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bstract

Designation as a Category B biothreat agent has propelled Coxiella burnetii from a relatively obscure, underappreciated, “niche” microor-
anism on the periphery of bacteriology, to one of possibly great consequence if actually used in acts of bioterrorism. Advances in the study
f this microorganism proceeded slowly, primarily because of the difficulty in studying this obligate intracellular pathogen that must be
anipulated under biosafety level-3 conditions. The dogged determination of past and current C. burnetii researchers and the application
f modern immunological and molecular techniques have more clearly defined the host and bacterial response to infection. This review is
ntended to provide a basic introduction to C. burnetii and Q fever, while emphasizing immunomodulatory properties, both positive and
egative, of Q fever vaccines and C. burnetii infections.
ublished by Elsevier Ltd.
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. Introduction

.1. History

Q fever was first observed in Australia in 1933 as a dis-
ase affecting slaughterhouse workers [1]. Symptoms of this

could not be isolated. At about the same time, ticks were being
collected in Montana USA for investigations into Rocky
Mountain spotted fever. Allowing the ticks to feed on guinea
pigs resulted in a febrile response [2] and their inflammatory
cells contained rickettsia-like microorganisms [3]. Therefore,
reviously uncharacterized disease were fever, headache, and
alaise. Given the uncertain etiology, the disease was given

he name Q fever (for query). However, the infectious agent
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n the US, an infectious microorganism was discovered, but
he disease that it caused was unknown. However, in Australia
new disease was identified, but with an unknown etiology.
In a remarkable mix of serendipity and science, the Q
ever agent and the Montana isolate were demonstrated to be
dentical since guinea pigs that were previously challenged
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ith the Montana tick isolate were resistant to challenge with
he Q fever isolate. Furthermore, serum from a patient previ-
usly infected with the Montana isolate was able to neutralize
he infectivity of the Q fever agent [4]. Although initially
amed Rickettsia diaporica [5] and Rickettsia burnetii [6],
he microorganism was given the name Coxiella burnetii in
948 [7].

.2. Life cycle

C. burnetii is an unusual microorganism, replicating only
ithin the phagolysosomal vacuoles of host cells, primarily
acrophages. During natural infections, the organism grows

o high numbers in placental tissues of goats, sheep, and pos-
ibly cows [8,9]. In the laboratory, C. burnetii is routinely
ultured in chicken embryo yolk sacs, in cell cultures, and can
e recovered in large numbers from spleens of experimentally
nfected mice and guinea pigs [10].

The infectious particles, referred to as small cell variants
SCV), are responsible for the ability to survive extreme
nvironmental conditions of desiccation, heat, sonication,
nd pressure [11,12]. In the host, the infecting SCV develop
nto large cell variants (LCV) that are metabolically active.
he SCV and LCV are antigenically different [13]. Tran-
ition between SCV and LCV is accompanied by changes
n the expression of surface proteins and does not involve
lassical phase variation, which refers to lipopolysaccha-
ide (LPS) structure. Infectious particles have been referred
o as “endospore-like”, but this nomenclature is misleading
ecause they are not structurally similar to Bacillus spores.

Like other Gram-negative microorganisms, C. burnetii
ossesses a LPS that is important in virulence and respon-
ible for the antigenic phase variation, analogous to the
mooth-rough LPS variation seen in enteric Gram-negative
icroorganisms [14,15]. Bacterial isolates from eukaryotic

osts have a phase I (smooth) LPS, which can protect the
icroorganism from microbicidal activities of the host. As

solates are passed in yolk sacs or other immune-incompetent
osts, the phase I LPS character of the bacterial population
radually changes, within approximately 20 yolk sac pas-
ages, to the phase II (rough) form that has chromosomal
eletions in genes responsible for LPS O-side-chain biosyn-
hesis [16,17]. Phase I microorganisms are virulent, while
hase II microorganisms are avirulent in immune-competent
osts. Entry of phase II C. burnetii into host cells is via
he phagolysosomal pathway and the CR3 receptor, whereas
hase I cells bind monocytes via the leukocyte response inte-
rin (�v�3) and integrin-associated protein and are poorly
nternalized [18,19]. LPS is involved in the uptake of virulent,
ut not avirulent variants of C. burnetii, by a toll-like recep-
or (TLR) 4-dependent mechanism [20]. (However, TLR4
oes not seem to be involved in activating macrophages to

