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Abstract

I provide constraints on mantle convection through observations of the rheology and
composition of the oceanic upper mantle. Convection cannot be directly observed, yet is
a fundamental part of the plate tectonic cycle. Relative motion among plates is accommo-
dated by localized deformation at their boundaries. I demonstrate that in the ductile regime,
strain localization occurs when different mineral phases are mixed together, limiting grain
annealing. Upper mantle flow is by dislocation creep, resulting in seismic anisotropy due
to mineral alignment. I use a shear zone in the Josephine Peridotite to quantify the rela-
tionship between mineral orientation and shear strain, providing an improved framework
for the interpretation of seismic anisotropy. The upper mantle is generally assumed to be
homogeneous in composition. From detailed isotopic and chemical analyses of abyssal
peridotites from the Southwest Indian Ridge, 1 show that the mantle is heterogeneous at a
range of length-scales. Abyssal peridotites recovered at ocean ridges are generally inter-
preted as the depleted residues of melt extraction. I find that melt-rock reaction is a sig-
nificant part of the melt extraction process, modifying the composition of the lithospheric
mantle. The generation of heterogeneous lithosphere provides a source for asthenospheric
heterogeneity, via subduction and mantle convection.
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Chapter 1

Introduction

This thesis provides constraints on mantle convection through observations of the rhe-
ology and composition of the oceanic upper mantle. Mantle convection is a fundamental
part of the plate tectonic cycle, but cannot be directly observed. Instead, it must be studied
by indirect methods, such as seismic observations, modeling, and sampling of peridotites,
the depleted residue of mantle melting that produces oceanic crust. In this thesis, I present
two investigations into the rheology of peridotites (Chapters 2 and 3) and two investiga-
tions into the geochemistry of peridotites (Chapters 4 and 5). From analysis of olivine
microstructures, I address the origins of localized ductile deformation in the lithosphere
and the response of olivine orientation to flow in the upper mantle. I then present datasets
of peridotite chemical and isotopic compositions and use these to constrain mantle compo-

sition — both lithospheric and asthenospheric — and ridge melting processes.

1.1 Rheological Constraints

The oceanic crust and upper mantle, collectively known as the oceanic lithosphere, form
two-thirds of the rigid plates that make up the outer layer of the Earth. Relative motion

among plates is accommodated at their boundaries, resulting in zones of localized defor-
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mation, such as transform faults. At the surface, strain accumulation results in brittle failure
on these faults, producing earthquakes. At depth below a fault, increasing pressure and tem-
perature result in a transition from brittle to ductile accommodation of strain. In Chapter
2, I present observations from peridotite mylonites — ultra-fine grained rocks collected at

oceanic fracture zones — for the mechanisms involved in ductile shear localization.

Strain localization in the ductile regime is promoted by the transition from grain-size
insensitive to grain-size sensitive creep, which at small grain size results in a lower viscosity
and thus higher strain rate. This transition requires grain size reduction, which must be
permanent for strain localization to be permanent. In Chapter 2, I use electron backscatter
diffraction (EBSD) analysis of a peridotite mylonite to examine olivine grain orientation
and size, and the distribution of secondary phases. The observations place constraints on
the dominant creep mechanisms in peridotites during strain localization and the process
by which grain size is limited. In addition, the conditions of mylonite deformation are
estimated by comparison to laboratory data for olivine, to provide quantitative constraints

on conditions at the base of the seismogenic zone.

In the convecting mantle, movement is accommodated by creep mechanisms. In the up-
per mantle, the observation of seismic anisotropy indicates that creep has produced mineral
alignment, leading to the conclusion that olivine is deforming by dislocation creep (Hess,
1964). In Chapter 3, I provide quantitative constraints on the relationship between olivine
orientation and shear strain. These observations are critical for quantifying the relationship
between the kinetics of deformation and the direction and magnitude of seismic anisotropy.
Experimental investigations (e.g., Nicolas et al., 1973) into the relationship between olivine
LPO and shear strain have provided a framework for LPO evolution models. However, ex-
periments are conducted on pure olivine aggregates at higher stresses and faster strain rates
than occur within the Earth. Using EBSD, I determine the evolution of olivine lattice pre-

ferred orientation as a function of shear strain in naturally deformed peridotites from the
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Josephine Peridotite in southwest Oregon. Our observations from natural samples provide

an improved framework for the interpretation of seismic anisotropy.

1.2 Geochemical Constraints

The oceanic lithosphere is produced by pressure-release melting of the convecting as-
thenospheric mantle when it upwells beneath ocean ridges. This lithosphere eventually
cools and becomes negatively buoyant, sinking back into the asthenosphere at subduction
zones. The extent to which subducted slabs are re-mixed into the convecting mantle and
eventually exposed again at ridges is the subject of much debate. In general, the upper man-
tle is treated as compositionally homogeneous, due to the relative homogeneity of MORBs
(mid-ocean ridge basalts) with respect to ocean island basalts (Zindler and Hart, 1986).
The composition of the upper mantle is constrained from (1) the average MORB isotopic
composition, which reflects continental crust extraction over the past 3 Gy, and (2) the com-
position of residual abyssal peridotites. Workman and Hart (2005) used these constraints
to construct a model average composition for the upper mantle, referred to as DMM (De-
pleted MORB Mantle). I use abyssal peridotites in Chapters 4 and S to assess the extent to
which the upper mantle deviates from this average composition.

In Chapter 4, I present detailed isotopic and trace element analyses of clinopyroxenes
and orthopyroxenes from abyssal peridotites, to constrain isotopic heterogeneity in the as-
thenospheric mantle. MORBs, as mixtures of melts sourced over relatively large areas,
cannot preserve heterogeneities at the shortest length-scales. In addition, by mass balance,
the isotopic composition of MORBs are dominated by the least chemically depleted com-
ponent in the melt. However, despite these constraints, significant variations in MORB
composition have been observed (e.g., Dupré and Allegre, 1983). In addition, while a
general consensus exists as to the presence of recycled crustal components in the man-

tle, the debate in recent years has centered around the “veined mantle hypothesis” (e.g.,

17



Allegre and Turcotte, 1986). In this model, the upper mantle contains eclogite and pyrox-
enite veins that are direct remnants of stretched and thinned subducted oceanic crust. I test
this hypothesis in Chapter 4 by examining the isotopic and trace element compositions of
pyroxenite-veined abyssal peridotites.

The composition of peridotites collected at ocean ridges reflects the processes of melt-
ing and melt extraction, in addition to initial source composition. In Chapter 5, 1 assess
the role of melt-rock reaction in modifying the composition of the lithospheric mantle at
ridges. Abyssal peridotites, collected at all major ocean ridges, are generally interpreted
as the depleted residues of near-fractional melting (Johnson et al., 1990). Melt is extracted
from peridotites by focused flow in dunite channels, which produces the observed chemical
disequilibrium between peridotites and MORBs (e.g., Kelemen et al., 1995). This interpre-
tation minimizes the role of other melt-rock reaction processes in modifying peridotite
composition. In Chapter 5, I demonstrate that abyssal peridotites encompass a larger com-
positional range than previously recognized and that much of this variation is the result
of a variety of melt-rock reaction mechanisms. Heterogeneity of the lithospheric mantle
is an important component of the convection cycle, as the lithosphere is eventually recy-
cled back into the convecting mantle at subduction zones. The time-integrated effect of
recycling heterogeneous lithospheric mantle into the asthenosphere will be increased het-

erogeneity within the Earth.
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Chapter 2

Grain Size Sensitive Deformation
Mechanisms in Naturally Deformed
Peridotites™

Abstract

Microstructural analyses of peridotite mylonites from the oceanic lithosphere indicate
that shear localization results from the combined effects of grain size reduction, grain
boundary sliding and second phase pinning during deformation. The pinning effect, com-
bined with experimental flow laws for olivine, suggests that a permanent transition from
dislocation creep processes to diffusion creep occurs. This rheological transition provides
a mechanism for long term weakening of the lithosphere for rocks deforming in the brittle-
ductile regime. In addition, our results support the hypothesis that a transition to diffu-
sion creep promotes the randomization of pre-existing lattice preferred orientations, which
would reduce seismic anisotropy.

*Reprinted from Earth and Planetary Science Letters, Vol. 248, J. M. Warren and G. Hirth, Grain Size
Sensitive Deformation Mechanisms in Naturally Deformed Peridotites, 423-435, (©)2006, with permission
from Elsevier.
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2.1 Introduction

The observation of fine grained mylonites in shear zones indicates that grain size sensi-
tive creep processes promote strain localization (e.g., Kirby, 1985; Tullis et al., 1990; Drury
etal., 1991; Jaroslow et al., 1996; Jin et al., 1998; Newman et al., 1999; Jiang et al., 2000).
For the sample in Fig. 2.1, microstructural observations show that ductile deformation re-
sulted in three orders of magnitude grain size reduction. Peridotite mylonites are commonly
sampled from oceanic fracture zones (Jaroslow et al., 1996). The geologic provenance of
these mylonites suggests that they formed in the ductile region of the lithosphere along the
down-dip extension of transform faults. We describe fabrics in a peridotite mylonite from
the Shaka Fracture Zone that support extrapolation of experimentally determined rheolog-
ical data (Hirth and Kohlstedt, 2003) to geologic conditions appropriate for the oceanic
lithosphere. We conclude that grain boundary sliding and grain boundary pinning lead to
permanent grain size reduction and strain localization.

Previous studies of peridotite mylonites in orogenic massifs and ophiolites have inter-
preted grain size reduction in mylonites as the result of (i) fluid addition (e.g., Vissers et al.,
1995), (ii) reaction with melt (e.g., Dijkstra et al., 2002), and (iii) the breakdown reaction of
spinel to plagioclase with decreasing pressure (e.g., Furusho and Kyuichi, 1999; Newman
et al., 1999); see Drury et al. (1991) for a review of earlier literature. Vissers et al. (1995)
interpreted the microstructures in Erro-Tobbio lherzolite mylonites as resulting from a wet
olivine rheology with reaction-related grain size reduction. Dijkstra et al. (2002) concluded
that a melt-present reaction promoted grain size sensitive deformation in shear zone my-
lonites from the Othris peridotite massif. In the Turon de Técouére peridotite shear zone,
Newman et al. (1999) suggested that grain size reduction resulted from the spinel to pla-
gioclase phase transition reaction.

Several lines of evidence indicate that the Shaka Fracture Zone mylonites deformed in

the absence of water and melt, and that breakdown reactions were not involved. We find
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no syn-deformational hydrous phases such as amphibole, talc or serpentine. The mantle
at fracture zones is expected to be dehydrated and depleted due to earlier on-axis melting
and melt extraction (Hirth and Kohlstedt, 1996). In addition to the lack of evidence for
melt or water involvement in the mylonite deformation, we find no indication of reaction
enhancement via the breakdown of spinel to plagioclase. The rare earth element concen-
trations measured by ion microprobe in a clinopyroxene porphyroclast have the typical
depleted compositions found in other abyssal peridotites (Johnson et al., 1990), with no Eu

anomaly, which is a sensitive indicator of plagioclase formation (Warren et al., 2003).

2.2 Methods

To study deformation mechanisms in mylonites, we used electron backscatter diffrac-
tion (EBSD) to analyze olivine and orthopyroxene crystal orientations in thin sections of
mylonitized peridotites cut parallel to lineation and perpendicular to foliation. We made
orientation measurements down to a 1 pum grain size, an order of magnitude smaller size
than that accessible with a U-stage. In addition, EBSD permits identification and quan-
tification of the distribution of secondary phases. Data were gathered using an electron
backscatter detector attached to a JEOL 840 SEM. Portions of thin sections were mapped
for lattice orientation in 1, 2, or 4 micron steps (depending on the average grain size of the
region being mapped), using a rasterized beam across the sample surface. EBSD patterns
were processed and analyzed using HKL Technology’s Channel 5 software package.

Orientation maps in Figs. 2.2-2.4 contain from 52% to 72% indexed data. Non-indexed
(white) pixels represent points with a mean angular deviation (MAD) number >1°, which
result from surface roughness and computer mis-indexing. The MAD number quantifies the
mismatch between lattice planes in the calculated orientation and those quantified from the
digitized bands of the diffraction pattern. Raw data, consisting of all indexed points with a

MAD number < 1°, are shown as maps and pole figures for coarser and finer grained regions
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in Fig. 2.2. Processed data, for which wild spikes have been removed and all pixels with
zero solutions have been extrapolated, are also shown in Fig. 2.2. Wild spikes are single
pixels (i) which are misoriented by >10° from the average orientation of the surrounding
eight pixels and (i1) for which the maximum misorientation between any two of the sur-
rounding pixels is <10°. All pixels which are wild spikes or have a MAD number >1° are
replaced with zero, or null, solutions. In the processed data, pixels with zero solutions were
replaced with the most common neighbor orientation. This method of processing the data
minimizes the overcounting of individual grains when extracting one orientation point per
grain for the construction of pole figures. However, it under-represents the smallest grains,

which are close to the sampling step size and are filtered out with noise in the data.

Pole figures, shown in Figs. 2.2-2.4, were calculated using one point per grain, with
all data sets containing > 180 grains, which has been demonstrated to provide statistically
robust results (Ben Ismail and Mainprice, 1998). Grain boundaries were defined by mis-
orientations > 10° between adjacent points and subgrains by 2° — 10° misorientations. Pole
figures of raw and processed data in Fig. 2.2 demonstrate that in both the finer and coarser
grained areas, the processing affects the strength of the lattice preferred orientation (LPO),
but does not alter the overall LPO pattern. There are two main differences between the
raw and processed data: (1) the removal of small grains, points with no solutions and wild
spikes, which decreases the randomness of the data, leading to a stronger LPO and (2) ex-
trapolation of the data, which further reduces the number of small grains but increases the
randomness of the data, as groups of adjacent small grains with the same orientation are

replaced by individual large grains.

Using an alternative processing method, shown in Fig. 2.21-], data are extrapolated
prior to the removal of wild spikes. This provides a better representation of the distribution
of the pyroxene and spinel grains in the finest grained areas of the sample. However, as we

wish to minimize potential bias in the olivine fabrics, we show data processed by the first
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method only in Figs. 2.3 and 2.4. These issues are inherent in analyzing such fine grained

material, which has a grain size close to the minimum step size.

2.3 Results

Microstructural observations of the mylonites indicate that grain size reduction leads to
progressive localization of deformation into fine-grained bands. The influence of grain size
on rheology can be seen in the optical-scale microstructures in Fig. 2.1. The mylonite con-
sists of anastomosing bands of coarser (< 100 xm) and finer (< 10 pm) grained olivine,
with distributed grains of orthopyroxene, clinopyroxene and spinel. Large, round to elon-
gate porphyroclasts of olivine, orthopyroxene, clinopyroxene and spinel, ranging in size
from 0.1 mm to 5 mm, are preserved in the fine grained matrix. These microstructures
indicate that the large porphyroclast grains behaved as hard inclusions during deformation.
In some cases, these inclusions are relatively coarse-grained aggregates of olivine (Fig.
2.1). Kinematic indicators, such as vergence of small folds and asymmetric recrystalliza-
tion trails around porphyroclasts, indicate the relative sense of shear for the mylonite.

Olivine orientations in coarser and finer grained regions of the mylonite are shown in
maps and pole figures in Figs. 2.3 and 2.4. The data are plotted with respect to the banding
and lineation orientations, which we assume are equivalent to the shear plane for this high
strain rock. Data are presented for two coarser grained regions of the mylonite in Fig. 2.3,
with the pole figures divided into 1-10 zm and 10-100 pm size grains for each dataset. In
the first region (Fig. 2.3A-C), a [100] maximum is observed in the plane of the banding
and sub-parallel to the lineation, while a [001] maximum is observed perpendicular to the
banding. In some areas, the LPO is significantly stronger among 10-100 pm grains than
among 1-10 pm grains. In the other coarse grained region, a pole figure is only shown for
the 10-100 pm size grains (Fig. 2.3E), due to the large step size at which this dataset was

collected. The [100] maximum is not oriented parallel to the banding. A variable LPO
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was also found by limited universal stage work on coarser grained regions in this sample

(Jaroslow et al., 1996).

In the finer grained regions, shown in Fig. 2.4, a decrease in LPO strength is observed
in all three areas measured. Almost no LPO is observed in some regions of the fine-grained
bands (Fig. 2.4A-F). Locally, in the fine grained region shown in Fig. 2.4E-F, we find
a weak and dispersed “ghost” of the LPO observed in the coarser-grained region in Fig.

2.3A-C.

The variation of LPO and grain size correlates with the secondary phase distribution.
Pyroxenes and spinel are inhomogeneously distributed in the mylonite, with small grains
of these phases predominant in regions with a smaller olivine grain size. Based on the very
fine grain size, the raw data (Fig. 2.2A,E), and the alternative method of processing the data
(Fig. 2.21), the number of small orthopyroxene grains is greater than that shown in Figs.
2.3 and 2.4. The EBSD orientation maps highlight the larger number of secondary phases
in finer grained areas relative to coarser grained areas (compare Fig. 2.2B to Fig. 2.2F).
The finer grained areas have a smaller range of grain sizes and a more random distribution
of secondary phases. In contrast, the coarser grained regions have a larger range of olivine
grain sizes. Locally, small grains of secondary phases are mixed with small grains of olivine

at the edges of larger olivine grains.

Figs. 2.2F and 2.21 provide lower and upper bounds on the amount of secondary phases
pinning the grain boundaries in the finest grained areas. We have also examined back-
scattered electron images and X-ray maps of coarse and fine grained areas. These confirm
our observation of a greater concentration of secondary phases in the finest grained areas.
Similarly, high resolution EBSD and X-ray maps of Michibayashi and Mainprice (2003,
2004) show a greater accumulation of secondary phases in finer grained regions of the

peridotite mylonite in their study.
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2.4 Discussion

2.4.1 Fabric variations with grain size

The variation in olivine fabric with grain size in the mylonite provides an opportunity to
constrain grain size sensitive deformation mechanisms in the lithosphere. Three observa-
tions in particular can be exploited to constrain the deformation mechanisms: (i) random-
ization of a pre-existing LPO in the finest grained regions of the mylonite; (ii) observation

of an LPO in coarser grained regions; (iii) the preservation of porphyroclasts.

The randomization of olivine LPO in the finest grained regions of the mylonite indicates
a change in deformation mechanism to diffusion creep. Two observations suggest that the
randomization of LPO occurred as deformation localized into fine grained regions. First, a
weak LPO is observed in one fine grained area (Fig. 2.4F) which is similar to the LPO in
a coarser grained area (Fig. 2.3B-C). Second, the LPO among 1-10 xm grains in a coarser
grained area is similar, but weaker, than that in the 10-100 pm size fraction (Fig. 2.3B-C).
We conclude that the randomization of LPO is related to grain rotations that occur during
the grain boundary switching process, which is required during diffusion creep (e.g., Raj

and Ashby, 1971).

The LPO in the coarser grained regions indicates that a dislocation process accommo-
dated deformation during the early stages of mylonitization. At the same time, the preser-
vation of large, sometimes equant, porphyroclasts implies that the rheology is grain size
sensitive. If the rheology was not grain size sensitive, then all grains should be deformed to
the same degree and large, relatively undeformed porphyroclasts would not be preserved.
Based on comparison to experimental studies, we suggest that deformation in the coarser
grained bands occurred by dislocation accommodated grain boundary sliding (DisGBS).
DisGBS is a grain size sensitive creep mechanism that was identified experimentally on the

basis of rheologic data on olivine aggregates deformed near the transition between disloca-
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tion creep and diffusion creep (Hirth and Kohlstedt, 1995, 2003). Of particular significance
for our analysis is that deformation by DisGBS has been shown to produce LPOs in cal-
cite (Schmid et al., 1987; Rutter et al., 1994) and ice (Durham et al., 2001; Goldsby and
Kohlstedt, 2002).

During DisGBS, strain is dominantly accommodated by the relative movement of grains
(i.e. grain boundary sliding) and is limited by either this process or the movement of
dislocations within grains on the easy slip system (Goldsby and Kohlstedt, 2001; Hirth and
Kohlstedt, 2003). These two processes act in series, as deformation is not accommodated
independently by either grain boundary sliding or easy slip. Thus the strain rate for DisGBS
(€ piscs) is limited by the slowest of the two mechanisms through the relationship:

1 x 1

€GBS €Easy

e (2.1)

épiscBs = (

where é.;pg is the strain rate for grain boundary sliding (GBS) and ¢z, is the strain rate
for easy slip. The grain size sensitivity of DisGBS results from the influence of grain size
on the GBS component of the flow law.

There is considerable confusion regarding the terminology used for grain size depen-
dent deformation mechanisms. For example, deformation in both the diffusion creep and
DisGBS regimes involves grain boundary sliding, with relative grain movement accom-
modated either by diffusion or dislocation processes, respectively. Furthermore, the term
superplasticity is often used when referring to deformation accommodated by GBS (see
discussion in Goldsby and Kohlstedt, 2001)). To clarify our terminology, we refer to the
serial deformation process (Eq. 2.1) as DisGBS and the grain boundary sliding component

of the process as GBS.
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2.4.2 Deformation mechanism maps

We use olivine deformation mechanism maps to constrain the deformation conditions of
the mylonites (Fig. 2.5A). The total strain rate (€744) during deformation is contoured in

stress versus grain size space, using the constitutive law (Hirth and Kohlstedt, 2003):

€Total = €Dif + €Dis + €LTP + €DisGBS (2.2)

where €p; is the strain rate for diffusion creep, ¢p;, for dislocation creep, and é;rp for
low-temperature plasticity (LTP). The flow law formulation and experimental data for LTP
are from Goetze (1978) and Evans and Goetze (1979). These four deformation mechanisms
are independent, so the mechanism with the fastest strain rate controls the rheology.

The boundaries for the fields of diffusion creep, dislocation creep, and DisGBS are cal-
culated using a compilation of olivine experimental data from Hirth and Kohlstedt (2003).

The flow laws for melt- and water-free aggregates in these regimes have the form:

B+ PY

€ = Ao"d "exp(— T

) (2.3)
where A is a constant, o is the differential stress, n is the stress exponent, d is the grain size,
p is the grain size exponent, £ is the activation energy, P is the pressure, V' is the activation
volume, R is the gas constant, and 7" is the absolute temperature. For the mylonite, d is in
the range of 1-100 ym. The deformation temperature is constrained from thermometry to
lie in the range 600-750°C (Jaroslow et al., 1996). We use a nominal pressure of 400 MPa
for these calculations. The pressure of deformation is not well constrained, however the
PV term in Eq. 2.3 is negligible for deformation in the shallow oceanic lithosphere.
Application of the experimental olivine data to the conditions of mylonite formation in-
volves a significant extrapolation of temperature, but not of grain size or stress. Therefore,

the greatest uncertainty in the map in Fig. 2.5A is in the activation energies for the defor-
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mation mechanisms. We calculated the error range for the field boundaries due to error in
these activation energies. The activation energies for DisGBS are the most uncertain. For
the grain boundary sliding component, the activation energy is assumed to be the same as
that for the easy slip system, which is constrained experimentally at high temperature (Bai
et al., 1991). However, results from Carter and Ave’Lallemant (1970) on the experimental
deformation of dunites indicate that the easy slip system in olivine changes at low temper-
ature. Despite uncertainty in the extrapolation to low temperature, the range of estimated

mylonite deformation conditions lies within the DisGBS field, as shown in Fig. 2.5A.

To emphasize the conditions where DisGBS is a significant deformation mechanism,
and its significance for LPO development, we plot strain rate versus grain size for a stress
of 300 MPa in Fig. 2.5B. This plot represents a constant stress section through Fig. 2.5A.
The total strain rate is dominated by DisGBS at grain sizes in the range ~15-700 ym. Fur-
thermore, the strain rate for DisGBS is at least an order of magnitude greater than that for
dislocation creep at grain sizes <~300 pgm. The strain rate for diffusion creep becomes
greater than that for DisGBS at grain sizes <~15 pum. For comparison, at a grain size
of ~15 pum, the strain rate for diffusion creep is approximately three orders of magnitude
greater than that for dislocation creep. Assuming that LPOs form when a dislocation pro-
cess accommodates a significant component of the total strain — and recalling that our
microstructural observations indicate a randomization of LPO when grain size decreases
below ~10 gm — we conclude that the LPOs observed in coarser grained regions of the

mylonite resulted from DisGBS.

Our results suggest that an LPO is maintained during DisGBS when the easy slip com-
ponent is dominant during deformation, though rate limited by the GBS component. Grain
boundary sliding, whether diffusion or dislocation accommodated, tends to randomize
LPOs. Prior and co-workers have demonstrated that a grain boundary sliding process leads

to an increased dispersion in the misorientation between grains, which weakens an initial
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single crystal LPO (Jiang et al., 2000; Bestmann and Prior, 2003; Storey and Prior, 2005).
Our observation of a randomized LPO during diffusion creep supports the suggestion by

Bestmann and Prior (2003) that a grain boundary sliding process weakens LPOs.

2.4.3 Recrystallization and grain boundary pinning

To understand how grain size sensitive creep promotes strain localization, we consider
the processes that control the evolution of grain size during mylonite deformation. As de-
formation continues to lower temperature, and therefore higher stress, grain size decreases
as a result of dynamic recrystallization. Empirical relationships between stress and grain
size have been determined for olivine and this recrystallization piezometer (Karato et al.,
1980; Van der Wal et al., 1993) is shown in Fig. 2.5A. Dynamic recrystallization is driven
by gradients in dislocation density, which promote subgrain rotation and grain boundary
migration. In the diffusion creep field, the applicability of the empirical piezometer is prob-
lematic owing to a potential lack of driving force for recrystallization. This insight moti-
vated the field boundary hypothesis (De Bresser et al., 1998, 2001), in which the piezometer
is defined by the boundary between the dislocation creep and diffusion creep fields. Thus,
the piezometric relationship may be temperature dependent due to differences in the ac-
tivation energy for the creep processes. However, Drury (2005) emphasized the lack of
evidence for temperature dependence in the empirical relationships for olivine, based on
the observation of statistically equivalent piezometric relationships for samples deformed
at 1100-1300°C (Van der Wal et al., 1993) and at 1500°C (Karato et al., 1980). Thus, while
the field boundary hypothesis has merit, the higher temperature experimental data indicate
that a recrystallization piezometer applies within the dislocation creep regime.

The magnitude of grain size reduction in the mylonite can be explained by either the
empirical piezometric relationship or a modified field boundary hypothesis. As illustrated

in Fig. 2.5A, the grain size at which we see evidence for LPO randomization (i.e., ~10

31



pum) falls near the boundary between diffusion creep and DisGBS at geologic strain rates,
consistent with a modified field boundary hypothesis in which the piezometer is defined by
the diffusion creep/DisGBS field boundary, rather than the diffusion creep/dislocation creep
field boundary. At the same time, the empirical piezometric relationship falls in the DisGBS
field (within uncertainty), indicating that the driving force for recrystallization arises from
the easy slip component of the DisGBS mechanism. In either case, we emphasize that the
extreme grain size reduction observed in the mylonites is difficult to explain without the
DisGBS mechanism.

Grain boundary pinning can lead to permanent grain size reduction and a transition to
diffusion creep. Without a mechanism to limit grain growth, grain size reduction may not
promote a transition to diffusion creep in single phase materials, due to a dynamic balance
between grain growth and recrystallization (De Bresser et al., 1998, 2001). However, we
suggest that the translation of grains during DisGBS by grain boundary sliding (and phase
boundary sliding) results in the mixing of different mineral phases, which eventually in-
hibits grain growth. In the mylonite, the randomization of LPO in the fine grained regions
indicates that the presence of pyroxenes and spinel results in the pinning of olivine grain
boundaries, leading to a transition to diffusion creep. Previous studies have emphasized the
role of grain size pinning, resulting from fluid addition, melt crystallization or metamorphic
reactions, in promoting grain size sensitive creep processes (Vissers et al., 1995; Furusho

and Kyuichi, 1999; Newman et al., 1999; Dijkstra et al., 2002).

2.4.4 Strain localization

To explore the implications of grain size sensitive creep mechanisms for strain localiza-
tion in the oceanic lithosphere, in Fig. 2.6 we compare the viscosities of a fine grained shear
zone and the surrounding coarse grained mantle. Based on our analysis of microstructural

data and experimental flow laws, we assume that deformation in the shear zone occurs at
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a stress and grain size on the boundary between the DisGBS and diffusion creep fields on

the deformation mechanism map, which leads to the relationships:
€DisGBS = €Dif (2.4)

€sz = €DisGBS T €Dif = 2€pisgBS = 2€pif (2.3)
where ég is the shear zone strain rate.

The effective viscosity (1) of the shear zone in Fig. 2.6 is calculated using Egs. 2.3
and 2.5, the relationship n = o /ész and assuming és; = 107'2s~!. The calculations are
made for both the GBS and the easy slip components of DisGBS, as shown in Fig. 2.6.
At temperatures greater than ~700°C, viscosity in the shear zone is controlled by the GBS
component of the DisGBS flow law and this component may dominate, within error, at

lower temperatures as well.

The shear zone viscosity at 700°C is approximately four orders of magnitude lower than
outside the shear zone (Fig. 2.6). Outside the shear zone, we assume (i) that dislocation
creep accommodates deformation of the coarse-grained mantle and (ii) that stress is limited
by the strength of the shear zone. The effective viscosity for the shear zone remains lower
than the coarse grained mantle until a temperature of ~950°C, at which point deformation
is no longer localized. Where grain size pinning results in a transition to diffusion creep,

the viscosity contrast would be even larger than that illustrated in Fig. 2.6.

A convenient flow law for deformation in mantle shear zones — which accounts for
grain size dependence — can be derived by solving Eq. 2.4 for grain size and substituting

into Eq. 2.5:
AZ 2Hp;s — 3Hp;
o, — 9 1DisGBS 85 Dif DisGBS
€5z A2, o>exp( BT

) (2.6)

where H = E + PV. Using the values for these parameters from Hirth and Kohlstedt
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(2003), Eq. 2.6 can then be written as:

—4.7 x 10°

)
= (2.7)

ész = 2.4 x 107 "% Pexp(
for o in MPa. This relationship is applicable for shear zone deformation at temperatures
<950°C and lithospheric depths, where the PV term is negligible. We reiterate that the
largest uncertainty is related to the activation energy, as shown in Fig. 2.5A. At higher
temperature, and therefore lower stress, errors associated with extrapolation in stress and

grain size should also be considered.

2.4.5 Relationship of mylonites to earthquake processes

A combination of geophysical, experimental and geochemical observations indicate that
the transition from brittle to ductile processes occurs at a temperature of ~600°C in the
oceanic lithosphere. Seismological studies of the depth of earthquakes along transform
faults indicate that seismicity is confined to depths in the oceanic lithosphere with tempera-
tures <600°C (e.g., Engeln et al., 1986; Abercrombie and Ekstrom, 2001). Extrapolation of
experimental data for olivine aggregates indicates that the 600°C isotherm also marks the
transition from stable to unstable frictional sliding (Boettcher et al., 2007). Finally,Jaroslow
et al. (1996) estimated that the minimum temperature for mylonite deformation is ~600°C,

based on olivine-spinel geothermometry.

In Fig. 2.7, we compare the estimated strain rate for mylonite deformation to the strain
rates for different geologic processes. The stress and strain rate of mylonite deformation
are estimated using the microstructural observations combined with the olivine flow laws.
From the recrystallization piezometer (Karato et al., 1980; Van der Wal et al., 1993), the
estimated differential stress for a recrystallized grain size of 10 gm is 240 MPa and of 3 im

is 580 MPa. At 600-700°C and these stress and grain size conditions, the estimated strain

34



rate for mylonite deformation is 10~'* — 107'%~!. The strain rate for post-seismic slip in

Fig. 2.7 is calculated as:

_, slip J
st e Bl D)

where At is the duration of post-seismic slip. The estimated strain rate for post-seismic
slipis 1071% — 107°s™, for slip < 1 m, width ~ 1 mto < 1 km, and At ~ 1 — 100 days.
Therefore, the estimated strain rate for mylonites overlaps the low end of post-seismic
slip and the high end of tectonic strain rates (i.e., 107 — 107'?s~!). Our results place
constraints on the conditions of deformation at the base of the seismogenic zone in the
oceanic lithosphere, which may be used to interpret geodetic data for post-seismic slip

(e.g., Montési and Hirth, 2003).

2.4.6 Mantle anisotropy

The microstructural observations of the mylonite demonstrate that the transition to dif-
fusion creep results in a randomization of pre-existing LPOs. Evidence that pre-existing
anisotropy may be destroyed by the transition to diffusion creep is important for under-
standing mantle anisotropy. In the upper mantle, seismic anisotropy reflects high tem-
perature flow by dislocation creep (Nicolas and Christensen, 1987; Nishimura and Forsyth,
1989; Mainprice and Silver, 1993; Jung and Karato, 2001). However, with increasing depth
and temperature in the mantle, the dominant mechanism of olivine deformation may change
from dislocation creep to diffusion creep (Karato and Wu, 1993). Our results indicate that
such a change can lead to a decrease in mantle anisotropy, if enough strain is accumulated
to randomize the fabric. We emphasize that in the case of shear zones, we do not expect
fabric randomization to have a detectable effect on regional mantle anisotropy. However,
following the suggestion of Karato and Wu (1993) that a transition to diffusion creep may
occur at depth in the upper mantle, our results imply that this would lead to an isotropic

layer in the lower portion of the upper mantle.
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2.5 Conclusions

Peridotite mylonites demonstrate that three orders of magnitude grain size reduction
occurs during localized deformation in the oceanic lithosphere. Microstructural analyses
of the mylonite fabric suggest that deformation of aggregates with a grain size of 10-100
pm occurred by DisGBS and produces an LPO. Grain boundary pinning, due to the mixing
of pyroxenes and spinel among olivine grains during DisGBS, resulted in permanent grain
size reduction. Reduction in grain size down to 1-10 gm, combined with second phase
pinning, led to a transition to diffusion creep and resulted in a randomization of the pre-
existing LPO.

Our microstructural observations are consistent with extrapolation of experimental olivine
flow laws to temperatures of 600-800°C during mylonite deformation. The empirical re-
crystallization piezometer plots within the field of DisGBS, providing a driving force for
grain size reduction. Alternatively, grain size reduction may have followed a modified
version of the field boundary hypothesis (De Bresser et al., 1998, 2001). At temperatures
below ~950°C, deformation in the DisGBS and diffusion creep fields occurs at lower stress
and viscosity than in the dislocation creep field, providing a mechanism for weakening and

strain localization in the oceanic lithosphere at transform faults.

Acknowledgements

We thank Henry Dick for bringing our attention to the peridotite mylonites. Louie Kerr
provided invaluable assistance with the SEM at the Marine Biological Laboratory. In addi-
tion we would like to thank Margaret Boettcher, Mike Braun, Peter Kelemen, Jeff McGuire,
and Laurent Montesi for helpful discussions. Reviews by David Prior and an anonymous
reviewer helped improve our manuscript. This work was supported by NSF grant EAR-

0230267 and a Hollister Fellowship from the WHOI Academic Programs Office.

36



2.6 Bibliography

Abercrombie, R. E., Ekstrom, G., 2001. Earthquake slip on oceanic transform faults. Nature
410, 74-717.

Bai, Q., Mackwell, S. J., Kohlstedt, D. L., 1991. High-temperature creep of olivine single
crystals 1. Mechanical results for buffered samples. Journal of Geophysical Research
96 (B2), 2411-2463.

Ben Ismail, W., Mainprice, D., 1998. An olivine fabric database: an overview of upper
mantle fabrics and seismic anisotropy. Tectonophysics 296, 145-157.

Bestmann, M., Prior, D. J., 2003. Intragranular dynamic recrystallization in naturally de-
formed calcite marble: diffusion accommodated grain boundary sliding as a result of
subgrain rotation recrystallization. Journal of Structural Geology 25, 1597-1613.

Boettcher, M. S., Hirth, G., Evans, B., 2007. Olivine friction at the base of oceanic seismo-
genic zones. Journal of Geophysical Research 112, 10.1029/2006JB004301.

Carter, N. L., Ave’Lallemant, H. G., 1970. High temperature flow of dunite and peridotite.
Geological Society of America Bulletin 81, 2181-2202.

De Bresser, J. H. P.,, Peach, C. J., Reijs, J. P. J., Spiers, C. J., 1998. On dynamic recrystal-
lization during solid state flow: Effects of stress and temperature. Geophysical Research
Letters 25 (18), 3457-3460.

De Bresser, J. H. P, Ter Heege, J. H., Spiers, C. J., 2001. Grain size reduction by dynamic
recrystallization: Can it result in major rheological weakening? International Journal of
Earth Sciences 90 (28-45).

Dijkstra, A. H., Drury, M. R., Vissers, R. L. M., Newman, J., 2002. On the role of melt-rock
reaction in mantle shear zone formation in the Othris Peridotite Massif (Geece). Journal
of Structural Geology 24, 1431-1450.

Drury, M. R., 2005. Dynamic recrystallization and strain softening of olivine aggregates
in the laboratory and the lithosphere. In: Gapais, D., Brun, J. P., Cobbold, P. R. (Eds.),
Deformation Mechanisms, Rheology and Tectonics: from Minerals to the Lithosphere.
No. 243 in Special Publication. Geological Society of London, pp. 143-158.

Drury, M. R., Vissers, R. L. M., Van der Wal, D., Hoogerduijn Strating, E. H., 1991. Shear
localisation in upper mantle peridotites. Pure and Applied Geophysics 137 (4), 439-460.

Durham, W. B, Stern, L. A., Kirby, S. H., 2001. Rheology of ice I at low stress and elevated
confining pressure. Journal of Geophysical Research 106 (6), 11031-11042.

Engeln, J. F,, Wiens, D. A., Stein, S., 1986. Mechanisms and depths of Atlantic transform
earthquakes. Journal of Geophysical Research 91 (B1), 548-577.

37



Evans, B., Goetze, C., 1979. The temperature variation of hardness of olivine and its impli-
cation for polycrystalline yield stress. Journal of Geophysical Research 84, 5505-5524.

Furusho, M., Kyuichi, K., 1999. Transformation-induced strain localization in a lherzolite
mylonite from the Hidaka metamorphic belt of central Hokkaido, Japan. Tectonophysics
313,411-432.

Goetze, C., 1978. The mechanisms of creep in olivine. Philosophical Transactions of the
Royal Society of London A 288, 99-119.

Goldsby, D. L., Kohlstedt, D. L., 2001. Superplastic deformation of ice: Experimental
observations. Journal of Geophysical Research 106 (B6), 11017-11030.

Goldsby, D. L., Kohlstedt, D. L., 2002. Reply to comment by P. Duval and M. Montagnat on
“Superplastic deformation of ice: Experimental observations™. Journal of Geophysical
Research 107 (B11), 2313.

Hirth, G., Kohlstedt, D. L., 1995. Experimental constraints on the dynamics of the par-
tially molten upper mantle 2. Deformation in the dislocation creep regime. Journal of
Geophysical Research 100, 15441-15449.

Hirth, G., Kohlstedt, D. L., 1996. Water in the oceanic upper mantle: implications for rhe-
ology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science
Letters 144, 93—108.

Hirth, G., Kohlstedt, D. L., 2003. Rheology of the upper mantle and the mantle wedge: A
view from the experimentalists. In: Eiler, J. (Ed.), The Subduction Factory. Vol. 138 of
Geophysical Monograph. American Geophysical Union, pp. 83-105.

Jaroslow, G. E., Hirth, G., Dick, H. J. B., 1996. Abyssal peridotite mylonites: implications
for grain-size sensitive flow and strain localization in the oceanic lithosphere. Tectono-
physics 256, 17-37.

Jiang, Z., Prior, D. J., Wheeler, J., 2000. Albite crystallographic preferred orientation and
grain misorientation distribution in a low-grade mylonite: implications for granular flow.
Journal of Structural Geology 22, 1663—1674.

