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ABSTRACT 

The success of the Transformational Communications System depends on 

providing high quality communications to the mobile user in any environment.  A hurdle 

to this success is the urban Land Mobile Satellite Channel which experiences frequent 

and extended deep signal fades due to shadowing by man-made structures.  The problem 

is exacerbated for the Communications-on-the-Move channel due to use of a directional 

antenna.  This dissertation evaluates available empirical test data, develops an improved 

channel model and investigates mitigation strategies focused on improving channel 

throughput and latency.  The improved channel model is developed using continuous 

transmission mixed-Gaussian hidden Markov models and Expectation-Maximization 

parameter estimation.  The improved model provides a better match to empirical data 

than previous efforts.  Two fade mitigation strategies are examined.  The first strategy 

involves modification of packet routing protocols.  A detailed, time-based network 

simulation is developed for performance assessment.  Results show substantial reductions 

in packet latency under a broad range of conditions.  The second mitigation strategy is 

based on fade prediction using real-time adaptive linear filters.  Signal inputs from 

directional and non-directional antennas are investigated.  Initial results indicate a 

requirement for a high temporal resolution input signal. 
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EXECUTIVE SUMMARY 

The success of the future Transformational Communications System depends on 

providing high quality communications to the mobile user in any environment.  A hurdle 

to this success is the Urban Land Mobile Satellite Channel (ULMSC) which experiences 

frequent and extended deep signal fades due to shadowing by man-made structures.  The 

problem is exacerbated for the Communications-on-the-Move (COTM) channel due to 

use of a directional antenna.  These signal fades are problematic for packet routing 

protocols and could hamper the network performance of the Communications-on-the-

Move (COTM) link planned as part of the satellite-based Transformational 

Communication Architecture (TCA).  This dissertation evaluates empirical data from 

Boston, MA and investigates mitigation strategies designed to improve COTM link 

throughput and latency. 

In the time domain, the COTM channel is best modeled as a Markov generative 

process.  The Baum-Welch parameter estimation algorithm is applied to empirical data 

collected in Boston, MA.  The parameter estimation algorithm provides guidance for the 

development of a Markovian generative model to represent the ULMSC fade function in 

a larger time-based simulation.  Three different continuous output transmission Markov 

models are presented and results are compared with discrete output Markov models.  The 

continuous output models produce more accurate state durations, provide signal strength 

as a function of time and generally advance previous modeling efforts.  The improved 

generative channel models also support the development of a larger time-based network 

simulation.   

Local area, mobile ad-hoc networks provide an opportunity to mitigate the 

impacts of the urban signal fade phenomenon by circumventing the link outage.  An 

integrated network simulation is developed for comparison against baseline performance.  

The simulation uses a Markov model to represent the urban shadowing and resulting 

channel fade.  The Neighbor protocol results show substantial improvements in COTM 

packet latency and network throughput when the ad-hoc network is operating below 

capacity. 
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Finally, two approaches into fade prediction are introduced and limited results are 

provided.  The first approach is based on adaptive linear filters using the signal strength 

received by a highly directional antenna as the filter input.  The second approach is based 

on the combined line-of-sight and multi-path energy collected by an omni-directional 

system.  Analytical results indicate that the abrupt signal strength transitions are 

inadequately predicted by linear filters and a high frequency input signal is important. 

The study makes several recommendations for future work including additional 

collection of empirical data, improvements to the network simulation and further 

exploration of accurate fade prediction based on multipath energy collected by an omni-

directional system. 
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I. INTRODUCTION AND BACKGROUND 

The past several decades have seen significant changes in communications 

systems of all kinds.  General changes have included rapid growth in the number and 

complexity of communication systems.  Specific changes have included rapid growth in 

packet-based communications, spread spectrum applications, and systems with diversity.  

While some of this change has been fueled by terrestrial systems like cellular telephones, 

satellite-based communications have also seen improvements.  These changes have raised 

the U.S. military’s expectations regarding the quality, flexibility and robustness of future 

communication services.  One area of increased expectation is developing a capability to 

maintain high data rate, secure communications with mobile military units in any 

environment.  Initial research into developing this capability has found the urban 

environment to be the most challenging.  An analysis of the urban satellite-to-mobile 

communications channel is presented and a solution to the associated fade problem is 

proposed and investigated in this dissertation.  

A. INTRODUCTION TO THE TRANSFORMATIONAL 
COMMUNICATIONS SYSTEM 

In 2001, the Department of Defense (DoD) began acquisition of a new ground- 

and satellite-based communications infrastructure [1].  This new program was named the 

Transformational Communications System (TCS) or Transformational Communications 

Architecture (TCA).  The overall purpose of the TCA program is to design and build the 

next generation government communications infrastructure with increased capabilities, 

performance and interoperability.  The TCA incorporates several planned satellite 

constellations and a new matching ground segment into a common Internet-like 

backbone, called the Global Information Grid (GIG) [1].  This architecture is the planned 

replacement of the hodge-podge, stove-piped systems in operation today (e.g., Defense 

Satellite Communication System, MILSTAR, Tracking and Data Relay Satellites, and 

UHF Follow-On).  In addition to replacing current systems, the new Transformational  
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Communications System plans to add several new capabilities and improve performance 

of existing capabilities.  Some specific examples of new or improved capabilities are 

discussed in Sections 1-3.   

 

 
Figure 1.   Artist’s rendition of a TSAT [2].  

 

The GIG and the TCA are built around a primary backbone of five 

geosynchronous satellites known as the Transformational Communications Satellites 

(TSATs).  DoD acquisition of the TSATs is still in the early stage of Technology 

Development, but the System Design and Production phase is planned for 2008 [3].  The 

system’s operational availability date has moved due to funding fluctuations, but the 

latest plans show a start in 2016-2020.  The TSATs are planned to be connected by 

optical cross-links which provides the TCA with the backbone throughput necessary [1, 

3].  The satellites communicate with their ground control station through a space-to-

ground radio frequency (RF) link.  This link is focused on collecting telemetry and 

issuing vehicle commands.  Finally, each satellite has the primary task of supporting 

multiple RF links with various military users (i.e., naval ships, unmanned  aerial vehicles, 
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mobile ground forces) [1, 3].  The TCA satellites establish these RF links with customers 

by providing several spot beams, each of which will illuminate an area the size of 

Nevada.  Any customers inside the spot beam will be able to establish a link with the 

system.  The uplink and downlink frequencies are expected to be 44 GHz and 20 GHz 

respectively, which are the same frequencies used by MILSTAR today [4, 5].    

1. Packet-based Communications 

The TCS program is currently planning to implement a packet-based 

communications architecture similar to TCP/IP [3, 5].  This is a significant shift from the 

more traditional point-to-point satellite communications architecture where each end 

involves a sizable antenna and equipment suite in a safe and stable location.  The change 

reflects a general plan to increase the number of nodes/users using the network at any one 

time.  The shift also reflects a change in the type of traffic that is expected.  Users are no 

longer expected to be stable or consistent.  Instead, users may access or drop off the 

network haphazardly, and their traffic patterns may be bursty and highly random.  Instead 

of a large communications node, there will be numerous nodes in a variety of situations.  

Some users may be moving, others stationary.  Some users may be in urban cities, others 

in open fields.  Some users may be in combat situations, while others are in quiescent 

situations.   The combination of all these changes has pushed the system towards a 

packet-based network approach.  The network simulation presented in Chapters III and 

IV reflects the TCS move in this direction and represents a packet-based system. 

2. Adaptive Communications Links 

Another new capability proposed for TCS is the inclusion of adaptive 

communications links [4].  While this concept has been discussed for many years [6, 7], it 

has not been aggressively pursued until recently.  The recent interest in adaptive 

communications has been driven by personal cellular communications and increased 

scarcity in available bandwidth, but the idea has also been discussed in reference to 

improving satellite communications performance [8, 9].  The basic concept behind an 

adaptive communications link is increased throughput when the channel is benign and 
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decreased throughput when the channel is experiencing increased attenuation due to 

weather or interference.  The link throughput can be increased or decreased by changing 

several different parameters individually or in combination: signal power, data rate, and 

FEC code rate are the most popular suggestions.  While this concept is not new, very few 

satellites have adaptive communication links.  Instead, they have traditional “fixed” 

designs where all link parameters are calculated assuming worst-case channel conditions.  

In this simplistic approach, the system meets requirements when the channel is worst-

case but does not increase throughput when the channel is benign.  Non-adaptive designs 

have been popular because they are simple, inexpensive, and meet customer needs when 

bandwidth and power are readily available, but contemporary communication systems 

tend to have less power and bandwidth is becoming scarcer. 

3. Communications-On-The-Move (COTM) Link 

A third significant capability improvement associated with the TCA is extending 

the wideband data connection to smaller, mobile users in their operational environment.  

This capability is frequently referred to as Communications-on-the-Move (COTM) or 

SATCOM-on-the-Move (SOTM) [1, 5, 10, 11].  The COTM link is expected to provide 

Voice over Internet Protocol (VoIP) telephony, video streaming and internet-like web 

browsing to the individual vehicle in real-time.  This capability is also expected to 

provide senior military leaders with near real-time knowledge of their troops’ health, 

status and tactical capability.  While the term COTM is relatively recent, the basic 

problem has traditionally been known as the Land Mobile Satellite Channel (LMSC).  

The two terms are used interchangeably in this dissertation, along with other synonymous 

terms like satellite communications (SATCOM) or satellite link.  An introduction to 

LMSC research is provided in the next section. 

Increased interest and government funding has fueled COTM related research and 

technology development in recent years.  One early focus area was development of a 

small, agile and reliable antenna capable of maintaining the link.  In 2003, Schodorf 

presented design and performance data for an early prototype [5].  More recently, L3 
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Communications, Perla Group International and other communications companies have 

started marketing production COTM antennas for the military, civil or commercial 

customer [10, 11].  To provide the required antenna gain in a small package, these 

antenna solutions are highly directional, which has an associated problem discussed 

below. 

This dissertation focuses on a problem associated with the COTM link: long term 

signal fade in an urban environment.  These fades are the result of vehicular motion 

amongst and between large buildings.  This specific COTM problem is obviously limited 

to mobile land-based users.  The user of interest is a relatively small vehicle (e.g.,  High 

Mobility Multi-purpose Wheeled Vehicle (HMMWV)) that may be in motion while 

attempting to maintain the communications link.  The vehicle will be equipped with a 

directional antenna on the order of 12-16 inches in diameter [3, 5].  Figure 2 shows a 

prototype HMMWV test vehicle with the directional antenna installed.     

 

 
Figure 2.   HMMWV test vehicle with small, parabolic COTM antenna [5].  

 

The beamwidth of this small antenna is expected to be around three degrees.  This 

tight beamwidth has several significant impacts on performance.  On one hand, it 

increases gain and throughput under nominal conditions.  However, it also decreases the 
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amount of multi-path (scattered or reflected) signal energy that is received.  Decreasing 

the amount of energy received from multi-path sources may be helpful when the line-of-

sight (LOS) signal is present.  But when the LOS signal is not available (e.g., blocked), 

the system collects almost no energy at all.  The combination of small mobile user and 

directional antenna has led to a communications problem when the LOS signal is 

frequently blocked, like in an urban area with numerous buildings.   

This dissertation is focused on understanding, modeling and mitigating the urban 

COTM channel fade problem.  The DoD’s development and deployment of the GIG and 

TCS are major acquisition efforts for the next decade.  The U.S. Army has associated 

acquisition activities including the Future Combat System and the Joint Tactical Radio 

System that are counting on the COTM channel.  The first step in understanding the 

COTM channel is to review the related research into the LMSC. 

B. INTRODUCTION TO THE LAND MOBILE SATELLITE CHANNEL 

As mentioned above, the COTM link planned for the upcoming TCA is a specific 

implementation of the Land Mobile Satellite Channel which has been under investigation 

for over 20 years.  Before investigations into the LMSC, scientists and engineers were 

exploring the Land Mobile Radio Channel (LMRC).  The first of these papers appeared 

in the 1950s when W.R. Young collected test data using a mobile radio system in New 

York City.  Young may have been the first to suggest a Rayleigh distribution for the 

amplitude variations [12].  In the early 1960s, J. F. Ossanna took this topic farther by 

collecting some additional data and attempting to explain the results using reflected, 

interfering electromagnetic waves with random properties (reflected by randomly 

oriented flat surfaces with a uniform distribution).  In his paper, Ossanna shows that his 

theory is generally good but does not match the data at all frequencies [13].  In 1968, 

Clarke combined the efforts of Ossanna, Young and others to propose a cohesive 

explanation of the Rayleigh scattering seen with a mobile radio channel [12].  While 

Clarke did not make a significant point of comparing urban and rural areas, most of the 

experimental data was collected in New York City.  He expanded on Ossanna’s idea that 
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“incident and reflected waves form an interference pattern through which the receiver 

moves” by including the effects of electromagnetic scattering [12].  While he did not 

specifically discuss shadowing or mention a log normal density, Clarke did suggest that 

the signal amplitude was a non-stationary Rayleigh process with a random mean.  This 

effort was followed by many others.  Investigators continued to collect test data at 

various frequencies and in varying environments [14, 15].  In the late 1970s, Suzuki 

proposed a stochastic model that was Rayleigh distributed but had a random log normal 

mean [16].  The Rayleigh probability density function (pdf) accurately modeled the 

signal scattering caused by buildings and the log normal mean accurately models the 

impact of shadowing (losing LOS to an obstacle).  At nearly the same time, Hansen and 

Meno were pursuing similar thoughts regarding a Rayleigh density conditioned on a log 

normal input [17].  Like Suzuki, they suggested that the Rayleigh pdf accurately models 

the short term (high frequency) variation caused by multi-path and the log normal pdf 

captured the longer term shadowing.  From [17], the pdf of the random variable that 

models the instantaneous signal power x is the Rayleigh pdf: 
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Next the two probability density functions are combined to obtain the probability that the 

instantaneous power is below the receiver’s threshold: 
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where   x  is the instantaneous signal power (Rayleigh), 
  0x  is the mean of x (log-normal), 
  Tx  is the receiver’s threshold for detecting the signal, 
  0x  is the mean of 0 ,x  
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  σ  is the standard deviation of 0 ,x  and 
  M = constant = 0.43. 

 

Hansen and Meno went on to advance the discussion by deriving an equation to predict 

error rates. 

In 1985, Loo applied many of the LMRC concepts to a “Land Mobile Satellite 

Link” [18].  Even though Loo’s investigation was focused on performance in rural areas, 

his results have been applied in other environments.  He proposed that foliage not only 

attenuates the LOS signal but also scatters the signal energy causing a Rayleigh 

distribution in signal amplitude.  Like Suzuki, Loo found that LOS attenuation followed a 

log normal distribution.  In general, the resulting density function is a complicated 

mixture pdf that requires numerical integration: 
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Loo found that shadowing dominates for large values of r, and the probability density 

function can be approximated as log normal.  Similarly, scattering dominates when r is 

small, and the probability density function can be approximated as Rayleigh.  As a result, 
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where   r is the signal magnitude at the receiver, 

  z is the log normally distributed amplitude of the LOS signal, 

b0 represents the average scattered power due to multipath, 

µ is the mean of the log normal portion of the signal, and 

d0 is the variance of the log normal portion of the signal. 
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In 1991, Lutz et al., continued the investigation by proposing a mixture model 

[19].  Lutz proposed a summation of two distinct pdfs that are combined using a 

weighting factor A which represents the fraction of time that the LOS signal is blocked by 

an obstruction.  When the LOS signal is not blocked, the signal envelope follows a 

Ricean distribution.  When the LOS signal is blocked, the signal follows a Rayleigh 

distribution conditioned on the log normal variable S0.  This can be expressed by: 

 

 ( ) ( ) ( ) ( ) ( )0 ln 0 0
0

1lutz Ricean Rayleighf S A f S A f S S f S dS
∞

= − ⋅ + ⋅ ∫  (1.6) 

where  S is the instantaneous signal power at the receiver, 
  S0 is the short-term mean signal power at the receiver, and 
  A is the fraction of time that the LOS signal is blocked. 

 

Only a few years later, Corazzo and Vatalaro suggested small improvements to 

Loo’s and Lutz’s models.  While Loo assumed that scattered signal energy was 

essentially constant, Corazzo and Vatalaro suggested that, like the LOS signal, scattering 

was also impacted by the log normal shadowing [20].  They modified the scattering to be 

conditioned on the log normal shadowing.  They applied similar logic to Lutz’s model 

and conditioned the Ricean and Rayleigh pdfs on log normal means. 

The investigation into pdf-based mixture models has continued into the 21st 

century.  Several authors continue to investigate improvements to the basic concepts 

proposed by Lutz and others.  Abdi et al., focused on simplifications to ease computing 

without sacrificing accuracy [21, 22].  Schodorf proposed a combination of three pdfs to 

better match the urban test data [5]: 

 
 ( ) ( ) ( ) ( ) ( )2

_ 1 2 1 ln 2 11 ,urban motm hlf S B B f S B f S B S ηη −= − − + +  (1.7) 
 
where  S is the received signal power, 

 fhl characterizes the channel behavior with LOS signal, 
 fln  characterizes the channel behavior without LOS signal, 
 B1, B2 represent the weighting of each pdf in the mixture model, and 
 1 2, η η are constants defining the power law for the third term. 
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The proposals of Lutz, Corazzo and Vatalaro, and Schodorf were all based on the 

simple linear combinations of individual pdfs.  The end results of these combinations 

were new bimodal (or multi-modal) pdfs that could be used to understand the long term 

statistics of a LMSC: level crossing rates, average fade duration, etc.  These were not 

necessarily the best way to understand the short term activity in the channel because they 

treated the non-stationary channel as stationary and did not take into consideration 

channel memory. 

To address these short-comings and improve LMSC modeling even more, some 

scientists began investigating the use of Markov models.  These authors still supported 

the basic concept of using different pdfs to model different environments (urban, 

suburban or rural, open), but instead of combining different pdfs into a single amalgam, 

they assigned a pdf to each state and transitioned between states using a hidden Markov 

model (HMM) [23, 24].  This idea is illustrated by Figure 3, where the state transition 

diagram is shown for a three-state Markov model.  State S1 is defined as an open 

environment without shadowing.  States S2 and S3 are similarly defined as suburban and 

urban environments with incrementally more shadowing.  The variables Pij represent 

transition probabilities from state Si to state Sj. 

As a mobile receiver moves, it tends to stay within a specific environment for a 

relatively long period of time.  While the receiver is in state S1, the LOS signal is not 

blocked and the channel can be modeled using a Ricean pdf.  While the receiver is in 

state S2, the LOS signal is occasionally attenuated and scattered by trees or small 

buildings.  So the best pdf for this situation may be Rayleigh with a log normal mean, as 

suggested by Loo [18].  An appropriate pdf is also assigned to the urban state S3.   One 

possibility is Schodorf’s suggestion that the urban environment is accurately represented 

by a mixture of three pdfs [5].  As shown by the transition diagram, the model is able to 

transition from any state to any state, showing that the vehicle can move from an open 

environment to an urban environment without passing through the rural environment. 
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Figure 3.   Markov model for LMSC proposed by F. P. Fontan et al. [24]. 

 

Figure 4 shows this model from a temporal perspective.  The figure delineates 

between three orders of variation in the signal strength.  The “fast” variations are usually 

attributed to multi-path fading (constructive and destructive interference of time-delayed  

signals).  The “slow” variations are usually associated with specific shadowing events by 

foliage, terrain or buildings.  The “very slow” variations are associated with changes in 

the environment. 

The research presented in this dissertation narrows the focus to further investigate 

the urban state (S3 above) because the urban environment is the most problematic for the 

COTM link being implemented in the TCA.  As mentioned above, hidden Markov 

modeling is an important modeling approach for the general LMSC with states S1 – S3 

representing the rural, suburban and urban environments, respectively.  As part of this 

research, we have also applied another HMM internal to the urban state.  An introduction 

to Markov models is provided in the next section and HMM modeling of the urban fade 

problem is discussed in Chapter II. 
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Figure 4.   Short, medium and long-term variation of signal strength with time.  Long- 

term (“very slow”) variation is modeled by state transitions shown in Figure 3.   

 
 

C. INTRODUCTION TO HIDDEN MARKOV MODELS 

1. Basic Theory 

“In order to be able to analyze and predict a system’s performance, it is necessary 

to have some simplified theoretical description of the system’s operation – the system 

model” [25].  Hidden Markov models are one possible choice of system model.  Over the 

past 40 years, they have grown in popularity in many different fields of study besides 

communications engineering.  Examples include ecology [26], computer network traffic 

[27], meteorology [28] and financial market analysis [29].  This growth in popularity is 

attributed to their rich “mathematical structure” that allows them to be applied to a wide 

range of applications and their ability to work well in practical simulations [31].  

At the most basic level, there are two classes of Markov processes: those with a 

continuous state space and those with a discrete state space.  This introduction will focus 
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on the latter group of Markovian processes with discrete states.  The basic definition of a 

discrete state Markov model begins with a set of states, S = {S1, S2 … SN}, where N is 

the number of states.  The simplest version of any consequence is N = 2.  With each time 

step, the model may change states or remain in the same state.  The probability of each 

possible change is called a transition probability.  A simple example is shown in Figure 5.   

0 1

01 001a a= −

10 111a a= −

00a 11a

 
Figure 5.   State transition diagram for two-state Markov model 

 

Figure 5 is a pictorial representation of a two-state Markov model.  The states are 

represented by the two circles with boldface 0 and 1 inside.  The arrows that connect the 

two circles represent the possible transitions with each time step.  Each arrow has an 

associated transition probability, labeled ija .  The subscript i denotes the previous state 

and j denotes the next state.  The arrow that leaves and returns to state 0 shows that the 

model can stay in state 0 as time progresses.  The probability of the model doing this is 

represented by the variable 00a .  The probability that the model transitions from state 0 to 

state 1 is 01a .  Similar transition probabilities are shown for state 1.  It is important to 

note that the sum of the probabilities leaving any state is 1: 

  
 1.ij

j

a =∑  (1.8) 

This relationship shows that 00a  and 01a  are related by 01 001a a= − . 

For a basic Markov model, the output is the state, Si, which can be directly 

observed.  Rainfall can provide a simple example.  We can define state S1 as “not 

raining” and state S2 as “raining”.  We can also define the time step as one hour.  If there 
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is any rainfall during any fraction of an hour, then the model is defined to be in state S2 

during that hour.  By collecting weather information, we can determine the transition 

probabilities between “raining” and “not raining”.  The output of this model is the state 

itself.  Once the model is completely defined, we can use it to analyze rainfall patterns 

including average rain duration, probability of six straight hours of rainfall, etc.   

In contrast, the output of a hidden Markov model is the result of an additional 

random process whose statistical parameters are determined by the state.  Instead of 

observing the state directly, the investigator sees the results of the second random 

process.  Gilbert’s theories regarding burst errors on a telephone line provide a simple 

example in the next section.  Rabiner also provides a simple example regarding colored 

balls and urns [30, 31].  A simplified version can be based on two urns, each with three 

balls.  Urn 1 has two red balls and one yellow ball.  Urn 2 has two yellow balls and one 

red ball.  The urns each represent a state.  The colored balls represent the output of the 

model.  When the model is in state 1, a ball is drawn from Urn 1 and then put back.  The 

only information that you, the observer, receives is the color of the ball.  If the output is a 

red ball, you can not be certain which urn it came from.  The state is “hidden”.  

Probabilities suggest that the ball probably came from Urn 1.  A reasonable output may 

look something like that shown in Table 1.  

  

Table 1.   Urn and colored ball example illustrates a simple discrete-time HMM. 

Time (t) 1 2 3 4 5 

Hidden State (Urn) S1 S2 S2 S2 S1

Output (Ball Color) Y Y Y R R 

 

This extra step of the HMM process is often called the “output”, the “observation” 

or the “transmission”.  Likewise, the stochastic process that describes the observation is 

often called the transmission probability function or output process.  This additional 

intra-state stochastic process inherent to hidden Markov models can also be either 
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discrete or continuous.  The term Markov “chain” is used inconsistently to either describe 

all discrete state Markov models or is sometimes limited to those that have a discrete 

state space and a discrete output process.  We will investigate both types of discrete state 

Markov processes and will use the term Markov chain for either. 

While transition probabilities tell us how the model behaves with time, they do 

not provide the initial model state at start time t0.  In addition to transition probabilities, it 

is important to know the initial state probabilities.  These are usually denoted as a vector: 

[ ]1 2, , , Sa a a=a … .  It is easy to observe that 
1

1.
S

i
i

a
=

=∑  

If a Markov model is homogenous, then its transition probabilities ija  do not 

change with time.  Similarly, if a Markov model is stationary, then its long term or 

stationary transition probabilities are equal to the initial state probabilities.  Due to 

receiver mobility, the urban LMSC problem is guaranteed to be neither stationary nor 

homogeneous.  As a vehicle moves from an open environment to an urban environment, 

the transition probabilities will shift dramatically.  For this focused investigation into the 

network performance in an urban environment, we assume homogenous, stationary 

processes for the short term, where short term is defined to be on the order of a minute. 

2. History 

The first use of “Markov” models in communications appears to be by Shannon in 

1948 [25].  At the time, Shannon called them “Finite State Channels”.  In other fields of 

study, these same models are know by other names like stochastic sequential machines or 

probabilistic automata [25].  In 1960, Gilbert used Markov models to model the 

performance of a real-world, switched telephone line [32].  He realized that the 

traditional assumptions of symbol independence and random error distribution were not 

very accurate for a switched telephone line.  Instead, the errors tended to occur in bursts 

when a switch was thrown.  In an effort to more accurately deal with this burst noise, he 

tried using a simple two-state Markov model to allow for channel memory.  If an error 

occurred, it was statistically more likely to be followed by another error (a burst).  If a bit 
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was received correctly, it was more likely that the next bit would be received correctly 

too.  By using a model that reflected this memory, Gilbert was able to show increased 

capacity relative to a traditional binary symmetric channel.  Gilbert went on to suggest 

some simple methods for estimating a channel’s parameters: transition probabilities and 

state output probabilities.  He also pointed out that a huge data-set was required for 

reasonable results.  At this point, the concept of Markov modeling gained an audience 

within the communications community.  It is important to note that while Gilbert did not 

use the term “hidden” to describe his Markov model, it was in fact a hidden Markov 

model.  The output of the model was a binary error sequence (0s denoting no error, 1s 

denoting error).  When an error was received, the model was clearly in state 2 (“Bad” 

state).  When a correct bit was received, the model could be in either state.  It was not 

possible to exactly match the error sequence with the state sequence, and the state 

sequence was therefore “hidden” by the output.  We will revisit the Gilbert model in 

Chapter II when discussing Schodorf’s attempts to apply the Gilbert model to the COTM 

empirical data. 

A few years later, Elliott took Gilbert’s proposal one step further and suggested a 

method to solve for probability of bit error [33].  Today, the terms “Gilbert” or “Gilbert-

Elliott” are used by some authors to describe a burst noise channel [34, 35].  Several 

authors have built on Gilbert and Elliott’s initial efforts and refined the analyses for 

advanced modulation or coding schemes [34, 35, 36].  

An important milestone in the general development of HMM theory occurred in 

the 1960s when Baum and others made big strides in solving key problems.  In 1966, 

Baum et al., proposed a solution to the most basic problem of estimating the model’s 

parameters from a reasonably sized data set [37].  Again in 1970, Baum et al., solved 

another lingering problem: how to determine which state sequence was most likely 

considering the received information [38].  Baum’s method is a specific version of the 

general Expectation Maximization algorithm, commonly called the Baum-Welch 

Algorithm (BWA).  We will revisit this topic in Chapter II when discussing the parameter 

estimation of the COTM empirical data.  



 
 

17

After these breakthroughs, scientists and engineers started to look at HMMs as 

possible solutions to their own problems in modeling complex real-world processes.  One 

early area of application was speech recognition.  Rabiner and others applied HMM 

theory to speech recognition and achieved some important successes [31].  Speech 

recognition is still an active area of continued research into HMMs.  Even more recently, 

HMMs have been applied to modeling ecological patterns, neural networks, computer 

network traffic and operations research.  During this period of growth, the use of HMMs 

in communications became more wide-spread and more diverse.   

One of the primary benefits of Markov modeling communication channels is that 

they provide a more accurate representation of real-world channel memory where 

neighboring time samples are not truly independent.  A second benefit is that Markov 

models are better at producing short-term, time-sampled, outputs.  Some authors began 

using Markov models for the terrestrial wireless fading channel, where the fading was 

due to Doppler, weather, scintillation or multi-path.  In 1995, Hwang and Moayeri 

suggested defining an N-state Markov model where each state represented a range of 

instantaneous signal-to-noise ratios (SNRs) [39].  As the instantaneous SNR varies with 

time, the Markov model varies between states S1 to SN.  Table 2 shows a simple example 

for S = 6. 

 

Table 2.   Simple example of state definitions for HMM fading channel. 

State s1 s2 s3 s4 s5 s6 

High SNR (dB) −20 −10 0 +10 +20 +∞  

Low SNR (dB) −∞ −20 −10 0 +10 +20 

 

Zhang and Kassam took this concept further by investigating packet-based systems and 

proposing a non-uniform partitioning of the SNR range [40].  They instead suggested a 

partitioning based on the average time duration in each state. 
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The basic idea behind using a HMM to model the LMSC is not new.  In 1991, 

Wakana proposed a five-state Markov model for just this purpose (see Figure 6) [41, 42].  

Two of the states were set aside to represent short and long-duration LOS shadowing by 

narrow and wide obstacles, respectively.  The remaining three states defined performance 

when the LOS signal was not blocked. 

 
Figure 6.   Five-state Markov model proposed by Wakana [41]. 

 

All five states allow for multi-path signal energy.  Wakana imposed two transition 

restrictions: 1) non-fade states were not allowed to transition to other non-fade states and 

2) fade states were not allowed to transition to other fade states. He then used a parameter 

estimation algorithm to solve for the transition probabilities. He defined eight variables 

which were related to state behavior and used these to define the following state 

transition probabilities: 

p1 = Probability of being in Fade State 1, 
q1 = Probability of transitioning from Fade State 1 to Fade state 1, 
q2 = Probability of transitioning from Fade State 2 to Fade state 2, 
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p2 = Probability of being in Non-fade State 1, 
p3 = Probability of being in Non-fade State 2, 
q3 = Probability of transitioning from Non-fade State 1 to Non-fade state 1, 
q4 = Probability of transitioning from Non-fade State 2 to Non-fade state 2, and 
q5 = Probability of transitioning from Non-fade State 3 to Non-fade state 3. 

Babich and Lombardi extended Wakana’s concept to define the equations and 

relationships for a general LMSC with N states [43].  Later, Fontan et al., proposed the 

three-state HMM discussed in Section B.  The research presented in this dissertation 

assumes that the general LMSC channel is being modeled using an approach similar to 

that proposed by Wakana [41] or Fontan et al. [24] where the different environments are 

represented as state changes in a macroscopic HMM.  The research then focuses on the 

state that represents the urban environment and inserts an additional continuous 

transmission hidden Markov process into the urban state. 

D. DISSERTATION OVERVIEW: MODELING THE URBAN LMSC 

The research of this dissertation is focused on mitigating the urban LMSC/COTM 

signal fade problem and its associated impacts on network performance.  A central task 

towards achieving this goal is the development of a time-based simulation of the COTM 

channel.  This model is expected to be valuable is several different ways.  First, the 

model can provide an inexpensive method for producing additional data, perhaps as an 

input to a filter or algorithm.  It is expensive to drive mobile test platforms around urban 

environments to collect additional LMS data.  Second, a model can provide additional 

insight into the physical situation and suggest possible solutions that can be difficult to 

see when examining empirical data.  More specifically, a model is often the basis for 

developing a prediction approach, which is one of the follow-on tasks here.  Finally, the 

model can provide an inexpensive means to investigate the benefits achieved with a 

possible solution. 

