is employed.

I Precision. For MO :A 0, Re(w) and In(w) are accurate to within 1 unit of the 12th
significant digit when Re(w) and Im(w) are nonzero.

I : Programming. CFRNLI employs the functions CPABS, EXPARG, and IPMPAR. CFRNLI
was written by Allen V. Hershey and A. H. Morris.

I Reference. Hershey, A. V., Approzimation of Functions by Sets of Poles, Report TR-
2564, Naval Weapons Laboratory, Dahlgren, Virginia, 1971.
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3 REAL FRESNEL INTEGRALS

For any complex z the Fresnel integrals C(z) and S(z) can be defined by

: C(z) =|z cos (It2) dt

| 0 ~~~~~~~~~~S(2) =|sin (2t) dt.

3 The following subroutine is available for computing C(z) and S(z) when z is real.

CALL FRNL(x,C,S)

The argument x may be any real number. C and S are variables. When FRNL is
called C is assigned the value C(x) and S is assigned the value S(z).

Algorithm. If 0 < z < 1.65 then x-CC(z) and Z-3 S(Z) are computed by minimax polyno-I mial approximations. Otherwise, if z > 1.65 then the relations

1 7

C(z) =- +f(Z) sin z2 _g(z) cos-z2I ~~~~~~~~~~~~2 2 2
1 75(z) =2-f(z) cosiz2 - g(z) sin.z2
2 2 2

are invoked. For 1.65 < x < 6, zf(z) and Z 3
g z) are computed by rational minimax

approximations. Otherwise, for z > 6 the auxiliary functions f(z) and g(x) are computed
by the asymptotic expansions:

* 1(z) =1 [1 + Z(-1)i 1.3* (4i1)]

| ( ) ~~~~~~~~~~~1 St -1. 3 .. * (4i + 1)-g(z) 22~

Here m = 5. If z < 0 then the relations C(-z) = -C(x) and S(-z) = -S(x) are applied.

Precision. If zlx < 1.65 then FRNL is accurate to within 3 units of the 14 th significant
digit. Otherwise, if zlx > 1.65 then FRNL is accurate to within 1 unit of the 14th significant
digit.

Programming. FRNL calls the functions SPMPAR and IPMPAR. FRNL was written by3 - A. H. Morris.
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EXPONENTIAL INTEGRAL FUNCTION

For any complex z 0 0 not on the positive real axis the exponential integral function
* Ei(z) is defined by

3 0 Ei(z) = -tdt.

Ei(z) is an analytic function. If z is replaced by -z and t by -t we obtain the related
* function

Ei(z) = -Ei(-Z) = t dt

which is defined for all z : 0 not on the negative real axis. It can be verified that

Ei(z) = v + ln-z) + E In!
n=1

everywhere in the plane cut along the positive real axis where v is the Euler constant. Thus,I; \ the values of Ei(x) on the upper and lower edges of the cut are

Ei(z ± iO) = ei(z) : 7ri

where ei(z) is the real function defined by

N ei(x) = v + ln z + E !
n=1

I for x > 0. The function ei(x), also known as the exponential integral function, has a zero
at the point z0 = .37250 74107 81367. Ei(z) may be computed by the subroutine CEXPLI
when z is complex, and Ei(z) and ei(z) may be computed by the subroutine EXPLI and
functions DEI and DEI1 when z is real. DEI and DEI1 are double precision functions.

CALL CEXPLI(MO,z,w)

I MO is an integer, z 54 0 a complex number, and w a complex variable. When CEXPLI
is called, w is assigned the value Ei(z) if MO = 0 and the value ez Ei(z) if MO 7! 0.

I Remark. If z is a positive real number and MO = 0 then w = ei(z) +iri.

Precision. If MO = 0 then Re(w) and Irn(w) are accurate to within 2 units of the 12th

significant digit when z is not near a zero of Re(Ei(z)) or Im(Ei(z)).

Programming. CEXPLI employs the functions CPABS and SPMPAR. CEXPLI was ini-
* tially written by Allen V. Hershey, and later rewritten by A. H. Morris.

Reference. Hershey, A. V., Approximations of Functions by Sets of Poles, Report TR-I 2564, Naval Weapons Laboratory, Dahlgren, Virginia, 1971.
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CALL EXPLI(MO,z,w,IERR) 3
MO may have the values 1,2, or 3. The argument x is a nonzero real number and w

a real variable. When EXPLI is called, if MO = 1 then w is assigned the value Ei(z) for
x < 0 and the value ei(z) for z > 0. If MO = 2 then it is assumed that x > 0. In this case
w is assigned the value El(z). Otherwise, if MO = 3 then w is assigned the value e-'Ei(z)
for z < 0 and the value e-2 ei(z) for z > 0.

Error return. IERR is a variable that reports the status of the results. If the requested
value w is obtained then IERR is set to 0. Otherwise, IERR is assigned one of the following
values:

IERR = 1 Underflow occurs. In this case w = 0.
IERR = 2 Overflow occurs.
IERR = 3 (Input error) X = 0.
IERR = 4 (Input error) MO = 2 and z < 0.

The variable w is not defined when IERR > 2.

Algorithm. If MO • 2 and 4 < x < 8, then the Chebyshev expansion in the SLATEC
library obtained by Wayne Fullerton (Los Alamos) is used. The remaining approximations
employed are from the references.

Precision. If MO =A 2 and z > 0, then w is accurate to within 4 units of the 1 4 th significant
digit when w :A 0. Otherwise, w is accurate to within 3 units of the 14th significant digit
when w :S 0.

Programming. EXPLI employs the functions ALNREL, CSEVL, EXPARG, and IPMPAR. I
EXPLI was written at Argonne National Laboratory for the FUNPACK package of special
function subroutines. EXPLI was modified by A. H. Morris.

References..
(1) Cody, W. J. and Thacher, H. C., "Rational Chebyshev Approximations for the Expo-

nential Integral El(z)," Math Comp. 22 (1968), pp. 641-649.
(2) _, Chebyshev Approximations for the Exponential Integral Ei(x) ," Math

Comp. 23 (1969), pp. 289-303.

DEI(x)

The argument z 0 0 is a double precision number. DEI(z) is the double precision value |
for Ei(x) when z < 0, and the double precision value for ei(x) when x > 0.

Remark. DEI must be declared in the calling program to be of type DOUBLE PRECISION. 3
Algorithm. If .35 < x < .4 then the Taylor series expansion of ei(x) around x0 is used.
This expansion was obtained by A. H. Morris. If jxZ > 90 then the standard asymptotic I
expansion for Ei and ei is applied. Otherwise, the Chebyshev expansions in the SLATEC
library obtained by Wayne Fullerton (Los Alamos) are used.
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Programming. DEI employs the functions DE1E and DE10. These functions were written
by A. H. Morris. The functions DCSEVL and DPMPAR are also used.

DEI1(x)

The argument x 54 0 is a double precision number. DEI1(x) is the double precision
value for e-x Ei(x) when z < 0, and the double precision value for e-x ei(z) when x > 0.

Remark.DEII must be declared in the calling program to be of type DOUBLE PRECISION.

Algorithm. If .35 < x < .4 then the Taylor series expansion of ei(x) around zo is used.
This expansion was obtained by A. H. Morris. If jxj > 90 then the standard asymptotic
expansion for Ei and ei is applied. Otherwise, the Chebyshev expansions in the SLATEC
library obtained by Wayne Fullerton (Los Alamos) are used.

Precision. DEI1(z) is accurate to within 4 units of the 28th significant digit when DEI1(x)
O.

Programming. DELI employs the functions DE1E and DEIO. These functions were written
by A. H. Morris. The functions DCSEVL and DPMPAR are also used.
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SINE AND COSINE INTEGRAL FUNCTIONS

For any complex z the sine integral and cosine integral functions Si(z) and Cin(z) are
defined by

Si(z) = m t at

Cin(z)= | dt.

| These are entire functions. The following functions are available for computing Si(z) and
Cin(z) when z is real.

* 1S(X)

SI(z) = Si(z) for all real x.

Precision. SI is accurate to within 2 units of the 1 4 th significant digit.

Programming. SI calls the function SPMPAR. SI was written by Donald E. Amos andI - Sharon L. Daniel (Sandia Laboratories), and modified by A. H. Morris.

* CIN(x)

CIN(x) = Cin(x) for all real x.

Precision. CIN is accurate to within 2 units of the 14th significant digit.

Programming. CIN calls the function SPMPAR. CIN was written by Donald E. Amos and3 Sharon L. Daniel (Sandia Laboratories), and modified by A. H. Morris.

I
I

l
I
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DILOGARITHM FUNCTION

For any complex z where jarg(l + z)j < or, the dilogarithm function L(z) may be
defined by

L(z) = ln( +t) dt.

L(z) is real-valued for any real z > -1, and -1 is a branch point. L(z) can be extended to
the negative real axis from -oo to -1 by letting -7r < arg(l + z) < 7r. Then for any real
X < -1

L(z) 2/ + ln(t-1) dt in(-X) (i ).

The function CLI is available for computing L(z) when z is complex, and the function ALI
is available for computing the real part of L(z) when z is real.

CLI(z)

CLI is a complex-valued function where CLI(z) = L(z) for
be declared in the calling program to be of type COMPLEX.

Algorithm. For IZI < 1/2 the Maclaurin series

(1)

all complex z. CLI must

L(z) = - E _2
n>1

is used. If IzI > 3 then

(2) L (z) = ?r 2/6 - L(1/z) + 1/2 In2 z

is applied, and if 0 < Iz + II < 1/2 then

(3) L(z) = _1r2/6 - L(-1 - z) + ln(-z) ln(1 + z)

is applied. Otherwise,

L(z) Jo ej _ IdA (Debye Function)

(4) 2 _w+ 2/4 E B2.w 2n+1 I <212

n (2n + 1)!

is used where w = -ln(1 + z) and B2 n are the Bernoulli numbers B2 =
-1/30, .... In (3) we note that ln(-z) ln(1 + z) -* 0 when z -) -1.

1/6, B4 =

Programming. CLI is a modification by A. H. Morris of the subroutine CLGMCI, written
by Allen V. Hershey.

59

I

I

I

I
I
I

I
I

I
I



Reference. Hershey, A. V., Approzimation of Functions by Sets of Poles,
2564, Naval Weapons Laboratory, Dahlgren, Virginia, 1971.

ALI(x)

Report TR-

ALI(X) = Re[L(z)] for all real x.

Algorithm. Rational minimax approximations are used when -1/2 < z < 1. If z > I then
(2) is applied, and if -2 < z <-1 or -1 < z < -1/2 then (3) is applied. Otherwise, if
z < -2 then

Re[L(z)] =-7r2/3 - L(1/z) + 1/2In2 (-z)_ L

(which follows from (2)) is used except when -26.63 < x < -6.97. Since Re[L(zo)] = 0 for
x0 = -12.59517 ... , the Taylor series of Re[L(z)] around zo is used when -14 < z < -11.1.
Otherwise, if -11.1 < x < -6.97 or -26.63 < z < -14 then rational minimax approxima-
tions are employed.

Precision. ALI(z) is accurate to within 2 units of the 1 4 th significant digit when z > 0.
Otherwise, if x < 0 then ALI(x) is accurate to within 4 units of the 14th significant digit
when ALI(z) :A 0.

Programmer. A. H. Morris

Reference. Morris, Robert, 'The Dilogarithm Function
Comp. 33 (1979), pp. 778-787.

of a Real Argument," Math.
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I GAMMA FUNCTION

For any complex z 7 0, -1, -2, ... the gamma function can be defined by

* °° { l~~~~~~~~~~00 n 1 
r (z)=E1 + tz | le-t dt.

3 ~~~~~~~~~~~n=0 n 

Then 1(z) is a meromorphic function having simple poles at 0, -1, -2, ... ,and

; 7r(z) = tz-le-tdt

for Re(z) > 0. Also r(z) : 0 for all z. The subroutines CGAMMA and DCGAMA are
available for computing r(z) and In r(z) when z is complex, and the functions GAMMA,
GAMLN, DGAMMA, and DGAMLN are available for computing r(z) and Inr(z) when z
is real. DCGAMA, DGAMMA, and DGAMLN are double precision procedures.

CALL CGAMMA(MO,z,w)

MO is an integer, z a complex number satisfying z 0 0,-1, -2, ... , and w a complex
variable. When CGAMMA is called, w is assigned the value r(z) if MO = 0 and the value
lnr(z) if MO A 0.

Error return. If z = 0,-1, -2, ... , or if Re(z) < 0 and Re(z) is too large for Inr(z) to be
computed, then w is assigned the value 0.

Programming. CGAMMA calls the functions REXP, SPMPAR, and IPMPAR. CGAMMA
was written by A. H. Morris.

References.

(1) Kuki, Hirondo, 'Complex Gamma Function with Error Control," Comm. ACM 15I (1972), pp. 262-267.
(2) Spira, Robert, 'Calculation of the Gamma Function by Stirling's Formula," Math

Comp. 25 (1971), pp. 317-322.

GAMMA(x)

The argument z is a real number. If r(x) can be computed then GAMMA(z) is assigned
* 0 the value r(z). Otherwise, if r(z) cannot be computed, then GAMMA(x) is set to 0.

Algorithm. If IZI < 15 then : is reduced to the interval [1,2) by r (a + 1) a r(a), and aI rational minimax approximation is employed. If x < -15 then

(1) :r(x) = _i(-_ ) jx r :___ x
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is applied. Here IxI = n + A where n is the largest- integer less than I x. For z > 15

(2) in r(x) = (x - 1/2) In Z - x + ln(22r) + A(z)

is computed where A(x) is a minimax approximation. The function A(x) is evaluated in
single precision, and a double precision value is obtained for Inz. This yields a double
precision value for 1n1r(z). If lnr(z) = a +6 where a is the leading portion of inr(z), then
r(x) is set to e"(1 + 6). This is permissible since 1 + 8 is the portion of the Taylor series
expansion for e6 that is significant.

The logarithm in z is evaluated as follows: Let n be the largest integer less than or
equal to z, and let t = (z - n)/(z + n). Then x = n(1 + t)/(1 - t) so that lnz =
ln n. + ln[(1 + t)/(1 -t)]. Also 0 < t < 1/(2n). The function In [(1 + t)/(1 -t)] is computed
by a polynomial minimax approximation in single precision, and the value In n is stored in
double precision.

Precision. If 0 < x < 2 then GAMMA(x) is accurate to within 2 units of the 14th significant
digit. If z > 2 then GAMMA(X) is accurate to within 3 units of the 1 4 th significant digit.
Otherwise, GAMMA(x) is accurate to within 5 units of the 14 th significant digit.

Programming. GAMMA calls the functions GLOG and EXPARG. These functions were
written by A. H. Morris. The functions SPMPAR and IPMPAR are also used.

GAMLN(x)

GAMLN(z) = lnr(x) for all positive real z.

Algorithm. See p. 379 and appendix D of the reference.

Precision. GAMLN(x) is accurate to within 2 units of the 1 4 th significant digit when
GAMLN(z) 0 0.

Reference. DiDonato, A. R. and Morris, A. H., 'Computation of the Incomplete Gamma
Function Ratios and Their Inverse, ACM Trans. Math Software 12 (1986), pp. 377-393.

Programming. GAMLN calls the function GAMLN1. These functions were written by
A. H. Morris.

CALL DCGAMA(MOZXW)

MO is an integer, and Z and W are double precision arrays of dimension 2. It is
assumed that Z(1) and Z(2) are the real and imaginary parts of a complex number z. If
MO = 0 then the double precision value for w = r(z) is computed. Otherwise, if MO :$ 0
then the double precision value for w = In r(z) is computed. W(1) and W(2) contain the
real and imaginary parts of w, respectively.

Error Return. If z = 0, -1, -2, ... , or if Re(z) < 0 and Re(z) is too large for ln r (z) to be
computed, then W(1) and W(2) are assigned the value 0.

62

I
I
I
I
I
I
I

I
I

I
I

I
I
I
I
I

I



Programming. DCGAMA calls the functions DREXPDPMPAR, and IPMPAR. DCGAMA
was written by A. H. Morris.

References.

(1) Kuki, Hirondo, 'Complex Gamma Function with Error Control," Comm. ACM 15
(1972), pp. 262-267.

(2) Spira, Robert, "Calculation of the Gamma Function by Stirling's Formula,"Math
Comp. 25 (1971), pp. 317-322.

DGAMMA(z)

The argument x is a double precision real number. If r(x) can be computed then
DGAMMA(x) is the double precision value for r(z). Otherwise, if r(z) cannot be com-
puted, then DGAMMA(x) is set to 0.

Remark. DGAMMAmustbedeclaredincallingprogram to be of type DOUBLE PRECI-
* SION.

Algorithm. If jIx < 20 then z is reduced to the interval [1,2) by r(a+ 1) = arI(a), and
the Chebyshev expansion in the SLATEC library given by Wayne Fullerton (Los Alamos)I is used. If z < -20 then (1) is applied, and if z > 20 then (2) is used. A(z) is computed by
the power series corresponding to the Chebyshev expansion in the SLATEC library given
by Wayne Fullerton. The power series was obtained by A. H. Morris.

Precision. If 0 < x < 2 then DGAMMA(z) is accurate to within 1 unit of the 2 8th signifi-
cant digit. Otherwise, if X > 2 then DGAMMA(z) is accurate to within 1 unit of the 2 5th
significant digit.

Programming. DGAMMA calls the functions DCSEVL, DPDEL, and DXPARG. These
functions were written by A. H. Morris. The functions DPMPAR and IPMPAR are also
used.

DGAMLN(z)

The argument z is a double precision positive real number. DGAMLN(x) is the double
* precision value for In r(x).

Remark. DGAMLN must be declared in the calling program to be of type DOUBLE
PRECISION.

Algorithm. If .5 < z < 2.5 then the Taylor series for 1/r(1 + a) is used, and if z > 10
then (2) is applied. A(x) is computed by the power series corresponding to the ChebyshevI expansion in the SLATEC library given by Wayne Fullerton (Los Alamos). The power
series was obtained by A. H. Morris.
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I
Precision. DGAMLN(x) is accurate to within 2 units of the 28th significant digit when
DGAMLN(X) # 0.

Programming. DGAMLN calls the functions DPDEL, DGMLN1, and DLNREL. These
functions were written by A. H. Morris. The function DPMPAR is also used.
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DIGAMMA FUNCTION

For any complex z :A 0, -1, -2, ... the digamma (or psi) function + (z) is defined by

b(z) = rl(z)/r(z)

where r (z) is the gamma function. For real z > 0, (:(x) is an increasing function having a.
zero at the point x0 = 1.4616 32144 96836. The subroutines CPSI and DCPSI are available
for computing *&(z)- when z is complex, and the functions PSI and DPSI are available for
computing +(z) when z is real. DCPSI and DPSI are double precision procedures.

CALL CPSI(z,w)

The argument z is a complex number satisfying z :A 0, -1, -2, .. ., and w is a complex
variable. When CPSI is called, w is assigned the value O(z).

Error Return. If z = 0,-1,-2, ... , or if Re(z) < 0 and Re(z) is too large for +k(z) to be
computed, then w is assigned the value 0.

Algorithm. If z = x + iy satisfies x > 0 and Izi > 6, then the asymptotic expansion

(1) tk(z) = In z - 1 - E 2mz.
2z 2mz2m

is employed. Otherwise, if z > 0 then the smallest nonnegative integer n is found for which
Iz + nI > 6, and the relation

:~ ~ ~ ~ ~ ~ ~~~1.~'zn
na-1

OM~~E = + E + 7p(z + n)_0 Z+3

is applied. When z < 0 then

(2) +(z) = 0(1 - z) - 7rcot(urz)

is also used.

Programming. CPSI calls the functions REXP, SPMPAR, and IPMPAR. CPSI was written
by A. H. Morris.

PSI(X)

The argument x is a real number. If t(x) can be computed then PSI(z) is assigned
the value +(x). Otherwise, if +(x) cannot be computed, then PSI(z) is set to 0.

Precision. If z > 0 then PSI(z) is accurate to within 2 units of the 1 4 th significant digit
when PSI(z) : 0.
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Programming. PSI calls the functions SPMPAR and IPMPAR. PSI was written at Argonne
National Laboratory for the FUNPACK package of special function subroutines. PSI was
modified by A. H. Morris. X

Reference. Cody, W. J., Strecok, A. J., and Thacher, H. C., 'Chebyshev Approximations
for the Psi Function," Math Comp. 27 (1973), pp. 123-127. |

CALL DCPSI(Z,W)

Z and W are double precision arrays of dimension 2. It is assumed that Z(1) and Z(2) I
are the real and imaginary parts of a complex number z. When DCPSI is called the double
precision value for w = +(z) is computed. W(1) and W(2) contain the real and imaginary
parts of w, respectively.

Error Return. If z = 0,-1, -2, ... , or if Re(z) < 0 and Re(z) is too large for tk(z) to be
computed, then W(1) and W(2) are assigned the value 0.

Programming. DCPSI calls the functions DREXP, DPMPAR, and IPMPAR. DCPSI was
written by A. H. Morris.

DPSI(X)

The argument z is a double precision real number. If iI'(z) can be computed then
DPSI(z) is the double precision value for tk(x). Otherwise, if +(x) cannot be computed,
then DPSI(x) is set to 0:

Remark.DPSI must be declared in the calling program to be of type DOUBLE PRECISION.

Algorithm. If 1Zi < 10 then x is reduced to the interval [1, 2) by ib(a + 1) = + 40(a), and I
the Chebyshev expansion in the SLATEC library given by Wayne Fullerton (Los Alamos)
is used when ix - xol > 2 * 10-2. Otherwise, if Iz - xol < 2 - 10-2 then the Taylor series
around the zero z0 is used. The coefficients for the Taylor series were obtained by A. H.
Morris. If z < -10 then (2) is applied, and if X > 10 then +(x) - lnz is computed by the
power series corresponding to the Chebyshev expansion in the SLATEC library given by
Wayne Fullerton. The power series was obtained by A. H. Morris.

Precision. If 0 < x < 1 or z > 2 then DPSI(z) is accurate to within 2 units of the 2 8 th

significant digit. Otherwise, if 1 < x < 2 then DPSI(z) is accurate to within 5 units of the I
28 th significant digit when DPSI(x) :0 0.

Programming. DPSI calls the functions DCSEVL, DPSIO, DPMPAR, and IPMPAR. DPSI
was written by A. H. Morris.
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LOGARITHM OF THE BETA FUNCTION

For a, b > 0 the beta function B(a, b) can be defined by

B(ab) = j -(1-t)b-l dt.
I From this it follows that B(a, b) = r(a)r(b)/r(a + b) where r(a) is the gamma function.

The functions BETALN and DBETLN are available for computing In B(a, b). DBETLN is
a double precision function.

BETALN(a, b)

3 BETALN(a, b) = In B(a, b) for a, b > 0.

Algorithm. See pages 19-21 of the reference.

I Precision. BETALN(a,b) is accurate to within 4 units of the 1 4 th significant digit when
a,b > 1 and BETALN(a, b) 0 0. In particular, when ab > 15, BETALN(a, b) is accurate
to within 2 units of the 1 4 th significant digit.

Programming. BETALN employs the functions ALNREL, ALGDIV, BCORR, GAMLN,
GAMLN1, and GSUMLN. These functions were written by A. H. Morris.

Reference. DiDonato, A. R. and Morris, A. H., Significant Digit Computation of the
Incomplete Beta Function Ratios, Report TR 88-365, Naval Surface Warfare Center,
Dahlgren, Virginia, 1988.

DBETLN(a,b)

The arguments a and b are positive double precision numbers. DBETLN(a, b) is the
double precision value for In B(a, b).

* Remark. DBETLN must be declared in the calling program to be of type DOUBLE
PRECISION.

I Algorithm. The algorithm for In B(a, b) on pages 19-21 of the reference is used. A(z) is
computed by the power series corresponding to the Chebyshev expansion in the SLATEC
library given by Wayne Fullerton (Los Alamos). The power series was obtained by A. H.
Morris.

Programming. DBETLN employs the functions DLNREL, DLGDIV, DBCORR, DPDEL,U DGAMLN, DGMLN1, and DGSMLN. These functions were written by A. H. Morris. The
function DPMPAR is also used.

I Reference. DiDonato, A. R. and Morris, A. H., Significant Digit Computation of the
Incomplete Beta Function Ratios, Report TR 88-365, Naval Surface Warfare Center,
Dahlgren, Virginia, 1988.
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INCOMPLETE GAMMA RATIO FUNCTIONS

For a > 0 and z > 0 let P(a, x) and Q(a, x) denote the functions defined by

P(a, x) = j) eCttYl dt

Q(a, x) =r I X CY-'t- dt.

Then 0 < P(a,z) < 1 and P(a,z) + Q(a,z) = 1. Also, P(a,z) - 1 and Q(a,z) -D 0
for x > 0 when a - 0. Hence, we may define P(0,z) = 1 and Q (0,z) = 0 for z > 0.
The subroutine GRATIO is available for computing P(a, x) and Q(a, x), and the auxiliary
function RCOMP is provided for computing e-z"/r(a).

CALL GRATIO(a,x,PQ,i)

It is assumed that a > 0 and z > 0, where a and z are not both 0. P and Q are vari-
ables. GRATIO assigns P the value P(a, x) and Q the value Q(a,z). The argument i may
be any integer. This argument specifies the desired accuracy of the results. If i = 0 then
the user is requesting as much accuracy as possible (up to 14 significant digits). Otherwise,
if i = 1 then accuracy is requested to within 1 unit of the 6th significant digit, and if i : 0, 1
then the accuracy is requested to within 1 unit of the 3rd significant digit.

Error Return. P is assigned the value 2 when a or x is negative, when a = z = 0, or
when P(a, z) and Q(a, z) are indeterminant. P(a, z) and Q(a, x) are indeterminant when
x s a and a is exceedingly large. On the CDC 6000-7000 series computers this occurs when
Iz/a - 11 < 10-14 and a > 6.6E25.

Programming. GRATIO calls the functions ERF, ERFC1, REXP, RLOG, GAMMA,
GAM1, and SPMPAR. GAMMA employs the functions GLOG, EXPARG, and IPMPAR.
GRATIO was written by A. H. Morris.

Reference. DiDonato, A. R. and Morris, A. H., 'Computation of the Incomplete Gamma
Function Ratios and Their Inverse," ACM Trans. Math Software 12 (1986), pp. 377-393.

RCOMP(a, z)

RCOMP(a,x) = e-xza/r(a) for a > 0 and x > 0.

Algorithm. See page 378 of the reference.

Programming. RCOMP employs the functions EXPARG, GAMMA, GAM1, GLOG, and
RLOG. These functions were written by A. H. Morris. The functions SPMPAR and IPM-
PAR are also used.

Reference. Didonato, A. R. and Morris, A. H., "Computation of the Incomplete Gamma
Function Ratios and their Inverse," ACM Trans. Math Software 12 (1986), pp. 337-393.
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INVERSE INCOMPLETE GAMMA RATIO FUNCTION

For a > 0 and z > 0 let P(a,x) and Q(a,x) denote the incomplete gamma ratio
X functions defined by

P(a,x) =r) e-tta- dt

: : : 0; Q(a, x) = r(a) L| e-tz' a

Then 0 < P(a,x) < 1 and P(a,z) + Q(a,z) = 1. If we are given a,p, and q where
a > 0,0 < p < 1, and p + q = 1, then the subroutine GAMINV is available for obtaining
the value z > 0 for which P(a, x) = p and Q(a, z) = q.

CALL GAMINV(a,X,xo,p,q,IND)

X is a variable. If p = 0 then X is assigned the value 0, and if q = 0 then X is set
to the largest floating point number available. Otherwise, GAMINV attempts to obtain a
solution x for P(a, z) = p and Q(a, z) = q that is correct to at least 10 significant digits., If
the routine is successful then the solution is stored in X. The solution is normally obtained
by Schroder iteration. The argument zo is an optional initial approximation for x. If the
user does not wish to supply an initial approximation then set xo < 0.

IND is a variable that reports the status of the results. When GAMINV terminates,
IND has one of the following values:

IND = 0 The solution was obtained. Iteration was not used.
IND > 1 The solution was obtained. IND iterations were performed.
IND = -2 (Input error) a < 0.
IND = -3 No solution was obtained. The ratio Q/a is too large.I IND = -4 (Input error) p + qw 5 1.
IND = -6 20 iterations were performed. The most recent value obtained for

z is stored in X. This cannot occur if x0 < 0.I IND = -7 Iteration failed. No value is given for x. This may occur when
z-0.

IND = -8 A value for x is stored in X, but the routine is not certain of its
accuracy. Iteration cannot be performed in this case. If x0 < 0
then this can occur only when p ; 0 or q ; 0. If x0 > 0 then thisI - can occur when a ; x and a is exceedingly large (say a > 1020).

Remark. If zo < 0 then 3 or fewer iterations are required.

Programming. GAMINV employs the routine GRATIO and functions ERF, ERFC1,
REXP, RLOG, ALNREL ,GAMMA, GAM1, GAMLN, GAMLN1, RCOMP, and SPMPAR.

'If a k digit floating point arithmetic is being used where k < 10, then the routine attempts to obtain aI solution that is correct .to machine accuracy.
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GAMMA uses the functions GLOG, EXPARO, and IPMPAR. GAMINV was written by|
A. H. Morris

Reference. DiDonato, A. R. and Morris, A. H., "Computation of the Incomplete Gamma 3
Function Ratios and Their Inverse," A CM Trans. MathI Software 12 (1986), pp. 377-393.
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INCOMPLETE BETA FUNCTION

For a, b > 0 and 0 < z < 1 the incomplete beta function is defined by

, (a, b) =( l -) ja-1(lt)b-ldt

where B(a, b) is the beta function. Then we note that 0 < I,(a, b) < 1 and

lim I(a, b) = 1 for zx+ 0

lim Ix(a,b) = 0 for z x 1.
b-* 

These limits permit Ix(a,b) to be defined to be 1 when a = 0 and b 0 0,x i 0, and for
I.(a,b) to be defined to be 0 when b = 0 and a 7 0,x 7 1. The subroutine BRATIO
is available for computing Ix(a,b) for arbitrary ab > 0 and the subroutine ISUBX is
available for computing Id(a, b) for the highly specialized case when a and b are integers or
half-integers. Also, the auxiliary function BRCOMP is provided for computing Xay /B(a, b)
when 0 < x < 1 and y = 1 - x.

CALL BRATIO(a,b,x,y,W.W1,IERR)

It is assumed that a > 0, b > 0, 0 < x < 1, and y = 1 - x. W, W1, and IERR are
variables. If no input errors are detected then IERR is set to 0, W is assigned the value
Ix(a,b), and W1 is assigned the value 1- Ix(a,b).

Error Return. When an input error is detected, then W and W1 are assigned the value 0
and IERR is set to one of the following values:

IERR = 1 if a < 0 or b < 0
IERR = 2 if a = b = 0
IERR = 3 if z < 0 or z > 1
IERR = 4 if y < 0 or y > 1
IERR = 5 if x+y# 1
IERR=6 if x=a=0 0
IERR =7 if y=b=O

Programming. BRATIO employs the subroutines BGRAT and GRAT1, and the functions
ALGDIV, ALNREL, BASYM, BCORR, BETALN, BFRAC, BPSER, BRCOMP, BRCMP1,
BUP, ERF, ERFC1, GAMLN, GAMLN1, GAM1, GSUMLN, ESUM, EXPARG, REXP,
and RLOG1. These subroutines and functions were written by A. H. Morris. The functions
SPMPAR and IPMPAR are also used.

Reference. DiDonato, A. R. and Morris, A. H., Significant Digit Computation of the
Incomplete Beta Function Ratios, Report TR 88-365, Naval Surface Warfare Center,
Dahlgren, Virginia, 1988.
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-~~~~~~~~~
CALL ISUBX(a, b, x,W.IERR,EPS)

It is assumed that a, b, and z satisfy the following restrictions:

(1) a>Ob>Oandz>O
(2) a > 1/2,1/2 < b < 70, and z < 1
(3) a and b are integers or half-integers I

EPS specifies the (absolute) accuracy that is desired. W is a real variable and IERR an
integer variable. When ISUBX is called, if there are no input errors then W is assigned the
value I.(a, b) and IERR is assigned the value 1.

Error Return. If an error is detected then IERR is assigned one of the following values:

IERR = 2 if restrictions (1) are violated. I
IERR = 3 if restrictions (2) are violated or a is too large.
IERR = 4 if restrictions (3) are violated. 1

Also W is assigned the value 0.

Remarks. ISUBX was designed for a maximum precision EPS = 10-10

Programming. ISUBX employs the functions ALGDIV, ALNREL, BLND, IPMPAR, and
LOGAM. ISUBX was written by A. H. Morris.

Reference. DiDonato, A. R. and Jarnagin, M. P., 'The Efficient Calculation of the Incom-
plete Beta-function Ratio for Half-Integer Values of the Parameter a,b,' Math Comp. 21
(1967), pp. 652-662.

BlRCOMP(a,b, x,y)

BRCOMP(a, b, X, y) = zayb/B(a, b) for a, b > 0 and z, y > 0 where z+y 1.

Algorithm. See pages 19-21 of the reference.

Programming. BRCOMP employs the functions ALGDIV, ALNREL, BCORR, BETALN,
GAM1, GAMLN, GAMLN1, GSUMLN, and RLOG1. These functions were written by
A. H. Morris.

Reference. DiDonato, A. R. and Morris, A. H., Significant Digit Computation of the
Incomplete Beta Function Ratios, Report TR 88-365, Naval Surface Warfare Center,
Dahlgren, Virginia, 1988.
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BESSEL FUNCTION JV(z)

If v is complex then J,(z) is defined by

J.(Z) = (k- -

for any z -f 0 in the complex plane cut along the negative real axis. J,(z) is analytic in the
region jarg(z)l < x, and J^(z) is an entire function of M for any fixed z. If o is an integer
then Jv, (z) is also defined at 0 and is an entire function of z. The following subroutines are
available for computing JV(Z).

CALL CBSSLJ(z, Y, w)

The arguments z and it are complex numbers and tw is a complex variable. It is assumed
that jarg(z)l < -x. When CBSSLJ is called, to is assigned the value J,(z).

Precision. CBSSLJ is accurate to within 4- 10-13 for real 0 < z < 35 and 0 < v < 1.

Note. CBSSLJ employs the subroutine CGAMMA.

Programmer. A. V. Hershey

Reference. Hershey, A. V., Computation of Special Functions, Report TR-3788, Naval
Surface Weapons Center, Dahlgren, Virginia, 1978.

CALL BSSLJ(z,n,w)

The argument z is a complex number, n is an integer, and uw is a complex variable.
When BSSLJ is called, w is assigned the value Jn(z).

Precision. BSSLJ is accurate to within 5 *10-1 4 for real 0 < z < 35 and n = 0, 1.

Programmer. A. V. Hershey

Reference. Hershey, A. V., Computation of Special Functions, Report TR-3788, Naval
Surface Weapons Center, Dahigren, Virginia, 1978.

CALL BESJ(z,ac,n,Wk)

The arguments z and a are nonnegative real numbers, n is a positive integer, and W is
an array of dimension n or larger. When BESJ is called Ja+i-l(z) is computed and stored
in W(i) for i = 1, ... I n.
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The argument k is an integer variable that is set by the routine. If all Ja,+i-(x) are *
computed then k is set to 0. Otherwise, k is assigned one of the following values:

k =-1 The argument x is negative. |
k =-2 The argument a is negative.
k = -3 The requirement n > 1 is violated.
k > 0 The last k components of W have been set to 0 because of under-

flow.

Precision. For 0 < x < 35 and 0 < a < 1, BESJ is accurate to within 8 -10-13.

Programming. BESJ calls the subroutines ASJY and JAIRY, and the functions GAMLN,
SPMPAR, and IPMPAR. The subroutines were written by Donald E. Amos, Sharon L.
Daniel, and M. Katherine Weston (Sandia Laboratories). I
References.

(1) Amos, D.E., Daniel, S. L., and Weston, M. K., CDC 6600 Subroutines for Bessel
Functions J. (z),x > 0 v > 0 and Airy Functions As(z),A(z),-oo < z < oo. Report
SAND 75-0147, Sandia Laboratories, Albuquerque, New Mexico, 1975.

(2) , 'CDC 6600 Subroutines IBESS and JBESS for Bessel Functions I, (2) I
and J,(x), x > 0, v > 0,"ACM Trans. Math Software 3 (1977), pp. 76-92.
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BESSEL FUNCTION Yl,(z)

If v is any complex number not an integer, then Y,(z) can be defined by

Yv(z) = Jv(z) cos v'r - J-.(z)
sin v>r

for any z 54 0 in the complex plane cut along the negative real axis. For any integer n we
can also define Yn (z) = lim Yv (z). Then for any complex >, Y, (z) is analytic in the region

Iarg(z) < 7r. Also, Y1, (z) is an entire function of V for any fixed z. The following subroutine
is available for computing Y^,(z) when v is an integer.

CALL BSSLY(z,n,w)

The argument z is a complex number, n is an integer, and w is a complex variable. It
is assumed that jarg(z)I < -r. When BSSLY is called, w is assigned the value Yn(z).

Precision. If .005 < x < .785 then Yo(x) and Yl(z) are accurate to within 3 units of the
1 4 th significant digit. Otherwise, if z > .785 then Yo(x) and YI(z) are accurate to within
4. 10-14.

Programmer. A. V. Hershey

Reference. Hershey, A. V., Computation of Special Functions, Report TR-3788, Naval
Surface Weapons Center, Dahlgren, Virginia, 1978.
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MODIFIED BESSEL FUNCTION IV(z)

If v is complex then I4(z) is defined by

| I>(z) = E (z/2)v+2k

for any z : 0 in the complex plane cut along the negative real axis. I (z) is analytic in the
region jarg(z)l < us, and I4(z) is an entire function of zv for any fixed z. If v is an integerI then I>(z) is also defined at 0 and is an entire function of z. The following subroutines are
available for computing 1,(z).

CALL BSSLI(MOz,n,w)

MO is an integer, z a complex number, n an integer, and w a complex variable. If MO
| 0 then it is assumed that jarg(z)l < 7r. When BSSLI is called, wU is assigned the value
7 in(z) if MO = 0 and the value e-zI,(z) if MO :A 0.

Precision. BSSLI is accurate to within 5 units of the 13 th significant digit for real 0 < z < 35
and n = 0, 1, . . ., 40.

Programmer. Allen V. Hershey

Reference. Hershey, A. V., Computation of Special Functions, Report TR-3788, Naval
Surface Weapons Center, Dahlgren, Virginia, 1978.

CALL BESI(x,a,MO,n,Wk)

MO may be 1 or 2. The arguments x and a are nonnegative real numbers, n is a
positive integer, and W is an array of dimension n or larger. When BESI is called, if MO
= 1 then 4+i,,.I (x) is computed and stored in W(i) for i = 1, ... , n. Otherwise, if MO = 2
then e-5I+j-i(z) is computed and stored in W(i)

The argument k is an integer variable that is set by the routine. If all 4+i-l(x) or
-e-5.+i (,z) are computed then k is set to 0. Otherwise, k is assigned one of the following

values:
k = -1 The argument x is negative.
k = -2 The argument a is negative.
k = -3 The requirement n > 1 is violated.
k = -4 MO is not 1 or 2.
k = -5 The argument x is too large for MO = 1.
k> 0 The last k components of W have been set to 0 because of underflow.

Precision. For0<x<35andO< a < 1, or0<x<35anda=1,2 ,40,Icg(x)is
accurate to within 2 units of the 1 2th significant digit.
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Programming. BESI calls the subroutine ASIK and the functions GAMLN, SPMPAR,
and IPMPAR. BESI and ASIK were written by D. E. Amos and S. L. Daniel (Sandia
Laboratories).

References.

(1) Amos, D. E. and Daniel, S. L., A CDC 6600 Subroutine for Bessel Functions
Iv(z), v > Ox > 0. Report SAND 75-0152, Sandia Laboratories, Albuquerque, New
Mexico, 1975.

(2) Amos, D. E., Daniel, S. L., and Weston, M. K., OCDC 6600 Subroutines IBESS and
JBESS for Bessel Functions I (X) and JV(X), z > 0 v > 0" ACM Trans. Math
Software 3 (1977), pp. 76-92.
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MODIFIED BESSEL FUNCTION K,(z)

If v is any complex number not an integer, then K,,,(z) is defined by

K (z) = 7r I-, (z) - 4(z)
2 sin v~r

for any z 54 0 in the conplex plane cut along the negative real axis. For any integer n
we can also define Kn (z) = lim K,,(z). Then for any complex zv, K,(z) is analytic in the
region jarg(z)j < or. Also, K,,(z) is an entire function of v for any fixed z. The following
subroutines are available for computing Kv(z).

CALL CBSSLK(z,r,w)

The argument z is a complex number, r is a real number, and w is a complex variable.
It is assumed that larg(z)j < r. When CBSSLK is called, w is assigned the value Kr(z).

Programmer. Allen V. Hershey

Reference. Hershey, A. V., Approximations of Functions by Sets of Poles, Report TR-
2564, Naval Weapons Laboratory, Dahigren, Virginia, 1971.

CALL BSSLK(MO,-z,n,w)

MO is an integer, z a complex number, n an integer, and uw a complex variable. It is
assumed that larg(z)l < 2r. When BSSLK is called, w is assigned the value Kn(z) if MO

0 and the value ezKn(z) if MO 0 0.

Precision. BSSLK is accurate to within 6 units of the 1 4 th significant digit for real z and
n = 0, 1.

Programmer. Allen V. Hershey

Reference. Hershey, A. V., Computation of Special Functions, Report TR-3788, Naval
Surface Weapons Center, Dahlgren, Virginina, 1978.
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| AIRY FUNCTIONS

co
For any series w = E atz' satisfying the differential equation w' = zw, it follows

S ~~~~~~~~n=O
that w = aof(z) + aig(z) where

| ; f ( ) 1 + E l~~~~~~~~~~-4 --t3n-2) z3n

0~~~~~~~~~~~~~~~~~. .. -31 () l 3n+lg(z) =-1+ 2 2%Snti)l Zsnl

n>1

In particular, the Airy functions Ai(z) and Bi(z) are independent solutions of w" =z
| where

Ai(z) = c1f(z) - c 2g(z)
* Bi(z) =V4 [cl f (z) + C29 (Z)]

for c1 = 3- 2/3 /r(2/3) and c2 = 3-1/3/r(1/3). Ai(z) and Bi(z) are entire functions.

The subroutines CAI and CBI are available for computing Ai(z) and Bi(z) when z is
complex, and the functions AI, AIE, BI, and BIE are available for computing Ai(z) and
Bi(z) when z is real. CAI and CBI also provide the dervatives Ai'(z) and Bi'(z) of Ai(z)
and Bi(z).

CALL CAI(IND,z,w, w',IERR)

I 0 IND is an integer, z a complex number, and w and w' complex variables. When CAI
is called, w is assigned the value Ai(z) and w' the value Ai'(z) when IND = 0. Otherwise,
if IND :$ 0 then w = eCAi(z) and w' = etAi'(z) where =Z3/2
I ~~~~~~~~~~~~~~~~~~~~~~3

IERR is a variable that is set by the routine. When CAI terminates, IERR has one of
the following values:I - IERR = 0 The desired values were obtained.

IERR = 1 z is too large for the desired values to be computed. In this case
vw and w' are assigned the value 0.

Precision. For IND $ 0 the real and imaginary parts of w and w' are accurate to within 2
units of the 1 2 th significant digit except near points where they vanish.

Programming. CAI employs the subroutines AIRM, All, AIA, JA, JMC, BJM, KA, KML,
IMC, and BRM. These routines were written by Andrew H. van Tuyl (NSWC) and modified
by A. H. Morris. The subroutines CAPO and CREC, and functions CPABS, EXPARG,
IPMPAR, and SPMPAR are also used.

I CALL CBI(INDz,iw,w',IERR)
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IND is an integer, z a complex number, and w and w' complex variables.
is called, w is assigned the value Bi(z) and uw' the value Bi'(z) when IND = 0.
if IND :A 0 then { e-Bi(z) if jarg(z)| < xr/3

W erBi(z) otherwise

{ e Bi'(z) if jarg(z)l < ir/3

eC Bi'(z) otherwise

When CBI
Otherwise,

where 2 = z3/23 :

IERR is a variable that is set by the routine. When CBI terminates, IERR has one of
the following values:

IERR = 0 The desired values were obtained.
IERR = 1 z is too large for the desired values to be computed. In this case

w and w' are assigned the value 0.

Precision. For IND :A 0 the real and imaginary parts of w and w' are accurate to within 2
units of the 12h significant digit except near points where they vanish.

Programming. CBI employs the subroutines AIRM, BII, BIA, IA, IMC, BIM, JA, JMC,
and BJM. These routines were written by Andrew H. van Tuyl (NSWC) and modified by
A. H. Morris. The subroutine CREC and functions CPABS, EXPARG, IPMPAR, and
SPMPAR are also used.

AI(z)

AI(x) = Ai(x) for real x.

Algorithm. Rational minimax approximations are used. If z < -1 then R and 0 are
computed where Ai(x) = R sin(7r/4 + 0).

Precision. For z> -1, AI(z) is accurate to within 2 units of the 12 th significant digit when
AI(x) 0.

Programming. Al calls the subroutine AIMP and function EXPARG. These subprograms
were written by A. H. Morris. The function IPMPAR is also used.

AIE(z)

If x > 0 then AIE(z) = e¢Ai(z) where 2 = Xz3 /2 . Otherwise, if x < 0 then AIE(x) =
Ai(x).

Algorithm. Rational minimax approximations are used. If z < -1 then R and 0 are
computed where Ai(z) = R sin(7r/4 + 0).

Precision. For x > -1, AIE(x) is accurate to within 2 units of the 1 4 th significant digit.
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I Programming. AIE calls the subroutine AIMP. AIE and AIMP were written by A. H.
Morris.

I 51Bl(z)

BI(z) = Bi(x) for real x. If z is a positive value for which Bi(z) is too large to beI computed, then BI(x) is assigned the value 0.

Algorithm. Rational minimax approximations are used. If z < -1 then R and e are
computed where Bi(z) = R cos(7r/4 + 0).

Precision. For x > -1, BI(z) is accurate to within 2 units of the 12 th significant digit when
BI(z) 7 0.

Programming. BI calls the subroutine AIMP and function EXPARG. These subprograms
were written by A. H. Morris. The function IPMPAR is also used.

BIE(z)

If z > 0 then BIE(z) = e-¢Bi(z) where g = _zx/ 2 . Otherwise, if z < 0 then BIE(z) =
B I~).

Algorithm. Rational minimax approximations are used. If x < -1 then R and 0 are
computed where Bi(z) = R cos(7r/4 + 0).

Precision. For z > -1, BIE(z) is accurate to within 2 units of the 14 th significant digit.

Programming. BIE calls the subroutine AIMP. BIE and AIMP were written by A. H.
Morris.

I
I

I -
I
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l
COMPLETE COMPLEX ELLIPTIC INTEGRALS OF THE

FIRST AND SECOND KINDS

1. If k is complex then the complete elliptic integrals of the first and second kinds can be
defined by

r/2
K(k) =J (I _ k2 sin2t)-1/2 dt

E(k) = / (1-k sin2 t)"2 dt

I for jarg(i -k 2) < 2r. K(k) and E(k) can be extended to -o ? arg(1-k 2 ) < Or. For IkI < 1

K(k) = cE k2n

- (1) 2 ~~~~~~~~~n>O 2 -i~zcn2n--

I 0 where cn - [4(2] .n Also, if t 2 = 1-k 2 where ii • 1 and -X < arg(t2) < 7r, then

1 ~ ~~~~~~~1 16n nK(k) =-K(e) In -- E cn E -
| (2) n>1i 1 m(2m - 1)

(2) ~ 1 16 2n n e2
n ~

ffi E(k) =-[K(£) - E(t)] In- - E n2 1£ m(2m_ 1) + E Cnf(2

H The function CK is available for computing K(k), and the subroutine CKE for computing
K(k) and E(k).

CK(kwf): 

CK(k,e) = K(k) for any complex k and Cwhere k2 +t 2 = 1 and e #0. CK is a complexI : valued function which must be declared in the calling program to be of type COMPLEX.

Error Return. CK(k,I) = 0 if e = 0 or k 2 +12 1.

Remarks.

(1) CK(k, f) may underflow, yielding the value 0, when lkl is sufficiently large.I 0 (2) CK and the subroutine CKE employ the same algorithm for K(k).
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l~~~~~~~~~~~~~~
Precision. If k is real and Ik! < 1 then the relative error of CK is less than 10-13. Also, if
k is purely imaginary then the relative error is less than 10-13. K(k) is real-valued for only
these values of k. Otherwise, let 6k = 10-12 if IkI < 0.8, k = 2- 10-13 if 0.8 < jk| < 2, and

-k = 10-13 if Ik! > 2. Then the relative errors of the real and imaginary parts of CK are
less than Ck except when underflow occurs, IkI < 1 and Iarg(±k)I < 10-2'7, or IkI < 1015
and IzT/2 - arg(±k)l < 10-280. In the latter two cases the relative error of the real part of
CK is less than ek, but all relative accuracy for the imaginary part may be lost.

Programming. CK calls the subroutine KL and functions ALNREL, CFLECT, KM, and
SPMPAR. CK, KL, and KM were written by Andrew H. van Tuyl (NSWC) and modified
by A. H. Morris.

CALL CKE(k, e, K, E,IERR) I
The arguments k and e are complex numbers where k2 + e2

= 1 and e 0 0, K and E
are complex variables, and IERR an integer variable. When CKE is called, if no errors are I
detected then IERR is set to 0, K is assigned the value K(k), and E is assigned the value
E(k).

Error Return. IERR = 1 if e = 0 and IERR = 2 if k2 + e2 0 1. In these cases, K and E
are not defined.

Algorithm. For k = 0 or -2r/2 < arg(k) < xr/2, formulae (2) are used if ieI < .55, (1) are I
used if ItI > .55 and Ik! < .55, and approximations of the form

N
K(k) a,:

-'E E2 + bk 2

(3)

N bJ.k 1 b

E(k) = eE a,, [1 + etan 1e 

are used if It] > .55 and .55 < Ikj < 1. (3) are obtained from integral representations for
K(k) and E(k) by numerical quadrature. If etI > .55, Ik! > 1, and IkI < Itl then 3

K(k) =f K(k1) k, = iik/!
(4) I

E(k) = E(k1)/4l = l1e

are applied where the sign in k, is selected so that -7r/2 < arg(ki) < vr/2. Otherwise, if
Iei > .55, Ikj > 1, and Ik! > Itl let k1 = 1/k and t +i=e/k where the sign is selected so
that -?r/2 < arg(fi) < 7r/2. Then

K(k) = ki [K(ki) + is K(t4)]I
(5)

(k) = +[E(ki) - K(k1 ) - s (E(te) - k2 K(f1))] I
88 3

: -~~~~~~~~~~~~



are applied where s = 1 if Im(k) > 0 and 8 = -1 if Im(k) < 0. If arg(k) > ?r/2 or
arg(k) < -ir/2, then K(k) = K(-k) and E(k) = E(-k) are applied.

Precision. If k is real and IkI < 1, or k is purely imaginary, then the relative error of E is
less than 10i-'. E(k) is real-valued for only these values of k. Otherwise, let ek = 1012 if
IkI < 2 and ek = 10-13 if IkI > 2. Then the relative errors of the real and imaginary parts
of E are less than ek except when underflow occurs, Ik < 1 and jarg(±k)I < 10-28°j or
1k! < 101' and 17r/2 - arg(±k)l < 10-280. In the latter two cases the relative error of the
real part of E is less than ek, but all relative accuracy for the imaginary part may be lost.

Programming. CKE calls the subroutines EKL and EKM, and the functions ALNREL,
ATN, CFLECT, and SPMPAR. CKE was written by Andrew H. van Tuyl (NSWC).
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REAL ELLIPTIC INTEGRALS OF THE FIRST AND SECOND KINDS

If 0 < 4 < 2r/2, then the elliptic integrals of the first and second kinds are defined by

F(0, k) = j(1 - k2 sin2 t)-1/ 2 dt

E(0,k) = |(I - k2 sin2t) 1 /2dt

for any real k where k2 < 1 and 1 - k2 sin2 o 54 0. Alternatively, we may consider

RF(a,b, c) = j[(t + a)(t + b)(t + c)1112 dt

where a, b, c are nonnegative and at most one of them is 0, and

RD(a, b, c) = t + a)12(t + b)YI2(t +c3/2dt

where a and b are nonnegative such that a + b > 0, and c is positive. If a < b < c and a < c
then

RF(a'b'c) = siF(,k)

RD(a,b,c) = 3c;/2 [F(4k) - E(4, k)]

where cos2 O = a/c and k2 = (c - b)/(c - a). If 4 = 2r/2 then the integrals F(0,k) and
E(0, k) are said to be complete. Otherwise, if 4 < ?r/2 then the integrals are said to be
incomplete. The subroutines ELLPI, RFVAL, RDVAL, DELLPI, DRFVAL, and DRDVALI are available for computing F(?, k), E(0, k), RF (a, b, c) and RD (a, b, c). DELLPI, DRFVAL,
and DRDVAL are double precision routines.

CALL ELLPI(O, ,k, e, F, E, IERR)

The arguments 4? i , k, e are real numbers which satisfy 4 > 0, ik > 0, 4 + ' = vr/2, and
k2 + £2 = 1. Also, if 1' = 0 then it is assumed that e 5 0. F, E, and IERR are variables.I When ELLPI is called, if no input errors are detected then IERR is set to 0, F is assigned
the value F (4, k), and E is 'assigned the value E(0, k).

Error Return. If an input error is detected then IERR is set as follows:

IERR=1 4<0or4<0
IERR = 2 1kl > 1 or 14 > 1I IERR= 3 0=0andf=0
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Precision. ELLPI is accurate to within 4 units of the 1 4 th significant digit.

Programming. ELLPI calls the functions ALNREL and CPABS. ELLPI was written by
Allen V. Hershey and modified by A. H. Morris.

Reference. DiDonato, A. R. and Hershey, A. V., 'New Formulas for Computing Incomplete I
Elliptic Integrals of the First and Second Kind,"JACM 6 (1959), pp. 515-526.

CALL RFVAL(a, b, c, w, IERR) I
The arguments a, b, c are nonnegative real numbers, only one of which can be 0. IERR

and w are variables. When RFVAL is called, if no input errors are detected then IERR is |
set to 0 and w is assigned the value RF(a, b, c).

Error Return. If an input error is detected then IERR has one of the following values:

IERR = 1 Either a, b, or c is negative.
IERR = 2 Either a + bka + c, or b + c is too small.
IERR = 3 Either a, b, or c is too large.

Precision. RFVAL is accurate to within 4 units of the 1 4 th significant digit.

Programming. RFVAL was written by B. C. Carlson and Elaine M. Notis (Iowa State
University), and modified by A. H. Morris. The function SPMPAR is used. 3
References.

(1) Carlson, B. C., 'Computing Elliptic Integrals by Duplication," Numerische Mathe-
matik 33 (1979), pp. 1-16.

(2) and Notis, E. M., 'Algorithm 577. Algorithms for Incomplete Elliptic
Integrals," ACM Trans. Math Software 7 (1981), pp. 398-403.

CALL RDVAL(a, b, c, w, IERR)

The arguments a and b are nonnegative real numbers where a + b > 0, and c is a
positive real number. IERR and w are variables. When RDVAL is called, if no input errors
are detected then IERR is set to 0 and w is assigned the value RD (a, b, c). 3
Error Return. If an input error is detected then IERR has one of the following values:

IERR = 1 Either a, b, or c is negative.
IERR = 2 Either a + b or c is too small. I
IERR = 3 Either a, b, or c is too large.

Precison. RDVAL is accurate to within 4 units of the 14th significant digit. I
Programming. RDVAL was written by B. C. Carlson and Elaine M. Notis (Iowa State
University), and modified by A. H. Morris. The function SPMPAR is used.
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References.

(1) Carlson, B. C., 'Computing Elliptic Integrals by Duplication,' Numerische Mathe-
matik 33 (1979), pp. 1-16.

(2) and Notis, E. M., "Algorithm 577, Algorithms for Incomplete Elliptic
Integrals, ACM2Trans. Math Software 7 (1981), pp. 398-403.

CALL DELLPI(O,i,k,e,F. E,IERR)

The arguments 4, sb, k, e are double precision numbers where > 0, ' > 0, O+t, =X/2,
and k2 + I2 = 1. Also, if 4 = 0 then it is assumed that e 0 0. F and E are double precision
variables, and IERR is an integer variable. When DELLPI is called, if no input errors are
detected then IERR is set to 0, F is assigned the double precision value for F(O, k), and E
is assigned the double precision value for E(O, k).

Error Return. If an input error. is detected then IERR is set as follows:
IERR=1 k<Ooro<O
IERR = 2 jkl > 1 or jil > 1
IERR = 3 4' = O and f = O

Precision. DELLPI is accurate to within 5 units of the 2 8 th significant digit.

Programming. DELLPI employs the functions DCPABS, DLNREL, and DPMPAR.
DELLPI was written by Allen V. Hershey and modified by A. H. Morris.

Reference. DiDonato, A. R. and Hershey, A. V.,"New Formulas for Computing Incomplete
Elliptic Integrals of the First and Second Kind," JACM6 (1959), pp. 515-526.

CALL DRFVAL(a,b,c,w,IERR)

The arguments a, b, c are nonnegative double precision numbers, only one of which can
be 0. IERR is an integer variable and w a double precision variable. When DRFVAL is
called, if no input errors are detected then IERR is set to 0 and uw is assigned the double
precision value for RF (a, b, c).

Error Return. If an input error is detected then IERR has one of the following values:

IERR = 1 Either a, b, or c is negative.
IERR = 2 Either a + b, a + c, or b + c is too small.
IERR = 3 Either a, b, or c is too large.

Programming. DRFVAL was written by B. C. Carlson and Elaine M. Notis (Iowa State
University), and modified by A. H. Morris. The function DPMPAR is used.

References.

(1) Carlson, B. C., "Computing Elliptic Integrals by Duplication," Numerisehe Mathe-
matik 33 (1979), pp. 1-16.
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(2) and Notis, E. M., "Algorithm 577, Algorithms for Incomplete Elliptic U
Integrals," ACM Trans. Math Software 7 (1981), pp. 398-403.

CALL DRDVAL(a, b, c, w, IERR)

The arguments a and b are nonnegative double precision numbers where a + b > 0,
and c is a positive double precision number. IERR is an integer variable and w a double
precision variable. When DRDVAL is called, if no input errors are detected then IERR is
set to 0 and w is assigned the double precision value for RD(a, b, c).

Error Return. If an input error is detected then IERR has one of the following values:
IERR = 1 Either a, b, or c is negative.
IERR = 2 Either a + b or c is too small.
IERR = 3 Either a, b, or c is too large.

Programming. DRDVAL was written by B. C. Carlson and Elaine M. Notis (Iowa State N
University), and modified by A. H. Morris. The function DPMPAR is used..

References.

(1) Carlson, B. C., "Computing Elliptic Integrals by Duplication," Numerische Mathe-
matik 33 (1979), pp. 1-16. 3

(2) and Notis, E. M., "Algorithm 577, Algorithms for Incomplete Elliptic
Integrals," ACM Trans. Math Software 7 (1981), pp. 398-403.
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REAL ELLIPTIC INTEGRALS OF THE THIRD KIND

For any 0 < 4)< 7r/2 the elliptic integral 11(), n, k) is defined by

H(), n, k) = |j(I - n sin2 9)'1( - k2sin2 0)- I do

I where n is any real number such that 1 - n sin2 4 $ 0, and k any real number such that
k2 <1 and 1- k2 sin2 4 + 0. Alternatively, for any r :A 0 we may consider

U RR (a, b, c, r) = | (t + r) 1 [(t + a)(t + b)(t + c)] dt

where a, b, c are nonnegative and at most one of them is 0. If a < b < c and a < c then

3c -Rj (a, b,c r) 7 3--[I- )nk F4,)| 0 R J (ay 6 By a)~~~~~C = ; 5 [H(O, n, k) -F(0, kc)]

where F(4), k) is the elliptic integral of the first kind, cos2 4) = a/c, IC2 = (c - b)/(c -a), and
n = (c - r)/(c - a). If 4 = Xr/2 then the elliptic integral 11(4, n, k) is said to be complete.
Otherwise, if 4 < ir/2 then the integral is said to be incomplete. The subroutines EPI,
RJVAL, DEPI, and DRJVAL are available for computing II(4, n, k) and Ri (a, b, c, r). DEPI3 and DRJVAL are double precision routines.

CALL EPI( ,,k 2 , e2, n, m, wIERR)

U The arguments 4, tk 2 ,t 2 ,n,m are real numbers where 4 > 0,4 > 0,4)+ k = ?r/2,
k2 + f2 = 1, InI < 1, and n + m = 1. Also, if b = 0 then it is assumed that t2 0 and
m =A 0. IERR and w are variables. When EPI is called, if no input errors are detected- then
IERR is set to 0 and uw is assigned the value 11(4, n, k).

Error Return. If an input error is detected then IERR has one of the following values:
* IERR = 1 Either 4 or t is negative, or 4 + b 7& gr/2.

IERR = 2 Either In| > 1 or n + m#A 1.
IERR = 3 Either V2 or e2 is negative, or V2 + t2 + 1.
IERR = 4 Either i and m are too close to 0, or b and e2 are too close to 0.

Precision. EPI is accurate to within 4 units of the 14th significant digit.

Programming. EPI employs the subroutines RFVAL, RJVAL, RCVAL1 and function SPM-
'PAR. EPI was written by A.H. Morris.

CALL RJVAL(a, b, c, r, w,IERR)

The arguments a, b, c are nonnegative real numbers, only one of which can be 0, and r
is a positive real number. IERR and w are variables. When RJVAL is called, if no input
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errors are detected then IERR is set to 0 and w is assigned the value Ri (a, b, c, r).

Error Return. If an input error is detected then IERR has one of the following values:
IERR = 1 Either a, b, c, or r is negative.
IERR= 2 Either a + b, a + c, b + c, or r is too small.
IERR = 3 Either a, b, c, or r is too large. I

Precision. RJVAL is accurate to within 4 units of the 14th significant digit. 3
Programming. RJVAL calls the subroutine RCVAL1. These subroutines were written by
B.C. Carlson and Elaine M. Notis (Iowa State University), and modified by A.H. Morris.
The function SPMPAR is also used.

References.

(1) Carlson, B. C., "Computing Elliptic Integrals by Duplication." Numerische Mathe-
matik 33 (1979), pp. 1-16.

(2) and Notis, E. M., 'Algorithm 577,Algorithms for Incomplete Elliptic
Integrals." ACM Trans. Math Software 7 (1981),pp.398-403.

CALL DEPI(0,0,k 2 , e2 , n, m, wIERR)

The arguments 0, i, k2, e2, n, m are double precision numbers where 4 > 0, 0 > 0, 0 +
t = r/2, k 2 +t 2 = 1, InI < 1, andn + m = 1. Also, if i = O then it is assumed that E2 0 0
and m 6 0. IERR is an integer variable and w a double precision variable. When DEPI is I
called, if no input errors are detected then IERR is set to 0 and w is assigned the double
precision value for 1H(0, n, k).

Error Return. If an input error is detected then IERR has one of the following values:
IERR = 1 Either 0 or 0 is negative, or 4 + 7& r/2.
IERR = 2 Either In| > 1 or n + m• 1. 
IERR = 3 Either k2 or e2 is negative, or k2 + £2 + 1.
IERR = 4 Either ,b and m are too close to 0, or 0b and £2 are too close to 0.

Programming. DEPI employs the subroutines DRFVAL, DRJVAL, DRCVL1 and function
DPMPAR. DEPI was written by A.H. Morris.

CALL DRJVAL(a, b, c, r, wIERR)

The arguments a, b, c are nonnegative double precision numbers, only one of which can
be 0, and r is a positive double precision number. IERR is an integer variable and w a
double precision variable. When DRJVAL is called, if no input errors are detected then
IERR is set to 0 and w is assigned the double precision value for Rjr(a, b, c, r).

Error Return. If an input error is detected then IERR has one of the following values:
IERR = 1 Either a, b, c, or r is negative. 3
IERR = 2 Either a + b, a + c, b + c, or r is too small.
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* IERR = 3 Either a, b, c, or r is too large.

Programming. DRJVAL calls the subroutine DRCVL1. These subroutines were written by
B.C. Carlson and Elaine M. Notis (Iowa State University), and modified by A.H. Morris.
The function DPMPAR is also used.

H References.

(1) Carlson, B. C., "Computing Elliptic Integrals by Duplication." Numerische Mathe-
matik 33 (1979), pp. 1-16.

(2) _ and Notis, E. M., "Algorithm 577,Algorithms for Incomplete Elliptic
Integrals." ACM Trans. Math Software 7 (1981),pp.398-403.
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JACOBIAN ELLIPTIC FUNCTIONS

For any complex number k :A 0, ±1 the elliptic function sn(z, c) may be defined as the
meromorphic function w(z) that satisfies

(1) y}(dW = (1-W2)(1- k2w2)

w(0) = 0, w'(O) = 1.

If k = 0 then sn(z, 0) = sin z satisfies (1), and if k = ±1 then sn(z, k) = tanh z satisfies (1).
Alternatively, 8n(z, k) = sin . where +(z) satisfies

(do 2 2Sn

(2) (dz) = 1-k 2sin 24

+o) = O. 0'(0) = 1.

The elliptic functions cn(z, k) and dn(z, k) may be defined by

t n(z,k) = 1- rsnz, Ik)2

dn(z, k) = 1 - 2sn(z k) 2

where the roots take the value 1 for z = 0. In particular, if k = 0 then cn(z,O) = cosz
and dn(z,O) = 1, and if k = ±1 then cn(z,k) = dn(z,k) = 1/coshz. The subroutines
ELLPF and ELPFC1 are available for computing sn(z, k), cn(z, k), and dn(z, k) when k is
a real value such that Ikl < 1. ELLPF may be used when z is real and ELPFC1 when z is
complex.

CALL ELLPF(u, k,!,S,C,D,IERR)

It is assumed that u, k, and e are real numbers where I 2 + £2 = 1. S, C, and D are
real variables. When ELLPF is called, SI C, and D are assigned the values S = sn(u, k),
C = cn(uk), and D = dn(u,k).

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has one of the following values:

IERR = 0 The elliptic functions were computed.
IERR = 1 (Input error) k2 + 2 I' 1.
IERR = 2 u is too large for k.

When IERR > 1, no computation is performed.

Precision. Let K(k) be the complete elliptic integral of the first kind. For Jkl < .99995 the
relative errors of sn(u,k) and dn(u,k) are less than 10-12 when 0 < u < K(k), and the
relative error of cn(u, k) is less than 10-12 when 0 < u < .97K (k).
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Algorithm. Let K = K(k) be the complete elliptic integral of the first kind. For 0 < u <
K/2 (when e 0 0), the Maclaurin expansion

(1 + k2)U3 (1:+ 14k2 + k4)u_sn(u, k) = u -3! t 
3! +5!

is employed when u < .01. Otherwise, if u > .01 let K' = K(t), q = exp(-7rK'/K), and
r = exp(-7rK/K'). Then

: 2; _ ___ (2n + 1)2ru
in(u, k) = k sin

1KE - qnl 2K

is used when k < e and

sn(u, k) = 2kK' tanh 27'+I + 4 1Ynr2n sinh K

is used when k > L. The functions cn(u, k) and dn(u, k) are obtained from

sn(u, k)2 + cn(u, k)2 = 1
dn(u, k)2 + k2 sn(u, k) 2 = 1.

For K/2 < u < K the identities

sn(u, k) = cn(v, k)/dn(v, k)
cn(u,k) = IIIsn(v,k)/dn(v,k)
dn(u, k) = IeI/dn(v, k)

are applied. Here v = K - u.

Programming. ELLPF employs the subroutines SCD, SCDF, SCDJ, SCDM, ELLPI,
SNHCSH and functions ALNREL, CPABS, SPMPAR, IPMPAR. ELLPF was written by
Andrew H. van Tuyl and modified by A. H. Morris.

CALL ELPFC1(z,k,e,S,C, D,IERR)

The argument z is complex, and k and e are real numbers where k 2 + 2 =. C,

and D are complex variables. When ELPFC1 is called S, C, and D are assigned the values
S = sn(z,k), C = cn(z,k), and D = dn(z,k).

IERR is a variable that reports the status of the results.
IERR has one of the following values:

IERR = 0 The elliptic functions were computed.
IERR = 1 (Input error) k2 + t2 0 1.
IERR = 2 z is too large for k.
IERR = 3 z is a pole for the elliptic functions.
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When IERR > 1, no computation is performed.

Precision. Let z = Re(z), y = Im(z), K = K(k) be the elliptic integral of the first kind
for k, and K' = K(f). For Ikl < .99995 the relative errors of the real and imaginary parts
of sn(z, k) are less than 10-12 when 0 < x < K and 0 < y < .992K', and the relative
errors of the real and imaginary parts of cn(z,k) and dn(z, k) are less than 10-12 when
o < x < .97K and 0 < y < .97K'.

Algorithm. For z = z + iy let

8 = sn(z, k) si = sn(y, f)
c= cn(z,k) cl = cn(y,t)
d = dn(x, k) di = dn(y, e)

and D= c + k2s 2s?2. Then

sn(z, k) = (sdi + icdsicl)/D
cn(z, k) = (cc, - isdsldi)/D
dn(z, k) = (dcldl - ik2scsi)/D

are applied when D 0 0.

Programming. ELPFC1 calls ELLPF, which employs the subroutines SCD, SCDF, SCDJ,
SCDM, ELLPI, SNHCSH and functions ALNREL, CPABS, SPMPAR, IPMPAR. ELPFC1
was written by Andrew H. van Tuyl.
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WEIERSTRASS ELLIPTIC FUNCTION FOR THE EQUIANHARMONIC
AND LEMNISCATIC CASES

Let w and w' be complex numbers where Im(w'/w) > 0, and w,,,,, = 2mw + 2nw' for all
integers m, n. Then for any complex z, the Weierstrass elliptic function P (z; w, w') can be
defined by

P(z;ww') = _ __+E__

where S' denotes the sum for all m, n- = 0, ±1, ±2, ... except m = n= 0. If w = re01 and
W' = r'eO' where 4" = 4'+0 for 0 < 0 < 2ir, then the restriction Im(w'/w) > 0 is equivalent
to assuming that 0 < 0 < wr. P (z; w, w') is analytic everywhere except at the points wnn,
which are poles, and

P(z+2w;tw, w') = P(z;w,w')
P (z + 2w'; w, w') = P (z; w, w')

for all z. The relations
P(-z; w, w') = P(z; w, w')
P(Az;Aw,Aw') =A- 2P(z;w,w') )vAO

also hold. A somewhat surprising fact is that only the values g2 = 60Q'w-' and g3 =
140E'w,6 are needed for computing P (z; w, w') at a point z. Hence, P (z; w, w') is frequently
denoted by P (z; g2 , g3). For A # 0

g2 (Aw, Aw') = A-42 (W, Wt)

g3(Aw, AO) = -3g3s(wwW)
also hold. We now consider the following cases:

(1) Equianharmonic (92 = 0 and g3 is a positive real number)
(2) Lemniscatic (g2 is a positive real number and gs = 0)

(1) occurs when 2w '= -- si and 2w' = 2 i and (2) occurs when 2w = land
2w' = i. The following subroutines are available for computing P (z; w, w') and its derivative
P' (z; w, w') for these two choices of (w, w').

CALL PEQ(z,e,IERR)

The argument z is a complex number, e is a complex variable, and IERR is an integer
variable. It is assumed that the periods are 2w = 2- i and 2w' = 2 + fi. When PEQ
is called, if z is not a pole then IERR is assigned the value 0 and e is assigned the value
P (z; to, w').

Error Return. If z = Wmn for some m, n then IERR is assigned the value 1 and e = 0.