Jin, D., Karato, S.-1., Obata, M., 1998. Mechanisms of shear localization in the continental
lithosphere: Inference from the deformation microstructures of peridotites from the Ivrea
zone, northwestern Italy. Journal of Structural Geology 20 (2/3), 195-2009.

Johnson, K. T. M., Dick, H. J. B., Shimizu, N., 1990. Melting in the oceanic upper mantle:
An ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical
Research 95, 2661-2678.

Jung, H., Karato, S.-1., 2001. Water-induced fabric transitions in olivine. Science 293,
1460-1463.

38



Karato, S.-1., Toriumi, M., Fujii, T., 1980. Dynamic recrystallization of olivine single crys-
tals during high-temperature creep. Geophysical Research Letters 7 (9), 649-652.

Karato, S.-1., Wu, P, 1993. Rheology of the upper mantle: A synthesis. Science 260, 771—
778.

Kirby, S. H., 1985. Rock mechanics observations pertinent to the rheology of the conti-
nental lithosphere and the localization of strain along shear zones. Tectonophysics 119,
1-27.

Mainprice, D., Silver, P. G., 1993. Interpretation of SKS-waves using samples from the
subcontinental lithosphere. Physics of the Earth and Planetary Interiors 78, 257-280.

Michibayashi, K., Mainprice, D., 2003. Understanding the deformation of rocks from the
Earth’s mantle using simultaneous EBSD and EDS. www.hkltechnology.com/data/0-
mantle.pdf.

Michibayashi, K., Mainprice, D., 2004. The role of pre-existing mechanical anisotropy on
shear zone development within oceanic mantle lithosphere: an example from the Oman
Ophiolite. Journal of Petrology 45 (2), 405-414.

Montési, L. G. J., Hirth, G., 2003. Grain size evolution and the rheology of ductile shear

zones: from laboratory experiments to postseismic creep. Earth and Planetary Science
Letters 211, 97-110.

Newman, J., Lamb, W. M., Drury, M. R., Vissers, R. L. M., 1999. Deformation processes in
a peridotite shear zone: reaction-softening by an HoO-deficient, continuous net transfer
reaction. Tectonophysics 303, 193-222.

Nicolas, A., Christensen, N. 1., 1987. Formation of anisotropy in upper mantle peridotites
- A review. In: Fuchs, K., Froidevaux, C. (Eds.), Composition, Structure and Dynamics
of the Lithosphere-Asthenosphere System. Vol. 16 of Geodynamics Series. American
Geophysical Union, pp. 111-123.

Nishimura, C. E., Forsyth, D. W., 1989. The anisotropic structure of the upper mantle in
the Pacific. Geophysical Journal 96, 203-229.

Raj, R., Ashby, M. F,, 1971. On grain boundary sliding and diffusional creep. Metallurgical
Transactions 2, 1113-1127.

Rutter, E. H., Casey, M., Burlini, L., 1994. Preferred crystallographic orientation devel-
opment during the plastic and superplastic flow of calcite rocks. Journal of Structural
Geology 16 (10), 1431-1446.

Schmid, S. M., Panozzo, R., Bauer, S., 1987. Simple shear experiments on calcite rocks:
Rheology and microfabric. Journal of Structural Geology 9 (5/6), 747-778.

39



Storey, C. D., Prior, D. J., 2005. Plastic deformation and recrystallization of garnet: A
mechanism to facilitate diffusion creep. Journal of Petrology 46 (12), 2593-2613.

Tullis, J., Dell’Angelo, L., Yund, R. A., 1990. Ductile shear zones from brittle precursors
in feldspathic rocks: the role of dynamic recrystallization. In: Duba, A. G., Durham,
W. B., Handin, J. W., Wang, H. F. (Eds.), The brittle-ductile transition in rocks. Vol. 56
of Geophysical Monograph. American Geophysical Union, pp. 67-82.

Van der Wal, D., Chopra, P, Drury, M., Fitz Gerald, J., 1993. Relationships between
dynamically recrystallized grain size and deformation conditions in experimentally de-
formed olivine rocks. Geophysical Research Letters 20 (14), 1479-1482.

Vissers, R. L. M., Drury, M. R., Hoogerduijn Strating, E. H., Spiers, C. J., van der Wal,
D., 1995. Mantle shear zones and their effect on lithosphere strength during continental
breakup. Tectonophysics 249, 155-171.

Warren, J. M., Shimizu, N., Dick, H. J. B., 2003. Melt impregnation revealed by clinopy-
roxene geochemistry in abyssal peridotites. Geochimica et Cosmochimica Acta 67,
A526.

40



Figure 2.1: (A) Photomicrograph of ultra-mylonite peridotite sample AII-107-61-83 from
the Shaka Fracture Zone on the Southwest Indian Ridge. Grain size sensitive deformation
has resulted in the formation of anastomosing bands of coarser (<100 ;zm) and finer (<10
pm) grained olivine, with distributed grains of orthopyroxene, clinopyroxene and spinel.
Large porphyroclasts of olivine, orthopyroxene, clinopyroxene, spinel and coarser grained
olivine aggregates remain and appear to have behaved as hard inclusions during deforma-
tion. (B) Photomicrograph of a coarser grained area of the ultra-mylonite, with a grain size
range of 1-100 um. (C) Photomicrograph of a finer grained area, with an olivine grain size
of 1-10 pym.
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Figure 2.2: Maps of raw data collected in a coarser grained area (A) and a finer grained
area (E) of the ultra-mylonite. (Continued on next page.)
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Figure 2.2: (Continued) The coarser grained area was collected at a 2 pm step size with a
total of 64% of the area indexed; the finer grained area was collected at a 1 um step size
with 52% indexed. Each grey point represents an olivine orientation collected by EBSD
and green points represent secondary phases (orthopyroxene, clinopyroxene, and spinel)
for which orientations were measured. White points have a MAD number >1°. Black lines
indicate grain boundaries, defined by a 10° misorientation between adjacent points. Maps
of the processed data, for which wild spikes have been removed and data extrapolated, are
shown in (B) and (F). The map in (I) of the fine grained area shows an alternative method
of processing the data, in which the data is extrapolated prior to removing wild spikes. Pole
figures of one orientation point per olivine grain are shown in (C),(D),(G),(H), and (J). All
pole figures are equal area lower hemisphere projections, contoured using a 15° half width
and as multiples of a uniform distribution (MUD) to a maximum of 3 MUD. Contouring
of 1 MUD indicates no significant difference from a uniform distribution and corresponds
to the absence of an LPO. The shear direction is parallel to the horizontal axis in the pole
figures.
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Figure 2.3: Orientation maps collected by EBSD for two coarser grained areas of the mylonite (A, D). The
area in (A) is also shown in Fig. 2.2; the area in (D) was collected at a 4 um step size, with 72% of the area
indexed. Olivine is shaded from blue to yellow, with the color range representing the degree of misorientation
of each pixel from the shear plane. Dark green corresponds to orthopyroxene, light green to clinopyroxene,
red to spinel, and white areas have no data. Pole figures of one orientation per olivine for the area in (A) are
shown for 1-10 pm grains in (B) and for 10-100 pm grains in (C). For the area in (D), data are only plotted for
10-100 pum grains in (E), due to the large step size of the map. Contouring in all pole figures is to a maximum

of 6 MUD. The shear direction is parallel to the horizontal axis in the pole figures.
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Figure 2.4: Orientation maps for three finer grained areas of the mylonite (A, C, E), using
the same color scheme as in Fig. 2.3. The area in (A) is also shown in Fig. 2.2; the area in
(C) was collected at a 1 um step size, with 57% indexed; the area in (E) was also collected
ata | pum step size, with 58% of the area indexed. Pole figures of one orientation per olivine
are shown (B, D, F) for the 3 areas, all of which have grain sizes of 1-10 um. The contour
scale is the same as in Fig. 2.3, to a maximum level of 6 MUD. In the first area, the actual
maximum is 2 MUD; in the second and third areas it is 3 MUD.
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Figure 2.5: (A) An olivine deformation mechanism map, on axes of differential stress versus grain size,
contoured for strain rate, plotted using the flow laws for dry, melt free olivine at 700°C and 12 km depth
(Goetze, 1978; Evans and Goetze, 1979; Hirth and Kohlstedt, 2003). The black recrystallization piezometer
field delimits the grain size predicted by the empirical piezometric relationship for olivine deformed under dry
conditions (Karato et al., 1980; Van der Wal et al., 1993). The thick white boundaries between deformation
fields indicate field boundaries in the absence of DisGBS. The thin white boundaries delineate the DisGBS
field and the dashed boundaries on either side represent uncertainty in the location of the DisGBS boundaries
due to uncertainty in its activation energy. The change in shading within the DisGBS field indicates the
transition from the regime where creep on the easy slip system limits the strain rate to the regime where GBS
limits the strain rate. (B) The variation of total and individual strain rates with grain size, at a differential

stress of 300 MPa, and at 700°C and 12 km depth. The dashed lines represent the individual components of
DisGBS.
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Figure 2.6: The variation of effective viscosity with temperature, for deformation within
a shear zone compared to that outside a shear zone. Within the shear zone, viscosity is

defined by deformation at the DisGBS-diffusion creep boundary at a total strain rate of
10~'% s7!. Deformation outside the shear zone is by dislocation creep, calculated at the

same stress as within the shear zone.
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Chapter 3

A Natural Example of Olivine LPO
Variation With Shear Strain

Abstract

The variation of olivine lattice preferred orientation (LPO) as a function of shear strain
1s important for models that relate seismic anisotropy to kinematics of deformation in the
mantle. We present results on the evolution of olivine orientation in natural samples as a
function of increasing shear strain, for a shear zone in the Josephine Peridotite in southwest
Oregon. We find that the LPO in harzburgites re-orients from a pre-existing LPO outside
the shear zone to a new LPO with the olivine [100] maxima aligned sub-parallel to the
shear direction between 168% and 258% shear strain. Fabric strengths, quantified using
both the J- and M- indexes, do not increase with increasing shear strain. Both (010)[100]
and (001)[100] are active in olivine at high strain, suggesting that re-alignment of olivine
grains is accommodated by plastic flow during dislocation creep. Unlike experimental
observations, our natural samples do not have a secondary LPO peak. We conclude that
recrystallization by subgrain rotation dominates over grain boundary migration during fab-
ric realignment in natural samples. The occurrence of girdle patterns among the [010] and
[100] axes of harzburgites, but not dunites, suggests that secondary phases affect olivine
deformation. We suggest that secondary phases limit olivine grain growth, promoting slip
by grain boundary sliding. The activation of grain boundary sliding allows for enhanced
activation of the two easiest olivine slip systems, resulting in [010] and [001] girdle pat-
terns. Overall, our results provide an improved framework for calibration of LPO evolution
models.
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3.1 Introduction

Understanding olivine orientation as a function of shear strain is critical for quantify-
ing relationships between the kinematics of deformation and the direction and magnitude
of seismic anisotropy. For example, constraining the variation of olivine lattice preferred
orientation (LPO) produced during simple shear is key to interpreting seismic anisotropy
in terms of upper mantle convection (Hess, 1964; Nicolas and Christensen, 1987; Ribe,
1992; Mainprice and Silver, 1993; Blackman and Kendall, 2002). The relationships among
olivine deformation, LPO development and seismic anisotropy have been examined ex-
perimentally (Nicolas et al., 1973; Zhang and Karato, 1995; Bystricky et al., 2000). Ob-
servations from these experiments have been used to place constraints on models (e.g.,
Wenk and Tomé, 1999; Tommasi et al., 2000; Kaminski and Ribe, 2001) that predict LPO
development and thus upper mantle seismic anisotropy. Application of these models to
deformation in the earth is improved by comparison of experimental results to rocks de-
formed under natural conditions, i.e., at lower stress and strain rate than can be achieved
in laboratory experiments. To constrain deformation in the upper mantle, we analyzed the
evolution of olivine LPO as a function of shear strain in naturally deformed peridotites

from a shear zone in the Josephine Peridotite in southwest Oregon.

Mantle anisotropy results from ductile flow in the asthenosphere by dislocation creep,
which produces alignment of elastically anisotropic minerals. Olivine and orthopyrox-
ene, the dominant mineral phases in the upper mantle, have orthorhombic symmetry and
are anisotropic (Vp anisotropies of 22% and 16%, respectively; Nicolas and Christensen,
1987). At upper mantle pressure and temperature conditions, they deform by dislocation
creep, resulting in an LPO. Deformation is principally accommodated by slip on (010)[ 100]
and (001)[100] in olivine and on (100)[001] in orthopyroxene.

Zhang and Karato (1995) carried out simple shear experiments on olivine aggregates

at 1200°C and 1300°C over a range of shear strains to investigate olivine fabric evolution
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during deformation. They found that the originally random fabric of their aggregates de-
veloped an LPO with the [100] maxima parallel to the flow direction by a shear strain of
~150%, as had previously been suggested experimentally by Nicolas et al. (1973). While
the Nicolas et al. (1973) experiments were performed in an axial geometry, bubbles in
olivine grains aligned with the flow direction at high strain and were interpreted as having
deformed by simple shear. Bystricky et al. (2000) demonstrated that the [100] alignment

persists to high shear strains (500%).

The initial theoretical treatments of olivine LPO assumed that olivine grain orientations
are controlled by finite strain (e.g., McKenzie, 1979). As slip on (010)[100] has the low-
est activation energy (Bai et al., 1991), the olivine [100] axis was predicted to align with
the finite strain ellipsoid (McKenzie, 1979; Ribe, 1992). However, experimental results
(Nicolas et al., 1973; Zhang and Karato, 1995; Bystricky et al., 2000) indicate that only at
low strains (< 100%) does alignment of the olivine [ 100] axis coincide with the orientation
of the finite strain ellipsoid. This alignment may be more a coincidence than an indica-
tion of control oh the fabric by the strain geometry. The viscoplastic self-consistent model
(VPSC; Lebensohn and Tomé, 1993; Tommasi et al., 2000) approaches alignment of the
olivine [100] maxima with the flow direction, but does not achieve alignment due to the
lack of dynamic crystallization in the model. Models that include dynamic recrystalliza-
tion (e.g., Wenk and Tomé, 1999; Kaminski and Ribe, 2001) are able to produce alignment
with the shear direction. For example, the DRex model (Kaminski and Ribe, 2001, 2002)
achieves a good fit to the experimental data and is parameterized to predict the time-scale

for LPO evolution.

We present data from peridotite samples that provide a guide for the extrapolation of
experimental results (Nicolas et al., 1973; Zhang and Karato, 1995; Bystricky et al., 2000)
to natural conditions. Studies of deformation in naturally deformed peridotites are often

hindered by the lack of a well-defined finite strain marker. The Josephine Peridotite is
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ideal for the analysis of fabric evolution with shear strain as it has a pre-existing foliation,
defined by variations in pyroxene content, which provide a passive strain marker, as shown
in Fig. 3.1. In addition, variations in pyroxene content permit assessment of the effects of
secondary phases on olivine LPO development.

The Josephine Peridotite in southwestern Oregon is the mantle section of a ~150 Ma
ophiolite from a fore-arc or back-arc setting (Dick, 1976; Harper, 1984; Kelemen and Dick,
1995). The peridotite is predominantly composed of harzburgite, with pyroxene-rich layers
in some localities (Dick and Sinton, 1979). A series of shear zones, described by Loney
and Himmelberg (1976) and Kelemen and Dick (1995), outcrop over a distance of 300 m
in the Fresno Bench area of the Josephine Peridotite. The shear zones are defined by the
sub-vertical to vertical transposition of the originally sub-horizontal lithological layering
and by highly lineated pyroxene textures at the centers of the transposed layers (Fig. 3.1).
The shear zones vary in width from ~1 m to 60 m and exhibit right lateral displacement
with a component of NW-down vertical movement (Kelemen and Dick, 1995). Foliations
at the shear zone centers strike 035-045°, with a maximum dip of 90° in the highest strain
shear zones.

Maximum temperatures during deformation are constrained by syn-deformational mag-
matic features. Some of the shear zones cut or are cut by dunites, pyroxenites or gabbroic
segregations, implying that temperatures during deformation may have been upwards of
~1200°C. The lower temperature limit during deformation is constrained by geothermom-
etry of coexisting pyroxene neoblast pairs in deformed harzburgites. Harding (1988) esti-
mated a temperature range of 900-1100°, while Himmelberg and Loney (1973) estimated

a temperature of ~1000°, both from two pyroxene thermometry.
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3.2 Methods

We analyzed olivine fabrics in harzburgites from the widest of the Josephine shear zones,
shown in Fig. 3.1. The shear plane is approximately vertical, based on observations of how
it cuts across topography along strike and the similar orientation of nearby shear zones
with higher strains (Kelemen and Dick, 1995). Based on our field observations and those of
Kelemen and Dick (1995), the shear plane is oriented at 035°/90° with a lineation plunge of
S0°NE. Harzburgite and inter-layered dunite samples were collected on a NW-SE transect
across the shear zone; the pyroxene layer orientation was measured wherever possible. In
the geographic reference frame, the pyroxene layers dip 10°SW outside of the shear zone

and reach a maximum dip of 75°SW at the shear zone center (Table 3.1).

A kinematic cross section of the shear zone is shown in Fig. 3.2A, oriented, with the
X-axis defined as being parallel to the shear direction and the Z-axis defined normal to the
shear plane. This X-Z frame of reference is used for the remainder of the figures. For the
cross section, the field data are rotated and projected onto the plane 305°/50°NE, which lies
perpendicular to the shear plane. In this kinematic reference frame, the pyroxene layers are
at an angle of 78° to the shear plane outside of the shear zone and are rotated to an angle of

10° at the center of the shear zone (Table 3.1).

Strain across the shear zone is calculated from the change in pyroxene layer orienta-
tion in the kinematic reference frame, shown on the stereonet in Fig. 3.2B. Following the

method of Ramsay and Graham (1970), shear strain, v, is given by:

v = cot(a') — cot(a) (3.1

where « is the initial angle of the pyroxene layering with respect to the shear plane and o
is the deflected angle, as shown in Fig. 3.2C. If the pyroxene layering was initially perpen-

dicular to the shear plane (=90), shear strain would be calculated from the cotangent of
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the deflection angle. However, as shown in Fig. 3.2 and Table 3.1, the layering is initially

at an angle of 78° to the shear plane.

A maximum shear strain of 525% is reached at the center of the shear zone. The shear
zone is 50-60 m wide, with a total displacement across the shear zone of 60 m, based on the
area under a distance versus strain curve (Ramsay and Graham, 1970). The deflection of
the pyroxene layers as a passive strain marker is not the same as the evolution of the finite
strain ellipsoid with increasing strain, as shown in Fig. 3.2C. In addition, when the passive
strain marker is not initially perpendicular to the shear plane, it is only coincident with the

finite strain ellipsoid at high strain, as indicated in Table 3.1.

For fabric analyses, the Josephine samples were cut on the plane 305°/50°NE. Thin
sections were prepared with one edge parallel to 305°, so that all fabric data can be ori-
ented with the X-axis parallel to the shear direction and the Z-axis normal to the shear
plane. Grain size in two samples, shown in Fig. 3.3, was measured by the line intercept
method (Underwood, 1970). We applied a geometric correction factor of 1.75 (Pickering,
1976), which is consistent with the Van der Wal (1993) olivine piezometric data. Average
grain size was calculated using the geometric mean, as the grain size distribution is ap-
proximately log-normal and thus the geometric mean represents the size with the greatest

frequency (Underwood, 1970).

Olivine LPOs were measured on polished thin sections using a JEOL 840 SEM with an
electron backscatter diffraction (EBSD) detector and HKL Technology’s Channel 5 soft-
ware package. Thin sections were prepared for analysis by polishing with 0.03,/m colloidal
silica for >2 hours. To limit charging during EBSD analysis, thin sections were coated with
gold, then polished for one minute to remove gold from grain surfaces, while leaving gold
along cracks and grain boundaries. Samples were mapped for orientations and mineral
phases at 40x magnification and 40-100 pm step sizes. Between 24 and 48 overlapping

maps were made per thin section and these were combined into a single image using the
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Channel 5 program MapStitcher.

EBSD maps (Fig. 3.4) have ~50% indexed data, following rejection of all points with
a mean angular deviation (MAD) number >1°. The MAD number quantifies the mis-
match between lattice planes in a calculated orientation and lattice planes quantified from
the digitized diffraction pattern bands. The MAD number provides an indication of data
quality, with high numbers resulting from surface roughness and computer mis-indexing.
Data were further processed by removing wild spikes and replacing these, and points with
zero solutions, with the most common neighbor orientation. Wild spikes are single pixels
(i) which are misoriented by >10° from the average orientation of the surrounding eight
pixels and (ii) for which the maximum misorientation between any two of the surrounding
eight pixels is <10°. See Warren and Hirth (2006) for a more detailed discussion of our
EBSD data processing techniques.

Pole figures and inverse pole figures, shown in Figs. 3.4-3.6, are calculated using one
point per grain. Pole figures are equal area lower hemisphere projections and inverse pole
figures are equal area upper hemisphere projections. All datasets contain >200 grains,
as Ben Ismail and Mainprice (1998) have demonstrated that >100 grain are necessary to
provide robust estimates of fabric pattern and strength. Grain boundaries are defined by

misorientations >10° between adjacent points and subgrains by 2°-10° misorientations.

3.3 Results

From analyses of nine samples across the Josephine shear zone, we find that the olivine
[100] maxima, initially oriented at 62° to the shear plane, is aligned parallel to the shear
direction at the center of the shear zone. To visually demonstrate the change in olivine
orientation with strain, EBSD orientation maps and inverse pole figures of a low strain and
a high strain sample are shown in Fig. 3.4. Olivine is colored as a function of the angle

between the [100] axis and the shear plane. In the 65% strain sample, the majority of
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grains are mid-blue in color, corresponding to a relatively high angle to the shear plane. In
contrast, many grains in the 525% strain sample are dark blue, indicating alignment with

the shear plane.

The inverse pole figures in Fig. 3.4B show the orientation of individual grains parallel
(X) and perpendicular (Z) to the shear plane. At 65% strain, while considerable scatter
exists in the distribution, the maximum density of points in the X-section is oriented 37° to
[100]. In the Z-section, the maximum density is close to [001] with a low density around
[010], suggesting that (001) is better aligned as the slip plane during the initial realignment
of the fabric. At 525% strain, the highest density of points in the X-section is around [ 100].
In the Z-section, points cluster around [010] with scatter towards [001], indicating that both
(010) and (001) are well oriented as slip planes. The Z-section also indicates that the same

grain cannot be well oriented for slip on both (010) and (001).

Pole figures of olivine orientation are shown in Fig. 3.5 for the harzburgites and Fig.
3.6 for the dunite. Outside of the shear zone, the peridotite has a pre-existing LPO, with
the olivine [100] maxima sub-parallel to the pre-existing foliation (also shown on the map
cross section in Fig. 3.2A). In samples with shear strains up to 168%, the olivine [100]
maxima remains inclined to the shear plane, with only a moderate rotation away from the
original LPO (Fig. 3.5). Between a shear strain of 168% and 258%, the olivine LPO rotates
so that the [ 100] maxima is sub-parallel to the shear plane. At higher shear strains, the [100]

maxima remains sub-parallel to the shear plane.

The behavior of olivine [010] and [001 ] axes with increasing strain is more variable than
the [100] axis (Fig. 3.5). Outside of the shear zone, (010) planes are sub-parallel to the
pyroxene layering, suggesting that (010) was the dominant slip plane during the previous
deformation event. At low strain, (001) is sub-parallel to the local layering, suggesting that
(001) is initially the dominant slip plane during the fabric realignment. However, at high

strain, (010) is sub-parallel to the transposed pyroxene layering. In addition, at high strain,
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(010) and (001) in the harzburgites exhibit girdles, whereas in the dunite they approximate

a single maxima (Fig. 3.6).

Grain size and shape remain relatively constant during deformation, despite the change
in olivine LPO. Photomicrographs and grain size distributions of two samples, one at low
strain and the other at high strain, are shown in Fig. 3.3. At low strain, pyroxenes are
slightly elongated, with their long axes approximately aligned with the pyroxene layer-
ing and the olivine [100] maxima. Olivine grains are generally equant, with an aspect
ratio (X:Z) of 1.1. At high strain, both orthopyroxenes and olivines are equant, with an
olivine aspect ratio of 1.2. The lack of stretched grains indicates significant recrystalliza-
tion occurred during deformation. The mean grain size is 0.57 mm in the low strain sample
and 0.54 mm in the high strain sample. The grain size distributions in Fig. 3.3B are ap-
proximately log-normal, with recrystallization resulting in deviations from the log-normal

distribution at small grain sizes (<0.5 mm).

The variation of the angle of the olivine [100] maxima to the shear plane with strain is
compared to experimental results and models in Fig. 3.7. The angle of the olivine [100]
maxima relative to the shear plane was determined using eigenvector analysis provided by
the program PFch5.app (courtesy of D. Mainprice). The first eigenvector of the orientation
tensor represents the mean direction of a crystal axis and is called the principal axis (Wood-
cock, 1977). We assume that this principal axis is more representative of the average [100]
orientation than the location of the maximum density of data on the pole figure. In Fig.
3.7, we use the principal axis orientation to plot the variation of olivine [100] maxima with
shear strain. In comparison to experiments, the Josephine samples are observed to require

higher strain to align with the shear direction.

The strength of an LPO can be quantified using either the J-index (Bunge, 1982; Main-
price and Silver, 1993) or the M-index (Skemer et al., 2005), both of which are plotted for

our samples in Fig. 3.8 as a function of shear strain. In addition, we plot the published
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J-index values for the experimental datasets and models. Both indexes quantify overall
fabric strength of all three olivine axes combined. The M-index quantifies the deviation
of the uncorrelated misorientation angle distribution from a random crystal misorientation
distribution (Skemer et al., 2005). Uncorrelated misorientation angles represent the an-
gular difference in orientation (i.e. misorientation) between random grain pairs (i.e., not
necessarily adjacent). The M-index varies between O for a random fabric and 1 for a sin-
gle crystal. The J-index is a dimensionless characterization of the orientation distribution
function (ODF) of crystal orientations as specified by Euler angles. It describes the distri-
bution of Euler angle rotations away from a single crystal orientation, varying between |
for a random LPO and infinity for a single crystal. In practice, the J-index has a maximum
value of 250, as the ODF is truncated at degree 22. For our J-index calculations, we used
the program SuperJctf.app (courtesy of D. Mainprice) with a 10° Gaussian half-width, data
clustered in 1° bins and combined even and odd spherical harmonics.

In the Josephine samples, neither the M-index nor the J-index demonstrate a significant
increase in fabric strength with strain. The J-index is relatively constant as a function of
shear strain and typically in the range 5-8. The M-index initially increases in strength but
then is relatively constant with an average value of 0.14. The only exception is the 386%
strain harzburgite, which has a visibly weaker fabric in the pole figure (Fig. 3.5) and the

lowest J- and M-index values.

3.4 Discussion

Our results on olivine LPO evolution during simple shear extend observations of LPO
variations to lower stresses and strain rates than available from experimental datasets (Zhang
and Karato, 1995; Bystricky et al., 2000). While our observations broadly agree with the
experimental observations, our results suggest that a pre-existing LPO influences the strain

necessary for LPO alignment with the shear direction. In addition, the pre-existing LPO
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and the presence of secondary phases affect the behavior of olivine slip systems during
deformation.

The orientation of the olivine [100] maxima as a function of shear strain in the Josephine
shear zone is compared to the experimental datasets and models in Fig. 3.7. The ex-
periments and models initially have a random fabric, whereas the [100] maxima in the
Josephine harzburgites initially lies at an angle of 62° to the shear direction and has a
J-index of 6.2. Also in the natural samples, the [100] maxima does not align with the
shear direction until ~250% strain, whereas alignment occurs before 200% strain in the
Bystricky experiments and ~150% strain in the Zhang and Karato experiments. Below, we
compare our results in more detail to LPO evolution models and then discuss the effects
of a pre-existing LPO, grain size and secondary phases on the behavior of olivine during

deformation in the upper mantle.

3.4.1 Comparison to LPO evolution models

As a tool for predicting and interpreting seismic anisotropy, various theoretical models
predict olivine LPO evolution during deformation (for a review, see Tommasi et al., 2000).
The evolution of the olivine [100] axis with strain is shown for four models in Fig. 3.7. Two
are end-member models that assume the olivine LPO follows either the shear direction
or the finite strain ellipsoid (McKenzie, 1979; Ribe, 1992). The experimental datasets
(Nicolas et al., 1973; Zhang and Karato, 1995; Bystricky et al., 2000) demonstrated that
these end-member models do not accurately predict the evolution of olivine LPOs with
shear strain, and the Josephine data agree with this conclusion. The best fit of the VPSC
(Tommasi et al., 2000) and DRex (Kaminski and Ribe, 2001) models to the Zhang and
Karato experiments are also shown in Fig. 3.7.

The VPSC model is a parameterization of the deformation of an olivine aggregate

that treats each grain as an inhomogeneity embedded in a homogeneous effective medium
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(Lebensohn and Tomé, 1993). The average stress and strain rate for all grains is constrained
to be consistent with the equivalent macroscopic magnitudes. A reasonable match of VPSC
pole figures to experimental pole figures is achieved by relaxing the strain compatibility re-
quirement, but the evolution of the olivine LPO does not occur at low enough shear strain
to be consistent with either the experiments or the natural samples. The VPSC line shown
in Fig. 3.7 is for a model run to 350% shear strain with a dimensionless strain compatibility
value of a=100. Linear extrapolation to higher strain suggests that the [100] maxima will
only align with the shear direction at ~1000% shear strain. However, the VPSC model is
not well constrained at >100% strain, as it does not account for complexities associated

with highly deformed grains (Blackman et al., 2002) or recrystallization.

To obtain a better match to experimental data, Wenk and Tomé (1999) and Kaminski
and Ribe (2001) developed models that include dynamic recrystallization, which has been
demonstrated to occur at high strain and temperature (Carter, 1976; Karato, 1988). In both
models, recrystallization is treated as a balance of grain boundary migration (relatively
undeformed grains replace highly deformed grains) and grain nucleation (highly deformed
grains nucleate strain-free subgrains with the same orientation). DRex (Kaminski and Ribe,
2001) predicts the deformation of an olivine aggregate by defining a local velocity gradient
tensor for each grain and a macroscopic velocity gradient tensor. A good fit to the exper-
imental data is provided by optimizing the dimensionless grain boundary migration (A*)
and grain nucleation (\*) parameters. For M*=200 and \*=5, the [100] maxima aligns
with the flow direction by 100% strain and pole figures are in good agreement with the
Zhang and Karato experiments. DRex is a computationally simpler model than VPSC, but
relies on two adjustable parameters, whereas VPSC has only one. In addition, the relative
stress necessary for activation of different slip systems is specified in all models based on

experimental data (e.g., Bai et al., 1991).

In detail, the Josephine shear zone data do not agree with predictions from either VPSC
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or DRex, which were both optimized to fit the Zhang and Karato experiments (Fig. 3.7).
The transition to a shear aligned fabric in the Josephine harzburgites occurs at significantly
lower strain than predicted by VPSC, due to the absence of dynamic recrystallization in
VPSC. DRex has a similar rate of change of LPO with strain, when compared to the
Josephine samples. However, the change occurs at lower shear strain in DRex, proba-
bly due to the initially random LPO in DRex. The predicted DRex pole figures have more
pronounced maxima than the Josephine samples, which is likely a result of the absence of
secondary phases in DRex (discussed below). A more recent version of DRex allows for
incorporation of orthopyroxene (Kaminski et al., 2004), but the effect of orthopyroxene on

pole figure patterns has not yet been explored.

3.4.2 Active slip systems and the pre-existing LPO

We suggest that the high strain necessary for [100] alignment in the Josephine samples
is related to the high initial angle of the [100] maxima to the shear plane. The olivine slip
system (001)[100] dominates at low strain, which probably relates to the initial orientation
of (001) with respect to the principle compressive stress, o;. If oy is assumed to be at 45°
to the shear plane and in the plane of deformation, then the [100] maxima is calculated to
have an angle of 78° to ¢, and to lie outside of the plane of deformation. The olivine [010]
and [001] maxima are calculated to have initial angles of 41° and 53° to o, respectively.
Hence both (010) and (001) are well aligned as slip planes, but [100] is poorly aligned
as the slip direction. Movement along any other glide direction apart from [100] in olivine
requires higher stress or high water contents (e.g., Jung and Karato, 2001). Re-alignment of
the [100] maxima into the plane of deformation and parallel to the shear direction requires
dislocation creep and recrystallization. We conclude that the initial angle of the [100]
maxima affects the amount of strain necessary for re-alignment. For example, if the olivine

[100] maxima was initially at <45° to o, and the shear direction, we anticipate that only a
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small amount of strain would be necessary for alignment with the shear direction.

The behavior of the olivine [010] and [001] axes with increasing strain suggests that
the dominant slip system in olivine varied during deformation. The orientation of the [100]
maxima does not vary significantly until it changes between 161% and 258% strain (Fig.
3.5). In contrast, (010) is well aligned for slip outside the shear zone (in the previous
kinematic reference frame), whereas at low strain (001) is better aligned. Our observations
suggest that from 65% to 131% strain, the dominant slip system is (001)[100], instead of
the “typical” (010)[100] system. At strains >168%, both slip systems are equally active,

indicated by variable amounts of girdling in the [010] and [001] pole figures (Fig. 3.5).

Variation of the dominant olivine slip plane between (010) and (001) suggests that re-
alignment of the LPO is accommodated by rotation during slip on these two planes, com-
bined with recrystallization. In contrast, in the Zhang and Karato experiments, [010] and
[100] are observed to rotate around the perimeter of the pole figure with increasing strain,
while [001] is generally inactive in all experiments (Zhang et al., 2000). Their results sug-
gest that alignment of [100] with the shear direction is accomplished predominantly by
grain rotation and slip on (010)[100]. In contrast, in the Josephine samples, the fact that
[100] and [010] do not rotate around the perimeter of the pole figure indicates that LPO re-
alignment is not accomplished simply by rigid grain rotation. Instead, we suggest that the
LPO re-alignment occurs by internal rotation within the olivine crystal during dislocation

creep on (010)[100] and (001)[100].

The presence of a pre-existing LPO is particularly relevant to modeling anisotropy dur-
ing corner flow beneath ridge axes and subduction zones. The rate at which LPO re-aligns
has been included in more recent versions of DRex (Kaminski and Ribe, 2002; Kaminski
et al., 2004) and in recent mantle flow models that predict anisotropy (e.g., Conrad et al.,
2007). Our results can be used in these models to better constrain the amount of strain nec-

essary for LPO alignment. While the upwelling mantle may initially have no fabric, during
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active upwelling it will develop an LPO with the olivine [100] axis vertically aligned (e.g.,
Blackman et al., 1996). After corner flow, the LPO will be poorly oriented with respect
to oy, requiring more strain for the [100] axis to align horizontally than if it formed from
a random fabric. Alternatively, as the mantle undergoes corner flow, the change in olivine
orientation may be able to track the change in o, orientation, depending on the rate at which

LPO re-aligns versus the rate of plate spreading.

3.4.3 LPO Strength

Fabric strength, or the amount to which minerals align, is another important parame-
ter for constraining seismic anisotropy. In Fig. 3.8, the strengths of Josephine LPOs are
compared to the experimental datasets and model predictions. The Zhang and Karato ex-
periments have similar fabric strengths to the Josephine samples at 1200°C, but at 1300°C
the experiments reach stronger fabrics at higher strain. Comparison of the pole figures for
the high temperature experiments (Zhang et al., 2000) to the Josephine samples reveals
that the strengths of the [100] peaks are similar, but that the experimental samples have
much stronger [010] and [001] fabrics. Hence, the rapid increase in J-index with shear
strain observed in the experiments is a result of alignment of the [010] and [001] axes. In
the Josephine samples, [010] and [001] tend to have girdled patterns, leading to weaker
J-indexes.

The high strain torsion experiments of Bystricky et al. (2000) have increasing J-indexes
with strain, but at a lower rate than observed in the Zhang and Karato experiments. The
maximum J-index value among the Bystricky experimental samples is similar to the max-
imum value among the Josephine natural samples. However, the Bystricky experiments
suggest that fabric strength will continue to increase with increasing strain, whereas the
Josephine samples do not. These differences may be due to a combination of an initially

random fabric and a lack of secondary phases in the experiments.
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Both DRex and VPSC predict rapidly increasing fabric strength with shear strain. While
the models initially have a random fabric and hence the fabric strength must increase at
low strain when an LPO forms, the continued increase in the models does not match our
observations. In the limit of infinite strain, the models would reach a single crystal fabric
that has not been observed in natural samples. We suggest that this discrepancy is due
to the fact that the models do not account for all processes occurring during deformation.
For example, the presence of secondary phases in peridotites is one limitation on fabric
strength, as it promotes slip on multiple systems.

The M-index is a more recently developed quantification of fabric strength than the J-
index (Skemer et al., 2005) and has not be calculated for the majority of published data.
Both indexes follow the same general trend with shear strain in Fig. 3.8. In Fig. 3.9, we
compare the M-index to the J-index for the Josephine samples. The two indexes cannot be
directly related as they are based on different parameterizations of crystal orientation. A lin-
ear least squares regression through the dataset produces a reasonable correlation between
the J-index and M-index, with a correlation coefficient of 0.7. Improved understanding
of these indexes of fabric strength requires more published datasets to included values for
both the J- and M-indexes.

Overall, we observe lower LPO intensities than predicted by the VPSC and DRex mod-
els. The match is better for the experimental datasets, with the exception of the high tem-
perature, high strain experiments of Zhang and Karato (1995). These differences indicate
that the models do not replicate all aspects of the natural environment. However, seismic
properties are only weakly dependent on LPO intensity (e.g., Tommasi et al., 2000). For
the prediction of seismic anisotropy, the rate at which olivine aligns with the shear direction

is more important than the fabric strength which is produced.
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3.4.4 Grain size variation and recrystallization

Grain size reduction does not occur during the transition from low strain to high strain in
the Josephine samples. Both low and high strain samples have a grain size of 0.5-0.6 mm
and nearly equant grains (Fig. 3.3). The absence of stretched grains indicates that dynamic
recrystallization occurred during deformation. This further supports the observation from
the olivine pole figures (Fig. 3.5) that the LPO realignment was not the result of the rigid
rotation of olivine grains. Our observations are in contrast to the experiments (Zhang and
Karato, 1995; Zhang et al., 2000; Bystricky et al., 2000), which at high strain have stretched
and elongated grains. We suggest that these differences are related to the higher differential
stress used for the experiments, and the difference between initial and steady-state grain

size in the experiments.

The similar grain size at low and high strain in the Josephine samples indicates rela-
tively constant stress during deformation. In addition, stress must be continuous across the
shear zone. The olivine piezometer (Karato et al., 1980; Van der Wal et al., 1993) relates
dynamically recrystallized grain size to stress. As shown in Fig. 3.10, the piezometer in-
dicates that for a grain size of 0.5-0.6 mm, differential stress during deformation was ~10
MPa. The experimental datasets are also plotted in Fig. 3.10, for which the stress was
measured during the experimental run (Zhang et al., 2000; Bystricky et al., 2000). The
grain size estimates from Zhang et al. (2000) have been adjusted to the same geometrical
correction factor as the Van der Wal piezometric dataset (Van der Wal, 1993) and show rea-
sonable agreement with the piezometer. Differential stress estimated from the piezometer
can be used to estimate the strain rate during deformation of the Josephine peridotite. Us-
ing the olivine flow law for dislocation creep (Bai et al., 1991; Hirth and Kohlstedt, 2003)
at a temperature of 1100°C, we estimate a strain rate of 1072 s=! and a viscosity of 10!

Pas.