Two distinct modeling approaches have already been suggested in relevant 

literature and summarized in Sections B and C.  The first is a probability density model 

and the second is a Markov model with an emphasis on the HMM variation.  We consider 
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the second approach to be more appropriate for the Urban COTM problem.  This 

dissertation focuses on improvements to Markov modeling of the Urban Land Mobile 

Satellite channel (ULMSC) and using that model to improve network performance.  The 

remainder of Section D is devoted to introducing the three areas of study: 1) using 

empirical data to build a model, 2) using the model to build a network simulation and 3) 

using the data and model to investigate fade prediction and associated network 

improvements. 

1. Empirical data 

As discussed in Section I.B, the Land Mobile Satellite Channel has been studied 

by many authors and several different models have been proposed [18, 21, 24].  For most 

of these investigations, the mobile-user has a non-directional antenna that collects a 

significant amount of multi-path signal power even when the LOS signal is blocked by an 

obstruction.  As mentioned in Section I.A, the COTM user will have a highly directional 

antenna that essentially rejects multi-path signal power.  For this situation, the LOS 

signal is considered the only input to the receiver.  Soft obstructions, like trees, have been 

shown to attenuate the LOS signal (−15 dB), but the receive antenna is still able to detect 

the LOS signal [5].  Hard obstacles, like buildings, usually block the entire signal (−30 

dB), and the link is temporarily broken [5].  

Schodorf attempted to model the urban COTM LMSC link with a simple two-

state Markov or Gilbert model with limited success, and key results are shown in Figure 7 

[5].  Schodorf investigated three different approaches to modeling the COTM channel as 

a Markov chain.  The first and simplest approach is a simple two-state Markov model 

where one state is “LOS blocked” and the other state is “LOS not blocked”.  This 

approach is not a HMM because the model state is observable from the model output.  

Results showed that this approach does not produce an acceptable match to the 

connection and fade durations found in the collected data.  The other two approaches use 

a two-state Gilbert model which is a HMM with a Bernoulli transmission function (see 

Section I.C.).  The two states are known as “Good” and “Bad”.  The “Good” state is 
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defined to have a clear LOS signal (no shadowing).  The “Bad” state is defined to mean 

that the LOS signal is blocked to some degree, where the amount of shadowing is a 

random process.  Sometimes the shadowing is enough to reduce the signal power below 

the receiver’s fade threshold, and sometimes it is not.  Schodorf used this model twice.  

The first time only connection durations were used to determine the model’s parameters.  

The second time he used both connection and fade durations.  Plots resulting from this 

final approach are labeled “joint opt.” in Figure 7.   

 

 
Figure 7.   Complementary CDFs showing second order statistics from experiments and 

modeling attempts [5]. 

 

As discussed in Sections I.B. and I.C., other authors have proposed more 

complicated Markov models for non-directional systems.  This dissertation starts with an 

effort to improve the accuracy of Schodorf’s Markov model in matching real COTM 

data.  The data used in this research was recently collected from an operational 

MILSTAR satellite by investigators at Lincoln Laboratory in Lexington, Massachusetts 

[5].  The data was collected using a mobile military vehicle equipped with a 12 in. 

directional antenna as planned for the TCS COTM link (see Figure 2).  Data was 

collected in urban, rural, and open environments.  The  MILSTAR-on-the-Move 

(MOTM) test project and associated empirical data are discussed in more detail in 

Chapter II. 
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Several possible improvement paths have been mentioned in Sections B and C 

including an increase to the number of states, an increase in channel memory, and a more 

complex HMM with intra-state, weighted, mixture density functions.  The improvement 

path explored for this project is based on the Baum-Welch parameter estimation 

algorithm.  The Baum-Welch parameter estimation algorithm is mentioned by Schodorf, 

but avoided in favor of Gilbert’s simplified parameter estimation approach.  The results 

of the Baum-Welch parameter estimations are presented in Chapter II. 

2. Network Simulations, Packet Routing Protocols and Performance 
Estimates 

The primary investigation of this research is the development, validation and 

analysis of a simulation representing a mobile communications node situated in the urban  

environment and experiencing long, deep fades in signal strength.  Two packet routing 

protocol modifications are considered to explore possible performance improvements.  In 

addition to simulating the mobile-to-satellite COTM link, each model also simulates a 

local mobile-to-mobile ad-hoc network operating in parallel.  The additional ad-hoc 

network is simulated because it provides a possible solution to the network outages 

caused by satellite blockage.  After connecting the mobile ad-hoc network to the satellite 

network, the Neighbor protocol can be implemented to exploit the additional routing 

paths through the combined network.  Chapter III describes each model in detail and 

Chapter IV presents simulation results, compares model performance and proposes future 

improvements.  The simulations include embedded Markov models to represent the 

signal strength state transitions between “clear” and “fade” as introduced earlier.  These 

Markov models are partially-based on the parameter estimation results discussed in 

Chapter II. 

3. Urban LMSC Prediction and Control 

Another fade mitigation path explored as part of this investigation involved 

predicting urban link fading and using the predictions to modify link activity for better 

overall performance.  If successful, the investigation would identify an optimal recursive 
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time-varying control system similar to the Kalman, LMS or RLS algorithms frequently 

found in control and signal processing applications.  A limited discussion of two attempts 

to implement an optimal recursive feedback algorithm as a solution to the long fades 

inherent in the urban LMSC is presented in Appendix A.  The goal of the resulting 

algorithm is to improve channel throughput by predicting the COTM channel state (e.g., 

connection or fade) and modifying packet transmission appropriately.  One response is to 

suspend transmission when a long duration blockage is predicted to minimize packet 

retransmission.  Another response is to determine which packets are likely to be blocked 

and retransmit them.  A prediction based solution would be most effective if implemented 

at the satellite end of the channel but would require a prediction capability beyond the 

path delay.  Instead, prediction at the mobile node, which is easier due to proximity to the 

fade, is the focus of Appendix A.  Because the linear prediction filters investigated as part 

of this research did not provide accurate and timely fade prediction, the algorithms were 

not added to the simulation presented in Chapters III and IV.  The results and supporting 

discussion are provided in Appendix A for reference but are not considered a successful 

mitigation strategy for the urban COTM fade problem.   

E. ORIGINAL CONTRIBUTION 

Several original contributions to the communications field associated with urban 

Land Mobile Satellite channels with an emphasis towards a mobile directional antenna 

that causes a severe and extended fade of −30 to −40 dB below LOS are presented in this 

dissertation.  The first contribution is the development of a Markovian COTM channel 

model that is significantly more accurate than previous attempts.  This COTM channel 

model is used as a foundation for additional progress towards mitigating the COTM fade 

impacts on network performance.  The second original contribution is the development 

and validation of a GIG network simulation that includes a local-area mobile ad-hoc 

network (MANET) and numerous independent COTM channels.  This simulation 

provides a low-cost source of additional data, estimates of channel and network 

performance and a vehicle for investigating possible mitigation strategies.  The final 
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contribution of this research is the determination that linear prediction algorithms require 

a high frequency signal input to have a chance at successfully predicting a channel fade.   

F. CHAPTER I SUMMARY 

In this chapter, we introduced and provided relevant background for the two 

central research goals of this dissertation: 1) developing an improved urban COTM 

channel model and 2) finding a fade mitigation strategy that improves network 

throughput and packet latency.  In the next chapter, we address the first goal by analyzing 

the empirical test data and solving for an improved hidden Markov model. 
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II. EMPIRICAL DATA AND THE BAUM-WELCH ALGORITHM 

The idea and history of Markov modeling the general LMSC was introduced in 

Chapter I.  In this approach, each state of the Markov model represents a type of 

shadowing and attenuation environment (e.g., open field, rural, suburban, urban).  The 

idea of using additional embedded Markov models within each of these Markov states 

was also introduced in Chapter I.  Schodorf implemented this idea by proposing Gilbert 

models for the open, rural and urban environments [5].  In this modeling attempt, the 

urban environment is the most poorly represented by a Gilbert model, and additional 

improvements seem necessary.  The focus of this chapter is on finding a more accurate 

model of the urban COTM channel than the Gilbert model proposed by Schodorf.  

One important application of an accurate channel model is possible inclusion in 

the discrete-time, urban COTM simulation presented in Chapters III and IV.  Of course, 

the empirical data could be used as a direct input to the simulation; but the data set is 

fairly limited in duration and only reflects a single driving path through a single city.  The 

results of such a simulation would have limited applicability.  This approach would be 

more appropriate if the test vehicle was repeatedly driven along different paths in 

multiple cities.  In the end, such an approach would produce a large and unwieldy 

database of signal strength as a function of time.  A better approach is to use the 

empirical data set to develop a stochastic Markov model that can be manipulated to 

represent a variation of paths through different cities.  The Baum-Welch algorithm plays 

a key role in converting the empirical data into parameters of a Markov model.   

The investigation starts with a discussion of the empirical data collected by 

Lincoln Laboratory in support of the TCS program.  Section II.B highlights some 

supporting data processing steps necessary for input to the Baum-Welch algorithm.  

Section II.C provides an introduction to Baum-Welch parameter estimation, and the 

chapter finishes with an in-depth discussion of the various parameter estimation 

approaches attempted and their results. 
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A. EMPIRICAL DATA 

As part of the overall effort to understand and model the COTM link of TCS, 

Lincoln Laboratory built a hardware test platform and used it to collect empirical data.  

ESC-TR-2003-051 Technical Report 1087 discusses this testing in significant detail [5].  

A summary follows.  The new TCS satellite has not yet been built so testing had to be 

accomplished with the best available surrogate; Schodorf selected MILSTAR to be that 

surrogate due to its many similarities with the planned TCS [5]. 

The Lincoln Lab test program included broader goals than just urban channel 

characterization.  Their goals included channel characterization and modeling, antenna 

pointing performance, and packet protocol performance in open, rural, and urban 

environments.  Data was collected in three different locations to investigate the three 

different environments; open and rural routes were located on Ft. Devens, MA, and the 

urban route was located in Boston, MA.  Because the focus of this dissertation is limited 

to the urban communications channel, the discussion here is focused on the channel 

characterization (signal strength) subset of the urban data set collected in Boston.  

Additional information regarding the antenna pointing tests, packet protocol tests and 

open / rural test environments, may be found in the original technical report [5]. 

The urban channel characterization data was collected on four separate occasions: 

October 17, October 22, October 31, and November 8, 2002.  Over these four dates, eight 

test runs were completed.  To provide continuity, Schodorf’s nomenclature is used in this 

work, and the eight tests are referred to with letters A-H.  All test data sets include a 

measurement of the signal-to-noise ratio (Pr/No) taken every 0.1 seconds.  Additionally, 

some data sets also include a measurement of the vehicle velocity taken every 1.3 

seconds (on average).  Table 3 shows the number of samples collected during each test.  

As an example, Figures 8 and 9 show an excerpt of the signal strength and velocity data 

collected as Data Set B.  It is important to note that the signal strength data presented in 

Figure 8 has been shifted to be relative to LOS. 
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Table 3.   Empirical data set from Lincoln Lab COTM testing. 

Date Test Number of samples: 
Signal strength 

Number of 
samples: Velocity 

Velocity data 
available? 

Oct 17 E 6220 0 N 

Oct 22 F 6160 0 N 

Oct 31 A 5600 4442 Y 

Oct 31 B 4200 3520 Y 

Oct 31 C 6920 5535 Y 

Oct 31 D 6160 4350 Y 

Oct 31 G 7200 5685 Y 

Nov 8 H 5320 0 N 

 

 
Figure 8.   Signal strength vs. time from Data Set B (relative to LOS). 
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Figure 9.   Vehicle velocity vs. time from Data Set B. 

 

An important aspect of the test program, and its resulting data set, is that each test 

was made on the same path through the same city.  This means that the correlation 

between data sets is high, and the additional data sets do not provide completely new 

information.  An obvious way to improve the analysis and modeling of the urban COTM 

link is to broaden testing to multiple driving routes through multiple cities. 

Another important aspect of the data is the fact that signal strength and velocity 

measurements were not taken simultaneously.  This has an impact on data analyses which 

is discussed in Section 2.B. 
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1. Histogram 

An important method for analyzing empirical data is the histogram, which can 

approximate the probability density function (pdf).  Signal strength data from all eight 

data sets (A-H) was used to generate the histogram, shown in Figure 10 with a bin size 

equal to 0.5 dB.  This specific bin size was the smallest bin size that did not produce a 

significant number of empty bins.  Unlike the data presented in Figure 8, this signal 

strength data is presented in its original empirical form and is not shifted to be relative to 

LOS. 

 
Figure 10.   Histogram (raw data; no processing). 

 

The largest histogram peak is centered near 75 dB and actually shows up as a 

double peak separated by about 3 dB.  This double peak is expected and represents clear 

communication between the mobile vehicle and the satellite.  The next largest feature 

occurs around 40-45 dB.  This peak accounts for time steps where the receiver is 
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experiencing a deep fade.  It is important to note that the region between these two peaks, 

which extends from approximately 50-65 dB, shows a low probability of receiving partial 

signal fade more associated with foliage.  The number of peaks in the histogram (pdf) is 

one method for determining the appropriate number of Markov states.  As Schodorf 

notes, the empirical data is influenced by the design of the hardware test bed (shown in 

Figure 2) and does not reflect theoretical expectations [5].  The front end of the mobile 

test bed includes a hard-limiter that modifies the true density function by saturating and 

truncating the highest signal powers.  One side effect of this hard-limiting front end are 

the two neighboring peaks near 74 and 76 dB.  At the other end of the histogram, the test 

bed is not able to detect signal power below its noise floor, which is approximately −40 

dB.  This prevents the histogram from tapering off smoothly below −40 dB. 

2. Interarrival or Dwell Times 

Another important parameter of the fade process is the time between state 

transitions.  Some authors refer to this parameter as dwell time [5]; others refer to it as 

interarrival time (time between events) [27].  This dissertation will use either term 

interchangeably.   

Using Kendall’s notation for a simple M/M/1 queue1, we model the interarrival 

time as an exponential random variable where the probability of an event after k time 

steps is 

 

 Pr( ) .
ken k

k

−

= =  (2.1) 
 

For a Markov model with two states, this relationship can be modified to reflect the 

actual transition probabilities of the problem.  The probability of being in state i for k 

time steps is 

 ( )Pr( ) 1 .k
t t k ii iis s i a a+ = = −…  (2.2) 

                                                 
1 In 1953, David G. Kendall introduced the A/B/C notation of queueing theory.  In this notation, A is 

the interarrival time distribution, B is the service time distribution and C is the number of servers or queues.  
Common distributions are “M” for Markovian, “E” for Erlang, or  “G” for General. 
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For this specific problem, we have two defined states: connection and fade.  It is 

important to investigate the durations of these two states separately.  Histograms of the 

fade and connection times are shown in Figures 11 and 12.  In addition to the histograms, 

Figures 11 and 12 show the complementary CDF for each state duration.  The 

complementary CDF format allows for better comparison with Schodorf’s results 

presented in Figure 6.  Summary statistics for the original data set are also shown in 

Table 4.   

Table 4.   Summary statistics for basic data set. 

(all data in seconds) Mean Stand. Dev. Maximum 

Connection durations 5.39 11.05 99.1 

Fade durations 1.68 2.78 30.9 
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Figure 11.   Histogram (top) and CDF (bottom) of connection duration (unsmoothed). 
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The complementary CDFs are shown on a logarithmic scale for easy comparison 

to exponential or geometric processes, which would appear linear.  While the empirical 

dwell times aren’t perfectly linear, they do appear to be roughly approximated as linear.  

This is another indication that the urban COTM channel fade process can be 

approximated as Markovian.   
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Figure 12.   Histogram (top) and CDF (bottom) of fade duration (unsmoothed). 

 

It is important to note that there are a large number of short duration transitions to 

State 0 (fade).  We propose that these do not represent buildings blocking the satellite’s 

signal.  Assuming that the event is caused by a physical object between the mobile 

receiver and the satellite, we can find that a 0.1 second duration matches an object that is 

on the order of one meter in width.  This approximation assumes that the mobile 

transmitter is moving at a speed of 10 m/s (~22 mph), which is a reasonable assumption 
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based on the velocity data presented in Figure 9.  The next section discusses the 

application of a smoothing filter to minimize these extremely short transitions. 

3. Smoothing 

As mentioned above, the original data set contains a significant number of short 

duration state transitions, where short duration is defined as 1-2 time steps (0.1 – 0.2 

seconds).  No effort was made during testing to correlate these events with physical 

phenomena, but it is believed that these events are trees, light poles or other tall, thin 

objects commonly found in urban environments.  This type of short duration event is also 

found in rural and suburban environments [5] and is not a challenging phenomena for 

mobile urban communications.  The challenging phenomenon that is present only in 

urban environments is the tall building.  Buildings are significantly wider and deeper than 

trees and utility poles.  They cause deeper and longer fades of the signal and are nearly 

impossible to correct with interleaving or FEC.  In an effort to focus the research on the 

buildings, we applied a median filter of length 3 to the data to remove the shortest (0.1 

second) state transitions.  The median filter reduces the number of single time step state 

transitions and focuses the analysis on longer duration effects.  Table 5 is an update of 

Table 4 and shows the summary statistics for filtered data.  Figures 13, 14 and 15 are 

updated versions of Figures 10, 11, and 12, respectively.  The modified data set was then 

used for additional processing including parameter estimation. 

 

Table 5.   Summary statistics for smoothed data set (window = 3 samples). 

(all data in seconds) Mean Stand. Dev. Maximum 

Connection durations 7.92 13.80 112.5 

Fade durations 2.44 3.21 30.9 
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Figure 13.   Histogram of received signal power after smoothing. 
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Figure 14.   Histogram (top) and CDF (bottom) of connection duration (median-

filtered). 
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Figure 15.   Histogram (top) and CDF (bottom) of fade duration (median filtered). 

 

B. CONVERSION FROM TIME SAMPLING TO SPATIAL SAMPLING 

As mentioned earlier, both the signal strength and velocity data were originally 

collected and presented as functions of time, s(t) and v(t).  The data analysis already 

presented was completed in the time domain.  The parameter estimation process (next 

section) and the simulation presented in Chapter III are both based on time domain input 

vector for signal strength.  Time domain analysis is clearly important to several facets of 

this investigation.  But it is also important to analyze the data from the spatial 

perspective. 

In the time domain, the signal vector represents a specific case of a mobile 

moving through an urban environment using a specific speed profile.  Buildings are fixed 

spatially, and analyzing the problem from this perspective should provide insights 

regarding average building width and average gap width in meters.  After converting the 

empirical data to the spatial domain, we can also generate additional signal strength 
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vectors in the time domain by applying a different mobile velocity pattern.  The spatial 

perspective is also important for to the fade prediction investigation because the 

scattering of signal energy is a function of building-mobile geometry.  This topic is 

discussed further in Appendix A. 

Note that these two perspectives are related by the vehicle’s velocity.  An 

important aspect of the spatial perspective is that it provides results that are independent 

of vehicle velocity.  In reality a gap between two buildings may be very small; let us use 

two meters for an example.  This small gap provides a 0.2 second communication 

window when the vehicle is moving at ten meters per second.  Unfortunately, 0.2 seconds 

is not enough time to send a packet and receive an acknowledgement.  The utility of that 

small window will usually be fairly low.  On the other hand, the vehicle may stop for a 

few seconds in that gap between buildings.  In this situation, the connection window 

appears to be much longer, and several packets can be transferred with 

acknowledgements received.  While they occur in the same physical situation, the results 

are significantly different and highly dependent on vehicle velocity. 

It is important to note that some data collection days did not include vehicle 

velocity.  The reasons for this are unclear, but without velocity data, we cannot convert 

the time samples to the spatial domain.  For the remainder of this procedure, we will limit 

the analysis to Data Sets A, B, C, D and G. 

The core of the conversion algorithm is a simple Riemann Sum.  We can estimate 

the distance traveled during a sample period, By assuming that the velocity is constant 

over each sample period ( distance = velocity  time∆ ×∆ ).  By collecting these small 

distances in a running total, we are performing a simple integration using the Riemann 

Sum approach.  The result of this simple algorithm is distance traveled versus time.  An 

example is shown in Figure 16.   
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Figure 16.   Riemann Sum of distance traveled. 

 

The Riemann Sum algorithm provides vehicle location estimates at the same 

sample times that the velocity was collected.  This causes a small discrepancy in the 

comparison of vehicle location and signal strength, because the velocity and signal 

strength were collected at different sample rates.  This discrepancy can be corrected by 

resampling (or interpolating) one data vector to match the other.  For this analysis, the 

velocity vector was resampled from 7.6 Hz to 10 Hz for direct comparison with signal 

strength. 

After matching the signal strength and vehicle location in time, we can drop the 

relationship with time and use the direct comparison of signal strength as a function of 

distance traveled. 
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The impact of this data conversion are shown in Figures 17 through 19.  Figure 17 

shows the data from the temporal perspective.  Figure 19 shows the same data from the 

spatial perspective.  Figure 18 shows the vehicle velocity during this time period and is 

the key to converting between the time and distance dependence.  Each figure has yellow 

and red ellipses which highlight two different connection periods.  The yellow ellipses 

highlight a connection period of approximately 1.5 seconds which is enough time to send 

several packets and receive acknowledgements.  During this period, the vehicle is moving 

at a rate of only ~2.5 meters per second.  Figure 19 shows that this physical opening is 

only four meters across, but the connection time was significant because the vehicle was 

moving slowly.  This phenomenon is even more apparent in the period highlighted by the 

red ellipses.  In this case, the connection is approximately three seconds long in time but 

only one meter wide.  Looking at Figure 18, we see that the cause of this long window is 

that the vehicle has essentially stopped.  This situation puts several time samples directly 

on top of each other in the spatial perspective.   
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Figure 17.   Data from temporal perspective (signal strength vs. time). 
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Figure 18.   Velocity: v(t). 
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Figure 19.   Data after conversion  (signal strength vs. location). 
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The last step of data conversion is to interpolate the data to a constant separation 

distance step size of 0.25 meters.  This is important for building a histogram (e.g., 

probability density function) and also important to developing a discrete-time Markov 

model.  Data sets A, B, C, D and G were converted to spatial sampling using this process.  

The summary statistics are shown in Table 6 and Figures 20 through 22 for direct 

comparison with the temporal data. 

Table 6 shows a mean fade duration of 16 meters (~52 feet), which seems to be a 

reasonable width for an average building.  Of course, this average is not based only on 

buildings and is skewed smaller by the inclusion of very narrow scatter sources like  

light poles and street signs.  It is also interesting to note a shift in the ratio of connection 

statistics to fade statistics.  While the mean and maximum connection durations are 3.2 

times longer than the mean and maximum fade durations in time, the equivalent ratio is 

only 2.2 in distance.  This odd relationship implies that, on average, the vehicle velocity 

is lower during connections than fades.  Perhaps this is an impact of city traffic signals, 

where the vehicle generally has clear access to the satellite while sitting still for a red 

light.  In any case, this ratio shift highlights the importance of analyzing the fade process 

in both time and distance.  Clearly, the velocity profile of the mobile has a substantial 

impact on the channel performance. 

 

Table 6.   Summary statistics for spatial data set. 

(all data in meters) Mean Stand. Dev. Maximum 

Connection durations 36.4 62.3 379.50 

Fade durations 16.0 26.2 188.25 
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Figure 20.   Histogram, spatial data (signal power vs. distance traveled, 100 bins). 
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Figure 21.   Histogram (top) and CDF (bottom) of connection duration (spatial data). 
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Figure 22.   Histogram (top) and CDF (bottom) of fade duration (spatial data). 

 

The histogram in Figure 20 is surprisingly similar to that computed for the 

temporal data.  It clearly shows the strong impact and bimodal nature of the 

connection/fade process.  Like their temporal counterparts, the complementary CDFs 

plotted in Figures 21 and 22 are roughly approximated as linear, which reflects a nearly 

geometric distribution of dwell times. 

It is unfortunate that some of the empirical data sets were collected without 

velocity information.  This exacerbates the small data set problems already introduced in 

Section II.A.  This problem is reflected in Figures 21 and 22 which both show large drop 

outs in the histograms where no dwell times were collected.  The reduced data set only 

includes 530 state transitions, which equates to 265 dwell intervals in each state. 

C. MODELING THE EMPIRICAL DATA 

While the first two sections of this chapter focus on understanding the available 

empirical data (e.g., observations) and processing that data to make it useful, this section 



 
 

43

focuses on the value of that data for developing an accurate generative model of the 

urban signal fade process.  This is the final step towards achieving our short term goal of 

developing a model of the urban signal fade phenomena.  To achieve this goal we use 

parameter estimation to estimate accurate model parameters.  Once we have an accurate 

model of the urban signal fade process, we can proceed with the long term goal of 

developing a network simulation for investigating solutions.   

As discussed previously, the Markov model is a popular choice as a generative 

model of the LMSC.  Agreeing with Schodorf, we will limit our current investigation to a 

two-state version [5].  The dominant effect in the urban environment is complete signal 

blockage by a building.  As shown in Figure 13, the histogram is bimodal reflecting this 

dominance of two states.  While other authors have investigated multi-state Markov 

models, they were predominantly investigating signal strength in many environments 

(i.e., open, rural, suburban, urban).   

1. Introduction and Theory of Parameter Estimation 

The problem of parameter estimation is the problem of fitting the model to the 

empirical data by adjusting the model parameters.  For situations where analytical 

solutions are not viable, many disciplines apply a version of the Expectation-

Maximization (EM) algorithm.  EM algorithms search for the maximum likelihood model 

parameters of an unknown or partially unknown probabilistic process based on a set of 

samples from that process.  The basic approach to determining the solution is by 

iteratively engaging in two steps, which together form the name of the algorithm.  The 

first step is the Expectation step, which computes the expectation of the complete-data 

log-likelihood with respect to the unknown parameters given the observed data and 

current estimates of the unknown parameters [44].  The complete data set is defined to 

include the known data (e.g., observations) and the unknown or hidden data (model 

parameters).  The first iteration starts with a simple guess for the unknown parameters.  

The second step is the Maximization step, where the value of the expectation computed 

in step 1 is maximized by manipulating the freshly computed “unknown” parameters.  
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These new parameters become the seed for the next iteration.  The iterations can continue 

until the log-likelihood is no longer growing when compared to an acceptable tolerance 

ε .  The EM algorithm is guaranteed to converge on the maximum likelihood solution 

[44].  The remainder of this section focuses on the background and implementation of the 

Baum-Welch Algorithm, which is a specific version of the EM algorithm developed for 

estimating HMM parameters [37, 38, 44, 45]. 

a. Nomenclature 

At this point, it is important to specify the nomenclature used in the 

remainder of this discussion.  For the most part, we have adopted the nomenclature and 

derivation of Liporace [46].  Some of the differences with Rabiner [30] are noted.  Table 

7 shows the detailed variable assignments and possible subscripts. 

 

Table 7.   Markov model and Baum-Welch nomenclature. 

Variable Name (where appropriate) and Definition 
S The number of states in the Markov model.  Rabiner and Juang use “N” for 

this variable.  S is always a positive integer. 
T The total number of time steps in the finite output sequence under analysis. 
t The current time step which increases monotonically from 0 to T. 
st The current state at time t.  Rabiner uses “q” for this variable.  The entire 

vector of states will be represented by dropping the subscript, s = {s0…sT}. 
Ot Observation: The output of the model at time t.  The entire vector of 

observations will be represented by dropping the subscript, O = {O0…OT}. 
A The transition matrix is composed of the individual transition probabilities, 

aij.  The matrix size is S x S. 
aij Transition probability: The probability of transitioning from state i to state j 

in a discrete time step: Pr(st+1 = j | st = i).  The value of aij is 0 to 1 inclusive.  
The subscripts i and j can be any number from 1 to S.  

ai The initial state probability is the probability of being in state i at t = 0, Pr(s0 
= i).  Rabiner uses “π” for this variable. 

πi The steady state or stationary probabilities are the long term probabilities of 
being in state i.  This is also the m-step transition probability at the limit: 

( )lim m
ij jm

a π
→∞

=  [25].  If  i ia π= , then the Markov process is called 

“stationary”. 
bj(Ot) The probability of the model generating output observation Ot while in state 

j.  This parameter can be a discrete or continuous probability density function 
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in vector or equation form. 
λ  The set of parameters that uniquely define a hidden Markov model.  The set 

usually includes the transition probabilities, aij, the output probabilities, 
bj(Ot), and the initial state probabilities, ai. 

L(x|y) The likelihood of x given y where y is assumed fixed.  In maximum 
likelihood, we attempt to find the value of x that maximizes the expression. 

N(m,σ) A Normal or Gaussian distribution function with mean, m, and standard 
deviation, σ. 

b. Parameter Estimation of hidden Markov models: Baum-Welch 

Many different authors have identified and discussed the three basic 

problems associated with hidden Markov models [30, 44].  The three problems are 

restated in Table 8.  We will focus the remainder of this discussion on Problem 3, which 

is also known as Parameter Estimation. 

 

Table 8.   The basic problems associated with HMMs. 

Problem 1 If you know the HMM’s parameters, then what is the probability of a 
specific vector of output data:  Pr(O|λ)? 

Problem 2 If we have a vector of output data, what is the state sequence that most 
likely produced the output? 

Problem 3 If you have output data and imperfect estimates of the model’s parameters, 
then how can we improve the model’s parameters and maximize Pr(O|λ)?   

 

One popular approach to solving the third problem is to use the Baum-

Welch Algorithm (BWA).  The Baum-Welch algorithm is a specific form of the general 

Expectation-Maximization (EM) algorithm specifically developed for parameter 

estimation of hidden Markov models [30, 44].  The remainder of this section focuses on 

the background and general implementation of the BWA.  For this specific problem, the 

known data set consists of the process samples that form the observation vector.  The 

unknown data set consists of the state transition probabilities and intrastate probability 

density function parameters for output transmission. 

As mentioned above, the foundation of BWA (and EM) is the likelihood 

function.  The goal is to determine the likelihood of a set of observations, O = {O1, …, 
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OT} given estimates of the model’s parameters, λ = {aij, bj} for i, j = 1…S.  When the 

sequence of states is known, s = {s0, s1, …, sT}, then the likelihood of the observation 

sequence is defined as 

 ( ) ( )
1

.
t

T

s t
t

L b Oλ
=

=∏O s  (2.3) 

 

Equation (2.3) shows that the likelihood of the observation sequence O 

conditioned on the sequence of states is simply the product of the probability of each 

individual observation.  As a simple example, let us assume that we have a two-state 

Markov chain where the output of each state is a Gaussian random variable.  A state 

transition represents a shift in the mean of a Gaussian random variable.  We define State 

1 as N(0,1) and State 2 as N(1,1).  We have an initial state (t = 0) plus two samples from 

this Markov Chain, so T = 2. 

The observation sequence is O = {−0.4, 1.1, 0.6}, and the corresponding 

state sequence is s = {0, 1, 1}.  The likelihood of this observation sequence conditioned 

on the state sequence is 

 
( ) ( ) ( )

0 1 20 1 2 0 1 2( | ) ( ) ( ) ( ) 0.4 | 0 1.1| 1 0.6 | 1s s s x x xL b O b O b O f x s f x s f x sλ = = = − = = = = =O s
 

 
( ) ( ) ( )

( ) ( )( )
2 2 20.4 0 1.1 1 0.6 1

2 2 21 1 1 0.3683 0.3970 0.3683 0.2924.
2 2 2

e e e
π π π

− − − −
− − −

= = =  

 

Now let us compare this result with a situation where the states are 

reversed to s0 = 1, s1 = 0, s2 = 0.  The new likelihood is 

 
( ) ( ) ( )

0 1 20 1 2 0 1 2( | ) ( ) ( ) ( ) 0.4 | 1 1.1| 0 0.6 | 0s s s x x xL b O b O b O f x s f x s f x sλ = = = − = = = = =O s
 

 
( ) ( ) ( )

( )( )( )
2 2 20.4 1 1.1 0 0.6 0

2 2 21 1 1 0.1497 0.2179 0.3332 0.0109.
2 2 2

e e e
π π π

− − − −
− − −

= = =  

 

Thus, the likelihood of receiving the observation sequence, O = (−0.4, 1.1, 0.6), is 

significantly lower if the state sequence is s = (1, 0, 0). 
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The purpose of the λ subscript found in the expression for the likelihood 

Lλ is to show the additional dependence of the likelihood on the model parameters.  For 

this specific example, our choice of mean and variance for each Gaussian probability 

function had a significant impact.  The likelihood function can also be dependent on the 

transition probabilities aij.  