e microbicidal [20].) In addition to LPS, suggested viru-
ence determinants include acid phosphatase, com1 protein,
atalase, superoxide dismutase, and macrophage infectiv-
ty potentiator [21,22]. A type IV secretion system might

s
r
Q

2007) 7288–7295 7289

lso facilitate intracellular growth [23]. One strategy the
icroorganism uses to survive in the hostile environment

f the phagolysosome might involve the production of
xygen scavengers [21]. An iron/manganese superoxide
ismutase has been demonstrated and genetic sequenc-
ng has also revealed coding for a copper-zinc superoxide
ismutase [24].

. Pathogenicity/disease

Q fever is most commonly acquired by breathing infec-
ious aerosols or dust contaminated with birth fluids of
omestic ruminants [25]. The infectious dose for humans is
stimated to be 10 microorganisms or fewer [26]. Of the vari-
ty of species that can be infected by C. burnetii, symptomatic
isease seems to be most severe in humans. However, infec-
ion of ruminants is associated with abortion and decreased

ilk production [27,28]. Seropositivity to C. burnetii has also
een associated with adverse human pregnancy outcomes,
ncluding neonatal death [29,30]. Q fever occurs world wide
nd the rates of seropositivity vary. Fourteen percent of
uman sera tested positive in Nova Scotia, Canada [31]. The
athogenesis of human infection is ill defined. Based on stud-
es with animal models, after initial infection at the site of
ntry (usually the lungs), the microorganism is engulfed by
esident macrophages and transported systemically, causing
istopathological changes in the lungs, liver, and spleen [32].
fter uptake by host cells, the acidic conditions within the
hagolysosome allow the bacteria to grow [33]. Eventually,
roliferation within the phagolysosome leads to rupture of
he host cell and infection of a new population of host cells.
n animal models, the spleen and liver and other tissues of the
eticuloendothelial system appear to be most heavily infected,
s is likely the case in human infection [34].

Although the majority of human C. burnetii infections are
symptomatic, overt cases of acute Q fever result in mild to
oderate illness [35]. The incubation period can vary from a

ew days to several weeks and the severity of infection varies
n direct proportion to the infectious dose in normal indi-
iduals [36,37]. There are no characteristic symptoms of Q
ever, but fever, severe headache, and chills tend to be preva-
ent. Fever usually peaks at 40 ◦C and lasts for approximately
3 days [38]. Fatigue and sweats also frequently occur [39].
neumonia is a common clinical presentation [40]. Cough,
ausea, vomiting, myalgia, arthralgia, chest pain, hepatitis,
nd occasionally, splenomegaly, osteomyelitis, and menin-
oencephalitis are symptoms that are also associated with
cute Q fever [39,41]. Fatalities in cases of acute Q fever are
are, with fewer than 1% of cases resulting in death [1]. Chil-
ren develop symptomatic disease less frequently than adults
42].
Although acute Q fever is a self-limited systemic illness,
ome patients develop a chronic debilitating disease. The
isk of developing chronic Q fever after a case of acute

fever ranges to 9% [43]. While chronic Q fever occurs
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ess frequently, it is more pathogenic than acute Q fever.
hronic Q fever can arise years after the initial presentation of
cute disease. Patients with prior coronary disease or patients
mmunocompromised because of disease, such as AIDS, or
herapy, such as immunosuppressive cancer therapy or anti-
ejection therapy after organ transplant, are more at risk for
eveloping chronic Q fever [44,45]. Endocarditis, primarily
f the aortic and mitral valves [46], is the most common man-
festation of chronic Q fever. Approximately 90% of Q fever
ndocarditis patients have pre-existing valvular heart disease
47]. Of acute Q fever patients with cardiac valve abnormal-
ties, as many as one-third develop endocarditis [48].

