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Executive Summary 
The nature of modern warfare requires that commanders’ military strategy development and 

decision-making be driven by a clear understanding of the complex socio-political dynamics of 
the operating environment as well as the more typical “metal on metal” analyses of more 
traditional warfare.  To support such understanding, the full range of Political, Military, 
Economic, Social, Information, and Infrastructure (PMESII) dimensions must be accounted for 
throughout the command and control (C2) decision-making process.  While progress has been 
made towards the development of a range of modeling frameworks to address the complex 
dynamics across these dimensions, e.g., system dynamics models, fuzzy networks, Bayesian 
models, semantic networks, etc., significant work remains to support an integrated view of the 
system of systems dynamics that incorporates the complex interdependencies across the PMESII 
dimensions. 

To support this integrated system of systems analysis that will enable rapid assessment, 
effective understanding, and prediction of the dynamic operational context; we have developed a 
Toolkit for Building Hybrid, Multi-resolution PMESII Models enabling the construction, 
integration, debugging, validation and verification, and maintenance of heterogeneous PMESII 
models.  The IDE is based upon our existing Graphical Agent Development Environment 
(GRADE), and provides intuitive graphical tools supporting the development of new models and 
adaptation of existing PMESII models.  It is built on a component-based software architecture 
that easily enables the injection of new modeling paradigms, e.g., semantic networks, system 
dynamics models, etc., and existing legacy PMESII models.  The PMESII modeling IDE also 
provides GUI-based model integration tools that enable the data-level integration of 
heterogeneous modeling paradigms.  

Our approach to supporting the objectives of the Commander’s Predictive Environment 
(CPE) provides a unique solution, that: 

• Enables the integration of both newly developed modeling paradigms and existing 
legacy models within aggregate representations of the full PMESII environment 
through its component-based software architecture, 

• Supports the development and adaptation of PMESII models by a wide range of 
multi-disciplinary model developers through intuitive graphical model specification 
tools that abstract the underlying complexity of the modeling formalisms; and 

• Eases the barrier to entry of into the PMESII modeling environment, in that new 
technologies can be developed to multiple levels of completeness and functionality, 
and “play” in the PMESII modeling framework at each level of development. 
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1. Introduction 
Military planning and decision-making for dealing with asymmetric threats embedded in 

urban environments demands a clear understanding of the complex socio-political context.  In 
terms of planning and executing effects-based operations, this translates to the analysis of the 
potential effects that a given set of Diplomatic, Information, Military, and Economic (DIME) 
actions will have across the full range of the Political, Military, Economic, Social, Information, 
and Infrastructure (PMESII) context.  Within the context of DARPA’s Integrated Battle 
Command program (Allen, 2004a), these analyses are viewed in two ways, as shown in Figure 
1-1  below.  From left to right, the figure shows a causal analysis where, given a set of possible 
DIME actions to be taken, a system of complex and integrated behavior models are used to 
predict the potential effects those actions may have across the PMESII dimensions.  From right 
to left, the figure shows a diagnostic analysis where, given a set of desired PMESII effects in the 
operational domain, the same system of integrated behavior models are used to identify the 
candidate sets of DIME actions that might be applied to achieve those desired effects. By 
conducting both types of analyses—ones that move well beyond the limits of conventional 
military “metal-on-metal” modeling—commanders will be able to develop significantly deeper 
insight into the dynamics of the “big picture” operational context. 

 
Figure 1-1: Predicting and Analyzing PMESII Effects of DIME Actions (adapted from 

(Allen, 2004b)) 
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The key to successfully executing such encompassing analyses lies in the development of the 
embedded behavior models representing the full range of PMESII variables, and how they can be 
individually and collectively affected by specific DIME actions.  For example, Robbins’ 
Stabilization and Reconstruction Operations Model (SROM) (Robbins, Deckro, & Wiley, 2005) 
analyzes the organizational hierarchy, dependencies, interdependencies, exogenous drivers, 
strengths, and weaknesses of a country’s PMESII systems using a complex set of interdependent 
systems dynamics representations.  SROM models a country system in a holistic manner as a 
National Model, which is then defined in terms of its n regional sub-models that interact with 
each other and the National Model. Each regional sub-module contains six functional sub-
models:  demographics sub-model, insurgent and coalition military sub-model, critical 
infrastructure, law enforcement, indigenous security institutions, and public opinion.  The utility 
of SROM is demonstrated using Operation Iraqi Freedom as a case study.  

While approaches such as Robbins’ SROM have demonstrated some success in modeling 
subcomponents of the PMESII environment, it is generally accepted that no one approach or 
modeling formalism can or should be applied to capture all of the complex dynamics of modern 
asymmetric warfare.  Rather, what is required is an integrated modeling capability that enables:  
1) the development of sub-models to represent specific PMESII features using the most 
appropriate to modeling those features; 2) easy integration of those sub-models into a cohesive 
and sophisticated representation of the overall PMESII system, and 3) effective accounting of the 
complex interdependencies between modeled PMESII variables within the integrated system.  

To support an integrated system-of-systems analysis of the battlespace that will enable rapid 
assessment and effective understanding and prediction of the dynamic operational context, we 
have developed an integrated development environment (IDE) enabling the construction, 
debugging, validation and verification, and integration of heterogeneous PMESII models. The 
IDE provides: 

• An intuitive graphical model development environment supporting the specification 
of heterogeneous sub-models using a variety of modeling formalisms, e.g., Bayesian 
reasoning, fuzzy logic, system dynamics models, rule-based expert systems, etc., 

• A suite of model integration tools enabling user-driven sharing of data and 
information among constituent PMESII models, 

• A suite of model verification and validation tools enabling user-driven verification of 
individual and integrated PMESII model behavior as well as the large-scale data 
collection required to support validation of model behavior against empirical data, 
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• A model analysis infrastructure that enables user-driven causal and diagnostic 
reasoning within the integrated modeling framework using sampling techniques and 
sensitivity analysis, respectively, 

• A suite of multi-resolution modeling tools and supporting infrastructure to support 
the user-driven specification of PMESII sub-models at multiple levels of modeling 
fidelity, and 

• A model management infrastructure that enables the capture, distribution, and 
maintenance of large libraries of PMESII sub-models. 

The IDE is based upon our existing Graphical Agent Development Environment (GRADE), 
which provides intuitive model construction, verification, and visualization tools supporting the 
development of integrated heterogeneous reasoning models.  GRADE incorporates fuzzy 
inferencing, Bayesian reasoning, and expert systems as its core feature set, but it is built on a 
component-based software architecture that easily enables the injection of new modeling 
paradigms, e.g., semantic networks, system dynamics models, etc., which was our primary focus 
under this effort.  GRADE also provides GUI-based model integration tools that enable the data-
level integration of heterogeneous modeling components.  Under a concurrent effort by Charles 
River Analytics Inc., “Framework for Building and Reasoning with Adaptive and Interoperable 
PMESII Models” (Air Force contract FA8750-06-C-0076), we have also explored strategies to 
augment GRADE’s model integration capabilities to support more abstract and sophisticated 
techniques beyond GRADE’s current data-level integration tools. 