While Equation (2.3) shows the conditional likelihood, we are actually 

interested in the posterior likelihood Lλ(O) not conditioned on the state sequence (since 

we will not usually know the state sequence).  In order to remove the conditional 

dependency, we can build a weighted average of the conditional likelihoods for each 

possible state sequence.  The weighting is based on the probability of that particular state 

sequence occurring, which we can label Pλ(s) as the probability of the state sequence s 

given the model parameters λ = {aij, mi, σi}: 

 ( )
0 1

1

.
t t

T

s s s
t

P s a aλ −
=

= ∏  (2.4) 

 

Equation (2.4) shows that Pλ is easily computed as the probability of 

starting in state s0 multiplied by the probability of each transition in the sequence.  To 

continue our simple example, assume that 0 1 0.5a a= =  and 00 01

10 11

0.8 0.2
0.3 0.7

a a
A

a a
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

.  

We can compute the probability of the first state sequence s = {0, 1, 1} as 

( )( )( )0 01 11( )  0.5 0.2 0.7 0.07P s a a aλ = = = .  Similarly, the probability of the second state 

sequence s = {1, 0, 0} is ( )( )( )1 10 00( )  0.5 0.3 0.8 0.12P s a a aλ = = = . 

Combining, Equations (2.3) and (2.4), we can finally compute the 

likelihood of an observation sequence given the estimated model parameters:  

 ( ) ( ) ( ) ( )
0 1

1

.
t t t

T

s s s s t
s s t

L L P a a b Oλ λ λ −
=

= =∑ ∑ ∏O O s s  (2.5) 

The goal is to maximize the posterior likelihood Lλ(O) to find the optimal set of 

parameters λ.  Continuing our example, with S = 2 and T = 2, we see that the summation 
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over the state vector expands into eight individual terms representing all possible 

sequences of length three ( 32 8TS = = ). 

The likelihood function can be viewed as a complex surface in an N-

dimensional space where N is the number of parameters in λ.  From this perspective, 

maximizing the likelihood function by adjusting the model parameters is simply finding 

the “highest” point in the complex surface.  This problem does not yet have an analytical 

solution.  Instead, Baum, Petrie and others derived a specific version of the Expectation-

Maximization algorithm to solve the problem iteratively.  A complete discussion of the 

derivation and iteration details can be found in [31, 37, 38, 45, 46].  The basic steps are 

summarized here: 

1. Collect observation vector O from stochastic process. 

2. Assume a discrete number of states for the process. 

3. Make initial guess for unknown parameters (i.e., aij, µ, σ). 

4. Compute 
1

( )
T

i
t

tγ
=
∑ , which is the expected number of times the process is in 

state i for the observation sequence of duration T.  It is important to note that 

this expression also represents the number of times the process leaves state i. 

5. Compute 
1

1

( )
T

ij
t

tε
−

=
∑ , which  is the expected number of transitions from state i to 

state j for the observation sequence of duration T. 

6. Realizing that the transition probabilities aij are simply a ratio of the expected 

number of  transitions from state i to state j to the total number of  transitions 

leaving state i, we can update our estimate of aij by dividing the result from 

step 5 by the result from step 4. 

7. Update the output transmission function parameters:   

7a. For discrete output transmission functions (e.g., Gilbert model), we 

can compute the transmission probability by taking a ratio of the 
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expected number of times the observation had a value of vk while in 

state i compared to the total number of times in state i: 

 ( ) ( )
( )

,1

1

,t k

T
i o vt

i T
it

t
b k

t

γ δ

γ
=

=

= ∑
∑

�  (2.6) 

where ,x yδ  represents a function that equals one when x = y. 

7b. Parameter update equations are more complex for continuous 

transmission functions.  Relevant equations can be found in [44] and 

[46] for mixed Gaussian transmission probability distributions which 

require the update of mean µ  and variance 2σ . 

 

2. Implementing Baum-Welch 

As mentioned in Section I.D, in [5] Schodorf attempted to model the urban fade 

channel with two-state generative models, using both non-hidden Markov model and 

Gilbert model approaches.  Each time the two states are identified as good and bad, 

which are the same as connection and fade.  The Gilbert model is introduced in Section 

I.C. as the simplest version of a hidden Markov model.  The good state is completely 

discrete and not hidden by any stochastic output transmission function (observable).  But 

the bad state is defined to have an internal Bernoulli transmission function that allows it 

to produce both connection and fade levels of performance.  This small change hides the 

true state from direct observation.  All of these models are simple enough that they do not 

require an Expectation-Maximization algorithm like Baum-Welch [5], as model 

parameters can be directly estimated from the empirical data set.  Schodorf’s results are 

summarized in Section 3 where it can be seen that additional improvements appear to be 

possible.  In an effort to achieve those additional improvements, we increase model 

complexity by assuming continuous output transmission functions. 

We tried three additional hidden Markov models, each with a continuous density 

function for the output transmission.  In the first approach, we assumed a single Gaussian 

distribution for the output of each state, which is similar to the example discussed in the 
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last section.  The second approach models each state as a weighted mixture of five 

Gaussians.  The additional complexity of this approach allows the algorithm to resolve a 

more complex transmission function.  The final approach converts the histograms 

presented earlier in this chapter into continuous pdfs by implementing a piecewise 

polynomial.  The benefits of this last approach are a substantial reduction in unknown 

parameters and a more accurate continuous transmission function.  

a. Transmission Function: Gaussian or Gaussian Mixture 

The smallest increase in complexity that still provides a continuous 

probabilistic output transmission function is a single Gaussian output function.  The 

unknown parameters are the transition probabilities and the mean and variance for the 

Gaussian pdf associated with each state (i.e., a00, a11, µ0, µ1, 2
0σ , 2

1σ ).  This makes a total 

of six unknown parameters to be estimated, which is double the three necessary for a 

Gilbert model (i.e., a00, a11, h).   

While a single Gaussian transmission pdf may provide a more accurate 

representation of the signal strength than the Bernoulli function used by Schodorf, it is 

still a poor match to the histograms shown in Figures 10 and 13.  A mixture of multiple 

Gaussians can often be an increasingly accurate replacement for a non-Gaussian 

stochastic process.  The first and only attempt at this approach involved a five Gaussian 

mixture for each state.  The results of this approach were promising and are found in 

Section 3.b.  The 32 unknown parameters include two transition probabilities, the mean 

and variance for ten Gaussian distributions and ten weighting factors.  As shown in the 

results, the fourth and fifth mixture components were minor contributors and an increase 

in the mixture count was not necessary. 

The implementation of this approach relied heavily on the work of Kevin 

Murphy [47].  Instead of developing new Matlab scripts from scratch, we started with 

Murphy’s Bayesian Toolbox which includes several hidden Markov model related 

processes including parameter estimation.   
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b. Transmission Function: Hermite Interpolant 

While a mixture of weighted Gaussian functions provides a significant 

amount of flexibility in representing a complex stochastic process, it may not be as 

accurate as using the actual data itself.  One idea for achieving these improvements was 

to model the process output with a more accurate probability density function.  Thus, we 

investigated deriving an analytical expression for the histogram (as shown in Figures 10 

and 13) using a splined or hermite interpolant piecewise polynomial.  The difference 

between a hermite interpolant and a spline interpolant is the additional constraint that 

spline interpolants be continuous in the second derivative when transitioning between 

polynomials.  Both hermite and spline interpolants are required to be continuous in the 

first derivative (slope).  Both approaches were applied to the data, and the differences 

were very small.  The splined interpolant have more trouble with the sharp transitions of 

the histogram, so for the remainder of this discussion we focus on the hermite interpolant. 

The first step towards completing this approach is to split the histogram 

into two distinct pdfs, each representing a state.  Based on the concept that the two states 

are each represented by a peak in the histogram, the logical separation point is the low 

point between those two peaks.  A windowed average of the histogram showed that the 

general low point between the two peaks is between 59 and 60 dB.  However, it is not 

feasible to simply split the histogram into two pdfs, one below 59 dB and one above 59 

dB.  This would make the Baum-Welch algorithm unnecessary because there would no 

longer be any uncertainty about which state the process was in.  Instead, it is imperative 

that the pdf for each state cover the full range of possible output values.  To accomplish 

this separation, the histogram value at 59 dB was shared equally with both pdfs.  Then a 

straight line was formed from that center point to the distant edge of the histogram.  Each 

straight line was sloped to gently decrease until reaching zero at the edge of the pdf. 

The resulting analytical pdfs are shown graphically in Figures 23 and 24.  

These can be compared to Figures 10 and 13, which shows the original data and 

smoothed data histograms. 
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Figure 23.   Piecewise polynomial pdf of State 0 (fade). 
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Figure 24.   Piecewise polynomial pdf of State 1 (connection). 

 

One important impact of this approach was the simplification of the 

Baum-Welch parameter estimation.  When modeling the process with a mixture of 

Gaussian random variables, we have to iteratively estimate the mean, variance and weight 

coefficient of each Gaussian.  With this piecewise polynomial approach, the pdf is 

assumed to be known and is no longer updated iteratively.  In theory, the pdf is assumed 

to be nearly perfect and does not require any modification.  The simplification provides a 

significant reduction in required mathematical operations and computational run-time. 

c. Initial Guess for Unknown Parameters 

As presented earlier in Section C.1.b, Step 3 of the BWA Expectation-

Maximization process determines an initial guess for the unknown parameters, where 

unknown parameters are those we are trying to estimate.  The EM process computes a 

likelihood of these parameters having those initial values and then attempts to change the 
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parameters in a direction that increases the likelihood.  As part of exploring the 

performance of the BWA in this context and to understand the sensitivity to the initial 

guess, we repeated the algorithm multiple times with either high confidence good initial 

guesses or randomly generated initial guesses.  Table 9 shows the three different 

approaches that were used to generate an initial guess for unknown parameters.  The 

initial attempt was based on the broad probability functions shown in the row labeled 

“Random, Broad”.  This approach had some problems and led to the development of the 

“Random, Focused” input parameters.  The constraints on this set of initial guesses are 

reasonable assumptions based on the amount of information available from the empirical 

data analysis.  Finally, an attempt was made to seed the EM algorithm with a nearly ideal 

initial guess.  The parameters shown in the row labeled “Expected Values” reflect this 

initial guess.  The results for each approach are discussed more in Section 3.   The BWA 

was executed repeatedly with independent random inputs and statistical information was 

collected about its performance. 

 

Table 9.   BWA input: variations of initial guess. 

   State 1 (connection) State 0 (fade) 
 a00 a11 Means Variance Means Variance 
Random, 
Focused 

Uniform 
(0-1) 

Uniform 
(0-1) 

Uniform 
(65-75) 

Uniform 
(1-3) 

Uniform 
(30-50) 

Uniform 
(1-3) 

Random, 
Broad 

Uniform 
(0-1) 

Uniform 
(0-1) 

Uniform 
(0-80) 

Uniform 
(0-10) 

Uniform 
(0-80) 

Uniform 
(0-10) 

Expected 
Values1 

0.75 0.75 75, 74, 73, 
71, 70 

2, 2, 2, 2, 
2 

45, 40, 35, 
30, 20 

20, 20, 20, 
20, 20 

1 Note: These input parameters were only applied to the weighted mixture of  five 
Gaussian transmission functions. 
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3. Parameter Estimation Results 

a. Schodorf’s Results 

For comparison purposes, a limited summary of Schodorf’s results are 

presented here [5].  Recall from the earlier discussions in Sections I.D and II.C.2 that 

Schodorf tried three different approaches.  The first was a non-hidden, discrete, two-state 

Markov model.  The second and third were both implementations of the Gilbert model.  

The difference between his second and third modeling attempt was the approach to 

computing model parameters.  The second model was parameterized using only the 

average connection statistics found in the empirical data.  While this version produced an 

excellent fit to the empirical connection statistics, it did not provide an acceptable fit to 

the fade statistics.  The third and final attempt was parameterized jointly using both 

connection and fade statistics.  It is important to note that Schodorf applied these models 

to open, rural, and urban environments.  He also ran the models with both a −3 dB 

connection/fade threshold and a −10 dB connection/fade threshold where the threshold is 

relative to LOS.  We will only present the data for the urban environment with a −10 dB 

threshold because this is the closest match for comparison.  Table 10 shows the state 

transition and steady state probabilities π estimated by each approach.  Schodorf also 

solves for other parameters like the Bernoulli distribution parameter h but they are not 

repeated here since they are not valuable for comparison.  Figures 6(c) and 6(d) show the 

complementary cumulative distribution functions of the connection and fade durations 

which provide a valuable check on model compatibility to the empirical data.  It is 

important to note that Schodorf was forced to investigate the impact of setting a binary 

connection/fade threshold.  This is a side effect of using the simple non-hidden Markov 

and Gilbert models which have clearly defined discrete state definitions.  This step is not 

necessary for the continuous stochastic output functions that we investigated.  

 

 



 
 

56

Table 10.   Parameter estimation results from Schodorf [5]. 

 a00 (connection)
1 a11 (fade)

1 πfade
1 

Markov (observable) 0.9726 0.9465 0.34 
Gilbert 0.9748 0.9151 0.04 
Gilbert (jointly opt.) 0.9959 0.9264 0.05 
1 Note: We can find the remainder of parameters by (a01 = 1 – a00), (a10 = 1 – a11), and 

(πconnection = 1 − πfade) 

 

While the Gilbert model provides improved accuracy for the open and 

rural environments, it does not do so for the urban environment.  In [5], Schodorf selects 

the simple Markov model as the best overall solution for the urban COTM channel.  The 

connection-based Gilbert model has the best fit for connection dwell time statistics, but 

otherwise, both Gilbert models significantly underestimate the fade statistics (a11, πfade).  

Based on the plots in Figure 6, it does appear that the Markov parameters shown above 

may be underestimated relative to the dwell durations.  Figure 6(c) shows that short 

connection durations are substantially underestimated and long connection durations are 

overestimated.  Figure 6(d) shows an opposite skew of overestimating short fades and 

underestimating long fades.  While the Gilbert model shows a 0.1% probability of a fade 

exceeding 90 meters, the experimental data shows a 0.1% probability of the fade 

exceeding 175 meters.  Further analysis of these two figures and the parameter estimates 

reported for Schodorf’s three different attempts suggest that pgg should be approximately 

0.98 and pbb should approximately 0.95. 

b. Mixed-Gaussian Results 

In an effort to find a better approach to converting empirical data into an 

accurate fade model, we applied the BWA avoided by Schodorf.  A short introduction to 

parameter estimation and the Baum-Welch Algorithm were presented in Section C.1.  

The empirical input data was processed as discussed in Sections II.A and II.B.  One of 

the benefits of the BWA is that you do not need to know anything about the output 

transmission functions.  Instead, the descriptive parameters of the transmission pdfs can 

become additional variables estimated by the parameter estimation algorithm.  A 
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common implementation involves assuming the transmission pdfs are a weighted mixture 

of individual Gaussian pdfs.  In this implementation, the BWA estimates the transition 

probabilities of the Hidden Markovian process and the mean, variance and weighting 

coefficients of the combined Gaussian pdfs that represent each state.  We investigated the 

simplest version with a single Gaussian pdf representing each state and also a more 

complex implementation where each state was represented by a mixture of five Gaussian 

pdfs.  Each approach was attempted numerous times, each with a different random initial 

guess.  The initial guess was originally expected to have only a small impact of results 

[44].  Some variance is expected because we are solving the iterative estimation process 

to a finite tolerance.  This means that the true maximum has not actually been found, but 

we are in the vicinity.  But with a tight convergence limit, like ε = 10−6, these differences 

were expected to be small. Results did not completely conform to this expectation.  The 

most noticeable impact of changing the initial guess was the number of iterations 

required by the BWA to converge within the tolerance. 

The results for a single Gaussian transmission function and the “Random, 

Focused” initial guess inputs from Table 9 are shown in Table 11.  The table shows 

numerical results for transition probabilities (aii) and transmission function parameters 

(µi, σi
2).  As mentioned earlier, some attempts were made to start with even more 

divergent values for the initial input, but the algorithm was not tolerant to converging on 

reasonable parameter estimates with the extreme inputs labeled “Random, Broad” in 

Table 9.  An example of this difficulty is provided in the mixed Gaussian results.  Shown 

after each parameter is the approximate variance computed from ten independent 

attempts.  As mentioned above, these variances are extremely tight and reflect an 

insensitivity to the initial guesses within the constraints shown. 
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Table 11.   BWA results for a Gaussian transmission function (mean, variance for 10 
attempts) 

 Original Data 
(temporal) 

Smoothed Data 
(temporal) 

Spatial Data 

a00 0.9630, 10−15 0.9670, 10−15 0.9876, 10−15 
a11 0.9820, 10−16 0.9838, 10−16 0.9923, 10−17 
State 1: Mean 74.694, 10−12 74.658, 10−12 74.711, 10−11 
State 1: Variance 1.4042, 10−11 0.9520, 10−11 0.9679, 10−10 
State 0: Mean 49.065, 10−10 49.841, 10−10 46.925, 10−9 
State 0: Variance 179.91, 10−8 153.18, 10−7 134.30, 10−6 
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Figure 25.   BWA estimated Gaussian pdfs to represent (a) State 0 (fade) and (b) State 

1 (connection) for three input data sets.  Horizontal axis is received signal 
strength measured in dB. 

 

The parameter estimation process was repeated for each of the data sets 

discussed earlier in Chapter II.  The spatial data (signal strength vs. meters traveled) is 

the appropriate data set for comparison with Schodorf’s results since he used spatial data 
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to generate the results shown in Figure 6 and Table 10.  Figure 25 shows three 

independent attempts to estimate the Gaussian transmission pdfs from the original data 

set.  Comparison with the empirical histogram shown in Figure 10 shows that the 

similarities are minimal.  The mean of the two intrastate pdfs appear in the same location 

as the histogram, but the additional structure of the histogram cannot be recreated by a 

single Gaussian.  In general it appears that this approach may slightly overestimate the 

fade and connection statistics but appears to be more accurate than the Gilbert model 

used by Schodorf.  It is important to note that the transition parameters were larger for the 

smoothed data than for the original data set.  This behavior is appropriate since the 

smoothed data has a reduced number of state transitions due to the removal of single 

time-step signal fades. 

A more advanced approach to representing complicated transmission 

functions is to model them as a weighted mixture of multiple Gaussian functions.  The 

BWA results for a weighted mixture of five Gaussian functions are shown in Tables 12 

and 13 and Figures 26 through 32.  Table 12 and Figures 26 and 27 show the results of a 

single parameter estimation with an initial guess that was very close to expectations, 

which is shown in Table 9 as “Expected Values”.  Figure 26 shows the five individual 

mixture component pdfs separately but modified by their weighting coefficients.  In State 

1 (connection), the weighting coefficients for pdfs 4 and 5 are so small as to make those 

mixture components nearly negligible.  Figure 27 presents the final output transmission 

functions b1(Ot) and b2(Ot), which are computed by combining the mixture components 

in Figure 26.   
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Table 12.   Estimated model parameters for transmission functions. 

  Gaussian 
#1 

Gaussian 
#2 

Gaussian 
#3 

Gaussian 
#4 

Gaussian 
#5 

Means 75.523    74.721 73.669 71.301 67.936 
Variances 0.669 1.291 0.141 3.793 6.343 

State 1 

Mixture 
weights 

0.4154 0.1811    0.3012  0.0276     0.0747 

Means 55.036 42.797 38.026 31.702 19.741 
Variances 62.248 13.673 25.8977 4.651 0.010 

State 0 

Mixture 
weights 

0.3440 0.3271 0.2752 0.0062 0.0474 
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Figure 26.   BWA estimated mixture of five Gaussian pdfs each to represent States 0 

(fade) and 1 (connection); each shown separately. 
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Figure 27.   BWA estimated mixture of five Gaussian pdfs each to represent States 0 

and 1; each mixture combined to form a single pdf. 

 

Like the single Gaussian approach, the Gaussian mixture approach was 

also attempted with random initial guesses for the desired parameters (see Table 9).  The 

performance of the BWA varied noticeably with initial guess as shown in Figures 28 and 

29.  Figure 28 shows the transmission pdfs estimated by the algorithm for five 

independent attempts.  Figure 29 shows the log-likelihood as a function of algorithm 

iteration for those same five attempts.  The y-axis of Figure 29 is zoomed into a tight 

range of log-likelihood to see the slight changes that occur at higher iterations, but this 

cuts the first one or two iterations off.  It is not uncommon for the BWA to start with a 

log-likelihood of less than −130,000 with the “Random, focused” initial guess constraints 

shown in Table 9.  As shown in Figure 28, these different attempts do not converge to the 

same transmission function within 200 iterations of the Expectation-Maximization cycle.   



 
 

62

66 68 70 72 74 76 78

0.2

0.4

0.6

0.8

(a)

P
ro

ba
bi

lit
y,

 f(
x)

Attempt 1
Attempt 2
Attempt 3
Attempt 4
Attempt 5

20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05
(b)

P
ro

ba
bi

lit
y,

 f(
x)

Received Signal Power (dB)

 
Figure 28.   Output transmission pdfs for five parameter estimation attempts using the 

original data set; each with a different random initial guess with “Random, 
focused” constraints shown in Table 8. (a) State 1 (connection), (b) State 0 (fade). 

 

For State 1, attempts 1 and 5 resolved only one peak in the transmission 

function, while the remaining attempts resolved two peaks.  Please note that the plot for 

attempt 1 is difficult to see because it is hidden behind attempt 5.  It is interesting to note 

that the single peak estimates have essentially the same mean as the single Gaussian 

approach in Figure 25.  For State 0, attempts 1, 3 and 5 resolved a distinct and heavily 

weighted spike in the pdf near 30 dB of signal strength.  This is surprising because the 

empirical histograms do not show a similar structure.  Attempts 1 and 5 certainly stand 

out as generally being of lower accuracy.  It is not surprising to see that they have the 

lowest log-likelihoods of the five attempts.  It is mildly surprising that attempt 3 has the 
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inaccurate State 0 pdf especially since its log-likelihood is the highest by far, but it was 

not finished iterating when it reached the limit of 200 iterations.  If allowed to continue, it 

may have shifted the estimate to be a closer match to expectations.  The remaining five 

iterations (not shown) were similar to the examples presented.  The majority of attempts 

resolved two peaks in the State 1 pdf and did not resolve the sharp spike in the State 0 

pdf. 
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Figure 29.   Likelihood for five separate attempts, five different initial guesses, 

original data. 

 

This process was repeated with the two additional data sets: smoothed and 

spatial.  The results for transition probability are summarized in Table 13.  Figures 30 and 

31 are similar to Figures 28 and 29, respectively, except that they are based on the spatial 

data set.  An important difference between the spatial data set and the temporal data set is 
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the number of iterations necessary to prosecute the BWA.  While the BWA was 

frequently able to determine the maximum-likelihood solution within 150 iterations for 

the original and smoothed data, it in many cases required more than 250 iterations to 

accomplish the same with the spatial data.  As can be seen in Figure 30, even after 250 

iterations, two of the five attempts (1 and 4) were still resolving on a  single peak.  It is 

also important to realize that these two attempts show the lowest likelihoods in Figure 31.  

It is also interesting to note that the likelihoods based on spatial data were all 

considerably lower than those achieved with the original data set (shown in Figure 29). 

66 68 70 72 74 76 78

0.1

0.2

0.3

0.4

0.5

0.6

(a)

P
ro

ba
bi

lit
y,

 f(
x)

Attempt 1
Attempt 2
Attempt 3
Attempt 4
Attempt 5

20 30 40 50 60 70

0.005

0.01

0.015

0.02

0.025

(b)

P
ro

ba
bi

lit
y,

 f(
x)

Received Signal Power (dB)
 

Figure 30.   Output transmission pdfs for five parameter estimation attempts using the 
spatial data set; each with a different random initial guess with “Random, 

focused” constaints shown in Table 8. (a) State 1 (connection), (b) State 0 (fade). 
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Figure 31.   Log-likelihood for the five BWA attempts shown in Fig 25 (spatial data).  

 

The estimates of transition probability are shown in Table 13.  By 

comparing these results to those in Table 11, we can see that the increased number of 

Gaussian pdfs used to represent the intra-state emission process unanimously increases 

the estimates for transmission probability aii.  Table 13 also shows the increase in 

transition probability expected as a result of smoothing.   

 

Table 13.   BWA results: Gaussian mixture transition probabilities (mean, variance of 10 
trials). 

 a00 a11 
Original Data 0.9657, 3E−6 0.9867, 2E−6 
Smoothed Data 0.9677, 1E−9 0.9881, 5E−10 
Spatial Data 0.9884, 3E−8 0.9935, 5E−8 

 

As mentioned earlier in this section, the algorithm convergence was 

sensitive to the initial guess.  The initial approach to randomly generate inputs, labeled 
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“Random, Broad” in Table 9, produced widely varying results and in some cases mixed 

States 0 and 1.  Four independent examples of this problem are shown in Figure 32.  

These attempts did not reach convergence within 200 iterations so additional 

improvements may have continued to be manifested if additional iterations were allowed. 
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Figure 32.   Output transmission pdf results for broad random initial guess (original 

data set). 

 

c. Specific Discussion of Piecewise Polynomial Results 

While the results from modeling the output of each state as a mixture of 

Gaussian random variables were promising, additional improvements seemed possible 

with a more accurate output transmission function.  For the third and final approach, the  
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weighted Gaussian mixtures presented in the last section were replaced with the hermite 

interpolant-based, continuous pdfs shown in Figures 23 and 24 and discussed in Section 

2.c. 

As noted above, the number of unknown variables drops significantly with 

this approach because the output transmission pdfs no longer have parameters to be 

estimated.  The only remaining parameters left for the Baum-Welch algorithm to estimate 

were the model’s transition probabilities aij.  The algorithm was applied to both the 

original data set and the smoothed data set to understand the impact of data smoothing.  

The initial guess for aii was 0.75 for the implementation shown.  This matches row 3 of 

Table 9 and has been referred to as the “Expected Values” initial guess.  Like the single 

Gaussian, other initial guesses were used without a significant difference in results.  The 

final parameter estimations for aii are shown in Table 14.  It is important to note that the 

smoothed data had larger transition probabilities than the unsmoothed data.  This is the 

correct direction of change for these parameters since smoothing removes very short 

duration transitions. 

 

Table 14.   BWA estimates of transition  probabilities using Hermite Interpolant. 

 

 

These transition probability results appear to be slightly high relative to 

the interarrival times shown in the empirical data.  Focusing on the results for the 

smoothed input data, we see in Table 5 shows a directly computed mean connection time 

of 7.92 seconds. Yet a transition probability of 0.99095 estimates a mean connection time 

of 11.05 seconds (see Equation (2.7)).  Likewise, the computed mean fade duration is 

2.44 seconds, but the transition  probability of a11 = 0.9721 estimates a mean of 3.58 

seconds. 

 

 a00 a11 
Original data 0.9906 0.9713 
Smoothed data 0.9910 0.9721 



 
 

68

d. Summary of Parameter Estimation Results 

Sections a. through c. presented the parameter estimation results achieved 

through each of the four approaches discussed.  These include the observable Markov 

model and Gilbert model implemented by Schodorf as well as the continuous 

transmission functions implemented as part of this research (i.e., Gaussian and Hermite 

Interpolant).  The next step is to compare the relative performance of the different 

approaches and determine which approach is the most accurate.  For a Markovian 

process, the transition probabilities are directly related the mean state dwell intervals: 

 1 1[ ] .
1dwell

ij ii

E t
a a

= =
−

 (2.7) 

Based on the dwell interval statistics presented in Tables 4 through 6, we 

can estimate the transition probabilities as shown in Table 15.   It is important to note that 

these transition probabilities assume a time step of 0.1 seconds and a spatial distance step 

of 0.25 meters. 

 
Table 15.   Direct estimation of transition probabilities. 

 a11(connection) a00 (fade) 
Original data 0.9814 0.9405 
Smoothed data 0.9874 0.9590 
Spatial data 0.9931 0.9844 

 
 

To compare the different continuous transmission HMMs with Schodorf’s 

attempts, we need to analyze the results involving spatial data because that is the data 

Schodorf used.  The parameter estimation results of the spatial data are summarized in 

Table 16.  The best match is achieved with the mixed Gaussian transmission functions, 

indicated by the red ovals.  The mixed Gaussian HMM provides a mean connection of 

38.5 meters and a mean fade of 21.5 meters.  These are both slightly longer than 

experienced by the empirical testing.  The second best match is provided by the single 

Gaussian transmission functions; but the single Gaussian approach produces mean dwell  
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intervals that are slightly smaller than found in testing.  The observable Markov model 

and Gilbert model do not provide nearly as good of a match with respect to producing 

mean dwell intervals. 

 

Table 16.   Comparison of parameter estimation results for spatial data 

 a11(connection) a00 (fade) 
Direct estimate (from Table 15) 0.9931 0.9844 
Schodorf Markov (from Table 10) 0.9726 0.9465 
Schodorf Gilbert (from Table 10) 0.9959 0.9264 
Single Gaussian (from Table 11) 0.9923 0.9876 
Gaussian mixture (from Table 13) 0.9935 0.9884 

 

Table 17 provides a condensed comparison of the BWA results for the 

original and smoothed (temporal) data sets.  Results are repeated from Tables 11, 13 and 

14.  In almost cases the parameter estimation has overestimated the state durations, 

especially with respect to the fade state and the original data set.  The hermite interpolant 

approach consistently produces the largest estimates of transition probability regardless 

of state or dataset.  These large transition probability estimates provide abnormally long 

fade and connection dwell intervals that are not reflected in the test data.  Again, the two 

Gaussian-based approaches are closer to matching expectations and in some cases 

produce mean connection dwell intervals within a few seconds of the test data results. 

 

Table 17.   Comparison of parameter estimation results for temporal data 

 

 

 

 

 

Original data: a11 (connection) a00 (fade) 
Direct estimate 0.9814 0.9405 
Single Gaussian 0.9820 0.9630 
Mixed Gaussian 0.9867 0.9657 
Hermite interpolant 0.9906 0.9713 
Smoothed data:   
Direct estimate 0.9874 0.9590 
Single Gaussian 0.9838 0.9670 
Mixed Gaussian 0.9881 0.9677 
Hermite interpolant 0.9910 0.9721 
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D. CHAPTER II SUMMARY 

In this chapter, we achieved the first of the two research goals established in 

Chapter I, that of developing an improved urban COTM channel model.  The mixed-

Gaussian continuous transmission hidden Markov model is superior to prior attempts in 

two ways.  The first is the increased accuracy in matching dwell interval statistics.  The 

second improvement over previous models is the model’s ability to produce a time 

sequence of signal strength that accurately matches the empirical training data.  This is a 

direct benefit of the model being a continuous transmission HMM.  This additional 

capability allows future model improvement to replace the visibility vector with a signal 

strength vector that includes other link-changing processes like weather or scintillation.  

The next chapter introduces the mitigation strategy that allows us to meet the remaining 

research goal of improving network performance in the urban environment.  
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III. INTRODUCTION: URBAN COTM AND AD-HOC PACKET 
MODELS 

A solution for minimizing the impact of long outages experienced by the urban 

mobile-to-satellite link as discussed in Chapter II is presented in this chapter. The 

solution is to modify the packet routing protocol(s) to improve overall network 

performance either by reducing delay or increasing throughput.  A discussion of several 

distinct but related models that were used to explore this solution path is included in this 

chapter.  These models are focused on implementation of the network layer protocol as 

defined in the Open Systems Interconnection (OSI) reference model [48].  They also 

include some limited modeling of the Data Link and Physical layers on which the 

Network layer is built.  The Physical layer is modeled as either a directional wireless link 

between a mobile radio and a geostationary satellite or a mobile radio to mobile radio 

wireless link experiencing slow, flat Rayleigh fading.  The Data Link layer is only 

modeled in the mobile-to-mobile link with a convolutional code for forward error 

correction (FEC).  The Data Link layer of the mobile-to-satellite link is assumed to 

include a combination of an error detection and correction algorithm and block 

interleaving that together provide a nearly error-free data stream to the network layer 

when the link is not experiencing fade due to building blockage.  