Precision. If P (z; w, w') < 1 then the absolute error is less than 7- 10-13. Otherwise, the
relative error is less than 7- 10-13.

Programming. Written by Ulrich Eckhardt (University of Hamburg, West Germany). Mod-
ified by A. H. Morris.
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References.

(1) Eckhardt, Ulrich, Algorithm 549, Weierstrass' Elliptic Functions," ACM Trans. Math
Software 4 (1980), pp.1 1 2-1 2 0.

(2) ,'A Rational Approximation to Weierstrass' P-Function," Math Comp.
30 (1976), pp.8 1 8 -82 6 .

CALL PEQ1(zeIERR)

The argument z is a complex number, e is a complex variable, and IERR is an integer
variable. It is assumed that the periods are 2w = -Hi and 2w'= 1+ hi. When PEQ1
is called, if z is not a pole then IERR is assigned the value 0 and e is assigned the value

(Z; w, w').

Error Return. If z = w,,,n for some m, n then IERR is assigned the value 1 and e = 0.

Precision. If IP'(z; w, w')l < 1 then the absolute error is less than 7 -io-13. Otherwise, the
relative error is less than 7 - 10-13.

Programming. Written by Ulrich Eckhardt (University of Hamburg, West Germany). Mod-
ified by A. H. Morris.

References.

(1) Eckhardt, Ulrich,'Algorithm 549, Weierstrass' Elliptic Functions," ACM Trans. Math
Software 4 (1980), pp.1 1 2-1 2 0 .

(2) ,"A Rational Approximation to Weierstrass' P-Function," Math Comp.
30 (1976), pp. 81 8 -8 2 6.

CALL PLEM(z,e,IERR)

The argument z is a complex number, e is a complex variable, and IERR is an integer
variable. It is assumed that the periods are 2w = 1 and 2w' = i. When PLEM is called, if
z is not a pole then IERR is assigned the value 0 and e is assigned the value P(z; w, w').

Error Return. If z = wmfl for some m, n then IERR is assigned the value 1 and e = 0.

Precision. If IP(z; w, w')I < 1 then the absolute error is less than 6- 10-13. Otherwise, the
relative error is less than 6- 10-13.

Programming. Written by Ulrich Eckhardt (University of Hamburg, West Germany). Mod-
ified by A. H. Morris.

References.

(1) Eckhardt, Ulrich,"Algorithm 549, Weierstrass' Elliptic Functions," ACM Trans. Math
Software 4 (1980), pp. 11 2 -12 0 .
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(2) ,'A Rational Approximation to Weierstrass' P-Function. II: The Lem-
niscatic Case," Computing (Arch. Elektron. Rechnen) 18 (1977), pp. 341-349.

CALL PLEM1(z,e,IERR)

The argument z is a complex number, e is a complex variable, and IERR is an integer
variable. It is assumed that the periods are 2w = 1 and 2w' = i. When PLEM1 is called, if
z is not a pole then IERR is assigned the value 0 and e is assigned the value P'(z; w, w').

I Error Return. If z = w,,m for some m, n then IERR is assigned the value 1 and e = 0.

Precision. If IP'(z; w, w')I < 1 then the absolute error is less than 6 -101s. Otherwise, theI relative error is less than 6- 10-13.

Programming. Written by Ulrich Eckhardt (University of Hamburg, West Germany). Mod-
| ified by A. H. Morris.

References.

(1) Eckhardt, Ulrich,"Algorithm 549, Weierstrass' Elliptic Functions," ACM Trana. Math
Software 4 (1980), pp.112-120.

(2) ',A Rational Approximation to Weierstrass' P-Function. II: The Lem-I niscatic Case," Computing (Arch. Elektron. Rechnen) 18 (1977), pp. 341-349.
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INTEGRAL OF THE BIVARIATE DENSITY FUNCTION OVER
ARBITRARY POLYGONS AND SEMI-INFINITE

ANGULAR REGIONS

I ~~~~~~Given a sequence of points z'i = (xi, yi) ( =1.. n+ 1) where n > 3 and v,,+ =l

Let r denote the polygon whose boundary iar is a polygonal line which begins at point mi,
traverses the points Pi~ in the order that they are indexed, and is the straight line segmentI ~ ~~~connecting Pi to vi~l for each i = 1,... ,n where z'i 0 vi'+. Then the subroutine VALR2
is available for computing the integral

U P~~r) = ~- fJ e~~2+v2)/2

I ~ ~~~and the associated function A(r) = ff dx dy. If the boundary aT is a simple positively

*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1-~~~~~~~~~~~~~~~~~~~~~

(negatively) oriented closed curve, then P(r) and A(r) are positive (negative) and IA(T)I 

I

the area of T. However, ar need not be simple. It may be self-.intersecting or have overlap-
ping line segments. If AG1 is the angle between the vectors Pi - mi-'I and Pi,~ - vi (where

V0= Vs), then it may occur that Agi = ir for some i, 'in which case a portion of the polygonI ~ ~~~may be degenerate. In general, -7r < AGi • ir for each i where the sign of the angle ispoitive (negative) if the angle is measured in a counterclockwise (clockwise) direction from
n

vi- vi- to vi~ - vii. VALR2 also computes the value k(r) = AGj, which is an

I

integer. If the boundary is a simple closed curve, then k(r) is the winding number of the
curve around any interior point of the polygon rT

I ~~~~~Alternatively, assume that we are given three points vi = (xi, yi)(i = 1,2,3) and let
AO denote the angle between the vectors /2 - ml and vs - ml.* In this case, assume that
the angle AO is measured in a counterclockwise direction from m2 - ml to vs - ml, so thatI _~~~~ AO < 27r. Let f denote the straight line beginning at point ml and passing through point
1'2, and let f denote the straight line beginning at vi and passing through v's. Then the
subroutine VALR2 is also available for computing P(T) when T is the semi-infinite angular
region bounded by I and f, and having the angle AO. 0 < P(T) • 1 for any angular region
,r, and P(r) -+ 1 when AG -+ 27r.I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Angular region T

CALL VALR2(X, YO nT PIVPARINDk)

The argument n is either 1 or the number of points involved in defining a polygon.
If n = 1 then it is assumed that T is a semi-infinite angular region defifted by the points
v = (xiv, y) (s = 1,o2,3), and that X and Y are arrays Containing X 1X 2, X3 and yi, Y2, Y.
Otherwise, if n 1 then it is assumed that r is a polygon defined by the points vj
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(zi, yi) (i = 1, .. .,n+ 1) where n > 3 and n + = -1. In this case, X and Y are arrays
containing the abscissae X1 , . . , Xn+ and ordinates Yl, ... , yn+i. Since vn+1 = v, the
values x,+l and Yn+i need not be supplied by the user. The routine automatically stores I
x1 and Yi in X(n + 1) and Y(n + 1).

P. A, and k are variables. If n = 1 then P is assigned the value P(r) for the angular
region r and A is assigned the value 0. In this case, k is not defined. Otherwise, if n > 3
then P is assigned the value P(r), A is assigned the value A(r), and k is assigned the value
k(r) for the polygon r.

IOP is an input argument which specifies the (relative) precision to which P(r) is to
be computed. IOP is set to 1, 2, or 3 for 3, 6, or 9 decimal digit accuracy.

IND is the variable that reports the status of the results. The routine assigns IND one
of the following values:

IND 0 The desired values were obtained.
IND 1 (Input error) v' is either equal to 1/2 or v3, or is too close to v2 or

L 3 to compute P(r) for the angular region r. In this case, P is set
to 5. I

IND 2 The desired values were obtained. If n = 1 then AO ; ir. Other-
wise, if n > 3 then IA~j4 z 7r for some i.

IND 3 (Input error) Either n < 1 or n = 2. I
Remarks. VALR2 can be used for computing the integral of the general bivariate density
function over an arbitrary polygon or semi-infinite angular region f. Consider

B/f) exp ~ - F' \2P - (w - +)Z z -z ,2~ dw dzPf)=|fP2(1 p2)~ ( I'd) -2pat I 0zz)( 8) }dd

where B = (1 - p 2)-1/2 /(27rawaz), (jywp, ) is the mean, ow and az are the (nonzero)
variances, and p is the correlation coefficient satisfying IpI < 1. Consider also

=( 2 )1-[ )2L -W jZ P -AZ and y = . |

Since this transformation maps straight lines into straight lines, f is mapped onto a polygon
or angular region r and we obtain P(f) = P(r). Moreover, if f is a polygon then A(r) = I
ff dwdz = awaz V/1iTA(r).

Programming. VALR2 employs the functions ERF, ERFC1, and SPMPAR. VALR2 was I
designed by Armido R. DiDonato and Richard K. Hageman, and modified by A. H. Morris.

Reference. DiDonato, A. R., and Hageman, R. K., Computation of the Integral of
the Bivariate Normal Distribution over Arbitrary Polygons, Report TR 80-166, Naval
Surface Weapons Center, Dahlgren, Virginia, 1980.
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CIRCULAR COVERAGE FUNCTION

The subroutine CIRCV is available for computing the circular coverage function P(R, d)
and the generalized circular error function V(K,c). V is the integral of an uncorrelated
elliptical Gaussian distribution with standard deviations or and ay over a circle of radius
Ka, centered at the mean of the distribution. If au > ay then

V(K,c) = a&j|exp{ c [1+c 2 +(1 -c2)cos]} r drdO

where c = /ay . P is the integral of a circular Gaussian distribution with common standard
deviation a over a circle of radius Ro whose center is offset a distance do, from the mean of
the distribution.

P(R, d) = 2 jj exp {-2 [(d + r cos 0)2 + r2 sin2 ] } r dr dO

CALL ClRCV(x,a,i, w,IERR)

The argument i may be any integer. If i = 0 then the arguments z and a are assumed
to have the values x = K and a = c where K > 0 and 0 < c < 1. Otherwise, if i : 0 then
z = R and a = d where R> 0 and d> 0.

IERR and w are variables, When CIRCV is called, if no input errors are detected then
IERR is assigned the value 0. Also, w = V(K, c) if i = 0 and w = P(R, d) if i A O.

Error Return. If an input error is detected then IERR is set as follows:
IERR = 1 x > 0 is not satisfied.
IERR = 2 0 < c < 1 or d > 0 is not satisfied.

When either of these errors is detected, w is assigned the value -1.

Precision. CIRCV is accurate to within 10-6.

Note. If at, < ay then reverse the roles of z and y.

Programming. CIRCV calls these functions ERFO and ERFCO. The routine is an adapta-
tion by A. H. Morris of the BASIC program CIRCV given in reference (1).

References.

(1) DiDonato, A. R., Five Statistical Programs in BASIC for Desktop Computers,
Report NSWC TR 83-13, Naval Surface Weapons Center, Dahlgren, Virginia, 1982.

(2) and Jarnagin, M. P., A Method for Computing the Generalized
Circular Error Function and the Circular Coverage Function, Report 1768, Naval
Weapons Laboratory, Dahigren, Virginia, 1962.
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ELLIPTICAL COVERAGE FUNCTION

The subroutines PKILL and PKILL3 are available for evaluating the integral of an
uncorrelated elliptical Gaussian distribution over the area A of a circle (x - h)2 + (y - k) 2

=

R2 . The probability to be computed is given by

P(R, , ay h, k) = 2 J exp [ 2 ( 2 a dx dy

where Ad is the standard deviation in the z direction and ov is the standard deviation in
the y direction.

CALL PKILL(R,o, ayih,k,p)

CALL PKILL3(R,ar,,aYh,k,p)

R. A, ay, h, k are real numbers and p is a variable. It is assumed that R > 0, As > 0,
and ay > 0. When PKILL or PKILL3 is called , p is assigned the value P(R, ax,ayh,k).

Precision. PKILL is accurate to within 10-e and PKILL3 is accurate to within 10-3.

Programming. PKILL and PKILL3 call the function ERFC2. The routines are adaptations
by A. H. Morris of the BASIC programs ELLCV and ELLCV3 given in reference (1).

References.

(1) DiDonato, A. R., Five Statistical Programs in BASIC for Desktop Computers,
Report TR 83-13, Naval Surface Weapons Center, Dahlgren, Virginia, 1982.

(2) and Jarnagin, M. P., Integration of the General Bivariate Distri-
bution Over an Offset Ellipse, Report 1710, Naval Weapons Laboratory, Dahlgren,
Virginia, 1960.
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COPYING POLYNOMIALS

mn-i
If p(x) = E ajz1 and the coefficients aj are stored in an array A, then the followingU subroutines are available for copying the first n coefficients a1 into an array B.

CALL PLCOPY(A,ka,m,B,kb,n)
CALL DPCOPY(A,ka,m,B,kb,n)

A and B are arrays. PLCOPY is used if A and B are real arrays, and DPCOPY isI used if A and B are double precision arrays.

The arguments m, n, ka, kb are positive integers. The coefficients a1 are assumed to beU stored in A where A(1 + j-ka) = a1 for j = 0, 1, . . ., - 1. The routine stores the first n
coefficients aj in B where B(1 + j-kb) = aj for j = 0,1, ... , n-1.

Note. If n> mthen B(1+j-kb) =0forj>m.

Programmer. A. H. Morris
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ADDITION OF POLYNOMIALS

L-1 m-1
If p(z) = E ajxj and q(x) = E bxzi then the following subroutines are available for

X j=O j=o
computing the first n coefficients of the polynomial p(x) + q(z) = Ej cjx3.

CALL PADD(A, ka, e, B, kcb,m, C, kc, n)
CALL DPADD(A,ka,fe,Bcbm,C,kcn)

A, B and C are arrays. PADD is used if A, B and C are real arrays and DPADD is
used if A, B and C are double precision arrays.

The arguments em, n, ka, kb, kc are positive integers. The coefficients aj and by areI assumed to be stored in A and B where
A(l+j.ka)=a3 (j=0,1,...,f-1)
B(1+j kb)=by (j=O.1,...,m -1).I R The routine stores the first n coefficients ci of p(x) + q(z) in C where C(1 + j.kc) = cj for

j=0,1, ...,n-1.

Remarks. The array C may begin in the same location as A or B. If C begins in the same
location as A then it is assumed that kc = ka. In this case, the result C will overwrite
the input data A. Similarly, if,,C begins in the same location as B then it is assumed that
kc = kb. Otherwise, if C does not begin in the same location as A or B, then, it is assumed
that the array C does not overlap with the arrays A and B.

Programmer. A. H. Morris
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SUBTRACTION OF POLYNOMIALS/-- 1 m-1
If p(x) = E ajzx and q(Z) =j bjxz then the following subroutines are available for

j=O j=o
computing the first n coefficients of the polynomial p(x) - q(x) = Ej cjxj-

CALL PSUBT(A, ka, e, B, kb,m,C,kc,n)
CALL DPSUBT(A, ka, e, B,kb,m,C,kc,n)

A, B and C are arrays. PSUBT is used if A, B and C are real arrays and DPSUBT is
used if A, B and C are double precision arrays.

The arguments X, m, n, ka, kb, kc are positive integers. The coefficients aj and by are
assumed to be stored in A and B where

A(1+j-ka)=aj (j=O,1,.:.,e-1)
B(1+j-kb)=bj (j=0,1,...,m-1).

The routine stores the first n coefficients cj of p(z) - q(Z) in C where C(1 + j-kc) = c; for
j=0,1,...,n-1.

Remarks. The array C may begin in the same location as A or B. If C begins in the same
location as A then it is assumed that kc = ka. In this case, the result C will overwrite
the input data A. Similarly, if.C begins in the same location as B then it is assumed that
kc = kb. Otherwise, if C does not begin in the same location as A or B, then it is assumed
that the array C does not overlap with the arrays A and B.

Programmer. A. H. Morris
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U

3 MULTIPLICATION OF POLYNOMIALS

t-i tm-1
If p(x) = Z ajzx and q(z) = E bjx1 then the following subroutines are available for3=o 0=o

computing the first n coefficients of the polynomial p(z)q(x) = >3 cjzx.

CALL PMULT(A,ka,i,B,kb,m,C,kc,n)
CALL DPMULT(A, ka, £, B,kb,m, C, kc, n)

A, B and C are arrays. PMULT is used if A, B and C are real arrays and DPMULT
is used if A, B and C are double precision arrays.

The arguments A,m, n, ka, kb, kc are positive integers. The coefficients a1 and by are
assumed to be stored in A and B where

A(1+j.ka)=aj (j=0,1,...,t-1)
B(1+j.kb)=bj (j=0,1,...,m-1).3 The routine stores the first n coefficients c; of p(x)q(z) in C where C(1 + j-kc) = cj for

j=0,1, ... ,n-1.

Remarks. It is assumed that the array C does not overlap with the arrays A and B.

Programmer. A. H. Morris
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| DIVISION OF POLYNOMIALS

t-1 ~ ~ ~ -

If p(x) = r ajxi and q(z) = E bjzx where bo A 0, then the following subroutines

are available for computing the first n coefficients of the series p(z)/q(x) = E. cjzx.

CALL PDIV(A,ka,t,B,kb,m,C,kc,n,IERR)
CALL DPDIV(A, ka, t, B, kb,m, C, kc, n,IERR)

A, B and C are arrays. PDIV is used if A, B and C are real arrays and DPDIV is
used if A, B and C are double precision arrays.

The arguments e, m, n, ka, kb, kc are positive integers. The coefficients aj and by are
assumed to be stored in A and B where

A(1+j-ka)=aj (j=0,1,...,t-1)
B(1+j.kb)=bj (j=0,1,...,m-1).I IERR is a variable. When the routine is called, if bo : 0 then IERR is assigned the value

0 and the first n coefficients cj of p(x)/q(z) are stored in C where C(1 + j - kc) = c; for
j = 0, 1, ..., n-1.

Error Return. IERR = 1 if bo = 0. In this case, no computation is performed.

3 Remarks. It is assumed that the array C does not overlap with the arrays A and B.

Programmer. A. H. Morris
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| REAL POWERS OF POLYNOMIALS

m-1
If r is real and p(z) = E ajzx where ao > 0, then the following subroutines are

* 5=o
available for computing the first n coefficients of the series p(x)r = S bjxi.

3 CALL PLPWR(r, A, ka, m, B, kb, nIERR)
CALL DPLPWR(r, A, ka, m, B, kb, nIERR)

A and B are arrays. PLPWR is used if A and B are real arrays and r a real number,
and DPLPWR is used if A and B are double precision arrays and r a double precision
number.

* The arguments m, n, ka, kb are positive integers. The coefficients a3 are assumed to be
stored in A where A(1 + j ka) = aj for j = 0,1, . .. , m - 1. IERR is a variable. When the
routine is called, if ao > 0 then IERR is assigned the value 0 and the first n coefficients b5
of p(zX) are stored in B where B(1 + j.kb) = by for j = 0,1, ... , n - 1.

Error Return. IERR = 1 if ao < 0. In this case, no computation is performed.

Remark. It is assumed that the arrays A and B do not overlap.

Algorithm. If = pT then pq = rqp' where p' and q' are the derivatives of p and q.

Consequently, bj = .E (ri + i - j)aib3 -i is used for j > 1. Also bo = a'.

* Programmer. A. H. Morris
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INVERSES OF POWER SERIES

Given an analytic function w = f(z) = E aiz' where f(O) = 0. Then the inverse
i>1I function z = f 1 (w) exists when al 0 0, and f'-(w) = j diw'. The subroutines PINV

i>1
and DPINV are available for obtaining the coefficients d, when the coefficients a, are real.
DPINV is a double precision routine.

CALL PINV(A,D,n,WK)
CALL DPINV(A,D,n,WK)

If PINV is called then A, D, and WK are real arrays. Otherwise, if DPINV is called
then A, D, and WK are double precision arrays.

It is assumed that n > 2. A is an array containing the coefficients al, . .. ,an and D is
an array of dimension n. When PINV or DPINV is called, the coefficients d1, ... , dn areI computed and stored in D.

WK is an array of dimension n(n + 1)/2 or larger. WK is a work space for the routine.

Programmer. A. H. Morris

Reference. Chang, Feng-cheng,"Power Series Unification and Reversion," Applied Math
and Computation 23 (1987), pp. 7-23.
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DERIVATIVES AND INTEGRALS OF POLYNOMIALS

n- 1
Let f(x) = E azix be a polynomial with real coefficients aj. The polynomial can be

i=O
differentiated and integrated by the following subroutine:

CALL MPLNMV(MOxo, n, A, w)

A is an array containing the coefficients a1 where A(i) = ai-I for i = 1, ... ,n. The
argument zo is an arbitrary real number and uw is a variable. MO may have the values
-1,0,1,2. When MPLNMV is called w is assigned the value:

f Jof(z) dx
f'(zo)

W = f (xo)

f"(zo)
Programmer. Allen V. Hershey

if MO = -1
if MO = a
if MO = 1

if MO = 2

127



EVALUATION OF CHEBYSHEV EXPANSIONS

For any complex number z and integer n = 0,1, ... let

To(z) = 1, Ti(z) = z

T|+ 2 (z) = 2zT.+ 1 (z) - T.(z)-

Then TY(z) is a polynomial of degree n having the leading coefficient 2`1 when n > 1.
Also Tn(t) = cos(ne) when t = cosO(O < 0 < ir), so that ITn(t)l < 1 for real t where
Itl < 1. The polynomials Tn(z) are called the Chebyshev polynomials (of the first kind). If

n-1
f(x) = ao/2 + S a1Tj(z) where ai is real, then the following functions are available for

computing f (z) when z is real.

CSEVL(z, A, n)

It is assumed that n > 1 and that A is an array containing ao,al, . .. ,an 1 where
A(i) = aj_1 (i = 1, ... ,n). Then CSEVL(z,A,n) = f(z) for any real z.

Programmer. A. H. Morris

DCSEVL(x,A,n)

It is assumed n > 1 add that A is a double precision array containing ao, a,, .. . , an-1
where A(i) = ai(i = 1, . . ., n). Then for any double precision value z, DCSEVL(z, A, n)
is the double precision value of f(x).

Remark. DCSEVL must be declared in the calling program to be of type DOUBLE
PRECISION.

* Programmer. A. H. Morris
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LAGRANGE POLYNOMIALS

Let a1, , an be n distinct real numbers. Then the ith Lagrange polynomial is defined
by|~~~~~~~~~~~( (- al)( -a2)--- (z - ai-)(x - ai+j) -*- -(!-T a.)

(a; - ai)(a, - a2) * (ai - ai-1)(ai - ai+l) ... (a, - a.)
for i = 1, 2, ..., n. The Lagrange polynomials have the property that Oi(ai) = 1, O,(a3 ) = 0

n
for j : i, and p(x) = E p(a,)4ki(z) for any polynomial of degree n - 1. For convenience,

*=1

|di = (a;-al)(ai-aa2). **(as - ai-.)(ai-ai+1) ... (ai - an)

is called the normalization divisor of q¶(x). The following subroutines are available for
computing the Lagrange polynomials and their normalization divisors.

CALL LGRNGN(A,n,D)

A and D are arrays of dimension n. The arguments a,, an are given in the array
A. The normalization divisors di, .. ., dn are computed by the routine and stored in D.

Programmer. Allen V. Hershey

CALL LGRNGV(MO,n, xo, A, D, F,DF,DDF)

A and D are arrays of dimension n. The arguments a,, ... , an are given in A and
the normalization divisors d1, . .. , dn are given in D. The argument zx is an arbitrary real
number and F,DFDDF are arrays of dimension n.

The argument MO may take the values 0,1, 2. If MO = 0 then the polynomials Oi(x)
are evaluated at zo and the values Oi(XO) stored in F. If MO = 1 then the function q0(z)I X and its derivative i((x) are computed at xo. In this case, Oi(xo) is stored in F(i) and 0i(xo)
is stored in DF(i) for i = 1, ... ,n. Similarly, if MO = 2 then the function i(:x) and its
first and second derivatives are computed at so. The values Oi(zo) are stored in F, the firstI derivatives are stored in DF, and the second derivatives are stored in DDF.

Note. If MO = 0 then DF and DDF are ignored by the routine. Similarly, if MO = 1 then
DDF is ignored.

Programmer. Allen V. Hershey

CALL LGRNGX(A,n,C)

A is an array of dimension n and C an array of dimension n x (n + 1). The arguments
al, . . .,an are given in A. The purpose of the routine is to compute the coefficients cij of
the Lagrange polynomials

n-1U qj0z) = Ck+lj
k=O
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I
When LGRNGX is called, the coefficients of +;(z) are stored in the jth column of C for
j < n. Also, the first n coefficients of the polynomial

g(Z) = (Z-al) ... (x-an)

are stored in the (n + 1)"t column of C.

Programmer. Allen V. Hershey
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| ORTHOGONAL POLYNOMIALS ON FINITE SETS

Let us, ... , un be n distinct real numbers. For any real-valued functions f, g defined
n

on the points ui let (fg) = E f(u)g(uj). Then (f,g) is an inner product when f and

g are regarded as functions defined only on uj. Thus, an orthonormal set of polynomials
{o0, #1, .. . ,qOn-,} exists where the degree of By is j for j < n. The polynomials H; are
defined recursively by

| j+I (U) = ± [(U - bj)sk(u) - ajsikj-.(u)]

where a5 = (#S+i,uqS) and by = (0s,u+;). Here it is assumed that +q = a-, = 0 andI XoMu) = 1/y¶. The following subroutines are available for computing these polynomials.

CALL ORTHOS(Um,Pn,R)

U is an array containing the values us, ... , un and m is an integer such that 1 < m < n.
P is an array of dimension n x m and R an array of dimension 2m -2. When ORTHOS is
called, #pu1(ui) is computed and stored in P(i,j) for i < n and j < m. Also the coefficients
ao, bo,a,,1 b, ... Iam-2,bm-2 are stored in R.

Programmer. Allen V. Hershey.

CALL ORTHOV(MO,n,u, Rm, F,DFDDF)

I The argument u is a real number and m an integer such that 1 < m <_ n. R is an
array containing the coefficients a0 ,60 , a1, bi, . .. ,am.2 4,bm...2 and F,DF,DDF are arrays of

* dimension m.

MO may take the values 0,1,2. If MO = 0 then #0,#1, . . . 1 are evaluated at
u and the values pj- (u) stored in F. If MO = 1 then Oi-' and its derivative -1# areI computed at u. In this case, #j-,(u) is stored in F(j) and O' l(u) is stored in DF(j)
for j = 1, . . ., m. Similarly, if MO = 2 then Oj.j and its first and second derivatives are
evaluated at u. The values #j-,(u) are stored in F, the first derivatives are stored in DF,
and the second derivatives are stored in DDF.

Note. If MO = 0 then DF and DDF are ignored by the routine. Similarly, if MO = 1 then
DDF is ignored.

Programmer. Allen V. Hershey.
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CALL ORTHOX(n, R.m, C)

The argument m is an integer such that 1 < m < n. R is an array containing the
coefficients ao,0, a,, b, . . .,a 2 , bi 2 and C an array of dimension m x m. The purpose
of the routine is to compute the coefficients eq of each polynomial

rn-i~~~~~~~~

Xi-1(U) = E Ck~llu (j = 1, .. . ,m).
k=O 

When ORTHOX is called, the coefficients of Ob-j are stored in the jh column of C.

Programmer. Allen V. Hershey
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ZEROS OF CONTINUOUS FUNCTIONS

Let F(x) be a continuous real-valued function defined for a < x < b, and assume that
F(a) and F(b) have opposite signs. Then the following function is available for finding a
point x in the interval [a, b] for which F(x) = 0.

ZEROIN(F, a, b,AERR,RERR)

ZEROIN returns a value x in the interval [a, b] for which F (x) = 0. AERR and RERR
are absolute and relative tolerances that specify the desired accuracy of x. It is assumed
that AERR > 0 and RERR > 0. If xo is the zero of F being approximated by z, then
ZEROIN terminates when a value z is obtained for which it is estimated that Iz - X <
RERR Ixo I + AERR is satisfied.

Note. The function F must be declared in the calling program to be of type EXTERNAL.

Programming. ZEROIN is a slightly modified translation of the ALGOL 60 procedure
ZERO given in reference (1). The code was distributed by G. E. Forsythe, M. A. Malcolm,
and C. B. Moler (University of New Mexico), and modified by A. H. Morris. The function
SPMPAR is called.

References.

(1) Brent, Richard, Algorithms for Minimization without Derivatives, Prentice-Hall,
1973.

(2) Forsythe, G.E., Malcolm, M.A., and Moler, C.B., Computer Methods for Mathemat-I ical Computations, Prentice-Hall, 1977.
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* SOLUTION OF SYSTEMS OF NONLINEAR EQUATIONS

Let fz(x) = 0 (i = 1,...,n) denote a system of n equations in n unknowns where
2 = (x1i . , ) Zn). Assume that each f,(z) is differentiable and that an initial guess a =I : (a,, ... , an) to a solution of the equations is given. Then the following subroutine is available
for solving the equations to within a specified tolerance.

3 CALL HBRD(F,n,X,FVEC,EPS,TOL,INFO,WKA)

X and FVEC are arrays of dimension n or larger. On input X contains the start-
ing point a = (a,, ... ,an). When HBRD terminates, X contains the final estimate z =
(xi, ... , n) of the solution vector and FVEC contains the values of the functions A, .. ., fn
at the output point in X.

I ............. The argument F is the name of a user defined subroutine that has the format:
CALL F(n,X,FVEC,IFLAG)

Here X and FVEC are arrays of dimension n and IFLAG is an integer variable. The arrayU X contains a point z = (XI, ... Xz,). Normally F will evaluate the functions fi, . . . , f,
at this point and store the results in FVEC. However, if z does not lie in the domain of

,fi ... ,fn then this cannot be done. In this case, the argument IFLAG (which will haveI been assigned a nonnegative value by HBRD) should be reset by F to a negative value.
This will signal HBRD to terminate. F must be declared in the calling program to be of

* type EXTERNAL.

EPS is an input argument which specifies the relative accuracy of F. If it is estimated
that the subroutine F produces results accurate to k significant decimal digits then one3 -t may set EPS = 10-k. It is required that EPS > 0. If EPS = 0 then it is assumed that F
produces results accurate to machine precision.

TOL is an input argument which specifies the desired accuracy of the solution. The
Euclidean norm I Iz =x I /I- is employed. If x denotes an actual solution of the equations,
then HBRD terminates when an iterate z is generated for which it is estimated that i|x -
ll < TOL - jI I is satisfied. It is required that TOL > 0. In order for the convergence test

to work properly, it is recommended that TOL always be smaller than 10-5.

WK is an array of dimension t that is used for a work space. It is assumed that the
argument t is greater than or equal to n(3n + 13)/2.

INFO is an integer variable that reports the status of the results. When HBRD termi-
nates, INFO has one of the following values:

INFO < 0 This occurs when the user terminates the execution of HBRD by
resetting the argument IFLAG in the subroutine F to a negative
value. Then INFO = the negative value of IFLAG.

INFO = 0 (Input Error) n < 1, EPS < 0, TOL < 0, or £ < n(3n + 13)/2.
INFO = 1 A solution having the desired accuracy was obtained.
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INFO = 2 The number of calls to the subroutine F has reached or exceeded
200(n + 1).

INFO = 3 TOL is too small. No further improvement in the accuracy of z is I
possible.

INFO = 4 The routine is making very poor progress.

When HBRD terminates, if INFO :$ 0 then X contains the final iterate that was gener-
ated. Also, if INFO > 1 then FVEC contains the values of the functions fl, ... , fn at this
iterate. If INFO = 2 then it may be helpful to continue the procedure by recalling HBRD
with the current point in X as the new starting point. However, this is not advisable when I
INFO = 4. This setting can arise when z = 0 is a solution or when entrapment occurs.
HBRD searches for a solution to the equations by minimizing d f,(z) 2

. In doing this, it
can become trapped in a region where the minimum does not correspond to a solution of I
the equations. This is what occurs when the equations have no solution. When entrapment
occurs and the equations are known to have a solution, then it is recommended that the
user try a different starting point. I
Scaling. If the convergence criterion ljZ - 211 < TOL. Iji21j is satisfied and TOL = 10-,
then the larger components of the final iterate z may be accurate to k significant digits but I
not the smaller components. For example, if TOL = lo-r and z = (1.2,.34E-4), then 1.2
may be accurate to 5 significant digits while .34E-4 is accurate to only 1 significant digit.
If it is suspected that the smaller components do not have acceptable accuracy, then it is |
recommended that the variables in the original problem be rescaled and the problem rerun.

Algorithm. A modified form of the hybrid Powell procedure is employed.

Programming. HBRD is a slightly modified version of the MINPACK-1 subroutine HY-
BRD1. The MINPACK-1 subroutines HYBRD, ENORM, DOGLEG, FDJAC1, QFORM,
QRFAC, R1MPYQ, and RIUPDT are employed. The subroutines were written by Jorge J.
More, Burton S. Garbow, and Kenneth E. Hillstrom (Argonne National Laboratory). The
function SPMPAR is also used.

References.

(1) More, J. J., Garbow, B.S., and Hillstrom, K. E., User Guide for MINPACK-1,
Argonne National Laboratory Report ANL-80-74, Argonne, Illinois, 1980.

(2) Powell, M. J. D., 'A Hybrid Method for Nonlinear Equations," Numerical Methods
for Nonlinear Algebraic Equations, P. Rabinowitz (ed.), Gordon and Breach, Lon-
don, 1970.
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SOLUTIONS OF QUADRATIC, CUBIC, AND QUARTIC EQUATIONS

Given a polynomial ao + a1z + *- * + a, n with real coefficients where an $A 0 and
In = 2, 3 or 4. The following subroutines are available for computing the roots z1, . .. , Zn of
the polynomial.

CALL QDCRT(A,Z)
CALL CBCRT(A,Z)
CALL QTCRT(AZ)

It is assumed that A is a real array and Z a complex array. QDCRT is used if n = 2,
CBCRT is used if n = 3, and QTCRT is used if n = 4. A is the array of coefficients
where A(k) = ak.I1 for k = 1, 2, . .. , n + 1, and Z is an array of dimension n. When the
appropriate subroutine is called, the roots z1, . . .z, z are stored in Z. The real roots precede
the complex roots. The real roots are ordered so that Izsl < Izs+iI. The complex roots are
unordered except that complex conjugate pairs of roots appear consecutively with the root

| having the positive imaginary part being first.

Programming. QTCRT calls the subroutines CBCRT and AORD, and CBCRT calls the3 subroutine QDCRT and function CBRT. The routines were written by A. H. Morris and
CBCRT was modified by Wm. Davis (NSWC). The function SPMPAR is also used.

CALL DQDCRT(A,ZR,ZI)
CALL DCBCRT(A,ZR,ZI)
CALL DQTCRT(A,ZR,ZI)

I 0 It is assumed that A,ZR, and ZI are double precision arrays. DQDCRT is used if n = 2,
DCBCRT is used if n = 3, and DQTCRT is used if n = 4. A is the array of coefficients
where A(k) = ak- 1 for k = 1, 2, . .. , n + 1, and ZR and ZI are arrays of dimension n. WhenI the appropriate subroutine is called, the real parts of the roots z1, . .. ,z,.z are stored in ZR
and the imaginary parts are stored in ZI. The real roots precede the complex roots. The
real roots are ordered so that JzjJ < Jz6 +.1 . The complex roots are unordered except thati complex conjugate pairs of roots appear consecutively with the root having the positive
imaginary part being first.

Programming. DQTCRT calls the routines DAORD, DCSQRT, and DCBCRT. DCBCRT
calls the subroutine DQDCRT and function DCBRT. The routines were written by A. H.

* Morris. The function DPMPAR is also used.
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DOUBLE PRECISION ROOTS OF POLYNOMIALS

Given a polynomial ao + aiz + ---+ a,,z' of degree n > 1. The subroutines DRPOLY
and DCPOLY are available for obtaining the roots z1, .. , z,, of the polynomial. DRPOLY
may be used if the coefficients a3 are real, and DCPOLY is applicable if the coefficients are
complex. These subroutines perform the calculations in double precision.

CALL DRPOLY(A,nZR,ZI,NUMWK,DWK)

A is a double precision array containing the coefficients where A(j) = an-j+1 for
j = 1, . .. , n + 1. ZR and ZI are double precision arrays of dimension n or larger, and NUM
is an integer variable. When DRPOLY is called, if no errors are detected then NUM = the
number of roots that are obtained. If NUM > 1 then the real parts of the roots are stored in
ZR(j) and the imaginary parts in ZI(j) for j = 1, .. . ,NUM. The roots are unordered except
that complex conjugate pairs of roots appear consecutively with the positive imaginary part
being first.

WK is a real array of dimension n + 1 or larger, and DWK is a double precision array
of dimension 6(n + 1) or larger. WK and DWK are work spaces for the routine.

Error Return. NUM = -1 if n < 1 or an = 0.

Programming. DRPOLY employs the subroutines DRPLY1,FXSHFR,QUADIT,REALIT,
CALCSC, NEXTK, NEWEST, QUADSD, and QUADPL. These routines exchange infor-
mation in a labeled common block named GLOBAL. The routines were written by M. A.
Jenkins (Queen's University, Kingston, Ontario), and modified by A. H. Morris. The func-
tions SPMPAR, DPMPAR, and IPMPAR are also used.

References.

(1) Jenkins, M. A.,"Zeros of a Real Polynomial," ACM Trans. Math Software 1 (1975),
pp. 178-189.

(2) Jenkins, M. A. and Traub, J. F.,"A Three-Stage Algorithm for Real Polynomials using
Quadratic Iterations," SIAM J. Numerical Analysis 7 (1970), pp. 545-566.

CALL DCPO LY(AR,AI,n,ZR,ZI,NUM,DWK)

AR and Al are double precision arrays containing the real and imaginary parts of the
coefficients where AR(j) = Re(an..+i) and AI(j) = Im(a.-j+i) for j = 1, .. ., n + 1. ZR
and ZI are double precision arrays of dimension n or larger, and NUM is an integer variable.
When DCPOLY is called, if no errors are detected then NUM = the number of roots that
are obtained. If NUM > 1 then the real parts of the roots are stored in ZR(j) and the
imaginary parts in ZI(j) for j = 1, .. . ,NUM.

DWK is a double precision array of dimension 10(n + 1) or larger that is a work space
for the routine.
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l
Error Return. NUM = -1 if n < 1 or an = 0.

Programming. DCPOLY employs the routines DCPLY1, CAUCHY, NOSHFT, FXSHFT,
VRSHFT, CALCT, NEXTH, POLYEV, CDIVID, and the functions SCALCP, ERREV.
These routines and functions were written by M.A. Jenkins (Queen's University, Kingston, |
Ontario) and J. F. Traub (Bell Laboratories), and modified by A. H. Morris. The functions
DPMPAR, IPMPAR, and DCPABS are also used.

References.

(1) Jenkins, M. A. and Traub, J. F., 'Algorithm 419, Zeros of a Complex Polynomial,"
Comm. ACM 15 (1972), pp. 97-99.

(2) ' "A Three-Stage Variable-Shift Iteration for Polynomial Zeros and its Relation
to Generalized Rayleigh Iteration," Numer. Math 14(1970),pp. 252-263.
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ACCURACY OF THE ROOTS OF A REAL POLYNOMIAL

Given a polynomial p(z) = a0 + alz + -* + anz" of degree n > 1 with real coefficients.
Let z1, ... ,z, be approximations for the roots of p(z). Then for each zi, the subroutine
RBND obtains the radius ri of a disk Di = {z: z-ziI < ri• centered at zi which contains
a true zero of the polynomial. The radius ri is an upper bound on the absolute error of the
approximation zi.

For each zi, RBND also computes the number ki of disks Di (including the disk Di)
which overlap with Di. The value ki is the number of roots of p(z) that are clustered near
zi. If ki = 1 then zi approximates a simple root.

Example. In the figure
k =1, k2 = 3, k3 = 2,
and k4 = 2.

z 1

CALL RBND(n, A, Z,R,RERR,K,IERR)

A is a real array containing the coefficients ao, a1, .. . , a,, and Z a complex array
containing the approximate roots z1, ... ,z,,. It is assumed that n > 1 and A(i) = ai- 1 for
i = 1, ... ,n+ 1.

IERR is an integer variable, R a real array of dimension n or larger, and K an integer
array of dimension n or larger. When RBND is called, if no input errors are detected then
IERR is assigned the value 0, the radii r1 , . . . , rn are computed and stored in R, and the
values k/, . . ., kn are computed and stored in K.

RERR is a real array of dimension n or larger. If zi = 0 then RERR(i) is set to -1 by
the routine. Otherwise, if z$ + 0 then RERR(i) = the estimated maximum relative error
of ;i.

Error Return. IERR = 1 when n < 1 and IERR = 2 when an = 0. In these cases no
computation is performed.

Programming. RBND employs the functions CPABS and SPMPAR. RBND was written
by Carl B. Bailey and modified by William R. Gavin (Sandia Laboratories). The format of
the routine was modified by A.H. Morris.
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COPYING VECTORS

A copy of a vector X = (zi, ... , ,z,) can be made and stored in the array Y by the
following subroutines:

CALL SCOPY(n,X,kx,Yky)
CALL DCOPY(n, X, kz, Y. ky)
CALL CCOPY(n,X, kz,Y, ky)

The argument kz is an integer which specifies the interval between successive compo-
nents xi of the vector X. If kz > 0 then it is assumed that xi is stored in X(i+ (i- 1)kx) for
i = 1, . .. , n. Otherwise, if kz < 0 then it is assumed that x1 is stored in X(1 + (n - i)IkxZ).
Similarly, the argument ky specifies the spacing of the components of Y.

SCOPY is used if X and Y are real arrays, DCOPY is used if X and Y are double
precision arrays, and CCOPY is used if X and Y are complex arrays. When any of these
routines is called, if n < 0 then the routine immediately terminates. Otherwise, if n > 1
then the components xi of X are stored in Y according to the spacing specified by the ky
parameter.

Programming. These routines are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
routines were written by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear
Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.
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INTERCHANGING VECTORS

The components of two vectors X = (xi, ... , ,,) and Y = (yi, ...- ,y) can be inter-
changed by the following subroutines:

CALL SSWAP(nX,kx,Yky)
CALL DSWAP(n, X, ki, Y, ky)
CALL CSWAP(n,X,kcr,Y,/ky)

The argument kx is an integer which specifies the interval between successive compo-
nents xi of the vector X. If kx > 0 then it is assumed that xi is stored in X(i+ (i - 1)/kc) for
i = 1, ... , n. Otherwise, if kr < 0 then it is assumed that xi is stored in X(1 + (n - i)lkl).I Similarly, the argument ky specifies the spacing of the components of Y.

SSWAP is used if X and Y are real arrays, DSWAP is used if X and Y are double
precision arrays, and CSWAP is used if X and Y are complex arrays. When any of these
routines is called, if n < 0 then the routine immediately terminates. Otherwise, if n > 1
then the components zx and yi are interchanged for i = 1, .. . , n. Thus, when the routine
terminates X - (yi, .* ., Yn) and Y = (xi, .n).

Programming. These routines are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
routines were written by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear
Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.

I 1
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PLANAR ROTATION OF VECTORS

Let X = (xi, . . . ,x,,) and Y = (yi, ... ,y,4) be vectors and c and s be real numbers
such that c2 + 82 = 1. X and Y can be replaced with cX + sY and -sX + cY by the
following subroutines:

CALL SROT(n, X, kx, Y, Icy, c, 8)

CALL DROT(n, X, kx, Y, ky, c, a)

CALL CSROT(n, X, Ia, Y, ky, c, s)

The argument kx is an integer which specifies the interval between successive compo-
nents xi of the vector X. If kI > 0 then it is assumed that xi is stored in X(I+ (i- 1) kx) for
i = 1, ... ., n. Otherwise, if kI < 0 then it is assumed that zi is stored in X(1 + (n - i)IkxI).
Similarly, the argument Iy specifies the spacing of the components of Y.

SROT is used if X and Y are real arrays, DROT is used if X and Y are double precision
arrays, and CSROT is used if X and Y are complex arrays. The arguments c and 8 are
real numbers when SROT and CSROT are used, and are double precision numbers when
DROT is used. When any of these routines is called, if n < 0 then the routine immediately
terminates. Otherwise, if n > 1 then the components xi and yi are replaced with cxi + syi
and-sxz + cyj fori=1,..., tn.

Programming. These routines are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
routines were written by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear
Algebra Subprograms for .VRTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.
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I.
DOT PRODUCTS OF VECTORS

The following functions are available for computing the sums Ei ziy and E>iip
where X = (z1, .. . , z,) and Y = (yg, ... , Yn) are real or complex vectors.

SDOT(n,X, kz,Y, ky)
DDOT(n,X,kz,Y.ky)
CDOTC(n, X, kx, Y. kg)
CDOTU(n,X, kx,Y.ky)

| 5 The argument kz is an integer which specifies the interval between successive compo-
nents zx of the vector X. If kx > 0 then it is assumed that xi is stored in X(1+(i- 1)kx) for
i = 1, ... , n. Otherwise, if kz < 0 then it is assumed that zx is stored in X(1 + (n - i)IkcxI).
Similarly, the argument ky specifies the spacing of the components of Y.

SDOT is used if X and Y are real arrays, and DDOT is used if X and Y are double3 precision arrays. SDOT is a real function and DDOT is a double precision function. When
either of these two functions is called, if n < 0 then the function is assigned the value 0.

Otherwise, if n > 1 then the function is assigned the value E xjyi.
t=1

CDOTC and CDOTU are used if X and Y are complex arrays. CDOTC and CDOTU
are complex functions. When either of these two functions is called, if n < 0 then the func-
tion is assigned the value 0. Otherwise, if n > 1 then CDOTC(n, X, kx, Y, ky) is assigned

n nt

the value E 2jyj and CDOTU (n,X,kz,Y,Jky) is assigned the value E yi>

I Remark. DDOT must be declared in the calling program to be of type DOUBLE PRECI-
SION, and CDOTC and CDOTV must be declared to be of type COMPLEX.

I Programming. These functions are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
functions were written by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear
Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,

* Albuquerque, New Mexico, 1977.
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SCALING VECTORS

If a is a real or complex number and X = (xi, . .. , xZ) a vector, then the vector X can
be replaced with the vector aX by the following subroutines:

CALL SSCAL(n,a,X,kz)
CALL DSCAL(n,a,X,kz)
CALL CSCAL(n, a, X, kz)
CALL CSSCAL(n,a,X,kx)

The argument kx is a positive integer. It is assumed that the component xi is stored
in X(i + (i - 1)kz) for i = 1, .. ., n.

SSCAL is used if a is a real number and X a real array, DSCAL is used if a is a double
precision number and X a double precision array, CSCAL is used if a is a complex number
and X a complex array, and CSSCAL is used if a is a real number and X a complex array.
When any of these routines is called, if n < 0 then the routine immediately terminates.
Otherwise, if n > 1 then each xi is replaced with axi. Thus when the routine terminates
X = (ax,, . .. I axn).

Programming. These routines are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
routines were written by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear
Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.
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VECTOR ADDITION

If a is a real or complex number and X = (xi, ... ,x) a vector, then any vector
Y = (yl, ... , y,* ) can be replaced with the vector aX + Y by the following subroutines:

CALL SAXPY(n, a, X, kx, Y, iy)
CALL DAXPY(n, a, X, kx, Y, ky)
CALL CAXPY(n, a, X, kx, Y, ky)

The argument kx is an integer which specifies the interval between successive compo-
nents xi of the vector X. If ki > 0 then it is assumed that xi is stored in X(1 + (i - 1)kz) for
1i = 1, . .., n. Otherwise, if kx < 0 then it is assumed that Xi is stored in X(1 + (n - i)jIckj).
Similarly, the argument ky specifies the spacing of the components of the vector Y.

I SAXPY is used if a is a real number and X, Y are real arrays, DAXPY is used if a
is a double precision number and X, Y are double precision arrays, and CAXPY is used
if a is a complex number and X, Y are complex arrays. When any of these routines is
called, if n < 0 or a = 0 then the routine immediately terminates. Otherwise, if n > 1
then yi is replaced with axi + yi for i = 1, ... ,n. Thus when the routine terminates
Y = (ax1 + y1 2 ... , arn + Yn).

Programming. These routines are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
routines were written by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic LinearI Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.
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LI NORM OF A VECTOR

The following functions are available for computing the L1 norm of a real vector or a
modified L, norm of a complex vector.

SASUM(n, X, kx)
DASUM(n, X, kx)
SCASUM(n,X kz)

X = (z1 , .. ., xr) is a vector and kx a positive integer. It is assumed that xi is stored
in X(1+ (i- 1)kx) for i= 1, ...,n.

SASUM is used if X is a real array and DASUM is used if X is a double precision
array. SASUM is a real function and DASUM a double precision function. When either of
these functions is called, if n < 0 then the function is assigned the value 0. Otherwise, if

n > 1 then the function is assigned the value E 1xil.

I l
SCASUM is used if X is a complex array. SCASUM is a real function. When SCASUM

is calledS if n < X then the function is assigned the value 0. Otherwise, if n > 1 then

SCASUM(n, X, kx) is assigned the value E [IRe(xil + IIm(xi)I].

Remarks.I
(1) DASUM must be declared in the calling program to be of type DOUBLE PRECISION.
(2) SCASUM(nX,k,) is the norm of the complex vector X = (z, .. .,x,) when X is

regarded as a real vector of dimension 2n. This norm is frequently preferred over theI na

standard L1 norm E> lxil since it takes less time to compute.
V ~~~~i=l

Programming. These functions are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
functions were written by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear
Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,I Albuquerque, New Mexico, 1977.

I 0 1

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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L2 NORM OF A VECTOR

The following functions are available for computing the L2 norm of a real or complex
I vector.

SNRM2(n,X, kz)
DNRM2(n,X,kz)
SCNRM2(n,X, kx)

X = ( ... X, Zn) is a vector and kz a positive integer. It is assumed that xi is stored
inX(l+(i-1)kx) fori= 1, ... ,n.

SNRM2 is used if X is a real array, DNRM2 is used if X is a double precision array,
and SCNRM2 is used if X is a complex array. SNRM2 and SCNRM2 are real functions
and DNRM2 a double precision function. When any of these functions is called, if n < 0
then the function is assigned the value 0. Otherwise, if n > 1 then the function is assigned

1/2
the value I 12

Remark. The function DNRM2 must be declared in the calling program to be of type
DOUBLE PRECISION.

Programming. These functions are part of the BLAS package of basic linear algebra sub-I routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
functions were written by Charles Lawson (Jet Propulsion Laboratory).

| Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear
Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.
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Lo NORM OF A VECTOR

The following functions are available for finding the largest component zi of a vector
X = (xi, SI Xa X k)

ISAMAX(n, X, kx)
IDAMAX(n, X, kz)
ICAMAX(n, X, kz)

The argument kz is a positive integer. It is assumed that the component xi is stored
in X(1 + (i-1)kx) for i = 1, ... , n.

ISAMAX is used if X is a real array and IDAMAX is used if X is a double precision
array. ISAMAX and IDAMAX are integer functions. When either of these functions is
called, if n < 0 then the function is assigned the value 0. Otherwise, if n > 1 then the
function is assigned the value i where i is the smallest index such that fxiI = max{jj I j =
1,..., n

ICAMAX is also an integer function. It is used when X is a complex array. If
n < 0 then ICAMAX(n, X, kx) is assigned the value 0. Otherwise, if n > 1 then the
function is assigned the value i where i is the smallest index such that IRe(x)j + ± IIm(zi)I
= rnax{IRe(xz)I + Ilm(zy)I :j = 1, ... ,n}-

Note. The mapping X D max{lRe(xr)l + IIm(zi)l: j = 1, ... , n} is the Lo, norm of the
complex vector X = (X1, .. X. ,nz,) when X is regarded as a real n x 2 matrix. This norm is
frequently preferred over the standard Loo norm max{jx|j: j = 1, ... , n} since it takes less
time to compute.

Programming. These functions are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
functions were written by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic Linear
Algebra Subprograms for FORTRAN Usage. Report SAND 77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.
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PACKING AND UNPACKING SYMMETRIC MATRICES

An n x n symmetric matrix A = (aij) can be represented by either its lower triangular
elements

(ail a12 a13 ...

a 21 a 2 2 a 2 3 .
a31 a3 2 a3 3 ...

or its upper triangular elements. If the lower triangular elements are used, then the
packed form for the matrix is an array of dimension n(n + 1)/2 containing the elements
al 1a2la 22a3la3 2a3 3 *. Similarly, if the upper triangular elements are used then the packed
form for the matrix is an array containing a1 la12 .. Gana22a23 ... a2n - Currently theI blower triangular elements are used for packing symmetric matrices. The following
subroutines are available for packing and unpacking real symmetric matrices.

CALL MCVFS(A, ka, n, B)
CALL DMCVFS(A, ka, n, B)

A is an n x n symmetric matrix and B an array whose dimension is equal to or greater
than n(n + 1)/2. The routines store the packed form of A in B. MCVFS is used if A and
B are real arrays and DMCVFS is used if A and B are double precision arrays. The input
argument ka has the following value:

*ka = the number of rows in the dimension statement for A in the calling program
It is assumed that ka > n.

I Note. A and B may begin in the same location.

Programmer. A. H. Morris

CALL MCVSF(A, ka, n, B)3 CALL DMCVSF(A,ka,n,B)

B is an array containing the elements of a packed n x n symmetric matrix and A is an
array of dimension ka x n where ka > n. The routines unpack B and store the results in3 A. MCVSF is used if A and B are real arrays and DMCVSF is used if A and B are double
precision arrays.

Note. A and B may begin in the same location.

* Programmer. A. H. Morris
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CONVERSION OF REAL MATRICES
TO AND FROM DOUBLE PRECISION FORM

The subroutines MCVRD and MCVDR are available for converting real matrices to
and from double precision form.

3 CALL MCVRD(m, n, A, ka, B, kb)

A is a real m x n matrix and B a double precision 2-dimensional array. MCVRD stores
the matrix in double precision form in the array B. The input arguments ka and kb have

a the following values:
ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris

CALL MCVDR(m,n,A,ka,Bkb)

A is a double precision m x n matrix and B a real 2-dimensional array. MCVDR stores
the matrix in single precision form in the array B. The input arguments ka and kb have
the following values:

ka = the number of rows in the dimension statement for A in the calling program
Hkb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris
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STORAGE OF REAL MATRICES IN THE COMPLEX MATRIX FORMAT

The following subroutine is available for storing a real matrix A in the complex matrix
format.

CALL MCVRC(m, n, A, ka, B, kb)

A is a real m X n matrix and B a complex 2-dimensional array. MCVRC stores the
matrix in complex form in the array B. The input arguments ka and kb have the following
values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris
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I: 
THE REAL AND IMAGINARY PARTS OF A COMPLEX MATRIX

If A = (air) is a complex matrix then let Re(A) = (Re(aij)) and Irn(A) = (Im(aij))
denote the real and imaginary parts of A. The following subroutines are available for
obtaining Re(A) and Im(A).

CALL CM REAL(m, n, A, ka, B. kb)

A is a complex m x n matrix and B a real 2-dimensional array. CMREAL obtains
Re(A) and stores it in B. The input arguments ka and kb have the following values:I ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris

3 CALL CMIMAG(m,n,A,ka,B,kb)

A is a complex m x n matrix and B a real 2-dimensional array. CMIMAG obtains
Im(A) and stores it in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris

1~ ~~~~~~~~~~~~~~6
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COPYING MATRICES

The following subroutines are available for copying matrices.

CALL MCOPY(m,n,A,ka,B,kb)

A is a real m x n matrix and B a real 2-dimensional array. MCOPY makes a copy of
the matrix A and stores it in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris

CALL SMCOPY(n,A,B)

A is a real packed n x n symmetric matrix and B a real array whose dimension is equal
to or greater than n(n + 1)/2. SMCOPY makes a copy of the packed symmetric matrix A
and stores it in B.

Programmer. A. H. Morris

CALL DMCOPY(m,n,A,ka,B,kb)

A is a double precision m x n matrix and B a double precision 2-dimensional array.
DMCOPY makes a copy of the matrix A and stores it in B. The input arguments ka and
kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris

CALL CMCOPY(m,n,A,ka,B,kb)

A is a complex m x n matrix and B a complex 2-dimensional array. CMCOPY makes a
copy of the matrix A and stores it in B. The input arguments ka and kb have the following
values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris
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I| COMPUTATION OF THE CONJUGATE OF A COMPLEX MATRIX

If A = (asj) is a complex matrix then let A = (-as) denote the conjugate of A. TheI following subroutine is available for computing the conjugate matrix A.

CALL CMCONJ(m, n, A, ka, B, kb)

I A is a complex m x n matrix and B a complex 2-dimensional array. CMCONJ computes
A and stores the results in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > m, and that B contains at least n columns.

: | Remark. A and B may reference the same storage area when ka = kb.

Programmer. A. H. Morris
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TRANSPOSING MATRICES

The subroutines TPOSE, DTPOSE, CTPOSE and TIP, DTIP, CTIP are available for
transposing a matrix A. TPOSE, DTPOSE, and CTPOSE are used if the results are to be
stored in a separate storage area B. TIP, DTIP, and CTIP are used if the results are to be
stored in A (i.e., if the transposition is to be done in place).

CALL TPOSE(m,n,A,ka,B, kb)
CALL DTPOSE(m,n,A,ka,B,kb)
CALL CTPOSE(m, n, A, ka, B, kb)

TPOSE is called if A is a real matrix and B a real array, DTPOSE is called if A is a
double precision matrix and B a double precision array, and CTPOSE is called if A is a
complex matrix and B a complex array.

A is a matrix having m rows and n columns, and B a 2-dimensional arrary. The routine
transposes A and stores the results in B. The input arguments ka and kb have the following
values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > n, and that B contains at least n columns.

Programmer. A. H. Morris

CALL TIP(A, m, n, MOVE, k, MDIM)
CALL DTIP(A,m, n, MOVE, k, MDIM)
CALL CTIP(A,m,n,MOVE,k,MDIM)

TIP is called if A is a real array, DTIP is called if A is a double precision array, and
CTIP is called if A is a complex array.

A is an array of dimension mn which contains an m x n matrix to be transposed. The
routine transposes the matrix and stores the results in A. If m = n then the arguments
MOVE, k, MDIM are ignored.

I If m :A n then k may be any integer. If k < 0 then MOVE is ignored. Otherwise, if
k > 1 then MOVE is assumed to be an array of dimension k. MOVE is a storage area for
saving information that may help speed up the transposition process. If no information is
saved then TIP, DTIP, and CTIP may run 2-10 times slower than TPOSE, DTPOSE, and
CTPOSE. However, the use of a storage area may or may not actually speed up the trans-
position process. This depends entirely on the values of m and n. MDIM is a variable that
is set by the routine. After the routine terminates, MDIM will be the estimated optimum
setting for k for the current values of m and n.

Programming. The routines TIP, DTIP, and CTIP employ the subroutine INFCTR.
The routines were written by Norman Brenner (Dept. of Earth and Planetary Sciences,
Massachusetts Institute of Technology), and modified by A. H. Morris.
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Reference. Brenner, Norman, "Algorithm 467. Matrix Transposition in Place," Comm.

ACM 16 (1973), pp. 692-694. |
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COMPUTING ADJOINTS OF COMPLEX MATRICES

If A = (aij) then let A' = (ad,) denote the adjoint of A. The following subroutines are
available for computing A'.

CALL CMADJ(m, n, A, ka, B, kb)

A is a complex m x n matrix and B a complex 2-dimensional array. CMADJ computes
A* and stores the results in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > n, and that B contains at least n columns.

Remark. CMADJ combines the following operations:
CALL CTPOSE(m, n, A, ka, B, kb)
CALL CMCONJ(n, m, B, kb, B, kb)

It is assumed that A and B are different storage areas.

Programmer. A. H. Morris

I CALL CTRANS(ka, n, A)

A is a complex array of dimension ka xn which contains an n x n matrix. CTRANS
computes the adjoint of the matrix and stores the results in A. It is assumed that ka > n.

Programmer. George J. Davis (Georgia State University)
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I | MATRIX ADDITION

I The matrix sum C = A + B can be computed by the following subroutines:

CALL MADD(m, n, A, ka, B, kb, C, kc)

A and B are real m x n matrices and C a real 2-dimensional array. MADD computes
A+ B and stores the results in C. The input arguments ka, kb, kc have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program
kc = the number of rows in the dimension statement for C in the calling program

It is assumed that ka > m, kb > m, kc > m, and that C contains at least n columns.

The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assumed that kc = ka. In this case, the result C will overwrite the input
data A. Similarly, if C begins in the same location as B then it is assumed that kc = kb.
Otherwise, if C does not begin in the same location as A or B, then it is assumed that the
storage area for C does not overlap with the storage areas for A and B. In this case there
is no restriction on kc (other than the customary restriction that kc > m).

Programmer. A. H. Morris-

CALL SMADD(n, A, B, C)

A and B are real packed nx n symmetric matrices and C is a real array whose dimension
is equal to or greater than n(n + 1)/2. SMADD computes A + B, which is also a symmetric
matrix, and stores the results in packed form in C.

I - The array C may begin in the same location as A or B. If C begins in the same location
as A then the result C will overwrite the input data A. Similarly, B will be overwritten if
C begins in the same location as B. Otherwise, if C does not begin in the same locationI as A or B, then it is assumed that the storage area for C does not overlap with the storage
areas for A and B.

I Programmer. A. H. Morris

CALL DMADD(m,n,A,ka,B,kb,C,kc)

A and B are double precision m x n matrices and C a double precision 2-dimensional
array. DMADD computes A + B and stores the results in C. The arguments ka, Hb, kc

| - have the following values:
ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program
|kc = the number of rows in the dimension statement for C in the calling program

It is assumed that ka > m, kb > m, kc > m, and that C contains at least n columns.
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l~~~~~~~~~~
The array C may begin in the same location as A or B. If C begins in the same location

as A then it is assumed that kc = ka. In this case, the result C will overwrite the input
data A. Similarly, if C begins in the same location as B then it is assumed that kc = Hb. I
Otherwise, if C does not begin in the same location as A or B, then it is assumed that the
storage area for C does not overlap with the storage areas for A and B. In this case there
is no restriction on kc (other than the customary restriction that kc > m).

Programmer. A. H. Morris

CALL CMADD(m,n,A,ka,B,kb,C,kc)

A and B are complex m x n matrices and C a complex 2-dimensional array. CMADD
computes A + B and stores the results in C. The arguments ka, kb, kc have the following
values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program I
kc = the number of rows in the dimension statement for C in the calling program

It is assumed that ka > m, kb > m, kc > m, and that C contains at least n columns.

The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assumed that kc = ka. In this case, the result C will overwrite the input
data A. Similarly, if C begins in the same location as B then it is assumed that kc =kb. 
Otherwise, if C does not begin in the same location as A or B, then it is assumed that the
storage area for C does not overlap with the storage areas for A and B. In this case there
is no restriction on kc (other than. the customary restriction that kc > m).

Programmer. A. H. Morris
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I 0 MATRIX SUBTRACTION

The matrix difference C = A - B can be computed by the following subroutines:

CALL MSUBT(m, n, A, ka, B, kb, C, kc)

A and B are real m x n matrices and C a real 2-dimensional array. MSUBT computes
A- B and stores the results in C. The input arguments ka, kb, kc have the following values:I ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
ikc = the number of rows in the dimension statement for C in the calling program

It is assumed that ka > m, kb > m, kc > m, and that C contains at least n columns.

The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assumed that kc = ka. In this case, the result C will overwrite the input
data A. Similarly, if C begins in the same location as B then it is assumed that kc = kb.
Otherwise, if C does not begin in the same location as A or B, then it is assumed that the
storage area for C does not overlap with the storage areas for A and B. In this case there
is no restriction on kc (other than the customary restriction that kc > m).

Programmer. A. H. Morrisr

CALL SMSUBT(n,A,BC)

A and B are real packed nx n symmetric matrices and C is a real array whose dimension
is equal to or greater than n(n + 1)/2. SMSUBT computes A- B, which is also a symmetric
matrix, and stores the results in packed form in C.

H The array C may begin in the same location as A or B. If C begins in the same location
as A then the result C will overwrite the input data A. Similarly, B will be overwritten if
C begins in the same location as B. Otherwise, if C does not begin in the same location
as A or B, then it is assumed that the storage area for C does not overlap with the storage
areas for A and B.

Programmer. A. H. Morris

CALL DMSUBT(m,n,A,ka,B,kb,C,kc)

A and B are double precision m x n matrices and C a double precision 2-dimensional
array. DMSUBT computes A - B and stores the results in C. The arguments ka, kcb, kcc
have the following values:

:ka = the number of rows in the dimension statement for A in the calling program
ckb = the number of rows in the dimension statement for B in the calling program
kc = the number of rows in the dimension statement for C in the calling program

It is assumed that ka > m, kb > m, kc > m, and that C contains at least n columns.
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The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assumed that kc = ka. In this case, the result C will overwrite the input
data A. Similarly, if C begins in the same location as B then it is assumed that kc = kb. I
Otherwise, if C does not begin in the same location as A or B, then it is assumed that the
storage area for C does not overlap with the storage areas for A and B. In this case there
is no restriction on kc (other than the customary restriction that kc > m).

Programmer. A. H. Morris

CALL CMSUBT(m, n, A, ka, B, kb, C, kc)

A and B are complex m x n matrices and C a complex 2-dimensional array. CMSUBT
computes A - B and stores the results in C. The input arguments ka, kb, kc have the
following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program I
kc = the number of rows in the dimension statement for C in the calling program

It is assumed that ka > m, kb > m, kc > m, and that C has at least n columns.

The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assumed that kc = ka. In this case, the result C will overwrite the input
data A. Similarly, if C begins in the same location as B then it is assumed that kc = kb.
Otherwise, if C does not begin in the same location as A or B, then. it is assumed that the
storage area for C does not overlap with the storage areas for A and B. In this case there
is no restriction on kc (other than the customary restriction that kc > m).

Programmer. A. H. Morris
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MATRIX MULTIPLICATION

The matrix product C = AB may be computed by the subroutines MTMS, DMTMS,
CMTMS or MPROD, DMPROD, CMPROD. MTMS, DMTMS, and CMTMS can be used
if the storage area for C does not overlap with the storage areas for A and B. Otherwise,
if the components of C are to be stored in the storage area for A or B, then MPROD,
DMPROD, or CMPROD must be used.

CALL MTMS(m, n, e, A, ka, B, kb, C, kc)
CALL DMTMS(m,ntAka,B,kb,C,kc)
CALL CMTMS(m, n, e, A, ka, B, kb, C, kc)

MTMS is used if A and B are real matrices and C a real array, DMTMS is used if A
and B are double precision matrices and C a double precision array, and CMTMS is usedI if A and B are complex matrices and C a complex array.

A is a matrix having m rows and n columns, B a matrix having n rows and e columns,
and C a 2-dimensional array. The routine computes the product AB and stores the results
in C. The input arguments ka, kb, kc have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program
kc = the number of rows in the dimension statement for C in the calling program

It is assumed that ka > m, kb > n, kc > m, and that C contains at least I columns.

Remark. It is assumed that the storage area for C is separate from the storage areas for A
and B.

Programmer. A. H. Morris

CALL MPROD(mn,e,A,ka,B,kb,C,kc,WK)I1 : ; CALL DMPROD(mn,AA,kaB,kb,C,kc,WK)
CALL CMPROD(m,n,t,A,ka,B,kb,C,kc,WK)

MPROD is used if A and B are real matrices and C and WK are real arrays, DMPROD
is used if A and B are double precision matrices and C and WK are double precision arrays,
and CMPROD is used if A and B are complex matrices and C and WK are complex arrays.

A is a matrix having m rows and n columns, B a matrix having n rows and e columns,
and C a 2-dimensional array. The routine computes the product AB and stores the results
in C. The input arguments ka, kb, kc have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program
kc = the number of rows in the dimension statement for C in the calling program

It is assumed that ka > m, kb > n, kc > m, and that C contains at least t columns.
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WK is an array that serves as a temporary storage area. The matrix C may begin in
the same location as A or B. If C begins in the same location as A, then it is assumed
that kc = ka and that the dimension of WK is equal to or greater than e. In this case, the I
result C will overwrite the input data A. Similarly, if C begins in the same location as B
then it is assumed that kc = kb and that the dimension of WK is equal to or greater than
m. Otherwise, if C does not begin in the same location as A or B, then it is assumed that I
the storage area for C does not overlap with the storage areas for A and B. In this case,
the array WK is not referenced.

Remark. If C begins in the same location as A or B, then it is assumed that the storage
areas for A and B are distinct storage areas.

Programming. MPROD employs the subroutines RLOC and YCHG, DMPROD employs
the subroutines DLOC and DYCHG, and CMPROD employs the subroutines CLOC and
CYCHG. The routines were written by A. H. Morris. I
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I| PRODUCT OF A PACKED SYMMETRIC MATRIX AND A VECTOR

Let A denote a packed symmetric matrix of order n and z a column vector of dimension
n where n > 1. Then the following subroutines are available for computing the product Ax.

CALL SVPRD(A,n,x,y)
CALL DSVPRD(A,n,x,y)

The argument y is an array of dimension n. SVPRD is called when A, z, y are real
arrays and DSVPRD is called when A, x,y are double precision arrays. When either of
these routines is called, Ax is computed and stored in y.

m Programmer. A. H. Morris
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I TRANSPOSE MATRIX PRODUCTS

If At denotes the transpose of A, then the matrix product C = AtB can be computed
by the following subroutine:

CALL TMPROD(m, n,e,A,ka,B,kb,C,kc)

A is a real matrix having m rows and n columns, B a real matrix having m rows and t
columns, and C a real 2-dimensional array. TMPROD computes AtB and stores the results
in C. The input arguments ka, kb, kc have the following values:I eka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
kc = the number of rows in the dimension statement for C in the calling program

Here it is assumed that ka > m, kb > m, kc > n, and that C contains at least t columns.
Also it is assumed that the storage area for C does not overlap with the storage areas for
A and B.

Note. All inner products E akibkj are computed in double precision and the results stored

* in single precision.

Programmer. A. H. Morris
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SYMMETRIC MATRIX PRODUCTS

If At denotes the transpose of A, then the matrix product AtA can be computed and
its packed form stored in the array B by the following subroutine:

CALL SMPROD(mn,nA,ka,B)

A is a real m x n matrix and B a real array whose dimension is equal to or greater
than n(n + 1)/2. SMPROD computes AtA and stores its packed form in B. The input
argument ka has the following value:

ka = the number of rows in the dimension statement for A in the calling program
It is assumed that ka > m.

Note. All inner products Z aGakj are computed in double precision and the results stored

in single precision.

Programmer. A. H. Morris
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KRONECKER PRODUCT OF MATRICES

If A is an m x n matrix and B a k x e matrix, then the Kronecker product A ® B is
defined by

0 allBA *- Bn

aml B ... amnB

From this definition we obtain:

(1) (Transpose Equality) (A ® B)t = At ® Bt.
(2) (A X B) ® E = A ® (B X E) for any matrix E.
(3) (A® B) (C ® D) = (AC) ® (BD) if C is a matrix having n rows and D a matrix having

e rows.

If A and B are complex square matrices of orders m and k respectively, then from the Jordan
canonical forms of A and B the determinant equality det (AO B) = (det A)k (det B)m can
be verified. Moreover, if A and B are nonsingular then (A®8 B)- 1 = A-'1 B-' from (3).

The following subroutines are available for computing C = A X B.

CALL KPROD(A, ka, m, n, B, kb, k, ec, kc)
CALL DKPROD(A, ka, m, n, B, kb, k,e,C, kc)
CALL CKPROD(A,/ka,m,n,Bkb,keC,kc)

It is assumed that A is an m x n matrix, B a k x e matrix, and C a 2-dimensional
array. KPROD is used if A, B, C are real arrays, DKPROD is used if A, B, C are double
precision arrays, and CKPROD is used if A, B, C are complex arrays. When the routine is
called, A ® B is computed and stored in C.

The arguments ka, kb, and kc have the following values:
ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement- for B in the calling program
kc = the number of rows in the dimension statement for C in the calling program

It is assumed that ka > m, kb > k, kc > mk, and that C contains at least nt columns.