Approximately 10% of people recovering from acute Q
ever have fatigue lasting for longer than 6 months [49].
he cause of this syndrome, called Q fever fatigue syn-
rome, is thought to be high levels of cytokines, including
nterleukin (IL)-10, stimulated by persisting C. burnetii anti-
ens [50]. Predisposing genetic factors resulting in immune
ypersensitivity [51] that leads to higher levels of C. bur-
etii genomes in bone marrow and increased shedding into
he peripheral blood are also thought to make patients more
usceptible to developing Q fever endocarditis and chronic
atigue syndrome. For example, patients harboring the HLA
RB1*11 allele were more likely to develop Q fever fatigue

yndrome. However, patients with chronic Q fever endocardi-
is were more likely to have differences in the IL-10 promoter

icrosatellites R and G and to have the TNF-alpha receptor
I 196R polymorphism.

Whether C. burnetii strains associated with acute Q fever
re genetically different from strains causing chronic disease
s controversial. An immunodominant 28-kDa protein was
ound to be associated with strains causing acute Q fever, but
ot chronic disease [52]. In addition, allelic differences of
everal strains associated with chronic Q fever were not found
ssociated with strains causing acute disease [53]. There-
ore, it seems likely that the disease course in humans is
elated to the strain of the infecting microorganism. An unre-
olved question is whether humans ever completely clear the
icroorganism after infection. Coxiella DNA was found in

he bone marrow of 88% of patients tested who had primary Q
ever 12 years previously [49]. Chronic Q fever could result
rom sequestration of C. burnetii in the bone marrow with
ubsequent seeding of other tissues, such as the endocardium.

Control of infection is mediated by monocytes and
acrophages that are activated by gamma interferon, result-

ng in the production of reactive nitrogen and oxygen
ntermediates, and leading to intracellular killing of the
athogen [54–56]. Although antibodies might facilitate bac-
erial entry into host cells and accelerate the development
f immunity, passive transfer of antibodies, before or after
hallenge, did not control infection [57,58]. Other evidence
hat antibodies are not a primary mechanism of resistance

gainst C. burnetii involves mice unable to express CD28, a
olecule found on NK cells and activated T cells. Although

hese mice produced less IL-10 and fewer antibodies to C.
urnetii than normal mice, they were more resistant to infec-
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ion, having a lower burden of C. burnetii in spleens and
ivers after infection. However, their ability to produce gran-
lomas and inflammatory cytokines was unimpaired [59].
hese data also imply that by inducing IL-10, C. burnetii

nhibits Th1 immune responses and the ability of the host to
ontrol infection.

The patient’s antibody response to C. burnetii infection,
ogether with nonspecific clinical signs and a history of possi-
le exposure, can be used as evidence of recent infection and
ead to therapeutic intervention. Levels of antibody responses
irected against killed phase I and phase II cellular diagnostic
ntigens provide serological evidence that can support a clin-
cal diagnosis of acute Q fever [60,61]. Determining relative
iters of antibodies to phase I and phase II C. burnetii can also
elp distinguish acute from chronic Q fever [62]. Anti-phase
I titers exceed the anti-phase I titers in sera from acute Q
ever patients. However, in chronic Q fever patients, the anti-
hase I titers exceed the titers directed against phase II C.
urnetii. Patients with chronic Q fever endocarditis can also
ave high levels of serum IgA [60,62]. Although the duration
f specific antibody titers against C. burnetii is over 5 years
63], without specific antigen stimulation antibody titers will
ventually decline to negative levels even though the individ-
al is immune. Immune individuals who are vaccinated run
he risk of developing adverse reactions at the vaccination
ite.

Doxycycline is the treatment of choice for human acute Q
ever [35]. Clarithromycin may also be a therapeutic option
64]. However, for treating chronic Q fever and especially
ndocarditis, drug combinations are needed and one of the
ost effective treatments is doxycycline plus hydroxychloro-

uine [65]. The substitution of ofloxacin for chloroquine
ight also be effective [35].