Model 1 is presented as the control case, or baseline, for comparison.  It simulates 

the performance of two independent packet routing protocols: a local ad-hoc network 

consisting of n mobiles and access to the larger GIG that is represented as a mobile-to-

satellite link.  It is assumed that the satellite is a central node in the GIG and transfers 

packets to their distant destination.  In Model 1, the two networks are not integrated.  

When a mobile generates a packet, the mobile transmits the packet on the local ad-hoc 

network if the destination is local or transmits the packet on the SATCOM link if the 

destination is not local.  Similarly, when the satellite node has a packet destined for one 

of the mobiles, the satellite attempts to transmit the packet directly to that mobile.  If the 

mobile is experiencing a deep fade associated with physical blockage, then the packet is 



 
 

72

lost and must be retransmitted at some later time.  In this model, the satellite does not use 

any side information regarding the mobile’s signal strength or lack thereof. 

Model 1A is a slight variation of Model 1.  This simulation explores possible 

performance improvements by modifying the mobile-to-satellite routing protocol to 

include a “wait-state” when the mobile appears to be blocked.  The satellite estimates the 

link state (blocked or clear) using available side information on uplink carrier strength.  

The goal of this modification is to reduce the number of packets that the satellite sends to 

a mobile experiencing a long blockage.  This in turn is expected to reduce the number of 

packets that have to be resent and improve overall throughput.  In Model 1A, the local 

ad-hoc network is still separate and independent.   

Model 2 implements the “Neighbor protocol” for comparison with Models 1 and 

1A.  The Neighbor protocol modifies the local ad-hoc network to interact with the 

SATCOM link in a more integrated fashion.  The primary modification is to allow 

neighboring mobiles to act as surrogates for a blocked mobile and allow the network to 

circumvent long duration link outages.  This modification essentially allows some packet 

routing paths to include both the local ad-hoc network and the satellite-node.  The 

specific implementation represented in Model 2 is constrained to a single transfer within 

the ad-hoc network.  This limitation is included for simulation simplicity.  If the network 

performance shows improvements, the concept can be expanded to allow more 

complicated routing paths and more complicated routing protocols.  The disadvantages of 

this approach are expected to be increased system complexity and increased traffic on the 

local ad-hoc network. 

All three of these network models include internal Markov models for simulation 

of the urban deep fade phenomenon and simulation of the mobile’s horizontal motion 

relative to its neighbors.  The first of these Markovian phenomena is central to the 

performance of the SATCOM link.  The second is central to the performance of the 

mobile ad-hoc network.  An introduction to Markov models can be found in Chapter I.  

Chapter II discusses the empirical test data and Baum-Welch algorithm used to estimate 

the appropriate model parameters for the signal fade model.  A third use of Markov 
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chains is to simulate the packet generation process.  As discussed in [27], packet 

generation can be accurately represented using discrete Markov models.  This portion of 

the simulation is discussed more in Section A.3. 

 

Universal Assumptions 
 
The Model 1 and Model 2 simulations are based on the following simplifying 
assumptions: 
 
1) Single satellite: These models assume that each mobile has established a link with a 

single satellite for the entire duration of its TDMA BW assignment.  Because the 
mobiles are using a directional antenna for the satellite link, it would be relatively 
time consuming to reposition the antenna and establish a new link (which would also 
mean a new TDMA slot assignment).  The time necessary to reposition the antenna 
and establish a new connection is expected to be substantially longer than the average 
fade duration.  Tables 4 and 5 show average fade durations of less than 3 seconds for 
the Boston data.  It would be difficult to build a system that can frequently slew, settle 
and establish a connection in less than 3 seconds.  The model does not necessarily 
assume that each mobile is communicating with the same satellite, but the models 
assume a strong signal-to-noise ratio (+10 dB) for all satellite links.  See assumption 
2 for additional details. 

 
2) These models assume that the mobile-to-satellite link has an extremely strong signal 

with enough margin to make bit errors infrequent relative to the capability of any 
forward error correction.  This assumption is applied equally to all three Models to 
keep performance comparisons appropriate.  The purpose of this assumption is to 
focus on the deep fades and complete signal loss associated with moving through the 
urban environment.  This assumption is reasonable for existing non-adaptive satellite 
links which are designed with enough margin to close the link even during rainy 
weather.  As mentioned in Chapter I, the TCA may be implementing adaptive link 
control and may not operate with 10+ dB of link margin.  While this assumption 
simplifies the current model, future simulation upgrades could easily include a 
computation of SATCOM link bit errors for comparison against error correction 
performance. 

 
3) The corollary to assumption 2 is that the receiver experiences complete signal loss or 

considerably more bit errors than the FEC can handle when the SATCOM link 
experiences a deep fade.  All packets (partial or complete) that are impacted by a deep 
fade are assumed to be lost and require retransmission.  Like assumption 2, this 
assumption is made for simplicity and focuses attention on deep urban fades.  When 
combined, assumptions 2 and 3 allow us to model the urban fade phenomenon as a 
simple two-state discrete Markov model.  To add additional detail to the simulation, 
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we can replace the two-state discrete Markov model with a 2+ state model that has a 
probability distribution function associated with each state.  This idea is also 
discussed in Chapter I [5], and [24]. 

 
4) The models also assume that both networks have the same number of symbols per 

hop, symbols per packet and hops per packet, where a hop is equivalent to a TDMA 
time slot.  These assumptions are not necessarily required of the simulation or any 
real-world implementation.  The models have been built with these assumptions for 
simplicity.  They allow a reduction in total variable count and allow more code reuse 
between the two network simulations.  These assumptions are also critical to 
implementing assumption 5.  

 
5) While in a real implementation the two independent networks could easily run 

asynchronously, the simulation treats them as synchronous and models the satellite bit 
rate as an integer multiple of the ad-hoc bit rate.  These assumptions are solely for the 
purpose of simplifying the simulation in both complexity and run time.  By making 
this assumption, the simulation can operate on a single discrete time counter set to the 
shorter satellite hop duration.  When the time counter increments to the appropriate 
integer multiple, the ad-hoc network transitions to a new hop period as well.   

 
6) The model currently assumes each node (mobile or satellite) can only generate one 

packet per hop period.  The purpose of this assumption is to provide unique 
identification of a packet by its origin, packet type and generation time.  Overall, this 
assumption constrains each hop period to a maximum number of new packets equal 
to the number of mobiles plus one for the satellite.  The generation of new packets at 
each node is modeled as independent processes.  The packet generation methodology 
is discussed in more detail in Section B.1.d.    In each case the packet destination is 
selected randomly with uniform distribution. 

 

A. MODEL 1: INTRODUCTION AND DISCUSSION 

Model 1 represents the comparison baseline.  In Model 1, two parallel networks 

are operating.  The first is the mobiles-to-satellite network, with the satellite acting as a 

hub.  The second is the local area ad-hoc network between neighboring mobile nodes.  In 

this section, we will introduce both networks and general packet management processes 

(generation, tracking and control). 
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1. Mobile-to-Satellite / COTM Link 

The heart of this investigation is the mobile-to-satellite link because that is the 

communication channel that experiences long outages in the urban environment.  Figure 

33 provides a highly simplified flow diagram of the basic COTM link as implemented in 

the Model 1 simulation.  The COTM channel simulation is introduced in this section and 

modifications are presented in Sections B (Model 1A) and C (Model 2).  

Modern communications satellites like TCS are expected to become a central part 

of the Global Information Grid (GIG).  Like many organizations and communities, the 

military is pursuing a future communications architecture that supports real-time 

battlefield awareness at the lowest levels (e.g., individual vehicle).  Another goal is to get 

more timely and accurate information to the individual soldier.  The solution to both of 

these goals is a larger, more complicated communications architecture with a substantial 

increase in the number of simultaneous users and an increase in the number of occasional 

users that come and go. 

One approach to solving the simultaneous user problem is to simply load the 

satellite up with one transceiver for each user.  This approach would be inefficient, 

prohibitively expensive on the satellite and would require a large amount of frequency 

spectrum [49].  So under the constraints of limited spectrum bandwidth and a finite 

number of receivers, the solution needs to be more efficient.  This problem is similar to 

the cellular telecommunications problem with large numbers of cellular phones passing 

in and out of geographic cells.  Like cellular systems, we need to look at more modern 

communication approaches like code-division multiplexing algorithms (CDMA) or time-

division multiplexing algorithms (TDMA).  This protocol and model use TDMA which is 

discussed more below. 

Another impact of simultaneous and occasional users is the use of packets and 

packet protocols.  In this situation, the communications satellite becomes a packet server 

within a Local or Wide Area Network (LAN/WAN).  This approach is highly flexible 

and handles traffic that comes in bursts.  Packet protocols allow the system to handle data 
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transfers in smaller pieces.  There is a rich field of research into packet protocols which 

can be leveraged by the satellite community.  Packet routing protocols are also powerful 

at working around local area jamming, network outages or congestion. 
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Figure 33.   Flow chart of  COTM link processes. 

 

While the DoD’s TCA effort is attempting to leverage technology from the 

commercial internet, it must also plan to incorporate military-unique features to provide 

communications and transmission security [1, 3].  The TCA has important requirements 

to provide anti-jam and low-probability-of-intercept (LPI) communications.  Frequency-

hop spread spectrum (FHSS) is a common but powerful method of achieving this goal.  

FHSS is already a common technology in existing military communications systems.  

This is likely to continue in the future.  Because it is not a central area of investigation 
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and does not directly impact network performance, the simulation does not currently 

model the specifics of the frequency-hop (FH) pattern but one is assumed.  FH 

communication systems are well understood and are discussed in references [50, 51].  

Fortunately, the model results are independent of whether the communications link is 

based on FHSS.   For the purposes of this dissertation, the term “hop” is in reference to 

the assumed FHSS implementation and is synonymous with a TDMA time slot.   

a. Time Division Multiplexing Algorithm (TDMA) 

The mobile-to-satellite communications model is based on the demand-

assignment multiple access (DAMA) version of TDMA [49].  By implementing DAMA-

TDMA, capacity assignments are not fixed and are changed as needed to respond to 

changes in customer activity.  A new mobile that wants to be added to the network must 

request a time slot.  The model assumes that this activity occurs on a separate control 

channel set aside for network administration traffic.  When the satellite receives a request 

for a new time slot, it must notify all of the mobiles of the new order.  This is also done 

on the administrative channel.  This aspect of the communications architecture is not 

modeled. 

For maximum efficiency, the duration of an individual time slot should be 

an integer fraction of the packet length.  This makes the total time to transmit a packet 

( ) ( )1 1 timeslotn m t− +⎡ ⎤⎣ ⎦  where m is the number of users with assigned time slots, n is the 

number of time slots required to send a whole packet and ttimeslot is the duration of a single 

TDMA time slot.  If we assume that the packet size is fixed, ttimeslot is also a function of n: 

 timeslot st packet size t n= ×  where ts is the symbol duration.  For the results presented in 

Chapter IV, n = 8, and a TDMA time slot is 1/8 of the total packet length.  The model 

also assumes 1024 symbols per packet and 1 µs symbols.  Using these simulation 

assumptions, we can update the total packet transmit time: 

 ( ) ( ) ( )( )1 1 7 1 128 .timeslotn m t m sµ− + = +⎡ ⎤⎣ ⎦  (3.1) 
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As the ratio of packet length to TDMA time slot duration increases, the 

total time to transmit a packet grows due to the multiplicative factor m.  This, in turn, 

increases the probability that a packet is interrupted by a blockage and decreases the 

protocol efficiency.   
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Figure 34.   Total packet transmit time vs. TDMA slot size. 

 

Figure 34 shows this relationship for a range of active users in the network m.  It is also 

important to note that hop duration should also be integrally tied to TDMA time slot 

duration and packet length as an integer multiple or integer fraction.  Because the 

probability of the mobile node transitioning from the connection state to the fade state is 

the same for every time step, the probability of successfully transmitting a downlink 

packet is  

 
( 1) 1

11Pr( _ _ )
n m

nsuccessful packet Tx a
− +

=  (3.2)  

Using the connection transition probability a11 from the empirical Boston data, we can 

see the impact to probability of successful packet transmission in Figure 35.   
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Figure 35.   TDMA impact to probability of successful packet transmittal. 

 

b. Path Delay 

One of the more unique facets of satellite communications is the path 

delay.  It is a direct result of the large distances between the earth-bound customer and 

the geosynchronous satellite.  The specific path delay between a user and the satellite is 

dependent on the actual distance.  The minimum path delay occurs when the user is 

directly below the satellite, known as the zenith (Draw a straight line between the center 

of the Earth and the satellite and the mobile is along the same line.).  In this situation, the 

path delay is 

 35,786 0.119369 sec,
299,792.5

r
c
≈ =  (3.3) 

 
where  r = separation distance = geosynchronous altitude = 35,786 km, 
  c = speed of light (vacuum) = 299,792,458 m / s. 
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The average path delay is generally higher, mostly due to r being larger, 

but also due to the speed of light in atmosphere being slightly smaller than that of 

vacuum.  As the mobile gets farther from the sub-satellite point, the separation distance 

grows to a maximum of 41,678.936 km.  This maximum assumes that the satellite is on 

the mobile’s local horizon (elevation = 0 degrees).  This maximum can be slightly higher 

if the mobile wanted to establish a connection when the satellite was below its local 

horizon (elevation < 0 deg).  In this case, 

 41,678.9 0.139026 sec.
299,792.5

r
c
≈ =  (3.4) 

The simulations assume a path delay of 0.125 seconds, which represents 

the satellite being halfway between the mobile’s zenith and horizon (satellite is 44.13 

degrees above mobile’s local horizon).  Due to the semi-spherical nature of the Earth, the 

path delay increases slowly as the satellite moves away from the mobile’s zenith and 

increases rapidly as the satellite approaches the mobile’s local horizon.  For a data rate of 

1 Mbps, this path delay is equivalent to 125,000 symbol durations. 

Terrestrial path delays are traditionally orders of magnitude smaller 

because the distances are orders of magnitude smaller.  This large path delay has a 

significant influence on any SATCOM protocol performance.  As the number of 

interactions or queries between satellite and mobile increases, so does the protocol 

inefficiency.  This problem is one of the central rationales for not using an asynchronous, 

ad-hoc protocol like that recommended for the mobile-to-mobile link.  Instead, the 

mobile-to-satellite protocol is based on assigned TDMA time slots that require one 

mobile-to-satellite interaction cycle to establish but then allows easy packet transfers 

without any additional overhead like the request-to-send (RTS) message exchanges found 

in the ad-hoc protocol discussed in the next section.  This approach does require 

reassignment of time slots whenever a user joins or leaves the network.  If this is a 

frequent event with respect to path delay durations, then TDMA may not be the best 

approach.  Another important consideration when using TDMA is the percentage of 

empty time slots for the average user.  If packet transfers are relatively infrequent, a 

substantial portion of the data bandwidth is being wasted. 
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One skewed impact of path delay is the impact on accurate side 

information regarding a node’s visibility state (see next section).  The mobile node and 

the urban structure that is blocking its line-of-sight are both terrestrial and relatively close 

physically.  The mobile transceiver can have nearly real-time knowledge of its own 

connection state by simply monitoring the signal strength of the downlink, but the 

satellite is as far from the physical fade source as possible.  Any change in signal strength 

will be available to the satellite after incurring the full path delay.  This limits the 

usefulness of the side information available to the satellite.  To make matters worse, any 

modification to the satellite’s behavior will not be available at the mobile for another full 

duration of the path delay.  This impact plays a significant role in the performance of 

Model 1A and is discussed more in Section B.  Path delay also impacts the difficulty of 

predicting COTM channel state based on the satellite’s knowledge of signal strength.  

This topic is discussed more in Appendix A. 

c. Visibility (Clear vs. Blocked) 

A central goal of this investigation is to compare performance of packet 

protocols in the urban environment with frequent and extended mobile blockages.  As 

shown in Chapter II, Markov models are a good approach for analytically modeling link 

fade due to blockage.  The Markov model implemented in this larger packet protocol 

model is not hidden and has only two states: clear and blocked.  The blocked state is 

defined as signal strength too low for the mobile receiver to detect.  The clear state is 

defined as high signal strength with very low bit error rate that is easily corrected by a 

forward error correction scheme.  This is an ideal assumption that simplifies the COTM 

link model by not dropping packets due to individual symbol errors.  It is assumed that 

the building blockage would be the dominant cause of lost or damaged packets.  A key 

recommendation for future simulation improvement is to replace this simple, observable 

Markov model with the mixed-Gaussian continuous output HMM derived in Chapter II.  

The addition of the more complicated visibility model would produce estimates of signal 

strength as a function of time and allow incorporation of secondary link impacts like 

scintillation or weather.  
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For the visibility model itself, the behavior and parameters of the Markov 

model are assumed to be known.  As discussed in Chapter II, appropriate values for 

transition probability were computed using a Baum-Welch algorithm and empirical data 

from Boston, MA (a00 ~ 0.95, a11 ~ 0.975).  Because the simulation operates at a much 

finer time step than the empirical data, the transition probabilities must be scaled.  The 

equivalent transition probabilities at 0.000128 seconds per time step are (a00 ~ 0.999936 

and a11 ~ 0.99997).  These transition probabilities produce mean connection and fade 

durations of 4.2 and 2.0 seconds, respectively. 

Figure 36 shows a 300,000 sample example of a visibility input vector for 

one mobile.  The x-axis has been converted to seconds.  The 38 second example includes 

ten state transitions. 
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Figure 36.   Example visibility vector. 
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2. Mobile-to-Mobile (Ad-Hoc) Link 

The primary focus of this simulation and the surrounding research is to 

circumvent or overcome the long term deep signal fade that occurs to a mobile node in 

the urban environment.  A key supporting facet of the investigation is the possibility of 

the individual mobile being part of a terrestrial ad-hoc network.  In the military version of 

this situation, the mobile ad-hoc network is expected to be a platoon of HMMWVs, 

perhaps on a combat or peacekeeping mission.  A mobile ad-hoc network is defined as:  

a self-configuring network of mobile routers(and associated hosts) 
connected by wireless links – the union of which form an arbitrary 
topology.  The routers are free to move randomly and organize themselves 
arbitrarily; thus, the network's wireless topology may change rapidly and 
unpredictably. Such a network may operate in a standalone fashion, or 
may be connected to the larger Internet. [52]   

This simulation does model a terrestrial mobile ad-hoc network as part of a larger 

network which includes the satellite communications infrastructure.  It is important 

primarily because the Neighbor protocol implemented in Model 2 takes advantage of 

these additional resources.  But Models 1 and 1A do not assume that the mobile ad-hoc 

network is integrated with the larger SATCOM network.  In Models 1 and 1a, the mobile 

ad-hoc network is operating independently, and performance results are useful only as a 

baseline for understanding the impacts of integrating the ad-hoc network with the 

SATCOM network.  A simplified flow-chart overview of the network processes is 

provided in Figures 37 and 38.  The specific mobile ad-hoc packet routing protocol 

implemented in these simulations is loosely based on the work of Pursley et al. [53, 54, 

55, 56, 57, 58, 59].  This particular implementation was selected due to the strong 

connections to existing and planned military communications systems (e.g., 

SINCGARS).  The selected implementation also matches many aspects of the COTM 

link which eases network integration.  These similarities are discussed more in the next 

section.  This particular group of authors, which primarily includes Pursley, Russell, and 

Wysocarski, have explored several variations of the least resistance routing (LRR) 

forwarding/routing protocol with increasing complexity.  This research is not focused on 
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the ad-hoc portion of the network, so a fairly simple version has been selected for 

implementation.  In Chapter V, the recommendations for future work include the 

possibility of upgrading the ad-hoc network to reflect a more complicated approach that 

could include adaptive transmission, packet type prioritization or routing metric 

improvements.  In addition to the technical papers listed above, background information 

can also be found in [60] and [61]. 

Mobile ad-hoc networks are highly dynamic networks in any case due to mobility 

of the nodes, variability in the propagation conditions and variability in the interference.  

A military version of the mobile ad-hoc network is even more dynamic based on the 

possible destruction of a node due to combat activity and directed jamming from hostile 

forces [56].  The wireless ad-hoc packet network is a valuable communication 

architecture for the military because they are expected to operate in situations where 

fixed infrastructure is not available.  The ad-hoc packet protocol presented here and in 

[53-57] shares many aspects with maturing commercial solutions, but there are 

significant differences.  One significant difference is the requirement to operate while 

experiencing directed hostile jamming.  Another important difference are the heightened 

security requirements to minimize the probability of intercept. 
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Figure 37.   Overview of mobile ad-hoc simulation. 
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Figure 38.   Overview of mobile ad-hoc simulation (cont.). 
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discussed in the previous section, the SATCOM COTM link is also assumed to be time-

slotted (TDMA), FHSS and packet-based with FEC.  These similarities allow the two 

protocols to work more efficiently together.   

As described in [53], “each receiver has a set of hopping patterns, one for 

each hop period in which a [packet transfer] may be initiated.  This is called a ‘receiver-

directed hopping pattern’ [53, 54, 56].  A transmission to a given receiver must use the 

correct hopping pattern for the receiver and the dwell interval in which the transmission 

begins.  By transmitting the packet using this hopping pattern, it is extremely unlikely 

that any radio other than the intended recipient will succeed in dehopping the packet.”  

Please note that a dwell interval is defined as the duration of a hop which is different 

from a Markov process’ dwell time (e.g., interarrival time). 

Another important assumption for this network design is that the mobile 

radio systems have a half-duplex transmission capability.  (The satellite is assumed to be 

full-duplex with separate transmitter and receiver of different frequencies).  This is 

considered a reasonable but conservative assumption with respect to analyzing the 

performance improvements of the Neighbor protocol.  Physical space is limited in 

military vehicles like the HMMWV, and minimizing the size of the unit is important.  

The half-duplex mobile-to-mobile transceiver is in addition to the full duplex system that 

is communicating with the satellite.  It will be difficult enough to accommodate that 

much hardware on each and every vehicle.  The half-duplex transceiver assumed for the 

mobile ad-hoc network is considered a minimum capability necessary to support a 

minimally capable network.  If the mobiles are able to carry full duplex systems, then the 

performance of the Neighbor protocol will improve. 

There are three situations that prevent a packet from being received: 1) the 

intended recipient is already busy, 2) two or more mobiles attempt to start a transmission 

during the same hop period, to the same recipient (at the same frequency), and 3) there 

are too many errors in the transmission and the receiver is not able to decode the packet.  

Another key aspect of the referenced routing protocols is the use of active 

acknowledgements [53] with a selective reject version of automatic repeat request 
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(ARQ).  This is the same form of ARQ implemented in the COTM channel protocol.  

Using the same ARQ method in the COTM channel and the ad-hoc network helps ease 

their integration in Model 2.  The benefits and performance of selective-reject ARQ are 

discussed further in Section A.3. 

A packet is defined to consist of L codewords with each codeword 

containing n symbols for an (n, k) FEC block code. 

While different versions of the protocol focus on using different side 

information, the Pursley protocols all use side information to estimate the optimal packet 

routing through the network.  Variations include an embedded string of test symbols in 

each hop period.  The receivers analyze the test symbols for errors and use the number of 

errors to estimate link quality.  Another idea is to estimate the number of bit errors in the 

packet content through application of a forward error correction code. 

b. Packet Routing: Forwarding Protocol 

As mentioned earlier, mobile ad-hoc networks in general, and military 

versions specifically, need to provide robust communications in a fast changing 

environment.  The network can expect to add or subtract nodes and experience time-

varying link performance due to internal or external interference and node motion.  This 

situation is the impetus for focusing on a packet routing forwarding protocol instead of 

just a routing protocol.  The difference between forwarding protocols and routing 

protocols is one of perspective and speed.  Forwarding protocols are narrowly focused on 

a small piece of the network topology and the short period of time.  They determine a 

path for forwarding a packet one node closer to its destination based on the current, local 

conditions [54].  The forwarding protocol is focused on a single link between one node 

and another and is able to estimate the quality of this link based on the most recent packet 

or acknowledgement from that node.  This simplicity allows the forwarding protocol to 

react faster to changes in the network.  On the other hand, routing protocols determine 

route metrics and traffic patterns between every pair of nodes in the network.  The 

process is clearly more complicated and requires additional time to generate and 
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propagate to all nodes.  The routing protocol is better suited to modifying the network for 

long-term or global changes in the network, but the forwarding protocol is better suited to 

modifying a traffic pattern for short-term or local changes.  The LRR protocol discussed 

in this section is a forwarding protocol that can also act as an adaptive routing protocol by 

sharing resistance metrics amongst nodes.  This can be accomplished as part of the frame 

header of a standard data packet or as separate traffic control and maintenance packets 

[54]. 

A central concept to this forwarding/routing protocol is the use of side 

information to calculate the LRR metric [54, 55, 56].  The metric is intended to provide a 

quantitative comparison of the probability of delivering the packet within the specified 

requirements for delay or bit error count.  One of the most basic versions of the LRR 

metric is the errors and erasures (EE) metric [54]: 

 1 2( , ) 2 ,EELRR A B e e= +  (3.5) 
 
where e1 = number of erasures (hop periods erased due to error count > threshold), and 
 e2 = number of symbol errors per block. 
 

This basic metric computation relies on side information consisting of the number of 

errors and erasures that occur at the receiver.  These can be accurately computed by 

sending a string of test symbols at the start and finish of the hop period.  These test 

symbols are in addition to the packet content.  If there are too many errors in the string of 

decoded test symbols, then the protocol will erase the entire hop period.  This is counted 

as one erasure.  If the number of errors in the test string is below the threshold, then the 

information can be used by the decoder to improve performance and estimate the number 

of errors in the hop period.  This data can, in turn, be sent back to the transmitter in the 

acknowledgement for update of the LRR metrics. 

Reference [54] also proposes a second, slightly more complex metric that 

the authors refer to as the errors, erasures, and acknowledgements (EEA) metric.  This 

metric is the same as the EE metric except when no acknowledgement is received.  In this 

case, the transmit node increases the LRR metric by adding a constant ca.  The author 
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suggests a value ca ≈ 1.  For the basic EE metric, if the node does not receive an 

acknowledgement, it does not update its LRR metric and may continue to incorrectly 

select the same recipient. 

In [55], packet delay requirements drive the addition of a new term W(B), 

which is referred to as the node-dependent resistance.  The node-dependent resistance 

estimates the possible delay the packet will experience while stopping at that node before 

being forwarded.  It may be based on side information such as the number of packets in 

that node’s buffer, the amount of other traffic near that node or the delay experienced in 

getting the most recent acknowledgement back from that node.  This last approach 

requires the protocol to not prioritize acknowledgements so that they wait in the queue 

like any other packet.  The initial EE or EEA metric becomes the other half of this new 

metric and is considered the link-dependent resistance, which estimates the quality of the 

link between nodes A and B.  It attempts to account for multipath fading, path loss, 

interference, etc.  These two resistance terms combine to form the updated routing 

metric: 

 ( , ) ( , )  ( ).LRR A B I A B W Bα β= +  (3.6) 
 

Each of the two resistance terms has a weighting coefficient (α, β) that allows the metric 

to be tailored to the relative importance of specific network requirements.  

(1) Asynchronous traffic. As mentioned earlier, the mobile ad-

hoc protocol is designed for a half-duplex system.  This constraint has a significant 

impact on protocol design.  Because each node must transmit and receive but can do only 

one activity at a time, the mobiles must take turns or risk frequent multiple-access 

interference problems.  If a mobile has a packet to transmit, it must first establish 

permission to do so, which we will refer to as a connection.  This mobile-to-mobile 

connection is temporary and only applies to the transfer of a single packet.  The 

connection is accomplished by the transmit node sending a short request-to-send (RTS) 

message.  If the receive mobile is already busy (e.g., transmitting or receiving), then the 

RTS message is ignored and the transmitting mobile waits a random number of time steps 

before trying again.  If, instead, the receiving mobile is not busy and is able to decipher 
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the RTS message (relatively few errors), then it replies to the transmit mobile with a short 

clear-to-send (CTS) message.  In the simulation, these messages are both implemented as 

one time-step (128 µs) in duration.  After receiving a successful CTS message, the 

transmitting mobile begins immediate transmission of the actual data packet.  When the 

data packet transfer is complete, the connection is complete and the receiving mobile 

generates an acknowledgement that waits its turn in the active queue.  The connection 

“hand-shake” needs to be repeated for the acknowledgement at some later time.  This 

process is different for networks that employ single-threading which is discussed below. 

(2) Side Information, Each approach to computing the LRR 

metric relies on some form of side information.  In some cases, the side information is 

assumed to be perfect (e.g., exact value, instantaneous knowledge) when in a real 

implementation this is not the case.   

The basic link-dependent resistance term I(A,B) requires the 

number of errors and erasures that occur at the receiver.  These can be estimated by 

inserting a string of test symbols at the start and finish of the hop period.  If there are too 

many errors in the string of decoded test symbols, then the protocol erases the entire hop 

period.  This is counted as one erasure.  If the number of errors in the test string is below 

the threshold, then the information can be used by the decoder to improve performance 

and estimate the number of errors in the hop period.  In this research, erasures are not 

modeled and the link-dependent resistance term is simplified to simply counting errors.  

This simplistic approach reduces some complexity of the simulation and the protocol.  It 

requires an assumption that the FEC code can identify any number of errors, which is not 

true. 

This approach does not represent an assumption of perfect side 

information.  The most recent error count is only an short-term estimate of link quality.  

An assumption of perfect side information is counter-productive in this case because it 

would obviate the need for a routing protocol at all.  The network would always know  

the best possible path between any two nodes. 
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(3) Single-threading.  In the context of mobile ad-hoc 

networks, single-threading is a term applied to the concept of making the 

acknowledgement an immediate and integral response to a data packet transfer [53].  In 

single threading, a complete packet transaction consists of four immediately sequential 

steps: 1) Source: RTS message, 2) Destination: CTS reply, 3) Source: data packet, 4) 

Destination: acknowledgement.  These are the same four steps completed without single-

threading, but the acknowledgement is not an immediate response to the data packet 

transfer.  Instead, the acknowledgement goes into the first-in, first-out (FIFO) queue and 

waits its turn like any other packet.  The benefits of single-threading are an decrease in 

overall network latency and increase in throughput performance.  The downside is that 

this approach removes a source of side information regarding node-dependent resistance.  

The simulation does not currently employ single-threading.  It is a suggested area for 

further investigation. 

(4) Implementation. Models 1 and 2 implement an LRR metric 

that resembles Equation (3.6) above with several minor alterations.  While Pursley et al., 

base their link-dependent resistance term on a straight count of erasures and errors, we 

instead use bit error ratio (BER).  These two approaches represent similar side 

information but have different scales.  The Pursley et al., approach to computing I(A,B), 

has an integer value from 0 to the number of hops in a packet (emax).  (If all of the hops 

are erased, then e2 is zero.)  By using BER for a single packet, the link-dependent 

resistance takes on a fractional value from 0 to 1.  The same difference is true for the 

node-dependent resistance.  A simple count of the number of packets in node B’s queue 

provides an integer value from 0 to the buffer size.  The simulation instead divides by the 

buffer size to produce a fractional value between 0 and 1.  This starts the two resistance 

factors with equal weighting.  In the Pursley approach, the same results/effects can be 

accomplished by incorporating the additional scaling factors into the weighting 

coefficients. 

A second alteration is the inclusion of two additional terms or 

factors.  One of these additional terms is the acknowledgement factor ca mentioned 
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earlier when discussing the EEA metric.  The second factor follows the same concept but 

instead increases the LRR metric when a node sends multiple RTS requests but does not 

receive a CTS reply.  This term has not been proposed by Pursley et al., but we found it 

to be an important addition to the adaptive nature of the metric.  Without this additional 

term, a mobile may repeatedly query a distant neighbor but receive no reply; the 

transmitting node would not make any changes to the routing table and continue to query 

the distant neighbor despite the lack of response. 