Remark. It is assumed that the array C does not overlap with A or B.

Programmer. A. H. Morris
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INVERTING GENERAL REAL MATRICES AND SOLVING
GENERAL SYSTEMS OF REAL LINEAR EQUATIONS

The subroutines CROUT, KROUT, MSLV, NPIVOT, and DMSLV are available for
inverting real matrices A and solving systems of real linear equations AX = B. CROUT,
KROUT, MSLV, and NPIVOT solve single precision problems, and DMSLV solves double
precision problems.

All the routines except NPIVOT are general-purpose, employing partial pivot Gauss
elimination. NPIVOT can only occasionally be used since it uses Gauss-Jordan elimination
with no pivot search. Normally, CROUT and KROUT produce the same results, which will
be of equal or greater accuracy than the results produced by MSLV. However, since many
of the calculations are performed in double precision in CROUT and KROUT, whereas
only single precision is used in MSLV, MSLV may run 2-3 times faster than CROUT and
KROUT.

CALL CROUT(MO, n, m, A, ka, B, kb, D, INDEX,TEMP)

A is a real matrix of order n where n > 1. If MO = 0 then the inverse of A is computed
and stored in A. If MO : 0 then the inverse is not computed.

The argument m is an integer. If m > 1 then B is a real matrix having n rows and m
columns. In this case the matrix equation AX = B is solved and the solution X is stored
in B. If m < 0 then there are no equations to be solved. In this case the argument B is
ignored.

The argument ka is the number of rows in the dimension statement for A in the
calling program, and kb the number of rows in the dimension statement for B in the calling
progran. If m < 0 then the argument kb is ignored.

D is a real variable. When CROUT is called, D is assigned the value det(A) where
det(A) is the determinant of A. If D is found to have the value 0 then the routine immedi-
ately terminates.

INDEX is an array of dimension n - 1 or larger that is used by the routine for keeping
track of the row interchanges that are made. If MO 0 0 then INDEX is ignored.

TEMP is a real array of dimension n or larger that is a work space for the routine. If
MO : 0 then TEMP is ignored.

Remarks.

(1) KROUT should be used instead of CROUT when the determinant D is not needed.
Underflow or overflow in the calculation of D may cause CROUT to terminate prema-
turely.

(2) The matrix A is destroyed.
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Algorithm. The Crout procedure is used. All inner products are computed in double
precision and the results returned in single precision. Partial pivoting is performed.

Programming. CROUT calls the subroutine CROUTO. These routines were written by
A. H. Morris.

CALL KROUT(MO, n, m, A, ka, B, kb,IERR,INDEX,TEMP)

A is a real matrix of order n where n > 1. If MO = 0 then the inverse of A is computed
and stored in A. If MO $ 0 then the inverse is not computed. I

The argument m is an integer. If m > I then B is a real matrix having n rows and m
columns. In this case the matrix equation AX = B is solved and the solution X is stored
in B. If m < 0 then there are no equations to be solved. In this case the argument B is
ignored.

The argument ka is the number of rows in the dimension statement for A in the I
calling program, and kb the number of rows in the dimension statement for B in the calling
program. If m < 0 then the argument kb is ignored.

INDEX is an array of dimension n - 1 or larger that is used by the routine for keeping
track of the row interchanges that are made. If MO :A 0 then INDEX is ignored. i

TEMP is a real array of dimension n or larger that is a work space for the routine. If
MO : 0 then TEMP is ignored.

Error Return. IERR is a variable that reports the status of the results. When the routine
terminates IERR has one of the following values:

IERR = 0 The requested results were obtained.
IERR = -1 Either n, ka, or kb is incorrect. In this case, A and B have not

been modified.
IERR = k The kth column of A has been reduced to a column containing

only zeros.
When an error is detected, the routine immediately terminates.

Remark. The matrix A is destroyed.

Algorithm. The CROUT procedure is used. All inner products are computed in double
precision and the results returned in single precision. Partial pivoting is performed.

Programming. KROUT calls the subroutine KROUTO. These routines were written by
A. H. Morris.

CALL NPIVOT(n,m, A, ka, B, kb, D, IERR)

A is a real matrix of order n where n > 1. When NPIVOT is called the inverse of A is
computed and stored in A.
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The argument m is an integer. If m > 1 then B is a real matrix having n rows and m

columns. In this case the matrix equation AX = B is solved and the solution X is stored
in B. If m < 0 then there are no equations to be solved. In this case the argument B is
ignored.

The argument ka is the number of rows in the dimension statement for A in the
calling program, and kb the number of rows in the dimension statement for B in the calling

program. If m < 0 then kb is ignored.

D is a real variable. On input D must be assigned a value by the user. If the input
value is r, then when NPIVOT terminates D = rd where d is the determinant of A.

Error Return. IERR is an integer variable. If inversion is successful then IERR is assigned

the value 0. Otherwise, IERR = 1 if NPIVOT cannot invert the matrix.

Algorithm. The Gauss-Jordan procedure is used. However, no pivot searching is done.

NPIVOT terminates (with IERR set to 1) whenever a zero pivot element is encountered.

Remarks. Since pivot search is frequently needed to invert a matrix, and since pivot search

is normally required to obtain accurate results, NPIGOT should not be used ezeept on
those occasions when pivot search is known to be superfluous.

Programmer. A. H. Morris

CALL MSLV(MO, n, m,A, ka, B, kb, D, RCOND,IERR,IPVT,WK)
CALL DMSLV(MO, n, m, A, ka, B, kb, D, RCOND,IERR,IPVT,WK)

A is a matrix of order n where n > 1. If MO = 0 then the inverse of A is computed

and stored in A. If MO : 0 then the inverse is not computed.

The argument m is an integer. If m > 1 then B is a matrix having n rows and m

columns. In this case the matrix equation AX = B is solved and the solution X is stored
in B. If m < 0 then there are no equations to be solved. In this case the argument B is
ignored.

The argument ka is the number of rows in the dimension statement for A in the
calling program, and kb the number of rows in the dimension statement for B in the calling
program. If m < 0 then the argument kb is ignored.

D is an array of dimension 2. When either routine is called the determinant det(A) of

the matrix A is computed. If det(A) = d- 10k where 1 < Idl < 10 and k an integer, then d
is stored in D(1) and the exponent k is stored in floating point form in D(2).

RCOND is a variable. When either routine is called, the routine makes an estimate c

of the condition number of the matrix A (relative to the LI norm). RCOND is assigned
the value 1/c.

IPVT is an integer array of dimension n or larger that is used by the routines for
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keeping track of the row interchanges that are made. WK is an array of dimension n or
larger that is used as a work space.

Remarks.

(1) If MSLV is called then it is assumed that A and B are real matrices, D and WK real
arrays, and RCOND a real variable. Otherwise, if DMSLV is called then it is assumed
that A and B are double precision matrices, D and WK double precision arrays, and
RCOND a double precision variable.

(2) RCOND satisfies 0 < RCOND < 1. If RCOND # 10-1 then one can expect the results
to have approximately k fewer significant digits of accuracy than the elements of A.
For example, if MSLV is used to invert a matrix in the 14 digit CDC single precision
arithmetic and RCOND = .4E-3, then the computed coefficients of the inverse matrix
should normally be accurate to about 11 digits. In general, RCOND characterizes how
well or poorly conditioned the problem is. If RCOND z 1 then one should expect the
results to be almost as accurate as the original data A. However, if RCOND Fe 0 then
one should expect the results to be nonsense.

(3) The matrix A is destroyed.

Error Return. IERR is an integer variable. If RCOND is sufficiently large so that 1 +
RCOND > 1, then IERR is set to 0 and the problem is solved. Otherwise, if 1+RCOND = 1
then IERR is set to 1 and the routine terminates. In this case, A will have been destroyed
but B will not have been modified. Also the determinant will not have been computed.

Algorithm. The partial pivot Gauss elimination procedure is used.

Programming. MSLV and DMSLV are driver routines for the LINPACK subroutines
SGECO, SGEFA, SGESL, SGEDI and DGECO, DGEFA, DGESL, DGEDI. The subrou-
tines were coded by Cleve Moler (University of New Mexico). The subroutines employ the
vector routines SSWAP, SDOT, SSCAL, SAXPY, SASUM, ISAMAX and DSWAP, DDOT,
DSCAL, DAXPY, DASUM, IDAMAX.

References.

(1) Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., LINPACK Users'
Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1979.

(2) Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinson, J. H., 'An Estimate for the
Condition Number of a Matrix, SIAM Journal of Numerical Analysis 16 (1979),
pp. 368-375.

196

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I



SOLUTION OF REAL EQUATIONS WITH ITERATIVE IMPROVEMENT

Given a real n x n matrix A and column vector b. The following subroutine is available
for solving the equation Ax = b. Iterative improvement is performed to compute the solution
x to machine accuracy.

CALL SLVMP(MOn, A, ka, b, XWKjIWKIND)

MO is an input argument which specifies if SLVMP is being called for the first time.
On an initial call, MO = 0 and we have the following setup:

A is a 2-dimensional real array of dimension ka x n containing the matrix A, b a real
vector of dimension n, and X a real array of dimension n. When SLVMP is called, Ax = b
is solved and the solution stored in X. A and b are not modified by the routine.

WK is a real array of dimension n'+n or larger, and IWK an integer array of dimension
n or larger. These arrays are for internal use by the routine. On an initial call to SLVMP,I an LU decomposition is obtained for A and stored in WK and IWK. Then the equation
Ax = b is solved.

IND is an integer variable that reports the status of the results. On an initial call to
SLVMP, when the routine terminates IND has one of the following values:

IND = 0 The solution X~was obtained to machine accuracy.I IND = 1 X was obtained, but not to machine accuracy.
IND = -k The kth column of A was reduced to a column containing only

zeros.

When IND = -k, no solution is obtained.

After an initial call to SLVMP, if IND = 0 or 1 on output, then the routine may be
called to solve a new set of equations Ax = b without having to redecompose the matrix
A. In this case, the input argument MO may be set to any nonzero value. When MO i4 0
it is assumed that only b has been modified. The routine employs the LU decomposition
obtained on the initial call to SLVMP to solve the new set of equations Ax = b. On output
X will contain the solution to the new set of equations. As before, A and b are not modified
by the routine.

If SLVMP is recalled with MO $ 0, then when the routine terminates IND has one of
the following values:

IND = 0 The solution X was obtained to machine accuracy.I IND = 1 X was obtained, but not to machine accuracy.

Programming. SLVMP calls the subroutine LUIMP. These routines were written by A. H.
Morris. The subroutines MCOPY, SCEFA, SGESL, SSCAL, SAXPY and functions SPM-
PAR, SDOT, ISAMAX are also employed.
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SOLUTION OF ALMOST BLOCK DIAGONAL SYSTEMS
OF LINEAR EQUATIONS

Consider a system Ax = b of linear equations where A is an n x n matrix having the
block structure

A2

A= As

o Am

Here it is assumed that A, is an ri x c1 matrix for i = 1, . .. ,m, and that A, and A.+, may

have 8i > 0 columns in common for i < m. Thus. r, = n and block A. begins in column
| *~~~~~~~~~~~~~~~~~=1

| i~~~~-1
E (ch - 8 k) + 1 for i > 2. It is also assumed that three successive blocks A,-,, As, As+,
e= 1
do not have columns in common. Thus .i-.1 + 6i < ci for i =2, ... ,m-1. If m > 2 then
the following subroutines are available for solving Ax = b.

CALL ARCEC0(nS,,MTRmIWKbXIND)

S is an array of dimension j rici or larger. On input S contains the blocks Al, ..

of the matrix A. The blocks are stored in sequence. Al is stored in the first r1c1 locations
of S, A2 is stored in the next r2C2 locations, etc. For each A., the columns of Ai are stored
in sequence in S.

Example.

all a12 ais 0 0

a2 l a2 2 a2 3

If A =0 aas a34o 0
0 . O a44 0

then n = 5, m = 3, 81 = 2, and 62 = 0. Also, S is an array containing the data all, a2l,I al 2,a2 2 , alsa 23, a32,a4 2 , a33 ,a 43, a3 4,a4 4, a65 -

MTR is an integer matrix of dimension 3 x m containing the block information of the
| matrix A:

MTR(1, i) = ri (i = 1, ... I m)
MTR(2,i) = ci (i= 1, ...,m)
MTR(3,i) = bi (i = 1, ... ,m-1)

For convenience, the routine sets MTR(3, m) = 0.
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X is an array of dimension n or larger. When ARCECO is called, A is decomposed and
then the equations Ax = b are solved. The decomposition of A is stored in S, overwriting
the initial input data A, and the solution x is stored in X. The vector b is destroyed by the I
routine.

IWK is an array of dimension n or larger for internal use by the routine. The pivot
indices involved in the decomposition of A are stored in IWK.

IND is a variable that reports the status of the results. When ARCECO terminates,
IND has one of the following values:

IND = 0 The system of equations was solved.
IND = 1 (Input Error) Either n, m, or MTR is incorrect, or three successive

blocks Ai-,, Ai, A,+ of A have columns in common.
IND =1 A is a singular matrix. The equations cannot be solved.

Usage. After a call to ARCECO, if IND = 0 on output then the subroutine ARCESL (see I
below) may be called to solve a new set of equations Ax b without having to redecompose
the matrix A. ARCESL employs the decomposition of A obtained by ARCECO.

Algorithm. A modification of the alternate row and column elimination procedure by Varah
is used.

Programming. ARCECO employs the routines ARCEDC, ARCEPR, ARCEPC, ARCESL,
ARCEFS, ARCEFM, ARCEFE, ARCEBS, ARCEBM, and ARCEBE. These routines were
developed by J. C. Diaz (Mobil Research and Development Corp., Farmers Branch, Texas),
G. Fairweather (University of Kentucky), and P. Keast (University of Toronto).

Reference. Diaz, J. C., Fairweather, G., and Keast, P., "FORTRAN Packages for Solving I
Certain Almost Block Diagonal Linear Systems by Modified Alternate Row and Column
Elimination," ACM Trans. Math Software 9 (1983), pp. 358-375.|

CALL ARCESL(SMTR,m,IWK,b,X)

The argument m is the number of blocks Al, .... ,AAm in the matrix A. ARCESL I
may be used only when IND = 0 on output from ARCECO. In this case, S contains
the decomposition of A obtained by ARCECO and IWK contains the pivot indices of the
decomposition. The argument b is a vector of dimension n, and X an array of dimension I
n or larger. When ARCESL is called, the equations Ax = b are solved and the solution
stored in X. The vector b is destroyed by the routine.

Programming. ARCESL calls the subroutines ARCEFS, ARCEFM, ARCEFE, ARCEBS,
ARCEBM, and ARCEBE. These routines were developed by J. C. Diaz (Mobil Research
and Development Corp.,Farmers Branch, Texas), G. Fairweather (University of Kentucky), I
and P. Keast (University of Toronto).
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SOLUTION OF ALMOST BLOCK TRIDIAGONAL SYSTEMS
OF LINEAR EQUATIONS

Consider a system Tx = b of linear equations where T is a square matrix having the
block structure

Al B1 C1

C2 A 2 B2 0
I Cs As Bs

T=

B, C,' A,

Here it is assumed that Ak,Bk,Ck (k = 1, ... ,n) are m x m matrices, and that b is a
column vector of dimension mn. If n > 4 then the following subroutine is available for
solving Tx = b.

CALL BTSLV(MOmn,A,B,C,XIPIND)

MO is an input argument which specifies if BTSLV is being called for the first time.I On an initial call, MO = 0 and we have the following setup:

A, B, C are 3-dimensional arrays of dimension m x m x n where the (i, j)-th elements
of the matrices Ak,Bk,Ck are stored in A(ij,k), B(ijk), C(ij,k) for k = 1,... ,n.
A, B, C are modified by the routine.

X is an array of dimension mn or larger. On input, the vector b is stored in X. WhenI Hi BTSLV is called, if a solution z is obtained for Tx = b then the solution is stored in X.

IP is an array of dimension mn or larger that is used by the routine for listing the rowI interchanges that are made.

On an initial call to the routine, a block LU decomposition is performed on T, the
results of which are stored in A, B, C. This decomposition involves row interchanges only
within the diagonal blocks Ak; i.e., no row interchanges are performed between rows of
different blocks Ak and Au. Thus it may occur that the decomposition of a nonsingular
matrix T cannot be completed. IND is a variable that reports the status of the results.
When BTSLV terminates, IND has one of the following values:

IND = 0 T was decomposed and the equations Tx = b solved.I IND =-1 (Input Error) Either m < 1 or n < 4.
IND = k The decomposition process failed in the kth diagonal block. The

routine cannot solve the equations in their present form.

After an initial call to BTSLV, if IND = 0 then the routine may be recalled with MO
7 0 and a new b. When MO 0 0, then it is assumed that A, B, C,. and IP have not been
modified and that X contains the new b. The routine retrieves from A, B, C, and IP the
block decomposition that was obtained on the initial call to BTSLV, and solves the new
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system of equations Tzx= b. The solution is stored in X. In this case, IND is not referenced
by the routine.

Programming. BTSLV employs the subroutines DECBT, SOLBT, DEC, and SOL. These
subroutines were written by Alan C. Hindmarsh (Lawrence Livermore Laboratory).

Reference. Hindmarsh, A. C., Solution of Block-TVidiagonal Systems of Linear Alge-
braic Equations, Report UCID-30150, Lawrence Livermore Laboratory, 1977.

202

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



INVERTING SYMMETRIC REAL MATRICES AND SOLViNG
SYMMETRIC SYSTEMS OF REAL LINEAR EQUATIONS

The subroutines SMSLV and DSMSLV are available for inverting symmetric real matri-
ces A and solving systems of real linear equations AX = B. SMSLV handles single precision
problems and DSMSLV handles double precision problems. It is assumed that the matrix
A is in packed form. If the inverse of A is computed, then the inverse is a symmetric matrix
which will be stored in packed form.

Note. All eigenvalues of a real symmetric matrix A are real. The inertia of A is the ordered
triple (r, v, ¢) where r is the number of positive eigenvalues of A, z. the number of negative
eigenvalues of A, and ¢ the number of zero eigenvalues of A. Thus, if n is the order of A
then -r + v + s = n. Also A is positive definite (positive semi-definite, negative definite,
negative semi-definite) if r = n (v =0, Ov = n, r = 0).

CALL SMSLV(MO,n, m, A, B, kb, D,RCOND,INERT,IERR,IPVT,WK)
CALL DSMSLV(MO,n, m, A, B, kb, D,RCOND,INERT,IERR,IPVT,WK)

A is an array of dimension n(n + 1)/2 containing the elements of a packed n x n
symmetric matrix where n > 1. If MO = 0 then the inverse of A is computed and stored
in A in packed form. If MO ' 0 then the inverse of A is not computed.

The argument m is an integer. If m > 1 then B is a matrix having n rows and m
columns. In this case AX = B is solved and the solution X is stored in B. If m < 0 then
there are no equations to be solved. In this case B is ignored.

The argument kb is the number of rows in the dimension statement for B in the calling
program. If m < 0 then kb is ignored.

D is an array of dimension 2. When either routine is called the determinant det(A) of
the matrix A is computed. If det(A) = d- 10 where 1 < Idl < 10 and k an integer, then d
is stored in D(1) and the exponent k is stored in floating point form in D(2).

RCOND is a variable. When either routine is called, the routine makes an estimate c
of the condition number of the matrix A (relative to the LI norm). RCOND is assigned
the value 1/c.

INERT is an integer array of dimension 3. When either routine is called the inertia
of the matrix A is computed. INERT(1) is set to the number of positive eigenvalues of A,
INERT(2) is set to the number of negative eigenvalues, and INERT(3) is set to the number
of zero eigenvalues.

IPVT is an integer array of dimension n or larger that is used by the routines for
keeping track of the row and column interchanges that are made. WK is array of dimension
n or larger that is used as a work space.
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Remarks.

(1) If SMSLV is called then it is assumed that A and B are real matrices, D and WK are
real arrays, and RCOND is a real variable. Otherwise, if DSMSLV is called then it is
assumed that A and B are double precision matrices, D and WK are double precision
arrays, and RCOND is a double precision variable.

(2) RCOND satisfies 0 < RCOND < 1. If RCOND ; 10-- then one can expect the results
to have approximately k fewer significant digits of accuracy than the elements of A.
For example, if SMSLV is used to invert a matrix in the 14 digit CDC single precision
arithmetic and RCOND = .4E-3, then the computed coefficients of the inverse matrix
should normally be accurate to about 11 digits. In general, RCOND characterizes how
well or poorly conditioned the problem is. If RCOND F 1 then one should expect the
results to be almost as accurate as the original data A. However, if RCOND t 0 then
one should expect the results to be nonsense.

(3) The data in A is destroyed.

Error Return. IERR is an integer variable. If RCOND is sufficiently large so that 1 +
RCOND > 1, then IERR is set to 0 and the problem is solved. Otherwise, if 1 + RCOND
= 1 then IERR is set to 1 and the routine terminates. In this case, A will have been de-
stroyed but B will not have been modified. Also the determinant and inertia will not have
been computed.

Algorithm. The diagonal pivoting factorization procedure is used. Partial pivoting is
employed.

Precision. SMSLV and the more general routine MSLV have approximately the same ac-
curacy, and DSMSLV and DMSLV have approximately the same accuracy.

Efficiency. Even though .SMSLV performs approximately half the number of multiplica-
tions and divisions as MSLV, normally one can expect SMSLV to take about 70-80% of the
time required by MSLV. However, for sparse matrices SMSLV may be 20-30% slower than
MSLV. Similar comments hold for DSMSLV and DMSLV.

Programming. SMSLV and DSMSLV are driver routines for the LINPACK subroutines
SSPCO, SSPFA, SSPSL, SSPDI and DSPCO, DSPFA, DSPSL, DSPDI. SSPCO and DSPCO
were written by Cleve Moler (University of New Mexico). The remaining LINPACK subrou-
tines were written by James Bunch (University of California, San Diego). The subroutines
employ the vector routines SCOPY, SSWAP, SDOT, SSCAL, SAXPY, SASUM, ISAMAX
and DSWAP, DDOT, DSCAL, DAXPY, DASUM, IDAMAX.

References.

(1) Bunch, J. R. and Parlett, B. N., 'Direct Methods for Solving Symmetric Indefinite
Systems of Linear Equations," SIAM J. Numerical Analysis 8 (1971), pp. 639-655.

(2) Bunch, J. R., 'Analysis of the Diagonal Pivoting Method," SIAM J. Numerical Anal-
ysis 8 (1971), pp. 656-680.
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(3) Bunch, J. R., Kaufman, L., and Parlett, B.N., "Decomposition of a Symmetric Matrix,"
Numerische Mathematik 27 (1976), pp. 95-109.

(4) Bunch, J., and Kaufman, L., "Some Stable Methods for Calculating Inertia and Solving
Symmetric Linear Systems," Math. Comp. 31 (1977), pp. 163-179.

(5) Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinson, J. H., "An Estimate for the
Condition Number of a Matrix," SIAM Numerical Analysis 16 (1979), pp. 368-375.

(6) Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., LINPACK Users'
Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1979.
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INVERTING POSITIVE DEFINITE SYMMETRIC MATRICES AND SOLVING
POSITIVE DEFINITE SYMMETRIC SYSTEMS OF LINEAR EQUATIONS

The subroutines PCHOL and DPCHOL are available for inverting positive definite
symmetric real matrices A and solving systems of real linear equations AX = B. PCHOL
handles single precision problems and DPCHOL handles double precision problems. It is
assumed that the matrix A is in packed form. If the inverse of A is computed then the
inverse is a symmetric matrix which will be stored in packed form.

CALL PCHOL(MO,n,m, A, B,kb,IERR)
CALL DPCHOL(MO,n,m, A, B,kb,IERR)

A is an array of dimension n(n + 1)/2 or larger containing the elements of a packed
n x n positive definite symmetric matrix where n > 1. If MO = 0 then the inverse of A is
computed and stored in A in packed form. If MO 0 0 then the inverse is not computed.

The argument m is an integer. If m > 1 then B is a matrix having n rows and m
columns. In this case AX = B is solved and the solution X is stored in B. If m < 0 then
there are no equations to be solved. In this case B is ignored.

The argument kb is the number of rows in the dimension statement for B in the calling
program. If m < 0 then kb is ignored.

Remarks.

(1) If PCHOL is called then it is assumed that A and B are real arrays, and if DPCHOL
is called then it is assumed that A and B are double precision arrays.

(2) The data in A is destroyed.

Error Return. IERR is an integer variable. If A is positive definite then IERR is set to 0
and the problem is solved. Otherwise, IERR = k if the leading k x k submatrix of A is not
positive definite.

Algorithm. The Cholesky procedure is used.

Precision. The results obtained by PCHOL and DPCHOL are occasionally less accurate
(up to 1 significant digit) than the results obtained by SMSLV and DSMSLV.

Programming. PCHOL and DPCHOL are driver routines for the LINPACK subroutines
SPPFA, SPPSL, SPPDI)and DPPFA, DPPSL, DPPDI. These subroutines were written by
Cleve Moler (University of New Mexico). The functions SDOT, DDOT and subroutines
SAXPY, SSCAL, DAXPY, DSCAL are also used.

Reference. Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., LINPACK
Users' Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1979.
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SOLUTION OF TOEPLITZ SYSTEMS OF LINEAR EQUATIONS

I An n x n Toeplitz matrix is a matrix of the form
a0 a-, a-2 ... a-,+,3 a, a0 a-, ... a-n+2

* a2 al a a .. a-n+SG.... .

| ~~~~~~~~~~~an-, an-2 an-3 . .ao
For convenience, we denote this matrix by An for n > 1. If An is a real matrix where ao :• 0
and b is a real column vector, then the subroutines TOPLX and DTOPLX are available3 for solving the system of equations Anz = b. TOPLX is a single precision routine and
DTOPLX a double precision routine.

CALL TOPLX(A,b,z,n,C,H,IERR)
CALL DTO PLX(A, b, z, n, G, H,IERR)

TOPLX is used if A, b, x, G, H are real arrays, and DTOPLX is used if A, 6, x, c, H areI double precision arrays.

A is an array of dimension 2n- 1 or larger containing the coefficients A(j) = an (j =I 1, .. . , 2n - 1) of the matrix An. The argument x is an array of dimension n or larger, and
IERR is an integer variable. When the routine is called, if Anx = b is solved then IERR is
set to 0 and the solution is stored in x. A and b are not modified by the routine.

G and H are arrays of dimension n or larger that are work spaces for the routine.

Error Return. IERR = 1 if the equations cannot be solved by the routine.

Remarks. The Levinson bordering procedure is used. This procedure is inductive, be-
ginning with the solution xi = bl/ao of the equation a0 z1 = bl. Given a solution forI St~Z aijxzj = bi (i = 1, ... , N) where N < n, then a solution for SEN+1aiyz. = bi (i=
1, ... I N+1) is obtained where ±1, ... , iN+1 is computed from x1, .. . ,xN. This procedure
fails when some submatrix AN is singular (e.g., when ao.= 0). Also, the procedure may
yield poor results when some AN is exceedingly ill-conditioned. In such situations one must
use a more general equation solver. In TOPLX and DTOPLX 4(n - 1)2 floating additions
and 4n(n - 1) integer/floating multiplications and divisions are used when n > 2. Conse-
quently, these routines are considerably more efficient than general equation solvers such as
KROUT and DMSLV, but more restrictive and frequently less accurate.

I Programming. TOPLX and DTOPLX are modifications by A. H. Morris of the subroutine
TOEPLZ, written by George Rybicki.

I Reference. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Nu-
merical Recipes: The Art of Scientific Computing, Cambridge University Press, 1986,

* pp. 47-52.
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INVERTING GENERAL COMPLEX MATRICES AND SOLVINGI GENERAL SYSTEMS OF COMPLEX LINEAR EQUATIONS

The subroutines CMSLV, CMSLV1, and DCMSLV are available for inverting complex
matrices and solving systems of complex linear equations. CMSLV and CMSLV1 solve
single precision problems and DCMSLV solves double precision problems.

I CALL CMSLV(MOn, m, A, ka, B, kb, D,RCONDIERR,IPVT,WK)

A is a complex matrix of order n where n > 1. If MO = 0 then the inverse of A is
computed and stored in A. If MO : 0 then the inverse is not computed.

The argument m is an integer. If m > 1 then B is a complex matrix having n rows3 and m columns. In this case the matrix equation AX = B is solved and the solution X is
stored in B. If m < 0 then there are no equations to be solved. In this case the argument
B is ignored.

I The argument ka is the number of rows in the dimension statement for A in the calling
program, and the argument kb is the number of rows in the dimension statement for B in
the calling program. If m < 0 then the argument kb is ignored.

D is a complex array of dimension 2. When CMSLV is called the determinant det(A)
of the matrix A is computed. If det(A) = d - 10 ' where 1 < IRe(d)i + lIm(d)l < 10 and kI an integer, then d is stored in D(1) and the exponent k is stored as a complex number in
D(2).

RCOND is a real variable. When CMSLV is called, the routine makes an estimate
c of the condition number of the matrix A (relative to the modified L1 norm where each
absolute value jzj is replaced with IRe(z)j + Ilm(z)l). RCOND is assigned the value 1/c.

I IPVT is an integer array of dimension n or larger that is used by the routine for-keeping
track of the row interchanges that are made. WK is a complex array of dimension n or
larger that is used as a work space.

Remarks.
(1) RCOND satisfies 0 < RCOND < 1. If RCOND s 1O-k then one can expect the results

to have approximately k fewer significant digits of accuracy than the elements of A.
For example, if CMSLV is used to invert a matrix in the 14 digit CDC single precision
arithmetic and RCOND = .4E- 3, then the computed coefficients of the inverse matrix
should normally be accurate to about 11 digits. In general, RCOND characterizes how
well or poorly conditioned the problem is. If RCOND P 1 then one should expect the
results to be almost as accurate as the original data A. However, if RCOND s 0 then
one should expect the results to be nonsense.

(2) The matrix A is always destroyed.

Error Return. IERR is an integer variable. If RCOND is sufficiently large so that 1 +
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RCOND > 1, then IERR is set to 0 and the problem is solved. Otherwise, if 1+RCOND = 1
then IERR is set to 1 and the routine terminates. In this case, A will have been destroyed
but B will not have been modified. Also the determinant will not have been computed.

Algorithm. The partial pivot Gauss elimination procedure is used. The pivots akj are
selected so that IRe(akj)j + lIm(akj)l = max{jRe(a 3j)j + |Im(a1 j)I i = j, .. . ,n}. I
Programming. CMSLV calls the LINPACK subroutines CGECO, CGEFA, CGESL, and
CGEDI. These subroutines were written by Cleve Moler (University of New Mexico). The I
subroutines CSWAP, CSCAL, CSSCAL, CAXPY and functions CDOTC, SCASUM, ICA-
MAX are also used.

References.

(1) Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., LINPACK Users'
Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1979. I

(2) Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinson, J. H., 'An Estimate for the
Condition Number of a Matrix," SIAM Journal of Numerical Analysis 16 (1979),
pp. 368-375. -

CALL CMSLV1(MO n,m, A, ka, B, kbIERR,IPVT,WK)

A is a complex matrix of order n where n > 1. If MO = 0 then the inverse of A is
computed and stored in A. If MO :4 0 then the inverse is not computed.

The argument m is an integer. If m > 1 then B is a complex matrix having n rows
and m columns. In this case the matrix equation AX = B is solved and the solution X is
stored in B. If m < 0 then there are no equations to be solved. In this case the argument I
B is ignored.

The argument ka is the number of rows in the dimension statement for A in the calling
program, and the argument kb is the number of rows in the dimension statement for B in
the calling program. If m < 0 then the argument kb is ignored.

IPVT is an integer array of dimension n or larger that is used by the routines for
keeping track of the row interchanges that are made.

WK is a complex array of dimension n or larger that is a work space for the routine. I
If MO : 0 then WK is ignored.

Error Return. IERR is a variable that reports the status of the results. When CMSLV1 I
terminates IERR has one of the following values:

IERR = 0 The requested results were obtained.
IERR =-1 Either n, ka, or kb is incorrect.
IERR = k The kth column of A has been reduced to a column containing

zeros. The requested results cannot be obtained.
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X Remarks.
(1) The matrix A is destroyed.
(2) CMSLV and CMSLV1 produce the same results for X and the inverse of A.

Algorithm. The partial pivot Gauss elimination procedure is used. The pivots akj are
selected so that IRe(ak4)I + |Im(ak3 )I = max {IRe(ai)j + |Im(ajj)j: i =j, .. . n, }.

Programming. CMSLVI calls the LINPACK subroutines CGEFA, CGESL, and CGEDI.
These subroutines were written by Cleve Moler (University of New Mexico). The subrou-
tines CSWAP, CSCAL, CAXPY and functions CDOTC, ICAMAX are also used.

Reference. Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., LINPACK
Users' Guide, SIAM, 1979.

CALL DCMSLV(MO,n, m,ARAI,ka,BR,BI,kb,IERR,IPVT,WK)

AR and AI are double precision matrices of order n > 1. AR and AI are the real and
imaginary parts of the complex matrix A whose inverse is to be computed or for which
AX = B is to be solved. If MO = 0 then the inverse of the complex matrix is computed
and the results stored in AR and AI. If MO 0 0 then the inverse is not computed.

I The argument m is an integer. If m > 1 then BR and BI are double precision matrices
having n rows and m columns. In this case, BR and BI are the real and imaginary parts
of the complex matrix B for which AX = B is to be solved. When DCMSLV is called, the
real and imaginary parts of the solution X are computed and stored in BR and BI. If m < 0
then there are no equations to be solved. In this case BR and BI are ignored.

The argument ka is the number of rows in the dimension statements for AR and AI in
the calling program, and the argument kb is the number of rows in the dimension statements
for BR and BI in the calling program. If m < 0 then the argument kb is ignored.I IPVT is an integer array of dimension n or larger that is used by the routine for keeping
track of the row interchanges that are made.

WK is a double precision array of dimension 2n or larger that is a work space for the
routine. If MO : 0 then WK is ignored.

3 Error Return. IERR is a variable that reports the status of the results. When DCMSLV
terminates IERR has one of the following values:

IERR = 0 The requested results were obtained.I IERR = -1 Either n, ka, or kb is incorrect.
IERR = k The kt" columns of AR and AI have been reduced to columns3 containing zeros. The requested results were not obtained.

Remark. The matrices AR and AI are destroyed.

2
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Algorithm. The partial pivot Gauss elimination procedure is used. The pivots Aki are
selected so that IRe(ak,)I + lIm(akj)l = max {jRe(aj)I + jIm(aij)I: i = j, ... , n}.

Programming. DCMSLV calls the subroutines DCFACT, DCSOL, and DCMINV. These
routines were written by A. H. Morris. The functions CDIVID and DPMPAR are also
used.

214

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



SOLUTION OF COMPLEX EQUATIONS
WITH ITERATIVE IMPROVEMENT

Given a complex n x n matrix A and a complex column vector b. The following routine
is available for solving the equation Ax = b. Iterative improvement is performed to compute
the solution x to machine accuracy.

CALL CSLVMP(MO,n, A, ka, b,X,WK,IWK,IND)

MO is an input argument which specifies if CSLVMP is being called for the first time.
On an initial call, MO = 0 and we have the following setup:

A is a 2-dimensional complex array of dimension ka x n containing the matrix A, b a
complex vector of dimension n, and X a complex array of dimension n. When CSLVMP
is called, Ax = b is solved and the solution stored in X. A and b are not modified by the
routine.

WK is a complex array of dimension n2 + n or larger, and IWK an integer array of
dimension n or larger. These arrays are for internal use by the routine. On an initial call
to CSLVMP, an LU decomposition is obtained for A and stored in WK and IWK. Then the
equation Ax = b is solved.

IND is an integer variable that reports the status of the results. On an initial call to
CSLVMP, when the routine terminates IND has one of the following values:

IND = 0 The solution X was obtained to machine accuracy.
IND = 1 X was obtained, but not to machine accuracy.
IND =-k The kth column of A was reduced to a column containing only

zeros. In this case no solution can be obtained.

After an initial call to CSLVMP, if IND = 0 or 1 on output, then the routine may be
called to solve a new set of equations Ax = b without having to redecompose the matrix
A. In this case, the input argument MO may be set to any nonzero value. When MO # 0
it is assumed that only b has been modified. The routine employs the LU decomposition
obtained on the initial call to CSLVMP to solve the new set of equations Ax = b. On
output X will contain the solution to the new set of equations. As before, A and b are not
modified by the routine.

If CSLYMP is recalled with MO # 0, then when the routine terminates IND has one
of the following values:

IND = 0 The solution X was obtained to machine accuracy.
IND = 1 X was obtained, but not to machine accuracy.

Programming. CSLVMP calls the subroutine CLUIMP. These routines were written by
A. H. Morris. The subroutines CMCOPY, CGEFA, CGESL, CSCAL, CAXPY and func-
tions SPMPAR, CDOTC, ICAMAX are also employed.
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SINGULAR VALUE DECOMPOSITION OF A MATRIX

If A is a complex m x n matrix then there exists an m x m unitary matrix U and an
n x n unitary matrix V such that D = U*AV is a diagonal matrix1 . Let d1 , .. ., dk be
the diagonal elements of D where k = minfm, n}. Then U and V can be selected so that
the diagonal elements are real numbers and di > d2 > ... > de; > 0. The nonnegative
diagonal elements di are unique, and if A is a real matrix then U and V can be chosen to
be real orthogonal matrices. The decomposition D = U*AV is called the singular value
decomposition of A. The elements d1, . . ., d are the singular values of A, the columns
of U are left singular vectors, and the columns of V are right singular vectors.

Remark. For m > n, D = (Dt) where D1 = diag(di, ... ,dn). Consequently, if U is
partitioned into U = (U1, U2 ) where U1 has n columns, then it follows that A = UDV* =
U1DV'. The decomposition A = U1D1V* is frequently also called the singular value
decomposition, and in many applications it- suffices.

The following subroutines are available for finding the singular value decomposition
D =U*AV of a matrix A.

CALL SSVDC(A, ka m, mn D, E, U, ku,V, kvWORK,JOB,INFO)
CALL DSVDC(A, ka, n, n, D, E, U, ku, V, kv,WORK,JOBINFO)
CALL CSVDC(A, ka, m, n, D, E, U, ku, V, kv,WORK,JOBINFO)

A is a 2-dimensional array of dimension ka x n containing the m x n matrix whose
singular value decomposition is to be computed. D is an array of dimension min{m+ 1, n}.I When any of the routines is called, the singular values of A are computed and stored in
descending order of magnitude in D(1), D. . ,D(k) where k = min{m, n}.

JOB is an integer that controls the computation of the singular vectors. It is assumed
that JOB = I 10 + J when I, J = 0,1, . . ., 9. I and J have the following meaning.

I = 0 Do not compute the left singular vectors.I I = 1 Compute all m left singular vectors.
I > 1 Compute the first min{m, n} left singular vectors. (Here we com-

pute the decomposition A = UiDiV*.)I J = 0 Do not compute the right singular vectors.
J > 0 Compute the right singular vectors.

3 U is a 2-dimensional array which contains the left singular vectors that are requested,
and ku is the number of rows in the dimension statement for U in the calling program. It
is assumed that ku > m. If no left singular vectors are requested (i.e., if JOB < 10) then UI is ignored by the routines. Otherwise, U must be of dimension ku x m if all m left singular
vectors are requested, and U must be of dimension ku x min{m, n} if the first min{m, n}
left singular vectors are requested.

U' denotes the adjoint matrix of U.
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V is a 2-dimensional array which contains the right singular vectors that are requested,
and kv is the number of rows in the dimension statement for V in the calling program. It
is assumed that kv > n. If no right singular vectors are requested then V is ignored by
the routines. Otherwise, V must be of dimension kv x n if the right singular vectors are
requested.

E is an array of dimension n or larger, and. WORK is an array of dimension m or
larger. E and WORK are storage areas for the, routines.

Remarks.

(1) If SSVDC is called then it is assumed that the arrays A, D, E, U, V,WORK are real
arrays, if DSVDC is called then it is assumed that the arrays are double precision
arrays, and if CSVDC is called then it is assumed that the arrays are complex arrays.

(2) The contents of A are destroyed by the routines. If left singular vectors are requested
and there is sufficient storage in A to hold the vectors (there will be sufficient storage if

< n or JOB > 20), then one may set U = A. Similarly, if right singular vectors are
requested and m > n then one may set.V = A. However, only one of the two arrays U
and V may be identified with A.

Error Return. INFO is an iteger variable. If all the singular values are found then INFO
will be set to 0 and the array E will contain zeros. However, if the j"'' singular value cannot
be found then INFO is set to j. In this case, if j < k where k = min~m, n} then the singular
values d 6+i, dA., will have been computed and stored in D. A will have been reduced to
an upper bidiagonal matrix B with D as its diagonal and E its super diagonal. If U and V
have been requested then B = U*AV will be satisfied.

Programming. SSV DC, DSVDC, and CSVDC are part of the LINPACK package of matrix
subroutines released by Argonne National Laboratory. The routines were coded by G. W.
Stewart (University of Maryland). The routines employ the vector subroutines SSWAP,
SROT, SDOT, SSCAL, SAXPY, SNRM2, DSWAP, DROT, DDOT, DSCAL, DAXPY,
DNRM2, and CSWAP, CSROT, CDOTC, CSCAL, CAXPY,, SCNRM2. Also the subrou-
tines SROTG and DROTG are called.

Reference. Dongarra, 3. J., Bunch, .J. R., Moler,,C. B., and Stewart, G. W., LINPACK
Users' Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1979.

I
I
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EVALUATION OF THE CHARACTERISTIC POLYNOMIAL OF A MATRIX

The following functions are available for computing the determinant of A - x1 where
A is an n x n matrix, z a number, and I the n x n identity matrix.

DET(A, ka, n,x)
DPDET(A,ka, n, x)
CDET(A,ka, n, z)

DET is a real function that is used when A is a real matrix and x a real number,
DPDET is a double precision function that is used when A is a double precision matrix
and x a double precision number, and CDET is a complex function that is used when A is
a complex matrix and z a complex number.

The value of the appropriate function is the determinant of the matrix A - x1. The
argument ka has the value:

ka = the number of rows in the dimension statement for A in the calling program
It is assumed that ka > n > 1.

Note. A is destroyed during computation.

Algorithm. Gauss partial pivoting is performed to reduce A - xl to upper triangular
form. In CDET the pivots ak3 are selected so that IRe(aka)l + IIm(ak1 )j = Max{IRe(ata)j +
IIm(aj) : i = j, . . ., n} rather than jak6I = max{Ia3I : i = j, .. ., n}.

Programmer. A. H. Morris
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SOLUTION OF THE MATRIX EQUATION AX + XB = C

Given an m x m matrix A, n x n matrix B, and m x n matrix C. The subroutines
ABSLV and DABSLV are available for obtaining the m x n matrix X which solves the
equation AX + XB = C. ABSLV yields single precision results and DABSLV yields double
precision results.

CALL ABS LV(MO,m, n, A, ka, B, kb, C, kc,WK,IND)
CALL DABSLV(MO,m, n, A, ka, B, kb, C, kc,WKIND)

If ABSLV is called then it is assumed that A, B, C, and WK are real arrays. Otherwise,
if DABSLV is called then it is assumed that A, B, C, and WK are double precision arrays.

It is assumed that m > 1 and n > 1. The input arguments ka, kb, kc have the following
values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program
kc = the number of rows in the dimension statement for C in the calling program

It is required that ka > m, kb > n, kc > m.

WK is an array of dimension m2 + n2 + 2k or larger where k = max{m, n}. WK is a
general storage area for the routine.

MO is an input argument which specifies if the routine is being called for the first time.
On an initial call MO = 0. In this case, A is reduced to lower real Schur form, B is reduced
to upper real Schur form, and then the transformed system of equations is solved.

IND is a variable that reports the status of the results. When the routine terminates,
IND has one of the following values:

IND = 0 The solution was obtained and stored in C.
IND = 1 The equations are inconsistent for A and B.
IND = -1 A could not be reduced to lower Schur form.
IND = -2 B could not be reduced to upper Schur form.

If IND :A 0 then no solution is obtained.

When IND = 0, A contains the lower Schur form of the matrix A, B contains the
upper Schur form of the matrix B, and WK contains the orthogonal matrices involved in
the decompositions of A and B. This information can be reused to solve a new set of
equations. The following options are available:

MO = 1 New matrices A and C are given. The data for B is reused in
solving the new set of equations.

MO = 2 New matrices B and C are given. The data for A is reused in
solving the new set of equations.

MO -i 0,1,2 A new matrix C is given. The data for A and B is reused in
solving the new set of equations.
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When the routine is recalled, it is assumed that m, n, and WK have not been modified.

Programming. ABSLV employs the subroutines ABSLV1, ORTHES, ORTRN1, SCHUR,
SHRSLV, SLY, and DABSLV employs, the routines DABS VI, DORTH, DRTRN1, DSCHUR,
DSHSLV, DPSLV. ABSLV and DABSLV are adaptations by A. H. Morris of the subroutine
AXPXB written by R. H. Bartels and G. W. Stewart (University of Texas at Austin).

Reference. Bartels, R. H. and Stewart, G. W., "Algorithm 432, Solution of the Matrix
Equation AX + XB = C," Comm. ACM 15 (1972), pp. 820-826.
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SOLUTION OF THE MATRIX EQUATION AtX + XA = C
WHEN C IS SYMMETRIC

Given matrices A and C of order n where C is symmetric. Then the subroutines
TASLV and DTASLV are available for obtaining the symmetric matrix X which solves the
equation AtX + XA = C. TASLV yields single precision results and DTASLV yields double
precision results.

CALL TAS LV(MO,n, A, ka, C, kc,WK,IND)
CALL DTASLV(MO,n, A,ka,C,kc,WK,IND)

If TASLV is called then it is assumed that A, C and WK are real arrays. Otherwise,
if DTASLV is called then it is assumed that A, C, and WK are double precision arrays.

It is assumed that n > 1. The input arguments ka and kc have the following values:
ka = the number of rows in the dimension statement for A in the calling program
kc = the number of rows in the dimension statement for C in the calling program

It is required that ka > n and kc > n.

WK is an array of dimension n2 + 2n or larger that is a general storage area for the
routine.

MO is an input argument which specifies if the routine is being called for the first time.
On an initial call MO = 0. In this case, A is reduced to upper real Schur form and then
the transformed system of equations is solved.

IND is a variable that reports the status of the results. When the routine terminates,
IND has one of the following values:

IND = 0 The solution was obtained and stored in C.
IND = 1 The equations are inconsistent.
IND =- 1 A could not be reduced to upper Schur form.

If IND 0 0 then no solution is obtained.

When IND = 0, A contains the upper Schur form of the matrix A and WK contains
the orthogonal matrix involved in the decomposition of A. This data can be reused to solve
a new set of equations AtX + XA = C. In this case, MO can be set to any nonzero value.
When MO 0 0 it is assumed that only C has been modified. When the routine terminates,
the solution for the new set of equations is stored in C.

Programming. TASLV employs the subroutines TASLV1, ORTHES, ORTRN1, SCHUR,
SYMSLV, SLV and DTASLV employs the routines DTASV1,DORTH,DRTRN1,DSCHUR,
DSYMSV, DPSLV. TASLV and DTASLV are adaptations by A. H. Morris of the subroutine
ATXPXA written by R. H. Bartels and G. W. Stewart (University of Texas at Austin).

Reference. Bartels, R. H. and Stewart, G. W., 'Algorithm 432, Solution of the Matrix
Equation AX + XB = C," Comm. ACM 15 (1972), pp, 820-826.
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SOLUTION OF THE MATRIX EQUATION AX 2 + BX + C = 0

Given complex n x n matrices A, B, and C. The following subroutine is available for
obtaining a complex n x n matrix X which solves the equation AX 2 + BX + C = 0.

CALL SQUINT(m, n, A, B, C,IND,X,WK,f, r,MAX,IERR)

It is assumed that A, B, C, and X are 2-dimensional complex arrays of dimension m x n
where m > n. When SQUINT is called, the n x. n complex matrix solution obtained for
AX 2 + BX + C = 0 is stored in X. A, B, and C are modified by the routine.

IND is an integer variable. On input, if IND :$ 0 then it is assumed that an initial
approximation for the desired solution is provided in X by the user. Otherwise, if IND
= 0 then the routine provides its own initial approximation. Then Newton iteration is
performed. On output, IND = the number of iterations that were performed to compute X.

WK is a complex array of dimension t that is a work space for the routine. It is
assumed that I > 7n2 + n. When SQUINT terminates, WK(1) is a complex number whose
real part is the norm 11AX2 + BX + Ct,.

I The argument r is a real number. If r < 0 then X is computed to machine precision.
Otherwise, if r > 0 then iteration terminates when 11AX2 + BX + Cj <cr.

-: MAX is a variable. If MAX > 0 then MAX is the maximum number of iterations that
may be performed. If MAX < 0 then it is reset by the routine to 30, the default maximum

* number of iterations.

Error Return. IERR is a variable that is set by the routine. If a solution X is obtained,
then IERR is assigned the value 0. Otherwise, IERR has one of the following values:I IERR = 1 MAX iterations were performed. More iterations are

needed.
IERR = 2,3 Factorization of the equations could not be completed.I CX cannot be computed.
IERR = 10 + n Newton iteration failed on iteration n. Possibly too much

accuracy was requested. X cannot be computed.
IERR = 999 (Input Error) Either n < 1, m < n, or f < 7n2 + n.

When IERR = 1 occurs, X contains the most recent value obtained for the solution and
WK(1) is a complex number whose real part is the latest value obtained for the norm
I |AX'2 + BX+Cl 1k.

Programming. SQUINT employs the subroutines SQUIN2, CQZHES, CQZIT, TRISLV,
and CTRANS. These routines were designed by George J. Davis (Georgia State University,
Atlanta, Georgia). CQZHES and CQZIT are modifications of the EISPACK subroutines
QZHES and QZIT, developed at Argonne National Laboratory. The function SPMPAR is
also used.
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References.

(1) Davis, G. J., 'Algorithm 598. An Algorithm to Compute Solvents of the Matrix
Equation AX2 + BX + C = 0," ACM Trans. Math Software 9 (1983), pp. 246-254.

(2) Garbow, B. S., et al., Matrix Figensystems Routinea - EISPACK Guide Eztension,
Springer-Verlag, 1977.
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EXPONENTIAL OF A REAL MATRIX

Let A be a real matrix of order n > 1. Then the subroutines MEXP and DMEXP
are available for computing the exponential matrix eA = 1j A'/il. MEXP yields single

i=O
precision results and DMEXP yields double precision results.

CALL MEXP(A, ka, n, Z, kz,WK,IERR)

A is a real matrix of order n > 1 and Z a real 2-dimensional array. MEXP computes
eA and stores the results in Z. The arguments ka and kz have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kz = the number of rows in the dimension statement for Z in the calling program

It is assumed that ka > n, kz > n, and that A and Z are different storage areas. If n > 1
then A is destroyed.

WK is a real array of dimension n(n + 8) or larger that is a work space for the routine.

IERR is a variable that reports the status of the results. When MEXP terminates,
IERR is assigned one of the following values:

IERR = 0 The exponential was computed.
IERR = 1 The norm |lAt1 = maxyir jaiyi is too large. eA cannot be com-

puted.
IERR = 2 The Pade denominator matrix is singular. (This should never

occur.)

Algorithm. A is balanced, yielding a matrix B = D-lPtAPD where D is a diagonal matrix,
P a permutation matrix, and IIBI11 < h|Ail1 . Next m is set to the smallest nonnegative
integer such that min{I JBIli, lIBl k0} < 2-, and the 8 th diagonal Pade approximation for
e' is used to compute exp(B/2-). Then eB = [exp(B/2m)] 2m is obtained by m squarings,
and eA = PDeBD-lPt is applied.

Programming. MEXP calls the subroutines BALANC, BALINV, and SLV. The function
IPMPAR is also used. MEXP was written by A. H. Morris.

Reference. Ward, Robert, C., "Numerical Computation of the Matrix Exponential with
Accuracy Estimate," SIAM J. Numerical Analysis 14 (1977), pp. 600-610

CALL DMEXP(A, ka, n, Z, kz,WKIERR)

A is a double precision matrix of order n > 1 and Z a double precision 2-dimensional
array. DMEXP computes eA and stores the results in Z. The arguments ka and kz have
the following values:

ka = the number of rows in the dimension statement for A in the calling program
kz = the number of rows in the dimension statement for Z in the calling program
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It is assumed that ka > n, kz > n, and that A and Z are different storage areas. If n > 1
then A is destroyed.

WK is a double precision array of dimension n(n + 12) or larger that is a work space I
for the routine.

IERR is a variable that reports the status of the results. When DMEXP terminates, I
IERR is assigned one of the following values:

IERR = 0 The exponential was computed.
IERR = 1 The norm 1hAIl1 is too large.. eA cannot be computed. I
IERR = 2 The Pade denominator matrix is singular. (This should never

occur.)

Programming. DMEXP calls the subroutines DBAL, DBALNV, and DPSLV. The function
IPMPAR is also used. DMEXP was written by A. H. Morris.

Reference. Ward, Robert C., "Numerical Computation of the Matrix Exponential with
Accuracy Estimate," SIAM J. Numerical Analysis 14 (1977), pp. 600-610
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SOLVING SYSTEMS OF 200-400 LINEAR EQUATIONS

For n > 1, let A denote an n x n matrix and b a column vector of dimension n. Then
the subroutines LE, DPLE, and CLE are available for solving the equations Ax = b where A
is not stored in-core. For large n, these routines require a work space of dimension ; n2 /4.
This permits the solution of systems of equations of double the order permitted by the
standard solution procedures.

CALL LE(ROWK,n,b, X,WK,IWK,IERR)
CALL DPLE(ROWK,n,b,X,WK,IWK,IERR)
CALL CLE(ROWK,n, b, X,WK,IWK,IERR)

X is an array of dimension n and IERR an integer variable. When the equations are
solved, then IERR is set to 0 and the solution is stored in X.

ROWK is the name of a user defined subroutine that has the format:
CALL ROWK(n, k, R)

R is an array of dimension n and k = 1, .. ., n. When ROWK is called, the kth row of the
matrix A is stored in R. ROWK must be declared in the calling program to be of type
EXTERNAL.

WK is an array of dimension [n2 /4] + n + 3 or larger,' and IWK is an integer array of
dimension max{1, n - 1} or larger. WK and IWK are work spaces for the routines.

Error Return. IERR = k when the first k rows of A are found to be linearly dependent.

Remarks.

(1) When LE is called then it is assumed that b, X, WK and the array R in ROWK are real
arrays. When DPLE is called then it is assumed that these arrays are double precision
arrays, and when CLE is called then it is assumed that the arrays are complex.

(2) When the equations are solved, ROWK is called to attach the first row of A, then the
second row, etc. Each row of A is attached only once.

(3) The array b is not modified by the routines.

Example. Consider a system of n = 300 real linear equations Ax = b where the rows of A
are stored, one row per logical record, in sequence in an unformatted file (say file 4). Then
the following code can be used to solve the equations:

REAL B(300),X(300),WK(22803)
INTEGER IWK(300)
EXTERNAL GETROW
DATA N/300/

'Here [n2/4] denotes the largest integer < n2 /4.
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l~~~~~~~~~~
REWIND 4
CALL LE(GETROW,N,B,X,WK,IWK,IERR)

Here GETROW may be defined by:

SUBROUTINE GETROW (N,I,R)
REAL R(N)
READ(4) (R(J),J=1,N)
RETURN
END

Algorithm. The partial pivot Henderson-Wassyng procedure is used. 3
Programming. LE, DPLE, and CLE are modified versions (by A. H. Morris) of the subrou-
tine TE, written by A. Wassyng (University of the Witwatersrand, Johannesburg, South 3
Africa).

Reference. Wassyng, A., "Solving Az = b: A Method with Reduced Storage Require-
ments," SIAM J. Numerical Analysis 19 (1982), pp. 197-204. I
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BAND MATRIX STORAGE

For an m x n matrix A = (aij), let me be the number of diagonals below the main
diagonal containing nonzero elements, and mu the number of diagonals above the main
diagonal containing nonzero elements. Then mt and mu are called the lower and upper
band widths of A, and mt+ mu + 1 the total band width of A. It is clear that 0 < mt < m
and 0 < mu < n, and that aij :$ 0 only when i - mt < j < i + mu. If the band width
mt + mu + 1 is sufficiently small, then it is also clear that a considerable savings in storage
can occur by storing only the nonzero diagonals of A. The band storage scheme adopted by
the NSWC library is to store A as an m x (min + mu + 1) matrix B = (bk). The columns
of B are the nonzero diagonals of A. Specifically, for each nonzero aij, bik = asj where
k = j-i + mt + 1. The remaining bik's are zeros.

Example. Consider the matrix

all
a 21

0
0
0
0
0
0

a12

a2 2

a32

0

0
0

0

a13
a2 3
a33
a4 3

0
0
0

0

a2 4

a34
a4 4

a 5 4

0
0

0
0

a3 5

a4 5

a5 5

a65
0

0 0 0

0

0

0

a4 6

a5 6

a6 6

a7 6

0

0

0

0

a5 7

a6 7

a7 7
0 a87!

where me = 1 and mu = 2. Then A will be stored in band form as follows:

0

a 21

a3 2

a4 3

a54
a6 5

a76
a87

all
a2 2
a3 3

a4 4

ass
a 66

a77
0

a 12

a2 3

a3 4

a4 5

a56
a67

0
0

a' 3
a2 4

a3 5

a4 6

a57
0

0
0

Remark. The first me columns of B contain the nonzero diagonals of A below the main
diagonal, the (min + 1t column of B contains the main diagonal, and the last mu columns
of B contain the nonzero diagonals of A above the main diagonal.
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CONVERSION OF BANDED MATRICES TO AND FROM
THE STANDARD FORMAT

The following subroutines permit one to convert matrices to and from the standard
format.

CALL CVBR(A, ka, m, n, me, me, B, kb)
CALL CVBC(A, ka, m, n, me, m", B, kb)

A is an m x n matrix stored in band form, me the number of diagonals below the
main diagonal containing nonzero elements, and mu the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < ml < m,0 <
mu < n, and ka > m.

B is a 2-dimensional array of dimension kb x n where kb > m. CVBR is used if A and
B are real arrays, and CVBC is used if A and B are complex arrays. When the routine is
called, the matrix A is stored in the array B in the standard format.

Remark. B may begin in the same location as A. If B begins in the same location then it is
assumed that kb = ka. In this case, the result B will overwrite the input data A. Otherwise,
if B does not begin in the same location as A, then it is assumed that the storage areas A
and B dp not overlap.

Programmer. A. H. Morris

CALL CVRB(A,ka,im,n,mc, muB,kb)
CALL CVCB(A, ka, m, n, me, mu, B, kb)

A is an m x n matrix stored in the standard format, and me and mu are integers
such that 0 < mt < m and 0 < mu < n. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that ka > m.

B is a 2-dimension array of dimension kb x e where kb > m and e > me + mu + 1.
CVRB is used if A and B are real arrays, and CVCB is used if A and B are complex arrays.
When the routine is called, the ml diagonals of A immediately below the main diagonal,
the main diagonal, and the mu diagonals immediately above the main diagonal are stored
in band form in B.

Remarks.

(1) Given a matrix A = (aij), then these routines may be used to convert A to band form
when the lower and upper bandwidths mt and mu of A are known. If mt and mu are
not known, then the subroutines CVRB1 and CVCBI described-below can be used to
convert A to band form.

(2) B may begin in the same location as A. If B begins in the same location then it is
assumed that kb = ka. In this case, the result B will overwrite the input data A.
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Otherwise, if B does not begin in the same location as A, then it is assumed that the
storage areas A and B do not overlap.

Programmer. A. H. Morris

CALL CVRB1(A, ka, m, n, i, mu, B, kb, eERR)|
CALL CVCB1(A, ka,m, n, mL, mu, B, kb, eIERR)

A is an m x n matrix stored in the standard format. The argument ka is the
number of rows in the dimension statement for A in the calling program. It is assumed I
that A is to be stored in band form in B. B is a 2-dimensional array of dimension kb x t
where kb > m. The argument e is an estimate of the maximum number of diagonals
of A that will have to be stored.

CVRB1 is used if A and B are real arrays, and CVCB1 is used if A and B
are complex arrays. IERR, mt, and mu are integer variables. When the routine is I
called, if e specifies sufficient storage for B then A is stored in band form in B. Also
IERR is assigned the value 0, ml = the number of diagonals of A below the main
diagonal containing nonzero elements, and mu = the number of diagonals above the I
main diagonal containing nonzero elements.

Error Return. If e does not specify sufficient storage for B, then IERR is assigned the
value me + mu + 1. Reset e > IERR.

Remark. B may begin in the same location as A. If B begins in the same location
then it is assumed that kb = ka. In this case, the result B will overwrite the input
data A. Otherwise, if B does not begin in the same location as A, then it is assumed
that the storage areas A and B do not overlap.

Programming. CVRB1 calls the subroutine CVRB, and CVCB1 calls the subroutine
CVCB. These routines were written by A. H. Morris.

I
I

I
I

~~~~~~I
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CONVERSION OF BANDED MATRICES
TO AND FROM SPARSE FORM

The following subroutines permit one to convert matrices to and from sparse form.

CALL MCVBS(A, ka, m, n, me, mu, B,IB,JB,NUM,IERR)
CALL CMCVBS(A, ka, m, n, in mu, B,IB,JB,NUMIERR)

A is an m x n matrix stored in band form, mt the number of diagonals below the
main diagonal containing nonzero elements, and mu the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statment for A in the calling program. It is assumed that 0 < min < m, 0 <
mu < n, and ka > m.

It is assumed that A is to be stored in sparse form in the arrays B,IB,JB. NUM is
the estimated maximum number of elements that will appear in B and JB. It is assumed
that B and JB are of dimension max{1l, NUM} and that IB is of dimension m + 1.

MCVBS is used if A and B are real arrays, and CMCVBS is used if A and B are
complex arrays. IERR is an integer variable. When the routine is called, if NUM specifies
sufficient storage for B and JB, then IERR is assigned the value 0 and A is stored in sparse
form in B, IB, JB.

Error Return. If there is not sufficient storage in B and JB for the it" row of A, then IERR
is set to i and the routine terminates. In this case, if i > 1 then the first i - 1 rows of A
will have been stored in B and JB. Also IB(1), . .. , IB(i) will contain the appropriate row
locations.

CALL MCVSB(A,IAJA,m,n,B, kb, e,m1, mu,IERR)
CALL CMCVSB(A,IA,JA,m, n, B, hb, I, me1 , mt ,IERR)

A is an mn x n sparse matrix stored in the arrays A, IA, JA. It is assumed that A is to
be stored in band form in B. B is a 2-dimensional array of dimension kb x £ where kb > m.
The argument £ is an estimate of the maximum number of diagonals of A that will have to
be stored.

MCVSB is used if A and B are real arrays, and CMCVSB is used if A and B are
complex arrays. IERR, mt, and mu, are integer variables. When the routine is called, if e
specifies sufficient storage for B then A is stored in band form in B. Also IERR is assigned
the value 0, m1 = the number of diagonals of A below the main diagonal containing nonzero
elements, and mu, = the number of diagonals above the main diagonal containing nonzero
elements.

Error Return. If £ does not specify sufficient storage for B, then IERR is assigned the value
mj + mu + 1. Reset e > IERR.

Programmer. A. H. Morris
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TRANSPOSING BANDED MATRICES

The following subroutines are available for transposing banded matrices.

CALL BPOSE(A, ka, m, n, mt, mu, B, kb)
CALL CBPOSE(A,kam,n,mt,mu,Bkb)

| A is an m x n matrix stored in band form, mt the number of diagonals below the
main diagonal containing nonzero elements, and mu the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < mt < m,0 <
mu < n, and ka> m.

B is a 2-dimensional array of dimension kb x e where kb > n and e > mt + mu +1.
BPOSE is used if A and B are real arrays, and CBPOSE is used if A and B are complex
arrays. When the routine is called, the transpose At of A is stored in band form in B.

Note. It is assumed that the storage areas A and B do not overlap.

Programmer. A. H. Morris.
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I ADDITION OF BANDED MATRICES

Let A and B be m x n matrices stored in band form. The following subroutines are
available for computing the sum C = A + B.

CALL BADD(m, n, A, ka, mi, mu,B, kb, n1, n,, C, kc, A, Vt, L',IERR)
CALL CBADD(m, n, A, ka, m, mu, B, kbn nu, C, kc, £, vt, vu,IERR)

A and B are m x n matrices stored in band form, me the number of diagonals of A
below the main diagonal containing nonzero elements, mu the number of diagonals of A
above the main diagonal containing nonzero elements, nt the number of diagonals of B
below the main diagonal containing nonzero elements, and nu the number of diagonals of B
above the main diagonal containing nonzero elements. The argument ka is the number of3 rows in the dimension statement for A in the calling program, and kb the number of rows
in the dimension statement for B in the calling program.

It is assumed that A + B is to be stored in band form in C. C is a 2-dimensional
array of dimension kc x e where kc > m. The input argument e is an estimate of the
maximum number of diagonals of A + B which will have to be stored (E < max{mr, nt) +
rmax{mu, nu} + 1). BADD is used if A and B are real arrays, and CBADD is used if A and
B are complex arrays. IERR, vt, and vu are integer variables. When the routine is called,
if e specifies sufficient storage for C then A + B is computed and stored in band form in C.
Also IERR is assigned the value'O, vt = the number of diagonals of A + B below the mainI diagonal containing nonzero elements, and Lu = the number of diagonals of A + B above
the main diagonal containing nonzero elements.

Error Return. If e does not specify sufficient storage for C, then IERR is assigned the value
v where v is an estimate of the number of columns needed for C. Reset e > v.

Remarks. If me > nt then C may begin in the same location as A. If C begins in the same
location as A, then it is assumed that kc = ka and that the arrays A and B do not overlap.
'In this case, the result C will overwrite the input data A. Similarly, if mnt < n1 then C mayI begin in the same location as B when kc = kb and A and B do not overlap. Otherwise, if C
does not begin in the same location as A or B, then it is assumed that the storage area for
C does not overlap with the storage areas for A and B. In this case there is no restriction
on kc (other than the customary restriction that kc > m).

Example. If B = -A then e may be assigned any value > 1. In this case, C will contain3 only the main diagonal of the zero matrix A + B, and v =vu = 0.

Programmer. A. H. Morris
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SUBTRACTION OF BANDED MATRICES

Let A and B be m x n matrices stored in band form. The following subroutines are
available for computing the difference C = A - B.

CALL BSUBT(m, n, A, ka, me, mu, B, kb, nt,nuC, kc, e, b~, vuIERR)
CALL CBSUBT(m, n, A, ka, mn, mu, B, kb,rn1, nt, C, kc, e, vz, vu,IERR)

A and B are m x n matrices stored in band form, ml the number of diagonals of A
below the main diagonal containing nonzero elements, mu the number of diagonals of A
above the main diagonal containing nonzero elements, nt the number of diagonals of B
below the main diagonal containing nonzero elements, and nu the number of diagonals of B
above the main diagonal containing nonzero elements. The argument ka is the number of
rows in the dimension statement for A in the calling program, and kb the number of rows
in the dimension statement for B in the calling program.

It is assumed that A - B is to be stored in band form in C. C is a 2-dimensional
array of dimension kc x e where kc > m. The input argument e is an estimate of the
maximum number of diagonals of A - B which will have to be stored (E < max{ml, nt} +
max{munu} + 1). BSUBT is used if A and B are real arrays, and CBSUBT is used if A
and B are complex arrays. IERR, vt, and vu,, are integer variables. When the routine is
called, if e specifies sufficient storage for C then A - B is computed and stored in band form
in C. Also IERR is assigned the value 0, vt = the number of diagonals of A - B below the
main diagonal containing nonzero elements, and vu = the number of diagonals of A - B
above the main diagonal containing nonzero elements.

Error Return. If e does not specify sufficient storage for C, then IERR is assigned the value
v where o is an estimate of the number of columns needed for C. Reset e > v.

Remarks. If mt > n/ then C may begin in the same location as A. If C begins in the same
location as A, then it is assumed that kc = ka and that the arrays A and B do not overlap.
In this case, the result C will overwrite the input data A. Similarly, if ml < n1 then C may
begin in the same location as B when kc = kb and A and B do not overlap. Otherwise, if C
does not begin in the same location as A or B, then it is assumed that the storage area for
C does not overlap with the storage areas for A and B. In this case there is no restriction
on kc (other than the customary restriction that kc > m).

Example. If B = A then e may be assigned any value > 1. In this case, C will contain only
the main diagonal of the zero matrix A - B, and Vt = vu = 0.

Programmer. A. H. Morris
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I. 
MULTIPLICATION OF BANDED MATRICES

Let A and B be matrices stored in band form. The following subroutines are available
for computing the product C = AB.

CALL BPROD(m, n, e, A, ka, me, mu, B, kb, ni, nu, C, kc, nc, zt, v",IERR)
CALL CBPROD(m, n,t,A, ka, m, mu, B, kb, nt, nuC, kcnc,vt, v,,IERR)

A is an m x n matrix stored in band form, ml the number of diagonals of A below the
main diagonal containing nonzero elements, and mu the number of diagonals of A above the
main diagonal containing nonzero elements. B is an n x f matrix stored in band form, nt
the number of diagonals of B below the main diagonal containing nonzero elements, and nu
the number of diagonals of B above the main diagonal containing nonzero elements. The
argument ka is the number of rows in the dimension statement for A in the calling program,
and kb the number of rows in the dimension statement for B in the calling program. It is
assumed that ka > m and kb > n.

I It is assumed that AB is to be stored in band form in C. C is a 2-dimensional array of
dimension kc x nc where kc > m. The input argument nc is an estimate of the maximum
number of diagonals of AB which will have to be stored (nc < min{n-1, mt+nt}+min{e-I 1, mu + nu} + 1). BPROD is used if A,B, and C are real arrays, and CBPROD is used if
A,B, and C are complex arrays. IERR, lt, and vu are integer variables. When the routine
is called, if nc specifies sufficient storage for C then AB is computed and stored in bandI form in C. Also, IERR is assigned the value 0, Pu = the number of diagonals of AB below
the main diagonal containing nonzero elements, and vu, = the number of diagonals of AB

* above the main diagonal containing nonzero elements.

Error Return. If nc does not specify sufficient storage for C, then IFRR is assigned the
value v where v is an estimate of the number of columns needed for C. Reset nc > v.

Note. It is assumed that the storage area for C does not overlap with the storage areas for
A and B.

Programmer. A. H. Morris
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I PRODUCT OF A REAL BANDED MATRIX AND VECTOR

Let A be a real m x n matrix stored in band form. Then the following subroutines are
* available for multiplying A with a real vector.

CALL BVPRD(m, n, A, ka, m>, mu, x, y)

A is an m x n matrix stored in band form, ml the number of diagonals below the
main diagonal containing nonzero elements, and mu the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < mt < m,O <
mu < n, and ka > m.

The argument x is a column vector of dimension n and y an array of dimension m.
When BVPRD is called, the product Ax is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

| CALL BVPRD1(m, n,A,ka, in, mu, x, y)

A is an m x n matrix stored in band form, m1 the number of- diagonals below the
main diagonal containing nonzero elements, and mu the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < me < m, 0 <
mu < n, and ka > m.

The arguments x and y are column vectors of dimension n and m respectively. When
BVPRD1 is called, Ax + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

* Programmer. A. H. Morris

CALL BTPRD(mn,A,ka,mtmux,y)

A is an m x n matrix stored in band form, me the number of diagonals below the
main diagonal containing nonzero elements, and mu the number of diagonals above theI: main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < me < m, 0 <
mu < n, and ka > m.

I The argument x is a row vector of dimension m and y an array of dimension n. When
BTPRD is called, the product xA is computed and stored in y.

I Remark. It is assumed that the arrays A, x, y do not overlap.
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Programmer. A. H. Morris

CALL BTPRD1(m, n, A, ka, m mur, x, y)

A is an m x n matrix stored in band form, mt the number of diagonals below the
main diagonal containing nonzero elements, and mu then number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < mt < m O <
mu < n, and ka > m.

The arguments z and y are row vectors of dimension m and n respectively. When
BTPRD1 is called, zA + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris
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I PRODUCT OF A COMPLEX BANDED MATRIX AND VECTOR

Let A be a complex m x n matrix stored in band form. Then the following subroutines
are available for multiplying A with a complex vector.

CALL CBVPD(m,n,A,ka,memu,x,y)

A is an m x n matrix stored in band form, mt the number of diagonals below the
main diagonal containing nonzero elements, and mu the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < mt < m,0 <
mu < n, and ka > m.

The argument x is a column vector of dimension n and y an array of dimension m.I A, x, y are complex arrays. When CBVPD is called, Ax is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

CALL CBVPDI (m, n, A, ka, mt, mu, x, y)

A is an m x n matrix stored in band form, me the number of diagonals below the
main diagonal containing nonzero elements, and mu the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < mt < m,0 <
mu < n, and ka > m.

The arguments x and y are column vectors of dimension n and m respectively. A, x, y
are complex arrays. When CBVPD1 is called, Ax + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

CALL CBTPD(m,n,A,ka,mtmU,xy)

A is an m x n matrix stored in band form, mt the number of diagonals below the
main diagonal containing nonzero elements, and mu the number of diagonals above theI main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < mt < m, 0 <
m, <n, and ka> m.

The argument x is a row vector of dimension m and y an array of dimension n. A, x, y
are complex arrays. When CBTPD is called, zA is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.
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CALL CBTPD1(m,n,A,ka,me,im>, ,y)

A is an m x n matrix stored in band form, mt the number of diagonals below the
main diagonal containing nonzero elements, and mu the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < ml < m, 0 <
m, < n, and ka > m.

The arguments z and y are row vectors of dimension m and n respectively. A, z, y are
complex arrays. When CBTPD1 is called, xA + y is computed and stored in y.

Remark. It is assumed that the

Programmer. A. H. Morris

arrays A, x, y do not overlap.
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I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

SOLUTION OF BANDED SYSTEMS OF REAL LINEAR EQUATIONS

Let A be a nonsingular n x n real matrix stored in band form and b a real column vector
of dimension n. The subroutine BSLV is available for solving the system of equations Ax = b,
and the subroutine BSLV1 is available for solving the transposed system of equations Atx =
b. On an initial call to either routine, partial pivot Gauss elimination is first employed to
obtain an LU decomposition of A, and then the equations are solved. BSLV and BSLV1I always generate the same LU decomposition of A. After the decomposition is obtained on
an initial call to BSLV or BSLV1, either routine may be called to solve a new system of
equations Ax = r or Atx = r without having to redecompose the matrix A.

CALL BSLV(MO,A, ka, n, mi, mu, X,IWK,IND)
CALL BSLV1(MO,A,ka,n,m ,mt,,X,IWK,IND)

BSLV is called for solving Ax b and BSLV1 is called for solving Atx = b. The
argument me is the number of diagonals below the main diagonal of A containing nonzeroIl elements, and mu the number of diagonals above the main diagonal containing nonzero
elements. It is assumed that n > 1, 0 < mne < n, and 0 < mu < n. MO is an input
argument which specifies if BSLV or BSLV1 is being called for the first time. On an initial
call, MO = 0 and we have the following setup:

A is a 2-dimensional array of dimension ka x m where ha > n and m > 2mt + mu + 1.
On input, the first me + mu + 1 columns of the array contain the matrix A in band form.
When the routine terminates, the array A will contain the upper triangular matrix U of
the LU decomposition and the multipliers which were used to obtain it.

X is an array of dimension n or larger. On input, X contains the vector b. On output,
X will contain the solution of the system of equations.

IWK is an array of dimension n or larger for internal use by the routine. The pivot
indices involved in the LU decomposition are stored in IWK.

On an initial call to BSLV or BSLV1, IND is an integer variable that reports the status
of the results. When the routine terminates, IND has one of the following values:

IND =0 The system of equations was solved.
IND = -1 Either n < 0 or ka < n.
IND = -2 Either me < 0 or mne > n.
IND = -3 Either m,, < 0 or ma, > n.
IND= k Column k of A has been reduced to a column containing only

zeros.

After an initial call to BSLV or BSLV1, if IND = 0 on output then either routine may
be called with MO 76 0. When MO 0 0 it is assumed that only b may have been modified.
VBSLV is called for solving the new set of equations Ax = b, and BSLV1 is called for solving
the new set of equations Atx = b. The routine employs the LU decomposition obtained on
the initial call to BSLV or BSLV1 to solve the new set of equations. On input, X contains
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the new vector b. On output, X will contain the solution to the new set of equations. In
this case, IND is not referenced by the routine.

Programming. BSLV and BSLV1 employ the subroutines SNBFA,SNBSL,SAXPY,SSCAL,
SSWAP and the functions ISAMAX and SDOT. SNBFA and SNBSL were written by E. A.
Voorhees (Los Alamos Scientific Laboratory) and modified by A. H. Morris. The original
versions of SNBFA and SNBSL are distributed by the SLATEC library.
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SOLUTION OF BANDED SYSTEMS OF COMPLEX LINEAR EQUATIONS

Let A be a nonsingular n x n complex matrix stored in band form and b a complex
column vector of dimension n. The subroutine CBSLV is available for solving the system
of equations Ax = b, and the subroutine CBSLV1 is available for solving the transposed
system of equations Atx = b. On an initial call to either routine, partial pivot Gauss
elimination is first employed to obtain an LU decomposition of A, and then the equationsI are solved. CBSLV and CBSLV1 always generate the same LU decomposition of A. After
the decomposition is obtained on an initial call to CBSLV or CBSLV1, either routine may be
called to solve a new system of equations Ax = r or A tx = r without having to redecompose
the matrix A.

CALL CBSLV(MO,A, ka, n, ml, mu, X,IWK,IND)
CALL CBSLV1(MO,A, ka, n, mi, m", X,IWK,IND)

CBSLV is called for solving Ax = b and CBSLV1 is called for solving Atx = b. The
argument me is the number of diagonals below the main diagonal of A containing nonzero
elements, and mu the number of diagonals above the main diagonal containing nonzero
elements. It is assumed that n > 1, 0 < me < n, and 0 < mu < n. MO is an inputI argument which specifies if CBSLV or CBSLV1 is being called for the first time. On an
initial call, MO = 0 and we have the following setup:

A is a 2-dimensional array of dimension ka x m where ka > n and m > 2ml + my +1.I On input, the first ml + mu + 1 columns of the array contain the matrix A in band form.
When the routine terminates, the array A will contain the upper triangular matrix U of
the LU decomposition and the multipliers which were used to obtain it.

X is an array of dimension n or larger. On input, X contains the vector b. On output,
X will contain the solution of the system of equations.

IWK is an array of dimension n or larger for internal use by the routine. The pivot
indices involved in the LU decomposition are stored in IWK.

I On an initial call to CBSLV or CBSLV1, IND is an integer variable that reports the
status of the results. When the routine terminates, IND has one of the following values:

IND = 0 The system of equations was solved.
IND = -1 Either n < 0 or ka < n.
IND = -2 Either me < 0 or ml > n.
IND = -3 Either mu < 0 or mu > n.
IND = k Column k of A has been reduced to a column containing only

zeros.

1 After an initial call to CBSLV or CBSLV1, if IND = 0 on output then either routine
may be called with MO 0 0. When MO : 0 it is assumed that only b may have been mod-
ified. CBSLV is called for solving the new set of equations Ax = b, and CBSLV1 is called
for solving the new set of equations Atx b. The routine employs the LU decomposition
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obtained on the initial call to CBSLV or CBSLV1 to solve the new set of equations. On
input, X contains the new vector b. On output, X will contain the solution to the new set
of equations. In this case, IND is not referenced by the routine.

Programming. CBSLV and CBSLV1 employ the subroutines CBFA, CBSL, CAXPY,
CSCAL, CSWAP and the functions ICAMAX and CDOTU. CBFA and CBSL are adapta- 
tions by A. H. Morris of the subroutines SNBFA and SNBSL, written by E. A. Voorhees
(Los Alamos Scientific Laboratory). SNBFA and SNBSL are distributed by the SLATEC
library.