. Modulation of immune responses

C. burnetii uses evasion and suppression of host
mmune responses to survive the hostile environment of the
hagolysosome. As C. burnetii is susceptible to killing by
ctive oxygen and nitrogen intermediates produced by host
ells in response to infection [54], one survival strategy is to
void host cell activation, allowing C. burneii to persist. Phase
C. burnetii does not activate human dendritic cells [66], as
etermined by IL-12p70 production or p38 mitogen-activated
rotein kinase phosphorylation [67]. Similarly, phase I C.
urnetii LPS does not activate host macrophage antimicrobial
esponses via TLR4 [68]. Phase I LPS may mask TLR ligands
rom innate immune recognition, resulting in a lack of surveil-
ance by dendritic cells and persistence of this microorganism
66]. In addition, lipoproteins and lipopeptides from phase I
icroorganisms do not activate macrophages by stimulating

LR2 [68], although TLR2 might play a role in cytokine
roduction and granuloma formation after infection [69].
herefore, by avoiding recognition by TLR, Coxiella can
inimize detection by the host.



ne 25 (

b
p
m
c
i
i
c
i
e
e
w
t
i

m
T
p
p
m
w
w
w
c
s
n
a
f
g
a
r
s
t
k

i
s
t
p
T
o
w
t
t
m
b
c
p
a
A
m
i
w
a

i

i
p
[

4

a
o
c
c
h
I
n
I
m
c
p
p
t
o
p
i
m
v
t
n
[
v
i
t
t
r
o
b
i
i

i
i
t
c
T
v
t
s
I
c
I
c
r

D.M. Waag / Vacci

Particularly notable in cases of chronic Q fever, C.
urnetii can also ensure its intracellular survival by sup-
ressing host immune responses, allowing persistence of the
icroorganism. Peripheral blood cells from patients with

hronic Q fever endocarditis did not proliferate when exposed
n vitro to C. burnetii antigens [70], suggesting that the
mmune response of those patients was inadequate to eradi-
ate the microorganism. This suppressive mechanism could
nvolve the production of prostaglandin E2 and high lev-
ls of tumor necrosis factor, with consequently deleterious
ffects on the host’s immune responses [18,71]. Patients
ith chronic Q fever also exhibited increased IL-10 secre-

ion [72,73], leading to suppressed Th1-mediated cellular
mmunity.

Active suppression of host immune responses has been
ost thoroughly documented in the mouse Q fever model.
he intraperitoneal injection of mice with 100 �g of killed
hase I whole cell vaccine or viable microorganisms sup-
ressed the lymphoproliferative responses of spleen cells to
itogens (concanavalin A, phytohemagglutinin, and poke-
eed mitogen) [74]. Incorporation of radiolabeled thymidine
as also suppressed when spleen cells from these animals
ere exposed to C. burnetii antigens in culture. Spleen

ells from vaccinated mice were not simply unresponsive to
timulation by homologous antigens, they incorporated sig-
ificantly less thymidine than cells cultured in the absence of
ntigen (i.e., stimulation index <1.0). Cultured spleen cells
rom naive mice proliferated in response to C. burnetii anti-
ens. Therefore, the observed antigen-specific suppression
fter phase I antigen priming was not simply a failure to
espond to antigen in vitro, but an event requiring prior sen-
itization by phase I C. burnetii. Suppression was not due
o decreased viability of spleen cells or alteration of cellular
inetics in response to mitogens or antigen.

The components of phase I whole cells that caused
mmunosuppression were given the term “immunosuppres-
ive complex (ISC)” [75]. Investigations into the nature of
hat complex revealed that the ISC could be inactivated and
artitioned by chloroform-methanol (CM) (4:1) extraction.
he suppressive components in either the residue, (CMR)
r extract (CME) did not induce ISC activity in the host
hen given separately. LPS resides in the CMR after extrac-

ion, suggesting that phase I LPS is not the sole contributor
o pathophysiological changes and immunosuppression in

ice [76]. Reconstituting the CMR with CME (in CM)
efore injection into mice produced pathological reactions
haracteristic of phase I cells. The CMR suppressive com-
onent was sensitive to alkali, acid, periodate, lysozyme,
nd neuraminidase, but resistant to lipase and protease [75].