In the experimental datasets (Zhang and Karato, 1995; Bystricky et al., 2000), a second
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LPO maxima — [100] aligned perpendicular to o; — is observed. Lee et al. (2002) relate
this peak to grains that are poorly oriented for slip and thus have low dislocation densities.
These grains grow by grain boundary migration at the expense of well-oriented grains that
have developed high dislocation densities. The subset of grains with [100] aligned with
oy is not observed in the Josephine samples (Figs. 3.5 and 3.6). The important role of
grain boundary migration in the experiments is likely due to the higher differential stress,
which results a larger driving force for grain boundary migration. In contrast, at low stress,
we suggest that subgrain rotation is a more important process for fabric development than

grain boundary migration.

In the DRex model, the parameter M * controls grain boundary mobility during LPO
formation. At M*=0, the LPO predicted by DRex never aligns with the shear plane, but
instead aligns with the finite strain ellipsoid. For A *>0, the olivine [100] maxima aligns
with the shear plane, with decreasing amounts of shear strain necessary for alignment as
M* increases. The best fit of DRex to the 1300°C Zhang and Karato experimental data
is achieved when A/*=200, as shown in Fig. 3.7. The strain at which [100] aligns in the
Josephine samples is consistent with a AM* value of ~50. However, Kaminski and Ribe
(2001) also found a second [100] maxima when M*=50, observed in the experimental

samples but not the Josephine.

None of the current set of models for LPO formation accurately replicate the mi-
crostructural observations from the Zhang and Karato experiments. In the experiments,
the secondary [100] maxima results from the growth of grains that have low dislocation
densities and are poorly aligned for slip. In the DRex model (Kaminski and Ribe, 2001),
the secondary peak is produced by the formation of recrystallized grains perpendicular to
oy that are well oriented for slip. In the Wenk and Tomé (1999) model, the secondary
maxima occurs when grain boundary migration dominates over grain nucleation, similar

to the Zhang and Karato experiments. However, the primary [100] maxima is formed by
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nucleation of grains with low dislocation densities, in contrast to the Zhang and Karato
experiments (e.g., Lee et al., 2002). In the VPSC model, which does not include dynamic
recrystallization, the secondary [100] maxima is not observed, but alignment of the [100]
maxima with the shear direction also does not occur. Intriguingly, the model of Etchecopar
and Vasseur (1987) produces a single [100] maxima aligned with the shear plane. However,
this model does not accurately treat strain compatibility, as it includes only one olivine slip

system and assumes recrystallization of all grains to minimize grain misfits.

3.4.5 Effect of secondary phases

In the Josephine samples, girdle patterns are observed among the high strain harzbur-
gites, whereas the high strain dunite has point maxima (Figs. 3.5-3.6). In the VPSC model,
girdled patterns are produced by relaxing the strain compatibility requirement (e.g., a=100)
and equating the critical resolved shear stress for slip on (010)[100] and (001)[100]. Simi-
larly, DRex produces a girdle pattern by allowing these two slip systems to have equal soft-
ness, whereas a point maxima is only produced when slip on (001)[100] is twice as hard as
slip on (010)[100]. These observations suggest that the secondary phases (pyroxenes and
spinel) in the Josephine harzburgites provide a mechanism for promoting dominant slip on
both (010)[100] and (001)[100], by relaxing the strain compatibility requirement.

We suggest that strain compatibility in the harzburgites is effectively relaxed by a re-
duced grain size that leads to a component of dislocation-accommodated grain boundary
sliding (DisGBS). Secondary phases limit olivine grain growth in the harzburgites, as has
been observed in mylonites (Warren and Hirth, 2006) and in Oman Ophiolite harzburgites
and dunites (Braun, 2004). At a smaller grain size, some deformation is by DisGBS, which
accommodates deformation by the movement of dislocations within crystals and by grain
boundary sliding (Hirth and Kohlstedt, 2003; Drury, 2005; Warren and Hirth, 2006). Fol-

lowing (Braun, 2004), we conclude that grain boundary sliding during DisGBS relaxes the
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requirement for slip on the hardest olivine slip system, (010)[001], as otherwise required
by the von Mises criterion (von Mises, 1928). Consequently, a significant component of
slip is accommodated by (001)[100], which has only a slightly larger critical resolved shear
stress with respect to the (010)[100] slip system (Bai et al., 1991). In contrast, deformation
in the dunite is by dislocation creep due to a slightly larger grain size and thus activity of
the hard slip system (010)[001] limits activity on (001)[100].

Evidence for relaxation of the strain compatibility requirements is also observed in the
Bystricky et al. (2000) torsion experiments, which have girdled pole figure patterns. The
high stress and strain rate of the experiments results in dynamic recrystallization to a grain
size of 3-4 um, within the field for dominant deformation by DisGBS (Hirth and Kohlstedt,
2003; Drury, 2005; Warren and Hirth, 2006). In this situation, secondary phases are not

necessary to limit grain size during the experiment.

3.5 Conclusions

At low strain in a shear zone in the Josephine Peridotite, the olivine LPO is at an angle
of ~50° to the shear direction, whereas at >258% strain, the olivine [100] maxima is
aligned with the shear direction. Our results on olivine LPO evolution during shear are
consistent with the conclusion from experimental data (Zhang and Karato, 1995; Bystricky
et al., 2000) that olivine LPO aligns with shear direction during deformation. However,
the naturally deformed samples require higher shear strains for alignment to occur and
fabric strength does not increase with shear strain. Consequently, the Josephine shear zone
data do not agree in detail with predictions from polycrystal plasticity models (Wenk and
Tomé, 1999; Tommasi et al., 2000; Kaminski and Ribe, 2001), which have been fit to the
experimental datasets.

In comparison to the experimental datasets and the model predictions, the natural sam-

ples have (i) a pre-existing LPO, (ii) no significant variation in LPO strength, (iii) secondary
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phases in addition to olivine, and (iv) recrystallization without grain size reduction at high
strain. The higher strain necessary for LPO alignment in the Josephine samples appears to
be related to the orientation of the pre-existing LPO. The realignment of the olivine grains
is not simply a passive rotation, due to the observation of slip on both (010)[100] and
(001)[100] during the fabric realignment. We suggest that the initial activity of (001)[100]
is due to the orientation of the pre-existing LPO, whereas at high strain, activation of
(001)[100] 1s facilitated by the presence of additional phases in the peridotite. We also
suggest that secondary phases pin olivine grain size, leading to deformation by DisGBS
and similar amounts of activity on two olivine slip systems. The lack of significant grain
size reduction in the Josephine samples indicates that stress was relatively constant during
deformation. In addition, from comparison to the models and from thin section observa-
tion, we conclude that recrystallization by subgrain rotation dominates over grain boundary
migration in the natural setting. Our results extend the observations of olivine LPO evolu-
tion to much lower stresses and strain rates than are accessible experimentally and indicate
the importance of a pre-existing fabric and secondary phases for the evolution of anisotropy

with shear strain.
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Figure 3.1: Photo of deformed layers in a Josephine shear zone, with the trace of the
pyroxene layers outlined. Deflection of the regional pyroxene layering by right lateral
shear provides a passive marker of strain.
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Figure 3.2: (A) X-Z cross-section of the shear zone constructed from field data of sample
locations and the strike and dip of pyroxene layers. This map is in the kinematic reference
frame, perpendicular to the shear plane and parallel to the shear lineation, represented by
the plane 305°/50°. Circles indicate sample locations, with analyzed samples indicated by
filled circles. The pyroxene layer orientations are shown by blue lines and the orientations
of olivine [100] maxima (from EBSD data) by red lines. (B) Stereonet of the variation of
pyroxene layer orientations with respect to the shear plane. To represent the true deflection
of a passive strain marker by shear deformation, the data have been rotated and projected
onto the plane perpendicular to the shear plane, as in the map cross-section. The angle «
is the initial angle of the pyroxene layering outside the shear zone. (C) The geometrical
relationship of shear strain, v, to the orientation of a marker layer, which initially lies at
an angle, «, to the shear plane and is deflected to a smaller angle, o’. The orientation of
the finite strain ellipsoid long axis, represented by deflection through the angle 6, is not
coincident with the marker layer. Diagram adapted from Ramsay and Graham (1970).
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Figure 3.3: (A) Cross-polarized photomicrographs of low strain (65%) and high strain
(525%) harzburgites. Solid lines indicate field-measured orientations of pyroxene layers
and dashed lines indicate EBSD-determined orientations of olivine [100] maxima. Note
that the high strain sample has a higher degree of alteration, especially among pyroxenes.
(B) Histograms of grain intercept lengths parallel (black) and perpendicular (grey) to the
shear direction. Dashed lines indicate the geometric mean intercept length and solid curves
indicate the theoretical log-normal distribution. The average grain size (d) is calculated
from intercept length using a geometric conversion factor of 1.75 (Pickering, 1976). (C)
Log-normal histograms of intercept length, with geometric mean intercept length (dashed
lines), 1o deviations (solid lines) and theoretical distributions (solid curves) also shown.
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Figure 3.4: (A) EBSD maps of the same sample areas as shown in Figure 3.3. Grey in-
dicates secondary phases (orthopyroxene, clinopyroxene, and spinel) and white areas have
no data. Olivine is shaded as a function of the orientation of the [100] axis from the shear
plane. Dark grains are aligned closely with the shear plane whereas light grains are at a
high angle to the shear plane. The solid line is the field-measured orientation of the py-
roxene layers and the dashed line is the EBSD-determined orientations of the olivine [100]
maxima. (B) Inverse pole figures for olivine, demonstrating orientations parallel (X) and
perpendicular (Z) to the shear plane. At low strain, grains are oriented with their axes at
an angle to both the X and Z directions. At high strain, the majority of grains are oriented
with [100] parallel to X and either [010] or [001] parallel to Z.
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Figure 3.5: Olivine pole figures for harzburgites, with the shear plane (dashed line) parallel
to X and pyroxene layering indicated by a solid line. Contouring is multiples of a uniform
distribution (MUD), with a dashed line at 1 MUD. Maximum MUD values are identified
below each individual pole figure. Misorientation distributions are for uncorrelated an-
gles, with M-index values indicated. The solid line is the theoretical orthorhombic random
distribution (Grimmer, 1979).
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Figure 3.6: Olivine pole figure and misorientation distribution for a high strain dunite sam-
ple. As in Figure 3.5, the pole figure is oriented with the shear plane (dashed line) parallel
to X, the pyroxene layering indicated by a solid line, and contour from 0 to 9 MUD. In
contrast to the high strain harzburgites, the dunite has more pronounced [010] and [100]
maxima.
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Figure 3.7: Angle of the olivine [100] maxima to the shear plane as a function of shear
strain in the Josephine peridotites, experiments and models. The Josephine harzburgites
are shown as filled circles and the dunite as an open circle. The models and experiments
initially have a random fabric, represented by an average angle of 45° to the shear direction.
The experimental data are from Bystricky et al. (2000) and Zhang and Karato (1995). The
simplest models are FSE, which follows the finite strain ellipsoid and Shear, which follows
the shear direction. VPSC is the best fit (=100) of the viscoplastic self-consistent model
(Tommasi et al., 2000) to the experiments. DRex is the best fit (M*=200) of the dynamic
recrystallization model to the experiments (Kaminski and Ribe, 2001). Similar results to
DRex were reported by Wenk and Tomé (1999) using a VPSC model which included re-
crystallization.
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Figure 3.8: (A) Variation in the J-index as a function of shear strain. Dashed line indi-
cates the theoretical lower limit (i.e. a random fabric) for the J-index. The results for
the Josephine harzburgites are shown as filled circles and the dunite as an open circle.
Also shown are the Bystricky et al. (2000) high strain experiments, the Zhang and Karato
(1995) experiments (from the J-index calculation by Tommasi et al., 2000), the VPSC
model (a=100; Tommasi et al., 2000) and the DRex model (M*=200; Kaminski and Ribe,
2001). (B) Variation in the M-index as a function of shear strain in the Josephine samples.
The M-index varies between O for a random fabric and 1 for a single crystal fabric (Skemer
et al., 2005).
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Figure 3.9: Variation of the J-index versus the M-index for the Josephine samples. Filled
circles are harzburgites and the open circle is the dunite. The line is a minimum least
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Figure 3.10: The olivine piezometer — the variation of stress with grain size — as deter-
mined by experimental data (Karato et al., 1980; Van der Wal et al., 1993). The piezometer
is use to estimate differential stress in the shear zone from the grain size of the Josephine
samples at 65% and 525% shear strain. Also shown are the Zhang and Karato experiments,
from the analysis by Zhang et al. (2000), and the Bystricky et al. (2000) experiments. The
Zhang and Karato dataset has been re-adjusted to a geometric correction factor of 1.75
(Van der Wal, 1993), for consistency with our results and the piezometer.
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Table 3.1: Sample locations, strikes and dips, and the results of strain and fabric analyses.

Dist. (m) Field Rot&Proj®  Shear Angle¢ Fabric Strength
Sample? X Z Strike/Dip ~ Strike/Dip ~ Strain = « 6  [100] J-index M-index
3923J101 H 62 222  245/10 192/90 0 78° n/a  62° 6.2 0.08
3923102 D 49 234
3923J03 H 89 189  210/30 216/90 51%  54°  38°
3923J04 D 89 174
3923105 D 89 210
3923J06 H 4.1 222
3923J07 D 4.1 234  200/25 208/90 32% 62° 40°
3923J08 D 83 135
3923109 H 83 135  210/40 226/90 81%  44° 34°
3923J]10 H 45 155
3923111 H 45 155  210/35 221/90 65% 49° 36° 37° 53 0.12
3923112 D 68& 127
3923J13 H 6.8 127  215/47 234/90 118% 36° 30° 49° 7 0.16
3923714 H 0.0 7.7 210/52 237/90 131% 33° 28° 61° 8.8 0.20
3924J01 H -3.6 5.6
3924102 D -44 107
3924J03a H  -1.1 3.6 215/70 254/90  337% 16° 15°
3924J03bD  -1.1 3.6 215/70 254/90  337% 16° 15°
3924104 D -1.0 6.1
3924105 D -44 1.5
3924J106 H -4.4 1.5  215/65 250/90  258% 20° 19° 4° 7.0 0.17
3924107 D -5.0 0.0
3924J08 H -5.0 0.0  217/65 260/90  525% 10° 10° e 7.5 0.14
3924J09aH -3.7 -0.5  218/65 256/90  386% 14° 14°  11° 3.4 0.06
3924J09pD  -3.7  -0.5  218/65 256/90  386% 14° 14° 0° 6.3 0.13
3924J10 H -1.5 -24  214/56 242/90 168% 28° 25° 33° 7.8 0.16
3924111 D -1.5 20
3924J12 D -08 -29  215/55 242/90 165% 28° 25°
3924113 H 08 -62  215/43 231/90 100% 39° 32°
3924J14 D -06  -69
3924J1S H -19 -94 21324 210/90 36%  60°  40°
3924J16 H -33 -125  214/18 203/90 21% 67° 42°
3924J17 D -50 -13.2
3924)J18 H -44 -142  228/18 204/90 23%  66° 42°
3924J19 H -0.8 -229  230/10 193/90 2%  77° 45°

@ Sample lithology - harzburgite (H) or dunite (D).
¥ Data have been rotated and projected onto the plane 305/50.
¢ Angle from shear plane to pyroxene foliation (), finite strain ellipsoid (6), and olivine [100] maxima.
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Chapter 4

An Assessment of Mantle Heterogeneity
and Depletion Based on Abyssal
Peridotite Isotope and Trace Element
Compositions

Abstract

Abstract

The size and scale of heterogeneity and the full extent of depletion of the asthenospheric
mantle cannot be fully constrained by basalt chemistry. We present detailed isotope and
trace element analyses of pyroxene mineral separates, from veined and unveined abyssal
peridotites, that demonstrate greater variability of the mantle on smaller length-scales than
has previously been observed. The isotopic range within one dredge from the Southwest
Indian Ridge (SWIR) covers 46% of the entire Indian Ocean basalt range for 3Nd/!'**Nd.
Radiogenic ingrowth during upwelling and exposure on the seafloor are shown to be neg-
ligible, producing <0.01% change in Nd isotopic composition. Cpx and Opx pairs from
the same sample are generally in Sr but not Nd isotopic equilibrium. This may reflect Opx
rare earth element disequilibrium due to slow diffusion following recent melt-rock reac-
tion. Pyroxenite veins in abyssal peridotites are found to have overlapping compositions
with their host peridotites. Combined with other compositional characteristics, we suggest
that they formed recently by melt crystallization, rather than as direct remnants of recycled
oceanic crust.

The average isotopic composition of peridotites is found to be similar to that of basalts,
though peridotites extend to more depleted compositions. These depleted compositions
should be accompanied by depletions in trace element concentrations. As basalts are mix-
tures of melts, they will be dominated by the least depleted peridotite source and the signa-
ture of the most depleted peridotite will not be preserved in the melt.
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Abyssal peridotite Cpx Nd isotopic compositions and Sm/Nd ratios extend to higher
values than can be reconciled with two stage or continuous depletion models of mantle
isotopic evolution. We suggest that high Sm/Nd ratios were produced during previous
episodes of melt extraction that are not included in current models of DMM formation.
We conclude that the scale of mantle heterogeneity and extent of melt depletion observed
among abyssal peridotites requires a reassessment of current models for mantle evolution
and MORB production, which assume that peridotites in the asthenospheric mantle are
uniform in composition.

4.1 Introduction

The ratios of radiogenic isotopes in basalts from mid-ocean ridges (MORB) and ocean
islands (OIB) are highly variable, demonstrating that chemical heterogeneity in the mantle
has persisted for long periods of time and indicating that convective mixing of the mantle is
relatively inefficient at removing heterogeneities (Zindler and Hart, 1986; van Keken et al.,
2002). Ranges in isotopic compositions for individual systems (e.g., a given OIB suite or a
specific ridge segment) have led to much debate over the form and size of the distinct man-
tle reservoirs involved. A still significant gap exists between observational geochemistry
and numerical models of mantle dynamics (e.g., van Keken et al., 2002), partly because
geochemical observations of the length-scales and amplitudes of chemical and isotopic
heterogeneities in the mantle are inadequate. Basalts, as mixtures of melt fractions derived
from large areas of the mantle that have undergone variable degrees of melting, effectively
“smooth-out” heterogeneities. Nevertheless, basalts from individual dredges at some mid-
ocean ridge localities reveal significant variations in isotopic compositions and suggest that
high-amplitude heterogeneities exist over length-scales <2 km (Dosso et al., 1999). Large
variations in Pb isotopic compositions among olivine-hosted melt inclusions from indi-
vidual MORB and OIB samples (Saal et al., 1998; Shimizu and Layne, 2003; Kobayashi
et al., 2004; Shimizu et al., 2005; Maclennan, 2006) provide additional clear evidence for

the existence of higher amplitude heterogeneities on smaller length-scales than hitherto
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considered.

The depleted MORB source mantle (DMM) is one of the most important geochemical
reservoirs and its compositional heterogeneities are of fundamental importance to geo-
chemistry and mantle dynamics. In this chapter, we use abyssal peridotites — depleted
solid residues of ocean ridge melting — to assess the amplitudes and length-scales of chem-
ical and isotopic heterogeneities in DMM. Due to severe hydrothermal alteration and the
geochemically depleted character of abyssal peridotites, radiogenic isotope data has previ-
ously been collected in only four studies (Snow et al., 1994; Kempton and Stephens, 1997,
Salters and Dick, 2002; Cipriani et al., 2004). These studies attempted to reconcile the
isotopic compositions of peridotites to those of basalts from the same region, over > 100

km length-scales.

The present study is different from previous abyssal peridotite studies in two impor-
tant ways. First, we specifically focus on lithologically-mixed samples from the ultra-slow
spreading Southwest Indian Ridge (SWIR), including some of the very few peridotites re-
covered from a ridge axis. As shown previously (Sleep, 1975; Reid and Jackson, 1981;
Bown and White, 1994; Dick et al., 2003), at slow upwelling rates, conductive cooling
limits mantle melting. Thus, peridotites exposed on the seafloor are expected to have ex-
perienced limited degrees of melting and represent the closest approach to asthenospheric
mantle (DMM) composition. Second, we describe geochemical variations in peridotite
samples from individual dredges. Sampling length-scales of individual dredges can be
estimated from dredge wire tension records and the dredges in this study represent length-
scales of <1 km. At this length-scale, in an upwelling and partially melting system, mantle
peridotites experience the same pressure and temperature conditions. Any chemical and
isotopic variations observed among peridotites from a single dredge must be due to either

initial (pre-melting) heterogeneities or recent melt-rock reaction.

This chapter uses detailed trace element and isotope analyses of peridotites from indi-
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vidual dredges to constrain the spatial scale of heterogeneities in the mantle, the extent of
depletion of the mantle and the role of melt-rock reaction during ridge processes. We report
results from two areas of the Southwest Indian Ridge: the Oblique 9°-16°E Segment and
the Atlantis II Fracture Zone (Fig. 4.1). Basalts from the Oblique Segment have already
been studied in detail by Standish (2006), providing a MORB framework for comparison
to the peridotite systematics. The local geodynamic setting of both localities has important
implications as to the degree of mantle melting. Along the Oblique Segment, the obliquity
of the angle of spreading to the direction of plate motion (Fig. 4.1) results in reduced de-
grees of melting. The effective full spreading rate varies along the segment from 7.5 to 14
mm/yr, at the lowest end of the spectrum of global ridge spreading rates. Peridotites from
the Atlantis 11 Fracture Zone are also expected to have undergone low degrees of melting,

due to an ultra-slow spreading rate combined with a transform fault.

Both the Oblique Segment and the Atlantis II Fracture Zone have been extensively
sampled. Fig. 4.1 shows the locations and lithologies of dredges from each area and Table
4.1 lists the locations of the four specific dredges used in this study. We focus on two on-
axis Oblique Segment dredges from the 2003 RV Melville cruise Vancouver Expedition Leg
7 to 9°-25°E on the SWIR. This area was also sampled during the 1976 ARA Islas Orcadas
cruise 1011/76, the 1981 SA Agulhas cruise AG22, the 1986 RV Polar Stern cruise PS86,
and the 2001 RV Knorr cruise Kn162. Basalts from these cruises have been analyzed by
le Roex et al. (1983, 1992), Mahoney et al. (1992), Janney et al. (2005), Standish (2006),
and Standish et al. (submitted). The Atlantis II Fracture Zone has been sampled during
the 1976 RV Atlantis Il cruise Al193-5, the 1986 RV Conrad cruise RC27-9, and the 1998
RRS James Clark Ross cruise JR31. In addition, Atlantis Bank, an uplifted gabbro massif
located along the transform fault and formed by detachment faulting between 9.5 and 13
Ma (Dick et al., 1991), has been the focus of Ocean Drilling Program (ODP) Leg 118

in 1987 and Leg 176 in 2000 and dives using the manned submersible Shinkai 6500 in
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1998 and 2001 and the remotely operated vehicle Kaiko in 2000. Atlantis II Fracture Zone
basalts have been analyzed by Mahoney et al. (1989), Dick et al. (1991), Kempton et al.
(1991), Snow (1993) and Coogan et al. (2004). In addition, 1.5 km of gabbro from Hole
735B — drilled on Atlantis Bank during ODP Legs 118 and 176 — have been analyzed
for isotopic compositions by Kempton et al. (1991), Hart et al. (1999) and Holm (2002).
Finally, the regional scale isotopic variations for peridotites from the Oblique Segment and
the Atlantis II Fracture Zone, presented by Salters and Dick (2002), provide a framework

for our local-scale datasets.

4.2 Methods

Analysis of modal compositions, trace element concentrations, and Nd and Sr isotopes
were carried out on sixteen samples: eleven peridotites, three pyroxenite veined peridotites,
and two pyroxenites. Cpx mineral separates were analyzed for isotopes in all samples and
Opx for isotopes in six samples. In the veined samples, Cpx from the vein and matrix
were measured separately. Cpx from three peridotites were successfully analyzed for Pb
isotopes. The only basalt recovered in any of the same dredges as the peridotites — a glass
fragment in a breccia from dredge Van7-96 — was also analyzed. Trace element and isotope
analyses were carried out at the Pheasant Memorial Laboratory at the Institute for Study of

the Earth’s Interior in Japan.

4.2.1 Sample selection and characteristics

Peridotites were analyzed from five dredges, as listed in Table 4.1, with a focus on two
dredges: Van7-85 (herein after referred to as Dredge 85), containing typically depleted
peridotites, and Van7-96 (referred to as Dredge 96), containing pyroxenite-veined peri-

dotites. Also analyzed were one peridotite from Dredge PS86-6, for interlab-comparison
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to Salters and Dick (2002), and one peridotite from Dredge Van7-86, a more altered peri-
dotite dredge adjacent to Dredge 85, for determination of the effects of alteration on Sr
isotopic composition. From the Atlantis II Fracture Zone, we analyzed sample RC27-9-6-2

(abbreviated to 6-2 in some figures), which contains a clinopyroxenite vein.

Dredge 85 is from an amagmatic region of the Oblique Supersegment (Fig. 4.1) and
contains 65 kg peridotite, 11 kg dunite, and 2 kg diabase. The peridotites are “typical” in
appearance (Fig. 4.2A), lacking veins and with modal Cpx contents ranging from 2% to
6%. As shown in Fig. 4.5, they have trace element concentrations characteristic of depleted
abyssal peridotites (e.g., Johnson et al., 1990). Two harzburgites (Van7-85-27 and Van’7/-
85-30) and three lherzolites (Van7-85-42, Van7-85-47, and Van7-85-49), representative of

the modal Cpx range of the dredge, were chosen for isotopic analyses.

Dredge 96 consists predominantly of lherzolites and harzburgites with pyroxenite veins
(Fig. 4.2B-F). The dredge is from the inside-corner high of the ridge with the Shaka Frac-
ture Zone (Fig. 4.1) and consists of 36 kg peridotite, 44 kg pyroxenite-veined peridotites,
3 kg pyroxenites, 39 kg polymict breccias and 8 kg diabase. Pyroxenite veins range in
width from | to 10 cm and either cross-cut larger peridotites samples (Fig. 4.2C) or oc-
cur as individual samples with thin peridotite skins (Fig. 4.2E). The veins themselves are
cross-cut by narrower veins (Fig. 4.2E) predominantly composed of altered plagioclase and
olivine. The absence of plagioclase in the coarser-grained regions of the pyroxenites and
the presence of Opx, which does not appear with plagioclase on the low pressure liquidus
of basalt (Stolper, 1980), indicate that plagioclase is related to a second, shallow level melt
intrusion event. In addition, rims of Cpx grains have Eu anomalies whereas Cpx cores do
not (Warren, unpublished ion probe data), further evidence for the later crystallization of
plagioclase. Samples selected for analysis from this dredge include pyroxenites with lit-
tle associated peridotite (Van7-96-09 and Van7-96-16), peridotites with pyroxenite veins

(Van7-96-19 and Van 7-96-21), vein-free peridotites (Van7-96-25, Van7-96-28, Van7-96-

90



35 and Van7-96-38) and basalt from a breccia (Van7-96-68).

4.2.2 Modal analyses

All samples were point counted for mineral modes under an optical microscope using
large, 51x75 mm thin sections and a grid spacing of 1 mm (Table 4.2). For the peridotites,
a minimum of 1700 points were counted. The pyroxenite modes, due to limited mate-
rial availability, have fewer points and hence larger associated errors. Images of the thin

sections, produced by point counting, are shown in Fig. 4.3.

4.2.3 Chemical analyses

Mineral separates of Opx and Cpx were obtained by lightly crushing thin slices of the
peridotite samples, handpicking under a binocular microscope and then re-picking to en-
sure purity of the concentrate. All grains were visually free of inclusions and uniform
in color, except for a less-pure separate of Van7-96-16, included for comparison to a more
pure separate of the same sample. Unleached concentrate weights were in the range 25-900
mg. Concentrates were leached ultrasonically in HCI overnight and rinsed in water. Fur-
ther light crushing in a SiN mortar and pestle exposed cleavage alteration surfaces. Con-
centrates were then leached ultrasonically for S minutes in HF, rinsed with water, leached
ultrasonically twice more with HCL for 8 hours each, rinsed with water and finally leached
ultrasonically with HNOj for 5 minutes. Following a final rinsing with water, samples were
dried on a hot plate in a draft chamber with clean air. After leaching, 15-700 mg material
remained per mineral separate. Prior to dissolution for high field strength elements (HFSE)

and isotope analyses, concentrates were crushed to powder in a SiN mortar and pestle.
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ICP-MS analyses of trace elements

Samples were analyzed by ICP-MS for 28 trace element concentrations, of which the
HFSE were prepared and measured independently of the other trace elements. In addition,
blanks and the external rock standard JB-2 (tholeiitic basalt, Geological Survey of Japan)
were prepared with the samples. For analyses of Li, Be, Rb, Sr, Y, Cs, Ba, rare earth
elements (REEs), Pb, Th, and U, from 2 to 10 mg of weighed sample was spiked with
1198m and dissolved in two stages following the method of Makishima and Nakamura
(1997). In the first stage, samples were decomposed in HC1IO, and HF using a combination
of ultrasonic bath and hotplate heating for several days, followed by stepwise drying. In
the second stage, the samples were heated overnight after addition of HCI, followed by
stepwise drying. Finally, the samples were dissolved in HNOj to a dilution factor of 1000
prior to analysis.

Analyses of HFSE — Zr, Nb, Hf, and Ta — used weighed sample amounts of 3-12 mg
and a mixed "' Zr-'""Hf spike. Full recovery of HFSE following dissolution requires dis-
solution in HF, however — in Ca-rich materials — HF leads to the precipitation of fluoride
compounds containing HFSE. To suppress the coprecipitation of HFSE, a solution of Al
metal dissolved in HF and HCI was added prior to dissolution. The amount of Al solution
added per sample was calculated to bring the Al/(Al+Ca) ratio of the pyroxene to 0.9, which
has been shown to effectively limit HFSE coprecipitation in fluoride compounds (Tanaka
et al., 2003). Following the teflon bomb method of Tanaka et al. (2003), samples were
dissolved in HF at 245°C for 48 hours. After dissolution, mannitol was added to sample
solutions, which were then placed overnight in ultrasonic baths before being dried at 80°C
in a clean air system. Prior to analysis, samples were dissolved in HF to a dilution factor of
800, centrifuged and transferred to new containers to remove any remaining fluorides from

the solutions.

Trace elements were analyzed using an Agilent 7500cs Q-pole type ICP-MS, following
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the procedures of Makishima and Nakamura (1997, 2006) and Makishima et al. (1999).
Samples were introduced via fluid injection using a micro-concentric nebulizer. Every two
samples were bracketed by analysis of the JB-2 unspiked standard. Data reduction followed
the isotope dilution internal standardization method of Makishima and Nakamura (2006),
using *Sm as the internal standard. For HFSE, the internal standard °'Zr was used for
Zr and Nb and the internal standard '"Hf was used for Hf and Ta. The 20 reproducibility
of the rock standard JB-2 is 1.4-6.6%, blanks were < 0.01 ppb and detection limits in the
range 0.1-10 ppb. The elements Rb, Cs, and Ta were below detection limits for the samples

in this study and are not reported here.

TIMS analyses for Sm-Nd and Rb-Sr

Analyses of Sm-Nd and Rb-Sr isotope ratios and concentrations by TIMS followed the
techniques of Nakamura et al. (2003). Sample amounts ranged between 9 and 240 mg
(Table 4.4), with the amount used determined by the Nd and Sr concentrations of the sam-
ple. Sample powders were spiked with 81Sr, 8"Rb, 1°°Nd and '*Sm prior to dissolution
in HC104, HF, HNO3, and HCI using a combination of ultrasonic bath and heating. The
dissolved minerals were stepwise dried using closed-system evaporators to limit contami-
nation; this evaporation system was used in all subsequent drying steps. A combination of
HCI1O, addition and additional stepwise drying were used to completely decompose insolu-
ble flourides. The first separation step for Rb, Sr and REE used 1 ml columns with Bio-Rad
AG-50WX10 cation exchange resin and HCI (Yoshikawa and Nakamura, 1993; Nakamura
et al., 2003). Rb and Sr were separated using a second cation exchange column with 0.5 ml
of Muromac AG-50WX8 cation exchange resin and HCI. Nd and Sm were separated in a
second column with 0.3 ml of Muromac AG-50WXS8 resin, but using a-hydroxyisobutyric

acid for elution.

Sr and Nd isotopic compositions and Rb, Sr, Nd and Sm concentrations were deter-
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mined on a Finnigan-MAT?262 solid-source thermal ionization mass spectrometer equipped
with 5 Faraday cups. In addition, some Sr analyses were run on a Finnigan-Triton mass
spectrometer with 9 Faraday cups. Analytical procedures followed Nakamura et al. (2003).
Sr was dissolved in HNO;3; and loaded with a Ta,O5 activator on trapezoid shaped sin-
gle W ionization filaments. Repeat analyses of the NBS 987 standard on the MAT262
gave a value of 0.710183 +0.000023 (20,,, n=10) and on the Triton a value of 0.710271
+0.000012 (20,,, n=8). Data are fractionation corrected to *°Sr/**Sr = 0.1194 and reported
relative to ¥7Sr/*9Sr=0.710250 for the NBS 987 standard (Faure and Mensing, 2005). Rb
concentrations were measured using a Ta-Re double filament with Rb dissolved in HNO;
prior to loading on the Ta filament. The 2¢ analytical reproducibility for I pg of Rb by this

method is better than 1%, based on 10 replicate analyses (Nakamura et al., 2003).

Nd isotope analyses use Re double filaments, with Nd dissolved in HNOj; prior to load-
ing onto the Re ionization filament. Data were collected relative to the internal PML Nd
standard, which has a value of "**Nd/'**Nd = 0.511769 +0.00001 1 (25,,,, n=5) with respect
t0 0.511892 +£0.000007 (20,,,, n=8) for the La Jolla Nd standard. Data are fractionation cor-
rected to "Nd/!*Nd = 0.7219 and reported relative to **Nd/!"*Nd = 0.511858 for the La
Jolla standard (Lugmair and Carlson, 1978). Determination of Sm concentrations followed
the same Ta-Re double filament method used for Rb, with a 20 analytical reproducibility

of 1% for 1 pg Sm, based on 10 replicate analyses (Nakamura et al., 2003).

TIMS analyses for Pb

For Pb analyses, 50-600 mg of weighed mineral separates were dissolved in equal amounts
of HBr and HF, with HBr used to suppress fluoride coprecipitation of Pb. Samples were
heated and placed in ultrasonic baths for 3-7 days, and then centrifuged before transfer-
ring to new containers. The material remaining in the old containers was further treated

with HBr and heating or ultrasonic bath for an additional day to promote fluoride disso-
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lution and Pb removal from fluorides. In none of the samples were fluorides completely
dissolved. Samples were dried in closed-system evaporators and diluted with HBr prior to
column loading. Following the method of Kuritani and Nakamura (2002), a column with
0.1 ml of Bio-Rad AG-1X8 anion exchange resin was used to remove most elements apart
from Pb, which was eluted in H,O. A second column, with 0.01 ml Bio-Rad AG-1X8 resin,
was used to remove trace contaminants from the Pb fraction, which was again eluted using

H,O0.

Following column separation, Pb concentrations where estimated from Pb count rates
on the Agilent 7500cs ICP-MS. Of the 22 Cpx and Opx samples for which Pb was sepa-
rated, only 3 Cpx samples yielded >1 ng Pb, sufficient for measurement of isotope ratios.
The low Pb yields are probably due to the large amount of fluoride coprecipitation during
dissolution, which was not adequately suppressed by HBr addition. Three basalt samples
— one from dredge Van7-96 and two repeat analyses (Van7-92-03 and Kn162-61-71) from
Standish (2006) — were also prepared and these all yielded >5 ng Pb.

Analytical procedures for the two Cpx samples followed the two double spikes method
of Kuritani and Nakamura (2003). A double spike enriched in ?°"Pb and ?**Pb was added
to a quarter of the sample and a double spike enriched in ?°>Pb and 2°*Pb was added to the
remainder of the sample. For the basalts, analytical procedures followed the normal double
spike method (e.g., Hamelin et al., 1985; Galer, 1999), by adding a spike enriched in ?°"Pb
and 2*'Pb to a quarter of the sample. The dried samples were dissolved in silicic acid and
loaded on single Re filaments. All samples were analyzed on a Finnigan-MAT261 mass
spectrometer equipped with 6 Faraday cups. Replicate analyses of the NBS 981 standard
gave values of 2°°Pb/2**Pb=16.942 £0.002 (20,,), 2°"Pb/?**Pb= 15.500 +0.002 (20,,) and
208pp/2%Pb= 36.727 +£0.004 (20,,). Data are reported relative to the values of NBS 981
from Todt et al. (1996), for consistency with the Standish (2006) Oblique Segment basalt

dataset.
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4.3 Results

4.3.1 Data quality

Analyses of abyssal peridotites are difficult due to the low concentrations of relevant
trace elements and the effects of seawater alteration. In Fig. 4.4, we compare concen-
trations of Sr, Nd and Sm measured by ICP-MS and by TIMS. In general, the data plot
either on the 1:1 line or towards slightly higher values for the TIMS results, but with no
systematic offset as a function of concentration. The average difference between ICP-MS
and TIMS concentrations is 14%. An average of 3 mg Cpx and 7 mg Opx were used for the
ICP-MS analyses and blank amounts were < 10 pg. For TIMS analyses, average sample
weights were 70 mg for Cpx and 150 mg Opx, which should produce more precise results.
However, the use of larger sample volumes required larger acid volumes for dissolution,
leading to increased blanks. Blank amounts for TIMS analyses were < | ng and typically
in the range 1-50 pg. The competing effects of increased precision and increased blank
amounts with sample volume are the likely cause of the non-systematic variation between

ICP-MS and TIMS concentrations.

To assess the importance of mineral separate purity, we analyzed two Cpx mineral sep-
arates from pyroxenite sample Van7-96-16. While one separate consisted of optically pure
grains, the other consisted of Cpx which were not optically pure and contained inclusions
of both black and white grains. The REE compositions of both mineral separates are plot-
ted in Fig. 4.5B, with the impure separate shown as a dashed line. The pure Cpx separate
is indistinguishable from the other pyroxenites. The impure separate has low REE con-
centrations with a positive Eu anomaly, both indicative of analysis of Cpx and plagioclase
combined. The Nd isotope ratios for these two separates are within error, while the pure
separate has a higher Sr isotope ratio than the impure separate. Hence, the purity of the

separate appears to affect trace element concentrations more than Nd isotopic ratio.
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To test the precision of our analyses and for interlab comparison, we repeated the anal-
ysis of PS86-6-36 from Salters and Dick (2002). As indicated in Table 4.4, our values for
13Nd/M*Nd and #7Sr/%6Sr agree within error with the Salters and Dick values. For Pb iso-
topes, we ran replicate analyses of two basalt samples from Standish (2006). 2°Pb/?*Pb
agree within error, but our samples have 2°’Pb/2**Pb and 2°8Pb/?*Pb offset to higher values
(Fig. 4.7), despite normalization of all data to the same standard values for NBS 981. To
check internal reproducibility, we ran a duplicate analysis of Van7-85-47, following the
entire procedure starting from a split of the same powdered mineral separate. Table 4.4
shows that the duplicate analyses agree within error for 1**Nd/!**Nd, but not for 87Sr/*Sr
(0.702286 vs 0.702176). The discrepancy between Sr isotope ratios may be due to het-
erogeneous Sr distribution due to alteration phases not completely removed by leaching.
We interpret the lower 87Sr/%6Sr as the more representative value as seawater alteration

increases Sr isotopic ratios.