1.1 Technical Objectives 

Our approach to the design of the proposed PMESII modeling IDE focused on the following 
technical objectives: 

• Identify the technical requirements for a toolkit supporting the creation, validation, 
and analysis of PMESII models, 

• Select and develop PMESII modeling technologies and incorporate them into the 
toolkit, 

• Develop model integration tools to allow PMESII model components to interoperate, 

• Develop PMESII model verification and validation tools to analyze and validate 
model component behavior, 

• Develop PMESII model analysis infrastructure to support causal and diagnostic 
reasoning, 

• Develop multi-resolution modeling tools, and 
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• Develop PMESII model management infrastructure to enable sharing and re-use of 
models among a community of model developers. 

In the next section, we summarize how we have addressed these objectives. 

1.2 Summary of Technical Approach and Results 

During the course of our CPE Toolkit development effort, we accomplished the following 
results: 

First, we performed a review of the state of the art in PMESII modeling capabilities to 
develop further insight into the full range of technical requirements to support the predictive 
modeling of PMESII effects as a function of possible DIME actions.  The results of this review 
were used to identify the current and future technical requirements for the proposed PMESII 
modeling IDE.  Our review and requirements analysis was informed by the ongoing work of 
AFRL/RI NO’EM research group, who shared several of their SROM models with our team. 

Second, we reviewed a variety of PMESII modeling tools and chose Ptolemy as the 
focus of our integration effort.  Based on the understanding gained through the requirements 
specification process, we selected, in consultation with AFRL, the Ptolemy systems dynamics 
modeling framework to be the primary focus of our modeling tool integration effort.  As Ptolemy 
is the platform currently being used by the NO’EM group for PMESII model development, this 
choice had a number of distinct advantages:  immediate relevance to the CPE domain, 
availability of existing models for use as examples, Java implementation with a non-restrictive 
license, storage of models using the Modeling Markup Language (MoML), a well-defined XML 
file format with a published Document Type Definition (DTD), and an existing graphical editor 
(Vergil) for creating and maintaining Ptolemy models. 

Third, we researched advanced strategies for model integration in partnership with our 
companion CPE program.  While GRADE provides a base level of support for interoperable 
PMESII modeling by virtue of the fact that it provides a common environment for model 
development and a common protocol (XML) in which they can communicate, there are a number 
of challenges associated with resolving interoperability conflicts between PMESII models 
beyond the data-level.  During this effort we worked with the team of our sister CPE effort, 
“Framework for Building and Reasoning with Adaptive and Interoperable PMESII Models,” to 
conduct research into advanced strategies for resolving model interoperability conflicts and 
explore practical approaches for incorporating these strategies into the PMESII modeling toolkit. 
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Fourth, we developed an enhanced suite of PMESII model verification and validation 
tools. GRADE provides a suite of model verification and validation capabilities that can be 
applied by the model developer to analyze model behavior, both at the individual component 
level and at the integrated model level, to ensure that models behave as intended by the 
developer.  We enhanced these features by incorporating the open-source testing framework 
XmlUnit for model and sub-model verification, and by developing a Graphing Component to 
allow the model developer to visualize model output for both verification and validation.  

Fifth, we developed an enhanced PMESII model analysis infrastructure.  The end goal 
of the CPE program is to provide a modeling environment that will enable both the causal and 
diagnostic analysis of the complex operational environment of modern warfare, so that 
commanders can effectively predict the potential effects of candidate DIME actions or generate 
potential DIME actions that are most likely to generate some set of desired PMESII effects.  In 
support of this objective, we created an Analyst’s Interface allowing the model analyst to 
perform model validation and analysis at a higher levels of abstraction; we developed a Graphing 
Component, as indicated above, to allow the model developer to visualize model-generated data 
within the PMESII modeling IDE; and we developed a framework for advanced analytical 
techniques under HASMAT (Air Force contract FA8650-06-C-6731), a related program for 
simulation-based model analysis. 

Sixth, we developed strategies for supporting multi-resolution modeling.  It is rarely the 
case that all potential behaviors in a given scenario must be represented at high fidelity levels. 
Rather, only those behaviors that are likely to have the most impact on a PMESII outcome of 
interest need to be modeled, and likely only a subset of them need to be modeled at high levels of 
detail or fidelity, at different times over the course of a scenario.  What this calls for is a 
mechanism by which models of varying fidelity can be “switched” in and out of the larger 
PMESII model environment.  During this effort we explored the use of GRADE models as a 
means of controlling this switching process for the PMESII domain, as informed by our previous 
work on multi-resolution modeling in other domains. 

Finally, we developed a model management infrastructure for the PMESII modeling 
toolkit.  The development of practical PMESII models that will accurately reflect the complex 
operational environments of urban and national warfare will require model inputs and expertise 
from a wide range of disciplines, including economics, political science, sociology, psychology, 
and cultural anthropology.  To support the development of such multi-disciplinary models our 
toolkit must support development and adaptation by multiple users, including maintenance of 
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individual models and model libraries.  To meet the needs of both individual model developers 
that require model development capabilities, as well as groups of developers that require change 
tracking and collaboration support, we integrated Subversion, an existing open-source public-
license version control technology, within GRADE, which enables the development of shared 
libraries of models and careful maintenance of model development histories.   

 

1.3 Report Outline 

In Section 2, we present an overview of the GRADE graphical model development IDE.  In 
Section 3, we describe the modeling technologies we reviewed as candidates for integration, and 
discuss our effort to integrate the Ptolemy modeling framework into GRADE as a component.  In 
section 4, we discuss our research into providing enhanced support for model interoperability.  In 
Section 5 we discuss our enhancements to GRADE for model verification and validation.  In 
Section 6 we discuss our development effort to support model analysis, including the Analyst’s 
Interface, the Graphing Component for GRADE, and analytical capabilities developed under 
HASMAT.  In Section 7 we discuss our approach to supporting multi-resolution modeling.  
Finally, in Section 8 we describe the model management infrastructure we integrated into 
GRADE using the open-source version control package Subversion. 