suppressive component of CMR was attached to the cell
atrix by disulphide bonds. Surprisingly, C. burnetii strains

solated from heart valves of immunosuppressed patients

ere not immunosuppressive in mice [77]. However, strains

ssociated with acute Q fever were immunosuppressive [74].
Surprisingly, in light of its immunosuppressive capability

s this microorganism’s ability to also stimulate nonspecific

t
i
b
e
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mmune responses resulting in tumor regression in guinea
igs and resistance to bacterial, protozoan, and viral infection
78–80].

. Vaccines against Q fever

An efficacious Q fever vaccine was developed and avail-
ble for human vaccination only a few years after discovery
f the etiologic agent. This preparation was rather crude,
onsisting of formalin-killed and ether-extracted C. burnetii
ontaining 10% yolk sac, but it was effective in protecting
uman volunteers from disease after aerosol challenge [81].
n those early studies, the antigenic nature of the vaccine was
ot known. More recent vaccines were prepared from phase
microorganisms, as those preparations were 100–300 times
ore potent than phase II vaccines [82]. Improved purifi-

ation methods were eventually developed to exclude egg
roteins and lipids. Vaccine efficacy of these more highly
urified preparations was also demonstrated in human volun-
eers [83]. However, although efficacious, the use of this and
ther early phase I cellular vaccines was occasionally accom-
anied by adverse reactions at the vaccination site, including
nduration or the formation of sterile abscesses or granulo-

as [84]. People with a history of Q fever or those previously
accinated were at risk for developing these adverse reac-
ions [84]. Approximately 3% of persons vaccinated for the
inth and tenth time developed severe persistent reactions
85]. Screening for prior immunity with a skin test that pre-
ented immune individuals from being vaccinated resulted
n a dramatic decrease in the incidence of adverse reac-
ions after vaccination [86]. Currently, skin testing is used
o assess the potential for developing adverse vaccination
eactions, although some laboratories also measure the level
f specific antibodies against C. burnetii [87]. Cellular C.
urnetii vaccines currently in use are safe and efficacious
f the recipients are not immune due to prior C. burnetii
nfection.

The most thoroughly tested Q fever vaccine in use today
s “Q-Vax.” This formalin-killed, phase I cellular vaccine
s produced and licensed for use in Australia [87]. In Aus-
ralian studies, this vaccine was 100% effective in preventing
linical Q fever in occupationally at-risk individuals [87].
he duration of protection was over 5 years. However, this
accine cannot be administered without prior determina-
ion of immunity and exclusion of those testing positive. A
imilar product, while not licensed, is administered as an
nvestigational New Drug in the US and is used to vac-
inate at-risk persons at the US Army Medical Research
nstitute of Infectious Diseases, Fort Detrick, MD. Many
ountries do not have an approved vaccine for Q fever. The
emarkable efficacy of Q-Vax (a vaccine manufactured using

he phase I Henzerling strain originally isolated in Italy)
n Australian trials suggested that there is cross-protection
etween C. burnetii variants. Furthermore, that lymphoprolif-
rative responses of individuals vaccinated with Q-Vax were
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quivalent when peripheral blood cells were cultured in the
resence of Priscilla strain, Henzerling strain, or phase I Nine
ile strain C. burnetii antigens [88] lends support to this

ypothesis.
Although attenuated microorganisms generally are not

sed as Q fever vaccines, a phase II attenuated strain, desig-
ated M-44, was developed from the Greek ‘Grita’ strain in
he former Soviet Union [89]. This vaccine was capable of
ausing adverse reactions in humans and caused myocarditis,
epatitis, liver necrosis, granuloma formation, and splenitis
n guinea pigs [90]. Human vaccinees did not develop anti-
hase I antibodies and anti-phase II levels were variable and
t low titer.