The third alteration to the basic routing protocol is a steady time-

based erosion of all LRR metrics by some small amount ε.  The purpose of this additional 

modification is to force the protocol to occasionally reassess the quality of a network 

path.  Without this alteration, we found that a path metric LRR(A,B) could have a large 

metric even though the two nodes are moving closer and link quality had seen a large 

improvement.  Since that path has a large metric, it continues to be avoided by the routing 

protocol. 

A fourth and final alteration involves averaging the routing metric 

updates with the previous estimates.  This provides a smoothing to metric fluctuations 

that increases the period of protocol oscillations and minimizes erratic behavior [49].  

This same approach was used by third generation ARPANET in 1987. 

The simulation protocol treats all packets equally and does not 

attempt to differentiate between packet types with different performance requirements 

(e.g., latency vs. error count).  This concept is proposed by Pursley et al., in [55], but is 

proposed as future work.  The concept is discussed further in Chapter V. 

Figures 39 and 40 show two examples of the LRR metric 

fluctuations as functions of time.  Each figure represents the 1n −  metrics that each 

mobile maintains with respect to each of its 1n −  neighbors.  
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Figure 39.   Mobile 1’s LRR metric vs. time (Model 2, rp = 0.008). 
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Figure 40.   Mobile 4’s LRR metric vs. time (Model 2, rp = 0.008). 

 

References [55], [56], [58], and [59] offer additional modifications, 

complexities and improvements to the LRR metric calculation.  In Chapter V, we 

recommend these kinds of modifications to the ad-hoc network simulation for future 

work.   

c. Other Traffic Management: Packet Shuffle 

Packet shuffling is a traffic management support process associated 

specifically with the ad-hoc network but not directly involved with determining a 

packet’s path through the network.  Just as the name implies, packet shuffling involves 

the simple activity of moving packets within the queue.  The simulation implements this 

process when a node makes several attempts to establish a connection with another node 

by sending a RTS message but fails to receive a reply.  One possible reason for this type 

of problem is that the receive node is too far away and cannot successfully decipher the 
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RTS message.  The LRR metric computation handles this problem with the addition of a 

constant discussed earlier.  Another possible reason for this type of situation is that the 

receive node is already busy.  In that case, the packet shuffle process helps by shifting the 

packet a few positions deeper into the queue and refocusing attention on the next packet 

in line.  If the next packet has the same intended recipient, then nothing is lost or gained.  

If the next packet has a different path through the network, the new receive node may not 

be busy and the transmit node can continue to achieve positive progress in pushing data 

through the network.  The overall goal is to improve network performance by minimizing 

the packet service time.  

d. Vehicle Motion 

To more accurately reflect reality, the model does include vehicle motion 

which is assumed to random and discrete in both time and space.  The vehicles move 

within a limited Cartesian grid of 350 x 350 meters.  The outer limits are set to keep the 

vehicles within reasonable range of another mobile node but far enough to make some 

links unmanageable and force multi-step packet transfers through the network.  The 

discretization in time is by TDMA time slot which is set to 128 symbols ×  1 microsecond 

per symbol = 128 microseconds.  This discretization is so fine relative to urban vehicle 

speeds that it appears to be nearly analog.  The discretization in distance is set to match 

reasonable vehicle motion in an urban environment.  Assuming an average speed of six 

meters per second, or approximately 13 miles per hour, the distance per 128 microsecond 

time slot is 0.000768 meters (less than a millimeter).  This divides the 350 x 350 meter 

box into an extremely fine grid of discrete locations.  

The only purpose of the vehicle motion model is to more accurately reflect 

the real performance of the mobile ad-hoc links under time varying separation distance.  

The vehicle motion is not directly used in modeling the SATCOM link performance.  The 

vehicle motion and the visibility models are not correlated.  As an example, the vehicle 

motion model may have the vehicle stay in the same place for the next time slot, but the 
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visibility model may show a transition from clear to blocked.  This type of correlation 

would add unnecessary complexity to the model without relevant impacts on the results. 

Like the visibility phenomenon, vehicle motion is modeled as Markovian 

to capture the stochastic nature.  The rationale for this selection is the basic idea that in 

any given 128 microsecond time slot, the vehicle tends to stay moving in the same 

direction.  Changes in direction are a significant event and occur less often.  This type of 

behavior is easily represented by a Markov model with the appropriate state transition 

probabilities (e.g., aii >> aij).  The vehicle motion model computes two independent 

Markov models simultaneously, one for each Cartesian direction (x, y).  Each of the two 

Markov motion models has three states: 1) move +1 step, 2) move −1 step, 3) stay in 

place. 
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Figure 41.   Example: 42 seconds of vehicle motion within 350x350 meter Cartesian 

grid.  Green circle represents starting location, red “x” represents finish location. 

   

When combined, the two Markov motion models result in a vehicle that 

moves in one of eight directions or stays in place.  Whichever solution the model 
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produces, the vehicle tends to stay moving in that same direction.  In the rare instance 

that one of the models changes states, it most likely makes a slight change in motion (45 

degree dogleg in x velocity or y velocity only).  An example of one mobile’s motion is 

shown in Figure 41.  This example reflects an aii of 0.99998, which provides a mean state 

duration of 50,000 time steps, or 6.4 seconds (assuming a time step of 128 µs). 

e. Link Quality: Slow, Flat Fading 

Unlike the COTM link, the ad-hoc link simulation does include the 

generation of individual symbol errors.  The path distance between nodes is time-varying 

and a significant influence on link performance.  And time-varying link quality is a 

driving factor in the performance of the ad-hoc (Pursley) forwarding protocol.  One of the 

primary factors in computing a path through the network is link quality as estimated by 

counting bit errors corrected by the FEC on recent packets.  Without time-varying link 

quality, a portion of  the forwarding protocol becomes static. 

In this urban environment and with omni-directional antennas, there is a 

significant amount of multipath signal energy.  For the purposes of keeping the 

simulation simple, we assume slow, flat Rayleigh fading and M-ary phase-shift keying 

(MPSK) modulation.  The probability of  symbol error in this situation is  
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where M = modulation order, and 
 sγ = ratio of the average energy per symbol-to-noise power spectral density. 
 

This relationship is also an important factor in sizing the vehicle motion 

grid discussed in the previous section.  With the assumption that the FEC code can handle 

one error in eight symbols, we can explore the distance at which the ad-hoc links 

transition from mostly successful to mostly not successful.  For the assumptions used in 

this simulation, that distance is approximately 339 meters.  The maximum distance 
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between any two mobiles is 495 meters (opposing corners).  Initial vehicle location is 

modeled as a uniform random variable.  Since the motion process is Markovian with 

equal probability of moving in any given direction, instantaneous vehicle location is also 

modeled as a uniform random variable.  This allows us to determine probabilities based 

on area.  In the worst case that a mobile is in a corner, the probability of one neighbor 

being within 339 meters is  

 
( ) ( )2 2

2 2

1 1 (339 )Portion of  area within reach 4 4 0.737.
Total area 350

r

l

π π
= = =  (3.8) 

 

With n mobiles, the total probability of having at least one mobile within range is 

( ) 11 1 0.737 0.995n−⎡ ⎤− − =⎣ ⎦ .  This shows that the grid size is set such that a mobile in the 

corner will almost always have another mobile within reasonable range. 

 

3. Packet Description and Management Processes 

This section provides a more detailed description of the simulated packet and 

discusses general packet management processes associated with both the COTM link and 

the ad-hoc link.   These packet management processes include packet generation, tracking 

and control.   

a. Packet Description 

The baseline simulation assumes a packet size of 1024 symbols for 

determining total transfer time.  The simulation does not actually generate, track or 

control an actual full-size data packet.  Instead the simulation represents a data packet 

(baseline of 1024 symbols) as a ten-item vector or a row within a M ×  10 matrix (where 

the matrix  represents a buffer or queue).  While all packet vectors are the same length, 

they do not contain the same information because different information is required 

depending on purpose and the link involved.  There are four different packet vectors as 

shown in Table 18.     



 
 

100

Table 18.   Packet Header Contents. 

 Ad-Hoc packet Ad-Hoc ACK COTM packet COTM ACK 
Entry 1 Packet type Packet type Packet type Packet type 
Entry 2 Track number Track number Track number Track number 
Entry 3 Duration Duration Duration Duration 
Entry 4 Origin Origin Origin or 

destination 
Origin or 
destination 

Entry 5 Destination Destination Generation time Generation time
Entry 6 Current loc Current Loc Time pending Time pending 
Entry 7 Generation time Generation time Rx start time Rx start time 
Entry 8 Time pending Original packet 

time pending 
Rx stop time Rx stop time 

Entry 9 Time 
acknowledged 

Original data  
packet number 

Time 
acknowledged 

Original data  
packet number 

Entry 10 No. of transmit 
attempts so far 

ACK or 
NACK? 

No. of transmit 
attempts so far 

Time data 
packet pending 

 

The different values that may comprise a packet vector are explained below: 

1. Packet type:  A single digit identifies a packet as either data packet or 
acknowledgement and for which link (uplink, downlink or mobile ad-hoc link).  
Model 1 has three types of data packets and three types of acknowledgements.  The 
three data packet types are 2, 5, 8 for ad-hoc, uplink and downlink, respectively.  The 
three acknowledgement types are 3, 6, and 9 for ad-hoc, uplink and downlink, 
respectively.  Model 2 adds two more acknowledgement types but is otherwise the 
same.  The extra two acknowledgement types are type 4 and 7.  These are reserved 
for acknowledging uplink or downlink packets transferred on the mobile ad-hoc link 
by the Neighbor protocol. 

 
2. Tracking Number: The tracking number represents a sequential number indicating the 

order of packet generation.  The sequences are independent for the mobile ad-hoc 
link, COTM uplink and COTM downlink.  When combined with packet type, the 
combination provides a unique address for any single packet.  It is not unique with 
respect to multiple copies of that same packet, as generated by the time-out process 
(see “Lost packets” below).  To identify a specific instance of a unique packet, we 
need to add at least one more piece of information, like “Time pending”.  

 
3. Duration: The packet duration is measured in TDMA time slots and is entirely 

defined by the packet type.  Data packets are currently set to a duration of 8 time slots 
where each time slot is 128 symbol durations and total packet length is 1024 symbols.  
Acknowledgements are currently set to a duration of 1 time slot or 128 symbols.  
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4. Origin:  The mobile ad-hoc routing protocol keeps track of a packet’s origin primarily 
for trouble-shooting via manual packet tracing.  The same is true for uplink packets 
which do not require a destination entry (see 5 below). 

 
5. Destination:  All packet types except the uplink packets have a destination value 

which allows the protocols to determine when a packet has been successfully 
delivered.  The uplink packets do not need a destination entry because they all have 
the same destination, the satellite.  Instead, uplink packets have the origin mobile in 
this vector location.  In a real-world implementation of the protocol, the satellite 
would not be a final  destination and uplink packets would still need a destination 
address.  For the simulation, destination addresses are a single digit representing the 
number of the mobile that is the final destination. 

 
6. Current location:  This field is only maintained for the ad-hoc packets.  This field 

keeps track of a packet’s current location in the network, which may not be the origin 
or destination.  This field is important for accurate maintenance of the LRR metrics. 

 
7. Generation time:  All data packets have a generation time.  This is used to determine 

a packets age and develop metrics on protocol performance by comparing the 
difference between time generated, time transmitted, and time acknowledged.  More 
than one packet can be generated during any single time step, so this parameter is 
necessarily unique for any particular packet.  When the time-out process regenerates a 
lost packet, this value is not reset.  Instead it is maintained as the original generation 
time. 

 
8. Time Pending:  All packets have a time pending.  This represents the time step in 

which the packet has finished transmission and is moved to the pending queue to wait 
for acknowledgement.  This time stamp is used by the time-out process to determine 
when a packet is probably lost and needs to be regenerated (see discussion “lost 
packet”).  This value is updated when the time-out process regenerates a lost packet 
and it is retransmitted. 

 
9. Time Acknowledged:  Only data packets have an entry for capturing the 

acknowledgement time.  This purpose of this field is collection of performance 
metrics.  Round-trip packet latency can be determined by taking the difference of the 
acknowledgement time and generation time.  This field is empty when the packet is 
transmitted and shifted from the active queue to the pending queue.  The field is 
completed when the acknowledgement arrives and the packet is removed from the 
pending queue. 

 
10. Number of transmit attempts so far:  Only data packets have an entry tracking the 

number of transmit attempts.  This information is maintained for protocol  
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performance analysis and comparison.  A large number of attempts to successfully 
transmit a packet implies a relatively poor performance with the possibility of 
network congestion. 

 
11. ACK or NAK:  This field is only found in ad-hoc network acknowledgements.  The 

field has a value of either zero or one.  A value of one indicates successful receipt of 
the data packet.  A value of zero indicates that the data packet was damaged beyond 
the capabilities of the FEC code and will need to be transmitted.  This is a key step in 
the selective-reject ARQ process (discussed later in Section 3.c). 

 
12. Rx start time:  This field represents the time step in which the packet begins to arrive 

at the receive (Rx) end of the COTM channel.  The arrival time is equal to the start of 
transmission plus the one-way path delay.  If the packet was transmitted by the 
satellite and the intended mobile is blocked at Rx start time, then the packet is lost. 

 
13. Rx stop time:  This field represents the time step in which the last symbols of the 

packet arrive at the receive (Rx) end of the COTM channel.  The arrival time is equal 
to the end of transmission plus the one-way path delay.  If the packet was transmitted 
by the satellite and the intended mobile is blocked at Rx stop time, then the packet is 
lost. 

b. Packet Generation 

As discussed [27], packet generation tends to come in bursts.  The Markov 

model that is prevalent throughout the simulation is also an appropriate method for 

simulating a bursty packet generation process.  The implementation used for the 

simulation is an 1n +  state Markov model where n is the number of mobiles.  State 0 

represents a time step without a new packet being generated.  States 1 through n represent 

time steps in which a new packet is generated and the specific state identifies a specific 

destination.  States 1 through ( )1n −  each represent a neighboring mobile destination and 

State n represents the satellite.  When the Markov packet generation process transitions to 

a state other than State 0, the model generates a packet destined for the associated 

destination.  For model simplification, transitions are currently limited to being between 

State 0 and all other states.  This means that a burst of packets is followed by at least one 

time step without a new packet being generated.  While this assumption is not required, it 

simplifies the solution and associated computations.   
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The behavior of this model is completely influenced by the transition 

probabilities aij which together form the Transition Matrix.  A graphical representation  

of the model is shown in Figure 42.  This graphical representation assumes that the 

source (transmit) node is mobile 1 and that the destinations are mobiles 2 through n and 

the satellite. 
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Figure 42.   Markovian packet generation model. 

 

The complete transition matrix A is 1n +  by 1n + , but several transition 

probabilities are zero due to the restricted assumption on transitions between non-zero 

states.   The impact of this assumption can be seen from 
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This leaves ( )3 1n +  transition probabilities to compute.  The diagonal axis of the matrix 

aii represents the probability of remaining in a state once that state is achieved.  This in 

turn impacts the interarrival times or burst statistics.  As discussed in Chapter II, the 

interarrival times are an exponential random process of the form shown in Equation (2.1).  

An additional simplification benefit of assuming no transitions between States 1 through 

n is that States 1…n behave like independent two-state Markov models.  This makes 

Equation (2.2) applicable for computing probabilities for packet bursts of duration k.  

Likewise, the mean packet burst duration is also related to the transition probabilities aii 

by  

 1
1i

ii

k
a

=
−

,  for i = 1…n. (3.10) 

Even though we are implementing a Markovian packet generation process, 

the overall packet generation rate is still an important simulation input parameter.  We 

need to be able to compute a transition matrix A that produces the desired long term 

packet generation rate r.  For this particular simulation, we establish two independently 

controllable packet rates rsat and radhoc because we are studying the satellite channel and 

mobile ad-hoc network as separate but interacting systems.  To control the packet 

generation model and achieve the desired long-term packet generation rate, we need to 

control the Markov model’s stationary probabilities π.  The vector π represents the k-step 

transition probability of the Markov process as k approaches infinity in the limit: 

 ( )lim k
ij jk

a π
→∞

= ,  for i, j = 0…n. (3.11) 

As shown in [25], the stationary distribution π is the solution to the following system of 

equations: 

 π πA = ,  (3.12) 
 1=1π  (3.13) 

where A is the Transition matrix mentioned earlier.  The second equation is another way 

of representing the requirement that the total sum of stationary probabilities is equal to 1.  

The symbol 1 represents a vector of ones.  With Equations (3.10), (3.12), and (3.13), we 

can establish desired values for π and ik , and then solve for the remaining transition 
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probabilities of A.  Our selection of π and ik  establishes mean packet generation rates 

and mean packet burst durations, respectively.  With a basic assumption that the 

distribution of ad-hoc packet destinations is uniform, we have:  
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where Equation (3.9) is applied to compute π1.  Combining (3.10), (3.12) and (3.14), we 

can then establish individual equations for computing the transition probabilities a0j for j 

= 0, …, n: 
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Note that we can simplify Equation (3.15) further if we assume that packet burst traffic 

patterns are the same to each neighboring mobile.  With this assumption, jk  becomes a 

constant k  for 1 1j n= −… .  This simplification leads to    
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While a Markovian packet generation process is clearly more complicated 

than a simple model that models packet generation events as independent and identically 

distributed binomial events, the Markovian approach produces more accurate short term 

statistics for the process.  If a node generates ten packets in 100 time steps, it places more 

stress on the network for those packets to appear all at once than one packet every 10 

time steps. The network performance on queue delay and transfer time is different for the 

two approaches and burst packet generation tends to have worse performance. 

c. Packet Tracking and Control 

Once packets are generated, the network needs to store and successfully 

transmit them to their final destination.  While the routing protocol is a significant part of 

reaching that goal, there are also several supporting packet management processes that 

are also important.  These supporting processing include: 1) deletion of old packets, 2) 

retransmission of damaged packets, 3) regeneration of lost packets and 4) buffer overflow 

management. 

(1) Deletion of old packets. While a traditional network may delete 

stale packets after some duration, this simulation does not replicate that function.  

Instead, packets are stored and repeatedly transmitted until they are successfully 

acknowledged.  This approach is an important facet of this particular form of the 

simulation because the goal is to compare protocol performance.  Deleting old packets 

places an artificial upper limit on packet transfer attempts and transfer times.  If 

performance degrades to the point that packets are taking too long and being deleted due 

to age, then useful, comparable performance results are no longer available. 

 
(2) Retransmission of damaged packets. Another key aspect of the 

referenced routing protocols [53, 54] and the presented simulations is the use of active 

acknowledgements with a selective-reject version of automatic repeat request (ARQ).  

This type of ARQ has the highest throughput for a packet routing protocol and the extra 

complexity over go-back-N is not significant in today’s systems.  The additional 

complexity and overhead (e.g., buffer size, larger sequence number, more overhead 
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symbols) makes even more sense when long propagation delays are involved [48].  By 

comparing the theoretical utilization, or efficiency, of go-back-N and selective reject, we 

can determine the relative improvement provided by selective reject.  For this 

comparison, time is normalized to a single packet transmit duration (i.e., transmit time = 

1) and a is the one-way propagation time.  The utilization U of each ARQ method is 

dependent on the relative window size W as compared to the packet transmission time 

plus round-trip propagation time [48].  To maximize utilization, we require 2 1W a≥ + .  

Since the maximum window size is a function of sequencing bits n, we can simplify the 

comparison to focus on the relationship of a to n: 12 1n a− ≥ + .  By using the propagation 

and transmission times from the simulation, we can insert a value of 122 for a and solve 

for 8n ≥ .  Based on these assumptions, we now have a relationship for channel 

utilization for each ARQ method [48]:  

 

 ( )go-back-n
1 ,

1 2
PU
aP

−
=

+
 (3.19) 

 
 ( )selective reject 1 ,U P= −  (3.20) 
 
where  n = number of symbols assigned to packet id and sequencing, 
 W = maximum window size = 2 1n − , 
 a = propagation time / transmit time = 0.125 sec / 0.001024 sec = 122.07, and 
 P = probability that a single packet is in error and must be resent. 
 
A ratio of these two utilization equations provides a relative measure of the channel 
utilization:   
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Unless the packet error rate is extremely small, Equation (3.21) 

shows a substantial improvement in channel utilization for selective-reject ARQ.  While 

[48] specifically focuses on symbol errors causing a packet resend, the urban LMSC has  
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a large number of lost packets and acknowledgements which would also factor into ARQ 

activity.  When the definition of P is expanded to include the probability of losing a 

packet due to channel fade,  

 ,error fadeP P P= +  (3.22) 
we can expect P to increase and the benefits of selective-reject to grow.  Expected  

values of (1 – Pfade) are found in Figure 35.   

It is difficult to find a longer propagation delay than that between a 

ground user and a geosynchronous satellite.  In some versions of selective-reject ARQ, 

the receive node only positively acknowledges every nth packet where n is usually a small 

integer.  This model assumes positive or negative acknowledgement of each and every 

packet.  This does increase the network overhead and additional study may be able to 

optimize this relationship to increase overall throughput. 

While expected performance of the COTM link is substantially 

better with selective-reject ARQ, the local ad-hoc links do not experience the long delays 

inherent in the SATCOM link, and the benefits of selective reject are not significant.  For 

ease of integrating the two networks, the simulation uses selective-reject ARQ for both. 

 
(3) Regeneration of lost packets. Closely related to the ARQ 

process discussed above is the watchdog timer (WDT) or time-out function.  These 

processes cover the situation when a packet or an acknowledgement are lost for any 

reason.  If either the original packet or its acknowledgement are lost, then the transmitter 

will, after a specified amount of time, need to assume that something has gone awry and 

the packet should be transmitted again.  When this situation occurs, the routing protocol 

increases the LRR metric between the transmit and receive nodes by a constant term ca.  

The purpose of this LRR metric modification is to show an increased resistance between 

those two nodes not otherwise reflected in the LRR metric since the acknowledgement 

was never received and the LRR metric was not updated.  When the additional packet 

copy is generated and transmitted, the number of attempts term of the packet header is 

incremented by one for performance analysis purposes.  The new copy of the packet will 

also have a different time-pending entry than its predecessors. 
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While optimal watchdog timer durations are not a primary focus of 

this research, it was necessary to investigate the impact enough to confirm that an 

inappropriately set watchdog timer was not eroding network performance and otherwise 

hampering the protocol comparison.  A short parametric study was completed to search 

for performance trends.  All aspects of the simulation were held constant with the 

exception of the duration of any time-out functions.  We submit that further optimization 

is possible as an area of future work.  It is important to note that the parametric study 

showed that optimal time-out durations were different for the two simulations.  This is 

not surprising since the COTM packets will certainly require more transfer time if they 

have to move through the ad-hoc network in addition to the uplink/downlink process.  

Results of this short parametric study are found in Chapter IV. 

Schodorf also used a time-out function in the original investigation 

and varied time-out durations for performance comparison [5].  While he appears to use 

much longer durations, 1.5 and 3.5 sec, it is important to remember that Schodorf’s 

investigation included a packet execution time of 1.0 seconds which is not modeled in 

our simulations. 

The ideal time-out function is set longer than the total transmission 

time for the large majority of packets.  Total transmission time is defined as the sum of 

all queue wait times and round-trip transmit times.  At this setting the number of 

unnecessarily regenerated packets is kept to a minimum and network congestion is 

minimized to those packets that are actually lost and not just taking too long.  In the end, 

the ideal time-out is a function of network congestion and, therefore, a function of packet 

generation rates and fade statistics.  An optimal watchdog timer (WDT) would need to be 

adaptive, but they usually are not.  The simulation does use a different WDT for Models 

1 and 2 but does not currently adapt them to packet generation rate or fade statistics. 

The regeneration and retransmittal of unacknowledged packets is 

vital to implementing a robust network but can also cause significant congestion.  As 

mentioned earlier, the duration of the time-out threshold is an important factor in 

determining the amount of congestion, but most reasonable values have some balance.  If 
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a packet is truly lost to the network, then it is valuable to regenerate it as soon as 

reasonable.  But the other side of this situation is the regeneration of packets that are 

simply delayed in a queue somewhere.  To minimize the congestion impact of a time-out 

regeneration process, it is important to add some additional packet management processes 

to the packet processing functions.  For the most part, these type of processes are focused 

on not generating or deleting extra copies when the network has relevant side 

information.  One example is for a destination node that has already received a packet but 

has not yet sent the acknowledgement (e.g., due to a long queue delay).  If it receives a 

second copy of the packet, it should not generate a second acknowledgement.  From the 

other perspective, if a transmitting node regenerates a second copy because it has yet to 

receive an acknowledgement but then receives the acknowledgement before actually 

retransmitting the packet, then it should delete the packet and not generate unnecessary 

congestion.  The simulation implements both of these types of processes to minimize the 

congestion impact of the time-out function. 

(4) Buffer overflow management. Like any real-world, finite traffic 

system, a network has a performance limit.  It can process packets at some speed, and if 

packets are being generated or regenerated faster than they can be transmitted and 

acknowledged, a portion of the network may become saturated and some transmit buffers 

may overflow.  For purposes of memory consumption, this simulation does assume a 

finite buffer size for each node which also mirrors any real-world implementation.  If the 

buffer becomes full with active, waiting packets, the buffer must either overwrite packets 

already in the queue or reject new packets.  Based on the concept that the oldest packet in 

the queue is getting stale, the simulation prioritizes the new packet higher and overwrites 

the oldest active packet in the queue.  While this may be the best alternative under the 

circumstances, it is still a failure of the network to perform.  Chapter IV results show 

“Packet Success Ratios” for the various models and packet generation rates, which 

reflects the loss of active packets to being “overwritten” among other things. 
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B. MODEL 1A: “STOP AND WAIT” PROTOCOL 

While Model 1 represents a baseline or control case for comparison, Model 1A 

represents the first attempt to improve network performance by modifying the packet 

management protocol.  This version of the network simulation includes a simple and 

minor modification to the COTM portion of the routing protocol: inclusion of a 

transmission delay or wait state at the satellite transmitter whenever the satellite receiver 

detects loss of carrier from a mobile user.  The basic concept of this protocol 

modification is to take advantage of the side information available to the satellite.  Uplink 

signal strength, even without modulated data, is an excellent indication of the COTM link 

state approximately td in the past, where td is defined as the duration of the mobile-to-

satellite path delay.  As discussed in Section A.1.b, td ranges from 0.l194 to 0.1390 

seconds and is set to 0.125 seconds in the simulation.  Depending on the fade and 

connection dwell time statistics, there may be a high probability that the mobile node is 

still in the same state that it was td seconds ago, but we need to keep in mind that there is 

an equal delay between the satellite’s transmission and the arrival at the mobile.  So the 

more important question is whether the mobile will be in the same state 2td seconds after 

establishing the side information.  The satellite has access to this side information at the 

mid-point in the cycle.  For the empirical data discussed in Chapter II, the probability of 

the mobile still being in the connection state after 2td seconds is ~90.37% as determined 

through linear interpolation of the CDF shown in Figure 11.  Similarly, the probability of 

the mobile still being in the fade state is ~76.40% as shown in Figure 12.   The same 

probabilities can be computed for the simulation’s Markovian visibility model, where the 

complementary CDF is a geometric random variable [5]: 

  
 { } 2 250

0.128
11Pr ( ) ( ) 0.99997 0.9431,

td ms
t ms

dn t s m s m n connection a ∆> + = = = =…  (3.23) 
 
 { } 2 250

0.128
00Pr ( ) ( ) 0.999936 0.8825,

td ms
t ms

dn t s m s m n fade a ∆> + = = = =…  (3.24) 
 
where s(t) is the discrete state of the Markov process at discrete time t, 
 t∆  is the discrete time step of the Markov process, and 
 aii is the probability of transitioning from state i back to state i. 
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The probabilities shown above are for the state transition probabilities used to 

generate results presented in Chapter IV.  As discussed in Chapter II, the Markovian 

model overestimates the dwell times for short durations when compared to the empirical 

data. 

Model 1A’s packet management protocol is based on an additional assumption 

beyond those listed in the introduction to Chapter III.  The extra assumption is that the 

mobiles will maintain some kind of uplink carrier signal during their TDMA time slot, 

even when they do not have any data to transmit.  This assumption is critical to the 

implementation of this traffic management protocol because the lack of signal strength 

needs to imply a mobile fade condition not just a lack of uplink packets. 

The Model 1A simulation implements a small change to the protocol by putting 

the satellite transmission into a temporary wait state whenever it fails to detect an uplink 

carrier from a mobile.  The wait state only applies to the mobile that appears to have no 

signal.  The satellite continues to communicate with any mobile that has a detectable 

uplink signal.  If the satellite enters a wait state associated with a specific mobile, it stays 

in that wait state until a fixed timer tw counts down or until the uplink carrier reappears, 

whichever comes first.  As the wait state duration increases, the likelihood of the latter 

option grows.  If the wait state duration gets large enough, this protocol evolves into a 

cycle where the satellite downlink matches the time delayed uplink (or “lags the mobile 

uplink by the path delay”).   

As mentioned above, the impact of the Model 1A protocol modification is 

dependent on the relative duration of tf as compared to td and tw.  This relationship can be 

separated into five macroscopic situations and each situation is discussed below.  Figures 

43 through 46 provide a helpful graphical perspective.  Each of these figures has two 

separate horizontal axes representing time.  The top time axis represents the activity at 

the mobile transceiver and the bottom time axis represents activity at the satellite.  The 

separation between these two time axes represents the path delay td.  Arrows that connect 

the two time axes represent the transfer of information (e.g., packet, loss of carrier) from 

one end of the channel to the other (which takes td seconds).  The fade duration tf is 
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shown on the mobile’s end of the channel.  Similarly, the wait state duration tw is shown 

on the satellite’s end of the channel.  The transmission of packets to a blocked mobile is a 

network inefficiency and is shaded yellow.  The lack of packet transfer to a clear mobile 

is another network inefficiency and is shaded blue.  The goal of the Model 1A protocol is 

to avoid packet transfer to a blocked mobile.  These regions are shaded green.   

Figure 43 shows the situation where tf = 2td + tw.  This situation is about the best 

that can be accomplished without fade prediction.  All packets transmitted during 0 dt t±  

are blocked and require retransmission.  The inefficiency associated with this period is a 

direct consequence of the path delay and is only avoidable through fade prediction.  At 

0 dt t+ , the satellite detects a loss of uplink carrier and enters a wait state.  In this optimal 

case, the wait state ends td seconds before the fade and transmitted packets arrive just as 

the mobile becomes clear again.  This precise situation will be very rare due to random 

variation in the fade duration and most fades will fall into one of the other categories.  

The remainder of this discussion focuses first on those situations where tf < 2td + tw and 

then on situations where tf > 2td + tw.  
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Figure 43.   Packet transfer perspective for Model 1A: tf = 2td + tw. 

 

Figure 44 represents the situation where the fade duration is shorter than the wait 

state plus the round-trip path delay but longer than either by itself.  This situation 

introduces additional inefficiencies associated with the mobile being in a clear state but 

the satellite being in a wait mode.  This additional inefficiency is represented by the blue-

shaded section of Figure 44 (also labeled “Lost Opportunity”). 
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Figure 44.   Packet transfer perspective for Model 1A:  tw < 2td < tf < 2td + tw. 

 

If the fade duration is even shorter it may become shorter than the maximum wait 

state duration or the round-trip path delay.  Each of these situations has a different impact 

on packet activity.  If tf < tw then the satellite receives an uplink carrier while it is still in 

the wait state.  The appearance of an uplink carrier provides the satellite with side 

information that suggests that the mobile is clear and ready to receive packets.  This 

shortens the inefficiency represented by the blue-shaded region by tw − tf seconds.  The 

second situation occurs when tf < 2td.  In this situation, some of the downlink packets 

transmitted before the satellite enters the wait state are successfully received by the 

mobile as it leaves the fade state.  This shortens the inefficiency represented by the 

yellow-shaded region by 2td − tf seconds.  Figure 45 shows the combined situation where 

both of these criteria are true. 
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Figure 45.   Packet transfer perspective for Model 1A: tf < 2td and tf < tw. 