In Table 1-1 below, we provide a summary of the pre-existing capabilities of GRADE as well 
as the enhancements we have made to it under the program.  The table is organized based on the 
modeling requirements laid out in the CPE solicitation that are deemed to be enabled specifically 
by the PMESII IDE, and identifies:  1) capabilities initially supported by GRADE, 2) capabilities 
that we considered to be incremental enhancements to the toolkit, and 3) capabilities that we 
considered as requiring advanced design and development.  We also identify the report section 
that describes our approach to supporting the enhanced functionality. 
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Table 1-1: Overview of Enhanced GRADE Toolset for Heterogeneous PMESII Models 
CPE 

Requirement 
Pre-

Existing 
GRADE 

Capability 

Increment 
GRADE 

Capability 

Advanced 
GRADE 

Capability 

GRADE Enhancement Effort Report 
Section 

Heterogeneou
s modeling 
framework 

 
 

  
 
 
 
 

o GRADE’s component-based 
architecture enables straightforward 
integration of new modeling 
frameworks 

o Program effort focused on adding to 
GRADE’s suite of modeling 
components by incorporating the 
Ptolemy systems dynamics 
modeling tool 

 
2 
 
 
3 

Multi-
resolution 
modeling 

   
 

o Program enables multi-resolution 
modeling through GRADE 
infrastructure to enable user 
specification of multiple models 
representing multiple levels of 
abstraction 

 
7 

Model 
validation and 
verification 

 
 

  
 
 
 
 
 
 

o GRADE provides in-depth model 
verification capabilities allowing user 
to generate model inputs, and 
analyze model responses in step-
through manner 

o Program supports large-scale data 
capture of model responses to 
enable comparison with empirical 
data for model validation 

 
2.2, 2.3 

 
 
 
5 

Dynamic 
update of 
schema 
data/trends 

 
 

  o GRADE supports dynamic update of 
data input/output schemas as a 
function of user-driven model 
specification 

 
2 

Model editors/ 
browsers/ 
inspectors 

 
 

 
 

 
 
 
 
 
 

o GRADE provides visual editors 
supporting model editing, browsing, 
and inspection (i.e., visualization of 
model state throughout analysis) 

o Program augments visual 
components with corresponding 
editors/browsers/inspectors for 
Ptolemy component 

 
2.1, 2.2 

 
 

3.2.2, 
3.2.3 

Debugging  
 

  o GRADE enables debugging of 
integrated models at both the 
system level and at the component 
level 

o User can “post” data to models in 
stand-alone fashion and monitor 
model’s responses 

 
2.2 

Version 
control/model 
reuse 

  
 

 o Program incorporates infrastructure 
enhancements to GRADE to enable 
the maintenance and dissemination 
of models through a shared library 

 
8 

Common 
model APIs 
and interfaces 

 
 

  o GRADE’s component-based 
software infrastructure enforces the 
use of common model APIs within 
the framework 

 
2.4 
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CPE 
Requirement 

Pre-
Existing 
GRADE 

Capability 

Increment 
GRADE 

Capability 

Advanced 
GRADE 

Capability 

GRADE Enhancement Effort Report 
Section 

Interoperable 
data and 
model 
schema 
(ontologies) 

 
 

  
 
 
 
 
 

o GRADE supports interoperability 
between component models at the 
data level through data mapping 
interfaces (see below) 

o Advanced model integration 
capabilities would be supported 
through a parallel effort described in 
the final report for Charles River’s 
(Framework for Building and 
Reasoning with Adaptive and 
Interoperable PMESII Models) 

 
2 
 
 
 
4 

Model 
producer and 
consumer 
GUIs 

 
 

  o GRADE’s data mapping interface 
provides base-level support for 
translating model component 
outputs (producers) to model input 
(consumers) 

 
2 

Mapping of 
PMESII 
attributes to 
DIME actions 
and predictive 
capabilities 

   
 

o Program augments GRADE’s 
component suite to include a 
component for graphing model 
output for analysis 

o Ongoing work incorporates 
advanced software infrastructure 
allowing for sophisticated model 
execution control for large-scale 
data collection and analysis 
supporting predictive capabilities 

 
6 
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2. Overview of GRADE 
Our framework for integration of heterogeneous PMESII models is based upon our Graphical 

Agent Development Environment (GRADE), which provides intuitive model construction, 
verification, and visualization tools supporting the development of integrated heterogeneous 
reasoning models.  Originally targeted as a development environment for human behavior 
models based on Charles River Analytics’ SAMPLE cognitive architecture, GRADE has grown 
into a flexible information processing architecture for the rapid construction and integration of a 
broad array of reasoning models.  While it incorporates fuzzy inferencing, Bayesian reasoning, 
and expert systems as its elementary reasoning tools, GRADE’s component API allows new 
tools and models to be rapidly adapted for and integrated into its overarching modeling 
framework.  In this section we provide an overview of GRADE’s capabilities as they apply to the 
challenge of developing and integrating PMESII models, focusing specifically on GRADE’s 
graphical interfaces for model construction, verification, and visualization, as well as its 
component-based architecture. 

2.1 Graphical IDE for Model Construction 

A model within GRADE is represented as a network of components that exchange 
information through messages.  The individual reasoning nodes in the network can be 
implementations of any algorithm or processing model, wrapped inside a component that 
implements the GRADE component API.  GRADE’s flexible component-based architecture 
allows diverse technologies to be integrated into a common framework, enables the reuse of 
existing software through encapsulation of existing software as GRADE components, and 
facilitates the rapid creation of new components that can operate within the GRADE framework. 

GRADE provides an intuitive graphical interface allowing the user to both define model 
topology and drill down into individual components to configure the underlying processing 
models.  The IDE includes the tools used to select and link components together as well as the 
interfaces used to configure component behavior.  The main window frame of Figure 2-1 shows 
the base interface for the agent model.  The user can add components and define data flow 
between components of the model within this interface.   
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Figure 2-1: Building a Reasoning Model in GRADE 

On the left side of the interface is a palette from which the user can select new components to 
add to the network.  The user adds new modules to the integrated model by selecting a particular 
component type in the palette and dragging the node into the drawing area.  Once a component 
has been added to a model, it can be configured by double-clicking its icon to access the 
component’s Editor GUI.  GRADE displays the menu bar and toolbar that are appropriate for 
that type of component. 