Although the use of cellular Q fever vaccines mandates
esting for prior immunity, there are potential difficulties that
ould be encountered. Using serological titers as an indicator
f immunity might not eliminate the risk of adverse vaccina-
ion reactions as specific antibody titers decrease after acute
nfection [63] and may not accurately reflect the immune sta-
us of the individual. Skin tests are time consuming, costly,
nd would not give accurate results if incorrectly applied
r misinterpreted. Therefore, laboratories are attempting to
evelop Q fever vaccines that will pose a lesser risk if given to
omeone with preexisting immunity. Q fever vaccines that do
ot require screening for prior immunity could reduce costs
nd time associated with vaccination.

One candidate vaccine was prepared by extracting phase
whole cells with a mixture of chloroform and methanol

91]. CMR vaccine (introduced previously) did not cause
dverse reactions in mice at doses higher than those found
ssociated with severe adverse reactions after vaccination
ith phase I cellular vaccine [91]. Phase I human trials

howed that the CMR vaccine could be safely adminis-
ered to human volunteers unscreened for prior immunity
92]. Efficacy of the CMR Q fever vaccine has been demon-
trated in laboratory rodents, sheep, and non-human primates
76,93–95].

Other vaccine candidates have been tested. A fusion pro-
ein, consisting of C. burnetii outer membrane protein 1
P1) and heat-shock protein B (HspB) demonstrated some
rotective efficacy [96]. However, a mixture of eight recom-
inant C. burnetii proteins that were expressed in E. coli
rom potential virulence genes (Omp, Pmm, HspB, Fbp,
rf 410, Crc, CbMip, and MucZ) were found to be anti-
enic (except Pmm) but not protective when BALB/c mice
ere challenged intraperitoneally with the phase I Nine Mile

train [97]. Vaccination with single recombinant C. bur-
etii proteins (Rcom, rP1, rCbMip, or rP28) also was not
rotective [98].

The ultimate goal of current vaccine efforts is to develop an
fficacious vaccine that can be safely administered to indi-
iduals at risk of infection, does not require screening for

rior immunity, and can be licensed. Cellular Q fever vac-
ines probably would not be licensable in the U.S. due to
afety concerns. A licensed Q fever vaccine would benefit
hose occupationally at risk for Q fever, those residing in

a
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reas endemic for Q fever, and soldiers or civilians who may
e exposed as the result of a bioterrorism or biowarfare attack.
mportant questions remaining to be decided include (1) how
oes the microorganism’s ability to persist in the host, cause
dverse outcomes in pregnancy, and modulate host immune
esponses impact vaccination strategy; and (2) since epidemi-
logical surveys suggest that approximately one-seventh of
he population tested have been exposed to C. burnetii, who
hould be vaccinated?

. Perspective

Few microorganisms are as fascinating as this obli-
ate intracellular pathogen that requires the inhospitable
for most bacteria) eukaryotic phagolysosome for growth.
mmunomodulatory capabilities range from immunosup-
ression seen in chronic Q fever patients to nonspecific
timulation after injection of vaccine that is able to regress
umors and allow mice to nonspecifically resist infection. C.
urnetii is also a significant biological warfare agent and dur-
ng the Cold War was weaponized by the Soviets and US
99]. Classification as a Category B biothreat agent, due to
he agent’s high infectivity at low aerosol exposure doses,
reat stability of the infectious particles, and significant dis-
ase morbidity, has stimulated investigations into improved

fever vaccines, diagnostics, and therapy and highlighted
he need for greater understanding of host–pathogen interac-
ions. The pace of research into improved Q fever vaccines
hat can be administered without assessment of prior immu-
ity needs to be accelerated. While the efficacy of cellular Q
ever vaccines is exceptional, these vaccines are not widely
vailable and probably will not be licensed (in the U.S.).
romising subcellular or recombinant Q fever vaccines are
roving to be elusive. However, a vaccine cocktail of appro-
riate recombinant and/or purified subcellular components
dministered with an appropriate adjuvant or targeted to the
ppropriate site could be the key to an efficacious, safe Q fever
accine. Finally, the interplay between the positive and neg-
tive immunomodulatory capabilities of this microorganism
eeds to be better understood.
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