 

The last situation occurs when the fade duration is longer than the combined wait 

state and round-trip path delay.  Figure 46 provides a graphical view of this situation.  In 
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this situation, the mobile is blocked for the duration of the wait state.  The Model 1A 

protocol provides increased channel efficiency by not transmitting packets for the 

duration of the wait state, but the wait state ends early relative to the fade.  In this case, 

the satellite restarts transmission to a blocked mobile.  These packets are lost and require 

retransmission at a future time. 
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Figure 46.   Packet transfer perspective for Model 1A:  2td + tw < tf. 

 

Figures 43 through 46 highlight the complexity of the Model 1A protocol’s 

impacts on COTM channel performance.  Depending on the specific relationship of the 

fade duration and the wait-state duration, the protocol can improve (green-shaded 

regions) or hamper (blue-shaded regions) channel efficiency.  Chapter IV presents 

simulation-based performance estimates for several different wait-state durations. 

C. MODEL 2: NEIGHBOR ROUTING PROTOCOL 

Model 2 represents an investigation into mitigating the urban LMSC fade impacts 

by exploiting an expanded network and circumventing the problem.  Like Model 1, this 

model is a simulation of the COTM channel and a mobile ad-hoc network, but for this 

model the two networks are integrated into a single seamless network.   

For the most part, this model implements the packet routing protocols already 

presented earlier in this Chapter.  Important differences are discussed below. 
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1. COTM Uplink Packet Routing 

In the baseline COTM packet routing protocol presented in Section A, the uplink 

utilizes nearly real-time side information regarding channel state.  When the COTM 

uplink enters the fade state, packets destined for the GIG are held in the buffer until the 

system returns to a connection state.  As presented in Chapter IV, the performance of this 

simple protocol leaves room for improvement. 

In Model 2, the network routing protocol has access to another path through the 

mobile ad-hoc link.  When a mobile’s COTM channel is in the fade state, packets 

destined for the COTM channel may be re-routed to a neighboring mobile for surrogate 

uplink.  The blocked mobile requires side information to determine whether a viable 

neighbor is available or, if there are more than one, which one to utilize.  The first 

decision factor is the proximity and link quality of possible neighbors.  This information 

is already available from maintenance of the ad-hoc network and is discussed as part of 

the ad-hoc forwarding protocol.  The second decision factor is the expected packet 

service time of those same neighbors, which for this simulation is focused on queue wait 

times.  This information is also maintained as part of the ad-hoc network forwarding 

protocol.  The last decision factor is COTM channel state of the neighboring mobiles.  

This information is an important routing criteria because it is of no help to send packets 

from one blocked mobile to another.  COTM channel state is not a piece of information 

that is currently maintained as part of the ad-hoc network activity.  The implementation 

of the Neighbor protocol requires an additional high frequency, cyclic data transfer 

between neighboring mobiles so that accurate decisions can be made. 

Another important facet of the uplink Neighbor protocol is the control and use of 

assigned TDMA slots.  One possible approach to implementing the Neighbor protocol is 

to transfer uplink packets to a neighbor and expect that neighbor to add those packets to 

its existing uplink queue.  This approach has several drawbacks.  The first drawback is 

the fact that the packet has to wait its turn behind the neighbor’s existing uplink packets 

and transfer is delayed.  This in turn increases the probability that the neighbor becomes 

blocked and is not be able to act as a surrogate.  The second drawback is that the 
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surrogate’s own packets are delayed while processing a neighbor’s workload.  And third, 

the COTM uplink channel is not used efficiently with this approach.  Instead, a better 

solution is for the neighboring mobile to utilize the blocked mobile’s TDMA slot while it 

is not capable of using it itself.  This overcomes the drawbacks presented above.  The 

neighbor can send the blocked mobile’s packets during the blocked mobile’s TDMA time 

slot and not interrupt or slow its own uplink activity.  The channel is utilized more 

efficiently and increases the chances of getting both mobiles’ packets transmitted before 

the channel enters the next fade state.  The obvious downside of this approach is the 

additional complexity; and precise control of TDMA time slot ownership is crucial to its 

success.  If a blocked mobile passes from behind a building and the channel transitions to 

the connection state, that mobile could begin transmitting, but if it has passed temporary 

control and use of its TDMA slot to a neighbor, they may transmit on top of each other 

and effectively destroy both transmissions.  In the simulation, control of the TDMA slot 

is treated like a token that only one mobile can hold at a time.  When a blocked mobile 

transfers its uplink packets and control of its TDMA time slot to a neighbor, it cannot 

restart uplink transmission until the neighbor has returned control of the TDMA time slot.  

The average fade duration is an important factor in determining whether this approach is 

an overall improvement.  In the situation where a fade is relatively short, a blocked 

mobile may start to transfer packets and TDMA slot control to a neighbor and then 

become clear.  In this case, the mobile is not able to use its own uplink until that neighbor 

has finished packet uplink and returned control of the TDMA resource.  If the average 

fade duration is shorter than the average time to transfer uplink packets through a 

neighbor, then the Neighbor protocol hampers channel performance instead of helping.  

The results presented in Chapter IV for the “Boston” and “New York” environments 

show that this is not the case for a generous range of packet generation rates.  Yet, as the 

ad-hoc network approaches congestion, the uplink packet transfer times grow and the 

Neighbor protocol performance degrades to the point of being worse than the Model 1 

baseline. 

The secondary routing path through the ad-hoc network adds several steps to the 

packet delivery process, so it is important that these steps not be overly time consuming.  
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This leads to the development of three constraints on the use of this process: 1) the 

blocked mobile’s ad-hoc queue needs to be nearly empty to keep packet service time to a 

minimum, and 2) the link quality with the neighbor needs to be high, and 3) the ad-hoc 

queue size of a neighbor needs to be low. 

The actual sequential implementation starts with the blocked mobile assessing 

whether its own mobile ad-hoc buffer is fairly empty of packets, which suggests that the 

uplink packet would be transferred to a neighbor fairly quickly.  If this is not the case, 

then the mobile just holds the uplink packets in the uplink buffer and waits for the COTM 

channel to change back to the connection state or the mobile ad-hoc buffer to become less 

congested.  If the mobile ad-hoc buffer has less than Nthreshold packets, then it continues to 

investigate the viability of utilizing a neighbor by checking to see if any neighbors have 

COTM LOS to the satellite.  If this is also true, then those neighbors who have COTM 

connections are compared using a LRR style metric.  The metric equation is  

 ( , ) ( , )    ( )    ( ( , ) ),p eLRR i j L i j U j c u L i j rα= + + >  (3.25) 
 
where  

( , )L i j  is the link quality metric from mobile i to mobile j, 
( )U j  is the ad-hoc buffer utilization of mobile j, 

α  is a scalar weighting coefficient, 
er  is the correction threshold of the forward error correction scheme, 
( )u x t>  is the unit step function and equals one when x is greater than t, and 

pc is a scalar constant, and serves as the penalty increase to a metric. 
  

The link quality metric is the same link quality metric used by the ad-hoc 

forwarding protocol and is primarily based on recent bit error rate.  The buffer utilization 

metric is also used by the ad-hoc forwarding protocol and is a simple ratio of active 

packet count vs. buffer size.  It is important to note that the receiving mobile’s buffer 

only plays a secondary role in the Neighbor protocol.  The uplink packet does not spend 

time in the neighbor’s ad-hoc queue but instead goes from the blocked mobile’s ad-hoc 

queue to the neighbor’s uplink queue for transmission on the COTM link.  The satellite’s 

acknowledgment often comes back through the neighbor’s ad-hoc queue on its way back 
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to the blocked mobile.  While this is not always the case, it does occur frequently.  When 

the neighbor’s ad-hoc queue is very congested, the acknowledgement gets delayed and 

the blocked mobile may regenerate extra copies when the time-out function erodes to 

zero.  Because the utilization metric U is usually much larger than the link quality metric 

L a weighting coefficient is used to balance the impact.  In the active simulation, this 

weighting coefficient is currently set to 0.333.  The third and final term in the LRR metric 

computation is the penalty function.  This extra term has the same purpose as in the ad-

hoc forwarding protocol, to penalize links that are above the capability of the FEC code.  

This effectively increases the relative weighting of the link quality term when the link 

quality term is above the error rate threshold er .  The value of the penalty that is assessed 

in those cases is pc .  In the simulation, this penalty is set at 0.025. 

The last step of the Neighbor protocol is to determine if the neighbor with the best 

metric has a good enough metric to continue.  The purpose of this last check is to confirm 

that the process has a high chance of being quick and, therefore, a minimal impact on the 

network.  If the best neighbor has a marginal link quality or congested buffer, then it 

becomes more likely that the uplink packets or their acknowledgements will be delayed 

even longer than just waiting for a direct connection or that they will cause undue burden  

on the ad-hoc network with transmission failures and/or extra copies. 

2. COTM Downlink Packet Routing 

In the baseline (Model 1) COTM packet routing protocol, the satellite downlink 

does not utilize any side information regarding channel state and simply sends packets as 

quickly as possible.  If the destination mobile’s COTM channel is in the fade state when 

the packet reaches the mobile node (td seconds later for path delay), then the packet is 

lost.  Model 1A simulates one modification to this approach.  In that model, the downlink 

does utilize available side information to modulate packet transmission.  Unfortunately, 

the available side information is significantly delayed due to path length.  Another 

approach may work better. 
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In Model 2, the satellite downlink does not utilize any side information and 

reverts to simply transmitting packets as quickly as possible.  Instead, Model 2 relies on 

the ad-hoc network for improved performance.  In Model 1, the mobile receivers are only 

collecting data during their assigned TDMA slot.  The receiver resources are not utilized 

during other slots. 

In the Neighbor protocol, we expand the use of the receivers that have LOS to the 

satellite.  As discussed in the previous section, the COTM uplink portion of the Neighbor 

protocol relies on accurate knowledge of the fade/connection state of neighboring 

mobiles.  The downlink portion of this protocol also heavily relies on this information.  In 

the Neighbor protocol, if a mobile becomes blocked (fade state), it relies on a neighbor to 

collect packets being transmitted on the satellite downlink.  This does not impact that 

neighbor’s collection of its own downlink since they are being transmitted during 

different TDMA slots.  Like the other routing decisions involved in the neighbor and ad-

hoc protocols, this decision is based on the same metric equation presented in the 

previous section (see Equation (3.25)).  The metric equation parameters were selected 

through a limited trial-and-error effort; focused optimization can be accomplished in 

future studies.  The simulation currently assumes perfect side information of COTM 

channel state and buffer utilization factors U for computing this protocol.  In Chapter V, 

we recommend a future effort to remove this ideal assumption and model the impact of a 

realistic delay or inaccuracy in this knowledge. 

3. Model 2 Summary 

The Neighbor protocol provides improvements in network performance, but not 

without a tradeoff.  It is important to understand the downside of this mitigation 

approach.  The first is the obvious reliance on a local-area ad-hoc network and physically 

nearby neighbors.  If a mobile node is on its own, the mitigation approach will not be of 

any assistance, and if there is a local area ad-hoc network to provide this circumvention, 

the performance of that network will degrade due to the additional burden of the 

Neighbor protocol.  If the ad-hoc network is already running close to capacity, the 
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Neighbor protocol may increase congestion to the point of network inadequacy.  

Simulation results are presented in Chapter IV. 

D. CHAPTER III SUMMARY 

In this chapter, we introduced three network simulation models that are focused 

on achieving the second research goal presented in Chapter I, that of mitigating the 

impacts of the urban fade on network performance.  While the primary focus of the 

simulation effort is the COTM channel, the simulations also include a local area mobile 

ad-hoc network as part of a possible mitigation strategy.  The first of the three models is 

the baseline design which provides a standard for comparison.  The second and third 

models represent possible mitigation strategies.  In the next chapter, we analyze 

performance results for each of these models and assess their success at mitigating urban 

fade impacts. 



 
 

122

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 
 

123

IV. RESULTS: URBAN COTM AND AD-HOC MODELS 

Simulation-based performance estimates for network Models 1, 1A, and 2 are 

presented in this chapter.  Model 1 represents the basic network configuration and 

provides the comparison baseline.  Model 1A incorporates a small modification to the 

COTM channel protocol and represents an attempt to reduce the number of downlink 

packets transmitted to a blocked mobile.  Model 2 integrates the ad-hoc and COTM 

networks using the Neighbor protocol and represents an attempt to improve performance 

by circumventing the blockage.  The results presented include direct comparisons of 

identical simulation runs (e.g., identical LOS visibility, packet generation and vehicle 

motion vectors) and comparison of general performance statistics.  The summary 

performance statistics are consistently based on twenty independent process samples, 

where each sample is 51.2 seconds in duration.    

The first three sections of this chapter present and discuss key simulation 

parameter settings.  Section A introduces the topic of simulation parameters and provides 

rationale for most of the key parameters.  Section B follows with an in-depth 

investigation of the appropriate pending packet time-out thresholds.  Section C discusses 

estimation of process statistics and the application of the Central Limit Theorem. 

The last two sections present performance results for two urban environments 

having significantly different densities.  The low density city, which we refer to as 

Boston, implements a satellite connection/fade ratio of 66.6/33.3%.  The higher density 

city, which we refer to as New York, reverses this ratio and implements a 

connection/fade ratio of 33.3/66.6%. 

A. MODEL PARAMETER SETTINGS, ASSUMPTIONS AND RATIONALE 

While Chapter III provides a general overview of how the simulation works, 

Chapter IV presents performance results for a single, specific, simulated network in two 

different urban environments.  Since the goal of this research is to investigate mitigation 

strategies for the TCA’s COTM link, the simulation parameters have been selected to 
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represent a small group of HMMWVs using the Joint Tactical Radio System (JTRS) to 

maintain a MANET and using the COTM link to communicate with the GIG through a 

TSAT.  A list of key simulation parameters and the assigned values are shown in Table 

19.  The rationale for these settings are discussed below. 

 

Table 19.   Simulation parameter settings. 

Parameter Setting or Value 
Number of mobiles 5 vehicles 
Size of movement area 350 x 350 meters 
COTM symbol duration / data rate 1 µs / 1 Msps 
Ad-hoc symbol duration / data rate 1 µs / 1 Msps 
Packet size 1024 symbols 
TDMA slot duration (simulation time step) 128 symbols 
Average connection duration (Boston/New York) 4.2 seconds / 2.0 seconds 
Average fade duration (Boston/New York) 2.0 seconds / 4.2 seconds 
Total mobile node packet generation rate rp Varies (7.8125 – 78.125 pps) 
Local area (mobile ad-hoc) packet generation rate radhoc = 0.4rp 
COTM packet generation rate rsat = 0.6rp 
Maximum queue (buffer) size 3 Msymbols 
Pending packet time-out thresholds see Section B 

 

1. Number of mobiles:  The primary rationale for limiting the simulation to five mobiles 
is one of computer memory and computation time.  With each additional mobile, the 
memory requirements increase proportionally (e.g., packet queues, visibility vector, 
packet generation vector, and motion vectors).  Simulation runs with six or more 
mobiles would sometimes stop execution due to an “out-of-memory” error.  This 
limitation can be circumvented with additional computer memory.  Simulation 
memory management issues are discussed in Appendix B. 

 
2. Size of movement area:  As discussed in Chapter III, Sections A.2.d and A.2.e, the 

mobile movement area is a Cartesian grid.  The size of the grid is a balance between 
crowding the mobiles together and spreading them too thin.  On the one hand, the size 
of the grid is chosen to minimize the probability of a mobile being out-of-range from 
its neighbors.  The selected grid size limits this scenario to a probability of only 0.5% 
(see Section A.2.e).  On the other hand, the size of the grid needs to be large enough 
to require multi-hop packet transfers so that the routing protocol is exercised.  With a 
350 x 350 meter grid, the maximum vehicle separation distance is 495 meters, which 
is approximately 50% longer than the normally successful one-hop mobile ad-hoc 
communication distance.  
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3. COTM data rate and symbol duration:  The COTM link instantaneous data rate is set 
at one megasymbol per second (Msps).  This is a reasonable estimate based on the 
TCA plans to offer up to 1.544 Mbps to the individual tactical user [1]. 

 
4. Ad-hoc data rate and symbol duration:  The ad-hoc instantaneous data is also set at 

one Msps.  This data rate is not currently achievable with existing mobile radios (e.g., 
SINCGARS) but may become available with the development of the Joint Tactical 
Radio System (JTRS) and its Wideband Networking Waveform (WNW).  If the 
actual data rates available to JTRS are lower than one Msps, the congestion point of 
the ad-hoc network will be lower than presented in these results, but general findings 
and trends will still be valid. 

 
5. Packet size:  The packet size is set at one kilosymbol to minimize the probability of 

losing partial packets to urban blockage.  In a real, deployed system, optimal packet 
size will be a balance between increased inefficiency due to overhead symbols and 
increased inefficiency due to partially blocked packets.  An additional benefit of this 
parameter setting is the easy conversion of simulation throughput results from packets 
to kilosymbols.   

 
6. TDMA slot duration:  As discussed earlier in Chapter III, Section A.1, the TDMA 

slot duration is arbitrarily set to 1/8th of a packet size.  A longer TDMA slot duration 
is expected to improve network performance due to a reduction in partially blocked 
packets.  This additional investigation is recommended as future work.  It is also 
important to note that the simulation time step is one TDMA time slot duration. 

 
7. Average connection duration:  As discussed in Chapter III, the simulation’s visibility 

model is a 2-state, discrete Markovian process.  This makes the average connection 
duration a function of the connection-to-connection state transition probability a11.  
To approximate the urban density of Boston, this parameter is set at 0.99997.  To 
approximate a more densely populated area, like New York, this parameter is set at 
0.999936. 

 
8. Average fade duration:  Like average connection duration, average fade duration is 

entirely determined by the fade-to-fade state transition probability a00.  This 
parameter is set to 0.999936 and 0.99997 for the Boston and New York results, 
respectively. 

 
9. Total mobile node packet generation rate:  The Markovian packet generation model is 

introduced in Chapter III.  This model allows the selection of independent packet 
generation rates for locally destined packets and COTM channel packets.  These 
settings are discussed as Items 10 and 11 below.  When combined, they represent the 
total rate of new packets appearing at a single mobile node.  For the total number of  
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new packets appearing in the simulation, we need to multiply by the number of 
mobiles and then add the packets appearing at the satellite node (see paragraph 10 
below): rtotal = nrp + nrsat.   

  The packet generation rates were varied as part of analyzing network 
performance.  The range of packet generation rates is selected to be near, but 
generally below, the network congestion point.  For the lower density urban 
environment, the congestion point occurs at or slightly above 78.125 pps.  The high 
density urban environment, New York, has a substantially lower congestion point and 
analysis is limited to 46.875 pps and below. 

 
10. COTM packet generation rate:  The Markovian packet generation model allows 

independent packet generation rates for locally destined packets and COTM channel 
packets.  The simulation results are based on a 3:2 bias towards COTM packets based 
on the rationale that more of a mobile’s communication (in symbols per second) will 
be with the GIG than with immediate neighbors.  This bias is supported by the 
network because the COTM channel has a higher capacity than the ad-hoc network.  
Each mobile node generates COTM packets at an average rate of rsat.  Similarly, the 
satellite node generates COTM packets at this same rate for each mobile customer.  
This makes the total number of new packets appearing at the satellite node nrsat.  
These settings reflect an equal level of uplink and downlink activity.  Using the 
packet description vector presented in Chapter III, we can identify uplink COTM 
packets as packet type = 5, while downlink COTM packets are identified as packet 
type = 8. 

  
11. Local area (mobile ad-hoc) packet generation rate:  As mentioned above, each mobile 

generates packets destined for local area neighbors.  These packets are only generated 
by the mobiles and only travel on the mobile ad-hoc network.  The results presented 
in this chapter assume that two of every five packets generated at a mobile are 
destined for a local neighbor.  The satellite node does not generate local area packets.  
In Chapter III, local area packets are identified as packet type = 2. 

 
12. Maximum queue (buffer) size:  Due to real-world limitations of finite system 

memory, simulation packet queues are limited to three megasymbols (Msym).  For 
the selected packet size of one ksym, this equates to a maximum of 3000 active 
packets in any queue.  When combined with packet generation rates, this parameter 
helps determine whether active packets are overwritten due to congestion and buffer 
overflow. 

 

B. SELECTION OF THE PACKET TIME-OUT THRESHOLD 

As mentioned in Chapter III, the COTM and ad-hoc protocols include an 

acknowledgement time-out or watchdog timer.  The purpose of this packet management 
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subprocess is to regenerate and retransmit packets that are lost to the network, where lost 

means that the packet transmission was not successfully received by the destination or the 

acknowledgement was not successfully received by the source/origin.  The central 

decision related to implementing this subprocess is to determine how long a packet can 

be pending before it has to be regenerated and retransmitted.  While a detailed 

investigation of the optimal value is not the focus of this research, it is important to 

confirm that an appropriate value is selected so that network performance is not 

inappropriately hampered by this subprocess diverting attention from the central 

investigation into long-duration urban signal fades.   

The optimal value for timer duration is a complex balance between the desire to 

resend truly lost packets as soon as possible and not unnecessarily regenerating packets 

that are simply caught in network congestion (waiting in a queue somewhere in the 

network).  This balance is dependent on the amount of network congestion, and network 

congestion is dependent on the packet generation rate.  This set of relationships suggests 

an important optimal threshold dependence on packet generation rate.  While for brevity 

the rest of this section presents results for a fixed packet generation rate, additional 

parametric studies were completed that confirmed a monotonic relationship between 

optimal threshold settings and packet generation rate.  Lower packet generation rates had 

lower optimal time-out thresholds, and higher packet generation rates had higher optimal 

time-out thresholds.   To minimize simulation complexity and keep the focus on the 

primary research problem, an adaptive time-out threshold was not pursued.  Instead, the 

time-out thresholds were optimized for a moderately high packet generation rate and held 

constant for other generation rates.  In addition to reducing simulation complexity, this 

approach was also crucial to providing an “apples-to-apples” comparison of model 

results. 

There is a large difference in the time-out thresholds of the two different 

communication channels.  The optimal ad-hoc time-out threshold tends to be 

substantially smaller than its equivalent for the COTM channel.  The first significant 

difference is obviously the path delay.  Assuming no packet service execution time, the 



 
 

128

path delay is a bare minimum value for the time-out threshold since it represents the ideal 

minimum packet latency.  A second reason for this large difference is the deep signal 

fade experienced by the COTM channel.  For Boston, the average fade is 1.68 seconds, 

and we expect similar or larger values in other urban areas.  This average fade duration is 

approximately three to five times larger than the watchdog timer settings.  As the 

watchdog timer setting gets shorter, the downlink sends more packets that are not 

received by the blocked mobile.  This increases network congestion without a gain in 

successful delivery.  A third reason that affects only Model 2 is the additional COTM 

packet latency caused by extra stops in the ad-hoc network before uplink and/or 

downlink. 

1. Time-out Thresholds for Model 1 

To support the selection of appropriate timer values, the simulation was run 

multiple times holding all values constant with the exception of watchdog timer 

durations.  The results are shown in Figures 47 and 48.  The overall mobile node packet 

generation rate was set at 0.008 packets per time step (ppts), with a 60/40 bias towards 

SATCOM packets.  This bias results in a SATCOM packet generation rate of 0.0048 and 

an ad-hoc packet generation rate of 0.0032 ppts.  In Model 1, the COTM channel and the 

MANET are completely separate networks.  This isolates the impact of their time-out 

thresholds to the associated channel.  Figure 47 shows the packet latency and network 

throughput performance for the COTM channel as the COTM packet time-out threshold 

is varied.  Similarly, Figure 48 shows the same performance parameters for the ad-hoc 

network as the local packet time-out threshold is varied.   

It is important to analyze the uplink and downlink performance separately 

because their behaviors are so different due to the proximity differences with respect to 

the physical blockage.  The mobile uplink knows almost immediately that it has lost 

connection to the satellite and holds packets in the uplink queue until the signal returns.   

This is not true for the downlink.  Due to the long path delay, the satellite does not have 

accurate, timely information regarding link quality and will transmit regardless.   



 
 

129

2400 2600 2800 3000 3200 3400 3600
0.8

1

1.2

1.4

1.6

1.8
x 104

La
te

nc
y 

(ti
m

e 
st

ep
s)

(a)

2400 2600 2800 3000 3200 3400 3600
350

360

370

380

time out threshold (time steps)

Th
ro

ug
hp

ut
 (K

sp
s)

(b)

COTM channel

Uplink
Downlink

 
Figure 47.   Comparison of COTM channel (a) packet latency and (b) total throughput 

as a function of COTM packet time-out threshold (mean and 95% confidence 
interval, packet gen. rate = 0.008). 

 

As shown in Figure 47, COTM performance is somewhat insensitive to the time-

out threshold setting.  Even as the threshold increases by 40% (from 2452 to 3452 time 

steps), the latency decreases by only ~2.5%.  Similarly, the throughput only improves by 

0.4%.  This shows that the channel is not near capacity and that the extra congestion 

caused by a short watchdog timer is easily absorbed by the channel.  We would expect to 

find a stronger performance dependence for higher packet generation rates that would be 

more prone to congestion. 

The ad-hoc network performance is not as insensitive to watchdog timer 

thresholds.  Both packet latency and network throughput increase markedly until ttime-out 

reaches 200 time steps.  At that point performance starts to degrade slowly.  This 

transition is presented in Figure 48. 
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Figure 48.   Comparison of MANET (a) packet latency and (b) network throughput as 

a function of ad-hoc packet time-out threshold (mean and 95% confidence 
interval, packet gen. rate = 0.008). 

 

Based on this parametric study, we selected watchdog timer thresholds of 1250 

and 200 time steps for the COTM packets and MANET packets, respectively.  It does 

appear that another small improvement in performance is available by increasing the 

COTM packet threshold to 1500 time steps, but the increase would hurt performance at 

lower packet generation rates. 

2. Time-out Thresholds for Model 2 

In Model 2, the two networks become integrated, and COTM packets frequently 

travel through the ad-hoc network.  This network integration broadens the impact of each 
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time-out threshold to have a ripple effect on the other channel’s performance.  In an effort 

to isolate the impacts of each time-out threshold, one was held fixed while the other was 

varied.  For this parametric study, the packet generation rate was held constant at 62.5 

packets per second per mobile (0.008 packets per time step). 

Figures 49 and 50 show the network performance when the ad-hoc time-out 

threshold is fixed at 400 time steps and the COTM threshold is varied.  Model 2 was 

exercised with five different settings of COTM time-out threshold: 2952, 3452, 3952, 

4452, and 4952 time steps.  These values translate to 0.378, 0.442, 0.506, 0.570, and 

0.634 seconds, respectively.  As mentioned in Chapter III, these numbers are 

considerably smaller than the time-out delays investigated by Schodorf, but when we 

subtract the 1.0 second execution time from Schodorf’s 1.5 second time-out delay, we 

find that Schodorf’s setting nearly matches our mid-point of 0.506 seconds.  The five 

settings for this parameter appear to have non-standard values.  This is due to the 

simulation using the roundtrip path delay, 1952 time steps or 0.125 seconds, as a base 

value.  The roundtrip path delay is used as the base value because it represents the 

theoretical minimum for a time-out threshold.  In an ideal network with no queue delay or 

execution time, this would be the correct value for the time-out threshold.  Figure 49 

shows network performance with respect to packet latency and Figure 50 shows network 

performance with respect to channel throughput.  Both figures show steady improvement 

of network performance as the time-out threshold is increased from 2952 time steps to 

3952 time steps, but as the time-out threshold increases beyond 3952 time steps the 

results do not clearly show any additional improvement.  Instead, the latency and 

throughput results show similar or slightly worse performance.  These same trends also 

appeared in the results for packet success ratio and transmit-only latency, which are not 

shown for brevity.  The figures show the mean performance over 20 iterations of 400,000 

time steps each.  They also show the 95% confidence error bars bracketing that mean.  

The error bars are dependent on both sample variance and number of iterations 

completed. 
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Figure 49.   Comparison of packet latency (for transfer and acknowledgement) as a 

function of COTM packet time-out threshold for (a) ad-hoc packets, (b) uplink 
packets, and (c) downlink packets (mean and 95% confidence interval). 

 



 
 

133

2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000

80

100

120

140

Th
ro

ug
hp

ut
 (K

sp
s)

(a)

Ad-Hoc Network

2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000
340

360

380

400

time out threshold (time steps)

Th
ro

ug
hp

ut
 (K

sp
s)

(b)

COTM channel

 
Figure 50.   Comparison of channel throughput as a function of COTM packet time-

out threshold for (a) ad-hoc network and (b) COTM channel, uplink and downlink 
(mean and 95% confidence interval). 

 

It is important to note that the COTM time-out thresholds for Model 2 are 

noticeably larger than those set for Model 1.  This is a reflection of the extra processing 

associated with this integrated network.  In addition to the uplink and downlink queue 

wait times that are part of the basic COTM link in Model 1, COTM packets may now 

have additional queue wait times in the ad-hoc network for either the uplink direction, 

downlink direction, or both. 

A similar investigation was performed with respect to the impacts of the ad-hoc 

network time-out settings.  For this investigation, the COTM packet time-out was fixed at 

3952 time steps (0.502 seconds), and the ad-hoc packet time-out was varied between 300,  
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350, 400, 450, and 500 time steps.  These settings correspond to 0.0384, 0.0448, 0.0512, 

0.0576, and 0.064 seconds, respectively.  The performance results are shown in Figures 

51 and 52.   
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Figure 51.   Comparison of packet latency (for transfer and acknowledgement) as a 

function of ad-hoc packet time-out threshold for (a) ad-hoc packets, (b) uplink 
packets, and (c) downlink packets (mean and 95% confidence interval). 
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The results show clear and consistent improvement in both packet latency and 

network throughput as the threshold is increased from 300 to 400 time steps.  These 

improvements appear in both the sample mean and sample variance.  As the threshold 

continues to increase towards 500 time steps, the performance improvements do not 

continue.  The packet latency is similar but slightly higher.  The network throughput is 

slightly lower with the exception of the COTM channel throughput at a threshold of 450 

time steps.  The mean performance for this threshold setting was slightly higher, but so 

was the variance.  Based on these results, the Model 2 time-out thresholds were set at 

0.502 seconds for COTM packets and 0.05 seconds for ad-hoc packets for the remainder 

of the performance investigations. 
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Figure 52.   Comparison of channel throughput as a function of ad-hoc packet time-out 

threshold for (a) ad-hoc network and (b) COTM channel, uplink and downlink 
(mean and 95% confidence interval). 
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3. Summary of Time-out Threshold Parametric Study 

It is important to note that only a subset of this parametric study is presented here.  

As part of this investigation, a short study of time-out threshold versus packet generation 

rate was performed.  An important result of that larger investigation was the relationship 

of optimal time-out thresholds to packet generation rates.  It has already been mentioned 

that setting an optimal time-out threshold is a fine balance between regenerating lost 

packets as soon as possible and not regenerating packets that are simply delayed by 

congestion.  Packet generation rates are a big factor in network congestion.  As more 

packets are being generated, the queues are longer and the congestion delay gets longer.  

This, in turn, shifts the optimal time-out balance.  It is clear that the optimal watchdog 

timer function is dependent on packet generation rates.  As mentioned earlier, this is not 

the central investigation of this research, and it was decided to not pursue an adaptive 

watchdog timer function (adaptive to congestion).  Instead, we loosely optimized the 

threshold for a medium-high packet generation rate of 62.5 pps and held it fixed for all 

samples from that Model.  A summary of those settings are found in Table 20.   

 

Table 20.   Summary of watchdog timer settings for remainder of Chapter IV. 

 (time step = 0.000128 sec) Ad-hoc packet time-out COTM packet time-out 
Model 1 and 1A 200 time steps, 0.0256 sec 3202 time steps, 0.41 sec 
Model 2 400 time steps, 0.0512 sec 3952 time steps, 0.506 sec 

 

C.  APPLICATION OF THE CENTRAL LIMIT THEOREM 

As mentioned in Section A, simulation runs were limited to 400,000 time steps 

primarily due to runtime and computer memory limitations.  With a TDMA slot duration 

set at 128 symbols and symbol durations set at 1 µs, this equates to simulating 51.2 

seconds of actual network performance.  For a stochastic process like network 

performance, 51.2 seconds is not an appropriate process sample to estimate long-term 

performance.  A better approach is to generate multiple independent process samples and 

apply the Central Limit Theorem.  According to [62], for processes that are not highly 
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skewed, 10 to 30 trials are usually necessary to invoke the central limit theorem.  The 

presented results are based on the mid-point of this range: 20 independent and identically 

distributed samples. 