The user specifies data interfaces between nodes by drawing links between the sending node 
and the receiving node in the agent network.  In GRADE, components communicate by 
exchanging XML messages, with each component specifying its own input and output message 
formats using XML schemas.  When two components are linked together, messages passed 
between them are translated from the output schema of one to the input schema of the other 
using Extensible Style Language Transformations (XSLT).  Each component is therefore 
functionally decoupled from any other component, which allows current GRADE components, 
future components, and third-party components to communicate with one another without 
introducing complex dependencies between components.  
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To facilitate the rapid linking of components, GRADE incorporates a graphical XSLT 
Generator.  This tool allows model developers to automatically define transformations between 
message formats through the use of a simple drag-and-drop interface.  Figure 2-2 shows the 
XSLT Generator Dialog.  Each communications link acts to connect a source component, which 
produces output messages, with an observer component that receives those messages.  The left 
side of this dialog shows the format of messages sent out by the source component.  In this case, 
the source component is an instance of our Belief Network Component.  The right side of the 
dialog shows the format of the messages that may be received by the observer component.  In 
this case, the observer is an instance of our Rule Base Component.  The model developer selects 
elements and attributes of the source message and drops them onto the observer message.  This 
mechanism allows the model developer to define mappings between source and observer 
message formats by simply dragging and dropping between the left and right panels of the 
dialog.  Based on the user’s graphical mapping between components, GRADE automatically 
generates the underlying XSLT statements that will execute the data translation at run-time.  
Sample generated XSLT code is shown in the figure. 

 
Figure 2-2: XSLT Generator Dialog 

GRADE’s capabilities for drag-and-drop model construction, easily accessible component 
configuration interfaces, and automated XSLT generation greatly reduce the time and cost 
associated with model development and integration. 

2.2 Visual Model Verification in GRADE 

A major cost typically associated with the development of complex models is the process of 
verifying that the model behaves as it is intended to, and diagnosing and troubleshooting 
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behavior problems when they are discovered.  We support model verification in GRADE by 
defining a “debug” interface for components that allows network-level (between components) as 
well as component-level (within components) debugging.  This allows GRADE users to inspect 
the state of the model, including the internal state of any component while the model is running. 

Before initiating debugging, the user may set breakpoints on any component in the agent.  
Once the model is executed in debug mode, the user can send input data into any component to 
initiate model processing.  Once a breakpoint is reached, the model pauses execution and the 
debugger displays a flashing indicator for the component that triggered the breakpoint.  Figure 
2-3 shows an example model in debug mode.  The center panel shows the current state of one of 
the belief network components in the model.   

 
Figure 2-3: Model Verification in the Debug Workspace 

Breakpoints can be added and removed during debugging to allow the user to investigate the 
information processing, message passing and overall behavior of the model.  We have found 
these debugging capabilities to be invaluable during model verification. 

2.3 Post-execution Model Visualization in GRADE 

The visualization environment within GRADE is intended to provide after-action review 
capabilities.  This environment will allow the model developer to replay a model’s behavior from 
a log file generated during previous model execution runs.  This capability can be leveraged for 
PMESII modeling as a way of supporting model validation and causal analysis, as discussed in 
Section 5. 

GRADE supports data collection for subsequent visualization through a distributed logging 
mechanism, depicted in Figure 2-4.  Each component is initialized with a Logger, which points 



 13 

to a centralized logging object.  While configuring the components at design time, the model 
developer selects elements within the component models for which state data should be logged.  
As components process data at runtime, they log the data selected by the user to the Logger.  
Their data is then sent to the central logging object, time-stamped, and stored.  Each component 
may record user-specified events to a central log file.  Event types may differ across the 
components: for instance, a belief network component is capable of recording evidence posted to 
a network, while the rules component may log when specific facts are asserted in the knowledge 
base. GRADE collects all the component log entries and produces a single log file that captures 
all of the user-specified information.   

Once model state data has been logged, the user can “play back” the contents of the log and 
observe the change in component state at each step.  Figure 2-5 shows the GRADE visualization 
environment being used to play back a log file generated during a simulation scenario by a 
simple example model.  The playback control toolbar is shown at the top.  A slider is provided to 
let the user easily access any point in the recorded log.  As the playback controls change the time 
in the playback, either while the view is “playing” or because the user has selected a new time, 
GRADE reads the last log entry for each model component and link recorded before that time 
and passes the associated data to the components and links.  The data is subsequently used to 
populate visualization interfaces for these objects.  

 

Figure 2-4: Logging Model State in GRADE  

Each of our standard components now has a visualization tool developed specifically to 
enable after-action review.  In the figure, the fuzzy logic visualization frame is shown at the 
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bottom as an example interface.  It displays the current input variable values (on the left), fuzzy 
rule firings (on the bottom), and output variable values (on the right).  This allows the model 
developer to fully inspect the state of the fuzzy logic component at any point in the log.  

 

Figure 2-5: Model Visualization in the View Workspace 

2.4 Component-Based Architecture 

GRADE currently uses three core component technologies for modeling:  fuzzy inferencing, 
belief networks, and rule-based expert systems.  While the use of these three core components in 
combination has proven to be a very effective approach to meeting many modeling challenges, 
there remain cases where development of additional components is required.  In such situations, 
new components can be rapidly adapted or prototyped using the GRADE component API. 

To write a new component or adapt an existing product for integration within the GRADE 
framework, a developer encapsulates the targeted modeling algorithms and tools within a 
component implementing a set of four Java interfaces.  The interfaces not only specify the 
component’s runtime behavior, but also provide GRADE with the Editor, Debugger, and 
Visualizer user interfaces specific to that component.  The four interfaces are as follows: 

1. The AgentComponent interface specifies runtime behavior.  AgentComponent 
specifies the methods used to initialize the component and to pass data to and from 
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the component.  Upon receiving data, the component processes it and passes any 
results to other linked components. 

2. The AgentComponentEditor provides the Java Swing GUI that allows the component 
to be configured by the model developer.  The methods specified by the interface 
allow the component to provide a JPanel, a JToolbar, and a JMenu to GRADE that 
the modeler can use to configure the component. 

3. The AgentComponentDebugger is used during model verification sessions.  It 
provides a GUI that lets users examine and change component state as well as set 
breakpoints to control model execution for analysis of behavior. 

4. The AgentComponentVisualizer is used to facilitate the after-action review 
capabilities provided by GRADE.  Much like the AgentComponentDebugger, the 
visualizer provides a GUI that allows users to view the component’s state.  However, 
instead of populating the display with data from the component at runtime, GRADE 
passes it messages logged in a previous execution of the model and uses these to 
configure the visualization. 

Because these interfaces can be implemented independent of one another, the component can 
be developed iteratively, adding progressively more functionality at each development step.  
Once the runtime and graphical editor interfaces are implemented, the developer can use the 
component in the GRADE framework for model construction, deferring development of the 
debugging and visualization interfaces until they are required.  
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3. Integration of Advanced PMESII Modeling Tools 
Under this effort, we extended GRADE’s component set to support the construction of 

PMESII models. PMESII models can be built using a wide variety of modeling tools, including 
GRADE’s core tools of fuzzy logic, Bayesian belief networks, and expert systems, as well as 
other modeling paradigms, including causal graphs, concept graphs, concept maps, semantic 
networks, social networks, system dynamics models, neural networks, and situation theory.  
Because of the component-based nature of the GRADE toolkit, it is straightforward to 
incorporate new modeling technologies and tools into the GRADE infrastructure (as described in 
Section 2.4).  By implementing a simple interface for each new technology, it becomes a new, 
integrated GRADE component.  GRADE incorporates the tool’s existing configuration interface 
and supports communication between model components built with the new technology and 
model components built with other technologies. 