~~~~~~~~~~~~I

: - : ~~~~~~~~~~I

a: 0 : 0~~~~~~~~~~
I

: 7 |~~~~~~~~~~~~
: :~~~~~~~~~~~~~~

| 0 : : X~~~~~~~~~~
:~~~~~~~~~~~~

~~~~I
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STORAGE OF SPARSE MATRICES

A matrix is said to be sparse if it contains sufficiently many zero elements for it to
be worthwhile to use special techniques that avoid storing and operating with the zeros.U The scheme adopted by the NSWC library for storing a sparse m x n matrix (aij) requires
three 1-dimensional arrays A, IA, JA. The array A contains the nonzero elements of the
matrix, stored row by row. The array JA contains the column numbers of the correspondingI elements of the A array; i.e., if A(k) contains (aij) then JA(k) = j. The elements of a row
of the matrix may be given in any order in A.

3 IA is an array containing m+ 1 integers which specify where the rows of the matrix are
stored in A. For i < m, IA(i) is the index of the location in A where the ith row information
begins. It is assumed that the rows are stored sequentially; i.e., that IA(1) < ... < IA(m).
IA(m+ 1) is set so that IA(m+1) - IA(1) = the number of elements stored in A. For i < m,
if IA(i) < IA(i + 1) then A(t) is the first entry of the iPh row of the matrix in A where
f = IA(i). Otherwise, if IA(i) = IA(i + 1) then no entries for the Yth row of the matrix are3 stored in A. This can occur only if the ith row of the matrix consists entirely of zeros. If
this occurs then the &tA row is called a null row of A. For any i < m, IA(i + 1) - IA(i) is
the number of entries for the ith row of the matrix that are stored in A. For convenience,a IA(i + 1) - IA(i) is called the length of the ith row.

Example. The matrix

I all a12 0 0 0 0 0 al8
0 0 0 0 0 0 013 0 0 0 0 0 8a37 a38

0 0 a4 3 0 0 0 0 0

can be stored as follows:

A: all al1 a12 as7 as3 8 a43

I JA: 1 8 2 7 8 | 3 |

3 IA: 1 4 4 6 7

The storage of the elements all al2 ale in the order all als a12 is permissable. The
elements of a row of the matrix may be given in any order desired.

Remark. It is not required that each aii in A be nonzero.

253



I-

CONVERSION OF SPARSE MATRICES TO AND FROM
THE STANDARD FORMAT

The following subroutines permit one to convert sparse matrices to and from the stan-I dard format.

CALL CVRS(A, ka, m, n, B, IB, JB,NUM,IERR)
CALL CVDS(A, ka, m, n, B, IB, JB,NUMIERR)
CALL CVCS(A, ka, m, n, B, IB, JB,NUM,IERR)

A is an m x n matrix stored in the standard format. The argument ka is the number
of rows in the dimension statement for A in the calling program. It is assumed that A is to
be stored in sparse form in the arrays B, IB, JB. CVRS is used if A is a real matrix andI B a real array, CVDS is used if A is a double precision matrix and B a double precision
array, and CVCS is used if A is a complex matrix and B a complex array.

The input argument NUM is the estimated maximum number of elements that will
appear in B and JB. It is assumed that B and JB are of dimension max{1, NUM} and
that 1B is of dimension m + 1. IERR is an integer variable. When the routine is called, if
NUM specifies sufficient storage for B and JB, then A is stored in B, IB, JB and IERR
is assigned the value 0.

Error Return. If it is found that there is not sufficient storage in B and JB for the it row
of A, then IERR is set to i and the routine terminates. In this case, if i > 1 then the first
i- 1 rows of A will have been stored in B and JB, and IB(1), . .. ,IB(i) will contain the3 7 appropriate row locations.

Remark. No zero elements of A are stored in B, and the elements of each row of B are3 ordered so that the column indices of the elements of the row are in ascending order.

Example. If A is the m x n zero matrix then NUM can be set to 0. In this case the result
will be IB(1) = .- * = IB(m + 1) = 1.

Note. It is assumed that the storage areas A and B do not overlap.

I Programmer. A. H. Morris.

CALL CVSR(A, IA, JA, B, kb, m, n)I CALL CVSD(A, IA, JA, B, b, m, n)
CALL CVSC(A, IA, JA, B, kb,m, n)

A is an m x n sparse matrix stored in the arrays A, IA, JA, and B is a 2-dimensional
array of dimension kb x n where kb > m. CVSR is used if A and B are real arrays, CVSD
is used if A and B are double precision arrays, and CVSC is used if A and B are complex
arrays. When the routine is called, the matrix A is stored in the array B in the standard
format.
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Note. It is assumed that the storage areas A and B do not overlap.

Programmer. A. H. Morris.
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CONVERSION OF SPARSE REAL MATRICES
TO AND FROM DOUBLE PRECISION FORM

The following subroutines are available for converting sparse real matrices to and from
double precision form.

CALL SCVRD(A, IA, JA, B, IB, JB, m)

A is a sparse real matrix stored in the arrays A, IA, JA. A is a real array and B a
double precision array. If A and JA contain k elements then it is assumed that B and JB
are arrays of dimension k. It is also assumed that the matrix A has m > 1 rows and that
IB is an array of dimension m + 1. SCVRD stores the matrix A in double precision form
in B, IB, JB.

Remarks.

(1) No zero elements of A are stored in B.
(2) It is assumed that the arrays IA, JA and IB, JB reference different storage areas.

Programmer. A. H. Morris.

CALL SCVDR(A, IA, JA, B, IB, JB, m)

A is a sparse double precision matrix stored in the arrays A, IA, JA. A is a double
precision array and B a real array. If A and JA contain k elements then it is assumed that
B and JB are arrays of dimension k. It is also assumed that the matrix A has m > 1 rows
and that IB is an array of dimension m + 1. SCVDR stores the matrix A in single precision
form in B, IB, JB.

Remarks.

(1) No zero elements of A are stored in B.
(2) It is assumed that the arrays IA, JA and IB, JB reference different storage areas.

Programmer. A. H. Morris.
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THE REAL AND IMAGINARY PARTS OF A SPARSE COMPLEX MATRIX

If A = (Aij) is a complex matrix then let Re(A) = (Re(aij)) and Im(A) = (hn(aij))
denote the real and imaginary parts of A. If the matrix A is stored in sparse form, then
the following subroutines are available for obtaining Re(A) and Im(A) in sparse form.

CALL CSREAL(A, IA, JA, B, IB, JB, m)

A is a sparse complex matrix stored in the arrays A, IA, JA. A is a complex array
and B a real array. If A and JA contain k elements then it is assumed that B and JB are
arrays of dimension k. It is also assumed that the matrix A has m > 1 rows and that 1B
is an array of dimension m + 1. CSREAL stores Re(A) in sparse form in B, IB, JB.

Remarks.

(1) No zero elements of Re(A) are stored in B.
(2) It is assumed that the arrays IA, JA and IB, JB reference different storage areas.

Programmer. A. H. Morris.

CALL CSIMAG(A, IA, JA, B, IB, JB, m)

A is a sparse complex matrix stored in the arrays A, IA, JA. A is a complex array
and B a real array. If A and JA contain k elements then it is assumed that B and JB are
arrays of dimension k. It is also assumed that the matrix A has m > 1 rows and that IB
is an array of dimension m + 1. CSIMAG stores Im(A) in sparse form in B, IB, JB.

Remarks.

(1) No zero elements of Im(A) are stored in B.
(2) It is assumed that the arrays IA, JA and IB, JB reference different storage areas.

Programmer. A. H. Morris.
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COMPUTING A + Bi FOR SPARSE REAL MATRICES A AND B

Given the real m x n matrices A and B stored in sparse form. Then the subroutine
SCVRC is available for obtaining the complex matrix A + Bi where i = F.

CALL SCVRC (A,IA,JA,B,IB,JB,C,IC,JC,m, n,NUM,WK,IERR)

A and B are real m x n matrices stored in the arrays AIAJA and B,IB,JB. It is
assumed that A + Bi is to be stored in sparse form in the arrays C,IC,JC. A and B are
real arrays and C a complex array. NUM is the estimated maximum number of elements
that will appear in C and JC. It is assumed that C and JC are arrays of dimension
max{1, NUM} and that IC is an array of dimension m + 1.

WK is a real array of dimension n or larger that is a work space for the routine.

IERR is an integer variable. When SCVRC is called, if NUM specifies sufficient storage
for C and JC then A + Bi is stored in C, IC, JC. Also IERR is assigned the value 0.

Error Return. If there is not sufficient storage in C and JC for the kth row of A + Bi,
then IERR is set to k and the routine terminates. In this case, if k > 1 then the first k - 1
rows of A + Bi will have been stored in C and JC. Also IC(1),. .. ,IC(k) will contain the
appropriate row locations.

Remark. No zeros are stored in C.

Programmer. A. H. Morris
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COPYING SPARSE MATRICES

The following subroutines are available for copying sparse matrices.

CALL RSCOPY(A,IA,JA,B,IB,JB,m)
CALL DSCOPY(AIA,JA,BIB,JB,m)
CALL CSCOPY(AIA,JA,BIB,JB,m)

RSCOPY is used if A and B are real arrays, DSCOPY is used if A and B are double
precision arrays, and CSCOPY is used if A and B are complex arrays.

A is a sparse matrix stored in the arrays A, IA,JA. If A and JA contain k elements
then it is assumed that B and JB are arrays of dimension k. It is also assumed that the
matrix A has m > 1 rows and that IB is an array of dimension m + 1. The routine copies
the matrix A and stores the copy in B,IB,JB.

Remarks.

(1) No zero elements of A are stored in B.
(2) It is assumed that the arrays A, IA, JA and B, IB,JB reference different storage

areas.

Programmer. A. H. Morris.
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COMPUTING CONJUGATES OF SPARSE COMPLEX MATRICES

If A = (aij) is a complex matrix stored in sparse form, then the following subroutine
is available for computing the conjugate matrix A = (aii).

CALL SCONJ(A, IA, JA, B, IB, JB, m)

It is assumed that the sparse complex matrix A is stored in the arrays A, IA, JA. If A
and JA contain k elements, then it is also assumed that B and JB are arrays of dimension
k. A and B are complex arrays. It is assumed that the matrix A has m > 1 rows and that
IB is an array of dimension m + 1. When the routine is called, the conjugate matrix A is
stored in B, IB, JB.

Remark. The user may let B = A, 1B = IA, and JB = JA when IA(1) = 1.

Programmer. A. H. Morris
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: TRANSPOSING SPARSE REAL MATRICES

The subroutines RPOSE and RPOSE1 are available for transposing a sparse m x n real
matrix A. RPOSE1 is more general than RPOSE. For any permutation 7r = {i., ... , i..I of {1, ... ,m} let P denote the corresponding m x m permutation matrix. Then RPOSE1
computes the matrix (PA)t.

CALL RPOSE(AIA,JA,B,IB,JB,m,n)

It is assumed that the sparse matrix A is stored in the arrays A, IA, JA. If A and JA
contain k elements, then it is also assumed that B and JB are arrays of dimension k and
that IB is an array of dimension n + 1. When RPOSE is called, the transpose At is stored
in B, IB, JB.

I Remarks. RPOSE orders the elements of each row of At so that the column indices of the
elements of the row are in ascending order. However, it does no checking for zero elements
in A. If zero elements appear in the array A, then the zero elements will also appear in B.

Restriction. It is assumed that the storage areas B, IB, JB do not overlap with the storage
areas A, IA, JA.

Programmer. A. H. Morris

I 0 Reference. Gustavson, F. G., 'Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition," ACM Trans. Math Software 4 (1978), pp. 250-269.

I CALL RPOSE1(r,A, IA, JA, B, IR, JB,m, n)

It is assumed that 7r is an integer array of dimension m containing the data {il. ... .,I and that the sparse matrix A is stored in the arrays A, IA, JA. If A and JA contain k
elements, then it is also assumed that B and JB are arrays of dimension k and that IB is
an array of dimension n + 1. When RPOSE1 is called, (PA)t is computed and the results
are stored in B) IB, JB.

Remarks. RPOSE1 orders the elements of each row of (PA)t so that the column indicesI of the elements of the row are in ascending order. However, it does no checking for zero
elements in A. If zero elements appear in the array A, then the zero elements will also
appear in B.

Restriction. It is assumed that the storage areas B, IB, JB do not overlap with the storage
areas A, IA, JA.

Programmer. A. H. Morris

Reference. Gustavson, F. G., "Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition," ACM Trans. Math Software 4 (1978), pp. 250-269.
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TRANSPOSING SPARSE DOUBLE PRECISION MATRICES

The subroutines DPOSE and DPOSE1 are available for transposing a sparse m x n
double precision matrix A. DPOSE1 is more general than DPOSE. For any permutation
7r = {il... . i,,,} of {1, .. ., m} let P denote the corresponding m x m permutation matrix.
Then DPOSE1 computes the matrix (PA)t.

CALL DPOSE(A,IA,JA,B,IB,JB,m,n)

It is assumed that the sparse matrix A is stored in the arrays A, IA, JA. A and B
are double precision arrays. If A and JA contain k elements, then it is also assumed that
B and JB are arrays of dimension k and that IB is an array of dimension n + 1. When
DPOSE is called, the transpose At is stored in B, IB, JB.

Remarks. DPOSE orders the elements of each row of At so that the column indices of the
elements of the row are in ascending order. However, it does no checking for zero elements
in A. If zero elements appear in the array A, then the zero elements will also appear in B.

Restriction. It is assumed that the storage areas B, IB, JB do not overlap with the storage
areas A, IA, JA.

Programmer. A. H. Morris

Reference. Gustavson, F. G., 'Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition," ACM Trans. Math Software 4 (1978), pp. 250-269.

CALL DPOSE1(7r,A,IA,JA,B,IB,JB,m,n)

It is assumed that 7r is an integer array of dimension m containing the data {ii, ... ., iin 3
and that the sparse matrix A is stored in the arrays A, IA, JA. A and B are double precision
arrays. If A and JA contain k elements, then it is also assumed that B and JB are arrays
of dimension k and that IB is an array of dimension n+ 1. When DPOSE1 is called, (PA)t
is computed and the results are stored in B, IB, JB.

Remarks. DPOSE1 orders the elements of each row of (PA)t so that the column indices
of the elements of the row are in ascending order. However, it does no checking for zero
elements in A. If zero elements appear in the array A, then the zero elements will also
appear in B.

Restriction. It is assumed that the storage areas B, IB, JB do not overlap with the storage
areas A, IA, JA.

Programmer. A. H. Morris

Reference. Gustavson, F. G., "Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition," ACM Trans. Math Software 4 (1978), pp. 250-269.

269



TRANSPOSING SPARSE COMPLEX MATRICES

The subroutines CPOSE and CPOSE1 are available for transposing a sparse m x n
complex matrix A. CPOSE1 is more general than CPOSE. For any permutation ir =
{il. ,im} of {1, ... ,m} let P denote the corresponding m x m permutation matrix.
Then CPOSE1 computes the matrix (PA)t.

CALL CPOSE(A,IA,JA,BIB,JB,m,n)

It is assumed that the sparse matrix A is stored in the arrays A, IA, JA. A and B
are complex arrays. If A and JA contain k elements, then it is also assumed that B and
JB are arrays of dimension k and that IB is an array of dimension n + 1. When CPOSE
is called, the transpose At is stored in B, IB, JB.

Remarks. CPOSE orders the elements of each row of At so that the column indices of the
elements of the row are in ascending order. However, it does no checking for zero elements
in A. If zero elements appear in the array A, then the zero elements will also appear in B.

Restriction. It is assumed that the storage areas B, IB, JB do not overlap with the storage
areas A, IA, JA.

Programmer. A. H. Morris

Reference. Gustavson, F. G., "Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition," ACM Trans. Math Software 4 (1978), pp. 250-269.

CALL CPOSEI (r, A, IA, JA, B, IB, JB,m, n)

It is assumed that wr is an integer array of dimension m containing the data {il, ... . ign^
and that the sparse matrix A is stored in the arrays A, IA, JA. A and B are complex
arrays. If A and JA contain k elements, then it is also assumed that B and JB are arrays
of dimension k and that lB is an array of dimension n+ 1. When CPOSE1 is called, (PA)t
is computed and the results are stored in B, IB, JB.

Remarks. CPOSE1 orders the elements of each row of (PA)t so that the column indices
of the elements of the row are in ascending order. However, it does no checking for zero
elements in A. If zero elements appear in the array A, then the zero elements will also
appear in B.

Restriction. It is assumed that the storage areas B, IB, JB do not overlap with the storage
areas A, IA, JA.

Programmer. A. H. Morris

Reference. Gustavson, F. G., "Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition," ACM Trans. Math Software 4 (1978), pp. 250-269.
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ADDITION OF SPARSE MATRICES

The following subroutines are available for adding sparse matrices.

3 CALL SADD(A,IA,JA, B,IB,JB,C,IC, JCm,n,NUM,WK,IERR)
CALL DSADD(A, IA, JA, B, IB,JB,C, IC, JCm,n,NUM,WK,IERR)
CALL CSADD(A, IA, JA,B,IB,JB,C,IC,JC,m, n,NUM,WK,IERR)

A and B are sparse m x n matrices stored in the arrays A,IA,JA and B,IB,JB. It
is assumed that A + B is to be stored in sparse form in the arrays C,IC,JC. NUM is the
estimated maximum number of elements that will appear in C and JC. It is assumed that
C and JC are arrays of dimension max{1, NUM} and that IC is an array of dimension
M+1.

SADD is used if A,B,C, and WK are real arrays, DSADD is used if A,B,C, and WK
are double precision arrays, and CSADD is used if A,B,C, and WK are complex arrays.

WK is an array of dimension n or larger that is a work space for the routine.

IERR is an integer variable. When the routine is called, if NUM specifies sufficient
storage for C and JC then A + B is computed and stored in C,IC,JC. Also IERR is
assigned the value 0.

Error Return. If there is not sufficient storage in C and JC for the its row of A + B, then
IERR is set to i and the routine terminates. In this case, if i > 1 then the first i - 1 rows
of A + B will have been computed and stored in C and JC. Also IC(1), .. ., IC(i) will
contain the appropriate row locations.

Remarks.
* (1) No zeros are stored in C.

(2) It is assumed that C, IC, JC reference different storage areas than A, IA, JA and
B,IB,JB.

Programmer. A. H. Morris
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SUBTRACTION OF SPARSE MATRICES

The following subroutines are available for subtracting sparse matrices.ICALL SSUBT(A, IA, JA, B, IB, JB, C, IC, JC,m, n,NUM,WK,ERR)
CALL DSSUBT(A, IA, JA, B, IB, JB, C, IC, JC,m, n,NUM,WK,IERR)
CALL CSSUBT(A, IA, JA, B, IB, JB, C, IC, JC,im, n,NUM,WK,IERR)

A and B are sparse m x n matrices stored in the arrays A,IA,JA and B,IB,JB. It
is assumed that A - B is to be stored in sparse form in the arrays C,IC,JC. NUM is theI estimated maximum number of elements that will appear in C and JC. It is assumed that
C and JC are arrays of dimension max{1, NUM} and that IC is an array of dimension5 in~~M+L1

SSUBT is used if A,B,C, and WK are real arrays, DSSUBT is used if A,B,C, and WK
are double precision arrays, and CSSUBT is used if A,B,C, and WK are complex arrays.

I WK is an array of dimension n or larger that is a work space for the routine.

IERR is an integer variable. When the routine is called, if NUM specifies sufficientI storage for C and JC then A - B is computed and stored in C,IC,JC. Also IERR is
assigned the value 0.

3 Error Return. If there is not sufficient storage in C and JC for the ith row of A-B, then
IERR is set to i and the routine terminates. In this case, if i > 1 then the first i - 1 rows of
A - B will have been computed and stored in C and JC. Also IC(1), . . ,C(i) will contain
the appropriate row locations.

Remarks.

* (1) No zeros are stored in C.
(2) It is assumed that C, IC, JC reference different storage areas than A, IA, JA and

B,IB,JB.

Programmer. A. H. Morris
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I MULTIPLICATION OF SPARSE MATRICES

The following subroutines are available for multiplying sparse matrices.

* CALL SPROD(A, IA, JA, B, IB, JB, C, IC, JC, t,m, n,NUM,WK,IERR)
CALL DSPROD(A, IA, JA, B, IB, JB, C, IC, JC, I,m, n,NUM,WK,IERR)
CALL CSPROD(A, IA, JA, B, IB, JB, C, IC, JC, £,in, n,NUM,WK,IERR)

A is a sparse e x m matrix stored in the arrays A,IA,JA, and B a sparse m x n matrix
stored in the arrays B, TB, JB. It is assumed that AB is to be stored in sparse form in theI arrays C,IC,JC. NUM is the estimated maximum number of elements that will appear in
C and JC. It is assumed that C and JC are arrays of dimension max{1, NUM} and that
IC is an array of dimension e + 1.

SPROD is used if A,B,C, and WK are real arrays, DSPROD is used if A,B,C, and WK
are double precision arrays, and CSPROD is used if A,B,C, and WK are complex arrays.

WK is an array of dimension n or larger that is a work space for the routine.

IERR is an integer variable. When the routine is called, if NUM specifies sufficientI storage for C and JC then AB is computed and stored in C,IC,JC. Also IERR is assigned
the value 0.

Error Return. If there is not sufficient storage in C and JC for the 5th row of AB, then
IERR is set to i and the routine terminates. In this case, if i > 1 then the first i - 1 rows of
AB will have been computed and stored in C and JC. Also IC(1), .. ., IC(i) will containU the appropriate row locations.

Remarks.

* (1) No zeros are stored in C.
(2) It is assumed that C, IC, JC reference different storage areas than A, IA, JA and

B. IB, JB.

Programmer. A. H. Morris
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| : PRODUCT OF A REAL SPARSE MATRIX AND VECTOR

Let A be a real m x n sparse matrix stored in the arrays A, IA, JA. Then the following
subroutines are available for multiplying A with a real vector.

CALL MVPRD(m,n,A,IA,JA,z,y)

The argument x is a column vector of dimension n and y an array of dimension m.
When MVPRD is called, Ax is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

CALL MVPRD1(m,nAIA,JA,x,y)

The arguments x and y are column vectors of dimension n and m respectively. When
MVPRD1 is called, Ax + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

* CALL MTPRD(m,nA, AJA,x,y)

The argument x is a row vector of dimension m and y an array of dimension n. WhenI MTPRD is called, zA is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

CALL MTPRD1(m,n,AIA,JA,x,y)

The arguments 2 and y are row vectors of dimension m and n respectively. When3 MTPRD1 is called, zA + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

I Programmer. A. H. Morris
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| PRODUCT OF A DOUBLE PRECISION SPARSE MATRIX AND VECTOR

Let A be a double precision m x n sparse matrix stored in the arrays A, IA, JA. Then3 the following subroutines are available for multiplying A with a double precision vector.

CALL DVP RD (m,n, A, IA, JA, z,y)

The argument x is a column vector of dimension n and y an array of dimension m. A,
z, y are double precision arrays. When DVPRD is called, Ax is computed and stored in y.

I Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

CALL DVPRD1(m,n,A,IA,JA,z,y)

3 The arguments x and y are column vectors of dimension n and m respectively. A, x, y
are double precision arrays. When DVPRD1 is called, Ax + y is computed and stored in y.

3 Remark. It is assumed that the arrays A, z, y do not overlap.

Programmer. A. H. Morris

CALL DTPRD(m, n, A, IA, JA, x, y)

The argument x is a row vector of dimension m and y an array of dimension n. A, x,I y are double precision arrays. When DTPRD is called, zA is computed and stored in y.

3 Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

I CALL DTPRD1(m,n,A,IA,JA,x,y)

The arguments x and y are row vectors of dimension m and n respectively. A, x, y areI double precision arrays. When DTPRD1 is called, xA + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

I :

I:
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PRODUCT OF A COMPLEX SPARSE MATRIX AND VECTOR

Let A be a complex m x n sparse matrix stored in the arrays A, IA, JA. Then the
* following subroutines are available for multiplying A with a complex vector.

CALL CVPRD(m, n, A, IA, JA, x, y)

The argument x is a column vector of dimension n and y an array of dimension m.
A, x, y are complex arrays. When CVPRD is called, Ax is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

CALL CVPRD1(m, n, A, IA, JA, x, y)

The arguments x and y are column vectors of dimension n and m respectively. A, x, yI are complex arrays. When CVPRD1 is called, Ax + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

CALL CTPRD(m,n,A,IA,JA,x,y)

The argument x is a row vector of dimension m and y an array of dimension n. A, x, yI are complex arrays. When CTPRD is called, zA is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

CALL CTPRD1(m,n,A,IA,JA,x,y)

The arguments x and y are row vectors of dimension m and n respectively. A, x, y are
complex arrays. When CTPRD1 is called, zA + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris

I
I
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ORDERING THE ROWS OF A SPARSE MATRIXI BY INCREASING LENGTH

Let A be a sparse mx n matrix stored in the arrays A, IA, JA. The following subroutineI is available for ordering the rows of the matrix by increasing length.

CALL SPORD(m,n, IA, RIWK)

R is an integer array of dimension m. When SPORD is called, the rows of the matrix
are ordered by increasing length. The row ordering is given in R.

IWK is an integer array of dimension m + n + 1 or larger that is used for a work space.

Remark. If rows il, .. ., ik are the rows of length e, then the indices il, . . ., iA; are listed in
R in increasing sequence.

Programmer. A. H. Morris
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REORDERING SPARSE MATRICES INTO BLOCK TRIANGULAR FORM

Let A be a sparse n x n matrix stored in the arrays A, IA, JA. Then the subroutine
BLKORD is available for reordering the rows and columns of A so that one has a lower
block triangular matrix

| Al l 0
(*) A2 1 A2 2

Akl Ak2 ... Akk
where the blocks Ai are square and cannot themselves be reordered into lower block trian-
gular form.

CALL BLKORD(n,IA,JA,R,C,IB,k,IWK,IERR)

R and C are integer arrays of dimension n, and IERR is an integer variable. When
BLKORD is called, the rows of the matrix are first ordered so that the main diagonal
contains a maximum number of nonzeros. After this is done then IERR = the number ofI zeros that appear on the diagonal. If IERR = 0 then the rows and columns of the matrix
are ordered into block triangular form (*). The row ordering is given in R and the column
ordering is given in C.

IB is an integer array of dimension n and k is an integer variable. When the matrix has
been ordered into block triangular form (*) then k = the number of blocks Aii. Also IB(i) =
the row number in the block triangular matrix of the beginning of block A-j (i = 1, . .. , k).

IWK is an integer array of dimension 5n or larger that is used for a work space by the
routine.

Error Return. If IERR : 0 then the routine terminates. In this case, R contains the row
ordering that gives the main diagonal with the maximum number of nonzeros.

Remark. IA, JA, and n are not modified by the routine.

Programming. BLKORD employs the subroutines MC21A, MC21B, MC13D, MC13E de-
signed by I. S. Duff and J. K. Reid (AERE Harwell,England).

References.

(1) Duff, I. S., "On Algorithms for Obtaining a Maximum Transversal," ACM Trans.
Math Software 7 (1981), pp.315-330.

(2) Duff, I. S. and Reid, J. K., "An Implementation of Tarjan's Algorithm for the Block
Triangularization of a Matrix," AC-M Trans. Math Software 4 (1978), pp. 137-147.
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SOLUTION OF SPARSE SYSTEMS OF REAL LINEAR EQUATIONS

I Let A be a nonsingular n x n sparse real matrix stored in the arrays A, 1A, JA and let b
be a real column vector of dimension n. The subroutines SPSLV and RSLV are available for
solving the system of equations Ax = b, and the subroutine TSLV is available for solving
the transposed system of equations Atx = b. These routines employ partial pivot gauss
elimination with column interchanges to first obtain an LU decomposition of A. If SPSLV
is called then only the off-diagonal nonzero elements of U are stored, and then the equationsI are solved. However, if RSLV or TSLV is called then the off-diagonal nonzero elements of
both L and U are stored. Thus RSLV and TSLV will frequently require at least double the
amount of storage needed by SPSLV, but they can be recalled to solve other systems of
equations Ax = r and Atx = r without having to redecompose the matrix A. Moreover,
since RSLV and TSLV will always generate the same LU decomposition of A, RSLV can
be called to decompose A and solve a system of equations Ax = b, and then TSLV can be
called to solve a transposed system of equations Atx = r using the decomposition obtained
by RSLV.

I ; CALL SPSLV(n,A,IA,JA, b, R, C,MAX,X,IWK,WK,IERR)

It is assumed that n > 1 and that X is an array of dimension n. The solution of theI system of equations Ax = b is computed and stored in X. AIA, JA and b are not modified
by the routine.

BR is an integer array of n entries specifying the order in which the n rows of A are
to be examined and processed. For example, if R contains the entries il, ... , i then the
algorithm first performs operations on row il, next on row i2, etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on
the overall performance of a subroutine such as SPSLV. Thus R must be chosen judiciously.
R is not modified by the routine.

I : C is an integer array of n entries which plays a role similar to R. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
elements. For example, if C contains the entries ji, . .. ,j,, then it is suggested that theI first pivot element may be from column ji, the second pivot element from column j2, etc.
However, since partial pivoting with column interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routine, and MAX is an input argument.
When SPSLV is called, an LU decomposition of A is first obtained where U is a unit upper
triangular matrix. The off-diagonal portion of U is stored in sparse form in IWK and WK.
MAX is an estimate of the maximum number of off-diagonal elements of U that might beI nonzero and have to be stored (MAX < n(n - 1)/2). IWK is an integer array of dimension
3n + MAX + 2 or larger, and WK is a real array of dimension n + MAX or larger.
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IERR is an integer variable that reports the status of the results. When the routine
terminates, IERR has one of the following values:

IERR > 0 Ax = b was solved. IERR = max{1,m} where m is I
the number of off-diagonal nonzero elements of U.

IERR = 0 The argument n is nonpositive.
IERR = -k Row R(k) of A is null.
IERR =- n - k Row R(k) of A has a duplicate entry.
IERR = -2n - k Row R(k) of A has been reduced to a row containing

only zeros.
IERR = -3n - k Row k of the upper triangular matrix exceeds storage.

MAX must be increased.

When an error is detected, the routine immediately terminates.

Remarks. The amount of storage MAX depends critically on the row ordering given in R.
If it is suspected that the rows and columns of A can be reordered so that one has a lower
block triangular matrix

All A
A2 1 A2 2

Ak, Ak2 ... AIkk

then the subroutine BLKORD should first be tried. This subroutine will specify an ordering
for lower block triangular form if one exists. However, if such an ordering does not exist I
and one is uncertain how to order the rows,. then the row ordering given by the subroutine
SPORD frequently yields good results. In any case, the selection of an initial column or-
dering C is never bothersome since partial pivoting with column interchanges is performed. I
The initial ordering C(i) (i = 1, ... , n) always suffices.

Programming. SPSLV is a modification by A. H. Morris of the subroutine NSPIV. SPSLV 3
employs the subroutine NSPIV1. NSPIV and NSPIV1 were written by Andrew H. Sherman
(University of Texas at Austin).

Reference. Sherman, Andrew H.,"Algorithms for Sparse Gaussian Elimination with Partial
Pivoting," ACM Trans. Math Software 4 (1978), pp.330-338.

CALL RSLV(MOn, A, IA, JA, b, R, C,MAX,X,IWK,WK,I1RR)
CALL TSLV(MO,n, A, IA, JA, b, R, C,MAX,X,IWK,WK,IERR)

RSLV is called for solving Ax = b, and TSLV is called for solving Atx = b. MO is an
input argument which specifies if RSLV or TSLV is being called for the first time. On an
initial call, MO = 0 and we have the following setup:

It is assumed that n > 1 and that X is an array of dimension n. The solution of the
system of equations is stored in X. A, IA, JA are not modified by the routines. X and b
may share the same storage area. If X is a separate storage area then b is not modified by I
the routines.
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R is an integer array of n entries specifying the order in which the n rows of A are
to be examined and processed. For example, if R contains the entries il, ... 'in then the
algorithm first performs operations on row il, next on row i2, etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on
the overall performance of subroutines such as RSLV and TSLV. Thus R must be chosen
judiciously. R is not modified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
elements. For example, if C contains the entries j1, ... ,jn then it is suggested that the
first pivot element may be from column ii, the second pivot element from column 52, etc.
However, since partial pivoting with column interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routines, and MAX is an input ar-
gument. On an initial call to RSLV or TSLV, an LU decomposition of A is first obtained
where L is a lower triangular matrix and U a unit upper triangular matrix. The off-diagonal
portions of L and U are stored in sparse form in IWK and WK. MAX is an estimate of
the maximum number of off-diagonal elements of L and U that might be nonzero and have
to be stored (MAX < n(n - 1)). IWK is an integer array of dimension 4n + MAX + 2 or
larger, and WK is a real array of dimension 2n + MAX or larger.

On an initial call to RSLV or TSLV, IERR is an integer variable that reports the status
of the results. When the routine terminates, IERR has one of the following values:

IERR > 0 The system of equations was solved. IERR=max{l, m}
where m is the total number of off-diagonal nonzero
elements of L and U.

IERR = 0 The argument n is nonpositive.
IERR = -k Row R(k) of A is null.
IERR = - n - k Row R(k) of A has a duplicate entry.
IERR = -2n - k Row R(k) of A has been reduced to a row containing

only zeros.
IERR = -3n - k Row k of L or U exceeds storage. MAX must be in-

creased.

When an error is detected, the routine immediately terminates.

After an initial call to RSLV or TSLV, if IERR > 0 on output then either routine may
be called with MO $A 0. When MO $ 0 it is assumed that only b may have been modified.
RSLV is called for solving the new set of equations Ax = b, and TSLV is called for solving
the new set of equations Atx = b. The routine employs the LU decomposition obtained
on the initial call to RSLV or TSLV to solve the new system of equations. The solution is
stored in X. As before, X and b may share the same storage area. If MO A 0 then only
n, R, C, IWK, and WK are used. A, [A, JA, MAX, and IERR are not referenced by the
routine.

Note. The remarks concerning the ordering of the rows and columns of A when SPSLV is
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used hold also for RSLV and TSLV.

Programming. RSLV calls the subroutines RSLV1 and SPLU, and TSLV calls the subrou-
tines TSLV1 and SPLU. These routines were written by A. H. Morris.
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DOUBLE PRECISION SOLUTION OF SPARSE SYSTEMS
OF REAL LINEAR EQUATIONS

Let A be a nonsingular n x n sparse double precision matrix stored in the arrays

A, IA, JA and let b be a double precision column vector of dimension n. The subroutines

DSPSLV and DSLV are available for solving the system of equations Ax = b, and the

subroutine DTSLV is available for solving the transposed system of equations Atz = b.

These routines employ partial pivot Gauss elimination with column interchanges to first

obtain an LU decomposition of A. If DSPSLV is called then only the off-diagonal nonzero

elements of U are stored, and then the equations are solved. However, if DSLV or DTSLV is

called then the off-diagonal nonzero elements of both L and U are stored. Thus DSLV and

DTSLV will frequently require at least double the amount of storage needed by DSPSLV, but

they can be recalled to solve other systems of equations Ax = r and At x = r without having
to redecompose the matrix A. Moreover, since DSLV and DTSLV will always generate the

same LU decomposition of A, DSLV can be called to decompose A and solve a system of

equations Ax = b, and then DTSLV can be called to solve a transposed system of equations
Atx = r using the decomposition obtained by DSLV.

CALL DSPSLV(n, A, IA, JA, b, R, C,MAX,X,IWK,WK,IERR)

A , b, and X are double precision arrays. It is assumed that n > 1 and that X is an
array of dimension n. The solution of the system of equations Ax = b is computed and
stored in X. AIA, JA and b are not modified by the routine.

R is an integer array of n entries specifying the order in which the n rows of A are

to be examined and processed. For example, if R contains the entries i1 , ... in then the
algorithm first performs operations on row il, next on row i2, etc. It is well known that the

order in which the rows of a sparse matrix are processed can have a significant impact on the

overall performance of a subroutine such as DSPSLV. Thus R must be chosen judiciously.

R is not modified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifies

a suggested order in which the n columns of A should be ordered for selection of the pivot

elements. For example, if C contains the entries il, .. .,j, then it is suggested that the
first pivot element may be from column j1, the second pivot element from column j2, etc.

However, since partial pivoting with column interchange is performed, on output C may

have been modified. On output, C will contain the actual order of the n columns from

which the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routine, and MAX is an input argument.
When DSPSLV is called, an LU decomposition of A is first obtained where U is a unit upper

triangular matrix. The off-diagonal portion of U is stored in sparse form in IWK and WK.

MAX is an estimate of the maximum number of off-diagonal elements of U that might be

nonzero and have to be stored (MAX < n(n - 1)/2). IWK is an integer array of dimension

3n + MAX + 2 or larger, and WK is a double precision array of dimension n + MAX or

larger.

293



IERR is an integer variable that reports the status of the results. When the routine
terminates, IERR has one of the following values:

IERR > 0 Ax = b was solved. IERR = max{1,m} where m is
the number of off-diagonal nonzero elements of U.

IERR = 0 The argument n is nonpositive.
IERR = -k Row R(k) of A is null.
IERR = - n - k Row R(k) of A has a duplicate entry.
IERR = -2n - k Row R(k) of A has been reduced to a row containing

only zeros.
IERR = -3n - k Row k of the upper triangular matrix exceeds storage.

MAX must be increased.

When an error is detected, the routine immediately terminates.

Remarks. The amount of storage MAX depends critically on the row ordering given in R.
If it is suspected that the rows and columns of A can be reordered so that one has a lower
block triangular matrix

( A 2 

A 2 1 A 22

Akl Ak2 ... Akk

then the subroutine BLKORD should first be tried. This subroutine will specify an ordering
for lower block triangular form if one exists. However, if such an ordering does not exist
and one is uncertain how to order the rows, then the row ordering given by the subroutine
SPORD frequently yields good results. In any case, the selection of an initial column or-
dering C is never bothersome since partial pivoting with column interchanges is performed.
The initial ordering C(i) = i (i = 1; ... , n) always suffices.

Programming. DSPSLV an adaptation by A. H. Morris of the subroutine NSPIV written
by Andrew H. Sherman (University of Texas at Austin). DSPSLV employs the subroutine
DNSPIV.

Reference. Sherman, Andrew H.,'Algorithms for Sparse Gaussian Elimination with Partial
Pivoting," ACM Trans. Math Software 4 (1978), pp.330-338.

CALL DSLV(MO,n, A, IA, JA, b, R, CMAXXIWKWKIERR)
CALL DTSLV(MO,n, A, IA, JA, b, R, C,MAX,XIWK,WKIERR)

DSLV is called for solving Ax = b, and DTSLV is called for solving Atz = b. MO is an
input argument which specifies if DSLV or DTSLV is being called for the first time. On an
initial call, MO = 0 and we have the following setup:

A, b, and X are double precision arrays. It is assumed that n > 1 and that X is an
array of dimension n. The solution of the system of equations is stored in X. A, IA, JA are
not modified by the routines. X and b may share the same storage area. If X is a separate
storage area then b is not modified by the routines.
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R is an integer array of n entries specifying the order in which the n rows of A are
to be examined and processed. For example, if R contains the entries i1 , .. ., ,in then the
algorithm first performs operations on row il, next on row i2 , etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on
the overall performance of subroutines such as DSLV and DTSLV. Thus R must be chosen
judiciously. R is not modified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot

* elements. For example, if C contains the entries ij1, ... , jn then it is suggested that the
first pivot element may be from column j1, the second pivot element from column j2, etc.
However, since partial pivoting with column interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routines, and MAX is an input argu-
ment. On an initial call to DSLV or DTSLV, an LU decomposition of A is first obtained
where L is a lower triangular matrix and U a unit upper triangular matrix. The off-diagonal1 portions of L and U are stored in sparse form in IWK and WK. MAX is an estimate of
the maximum number of off-diagonal elements of L and U that might be nonzero and have
to be stored (MAX < n(n - 1)). IWK is an integer array of dimension 4n + MAX + 2 or
larger, and WK is a double precision array of dimension 2n + MAX or larger.

On an initial call to DSLV or DTSLV, IERR is an integer variable that reports the
status of the results. When the routine terminates, IERR has one of the following values:

IERR > 0 The system of.equations was solved. IERR=max{l,m}
where m is the total number of off-diagonal nonzero

| elements of L and U.
IERR = 0 The argument n is nonpositive.
IERR = -k Row R(k) of A is null.
IERR = - n-k Row R(k) of A has a duplicate entry.
IERR = -2n - k Row R(k) of A has been reduced to a row containing

only zeros.
IERR = -3n - k Row k of L or U exceeds storage. MAX must be in-

creased.

When an error is detected, the routine immediately terminates.

After an initial call to DSLV or DTSLV, if IERR > 0 on output then either routine may
be called with MO :# 0. When MO : 0 it is assumed that only b may have been modified.
DSLV is called for solving the new set of equations Ax = b, and DTSLV is called for solving
the new set of equations Atx = b. The routine employs the LU decomposition obtained on
the initial call to DSLV or DTSLV to solve the new system of equations. The solution is
stored in X. As before, X and b may share the same storage area. If MO :A 0 then only
n, R, C, IWK, and WK are used. A, IA, JA, MAX, and IERR are not referenced by the
routine.

U Note. The remarks concerning the ordering of the rows and columns of A when DSPSLV
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is used hold also for DSLV and DTSLV. U
Programming. DSLV calls the subroutines DSLV1 and DSPLU, and DTSLV calls the|
subroutines DTSLV1 and DSPLU. These routines were written by A. H. Morris.I
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SOLUTION OF SPARSE SYSTEMS OF COMPLEX LINEAR EQUATIONS

Let A be a nonsingular n x n sparse complex matrix stored in the arrays A, IA, JA and
let b be a complex column vector of dimension n. The subroutines CSPSLV and CSLV are
available for solving the system of equations Ax = b, and the subroutine CTSLV is available
for solving the transposed system of equations Atz = b. These routines employ partial pivot
Gauss elimination with column interchanges to first obtain an LU decomposition of A. If
CSPSLV is called then only the off-diagonal nonzero elements of U are stored, and then the
equations are solved. However, if CSLV or CTSLV is called then the off-diagonal nonzero
elements of both L and U are stored. Thus CSLV and CTSLV will frequently require at
least double the amount of storage needed by CSPSLV, but they can be recalled to solve
other systems of equations Ax = r and Atx = r without having to redecompose the matrix
A. Moreover, since CSLV and CTSLV will always generate. the same LU decomposition
of A, CSLV can be called to decompose A and solve a system of equations Ax = b, and
then CTSLV can be called to solve a transposed system of equations Atx = r using the
decomposition obtained by CSLV.

CALL CSPSLV(n, A, IA, JA, b, R, C,MAX,X,IWK,WK,IERR)

A , b, and X are complex arrays. It is assumed that n > 1 and that X is an array of
dimension n. The solution of the system of equations Ax = b is computed and stored in X.
AIA, JA and b are not modified by the routine.

R is an integer array of n entries specifying the order in which the n rows of A are
to be examined and processed. For example, if R contains the entries il, ... ,i,, then the
algorithm first performs operations on row il, next on row i2, etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on the
overall performance of a subroutine such as CSPSLV. Thus R must be chosen judiciously.
R is not modified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
elements. For example, if C contains the entries ji, . .. ,j,* then it is suggested that the
first pivot element may be from column ji, the second pivot element from column j2, etc.
However, since partial pivoting with column interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routine, and MAX is an input argument.
When CSPSLV is called, an LU decomposition of A is first obtained where U is a unit upper
triangular matrix. The off-diagonal portion of U is stored in sparse form in IWK and WK.
MAX is an estimate of the maximum number of off-diagonal elements of U that might be
nonzero and have to be stored (MAX < n(n - 1)/2). IWK is an integer array of dimension
3n + MAX + 2 or larger, and WK is a complex array of dimension n + MAX or larger.
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IERR is an integer variable that reports the status of the results. When the routine
terminates, IERR has one of the following values:

IERR > 0 Ax = b was solved. IERR = max{1, m} where m is
the number of off-diagonal nonzero elements of U.

IERR = 0 The argument n is nonpositive.
IERR = -k Row R(k) of A is null. I
IERR = - - k Row R(k) of A has a duplicate entry.
IERR =-2n - k Row R(k) of A has been reduced to a row containing

only zeros. I
IERR =-3n.- k Row k of the upper triangular matrix exceeds storage.

MAX must be increased.

When an error is detected, the routine immediately terminates. I
Remarks. The amount of storage MAX depends critically on the row ordering given in R.
If it is suspected that the rows and columns of A can be reordered so that one has a lower I
block triangular matrix

- ~~ A11 VO 
A21 A22

Aki Ak2 ... Akk|

then the subroutine BLKORD should first be tried. This subroutine will specify an ordering
for lower block triangular form if one exists. However, if such an ordering does not exist
and one is uncertain how to order the rows, then the row ordering given by the subroutine I
SPORD frequently yields good results. In any case, the selection of an initial column or-
dering C is never bothersome since partial pivoting with column interchanges is performed.
The initial ordering C(i) = i (i = 1, ... , n) always suffices.

Programming. CSPSLV is an adaptation by A. H. Morris of the subroutine NSPIV written
by Andrew H. Sherman (University of Texas at Austin). CSPSLV employs the subroutine I
CNSPIV.

Reference. Sherman, Andrew H.,'Algorithms for Sparse Gaussian Elimination with Partial I
Pivoting," ACM Trans. Math Software 4 (1978), pp.330-338.

CALL CSLV(MO,n, A,IA,JA,bR,C,MAX,X,IWK,WK,IERR)
CALL CTSLV(MO,n, A, IA, JA, b, R, C,MAX,X,IWK,WK,IERR)

CSLV is called for solving Ax = b, and CTSLV is called for solving Atx = b. MO is an
input argument which specifies if CSLV or CTSLV is being called for the first time. On an
initial call, MO = 0 and we have the following setup:

A, b, and X are complex arrays. It is assumed that n > 1 and that X is an array of I
dimension n. The solution of the system of equations is stored in X. A, IA, JA are not
modified by the routines. X and b may share the same storage area. If X is a separate
storage area then b is not modified by the routines.
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R is an integer array of n entries specifying the order in which the n rows of A are
to be examined and processed. For example, if R contains the entries il, .. ,4, then the
algorithm first performs operations on row ti, next on row i2, etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on
the overall performance of subroutines such as CSLV and CTSLV. Thus R must be chosen
judiciously. R is not modified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
elements. For example, if C contains the entries ji, ... ,j,, then it is suggested that the
first pivot element may be from column Ji, the second pivot element from column j2, etc.
However, since partial pivoting with column interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routines, and MAX is an input argu-
ment. On an initial call to CSLV or CTSLV, an LU decomposition of A is first obtained
where L is a lower triangular matrix and U a unit upper triangular matrix. The off-diagonal
portions of L and U are stored in sparse form in IWK and WK. MAX is an estimate of
the maximum number of off-diagonal elements of L and U that might be nonzero and have
to be stored (MAX < n(n - 1)). IWK is an integer array of dimension 4n + MAX + 2 or
larger, and WK is a complex array of dimension 2n + MAX or larger.

On an initial call to CSLV or CTSLV, IERR is an integer variable that reports the
status of the results. When the routine terminates, IERR has one of the following values:

IERR > 0 The system of equations was solved. IERR=max{l, m}
where m is the total number of off-diagonal nonzero
elements of L and U.

IERR = 0 The argument n is nonpositive.
IERR = -k Row R(k) of A is null.
IERR = - n - k Row R(k) of A has a duplicate entry.
IERR = -2n - k Row R(k) of A has been reduced to a row containing

only zeros.
IERR = -3n - k Row k of L or U exceeds storage. MAX must be in-

creased.

When an error is detected, the routine immediately terminates.

After an initial call to CSLV or CTSLV, if IERR > 0 on output then either routine may
be called with MO :A 0. When MO + 0 it is assumed that only b may have been modified.
CSLV is called for solving the new set of equations Ax = b, and CTSLV is called for solving
the new set of equations Atx = b. The routine employs the LU decomposition obtained on
the initial call to CSLV or CTSLV to solve the new system of equations. The solution is
stored in X. As before, X and b may share the same storage area. If MO : 0 then only
n, R, C, IWK, and WK are used. A, IA, JA, MAX, and IERR are not referenced by the
routine.
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Note. The remarks concerning the ordering of the rows and columns of A when CSPSLV I
is used hold also for OSLY and CTSLV. :_

Programming. CSLV calls the subroutines CSLV1 and CSPLU, and CTSLV calls the I
subroutines CTSLV1 and CSPLU. These routines were written by A. LH. Morris. I

.
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COMPUTATION OF EIGENVALUES OF GENERAL REAL MATRICES

The subroutines EIG and EIG1 are available for computing the eigenvalues of real
matrices. These routines frequently yield results accurate to 13-14 significant digits. Indeed,
for symmetric matrices they may give 2 or more digits better accuracy than the routines
designed specifically for symmetric matrices. However, if the eigenvalues are not distinct or
if they are exceedingly tightly clustered, then a severe drop in accuracy can occur when the
matrix is not symmetric. In this case one should not expect more than 7-8 digit accuracy.

CALL EIG(IBAL,A, ka, n, WR, WI,IERR)
CALL EIG1(IBAL,A,ka,n,WR,WI,IERR)

A is a matrix of order n > 1 and WR,WI are real arrays of dimension n or larger.
When EIG or EIGI is called then the eigenvalues Ai, ... ,An of A are computed. The real
parts of the eigenvalues are stored in WR(1), . , WR(n) and the imaginary parts are stored
in WI(1), ... .,WI(n). The eigenvalues are unordered except that complex conjugate pairs
of eigenvalues appear consecutively with the eigenvalue having the positive imaginary part
being first.

IBAL and ka are input arguments. The argument ka is the number of rows in the
dimension statement for A in, the calling program. IBAL may be any integer. If IBAL # 0
then the routines balance A before they compute the eigenvalues. Otherwise, if IBAL = 0
then A is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is set
to 0. Otherwise, if more than 30 iterations are required to compute the j" eigenvalue Aj,
then IERR is set to j and the routine terminates. In this case, if j < n then the eigenvalues
Aj+,, ... ,A, will have been computed and the results stored in the WR and WI arrays.

Remarks.

(1) Even though the balancing operation does not increase the theoretical bounds on the
errors, nevertheless at times it may result in a slight los s of accuracy. On the other
hand, balancing requires little additional time and in certain cases can improve the
accuracy by as much as 5-6 significant digits. Thus it is recommended that balancing
be done.

(2) A is destroyed during computation. EIG and EIGI reduce A to upper Hessenberg
form and then apply the QR algorithm to obtain the eigenvalues. They differ only
in the choice of transformations used to reduce A to upper Hessenberg form. EIG
employs elementary similarity transformations and EIGI employs orthogonal similarity
transformations. In theory the use of orthogonal transformations assures one of a
tighter bound on the errors. However, since in practice matrices infrequently arise
for which the orthogonal transformations actually generate more accurate results, and
since the orthogonal transformations normally require more time than the elementary
transformations, therefore EIG is the recommended routine.
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Programming. EIG and EIG1 are driver routines for the EISPACK subroutines BALANC,
ELMHSO, ORTHES, and HQR. These subroutines were developed at Argonne National
Laboratory. The functions SPMPAR and IPMPAR are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix EigensV8tem Routines - EISPACK
Guide (Second Edition), Springer-Verlag, 1976.
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COMPUTATION OF EIGENVALUES AND EIGENVECTORS OF
GENERAL REAL MATRICES

The subroutines EIGV and EIGV1 are available for computing the eigenvalues and
eigenvectors of real matrices. These routines are extensions of the respective eigenvalue
routines EIG and EIG1. Thus all comments made concerning the accuracy of the eigenvalues
produced by EIG and EIG1 apply also to EIGV and EIGV1. In particular, EIGV and
EIGV1 can frequently yield high precision results for the eigenvalues if they are distinct.
However, be aware that errors in the eigenvalues, no matter how seemingly insignificant,
can be considerably magnified in the computation of the eigenvectors. It is not at all
unusual to obtain an eigenvalue and eigenvector where the eigenvalue is correct to within
2-3 units of the 14th significant digit, but the components of the corresponding eigenvector
are only accurate to 9-10 significant digits. In the case of repeated eigenvalues the situation
regarding the eigenvectors is totally unpredictable. The components of such an eigenvector
may be correct to 6-7 significant digits, or the eigenvector may not even be an eigenvector!
In this case the results should be checked.

CALL EIGV(IBAL, A, ka, n, WR,WI,ZR,ZI,IERR)
CALL EIGVI(IBAL, A, ka, n, WR,WI,ZR,ZI,IERR)

A is a matrix of order n > 1 and WR, WI are real arrays of dimension n or larger.
When EIGV or EIGV1 is called the eigenvalues A1, ... , An and corresponding eigenvectors
z ... Zn are computed. The real parts of the eigenvalues are stored in WR(1), ... ,WR(n)
and the imaginary parts are stored in WI(1), ... ,WI(n). The eigenvalues are unordered
except that complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue
having the positive imaginary part being first.

The input argument ka is the number of rows in the dimension statement for A in
the calling program. ZR and ZI are real arrays of dimension ka x n. For j = 1, .. ., n the
real parts of the components of the eigenvector zj are stored in the jth column of ZR (in
locations ZR(lj), ... ,ZR(nj)) and the imaginary parts are stored in the jth column of ZI.
The eigenvectors zI, ... , zn are not normalized.

IBAL is an input argument that can be assigned any integer value. If IBAL # 0 then
the routines balance A before they compute the eigenvalues and eigenvectors. Otherwise,
if IBAL = 0 then A is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues and eigenvectors are found
then IERR is set to 0. Otherwise, if more than 30 iterations are required to compute the jth
eigenvalue Aj, then IERR is set to j and the routine terminates. In this case, if j < n then
the eigenvalues Aj+1, * . , A,, will have been computed and the results stored in the WR and
WI arrays. However, none of the eigenvectors will have been computed. The eigenvectors
are computed only after all the eigenvalues have been obtained.
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Remarks. I
(1) Even though the balancing operation does not increase the theoretical bounds on the

errors, nevertheless at times it may result in a slight loss of accuracy. On the other hand,
balancing requires little additional time and in certain cases can improve the accuracy Iof the eigenvalues by as much as 5-6 significant digits. When this occurs balancing
will normally be needed to obtain the eigenvectors. In general, it is recommended that
balancing be done. I

(2) A is destroyed during computation. EIGV and EIGV1 both reduce A to upper Hes-
senberg form, apply the QR algorithm to the Hessenberg matrix to obtain the eigen-
values, and then backsubstitute to generate the eigenvectors. They differ only in the I
choice of transformations used to reduce A to upper Hessenberg form. EIGV employs
elementary similarity transformations and EIGV1 employs orthogonal similarity trans-
formations. In theory the use of orthogonal transformations assures one of a tighter I
bound on the errors. However, since in practice matrices infrequently arise for which
the orthogonal transformations actually generate more accurate results, and since the
orthogonal transformations normally require more time than the elementary transfor- I
mations, therefore EIGV is the recommended routine.

Programming. EIGV and EIGV1 are driver routines for the EISPACK subroutines BAL- I
ANC, ELMHSO, ORTHES, ELTRNO, ORTRAN, HQR2, and BALBAK. These subroutines
were developed at Argonne National Laboratory. The functions SPMPAR and IPMPAR
are also used. I
Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensystem Routines - EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

I

:: ~~~~~~~~~~I
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DOUBLE PRECISION COMPUTATION OF EIGENVALUES OF
REAL MATRICES

The subroutine DEIG is available for the double precision computation of the eigen-
values of real matrices. This routine frequently yields results accurate to 26-28 significant
digits. However, if the eigenvalues are not distinct or if they are exceedingly tightly clus-
tered, then a severe drop in accuracy can occur. In this case one should not expect more
than 13-14 digit accuracy.

CALL DEIG(IBAL, A, ka, n, WR,WI,IERR)

A is a double precision matrix of order n > 1 and WR, WI are double precision arrays
of dimension n or larger. When DEIG is called then the eigenvalues A1, .. . ,An of A are
computed. The real parts of the eigenvalues are stored in WR(1), .. .,WR(n) and the
imaginary parts are stored in WI(1), ... ,WI(n). The eigenvalues are unordered except that
complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the
positive imaginary part being first.

IBAL and ka are input arguments. The argument ka is the number of rows in the
dimension statement for A in the calling program. IBAL may be any integer. If IBAL :A
0 then the routine balances A before it computes the eigenvalues. Otherwise, if IBAL = 0
then A is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is set
to 0. Otherwise, if more than 50 iterations are required to compute the jth eigenvalue Aj,
then IERR is set to j and the routine terminates. In this case, if j < n then the eigenvalues
Aja, X . .. , An will have been computed and the results stored in the WR and WI arrays.

Remarks.

(1) A is destroyed during computation.
(2) DEIG is a double precision version of the eigenvalue routine EIG1.

Programming. DEIG is a driver routine for the subroutines DBAL, DORTH, and DHQR.
These subroutines are double precision versions of the EISPACK subroutines BALANC,
ORTHES, and HQR, developed at Argonne National Laboratory. The double precision.
versions were prepared by A. H. Morris. The functions DPMPAR and IPMPAR are also
used.

Reference. Smith, B. T., Boyle, J. M., et al., Matri: Eigensystem Routines - EISPACK
Guide (Second Edition), Springer-Verlag, 1976.
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DOUBLE PRECISION COMPUTATION OF EIGENVALUES AND

EIGENVECTORS OF REAL MATRICES

The subroutine DEIGV is available for the double precision computation of the eigen-
values and eigenvectors of real matrices. This routine frequently yields values for the eigenr
values that are accurate to 26-28 significant digits. However, be aware that errors in the
eigenvalues, no matter how seemingly insignificant, can be considerably magnified in theI computation of the eigenvectors. If the eigenvalues are not distinct or if they are exceed-
ingly tightly clustered, then a severe drop in accuracy can occur. In this case one should
not expect the eigenvalues to have more than 13-14 digit accuracy.

CALL DEIGV(IBAL, A, ka, n, WR,WI,ZR,ZI,IERR)

A is a double precision matrix of order n > 1 and WR, WI are double precision
arrays of dimension n or larger. When DEIGV is called then the eigenvalues Al, ... A,
and corresponding eigenvectors z1, . .. , zn are computed. The real parts of the eigenvalues
are stored in WR(1), . . . ,WR(n) and the imaginary parts are stored in WI(1), . . . ,WI(n).
The eigenvalues are unordered except that complex conjugate pairs of eigenvalues appear
consecutively with the eigenvalue having the positive imaginary part being first.

The input argument ka is the number of rows in the dimension statement for A in
the calling program. ZR and ZI are double precision arrays of dimension ka x n. For
j = 1, . .. , n the real parts of the components of the eigenvector zj are stored in the 9Ih
column of ZR (in locations ZR(1,j), ... ,ZR(n,j)) and the imaginary parts are stored in the
jth column of ZI. The eigenvectors z1, . .. , zn are not normalized.

3 IBAL is an input argument that can be assigned any integer value. If IBAL $ 0 then
the routine balances A before it computes the eigenvalues and eigenvectors. Otherwise, if
IBAL 0 then A is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues and eigenvectors are found
then IERR is set to 0. Otherwise, if more than 50 iterations are required to compute the ythU eigenvalue Aj, then IERR is set to j and the routine terminates. In this case, if j < n then
the eigenvalues As+i, . .., A,, will have been computed and the results stored in the WR and
WI arrays. However, none of the eigenvectors will have been computed. The eigenvectorsI are computed only after all the eigenvalues have been obtained.

Remarks.

* (1) A is destroyed during computation.
(2) DEIGV is a double precision version of the eigenvalue/eigenvector routine EIGV1.
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Programming. DEIGV is a driver routine for the subroutines DBAL, DORTH, DORTRN,
DHQR2, and DBABK. These subroutines are double precision versions of the EISPACK
routines BALANO, ORTHES, ORTRAN, HQR2, and BALBAK, developed at Argonne
National Laboratory. The double precision versions were prepared by A. H. Morris. The
functions DPMPAR and IPMPAR are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensystem Routines - MISPACK
Guide (Second Edition), Springer-Verlag, 1976.
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COMPUTATION OF EIGENVALUES OF SYMMETRIC REAL MATRICES

l
The subroutines SEIG and SEIGI are available for computing the eigenvalues of sym-

metric real matrices. These routines frequently yield high precision results. SEIG is faster
than SEIG1, but at times SEIG1 will produce better results when the symmetric matrix is
tridiagonal. For arbitrary symmetric matrices it is not clear if there is any difference in the
reliability of the routines.

CALL SEIG(A, ka, n, W. T, IERR)
CALL SEIG1(A, ka, n, W. T, IERR)

A is a symmetric matrix of order n > 1 and W an array of dimension n or larger.
When SEIG or SEIG1 is called the eigenvalues Al, ... ,An are computed and stored in
W()..,W(). Thin). The eigenvalues are ordered so that Al < .e < An-

A may be packed or in standard form.' The input argument ka is a nonnegative
integer. If ka = 0 then A is assumed to be packed. Otherwise, if ka : 0 then A is assumed
to be in the standard format. In this case ka has the value:

ka = the number of rows in the dimension statement for A in the calling program
It is assumed that ka > n. However, it is not required that A(i, j) be defined for i < j.
Only the lower triangular elements of A are used.

T is an array used for temporary storage. If SEIG is called then T must be of dimension
2n. However, if SEIG1 is called then T need only be of dimension n.

I Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is
set to 0. Otherwise, if more than 30 iterations of the QL algorithm are required to compute
the jth eigenvalue Aj, then IERR is set to j. In this case, if j > 1 then the eigenvalues
Al, ... ,Aj-A will have been computed and stored in W. The eigenvalues are ordered so
that A, < ... < Aj- 1. However, they need not be the smallest eigenvalues of A.

I Note. A is destroyed during computation.

Programming. SEIG and SEIGI are driver routines for the EISPACK subroutines TREDI,
TRED3, TQLRAT, and IMTQL1. These subroutines were developed at Argonne National
Laboratory. The function SPMPAR is also used.

I Reference. Smith, B. T., Boyle, J. M., et al., Matriz Eigensystem Routines - EISPACK
Guide (Second Edition), Springer-Verlag, 1976.I
'For details on the packed format see the section on packing and unpacking symmetric matrices.
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COMPUTATION OF EIGENVALUES AND EIGENVECTORS OF
SYMMETRIC REAL MATRICES

The subroutines SEIGV and SEIGV1 are available for computing the eigenvalues and
eigenvectors of symmetric real matrices. These routines frequently yield high precision re-
sults for the eigenvalues. However, be aware that errors in the eigenvalues, no matter how
seemingly insignificant, can be considerably magnified in the computation of the eigenvec-
tors. It is not at all unusual to obtain an eigenvalue and eigenvector where the eigenvalue
is correct to within 2-3 units of the 14th significant digit, but the components of the cor-
responding eigenvector are only accurate to 9-10 significant digits. SEIGV is faster than
SEIGV1, but at times SEIGV1 will produce better results when the symmetric matrix is
tridiagonal. For arbitrary symmetric matrices it is not clear if there is any difference in the
reliability of the routines.

CALL SEIGV(A, ka, n, W, Z, T, IERR)
CALL SEI4;V1 (A, ka, n, W. Z.T, IERR)

A is a symmetric matrix of order n > 1 and W is an array of dimension n or larger.
When SEIG or SEIGVI is called the eigenvalues Al, .. ., An and corresponding orthonormal
eigenvectors z1, ... , zn are computed. The eigenvalues are stored in W(1), ... ,W(n) and
are ordered so that A1 < ... < An.

A must be in the standard format, having the dimension ka x n. It is assumed that
ha > n. However, it is not required that A(ij) be defined for i < j. Only the lower
triangular elements of A are used.

Z is an array of dimension ka x n or larger. For j = 1, . . ., n the components of the
eigenvector zy are stored in the jth column of Z (in locations Z(1,j), ... ,Z(n,j)). To
conserve memory one can let A and Z denote the same array.

T is an array of dimension n used for temporary storage.

Error Return. IERR is an integer variable. If all the eigenvalues and eigenvectors are
found then IERR is set to 0. Otherwise, if more than 30 iterations of the QL algorithm
are required to compute the jth eigenvalue A3, then IERR is set to j. In this case, if j > 1
then the eigenvalues Al, ... , Aj1- and eigenvectors zi, ... , zj-1 will have been computed
and stored in the W and Z arrays. However, the eigenvalues will be unordered.

Note. A is destroyed during computation.

Programming. SEIGV and SEIGV1 are driver routines for the EISPACK subroutines
TRED2, TQL2, and IMTQL2. These subroutines were developed at Argonne National
Laboratory. The function SPMPAR is also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensystem Routines - EISPACK
Guide (Second Edition), Springer-Verlag, 1976.
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COMPUTATION OF EIGENVALUES OF COMPLEX MATRICES

The subroutine CEIG is available for computing the eigenvalues of complex matrices.
This routine frequently yields results accurate to 13-14 significant digits. However, if the
eigenvalues are not distinct or if they are exceedingly tightly clustered, then a severe drop
in accuracy can occur. In this case one should not expect more than 7-8 digit accuracy.

CALL CEIG(IBAL,AR,AI, ka, n, WR,WI,IERR)

AR and AI are real matrices of order n > 1, and WR and WI are real arrays of
dimension n or larger. AR and AI are the real and imaginary portions of the complex matrix
whose eigenvalues are to be computed. When CEIG is called the eigenvalues Al, ... ,A,,
are computed. The real parts of the eigenvalues are stored in WR(1), ... ,WR(n) and the
imaginary parts are stored in WI(1), ... ,WI(n). The eigenvalues are unordered.

IBAL and ka are input arguments. It is assumed that ka is the number of rows in the
dimension statements for AR and Al in the calling program. IBAL may be any integer.
If IBAL $ 0 then the complex matrix (represented by AR and Al) is balanced before the
eigenvalues are computed. Otherwise, if IBAL = 0 then the complex matrix is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is set
to 0. Otherwise, if more than 30 iterations are required to compute the yth eigenvalue Aj,
then IERR is set to j and the routine terminates. In this case, if j < n then the eigenvalues
Al+i, ... ,A,, will have been computed and the results stored in the WR and WI arrays.

Remarks.

(1) Even though the balancing operation does not increase the theoretical bounds on the
errors, nevertheless at times it may result in a slight loss of accuracy. On the other
hand, balancing requires little additional time and in certain cases can improve the
accuracy by as much as 5-6 significant digits. Thus it is recommended that balancing
be done.

(2) AR and Al are destroyed during computation. CEIG reduces the complex matrix
(represented by AR and Al) to upper Hessenberg form with unitary similarity trans-
formations. Then the QR algorithm is used to obtain the eigenvalues.

Usage. If one has a complex matrix A, then AR and AI can be obtained using the matrix
subroutines CMREAL and CMIMAG.

Programming. CEIG is a driver routine for the EISPACK subroutines CBAL, CORTH,
and COMQR. These subroutines were developed at Argonne National Laboratory. The
functions SPMPAR and IPMPAR are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix £igensystem Routines - EISPACK
Guide (Second Edition), Springer-Verlag, 1976.
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COMPUTATION OF EIGENVALUES AND EIGENVECTORS OF
COMPLEX MATRICES

The subroutine CEIGY is available for computing the eigenvalues and eigenvectors
of complex matrices. This routine frequently yields values for the eigenvalues that are
accurate to 13-14 significant digits. However, be aware that errors in the eigenvalues, noI matter how seemingly insignificant, can be considerably magnified in the computation of
the eigenvectors. It is not at all unusual to obtain an eigenvalue and eigenvector where the
eigenvalue is correct to within 2-3 units of the 14th significant digit, but the components ofI | the corresponding eigenvector are only accurate to 9-10 significant digits. If the eigenvalues
of a matrix are not distinct or if they are exceedingly tightly clustered, then a severe drop
in accuracy can occur. In this case one should not expect the eigenvalues to have more than
7-8 digit accuracy, and the situation regarding the eigenvectors is totally unpredictable.
The components of such an eigenvector may be correct to 6-7 significant digits, or the
eigenvector may not even be an eigenvector! In this case the results should be checked.

CALL C EIGV(IBAL,AR,AI, ka, n, WR,WI,ZR,ZI,IERR,TEMP)

AR and AI are real matrices of order n > 1 and WR and WI are real arrays of
dimension n or larger. AR and Al are the real and imaginary portions of the complex
matrix whose eigenvalues and eigenvectors are to be computed. When CEIGV is called
the eigenvalues Al, ... , An and corresponding eigenvectors zj, ... ,zn are computed. The
real parts of the eigenvalues are stored in WR(1), . . . ,WR(n) and the imaginary parts are
stored in WI(1), .. . ,WI(n). The eigenvalues are unordered.

It is assumed that the input argument ka is the number of rows in the dimension
statements for AR and AI in the calling program. ZR and ZI are real arrays of dimension
ka x n. For j = 1, . .. , n the real parts of the components of the eigenvector z; are stored
in the jPh column of ZR (in locations ZR(1,j), ... ,ZR(nj)) and the imaginary parts are
stored in the jth column of ZI. The eigenvectors z1, .. . , Zn are not normalized.

IBAL is an input argument that can be assigned any integer value. If IBAL 76 0
then the complex matrix (represented by AR and AI) is balanced before the eigenvalues
and eigenvectors are computed. Otherwise, if IBAL = 0 then the complex matrix is not

* balanced.

TEMP is a real array used for temporary storage by the routine. If no balancing is to
be done (i.e., if IBAL = 0) then TEMP must be of dimension 2n or larger. Otherwise, ifI balancing is to be performed then TEMP must be of dimension 3n or larger.

Error Return. IERR is an integer variable. If all the eigenvalues and eigenvectors are found
then IERR is set to 0. Otherwise, if more than 30 iterations are required to compute the jth
eigenvalue Aj, then IERR is set to j and the routine terminates. In this case, ifj < n then
the eigenvalues Aya , . .. , An will have been computed and the results stored in the WR and
WI arrays. However, none of the eigenvectors will have been computed. The eigenvectors
are computed only after all the eigenvalues have been obtained.

315



:~~~~~~~~

Remarks. X

(1) Even though the balancing operation does not increase the theoretical bounds on the
errors, nevertheless at times it may result in a slight loss of accuracy. On the other hand, |
balancing requires little additional time and in certain cases can improve the accuracy
of the eigenvalues by as much as 5-6 significant digits. When this occurs balancing
will normally be needed to obtain the eigenvectors. In general, it is recommended that I
balancing be done.

(2) AR and AI are destroyed during computation. CEIGV reduces the complex matrix
(represented by AR and AI) to upper Hessenberg form with unitary similarity trans- I
formations. Then the QR algorithm is employed to obtain the eigenvalues, and back-
substitution is performed to generate the eigenvectors.

Usage. If one has a complex matrix A, then AR and AI can be obtained using the matrix
subroutines CMREAL and CMIMAG.

Programming. CEIGV is a driver routine for the EISPACK subroutines CBAL, CORTH,
COMQR2, and CBABK2. These subroutines were developed at Argonne National Labora-
tory. The functions SPMPAR and IPMPAR are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matriz Eigensystem Routines- EISPACK
Guide (Second Edition), Springer-Verlag, 1976.
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DOUBLE PRECISION COMPUTATION OF EIGENVALUES OFI COMPLEX MATRICES

The subroutine DCEIG is available for the double precision computation of the eigen-
values of complex matrices. This routine frequently yields results accurate to 26-28 signif-
icant digits. However, if the eigenvalues are not distinct or if they are exceedingly tightly
clustered, then a severe drop in accuracy can occur. In this case one should not expect
more than 13-14 digit accuracy.

CALL DCEIG(IBAL,AR,AI, ka, n, WR,WI,IERR)

AR and Al are double precision matrices of order n > 1, and WR and WI are double
precision arrays of dimension n or larger. AR and AI are the real and imaginary parts ofI the matrix whose eigenvalues are to be computed. When DCEIG is called the eigenvalues
A1, . . , A,, are computed. The real parts of the eigenvalues are stored in WR(1), .. . ,WR(n)
and the imaginary parts are stored in WI(1), ... , WI(n). The eigenvalues are unordered.

IBAL and ka are input arguments. It is assumed that ka is the number of rows in the
dimension statements for AR and AI in the calling program. IBAL may be any integer.
If IBAL : 0 then the complex matrix (represented by AR and AI) is balanced before the
eigenvalues are computed. Otherwise, if IBAL = 0 then the complex matrix is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is set
to 0. Otherwise, if more than 50 iterations are required to compute the jth eigenvalue Aj,
then IERR is set to j and the routine terminates. In this case, if j < n then the eigenvalues
Aj+, ... A,,n will have been computed and the results stored in the WR and WI arrays.

Remarks.

(1) AR and AI are destroyed during computation.
(2) DCEIG is a double precision version of the eigenvalue routine CEIG.

Programming. DCEIG is a driver routine for the subroutines DCBAL, DCORTH, and
DCOMQR. These subroutines are double precision versions of the EISPACK subroutines
CBAL, CORTH, and COMQR, developed at Argonne National Laboratory. The double
precision versions were prepared by A. H. Morris. The functions DCPABS, DPMPAR,
IPMPAR and subroutine DCSQRT are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matriz Eigensystem Routines - ES PACK
Guide (Second Edition), Springer-Verlag, 1976.

I
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DOUBLE PRECISION COMPUTATION OF EIGENVALUES AND
EIGENVECTORS OF COMPLEX MATRICES

The subroutine DCEIGV is available for the double precision computation of the eigen-
values and eigenvectors of complex matrices. The routine frequently yields values for the
eigenvalues that are accurate to 26-28 significant digits. However, be aware that the errors
in the eigenvalues, no matter how seemingly insignificant, can be considerably magnified
in the computation of the eigenvectors. If the eigenvalues are not distinct or if they are
exceedingly tightly clustered, then a severe drop in accuracy can occur. In this case one
should not expect the eigenvalues to have more than 13-14 digit accuracy.

CALL DCEIGV(IBAL,AR,AI, ka, n, WR,WI,ZR,ZI,IERR,TEMP)

AR and Al are double precision matrices of order n > 1 and WR and WI are double
precision arrays of dimension n or larger. AR and AI are the real and imaginary portions
of the complex matrix whose eigenvalues and eigenvectors are to be computed. When
DCEIGV is called the eigenvalues Al, ... ,,A and corresponding eigenvectors z1, ... ,z, are
computed. The real parts of the eigenvalues are stored in WR(1), ... , WR(n) and the
imaginary parts are stored in WI(1), . .. ,WI(n). The eigenvalues are unordered.

It is assumed that the input argument /a is the number of rows in the dimension
statements for AR and AI in the calling program. ZR and ZI are double precision arrays of
dimension ka x n. For j = ,.. , n the real parts of the components of the eigenvector Zj
are stored in the jPh column of ZR (in locations ZR(1,j), ... ,ZR(n,j)) and the imaginary
parts are stored in the jph column of ZI. The eigenvectors z1, . . .z, z are not normalized.

IBAL is an input argument that can be assigned any integer value. If IBAL # 0
then the complex matrix (represented by AR and Al) is balanced before the eigenvalues
and eigenvectors are computed. Otherwise, if IBAL = 0 then the complex matrix is not

balanced.

TEMP is a double precision array used for temporary storage by the routine. If no
balancing is to be done (i.e., if IBAL = 0) then TEMP must be of dimension 2n or larger.
Otherwise, if balancing is to be performed then TEMP must be of dimension 3n or larger.

Error Return. IERR is an integer variable. If all the eigenvalues and eigenvectors are found
then IERR is set to 0. Otherwise, if more than 50 iterations are required to compute the jth

eigenvalue Aj, then IERR is set to j and the routine terminates. In this case, if j < n then
the eigenvalues As+l, . . *, An will have been computed and the results stored in the WR and
WI arrays. However, none of the eigenvectors will have been computed. The eigenvectors
are computed only after all the eigenvalues have been obtained.

Remarks.

(1) AR and AI are destroyed during computation.5 (2) DCEIGV is a double precision version of the eigenvalue/eigenvector routine CEIGV.
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Programming. DCEIGV is a driver for the subroutines DCBAL, DCORTH, DCMQR2, I
and DCBABK. These subroutines are double precision versions of the EISPACK routines
CBAL, CORTH, GOMQR2, and GBABK2, developed at Argonne National Laboratory. 
The double precision versions were prepared by A. H. Morris. The functions DOPABS, U
DPMPAR, IPMPAR and subroutine DCSQRT are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigensyatem Rou~tines - EIS PACK[ I
Guide (Second Edition), Springer-Verlag, 1976. 
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El SOLUTION OF SYSTEMS OF LINEAR EQUATIONS WITH
EQUALITY AND INEQUALITY CONSTRAINTS

LetAbeakxnmatrix, C anexnmatrix, andEanmxnmatrix. Alsoletb,d,andfbe
column vectors of dimensions k, e, and m respectively. The following subroutine is available

for obtaining a column vector z of dimension n which minimizes VJAx - bl1 = E IAx - b4i
1=1

subject to the constraints
Cz = d
Ex < f.

Here A, denotes the ith row of A, and Ex < f means that every component of Ex is less
than or equal to the corresponding component of f.

CALL CLi (k, t,m, n, Q, kq, KODE,TOL,ITER, X, RES,RNORM,WK,IWK)

It is assumed that k > 1, e > 0,m > 0, and n > 1. Q is a 2-dimensional array with
kq rows and at least n + 2 columns where kq > k + e + m + 2. The matrices A, C, E and
vectors b, d, f are stored in the first k + e + m rows and n + 1 columns of Q as follows:

Q= (C d 
E f}

Q is modified by the routine.

KODE is a variable used for input/output purposes, X an array of dimension n + 2 or
larger, and RES an array of dimension k + e + m or larger. On input KODE is normally
set by the user to 0. This -indicates that IIAx - bili is to be minimized subject only to the
constraints Cx = d and Ex < f. However, if it is also desired that one or more variables
Zj satisfy xz < 0 or xz > 0, or that one or more residuals bi - Aix satisfy bi - Aix < 0 or
bi - Aix > 0 then the user may set KODE to a nonzero value. If KODE :A 0 on input,
then the user must also set X(j) and RES(i) to the values

J-1.0 zj<0
X(j) = 0.0 xj is unrestricted

1.0 Xj>O
I 1.0 bi-Aix < 0

RES(i) = 0.0 bi - Aix is unrestricted
1.0 bi-Aix > 0

for j = 1, . . ., n and i = 1, . . .,k to indicate the additional constraints which are desired.

RNORM is a variable. When CL1 is called, if a vector z is found that minimizes
lAx - bli subject to the desired constraints, then KODE = 0 on output and the solution x
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is stored in X. Also RNORM is assigned the value lAx - bli, -Ax is stored in the first k
locations of RES, d - Cx is stored in the next e locations, and f - Ex is stored in the last
m locations.

When CL1 is called, a modified form of the simplex algorithm is used to minimize
lAx - bili. The arguments TOL and ITER control the use of this algorithm. The input

argument TOL is a positive tolerance. CL1 will not pivot on any quantity whose magnitude
is less than TOL. Normally the setting TOL = 10-2v/3 suffices where v' is the number of
decimal digits of accuracy available.

Frequently the routine requires less than 5(k+f+m) iterations of the simplex alogrithm I
to solve the problem. ITER is a variable used for input/output purposes. On input the user
must set ITER to the maximum number of iterations that will be permitted. When the
routine terminates, ITER has for its value the number of iterations that were performed.

On output KODE reports the status of the results. The routine assigns KODE one of
the following values: I

;KODE = 0 The problem was solved.
KODE = 1 The problem has no solution.
KODE = 2 Sufficient accuracy cannot be maintained to solve the problem I

using the current value of TOL.
KODE = 3 The maximum number of iterations were performed. More itera-

tions are needed.

When KODE > 1 on output, X contains the last vector X which was obtained, RNORM =

llA2 - bIll, and RES contains the vectors b - Az,d-- C, and f - E2.

WK is an array of dimension 2(k + e + m + n) or larger, and IWK is an array of
dimension 3(k + e + m) + 2n or larger. WK and IWK are work spaces for the routine.

Programming. CL1 calls the subroutine KL1. CLi was written by I. Barrodale and
F. D. K. Roberts (University of Victoria, British Columbia, Canada).

References.

(1) Barrodale, I. and Roberts, F. D. K., "An Improved Algorithm for Discrete El Linear
Approximation," SIAM J. Numer. Analysis 10 (1973), pp. 839-848.

(2) '__ An Efficient Algorithm for Discrete 4l Linear Approximation with Linear
Constraints," SIAM J. Numer. Analysis 15 (1978), pp. 603-611.

(3) , "Algorithm 552, Solution of the Constrained El Linear Approximation I
Problem," ACM T'rans. Math Software 6 (1980), pp. 231-235.
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LEAST SQUARES SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

Given an m x n matrix A and an m x f matrix B. The column vectors b1, . .. , bt of B
* specify e distinct linear least squares problems

Ax3 =b, (j=1 ...,e).

This set of problems can be written in the form AX = B where X is the n x f matrix having
the column vectors z1, . . . , xj. There always exists a unique minimum length least squares
solution xi for each Ax, = by. The subroutines LLSQ, HFTI, and HFTI2 are available for
obtaining the minimum length solution matrix X. HFTI and HFTI2 are more general than
LLSQ, being able to solve arbitrary systems AX = B. LLSQ assumes that m > n > 1 and
that the rank of A is n. The routines perform Householder triangularization. HFTI and
HFTI2 require more time than LLSQ, but may be more accurate. In LLSQ all calculations
are performed in single precision. In HFTI and HFTI2 most inner products are computed

in double precision and the results stored in single precision.

CALL LLSQ(m,n,A,ka,B,kb,A,WK,IWK,IERR)

It is assumed that m > n > 1 and that the rank of A is n. The input arguments ka
and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is required that ka > m-and kb> m.

IERR is an integer variable; When LLSQ is called, if no input errors are detected then
IERR is set to 0 and the solution matrix X stored in B. Also, if m n then the residual
norm IlAzx - bI I is computed and stored in B(n + 1, j) for j = 1, . .f. I

WK and IWK are arrays of dimension n or larger that are work spaces for the routine.

Error Return. IERR + 0 when m > n > 1 is not satisfied (IERR = 1) or the rank of A is
less than n (IERR = 2).

Note. A is destroyed during computation.

Programming. LLSQ is a driver for the subroutines ORTHO and ORSOL, written by Nai-
Kuan Tsao and Paul J. Nikolai (Aerospace Research Laboratories, Wright-Patterson Air
Force Base).

Reference. Tsao, N. K. and Nikolai, P. J., Procedures using Orthogonal Transformations
for Linear Least Squares Problems. Report ARL TR 74-0124, Aerospace Research Lab-
oratories, Wright-Patterson Air Force Base, 1974.

H ' Throughout this section IlcIl = c for any vector c = (cl, ... ,cm).
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CALL HFTI(A, ka, m, n, B, kb,e,r, k, RNORM, H,G, IP)
CALL HFTI2(A, ka, m, n, B, kb, e, D, r, k, RNORM, H, G, IPIERR)

It is assumed that m, n > 1 and that the input arguments ka and kb have the following
values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is required that ka > m. Also, if e > 1 then kb > max{m, n}.

If e > 1 then RNORM is an array of dimension e or larger. When HFTI or HFTI2
is called, the minimum length solution matrix X is computed and stored in B. Also the I
residual norm lAx6 - bj is computed and stored in RNORM(j) for j 1, .

H, G, and IP are arrays of dimension n or larger that are work spaces for the routines.

The parameters rk, and D.
The argument r is a tolerance that is set by the user, k a variable, and D an array of

dimension min{m, n} or larger. It is assumed that r > 0. Normally r = 0 is the setting
that is used. D and k are set by the routines.

In order to understand the use of r, k, and D one must be briefly acquainted with the I
processing of A. The routines first reduce A to a triangular matrix C where A QCP.
Q is an orthogonal matrix and P a permutation matrix. P is defined so that the diagonal
elements cii of C satisfy Icii > kcj+iji-i for each i. The variable k is set to the largest
integer such that ickkl > r, and if HFTI2 is used then the diagonal elements cii are stored
in D. C is now regarded as the partitioned matrix

C=(fC1 C2)0 : C = ( 0 G 3 

where Cl is a k x k matrix. Minimum length least squares solutions xj are then computed I
for the problems Axj = by using only the first k rows of C. This is equivalent to replacing
A with

iA=Q (C1 C2 ) 

and solving Axj = by for j=1, ... ,e. 
Since lcll > ... Ž Icki.1 > r clearly k is the rank of A. It is also true that the

ratio Ic11i / Ickk is a lower bound on the condition number of C1 (relative to the spectral
norm). Thus, if the ratio is extremely large (say > 108) then a severe loss of accuracy I
can be expected. A large ratio may be due all or in part to rank deficiency (or near rank
deficiency) of the matrix A. Fortunately, rank deficiency is frequently not too difficult to
detect and cure. When A is rank deficient then machine roundoff may assign ckk a small I
value, say 1014, when it should be 0. The cure is to examine the diagonal elements ci,
which are stored in D, to reset r so as to eliminate the unwanted ci's, and then to rerun
the problem. This will reduce the order of C1 , thereby lowering the rank of the replacement I
matrix A. C1 will now be better conditioned, but the value of the residual norms 11 Axj - by 11
may be larger. If the norms do increase, then the solution obtained will be satisfactory only
if the size of the increased norms fall within acceptable bounds. I
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Remarks.

(1) The variable k is set to 0 if all Iciil < r. If k = 0 then the zero matrix is the solution
for AX = B.

(2) If e < 0 then the decomposition A = QCP is performed, the diagonal elements of C
are stored in D, and k is computed. B and RNORM are ignored.

(3) The contents of A are destroyed by the routines.
(4) HFTI and HFTI2 yield the same results.

Error Return. IERR is a variable that is set by the routine. If no input errors are detected
then IERR is set to 0. Otherwise, IERR is assigned one of the following values:

IERR = 1 if m > ka
IERR = 2 if e > 1 and kb < max {m, n}

When an error is detected, the routine immediately terminates.

Programming. HFTI and HFTI2 call the subroutine H12. These routines were written by
Charles L. Lawson and Richard J. Hanson (Jet Propulsion Laboratory), and modified by
A. H. Morris.

Reference. Lawson, C. L., and Hanson, R. J., Solving Least Squares Problems, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1974.
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LEAST SQUARES SOLUTION OF OVERDETERMINED SYSTEMS OF
LINEAR EQUATIONS WITH ITERATIVE IMPROVEMENT

Given an m x n matrix A and an m x e matrix B. The column vectors bl, . .. , bi of B
specify e distinct linear least squares problems

Ax; = bj (j = 1, ... .,).
This set of problems can be written in the form AX = B where X is the n x t matrix having
the column vectors z1, . . . , Zx. Assume that m > n > 1 and that the rank of A is n. Then
there exists a unique least squares solution xj for each Ax3 = by. The subroutine LLSQMP
is available for obtaining the solution matrix X. Iterative improvement is performed to
compute X to machine accuracy.

CALL LLSQMP(m,n,A,ka,B,kb,e,WK,IWK,IERR)

It is assumed that m > n > 1 and that the rank of A is n. The input arguments ka
and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb the number of rows in the dimension statement for B in the calling program

It is required that ka > m and kb > m.

When LLSQMP is called, the solution X is computed and stored in B. Also, if m :A n
then the residual norm IIAzx - bjd is computed and stored in B(n + 1, j) for j = 1, . ,
A is not modified by the routine.

WK is an array of dimension mn + 2m + n or larger, and IWK an array of dimension
n or larger. WK and IWK are work spaces for the routine.

IERR is a variable that is set by the routine. When LLSQMP terminates, IERR has
one of the following values:

IERR = 0 The solution X was computed to machine accuracy.
IERR = 1 X was obtained, but not to machine accuracy.
IERR = 2 The restriction m > n > 1 is not satisfied.
IERR = 3 The rank of A is less than n.

Programming. LLSQMP is a driver for the subroutines ORTHO, ORSOL, and ORIMP.
These subroutines were written by Nai-Kuan Tsao and Paul J. Nikolai (Aerospace Research
Laboratories, Wright-Patterson Air Force Base). ORIMP was modified by A. H. Morris.
The function SPMPAR and subroutine MCOPY are also used.

Reference. Tsao, N. K. and Nikolai, P. J., Procedures using Orthogonal Transformations
for Linear Least Squares Problems, Report ARL TR 74-0124, Aerospace Research Lab-
oratories, Wright-Patterson Air Force Base, 1974.

Here hell = Ecfor any vector c = (c...,cm). 
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DOUBLE PRECISION LEAST SQUARES SOLUTION OF SYSTEMS OF
LINEAR EQUATIONS

Given an m x n matrix A and an m x e matrix B. The column vectors b1, ... , bL of B
specify e distinct linear least squares problems

Axj=b (j=1,...,).

This set of problems can be written in the form AX = B where X is the n x e matrix
having the column vectors x1, ... , Xz. There always exists a unique minimum length least
squares solution x3 for each Axj = bj. The subroutines DLLSQ, DHFTI, and DHFT12
are available for obtaining the minimum length solution matrix X. DHFTI and DHFTI2
are more general than DLLSQ, being able to solve arbitrary systems AX = B. DLLSQ
assumes that m > n > 1 and that the rank of A is n. The routines perform all calculations
in double precision.

CALL DLLSQ(m, n, A, ka, B, kb, e, WK,IWK,IERR)

A and B are double precision arrays. It is assumed that m > n > 1 and that the rank
of A is n. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is required that ka > m and kb > m.

IERR is an integer variable. When DLLSQ is called, if no input errors are detected
then IERR is set to 0 and the solution matrix X stored in B. Also, if m : n then the
residual norm IlAxj - bjjj is computed and stored in B(n + 1,j) for j = 1, ... ,

WK and IWK are arrays of dimension n or larger that are work spaces for the routine.
WK is a double precision array.

Error Return. [ERR : 0 when m > n > 1 is not satisfied (IERR = 1) or the rank of A is
less than n (IERR = 2).

Note. A is destroyed during computation.

Programming. DLLSQ calls the subroutines DORTHO and DORSOL. These subroutines
are double precision versions of ORTHO and ORSOL, written by Nai-Kuan Tsao and Paul
J. Nikolai (Aerospace Research Laboratories, Wright-Patterson Air Force Base).

Reference. Tsao, N. K. and Nikolai, P. J., Procedures using Orthogonal Transformations
for Linear Least Squares Problems. Report ARL TR 74-0124, Aerospace Research Lab-
oratories, Wright-Patterson Air Force Base, 1974.

'Throughout this section jlcjl = r/Ec2 for any vector c = (Cl, ... , cm).
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CALL DHFTI(A,ka,m, n,B,kb,f£,r,k,RNORM,H,G,IP)
CALL DHFT12(A,ka,m,n,B,kb, e, D,r,k,RNORM,H,G,IP,IERR)

A and B are double precision arrays. It is assumed that m, n > 1 and that the input
arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is required that ka > m. Also, if t > 1 then kb > max{m, n}.

If e > 1 then RNORM is a double precision array of dimension e or larger. When
DHFTI or DHFTI2 is called, the minimum length solution matrix X is computed and I
stored in B. Also the residual norm IlAxj - bjII is computed and stored in RNORM(j) for

H, G, and IP are arrays of dimension n or larger that are work spaces for the routines.
H and G are double precision arrays.

The parameters rk, and D.
r is a double precision tolerance that is set by the user, k an integer variable, and

D a double precision array of dimension min{m,n} or larger. It is assumed that r > 0.
Normally r = 0 is the setting that is used. D and k are set by the routines.

In order to understand the use of r, k, and D one must be briefly acquainted with the
processing of A. The routines first reduce A to a triangular matrix C where A = QCP.
Q is an orthogonal matrix and P a permutation matrix. P is defined so that the diagonal
elements cii of C satisfy ciij > lci,+il for each i. The variable k is set to the largest
integer such that iCkkl > r, and if DHFTI2 is used then the diagonal elements cii are stored
in D. C is now regarded as the partitioned matrix

GC=(0 C)I

where Cl is a k x k matrix. Minimum length least squares solutions x; are then computed
for the problems Axj = by using only the first k rows of C. This is equivalent to replacing
A with

X ; A Q (~~~~C, C12) 

and solving Ax1 = by for j =1, ... ,e.
Since Ic111 > ... > Ickkj > r clearly k is the rank of A. It is also true that the

ratio Icill / ICkkl is a lower bound on the condition number of C1 (relative to the spectral
norm). Thus, if the ratio is extremely large (say > 108) then a severe loss of accuracy I
can be expected. A large ratio may be due all or in part to rank deficiency (or near rank
deficiency) of the matrix A. Fortunately, rank deficiency is frequently not too difficult to
detect and cure. When A is rank deficient then machine roundoff may assign Ckk a small I
value, say 1028, when it should be 0. The cure is to examine the diagonal elements cii
which are stored in D, to reset r so as to eliminate the unwanted c.i's, and then to rerun
the problem. This will reduce the order of C1, thereby lowering the rank of the replacement I

330

I



matrix A. Ci will now be better conditioned, but the value of the residual norms IIAzx - by
may be larger. If the norms do increase, then the solution obtained will be satisfactory only
if the size of the increased norms fall within acceptable bounds.

Remarks.

(1) The variable k is set to O if all Icii < r. If k = 0 then the zero matrix is the solution
for AX = B.

(2) If e < 0 then the decomposition A = QCP is performed, the diagonal elements of C
are stored in D, and k is computed. B and RNORM are ignored.

(3) The contents of A are destroyed by the routines.
(4) DHFTI and DHFTI2 yield the same results. These routines are double precision ver-

sions of the subroutines HFTI and HFTI2.

Error Return. IERR is a variable that is set by the routine. If no input errors are detected
then IERR is set to 0. Otherwise, IERR is assigned one of the following values:

IERR = 1 if m > ka
IERR = 2 if I > 1 and kb < max {m,n}

When an error is detected the routine immediately terminates.

Programming. DHFTI and DHFTI2 call the subroutine DH12. These routines are modi-
fications by A. H. Morris of the subroutines HFTI and H12, written by Charles L. Lawson
and Richard J. Hanson (Jet Propulsion Laboratory).

Reference. Lawson, C. L., and Hanson, R. J., Solving Least Squares Problems, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1974.
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LEAST SQUARES SOLUTION OF SYSTEMS OF LINEAR EQUATIONS
WITH EQUALITY AND INEQUALITY CONSTRAINTS

Let A be an ma x n matrix, E an me x n matrix, G an mg x n matrix, b a column vector
of dimension ma, f a column vector of dimension min, and h a column vector of dimension
mi. The subroutine LSEI is available for finding a column vector x of dimension n that
minimizes IIAx - b1l subject to the constraints'

Gx > h.

Ex f f states that x is a least squares solution of the equation Ex = f, and Gx > h means
that every component of the vector Gx must be equal to or greater than the corresponding
component of h. It is assumed that ma > O,m, > 0, and m2 > 0. If ma = 0 then LSEI
solves Ex c f subject to the constraints GC > h.

CALL LSEI(W, kwme, ma, mg, ln, OPT, z, RNORME,RNORMA,
IERR,WK,IWK)

If m = me + ma + mg then W is the m x (n + 1) matrix:

tE f
W = A b

G h

The input argument kw is assumed to have the value:
kw = the number of rows in the dimension statement for W in the calling program

Thus it is required that kw > m.

RNORME and RNORMA are real variables. When LSEI is called, if the constraints
Ex : f and GC > h are consistent then x is computed, RNORME is assigned the value

Ex - fIll, and RNORMA is assigned the value |Ax - b1I.2

OPT is an array, called the option vector, which permits the user to take advantage of
certain options that are supplied by the routine. If no options are desired then OPT may
be declared to have dimension 1 and OPT(1) must be assigned the value 1. The details
concerning the available options and how to specify them in OPT are given below.

IWK is an array of dimension mg + 2n + 2 or larger, and WK is an array of dimension
2(me + n) + max {m. + mg,fn} + (mg + 2)(n + 7) or larger. IWK and WK are work
spaces. When LSEI is called, using a solution for Ex - f, a reduced least squares problem
with inequality constraints is obtained and solved. When the routine terminates IWK(1),
IWK(2), IWK(3) contain the following information:

'Throughout this section ||cJJ denotes the norm for any vector c = (cl,,cz, ... ).
2 If m. = 0 then RNORME = 0, and if mA = 0 then RNORMA = 0.
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IWK(1) = the estimated rank of the matrix E
IWK(2) = the estimated rank of the reduced problem
IWK(3) = the amount of storage in the array WK that was actually needed

IERR is a variable that is set by the routine. When LSEI terminates, IERR has one
of the following values:

IERR = 0 The solution x was obtained. The equality Ex = f is satisfied
when me = °.

IERR = 1 The solution x was obtained. In this case flEx - f I1 > 0.
IERR = 2 The problem cannot be solved. The constraints are inconsistent.
IERR = 4 (Input error) Either kw < m, the covariance matrix is requested

and kw < n, or the option vector OPT is not defined properly.
If IERR > 2 then x, RNORME, and RNORMA are not defined.

Remarks.

(1) W is modified by the routine.
(2) If me + ma < 0 or n < 0 then IERR is set to 0 and the routine terminates.

The option vector OPT. If no options are desired then OPT may be declared to be of
dimension 1 and OPT(1) must have the value 1. Otherwise, OPT is a linked list consisting
of groups of data linki, keyi, data, (i 1, ... ,s). Each linki and keyi is an integer. The
amount of storage required by datai depends on the value of keyi. The general layout of
OPT is as follows:

OPT(1) = link, (index of the first entry of the next group)
OPT(2) = key, (key to the option)
OPT(3) = the first word of the data (data1 ) for this option

OPT(linki) = link2 (index of the first entry of the next group)
OPT(linki + 1) = key2 (key to the option)
OPT(link1 + 2) = the first word of the data (data2 ) for this option

OPT(linke) = 1.0 (There are no more options to be considered.)

The following options are available:.

key = 1 It is assumed that kw > n. Compute the n x n covariance matrix
and store it in the first n rows and columns of W. The data for
this option is a single value. It must be nonzero for the covariance
matrix to be computed.

key =2 Scale the nonzero columns of the matrix (A) so that they have
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length 1. The data for this option is a single value. It must be
nonzero for the scaling to be performed.

key = 3 Scale the columns of the matrix (A). The data for this option

consists of n scaling factors, one for each matrix column.
key = 4 Change the internal tolerance r which is used for determining the

rank of E. The data for this option is the- new tolerance. r may be
set to any value > c where e is the smallest floating point number
for which 1+ E > (e = 2-47 for the CDC 6700). If the new value
is less than e then it is ignored and r is set to e. The default value
employed for r is ,.

key = 5 Change the internal tolerance r which is used for rank determi-
nation in the reduced least squares problem. The data for this
option is the new tolerance. r may be set to any value > E where
e is the smallest floating point number for which 1 + e > 1. If the
new value is less than e then it is ignored and r is set to e. The
default value employed for r is I.

Also the key 8 and 9 options for the least squares subroutine WNNLS are permitted.
(WNNLS is employed by LSEI.) The order of the options in the array OPT is arbitrary.
If an option has an unrecognized key then the option is ignored. It is assumed that the
dimension of OPT is no greater than 100000 and that the number of options is < 1000. If
either of these assumptions is violated then IERR is set to 4 and the routine terminates.
It is also required that linki : linkj for i j j. If this restriction is not satisfied then the
linked list OPT is circular and we again have an IERR = 4 error..

Example. Assume that we have an array D containing n scaling factors for the columns of

the matrix ( A), and that the tolerance TOL is always to be used for rank determination.

Then OPT will have to be of dimension > n + 9 and OPT can be defined as follows:

OPT(1) = N + 3 (Scaling option)
OPT(2) = 3.0
DO 10 1= 1,N

10 OPT(I + 2) = D(I)
OPT(N + 3) = N + 6 (Matrix E tolerance option)
OPT(N + 4) = 4.0
OPT(N + 5) = TOL
OPT(N + 6) = N + 9 (Reduced problem tolerance option)
OPT(N + 7) = 5.0
OPT(N + 8) = TOL
OPT(N + 9) = 1.0 (There are no more options.)

Remarks.

(1) LSEI may perform poorly if the norms of the rows of A and E differ by many orders
of magnitude, or if the norms of the rows of E are exceedingly small.

(2) The covariance matrix obtained by the key = 1 option may not be meaningful when
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there are inequality constraints Gx > h. This matrix assumes that any inequalities I
which are selected by the algorithm to be equalities remain equalities when the solution
is perturbed. This, of course, may not be the case.

Programming. LSEI employs the subroutine LSI, LPDP, WNNLS, WNLSM, and WNLIT.
These routines were written by Karen H. Haskell and Richard J. Hanson (Sandia Labora-
tories) and modified by A. H. Morris. The subroutines HFTI, H12, SROTM, SROTMG,
SCOPY, SSWAP, SSCAL, SAXPY and functions SPMPAR, SDOT, SASUM, SNRM2,
ISAMAX are also used.

References.

(1) Hanson, R. J. and Haskell, K. H., 'Algorithm 587: Two Algorithms for the Linearly
Constrained Least Squares Problem," ACM Trans. Math Software 8 (1982), pp.
323-333.

(2) Haskell, K. H. and Hanson, R. J., 'An Algorithm for Linear Least Squares Prob-
lems with Equality and Nonnegativity Constraints," Math. Programming 21 (1981),
pp. 98-118.
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LEAST SQUARES SOLUTION OF SYSTEMS OF LINEAR EQUATIONS
WITH EQUALITY AND NONNEGATIVITY CONSTRAINTS

Let A be an ma x n matrix, E an me x n matrix, b a column vector of dimension ma,
and f a column vector of dimension me The subroutine WNNLS is available for finding a
column vector z = (zx, .. ., zn)' that minimizes l1AX - b1l subject to the constraints'

Ex f-f
zi > 0 for i > e.

Ex ~ f states that x is a least squares solution of the equation Ex = f. It is assumed that
m a > O,m, > 0, and 0 < e < n. If ma = 0 then WNNLS solves Ex z f subject to the
constraints x, > 0 (i > f).

CALL WNNLS(W, kw, mi, ma, n, e, OPT, z, RNORM,MODE,IWK,WK)

If m = me + ma then W is the m x (n + 1) matrix:

HE f- ~~~~~W = t 

The input argument kw is assumed to have the value:
kw = the number of rows in the dimension statement for W in the calling progam

Thus it is required that kw > m.

RNORM is a variable. When WNNLS is called, x is computed and RNORM is assigned
the value V/'IAx - bJJ2 + IlEx - fII2.

OPT is an array, called the option vector, which permits the user to take advantage of
certain options that are supplied by the routine. If no options are desired then OPT may
be declared to have dimension 1 and OPT(1) must be assigned the value 1. The details
concerning the available options and how to specify them in OPT are given below.

IWK is an array of dimension m + n or larger, and WK is an array of dimension m + 5n
or larger. IWK and WK are work spaces for the routine.

Error Return. MODE is an integer variable that is set by the routine. If the problem
is solved then MODE is assigned the value 0. Otherwise, MODE is assigned one of the
following values:

MODE = 1 The maximum number of iterations (3(n - t) iterations) was ex-
ceeded. An approximate solution and its residual norm are stored
in z and RNORM.

MODE = 2 (Input error) Either kw > m or 0 < e < n is violated, or the
option vector OPT is not properly defined.

1 Throughout this section lJdcJ denotes the norm 2 for any vector c = (cl, C2, * *
21f ma = 0 then RNORM = lEx - f li, and if me = 0 then RNORM = jJAx - b1i.
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When an input error is detected, the routine immediately terminates. In this case z and
RNORM are not defined.

Remarks.

(1) W is modified by the routine.
(2) If m < 0 or n < 0 then MODE is set to 0 and the routine terminates.

The option vector OPT. If no options are desired then OPT may be declared to be of
dimension 1 and OPT(1) must have the value 1. Otherwise, OPT is a linked list consisting
of groups of data links, key,, datai (i = 1, . . .,Is). Each link, and key, is an integer. The
amount of storage required by data, depends on the value of key,. The general layout of
OPT is as follows:

OPT(1) = link, (index of the first entry of the next group)
OPT(2) = key1 (key to the option)
OPT(3) = the first word of the data (data,) for this option

OPT(linki) = link2 (index of the first entry of the next group
OPT(linki + 1) = key2 (key to the option)
OPT(linki + 2) = the first word of the data (data2 ) for this option

OPT(link.) = 1.0 (Ther

The following options are permitted:

e are no more options to be considered.)

key = 6 Scale the nonzero columns of the matrix (A) so that they have
length 1. The data for this option is a single value. It must be
nonzero for the scaling to be performed.

key = 7 Scale the columns of the matrix (E ). The data for this option
consists of n scaling factors, one for each matrix column.

key = 8 Change the internal tolerance r .which is used for rank determina-
tion. The data for this option is the new tolerance. r may be set
to any value > e where e is the smallest floating point number for
which 1+ e > 1. (c = 2- for the CDC 6700.) If the new value is
less than e then it is ignored and r is set to e. The default value
employed for r is /F-

key = 9 Change the parameter BLOWUP. The reciprocal of this parameter
is used in determining when solution components are too large.
The data for this option is the new value for BLOWUP. It is
assumed that BLOWUP < 1. BLOWUP may be set to any value
> e where e is the smallest number for which 1 + e > 1. If the new
value is less than E then it is ignored and BLOWUP is set to e.
The default value used for BLOWUP is A.
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The order of the options in the array OPT is arbitrary. If an option has an unrecognized
key then the option is ignored. It is assumed that the dimension of OPT is no greater than
100000 and that the number of options < 1000. If either of these assumptions is violated
then MODE is set to 2 and the routine terminates. It is also required that linki :$ link6 for
i : j. If this restriction is not satisfied then the linked list OPT is circular and we again
have a MODE = 2 error.

Example. Assume that we have an array D containing n scaling factors for the columns of
the matrix (B), and that TOL is the tolerance to be used for rank determination. Then
OPT will have to be of dimension > n + 6 and OPT can be defined as follows:

OPT(1) = N + 3 (Scaling option)
OPT(2) = 7.0
DO 10 I= 1,N

10 OPT(I+ 2) = D(I)
OPT(N + 3) = N + 6 (Tolerance option)
OPT(N + 4) = 8.0
OPT(N + 5) = TOL
OPT(N + 6) = 1.0 (There are no more options.)

Remark. WNNLS may perform poorly if the norms of the rows of A and E differ by many
orders of magnitude, or if the norms of the rows of E are exceedingly small.

Programming. WNNLS employs the subroutines WNLSM and WNLIT. These routines
were written by Karen H. Haskell and Richard J. Hanson (Sandia Laboratories), and mod-
ified by A. H. Morris and Virgis Dadurkevicius (Astronomical Observatory, Vilnius Uni-
versity, Lithuania). The subroutines H12, SROTM, SROTMG, SCOPY, SSWAP, SSCAL,
SAXPY and functions SPMPAR, SASUM, SNRM2, ISAMAX are also used.

References.

(1) Dadurkevicius,V.,"Remark on Algorithm 587,"ACMlrans. Math Software 15 (1989),
pp. 257-261.

(2) Hanson, R. J. and Haskell, K. H., Algorithm 587: Two Algorithms for the Linearly
Constrained Least Squares Problem," ACM Trans. Math Software 8 (1982), pp. 323-
333.

(3) Haskell, K. H. and Hanson, R. J., "An Algorithm for Linear Least Squares Problems
with Equality and Nonnegativity Constraints," Math. Programming 21 (1981), pp.
98-118.
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LEAST SQUARES ITERATIVE IMPROVEMENT SOLUTION OF SYSTEMS
OF LINEAR EQUATIONS WITH EQUALITY CONSTRAINTS

Let A be an ma x n matrix, E an me x n matrix, B an ma x e matrix, and F an
me x e matrix. It is assumed that 0 < me < n and that the rank of E is me. Let bl, . . ., b
denote the column vectors of B and fl, . .. , ft the column vectors of F. The subroutine
L2SLV is available for finding the unique minimum length column vector xj of dimensionI n that minimizes IlAxi - bill subject to the equality constraints Exj = fi (if there are any)
for j = 1, ...I, L Iterative improvement is performed to compute the vectors zx, ... ,x
to machine accuracy. It is assumed that ma > 0. If ma = 0 then L2SLV finds the unique
minimum length solution x6 to Ex6 = f3 for a = 1, .. ,.e.

CALL L2SLV(m, n, m, t, A, ka, B, kb, WGTS,TOL,N1,IPIVOT,
X, kx, R, kr, T, kt, WKIERR)

If m = m5 + ma then.A is the m x n matrix ( ) and B is the m x e matrix (F). TheI input arguments ka and kb have the values:
ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that m > 1,n > 1, t > 1, ka > m, and kb > m. A and B are not modified by
the routine.

WGTS is an array containing m nonnegative weights. The first me weights are set to 1.0I by the routine. Let w1, .. ., Wm. denote the remaining weights (i.e., let wi = WGTS(m5 +i)
for i = 1, .. ., ma). The remaining weights are supplied by the user. In effect, wi is the
weighting that is given to the ith equation in the least squares problem Ax3 = by. IfI W denotes the ma x ma diagonal matrix diag(wi, ... ,wm.) then L2SLV finds the unique
minimum length vector that minimizes IIWAxj - WbIll subject to Ex3 = f, for j = 1, .. ., e.3 For convenience, W will denote the m x m diagonal matrix diag (1, . .. I 1 WI, . . ),w .

X is an n x I matrix that contains the solution vectors zi, . . ., zt when the routine
terminates. The input argument kx is the number of rows in the dimension statement for
X in the calling program. It is assumed that kx > n.

R is an m x f matrix. Let by denote the jth column vector ( bf ) of B for j = 1, . . .I Then L2SLV stores the residual vector rj = Wb6 - WAx3 in the jth column of R. The input
argument kr is the number of rows in the dimension statement for R in the calling progam.
It is assumed that kr > m.

WK is an array of dimension 6(m + n) + 2t or larger that is used for a work space.
When L2SLV terminates, for j = 1, ...

WK(j) _ { - nj if iterative improvement of the solution x3 converged
n3-nj if iterative improvement of xi failed to converge

'Throughout this section 1lcll denotes the norm / for any vector c = (cl, .. . ,Cm,).
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where nj is the number of iterations in the iterative improvement process that were per- I
formed in computing zx. Also

WK(t+j) = the estimated number of correct digits in x, before iterative improvement I
was performed

forj=i,...,e.
TOL and N1 correspond to the parameters r and k in the least squares subroutines

HFTI and HFTI2. TOL is a nonnegative number that is specified by the user, and N1
is a variable that is set by the routine. When L2SLV is called, modified Gram-Schmidt I
orthogonalization with column pivoting is used to reduce WA to the form (AiA2 ) where A1
is an m x N1 matrix having rank N1 . Al is of the form QU where QtQ = diag(di, . . ,dNJ)
and U is an upper unit triangular matrix. The values d1 , d2, . .. correspond to the diagonal I
elements c11,c2 2, ... generated by HFTI and HFTI2 (di = c~- for i = 1,2, ... ). The values
are ordered so that di > di+, and di,d 2 , ... are stored in WK(2t+ 1), WK(2t+ 2),.
If m = m. then N1 is assigned the value mi. Otherwise, if m > me then N1 is the largest I
integer k for which dk > r. Here r = TOL if TOL > 0, and r = (ne) 2 d,,,m+i where e is the
smallest value for which 1 + e> 1 (e - 2-47 on the CDC 6700) if TOL = 0. Thus, if TOL
= 0 then a tolerance based on the computer precision is used to determine the rank of N1
of WA. Otherwise, if TOL > 0 then TOL is the tolerance that is used to specify the rank
of the problem to be solved. If the user inadvertently sets TOL to be negative then L2SLV
resets TOL to be 0.

IPIVOT is an array of dimension n or larger that is used by L2SLV to record the order
in which the columns of WA are selected by the pivoting procedure when WA is reduced to
(A1 A2). If N1 < n then the first N1 elements of IPIVOT are the indices of the columns of
WA from which the matrix Al is generated.

T is a 2-dimensional array of dimension kt x n that is used for temporary storage. It I
is assumed that kt > m + n. When L2SLV terminates, if NI = n then the unscaled n x n
covariance matrix is stored in the first n rows and columns of T. Iterative improvement is
not performed on the covariance matrix.

Error Return. IERR is an integer variable that is set by the routine. If no input errors are
detected and the results appear to be satisfactory, then IERR is set to 0. Otherwise, IERR I
is assigned one of the following values:

IERR = 1 Either m, n, or e is not positive.
IERR = 2 The restriction 0 < m, < min(m, n is not satisfied.
IERR = 3 Either ka > m, kb > m, kz > n, kr > m, or kt > m+n is violated.
IERR = 4 WGTS(i) is negative for some i > m'.
IERR = 5 Either WA = 0 or E = 0. I
IERR = 6 The rank of E is less than me.
IERR = 7 Iterative improvement of all the solutions x1 , ... , xt failed to con-

verge. I
IERR = 8 Iterative improvement of one or more solutions failed to converge.
IERR = 9 More than ja iterations of the iterative improvement procedure

were performed in computing some Xi. (Here it is assumed that a
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jp decimal digit floating-point arithmetic is being used. p = 14 for
the CDC 6700.)I IERR = 10 The accuracy of some xj before iterative improvement was esti-
mated to be less than half a decimal digit.

IERR = 11 One or more of the computed diagonal elements of the covariance
matrix is negative. This is due to roundoff error. Theoretically,
all the diagonal elements should be nonnegative. No evidence of
severe ill-conditioning was detected.

IERR = 12 One or more of the computed diagonal elements of the covariance
matrix is negative. This is due to roundoff error. Theoretically,
all the diagonal elements should be nonnegative. The problem

| ; appears to be extremely ill-conditioned.

When an input error is detected (IERR = 1,2, ... ,6) then L2SLV immediately terminates.
If evidence of severe ill-conditioning is detected, then IERR is set to 8,9, or 10 and com-
putation of the solutions continues. If iterative improvement appears to converge for one
or more of the solutions, then the covariance matrix is also computed (when Ni = n).
However, if iterative improvement fails for all the solutions xi1, ... xtx then IERR is set to
7 and the covariance matrix is not computed.

Note. WK(1), .. . ,WK(2f) should be examined when severe ill-conditioning is detected.

I Programming. L2SLV employs the subroutines DECOM2, SOLVE2, SOLVE3, and CO-
VAR. These routines were written by Roy Wampler (National Bureau of Standards). L2SLV
is a slightly modified version by A. H. Morris of the subroutine L2B discussed in referenceI (4). The algorithm employed for finding and iteratively improving the least squares solu-
tions is described in references (1)-(3). The function SPMPAR is also used.

I References.
(1) Bjorck, Ake, "Solving Linear Least Squares Problems by Gram-Schmidt Orthogonal-

ization," BIT 7 (1967), pp. 1-21.
_ _(2) , "Iterative Refinement of Linear Least Squares Solutions I,'BIT 7
(1967), pp. 257-278.

(3) Iterative Refinement of Linear Least Squares Solutions II,"B1T 8I (1968), pp. 8-30.
(4) Wampler, Roy, "Solutions to Weighted Least Squares Problems by Modified Gram-

Schmidt with Iterative Refinement," ACM Trans. Math Software 5 (1979), pp. 457-
465.
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ITERATIVE LEAST SQUARES SOLUTION OF BANDED LINEAR
EQUATIONS

Given an m x n matrix A, a column vector b of dimension m, and a real number A.
Let A.= ( ) where I is the n x n identity matrix, and let b= (b). The problem is to find
a column vector x of dimension n which is a least squares solution of Ax = b. If A is stored
in band form then the following subroutine is available for solving this problem.

CALL BLSQ(mn, A, ka, mi, mu, A, b, x,ATOL,BTOL,CONLIM,MXITER,
IND ,ITER,COND ,RNORM,XNORM,WK)

A is an m x n matrix stored in band form, me the number of diagonals below the
main diagonal containing nonzero elements, and m,, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < me < min <
mu < n, and ka > m. When BLSQ is called, an iterative procedure is used to obtain a
least squares solution x of Ax = b. The vector b is modified by the routine.

ATOL and BTOL are input arguments which specify the relative accuracy of A and b
respectively. For example, if it is estimated that b is accurate to A: decimal digits then one
may set BTOL = 1 0-k. It is required that ATOL > 0 and BTOL > 0. If ATOL = 0 or
BTOL = 0, then it is assumed that A or b is accurate to machine precision.

Let cond(A) denote the condition number of A relative to the Probenius norm.1 In
each iteration of the algorithm being used, an estimate is made of the condition number
cond(A). The estimates form a monotonically nondecreasing sequence. The input argument
CONLIM is an upper limit on cond(A). If CONLIM > 0 then BLSQ terminates when an
estimate of cond(A) exceeds CONLIM. This termination may be needed to prevent small
or zero singular values of A from coming into effect and causing damage to the solution x.
CONLIM may be ignored by being set to 0. It is assumed that CONLIM > 0.

The input argument MXITER is the maximum number of iterations that are permitted.
Normally BLSQ requires less than 4n iterations. The related argument ITER is a variable.
When the routine terminates ITER = the number of iterations that were performed.

COND,RNORM, and XNORM are variables. When BLSQ terminates COND = the
last estimate made for cond(A), RNORM = jAx - b1, and XNORM = 111x.2

WK is an array of dimension 2n or larger that is a work space for the routine.

The equations Ax - b are considered to be compatible if for any least squares solution
x, lAx -b|1 = 0. IND is a variable that reports the status of the results. When BLSQ
terminates, IND has one of the following values:

'cond (A) = IIAIIrIiA+Ifr where A+ is the pseudoinverse of A. Here 1Cljp = for any matrix
C = (C~1).
211c11 = f for any vector c = (cl, c2, ... ).
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IND = 0 The solution is x = 0. No iterations were performed.
IND = 1 The equations Ax = b are probably compatible. A solution x

has been obtained which is sufficiently accurate, given the values
ATOL and BTOL. I

IND = 2 The equations Ax = b are probably not compatible. A least
squares solution x has been obtained which is sufficiently accu-
rate, given the value ATOL.

IND = 3 An estimate COND of cond(A) exceeds CONLIM. The vector x is
the most recent approximation of a solution for Ax = b.

IND = 4 The equations Ax = b are probably compatible. A solution x has I
been obtained which is as accurate as seems reasonable on this
machine.

IND = 5 The equations Ax = b are probably not compatible. A least
squares solution x has been obtained which is as accurate as seems
reasonable on this machine.

IND = 6 cond(A) appears to be so large that there is not much point in
doing further iterations. The vector x is the most recent approxi-
mation of a solution for Ax = b.

IND 7 MXITER iterations were performed. More iterations are needed.
The vector x is the most recent approximation of a solution for
Ax = b.

Remarks.

(1) A large estimate of the condition number cond(A) may be due to rank deficiency or near
rank deficiency of the matrix A. If it is suspected that a large estimate of cond(A) has I
occurred for this reason, then it is recommended that CONLIM be set to a moderate
value such as V where e is the smallest value such that 1 +e > 1 (e = 2-47 for the CDC
6000-7000 series computers). Setting CONLIM to 0 is equivalent to setting CONLIM I
to E7.

(2) The vector b is the only input argument modified by the routine.

Algorithm. BLSQ employs an iterative algorithm developed by Golub and Kahan.

Programming. BLSQ calls the subroutines NORMLZ, BVPRD1, BTPRD1, SCOPY, and I
SSCAL. The function SNRM2 is also used. BSLQ is an adaptation by A. H. Morris of the
subroutine LSQR, written by Christopher C. Paige (McGill University, Montreal, Canada)
and Michael A. Saunders (Stanford University). I
References.

(1) Paige, C. C. and Saunders, M. A., "LSQR: An Algorithm for Sparse Linear Equations
and Sparse Least Squares," ACM Trans. Math Software 8 (1982), pp. 43-71.

(2) , "Algorithm 583. LSQR: Sparse Linear Equations and Least Squares
Problems," ACM Trans. Math Software 8 (1982), pp. 195-209.
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ITERATIVE LEAST SQUARES SOLUTION OF SPARSE LINEAR
EQUATIONS

Given an m x n matrix A, a column vector b of dimension m, and a real number A.
Let A = (t) where I is the n x n identity matrix, and let b = (,). The problem is to find
a column vector x of dimension n which is a least squares solution of Ax = t. If A is sparse
then the following subroutines are available for solving this problem.

CALL SPLSQ(Mn, A, IA,JA, A, b, x, ATOL,BTOL,CONLIM,MXITER,
INDITER,COND,RNORM,XNORM,WK)I CALL STLSQ(m,n, TA,ITAJTA, A, b, x, ATOL,BTOL,CONLIM,MXITER,
IND,ITER,COND,RNORM,XNORM,WK)

If SPLSQ is called then A, IA, JA are arrays containing the matrix A in sparse form.I Otherwise, if STLSQ is called then TA, ITA, JTA are arrays containing the transpose matrix
At in sparse form. An iterative procedure is used to obtain a least squares solution x of
Ax = b. The vector b is modified by the routines.

ATOL and BTOL are input arguments which specify the relative accuracy of A and b
respectively. For example, if it is estimated that b is accurate to k decimal digits then one
may set BTOL = 10-*. It is required that ATOL > 0 and BTOL >. 0. If ATOL = 0 or
BTOL = 0, then it is assumed that A or b is accurate to machine precision.

Let cond(A) denote the condition number of A relative to the Frobenius norm.1 In
each iteration of the algorithm being used, an estimate is made of the condition number
cond(A). The estimates form a monotonically nondecreasing sequence. The input argumentI CONLIM is an upper limit on cond (A). If CONLIM > 0 then the routines terminate when
an estimate of cond(A) exceeds CONLIM. This termination may be needed to prevent small
or zero singular values of A from coming into effect and causing damage to the solution X.
CONLIM may be ignored by being set to 0. It is assumed that CONLIM > 0.

The input argument MXITER is the maximum number of iterations that are permit-
ted. Normally the routines require less than 4n iterations. The related argument ITER
is a variable. When the routines terminate ITER = the number of iterations that were
performed.

COND, RNORM, and XNORM are variables. When the routines terminate COND =
the last estimate made for cond(A), RNORM = liAx - b1l, and XNORM = Ixjll.2

WK is an array of dimension 2n or larger that is a work space for the routines.

1 .cond (A) = jjAjjpA+jjp where A+ is the pseudoinverse of A. Here liCjlr = for any matrixI C = (c;:).
211c11 = ft/ for any vector c = (cl,c2, ... ).
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The equations Ax - b are considered to be compatible if for any least squares solution
x, gAx - b!I = 0. IND is a variable that reports the status of the results. When the routines
terminate, IND has one of the following values:

IND = 0 The solution is x = 0. No iterations were performed.
IND = 1 The equations Ax - b are probably compatible. A solution x

has been obtained which is sufficiently accurate, given the values
ATOL and BTOL.

IND = 2 The equations Ax-h are probably not compatible. A least squares
solution x has been obtained which is sufficiently accurate, given
the value ATOL.

IND = 3 An estimate COND of cond(A) exceeds CONLIM. The vector z is
the most recent approximation of a solution for Ax - b.

IND = 4 The equations Ax - b are probably compatible. A solution x has I
been obtained which is as accurate as seems reasonable on this
machine.

IND = 5 The equations Ax - b are probably not compatible. A least squares
solution x has been obtained which is accurate as seems reasonable
on this machine.

IND = 6 cond(A) appears to be so large that there is not much point in I
doing further iterations. The vector x is the most recent approxi-
mation of a solution for Ax - b.

IND = 7 MXITER iterations were performed. More iterations are needed.
The vector x is the most recent approximation of a solution for
Ax = b.

Remarks. I
(1) A large estimate of the condition number cond(A) may be due to rank deficiency or near

rank deficiency of the matrix A. If it is suspected that a large estimate of cond(A) has
occurred for this reason, then it is recommended that CONLIM be set to a moderate
value such as +/E where e is the smallest value such that 1+e > 1 (e = 2-47 for the CDC
6000-7000 series computers). Setting CONLIM to 0 is equivalent to setting CONLIM
to C1 . I

(2) The vector b is the only input argument modified by the routine.

Algorithm. SPLSQ and STLSQ employ an iterative algorithm developed by Golub and I
Kahan.

Programming. SPLSQ, and STLSQ call the subroutines NORMLZ, MVPRD1, MTPRDI,
SCOPY, and SSCAL. The function SNRM2 is also used. SPLSQ and STLSQ are adaptations
by A. H. Morris of the subroutine LSQR, written by Christopher C. Paige (McGill Univer-
sity, Montreal, Canada) and Michael A. Saunders (Stanford University).

References.

(1) Paige, C. C. and Saunders, M. A., "LSQR: An Algorithm for Sparse Linear Equations I
and Sparse Least Squares," ACM Trans. Math Software 8 (1982), pp. 43-71.

(2) , 'Algorithm 583. LSQR: Sparse Linear Equations and Least Squares
Problems," ACM Trans. Math Software 8 (1982), pp. 195-209.

348