Abyssal peridotites are generally severely altered by hydrothermal processes at the
ridge and our samples are no exception. The majority of olivine is either serpentinized
or altered to brownish orange clay minerals. Opx and Cpx are typically much fresher than
olivine, but alteration occurs occasionally along rims and cleavage planes or as amphibole
pseudomorphs. The alteration process results in isotopic exchange between minerals and
fluid, and the precipitation of fluid-derived carbonates. Nd isotopic exchange is negligible
due to low Nd concentrations in seawater, but Sr isotopic exchange and carbonate precipita-
tion shift the 8"St/%6Sr of peridotite towards 0.709, the isotopic composition of seawater. In
order to eliminate the seawater Sr signature, we followed a multi-day, multi-stage leaching
procedure using HCI, HF, and HNOj3, with an intermediate step of additional crushing in
a SiN mortar, to remove alteration phases from the rims and cleavage planes of pyroxene
grains. This procedure was effective in significantly reducing the seawater alteration signa-

ture based on the following three observations. (1) With a few exceptions, data plot on the
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same Nd-Sr isotope trend defined by basalts from the Oblique Segment (Standish, 2006),
as illustrated in Fig. 4.6. (2) Coexisting Cpx and Opx have similar *"Sr/*Sr ratios. As Opx
is more susceptible to hydrothermal alteration due to its lower Sr concentrations, this result
strongly supports our contention that alteration affects were minimized by our analytical
technique. (3) Our results include a 87Sr/*°Sr ratio of 0.702096 in Cpx from Van7-96-
38, the most depleted value measured to date in abyssal peridotites and among the lowest
measured in any basalt, thus attesting to the effectiveness of our leaching procedure.
Despite extensive leaching, the two most visibly altered samples have ¥ Sr/*Sr > 0.704
(Van7-85-30 and Van7-86-27) and do not plot on the basalt Nd-Sr isotope trend (Fig. 4.6).
We conclude that pristine ®7Sr/%Sr values were not recovered for these samples. The only
sample in which a high ratio does not appear to be due to visible alteration is RC27-9-
6-2, which is fresh for an abyssal peridotite. This sample is unusual in various ways,
including the greater isotopic and trace element enrichment in the peridotite matrix than
in the clinopyroxenite vein. However, until 87Sr/*°Sr can be measured in situ, the origin
of ¥7St/%Sr enrichment in this sample cannot be conclusively identified. We have not,
however, found any evidence for the “orphan” 87Sr/*Sr component identified in this sample

by Snow et al. (1993).

4.3.2 Modes and petrography

The peridotites in this study are typical of abyssal peridotites (Dick, 1989), ranging in
modal Cpx content from 2% to 13%. Mineral major element compositions (Appendix
4.A) are also typical of abyssal peridotites. The variations of spinel Cr# (Cr/(Cr+Al)),
Mg# (Mg/(Mg+Fe)) and TiO, suggest variable degrees of melting and, among veined peri-
dotites, melt refertilization (Fig. 4.A1). The most unusual feature among Cpx major ele-
ment compositions is the relatively low Cr,O3 among Dredge 96 pyroxenites whereas the

clinopyroxenite vein in RC27-9-6-2 has relatively high Cr,O3 (Fig. 4.A2).
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Dredge 96 pyroxenites consist of 25-39% Opx and 24-57% Cpx, with minor amounts
of olivine, hence they are properly classified as websterites and Ol-websterites. The bound-
aries of narrower veins are difficult to distinguish in thin section, as veins are sometimes the
width of a single pyroxene porphyroclast (Fig. 4.2D). Veins of finer grained Ol-Plag-Cpx
cross-cut the coarser grained pyroxenites or forms rims around spinel trails. As discussed
earlier, we interpret the Ol-Plag-Cpx assemblage to be a late-stage gabbroic melt which
crystallized at shallow depths.

The clinopyroxenite vein in RC27-9-6-2 is composed of 82% large, bright green, Cr-
rich Cpx. Plagioclase is present in trace amounts (0.01-0.2%) in the vein and matrix. It may
either be the result of spinel breakdown or related to a late stage 0.5 mm wide magmatic
vein that occurs in the peridotite matrix, unconnected to the clinopyroxenite vein. The
clinopyroxenite vein boundaries are sharply defined by a transition from large Cpx grains,
with associated small olivine, Cpx and Opx grains, to the coarse grained olivine matrix

(Fig. 4.2G-H).

4.3.3 Trace elements

Peridotite Cpx in this study cover the range of trace element compositions previously
observed in abyssal peridotite Cpx (e.g., Johnson et al., 1990). Trace element data for Cpx
and Opx are presented in Table 4.3 and REE patterns, normalized to primitive upper mantle
(PUM; McDonough and Sun, 1995), are plotted in Fig. 4.5. For comparison, the abyssal
peridotite Cpx datasets from Johnson et al. (1990) and Johnson and Dick (1992) are also
shown, using only samples away from hotspots. Samples from Dredge 85 and the Dredge
86 sample have typical depleted REE patterns for abyssal peridotites, with Cpx falling
in the middle of the range of Cpx compositions from Johnson et al. (1990). In contrast,
the Dredge 96 samples and the Atlantis II Fracture Zone sample have higher overall REE

concentrations and less depleted patterns.
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Both the peridotites and pyroxenites from Dredge 96 have enriched compositions, with
almost flat patterns, except for variable depletion in the light REE (LREE), which range
over an order of magnitude. The most notable feature of the Dredge 96 samples is that
the pyroxenites do not have distinct trace element compositions from the peridotites. The
basalt from Dredge 96 has a LREE enriched composition, with only slightly higher heavy
REE (HREE) concentrations than the peridotites. The sample from dredge PS86-6 is also
relatively undepleted, with a similar composition to the most LREE depleted of the Dredge

96 samples.

The Atlantis Il Fracture Zone sample RC27-9-6-2 has a distinctive REE pattern that is
nearly flat and relatively depleted in HREE and enriched in LREE, with respect to the field
for residual abyssal peridotite Cpx. In addition, the REE pattern of the matrix peridotite
Cpx crosses that of the vein Cpx. The matrix Cpx is almost identical to PUM in composi-
tion, while vein Cpx is less enriched in LREE but more enriched in HREE. In comparison
to other peridotite Cpx from the fracture zone (Johnson and Dick, 1992), LREE in RC27-

9-6-2 are more enriched but HREE are less enriched.

4.3.4 Isotopes

Results of Nd, Sr and Pb isotope analyses are presented in Tables 4.4 and 4.5, revealing
variations both within and between dredges and down to the sub-sample scale. In Fig. 4.6,
we plot the variation in ""3Nd/"**Nd against the variation in *Sr/*Sr for both localities.
Pb isotope data are shown for the three Cpx separates successfully analyzed in Fig. 4.7.
In addition, we plot published peridotite Cpx compositions for the same localities (Snow
et al., 1994; Salters and Dick, 2002) and related basalts and gabbros from a compilation of

published data (see Fig. 4.6 caption for references).
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The Oblique Segment

On the Oblique Segment, Dredge 85 samples are isotopically depleted, except for alteration-
related enrichment of Sr in some samples. One Dredge 85 sample is more depleted in both
Nd and Sr than the estimated isotopic composition of DMM, which is defined by the aver-
age composition of MORBs (Su and Langmuir, 2003). This sample is also more depleted
than depleted-DMM (D-DMM), defined as the isotopic composition that is 20 depleted
from average MORB (Su and Langmuir, 2003; Workman and Hart, 2005). Similarly, in
Dredge 96, Van7-96-38 is more depleted than DMM for both Nd and Sr, and has among

the lowest *"St/*Sr value ever measured in MORBs or abyssal peridotites.

The isotopic composition of Dredge 96 ranges from the extremely depleted composition
of Van7-96-38 (unveined peridotite) to the enriched compositions of Van7-96-16 (pyrox-
enite) and Van7-96-35 (unveined peridotite). The pyroxenites and peridotites do not form
two distinct isotopic groups, though the unveined peridotites extend to more depleted com-
positions than the pyroxenites. The basalt from Dredge 96 plots towards the depleted end

of the peridotite trend, close to DMM.

In Fig. 4.6A, we also plot the composition of Bouvet Island basalts, located to the west
of the Oblique Segment near the Bouvet Triple Junction (Fig. 4.1). Bouvet Island is the
present-day location of Bouvet hotspot, which passed along the African plate section of the
Shaka Fracture Zone at ~15-25 Ma (Hartnady and le Roex, 1985). Basalts and peridotites
from the fracture zone (le Roex et al., 1983; Snow, 1993) have similar Nd isotopic compo-
sitions to Bouvet basalts (Fig. 4.6A). The most enriched Dredge 96 samples fall within the
range of Bouvet basalt compositions. As a whole, Dredge 96 peridotites, Oblique basalts,
and other Oblique peridotites form a trend between Bouvet Hotspot and DMM, with some
peridotite ®”Sr/%Sr exceptions due to seawater alteration. In contrast, peridotites from the

ridge near Bouvet Island (Snow et al., 1994) have depleted compositions similar to DMM.

The Pb isotopic variation of the two Dredge 96 peridotites, one veined and the other
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unveined, show significant variation in 2°Pb/?%/Pb and 2°*Pb/?"*Pb, but less variation in
207pb/204Pb (Fig. 4.7). Van7-96-28 (unveined peridotite) is similar in composition to Bou-
vet basalts. Van7-96-21 (veined peridotite) and the Dredge 96 basalt have less radiogenic
compositions, with the basalt close in composition to DMM. All three samples are offset
in 2°7Pb/?"*Pb from the trend of the Oblique basalts from Standish (2006), whereas our
replicate analyses of two basalts from the Standish (2006) dataset plot on the trends (Table

4.5, Fig. 4.7).

Atlantis II Fracture Zone

The peridotite matrix of RC27-9-6-2 is enriched in **Nd/'""'Nd, while the clinopyrox-
enite vein is, surprisingly, less isotopically enriched. Sr isotopes are enriched, also with
greater enrichment in the peridotite than in the vein. While seawater alteration cannot be
ruled out as the cause of *’Sr/*Sr enrichment, an isotopic range from 0.704 to 0.705 on a
scale of ~10 c¢m is unlikely for seawater alteration. The isotopic composition of RC27-9-
6-2 contrasts with previously analyzed Atlantis Il Fracture Zone peridotites (Snow et al.,
1994; Salters and Dick, 2002), which extend from '"*Nd/'*'Nd compositions similar to
DMM towards values more depleted than D-DMM.

In Fig. 4.6B we plot three types of MORB data from the Atlantis II Fracture Zone
region for comparison to the peridotites: samples from (i) the Atlantis Il Fracture Zone,
(i1) a transform volcano at the northern ridge-transform intersection, and (iii) the ridge
segments on either side of the fracture zone. While generally depleted in composition, all
three types of basalt have at least one sample with '"*Nd/!"*Nd similar to RC27-9-6-2. The
gabbros from Hole 735B on Atlantis Bank are all depleted in composition, encompassing
the range of depleted MORBs from the area. In terms of Pb isotopes, basalts and gabbros
from the fracture zone are depleted, ranging between DMM and D-DMM in composition.

Cpx from the peridotite matrix of RC27-9-6-2 is more depleted in *""Pb/*"'Pb than the
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basalts and gabbros but similar in terms of 2°"Pb/?*Pb and 2**Pb/2*‘Pb.

4.4 Discussion

4.4.1 Partition coefficients

In abyssal peridotites, determination of Cpx-Opx partition coefficients is important for
constraining the occurrence of mineral-mineral equilibrium during melt-rock reaction and
subsolidus re-equilibration in the upwelling mantle. In Table 4.6, we present the first set
of Cpx-Opx partition coefficients for abyssal peridotites from bulk mineral analyses. In
addition, listed in Table 4.6 are the dominant valence state of each element in pyroxene
and their ionic radii (Shannon, 1976) in Cpx and Opx. The ionic radii provide a measure
of the relative compatibility of each element in Cpx and Opx and we use these radii to
order the elements in the spider diagrams in Fig. 4.8. In Cpx, trace elements vary between
VI-fold and VIII-fold coordination, depending on whether they occupy the M1 or M2 site,
respectively, whereas elements in Opx are in VI-fold coordination in both the M1 and M2
sites. Thus elements have the same ionic radii in Cpx and Opx if they occupy the M1 site
in Cpx, which is the case for cations such as Zr and Ti that have relatively small cationic
radii. Ordering elements in this way is more relevant to inter-mineral behavior than the
commonly used element ordering from Hofmann (1988), which is based on the partitioning
of elements into melt.

The range of partition coefficients from Witt-Eickschen and O’Neill (2005) and from
Hellebrand et al. (2005) are shown on the spider diagrams in Fig. 4.8. The Witt-Eickschen
and O’Neill (2005) dataset consists of ICP-MS analyses of mineral separates from peri-
dotite xenoliths thought to have equilibrated over a temperature range of 900-1250°C.
Their results constrain the change in partition coefficients with temperature and compo-

sition combined. These are the main variables controlling partitioning and they cannot be
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separated for pyroxenes with an immiscibility gap. Our results overlap the high temperature
end of the Witt-Eickschen and O’Neill dataset and require only a small amount of extrapo-
lation to reach a temperature relevant to mantle melting processes (~1350°C). Despite this
extrapolation, our partition coefficients have the advantage over the Witt-Eickschen and
O’Neill coefficients of being determined for pyroxene compositions relevant to the upper

oceanic mantle.

The second background dataset in Fig. 4.8 is from Hellebrand et al. (2005) and consists
of in situ ion probe analyses of abyssal peridotite pyroxenes. The Hellebrand et al. partition
coefficients extend over a range of up to two orders of magnitude, with a larger range
among the more incompatible elements. Most pyroxenes in abyssal peridotites exsolve
a second pyroxene phase during their ascent to the seafloor, which redistributes the high
temperature trace element budget within the mineral. To account for exsolution lamellae,
Hellebrand et al. (2005) applied correction factors to their partition coefficients, with larger
corrections applied to the more incompatible elements. Application of their correction
factors shifts their partition coefficients to higher temperature values, but does not reduce
the partition coefficient range for a given element. We suggest that the large range is due
to the difficulty in analyzing Opx, which typically exsolves closely spaced, narrow Cpx
lamellae. Combined with the lower trace element concentrations of Opx with respect to
Cpx, the spread of the Hellebrand et al. dataset towards lower partition coefficients with
increasing incompatibility is probably due to overlap of the ion beam onto Cpx lamellae

during Opx analysis.

In general, the partition coefficients that we measured vary smoothly as a function of
ionic radius. The breaks in slope on the spidergram correspond to large changes in ra-
dius, changes in cation valence state, or changes in site occupancy (e.g., between Li and
Zr, cations switch from M2 to M1 site occupancy). Only Pb, the most incompatible ele-

ment, exhibits a large range of partition coefficients, which may be due to measurement
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uncertainty or sulfide control of the Pb system.

The smooth variation of Cpx/Opx partition coefficients in Fig. 4.8 requires the distri-
bution of trace elements in Cpx to be homogeneous. Diffusion in Cpx is faster for elements
with smaller cationic radii (Van Orman et al., 2001), hence disequilibrium in Cpx would
fractionate partition coefficients, which we do not observe. Models of REE diffusion in
Cpx at conditions relevant to mid-ocean ridges have shown that Cpx equilibrates on a time-
scale of <1 My for grains <5 mm in diameter (Van Orman et al., 2001; Cherniak and
Liang, 2007). In addition, no core to rim variations are observed among Cpx based on ion
probe analyses (Warren, unpublished data). The only exception is RC27-9-6-2, which has
core to rim REE variations (Warren, unpublished data), coarser grain sizes and a shallower
slope among LREE partition coefficients (Fig. 4.8).

In contrast to Cpx, Opx is typically coarse grained and has lower diffusion rates that
are independent of cationic radius (Cherniak and Liang, 2007). Modeling by Cherniak and
Liang has demonstrated that significant core to rim variations can form in Opx because of
the slow diffusion rates. Opx disequilibrium changes the absolute value of the partition
coefficients without changing the shape of the partition coefficient pattern. Hence, Opx in
Dredge 96 and RC27-9-6-2 could represent disequilibrium, leading to overestimates of the

partition coefficients with respect to their closure temperatures.

4.4.2 Isotopic disequilibrium between Cpx and Opx

Cpx and Opx from the same peridotite samples do not have the same '**Nd/!**Nd ratios,
but they generally have the same 87Sr/%¢Sr. In addition, Cpx from the matrix and vein of
the same sample do not have the same *3Nd/'**Nd ratios. Isotopic disequilibrium can
result from radiogenic ingrowth in minerals with the same initial isotopic composition or
it can be produced by kinetic processes. We test for radiogenic ingrowth by fitting Sm-Nd

isochrons for the six Cpx-Opx pairs of measurements, plus three subsets of matrix-vein
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Cpx measurements, as shown in Fig. 4.9. We do not determine isochrons for the Rb-Sr
system, as Rb concentrations are extremely low in pyroxenes (Table 4.4) and significant
isotopic disequilibrium is not observed, with the exception of RC27-9-6-2.

In Fig. 4.9, the mineral “isochrons” are plotted using a linear least squares regression
through Cpx-Opx pairs and through Cpx-Opx-Cpx pairs among veined samples. Both the
pyroxenites and peridotites that we analyzed have inconsistent ages, ranging from -98 Ma
to 156 Ma. Addition of vein Cpx to the calculation emphasizes the inconsistency of the
ages, as Van7-96-21 changes from 46 Ma to 274 Ma and RC27-9-6-2 from 68 Ma to 223
Ma. Isochrons regressed through samples from the same dredge also do not demonstrate a
coherent set of ages. Hence, the isotopic disequilibrium of the SWIR peridotites is not the
result of radiogenic ingrowth and must be related to kinetic processes in the peridotites.

We suggest that the grain-scale Nd isotopic disequilibrium between Cpx and Opx is
due to incomplete diffusive equilibration of Opx during melt-rock reaction at the ridge.
The general disequilibrium between veins and matrices and among samples from the same
dredge suggest variable amounts of melt-rock reaction during melt extraction. As discussed
in the previous section, the absence of REE fractionation among our measured partition co-
efficients requires Cpx to be equilibrated. In contrast, diffusion in Opx does not fractionate
REE, so Opx equilibrium is not required by the partition coefficient data. In addition, ex-
perimental and model results from Cherniak and Liang (2007) indicate that REE diffusion
in Opx is slow and equilibration requires time scales of > 20 My. Sr diffusion is faster
than REE diffusion and Cpx-Opx pairs have *"Sr/*Sr close to or at isotopic equilibrium.
Hence, we conclude that the observed isotopic disequilibrium between Cpx and Opx rep-

resents incomplete Opx equilibration following melt-rock reaction at the ridge axis.
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4.4.3 Radiogenic ingrowth

Peridotites from slow spreading ridges spend a considerable amount of time between
passing through their closure temperatures and exposure on the seafloor. The isotopic range
among samples may be smaller than measured because of radiogenic ingrowth during this
time. To determine the extent to which ingrowth has affected our measured **Nd/'*‘Nd
compositions, we assess (i) the amount of ingrowth since a sample was at the 1200°C
isotherm and (ii) the time necessary to produce the observed isotopic range among samples
from the same location. Ingrowth of 87Sr/%¢Sr is not addressed because Rb concentrations

in peridotite pyroxenes are extremely low.

In order to age-correct peridotites, we calculate the time since the peridotites left the
1200°C isotherm below the ridge axis to their exposure at variable distances from the ridge
axis. We select the 1200°C isotherm as a maximum closure temperature for REE diffusion
in pyroxenes (Van Orman et al., 2002), to estimate a maximum upwelling time and thus
a maximum value for the amount of ingrowth. The ingrowth time, ¢;, is calculated as a
combination of the upwelling time, ¢;;, and the seafloor spreading time, ts. The value of
ts is determined by dividing the measured distance, d, between the dredge location and the

ridge axis by the effective half-spreading rate, vy.

To determine t;;, we first use the results of a numerical model for the thermal struc-
ture of the ridge axis (Montési et al., 2006) to determine the depth, L}, to the 1200°C
isotherm:

. K
1200 = 9— 4.1)
(3

where « is the thermal conductivity (10-%m?s~!). The solution for corner flow beneath the
ridge axis (Batchelor, 1967; McKenzie, 1969) provides the relationship between upwelling
velocity, vy, and spreading rate:

Vg = —Vn (42)
s
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leading to an expression for #;:

ppeic (4.3)
ly = 5 ’U?l o
Thus, the time available for ingrowth is:
S & d
h=tgtlg=——+— (4.4)
2 vy Uy

For Dredge 85 and 96 samples, t;; is ~ 7 My and tg is 0.5 My for Dredge 85 and 4 My
for Dredge 96. On the Oblique Segment, at locations where the ridge has a high angle of
obliquity to the spreading direction, ¢;; approaches 18 My. For ridges with half spreading

rates > 10 mm/yr and no obliquity, t; < 1 My.

In Fig. 4.10A, we plot "**Nd/'*Nd corrected for t; (the “age” corrected value) versus
the measured '"3Nd/'*'Nd value. Samples plot on or to the right of the 1:1 line, with a
maximum change of 0.01% among our samples. The field between DMM and D-DMM
is shaded to demonstrate that the age correction does not shift depleted peridotites back to
DMM values. In addition, in Fig. 4.10A, we plot age corrected values calculated for the
global abyssal peridotite Cpx dataset (Snow, 1993; Snow et al., 1994; Salters and Dick,
2002; Cipriani et al., 2004). The maximum change globally in "**Nd/'*'Nd composition is
0.04%, even among samples that are ~20 Ma. The small amount of ingrowth in the global

dataset indicates that ingrowth can be ignored when interpreting peridotite isotopic data.

The amount of '"3Nd ingrowth is a function of time and the Sm/Nd ratio, the effects
of which are best understood using ¢ y4 notation, as the absolute change in ""*Nd/'"'Nd is
small owing to the long half-life of "*"Sm. The difference between the measured, M, and
corrected, C', values of €y is:

(), — (=)
& WNd ), NG )

— M -
Aenag = €ENd ~ ENd = (“%’Vd)
144Nd/CHUR

x 101 (4.5)
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where C'HU R is the chondritic uniform reservoir, which has a '*3Nd/!*'Nd value of 0.512638.
The amount of the age correction for variable Sm/Nd ratios can be calculated independently

of 1¥NdA¥Nd:
/\tjc%

(143Nd

x 104 (4.6)
144Nd)CHUR

AENd =

where ¢ is the conversion factor of 0.6049 between Sm/Nd and 47Sm/!*Nd.

The results of calculations using Equations 4.5 and 4.6 are shown in Fig. 4.10B. For
samples in our study, the ingrowth time is generally < 10 Ma and Sm/Nd ratios are < 2.
Samples from the global dataset that have longer ingrowth times are either far from the
ridge axis or have very low effective spreading rates. Samples with the highest amounts
of ingrowth (Aeyg ~3-4) have both high Sm/Nd ratios and long ingrowth times. Overall,
the amount of ingrowth is generally <2 € units. From Fig. 4.10, the isotopic range among
abyssal peridotites is clearly related to long term mantle heterogeneity and not created in

the time since melting beneath the ridge axis.

To assess whether the range of isotopic compositions observed within a single dredge
can be produced following the recent melting event, by different amounts of ingrowth due
to variable Sm/Nd ratios, we calculate the time necessary for ingrowth of the measured
range of 1"3Nd/!*Nd. Using the parent and daughter ratios for a pair of samples (A and B)

and assuming the same initial 1*3Nd/"**Nd ratio, then the time, 7', for radiogenic ingrowth
(143Nd) (143Nd)
1 T4d N g -\ TdpNg
T=<ln 147 4 147 B
X ( Sm) —>— ( Sm)
144 N d A 144 N d B

where \ is the 147Sm to **Nd decay constant (6.54 x 10~2y~1),

is:

4.1 4.7)

From Equation 4.7, we calculate that the range of isotopic compositions observed
among the SWIR peridotites is too large to result from recent radiogenic ingrowth in the
peridotites following melt extraction under the ridge axis. Comparing each pair of samples

analyzed from Dredge 85, we calculate an average ingrowth time of 230 My. For Dredge
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96, the average ingrowth time among all samples is 520 My, among peridotites it is 510 My,
and among pyroxenites it is 240 My. All of these times are much longer than the time-scale
of mid-ocean ridge processes and should not be considered meaningful model ages. The
above sets of calculations indicate that the isotopic heterogeneity in the mantle pre-dates

the current melting and melt-rock reaction processes under the ridge axis.

4.4.4 Origin of the pyroxenite veins

Coexisting pyroxenites and peridotites in Dredge 96 were selected for analysis to ad-
dress the possibility of pyroxenites as direct evidence for the “veined mantle hypothesis™.
Although a consensus exists as to the presence of recycled crustal components in the man-
tle, based on isotopic heterogeneities among OIBs (e.g., White and Hofmann, 1982; Allegre
and Turcotte, 1986; Zindler and Hart, 1986; Hofmann, 1997), no consensus exists as to the
form that recycled crust takes in the mantle following millions of years of convection. The
occurrence of pyroxenites in peridotite massifs led Allegre and Turcotte (1986) to suggest
the marble-cake mantle hypothesis, in which recycled crust has been stretched and boud-
inaged to length-scales below meaningful thermodynamic integrity and absorbed into the
peridotitic lithology. While numerous studies have documented mineralogical, chemical
and isotopic variations among pyroxenites (e.g., Frey and Prinz, 1978; Polvé and Allegre,
1980; Zindler et al., 1983; Hamelin and Allegre, 1988; Piccardo et al., 1988; McDonough
and Frey, 1989; Mukasa et al., 1991; Shervais and Mukasa, 1991; Pearson et al., 1993;
Python and Ceuleneer, 2003), these pyroxenites have all been identified as representing
recent magmatic addition to the host peridotite, rather than ancient recycled crust older
than the host. Only studies which include §'®O analyses have made a compelling case for
recycled ancient crust in the mantle as the original source of present-day pyroxenites or
eclogites in massifs and xenoliths (e.g., Pearson et al., 1993; Jacob et al., 1994; Barth et al.,

2001). The presence of recycled crust in the asthenospheric mantle has also been invoked
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to explain isotopic variations in MORB (e.g., Allegre et al., 1984; Kellogg et al., 2002;
Salters and Dick, 2002) and to reconcile geochemical garnet signatures in MORB and the

thickness of oceanic crust (Hirschmann and Stolper, 1996).

Pieces of recycled crust in the form of pyroxenites or eclogites should possess certain
characteristics. (1) Mineralogically, they are most likely garnet bearing or they should have
the signature of garnet breakdown, such as high HREE concentrations in Cpx (Hart and
Dunn, 1993; Vannucci et al., 1993). (2) Major element mineral compositions are expected
to have lower Mg# than peridotite counterparts, even if the precursor eclogites underwent
melting in a subduction zone. For example, experimental data at 2-3 GPa show that Cpx
in residual eclogites have Mg# ranging from 0.60 to 0.76, depending on the degree of
melting (Rapp et al., 1999; Pertermann and Hirschmann, 2003a,b). Coexisting garnets have
even lower Mg# (0.48 - 0.63) and the garnet breakdown reaction will decrease the Mg#
of the recrystallized “low-pressure” Cpx. Eclogitic Cpx are also characterized by a high
abundance of the jadeite component. For example, Pertermann and Hirschmann (2003b)
report 14-28 mol% jadeite with 2-4 wt% Na,O, and 14-17 wt% Al,03. (3) The expected
Nd isotopic composition of recycled oceanic crust depends on the time since its formation.
As (Sm/Nd)yorp < (SM/NA)source, radiogenic growth of 3Nd/'**Nd is decelerated in
oceanic crust relative to its source mantle. Oceanic crust of 1 Ga with an average MORB
Sm/Nd ratio of 0.3356 (Hofmann, 1988) would have *3Nd/!*‘Nd = 0.512829, assuming
that it formed from a depleted mantle source that differentiated from bulk silicate earth
(BSE) at 3 Ga. Recycled crust of a greater age would have a less radiogenic Nd isotopic
composition because the depleted mantle would have evolved for less time before crustal
formation. Thus, coexisting pyroxenites and peridotites should have distinct *3Nd/'*Nd

compositions, with the latter having a more radiogenic (i.e. depleted) composition.

Our observations of Dredge 96 pyroxenites and the RC27-9-6-2 clinopyroxenite do not

fit any of the expected characteristics for direct samples of recycled crust. No garnet or ev-
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idence for garnet precursors, such as garnet-like REE patterns in pyroxenes, are observed
in the pyroxenites and the pyroxenite REE patterns are identical to peridotite REE patterns.
Spinel-pyroxene symplectites, a common product of garnet breakdown in peridotite mas-
sifs, are not observed. The major element compositions of Cpx, Opx, olivine and spinel
in Dredge 96 pyroxenites (Tables 5.4-5.7) are identical to their peridotite counterparts. For
example, the Mg# of Cpx and Opx range from 89.1% to 90.7%, much greater than typ-
ical eclogitic values. The abundance of the jadeite component in Cpx is extremely low,
with barely measurable Na,O <1 wt% and 5.1-7.7 wt% Al,Og, significantly lower than the

range cited above. Overall, pyroxene compositions are peridotitic rather than eclogitic.

The third characteristic of our pyroxenites that demonstrates that they are not direct
remnants of recycled oceanic crust are the pairs of Cpx isotope analyses from pyroxenite
veins and host peridotites (Van7-96-19, Van7-96-21, RC27-9-6-2; Table 4.4). For each
pair, the pyroxenite and peridotite either have identical Nd isotope ratios or the pyroxenite is
more depleted than the peridotite, neither of which corresponds to the expected composition
of mantle containing recycled ancient oceanic crust. The two largest pyroxenite samples
(Van7-96-09 and Van7-96-16) are both coarse-grained (5-10 mm) and have distinct isotopic
compositions (Table 4.4, Fig. 4.6). Pyroxenite Van7-96-16 defines the enriched end of
the isotopic spectrum, with both **Nd/'"*Nd and *"Sr/*°Sr compositions indistinguishable
from Bouvet OIBs (e.g., O’Nions et al., 1977; Kurz et al., 1998) and the most enriched
Oblique Segment MORBs (Standish, 2006). Based on these observations, we conclude
that the pyroxenites in this study are not direct samples of recycled oceanic crust, though
ultimately the enriched endmember of their isotopic range may have been derived from a

recycled crustal component within Bouvet plume.

The range of isotopic compositions and trace element abundance patterns of Dredge
96 peridotites are best explained by reaction with and addition of melt fractions derived

from enriched Bouvet material. This material could either be veined or unveined mantle,
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either from Bouvet plume or mantle metasomatized by the Bouvet plume during its passage
along the Shaka Fracture Zone at 15-25 Ma. The fact that the pyroxenites share chemical
and isotopic compositions with associated peridotites suggests that near-equilibrium con-
ditions prevailed at temperatures close to but slightly above the peridotite solidus. It is
conceivable that melts from the Bouvet-generated source migrated through partially melt-
ing asthenospheric peridotite and locally reacted with pyroxenes. This resulted in a wide
array of reaction products on the sub-kilometer scale, ranging from the almost non-reacted
(peridotite Van7-96-38, which has a very depleted isotopic signature) to the extensively
reacted (pyroxenite Van7-96-16).

The existing literature on abyssal pyroxenites is limited to descriptions of less than ten
samples combined from the EPR (Constantin et al., 1995), MAR (Serri et al., 1988; Juteau
et al.,, 1990; Kempton and Stephens, 1997) and SWIR (Dantas et al., 2007). All these
occurrences describe pyroxenites of depleted compositions similar to adjacent peridotites,
suggesting that, along with the results of this study, the bulk of the abyssal pyroxenites do
not provide direct evidence for the veined mantle hypothesis. Instead, they indicate variable

amounts of melt crystallization in the mantle, starting at variable depths.

4.4.5 Relationship between peridotites and basalts

Previous studies of radiogenic isotopes in abyssal peridotites have attempted to reconcile
the isotopic composition of peridotites with that of basalts, to determine whether they com-
plement basalt compositions or whether they indicate the existence of an additional mantle
component. Snow et al. (1994) and Kempton and Stephens (1997) found that abyssal peri-
dotites have similar isotopic compositions to MORBs and are from the same, depleted
mantle source. Salters and Dick (2002) looked in detail at the Oblique Segment and the
Atlantis II Fracture Zone and concluded that peridotites are isotopically more depleted in

comparison to associated basalts. They advocated for the existence of an enriched pyrox-
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enite component in the mantle that is removed by melting and sampled by basalts, but not
preserved in the peridotites. Cipriani et al. (2004) analyzed basalts and peridotites from the
Vema Lithospheric Section on the MAR and found that the age-corrected averages for the

two lithologies are not statistically different.

In this study, we have found large isotopic variations among peridotites and pyroxen-
ites from one dredge (Dredge 96, Fig. 4.6). They cover 46% of the Nd isotopic range
of Indian Ocean MORB and encompass the Nd and Sr isotopic range of basalts from the
Oblique Segment (Standish, 2006). Also noticeable is the fact that basalts from Bouvet
hotspot plot at the “enriched” end of the Oblique peridotite and basalt spectrums and that
the hotspot was proximal to the Oblique Segment at 15-25 Ma (Fig. 4.1). These observa-
tions suggest a genetic link between Dredge 96 enriched peridotites and pyroxenites and the
Bouvet hotspot, through melt-rock reaction and veining of mantle peridotites by Bouvet-
derived melts at ~20 Ma. Bouvet-modified mantle then upwelled beneath the Oblique
ridge axis, producing melts from the metasomatized mantle with chemically and isotopi-
cally enriched signatures. These melts subsequently migrated through and reacted with
the depleted mantle, resulting in the chemical and isotopic variations observed among both

basalts and peridotites at the present-day ridge axis.

A genetic link between Bouvet source mantle and the Oblique Segment is supported
by the Pb isotopic composition of Cpx, which have similar radiogenic compositions to
Bouvet basalts (Table 4.5 and Fig. 4.7). Peridotite Cpx also have similar Pb isotopic
compositions to primary sulfide (monosulfide solid solution) grains in peridotite Van7-96-
28, as determined by in situ analyses with the Misasa multi-collector SIMS 1270 (two grain
average: 2“"Pb/?"Pb = 0.7907 and *"*Pb/**°Pb = 1.9984, compared to 0.7947 and 1.9955
for Cpx, Table 4.5). As uranium is absent in sulfide, o (***U/**'Pb) = 0, whereas j. = 17.8
in Cpx (Table 4.3). Hence, the apparent isotopic equilibrium between Cpx and sulfide in

the peridotite must be recent, suggesting that the radiogenic Pb signature of both Cpx and
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sulfide are from migration of a Bouvet-derived melt through the mantle. As Van7-96-28 is
among the relatively enriched samples from Dredge 96, both in terms of Nd and Sr isotopic
ratios and REE abundance patterns (Fig. 4.5), this supports the Pb isotope argument for

recent Bouvet-derived melt metasomatism of the mantle.

The variations in Nd and Sr isotopic compositions of peridotites and basalts along the
Oblique Segment and the comparison to Bouvet Island basalts are shown in Fig. 4.11. Sim-
ilar Bouvet-derived metasomatism of the mantle may have occurred in other parts of the
Oblique Segment, as the five samples from dredge PS86-6, reported by Salters and Dick
(2002), range from **Nd/***Nd of 0.513202 (more depleted than DMM) to 0.512985 (sim-
ilar to Bouvet basalts). Among the basalts, samples from the Narrowgate region, far to the
east of the hotspot track, have the greatest overlap with the Bouvet isotopic range (Stan-
dish, 2006). From the overlapping ranges of the basalts and peridotites, we conclude that
all mantle isotopic components observed in regional basalts are found in the peridotites and
that the existence of an enriched component specifically in the form of pyroxenite veins is
not required to explain our dataset. Basalts do not extend to the extremely depleted com-
positions of the peridotites, because of mass balance constraints. Peridotites with depleted
M3Nd/'Nd compositions (such as Dredge 85) must be derived from high Sm/Nd ratios
and thus relatively low Nd concentrations, with respect to enriched peridotites. Hence, the
contribution of depleted peridotites to the melt mixtures that form basalts is small compared

to the contribution from enriched compositions.

Atlantis II Fracture Zone is not associated with any hotspot track, but exhibits isotopic
enrichment in some basalts. This enrichment is matched by the Nd isotopic enrichment in
the matrix of peridotite RC27-9-6-2. As shown in Fig. 4.12, the isotopic enrichment in
basalts does not occur specifically on one side of the fracture zone or at a specific location
along the fracture zone. The transform volcano, located adjacent to the sampling location

of peridotite RC27-9-6-2 (Fig. 4.1), ranges in composition from DMM (3Nd/'*Nd =
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0.51313) to an enriched composition (1**Nd/'*Nd = 0.51298). RC27-9-6-2 ranges from
this enriched composition in the peridotite matrix ("*Nd/"*Nd = 0.512915) to a near-
DMM composition in the clinopyroxenite vein (13Nd/!*"Nd = 0.513099). Hence, in one
peridotite sample we observe the entire isotopic range of basalts from the transform vol-
cano. The randomly distributed isotopic enrichment of the Atlantis II Fracture Zone sug-
gests that isotopic heterogeneities are ubiquitous and exist on a sub-kilometer scale. This
enriched component may only be recognizable at low degrees of melting, such as at fracture
zones.

As observed in this study, chemical and isotopic heterogeneities could be both ancient
and modern, and could occur on the sub-kilometer scale. Isotopic enrichment or deple-
tion requires long term enrichment or depletion in trace element concentrations, so the
enrichment signature will dominate over the depletion signature in melts produced from a
heterogeneous mantle. If this picture is generally true for the mantle beneath mid-ocean
ridges, basalts should carry slightly more enriched (or less depleted) isotopic signatures
than their associated peridotites. In Fig. 4.13, we demonstrate this by plotting histograms
of basalt and peridotite Nd isotopic compositions for the Oblique Segment, the Atlantis II
Fracture Zone, and the global ridge system. It is particularly noticeable that the global peri-
dotite average (!*Nd/'*"Nd = 0.513167) is more depleted than the MORB-derived estimate
of DMM (0.51313; Workman and Hart, 2005), and that there is a significant population of
peridotites with much more depleted Nd isotopic compositions (extending to 0.51366) than
D-DMM (0.51326). This suggests that the asthenospheric mantle is indeed much more de-

pleted than generally thought and the implications of this suggestion are discussed below.

4.4.6 Variation of isotopic composition with peridotite melt depletion

Prior to considering the implications of ultra-depleted compositions and mantle hetero-

geneity, we assess the extent to which peridotites exhibit long term trace element depletion
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associated with isotopic depletion. Peridotites in a heterogeneous mantle should demon-
strate correlations between isotope depletion and indicators of degree of melting. In con-
trast, recent melting at the ridge axis will deplete peridotite concentrations without chang-

ing the isotopic composition.

In Fig. 4.14, the variations of Cpx Nd isotopic composition with indicators of degree
of melting — modal Cpx, spinel Cr#, and Cpx (Ce/Yb)y — suggest a possible link between
mineralogical, chemical and isotopic signatures of depletion. However, as all peridotites
have been affected by recent melting processes, considerable scatter exists for the global
data set. When samples from Dredge 85 and Dredge 96 are considered by themselves,
reasonable correlations between indicators of major and trace element depletion and iso-
topic depletion or observed. This suggest that at least some of the variability in isotopic

composition of the peridotites reflects ancient melting events.