Under this effort we explored the applicability of a variety of candidate modeling techniques 
and chose one, the Ptolemy systems dynamics modeling framework, for incorporation into 
GRADE’s component suite for PMESII model development.  The motivation for this effort was 
both to demonstrate the ease of integration of third-party tools, and to support the modeling 
technology with the highest potential payoff for predictive PMESII modeling.  

In Section 3.1, we present an overview of the range of other modeling technologies we 
considered for integration.  In Section 3.2, we discuss our Ptolemy integration effort in detail.  

3.1 Review of Modeling Technologies 

The modeling techniques we considered for incorporation within GRADE are listed in Table 
3-1.  The table compares these modeling paradigms along with different features based on our 
experience using the listed technologies.  We define these features below, and then briefly 
introduce each of the paradigms.  
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Table 3-1: PMESII Modeling Techniques and Their Features 
              Features: 

 
Modeling 

Techniques: 
Expressivity Executable Reasoning Adaptability Tools Exemplary 

Products 

Concept Map High No 
Forward 

Backward 
Medium 

Free 

(Research) 

 

 

COTS 

CmapTools 

(cmap.ihmc.us) 

 

Decision 

Explorer 

(www.banxia.com/d

emain.html) 

Concept Graph Medium 

No 

(Graphviz) 

 

Yes 

(OCCAM) 

Forward 

Backward 
Low 

Free 

(Limited) 

 

 

 

In-House 

Graphviz 

(graphviz.org) 

 

OCCAM 

(http://www.cra.co

m/contract-r-

d/cognitive-

systems-

occam.asp) 

Social Networks Medium Yes 
Forward 

Backward 
Medium In-House 

OCCAM 

(cra.com/contract-r-

d/cognitive-

systems-

occam.asp) 

Causal Graph Medium Yes 
Forward 

Backward 
Medium 

In-House 

 

 

Free 

(Limited) 

BNet 

(cra.com/bnet) 

 

C4.5 

(http://www.ruleque

st.com/Personal/) 

System 
Dynamics Model Medium Yes 

Forward 

Backward 
Low 

Free 

(Research) 

Ptolemy 

(http://ptolemy.berk

eley.edu) 

http://www.banxia.com/demain.html
http://www.banxia.com/demain.html
http://www.cra.com/contract-r-d/cognitive-systems-occam.asp
http://www.cra.com/contract-r-d/cognitive-systems-occam.asp
http://www.cra.com/contract-r-d/cognitive-systems-occam.asp
http://www.cra.com/contract-r-d/cognitive-systems-occam.asp
http://www.cra.com/contract-r-d/cognitive-systems-occam.asp
http://www.rulequest.com/Personal
http://www.rulequest.com/Personal
http://ptolemy.berkeley.edu
http://ptolemy.berkeley.edu
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Neural Network Low Yes Forward High 

COTS 

 

 

Free 

(Research) 

NeuroSolutions 

(www.neurosolutio

ns.com) 

 

Xerion 

(www.cs.toronto.ed

u/~xerion/) 

Situation Theory Medium Yes Forward Low In-House 
PRISM 

(www.cra.com) 

Expressivity of a modeling paradigm refers to its ability to capture and express an analyst’s 
knowledge in terms of the constructs the paradigm offers.  The expressivity of a concept graph is 
very high as it keeps the phrases used by the analysts intact in the model.  In contrast, a neural 
network model is only able to keep the input-output relationships in the model.  More expressive 
models are better able to capture the richness of PMESII domains and are typically easier to 
build, use, and understand by the modeler. 

The executable feature of a modeling technique refers to whether some useful information 
that is implicit in a model, e.g., degree of influence of one variable onto another, can be derived 
from the model via some kind of inferencing algorithm.  A causal graph, for example, is an 
executable paradigm as it offers propagation algorithms, and so also is a trained neural network.  
In contrast, the concept-mapping model does not have such an algorithm.  Non-executable 
modeling techniques are useful for visualizing complex models for human understanding and 
analysis; executable models are useful for providing automated analysis of the models. 

Reasoning of a modeling paradigm refers to the paradigm’s ability to detect the direction of 
influence (not just connection) of one variable to another.  A belief network propagation 
algorithm, for example, incorporates both deductive and abductive reasoning, and thus is able to 
detect both forward and backward influences.  On the other hand, the standard back propagation 
neural-network modeling paradigm is limited only to forward reasoning.  Different modeling 
tasks require different kinds of reasoning. It is sometimes useful to be able to look at a state and 
reason about likely future outcomes (forward reasoning).  For instance, one might want to 
attempt to predict the likelihood of social unrest by evaluating the current social, political, and 
economic state of affairs.  Other times it is useful to look at externally available information and 
diagnose the likely underlying causes (backward reasoning).  For instance, one might want to 
reason from observed social unrest back to the likely underlying political, economic, and social 

http://www.neurosolutions.com
http://www.neurosolutions.com
http://www.cs.toronto.edu/~xerion
http://www.cs.toronto.edu/~xerion
http://www.cra.com
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causes in order to properly address the causes of the unrest.  For these reasons, it is important to 
support both forms of reasoning with the modeling tools we provide. 

Adaptability of a modeling paradigm refers to automatic adjustments by models, which are 
necessary to take into account new observations.  It is hard to adjust structures of graphical 
models as they are built in consultation with subject matter experts.  But the strength of 
relationships among a set of variables within a model, e.g., probabilities in a belief network 
model or activation levels within a neural model, can be adjusted based on observations without 
changing their structure.  Having models that can easily be adapted to represent new concepts 
and incorporate new data are generally preferable. 

Tools of a modeling paradigm refers to the currently available software tools implementing 
the paradigm, that is, whether such a tool is in-house, COTS, GOTS, open source, or freely 
available for research/commercial purposes.  The existence of such tools gives us confidence that 
we will be able to focus our effort on the integration of the various modeling techniques into our 
GRADE-based tool, and not be required to rebuild core technologies. 

We now briefly describe the different modeling techniques that we considered. 

Concept Maps 

Concept maps are a result of research into human learning and knowledge construction 
(Novak, 1998).  In concept maps, the primary elements of knowledge are concepts, and 
relationships between concepts are propositions.  Concept maps are a graphical two-dimensional 
display of concepts, connected by directed arcs encoding brief relationships, e.g., linking 
phrases, between pairs of concepts forming propositions.  Each concept node is labeled with a 
noun, adjective or short phrase, and each edge is labeled with verbs or verb phrases describing 
the relation between the connected concepts.  Concepts maps are highly effective in quickly 
capturing domain knowledge along PMESII dimensions. 