~~~~~I



MINIMIZATION OF FUNCTIONS OF A SINGLE VARIABLE

Let F(x) be a continuous real-valued function defined for a < x < b. Then the following
subroutine is available for finding a local minimum of F(x).

CALL FMIN(F, a, b, z,w,AERR,RERR,ERROR,IND)

It is assumed that a < b. FMIN finds a value z in the interval [a, b] which is a local
minimum of F. ERROR and w are variables. When FMIN terminates, w = F(x) and
ERROR is the estimated maximum absolute error of z.

The input arguments AERR and RERR are the absolute and relative error tolerances
to be satisfied. For example, if k significant digit accuracy is desired then one may set
RERR = 1O-k. It is assumed that AERR > 0 and RERR > 0. The setting AERR = 0
is equivalent to the setting AERR = 10-20, and the setting RERR = 0 is a request for
machine precision.

IND is a variable that reports the status of the results. IND = 0 if x is found to the
desired accuracy. Otherwise, IND = 1 when x cannot be obtained to the desired accuracy.
In this case, w satisfies the tolerances AERR and RERR.

Note. F must be declared in the calling program to be of type EXTERNAL.

Algorithm. The golden section search procedure is used.

Programming. The function SPMPAR is called. FMIN was written by A. H. Morris.
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MINIMIZATION OF FUNCTIONS OF N VARIABLES

Let f(z) be a real-valued function of n variables I = (XI,- -- , Xzn) where n > 2. If f(z)
is twice continuously differentiable then the following subroutine is available for finding a
local minimum of f(z).

CALL OPTF(F, n,RERR,ITER,XFVAL,IND,WK)

X is an array of dimension n and FVAL a variable. On input, X contains an initial
guess a = (a,,.. . ,,a) to a minimum of 1f. When OPTF terminates, X contains the final
estimate x = (xi, .. ., x,X) of a local minimum of f and FVAL = f (x).

The argument F is the name of a user defined subroutine that has the format:
CALL F(n,XFVAL)

Here X is an array of dimension n containing a point z = (..I... lZXn) and FVAL is a
variable. F sets FVAL to the value of the function f at the point X. F must be declared in
the calling program to be of type EXTERNAL.

RERR is an input argument that specifies the relative accuracy of F. If it is estimated
that the subroutine F produces results accurate to k significant digits then one may set
RERR = 10 -k*. It is required that RERR > 0. If RERR = 0 then it is assumed that F
produces results accurate to machine precision.

When OPTF is called,.ine search iteration is performed to find the local minimum
of f. ITER is a variable. On input, ITER is the maximum number of iterations that
are permitted. When the routine terminates, ITER = the number of iterations that were
actually performed.

WK is an array of dimension n(n + 8) or larger that is a work space for the routine.

IND is a variable that reports the status of the results. When the routine terminates,
IND has one of the following values:

IND = -1 (Input error) n < 0.
IND =-2 (Input error) n = 1.
IND = -4 (Input error) ITER < 0.
IND = -5 (Input error) Either RERR < 0 or RERR > 10-4.

IND = 1 A local minimum z was found. The gradient of f at x was con-
J sidered to be sufficiently small.

IND = 2 The steps taken became so small that OPTF had to terminate.
X is probably a local minimum, but it need not be a local mini-I mum. The algorithm frequently requires exceedingly small steps
to be taken, no matter whether X is close to or far from a local
minimum.U IND = 3 A local minimum has possibly been found. OPTF could not find
a point for which f would take a smaller value.

IND = 4 ITER iterations were performed.
IND = 5 The algorithm appears to be diverging. This generally occurs

when f is unbounded from below.
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When an input error is detected, the routine immediately terminates. U
Accuracy and Efficiency. OPTF is frequently extremely efficient in finding a value FVAL
which roughly approximates a local minimum value f(xo), but at times it can be quite
slow in obtaining FVAL to greater precision. A rough approximation is often obtained in
20-30 iterations. If f (xo) : 0 then FVAL may be accurate to 4-6 significant digits after
20-30 additional iterations, or FVAL may not be accurate to 1 significant digit after several U
hundred iterations. 4-6 digit accuracy is the greatest precision that can be expected. In
general, it is recommended that ITER < 200. Each iteration can take considerable time,
even if the subroutine F is cheap to evaluate.

Remark. OPTF can be quite sensitive to the scaling of the variables (x1 , ... Zn). The
routine tends to operate more efficiently when the components of a local minimum z = I
(X, I. . . Xzn) are all roughly of the same magnitude. If the components are of considerably
different magnitudes (say Izi Is: lo-6 and 1x2 j Ps 10i3) then convergence may be extremely
slow. In such a case, OPTF attempts to rescale the variables, but the rescaling is not always I
helpful.

Algorithm. The line search algorithm given in pp. 325-327 of the reference is employed. 3
Also, BFGS secant updates for the hessian are used.

Programming. OPTF employs the subroutines OPTDRV, OPCHK1, OPSTP, FXDEC,
SCALEX, LLTSLV, FSTOFD, FSTOCD, LNSRCH, SECFAC, QRUPDT, and JROT. OPTF,
FXDEC, and SCALEX were writtefi by A.H. Morris. The remaining subroutines were writ-
ten by Robert B. Schnabel (University of Colorado at Boulder) and modified by A.H. Morris. I
The functions SDOT, SNRM2, and SPMPAR are also used.

Reference. Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
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UNCONSTRAINED MINIMUM OF THE SUM OF SQUARES
OF NONLINEAR FUNCTIONS

Let f1(z), ... ,f,(x) be m real-valued-functions of n real variables x = (xi, ... ,x)

where m > n. The problem under consideration is to find a point z which minimizes the
function +(z) = E f1 (z)2 . Assume that each f,(x) is differentiable and that an initial

i=1
guess a = (a,, ... ,an) to a minimum of +(z) is given. Then the following subroutine is
available for finding a point which minimizes +(x).

CALL LMDI FF(Fm, n, X, FVEC,EPS,TOL,INFO,IWK,WK, t)

X is an array of dimension n and EVEC an array of dimension m. On input X
contains the starting point a = (a,, .:. ,an). When LMDIFF terminates, X contains the
final estimate x = (zx, ... ,xn) of a minimum of 40 and FVEC contains the values of the
functions f, . . ., fm at the output point in X.

The argument F is the name of a user defined subroutine that has the format:
CALL F(m, n, X, FVEC,IFLAG)

Here X is an array of dimension n, FVEC an array of dimension m, and IFLAG an
integer variable. The array.sX contains a point z = (zX, ..- ,-znn).' Normally F evaluates
the functions f , ... , fm at this point and stores the results in FVEC. However, if z does
not lie in the domain of fi, . .. , fm then this cannot be done. In this case, the argument
IFLAG (which will have been assigned a nonnegative value by LMDIFF) should be reset
by F to a negative value. This will signal LMDIFF to terminate. F must be declared in
the calling program to be of type EXTERNAL.

EPS is an input argument which specifies the relative accuracy of F. If it is estimated
that the subroutine F produces results accurate to k significant decimal digits then one
may set EPS = 10-k. It is required that EPS > 0. If EPS = 0 then it is assumed that F
produces results accurate to machine precision.

TOL is an input argument which specifies the desired accuracy to be attained. The
Euclidean norm lixil = V/tx is employed. If i denotes an actual mihimum of 4, then
LMDIFF terminates when an iterate z is generated for which it is estimated that

(1) 0(Z) < (1 + TOL)2 (z) or
(2) JjD(x- Z)jj < T0L * lDzj

is satisfied. In (2) z and t are regarded as column vectors, and D is a diagonal matrix
generated by LMDIFF whose entries are scaling factors. For convenience, criterion (1) is
called the F-convergence (or &convergence) test and criterion (2) is called the z-convergence
test. It is required that TOL > 0. In order for the convergence tests to work properly, it is
recommended that TOL always be smaller than 10-5.

IWK is an array of dimension n and WK is an array of dimension I. IWK and WK
are work spaces. It is assumed that e > mn + 5n + m.
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INFO is an integer variable that reports the status of the results. When LMDIFF
terminates, INFO has one of the following values:

INFO < 0 This occurs when the user terminates the execution of LMDIFF by
resetting the argument IFLAG in the subroutine F to a negative
value. Then INFO = the negative value of IFLAG.

INFO =0 (Input error)1 < n < m, EPS > 0, TOL > Oor i > mn + 5n + m

INFO
INFO
INFO
INFO
INFO

= 1
-2
= 3
= 4
= 5

INFO = 6

INFO = 7

is violated.
The F-convergence test has been satisfied.
The x-convergence test has been satisfied.
The F-convergence and x-convergence tests have been satisfied.
The gradient of 0 is 0 at point X.
The number of calls to the subroutine F has reached or exceeded
200(n + 1).
TOL is too small. No further reduction in the value of +(z) is
possible.
TOL is too small. No further improvement in the accuracy of X
is possible.

When LMDIFF terminates, if INFO : 0 then X contains the final iterate that was gener-
ated. Also, if INFO > 1 then FVEC contains the values of the functions f', ... , fm at this
iterate. If INFO = 4 then X should be examined very closely. The gradient of 0 can be 0
when X is a local minimum or maximum, or when X is a saddle point. If INFO = 5 then
it may (or may not) be helpful to continue the procedure by recalling LMDIFF with the
current point in X as the new starting point. Since TOL is a relative tolerance, this setting
can occur when O(0) = 0.

Algorithm. A modified form of the Levenberg-Marquardt algorithm is employed.

Programming. LMDIFF is a slightly modified version of the MINPACK-1 subroutine
LMDIF1. The MINPACK-1 subroutines LMDIF, SPMPAR, ENORM, FDJAC2, LMPAR,
QRFAC, and QRSOLV are employed. The subroutines were written by Jorge J. More,
Burton S. Garbow, and Kenneth E. Hillstrom (Argonne National Laboratory).

References.
(1) More, J. J., Garbow, B. S., and Hillstrom, K. E., User Guide for MINPACK-1,

Argonne National Laboratory Report ANL-80-74, Argonne, Illinois, 1980.
(2) More, J. J., 'The Levenberg-Marquardt Algorithm: Implementation and Theory,"

Numerical Analysis, G. A. Watson (ed.), Springer-Verlag, 1977.
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LINEAR PROGRAMMING

Let A = (aj) be an m x n matrix, B an array containing bl, .. ,bm and C an array
containing cl, . . , c, where aij, bi, c; are real. Consider the problem of finding nonnegative
values z1 , . .. , xn which maximize or minimize the function clzx + *** + czxn subject to
the constraints:

I a11x1 + * * * + aInzn{<, =, >}bl

I am~zlx+ * * * + amnzn{<, =, >}bm

In each constraintI a~ 1ii + *+ ainXn{•=, >}bi

only one of the relations <I=,> is used, but the relation may vary from constraint to
constraint. The following subroutines are available for solving this problem.