Dredge 85 peridotites, which have more radiogenic *3Nd/!**Nd, are more depleted in
modal Cpx, with Cpx having lower (Ce/Yb)y and (Nd/Sm)y than Dredge 96 peridotites.
Among Dredge 96 peridotites, samples with more depleted isotopic signatures have more
depleted trace element ratios. Incorporation of available data for abyssal peridotites from
the SWIR (Snow et al., 1994; Salters and Dick, 2002) follows the same general trend.
These correlations are broad, with correlation coefficients <0.3, but no correlation should
be present if the SWIR peridotites formed as simple melt extraction residues from a uni-
form source mantle. Moreover, variable degrees of melting and melt-rock reaction during
the recent melting process will have obscured pre-existing trends between major and trace
elements and isotopes. The negative correlation between Nd isotopes and the Cr# of co-
existing spinel rules out a simple relationship between isotopic and chemical depletion, as
spinel Cr# should increase with increasing melt depletion. These observations suggest a
combination of pre-existing heterogeneity, recent melting and in some regions, production

of enriched Cpx by melt-rock reaction with an exotic component (e.g., Bouvet plume).
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To examine in more detail the relationship between enriched and depleted sources
among peridotites, we plot the variation of "*3Nd/***Nd as a function of inverse Nd concen-
tration in Fig. 4.15. Mixing between enriched and depleted sources with different daughter
isotope concentrations results in a linear relationship on an inverse concentration diagram
(Faure and Mensing, 2005). As shown in Fig. 4.15, a linear regression of Oblique Segment
data produces only a minimal correlation and regression of the Atlantis II Fracture Zone
dataset produce an anti-correlation. The lack of a mixing relationship on the large scale
emphasizes both the complicated nature of melt-rock reaction, the effects of melt removal
(e.g. the extremely low Nd concentration samples from the fracture zone in Fig. 4.15), and

the heterogeneous nature of the mantle.

On the local scale, the three analyzed samples from dredge RC27-9-6 appear to demon-
strate mixing between enriched and depleted sources, with a correlation coefficient of 0.8
(Fig. 4.15). Cpx from the vein in RC27-9-6-2 plots on the line between matrix Cpx and a
second, depleted sample from the dredge. Hence, the vein is a mixture of the isotopically
and chemically enriched peridotite in which it sits and melt from a more isotopically and
chemically depleted peridotite. This depleted peridotite is more depleted than DMM, but
the products of mixing — recorded in the vein and a third peridotite from the dredge — are

chemically and isotopically similar to DMM (Fig. 4.15).

The major element characteristics of Dredge 85 peridotites suggest low degrees of melt-
ing, whereas the trace and isotopic composition suggests extreme depletion. Spinel Cr#’s
are low and the dredge is located on an obliquely spreading ridge section (Fig. 4.1) with
little evidence for significant mantle melting and thin to absent volcanic crust (Dick et al.,
2003; Standish et al., submitted). However, peridotite trace element concentrations and
Nd isotope ratios are considerably more depleted than DMM. Also worth noting is the
fact that these samples are unlikely to have been affected by trapped melt, unless this melt

was ultra-depleted, as metasomatism would have a considerable effect on samples with
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low trace element concentrations. Dredge 85 peridotites contain no evidence for late melt
impregnation and gabbroic rocks are absent in the region. The isotopic, and to some ex-
tent the trace element, composition of these peridotites must have been established prior to
melt extraction at the SWIR. Hence, the mantle beneath the SWIR has contained depleted
peridotites for a long period of time.

Heterogeneously depleted mantle is implied by comparison of the MORB-based esti-
mate of DMM (Su and Langmuir, 2003; Workman and Hart, 2005) to Cpx compositions in
Fig. 4.14. DMM and D-DMM are both less depleted than abyssal peridotites, not just in
terms of isotopic composition, but also with respect to Cpx mode, LREE/HREE ratios (e.g.,
Ce/YD), and Sp Cr#. As will be discussed below, the present-day Sm/Nd ratio of DMM
(on the basis of the continuous depletion model) is too low relative to the ratios measured
in depleted abyssal peridotites such as those from Dredge 85. This discrepancy cannot
be reconciled as an effect of melt extraction, because predicted degrees of melting are too
large given the lack of crust (basalts and gabbros) in the region of Dredge 85. Therefore,
we suggest that the correlations in Fig. 4.14, although too broad for detailed discussion,
carry important information as to the geochemical prehistory of the asthenospheric mantle.
We caution against the prevailing assumption that the entire range of chemical variations
observed among abyssal peridotites were generated by melt extraction beneath the current

set of ocean ridges.

4.4.7 Implications for mantle composition

Results from the present study, combined with the data of Salters and Dick (2002)
and Cipriani et al. (2004), suggest that the asthenospheric mantle (DMM) is isotopically
more depleted than previously considered (e.g., Workman and Hart, 2005). For example,
Figs. 4.6 and 4.11-4.12 demonstrate that the most depleted SWIR peridotites are more de-

pleted than D-DMM of Workman and Hart (2005), with 87Sr/%6Sr as low as 0.702096 and
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M3Nd/"*Nd up to 0.513417. Since radiogenic ingrowth of "**Nd/***Nd following melt ex-
traction beneath the SWIR was found to be small, the observed isotopic signature requires
a long-term depletion of Nd relative to Sm. Such long-term LREE depletion suggests that
there exists, in the asthenospheric mantle, more strongly LREE-depleted regions than sug-
gested by MORBs. These concentration variations are less apparent in surveys of MORB
compositions because the Nd mass balance for aggregated melts formed by melt fractions
derived from variously depleted source peridotites is dominated by the least depleted end-
member. Hence, MORBs are skewed towards more isotopically enriched compositions

than peridotites (Fig. 4.13).

The presence of ultra-depleted mantle requires a reassessment of the history of mantle
depletion, to produce higher Sm/Nd and lower Rb/Sr than current estimates for DMM.
The continuous transport, melt depletion model of Workman and Hart (2005) predicts the
evolution of a parent/daughter ratio in DMM based on the isotopic ratios of DMM and BSE
and the parent/daughter ratio of BSE. In this model, material is continuously removed from
the mantle from the time at which depletion begins (7). Workman and Hart estimate ¢ to be
3 Ga, as a best estimate for the start of significant continental crustal growth (Taylor and
McLennan, 1995). The parent/daughter ratios of BSE and DMM are related by a transport

coefficient, k:
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where the subscript 0 indicates present-day values. The evolution of the isotopic composi-

tion of DMM is dependent on £ and ¢:
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In Fig. 4.16A, we calculate the variation of **Nd/'*Nd as a function of bulk peri-
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dotite Sm/Nd ratio, for different initial depletion times. In addition, we show a traditional
two-stage evolution model (cf. Workman and Hart, 2005), in which all depletion occurs
at initial time ¢. We plot abyssal peridotite data in Fig. 4.16A, using the age corrected
Cpx '3Nd/"**Nd ratios and assuming that these are representative of the whole rock. Bulk
Sm/Nd ratios are reconstructed from Cpx concentrations and the bulk partition coefficient
calculated from mineral/melt partition coefficients and the peridotite mode (Equations 1-2
in Workman and Hart, 2005). The abyssal peridotite data trend away from the 3 Ga de-
pletion line towards higher Sm/Nd ratios. In comparison to the range among abyssal peri-
dotites, the difference between the continuous and two stage depletion models is relatively

small.

To explain the peridotite data in the context of DMM evolution, we consider the effects
of melting, which produces high Sm/Nd ratios without changing the *3*Nd/"**Nd ratio. In
Fig. 4.16B, we plot Sm/Nd ratios produced by different degrees of modal fractional melt-
ing from an initial DMM Sm/Nd ratio of 0.411 (Workman and Hart, 2005). We use modal
melting instead of non-modal, for consistency with Workman and Hart (2005). While the
simple melting model appears to explain the Sm/Nd peridotite range, the predicted ~10%
melting for Dredge 85 does not correspond to observations of the dredge location. As dis-
cussed previously, Dredge 85 is from an amagmatic section of the ridge (Fig. 4.1) and the
combined slow spreading rate and obliquity to the plate direction implies minimal melt-
ing during mantle upwelling. Using a more sophisticated melting model might reduce the
amount of melting predicted for Dredge 85, but this dredge would still appear to have under-
gone higher degrees of melting than dredges associated with significant crustal production.
A second difficulty with using any melting model to explain observed Sm/Nd variations
is that peridotites from the same dredge should undergo the same degree of melting, as
they have experienced the same temperature regime. Hence, even if variation in degree of

melting could explain the Sm/Nd ratios between dredges, it cannot explain the few percent
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variation implied by Sm/Nd ranges within dredges. The Sm/Nd ratios of peridotites, while
invariably affected to some degree by recent melting, must largely be inherited signatures

that predate recent ridge processes.

In another attempt to explain peridotite isotopic and trace element depletions, we mod-
ify the continuous depletion model by removing material at different times and calculating
the present day ratio of this material. In Fig. 4.17, we plot the evolution of BSE and DMM
Nd isotopic compositions with time and with Sm/Nd ratio. We then calculate the evolution
of material removed at various times from DMM, which is found to evolve to composi-
tions between present-day BSE and DMM. As observed in Fig. 4.17, the limitation of
this model is that it cannot produce compositions outside the BSE-DMM range, whereas
peridotites extend to much higher Sm/Nd ratios. Our results indicate that the evolution of
the asthenosphere is more complicated than implied by depletion models constrained by
BSE and DMM alone, particularly when the Sm/Nd ratio of DMM is determined from the
present-day '"**Nd/'*'Nd ratio of DMM. A more accurate model of asthenosphere evolu-
tion needs to explicitly include the effect of melting on Sm/Nd ratios at various times in
the past. In addition, the effects of material return at subduction zones need to be included,
to explain the enriched compositions of peridotites such as RC27-9-6-2, which plot on the

enriched side of BSE in Fig. 4.17.

If depleted peridotites such as Dredge 85 form a volumetrically significant component
of the asthenospheric mantle and if enriched components such as RC27-9-6-2 are rela-
tively ubiquitous in the mantle, then estimates of melting systematics based on MORB
compositions need to be reassessed. Workman and Hart (2005) concluded that MORB is
produced by 6% aggregated fractional melting of DMM, resulting in a Nd concentration
in MORB of 8.37 ppm. Alternatively, the upper mantle can be considered a mixture of
two (or more) components, for example the E-DMM and D-DMM calculated by Workman

and Hart (2005). A 6% melt of each of these lithologies, mixed in proportions of 55% D-
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DMM and 45% E-DMM, produces a MORB-like melt with 8.37 ppm Nd and '**Nd/'**Nd
=0.51312. This calculation assumes similar solidi for both end-members, which is fine for
variable modes but not for variable mineral compositions (Pickering-Witter and Johnston,
2000; Schwab and Johnston, 2001).

Based on the above discussion of depletion models, the Nd concentrations of depleted
peridotites are likely to be considerably more depleted than D-DMM. Thus, depleted peri-
dotites such as in Dredge 85 would contribute a relatively small amount to the observed
trace and isotopic composition of MORBSs. In the context of the veined mantle model dis-
cussed earlier, this implies that if pyroxenites are present in the mantle, they would domi-
nate the melt isotopic signature and MORBs should have a more enriched isotopic signature
than is observed. Hence, we propose that the upper mantle consists of variably depleted and
enriched peridotites and that these variations in isotopic, trace, major and modal composi-
tions, when properly incorporated into melt production and extraction models, can explain

many of the observed variations in MORB composition.

4.5 Conclusions

Analyses of peridotites from the SWIR demonstrate greater isotopic and trace element
variability on a smaller lengthscale than has previously been observed. We find that peri-
dotites extend to more depleted compositions than estimates of DMM, with 87Sr/%Sr as low
as 0.702096 and '**Nd/***Nd as high as 0.513335 among our samples. Other peridotites
are relatively enriched and in one SWIR dredge we find 46% of the Nd isotopic range of

Indian Ocean MORB. On the basis of our analyses, we reach several conclusions:

I. Cpx and Opx in abyssal peridotites are in Nd isotopic disequilibrium and the dise-
quilibrium is not the result of recent radiogenic ingrowth. In all the peridotites for

which both Cpx and Opx were measured, evidence for recent melt-rock reaction is
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found. Hence, we suggest that isotopic disequilibrium reflects Opx REE disequilib-
rium, as Opx is coarse grained and has slower diffusion rates than Cpx. In addition,
if the disequilibrium originated in Cpx, fractionated partition coefficient patterns and

core-to-rim variations in trace elements should be observed, but are not.

. Peridotites spend ~1-20 My from the time that they pass through their closure tem-
perature to the time that they are collected at variable distances from the ridge axis.
However, radiogenic ingrowth during this time is negligible, with <0.01% change
among our samples, despite slow upwelling rates along the Oblique Segment (partly
due to low Nd/Sm ratios in many samples). Thus, the observed isotopic range of
abyssal peridotites and the extremely depleted compositions among some peridotites

reflects the composition of the asthenospheric mantle.

. Pyroxenite veins in both Dredge 96 and RC27-9-6-2 formed by recent crystallization
of melt in a conductively cooling mantle. Veins do not have the predicted composi-
tions of recycled oceanic crust. For example, in sample RC27-9-6-2, the clinopyrox-
enite vein is more depleted than the host peridotite. In Dredge 96, the major, trace
and isotopic compositions of the veins overlap those of the coexisting peridotites.
The isotopic compositions of Dredge 96 samples indicate melt-rock reaction with
Bouvet Hotspot material, which could have originated as recycled oceanic crust, but

the samples do not provide direct evidence for the “veined mantle hypothesis™.

. The same range of isotopic compositions is found among peridotites as among basalts.
The average composition of peridotites is skewed towards slightly more depleted val-
ues, as the mass balance of aggregated melts formed by melt fractions from variably
depleted sources is dominated by the least-depleted component. No missing (vein)
component is required to reconcile MORB isotopic compositions with peridotite

compositions. In particular, peridotite RC27-9-6-2 provides evidence for enriched
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mantle unrelated to any hotspot.

5. Isotopic depletion requires long term chemical depletion. Peridotites show some ev-
idence of a correlation between **Nd/'**Nd and indicators of melt depletion. How-
ever, peridotites have also undergone recent melt extraction, which complicates iden-

tification of long term chemical depletion trends.

6. Portions of the mantle are significantly more depleted than predictions of DMM com-
position derived from MORB isotopic ratios. The degree of melting suggested by
the trace element composition of Dredge 85 peridotites is higher than the amount
expected in this region of ultra-slow spreading. The isotopic and trace element com-
positions of peridotites cannot be reconciled with either a two stage model or a con-
tinuous depletion model of mantle isotopic evolution. In addition to recent melt
extraction, the combination of high **Nd/!**Nd and high Sm/Nd requires ancient

melt extraction episodes that are not accounted for by these models.

We conclude that the asthenospheric mantle is heterogeneous in terms of isotopes, ma-
jor and trace elements, and modal composition. In some regions, the mantle is more de-
pleted than current MORB-based estimates of DMM. The scale of heterogeneity is rel-
atively small, probably down to < 1 km. These observations require a reassessment of

current models of MORB production.
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Appendix 4.A Major elements

Major element compositions of all primary silicate phases in the peridotites and pyroxen-
ites were determined by electron microprobe, using a JEOL JXA-733 at the Massachusetts
Institute of Technology. In Tables 5.4-5.8, mineral compositions are presented as averages
of 5 or more spot analyses per grain. For pyroxenes, to average out the effects of exsolu-
tion, a 10pm defocussed beam was used and data were collected by line traverses on grain
cores and rims. In addition, for all Cpx and some Opx, multiple grains were analyzed per
sample and the total number of points measured are listed in Table 4.A2.

Fig. 4.A1 shows the variation of spinel Cr# with spinel Mg# and with TiO,. During
melting, spinel Cr# increases and Mg# decreases. TiO, concentrations greater than DMM
(~0.2 wt%), are indicative of melt refertilization in the peridotites. Spinels in Dredge 96
and RC27-9-6-2 indicate variable degrees of melting and melt fractional crystallization. In
contrast, Dredge 85 peridotites have low TiO,, suggesting that their compositions reflect
only melting and melt extraction. In addition, Dredge 96 pyroxenite spinels typically have
plagioclase rims, due to the second melt infiltration event and are thus not necessarily
representative of processes that occurred during pyroxenite formation.

The variations of major elements in Cpx are shown in Fig. 4.A2. Dredge 96 peridotites
and pyroxenites have unusually low CroO3, Mg# and high Na,O, in comparison to other
peridotites and pyroxenites. In contrast, RC27-9-6-2 has high Cr,0O3, as evidenced by the
bright green color of the Cpx versus the grey color of Dredge 96 Cpx. FeO and MgO in
RC27-9-6-2 form a trend towards high concentrations, corresponding to a Mg# range of
89.8-92. This variation does not correspond to clinopyroxenite versus peridotite lithology

or to distance from the clinopyroxenite vein.
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Figure 4.1: Maps of the Southwest Indian Ridge, Oblique Segment and Atlantis Il Fracture
Zone. Bouvet, Marion and Crozet are hotspots associated with the SWIR. The dot-dashed
line indicates the path of Bouvet hotspot, calculated by Hartnady and le Roex (1985) using
finite reconstruction poles from Morgan (1983). Bouvet hotspot passed along the trace
of the Shaka Fracture Zone (dashed line) at the eastern end of the Oblique Segment from
15-25 Ma. No hotspot tracks are associated with the Atlantis II Fracture Zone. Atlantis
Bank is an uplifted gabbroic massif located under the large cluster of dredges along the
Atlantis II Fracture Zone. Solid arrows indicate the direction of plate motion. On the
Oblique Segment, dashed arrows indicate the obliquity of the spreading direction to the
plate direction.
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Figure 4.2: A. Depleted lherzolite, Van7-85-49, with 5% Cpx. B. Enriched peridotite, Van7-96-28, with
5% Cpx. Apart from the different alteration style, this peridotite has no visual characteristics that distinguish
it from the Dredge 85 peridotite. C. Pyroxenite veined peridotite, Van7-96-21, with the vein outlined in white.
D. Crossed polarized photomicrograph of the same sample. E. Pyroxenite, Van7-96-16, with a thin, altered,
orange peridotite skin at the top. A particularly large Cpx grain is outlined in white. The pyroxenite is cross-
cut by two later-stage veins of fine-grained Ol-Plag-Cpx, outlined with dashed lines. F. Crossed polarized
photomicrograph of a pyroxenite, Van7-96-09, consisting of coarse-grained Cpx and Opx with minor olivine.
The fine-grained, cross-cutting assemblage of Ol-Plag-Cpx is from the later-stage melt infiltration event.
G. RC27-9-6-2, the clinopyroxenite veined lherzolite. H. Crossed polarized photomicrograph of the same
sample, with the vein outlined in white.
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Figure 4.3: Mineral mode maps of peridotite and pyroxenite samples, created by point
counting thin sections on a 1 mm grid. “Mat” refers to peridotite matrix and “Vn™ to
pyroxenite vein.
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Figure 4.4: Comparison of ICPMS and TIMS data for Sr, Nd and Sm, in ppm. Solid line is
a 1:1 correlation. Error bars are smaller than symbols.
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Figure 4.5: ICPMS rare earth element data for Cpx (circles) and Opx (triangles), normal-
ized to PUM (McDonough and Sun, 1995). In A-C, the grey shaded field is the range for

abyssal peridotite Cpx from Johnson et al. (1990). In D, the grey shaded field is the range
for peridotite Cpx from the Atlantis Il Fracture Zone (Johnson and Dick, 1992).
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Figure 4.6: Nd and Sr isotopic variations in peridotites (from this study and literature),
basalts and gabbros. All data are corrected to the standard values used in this study. Peri-
dotite data from other studies are for Cpx mineral separates, except the Shaka Fracture
Zone samples, which are whole rock analyses of the fresh cores of mylonitized peridotites.
The Cpx referred to as [RC27-9-16-2 M+V is a combined matrix and vein Cpx analysis
(Snow et al., 1994) and the Cpx referred to as 6-3 & 6-8 are two samples from the same
dredge as RC27-9-6-2.

Data sources: DMM from Su and Langmuir (2003); D-DMM from Workman and Hart (2005). A. Oblique
Segment peridotites from Snow et al. (1994) and Salters and Dick (2002); Shaka Fracture Zone peridotites
from Snow (1993); Bouvet regional peridotites from Snow et al. (1994); Oblique Segment basalts from
le Roex et al. (1983, 1992), Mahoney et al. (1992), Janney et al. (2005) and Standish (2006); Shaka Fracture
Zone basalts from le Roex et al. (1983); Bouvet basalts from O’Nions and Pankhurst (1974), O’Nions et al.
(1977), Sun (1980), Kurz et al. (1998), Prestvik et al. (1999), Janney et al. (2005) and Barry et al. (2006). B.
Atlantis II Fracture Zone peridotite from Snow et al. (1994) and Salters and Dick (2002); gabbro, all from
Hole 735B on Atlantis Bank, from Kempton et al. (1991), Hart et al. (1999) and Holm (2002); fracture zone
and transform volcano basalts from Mahoney et al. (1989) and Snow (1993); basalts from adjacent ridge
segments from Hamelin and Allégre (1985), Snow (1993) and Meyzen et al. (2005).
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Figure 4.7: Variation of 2"’Pb/?"*Pb with 2’SPb/2*Pb, 2"Pb/?"*Pb and *"Sr/**Sr in peri-
dotite Cpx and basalt glasses from this study. Also shown are related basalts and gabbros
and the estimated compositions of DMM and D-DMM; see Figure 4.6 for data references.
The two black squares among Oblique Segment basalts are repeat analyses of samples an-
alyzed by Standish (2006), which plot within the general trend between DMM and Bouvet,
unlike the Dredge 96 samples.
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Figure 4.8: Cpx/Opx partition coefficients in abyssal peridotites, plus one pyroxenite, plot-
ted as a function of cationic radius in Cpx. For the elements Pb to Li, this corresponds to
VIlI-fold coordination in the M2 sites whereas for the elements Zr-Nb, this corresponds to
VI-fold coordination in the M1 site. REE variations are plotted in the top panels and the
full set of trace elements in the bottom panels. The light grey field is the partition coeffi-
cient range from Witt-Eickschen and O’Neill (2005) for xenoliths equilibrated over a range
of temperatures from 900°C (high values) to 1250°C (low values). The dark grey field is
the partition coefficient range for Hellebrand et al. (2005) from in siru analyses of abyssal
peridotite pyroxenes.
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Figure 4.9: Nd isochrons for samples with analyses of more than one mineral phase. Circles
are Cpx and triangles are Opx; filled symbols are peridotite minerals and open symbols are
vein minerals. Solid line is a linear least squares regression through Cpx and Opx mineral
pairs; dashed line is a regression through matrix Cpx, matrix Opx and vein Cpx. Initial
13N d/""*Nd and ages are for Cpx-Opx pairs only.
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Figure 4.13: Histograms of peridotite and basalt Nd isotopic ratios for (A) the Oblique
Segment, (B) the Atlantis II Fracture Zone, and (C) global abyssal peridotites and MORBs.
Mean values for the peridotites are indicated by the dot-dashed lines and the basalts by the
dashed lines. Note that Oblique Segment basalts and peridotites are shifted to lower average
113N d/'"**Nd due to the influence of Bouvet Hotspot. Data in A and B are from this study
and references in Figure 4.6; global peridotite data in C also include data from Kempton
and Stephens (1997) and Cipriani et al. (2004); global MORB is a compilation from PetDB
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for MAR Cpx are from Cipriani et al. (2004) and Brunelli et al. (2006); values for DMM
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Figure 4.15: Variation of Nd isotopic ratio as a function of inverse Nd concentration for the
Oblique Segment and the Atlantis Il Fracture Zone. '"*Nd/'**Nd values are age corrected
to the 1200°C isotherm and the location of DMM is shown for comparison to observed
compositions. Dashed lines are regressions through the datasets for each locality and the
x 2 values indicate the lack of a significant correlation. The solid line is a regression through
the three samples from dredge RC27-9-6, which yield a good correlation. Data for other
SWIR Cpx are from this study and references in Figure 4.6.
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Figure 4.16: A. Predicted present-day mantle composition based on the continuous (solid
lines) and two-stage (dashed lines) depletion models and the composition of BSE. The pre-
ferred model of Workman and Hart (2005) is the solid black line for continuous depletion
at 3 Ga and their estimates of DMM and D-DMM lie on this line. Reconstructed peridotite
bulk Sm/Nd and **Nd/!**Nd from this study and the literature (see previous figures for
symbols and references) extend over a larger range of Sm/Nd compositions than predicted
by the models. B. The effect of modal fractional melting on the Sm/Nd ratio of DMM.
The horizontal spread in the Sm/Nd ratios of the peridotites can be explained by variable
degrees of melting from an initial DMM composition. However, the highest degree of
melting is predicted for Dredge 85 peridotites (green circles), which come from a section
of the SWIR that lacks crust and thus cannot have undergone ~10% melting. Peridotite
bulk Sm/Nd compositions are reconstructed from Cpx concentrations and modal analyses.
Peridotite Nd ratios are age corrected values for Cpx, assumed to be representative of the
whole rock.
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Figure 4.17: Models of DMM isotopic and trace element evolution through time, following
the two stage model, the continuous depletion model and the continuous depletion model
with periodic removal, all assuming initial depletion of BSE at 3 Ga. The continuous de-
pletion and two stage models follow slightly different trajectories, but are constrained to
produce the same present-day '**Nd/'**Nd DMM ratio. Material removed at different times
from the continuously depleting mantle produces a range of present-day compositions be-
tween DMM and BSE. The dot-dashed line is the present-day variation of '**Nd/'**Nd and
Sm/Nd ratios for the continuous depletion model (for depletion beginning at 3 Ga) and is
the same as the solid black line in Figure 4.16.
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Figure 4.Al: Variations in spinel Cr#, Mg# and TiO, in peridotites and pyroxenites from
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The composition of spinel in DMM is from Workman and Hart (2005).
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Table 4.1: Dredge locations

On/Off Bottom
Dredge Contents Wt Lat  Long Depth FSR*  Angle® ESR? Location
kg =S °E m mm/yr mm/yr
Oblique Supersegment, SWIR
Van7-85 Peridotite, 90 5225 1523 4190 14.22 32.5° 11.99 S wall of axial
dunite, 5227 1523 3547 trough, east of
diabase Narrowgate
Van7-86 Dunite, 146  52.14 15.16 3765 14.21 32.6° 11.97 N wall of axial
peridotite 52.13 15.15 3128 trough, east of
Narrowgate
Van7-96 Cataclastites, 81  53.14 9.98 2970 14.06 28.5° 12.36  SW wall of
perid, pyrox, 53.15 997 3527 axial trough at
diabase Shaka FZ
intersection
PS86-6 Peridotite, 187 52.44 13.13 4509 14.14 51.4° 8.82 N wall of axial
basalt, 52.33 1315 3073 trough, midway
gabbro along segment
veined perid
Atlantis II Fracture Zone, SWIR
RC27-9-6  Peridotite, 37  31.92 57.18 4010 14.00" 0.0° 14.00 E wall of
dunite 31.93 57.18 3500 transform, at
ridge
intersection

“ The effective spreading rate (ESR) is calculated from the full spreading rate (FSR) and angle of
obliquity, following the method of Abelson and Agnon (1997).

b Due to asymmetrical spreading, the half spreading rate is 8.5 mm/yr to the south (Hosford et al., 2003).
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Table 4.2: Peridotite modal compositions

Sample Lithology Oliv. Opx Cpx Spin Plag  Sum Points
Van7-85-27 Harzburgite 68.6 275 3.1 0.9 0.0 100.0 2506
Van7-85-30 Harzburgite 674 292 2.1 1.2 02 100.0 2483
Van7-85-42 Lherzolite 67.1 256 62 1.0 0.0 100.0 2825
Van7-85-47 Lherzolite 68.7 247 5.1 1.5 00 1000 2594
Van7-85-49 Lherzolite 71.6. 222 33 09 0.1 100.0 2607
Van7-86-27 Lherzolite 558 340 96 06 00 1000 2566
Van7-96-09V  Pyx Vein 9.3 25.8 485 1.9 146 100.0 756
Van7-96-16V  Pyx Vein 11.6 340 244 1.6 284 100.0 697
Van7-96-19M  Lherz w/ Pyx Vein 648 17.9 133 0.8 3.1 100.0 1883
Van7-96-19V  Pyx Vein in Lherz 72 264 572 28 63 100.0 318
Van7-96-21M  Harz w/ Pyx Vein ~ 76.2  18.1 46 06 04 100.0 1894
Van7-96-21V  Pyx Vein in Harz 1957 393 375 2.2 1.3 100.0 461
Van7-96-25 Lherzolite 66.2 256 6.8 1.4 00 1000 2215
Van7-96-28 Lherzolite 76.7 172 54 0.7 00 100.0 2738
Van7-96-35 Lherzolite 704 167 10.5 2.3 0.1 100.0 1765
Van7-96-38 Lherzolite 642 24.1 9.9 1.6 02 100.0 2278
PS86-6-38 Lherzolite 56.7 29.0 12.6 1.7 0.0 1000 3124
RC27-9-6-2M  Lherz w/ Cpx Vein  67.5 19.5 119 09 02 1000 2194
RC27-9-6-2V  Cpx Vein in Lherz 76 92 826 07 00 100.0 436
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Table 4.5: Pb isotopic compositions of peridotite Cpx and basalt glasses

Sample Phase  2Y0Pb/204phe 2o  207ppRYippe 200 208pp/20ippe 20

Van7-96-21M Cpx 19.032 0.015 15.537 0.012 38.423 0.025
Van7-96-28 Cpx 19.598 0.016 15:570 0.012 39.096 0.026
RC27-9-6-2M Cpx 17.221 0.002 15.446 0.002 37.201 0.005
Van7-96-68 Basalt 18.789 0.015 15.493 0.012 38.426 0.025
Van7-92-03 Basalt 19.068 0.002 15.582 0.002 38.866 0.006
Van7-92-03S" Basalt 19.065 0.002 15.601 0.001 38.893 0.004
Knl162-61-71 Basalt 19.270 0.002 15.617 0.002 39.297 0.006
Knl162-61-71S”  Basalt 19.288 0.001 15.642 0.001 39.368 0.002

@ All data are normalized to the NBS981 values from Todt et al. (1996): 2°°Pb/2"1Ph=16.936,
207pp/201Ph=15.489 and 2°¥Pb/2"Pb=36.701.

b Values from Standish (2006), for interlaboratory comparison.
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Table 4.6: Cpx/Opx partition coefficients.

Van7 Van7 Van7 Van7 Van7 Van7 Van7 Van7 RC27-9

85 85 85 96 96 96 96 96 6 Valence  Cpx IR? Opx IR?

42 47 49 09V 19M 21M 28 38 2V (A) (A)
Pb 0.02 2.73 6.34 2 1.29 1.19
Sr 25.80 66.38 7.13 3281 45.39 44.88 27.43 2 1.26 1.18
La 68.39 16.79 45.78 52.60 22.94 3 1.16 1.03
Ce 4843 25.03 41.34 57.72 48.02 26.05 3 1.14 1.01
Pr 43.61 31.01 36.94 67.34 44.26 30.05 3 1.13 0.99
Nd 37.94 37.37 29.90 23.21 31.22 39.44 37.31 21.68 3 1.11 0.98
Sm 2342 31.55 25.24 16.87 18.33 21.35 22.15 24.71 19.88 3 1.08 0.96
Eu 17.33 18.18 22,13 1596 15.87 18.70 21.64 22.20 12.94 3 1.07 0.95
Gd 15.16 16.04 18.02 10.64 12.53 14.68 16.34 17.00 11.99 3 1.05 0.94
Th 23.24 4 1.05 0.94
Tb 10.66 10.70 13.53 7.73 10.27 1173 14.19 13.59 9.54 3 1.04 0.92
Dy 8.53 9.19  10.98 5.44 8.75 9.32 10.00 10.27 6.95 3 1.03 091
Ho 6.88 7.33 9.05 4.55 7.09 8.04 8.63 8.78 5.63 3 1.02 0.90
Y 6.61 6.67 8.16 3.50 7.42 T2 8.08 8.06 5.07 3 1.02 0.90
Er 5.71 5.52 712 357 6.04 6.28 6.82 6.88 4.92 3 1.00 0.89
U 217 10.03 4 1.00 0.89
Tm 441 4.24 5.41 2.68 4.87 5.01 5.14 5.46 3.71 3 0.99 0.88
Yb 3.69 3.47 4.43 2.30 4.12 4.14 4.63 4.57 3.07 3 0.99 0.87
Lu 2.97 297 3.69 1.82 3.39 3.20 3.68 3.69 2.66 3 0.98 0.86
Li 4.15 3.32 3.4 2.66 1.07 1.81 1.82 2.65 2.32 1 0.92 0.76
Zr 23.47 7.12 4.17 4 0.72 0.72
Hf 9.91 4.87 7.07 5.58 5.18 4 0.71 0i71
Nb 1.43 1.22 1.98 5 0.64 0.64

9 Tonic radii from Shannon (1976).
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Table 4.A1: Olivine major element concentrations (wt %)

Sample Si02  TiO2  Al203  Cr03 FeO MnO MgO CaO  NiO Total Mg#
Van7-85-27 5 40.06  0.01 0.01 0.00 8.87 0.16 4923 0.05 0.33 98.72 90.8
Van7-85-30 4 40.17 0.0l 0.00 0.01 9.28 0.15 4878  0.04 0.34 98.80 90.4
Van7-85-42 6 40.03 0.01 0.00 0.01 9.57 0.13 4936  0.04 035 99.50 90.2
Van7-85-47 6 40.34  0.00 0.00 0.01 9.76 0.16 4948  0.04 033 100.12  90.0
Van7-85-49 6 4049  0.01 0.00 0.00 9.57 0.15 4891 004 040 99.57 90.1
Van7-86-27 6 40.26  0.00 0.00 0.00 9.91 0.14 4900 0.01 035 99.68 89.8
Van7-96-09V 6 40.30  0.00 0.01 0.01 9.21 0.11 5044 0.02 045 10055 90.7
Van7-96-16V 5 40.18  0.02 0.01 0.01 10.89 022 4775 0.03 037 99.50 88.7
Van7-96-19M 11 40.13 0.01 0.00 0.00 10.27 0.15 4896  0.04 040 99.95 89.5
Van7-96-19V 6 40.15 0.00 0.00 0.00 10.51 0.14 4847 002 0.38 99.67 89.2
Van7-96-21M 6 40.16 0.0l 0.01 0.00 9.69 0.16 4985 0.03 035 10027 902
Van7-96-21V 6 40.17  0.02 0.01 0.00 9.76 0.16 5003 0.02 0.34 100.51 90.1
Van7-96-25 6 40.09  0.00 0.01 0.00 10.10  0.12 4887 0.06 039 99.64 89.6
Van7-96-28 6 4042 0.00 0.01 0.00 9.18 0.13 4933  0.03 0.36 99 .47 90.5
Van7-96-35 6 40.62  0.00 0.01 0.00 8.66 0.11 5034 0.03 043  100.19 912
Van7-96-38 6 40.41 0.01 0.02 0.01 9.80 0.15 4981 001 035 100.55  90.1
PS86-6-38 6 40.50  0.01 0.01 0.00 9.95 0.11 48.88  0.02 041 99.89 89.8
RC27-9-6-2M 76  40.42 0.00 0.00 0.02 9.64 0.13 4985 0.02 034 10041 902
RC27-9-6-2V 20 4030 0.00 0.00 0.01 9.67 0.14 4940 0.03 033 99 .88 90.1




Table 4.A2: Pyroxene major element concentrations (wt %)

Sample Pts SiO2 TiO2  Al;03 Cr03 FeO MnO  MgO CaO Na20O Total Mg#  Cr#
Orthopyroxene

Van7-85-27 28 55.02  0.09 3.99 0.66 574 0.1  31.81 1.80 0.04 100.74  90.8  10.0
Van7-85-30 17 5542 0.06 3.91 0.51 610 02 3211 1.56 0.02 101.33  90.4 8.0
Van7-85-42 30 55.08  0.08 5.20 0.72 623 0.12 3150 203 0.03 10245  90.0 8.5
Van7-85-47 21 54.76 0.10 5.24 0.76 6.18 0.14 31.01 2.55 0.05 107.02 89.9 8.9
Van7-85-49 16 5459  0.04 4.48 0.64 6.17  0.10  31.99 1.72 0.01 101.91  90.2 8.8
Van7-86-27 17 5485 0.08 4.61 0.69 6.16  0.13  31.64 1.88 0.05 106.68  90.1 9.1
Van7-96-09V 18 5417  0.15 4.69 0.28 649 0.18 31.11 1.69 0.02 10232 895 338
Van7-96-16V 21 5445 023 5.03 0.57 694 015 31.79 1.28 0.04 101.45  89.1 7.0
Van7-96-19M 19 5431 0.21 4.18 649  0.11 32.88 1.40 0.00 101.37  90.0
Van7-96-19V 9 5542 021 2.74 695 0.11 3292 1.32 0.00 101.06  89.4
Van7-96-21M 27 5392 0.5 6.02 0.62 642  0.14 3130 1.14 0.04 101.16  89.7 6.4
Van7-96-21V 35 5509 0.19 3.97 0.54 625 0.14  31.99 1.25 0.03 101.89  90.1 8.3
Van7-96-25 17 5346  0.11 5.58 668 0.11  31.50 148 0.04 100.11  89.4
Van7-96-28 14 5375  0.14 5.38 599 010 3138 244 0.04 106.34  90.3
Van7-96-35 20 5521 0.10 391 0.92 555 0120 3202 1.59 0.08 10045  91.1 137
Van7-96-38 44 53.64 0.14 6.36 0.57 6.45 0.13 30.49 1.36 0.06 100.61 89.4 5.6
PS86-6-38 16 5378  0.14 6.12 0.61 633  0.15  30.71 1.76 0.08 102.01  89.6 6.3
RC27-9-6-2M 79 55.67 0.08 3.16 0.76 6.30  0.11 32.75 1.48 0.02 10033 90.3 13.9
RC27-9-6-2V 10 56.10 0.09 2.29 0.62 6.54 0.18 33.38 0.81 0.02 100.03  90.1 154
Clinopyroxene

Van7-85-27 33  Sle4 023 5.38 1:22 283 009 1663 20.84 0.54 99.40 91.3 132
Van7-85-30 54 5101 0.22 6.22 1.09 301 0.09 1630 2158 037 99.89  90.6 10.5
Van7-85-42 31 51.65 022 6.28 1.08 327 010 17.06 2109 0.36 101.11 903 104
Van7-85-47 46 5154 0.22 6.31 1.07 321 0.10 17.08 2088  0.37 100.78  90.5 10.2
Van7-85-49 29 5134 0.17 6.08 1.08 323  0.07 1748 2027 0.29 100.02  90.6  10.7
Van7-86-27 62 51.64 0.24 5.80 1.03 298 0.09 16.84  21.59 0.29 100.51 91.0 10.6

Van7-96-09V 72 5051 0.44 6.75 0.60 341 0.12 16.46  20.51 0.51 99.33 89.6 5.6
Van7-96-16V 90  51.03 0.74 6.50 0.51 343 0.13 16.44 2122 046 100.45  89.5 5.0
Van7-96-19M 66  50.84  0.63 6.26 1.34 292 0.08 16,52 2140  0.62 100.61  91.0 125
Van7-96-19V 63 5116  0.58 6.02 1.26 3.02  0.08 16.11 2135 0.56 10014  90.5 123
Van7-96-21M 39 5037 055 7.58 0.97 319 0.09 1574 2096  0.73 100.19  89.8 7.9
Van7-96-21V 27 5070  0.49 7.70 0.96 3.57. 0.10 16.77  19.01 0.84 100.16 893 7.8

Van7-96-25 53 5108 036 7.06 1.05 335 10.07 1479 20.18 1.31 99.24 88.7 9.1

Van7-96-28 5§ 5122 035 6.75 1.32 321 0.07 1597 1996 1.05 99.89 899 116
Van7-96-35 5§ 5217 032 5.33 1.69 258  0.08 16.02  20.27 1.38 99.85 91.7 176
Van7-96-38 4 5105 045 7.83 0.87 3.56  0.09 1598  18.68 1.20 99.72 88.9 7.0
PS86-6-38 33 5120 041 723 0.93 312 0.12 15.37  20.96 1.09 100.43  89.8 79

RC27-9-6-2M 197 5227 0.17 4.76 1.50 313 009 1821 1970  0.63 10046 912 175
RC27-9-6-2V 113 5198 023 5.08 1.59 328 0.11 1796  19.66  0.61 100.50  90.7 173
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Table 4.A3: Spinel major element concentrations (wt %)

Sample Pts TiO> Al2O3 Cro03 F8203 FeO MnO MgO CaO NiO 7Zn0O Total Mg#
Van7-85-27 6 0.01 47.18 21.50 0.51 1228 0.10 1744 000 0.18 0.04 99.23 i
Van7-85-30 6 0.06 53.52 14.56 0.43 12,18 0.08 18.16  0.01 027 0.17 99 .44 72.6
Van7-85-42 6 0.06 53.70 15.15 0.72 11.69  0.11 1870 0.00 030 0.21 100.65  74.0
Van7-85-47 6 0.07 52.47 16.48 0.94 11.69  0.09 18.65  0.01 029 0.18 100.86  74.0
Van7-85-49 6 0.03 S54.14 14.19 0.63 1149  0.12 18.61  0.00 037 0.16 99.76 74.3
Van7-86-27 6 0.00 51.80 16.87 0.00 1269  0.08 17.75  0.00 0.12  0.00 99.30 714
Van7-96-09V 6 0:37 36.73 28.76 4.02 13.62  0.14 1576 0.02 021 0.21 99.87 67.3
Van7-96-16V 6 0.21 58.19 9.73 0.78 11.04  0.16 1950 0.00 043 0.12 100.17 759
Van7-96-19M L 0.31 39.70 27.66 2.01 1395  0.20 1584  0.00 024 0.0l 99.99 66.9
Van7-96-19V 6 0.53 37.78 29.47 1.84 1543  0.22 1490 0.00 022 0.02 100.46  63.2
Van7-96-21M 5 0.35 43.08 23:20 2.40 13.08  0.16 1662 002 025 033 99.52 694
Van7-96-21V 12 0.29 51.40 15.26 245 10.79  0.13 19.01 0.0 031 0.21 99.88 75.8
Van7-96-25 S 0.07 53.35 12.68 2.81 1228  0.14 18.13  0.00 038 0.00 99.89 72.5
Van7-96-28 5 0.25 45.92 21.56 1.37 13.15  0.16 1697 0.01 025 0.02 99.76 69.7
Van7-96-35 5 0.18 40.15 28.60 1.56 12.51 0.18 16.82  0.00 0.16 0.00 100.16  70.5
Van7-96-38 6 0.28 56.04 10.85 1.58 11.20  0.08 1920 0.0 033 0.18 99.74 753
PS86-6-38 3 0.05 57.31 10.84 0.58 .15 0.10 1923 0.00 033 0.00 99.58 75.4
RC27-9-6-2M 50 0.20 38.46 28.82 3.63 13:55 027 1599  0.07 0.31 101.31 67.8
RC27-9-6-2V 16 0.12 37.04 30.09 3.30 1402 021 15.63  0.03 0.20 100.73  66.5
Table 4.A4: Plagioclase major element concentrations (wt %)

Sample Pts S102 Al03 FeO  MgO CaO Na>O K20 Total An

Van7-96-09V 11 47.95 33.34 0.12 0.0l 15.78 2.28 0.00 99.48 79.2

Van7-96-16V 12 46.40 34.88 0.14 0.0l I Z571 1.33 0.01 10047  88.0

Van7-96-19M 4 a1.23 30.37 0.2  0.37 12.87 4.24 0.00 99.20 62.6

Van7-96-19V 5 51.86 30.27 0.11 0.00 12:53 4.57 0.01 99.34 60.2

Van7-96-21V IS5t 5153 31.40 0.10  0.01 13.24 3.7 0.00 100.06  66.0

RC27-9-6-2M 2 54.15 29.79 0.14  0.03 11.87 5.03 0.09 101,10 56.3

RC27-9-6-2V 6 49.8 32.60 0.12  0.05 15.24 3.00 0.00 100.81  73.7
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234
154
15.9
17.4
14.9
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Chapter 5

Variations in Abyssal Peridotite
Composition: Implications for Oceanic
Upper Mantle Composition and
Processes

Abstract

Abyssal peridotites are typically assumed to be the residues of near-fractional melting
of a uniform initial source composition. We present new data on 67 veined and unveined
peridotites to assess the extent to which abyssal peridotite compositions conform to this
model. We find that peridotite Cpx trace element concentrations vary by 2-4 orders of
magnitude at length-scales ranging from the grain-scale to the ridge segment-scale. We
assess estimates of mantle degree of melting based on Cpx trace elements and spinel Cr#.
We demonstrate that variations in predicted degree of melting occur on too small a scale
to be the result of variation in mantle thermal structure. Instead, we find that peridotite
compositions reflect melt-rock reaction and a heterogeneous initial source composition.
Melt-rock reaction during peridotite melting is demonstrated to be an important process
during the creation of oceanic lithosphere. Via subduction, this provides a mechanism for
the creation of a heterogeneous source mantle. The magnitude of chemical variations in
abyssal peridotites is found to be scale independent.