A popular tool for concept mapping is the CmapTools (Canas et al., 2004) package 
developed at the Institute for Human and Machine Cognition (IHMC) (www.ihmc.us).  The 
package is freely available for both commercial and non-commercial use, and has many 
advantages over using sticky notes or a more general diagramming tool, e.g. it can record the 
entire mapmaking process.  There are also COTS tools that can be used, such as Banxia’s 
Knowledge Explorer. 

 

 

http://www.ihmc.us
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Concept Graphs 

Concept graphs are a formal system of logic based on the existential graphs of C. S. Peirce 
and semantic networks.  Concept graphs explicitly represent entities/concepts and relationships 
between entities as nodes in a directed graph.  They are mathematically precise and 
computationally tractable structures, which have a graphic representation that is humanly 
readable.  For this reason, concept graphs have been used in a variety of applications for 
computer linguistics, knowledge representation, information retrieval, and database design.  
Their ease of use and generality make them immediately useful for modeling a wade variety of 
domains, including PMESII domains. 

Figure 3-1 is an example concept graph encoding a generic behavioral model of a terrorist 
leader.  

Attr

Aggressive

Attr

Use of Threatening 
Phrases

Calling for 
Jihad

Inviting Suicide 
Bombers

Imminent Attack
Attr Attr

Quick to Anger

Attr

Leader XTerrorist Group A Leads

Causes

Angers

Diplomatic

Attr

 
Figure 3-1: Concept graph model for terrorist leader behavior 

While existing concept graph products exist, concept graph functionality is subsumed by our 
OCCAM network visualization and analysis tool, which also provides, for instance, social 
network analysis functionality.  OCCAM also provides executable functionality for making 
automated inferences over concept graphs.  

Social Networks  

 Social networks are similar to concept graphs, but they represent social structures.  The 
nodes of the social network typically represent individuals and the links between them represent 
social relationships.  Social network analysis (SNA) provides tools for reasoning about social 
networks, their strengths and weaknesses, the structural roles played by particular individuals, 
and their dynamics over time.  Because of the focus on the analysis of social structures, SNA is 
directly applicable to a range of PMESII modeling tasks. 
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Our in-house OCCAM tool builds on traditional SNA functionality but provides additional 
representational and analytic power as well.  In OCCAM, nodes can represent not only 
individuals, but also arbitrary entities, especially including groups.  Links are similarly extended 
to represent not only individual-to-individual relationships, but also individual-to-group 
relationships (e.g., member-of) and group-to-group relationships, e.g., rival-political-party.  
OCCAM also provides built in Bayesian and rule-based reasoning capabilities to enable to 
automated analysis of the graph.  So, for instance, a Bayesian network might represent that 
members of a group might have a high probability of holding views that are promoted by that 
group, where the group, the individual, and the ideology are all represented in OCCAM as nodes 
with appropriate links between them.  In this case, the OCCAM tool will automatically create a 
new believes link between the individual and the ideology and annotate it with a particular 
probability. 

Causal Graphs 

A causal graph, e.g., a belief network, (Jensen, 1996) is a graphical, probabilistic knowledge 
representation of a collection of variables describing some domain.  The strength of causal 
graphs are their ability to represent both the causal structure of a domain and the probabilistic 
elements of those causal relationships (X causes Y with some probability), thus enabling the 
modeling of both qualitative and quantitative details of the model.  In addition, the ability of 
causal graphs to handle both forward (causal) reasoning and backward (diagnostic or abductive) 
reasoning, makes them especially well suited to domains with many sources of data, some of 
which are uncertain, unreliable, or potentially missing.  Many PMESII modeling problems fall 
within such a scope. 

Influence diagrams are a specialization of causal networks, augmented with decision 
variables and utility functions to solve decision problems.  Decision trees are specialized 
influence diagrams that help to choose between options by projecting likely outcomes as utilities.  
Such extensions to causal graphs make it possible to also reason about the costs and benefits of 
possible decisions.  This functionality can be used to both support intelligent decision making 
and to model likely decisions on the part of the entities being modeled. 

Our COTS Bayesian reasoning construction tool and execution engine, Bnet:Builder®, 
facilitates construction and reasoning with causal graphs and is already integrated within the 
GRADE environment.  There are also other existing COTS solutions to modeling influence 
diagrams and decision trees, such as C4.5 (http://www.rulequest.com/Personal/). 

http://www.rulequest.com/Personal
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System Dynamics Models 

System Dynamics Models, such as the Stabilization and Reconstruction Operations Model 
(SROM) (Robbins et al., 2005) analyze the organizational hierarchy, dependencies, 
interdependencies, exogenous drivers, strengths, and weaknesses of a country’s PMESII systems 
to enable more efficient resource expenditure.  SROM models PMESII systems at the national 
and regional levels, including the interactions between regions.  They also take into account: 
demographic data, insurgent and coalition military, critical infrastructure, law enforcement, 
indigenous security institutions, and public opinion.  As SROM models were designed to model 
PMESII systems, they are obviously directly relevant to the task as hand. 

The SROM models developed by the AFRL/RI NO’EM group were built using the Ptolemy 
heterogeneous modeling software (http://ptolemy.berkeley.edu), which is developed and 
supported by the Electrical Engineering and Computer Science department of the University of 
California, Berkeley.  While developed primarily for modeling of real-time embedded systems, 
its heterogeneous processing model makes it an effective tool for integrating a variety of data 
processing algorithms. 

Because of its current and ongoing use in Air Force PMESII modeling efforts and the 
representative nature of the software engineering challenges involved in integration, we chose 
the integration of Ptolemy into GRADE as a primary focus of our toolkit development effort.  
This effort is described in detail in Section 3.2. 

Neural Networks 

A neural network is a nonlinear information-processing paradigm that models complex 
systems with a large number of highly interconnected processing elements (a.k.a. neurons or 
nodes), arranged in multiple layers, working in unison to solve specific problems.  Neural 
networks offer some of the most versatile ways of mapping or classifying a nonlinear process or 
relationship.  Neural networks have been successfully used in diverse paradigms, such as 
recognition of speakers in communications, diagnosis of hepatitis, recovery of 
telecommunications from faulty software, interpretation of multi-meaning Chinese words, 
undersea mine detection, texture analysis, three-dimensional object recognition, hand-written 
word recognition, and facial recognition.  Neural networks would be useful in building PMESII 
models for those domains that have highly complex non-linear relationships between input and 
output variables.  

http://ptolemy.berkeley.edu
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Existing Neural Network construction kits and runtime engines exist, including the Xerion 
tool from the University of Toronto and the NeuroSolutions tools from NeuroSolutions.  