CALL SMPLX(A, B, C,ka, m, n,IND,IBASIS,Xz, ITER,MXITER,
NUMLE,NUMGE,BI,WK,IWK)

CALL SSPLX(TA,ITA,JTA, B, C,m, n, IND,IBASIS,X, z, ITER,MXITER,
NUMLE,NUMGE,BI,WK,IWK)

It is assumed that m > 2, n > 2, and that each bi > 0. If SMPLX is called then ka is
the number of rows in the dimension statement for A in the calling program. Otherwise,
if SSPLX is called then TA, ITA, JTA are arrays containing the transpose matrix At in

* sparse form.

The constraints a,1zi + * * - + aixz{<, =, >}bi are assumed to be ordered so that the
< constraints are followed by the > constraints, and the = constraints come last. NUMLEI and NUMGE have the values:

NUMLE = the number of < constraints.
NUMGE = the number of > constraints.

It is assumed that NUMLE > 0, NUMGE > 0, and NUMLE + NUMGE < m.

When SMPLX or SSPLX is called, the routine attempts to maximize Ejcjxz subjectI to the constaints. A modified form of the primal simplex algorithm is employed. Frequently
the procedure requires less than 5m iterations to perform the task. The argument MXITER
has the value:I MXITER = the maximum number of iterations that may be performed.
This argument is provided by the user. The related argument ITER is a variable that is
set by the routine. When the routine terminates, ITER has for its value the number of
iterations that were performed.

IND is a variable and IBASIS an array of dimension m. IBASIS contains the indices
X X of the current basic variables Zi, and IND is used for input/output purposes. On in-

put IND is normally set by the user to 0. If IND = 0 then the routine selects its own
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beginning basis and stores the appropriate indices in IBASIS. [The remainder of this para-
graph may be skipped by anyone not acquainted with the simplex algorithm.] If the user
wishes to use his own beginning basis, then IND must be set to 1 and the indices of
the initial basic variables stored in IBASIS. It is not required that the initial basis
be selected so that the basic variables are nonnegative. The initial basic variables may
be original, slack, surplus, or artificial variables. Slack and surplus variables are automat-
ically provided for the < and > constraints, and artificial variables for the = constraints.
The routine defines Xni to be the slack, surplus, or artificial variable for the ith constraint
ax1z1 + -.. + aiznn{<, =, >}bi. If IND 0 then the slack, surplus, and artificial variables
are the initial basic variables that are employed.

On output IND reports the status of the results. The routine assigns IND one of the
following values:

IND = 0 The problem was solved.
IND = 1 The problem has no solution.
IND = 2 MXITER iterations were performed. More iterations are needed.
IND = 3 Sufficient accuracy cannot be maintained to solve the problem.
IND = 4 The problem has an unbounded solution.
IND 5 An input error was detected. (See below)
IND = 6 A possible solution was obtained. The routine is not certain if the

solution is correct.

X is an array of dimension n + NUMLE + NUMGE and z is a variable. If IND = 0 or
IND = 6, then z has for its value the maximum value obtained for Ejcjx, and X contains
the values obtained for the original, slack, and surplus variables. If IND :A 5 then IBASIS
contains the indices, of the basic variables currently in effect when the routine terminates.

BI is an array of dimension m2 that is used for storing the inverse of the basis matrix.
The order of the column vectors of the basis matrix corresponds to the order of the basic
variables given in IBASIS. If IND : 3,5 on output then BI contains the inverse of the basis
matrix currently in effect when the routine terminates.

WK is an array of dimension 2m or larger, and IWK is an array of dimension 2m + n
or larger. WK and IWK are work spaces.

Input Errors. IND = 5 occurs on output when one of the following conditions is violated:
(1) n > 2 and ka > m > 2.
(2) NUMLE + NUMGE < m.
(3) Each bi > 0.
(4) The basis matrix specified by the user in IBASIS (when IND = 1 on input) is nonsin-

gular and sufficiently well conditioned so that its inverse can be computed.

Remarks.

(1) A, B, C,TA,ITA,JTA are not modified by the routines.
(2) The routines maximize EJc3-zy. This function can be minimized by maximizing Ed(-cy)xz

and then changing the sign of the result.
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(3) SMPLX and SSPLX generate the same results. For efficiency, SSPLX should be used
when A is sparse.

Algorithm. A three step procedure is used. The first step eliminates the negative variables.
Then phases (1) and (2) of the primal simplex algorithm are invoked. Negative variables
are eliminated as follows: Let XB1, .. ., x~ be the basic variables and yij the components
of the simplex tableau.
(1) Compute di = E'yi for each nonbasic variable Zx where the sum SJ- is for all i where

XBE < 0. If all di > 0 then the problem has no feasible solution. Otherwise, select k so
that dk = minidy. Then Xk is the variable to be made basic.

(2) If XEa > 0 and yjk > 0 for some j then go to (3). Otherwise, select a negative variable
XBI to become nonbasic where XBt/Yrk = max{XBi/yjk: XBj < 0 and yj. < 0}. Then
update the basis and go to (5).

(3) Compute e = min{XBj/yjk : XBj > 0 and yjA > 0} and check if a negative variable
ZXBj exists that satisfies the conditions:
(*) Yjk < 0 and e > XBj/yjk

If such a variable exists then go to (4). Otherwise, select a nonnegative variable xB, toI become nonbasic where Yrk > 0 and XBl/Yrk = c. Then update the basis and go to (1).
(4) Select a negative variable XB, to become nonbasic where XBr/Yk = max{XBi/yjk

XE, < 0 and XBj satisfies(*)}. Then update the basis and go to (5).
(5) Check if there are any remaining negative variables. If not, then we are finished.

Otherwise go to (1).

Programming. SMPLX and SSPLX employ the subroutines SMPLX1, SSPLX1, and
CROUT1. These routines were written by A. H. Morris. The function SPMPAR is also

* used.
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THE ASSIGNMENT PROBLEM