5.1 Introduction

The composition of the upper mantle is commonly assumed to be homogeneous when
using MORB (Mid-Ocean Ridge Basalt) compositions to determine the degree of melting
and variation in mantle potential temperature of a ridge segment. This composition is rep-
resented by DMM (Depleted MORB Mantle), a model average composition, most recently
derived from the average global isotopic composition of MORB and the depletion trend
among abyssal peridotites (Workman and Hart, 2005). This composition produces a good
fit to parental normal MORB composition — as predicted from global MORB composi-
tions (Su and Langmuir, 2003) — by 6% aggregated fractional melting. In this chapter, we
use abyssal peridotites to assess the extent to which mantle composition deviates from the
predicted average composition and we assess the role of melt-rock reaction in modifying

mantle composition.

Abyssal peridotites are samples of the oceanic upper mantle and are thought to be the
depleted residues of MORB formation. The pioneering work by Johnson et al. (1990) con-
cluded that trace element variations observed in abyssal peridotite Cpx (clinopyroxene)
were produced by near-fractional melting of a uniform initial upper mantle composition.
This study has become a benchmark for our understanding of melting processes beneath
ocean ridges. Two important assumptions were made by Johnson et al. (1990): (1) the
mantle has a uniform initial composition and (2) all chemical variations are due to melting.
Subsequent studies have attempted to use abyssal peridotites to constrain degrees and/or
depths of melting (e.g., Johnson et al., 1990; Bonatti et al., 1993; Hellebrand et al., 2001),
based on these assumptions. However, some studies of MORBs and abyssal peridotites
have questioned these assumptions. For example, Elthon (1992) argued that major element
variations in abyssal peridotites are better fit by a model of mixing between depleted peri-
dotites and basaltic melts, rather than variable degrees of melt extraction. Niu et al. (1997)

concluded that the FeO-MgO variations in abyssal peridotites show strong effects of olivine
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addition, attributable to precipitation of olivine as a result of melt-rock reaction during melt

migration.

Large isotopic heterogeneities have been observed among basalts from individual dredges
and individual ridge segments (e.g., Dupré and Allegre, 1983; Hamelin et al., 1985; Dosso
etal., 1999), suggesting the existence of long-term chemical (parent/daughter ratio) hetero-
geneities in the MORB source upper mantle. In Chapter 4, we documented isotopic het-
erogeneities among peridotites from the Southwest Indian Ridge (SWIR) and argued that
the upper mantle beneath the SWIR was heterogeneously depleted prior to upwelling at the
ridge. Evidence for large chemical heterogeneities in the form of pre-melting depletions
have also been suggested for the easternmost end of the SWIR. In this region, ultra-slow
spreading rates and thin crust imply a low degree of melting (Cannat et al., 1999; Sauter
et al., 2004), yet basalt compositions indicate a depleted harzburgitic source (Meyzen et al.,

2003) and spatially associated peridotites are harzburgites (Seyler et al., 2004).

Available data for abyssal peridotites obtained from all major mid-ocean ridges (Fig.
5.1) provide a global context for the evaluation of geochemical variations. Fig. 5.2 il-
lustrates the variations of several peridotite indicators of melt extraction, as a function of
spreading rate. Each panel has model reference trends for residues of melt extraction from
DMM (Workman and Hart, 2005), based on the predicted maximum degree of melting
as a function of spreading rate, including the effect of conductive cooling on ridge ther-
mal structure following the method of Bown and White (1994). The variation in Yb was
calculated using the non-modal fractional melting formulation (Johnson et al., 1990) with
melting reactions from Kinzler (1997) and mineral/melt partition coefficients compiled by
Kelemen et al. (2003). Variation in modal Cpx was calculated using the lever-rule to pre-
dict changes in phase proportions during melting. The variation of spinel Cr# with degree
of melting was predicted from the empirical correlation of spinel Cr# with heavy rare earth

elements (HREE) in Cpx (Hellebrand et al., 2001).
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Two features are evident from Fig. 5.2: first, the amount of variation is greater at slow
and ultra-slow spreading rates than at fast spreading rates. Second, the most depleted peri-
dotite compositions — indicated by low modal Cpx, low Yby in Cpx and high spinel Cr#
— occur at all ridges, independent of spreading rate. These features are contrary to pre-
dictions derived from prevalent views of upper mantle composition and melting processes
beneath mid-ocean ridges. Instead, these features suggest that (1) parts of the upper mantle
have previously been depleted, as discussed in Chapter 4, and (2) large chemical varia-
tions observed at slow to ultra-slow spreading ridges involve melt-rock interaction mecha-
nisms which have not yet been considered in detail in the context of abyssal peridotites. A
comprehensive abyssal peridotite trace element dataset at various sampling length-scales
needs to be established, so that processes operating beneath ridges can be more critically
examined and mechanisms responsible for creating chemical heterogeneities in abyssal
peridotites can be quantitatively understood.

This chapter presents ion probe Cpx trace element abundance data obtained from 67
veined and unveined peridotite samples from a ridge segment and a fracture zone on the
SWIR. This dataset includes a detailed evaluation of sample-scale and dredge-scale vari-
ations in peridotite compositions, to establish a database for evaluating the magnitude of
local-scale chemical variations. We emphasize the importance of any chemical variations
at length-scales less than individual dredges, as peridotites at these length-scales would
have experienced the same temperature regime during mantle upwelling and theoretically
should have undergone the same degree of melting. Any chemical variations at the local-
scale must be due to either initial (pre-melting) heterogeneities or melt-rock reaction at the
ridge. The data from this study, combined with the global peridotite dataset, are used to
assess the influence of melt-rock reaction and initial chemical heterogeneities of the upper

mantle on the composition of abyssal peridotites exposed at mid-ocean ridges.
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5.2 Methods

The SWIR Oblique and Orthogonal Segments (9°—25°E) and the Atlantis II Fracture
Zone are the focus areas for this study. Both areas have been extensively sampled, as
shown in Fig. 5.3, and peridotites with a range of characteristics were recovered. For the
9°—25°E region, 5 Oblique Segment dredges, 2 Orthogonal Segment dredges, and 1 dredge
from the Shaka Fracture Zone were analyzed. From Atlantis II Fracture Zone, 1 dredge and
1 dive were analyzed from the ridge-transform intersection (RTI) and 1 dredge and 5 dives
from Atlantis Bank. Both locations on Atlantis II are uplifted massifs of lower crust and

upper mantle, often termed oceanic core complexes (Dick et al., 1991; Baines et al., 2003).

In total, 67 samples were analyzed, of which 47 are unveined peridotites, 11 are veined
peridotites, 2 are veined dunites and 7 are various pyroxenites varieties. Dredge and dive
locations, sample descriptions and modal mineralogy are presented in Tables 5.2 and 5.3.
Modes were determined by point counting on a 1 mm grid, with a minimum of 1700 grains,
except veins, for which sample material was limited.

Major element compositions of all primary phases were determined in situ on polished
thin sections by wavelength dispersive spectroscopy using the JEOL JXA-733 Superprobes
at the Massachusetts Institute of Technology (Tables 5.4-5.9). The electron microprobes
were operated at 15kV accelerating potential with a 10nA beam current and calibrated us-
ing a standard set of silicate minerals. Olivine, spinel, plagioclase and additional minor
phases were analyzed using a focussed beam, with 6 points analyzed per grain. For py-
roxenes, all porphyroclasts in abyssal peridotites exhibit exsolution of a second pyroxene
phase, due to the relatively slow exhumation rate of mantle upwelling that results in phase
re-equilibration during cooling. To average out the effects of exsolution and thus recover
the high temperature mineral composition, pyroxenes were analyzed using a beam defo-
cussed to a spot size of 10 ym and line transects of >10 points with 10 um steps. Data

were reduced using modified matrix correction factors (Bence and Albee, 1968; Albee and
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Ray, 1970). Analyses were discarded if their totals were <98.5 wt% or >101.5 wt%, or if
their stoichiometry varied by >1.5%. Elements occurring at >10 wt% levels have repro-
ducibilities within 2%, elements at <10 wt% levels have reproducibilities within 5% and
elements at <1 wt% level have reproducibilities within 30%, based on repeat analyses of a

basaltic glass by Gaetani and Grove (1998).

Abundances of Na, Ti, Cr, Sr, Y, Zr (referred to collectively as TE) and REE (La, Ce,
Nd, Sm, Eu, Dy, Er, Yb) were determined using the Cameca IMS-3f at the Woods Hole
Oceanographic Institution Northeast National Ion Microprobe Facility (Tables 5.10-5.13).
Samples were ionized using a primary beam of O~ with an accelerating voltage of —8.30
kV and a current of 6-7 nA. The beam was focussed to a ~10 yim spot diameter for REEs
and a ~4 pm spot for TE. The energy filtering technique of Shimizu et al. (1978) was used
to suppress molecular ion interferences, with a high voltage offset of 60 V for REE and 90

V for TE.

Working curves, which relate secondary ion intensity to concentration, were determined
using Cpx from KH1 (Kilbourne Hole peridotite, Irving and Frey, 1984) as the REE stan-
dard and basalt glass KL2G (Kilauea tholeiite, Jochum et al., 2000) as the TE standard.
Standards were typically measured 2 or more times at the start of a session and occasion-
ally at the middle or end of a session. The average value of all standard analyses for a
session were used to calculate session-specific working curves, with the deviation among
repeat measurements providing a estimate of analytical reproducibility (Tables 5.14 and

5.15).

Data were collected in 5 count cycles with count times of 30 s for REE and 5-20 s for
TE. For REE, *’Si was measured at the start and end of each analysis, with the time interpo-
lated average used to calculate REE/Si ratios, for determination of concentrations from the
working curves. For trace elements, **Si was measured during each cycle, with the aver-

age value after all cycles used to determine TE concentrations. Traditionally, within-cycle
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ratios of REE/Dy and TE/Si are used to account for temporal variability in peak intensities
(e.g., Johnson et al., 1990; Johnson and Dick, 1992). Due to random background noise
that produced occasional extreme high counts, the ratio scheme was abandoned. However,
the error introduced by temporal variability in peak intensity is insignificant compared to
primary beam instability, which cannot be monitored on the IMS-3f.

To remove the effects of random background noise, the 5-cycle raw count data were
averaged by element. Low count rates among REEs are best treated statistically by a Pois-
son distribution, with the standard deviation given by v/Z, where T is the count average.
Any individual REE count greater than 3y/Z away from the median count value was dis-
carded. After recalculating , any count more than 2+/7 from the average count value was
discarded. For TE, which have higher count rates, any count greater than 2 standard de-
viations from the median count value was discarded. After a final re-averaging of counts,

REE and TE ratios to Si were calculated and concentrations derived from working curves.

5.3 Ion probe data quality

Trace element analyses in abyssal peridotites are difficult due to their low concentrations,
particularly for REE. We assess data quality from (1) repeated standard measurements, (2)
measurements of an additional standard, (3) sample count statistics, (4) sample duplicate
analyses, (5) REE pattern shape, and (6) comparison to ICP-MS and TIMS bulk mineral
separate analyses. In addition, we compare ion probe data to electron probe data for Na,O,
TiO, and Cr,O3. Overall, the smoothness of REE pattern shape and the orders of magnitude
variation in trace element concentrations means that ion probe data are significant, despite
their relatively large errors.

Variations in standard concentrations from repeat measurements provide an estimate of
analytical reproducibility. In Tables 5.14 and 5.15, we calculate the average % deviation of

standard measurements for each analytical session. The variation for REEs is 6-10% and
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for TEs is 3-5%. We also measured REEs in an independent standard, KLB1 (lherzolite,
Takahashi, 1986), with a reproducibility of 9%-17% among 21 analyses over 15 months

(Table 5.10).

Analytical error can also be estimated from the count statistics of each analysis and
by comparison of duplicate analyses (Table 5.10). The statistical counting error for each
analysis is the square root of the total counts for an element. The average % error in
concentration based on the counting error ranges from 0.2-21% (Table 5.10), with LREE
having the largest errors. The error based on the average difference between duplicate
analyses is also given in Table 5.10 and shown on a comparison plot in Fig. 5.4. In general,
samples plot on a 1:1 correspondence line over 3-4 orders of magnitude, with an average
deviation for Cpx ranging from 7% to 37%. While errors are relatively large for REE, a
final check on data quality is provided by the shape of the REE pattern, which should vary
smoothly, with the exception of Eu due to its behavior as both a 2+ and 3+ cation. Analyses
with irregular patterns that were not reproduced by repeat analysis were discarded and are

not reported here.

In Fig. 5.5, ion probe data for 16 samples are compared to TIMS and ICP-MS data
(from Chapter 4) for mineral separates. The ion probe data have been averaged by sample,
or by vein and matrix occurrence, and are shown with a horizontal bar representing the
range of measured values. In general, Cpx data plot on a 1:1 line, except at low concen-
trations for Sr, Zr and Ce/Yb. Opx data have more scatter, but only one ion probe analysis
is available for each sample where Opx was measured as a mineral separate. An accurate
comparison to bulk mineral separate data cannot be made, especially if — as suggested in
Chapter 4 — some Opx are zoned. At low concentrations, the scatter in the comparison of
ion probe in situ data to bulk mineral separate data probably indicates the minimum ion
probe detection limit for these elements. The scatter is not the result of the repartitioning

of elements following Cpx/Opx exsolution, as such a process would result in a systematic
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offset of ion probe data from TIMS and ICP-MS data at all concentration levels. As we
demonstrated in Chapter 4, Cpx have >90% of the Cpx-Opx trace element budget and the
effect of exsolution on trace element concentrations is relatively minor.

Elements measured by both ion probe and electron probe are compared in Fig. 5.6.
Na,O in abyssal peridotite phases has not previously been reported by ion probe. In this
study, we used tholeiitic basalt KL2G as a standard (Jochum et al., 2000) and 5 s count
times. In general, Na,O, TiO, and Cr,03 all show reasonable agreement between the two
analytical methods. Only for plagioclase, where Na,O is present at higher concentrations,
do the data fall consistently off the 1:1 line towards higher electron probe concentrations.
We suggest that because the KL2G standard has 2.27 wt% Na,O, whereas Na,O in plagio-
clase extends to 6 wt%, the ion probe data are unreliable at concentrations =2 wt%.

The electron probe analyses in Fig. 5.6 are the average of multiple points located near
an individual ion probe analysis. The standard deviation of electron probe analyses, shown
in Fig. 5.6, is considerably larger than the estimated error for ion probe analyses. In
particular, Cpx have large standard deviations when measured by electron probe, due to the
inclusion of exsolution lamellae in the analysis. In addition, long count times were not used
during electron probe analyses, resulting in limited precision at the <1 wt% level. Hence,
we conclude that ion probe data provide a better estimate of Na, Ti and Cr concentrations,

with the exception of Na in plagioclase.

5.4 Results

Mineral major element data for the peridotites are presented in Tables 5.4-5.9 and trace
element data in Tables 5.10-5.13. Included in the tables are additional data for samples
RC27-9-6-2 and RC27-9-6-5 from Lee (1997), with ion probe trace element data repro-
cessed following the above method. The major element variations among spinel and Cpx

are presented in Figs. 5.7, 5.8 and 5.9. In Figs. 5.10 and 5.11, we plot the trace element
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variations in individual Cpx by location. In Appendix 5.A, each individual REE analysis is

plotted by sample.

The peridotites in this study can be classified into four general groups - “typical” resid-
ual peridotites, gabbro veined and plagioclase peridotites (abbreviated to gabbro/plag peri-
dotites), pyroxenite veined peridotites and cryptically metasomatized peridotites (Table
5.3). Of the samples analyzed, 41 are classified as residual peridotites, due to the ab-
sence of veins and trace element compositions in the abyssal peridotite range of Johnson
et al. (1990). Plagioclase, if present, does not account for >.05% of the modal mineralogy
and is assumed to be the result of spinel plus two pyroxene breakdown to plagioclase plus
olivine. The gabbro/plag peridotite group consists of 4 peridotites with gabbro veins, |
dunite with a central gabbro vein and surrounding harzburgite, and 3 peridotites with sig-
nificant amounts of matrix plagioclase. The group of 15 pyroxenite peridotites consists of
7 peridotites with pyroxenite veins, | peridotite with a clinopyroxenite vein, 6 pyroxenite

veins and | orthopyroxenite vein.

The three cryptically metasomatized peridotites have no veins and look like other resid-
ual peridotites. However, they are classified as a separate group on the basis of 1-3 orders
of magnitude variation in trace element concentrations at the thin section and grain scales
(Fig. 5.12). These variations are in contrast to the generally uniform composition of Cpx
cores, rims and interstitial (<1 mm diameter) grains in the residual peridotites, as shown
in Fig. 5.14. The variations in trace element concentrations in the cryptic peridotites is not
limited to interstitial grains, as shown in the photomicrograph of a zoned Cpx porphyroclast

i Fig. 5.15.

Spinel compositions for the four peridotite lithologies are shown in Figs. 5.7 and 5.8.
Spinels in Fig. 5.7 plot on the general melting trend of Cr#=Cr/(Cr+Al) increasing from
~10% to ~60% during melting, while Mg#=Mg/(Mg+Fe) decreases over a more limited

range of ~80%-60%. The decrease in spinel Mg# reflects re-equilibration of Mg** and
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Fe** between olivine and spinel with decreasing temperature during upwelling (Dick and
Bullen, 1984). Samples which plot off the trend towards lower Mg#’s, such as the gab-
bro/plag peridotites, have been refertilized by differentiated melts. TiO, is incompatible in
spinel, so values > 0.2 wt% (the approximate composition of spinel in DMM; Workman
and Hart, 2005) indicate melt refertilization of the peridotite (Dick and Bullen, 1984). In
Fig. 5.8, gabbro/plag peridotites, dunites and some pyroxenites have high TiO, concentra-

tions.

Cpx major element compositions have small variations among the different lithological
groups (Fig. 5.9). Depleted peridotites and pyroxenite peridotites, with some exceptions,
have ~6-8 wt% Al,03 and 1 wt% Cr,03. The exceptions are dredge Van7-96 pyroxen-
ites, which have similar Al,O3 but 0.4 wt% Cr,03, and the clinopyroxenite-veined sample
RC27-9-6-2, which has 1.5 wt% Cr,03. These two pyroxenite lithologies, described in
detail in Chapter 4, appear to be different from the majority of other abyssal pyroxenites.
Gabbro/plag peridotites generally have similar Cr,O3 to residual peridotites, but Al,O3 ex-
tends to 2 wt%. Cpx in some gabbro veins are low in Cr,03 (<0.3 wt%). Finally, the
cryptically metasomatized samples have similar Cro,O3 compositions to the residual peri-

dotites but a relatively large range of 2.5-7 wt% Al,Os.

Peridotites from the four different lithological groups have overlapping trace element
compositions (Figs. 5.10 and 5.11). In Fig. 5.13, we plot histograms of Ce/Yb using
the global dataset, to demonstrate the similar compositional range of all four peridotite
lithologies. Trace element concentrations range from depleted to relatively enriched, with
compositions similar to DMM. Variations in the most incompatible trace elements extend
over 3 orders of magnitude in the depleted, pyroxenite and cryptic peridotites, while the
gabbro/plag peridotites extend to 4 orders of magnitude. In comparison, the Johnson and
Dick (1992) dataset from the Atlantis II Fracture Zone covers 1.5 orders of magnitude for

LREE (Fig. 5.10).
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5.5 Discussion

5.5.1 Justification for the use of Cpx to interpret whole-rock processes

In attempting to extract geochemical information about melt-rock reaction and source
composition from abyssal peridotites, we assume that Cpx trace element concentrations
accurately reflect the whole rock budget. This assumption is necessary given the highly al-
tered nature of abyssal peridotites, but can be tested using the mineral modes and Cpx/Opx
partitioning data presented in Chapter 4, Tables 4.2 and 4.3. We do not consider the role of
olivine and spinel on the trace element budget, as these are generally negligible on the ba-
sis of mineral structure and mineral/melt partition coefficients (with some exceptions, e.g.,
spinel can contain significant amounts of TiO5). We calculate that Cpx contains >90% of
the whole rock budget for LREE and Sr in lherzolites (i.e., for Cpx > 5%), whereas in
harzburgites, Cpx carries ~70%. For HREEs, Cpx in lherzolites represents ~50% of the
budget, whereas in harzburgites it represents ~20%. Overall, these calculations suggest
that Cpx adequately record LREE/HREE fractionation during melting. However, whole-
rocks provide a more sensitive record of the process, as decreasing modal Cpx with in-
creasing degree of melting results in a decrease in the contribution of Cpx to whole-rock
HREE. Thus, in more depleted peridotites, the LREE/HREE whole-rock ratio is lower than

the ratio measured in Cpx.

Trace element abundances measured in Cpx have been modified by cooling and sub-
solidus re-equilibration between Cpx and Opx. The magnitude of this effect can be as-
sessed from pyroxene phase relations, represented by the temperature-dependent pyrox-
ene miscibility gap at appropriate pressures and Cpx/Opx trace element partition coeffi-
cients as a function of temperature. Witt-Eickschen and O’Neill (2005) demonstrated that
Cpx/Opx trace element partitioning co-varies with pyroxene closure temperature in natural

peridotites, in the direction of increasing partition coefficients with increasing temperature.
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If the Witt-Eickschen and O’Neill (2005) conclusion on the temperature effect on Cpx/Opx
trace element partitioning is correct, Dé(;l)z/Op:r varies from ~60 at 1250°C to ~1000 at
900°C. In contrast, D’Cl‘jy Jope Varies from 3 to 7 over the same temperature interval. Ex-
trapolating the Witt-Eickschen and O’Neill (2005) trends to 1350°C, according to a In(D)
versus 1/T relationship, we calculate Dé(;lxt/Opzf ~30 and D}?fm/om ~2.5. Lindsley (1980)
showed that the Opx side of the miscibility gap is considerably steeper than the Cpx side
and that at 1.5 GPa, cooling from 1350°C to 1250°C will change the Cpx/Opx ratio by
~15%, for a fixed Opx-rich bulk composition. Given these conditions, mass balance calcu-
lations demonstrate that the concentration of La measured in 1250°C Cpx underestimates
La in 1350°C Cpx by about 8%, whereas Yb is overestimated by ~7%. These values are
both within analytical error, indicating that, to a first approximation, the effect of the sub-
solidus re-distribution of trace elements between Cpx and Opx can be ignored. Hence, Cpx

trace element concentrations provide a reasonably accurate picture of whole rock system-

atics.

5.5.2 Mechanisms of melt-rock reaction

Melting and melt extraction in upwelling peridotites beneath ocean ridges proceeds via
the interaction of minerals with the melt percolating around them. This process is one of
several mechanisms often referred to as melt-rock reaction. At the site of melt generation,
melt first forms at grain junctions when the solidus of the system is overstepped. Melt mass
increases via reaction with minerals as it wets grain boundaries and begins to migrate up-
ward. Experimental and theoretical studies of dissolution-precipitation mechanisms (e.g.,
Iwamori, 1992; Liang, 2003; Lo Cascio et al., 2004; Morgan and Liang, 2005) provide
constraints on the grain-scale kinetics of this process.

Melt extraction by fractional or near-fractional melting results in residual peridotites

that are depleted in modal Cpx and incompatible trace elements. As degree of melting
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increases, so does the degree of depletion. Melt migration is faster than the upward flow
of residual peridotites, creating conditions for reactive porous flow. Through this pro-
cess, depleted peridotites can be chemically and mineralogically modified by reaction with
enriched small-degree melts, producing significant changes in Cpx trace element compo-
sitions. The general aspects of focused reactive porous flow and its importance for the
extraction of melt from mid-ocean ridges have been developed by Dick et al. (1994), Kele-
men et al. (1997) and colleagues. This approach is particularly successful in explaining the
formation of dunite channels in the uppermost part of the mantle beneath the EPR (Dick
and Natland, 1996) and the Oman Opbhiolite (Kelemen et al., 1995). Open system melting
models, such as those of Johnson and Dick (1992) and Ozawa and Shimizu (1995) were
also developed in this context. Further development of the reactive porous flow approach
has been made in the form of dissolution channel models (e.g., Spiegelman and Kenyon,
1992; Kelemen et al., 1995; Spiegelman and Kelemen, 2003), which predict the range of
trace element depletion patterns expected for abyssal peridotites at large sampling length-

scales.

Descriptions and models of the interactions of peridotites with migrating melts and flu-
ids are not restricted to the ridge environment and have a long history in studies of mantle
metasomatism of the continental lithosphere. Navon and Stolper (1987) and Bodinier et al.
(1990) were among the first to attempt to explain melt-rock reaction in a quantitative fash-
ion. Particularly interesting and relevant to this study is the chromatographic fractionation
of trace elements predicted by their models. As melt percolates around mantle miner-
als, fractionation of trace elements occurs because of the differences among mineral-melt
partition coefficients for different elements. When an enriched small-degree melt enters
a column of depleted peridotite, REE patterns of Cpx in the peridotite will be modified
successively, beginning with an increase in the more incompatible LREE and progressing

towards less incompatible HREE. This process can result in Cpx with “spoon-shaped™ and

178



“sharply inflected” REE patterns, as observed by Takazawa et al. (1992) in depleted lherzo-
lites from the Horoman peridotite massif and by Sen et al. (1993) in xenoliths from Oahu.
These early models concentrated on explaining variations among peridotite Cpx trace ele-
ment patterns and did not include the modal changes that occur during melt-rock reaction.
More generalized models that include mineralogical reactions have since been developed

(Godard et al., 1995; Verniéres et al., 1997).

In general, the nature of melt-rock reaction depends on whether melt mass is increas-
ing (i.e., melting), constant, or decreasing (i.e., crystallization). The effect of decreasing
melt mass on lithospheric mantle composition is important in the context of both ridge and
subduction processes. The lithospheric mantle that is transported back into the astheno-
sphere may have a substantially different and more variable composition than surveys of
depleted abyssal peridotites alone imply. Fig. 5.1 demonstrates that veined peridotites are
found from the entire spectrum of spreading rates and at most localities where depleted
abyssal peridotites are collected. Cannat (1996) argued that incomplete melt extraction (or
melt entrapment) is important during lithosphere formation at lower spreading rates. Sleep
and Barth (1997) used thermal modeling to demonstrate that melts can freeze directly in
the mantle due to cooling from the surface and that this effect occurs at higher spreading
rates than those at which conductive cooling limits the extent of melting. Lizarralde et al.
(2004) presented seismic evidence for the retainment of a gabbroic phase in the mantle at

low spreading rates.

The thermal regime for peridotites in this study is constrained by ultra-slow spreading
rates and/or fracture zone proximity - i.e., the degree of melting is generally limited due to
conductive cooling from above. Under these conditions, migrating melt is also cooled and
melt extraction is expected to be incomplete. In systems where melt mass is decreasing,
reaction of melt with the peridotite can refertilize a depleted peridotite. The nature of refer-

tilization and its effect on peridotites will depend on several variables: melt/rock ratio, melt
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composition, degree of peridotite depletion, pressure and temperature. Clear evidence for
incomplete melt extraction at high melt/rock ratios over a range of pressures is recognized
in the form of pyroxenite and gabbro veins in peridotites (Dick, 1989; Cannat et al., 1992;
Constantin et al., 1995; Seyler and Bonatti, 1997; Dantas et al., 2007). Refertilization by
low volume melts percolating along grain boundaries results in more cryptic forms of refer-
tilization, the signature of which is difficult to detect. However, recent detailed studies by
Seyler and co-workers (Seyler et al., 2001, 2004; Brunelli et al., 2006; Seyler et al., 2007)
have documented that many residual peridotites have been weakly refertilized, with small
enrichments in the most incompatible trace elements, interstitial Cpx veinlets and trace
metasomatic phases.

In Fig. 5.2, we emphasized the range of compositions among unveined abyssal peri-
dotites. In Fig. 5.13, we use the same global dataset to compare residual peridotite com-
positions to the compositions of veined and cryptically metasomatized peridotites. De-
pleted peridotites have a mean normalized Ce/Yb ratio of ~0.01. but range from ~0.001-
10. Gabbro/plag peridotites and pyroxenite-veined peridotites span close to the same range
as residual peridotites. The cryptically metasomatized peridotites — represented by indi-
vidual analyses from only 3 samples — also span a similar range. The Ce/Yb range among

residual peridotites probably reflects melt-rock reaction, in addition to melt depletion.

5.5.3 Length-scales of peridotite variations and their origins

We observe orders of magnitude variation in abyssal peridotite trace element concen-
trations at length-scales ranging from single grains to ridge segments. At the smallest
length-scales, kinetics and cooling rate are important, as volume diffusion at high temper-
ature rapidly equilibrates compositional variations, even in the absence of melt (Hofmann
and Hart, 1978). Thus, variations at the dredge and outcrop scale often reflect melt-rock

reaction processes over a range of temperatures. For example, among Oblique/Orthogonal
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Segment dredges and the two uplifted massifs on Atlantis II Fracture Zone, a variety of
vein compositions are observed. At the ridge segment scale, the Oblique Segment has
large variations among residual peridotites, which we will discuss in the context of melt-

rock reaction and pre-existing heterogeneities.

Porphyroclast and interstitial grain variations

Cpx in the majority of peridotites are present as both porphyroclasts and interstitial
grains. Interstitial grains are <1 mm diameter and lack exsolution lamellae, whereas por-
phyroclast grains are typically 2-5 mm diameter, with exsolution lamellae. The morphol-
ogy of some interstitial grains suggests that they formed by crystallization of melt on grain
boundaries, but the majority are more equant in shape. To investigate the possibilities of
mineral zoning and of crystallization from melt, we analyzed porphyroclast cores and rims
and interstitial grains wherever possible. Core, rim and interstitial compositions among
vein-free peridotites are compared in Fig. 5.14. With the exception of the cryptically meta-
somatized samples, no systematic difference exists between porphyroclast core and rim or
between porphyroclast and interstitial grain. While some analyses do not show an exact
correspondence, the majority of these occur at low concentrations where error is probably
larger than estimated (due to low count rates).

During mantle melting, various studies have attempted to constrain whether miner-
als remain in equilibrium with melt or whether diffusion limits equilibrium (Qin, 1992;
Iwamori, 1992, 1993; Van Orman et al., 2002; Cherniak and Liang, 2007). The lack of
clear evidence for systematic incompatible element depletion of Cpx grain rims with re-
spect to cores indicates that disequilibrium mantle melting does not occur with respect to
Cpx. The approximation z = \/D;t, where z is distance, D; is the diffusion coefficient for
an element 7, and ¢ is time, can be used to assess diffusive homogenization time-scales. For

Ce and Yb in Cpx at 1.5 GPa and 1350°C, using diffusion coefficients from Van Orman
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et al. (2001) and a grain diameter of 2 mm, ~1 My is required for Ce equilibration and
~0.1 My for Yb equilibration. For these time-scales and at relevant ridge spreading rates,
cooling rates for mantle upwelling along an adiabat are not fast enough to limit diffusive
re-equilibration during melting. In contrast, significant core-to-rim enrichment of Ce in
Cpx is observed in the cryptically metasomatized peridotites, suggesting that metasoma-

tism occurred at shorter time-scales, as discussed below.

Sample- and grain- scale variations

The three cryptically metasomatized peridotites represent the smallest length-scale at
which compositional variation has been observed in abyssal peridotites. These samples are
unveined protogranular lherzolites. Samples 6K-465-2 and RC27-9-6-5 are from the north-
ern ridge-transform intersection of the Atlantis II Fracture Zone and 6K-458-3 is from
Atlantis Bank. In these samples, Cpx grains with typical, depleted trace element concen-
trations and those with enriched concentrations, similar to or greater than DMM, occur
within 1-2 ¢cm of each other. Fig. 5.12 shows REE patterns for these samples, including the
zoned “transitional” Cpx in 6K-465-2 and RC27-9-6-2. Transitional Cpx are grains with
gradients in trace element concentrations, from depleted cores to enriched rims, which are
found spatially between depleted Cpx and enriched Cpx. The samples have 2-3 orders of
magnitude range in LREE, with transitional grains covering 2 orders of magnitude alone.
In sample 6K-465-2, the transitional grain, shown in Fig. 5.15, is 2 mm in the longest
dimension and has variations in Ce from 0.1 ppm up to 2 ppm (Cpx 6 in Table 5.10). The
lowest trace element concentrations occur at Point 4 (Fig. 5.15), suggesting that this point
is close to the true center of the grain in three dimensions. The REE variations in the cryptic
peridotites are similar to the theoretical predictions of chromatographic melt-rock reaction
models, for example by Verniéres et al. (1997). However, given the limited number of anal-

yses for our samples and the lack of spatial information on the exact shape of the zoning
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front, detailed modeling is precluded at this point.

Sample 6K-465-2 can be used to constrain the time-scales of metasomatic processes, as
it has the greatest number of analyses. Of 28 points analyzed in 10 Cpx grains distributed
over a 3x4 cm area of the thin section (Table 5.10), 21 points have uniform, low Sr con-
centrations (Sr = 1.18+0.24 ppm). In contrast, Ce varies by a factor of almost 400 (0.02-
7.99 ppm). As Cpx-melt partition coefficients for these elements are similar (K§=0.09,
K37=0.13; Hart and Dunn, 1993), the observed decoupling is unusual and probably reflects
diffusion kinetics. Sr appears to have remained constant, while Ce increased 400-fold
during the metasomatism, resulting in large negative Sr anomalies on a spidergram. We
interpret this seemingly anomalous behavior as a result of cryptic metasomatism followed

by diffusive homogenization of Sr.

At 1350°C, the diffusion coefficient for Sr is 4.6x107'° m?/s (Sneeringer et al., 1984),
and that for Ce is 9.9x1072° m?/s (Van Orman et al., 2001). This implies that Sr in a 2 mm
grain will homogenize in ~300 yr, while a crystal the size of the analyzed region of the thin
section will homogenize in ~0.1 My. For a crystal aggregate, the equilibration time-scale
across the same area is shorter, as diffusion along grain boundaries is faster than volume
diffusion across a grain. In contrast, homogenization of Ce in a 2 mm Cpx grain takes ~1
My at 1350°C. Thus, cryptic metasomatism produces large variations in Ce and Sr, on a
time-scale that is considerably shorter than the time-scale associated with near-fractional

melting (e.g., > 0.1 My but < IMy).

The upwelling rate of the SWIR at the Atlantis II Fracture Zone is 5.4 mm/yr, based on
corner flow at a half-spreading rate of 8.5 mm/yr (Hosford et al., 2003). At this upwelling
rate, if melt-rock reaction occurred at 1350°C, which corresponds to a depth of ~26 km,
Cpx grains would have time for Ce homogenization. Thus, melt-rock reaction must have
occurred at a lower temperature. At Atlantis Bank, gabbro intrusion occurred on-axis to

relatively shallow depths (Dick et al., 2000; John et al., 2004). This agrees with the re-
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quirement for cryptic metasomatism to occur at relatively low temperature (< 1200°C) and

suggests that metasomatism occurred in peridotite wallrock adjacent to a gabbro intrusion.