Situation Theory 

Situation theory models information processing and flow, i.e., how an agent extracts 
information from the world and how it is subsequently transferred between agents.  Situation 
Theory provides a paradigm for describing the world, an ontology for representing it, and a suite 
of inferences for reasoning about it.  Situation theory is unique in that it places situations 
alongside individuals, relations and locations as first-class members of its ontology.  Situations 
provide partial descriptions of the world in terms of the features individuated by some agent. 
They are defined in terms of the relationships they support, i.e., they represent relationships 
between relationships.  Situations provide a powerful representation of complex events spread 
over both space and time and therefore, serve as a natural representation of a variety of PMESII 
models.  Situation theory has been applied to a variety of fields including natural language 
understanding (Barwise & Perry, 1983), information visualization (Lewis, 1990), cooperative 
social interaction (Devlin & Rosenberg, 1991), and both Level 2 (Steinberg & Bowman, 2004) 
and Level 3 (Steinberg, 2005) data fusion.  

Charles River Analytics has developed the Platform for the Representation of and Inference 
over Situation-theoretic Models (PRISM), a Java-based framework for developing Situation 
theory-based models.  Integration of Situation theory-based modeling capabilities provided by 
PRISM into the GRADE toolkit could be a valuable direction for future research and 
development efforts.  

3.2 Ptolemy Integration 

As described above, we selected integration of the Ptolemy systems dynamics modeling 
framework as the primary focus of our effort to incorporate new technologies for PMESII 
modeling into GRADE.  This choice had the advantages of 

• Immediate relevance to the CPE domain, 

• Availability of existing models for use as examples, 

• Java implementation with a non-restrictive license, 

• Storage of models using the Modeling Markup Language (MoML), a well-defined 
XML file format with a published Document Type Definition (DTD), and 

• An existing graphical editor (Vergil) for creating and maintaining Ptolemy models. 
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 Integration of Ptolemy provided a representative example of the types of software 
engineering steps that would be required to integrate any third-party tool with a pre-existing 
configuration interface (such as Vergil) into GRADE.  Our integration of Ptolemy followed the 
path outlined in Section 2.4:  implementation of runtime functionality first, followed by the 
creation of configuration and debugging interfaces.  The results of each of these steps in our 
development effort are discussed further below. 

3.2.1 Ptolemy Runtime Component Integration 

Model Input and Output Definition 

The first step in our Ptolemy integration effort was the implementation of runtime 
functionality—the ability to execute Ptolemy models within the GRADE environment, and 
enable the Ptolemy component to exchange data with other GRADE components. 

 To allow a GRADE Ptolemy Component to exchange data with other components, we first 
had to define a way to specify the input and output formats (schemas) for any given Ptolemy 
model.  A Ptolemy model can contain any number of actors (individual processing elements), 
which can themselves be composed hierarchically of other actors.  It is unreasonable to expose 
every actor in the Ptolemy model as a potential input or output variable because Ptolemy actors 
are often low level numerical operators, e.g., addition, absolute value, etc., of which any Ptolemy 
model of reasonable complexity could have a vast number.  Exposing such a large number of 
variables by including them as elements in the input and output schemas would create 
unnecessary complexity and difficulty for the model developer.  

 For this reason, we established a convention for the Ptolemy component requiring that the 
model developer identify the salient inputs and outputs for the model by specifying them as top-
level Parameter objects inside the Ptolemy model.  One of the benefits of this design is that any 
value in the Ptolemy model, whether a final output variable or an intermediate value generated 
during the course of model execution, can be linked to a Parameter and therefore be exposed to 
other components in the GRADE modeling framework for processing. 

 Once the top-level Parameters have been created inside the Ptolemy model, additional 
characteristics of the parameters must still be defined.  By selecting the “Define I/O” button in 
the GRADE Component editor interface (discussed in further detail in Section 3.2.2 below); the 
PMESII model developer specifies the following characteristics of the parameter: 

• Direction. Indicates whether the parameter is an input or an output parameter.  
Parameters designated as input parameters are included as elements in the Ptolemy 
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component’s input schema, whereas output parameters are included in the 
component’s output schema. 

• Type. One of: Boolean, string, double, or integer. 

• Default. An optional value that provides a default value for the parameter if none is 
produced by the model. 

Once input and output parameters have been defined, the model developer can use GRADE’s 
XSL wizard to link the parameters in the Ptolemy model to the inputs and outputs of other 
components. 

Model Execution Control 

Ptolemy supports multiple models of computation using its Directors.  Example directors include 
CT (continuous time), FSM (finite state machine), DE (discrete event), and SDF (synchronous 
dataflow).  Without a Director, a Ptolemy model is simply a block diagram of components; the 
Director controls how information is exchanged and synchronized between blocks. 

One of the initial issues we had when attempting to integrate Ptolemy models into GRADE 
was that when using certain Directors, Ptolemy would not yield control of model execution to 
GRADE.  We first encountered this problem when working with the NO’EM group’s recruiting, 
training and Active-duty (RTA) model, which used the Discrete Event director.  When another 
GRADE component would pass the Ptolemy Component encapsulating the RTA model an input 
message representing state information about a particular moment in time, the model, rather than 
processing the input for the given time-tick and producing the output for that time-tick, would 
instead run to completion and output only the final results of its computation to GRADE. 

We found that by switching from the Discrete Event director to the Synchronous Dataflow 
(SDF) director we were able to enable the Ptolemy component to run “iteratively,” running one 
execution for each message received, and providing the results of its computation as output at 
each step.  The requirement that Ptolemy models used in GRADE use the SDF director is not an 
unreasonable limitation for the purpose of PMESII model development as this director is the one 
that is most useful and typical for discrete-event based systems dynamics modeling.  Upon 
conferring with AFRL we learned that the NO’EM group had reached the same conclusion in 
their work with Ptolemy and had independently chosen to switch to the SDF director. 

Summary of Steps to Run a Ptolemy Model in GRADE 

Integration of any particular Ptolemy model into grade involves the following steps: 
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1. Create a new Ptolemy component within GRADE. 

2. Using the Ptolemy component editor interface, import the .MoML file for the 
Ptolemy model into the Ptolemy component. 

3. Create top-level Ptolemy Parameters to identify values or variables inside the model 
to expose to other GRADE components. 

4. Using the “Define I/O” interface of the Ptolemy Editor, identify these parameters as 
being either input or output parameters, and specify their type. 

5. Link the inputs and outputs of the Ptolemy component to the inputs and outputs of 
other components using GRADE’s XSL Wizard. 

The Ptolemy component editor, the configuration interface used to perform several of these 
steps, is discussed further in the following section. 