3 Let C = (cii) be an n x n matrix (the cost matrix). The problem under consideration
n n

is to find an n x n matrix z = (zij) which minimizes T = E E cijzqr and satisfies:

~~~~~~~n
w ~~~~(1) x ii 1 for j=1, . ,n

j=1

(3) Each Zi 5= 0 or 1

Each z which satisfies (1)-(3) is called an assignment. For each such x, from (1) and (3)3 we note that for each j there exists a unique integer ir(j) such that r,(j),j = 1. Also, (2)
and (3) assert that 7r is a permutation of {1, ... ,n}. Conversely, for any permutation 7r
there corresponds an assignment z defined by Z,(j),j = 1 and ±ii = 0 for i :$ r(j). Thus,

the problem is to find a permutation r of {1, .. . , n} which minimizes T = E cr(j)j. The

following subroutine is available for solving this problem when all cij are integers.

* ; CALL ASSGN(n,C,JC,T,IWK,IERR)

C is a 2-dimensional integer array of dimension n x (n + 1), JC. an integer array ofI dimension n, and T an integer variable. It is assumed that n > 2 and that the first n
columns of C contain the cost matrix (ci5). [The (n + 1 )at column of C is a work space for
the routine.] When ASSGN is called, the desired permutation 2r is obtained and the values3 ir(1), . .. ,ir(n) stored in JC. Also T is assigned the minimized value Ec,(j), 5 .

IWK is an array of dimension 7n + 2 or larger that is a work space for the routine.

I IERR is a variable that is set by the routine. If JC and T are obtained then IERR is
assigned the value 0. Otherwise, if the problem cannot be solved because of integer overflow,3 then IERR = 1.

Remarks.
(1) C is destroyed by the routine.
(2) ASSGN minimizes T = jcr(j),j. This function can be maximized by minimizing

Sj(-cr(j),j) and then changing the sign of the result.

I Programming. ASSGN calls the subroutine ASSGN1. ASSGN1 was written by Giotgio
Carpaneto and Paolo Toth (University of Bologna, Italy), and modified by A. H. Morris.3 S - The function IPMPAR is also used.

Reference. Carpaneto, G., and Toth, P., "Algorithm 548, Solution of the Assignment
* Problem," ACMTrans. Math Software 6 (1980), pp. 104-111.
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0-1 KNAPSACK PROBLEM

Given n > 2 items, each having a profit pj > 0 and weight wt > 0, and m > 1
containers (knapsacks), each having a capacity ki > 0. Let zxi = 1 if item j is assigned to
knapsack i. Otherwise, let xi6 = 0. Then the problem is to find an assignment zxi of the

m n
items to the knapsacks which maximizes a = E E py xi6 subject to

*IX n i=l j=1
(1) , w~x•j k < ki for i = 1, ... , m, and

j='

(2) E xi<•1 for j=,...,n.

Condition (2) states that each item may be assigned to a (single) knapsack or be rejected.
It can be assumed, without loss of generality, that

(a) the knapsacks are ordered so that k, <... < km,
| ~~~~(b) min{ us . . ., wn} < ki,

(c) max{ w,,... ,wn} • kn, and
(d) En lwju > kn.I Then the following subroutine is available for solving this problem when all pi wj, and ki

are positive integers.

5 CALL MKP(n, m,P, W. K,NBCK,L, a,TEMP,ITEMP,NUM)

P and W are integer arrays containing Pl... ,Pn and wi,...,wn, and K an integer
array containing k1,, . .,km. L is an integer array of dimension n or larger, and a an integer
variable. When MKP is called, if no input errors are detected then the maximum value for
a is obtained. Also, L(j) = i if item j has been assigned to knapsack i (j = 1, ... ,n), and
L(j) = 0 if item j does not. appear in the solution (i.e., if xj = ... = znj = 0).

A depth-first tree search employing backtracking is used. If no bound is placed on
the number of back tracks that may be performed, then the exact maximum a is assured.I However, if the number of back tracks must be restricted, then only an approximation
to the maximum may be obtained. The argument NBCK is available for limiting the
backtracking. NBCK is a variable. On input, if NBCK = -1 then no restrictions are

-I placed on the backtracking. Otherwise, if NBCK : -1, then it is assumed that NBCK
is the maximum number of back tracks that are permitted. When the routine terminates,
NBCK = the number of back tracks that were actually performed.

TEMP is a real array of dimension n or larger, and ITEMP an integer array of dimen-
sion NUM. It is assumed that NUM > 5m + 14n + 4mn + 3. TEMP and ITEMP are work3 spaces for the routine. It should be noted that TEMP is the only argument of MKP that
is not of integer type.

3 Error return. If an input error is detected then a is set to one of the following values:

a = -1 if m < 1 or n < 2.
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Of = -2 if some pj, wj, or ki is not positive.
a= -3 if min{wl, ... ,w,} > k1; i.e., if a knapsack cannot contain any

item.
a =-4 if max{wl, ... , Wn} > kn; i.e., if an item cannot fit in any knap-

sack.
a = -5 if Z 1wj < ki; i.e., if knapsack m can contain all the items.
a = -7 if the knapsacks are not ordered so that k1 < ... < km.
or =-8 if NUM < 5m + 14n + 4mn + 3.

Backtracking. For NBCK = -1, the time required for finding the exact maximum depends
primarily on the value of m, and can increase quite dramatically for very small increases in
the value of m. It is recommended that this setting never be used when m > 10. Instead,
if m > 10 then a setting of NBCK < 50 frequently suffices.

Programming. MKP employs the subroutines MKP1, SIGMAI, P11, PARC, SKNP, and
SKNP1. The interface subroutine MKP was written by A.H. Morris. The remaining subrou-
tines were written by Silvano Martello (University of Bologna) and Paolo Toth (University
of Florence) and modified by A.H. Morris. The subroutine RISORT is also used.

Reference. Martello, S. and Toth, P.,"Algorithm 632. A Program for the 0-1 Multiple
Knapsack Problem," ACM Trans. Math Software 11 (1985), pp. 135-140.
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INVERSION OF THE LAPLACE TRANSFORM

Let f (t) be a complex-valued function that is continuous for t > 0 except possibly at
a countable set of values tk having no finite limit points. Then for complex z the Laplace
transform F(z) of f(t) is defined by

F(z) = j e^tf(t) dt

when the integral converges. If the integral converges for Re(z) > c but does not exist for
Re(z) < c, then c is called the abscissa of convergence of F(z). If ir If(t)leat dt < X
for some real constant a, then F(z) is analytic for all z where Re(z) > a. Also, for any point
t for which f(t) is continuous and sufficiently well-behaved, the value f(t) can be obtained
from F by the inversion formula

a+iT
) 1 rnI_ m eAtF(A) dA (i=VN)

-27ri T-00.aoiJ

for any a > a. If f(t) is real for t > 0, then Wig = F(i). Given a transform F(z) where
Ez = F(T), then the following subroutine is available for computing f (t) for t > 0.

CALL LAINV(MO,FUN,t,AERR,RERR,Y, c,ERROR,NUM,IERR)

it is assumed that Fizgg= F(i). The argument FUN is the name of a user defined
subroutine for computing F(z). FUN has the format:

CALL FUN(x, y, A, B)
A and B are variables. For real arguments z and y, A and B are assigned the values
A = Re[F(z + iy)] and B = Im[F(x + iy)]. FUN must be declared in the calling program
to be of type EXTERNAL.

IERR is a variable that is used both for input and output purposes. If IERR > 0 on
input then it is assumed that the abscissa of convergence is known and that c = the abscissa
of convergence. Otherwise, if IERR< 0 then the abscissa of convergence must be computed.
In this case, c is a variable. LAINV sets c to the value that is obtained for the abscissa of
convergence.

MO is an integer which specifies the search procedure to be used for finding the abscissa
of convergence c when IERR c 0 on input. A two-pass procedure is employed when MO
= 0, and a one-pass procedure when MO # 0. When all the singularities of F(z) are real,
the two-pass procedure (MO = 0) is almost always considerably more efficient. Conversely,
if none of the singularities of F(z) are real, or if F(z) has complex singularities that are to
the right of real singularities, then the one-pass procedure (MO $A 0) is more efficient.

It is assumed that t > 0 and that Y is a variable. When LAINV is called Y is set to
the value obtained for f(t).

AERR and RERR are the absolute and relative error tolerances to be used in computing
F(t) (AERR > 0 and RERR > a). If one wants accuracy to k significant digits then set
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I
RERR = 107'. If RERR = 0 then it is assumed that f(t) is to be computed to machine
accuracy. LAINV attempts to find a value Y which satisfies IY - f I < max{ AERR, RERR-
f(t) }. :

ERROR and NUM are variables that are set by the routine. When LAINV terminates,
ERROR is a rough estimate of the absolute error |Y - f(t)I and NUM is the number of
calls that were made to the subroutine FUN.

When LAINV terminates, IERR reports the status of the results. IERR is assigned
one of the following values:

IERR = 0 Y was obtained to the desired accuracy. -
IERR = 1 Y. was obtained, but it may not be accurate because of inaccuracy

in the computation of c. This setting occurs only when IERR < 0 3
on input.

IERR = 2 Y could not be obtained, possibly because too much accuracy was
requested. Increase AERR and RERR, and rerun the problem.

IERR = 3 Y could not be obtained, possibly because of inaccuracy in the
computation of c or too much accuracy was requested. Increase
AERR and RERR, and rerun the problem. This setting occurs
only when IERR < 0 on input.

IERR = 4 (Input error) The argument t is not positive. Y and ERROR are
assigned the values 0 and 1.

IERR = 5 The abscissa of convergence c could not be found int he interval
[-104,104 . Y, c, and ERROR are assigned the values 0, 0, and
1. This setting occurs only when IERR, < 0 on input.

IERR = 6 The argument t is too large for f(t) to be computed. Y and
ERROR are assigned the values 0 and 1.

Remarks.

(1) Accuracy decreases when t is near a discontinuity of f(t).
(2) The calculation may lose accuracy or fail when F(t) is oscillatory.

Algorithm. Given c, f(t) is computed by a modification of the subroutine DLAINV devel-
oped by R. Piessens and R. Huysmans, where the real Wynn e-algorithm has been replaced I
with the complex Wynn e-algorithm.

When IERR < 0, c is calculated by the subroutine ABCON or the subroutine AB-
CON1. In ABCON, which is a two-pass search procedure, the abscissa x1 of the rightmost
singularity in the strip -104 <z < 104, Yj < .01 is first determined. Then the abscissa of
the rightmost singularity in the half-plane Re(z) > z, is found. In ABCONI these calcula-
tions are combined into a single-pass procedure. I

In ABCON and ABCON1, the function F(z)/(z+IxiI+1) is integrated along paths Cl
and C2 defined as follows: C1 is the straight line segment from (Z1,0) to (x1, .01), followed
by the straight line segment from (xi,.01) to (oc,.01), and C2 is the straight line segment I
from (z 1,oo) to (:1,0), followed by the straight line segment from (Zx,0) to (oo,O). The
integral along C1 vanishes if no singularity lies to the right of Zx in the strip jyj < .01,
and the integral along C2 vanishes if no singularity lies in Re(z) > zI. Otherwise, these
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integrals are nonzero in most applications. Simpson's rule suffices for integrating along the
finite line segment from (Zj,0) to (z1,.01).

Example. Let F(z) = 1/(1 + z2), in which case f(t) = sint. The following code may be
used for computing f(t) at t = 1,1.1,1.2,. .. ,1.9 and storing the results in the array W.

REAL W(10)
EXTERNAL FT

C
AERR = 1.E-30
RERR = L.E-12
IERR = -1
T = 1.0
DO 10 I = 1,10

CALL LAINV (1, FT, T, AERR, RERR, W(I), C, ERR, N, IERR)
IF (IERR.GT. 1) STOP
T = T + 0.1

10 CONTINUE

Here FT may be defined by:

SUBROUTINE FT(X, Y, A, B)
COMPLEX Z,W

C
Z = CMPLX(X,Y)
W = 1.0/(1.0 + Z**2)
A = REAL(W)
B = AIMAG(W)
RETURN
END

Programming. LAINV employs the subroutines ABCON, ABCONI, SRCH, ACOND,
XCOND, LAINVI, CQEXT, QAGI1, QAGIE1, QELG, QK15I1, QPSRT, CDIVID and
functions ACONDF, ACONDG, XCONDX, XCONDY, SPMPAR, EXPARG. LAINV and
ABCON were written by Andrew H. van Tuyl (NSWC) and modified by A.H. Morris. AB-
CON1 was written by A.H. Morris. LAINV1 was written by Robert Piessens and Rudi
Huysmans (University of Leuven, Herverlee, Belgium) and modified by Andrew van Tuyl.
QAGI1 is a modification of QAGI by Andrew van Tuyl and A.H. Morris.

Reference. Piessens, R. and Huysmans, R., "Algorithm 619. Automatic Numerical Inver-
sion of the Laplace Transform," ACM Trans. Math Software 10 (1984), pp. 348-353.
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FAST FOURIER TRANSFORM

Let n be a positive integer and #y = 2rj/n for j = 0,1, ... , n - 1. For any complex
n-1

valued functions f and g defined on the points ay let (fg) = E f(8G) g(Gj). Then (fig) is
5=0

an inner product when f and g are regarded as functions defined only on Oj. Also e6 5 (j
0,1, ... ,n - 1) form an orthogonal set of functions where each e'i

9 has norm yii' Thus, if
n-i .

f is a function that is approximated by f (D) = E cje~5e then each Cy = 4(1(0), eij9). The
y=o

mapping f(Oy) '-* c; given by

1n-i 2ij/
C= =- > f(Ok)e 2rtik/nn k=0

is called the discrete Fourier transform and its inverse

n-i
f(AM) = E CJe2rijk/n

k=o

the inverse discrete Fourier transform. The following subroutines are available for com-
puting these transforms.

CALL FFT(C, n, A, IERR)
CALL FFT1 (A, B, nt, , IERR)

Let c; = ay + ibj(j = 0,1, . .. , n - 1) be the data to be transformed. If FFT is called
then C is a complex array containing co, cl, ... , c,-1 (where C(j + 1) = cj for j < n).
Otherwise, if FFT1 is called then A and B are real arrays containing ao, aL, ... , an.. and
bo,1b, . . . , 13bn- respectively.

The argument A may have the values 1 or -1, and IERR is a variable. When FFT or
FFT1 is called, if there are no input errors then IERR is set to 0 and

n-i8j= E cke2 -i /
k=O

is computed. The results c5= a5+ iby replace the original data c; = ay + ibj in C (or A
and B).

Restrictions on the argument n. When FFT and FFT1 are called, n is factored by the
routine into its prime factors. It is assumed that the largest prime factor of n is < 23. If
n = p211 where ft is the square free portion of n, then it is further assumed that A < 210
whenever A is a product of two or more primes.

367

l'Throughout this section i = A.



Error Return. If an input error is detected then IERR is set as follows:

IERR =1 if n < 1.
IERR = 2 if n has too many factors.
IERR = 3 if n has a prime factor greater than 23 or the square free portion

of n is greater than 210.
IERR =4 if te ±1.

The setting IERR = 2 can occur only when n > 4251528.

Remark. The complex array C is interpreted by FFT as a real array of dimension 2n. If
this association is not permitted by the FORTRAN being employed then use FFT1.

Programming. FFT and FFT1 are interface routines for the subroutine SFFT, which was
written by Richard C. Singleton (Stanford Research Institute).

Reference. Singleton, R. C., "An Algorithm for Computing the Mixed Radix Fast Fourier
Transform," IEEE Trans. Audio and.Electroacoustica, vol. AU-17 (1969), pp. 93-103.
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MULTIVARIATE FAST FOURIER TRANSFORM

Let nj, ... ,nm be positive integers. For any J=(j 1 , {..,jm)where jv7 =°,...,n,,-l
(z = 1, ... , m) let 0A denote the point (2irjl/nl, ... , 2rjm/nm. Also, for any complex
valued functions f and g defined on the points Oa let (fg) = E f(0J) g(0a). Then (fg)
is an inner product when f and g are regarded as functions defined only on Oj. Also the
functions 4J(G) = exp(ij 0') * exp(ij..m) form an orthogonal set where each OAs has the
norm V/ii.i Z Thus, if f is a function that is approximated by f = Eici'i then each
CJ = I)lp (f, J). The mapping f(0J) -4 ci given by

Ci= ni. n EK f(OC) exp(-27rijlki/n,) -* -exp(-2xij km/nm)

is called the discrete multivariate Fourier transform and its inverse

f(OaJ) = ZKCK exp(27rijjk,/n 1) exp(2,xijmkm/nm)

the inverse discrete multivariate Fourier transform. The sums EK are for all K =
(k,, ... ,km) where kv = 0,1, ... ,n, - 1 (V = 1, .. ,m). The following subroutines are
available for computing these transforms.

CALL MFFT(C, Nm, I, IERR)
CALL MFFTI(ABRNm,e,IERR)

Let Cj = a' + ib, be the data to be transformed where J = (j,, *--in) for j, =
0,1, ... I n,, - 1 (s = 1, ... , Im). If MFFT is called then C is a 1-dimensional complex
array containing the values cj where ca = C(1 +ji +j 2 ni + jsnln2 + - - +jinli ... nm-i).
Otherwise, if MFFT1 is called then A and B are 1-dimensional real arrays containing the
data a' and bj respectively.

Note. If MFFT is used and m = 2 or 3, then instead of having to store the m-dimensional
data ca into a 1-dimensional array C, the data may be stored in C where C is defined to
be an m-dimensional array. If m = 2 then C may be declared to be of dimension n1 x n2 ,
in which case C(ji + 1,j2 + 1) = cj for all J = (jdJ2). Similarly, if m = 3 then C may be
declared to be of dimension n1 x n2 x n3, in which case C(j, + 1,.J2 + I, js + 1) = Ca for all
J = (jilj2,s). Similar comments hold for A and B if MFFT1 is employed.

N is an array containing the integers n1 , ... I nm. The argument e may have the values
1 and -1, and IERR is a variable. When MFFT or MFFT1 is called, if there are no input
errors then IERR is set to 0 and the transform

aj = SK CKexp(27reijlkl/nl) ... exp(27rtijmk,/nm)

is computed. The results as = aj + ibA replace the original data c, = as + ibt in C (or A
and B).

'Throughout this section i = V=T and B = (6', . .. ,6m) denotes an arbitrary point.
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Restrictions on the arguments nj, .. .,nm. When MFFT and MFFT1 are called, each n,
is factored by the routine into its prime factors. It is assumed that the largest prime factor
of n, is < 23. If no, = yln. where ni, is the square free portion of nfl, then it is further I
assumed that nv < 210 whenever ii,, is a product of two or more primes.

Error Return. If an input error is detected then IERR is set as follows: 3

IERR = 1 if some n, < 1.
IERR = 2 if some n, has too many factors.
IERR = 3 if some nr, has a prime factor greater than 23 or the square free

portion of some nu is greater than 210.
IERR =4 if e± 1.
IERR = 5 if m < 0.

The setting IERR = 2 can occur only when some n, > 4251528.

Remark. The complex array C of dimension n1 ... nm is interpreted by MFFT as a real
array of dimension 2n, --* nm. If this association is not permitted by the FORTRAN being
employed then use MFFT1.

Programming. MFFT and MFFT1 are interface routines for the subroutine SFFT, which
was written by Richard C. Singleton (Stanford Research Institute). 3
Reference. Singleton, R. C., "An Algorithm for Computing the Mixed Radix Fast Fourier
Transform," IEEE ISrans. Audio and Electroacoustics, vol. AU-17 (1969), pp 93-103.
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DISCRETE COSINE AND SINE TRANSFORMS

Let n be a positive integer and Ov = (Y + 1/2)7r/n for v = 0,1, .. ., n - 1. For any
n-1

real valued functions f and g defined on the points 0, let (f, g) = E f(O.,) g(O,). Then

(fg) is an inner product when f and g are regarded as functions defined only on 8s,.
Also cos jO (j = 0,1, .. . , n - 1) form an orthogonal set of functions where cos jO has
norm V/in when j =0 and norm V/72 when j > 1. Thus, if f is a function that is

n-1
approximated by f(0) = ao + 2 E a cos jO then each a: = n(f (),cos jO). The map-

6=1
ping f(0,) ~-* aj is called the discrete cosine transform and its inverse a3 '-+ f(9#,) the
inverse discrete cosine transform.

Alternatively, the functions sin jO for j = 1, . .. , n also form an orthogonal set where
sin jO has norm I/<1 when j < n and norm e when j = n. Thus, if f is a function that

n-1
is approximated by f(O) = 2 E, bj sin jO + bn sin nO then each bj = (f(O),sin jO). The

6=1
mapping f(0,) F-+ by is called the discrete sine transform and its inverse by '-+ f(0,) the
inverse discrete sine transform.

The subroutines COSQB and COSQF are available for computing the discrete cosine
transform and its inverse, and the subroutines SINQB and SINQF are available for comput-
ing the discrete sine transform and its inverse. The subroutine COSQI provides information
that is needed for the cosine and sine transform routines.

CALL COSQI(n,WK)

WK is an array of dimension 3n + 15 or larger that is a work space for the routines
COSQB, COSQF, SINQB, and SINQF. COSQI stores in WK information needed for the
fast Fourier computation of the discrete cosine and sine transforms and their inverses. A
preliminary call must be made to COSQI before COSQB, COSQF, SINQB, and SINQF can
be used. After this preliminary call, COSQI need only be recalled when n is modified.

Programming. COSQl employs the subroutines RFFTI and RFFTI1. These routines were
written by Paul N. Swarztrauber (National Center for Atmospheric Research, Boulder,
Colorado).

CALL COSQB(n,X,WK)

X is an array of dimension n or larger. On input it is assumed that X contains the
data f(0o), f(O1), ... , f(On-). When COSQB is called, 4na6 is computed and stored in
X(j+ 1) for j=0,1, ...,n-1.

WK is an array of dimension 3n + 15 or larger that is a work space for the routine.
WK must be set up by the routine COSQI before COSQB can be used.
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Programming. COSQB employs the subroutines COSBi, RFFTB, RFFTB1, RADB2, I
RADB3, RADB4, RADB5, and RADBG. These routines were written by Paul N. Swarz-
trauber (National Center for Atmospheric Research, Boulder, Colorado).

CALL COSQF(n,X,WK)

X is an array of dimension n or larger. On input it is assumed that X contains the
data a0 ,a1 , ... lan-. When COSQF is called, f(Op) is computed and stored in X(v+ 1)
for z = 0, 1,..., n - 1.

WK is an array of dimension 3n + 15 or larger that is a work space for the routine.
WK must be set up by the routine COSQI before COSQF can be used.

Example. Assume that X contains the data f(0o), .. f. f(Gn-i). When the statements I
CALL COSQI(nWK)
CALL COSQB(n, X,WK)
CALL COSQF(n, X,WK) I

are called, COSQB stores 4nao, ... ,4nan-. in X and COSQF then sets X(v+1) = 4nf(G0,)
for v = 0,1, ... , n -1. Thus, the terms of the original sequence X are multiplied by 4n.

Programming. COSQF employs the subroutines COSQF1, RFFTF, RFFTF1, RADF2,
RADF3, RADF4, RADF5, and RADFG. These routines were written by Paul N. Swarz-
trauber (National Center for Atmospheric Research, Boulder, Colorado).

CALL SlNQB(n, X, WK)

X is an array of dimension n or larger. On input it is assumed that X contains the
data f(Oo), ... ,f (0n ). When SINQB is called, 4nb6 is computed and stored in X(j) for

j=1, .n. 

WK is an array of dimension 3n + 15 or larger that is a work space for the routine.
WK must be set up by the routine COSQI before SINQB can be used.

Programming. SINQB calls the subroutine COSQB. SINQB was written by Paul N.
Swarztrauber (National Center for Atmospheric Research, Boulder, Colorado). I

CALL SINQF(nX,WK)

X is an array of dimension n or larger. On input it is assumed that X contains the
data b1, ... , bn. When SINQF is called, f(0,) is computed and stored in X(v + 1) for
v = 0, 1, . -.,n1.

WK is an array of dimension 3n + 15 or larger that is a work space for the routine. I
WK must be set up by the routine COSQI before SINQF can be used.

Example. Assume that X contains the data bl,... ,b,. When the statements I
CALL COSQI(n,WK)
CALL SINQF(n, XWK)
CALL SINQB(n,X,WK)
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are called, SINQF stores f(0o), ..-. , f(O-,) in X and SINQB then sets X(j) = 4nby for
j = 1, ... , n. Thus, the terms of the original sequence X are multiplied by 4n.

Programming. SINQF calls the subroutine COSQF. The routine SINQF was written by
Paul N. Swarztrauber, (National Center for Atmospheric Research, Boulder, Colorado).
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RATIONAL MINIMAX APPROXIMATION OF FUNCTIONS

Let a < b and g(z) be a continuous nonvanishing function on the interval [a, b]. For anyI continuous function f (x), let 11f I1 denote the weighted norm maz{xf (x)l/lg(x)l a < z < b}.
Also let qS(z) be a continuous strictly monotonic mapping on [a, b]. Then for any nonnegative
integers l and m, the subroutine CHEBY is available for finding a rational function

R(x) = PO + pi OM) + ***+ PLOMZ)I R: x) g P0 +pi4~(x) qo + qlo(x) + - + qo,(x)

which minimizes IIR - f 11. The subroutine performs the calculations in double precision. It
is assumed that the error curve E(x) = ((x) - f(z))/g(x) satisfies j8(xi)I = 11. - f 11 at
precisely e + m + 2 critical points xo <z1 < -* * < x(n = e + m + 1), and that 6(zi+,) =
-8(xi) for each i < n.

3 a- CALL CHEBY(a, b,F, GPHI,c,ITER,MXITER, e,m,PQ,I 0 ERRORIERRWK)

The arguments a and b are double precision real numbers. F, G, and PHI are functions
whose arguments and values are double precision real numbers. The functions must be
declared in the calling program to be of types DOUBLE PRECISION and EXTERNAL.

* The functions evaluate f(z)-;g(x), and +(x) respectively.

The argument e is a double precision tolerance that is supplied by the user. If A denotes
the estimated value of II R - f I1, then the routine converges when the error curve 8(x) satisfies
A(l - c) • 16(z,)l ' A(1 + e) for each x,. Thus e specifies the relative agreement that must
be attained between llf - R1u and the 16(zi)j. Normally the setting e = lo-4 will give
satisfactory results. It is required that 0 < e < 10-2.

The Remes-type algorithm designed by Cody, Fraser, and Hart is employed. This algo-
rithm normally requires less than 20 iterations. The argument MXITER = the maximum
number of iterations that may be performed. This argument is set by the user. The relatedI argument ITER is an integer variable that is set by the routine. When CHEBY terminates,
ITER will have for its value the number of iterations that were actually performed.

P is a double precision array of dimension t+1, Q a double precision array of dimension
m + 1, ERROR a double precision variable, and IERR an integer variable. When CHEBY
terminates, if the rational function approximation R2(z) has been obtained then IERR isI assigned the value 0 and ERROR is the estimated error 11R - f Ij. The coefficient pi of the
numerator of R(z) is stored in P(i + 1) for i = 0, 1,... , I, and the coefficient qy of the
denominator is stored in Q(j + 1) for j = 0, 1,... , m. The coefficient qo will always haveI the value 1.

Let k = e+ m + 2. Then WK is a double precision array of dimension k(k + 5) or larger
that is used for a work space.
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Error Return. IERR is assigned one of the following values when the desired minimizing I
rational function R(x) is not obtained.

IERR = 1 An input error was detected. Either e < 0, m < 0, e < 0, e > 10-2,
or g(z) = 0 for some point z. I

IERR = 2 MXITER iterations were performed. More iterations are needed
to obtain R(x).

IERR = 3 The system of linear equations that define the coefficients p, and I
qj was found to be singular. This indicates that for the current
values of e and m, the numerator and denominator of R(x) may
have common factors. I

IERR = 4 A nonmonotonic sequence of critical points zx was obtained. Mod-
ify e and/or m.

IERR = 5 The value of the error curve 6(z) at some critical point zx appears I
to be too large. This indicates that R(x) may have poles, and that
m (or possibly a or b) may have to be modified.

IERR = 6 CHEBY completely failed to find (or roughly approximate) R(x). I
All information in P, Q, and ERROR should be ignored.

If IERR = 2,3,4, or 5 then P and Q contain the coefficients of the most recent rational
function approximation R(x) obtained, and ERROR is an estimate of the error 1R I- f of I
the approximation.

Remark. The two most common weighting functions employed are g(z) = 1 and g(z) = I
f(x). If g(z) = 1 then the absolute error is minimized in constructing R(z). If g(z) = f(z)
then the relative error is minimized.

Programming. CHEBY employs the subroutines CHEBY1, CERR, and DPSLV. These
routines were written by A. H. Morris. CHEBY, CHEBY1, and CERR are slightly modified
translations of the ALGOL 60 procedures Chebychev, lineq, del, and surmis given in the I
reference.

Reference. Cody, W. J., Fraser, W., and Hart, J. F.,"Rational Chebychev Approximation
using Linear Equations," Numerische Mathematik 12 (1968), pp. 242-251.
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LP APPROXIMATION OF FUNCTIONS

For any continuous real-valued function f(x) defined on the interval [a,bJ, let JjfljI
* denote the L. norm defined by

IfIIp = (fJ'If(x)Pdx)1/P if 0<p< o
IIfIIp= max{lf(z)I:a<z<b} if p=oo.

If p = oo then the norm is also known as the Chebyshev norm. For any continuous function
f, 0 < p < oo, and c > 0, the subroutine ADAPT is available for finding a continuous
piecewise polynomial function qb that satisfies 11f - 4IIp < e.

CALL ADAPT (F, a, b, a, k, ERRORXKNOTS, C, IND, A, n, t, ANORM,
DX,MO,m,XBREAK,KDIFF,DLEFT,DRIGHT)

It is assumed that the polynomials which form the approximation 0 are of degree < n.
The argument n must satisfy 1 < n < 19, and IND is a variable. When ADAPT is called, ifI there are no input errors and 0 is successfully constructed, then IND is set to 0, a sequence
of points a = zi < *- < Xk-1 <Zk = b is selected, and 5 takes the form

4(Z) = Cio +cil(x-xi)+ *e*+(Ci,(z-Xi) Zi < Z <+

for i = 1,..., I-1. The points Xi, . . ., xk are called the knots (or nodes) of 0.

The argument p is the maximum number of polynomials that may be used in forming
0. ERROR and k are variables, XKNOTS an array of dimension p + 1 or larger, and C a
2-dimensional array of dimension ju x (n + 1). ADAPT sets k to the number of knots that
are generated. The knots zx, .. . , Zk are stored in the XKNOTS array, and the coefficients
cio, . . . ,cin are stored in C(i, 1), . . . ,C(i,n + 1) for i = 1, . . . ,k-1. ERROR is a rough

| estimate of the error IIf- Ip

The argument t specifies the degree of smoothness that the approximation j must
satisfy. It is assumed that 0 < t < 10 and n > 2t. If e = 0 then it is only required that
0 be continuous on the interval [a, b]. Otherwise, if e > 1 then it is assumed that f is of
class C} on [a, bj except at possibly a finite number of points (called break points), and it
is required that 0 be of class C' on [a, b] except possibly at the break points.

The argument m specifies the number of break points of f. It is assumed that m < 20.
If m = 0 then the arguments XBREAK,KDIFF,DLEFT, and DRIGHT can be ignored.
Otherwise, if m > 1 then it is assumed that XBREAK,KDIFF,DLEFT, and DRIGHT are
arrays of dimension m or larger, and that

XBREAK(i) - the if' break point, call it ui,
KDIFF(i) = the smallest integer vi for which the di derivative of f does

not exist or is not continuous at ui,
DLEFT(i) = the value from the left of the d h derivative at u1, and
DRIGHT(i) = the value from the right of the d h derivative at us

for i = 1, ... , m. It is also assumed that a < ul < ... < u,,, < b and n > 2vi for each vs.
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F is the name of a user defined function that has the value F(x, D) = 1(x) for a < z < b. I
If e = 0 then D can be ignored. (However, D must still be given as an argument of F.)
Otherwise, if e > 1 then D is an array of dimension greater than or equal to e. For any x
not a break point in XBREAK, the user must set D(j) = the jt" derivative of f at x for I
j < e. However, if x = XBREAK(i) then the user need only set D(j) = the jth derivative
of f at x for j < KDIFF(i). The function F must be declared in the calling program to be
of type EXTERNAL.

The argument DX specifies the maximum distance to be permitted between the knots
.x, and the argument ANORM specifies the norm to be used. Set

ANORM = ±1.0 for L1 approximation.
ANORM = ±2.0 for L2 (least squares) approximation.
ANORM = 3.0 for Loo (minimax) approximation. I
ANORM = -p for Lp (O < p < oo) approximation.

Before considering the argument MO, one should be briefly acquainted with how
ADAPT operates. ADAPT employs the following procedure to construct 4.
(1) Set I = [a, b] and k = 1. Let a be the first knot of 4.
(2) If the interior of I contains no break points then go to (3). Otherwise, if I = [c, d] then I

partition I into the subintervals [c, u] and [u, d] where u is the smallest break point
greater than c. Stack the right subinterval [u, d] and reset I to [c, u].

(3) Construct a polynomial OI on I using Hermite interpolation. If the length of the interval
I is < DX and 41) satisfactorily approximates f on I, then go to (4). Otherwise go to
(5).

(4) Set k to be k + 1. Let qI be the (k - 1)at polynomial forming 4 and let the right end
point of I be the kth knot of 4. If the interval stack is empty then the procedure is
finished. Otherwise, obtain from the stack the next interval I to be considered and
return to (2).

(5) The polynomial OI cannot be used. Partition I into halves, stack the right subinterval
and reset I to be the left subinterval. Then go to (3).

The argument MO specifies the accuracy criterion that the approximation 0 is to satisfy U
on a subinterval I = [c, d] of [a, b]. It is assumed that MO = 0, 1, 2. If the L<, norm is used
then MO is ignored' and + is required to satisfy If(x) - O(x)I < e for c < x < d. Otherwise,
if the Lp (0 < p < oo) norm is used then 4 is required to satisfy:

~~d -:
fd -l )(x)zP dx < -e for MO =0 f

d
j If (x)- O(x) IP dx < EP for MO=2 2

The setting MO = 0, which is the most commonly used setting, requires the total error
lf - 0 1p < e. The alternate setting MO = 2 employs e to control local accuracy. If 4 I
consists of k - 1 polynomials then the total error I-I f II p < (k -1)iiPe. This setting can

'However, it is still required that MO = 0,1,2.
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be useful when f is rough. A (heuristic) compromise strategy is provided when MO = 1.
At each step in the formation of +, the MO = 1 strategy estimates the total number of
subintervals that will finally be needed and adjusts the error requirement for the subinterval
I accordingly. This strategy attempts to keep the total error to a minimum while relaxing
the local accuracy criterion demanded by the MO = 0 setting.

Remarks. IND, k, jA, n, e, MO, m, and KDIFF are integer arguments. All other arguments
(including F) are double precision arguments.

Error Return. ADAPT assigns IND one of the following values:

IND= 0 The approximation was successfully constructed.
IND = -1 Either a > b or one of the arguments e, n, e, ANORM, MO, m is

assigned an incorrect value.
IND = -2 [a, b] is too small an interval.
IND = -3 DX is less than (b - a)/ji. Since only au subintervals can be used

and each subinterval must be of length < DX, the interval [a,b]
cannot be covered. Make DX or ,u larger.

IND = -4 The restriction a < u * < < u, < b on the break points is
violated.

IND = -5 Either KDIFF(i) < 0 or KDIFF(i) > (n - 1)/2 for some i.
IND = 1 ADAPT selected p + 1 knots. More knots are needed to complete

the problem.
IND = 2 A subinterval I = [c, d] must be partitioned into subintervals [c, u]

and [u, d] where u is a break point. However, this cannot be done
either because the interval stack is full, or partitioning will produce
too small an interval. (The stack can hold only 50 subintervals).

IND = 3 A subinterval must be partitioned because its length is greater
than DX. However, this cannot be done since the interval stack is
full.

IND = 4 A subinterval must be partitioned so that the accuracy criterion
can be satisfied. However, this cannot be done either because the
stack is full, or partitioning will produce too small an interval.

If an input error is detected (i.e., if IND < 0) then no computation is performed. Otherwise,
if IND > 0 then when ADAPT terminates k = the number of knots generated, XKNOTS
contains the knots, C contains the coefficients of the polynomials generated, and ERROR
contains the error estimate for f - over the interval covered.

Remarks.

(1) If the Lo: norm is used then e controls absolute accuracy, not relative acuracy. This
should be kept in mind when e is to be set for any Lp norm.

(2) ADAPT requires more time when e > 2 than when t = 0 or 1. However, the choice of
the norm normally has little effect on the efficiency of the routine.

(3) ADAPT can yield excellent results even when the derivatives of f have singularities.
The one major exception is when the first derivative of f is not bounded. Then the
routine can be expected to fail.
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Example. The following code can be used for approximating f (x) = on the interval [0, 1]. I
DOUBLE PRECISION F, A, B, EPS, ERROR, ANORM, DX
DOUBLE PRECISION XKNOTS (11), 0(10,20)
INTEGER KDIFF(1)
DOUBLE PRECISION XBREAK(1),DLEFT(1),DRIGHT(1)
EXTERNAL F I
DATA MAX, A, B, DX/10, 0.DO, 1.DO, 1.DO/
N = 8 
L =1 I
EPS = 1.D-12
ANORM = 3.DO
CALL ADAPT(F ,AB ,EPS ,KERROR,XKNOTS,C,IND, 3

* MAX,N,L,ANORM,DX,O,O,XBREAK,KDIFF,DLEFT,DRIGHT)

Here F may be defined by:

DOUBLE PRECISION FUNCTION F(X,D)
DOUBLE PRECISION X,D(1) |
F = DEXP(X)
D(1) = F
RETURN
END I

In the ADAPT statement XBREAK, KDIFF, DLEFT, and DRIGHT are ignored since
m = 0.

Programming. ADAPT employs the subroutines ADAPT1, ADSET, ADTAKE, ADCOMP,
NEWTON, ADCHK, ADPUT, ADTRAN and functions ERRINT, POLYDD. These rou-
tines exchange information in labeled common blocks. The block names are INPUTZ,
RESULZ, KONTRL, and COMDIF. The routines were written by John R. Rice (Purdue
University) and modified by A. H. Morris. The function DPMPAR is also used.

References.

(1) Rice, J. R.,"Algorithm 525. ADAPT, Adaptive Smooth Curve Fitting," ACMTrans.
Math Software 4 (1978), pp. 82-94.

(2) ' "Adaptive Approximation," J. Approz. Theory 16 (1976), pp. 329-337.
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CALCULATION OF THE TAYLOR SERIES OF
- A COMPLEX ANALYTIC FUNCTION

Let f(z) = E a.(z - zo) 1 denote the Taylor series of an analytic function f around
n>O

a point z0. Then the subroutines CPSC and DCPSC are available for obtaining the coef-
ficients a,, of the series. CPSC obtains single precision results and DCPSC obtains double
precision results.

CALL CPSC(f, z0, n,IND,E, R, A,ERR)

It is assumed that f(z) is a user defined function whose arguments and values are
complex numbers. The argument f must be declared in the calling program to be of types
COMPLEX and EXTERNAL.

The argument zo is complex, n is an integer where 1 < n < 51, and A is a complex
array of dimension n or larger. IND may be any integer. If IND = 0 then aj is computed
and stored in A(j + 1) for j = 0,1, . . ., n - 1. Otherwise, if IND 0 0 then f(zo) and the
derivatives f'(zo), ... f(n-l)(zo) are computed and stored in A.

The argument e specifies the relative accuracy of f. If it is estimated that f produces
results accurate to k significant decimal digits then one may set c = 10-k. It is assumed
that e > 0. If e = 0 then the results of f are assumed to be correct to machine precision.

When CPSC is called, f (z) is evaluated on circles of various radii around the point
zo. R is a real variable. On input, R is the radius of the first circle on which f (z) is to beI evaluated. After using this radius, the radius is repeatedly modified (first by factors of 2
or 1/2) until a suitable final radius r0 is obtained for deriving the values of the coefficients
aj. This radius, whose value depends on E, is called the computational radius of the series

ai(z - zo)'. When the routine terminates, R is assigned the value r,.

ERR is a real array of dimension n or larger. On output, ERR(j) is the estimated
absolute error of A(j) for j = 1, . .. , n.

Usage. Given a radius R, f (z) is evaluated on k equidistant points on the circle of
radius R around zo where

* k= 8 whenl<n<6,
k = 16 when 7 < n < 12,
k = 32 when 13 < n < 25,
k = 64 when 26 < n < 51.

It is assumed that f (z) has at least one nonzero coefficient ai among the first k/2 coefficients,
and at least one nonzero coefficient among the next k/2 coefficients. Thus, the routine
should not be used to obtain coefficients of a low degree polynominal such as f (z) = 1 _ Z

2
.

In such cases, the results will normally be incorrect.
In general, the selection of the radius R of the first circle on which f (z) is evaluated is

not bothersome. A randomly selected value of moderate size, such as R = 6.2738, almost
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always suffices. No difficulties normally arise when the initial radius R is greater than the
radius of convergence of the series Eaj(z - zo). However, difficulties do arise when

(1) the routine attempts to evaluate f too close to (or exactly at) a singularity,
(2) f has a Taylor series expansion which contains one or more extremely large isolated

terms (e.g., f(z) = 10 + sinz),
(3) f has a branch point near z0, or
(4) The initial radius R is too far from the computational radius r, (see the error return

section below).

The risk of (1) occurring is minimized by the random selection of an initial radius R. For
(2) and (3), a severe loss of accuracy can occur when a large number of coefficients are I
requested. In these cases, any loss of accuracy is reported by the ERR array.

Error return. A(j) is assigned the value 0 and ERR(j) is set to 1010 for j = 1, ... , n when U
the initial radius R differs from r6 by a factor of 30000 or greater.

Programming. CPSC was written by Bengt Fornberg (California Institute of Technology) I
and modified by A.H. Morris. CPSC employs the function SPMPAR.

References. I
(1) Fornberg, B.,'Numerical Differentiation of Analytic Functions," ACM Trans. Math

Software 7, 1981, pp. 512-526.
(2) ,"Algorithm 579. CPSC: Complex Power Series Coefficients," ACM Trans.

Math Software 7, 1981, pp. 542-547.

CALL DCPSC(F. xo, yo, n,IND,E, R,AR,AI,ERR) U
F is the name of a user defined subroutine that has the format:

CALL F(x,y,u,v))
This subroutine is used for evaluating f(z) at point z. The arguments z and y are the
real and imaginary parts of z, and u and v are the real and imaginary parts of f(z). The
arguments x and y have double precision values, and u and v are double precision variables. I
F must be declared in the calling program to be of type EXTERNAL.

The arguments x0 and yo, which have double precision values, are the real and imagi-
nary parts of zo. The argument n is an integer where 1 < n < 51, and AR and AI are double
precision arrays of dimension n or larger. IND may be any integer. If IND = 0 then the
real and imaginary parts of aj are stored in AR(j+ 1) and AI(j+ 1) for j = 0, 1, . . ., n - 1. I
Otherwise, if IND : 0 then the real and imaginary parts of f(zo) and the derivatives
f'(zo), ... ,f(n-l)(zo) are stored in AR and AI respectively.

The argument e, which has double precision values, specifies the relative accuracy of
the subroutine F. If it is estimated that F produces results accurate to k decimal digits
then one may set-e = 10-k. It is assumed that e > 0. If e = 0 then the results of F are
assumed to be correct to machine precision.

When DCPSC is called, f(z) is evaluated on circles of various radii around the point
zo. R is a double precision variable. On input, R is the radius of the first circle on which
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f(z) is to be evaluated. After using this radius, the radius is repeatedly modified (first by
factors of 2 or 1/2) until a suitable final radius r, is obtained for deriving the values of the
coefficients a3 . This radius, whose value depends on E, is called the computational radius
of the series Ea3 (z - zO)3. When the routine terminates R is assigned the value rc.

ERR is a double precision array of dimension n or larger. On output, ERR(j) is the
estimated absolute error of the complex value stored in AR(j) and AI(j) for j = 1, .. ., n.

Usage. DCPSC is used in the same manner as CPSC. See the usage section for CPSC.

Error return. AR(j) and AI(j) are assigned the value 0 and ERR(j) is set to 1010 for
j = 1, .. ., n when the initial radius R differs from r. by a factor of 30000 or greater.

Programming. DCPSC is an adaptation by A.H. Morris of the subroutine CPSC, written
by Bengt Fornberg (California Institute of Technology). DCPSC employs the function
DPMPAR.

References.

(1) Fornberg, B.,"Numerical Differentiation of Analytic Functions," ACM Trans. Math
Software 7, 1981, pp. 512-526.

(2) , 'Algorithm 579. CPSC: Complex Power Series Coefficients,' ACM Trans.
Math Software 7, 1981, pp. 542-547.
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3 LINEAR INTERPOLATION

Let a be a real number and (xi, yi), .. . X (x,, Y,) a sequence of points. The following3 function performs a linear interpolation at point a.

TRP(a, n,X, Y)

| 0 It is assumed that n > 2 and x1 < .. < Xn. X and Y are arrays containing the
abscissas xi, ... ., x and ordinates Yi, . .. , y, respectively. TRP(a, n,X, Y) = b where b is
the value of the interpolation at a.

Programmer. A. H. Morris

I 
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LAGRANGE INTERPOLATION

Let {(xi,yi): i = 1, ... ,n} be a set of n > 2 points where x1 < *-- < Xn,m be an
integer where 2 < m < n, and zt . .. , be k > 1 points at which m point Lagrange
interpolation is to be performed. The subroutine LTRP is available for performing this
interpolation.

CALL LTRP(m, X, Y, n, XI,YI, k, T, IERR)

X is an array containing xz, .. . x Y an array containing yi, ... ,yn, XI an array
containing ti, .-. , k, and YI an array of dimension k or larger. When LTRP is called, if
no input errors are detected then interpolation is performed at each ti and the result stored
in YI(j) for j = 1, . . , k.

T is an array of dimension m or larger. The array is used as a temporary storage area
by the routine.

Error Return. IERR is a variable that is set by the routine. If no input errors are detected
then IERR is assigned the value 0. Otherwise, IERR is assigned one of the following values:

IERR = 1 if m < 2.
IERR = 2 if m > n.
IERR = 3 if k < 1.

When an error is detected LTRP immediately terminates.

Algorithm. If j = (zi + i+m)/2 for some i, then (xi, yi), . . ., (xi+m. -l Yi+m-1) are the m
data points used in the Lagrange interpolation at tj. Otherwise, the data points selected
for the interpolation are those m points (xi, yi) whose abscissas are closest to tj.

Linear Interpolation. For m = 2, if the abscissae Zi are not equally spaced then LTRP
can produce different results than the linear interpolating function TRP. If j lies in the
interval [zi,xi+i) then TRP always uses the data points (xi, yi) and (zi+,,yi+,) to find
the interpolated value at t,. However, the operation of LTRP is somewhat different. For
example, if the point tj in [xi,zi+i) is closer to xi-, than to zi+,, then (Zi-,yi-j) and
(Xi, Vs) will be the data points employed in the interpolation. Thus, TRP will normally be
the procedure that will be desired for linear interpolation.

Programming. Developed by A. H. Morris. The portion of the code for finding the subin-
terval containing tj was written by Rondall E. Jones (Sandia Laboratories).
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HERMITE INTERPOLATION

Let zx, ... , xk be k > 1 distinct points. For each xi assume that we are given nj > 1
values yiMy' . .. ,y'n;) . If n = n1 + * * * + nk, then there exists a unique polynomial of
degree n - 1 which satisfies

p(Xx) =Y
P/ (zX) =Y

Pni- 1(x) = ((xni)

for each i = 1, . . .k, . The subroutine HTRP is available for obtaining this polynomial.

CALL HTRP(n, X, Y, A, WKIERR)

X and Y are arrays of dimension n containing the following information: X(j) =
(ni -z1 for j = 1, ... ,n1 and Y(1), ... ,Y(n 1 ) contain the values yi ,yl, *-,y'y For

i = 2, ... ,k let mi = ni + *-- + ni-. Then X(mi + j) = xi for j =1,...,ni and
Y(mi + 1), .. ,Y(mi + ni) contain the values yiy, Y..

A is an array of dimension n and IERR an integer variable. When HTRP is called,
if no errors are detected then IERR is assigned the value 0 and the coefficients a6 of the

n-1
polynomial p(z) = ao + E a(x -X(1)) ... (x - X(j)) are computed and stored in A(j + 1)

j=1
for j=0,1, ... ,n-1.

WK is an array of dimension n or larger that is a work space for the routine.

Error Return. If an error is detected then IERR is assigned one of the following values:
IERR = 1 The argument n is not positive.
IERR = 2 There exists integers i and t for which X(i) = X(f) but X(i)Q 

X(j) for some j where i < j < I. In this case, the values i and e
are stored (in floating point form) in WK(1) and WK(2).

When an error is detected, the routine immediately terminates.

Example. If p(O) = 2, p(-1) = 1, and p'(-1) = 2 where x, = 0 and z2 = -1, then HTRP
stores 2, 1, -1 in A. Hence, p x) = 2 + x - x(x + 1) is the desired polynomial.

n-I
Remark. The Newton representation ao + E a6 (x - X(1)) ... (x - X(j)) of the polynomial

j=1 n-1
p(x) can be converted to the Taylor series representation Z c6(z - a)6 by the subroutine

6=o
PCOEFF.

Programmer. A. H. Morris
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CONVERSION OF REAL POLYNOMIALS FROM NEWTON
TO TAYLOR SERIES FORM

n-1
For n > 1 let p(z) = ao + E aj(x - x1 ) * (z - Zx). Then for any real number a,

j=i
the subroutine PCOEFF is available for converting the polynomial p(z) to the Taylor series

n-1
form E c,(z - a)j.

j=O

CALL PCO EFF(a, n, X, A, C, T)

X is a single precision real array containing x1, . . ., n- A a single precision real array
containing aoaa, . . ,an-1 where aj is stored in A(j + 1) for j = 0,1, . . .,n - 1, and C
a single precision real array of dimension n or larger. When PCOEFF is called then the
coefficients cj of the Taylor series representation are computed and stored in C(j + 1) for
j=Ol, ...,n-1.

T is a double precision array of dimension n or larger. The array is a work space for
the routine. (The conversion of the coefficients is done in double precision.)

Note. A and C may reference the same storage area, in which case the results c; will
overwrite the input data aj.

Programmer. A. H. Morris
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LEAST SQUARES POLYNOMIAL FIT

Let {(xi,Y,):i = 1, ... ,m} be a set of m > 2 points where xi 0 zx for i 5 j. Then
for any positive integer n where n < m, the subroutine PFIT is available for obtaining the
(unique) nth degree polynomial p(z) = E ajzx which minimizes E (p(zX)- y)2-

j=O~~~~~~=

CALL PFIT(n,m, X, Y. A, RNORM,PHI,WK,IERR)

X is an array containing zx, ..* xm Y an array containing yl, coma and A an
array of dimension n + 1 or larger. RNORM and IERR are variables. When PFIT is called,
if no input errors are detected then IERR is set to 0, the coefficients aj of p(x) are stored
in A(j + 1) for j = 0, 1, .. ., n, and RNORM is assigned the value / 2i(p(Zj) - yS)2 .

PHI is an array of dimension 2(n + 1) or larger, and WK is an array of dimension 4m
or larger. PHI and WK are work spaces for the routine.

Error Return. IERR = 1 if n < 1 or n > m.

Algorithm. The abscissas xi are first mapped into values in the interval [-1, 11. Then theI Forsythe procedure is used.

Programmer. A. H. Morris
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| WEIGHTED LEAST SQUARES POLYNOMIAL FIT

Let {(zi, yi): i = 1, ... , m} be a set of m > 2 points where xi $ zx for i 7 j, and
let wi > O(i = 1, .. ., m) be weights. It is assumed that m, > 2 where m, is the number
of nonzero weights. For any positive integer n where n < m,, the subroutine WPFIT is

available for finding the (unique) nth degree polynomial p(x) = E ajzx which minimizes
ilj=O

CALL WPFIT(n, m, X, Y, W, A, RNORM,PHI,WKIERR)

X is an array containing xi, x~, Y an array containing Yi, . . . , Yim W an array
containing wu, .. ., wm, and A an array of dimension n + 1 or larger. RNORM and IERR
are variables. When WPFIT is called, if no input errors are detected then IERR is set to
0, the coefficients aj of p(x) are computed and stored in A(j + 1) for j = 0, 1, ... ,n, and
RNORM is assigned the value Vijw 1(p(X1) - yi)2.

PHI is an array of dimension 2(n + 1) or larger, and WK is an array of dimension 4m
or larger. PHI and WK are work spaces for the routine.

I Error Return. IERR = 1 if n < 1 or n > m,, and IERR = 3 if some wui is negative.

Algorithm. The abscissas xi corresponding to the positive weights are first mapped into
values in the interval [-1, 1]. Then the Forsythe procedure is used.

U Programmer. A. H. Morris
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CUBIC SPLINE INTERPOLATION

Given xi < - < zx,. A function f(z) is a cubic spline having the nodes(knots)
xi) . )., n if f is a polynomial of degree < 3 on the interval [zx,zi+1 ] for i = 1, .. .,n - 1,
and the first and second derivatives f'(x) and f"(z) exist and are continuous for all z. If
fi denotes the polynomial for the interval [xi, zi+,] then fi has the form:

fi () = yi + ai(x - xi) + b,(x - xi)2 + ci(x -i)'.

Consequently, the function f is obtained by fitting the polynomials fl, ... , f,- together
at the points X2 , . . . -,1. For x < zI f(x) = fi(x), and for x > Zn f(x) = fn-(x) Also
f(xi) = yi for i = 1, .. ,n - 1. Hence, if f(xz) = yn then f interpolates the points (xi, yj)
for i=1, ...,n.

Assume now that the ordinates yi, ... X on are given. Then there exist an infinitude
of splines with nodes xi, ... xZn that interpolate the points (zi Yi). In general, two inde-
pendent conditions must be imposed to uniquely specify the interpolating spline f which is
of interest. Frequently, f is restricted on the first interval [X1,X2] by requiring that f'(x 1 )
or f"(zi) has a given value, or that f is continuous at Z2. Also, f is restricted on the
last interval [Zn -., xn] by requiring that f'(zx) or f"B(Xn) has a given value, or that f is
continuous at x.n-.. The subroutine CBSPL is available for obtaining the spline when these
restrictions are employed. Alternatively, f may be required to satisfy the conditions

f "(XI) = af"'(X2) + f lal <1
f"(X.) = af "(Zn-1) + I&I < 1

when n > 4. Then the subroutine SPLIFT is available for obtaining the spline.

CALL CBSPL(X,YA,BC,nili 2 ,wl,wu2 ,IERR)

X and Y are arrays containing the abscissas Zx, . .*,Xn and ordinates yl, ... , y, It is
assumed that x1 < * < zn and n > 3. A, B and C are arrays of dimension n or larger,
and IERR an integer variable. When CBSPL is called , if no input errors are detected then
IERR is set to 0. Also, the coefficients ai, bi, c, (i = 1, . . ., n- 1) of the interpolating spline
1(x) are stored in A,B,C, and A(n) is set to f'(xn).

The arguments il. i2 ,w1, w2 specify the conditions that the spline f (x) must satisfy. It
is assumed that il and i2 have the values 0,1,2 where:

il= 0 f is continuous at Z2 i2 =0 f is continuous at xn-1
il = 1 f'(xl) has the value w1. i2 = 1 f'(Zn) has the value Wn.
il = 2 f"(xj) has the value w1. i2 = 2 f "(xn) has the value wn.

If il = 0 then the argument w1 is ignored, and if i2 = 0 then w2 is ignored.

Error Return. IERR = 1 if n < 3 and IERR = 2 if zx > xi+1 for some i.
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Remarks.

(1) B(n) and C(n) are used for temporary storage.
(2) If il = i2 = 0 and n = 3, then it is also assumed that f'(X2 ) + f'(X3 ) = 2(3Y2
(3) After A, B and C have been obtained, then SCOMP or SCOMPi may be used to

evaluate the spline at any point z. SEVAL or SEVAL1 may be used if derivatives are
also desired.

Programming. CBSPL is an adaptation by A. H. Morris of the subroutine CUBSPL,
written by Carl de Boor (University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-Verlag, 1978.

CALL SPLIFT(X,Y, DY,DDY, n,W, IERR,MO,a,, &, a)

X and Y are arrays containing the abscissas x1, .. ., Zn and ordinates y, ... , Yn. It is
assumed that x1 < ... < xn and n > 4. DY and DDY are arrays of dimension n or larger,
and IERR an integer variable. When SPLIFT is called, if there are no input errors then
IERR is assigned the value 0, the first derivatives f'(zl), ... ,f(zn) are computed and
stored in DY(1), ... , DY(n), and the second derivaties f"`(xi), _., f"(xn) are computed
and stored in DDY(1), ... ,DDY(n).

W is an array of dimension 3n or larger that is used for a storage area. On the first call
to SPLIFT the argument MO must be set to 0. When SPLIFT is initially called, certain
calculations which depend only on the values of a, a, and x1, . . , Xn are performed and the
results stored in W. On subsequent calls to SPLIFT, if only values of /3,1 or y1i, * , *
are modified, then the information in W need not be recomputed. Set MO = 1 and the
information in W will be reused.

Error Return If there is an input error then IERR is set as follows:

IERR = 1 if lai > 1 or JaI > 1.
IERR = 2 if n < 4.
IERR = 3 if the restriction x1 < ... < Zn is not satisfied.

Remarks.
(1) After DY and DDY have been obtained, then SCOMP1 or SCOMP2 may be used to

evaluate the spline at any point X. SEVALl or SEVAL2 may be used if derivatives are
also desired.

(2) (iven the values y' and yn. Then there exists a unique interpolating cubic spline /
that satisfies f'(z 1 ) = y' and f'(x n) = Yn. This spline can be obtained by setting
a = a = -1/2 and

3 Y2 - Yi -3 Yn - Yn-1
3- = -Y] ~3= [_ xP2 - XI Jn (Sa n -Lon-1 on -in-1

Programmer. Rondall E. Jones (Sandia Laboratories).
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WEIGHTED LEAST SQUARES CUBIC SPLINE FITTING

Lett, < < tt be a sequence where e > 2, {(zX, yi): i = 1, ... ,m} be a set of m > 4
points where ti < xi < ... < xm < tt, and wt, ... ,uw, be positive weights. Then the
subroutine SPFIT is available for obtaining a cubic spline f(x) with the nodes t1, .. . ,

m
which minimizes E wi (f(xi) - yi)2* This spline is represented by

i=1

f (x) =zj + aj(x - tj) + bj(x: - tj)2 + cj(x - tj)3

for ti < x < t3 +l (j =1, . . . ,e-1). If the nodes are selected so that e < m-2 and
each interval (tj, tj+ 1 ) contains a data point x:, then this least squares approximation is
unique.

CALL SPFIT(X, Y, Wm, T, e, Z, A, B, C, WKIERR)

X is an array containing x, . .X , Y an array containing ya, . . . ,y,,m W an array
containing wl,...,wm, and T an array containing ti,...,t . ZA,B,C are arrays of
dimension e - 1 or larger, and IERR is an integer variable. When SPFIT is called, if no
input errors are detected the IERR is set to 0. Also, the coefficients z;, a3 , by, c3 of the least
squares approximating spline f (z) are computed and stored in ZA, B,C.

WK is an array of dimension 7t + 18 or larger that is a work space for the routine.

Error Return. IERR is set to one of the following values when an input error is detected.
IERR = 1 if e < 2.
IERR = 2 if t1 < *.. < tt is not satisfied.
IERR = 3 if m > 4 and t1 <•l x< ... < x- < tt are not satisfied.

If an error is detected, the routine immediately terminates.

Remark. After A, B, C, and Z have been obtained, them SCOMP may be used to evaluate
the spline at any point x. SEVAL may be used if derivatives are also desired.

Programming. SPFIT employs the subroutines BSPP, BSL2, BSPEV, BCHFAC, and
BCHSLV. SPFIT was written by A. H. Morris.
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CUBIC SPLINE EVALUATION

Given x1 < ... < x,. A function f(z) is a cubic spline having the nodes (knots)
Z1, . . ,Xn if f is a polynomial of degree < 3 on the interval [xi, xi+,] for i = 1, ... , n - 1,
and the first and second derivatives f'(z) and f"(x) exist and are continuous for all x. If
fi denotes the polynomial for the interval [xi, xi+,] then fi has the form:

fA(z) = Yi + ai(z - xi) + bi(z - xi)2 + cj(z - xi)'

Consequently, the function f is obtained by fitting the polynomials fi, .. ., fn-1 together
at the points Z2, .. Xn -1. For x < x1 f(z) = fi(z), and for x > z,, f(x) =- fn-(z).
Also f(xi) = yi for i = 1, ... , n - 1. Hence, if f(zn) = y, then f interpolates the points
(xi, yi) for i >. n.

A cubic spline f given by the polynomials fi, ... , is uniquely defined by any of
the following three sets of data:

(1) the points (xi, ys) and coefficients ai, bi, ci for i = 1, ... , n - 1
(2) the points (xi, yi) and first derivatives fz'(i) for i = 1, . . , n
(3) the points (xi, yi) and second derivatives f"(xi) for i = 1, . .. , n

The subroutines SCOMP, SCOMP1, SCOMP2 are available for computing the spline at
any point x. SCOMP is used if data set (1) is given, SCOMPI is used if data set (2) is
given, and SCOMP2 is used if data set (3) is given.

CALL SCOMP(X,YA,B,CN,XI,YI,m,IERR)

Let N = n - 1. Then N is the number of polynomials fi that form the spline, X and
Y are arrays containing the abscissas X1, ... , ZN and ordinates yl, ... , YN, and A, B, C
are arrays containing the coefficients ai, bi, ci (i = 1, . . . , N). It is assumed that N > 1 and
that zx < ... < ZN.

Let zi, .t. , ±m be the points at which the spline f is to be evaluated. XI is an array
containing xh, .* . , m YI an array of dimension m or larger, and IERR a variable. When
SCOMP is called, if m < 1 then IERR is set to 1 and the routine terminates. Otherwise, if
m > 1 then IERR is set to 0 and f(tj) is computed and stored in YI(j) for j = 1, . .. , m.

Note. SCOMP does not require f to be a spline. It is only required that fi(x) be a cubic
polynomial yi + ai(x - x) + bi(z _ x,)2 + ci(z - xi)3 and that

f(x) = fi(x) for z < zx

f(x) = fi(x) for zxi < x < i+1 (1 < i < N)

f (x) = fN (r) for Ž > ZN

In this case, SCOMP computes the value f (±y+) for j = 1, .. ., m.
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Programming. Adaptation by A. H. Morris of code written by Rondall E. Jones (Sandia H
Laboratories).

CALL SC0M P1(X, Y. DY, n, XI,YI, m, IERR) U
X, Y. DY are arrays containing the abscissas .. .z, 1 ordinates .1. yon and first

derivatives f'(x),i.. ., f'(xn) respectively. It is assumed that n > 2 and x1 < ... < Znx.

Let z , .. , m be the points at which the spline f is to be evaluated. XI is an array
containing zj, ..... tX YI an array of dimension m or larger, and IERR a variable. When |
SCOMP1 is called, if m < 1 then IERR is set to 1 and the routine terminates. Otherwise,
if m > 1 then IERR is set to 0 and f (yj) is computed and stored in YI(j) for j = 1, ... , m.

Programming. Adaptation by A. H. Morris of code written by Rondall E. Jones (Sandia
Laboratories).

CALL SCO M P2(X, Y. DDY, n, XI,YI, m, IERR)

X, Y, DDY are arrays containing the abscissas zI,.. .,x n, ordinates Yl,.. .,y, and
second derivatives f"(xj), . Xf"(xn) respectively. It is assumed that n > 2 and xi< - -< ,. 

Let zi, . zm be the points at which the spline f is to be evaluated. XI is an array
containing zi, .. . , xm, YI an array of dimension m or larger, and IERR a variable. When I
SCOMP2 is called, if m < 1 then IERR is set to 1 and the routine terminates. Otherwise,
if m > 1 then IERR is set to 0 and f(Z,) is computed and stored in YI(j) for j 1,...,m.

Programmer. Rondall E. Jones (Sandia Laboratories)
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CUBIC SPLINE EVALUATION AND DIFFERENTIATION

Given x1 < ... < Zxn. A function f(x) is a cubic splint having the nodes (knots)
i, . . ,x,, if f is a polynomial of degree < 3 on the interval [xi,zxi+, for i = 1, .. .,n - 1,

and the first and second derivatives f'(z) and f '(x) exist and are continuous for all z. If fi
denotes the polynomial for the interval [xeiz+,] then fi has the form:

fi(z) = yi + ai(z - xi) + bi(x - i) + cifz -i)

Consequently, the function f is obtained by fitting the polynomials fi, . . , fn-l together-
at the points z2, . .,zn- 1. For z < zx f(z) = fi(z), and for x > zn f(z) = fn,-(x). Also
f zi) = yj for i = 1, .. . ,n - 1. Hence, if f(z,) = ye then f interpolates the points (xj,yi)
fori=1,...,n.

A cubic spline f given by the polynomials fl, ... jn-I is uniquely defined by any of
the following three sets of data:

(1) the points (zx, yi) and coefficients ai, bi, ci for i = 1, . .. , - 1
(2) the points (xi, yi) and first derivatives f'(xi) for i = 1, .. . , n
(3) the points (xi, yi) and second derivatives f"'(zx) for i = 1, .. ., n

The subroutines SEVAL, SEVAL1, SEVAL2 are available for computing the spline and its
first and second derivatives at any point z. SEVAL is used if data set (1) is given, SEVAL1
is used if data set (2) is giveni, and SEVAL2 is used if data set (3) is given.

CALL SEVAL(X, Y. A, B, C, N, XI,YI,DYI,DDYI, m, IERR)

Let N = n - 1. Then N is the number of polynomials fi that form the spline, X and
Y are arrays containing the abscissas z1, . . ., ZN and ordinates Yi, . . ., YN, and A, B, C are
arrays containing the coefficients ai, bi, ci(i = 1, ... , N). It is assumed that N > 1 and that
Z1 < ... < ZN.

Let zi, ... ,. t, be the points at which the spline f and its first two derivatives are to
be evaluated. XI is an array containing i 1 , . ., im, YI, DYI, DDYI are arrays of dimension
m or larger, and IERR is a variable. When SEVAL is called, if m < 1 then IERR is set to
1 and the routine terminates. Otherwise, if m > 1 then IERR is set to 0 and the values
f(tj), f'(%), f"(') are computed and stored in YI(j), DYI(j), DDYI(j) for j= 1, ... ,M.

Note. SEVAL does not require f to be a spline. It is only required that fi(x) be a cubic
polynomial ys + ai(z - zx) + bi(z - zX)2 + ci(z - zi)- and that

f(z) =fi(z) for x < zl

f (x) =fi(x) for xi < x < xi+, (1 < i < N).
f(z) =fN(x) for z Z>N-

In this case, SEVAL computes the values f(iy+), f'(2y+), f"(z+) for i = 1, ... , m.
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Programming. Adaptation by A. H. Morris of code written by Rondall E. Jones (San-
dia Laboratories).

CALL SEVALI(X, Y DY, n, XI,YI,DYI,DDYI, m, IERR) I
X, Y, DY are arrays containing the abscissas x1, . n. , ZnX ordinates y, . .. , Yn, and first

derivatives f '(xj), * - f '(X) respectively. It is assumed that n > 2 and z1 < ... < Xn- 

Let ti, ... , Z be the points at which the spline f and its first two derivatives are to
be evaluated. XI is an array containing ... ... tn YI, DYI, DDYI are arrays of dimension
m or larger,and IERR is a variable. When SEVAL1 is called, if m < 1 then IERR is set
to 1 and the routine terminates. Otherwise, if m > 1 then IERR is set to 0 and the values
f (), f'(zj), f"(zj) are computed and stored in YI(j), DYI(j), DDYI(j) for j = 1, .. ., m.

Programming. Adaptation by A. H. Morris of code written by Rondall E. Jones (Sandia
Laboratories).

CALL SEVAL2(X, Y, DDY, n, XI,YI,DYI,DDYI, m, IERR)

X, Y, DDY are arrays containing the abscissas z1 ,... , x ,Z ordinates Y1, .Yn, and I
second derivatives f"(x 1 ),... , f"(xz) respectively. It is assumed that n > 2 and zx<.*. <xn-

Let ti, ... , m be the points at which the spline f and its first two derivatives are to
be evaluated. XI is an array containing t, ... , jm ,YI, DYI, DDYI are arrays of dimension
m or larger,and IERR is a variable. When SEVAL2 is called, if m < 1 then IERR is set
to 1 and the routine terminates. Otherwise, if m > 1 then IERR is set to 0 and the values I
f (Zj), fI(zj), fI/(zj) are computed and stored in YI(j), DYI(j), DDYI(j) for j = 1, * * m.

Programmer. Rondall E. Jones (Sandia Laboratories)
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INTEGRALS OF CUBIC SPLINES

Given x1 < ... < xn. A function f(x) is a cubic spline having the nodes (knots)
X*, . . ,)Xn if f is a polynomial of degree < 3 on the interval [zi, xi+,] for i = 1, .. . , n - 1,
and the first and second derivatives f'(x) and f "(z) exist and are continuous for all x. If fi
denotes the polynomial for the interval [xi, xi+,] then fi has the form:

fi(x) = yi + ai(z - xi) + bi(z - xi)2 + c,(X -_)3

Consequently, the function f is obtained by fitting the polynomials fl, . . , f,-i together
at the points x2, .. . ,Xn-1. For x < x1 f () = fi(x), and for z > x,, f(z) = fn-I(z). Also
f(xi)-= y for i = 1, . . . ,n - 1. Hence, if f(Xn) = yn then f interpolates the points (xi,yi)
for = 1, ...,n.

A cubic spline f given by the polynomials fl, . - fn-. is uniquely defined by any of
the following three sets of data:

(1) the points (xi,yj) and coefficients ai, ,ci for i= 1,...,n- 1
(2) the points (xi, yi) and first derivatives f'(xi) for i = 1, ... , n
(3) the points (xi, yi) and second derivatives f"(xi) for i = 1, . . . , n

For any real a and /3 the functions CSINT, CSINT1, CSINT2 are available for computing
the integral fp f(t) dt. CSINT is used if data set (1) is given, CSINT1 is used if data set
(2) is given, and CSINT2 is used if data set (3) is given.

CSINT(X,Y, A, BC, N, a,/)

Let N = n - 1. Then N is the number of polynomials fi that form the spline, X and
Y are arrays containing the abscissas zl, ... ,ZN and ordinates Y1, ... ,ySI, and A,B,C are
arrays containing the coefficients ai, bi, ci(it= 1,..., N). It is assumed that N> land that

< *...* < ZN. Then CSINT has the value J6 f (t) dt.

Programming. CSINT calls the function INTRVL. CSINT was written by A. H. Morris.

CSINT1(X,YDY, n,a, /)

X, Y, DY are arrays containing the abscissas xi, .. ..,x, ordinates yi, ... Yn, and first
derivatives f'(xi), *- f'Q(Xn) respectively. It is assumed that n > 2 and x <. < Zn-
Then CSINT1 (X, YDY, n, , ) = f f(t) dt.

Programming. CSINT1 calls the function INTRVL. CSINTi was written by A. H. Morris.

CSINT2(X, YDDY, n, a, /3)
X, Y, DDY are arrays containing the abscissas zx,.,, .onz ordinates Yi,. . ., Yn, and

second derivatives f"(zl),.. . , f"(Xn) respectively. It is assumed that n > 2 and x,<... *Xn
Then CSINT2(X,YDDY, n,a,/3) = faf(t)dt.

Programming. CSINT2 calls the function INTRVL. CSINT2 was written by A. H. Morris.
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N-DIMENSIONAL CUBIC SPLINE CLOSED CURVE FITTING

Given m > 2 points Zi = (xi, ... ZI) where n > 2. One procedure for fitting aI closed curve to the points is to first let sl = 0,si = Sii + IIi - Xi-rIII for i = 2, .. ., m, and
Sm+i = 8 m + liz1 - XmZI |

1 next let ti = si/sm+l for i = 1, .. ., m + 1, and then to find for
each j < n the periodic cubic spline -y7 (t) having the knots ti, .. . I t.+ where -yj(ti) = xij
for i < m. The mapping 7(t) = (71(t) .... <y,(t)) then defines on the interval [0,1] a closed
curve which traverses the points (ti, zX), ... (t, Xnm), (1, x1 ) and satisfies 'Y'(0) = -1"(l) and

(0= "(1). For t < 0 and t > 1, -(t) is defined by periodicity (having period 1). TheI subroutine CSLOOP is available for obtaining the derivatives 7%(ti) which characterize this
curve, the subroutine LOPCMP is available for computing the curve, and the subroutine
LOPDF is available for differentiating the curve.

I CALL CSLOOP(m,n,X, kz,T,DX,kdz,WK,IERR)

X is an m x n matrix whose ith row contains the point zi = (zxi, .. ., xz,), where m > 2
and n > 2. It is assumed that the points x1 , .. . I, x,, are indexed in the order that they are
to be traversed by the curve -y(t). It is also assumed that zi :A xi+I for i = 1, ... ,m - 1
and that Zm E x1.:

DX is a 2-dimensional array containing at least m rows and n columns. The arguments
kz and kdz have the following, values:

kz = the number of rows in the dimension statement for X in the calling program
kdz = the number of rows in the dimension statement for DX in the calling program

It is required that kz > m and kdx > m.

* IERR is a variable and T an array of dimension m or larger. When CSLOOP is called, if
no input errors are detected then IERR is assigned the value 0 and t1, . .. I, t, are computed
and stored in T. Also, the derivatives yt(ti) are computed and stored in DX, where the ithI~~~~~~~~~~~~~~~~~~~~~~~~
row of DX contains 7

1 (ti) = (4(t ), ... ' (ti)).

WK is an array of dimension 4(m -1) or larger that is a work space for the routine.

Error Return. IERR reports the following input errors:

IERR = 1 if m < 2 or n < 2
IERR = 2 if zi = zi+, for some i.
IERR = 3 if x1 = xm

* Remark. After T and DX are obtained, LOPCMP may be used to compute the curve and
LOPDF may be used to differentiate the curve.

I Programming. CSLOOP calls the subroutine CSLOP1 and function SNRM2. CSLOOP
and CSLOP1 were written by A. H. Morris.

* II ljzj = vw for any z = (z,.., Zm).
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CALL LOPCMP(m, n, T,X,kx,DX,kdx,t,TI,Z,kz)

T is an array containing the knots ti, . . ., tm, X an m x n matrix whose ith row contains
the point xi, and DX an m x n matrix whose ith row contains the derivative 7'(tj). The
arguments kx and kdx have the following values:

kx = the number of rows in the dimension statement for X in the calling program
kddz = the number of rows in the dimension statement for DX in the calling program

It is assumed that m > 2, n > 2, kX > m, and kdx > m.

Let tl, ... ,t be the points at which the curve -y is to be evaluated. TI is an array
containing ii, .. ., tI, and Z a 2-dimensional array containing at least e rows and n column$.
The argument kz is the row dimension for Z in the calling program. It is assumed that
e > 1 and kz > e. When LOPCMP is called, Cacti) = (yi (i), .. . n(i|)) is computed and
stored in the ith row of Z fori= 1, ... ,e.

Programmer. A. H. Morris

CALL LOPDF(mn,T,X, kz,DX,kdx,to,Z, DZ,DDZ)

T is an array containing the knots ti, ... ,tm, X an m x n matrix whose ith row
contains the point xi, DX an m x n martrix whose ith row contains the derivative -y'(ti).
The arguments kz and kdx have the following values:

kx = the number of rows in the dimension statement for X in the calling program
kdz = the number of rows in the dimension statement for DX in the calling program

It is assumed that m > 2, n > 2, kx > m, and kdx > m.

Z, DZ, and DDZ are arrays of dimension n. For any real to, Iy(to) = (bi(t0 ), ...* *, (to)),
-y'(to) = ( .(to) . . ,' (t )), and -y"(to) = (-y(to), . . . ,-y"(to)) are computed and stored
in Z, DZ, and DDZ respectively.

Programmer. A. H. Morris
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SPLINE UNDER TENSION INTERPOLATION

Given real o and x1 < *.. < xZn. A function f (x) is a spline having the tension factor
a and the nodes (knots) x1, .x , x, if f(x) and its first two derivatives are continuous on
[Zi,X,], and f"(z) - d

2 f(X) = ai + bi on the interval [x:i,xi+,] for i = 1, .n.. - 1.
Here a = 1cr (n - 1)/(zx - xi) and ai, bi are constants. For zx < z < zx+, f(z) can be
represented by

f (z) = A, sinh a(z - zx) + Bi sinh &(zi+, - x) - (aiz + b,)/C72

when o- 0 0, and by a cubic polynomial when oa = 0.

Assume now that n ordinates Yl, .. ,yn are given. Then there exist an infinitude of
splines f(x) having tension o- for which f(xi) = yi (i = 1, ... , n). However, if values y4
and yn are given then only one of these splines will satisfy f'(zl) = y' and f'(zn) = Yn-
For convenience, denote this spline by fa. If a = 0 then it is clear that fe, is the standard
cubic spline. Also it can be verified that when a c-+ o, f0 converges uniformly on [xi, zn]
to the piecewise linear function f(z) where f(x) = yi + m,(z - xi) for xi < I < xi+,
(i = 1, .. ., n - 1). Here mi = (yi+l- yi)/(zx+l - Zi). The following subroutine is available
for obtaining the spline f,.

CALL CU RVI (n, X, Y. SLP 1 ,SLPN,IND,DDY,TEMP, cr, IERR)

X and Y are arrays containing the abscissas zx, . n. , Zn and ordinates yi, .y.. , Y. It is
assumed that n > 2 and x < ... < x.

SLP1 and SLPN are assigned the values y' and yn. The user may omit values for
either or both of these arguments. IND specifies the information that is provided.

IND = 0 Values are supplied for SLP1 and SLPN.
IND = 1 A value is supplied for SLP1 but not for SLPN.
IND = 2 A value 'is supplied for SLPN but not for SLP1.
IND = 3 Values are not supplied for SLP1 and SLPN.

If a value is not supplied by the user, then the routine provides a value.

DDY is an array of dimension n or larger, and IERR is an integer variable. When
CURV1 is called, if no input errors are detected then IERR is assigned the value 0 and the
second derivatives f"'(XI), . . ., f/S(Xn) are computed and stored in DDY.

TEMP is an array of dimension n or larger that is used for a work space.

Error Return. IERR reports the following input errors:

IERR = 1 if n < 2.
IERR = 2 if x. < ... < Z, is not satisfied.

When either of these errors is detected, the routine immediately terminates.
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Remarks. I
(1) After DDY is obtained then CURV2 may be used to evaluate the spline at any point z.
(2) X, Y, n, SLP1, SLPN, IND, o- are not modified by CURV1.

Programming. CURV1 employs the subroutines CEEZ, TERMS, and SNHCSH. CURV1,
CEEZ, and TERMS were written by A. K. Cline and R. J. Renka (University of Texas at
Austin).

Reference. Cline, A. K.,"Scalar and Planar Valued Curve Fitting using Splines under
Tension," Comm. ACM 17 (1974), pp. 218-220.
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SPLINE UNDER TENSION EVALUATION

Given a and xi <*-* < xZ. A function f(x) is a spline having the tension factor
or and the nodes (knots) x , ... , x,, if f (x) and its first two derivatives are continuous on
[XI, XZ], and f "(x) - 6 2f(x) = aix + bi on the interval [xi, xj+i] for i = 1, . .. ,n -1. Here
f = II (n - 1)/(xz - xi) and aj, bi are constants. If f(x) = f1(x) for Zx<•x< x+1 then fi(x)

can be represented by

f (x) = Ai sinh:(x - xi) + Bisinh'a(xi+l - x) - (ai + bi)/la2

when oy40, and by a cubic polynomial when a = 0. For x < xi we let f(x) = fl(x), and for
x > xz, we let f(x) = fn-,(x).

Assume now that f(xi) = yi for i = 1, . ,n. Then for a fixed a, f(X) is uniquely
defined by the points (xi, yi) and the second derivatives f"(x 1 )(i = 1, ... ,n). When this
data is available, the following function may be used to compute the spline at any point t.

CURV2(t, n, X, Y, DDY, a)

X and Y are arrays containing the abscissas x1, . . . ,Xn and ordinates yl, .. . , yr, and
DDY is an array containing the second derivatives f"(X ), ... ., fl"(Xn)- It is assumed that
n>2 and x1 <.. < X. CURM2(tnX,YDDY, o) = f(t) for any real t.

Remark. After DDY has been obtained, CURV2 may be repeatedly called to evaluate
the curve at different points so long as the tension factor or remains fixed. However, if ar is
modified then the derivative information in DDY will have to be recomputed before CURV2
can be used with the new tension factor.

Programming. CURV2 employs the function INTRVL and subroutine SNHCSH. CURV2I . . ....... was written by A. K. Cline and R. J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

Reference. Cline, A. K., 'Scalar and Planar Valued Curve Fitting using Splines under
Tension," Comm. ACM 17 (1974), pp. 218-220.
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DIFFERENTIATION AND INTEGRATION OF SPLINES UNDER TENSION

Let f z) be a spline having the tension factor a and the nodes x1 , I. *, Z Assume that
f (zi) = Yi for i = 1, ... ,n. If the second derivatives f"(zl), ... x. , ') are known then
the following functions may be used for differentiating and integrating the spline.

CURVD(t,n, X,Y. DDY, a)

X and Y are arrays containing the abscissas z1, ... *, x, and ordinates y1, ... X Yn, and
DDY is an array containing the second derivatives f"(x 1 ), l . , f "(Xn). It is assumed that
n > 2 and x1 < ... < xn. For any real t, the derivative f(t) is computed and assigned to
be the value of CURVD(t, n, X, Y, DDY, a).

Programming. CURVD employs the function INTRVL and subroutine SNHCSH. CURVD
was written by A. K. Cline and R. J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

CURVI(a, b, n,X, Y.DDY, o)

X and Y are arrays containing the abscissas z1 , ***, Xn and ordinates Yi, *.*, Yn, andI DDY is an array containing the second derivatives f"(zi), . .. , f'"(zn). It is assumed that
n > 2 and zx < *.. < x,. CURVI(a, b, n,X,Y, DDY,a) = fb f(t)dt for any real a and b.

Note. It is not required that a < b.

Programming. CURVI employs the function INTRVL and subroutine SNHCSH. CURVI
was written by A. K. Cline and R. J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.
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TWO DIMENSIONAL SPLINE UNDER TENSION CURVE FITTING

Given a sequence of points (ZX, Yi), . . ,(znYn). One procedure for fitting a curve to
the points is to let si = 0 and si = si-I + I(Zt-Zxl)2 + (ys - y- )I for i = 2,..., n,
and then to find two splines x(s) and y(s) with tension a that satisfy z(s1) = xi and
y(s,) = ys for i = 1, .. ., n. If 01 and On are the desired angles for the curve s i-+ (x(s), y(s))
at the points (X1,Y1 ) and (xn,Yn), then the splines x(s) and y(s) can be selected so that
x'(s,) = cosGi and y'(s,) = sin@O for i = 1,n. The curve s '-* (z(s),y(s)) then passes
through the points (x,, yi) and has the required slopes at the end points. The subroutine
KURVI is available for obtaining the second derivatives z"(si), y"(si)(t = 1, .. . ,n) which
characterize this curve, and the subroutine KURV2 is available for computing the curve.

CALL KU RV1 (n, X, Y, SLP1 ,SLPN,IND ,DDX,DDY,TEMP, S, or, IERR)

X and Y are arrays containing the abscissas zx, ... , Zn, and ordinates yl, . .. , Yn. It is
assumed that n > 2 and that the points (Zi, yi) are indexed in the order that they are to be
traversed by the curve. It is also assumed that (xi,Y ) 7& (zi+ ,yi+,) for i = 1, . .*,n -1.

SLP 1 and SLPN are assigned the values 09 and On. These angles are measured counter-
clockwise (in radians) from the positive x-axis. The user may omit values for SLP1 and/or
SLPN. IND specifies the information that is provided.

IND = 0 Values are supplied for SLPI and SLPN.
IND = 1 A value is supplied for SLP1 but not for SLPN.
IND = 2 A value is supplied for SLPN but not for SLP1.
IND = 3 Values are not supplied for SLP1 and SLPN.

If a value is not supplied by the user, then the routine provides a value.

o- is the tension factor to be employed. If lal is small, say Jul < 10', then x(s) and
y(s) approximate cubic splines. Otherwise, if Jul is large, say lal > 100, then the resulting
curve approximates the polygonal line from (x1 , ll) to (Xn,,Y.n)-

IERR is an integer variable and S, DDX, DDY are arrays of dimension n or larger.
When KURV1 is called, if no input errors are detected then IERR is assigned the value
0 and the values sl, ... ,s,, are computed and stored in S. Also, the second derivatives
X" (s ) ... , z"(Sn) and y" (si), .. . , y"(sn) are computed and stored in DDX and DDY.

TEMP is an array of dimension n or larger that is used for a work space.

Error Return. IERR reports the following input errors:

IERR = 1 if n < 2.
IERR = 2 if (Zi,yt) = (xi+l,yt+l) for some i.

When either of these errors is detected, the routine immediately terminates.

Remark. After S, DDX, DDY are obtained, KURV2 may be used to compute the curve.

Programming. KURV1 employs the subroutines CEEZ, TERMS, and SNHCSH. KURV1,
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CEEZ, and TERMS were written by A. K. Cline and R. J. Renka (University of Texas at
Austin).

CALL KURV2(tXT,YT,n,X,YDDX,DDY,S,u) |

X and Y are arrays containing the abscissas zx, ... ,Zn and ordinates Yi ... I Yn S
is an array containing sl, ... ,s,.s, and DDX and DDY are arrays containing the second
derivatives z"(s1), ... , x"(s,) and y"(si), . . . ,Y"(Sn).

Now consider the change of variables t = s/sn, and let t F- (z(t), q(t)) denote the curve
in terms of the new parameter t. XT and YT are real variables. For any 0 < t < 1, KURV2
computes the point (z(t), q(t)) on the curve and assigns XT the value i(t) and YT the value
q(t)- :

Remark. After DDX and DDY have been obtained, KURV2 may be repeatedly called to
evaluate the curve at different points so long as the tension factor o remains fixed. However,
if a is modified then the derivative information in DDX and DDY will have to be recomputed I
before KURV2 can be used with the new tension factor.

Programming. KURV2 employs the function INTRVL and subroutine SNHCSH. KURV2 I
was written by A. K. Cline and R. J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

I: ~~~~~~~~~~I
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TWO DIMENSIONAL SPLINE UNDER TENSION
CLOSED CURVE FITTING

Given n > 2 points (xi, yX1), .. I (Zn, Yn). One procedure for fitting a closed curve to the
points is to let 81 = "/(zI - Xn)2 + (y1 - yn) 2 and as = si-I + V/(Zj - :z:j 1)2 + (yv - Yi-_)2 for
i = 2, ... , n, and then to find periodic splines x(s) and y(a) with tension o that pass through
the points (si, Xi), . (SnXZn), (a1 + Snn, xi) and (81a Y0)3 - - (8n, Yn), (81 + 8nXYW). The
mapping 8 '-* (z(s), y(s)) then defines a closed curve that passes through the points (zx, y.).
The subroutine KURVP1 is available for obtaining the second derivatives x`'(s,), y"(ai)(i =

1, . . ,n) which characterize this curve, and the subroutine KURVP2 is available for com-
puting the curve.

CALL KURVP1(n, X, Y. DDX,DDY,TEMP, S. a, IERR)

X and Y are arrays containing the abscissas zi, ***, Xn and ordinates V1 , ... ,y,. It is
assumed that n > 2 and that the points (xi, yi) are indexed in the order that they are to be
traversed by the curve. It is also assumed that (zi, yj) 0 (zx+i,y +l) fori = 1, . . .,n-1.

a is the tension factor to be employed. If la| is small, say ala < lo-', then x(a) and
y(s) approximate periodic cubic splines. Otherwise, if la| is large, say la| > 100, then the
curve approximates the closed polygonal path that traverses the points (z,, ye).

IERR is an integer variable and S, DDX, DDY are arrays of dimension n or larger.
When KURVP1 is called, if no input errors are detected then IERR is. assigned the value
0 and the values sl, ... , sn are computed and stored in S. Also, the second derivatives
z"(3), -.. ., X"(sa,) and y"(si), .. ., y"(s.) are computed and stored in DDX and DDY.

TEMP is an array of dimension 2n or larger that is used for a work space.

Error Return. IERR reports the following input errors:
IERR=1 if n<2.
IERR = 2 if (xi,,y) = (xi+,, y+ 1) for some i.

When either of these errors is detected, the routine immediately terminates.

Remark. After S. DDX, DDY are obtained, KURVP2 may be used to compute the curve.

Programming. KURVP1 employs the subroutines TERMS and SNHCSH. KURVP1 and
TERMS were written by A. K. Cline and R. J. Renka (University of Texas at Austin).

CALL KU RVP2(t, XT,YT, n, X, Y. DDX,DDY, S, a)

X and Y are arrays containing the abscissas zj, . .. ,x, and ordinates yl, ... ,sn, S
is an array containing sl ... ,sn, and DDX and DDY are arrays containing the second
derivatives z"(sa), ... ,X"(sn) and y`(sa), ... ,y`(sn).
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Now consider the change of variables t = (S - S1)/an, and let t '-+ (T(t),%(t)) denote
the curve in terms of the new parameter t. Then t '-. (Y(t),y(t)) maps 0 and 1 onto the
point (z1, Yi), and t -4 (Y(t),y(t)) is a periodic function (with period 1).

XT and YT are real variables. For any real t, KURVP2 computes the point (z(t),y(t))
on the curve and assigns XT the value Y(t) and YT the value F(t).

Remark. After DDX and DDY have been obtained, KURVP2 may be repeatedly called to
evaluate the curve at different points so long as the tension factor a remains fixed. However,
if a is modified then the derivative information in DDX and DDY will have to be recomputed I
before KURVP2 can be used with the new tension factor.

Programming. KURVP2 employs the function INTRVL and subroutine SNHCSH. KURVP2
was written by A. K. Cline and R. J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.
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THREE DIMENSIONAL SPLINE UNDER TENSION CURVE FITTING

Given n > 2 points (Xi,llY,z1), ... I(XnynZn). One procedure for fitting a curve to
the points is to let 81 = 0 and si = si-I + N/(zi - zi_,) 2 + (yi - yi_1)2 + (Zi - Z1- 1)2 for
i = 2, ... ,n, and then to find splines z(s),y(s),z(s) with tension o that satisfy z(si) -
Xi Y(8i)= i, and z(si) = zi for i= 1, ... ,n. If (x, y',z') and (',yn4,zn), are the desired
slopes for the curves 8-+ (x(s), y(s), z(S)) at the points (Zi, yi, zi) and (Xn, Yn, Zn), then the
splines z(s), (s), z(s) can be selected so that x'(si) = xZ, yt'(i) = Vi, and z'(si) = zi for
i = 1, n. The curve s 8-+ (Z(s), y(s), z(s)) then passes through the points (xi, yi, zi) and has
the required slopes at the end points. The subroutine QURV1 is available for obtaining the
second derivatives "(s1 ), y"(si),z"(s 1 ) (i = , ... ,n) which characterize this curve, and
the subroutine QURV2 is available for computing the curve.

* CALL QURV1(n, X, Y. Z, SLPIX,SLPlY,SLPlZ,SLPNX,SLPNY,
SLPNZ,IND,DDX,DDY,DDZ,TEMP, S, a, IERR)

X is an array containing zx, . .. IZn, Y an array containing y, ... ,yn, and Z an ar-
ray containing zj, . .. ,Z. It is assumed that n > 2 and that the points (zi,yi,zi) are
indexed in the order that they are to be traversed by the curve. It is also assumed that
*(x, yi, Zi)0(zi+1'yi+1'Zi+1) for i = 1,... ,n -1.

SLP1X, SLP1Y, SLPlZ and SLPNX, SLPNY, SLPNZ are assigned the values x4, y', z4
and zxy,Y4,zn. The user may omit values for SLP1X, SLP1Y, SLP1Z and/or SLPNX,
SLPNY, SLPNZ. The argument IND specifies the information that is provided.

IND = 0 Values are supplied for SLP1X,SLP1YSLP1Z and SLPNXSLPNY,I SLPNZ.
IND = 1 Values are supplied for SLP1X, SLPlY,SLP1Z but not for SLPNX,

SLPNY, SLPNZ.I IND = 2 Values are supplied for SLPNX,SLPNY,SLPNZ but not for SLP1X,
SLP1Y, SLP1Z.

IND = 3 No values are supplied for SLP1X, SLP1Y, SLP1Z and SLPNX,I SLPNY, SLPNZ.

If a value is not supplied by the user, then the routine provides a value.

a is the tension factor to be employed. If 101 is small, say 1j1 < 10-3, then x(s), y(s), z(s)
approximate cubic splines. Otherwise, if Iji is large, say jai > 100, then the resulting curve
approximates the polygonal line from (x, , y1,z1) to (Xn, Y.n,Z.)-

IERR is an integer variable and S, DDX, DDY, DDZ are arrays of dimension n or
larger. When QURVi is called, if no input errors are detected then IERR is assigned the
value 0 and the values sl, . . ., Is are computed and stored in S. Also, the second derivatives
*z"(SiY"(s,), z"(s,) (i = 1, ... ,n) are computed and stored in DDX, DDY, DDZ.

TEMP is an array of dimension n or larger that is used for a work space.
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Error Return. IERR reports the following input errors:
IERR = 1 if n < 2.
IERR = 2 if (xi,yjzj) = (zi+ 1,Y + 1,zi+) for some t.

When either of these errors is detected, the routine immediately terminates.

Remark. After S, DDX, DDY, DDZ are obtained, QURV2 may be used to compute the |
curve.

Programming. QURV1 employs the subroutines CEEZ, TERMS, and SNHCSH. QURVI, I
CEEZ, and TERMS were written by A. K. Cline and R. J. Renka (University of Texas at
Austin).

CALL QURV2(t,XT,YT,ZT,n,X,Y, Z,DDX,DDY,DDZ,S,)

X is an array containing xi, ... ,xz, Y an array containing yl, ... ,yn, and Z an array
containing z1 , .. *,zn. S is an array containing sl, .. . ,sn and DDX, DDY, DDZ are arrays
containing the second derivatives zl(Si), y"(sibzl(si) (i = 1, * * ,n).

Now consider the change of variables t = s/s, and let t ( z(t),y(t),z(t)) denote the
curve in terms of the new parameter t. XT, YT, ZT are real variables. For any 0 < t < 1,
QURV2 computes the point (z{t),y(t),z(t)) on the curve and assigns XT, YT, ZT the
values Y(t) I-9t) A~t) 

Remark. After DDX, DDY, DDZ have been obtained, QURV2 may be repeatedly called
to evaluate the curve at different points so long as the tension factor a remains fixed. I
However, if o is modified then the derivative information in DDX, DDY, DDZ will have to
be recomputed before QURV2 can be used with the new tension factor.

Programming. QURV2 employs the function INTRVL and subroutine SNHCSH. QURV2
was written by A. K. Cline and R. J. Renka (University of Texas at Austin).
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B-SPLINES

For k > 1 let f(t)=(tz)k-l when t > x and f(t)=O when t <z. Then for any sequenceI . •ti<.<ti+A where ti<ti+k, let Bik(x)=(tj+h-ti)f[tj,...,tj where f[t ..... ti+kl is the
kth order divided difference of f(t). The function Bik is called a B-spline of order k. For
k = 1 it follows that

| Bi~~~~~tz) = { ~~~~~1 if ti < z < ti+l* Bi(x)={'0 otherwise
More generally, for k > 2 Bik(x) = 0 when z 0 [ti,ti+4). For ti< X < 4+k

Bik(x) = ti+k - ) when t = **= +- and
(ti+k - ti/

BiA;(X) = (±+k; §±4) -i when tj41 ti =

Otherwise, if no point appears more than k - 1 times in the sequence {4t,.. . ,ti+k} then

Bi(X) = __- ti B_ k-l(X) + ti+k Z- Bi+lk-1(Z)-I~~~~~~~~~~~~~iA- - 4 ti+Ak - s1
From these relations it follows that Bik(x) > 0 when t4 < z < ti+k. Now let el < ... <
be the distinct points in {tj; ... ,tj+k}, where ej appears m1 times for j = 1, . .. ,r. Then
it can be verified that Bik is a polynomial of order < k (degree < k - 1) on each interval
[esj+Gi) (j = 1, . .., r - 1), and that BeA, is of class Ck-mi at Ci for j = 1, .. ., r.

We note in passing that if ti(i = 0,±1,±2, ... ) is a sequence where ti < ti+l and
t4 < ti+ for each i, then for any x E [ti,tj+±), Bik(X) $ 0 only when i = j - k + 1, . . . ,j.
Moreover, it can be verified that EiBik(x) = 1.

Now let el < < Ct+- be a sequence of points, which we shall call knots or
break points. If I > 2 then E2, .G. , & will be called the interior knots. For each in-
terior knot 4j let there be associated an integer mj > 1, called the multiplicity of the knot.
Then for any k > max {m2 , .. .,mt} let t < *< t+ (n = k + m2 + - * + me) be any
sequence where

I (1) tl < ... < tk = el,
(2) tk+l, ... , tn are the interior knots, where each interior knot ei appears exactly3 m5 times, and

(3) &t+l = tn+1 < •.. < t,+k-

3 Otherwise, if = 1 then for k > 1 let t• < •.. < tn+k (n = k) be any sequence where
ti• < *-- < tk =el and C2 = tn+ m < ... < tn+k. Then for t. > 1, we note that
Blk, . .. , Bnk are the only B-splines of order k which need not be 0 on the interval [t,,, t,+l).
Let Pk,[tk, .. . , tn+ 1] denote the collection of all piecewise polynomials p(x) defined on the
interval [t,, tn+i) where p(z) is a polynomial of order < k (degree < k - 1) on [4j, ei+i)
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for j = 1, ... , e, and p(z) is of class CI;mil1 at each interior knot tj where my < k. Then U
by the above remarks Blk, .. ,Bnk are in Pk[tk, ,t +i]. Also it can be verified that
Blk, ,Bk form a basis for the vector space Pk[tk, tn+i]. Thus any piecewise poly- 3
nomial p(z) in Pk[tk, . tn+,] can be represented uniquely in the form p(z) = E aBk(z)

for tk < z < tn+j. This representation is called a B-spline representation for p(x).
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PIECEWISE POLYNOMIAL INTERPOLATION

For n > k > I let tj < ... < tn+k be a sequence where ti < tj+k for i ... ,n.
Further assume that tk < tk+1 and tn < t 1+,, and consider a set of n points {(x, yi): i =
1, .. ,n} where tk • Xl < .. < Zn < tn+i. Then we wish to find a piecewise polynomialn
f = aiBi,2 defined on the interval [th, t.+i) which satisfies f (xi) = yi for i 1, ... , n. [If

in = tn+1, then by f (xn) = yn we mean f (x,-) = yn.] This problem has a unique solution
when xi < tk+1 , ti < Xi < ti+k for 1 < i < n, and Zn > tn. The following subroutine is
available for obtaining the coefficients al, ... , an of the interpolating piecewise polynomial.

CALL BSTRP(X,YT,n,k,A,WK,IFLAG)

X is an array containing zi, . . ., Xn, Y an array containing Y, .. . Yn and T an array
containing tj, ... ,tn+. A is an array of dimension n or larger, and IFLAG an integer
variable. On an initial call to the routine the user may assign IFLAG any nonzero value. In
this case, if no errors are detected then IFLAG is reset by the routine to 0 and the B-splineI coefficients a,, . . . ,an are computed and stored in A. The routine may be recalled with
IFLAG = 0 on input when only Y is modified. In this case, no error checking is performed
and IFLAG= 0 on output. Also the B-spline coefficients a1, . .. , an of the new interpolating
piecewise polynomial are computed and stored in A.

WK is an array of dimension (2k - 1)n or larger that is used for temporary storage
by the routine. When BSTRP terminates, WK contains information needed for subsequent
calls to the routine.

| Error Return. IFLAG is assigned the value 1 if a violation of any of the conditions

Z1 < ... < Zn

tk < Z1 < tk+ 1

ti < zi < ti+k for 1 < i < n
| ~~~~~~~~~~~~tn < X, <- tn+ 1:

is detected. When an error is detected, the routine immediately terminates.

Example. Given n > 4 data points (zi,y,), then for k = 4 one may set tj = ... = tA; = xi,
tk+i = Xi+2 for i = 1, ... ,n - k, and Zn = tn+1 = *- = tn+k. Then X3, * ...,z n-2 are
the interior knots for the interpolating piecewise polynomial f. Here we have' cubic splineI interpolation where the data points x2 and Zn-l are not knots for f.

Selection of tj < ... < tn+k given the data (xi,y5). It is recommended that one set
to *-- = tk and tn+1 = *-- = tn+k. For k > 2 it is frequently convenient to select
n-k points in Z2, ... X Zn-I to be the interior knots for f. (This was done in the above
example.) If k > 2 then an alternative approach, which often gives excellent results, is toI set tk+i = (Xi+l + * -+ Zi+k-)/(k-1) for i = 1, ..., n-k.
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Remark. After the B-spline representation Ei;aiBik is obtained, then the subroutine BSPP I
can be used to obtain the Taylor series representation. The Taylor series representation is
what is normally used for evaluating piecewise polynomials.

Programming. BSTRP calls the subroutines BSPEV, BANFAC, and BANSLV. BSTRP
is a modified version by A. H. Morris of the subroutine SPLINT. The routines SPLINT,
BANFAC, and BANSLV were written by Carl de Boor (University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-Verlag, 1978.
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CONVERSION OF PIECEWISE POLYNOMIALS FROMI B-SPLINE TO TAYLOR SERIES FORM

For n > k > 1 let t. < ... < tf +; be a sequence where ti < t+k for i =1,.,n.
I ~~~~~~~~~~~~~~~~n

Further assume that tk < tfl, and let f(x) = E ajBik(z) for tk • X < tn+l. If el < ... <
i= 1

are the distinct points in the sequence {tk, ... , tn+l} then the piecewise polynomial fI k
can be represented in the form f(x) = E ci(z - 6 )ix- for ej < z < j+- (j = 1, (,

i=1
The following subroutine is available for obtaining the coefficients cij of this representation.

CALL BSPP(T, A, n, k, BREAK, C, L, WK)

T is an array containing ti, ... ,tn+A and A an array containing a,, ... ,a,. BREAK
is an array of dimension f + 1 or larger, C a 2-dimensional array of dimension k x e, and
L a variable. When BSPP is called then L is assigned the value f (which is computed by
the routine), the break points Ci < *** < Ci+l are found and stored in BREAK, and the
t coefficients cij are computed and stored in C. The j'h column of the matrix C then contains
the coefficients of the jth polynomial forming f (j = I, .. ., )

WK is an array of dimension k(k + 1) or larger that is used for work space by the
routine.

1 Remarks.

(1) Since e < n - k + 1, BREAK may be declared to be of dimension n - k + 2 and C to
be of dimension k x (n - k + 1).I (2) After C is obtained, then PPVAL may be used to evaluate f at any point x.

Programming. BSPP is a reformulation by A. H. Morris of the subroutine BSPLPP, writtenI by Carl de Boor (University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-Verlag, 1978.

I

| ~~~~~~~~~~~~~425

I



PIECEWISE POLYNOMIAL EVALUATION

k
Given z1 < ... < xt±.+. If f is a piecewise polynomial where f(z) = Z c( _j)z i 

for zj < z < z 4+4 (I 1, ... ,£), then the following subroutine is available for computing
f at any point z.

CALL PPVAL(X, C, k, e, XI,YI, m)

X is an array containing the knots zx, . .. ,xz and C a k x I matrix containing the
coefficients cij. It is assumed that k > 1 and t > 1. Let Y1, . .i. , m be the points at which
f is to be evaluated. XI is an array containing , .. , Xm and YI an array of dimension m
or larger. When PPVAL is called, f(Yj) is computed and stored in YI(j) for j = 1, ... ,m.

Remarks.

(1) X need not contain the knot xt+1.
(2) It is not required that f be continuous at an interior knot zi. If zi appears in XI then

f (xi+) is computed.
(3) It is not required that the output points Xj in XI be in the interval [zi, zt+ 1). If -z < 1

then Sicil(z - xi)i'- is evaluated at Yj. Otherwise, if -Z > zt+ then SF ci(z-zx)- '
is evaluated at Y,.

Programming. PPVAL is an adaptation by A. H. Morris of code written by Rondall E. Jones
(Sandia Laboratories).
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WEIGHTED LEAST SQUARES PIECEWISE POLYNOMIAL FITTING

For n > k > 1 let tj < ... < tn~k be a sequence where ti < ti+k; for i = 1, . . .,n.
Further assume that tk < tk+1 and tn < tn+,, and consider a set of points {(zi, yi): i =
1, ... ,m} where tk < •I < •.. < xm < tn+i. Let wi > O (i = 1, ... ,m) be weights. Then

n
the subroutine BSL2 is available for finding a piecewise polynomial f = EaiBk defined

mn i=1
on the interval [tk, tn+1) which minimizes E Wi (f (zxi) -y,

i= 1

CALL BSL2(T, n, k, X, Y, WGT,m, A, WK, Q, IERR)

T is an array containing t1 , . .. ,tn+k X an array containing x1 , .x. .m, Y an array
containing Yi, .. . , ym, and WGT an array containing tw1 , . .. , wm. A is an array of dimension
n or larger, and IERR an integer variable. When BSL2 is called, if no input errors are
detected then IERR is set to 0 and the B-spline coefficients a1 , . . ., an of the least squares
approximation f are computed and stored in A.

WK is an array of dimension ni or larger, and Q an array of dimension kn or larger.
WK and Q are work spaces for the routine.

Error Return. IERR is assigned the value 1 if any of the conditions

n > k > 1
tn < tn,+

tk < Z1 < ... < Z-m. < tn+1

is violated. When an error is detected, the routine immediately terminates.

Selection of t1 < •.. < tn+k given the data (ziyi). It is recommended that the knots t,
be selected so that there are data points zxi < *-- < zxi satisfying

tk < Xi, < tk+1
tv < Zi, < tv+k for u = 2, .., n.

If these conditions are satisfied then the least squares approximation is unique.

Remark. After the B-spline representation YiaiBik of the least squares approximation is
obtained, then the subroutine BSPP can be used to obtain the Taylor series representation.
The Taylor series representation is normally used for evaluating piecewise polynomials.

Programming. BSL2 calls the subroutines BSPEV, BCHFAC, and BCHSLV. BSL2 is a
modified version by A. H. Morris of the subroutine L2APPR. L2APPR, BCHFAC, and
BCHSLV were written by Carl de Boor (University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-Verlag, 1978.

'If xi = t,+l then by f(xi) we mean f(zx-).
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BI-SPLINES UNDER TENSION

Given a tension factor a and a set X = {zi, . ... zm} where zx < < Zm. Let S, (X)
denote the collection of splines having tension o- and the knots x1 , , zIxm. Then S, (X)
is a vector space. Also each spline f(x) in S,(X) is uniquely characterized by the values
f(xi), .. . ,f(zm) and the slopes f'(x1) and f'(zm). Let Ob(z) (i = 1, .,m) denote the
spline in S,(X) satisfying

,iZ) = 1(:
lki(xk) =O for k i

tfiZ)= i/!(Zm) =0°
and let 4'm+l, 'Pm +2 be the splines satisfying

0bm+l(Xi) = 0 m+2(Zi) = O (i = 1...m)
0m+i(Zl)= 1 Om+2(xi)= 0
4'f+i(Zm) =0 OM+2(Xm) = 1.

Then {1,41, ... ,m+21} is a basis for Se(X) and f= f(i)i+ f'(Xl)+m+l + f'(Xm)m+2
i=l

for each spline f (x) in SO,(X).

Let Y = {y1 *, Yn} where yj < ... < y,, and let 01 I I, n+2 } be the corresponding
basis for Se,(Y). Then we note that there exists an unique surface

m+2 n+2
F(X, y) = j

i=l j=l

in the tensor product space S, (X) ® S, (Y) which satisfies the conditions

F (xi, yi) = (xi,y) i=1, ...,m j = 1, ... ,n
D2F(xiy 1 ) = D2f(xi 1,Y) {

(,I~) D2F(xiyn)=D 2f(zXiy) J
DiF(x1,yj) = DIf(zi,yj) j
DiF(mxM'yj) =Djfza; 
DjD2F(zk,yt) = DlD2f(XAkyY) k=l,m e=1,n

for given data f(xi,yj), D2f(Xi,yl), ,DlD2f(xrkyt).' Such a surface is called a bi-
spline with tension a. It is easily checked that the bi-spline F(z, y) has the following
properties:
(1) F(z,y) is a C2 mapping on [ZiXm] X[YlYn
(2) The partial derivatives D 2D2F(x, y) and D2 Di F(z, y) exist and are continuous, and

D2D2F(z, y) = D2D 2F(z, y).
(3) For each fixed y the mapping z -F(z,y) is a spline in S,(X), and for each fixed x

the mapping y '-f F(X, y) is a spline in S,(Y).

'DIF and D2F denote the partial derivatives of F.
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For a given tension factor a, let F, denote the unique bi-spline in So(X) ® S,(Y) I