Trace amounts of plagioclase, intergrown with spinel, olivine and pyroxenes, is present
in sample 6K-465-2. We suggest that plagioclase is the result of the breakdown reaction
of spinel, Opx and Cpx to form plagioclase and olivine. Plagioclase crystallization appears
to post-date the cryptic metasomatism event, as both enriched and depleted Cpx have neg-
ative Eu anomalies on their rims but not their cores (Fig. 5.12). The spinel/plagioclase
transition occurs around ~15-20 km depth, but this is highly dependent on bulk composi-
tion and temperature. In particular, the presence of Cr promotes the persistence of spinel
(O’Neill, 1981), while low Na suppresses plagioclase formation. Spinel is locally enriched
in Cr (Cr#=47 near plagioclase, versus Cr#=22 away from plagioclase, Table 5.8), while
plagioclase has very low Na concentrations (Ango_g3, Table 5.8), suggesting a relatively
shallow depth for plagioclase formation. Plagioclase also has variable Sr concentrations,
ranging from 1 ppm to 60 ppm (Table 5.11), with the lower concentrations suggestive of

partitioning with Cpx, not with a melt.

Sr concentrations in 6K-465-2 are sporadically high in some Cpx rims (up to 6 ppm) and
some interstitial plagioclase (up to 60 ppm). This implies a final stage of melt-rock reaction,
which led to crystallization of a small amount of melt along grain boundaries. If true, a first
metasomatic event occurred deeper than the depth of stability for anorthitic plagioclase,
whereas the second melt infiltrated at a shallower depth. Our observations are compatible
with the first event occurring, for example, in the range ~1000-1200°C, equivalent to a
depth of ~11-19 km or an upwelling time to the seafloor of 2-3 My. This first metasomatic
event was followed by plagioclase breakdown around 10-15 km depth, before a second
episode of metasomatism. Our interpretation coincides with observations of a complex
magmatic history at Atlantis Bank, involving several cycles of melt intrusion, including

late-stage, off-axis events (John et al., 2004). While 6K-465-2 is located at the present-
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day inside corner high, the processes that are recorded at Atlantis Bank are assumed to be
equivalent to the processes that are currently occurring at the ridge-transform intersection.
The multiple episodes of melt-rock reaction recorded in the peridotites demonstrate the

complexity of the path of melt through the upwelling mantle.

Massif-scale variations on the Atlantis II Fracture Zone

In Fig. 5.16, we plot sample averaged Cpx REEs for dredges and dives from the Atlantis
IT Fracture Zone ridge-transform intersection and Atlantis Bank. Individual analyses for
the cryptically metasomatized peridotites are shown as sample averages to emphasize the
variation among other peridotites. The large variations in the cryptically metasomatized
peridotites (Fig. 5.12) are mirrored in the range of compositions observed among all sam-
ples at the Atlantis II Fracture Zone localities. In contrast, the range of depleted Atlantis
IT Fracture Zone peridotite compositions from the full length of the active transform fault
(Johnson and Dick, 1992) is much more limited (Fig. 5.16) and residual peridotites at
Atlantis Bank extend over most of this range.

Johnson and Dick (1992) related the variation in peridotite composition along the frac-
ture zone to variations in degree of melting. Our observations suggest that their sample
suite is not representative of the range of peridotite characteristics along the fracture zone.
In particular, we note the role of melt-rock reaction in modifying peridotite composition
at both localities that we have sampled in detail. In addition, in Chapter 4 we presented
evidence for source heterogeneity beneath the fracture zone. Clinopyroxenite-veined peri-
dotite RC27-9-6-2 has an enriched isotopic composition, implying that it originated from a
long-term mantle heterogeneity. As noted in Chapter 4, the sample is depleted in all REE
with respect to DMM and the vein is more depleted than the host peridotite, suggesting that

the vein post-dates the initial isotopic heterogeneity of the sample.

Both the ridge-transform intersection and Atlantis Bank are uplifted oceanic massifs
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of lower crust and upper mantle. At Atlantis Bank, gabbro is the dominant lithology and
peridotites have been collected in close proximity to the gabbros (Dick et al., 2000). In ad-
dition, the gabbros at Atlantis Bank are cut by many late small ferrogabbro intrusions (Dick
et al., 2000). The most enriched gabbro vein compositions at Atlantis Bank are consider-
ably more enriched than Atlantis II basalts and are probably compatible with derivation
from an evolved melt similar to the one that produced the ferrogabbros. In peridotite 6K-
465-3, one of the cross-cutting veins contains plagioclase, kaersutite, rutile, ilmenite, and
apatite. In addition, clinopyroxene in the peridotite matrix have unusual exsolution con-
sisting of olivine, plagioclase and spinel, as discussed in Appendix 5.D. Gabbro veins and
pyroxenite veins in Atlantis II Fracture Zone peridotites also extend to relatively depleted

compositions, suggesting that crystallizing vein melts had a variety of compositions.

Dredge-scale variations on the Oblique/Orthogonal Segments

We analyzed 6 dredges in detail from the Oblique and Orthogonal Segments, to as-
sess the degree of within- and between-dredge variability. Samples analyzed were chosen
to represent the range of macroscopic dredge characteristics, so we assume that we have
accurately sampled the compositional range of each dredge. REE patterns in Fig. 5.17
demonstrate that within-dredge variations are relatively small but that considerable dif-
ferences exist between dredges. Dredge tracks are typically 1 km in length, though wire
tension records indicate that sampling is discontinuous and often dominated by one section.
Dredge Kn162-47 is unusual in containing both pyroxenites and plagioclase peridotites. In
addition, the dredge contains peridotite mylonites, suggesting that samples come from dif-
ferent, fault-juxtaposed, mantle domains. In contrast, most dredges are characterized by
samples with a single set of characteristics, such as vein-free residual peridotites (PS86-6,
Van7-85 and Van7-86), pyroxenite veins (Van7-96) or peridotites with gabbro veins and

matrix plagioclase (Van7-78).
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Among the three vein-free peridotite dredges, Van7-85 and Van7-86 have “typical”
depleted compositions, with samples plotting in the middle of the residual peridotite field
from Johnson et al. (1990). One sample, Van7-86-37, deviates from the general trend, with
elevated LREE and a negative Eu anomaly. These observations suggest melt refertilization
and plagioclase crystallization, but alteration of the sample is too great for fresh plagioclase
to be identified. The third unveined peridotite dredge, PS86-6, is less depleted in LREE
than dredges Van7-85 and Van7-85, and has high modal Cpx (8-12%, Table 5.3). These
peridotites could either have undergone a relatively low degree of melting or they could
have been refertilized following a more typical amount of melt extraction. As discussed in
Chapter 4, these peridotites are isotopically heterogeneous and may have been influenced

by proximity of Bouvet hotspot along the Shaka Fracture Zone at 20 Ma (Fig. 5.3).

Dredge Van7-96 contains peridotites with pyroxenite veins that are relatively unde-
pleted with respect to DMM. Variations in trace element concentrations among these sam-
ples are greater than the observed variations among depleted dredges. As discussed in detail
in Chapter 4, the pyroxenite veins and host peridotites have a range of isotopic composi-
tions between DMM and Bouvet hotspot, suggesting that they represent hotspot-modified
mantle. A negative correlation between **Nd/!**Nd and Ce/Yb (Chapter 4, Fig. 4.14)
further suggests that the isotopic and LREE enriched signatures are due to interaction with
the Bouvet hotspot. The isotopically most depleted peridotite (Van7-96-38: *Nd/!*'Nd =
0.513205, ¥7Sr/%5Sr = 0.702096) is the most depleted in LREE (Fig. 5.17). In addition the
pyroxenites have a secondary, cross-cutting gabbroic vein assemblage, suggesting multiple
stages of melt-rock reaction over a range of pressures. Dredge 96 has an effective spread-
ing rate of 12 mm/yr and is located adjacent to Shaka Fracture Zone, implying minimal

melting during upwelling, yet even at this locality melt-rock reaction occurred.

The gabbro veined peridotites in dredge Van7-78 do not exhibit a large compositional

range and have concentrations similar to DMM, with a slight fanning out of LREE among
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different samples. The veins are not enriched with respect to their host peridotites (see the
REE plots in Appendix 5.A for detailed within-sample comparisons). With respect to the
gabbro-veined peridotites from Atlantis 11 Fracture Zone (Fig. 5.16), these veins and their
host peridotites have compositions in the middle of the gabbro range. Variations among

these samples are probably due to variable amounts of melt refertilization.

Dredge Kn162-47 contains residual peridotites, pyroxenite-veined peridotites, and a
plagioclase peridotite. All three lithologies have typical depleted compositions, with the
exception of Kn162-47-09. The depleted composition of the pyroxenite and plagioclase
peridotites implies that they formed from unaggregated melts in equilibrium with the sur-

rounding peridotite.

Sample Kn162-47-09 has an unusual, sinusoidal shaped REE pattern, accompanied by
large negative Ti and Zr anomalies on a spidergram. Together with its Nd isotopic composi-
tion (€ y4=-2.8) reported by Salters and Dick (2002), the geochemical characteristics of this
sample, highly unusual for abyssal peridotites, resemble continental lithosphere. Cpx from
a spinel harzburgite xenolith from the Premier Mine, South Africa (PHN 5266, Boyd et al.,
1999) has an almost identical spidergram (N. Shimizu, unpublished data). In addition, Opx
and Cpx have high Mg# — 91.7 for Opx and 93.1 for Cpx, compared to global average val-
ues for residual peridotites of 91 for both Opx and Cpx. CryOj is also high (0.82 wt% for
Opx and 1.55 wt% for Cpx; cf. 0.57 - 1.08 wt%), whereas Al,O3 is low (3.29 wt% for Opx
and 4.32 wt% for Cpx; cf. 5.20 - 7.83 wt%). These mineral compositions are consistent

with the Kaapvaal spinel peridotite data (Boyd et al., 1999).

The alteration features and general appearance of sample Kn162-47-09 are identical to
other peridotite samples from the same dredge, indicating that this peridotite was part of
the oceanic lithosphere when it was emplaced on the seafloor (and not ice-rafted debris).
On the basis of this sample, we suggest that rocks from the continental lithosphere can

maintain mineralogical and geochemical integrity throughout the process of entrainment

188



into the convecting mantle, surviving the melt-rock reaction process during upwelling be-
neath ocean ridges. We note that in the global abyssal peridotite dataset, 6 other samples,
including 3 from the Gakkel Ridge, have similar REE patterns, but no isotopic data are
available. Recent studies by Goldstein et al. (2006) and Michael et al. (2006) postulated
that continental lithosphere is involved in magma genesis at the Gakkel Ridge, on the basis
of MORB geochemistry.

Overall, dredges along the Oblique/Orthogonal Segments indicate variations in the
occurrence, amount and depth of melt-rock reaction. However, the compositional range
among Oblique/Orthogonal samples is small with respect to Atlantis II Fracture Zone sam-
ples. The larger variations at smaller length-scales at Atlantis Il imply that the nature of
melt-mantle interaction is different between these localities. At Atlantis Bank, magmatism
occurred for a long time, ultimately intruding into relatively cool lithosphere (John et al.,
2004). In contrast, spreading along the Oblique Segment is ultra-slow and large gabbro
bodies, such as Atlantis Bank, are not observed. In fact, small gabbro intrusions are also
absent from peridotite dredges along the Oblique Segment. Therefore, melt-mantle inter-
action at the Oblique Segment was likely more limited in spatial and temporal extent, than

at faster upwelling rates.

5.5.4 Estimates of degree of melting

In previous sections, we have suggested that many abyssal peridotites have undergone
melt-rock reaction during melt extraction. We have also suggested that the mantle may
not be homogenous in composition, as commonly assumed (e.g., Johnson et al., 1990).
To assess the role of source heterogeneity on peridotite composition, we use peridotite
compositions to calculate degrees of melting along the Oblique Segment. We then compare
these calculations to predictions from a thermal model of the Oblique Segment by Montési

et al. (2006).
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The data that we use to assess Oblique Segment source composition are Cpx trace ele-
ments from 11 dredges and spinel major elements from 23 dredges, for residual peridotites
only. Trace elements have been determined in Cpx from 38 residual peridotites (this study;
H. J. B. Dick unpublished data; Johnson et al., 1990; Salters and Dick, 2002). For spinel,
using additional unpublished data from H. J. B. Dick, data are available from 132 sam-
ples, with multiple samples analyzed per dredge, except for two dredges. In Fig. 5.18,
spinel Cr#, Mg# and TiO, are shown for this expanded dataset of Oblique Segment resid-
ual peridotites. Oblique Segment spinels are offset to slightly lower Mg# at a given Cr#, in
comparison to the global dataset. As Mg# reflects thermal re-equilibration between olivine
and spinel (Dick and Bullen, 1984), the offset may reflect the ultra-slow upwelling rate

along the Oblique Segment.

In Fig. 5.19, the variation of Cpx Ce/Yb and spinel Cr# are shown as a function of
longitude along the ~ 500 km long Oblique Segment. Both indices of peridotite depletion
show large variations within individual dredges and among closely spaced dredges. For
example, at 13°-13.5°E (a distance of ~55 km), spinel Cr# covers the entire global range,
from ~10%-60%. This includes dredge PS86-6, for which the Cpx Nd isotopic range is
30% of the Indian Ocean MORB range (Chapter 4). Pre-melting chemical variation in the

mantle is expected to accompany this isotopic variability.

To demonstrate the implications of the large range in peridotite composition in Fig.
5.19, we estimate degree of melting for the peridotites, assuming an initial DMM composi-
tion. In calculating degree of melting from spinel compositions, we first filtered the dataset
for high TiO, (Fig. 5.18), using the composition of DMM spinel (0.17 wt%, Workman
and Hart, 2005), to remove spinels that have been affected by melt infiltration. Degree of
melting is calculated from the empirical correlation of Cr# with Cpx HREE, based on a
non-modal fractional melting model for HREE (Hellebrand et al., 2001, see Appendix 5.B

for a discussion of the calibration). For Cpx trace elements, we also use fractional melt-
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ing, to provide a direct comparison to the predictions from spinel Cr#. Degree of melting
for Ce and Yb are calculated using the melting reaction from Kinzler (1997) and partition
coefficients compiled by Kelemen et al. (2003). These parameters are similar to those used

by Hellebrand et al. (2001) to calibrate the Cr# relationship to melting.

The results of the fractional melting calculations are shown in Fig. 5.19. If the max-
imum Cr# in a dredge represents the maximum degree of melting, then the average max-
imum degree of melting based on spinel composition is 9%. The within-dredge range in
spinel Cr# translates to an average within-dredge melting range of 5%. However, at the
dredge length-scale (<1 km), this range cannot result from degree of melting and must
reflect either initial heterogeneity or melt-rock reaction. Ce in Cpx and Yb in Cpx predict
5% and 7% melting, respectively, with an average per dredge difference between these two
estimates of 3%. Brunelli et al. (2006) suggest, on the basis of trace element modeling,
that the majority of residual peridotites have undergone a small amount of refertilization by
melts that are close to being in equilibrium with the peridotite. These melts result in a larger
increase in LREE than in HREE. If true, Ce is expected to underestimate degree of melting
while Yb is expected to provide a more representative estimate. However, Ce does not
consistently provide the lower estimate of melting, which may be a signal of initial source
heterogeneity in relative REE abundances. The differences in average degree of melting
among the three estimates (Cr#, Ce, and Yb) could be related to the simplified melting

model, but the range within and between dredges is significant and model independent.

In Fig. 5.19, we also plot the predicted variation in degree of melting from a thermal
model by Montési et al. (2006). This 3-D model of thermal structure combines the effect
of conductive cooling on ridge thermal structure with the specific geometry of the Oblique
Segment. As discussed by Dick et al. (2003) and Standish et al. (submitted), the Oblique
Segment consists of three long, obliquely spreading, amagmatic segments separated by two

short, orthogonally spreading, volcanic centers (Joseph Mayes Seamount and Narrowgate,
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Fig. 5.3). The model predicts an overall maximum degree of melting <12%, with reduced
degrees of melting along the amagmatic segments and enhanced melting at the two volcanic
centers. To a first order, the model agrees with bathymetry, gravity, and basalt chemistry,
except for the 15°-16°E segment between Narrowgate and the Orthogonal Segment. In
this region, the model predicts a higher degree of melting than expected from geological

observations (L. Montési, personal communication, 2007).

We focus on the ~12°-14°E section in Fig. 5.19, where the model is robust and abun-
dant observations are available from the peridotites. The thermal model predicts ~4-6%
melting, with a continuous decrease towards the segment center. Predicted degree of melt-
ing varies between 2-6% for Ce in Cpx and 2-9% for Yb in Cpx. Given the simplicity
of the trace element model and the precision of the thermal model, these estimates agree
within error. However, the trace element data exhibit variability at shorter length-scales
than predicted by the thermal model. Spinel Cr# exhibits even greater variability and pre-
dicts considerably higher degrees of melting. Using the maximum Cr#, the predicted range

for degree of melting is 3-18%, whereas using the minimum Cr#, the range is 0-15%.

The thermal model of Montési et al. (2006) demonstrates the length-scale over which
temperature is expected to produce variations in degree of melting. The shorter length-
scale variations in peridotite composition along the Oblique Segment must reflect either
compositional heterogeneity or melt-rock reaction. From the Cpx trace element data, we
suggest that within-dredge variability is dominated by melt-rock reaction, but that the offset
among dredges dominantly reflects source heterogeneity. However, the within-dredge vari-
ation among spinel Cr# cannot result from melt-rock reaction, as spinel TiO, and, to some
extent, Mg#, should also be affected (for example, compare the composition of dunites to
peridotites in Figs. 5.7 and 5.8). Therefore, we suggest that Cpx trace elements may be
decoupled from spinel major elements, reflecting recent melt-rock interaction. In contrast,

spinel Cr# variations, unaccompanied by TiO, variations, may reflect pre-existing major
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element heterogeneity of the mantle.

5.5.5 Towards an understanding of mantle initial composition and re-

gional variability

We interpret the large range in Cr# at the single dredge scale and the variation in Cpx
trace elements among dredges as indicators of initial source heterogeneity. Our work-
ing model is that heterogeneous lithosphere is created at mid-ocean ridges by large-scale
variations in degree of melting and the small-scale effects of melt-rock reaction. This litho-
sphere is eventually returned to the convecting mantle at subduction zones. Consequently,
the mantle exposed at the ridge axis today is one whose composition over time has become
increasingly heterogeneous. The important question then becomes, how variable is mantle
bulk composition?

The issue of initial heterogeneity has important implications for the interpretation of
peridotite and MORB compositions. Assuming a homogeneous source, basalts and peri-
dotites can be used to calculate asthenospheric mantle composition (e.g., Workman and
Hart, 2005). This source, DMM, is then combined with the local composition of basalts or
peridotites to estimate degree of mantle melting. Variations in degree of melting are used
to reflect variations in mantle thermal structure. However, if the mantle is heterogeneous,
variations in predicted degree of melting could be a result of chemical variations, not ther-
mal variations. With a heterogeneous source, degree of melting and extent of melt-rock
reaction are difficult to determine for a given abyssal peridotite composition.

The issue of local-scale variability in abyssal peridotite and MORB compositions has
been noted before (Dick et al., 1984; Klein and Langmuir, 1989). Dick et al. (1984) sug-
gested that averaging peridotite modal compositions on a regional scale defines separate
melting trends among peridotites, interpreting this as indicative of regional differences

in mantle composition. They also observed modal variations within-dredges and among
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dredge from the same locality, which they attributed to variations in degree of melt ex-
traction for the same degree of melting. Klein and Langmuir (1989) suggested that lo-
cal variations in MORB composition result from variable sampling of instantaneous melts
throughout the melt column, but they could not rule out major element source heterogeneity
as an origin.

In this study, we have documented variations in peridotite composition at the scale of
a grain, a sample, a dredge, a massif, a fracture zone and a ridge segment. We use these
observations in Fig. 5.20 to assess the length-scales of compositional variability at ridges.
In Fig. 5.20, variations in peridotite composition are observed to extend over similar ranges
in Cpx Ce/YD at all length-scales. The modal data from Dick et al. (1984) suggests a similar
picture, with peridotite modes varying from the ridge-scale down to the dredge-scale. Data
from this study and Hellebrand et al. (2002) suggest that spinel Cr# is also heterogeneous
at all lengthscales. Thus, we suggest that the composition of the mantle is heterogeneous

over a range of length-scales.

5.6 Conclusions

Abyssal peridotites are typically interpreted as the residues of variable degrees of melt-
ing. However, the range of abyssal peridotite compositions, shown in Fig. 5.13, cannot
result from melt depletion alone. In this chapter, we considered two additional origins for
peridotite compositional variations: melt-rock reaction and initial heterogeneity. The oc-
currence of melt-rock reaction is readily observed in veined samples. In vein-free samples,
distinguishing between melt-rock reaction, degree of melting and initial heterogeneity re-
quires careful analysis. Peridotite compositions are frequently used to predict the degree
of melting at a ridge (e.g., Johnson and Dick, 1992; Hellebrand et al., 2001; Le Mée et al.,
2004). If source heterogeneity and melt-rock reaction are significant, as we suggest they

are, then peridotites can only be used with great care to determine melting histories.
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Melting and melt extraction in the oceanic upper mantle are often assumed to be two
distinct processes, such that melt and mantle do not significantly interact following melt
formation. This view is based on the composition of basalts, which require melt trans-
port out of equilibrium with the mantle, and by the occurrence of dunites, which provide
pathways for disequilibrium melt extraction (e.g., Dick et al., 1994; Kelemen et al., 1995).
Consideration of these processes has often resulted in the exclusion of other mechanisms
from the interpretation of abyssal peridotite compositions. However, the compositional and
lithological variation among abyssal peridotites (Fig. 5.13) and the global distribution of
these lithologies (Fig. 5.1) indicates that interaction of melt with the mantle is important at

ridges.

We conclude that at least one of the major processes for creating large chemical vari-
ations in abyssal peridotites is melt-rock reaction and refertilization, in addition to melt
extraction by focussed flow. Abyssal peridotites have compositions that vary over 3 orders
of magnitude in Ce/Yb, as demonstrated in Fig. 5.13. The dataset for 67 peridotites pre-
sented in this study indicates that refertilization of peridotites occurs at many length-scales
and to varying extents. Consequently, when the oceanic lithosphere is eventually recycled
back into the mantle, it introduces a greater range of heterogeneity than expected from a

simple melt extraction model for mid-ocean ridge melting.

On the basis of significant small-scale variations in peridotite compositions from the
Oblique Segment, we suggest that the mantle is compositionally heterogeneous. If Oblique
Segment peridotites are interpreted entirely in terms of degree of melting, spinel Cr# and
Cpx trace element concentrations predict different degrees of melting and variations on
a shorter length-scale than predicted by the thermal modeling by Montési et al. (2006).
We suggest that some of the dredge-scale variation in peridotite trace elements is related to
melt-rock reaction processes. However, the large range in spinel Cr# is not accompanied by

increasing TiO,, indicating that the range does not reflect melt infiltration. Consequently,

195



we conclude that the peridotites were compositionally heterogeneous before the onset of
melting, as degree of melting does not vary at the length-scale of a dredge.

Our interpretations in this chapter are based on data obtained at small sampling length-
scales. This study expands the observational length-scales for variations in abyssal peri-
dotite compositions down to the single grain (~1-5 mm) and single rock (~10-50 c¢m)
scales and up to the single dredge (<1 km) and single ridge segment (~500 km) scales.
We demonstrate that the ranges and nature of chemical variations are similar at all the

length-scales: the magnitude of chemical variation in the mantle is scale independent.
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Appendix 5.A

Plots of REE variations in individual samples

In Fig. 5.A1, REE plots of each individual analysis for Cpx, Opx and Plag are shown
by sample. For Oblique Segment peridotites, the background field from Johnson et al.
(1990) for residual peridotites away from hotspots is included for comparison. For Atlantis
II Fracture Zone peridotites, the peridotite field from Johnson and Dick (1992) is used

instead, to provide a direct comparison to the previous assessment of Atlantis II variability.

Appendix 5.B

Spinel Cr# and predictions of degree of melting

Hellebrand et al. (2001) proposed that the co-variation of spinel Cr# with Cpx HREE
(Dy, Er and Yb) reflects variation in degree of melting and used this to calibrate a degree
of melting relationship for spinel Cr#. In Fig. 5.19, we used this relationship to derive an
estimate of the variation in degree of melting along the Oblique Segment. However, the Cr#
estimates for degree of melting do not agree with the estimate from Cpx trace elements. In
addition, a considerable range in spinel Cr# is observed within dredges, which does not
reflect the degree of recent melting.

In Fig. 5.B1, we plot the co-variation of spinel Cr#, Cpx Yby and modal Cpx, also
an indicator of degree of melting. Using the full global dataset, the correlation coefficient
between Cr# and Cpx Yb is 0.57, versus 0.75 reported by Hellebrand et al. (2001). Similar
decreases in correlation coefficients are observed for Dy and Er. Oblique Segment peri-
dotites are offset to slightly lower Cr#’s with respect to the global dataset. However, the
correlation is worse if these samples are excluded.

We suggest that the correlation of spinel Cr# with Cpx HREE is only loosely applicable.
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Considerable within-dredge variation in spinel Cr# is observed at the Oblique Segment. If
the average spinel Cr# per dredge is used to estimate degree of melting, instead of the
highest Cr#, the estimate is still higher than trace element and thermal model estimates
(Fig. 5.19). The extent of sample-scale variation in spinel Cr# has not been thoroughly
assessed, though Hellebrand et al. (2002) found a Cr# range of 26-49 in spinels from a
single Central Indian Ridge peridotite. These observations imply that spinel Cr# should

only be used with caution in estimating degree of melting from peridotite composition.

Appendix 5.C

Armalcolite in Dredge 96

The mineral armalcolite (MgFeTi,O5) was identified in pyroxenites from dredge Van7-
96 (Fig. 5.Cl1). Armalcolite is present as small grains at the tips of spinel grains, which
are themselves surrounded by plagioclase within secondary gabbro veins (Fig. 5.C1). The
approximate composition of the armalcolite is 71 wt% TiO,, 12% FeO, 5% Cr,03, 5%
CaO0, 3% MgO, and 1% Al,O3. An unidentified trace element oxide must also be present,
on the basis of the 97 wt% total and comparison to xenolith armalcolites (Haggerty, 1991).
Further work is necessary to constrain the extent of the armalcolite occurrence in dredge
Van7-96. We have not yet determined whether the armalcolite originated with the peri-
dotite, the pyroxenites veins or the secondary gabbro veins that crosscut the pyroxenites.

To our knowledge, the armalcolite in dredge Van7-96 is the first observation of this min-
eral in abyssal peridotites, though it has been identified in continental peridotite xenoliths
(e.g., Haggerty, 1987; Ionov et al., 1999) and in harzburgite xenoliths from the Kerguelen
islands (Grégoire et al., 2000). Its presence in xenoliths is associated with melt metaso-
matic assemblages (Haggerty, 1991). We suggest that armalcolite formation in mantle as-

semblages is related to the breakdown of high-Ti spinel at high temperature to low-Ti spinel
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and a pseudobrookite phase at low temperature (Muan et al., 1971). Armalcolite is a solid
solution between ferropseudobrookite and karrooite and can undergo further breakdown to
ilmenite solid solution and rutile with decreasing temperature or decreasing MgO (Lind-
sley et al., 1974; Xirouchakis et al., 2001). Both rutile and ilmenite have been observed
in another SWIR abyssal peridotite in this study, 6K-465-3, suggesting that low volume,
highly TiO, enriched melts are not entirely uncommon during late-stage melt-rock reaction

at the ridge axis.

Appendix 5.D

Notes on gabbro-veined peridotite 6K-465-3

Sample 6K-465-3 from the Atlantis II Fracture Zone contains two melt veins of distinct
compositions and matrix Cpx with unusual exsolution. One of the melt veins is gabbroic,
consisting of plagioclase and Cpx with accessory ilmenite. Cpx porphyroclast cores have
been altered to actinolite by high-temperature hydrothermal alteration. The second vein
contains kaersutite, plagioclase, ilmenite, rutile, and apatite (Fig. 5.D1), indicating crystal-
lization from a highly differentiated melt. In the peridotite matrix, Cpx porphyroclasts have
blebby exsolution of plagioclase, olivine, and spinel, as shown in Fig. 5.D2. Opx does not
appear to be present as an exsolution phase in Cpx. Major and trace element compositions

of these accessory mineral phases and the unusual exsolution are presented in Table 5.D1.
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Figure 5.1: Global distribution of depleted (top) and veined (bottom) abyssal peridotites.
Peridotite locations are for peridotites with published modal, Cpx trace element, or spinel
Cr# analyses; sources are listed by location in Table 5.1. Depleted peridotites have been
filtered for any peridotites with veins or >.05% plagioclase and are colored according
to ridge location: East Pacific Rise (EPR), Mid-Cayman Rise (MCR), Central Indian
Ridge/Carlsberg Ridge (CIR/Carl), Mid-Atlantic Ridge (MAR), American-Antarctic Ridge
(AAR), Gakkel Ridge/Lena Trough/Knipovitch Ridge (Arctic) and the Southwest Indian
Ridge (SWIR). Locations of the two focus areas for this study, the Oblique and Orthogonal
Segments and the Atlantis Il Fracture Zone are indicated by purple stars. Veined peridotites
are colored according to their dominant vein lithology. Gabbro/Plag refers to both gabbro
veins in peridotites and peridotites with >.05% matrix plagioclase.
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Figure 5.2: Variations in peridotite compositions as a function of spreading rate. Data are
from this study and references in Table 5.1. Dashed lines are the predicted variations in
composition based on (i) the degree of melting predicted by a simple plate model with con-
ductive cooling (Reid and Jackson, 1981; Bown and White, 1994) and (ii) non-modal frac-
tional melting using parameters and equations from Johnson et al. (1990), Kinzler (1997),
Hellebrand et al. (2001), Kelemen et al. (2003) and Workman and Hart (2005). Yb is nor-
malized to chondrite (Anders and Grevesse, 1989), Cr# is calculated as Cr/(Cr+Al) and the
composition of DMM is from Workman and Hart (2005).

211



SWIR Oblique and Orthogonal Segments

“>Narrowgat
S &

)
4
. -

©
=
(o]
A" D
7 Q
Joseph Mayes £
Seamount o
9’ 10° his 12° 13 14° 15° 16 17
Dredges/Dives
O Peridotite
¢ Gabbro
7 6 5 -4 -3 2 -1 0 « ‘Basalt
Depth (km) v Empty
Atlantis Il FZ - RTI Atlantis Bank
——1

-31°55'

-32°00' -32°45'

-32°50'

' 57°15' 57°20' 57°25'

=== B
57°00' 57°05' 57°10° 57158 57°20' 57°05" 57°10'

Figure 5.3: Maps of the SWIR study areas. Shown at top are the Oblique Segment and
western end of the Orthogonal Segment, along with the Bouvet hotspot path Hartnady
and le Roex (1985). At bottom, two localities on Atlantis Il Fracture Zone are shown — the
northern ridge-transform intersection (RTI) and Atlantis Bank. The fracture zone is parallel
to the western edge of both maps, with Atlantis Bank located on the active portion of the
transform fault at 11-12 Ma (John et al., 2004). Red stars indicate sample locations for this
study. Dredges are labeled with a letter abbreviation to indicate the cruise (see Table 5.2).
Dives are indicated by the prefix 6K, to indicate sampling by the submersible Shinkai 6500.
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Figure 5.4: Comparison of duplicate ion probe concentration analyses for Cpx, plus one
Opx and one Plag analysis. Error bars are generally smaller than the symbol size.
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Figure 5.5: Comparison of ion probe concentration data (in ppm) with ICP-MS and TIMS
data for Cpx and Opx. The ICP-MS and TIMS data were determined for mineral separates
and the error is generally smaller than the symbol size. The ion probe Cpx data are averages
of several in situ analyses per sample and the horizontal bar indicates the compositional
range of the sample. For the three Opx analyses, the ion probe data is not representative of
the bulk Opx composition as only one point was measured per sample.
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Variation of Spinel Cr# with Mg# in peridotites, veined peridotites, and dunites.
The range of the residual peridotites is typical for abyssal peridotites (see Figure 5.18 for a
comparison). Additional spinel data for these localities are from the peridotite compilation
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Figure 5.8: Variation of Spinel TiO, with Cr# among veined and unveined peridotites and
dunites. TiO; concentrations greater than 0.2 wt% (e.g., greater than DMM) are indicative
of melt crystallization (Dick and Bullen, 1984).
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Figure 5.9: Variations of Cr,O3 with Al;O3 in Cpx from veined and unveined peridotites.
The pyroxenite-veined peridotites from dredge Van7-96 and clinopyroxenite-veined peri-
dotite sample RC27-9-6-2 were the focus of Chapter 4. Additional data for these localities

are from Johnson et al. (1990), Johnson and Dick (1992) and H. J. B. Dick unpublished
data.
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Figure 5.10: Variations in REEs among individual Cpx from veined and unveined peri-
dotites. For the Oblique/Orthogonal Segments, the light grey field is abyssal peridotites
away from hotspots (Johnson et al., 1990) and the dark grey field is Oblique/Orthogonal
Segment basalts (Standish, 2006). For the Atlantis II Fracture Zone, the background fields
are peridotites (light grey) and basalts (dark grey) along the fracture zone (Johnson and
Dick, 1992).
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Figure 5.12: Variation of REEs in cryptically metasomatized peridotites from Atlantis 11
Fracture Zone. 6K-458-3 is from Atlantis Bank and the other two samples are from the
ridge-transform intersection (Figure 5.3). The core-rim traverses in two of the plots are for
individual grains. In 6K-465-2, this grain is located between depleted and enriched grains
and is shown in Figure 5.15. In the other two samples, the location of the boundary between
depleted and enriched compositions has not been fully mapped out. Background fields are
from Johnson and Dick (1992).
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Figure 5.13: Histograms of Ce/Yb in Cpx, for the global abyssal peridotite dataset. His-
tograms are based on sample average compositions, with the exception of the cryptically
metasomatized peridotites. For these three samples, individual analyses were used due to
their large within-sample variations. The composition of DMM is from Workman and Hart
(2005) and peridotite compositions are from this study, H. J. B. Dick unpublished data, and
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Figure 5.14: Comparisons of Cpx porphyroclast core and rim analyses and porphyroclast
core and interstitial grain analyses, for vein-free peridotites. Cryptic refers to the 3 crypti-
cally metasomatized peridotites. Interstitial grains are <1 mm diameter and typically have
no exsolution lamellae. Error bars are based on the percent error among duplicate analyses

(Table 5.10).
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Figure 5.15: Photomicrograph of compositionally zoned Cpx6 from sample 6K-465-2.
Numbering of analytical points corresponds to the numbering in Tables 5.6 and 5.10.
Smaller numbers are Ce concentrations in ppm. The lowest trace element concentrations
are centered around Point 4. Point 3, while appearing to be near the gain center, has high
concentrations, suggesting that in the third dimension it is near the grain rim.
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Figure 5.16: Atlantis Il Fracture Zone REE variations at the ridge-transform intersection
(RTI) and on Atlantis Bank. Peridotites, shown as sample averages, have large composi-
tional variations at both locations. The sample averages for the chromatographic peridotites
(red), when plotted as individual analyses (Figure 5.12) extend over almost the entire range
of other peridotites from these locations. Background fields are for fracture zone peridotites
(light grey) and basalts (dark grey) from Johnson and Dick (1992). Additional individual
samples for the two locations are from Johnson (1990) and unpublished data from H. J. B.

Dick.
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Figure 5.B1: Co-variation of Spinel Cr#, Yby in Cpx and modal Cpx. The variation of
spinel Cr# with Cpx HREE (Dy, Er and Yb) has been used to calibrate a degree of melting
relationship for spinel Cr#. As modal Cpx is also an indicator of degree of melting in
peridotite, we compare the co-variation among all three parameters.
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Plagioclase

Figure 5.C1: Armalcolite, associated with spinel and plagioclase in pyroxenite vein (Van7-
96-14).
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~Kaersutite .
B, b

Rutile

Figure 5.D1: Photomicrograph and backscattered electron image of a vein in sample 6K-
465-3 from Atlantis II Fracture Zone. Compositions of kaersutite, apatite, rutile and pla-
gioclase in the vein are given in Table 5.D1. Bright spots in the backscattered image are
remnants of the gold coat from ion probe analyses.
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Figure 5.D2: Photomicrograph and backscattered electron images of unusual exsolution in
gabbro-veined sample 6K-465-3 from Atlantis II Fracture Zone. Major and trace element
analyses of Cpx 12 and exsolved plagioclase, spinel and olivine are presented in Table 5.D1,
along with analyses for similar occurrences in three other Cpx porphyroclasts. Bright spots
in the backscattered images are remnants of the gold coat from ion probe analyses.
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Table 5.1: Summary of global peridotite compilation.

Ridge Location F.S.R.®  Lithology Reference
East Pacific Rise
EPR Terevaka FZ 157 Harz, Pl dun, Gabbro vein, Cpx vein ~ Constantin et al. (1995)
EPR Garrett FZ 150 Harz, Pl perid, Dun, Pl dun, Niu and Hékinian (1997), Constantin
Webhrlite, Gabbro vein (1999)
EPR Hess Deep 128 Harz, Dun, Pl dun Dick and Natland (1996)
Mid-Cayman Rise
MCR Cayman Trough 71-73 Lherz, Harz, PI lherz, P1 harz, Dun Dick et al. (1984), H. J. B. Dick (unpub-
lished)
Central Indian Ridge
CIR Green Rock Hill 50 Harz Hellebrand et al. (2002)
CIR Marie Celeste FZ 41 Harz, Pl harz, Dun, Ol-webst Dick et al. (1984), Hellebrand et al. (2002)
CIR Argo FZ 38 Lherz, Harz, Pl harz Dick et al. (1984), Hellebrand et al. (2002)
CIR Vema Il FZ 37 Harz, Gabbro vein Dick et al. (1984), Hellebrand et al. (2002)
CIR Rift at 12°S, 66°E 36 Harz, Dun Dick et al. (1984), Hellebrand et al. (2002)
Carlsberg Ridge
Carl Owen FZ 26 Lherz, Harz, Pl lherz, Pl harz, Dun Hamlyn and Bonatti (1980)
Mid-Atlantic Ridge
MAR 22°S FZ 36 Lherz, Harz, Pl harz Dick et al. (1984)
MAR Romanche FZ 33 Lherz, Harz, Pl lherz, Pl harz, PI1Ol-  Dick et al. (1984), Bonatti et al. (1993),
webst Seyler and Bonatti (1997), Tartarotti et al.
(2002)
MAR St Paul FZ 32 Perid Bonatti et al. (1992)
MAR 2°-4°N Area 31 Perid Bonatti et al. (1992)
MAR Doldrums FZ 29 Perid Bonatti et al. (1992)
MAR Mercurius FZ 28 Perid Bonatti et al. (1992)
MAR Vema FZ 28 Lherz, Harz, Pl perid, Gabbro vein Prinz et al. (1976), Cannat and Seyler
(1995), Seyler and Bonatti (1997), Brunelli
et al. (2006)
MAR 43°N Area 24 Harz Dick et al. (1984)
MAR Kurchatov FZ 24 Harz Dick and Bullen (1984)
MAR Gibbs FZ 23 Lherz, Gabbro vein Seyler and Bonatti (1997)
MAR Oceanographer FZ 22 Harz Michael and Bonatti (1985)
MAR Marathon FZ 16 Perid Bonatti et al. (1992)
MAR Rift at 21°N, 45°W 15 Lherz, Harz, Dun, Ol-webst Fujii (1990), Juteau et al. (1990), Komor
et al. (1990)
MAR 15°20°N Area 15 Harz, Dun Bonatti et al. (1992), Seyler et al. (2007),
H. J. B. Dick (unpublished)
MAR Famous FZ 14 Harz Dick and Bullen (1984)
MAR Kane FZ 14 Lherz, Harz, Pl harz, Pl Ol-webst Dick et al. (1984), Michael and Bonatti
(1985), Luguet et al. (2003)
MAR MARK Area 14 Lherz, Harz, Dun, Ol-webst Ross and Elthon (1997), Stephens (1997),
Kempton and Stephens (1997)
American Antarctic Ridge
AAR Bullard FZ 17 Lherz, Harz, Pl lherz, Pl harz Dick (1989), Johnson et al. (1990)
AAR Vulcan FZ 17 Lherz, Harz, Pl lherz Dick (1989), Johnson et al. (1990)
Knipovitch Ridge
Knip Spitzbergen FZ 14 Perid Jaroslow et al. (1996)
Lena Trough
LT Lena Trough 14 Lherz, Harz Hellebrand and Snow (2003)
Gakkel Ridge
GAK Gakkel Ridge 11-13 Lherz, Harz, Ol-webst Hellebrand et al. (2005)

@ Full spreading rate in mm/yr (or km/Ma).
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Table 5.1: Global compilation Cont.