By iterating the simulation with random initial parameters and random input 

vectors for COTM channel state, we can model the results as Gaussian.  The results 

presented in this chapter represent the mean and variance of 20 independent simulations 

each 400,000 steps in duration.  Summary results found in Figures 57, 58 and 60 through 

64 are presented as sample means with their 95% confidence level.  The confidence level 

is not the same as sample variance (second moment), but they are related through the 

relationship for Gaussian random variables nσ , where σ is the standard deviation and 

n is the number of  process samples.  The 95% confidence interval represents a range that 

the sample mean will fall within 95% of the time. 

D. “BOSTON” RESULTS 

The first urban environment investigated is loosely based on the empirical data 

collected by MIT/LL and discussed in Chapter II.  As discussed in Chapter III, the 

simulations actually rely on a Markovian visibility chain to represent the urban blockage 

phenomenon.  For this portion of the investigation, we have set the state transition 

parameters aii to approximate those seen in the empirical data (see Table 19).  Therefore, 

we shall refer to the simulated city as Boston.  Absent additional data from any other 

cities, we propose that the Boston visibility model represents a low-to-moderately dense 

urban environment.  Using percent of travel distance spent in the fade state as a 

reasonably straightforward metric, the Boston empirical data has a density metric of 44% 

(31% in the temporal domain).  It is important to use the spatial perspective for this kind 

of comparison to remove the dependence of vehicle velocity. 

1. Model 1 Results 

In Model 1, the COTM channel and the local area ad-hoc network are separate 

and independent for purposes of packet routing.  If a mobile generates a packet with a 
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local destination, it transmits that packet on the ad-hoc network.  Similarly, if a mobile 

generates a packet with a non-local destination, it transmits that packet on the COTM link 

which is the mobile’s connection to the GIG. 

The primary purpose of Model 1 is to establish a baseline for comparison, but 

Model 1 can also provide us some insight into the basic network performance and its 

dependencies.  To present and discuss baseline network performance, we use both 

specific examples and a general investigation into network dependencies.  The specific 

examples focus on buffer utilization in order to understand how the model reacts to 

network traffic.  The general investigation into performance dependencies is important 

because the simulation represents a complex blend of stochastic processes (i.e., vehicle 

motion, COTM fade, packet generation bursts, symbol errors, etc.) and a single sample 

cannot confidently identify those dependencies. 

a. Example 1: Nominal Performance 

Example 1 presents a single mobile’s buffer utilization from Iteration 3 of 

20 for the combined mobile packet rate of 62.5 pps (0.008 ppts).  This example is offered 

as a representation of nominal performance, where nominal is defined to mean that the 

network is not overstressed or congested and performance approximates the long-term 

process mean.  This specific example was selected for comparison because it included 

both a long duration fade (fade 1) and several short duration fades (fades 2-6), which 

highlight the relative impacts of fade duration.  For direct comparison, this example is 

updated in the Model 2 discussion in Section 3.  

Table 21 provides some key summary statistics for this process sample.  

The mobile generates a total of 3115 packets for a combined packet generation rate of 

0.0078 ppts, which  is slightly below the expectation of 0.008 ppts.  Of that 0.0078 packet 

generation rate, 0.00467 ppts (59.97%) are intended for the COTM uplink.  This ratio 

nearly matches the expectation of 60%.  Similarly, the satellite generates 1898 packets  
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for the mobile.  This equates to a packet generation rate of 0.00475 ppts or 37.1 pps, and 

is slightly above the expectation of 0.00468 ppts.  The connection ratio is slightly below 

the expectation of 66.6%. 

For this example, the mobile experiences six COTM channel fades within 

400,000 time steps (51.2 seconds). The start, finish times, and fade duration are shown in 

Table 22.  The first and longest COTM fade lasts 75,030 time steps, or 9.6 seconds.  

During that time, the uplink and downlink queues build small back-logs of 697 and 665 

packets, respectively. 

 

Table 21.   Example 1 packet counts and connection ratio. 

Parameter Value 
COTM downlink packets generated 1898 
COTM uplink packets generated 1866 
Ad-hoc packets generated 1249 
Connection ratio 62.6% 

 

Table 22.   Example 1 COTM fade times. 

 Time (start – finish, time step) Duration (time steps) 
Fade 1 1 – 75030 75030 (9.60 sec)  
Fade 2 91101 – 100799 9698 (1.24 sec)  
Fade 3 210845 – 229137 18292 (2.34 sec)  
Fade 4 267907 – 285432 17525 (2.24 sec)  
Fade 5 342089 – 349073 6984 (0.90 sec) 
Fade 6 365373 – 388666 23293 (2.98 sec) 

 

The active uplink packet queue grows during channel fades because it uses 

signal strength to determine that the channel is in fade and holds packets until the LOS is 

clear.  The downlink queue growth is slightly more complicated.  The downlink does not 

know that the link is blocked and continues to send packets to the mobile, but it does not 

receive an acknowledgement from the mobile and, therefore, regenerates those lost 

packets when the time-out threshold has been passed.  For the downlink, packets are  
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cycling between the active downlink queue and the pending downlink queue.  As more 

and more packets are generated and enter this cyclic process, the downlink queue grows 

in size.   
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Figure 53.   (a) Buffer utilization and (b) mobile visibility state for Model 1, packet 

rate = 0.008 ppts, Iteration 3.  (visibility state: fade = 1, connection = 0). 
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The downlink pending queue has a different behavior that limits its growth 

to a ceiling determined by the packet transmittal rate and time-out threshold.  At the 

maximum downlink transmission rate, packets enter the pending queue one every 

mobile TDMAn n×  time steps, where nmobile is the number of mobiles sharing the COTM 

channel and nTDMA is the number of TDMA time slots needed to transmit an entire packet.  

Relevant simulation parameter settings can be found in Table 19.  If the satellite is not 

receiving acknowledgements, packets are transferred back to the active downlink queue 

once the time-out threshold is reached.  This combination determines that the downlink 

pending queue never goes above  

 time - out threshold 3952 time steps 98 packets.
5 mobiles  8 time slots/packetmobile TDMAn n

= =
× ×

 (4.1) 

 

In this example, the ad-hoc network is processing local area packets 

generated at an expected rate of 25 pps (0.0032 ppts) per mobile, well below its 

congestion point.  Because this is an example from Model 1, the simulated system is not 

transferring COTM packets through the ad-hoc network.  This leaves the ad-hoc network 

with an easy workload and the active and pending mobile queues do not grow beyond 23 

and 11 packets, respectively (less than 0.01% buffer utilization).   

b. Ad-hoc Network Performance Dependencies 

Simulation results suggest a clear, monotonic, proportional dependence of 

the COTM channel performance on the packet generation rate and the fade statistics.  The 

same relationships are not as clear for the ad-hoc network.  As part of collecting and 

analyzing simulation results, we observed large variations in ad-hoc network 

performance even when model input parameters were held constant.  In an effort to 

understand this erratic performance, we attempted to establish relationships with key 

driving parameters.  Initial expectations focused primarily on packet generation rate and 

vehicle separation distance as the key dependencies.  The first can increase congestion 

simply by filling buffers with more information to transmit.  The second factor can 

increase congestion and impact performance by reducing link quality and causing ad-hoc 
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network bottle-necks.  The purpose of the following investigation is to assess the 

relationship of mean vehicle separation and packet generation rate to ad-hoc network 

performance, where mean vehicle separation is the average vehicle separation over one 

simulation run of 400,000 time steps or 51.2 seconds. 

The performance comparisons presented in Figures 54 through 56 provide 

some insight into these complex relationships and provide a means to assess the relative 

impacts of packet generation rate and vehicle separation distance.  Together these three 

figures show the key ad-hoc network performance averages for 80 independent process 

samples, 20 for each packet rate.  The results are presented as scatter plots due to the 

stochastic nature of the vehicle separation.  The packet generation rates shown in these 

figures are for ad-hoc packets generated by a single mobile and the units are packets per 

second.  From lowest-to-highest, these four packet rates move closer to the observed 

congestion range for the ad-hoc network which starts near 40 pps.  The two primary 

dependency candidates, mean vehicle separation and packet generation rate, are 

uncorrelated.  This is reflected in the 20-sample average of mean vehicle separation as 

compared to packet generation rates, where all four mean separations fall within a tight 

band less than 10 meters wide (see Table 23).   

 

Table 23.   Packet generation rate vs. mean vehicle separation 

Packet generation rate (pps) 18.75 25.0 31.25 37.5 
Mean separation (meters, 20 sample average) 184.4 185.7 174.7 183.4 

 

Figure 54 shows 80 different samples of mean packet latency, 20 for each 

packet generation rate.  Analyzing the close-up view presented in Figure 54(b), the 

samples show a noticeable increase in latency as the average mobile separation grows 

from approximately 110 meters to over 250 meters.  Similarly, the packet generation rate 

appears to have some impact on latency as well.  The 20 sample averages are shown in 

Table 24.   
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Figure 54.   Mean ad-hoc packet latency as a function of average separation distance 

and packet generation rate; (a) all data, (b) zoom into latency range 90-200 time 
steps. 

 

Table 24.   Packet generation rate vs. mean packet latency 

Packet generation rate (pps) 18.75 25.0 31.25 37.5 
Mean latency (time steps, 20 sample average) 136.8 491.3 

(138.8)
197.6 778.2 

 

The 491.3 time step result is surprisingly high for packet rate 25.0 pps.  

Additional investigation shows that this result is heavily skewed by a single problematic 

simulation run that had an average packet latency of 7189.3 time steps.  After removing 

this outlier, the remaining 19 process samples have a revised mean latency of 138.8 time 

steps and matches expectations.  A focused investigation of the outlier found that the 

extremely poor performance was due to large vehicle separations (mean of 238 meters) 

and a difficult node topography.  This is discussed more later in this section. 
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As the packet generation rate approaches 40 pps, ad-hoc performance 

becomes more prone to congestion and degraded performance as reflected in the outliers 

for 37.5 pps.  The combination of the higher packet generation rate and the above average 

mobile separation can lead to large queues and noticeably longer wait times.  Clearly the 

combination is an important factor.  When the packet generation rate drops to 25 pps, 

even an average separation of 250 meters only increased packet latency to 150 time steps. 

Figure 55 is similar to Figure 54 except that is shows network throughput 

in ksps.  Here again we see a small but noticeable dependence on average separation 

distance, which is reflected in a slight downward slope.  Even when comparing the best 

performance to the worst, we find less than 20% drop in throughput as the mean 

separation distance is more than doubled.   
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Figure 55.   Ad-hoc network throughput as a function of average separation distance 

and packet generation rate.  
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Figure 56 is the final assessment of network performance as a function of 

packet generation rate and mean vehicle separation.  This figure compares the average 

number of transmit attempts required to send a packet and receive an acknowledgement. 
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Figure 56.   Average number of transmit attempts as a function of average separation 

distance and packet generation rate. 

 

The results of this investigation show some general trends and 

relationships between network performance, mean separation distance and packet 

generation rate, but the highly scattered nature of the performance results show that 

network performance is not necessarily a proportional or monotonic dependence on 

packet generation rate or mean separation distance.  The figures show several data points 

that are difficult to explain based on the first order parameters of packet generation rate 

and mean separation.  One example is the 170 time-step packet latency achieved at a 

packet generation rate of 18.75 pps and a mean separation of only 148 meters.  This is the 
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second worst mean latency for 18.75 pps but it occurs with a mean separation that is well 

below average.  This is only one example amongst many where performance improves 

despite increases in packet rate and/or vehicle separation. 

Additional investigation into the specifics of these results showed that 

mean separation distance was not as important as the specific node topography.  In each 

of the cases where performance was surprisingly poor, the node topography was such that 

three or four of the mobiles were spread far apart and one mobile was in the center.  In 

this situation, the center mobile becomes a conduit for all local area traffic and has more 

packets to process than usual, leading to increased queue wait times.  The results of this 

investigation show that while mean separation distance and packet generation rate 

provide acceptable first-order estimates of ad-hoc network performance, node topography 

is often a larger influence. 

2. Model 1A Results 

Model 1A is nearly identical to Model 1 with the exception of a minor change to 

the downlink routing protocol.  The modification involves putting the downlink 

transmission into a wait state when the satellite can no longer detect the mobile’s uplink 

carrier.  The satellite keeps the downlink in this wait state until it detects the mobile’s 

uplink carrier or its associated timer has counted down.  Figures 57 and 58 show a 

statistical summary comparing the Model 1A performance with that of Model 1.  The 

figures show mean performance with the 95% confidence interval for 20 independent 

iterations for Model 1A but show only mean performance for Model 1.  All of the results 

are based on the same visibility and packet generation vectors.  The comparison includes 

a variation of the Model 1A wait-state timer duration from 0.5 to 3.0 seconds.  This range 

was chosen because it brackets the average fade duration shown in Table 4.   
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Figure 57.   (a) Uplink and (b) downlink packet latency vs. wait state duration as 

compared to Model 1 performance (mean and 95% confidence interval, COTM 
packet generation rate = 0.0048 ppts / 37.5 pps). 

 

Figures 57 and 58 show that the Model 1A wait-state protocol performed worse 

than the baseline in both packet latency and channel throughput for all four wait-state 

durations.  Additional investigation found that Model 1 performed better simply due to 

the fact that it made more frequent and consistent attempts to transmit packets to the 

mobile.  While transmitting packets to a blocked mobile may be inefficient, more 

frequent attempts increases the chance of successful transfer.  In many cases, Model 1A 

avoided meaningless packet transmission to a blocked mobile that could not receive the 

packet (see Figures 43 and 46).  The problem is that avoiding extraneous channel activity 

does not really matter to a channel that is operating well below the congestion point and 

has capacity to spare.  On the other hand, Model 1A still misses valuable transfer 
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opportunities when tf < 2td + tw (see Figures 44 and 45).  The bottom line is that when the 

channel is operating nominally (not congested), the inefficiency of extraneous packet 

transfer is not nearly as important as the inefficiency of missing valuable connection 

windows.  Due to a lack of positive impact, Model 1A will not be explored further. 
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Figure 58.   COTM channel throughput vs. wait state duration as compared to Model 1 

performance (mean and 95% confidence interval, COTM packet generation rate = 
0.0048 ppts / 37.5 pps). 

 

3. Model 2 Results 

For comparison of Model 2 with Model 1 performance, we use both specific 

examples and general statistics.  The specific example is carried over from the Model 1 

discussion in Section 1 and focuses on buffer utilization.  The focused example is an 

important approach for understanding how each model responds to a specific situation.  

The summary performance statistics are also important because the simulation represents  
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a complex blend of stochastic processes (i.e., vehicle motion, COTM fade, packet 

generation bursts, symbol errors, etc.) and a single sample cannot confidently represent 

the long-term performance. 

a. Example 1: Nominal Performance 

In the Model 1 discussion of Section 1, Figure 53 presents a single 

mobile’s buffer utilization Iteration 3 of 20 for the combined mobile packet generation 

rate of 62.5 pps.  Figure 59 shows an update of the same example when operating under 

the Neighbor protocol.  It is immediately apparent that performance has changed 

dramatically.  The supporting visibility vector shows that the COTM channel experiences 

the same fades as before, but they no longer cause the uplink or downlink queues to grow 

in size.  In fact, the uplink queue never gets above 50 active packets present at one time.  

Instead, those packets are transferred to the ad-hoc mobile queue which transmits them to 

a neighbor for surrogate transmission.  Likewise, the downlink packets are received by a 

neighbor and transferred on the ad-hoc network. 

For this example, the mobile experiences six COTM channel fades within 

400,000 time steps (51.2 seconds). The start time, finish time, and duration are 

summarized in Table 22.  The first and longest COTM fade lasts for approximately 

75,000 time steps or 9.6 seconds.  Figure 53 shows that when Model 1 experiences this 

situation, the active uplink and downlink queues grow substantially in size, while the 

active ad-hoc queue shows no noticeable change in activity.  Model 2 has a completely 

different reaction to the 9.6 second fade.  Instead of monotonically growing to 697 or 665 

active packets, the active uplink and downlink queues experience a relatively minor 

change in activity and never grow beyond 87 and 55 packets, respectively.  The 

uplink/downlink pending queues also have a different response to the situation with more 

erratic behavior reflecting the fluctuating receipt of acknowledgements.   
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Figure 59.   (a) Buffer utilization and (b) mobile visibility state for Model 2, packet 
rate = 0.008, Iteration 3.  (visibility state: fade = 1, connection = 0). 

 

The relatively subdued response of the four COTM queues is a direct 

result of the Neighbor protocol.  The active COTM packets are no longer waiting in the 

mobile’s uplink queue or being lost on a blocked downlink.  Instead, uplink packets are 

being transferred to a neighbor and being sent to the satellite.  Downlink packets are 
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being collected by a neighbor and transferred to the destination mobile via the ad-hoc 

network.  While these changes certainly provide the COTM buffers with milder fade 

impacts and reduced packet service times, the changes are not without a cost.  In Figure 

53, the ad-hoc queues are handling the local area packet traffic with ease, rarely building 

a packet queue of even 15 active packets.  In Model 2’s response, the 9.6 second fade has 

a noticeable impact on the mobile’s active and pending ad-hoc buffers.  Instead of 

hovering below 15 active packets, the active and pending ad-hoc queues climb and drop 

erratically with maximums of 198 and 281 packets, respectively.  These larger queues 

reflect an increase in packet service time for the ad-hoc network which is discussed 

further in the summary statistics. 

b. Comparison of Summary Statistics 

While comparison of specific examples is helpful for understanding the 

details and mechanics of the two models, the overall performance comparison needs to be 

more broadly based on statistical results for these multi-dimensional stochastic processes.  

Figures 60 through 62 compare the network performance of both models using the same 

visibility, packet generation, and vehicle location vectors.  The only remaining stochastic 

activity that is different between the two implementations is the computation of 

individual symbol errors (Bernoulli trial).  The results are presented as functions of 

combined packet generation rate, ad-hoc and COTM, for an individual mobile.  As 

discussed in Section B, packet generation is weighted 60% COTM channel and 40% local 

destination. 

Figure 60 compares packet latency between the two models for ad-hoc, 

uplink and downlink packets.  The uplink and downlink packets are kept separate to 

investigate any significant variations in performance due to the path delay.  The results 

show significant reductions in COTM packet latency, especially for the the lower two 

packet rates.  The average improvement is much smaller for 78.125 pps and the variance 

is larger.  This is a result of the ad-hoc network occasionally running close to its 

congestion point and falling behind on packet processing.  Sometimes it takes a packet 



 
 

152

just as long to navigate the ad-hoc network as to wait for the next LOS connection.  As 

expected, improvements in COTM latency are not without a cost.  The ad-hoc packet 

latency is consistently higher for Model 2 than for Model 1.  The exceptionally large 

latency and variance for 78.125 pps shift the scale to make the smaller impacts difficult to 

read.  The Model 2 results show an increase in ad-hoc packet latency of 123%, 112% and 

9050%, for 46.875, 62.5 and 78.125 pps, respectively.  Even though 123% and 112% 

seem large as percentages, the latencies are still very small (a maximum of 0.22 seconds) 

and are not unacceptable to local area network performance.  It is certainly a reasonable 

trade for the significant improvements in COTM packet latency. 
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Figure 60.   Comparison of packet latency between Models 1 and 2 for (a) ad-hoc 

network, (b) uplink channel, and (c) downlink channel  (mean and 95% 
confidence interval). 
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Ignoring the congested performance at the highest packet rate, the minimum COTM 

latency savings is a 76% reduction in packet transmittal and acknowledgement.  This 

represents a drop from 1.17 to 0.28 seconds. 

The next area of performance comparison is network throughput.  Figure 

61 shows the statistical performance for each model and packet rate.  The COTM channel 

and ad-hoc network are shown separately.  This performance parameter experienced 

similar changes to those seen with packet latency.  For the lower two packet rates, COTM 

channel throughput improved 2.6 - 3.7%, while the ad-hoc network throughput dropped 

0.0 - 7.2%.  The improvements are smaller for throughput than latency because 

throughput is constrained by the number of packets generated.  Using the number of 

packets generated as an ideal, we see that the Model 2 results are within 0.1% of ideal.  

The highest packet rate did not provide any improvements in performance but instead 

struggled with congestion problems that hampered both networks. 
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Figure 61.   Comparison of throughput between Models 1 and 2 for ad-hoc network 

and  combined COTM channel  (mean and 95% confidence interval). 
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Table 25.   Model 1 vs. Model 2: Relative mean performance (Boston)1. 

Total packet 
rate (pps) 

COTM latency MANET 
latency 

COTM 
throughput 

MANET 
throughput 

46.875 −78% +123% +3% 0% 
62. 5 −76% +112% +4% −4% 
78.125 −26% +9050% +3% −17% 
1 Note: green text = improvement, red text = degradation. 
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Figure 62.   Comparison of packet success ratios between Models 1 and 2 for (a) ad-

hoc network, (b) uplink channel, and (c) downlink channel  (mean and 95% 
confidence interval). 
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E. “NEW YORK” RESULTS 

One of the most significant factors impacting network performance is the density 

of the urban environment, where density refers to the long term ratio of time spent in 

connection to time spent in fade.  In Section D, we presented results for a low-to-

moderately dense urban environment that was intended to represent Boston, MA.  It is 

also important to understand how the baseline and Neighbor protocols perform in a 

denser urban environment.  To represent this increased urban density, we reversed the 

Markov visibility chain transition parameters aii as shown in Table 19.  Where Boston 

had an average connection duration of 4.2 seconds and an average fade duration of 2.0 

seconds, the New York model averages 4.2 second fades and 2.0 second connections.  

Absent any supporting empirical data, we suggest that these visibility statistics are above 

average and represent a dense urban environment similar to New York City. 

It is important to note that the packet generation rates analyzed for Boston were 

too aggressive for this type of urban environment.  The simulations showed unavoidable 

network congestion and overflowing buffers with a significant number of packet 

overwrites.  For the New York analysis, we analyzed packet generation rates of 7.8125, 

15.625, 31.25 and 46.875 pps.  These packet generation rates convert to 0.001, 0.002, 

0.004 and 0.006 packets per simulation time step, respectively. 

The performance results for round-trip packet latency and throughput are shown 

in Figures 63 and 64, respectively.  Table 26 provides a numerical version for easier 

reading.  While in general the results follow the same trends as seen in the Boston 

analysis, the New York results are even more impressive for the Neighbor protocol. 

As the mean fade duration grows, the Neighbor protocol shifts more and more 

traffic to the ad-hoc network, and the ad-hoc network becomes congested sooner.  At the 

highest combined packet generation rate of 46.875 pps, 18.75 pps have local destinations 

and are transported on the ad-hoc network in either model.  In Model 2, the mobiles are 

blocked approximately 66.6% of the time, so we can estimate that at least 18.75 of the 

28.125 COTM packets being generated each second are being shifted onto the ad-hoc 
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network as well.  This does not include any packets that are regenerated during a COTM 

fade or waiting in the uplink queue at the time of fade entry.  The combination of 18.75 

ad-hoc packets and 18.75 COTM packets per second puts the ad-hoc network traffic at a 

minimum of 37.5 pps per mobile, which is approaching the congestion range.   
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Figure 63.   Comparison of packet latency between Models 1 and 2 for (a) ad-hoc 

network, (b) uplink channel, and (c) downlink channel  (mean and 95% 
confidence interval). 
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Table 26.   Model 1 vs. Model 2: Relative mean performance (New York City)1. 

Total packet 
rate (pps) 

COTM latency MANET 
latency 

COTM 
throughput 

MANET 
throughput 

7.8125 −86% −68% +8% 0% 
15.625 −82% +845% +9% −2% 
31.25 −71% +4148% +7% −14% 
46.875 −46% +12823% +2% −37% 

1 Note: green text = improvement, red text = degradation 
 
 

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

packet generation rate (packets/sec)

Th
ro

ug
hp

ut
 (K

sp
s)

 

 
Model 1 AdHoc
Model 2 AdHoc
Model 1 COTM
Model 2 COTM

 
Figure 64.   Comparison of throughput between Models 1 and 2 for ad-hoc network 

and  combined COTM channel  (mean and 95% confidence interval). 

 

F. CHAPTER IV SUMMARY 

The Neighbor protocol clearly and consistently provides substantial 

improvements in urban COTM channel performance up until the point that the ad-hoc 

channel becomes congested.  For the specific network implementation investigated, the 
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MANET congestion starts to occur with increasing frequency as the packet generation 

rates exceed 35 to 40 kbps depending on node topography.  These packets can be 

internally generated with local destinations or they can be transients rerouted by the 

Neighbor protocol.  In those situations that the ad-hoc network has remaining throughput 

capacity available, the Neighbor protocol brings COTM packet latency within acceptable 

limits and mitigates the problematic impacts of long-term deep signal fades.  The 

Neighbor protocol achieves success at reaching the second research goal of mitigating the 

impacts of the urban fade on network performance.  The next chapter summarizes the 

conclusions of this dissertation and suggests ideas for follow-on research in the area of 

modeling urban COTM channels. 
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V. CONCLUSION AND RECOMMENDATIONS FOR FUTURE 
WORK 

A. CONCLUSION 

Robust and rapid communication has always been important to the success of 

military activities.  This importance and recent technological advancements are driving 

the military to expend a significant amount of resources on developing an improved 

communications infrastructure for the next decade.  The DoD’s broad goal of robust and 

rapid communication includes a specific interest in maintaining real-time, high data rate 

communications with the individual vehicle or soldier while they are in motion.  To 

achieve this facet of a future communications architecture, the military has already 

invested a significant amount of effort to understand and exploit the land mobile satellite 

channel.  The military’s initial research into the LMSC found the urban environment to 

be the most challenging due to frequent long duration signal fades caused by urban 

structures.  The research presented in this dissertation is focused on extending our 

understanding and improving our exploitation of the LMSC.  These goals are 

accomplished by building an improved channel model and developing mitigation 

strategies that improve channel throughput and latency.  

The research presented in this dissertation includes two original and valuable 

contributions to the field of land mobile satellite channel modeling.  The first contribution 

is an extension of previous efforts to model the urban communications-on-the-move 

channel using a hidden Markov model.  By increasing model complexity and replacing 

the discrete transmission HMM with a continuous transmission HMM, the model 

provides a better match to test data.  As a secondary benefit, the improved model also 

accurately models urban COTM signal strength as a function of time.  Combining this 

research with previous efforts, we propose a general COTM (LMSC) channel model that 

has three intrastate HMMs embedded within a larger interstate HMM, where the states  
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are the open, rural, and urban environments (see Figure 65).  Based on this concept, the 

urban continuous transmission COTM HMM becomes an embedded output transmission 

function inside the urban state.   
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Figure 65.   General COTM channel model for all environments 

 

The second important contribution of this research effort is a time-based 

simulation that implements the Neighbor protocol as a mitigation for the urban 

environment’s performance impacts.  The Neighbor protocol mitigates the impacts of an 

urban environment by exploiting additional paths through a parallel mobile ad-hoc 

network and circumventing signal fades.  Results show that the Neighbor protocol clearly 

and consistently provides substantial improvements in urban COTM channel 

performance up until the point that the ad-hoc channel becomes congested.  The 
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Neighbor protocol is especially effective for TDMA-based SATCOM channel designs 

because neighbors are not required to sacrifice their own uplink or downlink activity. 

The computer-based simulation is also a valuable tool in its own right.  It provides 

a low cost means for estimating the performance of a complex network scenario with 

multiple nodes moving in an urban environment.  The simulation offers a means to 

explore both COTM channel and ad-hoc network performance while varying key input 

parameters which can provide insight into additional performance dependencies. With 

minor modifications, the simulation could also be used to explore new mitigation 

strategies.  

Fade prediction is another possible approach to mitigating the urban COTM 

channel fade impact.  Efforts to successfully predict channel fades with adaptive linear 

filters were hampered by low temporal resolution in the empirical test data.  Appendix A 

provides a discussion of this approach, the performance to date and offers suggestions for 

future work on fade prediction. 

B. RECOMMENDATIONS FOR FUTURE WORK 

Chapters II – V contain several suggestions for future work on these topics.  A 

consolidated list of the most important suggestions is repeated in this section. 

1. Empirical Data Collection 

As mentioned in Chapter II, this research area could be improved with more 

diverse and higher resolution empirical data that includes a range of cities and multiple 

routes through those cities.    

The increased diversity provided by multiple routes and multiple cities would be 

beneficial in two ways.  First, the TCA system design could more accurately develop 

performance expectations and critique mitigation strategies.  Second, this type of 

empirical data set would be useful for expanding or improving the effort to develop a  
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stochastic (e.g., Markov) model.  Chapter IV presents results for a fictitious city labeled 

“New York”, but we do not really know what the appropriate model parameters are for 

the real New York city. 

As mentioned in Chapter V, increased resolution is crucial to improving the 

performance of a linear prediction filter.  As the temporal resolution of the data improves, 

the ULMSC fade transitions will become less abrupt and provide some concrete 

performance data on how much of an early warning diffracted energy would provide. 

2. Network Modeling and Simulation 

a. Inclusion of Packet Execution Processes 

As discussed in [5], packet execution processes (i.e., mux/demux, 

interleaving, encoding, and encryption), are significant in today’s communications 

systems.  Modifying the simulation to include delays for supporting packet execution 

processes will increase the accuracy of the performance estimates. 

b.  Network Performance against Jamming 

The GIG and TCA are military systems that are expected to face jamming 

attempts by hostile forces.  It is important to understand the performance of the COTM 

link, the MANET and the Neighbor protocol in this situation.  If the simulation were 

modified to include hostile interference, it could be used to investigate network response 

and performance to local area jamming. 

c. Adaptive Links 

Since TSAT is planning to implement an adaptive link margin protocol, 

model improvements to include an adaptive link margin protocol could be useful.  The 

adaptive protocol might manipulate code rate, signal power, data rate or some 

combination of all these parameters.  This simulation improvement would be most 

appropriate when coupled with the narrow-band interference or hostile jamming. 
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d. Full-duplex  Ad-hoc Communication Systems 

The results presented in Chapter IV show that the success of the Neighbor 

protocol is influenced by the capacity of the supporting MANET.  The current simulation 

allows for changes to instantaneous data rates, time-out thresholds, and FEC 

performance.  Modification of the simulation to include a full-duplex MANET would 

provide additional performance estimates and support resource decisions made by the 

system design team.  

e. Perfect vs .Realistic Wide Information 

Currently, Model 2 assumes perfect side information regarding a 

neighboring mobile’s COTM link state (fade/connection) and buffer utilization.  Removal 

of these assumptions and modeling a delayed administrative network responsibility to 

spread this information would provide an estimate of the impact of the additional 

overhead.  More importantly, this modification could also identify a drop in network 

performance due to the protocol making decisions with old information. 

f. Modifications to the Ad-Hoc Forwarding/Routing Protocol 

As mentioned in Chapter III, the simulation implements an ad-hoc 

forwarding/routing protocol of low-to-moderate complexity.  Many authors have 

explored additional modifications, complexities and improvements to ad-hoc routing 

protocols.  Some suggestions focused on the LRR metric are presented below.   

In [55, 56], the authors introduce the idea of routing based on packet type 

where the examples are voice packets and data packets.  Voice and data packets are 

merely two examples that help illustrate realistic variations in network performance 

requirements.  While voice packets cannot tolerate much delay, they can tolerate some 

erasures and errors.  On the other hand, data packets have more stringent error 

requirements but may allow for a moderate delay in the transfer.  The LRR metric 

equation presented in Chapter III is repeated here with additional subscripts of v or d for 

voice or data respectively: 
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 ( ), ( , ) ( ),d d d d dLRR A B I A B W Bα β= +  (5.1) 

 ( ), ( , ) ( ).v v v v vLRR A B I A B W Bα β= +  (5.2) 

Each of the two resistance terms has a weighting coefficient (α, β) that allows the metric 

to be tailored to packet specific requirements.  The d subscript denotes a metric 

specifically for data packets.  For a protocol that delineates between packet types, a 

separate routing table needs to be maintained for each type of packet.  In the case of voice 

packets and data packets, each node would need to maintain two Routing tables; one 

focused on minimizing delay and the other on minimizing errors.  This emphasis can be 

accomplished by setting the weighting coefficients appropriately.  Because data packets 

have more stringent symbol error requirements, the forwarding protocol for data packets 

would have a larger weight applied to the link-dependent resistance ( )d dα β> .  