which satisfies conditions (*). If a = 0 then Fo is the standard bicubic spline. Also it can
be verified that when r -- oo, F, converges uniformly on [xi, zM] x [Y1, Yn] to the piecewise
bilinear function t(z, y) where

t(x, Y)f (x~i)) +1X Yj + f (ZxYj+l) + -Y - Y|

+ f(Z 1x'y,) h Ic, + f(Xi+,Y 3.+i) h X Y - Yi

for zi < z < xi+1 and yj • y < Y!<j+-. Here hi = zi+1 - zi and kj =yj+ - yj

:432: |
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|BI-SPLINE UNDER TENSION SURFACE INTERPOLATION

Given z1 < ... < xZ. and y. < ... < yn. Also assume that we are given the values
zij (i = 1) . .. I m; j = 1, . . . , n) and a tension factor a. Then the subroutine SURF is
available for finding a bi-spline F(x, y) with tension of that satisfies F(zx, yi) = zij for each
i, j. Boundary conditions can be imposed on the surface F(x, y) if desired.

CALL SU RF(m, n, X, Y, Z, kz, OPT,DDZ,WK, er, IERR)

X is an array containing xj, .. n.,x,,aY an array containing y1 , .. .,Y, and Z the m x n
matrix (zij). The argument kz is the number of rows in the dimension statement for Z in
the calling program. It is assumed that m > 2, n > 2, and kz > m.

OPT is an array, called the option vector, which permits the user to specify anyI boundary conditions that are to be imposed on the surface. If no boundary conditions
are to be specified then OPT may be declared to be of dimension 1 and OPT(1) must be
assigned the value 0. The details concerning the specification of boundary conditions in
OPT are given below.

DDZ is a 3-dimensional array of dimension m x n x 3 and IERR is a variable. When
SURF is called, if no input errors are detected then IERR is assigned the value 0 and the
partial derivatives D'F (,yi),D'F(xi, y), D D'F(xi,yj) (i = 1, ... ,m;j = 1, ... ,n)

- are computed and stored in DDZ. DDZ(i,j,1) = D2F(xi,yj), DDZ(ij,2) = D2F(xiyj)
and DDZ(ij,3) = D2D2F(xi,y3) for each i,,j.

WK is an array of dimension m + 2n or larger that is used for a work space.

Error Return. IERR reports the following input errors:

IERR=1 ifm<2orn<2.
IERR = 2 if x1 < ... < xm or Vl <. < y is not satisfied.
IERR = 3 if OPT contains an error.

When an error is detected, the routine imnmediately terminates.

Remark. After DDZ is obtained then SURF2 and NSURF2 may be used to evaluate the
bi-spline F(x, y).

The option vector OPT. If no boundary conditions are to be imposed then OPT may be
declared to be of dimension 1 and OPT(1) must have the value 0. Otherwise, OPT is an
array containing the information key1 , data,, key2, data 2 , ... , key,, data., 0. The last
entry in OPT is the value 0. Each group of data key,, dataj (i = 1, ... , s) is called an
option. Each key, is an integer and datai is a list of partial derivative values that the
surface F(z, y) is required to satisfy. The following options are available:

key = 1 The values DF(xl,yj) (j = 1, .. .,n) must be satisfied.
key = 2 The values DIF(zm, yj) (j = 1, .. . ,n) must be satisfied.
key = 3 The values D2 F(xi, y1) (i =1,..., m) must be satisfied.
key = 4 The values D2 F(xi, y,,) (i = 1, ... , m) must be satisfied.
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key = 5 The value DID 2F(z 1 ,y1 ) must be satisfied.
key = 6 The value D1D2 F(m,, YI) must be satisfied.
key = 7 The value DlD 2 F(xi y,) must be satisfied.
key = 8 The value DID 2 F(rmn, Yn) must be satisfied.

The order of the options in OPT is arbitrary. If an unrecognized key is used then the error
indicator IERR is assigned the value 3 and the routine terminates.

Example. Assume that we have an array DY1 containing values D2 F(zi, yi) (i = 1, . . ., m)
which are to be satisfied, and that we also want DlD2 F(xm,,y) = -1.3 to be satisfied.
Then OPT must be of dimension > m + 4 and OPT can be defined as follows:

OPT(1) = 3.0 (First option)
DO 10 I= 1,M

10 OPT (I + 1) = DY1(I)
OPT (M + 2) = 8.0 (Second option)
OPT (M + 3) = -1.3
OPT (M + 4) = 0.0 (Terminates the option vector)

Background. The evaluation of D2 F(xi, yj), D2 F(zi, yj), and D2 D2 F(zi, yj) reduce to the
evaluation of second derivatives of splines. Specifically, for each i < m D2F(X,,y) ....

D2F(zi, n) are the second derivatives that characterize the spline y '-4 F(xi,y), and for
each j < n D2F(X, yj), ... , D2F(X,.,yj) are the second derivatives that characterize the
spline z 4 F(z,yj). Also D1 D2F(z 1 ,yj) and D1 D2F(x,,,,yj) (j = 1, . . .,n) are the second
derivatives that characterize the splines y i-* DTF(zi,y) and y 1+ DiF(xmy). For each
j < m, after one obtains the values D2F(ziy,) through which the spline z A-d D2F(zyi)
will pass and the end slopes DID2F(zl, yi) and DiD'F(xm,yi) which this spline must have,
then the second derivatives that characterize this spline can be computed. D2D2F(Ti, yj),
... D2 D2 F(xm, yj) are the second derivatives that characterize z F-+ D2 F(x, Yj)

Programming. SURF employs the subroutines CEEZ, TERMS, and SNHCSH. SURF was
written by A. K. Cline and R. J. Renka (University of Texas at Austin), and modified by
A. H. Morris.
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BI-SPLINE UNDER TENSION EVALUATION

Given < *...* < x, and y < ...* < yn, and let F(z, y) be a bi-spline with tension a. If
the partial derivatives D F(i,yi),D2F(xi,yi),D2D2F( yj)are known for i = 1, .. .,m

and j = 1, ... ,n, then the function SURF2 may be used for evaluating F(z, y) at a single
point, and the subroutine NSURF2 may be used for evaluating F(z, y) on a grid of points.

SURF2(s, t, m, n, X, Y, Z, kz, DDZ, a)

X is an array containing x, .. .. ,,, Y an array containing y1, '..,y,n, and Z an
m x n matrix containing the values F (xi, yj). The argument kz is the number of rows in
the dimension statement for Z in the calling program. It is assumed that m > 2, n > 2,
and kz > m.

DDZ is a 3-dimensional array of dimension m x n x 3 containing the partial derivatives
where

DDZ(i,j, 1) = D2F(xi, yj)
DDZ(i,j, 2) = D2F(xi, yi)
DDZ(i, j, 3) = D 2D2F(xi, y;)

for each i,j. SURF2(s,t,m,n,X,Y,Z,kz,DDDZ,a) = F(s,t) for any point (s,t).

Remark. After DDZ has been obtained, SURF2 may be repeatedly called to evaluate the
surface at different points so long as the tension factor a remains fixed. However, if ar is
modified then the derivative information in DDZ will have to be recomputed before SURF2
can be used with the new tension factor.

Programming. SURF2 employs the function INTRVL and subroutine SNHCSH. SURF2
was written by A. K. Cline and R. J. Renka (University of Texas at Austin).

CALL NSURF2(smin, Smax. m8,tmintmaxntW. kw, m, n,
X, Y, Z, kz, DDZ,WORK, a)

The arguments smin and smax are the lower and upper limits of the x-coordinates of
the grid on which F(x, y) is to be evaluated, and the arguments tmin and tmax are the lower
and upper limits of the y-coordinates. The purpose of the routine is to evaluate the surface
at the points (si, tj) where

Si = smin + 1) m - min
M"- 1

tj = tmin + (j1) max tmin
nt - 1

for i =1,..., mand j = 1, ... ,nt. It is assumed that m. > 1 and nt > 1.

W is a 2-dimensional array of dimension kw x nt where kw > m8 . When NSURF2 is
called W(ij) is assigned the value F(si, tj) for i = 1, .. . ,m, and j = 1, .. .,nt.
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The arguments m, n, X, Y, Z, kz, DDZ, o are the same as in SURF2. WORK is an array
of dimension 4m, or larger that is used for a work space.

Programming. NSURF2 employs the subroutine SNHCSH. NSURF2 was written by
A. K. Cline (University of Texas at Austin).
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SURFACE INTERPOLATION FOR ARBITRARILY POSITIONED
DATA POINTS

Let {(xi, yi, zi) : i = 1, ... ,n} be a set of 4 or more points which are not collinear. If
(xi, yj) : (z5 , yj) for i i j then the problem is to find a smooth mapping z = F(fy ) for
which zi = F(zx, ,yi) for i = 1, . .. , n. The desired degree of smoothness might vary, but it
is almost always required that F(x, y) be at least continuously differentiable.

A procedure for constructing a smooth mapping F(z, y) generally contains the following
components:

(1) An algorithm for forming a triangular grid for the convex hull of {(zx, y) : i =

1, . .. , n}. The data points (xi, yi) are the vertices of the triangular cells of the grid.
(2) A procedure for estimating the first (and possibly higher order) partial derivatives

of F(z,y) at the data points (zxi, ). There is currently no known best method for
performing this task. At a point (zeyi), it is agreed that the derivative estimation
should depend not only on zi, but also on zj for neighboring points (z5 , y). However,
the number of neighboring points that should be used in the derivative estimation is
normally unclear.

(3) For any point (x, y) in the grid, a routine for finding the triangular cell which contains
the point. If extrapolation is to be permitted, then the region outside of the grid must
be partitioned and a routine provided for locating any point which lies outside the grid.

(4) A smooth interpolating algorithm for evaluating F(x, y) on each triangular cell of the
grid. If extrapolation is to be permitted, then an algorithm must also be provided to
compute F(x, y) on each cell of the partitioned region outside of the grid.

Generally, the derivative estimation appears to be the most ad hoc portion of most smooth
interpolating procedures. This quite probably is unavoidable at the present time. However,
it is unfortunate since the manner in which the derivative estimation is performed can
significantly affect the results obtained from any interpolating procedure.

The subroutines BVIP and BVIP2 are available for obtaining a continuously differ-
entiable surface z = F(x, y) for which Zi = F(ze, yi) for i = 1 ... n,. Extrapolation is
allowed, and the user is permitted to specify (via the argument n.t) the number of neighbor-
ing points to be used for derivative estimation. BVIP is used if F(x, y) is to be evaluated
on an arbitrary collection of output points, whereas BVIP2 is applicable only if F(f, y) is
to be evaluated on a rectangular grid of output points. If BVIP is employed to evaluate
F(z,y) on a rectangular grid, then BVIP will produce the same results as BVIP2 but it
will be less efficient.

CALL BVIP(MO, n0 , n, X, Y. Zm, XI,YI,ZI,IWK,WK,IERR)

X is an array containing z1, . . . ),z, Y an array containing yt, . .. , yn, and Z an array
containing zj, . .. , ze. The input argument ni is the number of neighboring points to be
used for derivative estimation. It is assumed that 2 < n0 < n and n0 < 25. Currently
no theory is available for indicating how ni should be set. The only comment that can be
made is that setting n0 to 3,4, or 5 normally produces satisfactory results.
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It is assumed that F(x,y) is to be evaluated at the points (tiyl), .. (tmYM). XI
is an array containing z Zt m, YI an array containing Y1, .-. ,X and ZI an array of
dimension m or larger. When BVIP is called, if no input errors are detected then F(t ,yi)
is computed and stored in ZI(i) for i = 1, .. . M.

One may wish to recall BVIP a number of times to compute F(X, y) for different sets
of points. If recalls are needed then a portion of the information that is generated on the I
first call to BVIP can frequently be reused. The reuse of information is controlled by the
input argument MO. MO must have the value 1 on the first call to BVIP. For subsequent
calls MO may be-assigned the following values: I

MO = 1 This setting must be employed when any of the data n., n, X, Y
is modified. In this case, none of the previously generated infor-
mation can be reused. I

MO = 2 This setting may be used when n,, n,X, Y are not modified.
MO = 3 This setting is permissible when only Z is modified.

If MO + 1 then the contents of IWK and WK must not be altered.

IWK is an array of dimension kn + m or larger where k = max{31, 27+ n.}, and WK
is an array of dimension 8n or larger. IWK and WK are storage areas for the routine.

Error Return. IERR is an integer variable. If no errors are detected then IERR is set to 0.
Otherwise, IERR is assigned one of the following values: 1

IERR = I MO is not 1, 2, or 3.
IERR = 2 Either 2 < n, < n or n, < 25 is violated.
IERR 3 n <4 4
IERR =4 m < 1
IERR = 5 Either n, or n has been modified. This cannot occur if MO 7 1.
IERR 6 The argument m has been modified. This cannot occur if MO= 3.
IERR = 7 Points (zi, ) and (xj, yj) are equal or too close where IWK(1) =

i and IWK(2) j.
IERR = 8 The points (xi, yi, zi) (i = ... , n) are collinear or almost collinear.

When an error is detected, the routine immediately terminates.

Remarks.

(1) The procedure is invariant under a rotation of the x-y coordinate system.
(2) The results are exact when F(x, y) represents a plane. I
(3) Derivative estimation at a data point depends on points closest to the data point. Thus

the procedure is dependent on the scaling of the abscissae xi and ordinates yi of the
data points. I

Programming. BVIP employs the subroutines IDTANG, IDCLDP, IDLCTN, IDPDRV,
IDPTIP and the function IDXCHG. The routines save and exchange information in labeled
common blocks. The block names are IDLC and IDPI. The routines were written by
Hiroshi Akima (Institute for Telecommunication Sciences, Boulder, Colorado). IDPTIP was
modified by Albrecht Preusser (Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin).
The error handling was modified by A. H. Morris.
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CALL BVIP2(MO, no, tX, Y, Z, I,m, XI,YI,ZI,IWK,WK,IERR)

Xis an array containing z1 , . .. ,X,, Y an array containing yi, .. .,yn, and Z an array
containing z1, ... , z,. The input argument n0 is the number of neighboring points to be
used for derivative estimation. It is assumed that 2 < n, < n and n, < 25. Currently
no theory is available for indicating how n0 should be set. The only comment that can be
made is that setting n0 to 3, 4, or 5 normally produces satisfactory results.

It is assumed that F(x,y) is to be evaluated at (t,,yj) for i = 1,...,t and j =
1, ... , m. XI is an array containing z1, ... ,e, YI an array containing Y1, ... ,,,, and ZI
a 2-dimensional array of dimension A x m. When BVIP2 is called, if no input errors are
detected then F(ti, yj) is computed and stored in ZI(i, j) for i = 1, ... ., and j = 1, . . ,m.

One may wish to recall BVIP2 a number of times for different grids (4i, Vj). If results
are needed then a portion of the information that is generated on the first call to BVIP2
can frequently be reused. The reuse of information is controlled by the input argument
MO. MO must have the value 1 on the first call to BVIP2. For subsequent calls MO may
be assigned the following values:

MO = 1 This setting must be employed when any of the data n0 , n, X, Y
is modified. In this case, none of the previously generated infor-
mation can be reused.

MO = 2 This setting may be used when n¢, n, X, Y are not modified.
MO = 3 This setting is permissible when only Z is modified.

If MO J 1 then the contents of IWK and WK must not be altered.

IWK is an array of dimension kn + Am or larger when k = max{31, 27 + n0}, and WK
is an array of dimension 5n or larger. IWK and WK are storage areas for the routine.

Error Return. IERR is an integer variable. If no errors are detected then IERR is set to
0. Otherwise, IERR is assigned one of the following values:

IERR = 1 MO is not 1, 2, or 3.
IERR = 2 Either 2 < n, < n or n. < 25 is violated.
IERR = 3 n < 4.
IERR = 4 Either A < 1 or m < 1.
IERR = 5 Either n, or n has been modified. This cannot occur if MO J 1.
IERR = 6 Either A or m has been modified. This cannot occur if MO = 3.
IERR = 7 Points (xi, yi) and (z6, yj) are equal or too close where IWK(1)=S

and IWK(2) = 1.
IERR = 8 The points (xi, yi, zi) (i = 1. . ,n) are collinear or almost collinear.
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When an error is detected, the routine immediately terminates.

Remarks.

(1) The procedure is invariant under a rotation of the x-V, coordinate system.
(2) The results are exact when F(z, y) represents a plane.
(3) Derivative estimation at a data point depends on points closest to the data point. Thus

the procedure is dependent on the scaling of the abscissae Zi and ordinates Yi.

Programming. BVIP2 employs the subroutines IDTANG, IDCLDP, IDGRID, IDPDRV,
IDPTIP and the function IDXCHG. The routines save and exchange information in a la- I
beled common block named IDPI. The routines were written by Hiroshi Akima (Institute
for Telecommunication Sciences, Boulder, Colorado). IDPTIP was modified by Albrecht
Preusser (Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin). The error handling :
was modified by A. H. Morris.

References. I
(1) Akima, Hiroshi, "A Method of Bivariate Interpolation and Smooth Surface Fitting for

Irregularly Distributed Data Points," ACM Trans. Math Software 4 (1978),pp. 148-
159.

(2) Preusser, A., "Remark on Algorithm 526," ACMTrans. Math Software 11 (1985),
pp. 186-187.
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WEIGHTED LEAST SQUARES FITTING WITH POLYNOMIALS
OF N VARIABLES

Let {n(4), .. ,)) i = 1 ... ,A} be a set of t distinct points, z1, .z be the
corresponding function values to be approximated, and wi, ... ,wt be positive weights.
Then for any nonnegative integer IDEG where (fn+IDEG) < 1,' the subroutines MFIT and
DMFIT are available for obtaining the coefficients of the unique polynomial F(zx, .X.. xn)

of degree IDEG which minimizes Z wi[F(z1( ), ...1,n ) Z- ]2. Also, the subroutines
t=1

MEVAL and DMEVAL are available for computing this polynomial. MFIT and MEVAL
yield single precision results, and DMFIT and DMEVAL yield double precision results.

CALL MFIT(n, IDEG, m,t, X, ez, Z, W, R, IER,IWK,WK,LIWK,LWK,
MIWK,MWK)

CALL DMFIT(n, IDEG,m, e, X, kz, Z,W, R, IER,IWK,WK,LIWK,LWK,
MIWK,MWK)

It is assumed that n > 1 and e > 1. X is an A x n matrix whose ith row contains the
point (zft), ... , (z)); i.e., X(i,j) =zj() for i =1,...,eand j = 1, ... ,n. The argument
kz is the number of rows in the dimension statement for X in the calling program. Z is an
array containing z1 , ... , z1 and W an array containing tw1 , ... ,w1. X and Z are modified
by the routine.

Remark. For IDEG > 0, (n+IDEG) polynomials 1,z 1 , ... ,zXziz1z 2 , ... are needed for
a basis of the space of polynomials of degree < IDEG. The basis polynomials are ordered.
For k > 1, the degree k - 1 basis polynomials precede the degree k polynomials. The
degree k basis polynomials are zi1 -i, where 1 < il < •< ik < n. For any two such
polynomials zxi, zix and z51 *Zx, let r be the smallest integer such that i4 # jr. Then

i ... x i, precedes zxi * * zx3, when ir < jr.

IDEG and m are variables. If IDEG > 0 then the routine attempts to obtain the
polynomial F(zi, .. . , Zn) of degree IDEG which is the best least squares fit. Otherwise, if
IDEG < 0 then it is assumed that m > 1 and that the first m basis polynomials are to be
used to obtain the least squares fit. When the routine terminates, IDEG = the degree of
the polynomial F(zl, . .. , x,) obtained and m = the number of basis polynomials that are
actually used.

R is an array of dimension A or larger. R(i) = zi- F(z1 ('), * z .()) for i = 1, * * 
when the routine terminates.

IWK is an array of dimension LIWK and WK an array of dimension LWK. When
the routine terminates, IWK and WK contain the information needed for computing the
polynomial F(xl, ... , x,,). Sufficient storage for IWK and WK can be assured by setting
LIWK and LWK as follows: If IDEG > 0 then let N = min{A, (n+IDEG)} and & = IDEG.

I(6)= 1 and = k(k-1) (k-i+1) for i = 1,2,
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Otherwise, if IDEG < 0 then let N m and 6 be the smallest nonnegative integer such I
that (n+6) > m. Then set

LIWK > 4N + En

LWK > 2N+n+ 1+eN+ 1(N-1)(N-2).

N is the maximum number of basis polynomials that will be used, and us is the degree of |
the polynomial F(zi, .. ., Xn) if N basis polynomials are used.

MIWK and MWK are variables. MIWK is set by the routine to the dimension needed
for IWK, and MWK is set to the dimension needed for WK. MIWK and MWK depend
only on n,e,IDEG, and m.

If MFIT is called then X, Z, W, R, and WK are single precision real arrays. Otherwise, I
if DMFIT is called then X, Z, W, R, and WK are double precision arrays.

IER is a variable that reports the status of the results. When the routine terminates, I
IER has one of the following values:

IER 0 The desired polynomial was obtained.
IER -1 Not all the basis polynomials could be used. IDEG is the degree I

of the polynomial obtained. This setting occurs when the problem
is not solvable or is too ill-conditioned for the requested degree.

IER = 1 Only e basis polynomials were used. A polynomial F(xi, .. .,,)

was obtained which solves the equations F(xlt), . . .,( ) zi
for i = 1, ... , e.

IER = 2 (Input error) IDEG < 0 and m < 0.
IER= 3 (Input error) n < 1 or e < 1.
IER= 4 (Input error) LIWK or LWK is too small. Set LIWK > MIWK

and LWK > MWK. I
When an input error is detected, the routine immediately terminates.

Remark. When IER < 1 then MEVAL or DMEVAL may be used to compute the polyno-
mial obtained.

Algorithm. The revised Gram-Schmidt orthogonalization procedure is used. I
Programming. MFIT employs the routines ALLOT, BASIZ, MTABLE, GNRTP, INCDG,
SCALPMSCALDN~and DMFIT employs the routines ALLOTBASIZMTABLE,DGNRTP,
DINCDG, DSCALP, DSCALD. MFIT and DMFIT are modifications by A. H. Morris of
CONSTR, written by Richard H. Bartels (University of Waterloo) and John J. Jezioranski
(Ontario Cancer Institute).

References.
(1) Bartels, R. H. and Jezioranski, J. J., "Least Squares Fitting using Orthogonal Multi- I

nomials," ACM Trans. Math Software 11-(1985), pp. 201-217.
(2) , "Algorithm 634, CONSTR and EVAL: Routines for Fitting Multinomials

in a Least Squares Sense,' ACMTrans. Math Software 11 (1985), pp. 218-228.
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* CALL MEVAL(n, KDEG, mI, XI, kxi, ZI,IND,IWK,WK,LIWK,LWK,T)
CALL DMEVAL(n, KDEG, mff, , XI, kzi, ZIINDIWK,WKLIWKLWK,T)

I - MEVAL (DMEVAL) computes the polynomial obtained by MFIT (DMFIT), or a por-
tion thereof. Let IDEG and m be the output values given by MFIT (DMFIT).

The argument m1 is a variable. If KDEG < 0 then it is assumed that 1 < m < m and
that the polynomial using the first m basis polynomials is to be computed. In this case,
the polynomial computed is the best least squares fit for the basis polynomials involved.

If KDEG > 0 then it is assumed that KDEG < IDEG. In this case, when the routine
terminates, m = the number of basis polynomials used. If m < m (which will be the case
when KDEG < IDEG), then the polynomial computed is the polynomial of degree KDEG
which is the best least squares fit.

Usage. If IER = ±1 when MFIT(DMFIT) terminates, then the setting KDEG = IDEG
normally causes an error to occur since m > m. Hence, if it is desired that the full
polynomial obtained by MFIT(DMFIT) be computed, no matter whether the value for IER
is 0 or ±1, then KDEG should be assigned a negative value and mK = m.

It is assumed that the polynomial is to be computed at the points (YjXi, . ,

for i = 1, .. . ,A. XI is an f x n matrix whose itt row contains the point (T I), ... 0))
The argument kzi is the number of rows in the dimension statement for XI in the calling
program. ZI is an array of dimension i or larger. When the routine terminates, ZI(i)
contains the value of the polynomial at the point (x('),... WPi)) for i = 1, . . . ,

IWK and WK are the arrays obtained from MFIT or DMFIT. LIWK is the dimension
of IWK and LWK the dimension of WK. T is an array of dimension n or larger that is a
work space for the routine.

If MEVAL is called then XI, ZI, WK and T are single precision arrays. Otherwise, if
DMEVAL is called then XI, ZI, WK and T are double precision arrays.

IND is a variable that reports the status of the results. When the routine terminates,
IND has one of the following values:

IND = 0 The desired computation was performed.
IND = -1 (Input error) m < 1 or mK > in.
IND = -2 (Input error) n < 1 or <.

Programming. MEVAL calls the subroutine MEVAL1 and DMEVAL calls the subroutine3 DMEVL1. MEVAL and DMEVAL are modifications by A. H. Morris of EVAL, written
by Richard H. Bartels (University of Waterloo) and John J. Jezioranski (Ontario Cancer

* Institute).
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EVALUATION OF INTEGRALS OVER FINITE INTERVALS

QAGS, QSUBA, and DQAGS are available for computing integrals over finite inter-
vals. The subroutine QAGS and function QSUBA yield single precision results, and the
subroutine DQAGS yields double precision results. These procedures are adaptive. In such
procedures, the selection of the points at which the integrand is evaluated depends on the
nature of the integrand.

CALL QAGS(F, a, b, AERR,RERR, z, ERROR,NUM,IERR, X,m, n, IWK,WK)

F(x) is a user defined function whose arguments and values are assumed to be single

precision real numbers. The purpose of QAGS is to compute the integral f' F(x)dx. F
need not be defined at a and b, and it is not required that a < b. F must be declared in
the calling program to be of type EXTERNAL.

AERR and RERR are the absolute and relative error tolerances to be used, and z is
a variable. When QAGS is called, z is assigned the value obtained for f: F(x) dx. The
routine attempts to obtain a value z which satisfies I f F(x) dx - zj < maz{AERR,RERR -
i f F(x) dxl}. It is assumed that AERR > 0 and RERR > 0. If one wants accuracy to k
significant digits then set RERR = 1O-k.

ERROR and NUM are variables. When QAGS terminates, ERROR is the estimated
absolute error of the result and NUM is the number of points at which F was evaluated.

IWK is an array of dimension e and WK is an array of dimension m. IWK and WK are
work spaces for the routine. The input argument e is the maximum number of subintervals
in which the interval of integration may be partitioned. It is assumed that t > 1 and m > 4t.
The argument n is a variable. When QAGS terminates, n = the number of subintervals
that appeared in the partition. Normally n < 100.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has one of the following values:

IERR = 0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR = 1 The interval of integration was partitioned into t subintervals.
More subintervals are needed to compute the integral to the de-
sired accuracy.

IERR = 2 The integral has been computed, but because of roundoff error
QAGS is not certain of the accuracy of the result. The error may
be greater than that reported by ERROR.

IERR = 3 Extremely bad integrand behavior occurs in the interval of inte-
gration. The routine is not certain of the accuracy obtained.

IERR = 4 The algorithm does not converge. It is assumed that the requested
accuracy cannot be achieved and that the result is the best which
can be obtained.
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IERR = 5 The integral may be divergent or it may converge extremely slowly.

In this case, the value for z may be meaningless.
IERR = 6 (Input Error) Either e < 1, m < 4U, AERR < 0, or RERR < 0. In

this case, the variables z, ERROR, NUM, and n are set to 0. I
Note. F may have singularities at a and b. However, it is recommended that no singularities
appear in the interior of the interval of integration.

Algorithm. The 21 point Kronrod rule and e-algorithm of P. Wynn are used.

Programming. QAGS employs the subroutines QAGSE, QK21F, QPSRT, and QELG.
These routines were developed by Robert Piessens and Elise de Doncker-Kapenga (Katho-
lieke Universiteit Leuven, Heverlee, Belgium). The function SPMPAR is also used.

Reference. Piessens, R.,de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K.,
QUADPACK: A Subroutine Package for Automatic Integration, Springer-Verlag, 1983.

QSUBA(F, a, b, RERR,MCOUNT,ERROR,IND)

F(x) is a user defined function whose arguments and values are assumed to be single
precision real numbers. The purpose of QSUBA is to compute the integral fa F(x) dx. F
need not be defined at the points a and b. However, it is assumed that a < b. F must be
declared in the calling program to be of type EXTERNAL.

RERR is the relative error tolerance to be satisfied. It is assumed that RERR > 0. If
one wants accuracy to k significant digits then set RERR = -.

The input argument MCOUNT is the maximum number of points at which F may be
evaluated. It is recommended that MCOUNT > 1000.

ERROR is a variable that is set by QSUBA. If the value of QSUBA is not 0 then
ERROR is a rough estimate, of the relative error of the computed result. Otherwise, if the
value of QSUBA is 0 then ERROR is rough estimated of the absolute error. I

IND is a variable that reports the status of the results. When QSUBA terminates, IND
has one of the following values:

IND = 0 The function QSUBA is satisfied that the integral has been com-
puted to the desired accuracy.

IND = 1 The integral has been computed, but QSUBA is not certain of the I
accuracy of the result..

IND = 2 F(x) was evaluated at MCOUNT points. More evaluations are
needed to complete the computation of the integral. I

IND= 3 The function QSUBA cannot compute the integral to the desired
accuracy.

If IND = 0 or 1 then the function QSUBA is assigned the value obtained for the integral.
If IND = 2 then QSUBA has for its value the most recent acceptable partial estimate made
of the integral. Otherwise, if IND = 3, then QSUBA has for its value the best estimate of
the value of the integral that it can make.
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Note. QSUBA assumes that F and its derivatives have no singularities in the closed interval
[a,b]. If this is not the case then QAGS should be used. QSUBA is recommended for
computing integrals such as fo sin x2 dx whose integrands are finitely oscillatory.

Algorithm. Gaussian quadrature is employed.

Programming. QSUBA calls the subroutine QUAD. QSUBA and QUAD were written
by T. N. L. Patterson (Queen's University, Belfast, Northern Ireland), and QSUBA was
modified by A. H. Morris. The function SPMPAR is used.

Reference. Patterson, T. N. L.,"Algorithm for Automatic Numerical Integration Over a
Finite Interval," Comm. ACM 16 (1973), pp.694-699.

CALL DQAGS(Fa, b,AERR,RERR,z,ERROR,NUM,IERR,e, m, n,IWK,WK)

F(x) is a user defined function whose arguments and values are assumed to be double
precision real numbers. The purpose of DQAGS is to compute the integral fJ F(x) dx. The
arguments a and b are double precision real numbers. F need not be defined at a and b,
and it is not required that a < b. F must be declared in the calling program to be of types
DOUBLE PRECISION and EXTERNAL.

AERR and RERR are double precision real numbers and z is a double precision vari-
able. AERR and RERR are the absolute and relative error tolerances to be used. When
DQAGS is called, z is assigne4 the value obtained for f;' F(x) dz. The routine attempts to
obtain a value z which satisfies f f F(x) dx - zj < max{AERR, RERR * If F(x) dzj}. It is
assumed that AERR > 0 and RERR > 0.

ERROR is a double precision variable and NUM an integer variable. When DQAGS
terminates, ERROR is the estimated absolute error of the result and NUM is the number
of points at which F was evaluated.

IWK is an integer array of dimension e and WK a double precision array of dimension
m. IWK and WK are work spaces for the routine. The argument e is the maximum number
of subintervals in which the interval of integration may be partitioned. It is assumed that
t > 1 and m > 4V. The argument n is a variable. When DQAGS terminates, n = the
number of subintervals that appeared in the partition. Normally n < 100.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has one of the following values:

IERR = 0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR = 1 The interval of integration was partitioned into e subintervals.
More subintervals are needed to compute the integral to the de-
sired accuracy.

IERR = 2 The integral has been computed, but because of roundoff error
DQAGS is not certain of the accuracy of the result. The error
may be greater than that reported by ERROR.
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IERR = 3 Extremely bad integrand behavior occurs in the interval of inte- I
gration. The routine is not certain of the accuracy obtained.

IERR = 4 The algorithm does not converge. It is assumed that the requested
accuracy cannot be achieved and that the result is the best which I
can be obtained.

IERR = 5 The integral may be divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless. I

IERR = 6 (Input Error) Either e < 1, m < 4f, AERR < 0, or RERR < 0. In
this case, the variables z, ERROR, NUM, and n are set to 0.

Remarks. F may have singularities at a and b. However, it is recommended that no singu-
larities appear in the interior of the interval of integration. DQAGS is a double precision
version of the routine QAGS. |

Algorithm. The 21 point Kronrod rule and c-algorithm of P. Wynn are used.

Programming. DQAGS employs the subroutines DQAGSEDQK21,DQPSRTand DQELG.
These subroutines are double precision versions of the subroutines QAGSE,QK21F,QPSRT,
and QELG, developed by Robert Piessens and Elise de Doncker-Kapenga (Katholieke Uni-
versiteit Leuven, Heverlee, Belgium). The function DPMPAR is also used.

Reference. Piessens, R., de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K.,
QUADPACK: A Subroutine Package for Automatic Integration, Springer-Verlag, 1983.
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EVALUATION OF INTEGRALS OVER INFINITE INTERVALS

The subroutines QAGI and DQAGI are available for computing integrals over infinite
intervals. QAGI yields single precision results and DQAGI yields double precision results.
QAGI and DQAGI are adaptive routines.

CALL QAGI(Fga,MO,AERR,RERR,z,ERROR,NUM,IERR,t,m,n,IWK,WK)

F(x) is a user defined function whose arguments and values are assumed to be real
numbers. The argument a is a real number, z is a variable, and MO may be 1, -1, orI 2. When QAGI is called, z is assigned the value f: F(s) dx if MO = 1 and the value
fa. F(s) dx if MO = -1. Otherwise, if MO = 2 then z is assigned the value ft F(x) dx.
If MO = ±1 then F need not be defined at a. Otherwise, if MO = 2 then a is not used. F
must be declared in the calling program to be of type EXTERNAL.

AERR and RERR are the absolute and relative error tolerances to be used. The
subroutine attempts to obtain a value z which satisfies I f F(s) dx-zI < max{AERR,RERR-
I f F(s) dxl}. It is assumed that AERR > 0 and RERR > 0. If one wants accuracy to k
significant digits then set RERR = IO-".

ERROR and NUM are variables. When QAGI terminates, ERROR is the estimated
absolute error of the result and NUM is the number of points at which F was evaluated.

IWK is an array of dimension t and WK is an array of dimension m. IWK and WK are
work spaces for the routine. The input argument £ is the maximum number of subintervals
in which the interval of integration may be partitioned. It is assumed that £ > 1 and m > 4£.
The argument n is a variable. When QAGI terminates, n = the number of subintervals
that appeared in the partition. Normally n < 100.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has one of the following values:

IERR = 0 The routine is satisfied that the integral has been computed to the
| desired accuracy.

IERR = 1 The interval of integration was partitioned into £ subintervals.
More subintervals are needed to compute the integral to the de-
sired accuracy.

IERR = 2 The integral has been computed, but because of roundoff error
QAGI is not certain of the accuracy of the result. The error may
be greater than that reported by ERROR.

IERR = 3 Extremely bad integrand behavior occurs in the interval of inte-
gration. The routine is not certain of the accuracy obtained.

IERR = 4 The algorithm does not converge. It is assumed that the requested
accuracy cannot be achieved and that the result is the best which
can be obtained.

IERR = 5 The integral may be divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless.
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IERR = 6 (Input Error) Either e < 1, m < 49, AERR < 0, or RERR < 0. In

this case, the variables z, ERROR, NUM, and n are set to 0.

Note. F may have a singularity at a when MO = ±1. However, it is recommended that no
singularities appear in the interior of the interval of integration.

Algorithm. The integrals are transformed as follows:

|a F(x) dx = |o F(a - 1 + l/t)j 0 a rl4 dt

j F(x) dx = 1 F(a 1+ 1-/t) dt 
-00 I

F(x) d = | [F(-1 + t)+F(l-l dt)] foo F'' + lit)
The transformed integrals are computed by the 15 point Kronrod rule and the c-algorithm
of P. Wynn.

Programming. QAGI employs the subroutines QAGIE, QK15I, QPSRT, and QELG. These
routines were developed by Robert Piessens and Elise de Doncker-Kapenga (Katholieke
Universiteit Leuven, Heverlee, Belgium). The function SPMPAR is also used.

Reference. Piessens, R., de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K.,
QUADPACK: A Subroutine Package for Automatic Integration, Springer-Verlag, 1983.

CALL DQAGI(F ,aMO ,AERR,RERR,z,ERROR,NUM,IERRf,mnIWKWK)

F(x) is a user defined function whose arguments and values are assumed to be double
precision real numbers. The argument a is a double precision real number, z is a double I
precision variable, and MO may be 1, -1, 2. When DQAGI is called, z is assigned the value
f: F(x) dx if MO= 1 and the value fra F(x) dx if MO = -1. Otherwise, if MO = 2 then
z is assigned the value ffo. F(x) dx. If MO = ±1 then F need not be defined at a. F must I
be declared in the calling program to be of types DOUBLE PRECISION and EXTERNAL.

AERR and RERR are the absolute and relative error tolerances to be used. The sub-
routine attempts to obtain a value z which satisfies I F F(x) dx - zI < max{AERR,RERR-
f f F(x) dxf}. It is assumed that AERR and RERR are nonnegative double precision num-

bers.

ERROR is a double precision variable and NUM an integer variable. When DQAGI
terminates, ERROR is the estimated absolute error of the result and NUM is the number
of points at which F was evaluated.

IWK is an integer array of dimension e and WK a double precision array of dimension
m. IWK and WK are work spaces for the routine. The argument e is the maximum number I
of subintervals in which the interval of integration may be partitioned. It is assumed that
e > 1 and m > 4t. The argument n is a variable. When DQAGI terminates, n= the number
of subintervals that appeared in the partition. Normally n < 100.
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IERR is a variable that reports the status of the results. When the routine terminates,
IERR has of the following values:

IERR = 0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR = 1 The interval of integration was partitioned into e subintervals.
More subintervals are needed to compute the integral to the de-
sired accuracy.

IERR = 2 The integral has been computed, but because of roundoff error
DQAGI is not certain of the accuracy of the result. The error
may be greater than that reported by ERROR.

IERR = 3 Extremely bad integrand behavior occurs in the interval of inte-
gration. The routine is not certain of the accuracy obtained.

IERR = 4 The algorithm does not converge. It is assumed that the requested
accuracy cannot be achieved and that the result is the best which
can be obtained.

IERR = 5 The integral may be divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless.

IERR = 6 (Input Error) Either e < 1, m < 4V, AERR < 0, or RERR < 0. In
this case, the variables z, ERROR, NUM, and n are set to 0.

Remarks. F may have a singularity at a when MO = ±1. However, it is recommended
that no singularities appear in the interior of the interval of integration. DQAGI is a double
precision version of the routine QAGI.

Programming. DQAGI employs the routines DQAGIE,DQK15I,DQPSRT, and DQELG.
These subroutines are double precision versions of the subroutines QAGIE, QK15I, QP-
SRT, and QELG, developed by Robert Piessens and Elise de Doncker-Kapenga (Katholieke
Universiteit Leuven, Heverlee, Belgium). The function DPMPAR is also used.

Reference. Piessens, R., de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K.,
QUADPACK: A Subroutine Package for Automatic Integration, Springer-Verlag, 1983.
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EVALUATION OF DOUBLE INTEGRALS OVER TRIANGLES

Let f(x, y) be a real-valued function defined on a triangle T. Then the subroutine
CUBTRI is available for computing the integral ffT f(X, y) dx dy. CUBTRI is an adaptive
routine.

CALL CUB TR I (F T, e,MAX,A,ERR,n,W,f,IDATA,RDATA,IERR)

T is a 2-dimensional real array of dimension 2 x 3 where T(l,j) and T(2,j) are the x
and y coordinates of the jih vertex of the given triangle (j = 1, 2, 3).

IDATA and RDATA are arrays provided by the user containing any integer or real data
needed for computing the integrand f(x,y). The arrays may be of any size. F is a user
defined real-valued function having the arguments z, y,IDATA,RDATA. It is assumed that
F(X, y,IDATA,RDATA) = f(x, y) for any point (X, y) in the triangle of integration T. F
must be declared in the calling program to be of type EXTERNAL.

The input argument e is the error tolerance to be satisfied, and A is a variable. When
CUBTRI is called, A is assigned the value obtained for ffT f(X, y) dx dy. The routine
attempts to obtain a value A which satisfies I1ff (x, y) dx dy - Al < max{e, eIAl }. Thus
if JAl < 1 then e is an absolute tolerance, whereas if JAl > 1 then e is a relative tolerance.
If one wants k digit accuracy then set e = 10-k. ERR is a variable. When CUBTRI
terminates, ERR is the estimated error I fr f (x, y) dx dy - Al of the result.

The input argument MAX is the maximum number of points (X, y) at which F may
be evaluated, and n is a variable. On an initial call to CUBTRI, the user must set n = 0.
When the routine terminates, n will have for its value the number of points at which F was
evaluated. (For subsequent calls concerning the same integral, see below.)

W is an array of dimension e for internal use by the routine. The input argument £
specifies the maximum number of subtriangles in which the triangle of integration T may
be partitioned. The subtriangles are stored in W, each subtriangle requiring 6 storage
locations. Thus t/6 is an estimate of the maximum number of subtriangles that might have
to be stored (e < max{1, 3m + 1} where m = (MAX/19 - 1)/4).

IERR is an integer variable that reports the status of the results. When the routine
terminates, IERR has one of the following values:

IERR = 0 The integral was computed to the desired accuracy.
IERR = 1 MAX is too small. F must be evaluated at more points.
IERR = 2 The storage space W is full. Its dimension e must be increased.
IERR = 3 Further subdivision of the subtriangles impossible. This normally

occurs when f (X, y) has a singularity in the region. The situation
can frequently be eliminated by placing the singularity at a vertex
of the triangle of integration T.

IERR = 4 No further improvement in accuracy is possible because of roundoff
error in the computation of F or the irregular behavior of F.
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IERR = 5 No further improvement in accuracy is possible because subdivi-
sion does not change the estimated integral value A. Machine
accuracy has probably been reached.

After an initial call to CUBTRI, the routine may be recalled to continue the compu-
tation of ffT f (x) y) dx dy. When the routine is recalled, the value of n obtained on the
previous call to CUBTRI is used for the next call. This value for n tells the routine where
computation should be resumed (using the information previously stored in W). At least
one of the values e, MAX, or e must be modified before CUBTRI is recalled. F, T, n, W,
IDATA, and RDATA may not be changed when the routine is recalled.

Remark. F may have a singularity at one of the vertices of T (such as in the case when we
are computing fgo fc7(X2 +3y 2 )- 1 /2 dy dx). However, it is recommended that no singularities
appear in the interior of the triangle of integration.

Algorithm. The 7-point degree 5 rule of Radon and a new 19-point degree 8 rule are used.

Programming. CUBTRI calls the function RNDERR and subroutine CUBRUL. Informa-
tion is saved in labeled common blocks. The block names are CUBSTA and CUBATB. The
routines were written by D. P. Laurie (National Research Institute for the Mathematical
Sciences, Pretoria, South Africa).

Reference. Laurie, D. P., "Algorithm 584, CUBTRI: Automatic Cubature over a Triangle,"
ACM Trans. Math Software 84(1982), pp. 210-218.
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SOLUTION OF FREDHOLM INTEGRAL EQUATIONS
OF THE SECOND KIND

If k(s, t) and f(s) are continuous real-valued functions for a < s < b and a < t < b)
then the equation to be solved is

rb

r(s) k(s, t)x(t) dt= f(s)

for a < s < b. Let K be the operator defined by (Kx)(s) = f k(s, t)x(t) dt for any real-
valued function x continuous on [a, b]. Then (Kx)(s) is continuous for a < s < b, and
k is called the kernel of K. Also the above integral equation can be written in the form
(I - K)x = f where I is the identity operator. This equation has a unique solution if and
only if I - K is 1 - 1, in which case x = (I - K)- 1 f. The subroutine IESLV is available
for computing this solution.

Remark. If C[a, b] is the normed space of real-valued functions x continuous on [a, b]
and having the norm IjxII = max{ Ix(t)l: a < t < b }, then K is a compact mapping

C [a,b] -+ C[a, b] having the norm IIKI1 = max fJ' k(s,t)I dt.
a < <b

CALL IESLV(k, f, a, b,EPSIFLAG,S, X, e, N, M,NF,MF,NORMK,WK,IERR)

It is assumed that a < b, and that k(s, t) and f (s) are user defined real-valued functions
for a < s, t < b. It is recommended that k and f be several times continuously differentiable.
The functions k and f must be declared in the calling program to be of type EXTERNAL.

EPS is a variable and IFLAG an input argument whose values are 0 and 1. On input
EPS is the error tolerance that the solution must satisfy. If IFLAG = 0 then EPS is an
absolute tolerance. Otherwise, if IFLAG = 1 then EPS is a relative tolerance. If IESLV
solves the equation, then on output EPS is the estimated error of the result.

Before the remaining arguments s,x,t, ... can be described, it is necessary to give
a brief outline of the algorithm used. When IESLV is called, the integral equation is
approximated by

n

(*) x,(sS) - Wjt k (stjn)xn(tin) = f(s)
j=1

for a < s < b. Here wjn and tin are the weights and nodes of Gauss-Legendre quadrature.
This equation is treated as an interpolation for x(s) in terms of the values xn(t3 n). These
values are obtained by solving the equations

n
( * * ) Zn (tin) - win k (tin) tin) Xn (tin) = f (tin )

j=l

455



for i = 1, ... , n. This system of equations can be solved directly or iteratively. The following I
algorithm is used:

(1) Set n = 2 and go to (2).
(2) The n equations are solved directly. Then set m = 2n and solve the m equations (**) I

iteratively. If the rate of convergence is sufficiently rapid or n cannot be increased,
then go to (3). Otherwise, set n = m, and go to (2).

(3) Here n remains fixed. Repeatedly double the value of m and solve the m equations (**) I
iteratively until convergence occurs, m cannot be increased, or the iterations diverge.

When the algorithm terminates, values xm(tim) will have been computed for the nodes
tim(i = 1, ... ,m). Then from (*), z(s) ; zm(s) can be interpolated for a < s < b.

N and M are input arguments, and WK is an array that is a work space for the
routine. N and M are upper limits for n and m in the algorithm, and WK is of dimension
5N2 + 9(N + M) or larger. It is assumed that M > N > 2. Since n and m are always
powers of 2, N and M need only be set to powers of 2. However, this is not required.

S and X are arrays, and e is a variable. On input it is assumed that t > 0. If e > 0 then
S is assumed to contain e points si, ... ,st at which the solution z(s) is to be evaluated.
Also X is assumed to be an array of dimension e or larger. When IESLV terminates, X I
contains the values obtained for x(si), . . ., z(st). (This is true irregardless of whether or
not the desired accuracy has been achieved.) Otherwise, if e = 0 then S and X are assumed
to be arrays of dimension M or larger. When IESLV terminates e = the final value obtained I
for m, S contains the Gaussian nodes ti(i = 1, .t. ,!), and X contains the values obtained
for x(tit).

NF and MF are variables. When the routine terminates, NF is the final value for n
and MF the final value for m.

NORMK is a real variable. If t> 0 on input, then when IESLV terminates, NORMK I
is an approximation for IiKIl. Otherwise, if e 0 then NORMK = 0.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has one of the following values:

IERR = 0 The solution was obtained to the desired accuracy. EPS is the
estimated error of the result. I

IERR 1 The solution was not obtained to the desired accuracy. EPS is the
estimated error of the result.

IERR = 2 The solution was not obtained to the desired accuracy. It is not
clear what accuracy (if any) has been achieved. EPS has been set
to 0.

IERR 3 The input value for EPS was too small. This may be due to ill- I
conditioning of the integral equation. The value of EPS was reset
to a more realistic tolerance, which the solution satisfied.

IERR = 4 The solution x(s) was obtained at the Gaussian nodes to the de- I
sired precision. However, the interpolation process may not pre-
serve this accuracy for the evaluation of x(s) for other points s.
EPS is the estimated error of the solution at the Gaussian nodes. I
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IERR = 5 The solution 4(s) was not obtained to the desired accuracy at
the Gaussian nodes. EPS is the estimated error at these nodes.
The interpolation process may not preserve this accuracy for the
evaluation of x(s) for other points 8.

IERR = 6 The input value for EPS was too small. This may be due to ill-
conditioning of the integral equation. The value of EPS was reset
to a more realistic tolerance, which the solution x(8) satisfied at
the Gaussian nodes. The interpolation process may not preserve

* this accuracy for the evaluation of z(s) for other points S.
Difficulties can arise, causing IERR > 1, when the integral equation is ill-conditioned or
the kernel k(s, t) is not appropriate for standard Gaussian quadrature. Ill-conditioning can
occur when the operator I - K is near singular or the norm IIKII is exceedingly large.
Inappropriate kernels k(s, t) include those which are highly oscillatory or not continuously
differentiable for s and t in the open interval (a, b).

I Programming. IESLV employs the subroutines IEGS, NSTERP, WANDT,LEAVE, ITERT,
LNSYS and functions RMIN,RNRM,CONEW. The routines save and exchange information
in labled common blocks. The block names are XXINFO and XXLIN. The routines wereI written by Kendall E. Atkinson (University of Iowa), and modified by A. H. Morris. The
function SPMPAR is also used.

Reference. Atkinson, K. E.,jAn Automatic Program for Linear Fredholm Integral Equa-
tions of the Second Kind," ACM Trans. Math Software 2 (1976), pp. 154-171.
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THE INITIAL VALUE SOLVERS - INTRODUCTORY COMMENTS

Let y'(t) = f(t, y(t)) denote a system of n ordinary first order differential equations
where f(t,y) = (f1(t,y), . ..,f.(t,y)) and y(t) = (y1(t), -. .,y(t)). Assume that y(a) isI known. Then for b : a the subroutines ODE, RKF45, GERK, SFODE, and SFODEI are
available for computing y(b). These routines are adaptive variable step differential equations
solvers. The remaining subroutines (RK and RK8) are fixed order, one step procedures.
Given a value y(t) and a step size h, the one step procedures compute a value for y(t + h).
The problem of selecting an appropriate step size is left to the user. Given y(a) and b, the one
step routines must be repeatedly called to step along the interval from a to b. The situation,I however, is considerably different with the adaptive routines. ODE, SFODE, and SFODE1
are variable order, variable step procedures, and RKF45 and GERK are fixed order, variable
step procedures. Given y(a), b, and the error tolerances that are to be maintained, theseI solvers continually adjust their orders and step sizes as they (automatically) step along the
interval from a to b.

The adaptive routines differ in their capabilities. ODE, RKF45, and GERK are recom-I mended for nonstiff equations, and SFODE and SFODE1 for stiff equations. If one does not
know whether the equations are stiff, then ODE should be tried. ODE maintains greater
accuracy than the other routines, and it will notify the user if the equations appear to be
stiff. ODE, RKF45, and GERK should be able to handle mildly stiff problems satisfactorily,
but they are decidedly not appropriate for extremely stiff problems. SFODE and SFODE1
are the only routines in the mathematics library that are capable of solving extremely stiff
equations.

If the equations to be solved are nonstiff, then the choice between ODE and RKF45
depends on the amount of accuracy needed and the cost of the derivative evaluations. If
the accuracy requirements are high then ODE is recommended. However, if the accuracy
requirements are low and the derivative evaluations are inexpensive, then RKF45 may beI the most efficient routine for the problem. RKF45 frequently requires more derivative
evaluations than ODE, but its overhead is considerably less than that for ODE.

When the user specifies the error tolerances to be satisfied, normally he is only inter-
ested in the global error (the accuracy of y(b)). However, the adaptive routines employ
the tolerances for controlling local error (the error generated at each internal step in the
interval). No attempt is made to control the progressive erosion of accuracy that can occur
when the steps accumulate. GERK is the only routine that estimates the global error. This
routine employs the same Runge-Kutta-Fehlberg formulae used by RKF45. GERK is 2-3
times slower than RKF45, but it is more accurate.

Output Considerations. Generally, when the user has a system of equations y'(t) =

f (t, y(t)) to be solved (where y(ao) is known), he wants its solution at a sequence of points
a,, . .. , aN. If an adaptive routine is being used, then the routine will be repeatedly called
to step along the axis from each point ai to the next. If ODE, SFODE, or SFODE1 is
being employed, then the number and closeness of the output points a,, ... ,aNf should beI of no concern. These routines partially ignore ai+1 in the selection of the step size when
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going from ai to a,+,. Instead, they step along the axis using the largest steps that are
appropriate (efficiency and accuracy are the prime concerns). Normally aj+I is passed in
the process. If a,+, is passed then a quick interpolation yields the desired result at ai+i.
Thus the process of solving the equations for ai+l when y(a1) is known may require that I
no steps be taken (ai+l may have been bypassed on a previous call to ODE, SFODE, or
SFODE1), or it may require that one or more steps be taken.

The situation is considerably different if RKF45 or GERK is used. These routines
select their step size so as not to bypass ai+l when going from ai to ai+i. Thus the output
points a,, .. ., aN may be so close to one another as to force inordinately small step sizes I
(when such step sizes would otherwise not be needed). If this occurs then the efficiency of
RKF45 and GERK may deteriorate dramatically. The routines will notify the user of the
situation, and the user will be left with the following options: I
(1) Switch to an adaptive routine such as ODE which performs interpolation.
(2) Use a nonadaptive one step routine such as RK or RK8.
(3) Use RKF45 or GERK in a one step mode (this capability is permitted).

If option (3) is taken, then the user may just repeatedly call RKF45 or GERK (in the one
step mode) until aN is reached. I
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ADAPTIVE ADAMS SOLUTION OF
NONSTIFF DIFFERENTIAL EQUATIONS

Let y'(t) = f (t, y(t)) denote a system of n ordinary first order differential equations
where f(t,y) = (fi(t,y),...,f.(t,y)) and y(t) = (yj(t), ... ,y"(t)). Assume that y(a) is
known. Then for b $ a the subroutine ODE is available for computing y(b). ODE is
recommended for nonstiff equations. The algorithm used is a variable order, variable step
Adams predictor-corrector procedure.

CALL ODE(F, n, Y. T, TOUT,RERR,AERR,IND,WK,IWK)

The argument F is the name of a user defined subroutine that has the format:
CALL F(t, Y, DY)

Y and DY are arrays of dimension n. On input Y contains the values yi(t), . . ,y, (t) for the
argument t. F computes the derivatives y'(t), . .. ,y' (t) using y'(t) = f(t, y(t)) and stores
the results in DY. F must be declared in the calling program to be of type EXTERNAL.

WK is an array of dimension 100 + 21n or larger, and IWK is an array of dimension
5 or larger. WK and IWK contain information needed for subsequent calls to ODE.

It is assumed that a $ b. The argument Y of ODE is an array of dimension n, and
the arguments T,RERR,AERR,IND are variables. (TOUT need not be a variable.) When
ODE is initially called, it is assumed that:

T = a
TOUT = b
Y(1), ... ,Y(n) contain the values yi(a), ... ,yn(a)
RERR = the relative error tolerance to be satisfied
AERR = the absolute error tolerance to be satisfied
IND = ±1

It is preferable, both for efficiency and accuracy, that ODE be permitted to step along the
axis from a to b using the largest steps that are appropriate. This is what is done when
IND is set to 1. If IND = 1 then ODE will step along the axis, possibly passing b and
going as far as the point a + 10(b - a). If b is passed, then the solution for the equations
at b is obtained by interpolation. However, IND = 1 cannot be used if the equations are
not defined at all points between b and a + 10(b - a). In a situation such as this, when
integration cannot be permitted to step internally past TOUT, IND must be set to -1. If
IND = -1 then it is required that the subroutine F be defined at TOUT. However, F need
not be defined at points t past TOUT. If the equations V'(t) = f(t, y(t)) are not defined at
t = TOUT, then it should suffice to let F set each DY(i) = 0 when t = TOUT. A solution
(if one exists) will be obtained by extrapolation.

If IND is positive (negative), then when ODE terminates IND will have been reset by
ODE to one of the values 2,3,4,5,6,7(2, -3,-4,-5, -6, 7). These values have the following
meanings:

IND = 2 The equations have been solved at TOUT. T now has the value
TOUT and Y contains the solution at TOUT.

IND = ±3 The error tolerances RERR and AERR are too small. T is set to
the point closest to TOUT for which the equations were solved
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IND = ±4

IND = +5

and Y contains the solution at the point. RERR and AERR have
been reset to larger acceptable values.
MAXNUM steps were performed.' More steps are needed to reach
TOUT. T is set to the point closest to TOUT for which the equa-
tions were solved and Y contains the solution at the point.
MAXNUM steps were performed. More steps are needed to reach
TOUT. T is set to the point closest to TOUT for which the equa-
tions were solved and Y contains the solution at the point. The
equations appear to be stiff.

IND = ±6 ODE did not reach TOUT because AERR = 0. .T is set to the
point closest to TOUT for which the equations were solved and Y
contains the solution at the point.

IND = 7 No computation was performed. An input error was detected. The
user must correct the error and call ODE again.

If IND = 43, ±4, ±5 then to continue the integration just call ODE again. Similarly, if
IND = ±6 then reset AERR to be positive and call ODE again. In these cases do not modify
T, YIND. The output values for these parameters are the appropriate input values for the
next call to ODE. However, AERR and RERR may always be modifed when continuing an
integration.

If the equations appear to be stiff (i.e., if IND = ±5) then ODE may not be suitable
for solving the equations. In this case it is recommended that a routine designed specifically
for stiff equations be used.

Whenever IND = 2 occurs, then the equations have been solved at TOUT = b. WK
and IWK contain information that can often be reused in continuing along the axis and
solving the equations at a new point c. To continue the integration, normally one need only
reset TOUT to the new value c and call ODE again. Do not modify T, YIND. The output
values for these parameters are normally the appropriate input values for the next call to
ODE. The one exception is when the equations are not defined at points past c. If this
occurs, then one should also reset the output value IND = 2 (from the last call to ODE) to
the input value IND = -2 for the next call to ODE.. If IND is reset to -2, then integration
will not proceed internally past the new TOUT when ODE is recalled. In this case, the
subroutine F need not be defined for points past TOUT. However, it is required that F be
defined at TOUT.

If after going from a to b, ODE is recalled to continue the integration and solve the
equations at a new point c, then it is important that IND be set to 42 for the next
call to ODE. Setting IND to ±1 causes the integration procedure to be restarted, thereby
eliminating the information being saved in WK and IWK. Restarting not only can take more
time, but also can lead to less accurate results. If IND is set to ±2, then the integration
procedure restarts itself only if the direction of integration is being reversed or IND was
negative when ODE was last recalled. The direction of integration is reversed when b does
not lie between a and c.

'Each step normally requires two calls to the subroutine F. Currently the internal parameter MAXNUM
is set at 500.
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If one has a choice between setting IND to be positive or negative, then always set IND
to be positive. Extrapolation is normally involved when IND is negative. The extrapolation
can require more time and be less accurate than the procedures employed when IND is
positive.

Input Errors. IND = 7 when one of the following conditions is violated:

(1) n > 1
(2) T A TOUT
(3) RERR > 0 and AERR > 0
(4) RERR and AERR are not both 0
(5) 1 < IINDI < 5, or IND = ±6 and AERR > 0
(6) When continuing an integration, the input value for T is the output value of TOUT

from the previous call to ODE.

The last condition is automatically satisfied if the user has not inadvertently modified T.

Error Control. Assuming that ODE has obtained the correct value for y(t), let ei denote the
error generated in the computation Y(i) of y,(t + h) for i = 1, .. . , n when ODE steps from t
to t + h. The routine attempts at each step to maintain the accuracy Si(e,/Wt) 2 < 1 where
wi =RERRIY(i)I+AERR. When this criterion is satisfied, -then leil < woi for i = 1, .. ., n.
This criterion includes as special cases relative error (AERR = 0) and absolute error (RERRI 0). However, if AERR = 0 and Y(i) = 0 for some i, then wi = 0 and IND = ±6.

When going from T to TOUT, ODE continually adjusts and readjusts its order and
step size so as to maintain accuracy at each step. However, no attempt is made to control
the progressive erosion of accuracy that can occur when the steps accumulate. Since the
erosion of accuracy can be significant, at times one may wish to double-check the results
by rerunning the problem. If this is done, then in the second run ask for greater accuracy.

Programming. ODE employs the subroutines DE1, STEPI, and INTRP. These routines
were written by L. F. Shampine and M. K. Gordon (Sandia Laboratories). The function
SPMPAR is also used.

Reference. Shampine, L. F., and Gordon, M. K., Computer Solution of Ordinary Dif-
ferential Equations, W. H. Freeman and Company, San Francisco, 1975.
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ADAPTIVE RKF SOLUTION OF NONSTIFF DIFFERENTIAL EQUATIONS

Let y'(t) = f(t, y(t)) denote a system of n ordinary first order differential equations
where f (t, y) = (I' (t, y), .* *, fn (t, y)) and y(t) = (y, (t), .. .,y. (t)). Assume that y(a) is
known. Then for b 6 a the subroutine RKF45 is available for computing y(b). RKF45 was
designed for solving nonstiff differential equations when derivative evaluations are inexpen-3 sive and the accuracy requirements are low (less than 8 significant digits). The routine
employs the fourth-fifth order Runge-Kutta-Fehlberg formulae.

3 CALL RKF45(F, n, Y T, TOUT,RERR,AERR,IND,WKIWK)

The argument F is the name of a user defined subroutine that has the format:
CALL F(t, Y,DY)

Y and DY are arrays of dimension n. On input Y contains the values yi(t), . .. , yn(t) for the
argument t. F computes the derivatives y1 (t), .. . ,y' (t) using y'(t) = f(t, y(t)) and stores
the results in DY. F must be declared in the calling program to be of type EXTERNAL.

WK is an array of dimension 3 + 6n or larger, and IWK is an array of dimension 5 or
larger. WK and IWK contain information needed for subsequent calls to RKF45.

The argument Y of RKF45 is an array of dimension n, and the arguments T, RERR,
IND are variables. (TOUT and AERR need not be variables.) When RKF45 is initially
called, it is assumed that:I T==a

TOUT = b
Y(1), .. ,Y(n) contain the values yi(a), ... ,y,,(a)I . . ..................RERR = the relative error tolerance to be satisfied
AERR = the absolute error tolerance to be satisfied
IND = ±1I . . .............Normally IND = 1. However, if only a single step in the direction of TOUT is to be taken,

then set IND = -1.

On output T is set to the point closest to TOUT for which the equations were solved,
and Y contains the solution at T. Also IND reports the status of the results. RKF45 sets
IND to one of the following values:

IND = 2 The equations were successfully solved at TOUT. T now has the
value TOUT.

IND = -2 A single step in the direction of TOUT was taken.I . . ................IND = 3 The error tolerance RERR was too small. RERR has been reset
to a larger acceptable value.

IND = 4 3000 derivative evaluations were performed. More derivative eval-I .. ...........................uations are needed to reach TOUT.
IND = 5 RKF45 did not reach TOUT because AERR = 0. AERR must be

made positive.I . ................IND = 6 Too much accuracy has been requested. AERR and/or RERR
must be increased in value.
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IND = 7 The closeness of the output points is restricting the, natural step I
size choice.

IND = 8 No computation was performed. An input error was detected. The
user must correct the error and call RKF45 again.

If IND = 2 then the equations have neen solved at TOUT = b. The arrays WK and
IWK contain information that can often be reused in continuing along the axis and solving I
the equations at a new point c. To continue the integration the user need only reset TOUT
to the new point c and call RKF45 again.

If IND = -2 then to continue the integration another single step just call RKF45
again. In the single step mode (IND = -1, -2) the user must keep in mind that each step
taken is in the direction of the current TOUT. Upon reaching TOUT (which is indicated by I
IND being set to 2), the user may then define a new TOUT and set IND to ±2 for further
integration.

If IND = 3 or 4 then to continue the integration just call RKF45 again. However, if
IND = 5 then the user must first reset AERR to be positive before RKF45 can be recalled.
If IND = 6 then it is required that IND be reset to ±2 and that AERR and/or RERR
be increased in value. If this is not done then the run will be terminated by a STOP
instruction!

If IND = 7 then the user should either switch to another routine, or he should use the I
one step mode, setting IND =-.-2 for the next call to RKF45. This situation is discussed
in the Initial Value Solvers - Introductory Comments section. If the user insists on
continuing the integration with RKF45 in the standard multistep mode, then it is required I
that IND be reset to 2 before RKF45 is recalled. If this is not done then the run will be
terminated by a STOP instruction.

If after going from a to b, RKF45 is recalled to continue the integration and solve
the equations at a new point c, then it is important that IND be set to ±2 instead of
±1. Setting IND = ±1 causes the integration process to be restarted, thereby eliminating I
the information being saved in WK and IWK. Restarting wastes time and is normally not
needed. The one exception is when the direction of integration is to be reversed. Then the
integration must be restarted. I
Notes.

(1) AERR and RERR can be modified each time that RKF45 is called. |
(2) When continuing an integration, one may switch from the standard multistep mode

(IND = 2) to the one step mode (IND = -2) whenever it is convenient to do so. I
Input Errors. IND = 8 occurs when one of the following conditions is violated:

(1) n > 1
(2) T + TOUT when IND # ±1
(3) RERR > 0 and AERR > 0
(4) IND =1,±2,3,4,.. ,8
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Error Control. Pure absolute error control is not permitted. If RERR = 0 then RERR is
reset to the smallest tolerance that is permitted for the computer being used, IND is set to
3, and the routine terminates.

When going from T to TOUT, RKF45 continually adjusts and readjusts its step size so
as to maintain accuracy at each step. Assuming that RKF45 has obtained the correct value
for y(t), let ei denote the error generated in the computation of yv(t + h) for i = 1, .. . , n
when RKF45 steps from t to t + h. Then at each step the error is controlled so that

ile<l Iydt)I +jY*(t+h)I RERR + AERR

for i = 1, . .. , n. However, no attempt is made to control the progressive erosion of accuracy
that can occur when the steps accumulate. Since the erosion of accuracy can be significant,
at times one may wish to double-check the results. This can best be done by comparing the
results obtained by RKF45 with those obtained by ODE or GERK. If ODE is used then
ask for greater accuracy. However, if GERK is used then the current error tolerances can
be used. GERK is more accurate than RKF45, and it estimates the global error generated.

Programming. RKF45 employs the subroutines RKFS and FEHL. These routines were
written by H. A. Watts and L. F. Shampine (Sandia Laboratories). The function SPMPAR
is also used.

References. Shampine, L. F.,and Allen, R. C.,Numerical Computing: An Introduction,
W. B. Sanders, Philadelphia, 1973.
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ADAPTIVE RKF SOLUTION OF NONSTIFF DIFFERENTIAL EQUATIONS
WITH GLOBAL ERROR ESTIMATION

Let y' (t) = f(t, y(t)) denote a system of n ordinary first order differential equations
where f(t, y) = (fi (t, Y), .. *, f. (t, y)) and y(t) = (y1 (t), ... , y, (t)). Assume that y(a) is
known. Then for b # a the subroutine GERK is available for computing yeb). GERK was
designed for solving nonstiff differential equations when derivative evaluations are inexpen-
sive and the accuracy requirements are low (less than 8 significant digits). The routine
employs the fourth-fifth order Runge-Kutta-Fehlberg formulae. GERK estimates the accu-
racy of the solution y(b).

CALL GERK (F, n, Y. T, TOUT,RERRAERR,IND,GERROR,WK,IWK)

The argument F is the name of a user defined subroutine that has the format:
CALL F(t, Y. DY)

Y and DY are arrays of dimension n. On input Y contains the values yj (t), ... X yn (t)
for the argument t. F computes the derivatives y' (t), .. n, y(t) using y'(t) = f(t, y(t))
and stores the results in DY. F must be declared in the calling program to be of type
EXTERNAL.

WK is an array of dimension 3 + 8n or larger, and IWK is an array of dimension 5 or
larger. WK and IWK contain information needed for subsequent calls to GERK.

The argument Y of GERK is an array of dimension n or larger, and the arguments T
and IND are variables. (TOUT, RERR, AERR need not be variables.) When GERK is
initially called, it is assumed that:

T = a
TOUT = b
Y(1), ... ,Y(n) contain the values yj (a), ... ,!,(a)
RERR = the relative error tolerance to be satisfied
AERR = the absolute error tolerance to be satisfied
IND = ±1

Normally IND = 1. However, if only a single step in the direction of TOUT is to be taken,
then set IND = -1.

GERROR is an array of dimension n or larger. On output T is set to the point closest to
TOUT for which the equations were solved, Y contains the solution at T, and GERROR(i)
is an estimate of the error of Y(i) for i = 1, ... ,n. Also IND reports the status of the
results. GERK sets IND to one of the following values:

IND = 2 The equations were successfully solved at TOUT. T now has the
value TOUT.

IND = -2 A single step in the direction of TOUT was taken.
IND = 3 9000 derivative evaluations were performed. More derivative eval-

uations are needed to reach TOUT.
IND = 4 GERK did not reach TOUT because AERR = 0. AERR must be

made positive.
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:~~~~~~~~~~~
IND = 5 Too much accuracy has been requested. AERR and/or RERR I

must be increased in value.
IND = 6 The closeness of the output points is restricting the natural step

size choice. I
IND = 7 No computation was performed. An input error was detected. The

user must correct the error and call GERK again.

If IND 2 then the equations have been solved at TOUT = b. The arrays WK and
IWK contain information that can often be reused in continuing along the axis and solving
the equations at a new point c. To continue the integration the user need only reset TOUT I
to the new point c and call GERK again.

If IND = -2 then to continue the integration another single step just call GERK again. 3
In the single step mode (IND =-1, -2) the user must keep in mind that each step taken
is in the direction of the current TOUT. Upon reaching TOUT (which is indicated by IND
being set to 2), the user may then define a new TOUT and set IND to ±2 for further 3
integration.

If IND = 3 then to continue the integration just call GERK again. However, if IND =

4 then the user must first reset AERR to be positive before GERK can be recalled. If IND
= 5 then it is required that IND be reset to ±2 and that AERR and/or RERR be increased
in value. If this is not done then the run will be terminated by a STOP instruction!

If IND = 6 then the user should either switch to another routine, or he should use the
one step mode, setting IND -2 for the next call to GERK. This situation is discussed
in the Initial Value Solvers - Introductory Comments section. If the user insists on I
continuing the integration with GERK in the standard multistep mode, then it is required
that IND be reset to 2 before GERK is recalled. If this is not done then the run will be
terminated by a STOP instruction.

If after going from a to b, GERK is recalled to continue the integration and solve.
the equations at a new point c, then it is important that IND be set to ±2 instead of
±1. Setting IND = ±1 causes the integration process to be restarted, thereby eliminating
the information being saved in WK and IWK. Restarting wastes time and is normally not
needed. The one exception is when the direction of integration is to be reversed. Then the
integration must be restarted.

Notes. 3
(1) AERR and RERR can be modified each time that GERK is called.
(2) When continuing an integration, one may switch from the standard multistep mode

(IND =2) to the one step mode (IND = -2) whenever it is convenient to do so. 3
Input Errors. IND = 7 occurs when one of the following conditions is violated:

(1) n > 1
(2) T TOUT when IND ;4 ±1
(3) RERR > 0 and AERR > 0
(4) IND =1, ±2, 3, 4, ... , 7

470 I
: |~~~~~



Accuracy Considerations. Error control in GERK is almost identical to that in RKF45.
One minor difference is that GERK never employs relative error tolerances less than 3.10-1l,
whereas RKF45 never employs relative error tolerances less than 10-12.

The only significant difference between GERK and RKF45 is that GERK generates
two solutions for the differential equations, whereas RKF45 generates only one. Let y(t)
and g(t) denote the solutions generated by GERK at point t. One of these solutions, say
y(t), will frequently be identical to the solution computed by RKF45. When going from t
to t + h, the step size h is selected so that y(t + h) satisfies the local error criterion. After
a suitable h is found then GERK takes two steps, each of length h/2, to generate g(t + h)
from 9(t). When GERK terminates, say at point T, then the j(T) solution is stored in the
Y array and GERK estimates the error of ti(T) to be (yi(T) - i(T))/31 for i = 1, ... , n.

Programming. GERK employs the subroutines GERKS and FEHL. These routines were
written by H. A. Watts and L. F. Shampine (Sandia Laboratories). The function SPMPAR
is also used.

Reference. Shampine, L. F., and Allen, R. C., Numerical Computing: An Introduction,
W. B. Saunders, Philadelphia, 1973.
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ADAPTIVE SOLUTION OF STIFF DIFFERENTIAL EQUATIONS

Let y'(t) = f (t, y(t)) denote a system of n ordinary first order differential equations where
f(ty) = (fi(t, y), . .. ,f.(ty)) and y(t) = (y1(t), -..,y.(t)). Assume that y(a) is known.
Then for b 54 a the following subroutines are available for computing y(b). These routines
are designed for stiff differential equations. The algorithm used is a variable order, variable
step backward differentiation procedure.

CALL SFODE(F. n,Y.T,TOUT,INFO,RERRAERR,IER,
WKeIWKmRD,ID)

RD and ID are arrays defined by the user containing any real and integer data that is
needed for computing f. These arrays may contain any information that the user desires.
The argument F is the name of a user defined subroutine that has the format:

CALL F(t, Y,DY,RD,ID)
Y and DY are arrays of dimension n. On input Y contains the values Y1 (t), . . . , y (t) for the
argument t. F computes the derivatives yV(t), ... ,y' (t) using y'(t) = f(t, y(t)) and stores
the results in DY. F must be declared in the calling program to be of type EXTERNAL.

INFO is an array of dimension 4, WK an array of dimension e, and IWK an array of
dimension m. WK and IWK are work spaces for the routine, and INFO is an array defined
by the user containing information on how the equations are to be treated.

INFO(1): Set INFO(1) = 0 on an initial call to the routine. On a continua-
tion call INFO(1) = 1.

INFO(2): Normally INFO(2) = 0. However, INFO(2) = 1 when the inter-
mediate output mode is desired (see below).

INFO(3): When INFO(3) = 0, SFODE proceeds from a to b using the largest
steps that are appropriate. If b is passed then y(b) is obtained by
interpolation. However, for some problems the routine cannot be
permitted to step past a point TSTOP because y'(t) = f(t, y(t))
is discontinuous or not defined beyond TSTOP. When this is the
case set INFO(3) = 1 and WK(1) = TSTOP.

INFO(4): When proceeding from a to b, the n x n Jacobian matrix Jf(t) =
(a fi/ayi) is computed and stored in WK. Normally it is assumed
that

INFO(4) = 0
e > 250 + 10n + n 2
m > 55+n.

However, if Jf(t) is banded for all t, having the lower and upper
band widths mt and mu where 2 mt + mu < n, then the following
setup can be used:

INFO(4) = 1
IWK(1) =m
IWK(2) =mu

t > 250 + 10n + (2mt + mu + 1)n
m > 55+ n
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T, TOUT, RERR, and AERR are variables, and the argument Y of SFODE is an
array of dimension n. On an initial call to the routine it is assumed that

INFO(1) = 0
T = a
TOUT = b
Y(1), ... ,Y(n) contain the values y1(a), ... )yn(a)
RERR = the relative error tolerance to be satisfied (RERR > 0)
AERR = the absolute error tolerance to be satisfied (AERR > 0).

IER is a variable. When SFODE terminates T is the final point where the equations
were solved, Y contains the solution at T, and IER reports the status of the results. IER
is assigned one of the following values:

IER = 1 A step was taken in the intermediate output mode. TOUT was
not reached. To continue, call the routine again.

IER = 2 The solution at TOUT was obtained by stepping exactly to TOUT.
IER = 3 The solution at TOUT was obtained by stepping past TOUT and

then interpolating. On output T = TOUT.
IER = -1 500 steps have been taken. TOUT has not been reached. To

continue, call the routine again.
IER = -2 The tolerances RERR and AERR were too stringent. RERR and

AERR have been modified by the routine. The tolerances may be
further modified by -the user if he desires. To continue, call the
routine again.

IER = -3 In this case AKRR = 0. SFODE stopped when y% became 0.
INFO(1) was set to -i. To continue set AERR to be positive,
INFO(1) = 1, and call the routine again.

IER = -6 Convergence failed on the last attempted step. An inaccurate
Jacobian matrix may be the problem. To continue, restart the
routine by setting INFO(1) = 0 and call the routine again.

IER = -7 Repeated error test failures occurred on the last attempted step.
The problem should be reexamined. A singularity may be present
in the solution. To continue, restart by setting INFO(1) = 0 and
call the routine again.

IER < -33 An input error was detected (see below).
When IER > -2, then INFO(1) = 1 on output.

When the equations are solved at TOUT (IER = 2 or 3), integration can be continued
along the axis to solve the equations at a new point c beyond TOUT. To continue, one
need only set TOUT to the new value c and call the routine again. When continuing an
integration where INFO(1) = 1, never modify T, Y, WK, IWK, INFO(3), and INFO(4).
However, INFO(2), RERR, AERR, RD, and ID may be modified at any time.

Intermediate Output Mode. If one wishes to study the behavior of the solution y(t) as
the routine steps from T to TOUT, then set INFO(2) = 1. Then SFODE will stop after
each successful step (yielding IER = 1) until TOUT is reached. One may switch from the
standard mode of operation (INFO(2) = 0) to the intermediate output mode (INFO(2) =
1) or visa versa at any time.
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Remark. The diagnostic IER = -1 does not state that 500 steps have been taken on
the current call to SFODE. On an initial call to the routine the step counter is set to 0.
On continuation calls, the counter continues to increase until 500 steps have accumulated.
When IER = -1 is reported, the counter is reset to 0, and only then does the step counting3 begin again.

Input Errors. IER is set to one of the following values when an input error is detected.

IER=-33 n<1
IER = -34 RERR < 0
IER = -35 AERR < 03 IER = -36 The routine has been called with TOUT, but it has also been told

not to step past the point TSTOP.
IER = -37 T = TOUT. This is not permitted on continuation calls.
IER = -38 The user has modified T.
IER = -39 TOUT is not beyond T. An attempt is being made to change the

direction of integration without restarting.
IER = -40 The Jacobian matrix is banded. However, me and mu do not

satisfy 0 < me < n and 0 < mu < n.
IER = -41 e < 250 + 10n + n2

3 IER =-42 e < 250 + 10n + (2mt + mu + l)n
IER = -43 m < 55+ n
IER = -44 INFO(1) is incorrect.

| After the error is corrected, set INFO(1) = 0 and call the routine again.

Error Control. Assuming that SFODE has the correct value for y(t), let es denote theI error generated in computing y1(t + h) for i = 1, . . ., n when SFODE steps from t to t + h.
The routine attempts at each step to maintain the accuracy 1 Eei/wj3 2 < 1 where w. =
RERR Iyi(t)I + AERR. When this criterion is satisfied, leiI < Meiws for i = 1, ... ,n. ThisI : criterion includes as special cases relative error (AERR = 0) and absolute error (RERR =
0). However, if AERR = 0 and yi(t) = 0 for some i, then this criterion cannot be applied
and IER = -3 occurs.3 When proceeding from T to TOUT, the routine continually readjusts its order and step
size so as to maintain accuracy at each step. However, no attempt is made to control the
progressive erosion of accuracy that can occur when the steps accumulate. Since the erosion3 of accuracy can be significant, at times one may wish to double-check the results. If the
problem is nonstiff or mildly stiff for an interval, then the best procedure is to compare the
results obtained by SFODE with those obtained by ODE for the interval. ODE normally
maintains greater accuracy than SFODE. However, if the problem is extremely stiff then
rerun the problem with SFODE. On the second run, request greater accuracy.

Programming. SFODE calls the subroutines STFODE and ZZZJAC. STFODE employs
the subroutines LSOD1, HSTART, INTYD, STOD, CFOD, PJAC, SLVS, SGBFA, SGBSL,
SGEFA, SGESL, SAXPY, and SSCAL, and the functions VNORM, VNWRMS, ISAMAX,
SDOT, and SPMPAR. The routines save and exchange information in a labeled commonI block having the block name DEBDF1. STFODE is a modification by A. H. Morris of the
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subroutine DEBDF, designed by L. F. Shampine and H. A. Watts (Sandia Laboratories). I
R3EBDFbappearsin:tlhe SLATEC library. STFODE is a driver for a modification of the
codel8OBE0iwitten by A. C. Hindmarsh (Lawrence Livermore Laboratory).

-- r F I;n;f 
C-LLS FOD E1 (F, Y. T,TOUTINFO ,RERR,AERRIER,

WK,t,IWK,m,RD,ID)

SFQX1 differs from SFODE only in the treatment of RERR and AERR. In SFODE1,
RERR and AERR are arrays of dimension n. RERR(i) and AERR(i) are relative and
absolute error tolerances to control the accuracy of the i&1 solution component yi(t) for
i = 1, .. ., n. Let es denote the error generated in the computation of y1(t + h) from y (t)
when SFODE1 steps from t to t + h. Then SFODE1 attempts at each step to maintain the
accuracy 12.(ei/W )

2 < 1 where wi = RERR(i)jyj(t)j + AERR(i). When this criterion is
satisfied IejI < w for i 1, . . . , n. However, if AERR(i) = 0 and yi(t) = 0 for some i,
then the criterion cannot be applied and IER = -3 occurs.

When IER references RERR and AERR, the settings for IER provide the following I
information:

IER = -2 The accuracy required by RERR and AERR is too stringent.
RERR and AERR have been modified by -the routine. RERR
and AERR may be further modified by the user if he desires. To
continue, call SFODE1 again.

IER = -3 SFODE1 stopped when yi became 0 and AERR(i) = 0. INFO(1)
was set to -i. To continue set AERR(i) to be positive, INFO(1)
= 1, and call the routine again.

IER = -34 (Input error) RERR(i) < 0 for some i. f 

IER = -35 (Input error) AERR(i) < 0 for some i.
RERR and AERR may be modified on any continuation call to SFODE1.

Programming. SFODE1 calls the subroutines STFODE and ZZZJAC.
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FOURTH-ORDER RUNGE-KUTTA

Let y'(t) = f(t, y(t)) denote a system of n ordinary first order differential equations
where f(ty) = (f1(ty), . . . , f(t,y)) and y(t) = (y (t)- . , V.(t)). Assume that y(to) is
known. Then for a small real number A, the subroutine RK is available for computing
y(to + A). RK employs the standard fourth-order Runge-Kutta procedure.

CALL RK(n,T,h,A,F)

The argument F is the name of a user defined subroutine that has the format:
CALL F(t,Z)

Z is an array of dimension n containing the values yi(t),.. .,yn(t) for the argument t. F
computes the derivatives y'(t), .. ,y' (t) using y'(t) = f (t, y(t)) and stores the results in Z,
thereby destroying the original data in Z. F must be declared in the calling program to be
of type EXTERNAL.

T is a variable having the value to and A an array of dimension 3n or larger. It
is assumed that A(1), . .. ,A(n) contain the values yj(to), ... ,yn(to). If h = 0 then RK
computes the derivatives y'(to), ... ,t (to) and stores them in A(n + 1), . . ,A(2n). If

: A 0 then it is assumed that the derivatives y'(to), . . . ,y' (to) have already been computed
and stored in A(n + 1), .. . , A(2n). In this case, when RK is called, the values yi(to +
h), . . . , yn (to + h) and derivatives y' (to + h), . . . , y.' (to + h) are computed and stored in
A(1), ... , A(2n). Also T is reset to the value to + h.

Note. The area A(2n + 1), ... , A(3n) serves as work space for the routine.

Example. Consider the equations
2'(t) = Y(t)
VWt =-2(t)

where x(0) = 0 and y(O) = 1. The following code may be used for solving these equations
at the points .01, .02, ... , 1.00, and storing the results in the arrays X and Y.

DIMENSION A(6), X(100), Y(100)
EXTERNAL FUN
T =0.0
H = .01
A(1) = 0.0
A(2) = 1.0
A(3) = 1.0
A(4) = 0.0
DO 10 I= 1, 100
CALL RK(2,T,H,A,FUN)
X(I) = A(1)

10 Y(I) = A(2)
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Here FUN may be defined by: I
SUBROUTINE FUN(T,Z)
DIMENSION Z(2)
x = Z(1)
Y = Z(2)
Z(1) Y
Z(2) -x 
RETURN
END

Note that the statements A(3) = 1.0 and A(4) = 0.0, which store the derivatives z'(0) and
y'(0) in A(3) and A(4), can be replaced with CALL RK(2,T,0.0,A,FUN).

Programmer. A.H. Morris.
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EIGHTH-ORDER RUNGE-KUTTA

Let y'(t) = f(t, y(t)) denote a system of n ordinary first order differential equations
where f(ty) = (fi(ty), ... jfn(t)) and y(t) = (y1(t), ... ,yn(t)) Assume that y(to) is
known. Then for a small real number h, the subroutine RK8 is available for computing
y(to + h).

CALL RK8(n,Th,Y.DY,WK,F)

The argument F is the name of a user defined subroutine that has the format:
CALL F(t,Z)

Z is an array of dimension n containing the values y1 (t),... ,yn(t) for the argument t. F
computes the derivatives 1 (t), . . . ,y' (t) using y'(t) = f (t, y(t)) and stores the results in Z,
thereby destroying the original data in Z. F must be declared in the calling program to be
of type EXTERNAL.

T is a variable having the value to, and Y and DY are arrays of dimension n. It is
assumed that Y contains the values yi(to),. .- ,vy(to). If h = 0 then RK8 computes the
derivatives y'(to), . .. , y' (to) and stores them in DY. If h :A 0 then it is assumed that the
derivatives y'(to), ... ,y' (to) have already been computed and stored in DY. In this case,
when RK8 is called, the values Yi (to + h), .. , Yn (to + h) and derivatives y' (to + h),
y' (to + h) are computed and stored in Y and DY, thereby destroying the original data in
Y and DY. Also T is reset to the value to + h.

WK is an array of dimension 8n or larger that is used for a work space by the routine.

Algorithm. The routine employs formulae (8-12) given on p. 34 of the reference.

Remarks. RK8 is used in the same manner as the routine RK. RK8 takes more time and
storage than RK, but may be more accurate.

Reference. Shanks, E. B., "Solutions of Differential Equations by Evaluations of Functions,"
Math. Comp. 20 (1966), pp. 21-38.

Programmer. A. H. Morris
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SEPARABLE SECOND-ORDER ELLIPTIC EQUATIONS
ON RECTANGULAR DOMAINS

Given a separable elliptic equation

a(z)u sf + b(x)u, + c(z)u + d(y)usy + e(y)utt + f(y)u = g(zx, y)

on the rectangle a -< x < a2 ,bi < y < b2, where u is periodic in z or y, or u or its normal
derivative au/On is given on each of the edges. For mn > 1 let xi = a1 + (i - 1)h and
yi = bi + (j-1)k where h = (a2 - aj)/(m - 1),k = (b2 - bl)/(n -1), i = 1, ...,m,and
j = 1, ... , n. Then the subroutine SEPDE is available for computing u at the points (zx, yj).

CALL SEPDE(COFX,COFY,g,ITYPEBVALIORD,al, a2 , m,b1 , b2, n,
U,kuW, £,IND)

It is assumed that m > 7 and n > 6. U is an m x n matrix. The argument ku is the
number of rows in the dimension statement for U in the calling program. When SEPDE
is called, if the elliptic equation is solved then U(ij) = utxi,yj) for i = 1, ... ,m andj= 1,..n.

The input argument IORD is the order of the approximation procedure to be used.
IORD may have the values 2 or 4.

The argument COFX is the name of a user defined subroutine that has the format:
CALL COFX(x, A, B;C)

A, B, and C are variables. COFX sets A = a(x), B = b(x), and C = c(x) for the argument
x. COFX must be declared in the calling program to be of type EXTERNAL.

The argument COFY is the name of a user defined subroutine that has the format:
CALL COFY(y, D, E, F)

D, E, and F are variables. COFY sets D = d(y), E = e(y), and F = f(y) for the argument
y. COFY must be declared in the calling program to be of type EXTERNAL.

The argument g is the name of a user defined function, where g(z,y) gives the right
hand side of the elliptic equation for all a1 < a < a2 , bl < Y < N2. The argument g must be
declared in the calling program to be of type EXTERNAL.

Boundary Conditions. The edges of the rectangular domain are labeled in a clockwise
manner as follows:

i=3 edgel= {(x,b 1) ja, 3 <za2}
i=2 i=4 edge2={(aly) bi <y<b2 }

edge 3 = {(zb2 ) a1 < z< a 2 }
ill edge4={(a2,y)fb0<Y<b2 }

ITYPE is an array of dimension 4. For edge i (i = 1, ... , 4), ITYPE(i) specifies the type of
boundary condition on the edge. ITYPE(i) must be set by the user to one of the following
values:

ITYPE(i) = 0 It is assumed that u is given on the edge.
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ITYPE(i) = 1

ITYPE(i) = - 1

If i = 1 or i = 3 then uY is given on the edge. Otherwise, if i = 2
or S = 4 then us is given on the edge.,
If i = 1 or i = 3 then it is assumed that u is periodic in y; i.e.,
u(X,y+b2 - bl) = u(x,y) for all x,y. In this case ITYPE(i) must
be--forbothi= 1 andi=3. Ifi=2ori=4thenit is assumed
that u is periodic in z; i.e., u(x + a2 - a, y= u(z, y) for all z, y.
In this case ITYPE(i) must be -1 for both i = 2 and i = 4.

The argument BVAL is the name of a user defined function. BVAL(i, z, y) is defined for
any point (X, y) on edge i when ITYPE(i) = 0 or 1, where

f u(z, y) if ITYPE(i) = 0

BVAL(i,z,y) = uy(z,y) if ITYPE(i) 1 (i = 1 or i = 3)
us (x, y) if ITYPE(i) = 1 (i = 2 or i = 4)

The function BVAL(i,X,y) is ignored when ITYPE(i) =-1. BVAL must be declared in
the calling program to be of type EXTERNAL.

W is an array of dimension e that is a work space. The argument e is a variable whose
value depends on IORD, m, n, and the types of boundary conditions used. Let v be the
largest integer < log2 n and f= (v -1)2i+2 + v + 14m + 12n + 6. Then

e> El if IORD = 2.
e > el + mn if IORD = 4.

When the routine terminates, f will have been reset to the actual amount of storage
needed.,

IND is a variable that reports the status of the results. When SEPDE terminates, IND
has one of the following values:

IND= 0 The solution U was obtained.
IND =-1 A constant (which is stored in W(1)) was subtracted from the

right hand side of the equation in order to obtain a solution U.
The solution is a weighted minimal least squares solution of the
original problem.

IND = 1 (Input error) al > a2 or b1 > b 2 -

IND = 2 (Input error) ITYPE(i) if 0,±1 for some edge i.
IND = 4 The approximating linear system of equations is not diagonally

dominant. This cannot occur when m and n are sufficiently large.
Increase m and n, and reset e.

IND 5 (Input error) ku < m.
IND = 6 (Input error) m < 7.
IND = 7 (Input error) n < 6.
IND = 8 (Input error) IORD # 2,4.
IND = 10 (Input error) a(x)d(y) < 0 for some interior point (x, y) of the

rectangle. This violates the assumption that the equation is ellip-
tic.

IND= 11 (Input error) e was too small. e has been reset to the minimum
amount of storage needed for W.
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Il

IND = 12 (Input error) ITYPE(i) = -1 for edge 1 or 3, but not for both
edges.

IND = 13 (Input error) ITYPE(i) = -1 for edge 2 or 4, but not for both
edges.

Precision. If IORD = 2 then the elliptic equation is approximated by a set of linear equa-
tions using finite differences. Otherwise, if IORD = 4 then the approximating equations
are obtained by deferred corrections. The most accuracy is achieved when ITYPE(i) = 1
boundary conditions are not involved. For mn > 100, 3-4 digit accuracy may be attained
when IORD = 2 and 7-8 digit accuracy when IORD = 4. When ITYPE(i) = 1 boundary
conditions are used, then for m, n > 100, 2-3 digits may be attained when IORD = 2 andI 5-6 digits when IORD = 4.

Programming. SEPDE is an interface by A. H. Morris for SEPELL, a modification of the
routine SEPELI described in the reference. SEPELI was developed by John C. Adams, being
supported (in part) by codes written by Paul Swarztrauber and Roland Sweet (National
Center for Atmospheric Research, Boulder, Colorado). SEPDE employs the subroutines
PDEDGE, SEPELL, SEPEL1, CHKPRM, CHKSNG, ORTHG; MINSOL, TRISP, DEFER,
DXFN, DYFN, BLKTRI, BLKTR1, COMPB, PRODOj PRODP, CPRODO, CPRODP, IN-
DXA, INDXB, INDXC, PPADD, TQLRTO and functions PSGF, BSRH, PPSGF, PPSPF,
SPMPAR. The routines exchange information in the labeled common blocks having block

names CBLKT and SPLP.

Example. Consider (1+X)2u,--2(1+x)u+uy, = 3(1+x) 4 siny for0 < x < 1 and lyI < ir

where ux(0,y) = 4siny IYI < ?r

u(l,y) = 16sin y

and u is periodic in y. This problem has the solution u = (1 + :) 4 sin V. Let

I | ~~~ITYPE(1) = -1
ITYPE(2) = 1
ITYPE(3) = -1
ITYPE(4)- = 0.

Then the following routines and functions may be used for describing the problem. (Here
g = GVAL.)

SUBROUTINE COFX (X,A,B,C)
T =1.0 + X
A =T*T
B =-2.0*T
C=O.O
RETURN
END

H SUBROUTINE COFY (Y,D,E,F)
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D =1.0
E =0.0
F = 0.0
RETURN
END

REAL FUNCTION GOVAL (X,Y)|
GVAL = 3.0*(1.0 + X)* * 4*SIN(Y)
RETURN
END

REAL FUNCTION BVAL (I,X,Y)
BVAL = 4.0*SIN(Y)
IF (I .EQ. 4)BVAL = 4.0*BVAL
RETURN
END

COFX, COFY, GVAL, and BVAL must be declared in the calling program to be of type
EXTERNAL.

Reference. Adams, J., Swarztrauber, P., and Sweet, R., FISHPAK: Efficient FORTRAN
Subprograms for the Solution of Separable Elliptic Partial Differential Equations,
Version 3. National Center for Atmospheric Research, Boulder, Colorado, 1978.
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UNIFORM RANDOM NUMBER GENERATOR

The following subroutine is available for generating a sequence of uniform variates in the
interval (0, 1).

CALL URNG(ix,A,n,IERR)

The argument n is the number of variates to be generated. A is an array of dimension
n or larger, and ix and IERR are variables. On input, ix is an integer (called a seed) for
initializing the sequence of variates. It is assumed that 1 < ix < 231 - 1. When URNG
is called, if no input errors are detected then IERR is set to 0 and n uniform variates are
stored in A. On output, ix is a new seed for generating more variates.

Error Return. IERR = 1 if n < 0 and IERR = 2 if ix is not a proper seed.

Usage. A given seed always initiates the same set of variates. Thus, the following two sets
of instructions

(1) IX = 103
CALL URNG(IX,A,30,IERR)

IX = 103
(2) CALL URNG(IX,A,20,IERR)

CALL URNG(IX,A(21),10,IERR)

generate the same 30 variates.

Remark. It is assumed that the integer arithmetic being used handles all integers i in the
interval It| < 2' - 1.

Programming. Written by Linus Schrage (University of Chicago). Adapted by A.H. Morris.

Reference. Schrage, Linus,"A More Portable Fortran Random Number Generator," ACM
Trans. Math Software 5 (1979), pp. 132-138.
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GAUSSIAN RANDOM NUMBER GENERATOR USING THE
BOX-MULLER TRANSFORMATION

The following subroutine is available for generating a sequence of normal variates from a
normal distribution with mean 0 and standard deviation 1.

CALL NRNG(ix,A,n,IERR)

The argument n is the number of variates to be generated. A is an array of dimension
n or larger, and ix and IERR are variables. On input, ix is an integer (called a seed) for
initializing the sequence of variates. It is assumed that 1 < ix < 231 -1. When NRNG
is called, if no input errors are detected then IERR is set to 0 and n normal variates are
stored in A. On output, ix is a new seed for generating more variates.

Error Return. IERR = 1 if n < 0 and IERR = 2 if ix is not a proper seed.

Algorithm. When NRNG is called, an even number of uniform variates ul, ... ,um is gen-
erated (m = n if n is even and m = n + 1 if n is odd). Then the Box-Muller transformation

ak = - 2 nUkcos27ruk+l

ak+l = - 2lnUksin2vruk+i (k= 1,3,5,...)

is applied to obtain n normal variates a,, .. , an. This transformation generates pairs of
normal variates (aI, a2 ), (as, a4), . . . from the corresponding pairs of uniform variates. If n
is odd then only the first variate of the final pair (an, an+1) is computed.

Usage. A given seed always generates the same sequence of uniform variates. Thus, if we
consider the following three sets of instructions

I: (1) IX=73
CALL NRNG(IX,A,30,IERR)

(2) IX =.73
CALL NRNG(IX,A,10,IERR)
CALL NRNG(IXA(ll),20,IERR)

(3) IX=73
CALL NRNG(IX,A,9,IERR)
CALL NRNG(IX,A(10),20,IERR),

I then we note that (1) and (2) generate the same 30 normal variates. Also (3) produces
29 of these 30 variates, skipping the 1 0 th normal variate. The reason for this is that the
request in (3) for 9 normal variates requires 10 uniform variates to be generated. The 10
uniform variates could be used for computing 10 normal variates (as is done in (2)). How-
ever, since only 9 normal variates are requested, computation of the 1 0 th normal variate

| that would usually be generated is skipped.
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-~~~~~~~~~~~~
Remark. NRNG calls the subroutine URNO for the uniform variates. Thus, it is assumed I
that the integer arithmetic being used handles all integers i in the interval '1l • 231 - 1.

Programmer. A.H. Morris I 

; : ~~~~~I-0~~~~~~~
I

:~~~~~~~~
f - _~~~~~~~~~

:~~~~~~~~~
0 : -~~~~~~~~~
; 0 0 : |~~~~~~~

0 -d : ~~~~~~I

: :~~~~~~~~~~~~
:: : 0_~~~
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APPENDIX

Installation Of The NSWC Library

I Two versions of the code for the NSWC library are maintained, differing only in the
declaration of assumed size arrays. In the 1966 version, statements such as REAL A(1) are
frequently used in declaring as arrays arguments A of a function or subroutine. In the 1977
version, statements such as REAL A(*) are used for declaring the arrays. The 1966 version
must be used by all Fortran compilers which satisfy the 1966 standard, and it may be used
by almost all the compilers which satisfy the 1977 standard. The 1977 version can only be
used by the compilers which satisfy the 1977 standard.

Code for the library can be obtained on 7-track and 9-track tapes, and on 54 inchI disks that can be read by the IBM PC. Two files are given on a tape. The first file contains
the 1966 version of the code, and the second file contains the 1977 version. The 1977 version
is normally provided on the disks.

The first function in the NSWC library, namely IPMPAR, must be modified for the
particular Fortran being used. IPMPAR provides the integer constants which characterize
the integer, single precision, and double precision arithmetics being used (see pp. 3-4).

Instructions are given in the in-line documentation of IPMPAR for defining the
constants that are needed. If constants are not provided for the compiler being
used, then the Fortran manual for the compiler normally gives the constants for
the integer arithmetic. However, help may -be needed in obtaining the constants for
the single and double precision arithmetics. The subroutines MACH and RADIX
are provided for this purpose.

MACH and RADIX, and their subroutines MACHI, STORE2, MACH2, DSTOR2
are the next subprograms after IPMPAR. Instructions for the use of MACH and
RADIX are given in MACH. These subroutines are experimental. They are pro-
vided only as an aid for obtaining the constants for the single and double precision

* arithmetics. They are not used by any of the functions and subroutines in the
NSWC library, and they are not considered to be part of the library. MACHI
and MACH2 perform some writing. None of the functions and subroutines in the
NSWC library perform I/O.

After IPMPAR has been defined, the remainder of the library can be installed. None of
the remaining code needs any modification. Codes for the functions and subroutines appearI approximately in the order that they appear in the manual.
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