Ridge Location FS.R.?  Lithology Reference
Southwest Indian Ridge
SWIR Speiss Ridge 19 Harz, Dun H. J. B. Dick (unpublished)
SWIR Andrew Bain FZ 15 Lherz, Harz, Pl harz, Dun, Webst Johnson et al. (1990)
SWIR Discovery Il FZ 15 Lherz, Harz Dick et al. (1984), Johnson et al. (1990)
SWIR Gallieni FZ 15 Lherz, Harz, Pl harz Dick et al. (1984), Jaroslow et al. (1996)
SWIR Indomed FZ 15 Lherz Johnson et al. (1990)
SWIR Melville FZ 15 Lherz, Harz, Pl lherz Dick et al. (1984)
SWIR Prince Edward FZ 15 Lherz, Harz, Pl harz Johnson et al. (1990), Jaroslow et al. (1996)
SWIR SWIR 52°-68°E 14-15 Lherz, Harz Seyler et al. (2003), Seyler et al. (2004)
SWIR Atlantis 11 FZ 14 Lherz, Harz, Pl perid, Dun, Webst,  Johnson and Dick (1992), Jaroslow et al.
Ol-webst, Cpx vein, Gabbro vein (1996), Lee (1997), Salters and Dick
(2002), Kumagai et al. (2003), Coogan
et al. (2004), H. J. B. Dick (unpublished),
This study
SWIR Bouvet FZ 14 Harz, Pl harz, Dun Dick et al. (1984), Johnson et al. (1990)
SWIR Islas Orcadas FZ 14 Lherz, Harz, Pl lherz, Pl harz, Ol-  Dick (1989), Johnson et al. (1990), Snow
webst (1993)
SWIR Orthogonal Seg. 14 Harz, Pl perid, Dun, Ol-webst, Gab-  This Study
bro vein
SWIR Rift at 26°S, 67°E 14 Lherz Dick and Bullen (1984), Dick et al. (1984)
SWIR Rift at 54°S, 7°E 14 Harz Dick et al. (1984)
SWIR Shaka FZ 14 Perid Johnson et al. (1990), Snow (1993),
Jaroslow et al. (1996), This Study
SWIR Oblique Segment 8-14 Lherz, Harz, PI perid, Dun, Webst,  Johnson et al. (1990), Salters and Dick

Ol-webst, Gabbro vein

(2002), Dantas et al. (2007), H. J. B. Dick
(unpublished), This study
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Table 5.2: Dredge locations

Dredge/Dive Dredge description Wit Lat Long Depth  FSR? Location
kg 58 °E (m)  (mm/yr)

SWIR 9°—-25°E

R/V Atlantis II, 1980

AII107-61  Peridotites, perid mylonites 48 -5342 920 4063 14 Shaka FZ

R/V Polarstern, 1986

PS86-6 Peridotite, basalt, gabbro 187 -52.35 13.13 3332 9 Oblique
veined perid

R/V Knorr, 2000

Knl162-19  Basalt, peridotite, 81 -53.05 21.38 3992 14 Orthogonal
pyroxenite, diabase

Kn162-47  Peridotite, pyroxenites, plag 144  -52.56 12.66 4361 8 Oblique
perid

R/V Melville, 2003

Van7-78 Peridotite, dunite, 192 -52.38 16.64 3901 14 Orthogonal

gabbros/veined perid, plag
perid, basalt
Van7-85 Peridotite, dunite, diabase 90 -52.25 1523 4190 12 Oblique

Van7-86 Dunite, peridotite 146 -52.14 15.16 3738 12 Oblique
Van7-96 Perid/pyrox/bas 81 -53.14 998 3134 12 Oblique
cataclastites, perid, pyrox,
diabase

ATLANTIS II FRACTURE ZONE
R/V Conrad, 1986
RC27-9-6 Peridotite, dunite 37  -3192 57.18 3930 14 AIIFZ RTI”
R.R.S. James Clark Ross, 1998
JR31-52 Peridotite, diabase, gabbro 125 -32.56 57.17 3200 14 Atlantis Bank
R/V Yokosuka, Shinkai 6500 submersible, 1998

6K-458-1 3 -3270 57.13 4609 14 Atlantis Bank
6K-458-3 8 -32.70 57.13 4609 14 Atlantis Bank
6K-465-2 10 -31.95 57.13 4988 14 AIIFZ RTI
6K-465-3 6 -31.95 57.13 4899 14 AIIFZ RTI
6K-466-1 3 -3264 57.14 4714 14 Atlantis Bank
R/V Yokosuka, Shinkai 6500 submersible, 2001

6K-643-1 9 -3291 57.20 3396 14 Atlantis Bank
6K-643-6 2 =3291 5721 2974 14 Atlantis Bank
6K-643-13 13 -3291 57.21 2712 14 Atlantis Bank
6K-643-15 13 -3291 57.21 2605 14 Atlantis Bank
6K-649-5 3 -3291 5721 2564 14 Atlantis Bank
6K-651-7 2 -3274 57.15 4088 14 Atlantis Bank

@ Full spreading rate. For Oblique Segment dredges, the effective full spreading rate is given, calculated
following the method of Abelson and Agnon (1997) and using the measured angle of obliquity of the
ridge axis to the plate spreading direction. For the Atlantis II Fracture Zone, the half spreading rate to
the south is 8.5 mm/yr, due to asymmetrical spreading (Hosford et al., 2003).

# Ridge-transform intersection.
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Table 5.3: Sample descriptions and modal analyses

Sample Location Description Ol Opx Cpx Sp Pl Sum Pt
SWIR 9°-25°E
All107-61-83 Shaka FZ Lherzolite mylonite 724 198 58 14 00 99.4"
PS86-6-26 Oblique Lherzolite 60.7 262 123 09 0.0 100.0°
PS86-6-38 Oblique Lherzolite 59.5 299 96 1.0 0.0 100.0 3124
PS86-6-39 Oblique Lherzolite 69.7 20.9 87 08 0.0 100.0°
PS86-6-40 Oblique Lherzolite 66.7 234 86 14 00 100.0°
Knl162-19-41 Orthogonal Olivine websterite
Kn162-19-45 Orthogonal Harzburgite 824 16.6 04 07 00 10007 2132
Kn162-47-08 Oblique Harzburgite
Kn162-47-09 Oblique Lherzolite
Kn162-47-10 Oblique Websterite vein in peridotite, 40 50.0 40.0 6.0 0.0 100.0
mylonite
Kn162-47-12 Oblique Websterite vein in peridotite, 0.0 500 450 50 0.0 100.0°
mylonite
Kn162-47-22 Oblique Ol-websterite vein in 120 350 450 80 0.0 100.0°
hazburgite
Kn162-47-24 Oblique Plag peridotite
Kn162-47-25 Oblique Websterite vein in peridotite 0.0 320 650 30 0.0 100.0
Kn162-47-26 Oblique Harzburgite
Kn162-47-29 Oblique Peridotite mylonite
Kn162-47-36 Oblique Harzburgite mylonite
Kn162-47-49 Oblique Peridotite protomylonite
Van7-78-25 Orthogonal Dunite with gabbro vein
Van7-78-31 Orthogonal Plag peridotite with gabbro
vein
Van7-78-36 Orthogonal Plag peridotite with gabbro
vein
Van7-78-40 Orthogonal Plag harzburgite
Van7-78-41 Orthogonal Plag harzburgite,
protomylonite
Van7-85-24 Oblique Lherzolite
Van7-85-27 Oblique Harzburgite 68.6 275 31 09 00 100.0 2506
Van7-85-30 Oblique Harzburgite, trace Plag 674 292 2:1 1.2 102 100.0 2483
Van7-85-32 Oblique Harzburgite
Van7-85-39 Oblique Lherzolite
Van7-85-42 Oblique Lherzolite 67.1 25.6 62 10 00 100.0 2825
Van7-85-47 Oblique Lherzolite 68.7 247 5.1 1.5 0.0 100.0 2594
Van7-85-49 Oblique Lherzolite, trace Plag 1.6 222 53 09 0.1 100.0 2607
Van7-86-25 Oblique Lherzolite
Van7-86-27 Oblique Lherzolite 558 340 96 0.6 0.0 100.0 2566
Van7-86-28 Oblique Lherzolite
Van7-86-30 Oblique Harzburgite
Van7-86-37 Oblique Harzburgite
Van7-96-09 Oblique Pyroxenite vein 93 258 485 19 146 100.0 756
Van7-96-14 Oblique Pyroxenite vein, with thin
peridotite rim
Van7-96-15 Oblique Pyroxenite vein, with thin
peridotite rim
Van7-96-16 Oblique Pyroxenite vein, with thin 1.6 340 244 16 284 100.0 697
peridotite rim
Van7-96-18 Oblique Lherzolite with pyroxenite
vein
Van7-96-19 (Matrix) ~ Oblique Lherzolite with pyroxenite 648 179 133 08 3.1 100.0 1883
vein
Van7-96-19 (Vein) Oblique Pyroxenite vein in lherzolite 72 264 572 28 63 100.0 318
Van7-96-21 (Matrix) ~ Oblique Harzburgite with pyroxenite 762 18.1 46 06 04 100.0 1894
vein
Van7-96-21 (Vein) Oblique Pyroxenite vein in harzburgite 1957 393 3715 22 13 100.0 401
Van7-96-25 Oblique Lherzolite 662 25.6 68 14 00 100.0 2215
Van7-96-28 Oblique Lherzolite, trace Plag 767 17.2 54 07 00 100.0 2738
Van7-96-35 Oblique Lherzolite, trace Plag 704 167 105 23 0.1 100.0 1765
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Table 5.3: Sample descriptions Cont.

Sample Location Description Ol Opx Cpx Sp Pl Sum  Pts?
Van7-96-37 Oblique Peridotite

Van7-96-38 Oblique Lherzolite, trace Plag 642 241 99| 16 102 100.0 2278
Van7-96-66B Oblique Subangular clast of

orthopyroxenite in breccia

Atlantis II Fracture Zone

RC27-9-6-2 (Matrix)  AIIFZ RTI Lherzolite with 67.5 195 119 09 02 100.0 2194
clinopyroxenite vein, trace
Plag

RC27-9-6-2 (Vein) AIIFZ RT1 Clinopyroxenite vein in 7.6 92 826/| 07 00 100.0 436
lherzolite, trace Plag

RC27-9-6-5 AIIFZ RTI Lherzolite, cryptic
metasomatism, trace Plag

RC27-9-6-7 AlIFZ RTI Lherzolite

JR31-52-3 Atlantis Bank  Harzburgite 576 3.5 39| 1.0 00 100.0 2056

JR31-52-4 Atlantis Bank  Lherzolite

JR31-52-5 Atlantis Bank  Harzburgite 66.8 273 45 14 00 100.0 2258

JR31-52-8 Atlantis Bank  Lherzolite 62.8 299 65 08 00 100.0 1975

6K-458-1 Atlantis Bank  Peridotite

6K-458-3 Atlantis Bank  Peridotite, cryptic
metasomatism

6K-465-2 AlIFZ RTI Lherzolite, cryptic 71.0 220 S9i| 1Y <00 100.0 1926
metasomatism, trace Plag

6K-465-3 AlIFZ RTI Lherz, with gabbro vein and 762 134 86 10 08 100.0 2028
kaersutite/oxide vein

6K-466-1 Atlantis Bank  Harzburgite 748 212 3.0 1. 0.0 100.0 1489

6K-643-01 Atlantis Bank  Lherzolite

6K-643-06 Atlantis Bank  Harzburgite

6K-643-13 Atlantis Bank  Lherzolite 68.7 2409 51| 07 00 994 1566

6K-643-15 Atlantis Bank  Lherzolite/dunite/gabbro vein

6K-649-5 Atlantis Bank  Lherzolite

6K-651-7 Atlantis Bank  Olivine websterite

@ Points counts on 51x75 mm thin sections using 1 mm grid.

b Snow (1993).

“H. J. B. Dick, unpublished data.
@Y. Ohara, unpublished data.
¢ Dantas et al. (2007).
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Table 5.4: Major element composition of olivines, in wt%.

Sample Gm? Pts  SiO2 ot FeO o= MnO = MgO =+ NiO = Total Mg#  Notes”
6K-458-1 1 6 40.55 0.26 9.22 0.18 0.08 0.03 49.64 0.29 0.34 0.04 99.87  90.6

6K-465-2 1 6 40.53 0.28 9.63 0.11 0.14 0.02 50.00 0.36 0.32 0.03 100.68 90.3 Dep
6K-465-2 2 6 41.91 0.28 9.39 0.09 49.32 0.19 100.67  90.3  Dep
6K-465-3 1 9 39.45 0.14 1052 0.13 0.15 0.02 4850 0.16 0.35 0.02 99.03  89.2 NrMat
6K-465-3 2 6 38.02 0.15 2294 030 043 0.04 39.16 0.09 0.28 0.04 100.86 75.3 NrMat
JR31-52-3 1 7 40.10 0.08 9.45 0.12 0.14 0.02 49.48 0.26 0.40 0.03 99.61  90.3
JR31-52-5 1 6 4047 0.12 9.43 0.15 0.16 0.02 49.06 0.09 0.35 0.03 99.51 90.3
JR31-52-8 1 6 40.22 0.09 9.59 0.24 0.14 0.02 49.04 0.14 037 0.02 99.38  90.1
Knl62-19-41 1 6 40.58 0.21 9.32 0.14 0.13 0.02 4891 0.25 0.31 0.03 99.29 90.3 PyxVn
Knl162-47-22 1 6 40.79 0.16 10.66 0.14 0.11 0.02 4875 0.16 0.38 0.03 100.75 89.1 PyxVn
Kn162-47-25 1 4 40.51 0.18 9.25 0.10 0.12 0.01 4898 0.29 0.32 0.04 99.22 90.4 NrMat
Kn162-47-26 1 6 41.04 0.21 9.69 0.51 0.14 0.02 48.60 0.06 0.19 0.01 99.69 89.9
Knl162-47-29 1 6 41.20 0.22 883 035 0.11 0.02 49.87 0.17 0.21 0.03 100.23 91.0
Knl162-47-36 1 6 40.62 0.14 10.10 0.45 0.14 0.02 49.02 037 040 0.03 100.31  89.6
Knl62-47-49 1| 6 41.03 0.09 10.08 0.18 0.12 0.03 48.24 0.26 0.25 0.02 99.76  89.5
PS86-6-26 1 6 41.33 0.34 9.29 0.22 0.10 0.02 49.11 0.40 0.19 0.03 100.05 90.4

PS86-6-38 1 6 40.50 0.16 9.95 0.20 0.11 0.02 48.88 0.26 0.41 0.02 99.89  89.8
PS86-6-39 1 6 40.61 0.18 9.15 031 0.11 0.03 49.60 0.26 0.39 0.04 99.92 90.6
PS86-6-40 1 6 40.42 0.27 9.71 0.14 0.10 0.04 4885 0.35 0.37 0.05 99.47  90.0
RC27-9-6-2 L1 5 40.40 0.30 9.91 0.10 0.13 0.02 4946 0.41 0.33 0.01 100.26 89.9 FarMat
RC27-9-6-2 L6 .5 40.40 0.10 9.74 0.14 0.12 0.02 50.21 0.12 0.34 0.03 100.86 90.2 FarMat
RC27-9-6-2 LT 5 40.40 0.20 9.71 0.10 0.13 0.01 50.17 0.22 0.33 0.02 100.79 90.2 FarMat
RC27-9-6-2 L8 5 40.50 0.10 9.58 0.09 0.11 0.02 49.77 0.28 0.32 0.01 100.30 90.3 FarMat
RC27-9-6-2 LY 5 40.40 0.20 9.60 0.23 0.14 0.01 49.75 0.17 0.34 0.01 100.27 90.2  FarMat
RC27-9-6-2 LI2 5 40.50 0.10 9.51 0.10 0.12 0.02 4944 0.17 0.33 0.02 99.94  90.3  NrMat
RC27-9-6-2 L13 5 40.50 0.10 9.60 0.16 0.14 0.02 49.28 0.14 0.33 0.02 99.90  90.1  NrMat
RC27-9-6-2 Li4 5§ 40.60 0.20 9.74 0.17 0.13 0.00 49.60 0.29 0.34 0.02 100.45 90.1 NrMat
RC27-9-6-2 LIS 16 40.30 0.20 9.71 0.17 0.14 0.02 4997 0.09 0.32 002 100.50 90.2 NrMat
RC27-9-6-2 Li& 5 40.20 0.20 9.60 0.12 0.13 0.01 50.02 0.22 0.35 0.03 100.33 90.3 NrMat
RC27-9-6-2 1 7 40.40 0.30 9.76 0.18 0.15 0.01 49.47 0.27 0.32 0.02 100.14 90.0 CpxVn
RC27-9-6-2 L18 5 40.30 0.20 9.64 0.18 0.13 0.01 4947 0.29 0.34 0.01 99.92  90.1 CpxVn
RC27-9-6-2 L19 5 40.40  0.20 9.55 0.12 0.13 0.02 49.04 0.15 0.35 0.02 99.51  90.1  CpxVn
RC27-9-6-2 20 5 40.10 0.10 9.74 0.11 0.13 0.01 4962 033 0.32 0.01 99.96  90.1  AdjVn
RC27-9-6-2 L22 5 40.20 0.30 9.56 0.17 0.13 0.01 49.85 0.27 0.33 0.02 100.11 90.3  NrMat
RC27-9-6-2 L23 5 40.50 0.30 9.64 0.11 0.12 0.02 5033 0.56 0.35 0.02 100.98 90.3 NrMat
RC27-9-6-2 L24 S 40.40 0.10 951 0.14 0.13 0.01 4998 0.45 036 0.02 10040 90.4 NrMat
RC27-9-6-2 25 5 40.50 0.20 9.60 0.10 0.14 0.02 50.05 0.16 0.34 0.02 100.66 90.3 NrMat
RC27-9-6-2 L26 5 40.50 0.50 9.56 0.20 0.13 0.01 49.89 0.52 0.33 0.03 100.44 90.3 FarMat
RC27-9-6-5 L1 6 40.50 0.02 10.32 0.07 0.11 0.01 4943 0.07 0.35 0.02 100.76  89.5
RC27-9-6-5 L2 6 40.70 0.30 9.85 0.11 0.11 0.02 4998 0.31 0.39 0.02 101.12 90.0
RC27-9-6-5 1 5 40.76 0.17 9.93 0.26 0.13 004 49.16 0.31 0.34 0.03 10036 89.8 Enr
RC27-9-6-7 1 6 41.08 0.18 9.60 0.06 0.14 001 49.33 0.61 031 0.02 100.50 90.2
Van7-78-25 1 6 40.12 0.06 10.19 0.31 0.20 0.01 48.57 0.16 0.28 0.02 99.41  89.5 GbVn
Van7-78-31 1 6 40.26  0.08 9.82 0.17 0.16 0.02 4857 0.20 0.31 0.03 99.16  89.8 NrMat
Van7-78-31 2 5 39.90 0.11 1061 0.15 0.17 0.02 48.29 0.08 0.29 0.03 99.33  89.0  AdjVn
Van7-78-36 2 6 39.71 0.32 11.57 0.08 0.20 0.02 47.27 025 0.31 0.03 99.13  87.9 AdjVn
Van7-78-36 11 6 40.41 0.11 9.75 0.20 0.16 0.02 48.80 0.16 0.32 0.03 99.48  89.9  FarMat
Van7-78-40 1 6 40.15 0.29 9.09 0.13 0.15 0.02 49.70 0.22 0.32 0.02 99.48  90.7
Van7-78-41 1 6 40.35 0.15 10.22 0.16 0.17 0.02 4843 0.14 0.31 0.04 99.53 89.4
Van7-85-24 1 6 40.12 0.11 9.31 0.05 0.15 0.02 48.87 0.16 0.34 0.02 98.85  90.3
Van7-85-27 1 2 40.01  0.04 892 0.11 0.17 0.02 49.30 0.25 0.31 0.02 98.77  90.8
Van7-85-27 2 3 40.11 0.11 8.82 0.22 0.15 0.02 49.16 0.08 0.35 0.03 98.67 90.9
Van7-85-30 1 A 40.17 0.10 9.28 0.08 0.15 0.03 48.78 0.24 0.34 0.04 98.80  90.4
Van7-85-32 1 6 40.24 0.10 9.52 0.13 0.14 0.02 49.26 0.32 0.30 0.03 99.51 90.2
Van7-85-39 1 5) 40.19 0.13 9.47 0.15 0.16 0.03 49.07 0.39 0.37 0.02 99.29 90.2
Van7-85-42 1 6 40.03  0.26 9.57 0.14 0.13 0.02 4936 0.27 0.35 0.02 99.50 90.2
Van7-85-47 1 6 40.34  0.26 9.76 0.18 0.16 0.03 4948 0.12 033 0.03 100.12 90.0
Van7-85-49 1 6 40.49 0.11 9.57 0.16 0.15 0.01 4891 0.18 0.40 0.03 99.57  90.1
Van7-86-25 1 6 41.14 047 9.02 0.23 0.10 0.02 49.17 0.52 0.22 0.02 99.70  90.7
Van7-86-27 1 6 40.26  0.26 9.91 0.10 0.14 0.02 49.00 0.27 0.35 0.05 99.68  89.8
Van7-86-28 1 6 40.29 0.20 9.69 0.21 0.15 0.02 4877 040 0.39 0.03 99.30  90.0
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Table 5.4: Olivine major elements Cont.

Sample Gm? Pts  SiO2 + FeO i MnO £ MgO + NiO + Total Mg#  Notes”
Van7-86-30 1 4 40.49 0.18 9.11 0.26 0.14 0.01 49.24 026 041 0.04 99.43 90.6
Van7-86-37 1 3 40.19 0.11 9.32 0.07 0.15 0.03 4853 0.09 0.35 0.02 98.65 90.3
Van7-96-09 1 6 40.30 0.09 9.21 0.17 0.11 0.01 5044 0.16 045 0.02 100.55 90.7 PyxVn
Van7-96-14 1 7 40.00 0.16 11.64 0.15 0.20 0.01 48.38 0.07 0.40 0.03 100.71 88.1 AdjVn
Van7-96-14 2 6 39.75 0.17  12.19 0.32 0.24 0.03 47.78 0.13 0.43 0.01 100.45 87.5 PyxVn
Van7-96-15 1 6 39.88 0.18 1098 0.15 0.22 0.02 48.08 0.13 0.37 0.03 99.61 88.6 PyxVn
Van7-96-16 2 ) 40.18 0.19 10.89 0.18 0.22 0.02 47.75 0.13 0.37 0.02 99.50 88.7 PyxVn
Van7-96-18 1 5 40.27 0.21 1049 0.19 0.14 0.03 48.84 0.17 0.38 0.03 100.19 89.2 NrMat
Van7-96-18 2 6 40.02 0.11 10.56 0.33 0.16 0.02 4851 0.21 0.39 0.02 99.68 89.1 PyxVn
Van7-96-19 1 6 40.20 0.12 10.11 0.29 0.13 0.02 49.51 0.28 0.40 0.02 100.40 89.7 NrMat
Van7-96-19 2 5 40.07 0.15 10.43 040 0.16 0.03 48.40 0.22 0.40 0.02 99.51 89.2 PyxVn
Van7-96-19 3 6 40.15 0.14 1051 0.16 0.14 0.01 4847 0.33 0.38 0.05 99.67 89.2 PyxVn
Van7-96-21 2 6 40.17 0.13 9.76 0.21 0.16 0.03 50.03 0.24 0.34 0.03 100.51 90.1 PyxVn
Van7-96-21 3 6 40.16 0.23 9.69 0.11 0.16 0.03 49.85 0.12 0.35 0.04 100.27 90.2 AdjVn
Van7-96-25 1 6 40.09 0.16 10.10 0.32 0.12 0.02 48.87 0.24 0.39 0.04 99.64 89.6
Van7-96-28 1 6 40.42 0.09 9.18 0.15 0.13 0.03 4933 0.39 0.36 0.03 99.47 90.5
Van7-96-35 1 6 40.62 0.14 8.66 0.21 0.11 0.02 5034 0.23 043 0.04 100.19 91.2
Van7-96-37 1 6 40.40 0.43 9.22 0.25 0.10 001 49.39 0.12 0.37 0.03 99.53  90.5
Van7-96-38 1 6 40.41 0.12 9.80 0.20 0.15 0.02 49.81 0.14 0.35 0.04 100.55 90.1

@ Grain number; L preceding a grain number indicates Lee (1997) data for dredge RC27-9-6 samples.

b Abbreviations for lithologies (blank indicates residual peridotite): Dep, Trans and Enr are depleted, transitional and enriched zones in
cryptically metasomatized sample; GbVn refers to a gabbroic vein, PyxVn to a pyroxenite vein, CpxVn to a clinopyroxenite vein, and
OpxVn to an orthopyroxenite vein; AdjVn is adjacent to a vein, NrMat is <5 cm from a vein and FarMat is >5 ¢cm from a vein.
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Table 5.8: Major element composition of plagioclase, in wt%.

Analysis Gm?® Pts Si0; + AlO03 =+ FeO <+ Ca0 =+ Na,O =+ Total An Notes”
6K-465-2 11 6 4534 0.32 3520 0.38 0.11 0.02 18.00 0.35 1.02 0.19 99.72 90.7 Dep
6K-465-2 21 6 44.75 0.14 3535 0.15 0.13 0.04 18.42 0.11 0.74 0.04 99.44 93.2 Dep
6K-465-2 31 7 4529 036 3502 035 0.15 0.04 18.04 0.21 1.06 0.07 99.60 90.4  Dep
6K-465-3 lal 3 5536 0.29 2934 045 0.16 0.07 11.17 0.32 5.09 0.31 101.21 54.5 NrMat
6K-465-3 31 3 5769 0.69 27.80 0.27 0.26 0.04 891 068 6.31 0.15 101.05 43.7 GbVn
6K-465-3 4al 26 55.11 0.72 2838 0.51 0.05 0.03 10.38 0.51 5.43 0.26 99.44 51.2 NrMat
6K-465-3 4bl 8 55.25 0.32 28.20 023 0.06 0.02 10.22 0.23 5.55 0.23 99.34 50.3 NrMat
RC27-9-6-2 LII 1 54.7 0.0 29.33 0.01 0.09 0.26 11.30 0.01 5.23 0.02 101.34 54.1 FarMat
RC27-9-6-2 L21 1 536 0.0 30.25 0.01 0.19 0.20 12.43 0.01 4.83 0.02 101.62 585 NrMat
RC279-6-2 L3 6 498 0.8 32.60 033 0.12 0.03 1524 0.63 3.00 0.38 103.05 73.7 CpxVn
RC27-9-6-5 LIl 6 472 04 33.62 0.28 0.10 0.03 17.02 0.18 1.84 0.19 101.03 83.6
RC27-9-6-5 11 6 47.19 0.32 3464 040 0.11 0.04 16.75 0.30 1.74 0.21 100.44 84.1
Van7-78-25 11 6 47.88 0.25 34.05 0.17 0.13 0.03 16.25 0.14 198 0.14 100.32 81.9
Van7-78-31 11 6 4893 0.14 3294 0.10 0.17 0.01 1541 0.11 255 0.11 100.06 76.8 NrMat
Van7-78-31 21 6 50.38 0.36 31.96 0.31 0.13 0.01 14.19 0.29 3.34 0.29 100.05 69.9 GbVn
Van7-78-36 111 6 47.29 027 3433 0.25 0.13 0.04 17.09 0.31 1.67 0.21 100.53 84.8 FarMat
Van7-78-36 1C 4 52.61 041 30.74 0.29 0.09 0.01 12.80 0.27 4.38 0.16 100.72 61.5 GbVn
Van7-78-36  2I 6 53.10 0.28 30.53 0.22 0.11 0.02 1249 0.24 4.56 0.35 100.89 59.9 GbVn
Van7-78-40 11 6 4794 043 33.26 0.75 0.19 0.04 16.17 0.51 2.03 0.14 100.04 81.3
Van7-78-41 11 S 46.03 0.18 35.16 0.10 0.18 0.02 18.16 0.13 1.09 0.13 100.63 90.2
Van7-96-09 11 5 49.75 0.25 '31.91 0.22 011 0.02 14.29 019 3.11 0.12 99.18 71.7 PyxVn
Van7-96-09 21 6 46.15 0.53 34.77 0.48 0.13 0.01 17.27 0.20 1.46 0.15 99.79 86.7 PyxVn
Van7-96-14 11 6 4779 046 3396 0.39 0.04 0.02 16.14 0.14 217 0.09 100.10 80.5 PyxVn
Van7-96-14  3C 3 46.92 0.13 34.09 0.07 0.05 0.01 16.77 0.02 1.87 0.07 99.70  83.2 PyxVn
Van7-96-14 3R 3 46.10 0.61 34.82 0.42 0.06 0.03 17.31 0.47 1.57 0.30 99.87 85.9 PyxVn
Van7-96-14  4C 4 47.62 0.38 33.64 0.17 0.08 0.01 16.01 0.12 2.25 0.10 99.62 79.7 PyxVn
Van7-96-14 4R 2 4752 0.08 33.60 0.02 0.08 0.02 16.04 0.13 2.13 0.03 99.40 80.5 PyxVn
Van7-96-14 7 4 4585 025 34.82 0.33 0.12 0.01 17.49 0.28 1.40 0.14 99.72 87.3 PyxVn
Van7-96-15 21 6 4794 036 3366 0.19 0.11 0.04 1646 0.29 213 0.12 100.32 81.0 PyxVn
Van7-96-15 31 6 46.74 0.31 34.62 0.31 0.13 0.03 17.52 0.19 1.50. '0.12 100.51 86.5 PyxVn
Van7-96-15 41 4 4695 0.36 3547 0.08 0.13 0.04 17.44 0.20 1.54 0.15 101.53 86.2 PyxVn
Van7-96-16 11 6 47.07 0.17 3441 0.19 0.12 0.03 17.14 0.03 1.66 0.12 100.41 85.1 PyxVn
Van7-96-16 31 6 4572 0.28 3535 0.13 0.16 0.04 18.28 0.17 1.00 0.09 100.53 91.0 PyxVn
Van7-96-18 11 6 49.54 047 3295 0.24 0.16 0.03 14.88 0.26 294 0.16 10047 73.7 PyxVn
Van7-96-19 11 5 51.23 029 30.37 035 10.12 0.05 1287 0.36 4.24 0.15 99.20 62.6 NrMat
Van7-96-19 3l 5 51.8 037 30.27 0.26 011 '0.02 1253 024 457 0.14 99.34 60.2 PyxVn
Van7-96-21 11 5 5016 206 3221 1.19 009 '0.03 1417 141 3.23 0.86 99.86 70.8 PyxVn
Van7-96-21  2I 5 51.94 1.72 31.00 0.70 0.09 0.02 1290 1.07 4.00 0.70 99.94 64.1 PyxVn
Van7-96-21 3l 5 5250 215 31.00 1.09 0.13 005 1264 147 4.08 0.71 100.37 63.1 PyxVn

@ Grain number and core (C), rim (R) or interstitial (I). Interstitial grains are < I mm diameter. L preceding a grain number indicates Lee

(1997) data for dredge RC27-9-6 samples.

b Abbreviations for lithologies (blank indicates residual peridotite): Dep, Trans and Enr are depleted, transitional and enriched zones in
cryptically metasomatized samples; GbVn refers to a gabbroic vein, PyxVn to a pyroxenite vein and CpxVn to a clinopyroxenite vein;
NrMat is <5 ¢m from a vein and FarMat is >5 cm from a vein.
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Table 5.14: Percent deviation among repeat measurements
of the KH1 standard

Date (ymd) n“” La Ce Nd Sm Eu Dy Er Yb
2001/08/21 2 6 8 12 3 B [l 3 14
2001/08/30 2 2 1 3 2 2 1 3 0
2002/01/15 2 6 2 2 7 4 0 18 4
2002/01/22 2 3 3 2 9 4 5 4 3
2002/01/24 2 2 3 6 6 1 3 |2 6
2004/01/27 2 4 3 1 S 17 4 13 4
2003/04/9-11 4 30 11 10 12 12 14 12 13
2003/11/13 2 1 7 4 18 5 14 3 6
2004/02/20 2 3 2 4 5 8 6 13 5
2004/04/13 2 6 10 3 1 2 5 1 8
2004/07/21 2 2 7 1 2 2 12 2 2
2004/07/22 4 7 4 6 10 2 7 4 6
2004/07/23 2 4 1 3 10 9 11 13 6
2004/08/14 3 3 1 2 8 3 9 11 16
2005/01/29 2 3 3 10 5 3 4 0 2
2005/02/07 3 2 4 2 5 3 5 15 3
2005/02/08 2 14 4 0 1 2 2 |9 9
2005/03/30 3 7 4 5 8 4 5 12 14
2005/05/31 4 11 10 8 6 17 10 9 24
2005/06/01 2 35 9 17 14 3 15 12 1
2005/06/02 4 7 7 3 3 5 6 9 9
2005/06/28 2 4 2 7 6 4 1 5 7
2005/06/29 3 26 15 3 20 15 22 22 14
2005/06/30 3 8 2 4 5 11 4 6 6
2006/01/10 6 3 6 9 10 9 14 20 16
2006/01/11 8 10 8 6 9 10 15 16 13
2006/01/12 8 T 7 & 10 11 18 11 18
2006/01/13 7 11 9 6 10 5 10 13 7
2006/02/17 2 30 1 10 3 16 13 |2 0
2006/06/21 8 7 10 12 8 12 6 13 17
2006/09/25 9 9 7 9 10 10 14 16 14
2006/09/26 6 12 9 10 15 10 12 14 10
2006/09/27 4 14 4 11 4 10 9 26 19
2006/09/29 10 12 7 10 25 20 T1 23 18
Average 8 6 6 8 7 9 10 9

9 Number of analysis.

279



Table 5.15: Percent deviation among daily re-
peat analyses of the KL2G standard

o

Date (ymd) VAs

2001/08/22
2002/01/28
2002/01/29
2003/12/13
2004/02/12
2004/02/17
2004/04/14
2004/05/07
2004/09/17
2004/11/26
2005/01/29
2005/02/09
2005/03/28
2005/03/29
2005/07/01
2005/07/29
2006/01/09
2006/02/16
2006/02/17
2006/09/28
Average
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9 Number of analysis.
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Table 5.D1: Major and trace element compositions of unusual phases in Sample 6K-465-3.

Grain? Iim1 IIm1 Apat2 Kaerl PlagKk1A  Plagk1B RutK1 ApatK1 Cpx7 Plag7
Type” Core Rim Ints Ints Ints Ints Ints Ints Riml ExLm
Notes® GbVn  GbVn GbVn KtVn KtVn KtVn KtVn KtVn NrMat NrMat
Major element oxides (Wt %)

Pts 2 3 2 6 8 8 6 5

Si02 0.00 0.00 0.18 42.97 56.65 56.33 0.00 0.11

TiO2 53.79  53.90 5.27 98.09

AlI203 0.00 0.00 0.00 11.78 26.97 27.26 0.01 0.01

Cr203 0.10 0.08 0.71 0.74

Fe203 0.00 0.00 0.00

FeO 40.53 41.34 0.13 4.20 0.07 0.09 0.09 0.08

MnO 0.68 1.34 0.06 0.05 0.01 0.02

MgO 3.82 2.07 0.04 16.62 0.00 0.35 0.00 0.11

NiO 0.05 0.02 0.03

Zn0

CaO 0.00 0.00 56.01 o irrd 8.87 9.16 0.06 55.99

Na20 0.01 2.97 6.34 6.08 0.00

K20 0.00 0.51 0.16 0.06 0.00

P205 42.14 42.14

Cl 0.44 0.71

F 1.94 1.41

Total 98.97 98.76 100.95 96.84 99.07 99.33 99.05 100.57

Plag An% 43.21 45.29

Trace elements (ppm)

La 57051 6.91 2.64 2.29 246 93224 4.33 3.85
Ce 225756 40.99 5.20 4.76 633 299119 25.52 8.16
Nd 196323 49.06 1.15 1.58 78 199727 28.28 2.64
Sm 67559 19.16 0.14 0.12 56328 9.57 072
Eu 17484 4.51 1.15 0.95 12 10851 2.62 1.63
Dy 60326 26.35 0.08 0.07 15 46743 1238 0.36
Er 26201 13.80 0.09 0.10 10 19338 710 0.49
Yb 23713 10.61 0.03 0.03 58 16184 7.50 0.28
Na20 3.35 4.83 4.45 0.47 4.37
Ti 36269 256 229 2067 428

Cr 204 5730 125 1.29 575 3501 5100

Sr 83355 31.02 89.29 76.86 3210 86244 4.60 68.32
¥ 485488 156 0.27 0.60 1049 362111 70.91 1.64
Zr 11675 270 0.14 0.75 9155 94.31 1.79

@ Grain number and mineral phase: ilmenite (Ilm), apatite (Apat), kaersutite (Kaer), plagioclase (Plag), clinopyroxene (Cpx) and
rutile (Rut). Vertical lines separate different mineral groupings.

b ExLm indicates exsolution lamellae in Cpx.

“ GbVn refers to a gabbroic vein, KtVn to a kaersutite vein that also contains Plag, Rut and Apat, and NrMat to the peridotite matrix

<5 cm from the gabbroic vein.
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Table 5.D1:

6K-465-3 Cont.

Grain Cpx12 Plagl2  Olivl2  Spinl2  Cpxl4  Plagl4C  CpxI4  Plagl4R  CpxIS  Plagls
Type Core2 ExLm ExLm ExLm Core ExLm Rim ExLm Core ExLm
Notes NrMat NrMat  NrMat NrMat  NrMat NrMat NrMat NrMat NrMat  NrMat
Major element oxides (Wt %)

Pts 19 6 T 1 17 1 8 1 18 2
Si02 53.100 55.27 40.78 0.04 51.89 55.21 53.44 55.33 53.16 53.26
TiO2 0.42 0.63 0.42 0.37 0.33

Al203 2.86  27.71 0.00 21.26 3.26 27.20 211 27.91 2.78 29.29
Cr203 1.04 42.17 2.18 0.98 1.01

Fe203 1.97

FeO 2.72 0.16 1142  26.52 3.10 0.13 2.63 0.10 2.64 0.17
MnO 0.08 0.39 0.08 0.07 0.07

MgO 16.56 0.04 46.77 5.36 16.35 0.86 16.54 0.02 16.52 0.01
NiO 012

ZnO 0.43

CaO 22.24 10.10 0.06 0.33 21.59 9.65 22.78 9.94 22.72 11.82
Na20 0.63 5.86 0.59 5.68 0.49 5.92 0.49 4.80
K20

P205

cl

F

Total 99.66  99.16 99.04  99.21 99.47 98.73 99.41 99.22 99.73 99.35
Plag An% 48.80 48.42 48.13 57.67
Trace elements (ppm)

La 3.92 4.96

Ce 18.87 9.76

Nd 15.68 2.71

Sm 5.81 0.78

Eu 0.92 1.03

Dy 6.16 0.56

Er 4.37 0.46

Yb 3.84 0.33

Na20 0.53 3.77 0.12

Ti 2194 343 54

Cr 5235 413 220

Sr 151 34.38 1.83

Y 58.05 5.29 0.16

Zy 103 8.82 0.32
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