Similarly, voice packets would have more emphasis on speed and would need to 

emphasize node-dependent resistance. ( )d dβ α> . 

In [58], the authors continue to evolve the forwarding/routing protocol 

with an additional weighting based on energy expenditure associated with a path.  The 

suggested energy expenditure cost function is simply a ratio of transmit power to 

minimum transmit power and an inverse ratio of code rate to maximum code rate.  This 

evolution of the LRR routing protocol is only useful for a network that employs adaptive 

transmission.  With the increasing popularity of adaptive communication channels, this 

type of improvement is worth more exploration.  

In [59], the authors modify the LRR metric formulation to include an 

additive constant c that simply increases resistance associated with extra stops along the 

path.  This is a simple method for deemphasizing paths that include extra stops. 

As currently simulated, the MANET forwarding protocol only compares 

paths with zero or one intermediary stop.  If the maximum distance between mobiles 

grows, it may become necessary to modify the protocol to consider paths with two 

intermediary stops.  
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g. Improved Modeling of Forward Error Correction 

As discussed in Chapter III, the current MANET simulation only models a 

rough FEC process that checks a ratio of bit errors to total packet size.  A higher-fidelity 

FEC approach will increase the accuracy of the model’s performance estimates and could 

support investigations comparing different FEC implementations (i.e., convolutional 

codes vs. block codes, different code rates, etc.). 
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APPENDIX A: PREDICTION-BASED SOLUTIONS TO THE 
URBAN COTM SIGNAL FADE 

Another area of investigation into possible mitigations of the urban LMSC fade 

problem is fade prediction.  This solution is inherently different and essentially unrelated 

to the Neighbor routing protocol introduced in Chapter III.  The Neighbor protocol is a 

reactive mitigation strategy that circumvents link outages by routing traffic through an 

alternate path, and outage prediction is not as important or helpful.  Without the Neighbor 

protocol, outage prediction could have a substantial impact on individual satellite link  

performance by avoiding transmission when successful transfer is unlikely or not 

possible.  Instead, packet transmission could be timed to increase the probability of 

successful transfer and acknowledgement.  Another approach would be for the mobile to 

predict an outage and notify the satellite before entering the shadow condition.  If the 

satellite can be provided an approximate time of outage, it could also identify probable 

lost packets and prepare to retransmit them.  If possible, ideal prediction would provide 

maximum system throughput for a single link.  Two key benefits of a prediction-based 

solution are lack of dependence on nearby neighbors and a lack of impact on local ad-hoc 

network performance. 

Terrestrial-to-satellite channel prediction is not a new area of investigation [8, 9].  

In [9], Choi and Chan use a 2nd order Autoregressive (AR) prediction filter to predict the 

channel attenuation due to scintillation and rain.  The results are very promising for 

predicting one to three seconds into the future with prediction error variances less than 1 

dB.  We do not expect similar performance in applying this approach to the Urban 

COTM channel prediction.  The variations in signal strength are substantially larger and 

much more abrupt.  It is interesting to note that the prediction filter in [9] does tend to lag 

behind the actual instantaneous channel attenuation but not enough to impact the value of 

the overall approach.  Unlike the urban building fade, atmospheric scintillation and rain 

are relatively slow-varying, well-behaved log-normal stochastic processes.  In [8], 

Satorius and Ye go even farther.  In addition to scintillation, they also examine channels 
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with multipath fading that can vary in signal strength by up to 30 dB.  The signal strength 

transitions are not as abrupt as the COTM building fades but are certainly closer than the 

investigation found in [9].  To handle the more complex channel, Satorius and Ye 

implement a more complex predictor based on Subspace methods (i.e., MUSIC, ESPRIT) 

and reduce the predict-ahead time to 0.28 seconds.  Satorius and Ye find prediction 

performance to be acceptable [8].  Neither of these works includes the use of a highly-

directional antenna like that planned for the future TCA or the resulting urban building 

fade phenomenon.  

We have investigated two approaches towards implementing a prediction-based 

solution.  The first is discussed in Section A and focuses on using signal strength as 

measured by the high-gain SATCOM antenna discussed in Chapters I and II.  The second 

approach is discussed in Section B and investigates the idea of using multi-path signal 

energy collected by an omni-directional antenna.  It is important to note that initial 

investigations into prediction-based solutions are not promising, and these areas were not 

pursued to completion. 

A. SIGNAL FADE PREDICTION WITHOUT MULTI-PATH 

The most straightforward approach to predicting signal outages on the COTM 

link is to analyze the signal strength received by the COTM antenna and attempt to 

predict future signal strength.   

For the direct prediction of LOS signal fade using the LOS signal itself, we used 

the empirical data presented and discussed in Chapter II.  The initial goal is to predict one 

time step into the future.  Because the empirical data was collected at a rate of 10 Hz, this 

one step prediction equates to 0.1 seconds, which is noticeably shorter than investigated 

by [8] and [9].  Multiple approaches were investigated including post-processing with 

autoregressive (AR) filters and real-time processing with linear adaptive filters.  Each 

approach is discussed in more detail below. 

An important facet of the prediction investigation is determining whether the 

prediction will be performed at the mobile or at the satellite.  We again see that the path 
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delay makes the situation very different for each approach.  The more valuable location 

for an accurate prediction process is at the satellite.  The satellite is the node that will 

incorrectly transmit packets when the mobile will be blocked ~0.125 seconds in the 

future.  While that kind of prediction would certainly be very valuable, it is also highly 

unlikely due to the long prediction time needed.  The other option is for each mobile to 

predict its own link outages.  As mentioned above, this could lead to a notification or 

warning message being sent to the satellite before a fade.  The satellite could use that 

notification to delay transmittal and determine if any sent packets would need 

retransmission. 

1. Autoregressive (AR) Filters: Post-Processing  

Post-processing is not, in itself, a useful solution to this problem.  If the satellite 

or a mobile is going to predict future signal strength, it is only relevant if it can be 

accomplished real-time and utilized as part of the routing protocol.  But a post-processing 

solution can still be useful as a possible baseline for comparison.  The empirical data 

presented in Chapter II was used to optimize AR prediction filters of varying filter length 

through application of the covariance and modified covariance methods [63].  Unlike the 

adaptive filters, a longer filter length does provide some small amount of improved 

performance.  Figure 66 shows the prediction error variance 2
eσ  as a function of filter 

order for both methods.  The first approach is the covariance method which relies solely 

on the forward prediction error and only moves the filter through the data in the direction 

of time advancing.  This provides a prediction error variance of  

 2 ,
f

e
S
N

σ =  (5.3) 

where  fS is the sum of the forward prediction errors squared, and 
 N  is the size of the data set. 

The modified covariance method is only slightly different in that it moves the filter 

through the data in both the forward and backward directions.  The only impact to 

computing the prediction error variance is the replacement of the forward prediction 

errors squared fS  with the forward and backward prediction errors squared fbS . 
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Figure 66.   Theoretical prediction error variance as a function of filter order P using 

either the covariance or modified covariance methods. 

 

The y-axis scale is stretched out to more clearly show the error decreasing with 

filter order but the rate of descent is very slow and appears to be approaching an 

asymptotic limit.  It is not surprising that the modified covariance method provides a 

small improvement in performance.  Because the modified covariance method minimizes 

the forward and backward prediction error, it essentially doubles the data set and is 

expected to provide better performance [63].  The benefits are quite small, however, and 

even at P = 150, the benefit is only ~0.1 dB.  The actual signal strength compared to the 

predicted signal strength as a function of time is shown in Figure 67.  The filter 

prediction output appears to lag and undershoot the true signal strength.  The undershoot 

is not really important if we are only using the filter to predict a channel fade, but the 

time delay is problematic for this particular application.  

Ultimately, the results of this approach are disappointing.  The prediction error 

variance is very large compared to the actual signal and substantially larger than the 

results achieved against other channel fade problems (e.g., weather, scintillation, 
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multipath) [8, 9].  More importantly, the prediction of deep urban fades lags behind the 

actual event and does not provide timely side information to the protocol. 
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Figure 67.   Input data vs. filter prediction for two separate time windows (P = 100). 

2. Real-time Prediction Using Adaptive Filters 

Each of the next three attempts to accurately predict the LOS signal are based on 

linear prediction by use of linear adaptive filters.  They include Normalized Least Mean 

Squares (NLMS), Gradient Adaptive Lattice Ladder (GAL2), and Recursive Least 

Squares (RLS).  
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a. Normalized Least Mean Squares 

The first adaptive linear prediction filter attempted was the NLMS.  A 

short sample of the filter output, for a filter of length P = 5, is found in Figure 68.  It is 

plotted along with the empirical data and resulting error for direct comparison.  Unlike 

the AR filter discussed previously, the NLMS performance improved as the filter order 

decreased.  Like the other filters discussed in this chapter, the filter output lags the actual 

data.  A small investigation into other filter lengths showed that the lag grew with filter 

order.  Of special interest are the three state transitions (connection to fade) that occur in 

this small window at t = 120.6, 125.7, and 129.3 seconds.  The fifth order NLMS also 

predicts state transitions, but not until t = 120.8, 125.9 and 129.4 seconds, respectively.  

Since the mobile has already entered the fade state by that point, the filter does not 

provide any benefit.  This adaptive filter implementation does have less overshoot than 

the GAL (see Section b.) and actually seems to have a smoothing effect on the signal.  

The error variance is noticeably larger than that of the AR filter discussed earlier.  The 

fifth order NLMS had a 2
eσ  of ~ 41 dB. 
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Figure 68.   Output of NLMS prediction filter compared to truth.  The difference is 

presented as error vs. time. 

 

b. Gradient Adaptive Lattice Ladder 

The results for the GAL2 filter are shown in Figures 69 and 70.  The filter 

performance as a function of filter order P and forgetting factor βGAL is shown in Figure 

69.  A simple parametric study shows that the optimal βGAL is between 0.7 and 0.8.  

Obviously, as the filter gets smaller, the importance of the forgetting factor is reduced 

since there are fewer stages in the filter and, therefore, fewer past data points to be 

considered.  It is also obvious that the filter order has a large impact on performance, 

especially at non-optimal values for βGAL.  As the filter gets longer, it has more memory 

of past values, which for this situation is harmful to performance.  When the signal 
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strength plummets from a strong connection to a deep fade, a large filter (e.g., P = 10) 

takes several time steps to clear its memory of the high signal strength.  Meanwhile, those 

high signal strength values continue to hamper the filter’s ability to predict the low signal 

strength state. 

The prediction error performance of the GAL2 filter is noticeably worse 

than the AR or the NLMS.  For a five stage GAL2, the prediction error variance is near 60 

dB. 
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Figure 69.   Filter performance 2

eσ  as a function of filter order P and forgetting factor 
βGAL. 

 

The predicted signal strength is compared to the actual data in Figure 70.  

The forgetting factor βGAL is set to a favorable value of 0.8 and filter order is set to P = 5.  

While a shorter filter would perform slightly better, this allows better comparison with 

the NLMS and AR filters already presented.  Two major results are apparent.  The first, 

unexpected result is that the filter lags behind a precipitous change in signal strength  
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(e.g., connection/fade state change) and filter memory prevents accurate prediction.  The 

second result is a strong tendency to significantly overshoot those same precipitous 

changes, again caused by filter memory. 

 

 
Figure 70.   Input data vs. filter prediction (P = 5, βGAL = 0.8). 

 

c. Recursive Least Squares 

The recursive least squares (RLS) filter has both the best and worst 

performance of any prediction method investigated.  A 16 second comparison of filter 

output to the true signal strength for a filter of length P = 5 is shown in Figure 71.  This 

particular snapshot was selected because it included two connection-to-fade state 

transitions and two fade-to-connection state transitions.  The RLS approach performed 

the best with respect to occasionally predicting state transitions before the event occurred.  

Unfortunately, it also frequently predicts state transitions that do not actually occur.  An 

example of this behavior can be found at t = 125.5 seconds.  The RLS filter predicts a 
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transition to the fade state, but at t = 125.8 seconds, it also predicts an erroneous 

transition back to the connection state.  Another example of this behavior can also be 

seen at t = 130.8 – 131.5 seconds.  Separate from the ability to predict state transitions, 

the RLS filter has extremely poor performance at generally predicting signal strength 

with a prediction error variance 2
eσ  of over 700 dB.  This is over an order-of-magnitude 

worse than any of the other filter options. 
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Figure 71.   Output of RLS filter compared with actual signal strength (P = 5). 

 

3. Summary 

In the end, none of the adaptive prediction methods provided satisfactory 

performance for this particular application.  Even the best mean squared error, from 

NLMS, was substantially larger than those errors seen in [8] and [9].  The second and 

more important problem was the inability to predict a state transition before it happened.  
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In [8] and [9], the authors experience a small lag in the prediction as compared to the 

actual channel performance, but for the channels and applications investigated, that lag 

was acceptable.  For the application considered here, it is crucial that the predictor 

accurately foresee a state change before it occurs.  

Poor prediction performance is not surprising.  As mentioned earlier in this work, 

the empirical data was collected at a coarse temporal resolution of 10 Hz.  The urban 

signal fade due to building blockage is a very abrupt process, but is made even more so 

with the low resolution data.  As introduced in Chapter II, the data set is fairly well 

approximated as a Markovian chain.  This relationship implies difficult prediction 

because a true Markovian process is inherently unpredictable due to its memoryless 

nature [27].  As the signal strength becomes more Markovian, it becomes harder to 

accurately predict.  One solution to reducing the Markovian nature of the data set is to 

collect it at a higher frequency.  Another possibility is to generate data at a higher 

temporal or spatial resolution with a model.  This concept is explored more in the next 

section.  Additional recommendations are provided in the Appendix A conclusion. 

B. SIGNAL FADE PREDICTION WITH MULTI-PATH 

Section A showed that direct prediction of the signal strength using only the LOS 

signal to be difficult with linear prediction filters.  A major factor in this difficultly was 

the abrupt and precipitous nature of the change is signal strength associated with a 

connection/fade state transition.  A possible mitigation to that aspect of the problem is to 

collect both LOS and multipath energy.  The multipath energy does not change as 

abruptly and may provide some performance improvements.  For this approach to be 

possible, the mobile user may need to employ an omni-directional antenna in addition to 

the highly directional COTM antenna discussed in Chapter I.  If the mobile user is part of 

a local area ad-hoc network, then it will probably already have something approximating 

an omni-directional antenna. 

Ray trace scatter modeling (RTSM) is a theoretical approach to analyzing this 

mitigation strategy.  It is primarily based on the geometric optics theories of scattering, 



 
 

178

reflection and diffraction.  These theories are applicable for high frequency radio waves, 

especially when the scattering objects are significantly larger than a wavelength.  This 

theoretical approach is important because it provides a deeper understanding of the 

problem and can fill in some missing information regarding variations in signal strength 

just before or after a deep fade.  An introduction to the supporting theories of RTSM (i.e., 

geometric optics, diffraction) can be found in references [64, 65].  There are commercial 

software applications available that compute ray trace scattering.  Urbana by Science 

Applications International Corporation (SAIC) is an example from the 1980s, but it 

unfortunately requires the transmitter and receiver to be much closer together than a 

mobile-to-satellite link can accommodate. 

The empirical data discussed in Chapter II was collected at a rate of 10 Hz.  As 

mentioned in Chapter II, at this rate the signal strength appears to have nearly instant 

state transitions between connections and fades.  In many cases, the signal strength 

changes by 20 to 40 dB in a single time step.  Other authors who have investigated the 

urban communications channel have collected test data at higher resolution [66, 67, 68].  

While these references do not specifically discuss the Markovian or non-Markovian 

nature of the signal strength, they do provide general discussions that suggest less abrupt 

transitions in signal power.  Based on the results presented in these articles, we propose 

that additional information may be available at higher resolutions and may be useful in 

fade prediction.  While the best way to explore this possibility would be a repeat of the 

2002 MOTM/COTM tests [5] with data collection rates over 100 Hz, a reasonable 

estimate can be acquired through RTSM.   

To start this investigation, we developed a basic model that illustrated the first 

order impacts of passing from one building shadow to a connection state and back to 

another building shadow.  The implementation approach of this model is discussed in the 

next section.  Future work could involve a more complex model incorporating additional 

structures, especially behind the mobile, and modeling additional scattering.   
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1. Two-building Model 

a. Model Introduction and Background 

The purpose of this model was to focus closely on the two state transitions 

experienced by the urban communications link:  1) connection to deep fade and 2) deep 

fade to connection.  A physical interpretation of the model is shown in Figure 72.  The 

results were collected for small but equal steps in spatial coordinates.  The results also 

reflect a constant time step if the mobile receiver has a constant velocity.  As shown in 

the figure, the mobile receiver is in motion down the negative x-axis.  Only two buildings 

are modeled for this focused analysis.  The basic assumption of this model is that all 

urban areas have gaps of visibility to the satellite.  The important moments in time are the 

transition from building shadow into visibility and then back into building shadow.  From 

the definitions presented in Appendix B, these transitions involve the vehicle crossing the 

incident field shadow boundary.  Building size and separation primarily effect the 

duration of connection or deep fade but are not expected to have a significant impact on 

the transitions themselves.  In a general sense, the signal strength is cyclic going from 

connection to deep fade and back again.  A model with two buildings provides one 

complete cycle in signal strength.  Additional buildings would provide additional cycles 

in signal strength without adding any new information.   
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Figure 72.   Overview of Two-building RTSM. 

 

While building size and location does not have a significant impact on the 

transition from connection to fade, building shape and orientation may.  Geometric optics 

theory is heavily influenced by the surface angle of the scattering object relative to the 

receiver.  The surface orientation determines the direction of energy reflection and edge 

orientation determines the direction of energy diffraction.  This specific model assumes 

that the buildings are in the traditional box-like shape with all right angles.  It is also 

assumed that the building fronts are parallel to the vehicle motion as if the vehicle is 

driving down a city street.  Additional building shapes and orientations are left for future 

work. 

The goal of the simulation is to determine the amount of signal energy 

collected by the mobile antenna relative to the incident energy from the satellite.  The 

simulation was completed for two different receive antennas:  1) omni-directional and 2) 

highly directive.  The omni-directional antenna is modeled as an ideal isotropic antenna 

with no variation in antenna pattern.  This provides a first order approximation of a dipole 
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or similar antenna that has a uniform pattern in azimuth.  A dipole antenna does have 

significant pattern variation in elevation but that does not play a significant role in this 

problem.  As the antenna moves along the x-axis, the direction of incoming energy 

changes primarily in azimuth.  The highly directive antenna is modeled as a circular 

aperture but is a reasonable approximation for a parabolic reflector antenna.   

The satellite has been arbitrarily located at (x, y, z) = (−3x107, 8x107, 

7x107) m.  In reality, the location of the satellite relative to the mobile receiver is highly 

variable depending of the latitude, longitude and altitude of the mobile receiver and the 

longitude of the TSAT satellite in the geosynchronous belt.  The arbitrary selection of the 

satellite location places the satellite at 45 degrees of elevation relative to the mobile 

receiver.  Since the results are normalized to the LOS signal strength, the satellite’s range 

along this vector has no impact on results.  While the satellite’s relative location has some 

impact on the general trends seen in the transition across an incident field boundary, they 

are fairly minor compared to the impacts on connection and fade duration.  For the 

situation shown in Figure 72, the connection times are maximized if the satellite is 

located somewhere along the y-axis.  The visibility window between building shadows is 

ten meters, but as the satellite shifts in either direction, the building shadows get wider 

and the visibility gap gets smaller.  At some angle the visibility gap drops to zero, and the 

receiver only has reflected or diffracted energy available.  For this specific model, the 

visibility gap disappears at an angle of 45 degrees off the y-axis. 
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Figure 73.   Close-up of Building 1. 

 

Figures 73 and 74 show additional details regarding key model 

geometries.  When focused on Building 1 as the scattering object, the −x wall is the 

relevant reflecting surface and the (−x, −y) corner is the relevant diffracting edge.  While 

the (−x, +y) edge will also cause diffraction, the vehicle will only see this input after it 

has left the building’s shadow and is illuminated by incident energy.  The additional input 

from the (−x, +y) edge is negligible when compared to the incident field.  The mobile 

vehicle starts in region three which is the building’s shadow.  The only energy available 

during this portion of the route is diffracted energy.  When the mobile antenna reaches x 

= 11.87m, it passes through the incident field shadow boundary and the satellite becomes 

visible.  It is in region two for 3.74 m and then passes through the reflected field shadow 

boundary.  At this point, the mobile antenna is illuminated by diffracted, incident and 

reflected rays.  The angle of incidence φi is 20.5 degrees. 



 
 

183

 
Figure 74.   Close-up of Building 2. 

 

Likewise, we can treat Building 2 as the next scattering object.  The first 

significant difference is that Building 2 does not provide any reflected rays until the 

vehicle is past x = −11.87 m, which is well into the next connection state.  From the 

perspective of this building, the vehicle will pass from region two to region three crossing 

the incident field shadow boundary.  This is also the transition from the connection state 

to fade state.  For Building 2, the angle of incidence is 69.5 degrees measured from the 

southern wall.  If Building 2 were the only scattering object, the vehicle would start in 

region two (diffracted and incident energy) and transition to region three (diffracted 

energy) at x = 5.6 m.  When the two buildings are considered simultaneously, there is 

only one modification required:  Building 1 blocks the diffracted energy from Building 2 

until the vehicle reaches x = 15 m and has clear visibility of Building 2. 
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b. Results 

The results of the Two-building Model are shown in Figures 75 through 

77.  The first results are for a vehicle using an isotropic omni-directional antenna.  For 

this case, Figure 75 separates the contributions of the geometric optics field, consisting 

only of incident and reflected signal energy and the diffracted field.  These results assume 

that the buildings have an arbitrary reflection coefficient of 0.5.  As the reflection 

coefficient grows, the total field also grows from x = 0 to 6 m, where the collected energy 

is all reflected by Building 1.  The reflection coefficient also has an impact on the 

constructive / destructive interference  pattern from x = 6 to 8 m.  As the reflection 

coefficient grows, the constructive interference also grows to an ideal limit of twice the 

incident energy.  Likewise, the destructive interference decreases towards an ideal limit 

of zero (perfect cancellation). 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

distance of vehicle from origin (meters)

M
ag

ni
tu

de
 (n

or
m

al
iz

ed
 to

 in
ci

de
nt

 fi
el

d)

Diffracted field
Geometric Optics field

Constructive & Destructive
Interference of Incident and Reflected
Energy

 
Figure 75.   Separate geometric and diffracted fields as seen by an omni antenna 

(reflection coefficient = 0.5). 
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The diffracted field magnitude peaks at the incident field boundary with 

10% of the incident (e.g., LOS) field strength, or −10 dB.  The second incident field 

boundary, caused by Building 2, actually has a broader diffracted field.  Figure 76 

combines the incident, reflected and diffracted fields into a total electric field E which 

adds the constructive and destructive interference of the diffracted field to the geometric 

optics field. 
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Figure 76.   Total electric field as seen by an omni antenna (reflection coefficient = 

0.5). 

 

The most important facet to investigate is the transition from connection to 

fade that occurs near x ~ 6 m.  It would appear that for this particular geometry, the 

diffracted energy that might indicate a coming field boundary has been washed out by the 

incident and reflected energy.  If the vehicle changes direction and drives from x = 0 to x 

= 20 m along the +x axis, then the reflected energy is not a factor and the diffracted field 
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provides a small but noticeable indication that a field boundary is approaching.  Of 

course, this model does not include the various noise sources that are part of a real-world 

implementation.  Those noise sources can be as large or larger in magnitude than the 

diffracted field.  
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Figure 77.   Total electric field as seen by a highly directional antenna 

 

The second implementation of the Two-building Model replaced the 

mobile’s omnidirectional antenna with a highly directional one to better match the 

COTM antenna discussed in previous chapters.  Figure 77 presents the updated results for 

the total combined electric field magnitude.  The directional antenna pattern clearly has a 

large impact of the energy collected by the transceiver.  One impact is a large reduction 

in the collection of reflected energy which has a large angle off of antenna boresight.   
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The diffracted energy is still apparent but has smaller shoulders in the sense, that its 

magnitude is diminished as the mobile gets farther from the incident field boundary.  This 

is again due to the antenna pattern.   

The combination of these changes may surprisingly work in the favor of 

the highly directional antenna.  The loss of diffracted energy away from the incident field 

boundary is an important impact and may prevent the diffracted signal from being lost in 

noise.  On the other hand, the severe rejection of off axis energy could help reduce the 

input noise caused by multi-path energy and help the diffraction warning to stand out.   

c. Summary for Prediction with Multipath 

The Two-building Model represents a very idealized and limited 

investigation into the possibility of using diffracted energy as a warning of pending signal 

fade.  Initial conclusions show that diffracted energy does provide an increase in the 

mean signal energy available to the receiver as the mobile approaches the incident field 

boundary (which marks the beginning of the fade state).  The system noise floor and 

signal processing capabilities will determine how far before the fade the receiver is able 

to accurately detect the extra input energy.  It is interesting to note that the directional 

system may provide even better performance at fade prediction because it removes a 

significant amount of reflected energy and minimizes problems associated with multi-

path interference.  The Appendix A conclusion includes recommendations for future 

work. 

C. APPENDIX A CONCLUSIONS 

Initial attempts at LOS-only fade prediction have shown poor performance.  

These difficulties are related to the abrupt transitions of signal strength that appear in a 

low resolution input signal.  One possible mitigation to this problem is suggested by the 

“Two-building” ray trace scatter model, which suggests that prediction performance  
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APPENDIX B: MATLAB IMPLEMENTATION NOTES AND  
LESSONS LEARNED 

A. MATLAB IMPLEMENTATION 

The research results presented in the dissertation are primarily based on Matlab 

routines.  Central examples include the Baum-Welch parameter estimation found in 

Chapter II, the network simulations discussed in Chapters III and IV, and the linear 

prediction attempts presented in Appendix A. 

The relevant Matlab m-files are available to the interested reader by contacting 

the author at tagillespie@gmail.com or Dr. Clark Robertson, Naval Postgraduate School, 

ECE Dept., at CRobertson@nps.edu.  

B. LESSONS LEARNED 

1. Dynamic Memory 

For network simulation projects, it is important to understand that Matlab is not a 

compiled language and uses dynamic memory allocation.  The Mathworks website 

provides a straightforward explanation of the dynamic memory process: 

 “When you assign any type of data … to a variable, MATLAB allocates a 
contiguous block of memory and stores the array data in that block. It also stores 
information about the array data, such as its data type and dimensions, in a separate, 
small block of memory called a header. The variable that you assign this data to is 
actually a pointer to the data; it does not contain the data. 
 If you add new elements to an existing array, MATLAB expands the existing array 
in memory in a way that keeps its storage contiguous. This might require finding a new 
block of memory large enough to hold the expanded array, and then copying the contents 
of the array from its original location to the new block in memory, adding the new 
elements to the array in this block, and freeing up the original array location in memory. 
[69]” 

This aspect of Matlab is especially important in network simulation because of the 

frequent queue manipulations that are central to the process (i.e., adding or deleting 

packets in various queues).  The original version of the Model 1 simulation established a 
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matrix to represent each queue.  When a new packet was generated or received, the 

matrix size increased by one row.  When a packet was transferred or deleted, the top row 

of the matrix was deleted.  As explained by Mathworks, this approach is read and write 

intensive, which is slow, especially when the matrices are large.  The final (revised) 

version of the simulation is modified to preallocate memory for large matrices (e.g., 

queues).  The goal of memory preallocation is to keep the queue matrix fixed in size but 

allow the packet queue to grow or shrink depending on packet traffic.  To achieve this 

goal, an active queue is defined inside the fixed matrix where active is defined to include 

packets that have yet to be serviced.  The active queue is identified by establishing read 

and write pointers to represent the top and bottom of the queue, respectively.  The 

remainder of the fixed matrix contains inactive (already serviced) packets that can be 

ignored.  

The memory preallocation approach has both positive and negative impacts on the 

simulation.  One negative impact is the substantial increase in simulation complexity 

involved with manipulation of the pointers.  When a pointer reaches the bottom of the 

preallocated matrix, it needs to be cycled back to the top of the matrix.  This means that 

sometimes the active queue wraps around the bottom of the preallocated matrix and 

continues at the top.  Packet management processes need to watch for this situation and 

only analyze the appropriate active queue contents.  Another example of increased 

complexity is the difficulty of removing a packet or row from the center of the active 

queue without changing the size of the preallocated memory.  An action that would 

traditionally take a single command now takes 64.  A second negative impact of the 

preallocation approach is the increased use of computer memory.  Instead of maintaining 

only the active packets in memory, the preallocated matrix includes some number of stale 

or serviced packets that are also maintained in memory.  One way to minimize this 

impact is to appropriately size the preallocated memory.  This is discussed later in this 

section.  Memory management issues are not entirely attributable to memory 

preallocation and the topic is discussed more in Section B.  Fortunately, memory 

preallocation also has an important positive impact on the simulation: a substantial 

savings in simulation runtime.  Use of the tic and toc commands allows comparison of 
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run times.  Results vary with simulation specifics, but runtime savings are frequently over 

75% when comparing the original simulation with the revised preallocated version. 

An important part of preallocating queue memory is selecting the correct matrix 

size.  If the matrix is too small, the active queue will grow beyond the size of the matrix, 

and the pointers will make a complete cycle through the queue and start writing over 

active packets.  If the matrix is too large, then the simulation may become memory 

limited, which leads to a constraint on simulated time duration.  Obviously, the optimal 

queue size is dependent on simulation input parameters.  The two parameters that are 

most important are packet generation rate and average fade duration.  The packet 

generation rate directly influences the instantaneous number of packets appearing in the 

network.  Fade durations cause packets to linger in queues longer, leading to the 

possibility of larger maximum active queue size.  Fade duration statistics are related to 

Markov transition probabilities out of the fade state which is annotated as 01a  for this 

discussion (see Section I.C for background on Markov models).  If we combine the 

impacts of both parameters, we can combine the directly proportional impact of packet 

generation rate and the inversely proportional impact of the fade-to-connection transition 

probability: 

 
01

,pk r
Buffer

a
∝  (5.4)  

where   k = scaling constant, 
pr = packet generation rate, and 

01a  = probability of transitioning from state 0 (fade) to state 1 (connection). 

2. Memory Management and Variable Data Type 

As mentioned earlier in this section and in Chapter IV, memory shortages have a 

direct impact on several simulation constraints including the number of mobiles and time-

steps simulated.  As mentioned in Section A, the problem is exacerbated by preallocating 

memory to queue matrices, but the benefits in runtime are worth the expense.  One way 

to mitigate this problem is to reclassify of simulation variables as either integer or single 

data types.  The Matlab default data type for all variables is double, which requires eight 
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bytes per element.  By reclassifying a variable to the single data type, we can achieve a 

50% savings and store the variable with only four bytes of memory.  Similarly, variables 

that can be reclassified as integers save 87.5% in memory usage. 

3. Language Selection 

As discussed in Sections A and B, the network simulations require a large amount 

of memory and have long run-times.  For a personal computer (PC) with Windows XP, 

Matlab 7.0 (Release 14), 3 GB of RAM and a 3.0 MHz central processor, the run-time is 

approximately 19 hours for 20 iterations of 400,000 time steps each.  The network 

simulation does not currently include a significant amount of matrix operations and does 

not take advantage of Matlab’s strengths.  Instead, the simulation does involve many for 

loops and if-then statements.  Run-times could be substantially reduced by re-

implementing the simulation in a language that is closer to machine-language and does 

not use dynamic memory (e.g., Fortran, C, etc.). 
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