3.2.2 Ptolemy Editor Integration 

Once a component can be executed at runtime within GRADE and exchange data with other 
GRADE components, the next step in the component development path is to provide a graphical 
user interface allowing the GRADE model developer to configure it.  There are generally three 
approaches to doing this, depending on the nature of the software being integrated: 

1. Develop a GUI from scratch using Java Swing.  This is most commonly done when 
the component itself is being developed from scratch and no third-party tools or 
software is being integrated. 

2. Provide a file chooser.  In cases where third-party tools are being integrated, but the 
third-party software does not provide an open-source platform for model 
configuration, a GRADE component developer can provide a file chooser allowing 
the model file for the third-party software to be selected.  A typical example of this is 
CRA’s MATLAB component, which simply allows the GRADE developer to select 
the .M file to load inside the component; any configuration steps required to create 
the .M file must be done within MATLAB itself. 

3. Encapsulate an available third-party configuration GUI inside GRADE as the 
component editor.  This approach can be taken when an open-source GUI for model 
configuration is available, as with Ptolemy’s Vergil.  While this provides an easy way 
to provide the GRADE model developer with a full-fledged configuration GUI inside 
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the GRADE IDE, there are some implementation challenges that can arise when 
taking this approach, which we address in this section. 

Because the Ptolemy model development platform includes Vergil, an open-source, graphical 
application for creation and execution of Ptolemy models, we chose the third approach for the 
Ptolemy component, that of encapsulating Vergil inside the Ptolemy component editor. 

 Figure 3-2 shows a screenshot of an example Ptolemy component editor instance.  The 
editor provides access to the full list of actors, directors, and other objects provided by Ptolemy 
for model creation and configuration.  The Ptolemy component editor can be used to create new 
Ptolemy models from scratch within GRADE, or to edit and configure existing models that have 
been developed separately using Vergil.  In addition to the capabilities provided by Vergil, the 
Ptolemy component editor also provides additional features to facilitate integration of Ptolemy 
models within GRADE, including the Define I/O button and a series of model import and export 
buttons which are provided in the toolbar for the Ptolemy Component Editor. 

 

 

Figure 3-2: Editors for Two Ptolemy Components in the GRADE Edit Workspace 
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 In general the Ptolemy component editor serves as an effective tool for creation and 
configuration of Ptolemy models within the GRADE modeling IDE.  However, as a result of 
technical constraints imposed by the Vergil software, there are some minor outstanding issues 
associated with the editor integration.  These stem from the fact that the Vergil GUI elements are 
coded in such a way as to assume that they are running inside a PtolemyFrame as their top-level 
container.  When running inside the GRADE Ptolemy component, however, Vergil’s 
configuration panel’s top-level container is GRADE, not Vergil.  This results in two known 
problematic behaviors: 

Limited non-functional elements.  When the user right-clicks an actor in the model 
configuration window, a context menu is opened which provides access to certain features.  
When the Customize→Ports element is selected within this context menu, the embedded Vergil 
code iterates up the Swing container stack, casts the top-level container to a PtolemyFrame, and 
attempts use the reference to the PtolemyFrame object to open up the appropriate dialog box.  
Because the top-level frame in this case is GRADE’s JFrame, which is not a PtolemyFrame, the 
cast fails and no dialog box is opened.  This menu item is shown in the context of Ptolemy model 
configuration in Figure 3-3 below. 

  

Figure 3-3: Selecting the Customize→Ports Context Menu Item in the Ptolemy Component 
Editor 

Orphaned Vergil Application Windows.  Because Ptolemy models are hierarchical, Vergil 
allows the model developer to “drill down” into composite actors by selecting the “Open Actor” 
context menu item, which opens up a configuration window for that specific actor.  However, 
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because it uses a non-standard approach to window management, Vergil does not open an 
internal window; rather, it opens up a top-level Vergil application window.  The implication of 
this for GRADE is that when the user opens an actor within the Ptolemy component editor, it 
opens up a new Vergil application window, which contains Vergil’s top-level menus rather than 
GRADE’s, and which does not close when the Ptolemy component editor is closed, but rather 
remains open until GRADE is closed or the user closes the window manually.  While this 
behavior does not in itself limit the model developer’s ability to create or configure models, it is 
an unexpected side-effect of the integration process which could lead to unexpected behavior for 
a model developer who was not aware of it. 

 Since Ptolemy is open-source software, one potential avenue for addressing these issues 
would have been to modify the Vergil source code to make it more suitable for encapsulation 
within GRADE.  However, doing so would have precluded the end user of the Ptolemy 
component, in this case AFRL, from upgrading to future versions of Ptolemy and Vergil, as any 
modifications would be lost in the upgrade process.  We therefore felt that integrating the 
software as-is and documentation the unusual behavior would better serve the users of the 
software. 

 Despite these issues, the Ptolemy component editor remains a fully-featured interface for 
creating and configuring Ptolemy models within GRADE.  The problems we encountered are 
representative of the types of issues that can arise when attempting to encapsulate GUI elements 
from one application into another application with a different architecture and design. 

3.2.3 Ptolemy Component Debug and View Integration 

The final step in our Ptolemy integration effort was to develop Debug and View interfaces 
for the Ptolemy component.  The Ptolemy component debugger allows the model developer to 
monitor the component’s state during execution of the model, while the Ptolemy component 
visualizer allows the model developer to observe changes in the component’s state from a logged 
run of the model.  Though the source of the data is different, both the debugger and the visualizer 
display component state information to the user, and therefore the same interface can be used for 
both components. 

For both the Ptolemy component debugger and visualizer we created a simple table-based 
display format that is modeled after the “Define I/O” configuration window used by the Ptolemy 
component editor.  For each top-level parameter in the model, the interface specifies the current 
value of that parameter, which is derived from real-time data in the case of the debugger, and 
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from logged data in the case of the visualizer.  The table also displays basic information about 
each parameter, such as its name, its type, and its direction (input or output).  A screenshot 
showing example instances of the Ptolemy component debugger open in the GRADE Debug 
workspace is shown in Figure 3-4, with the Ptolemy debugger windows highlighted in red. 

The Ptolemy component debugger and visualizer provide the ability for the model developer 
to verify and validate the execution of Ptolemy sub-models in the context of the GRADE 
PMESII IDE framework, and complete the software development path for Ptolemy integration 
into GRADE.  

 

Figure 3-4: Ptolemy Component Debugger Windows (Highlighted in Red) 
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4. Support for Interoperable PMESII Modeling 
While GRADE provides a base level of support for interoperable PMESII modeling by virtue 

of the fact that it provides a common environment for model development and a common 
protocol (XML) in which they can communicate, there are a number of challenges associated 
with resolving interoperability conflicts between PMESII models beyond the data-level.  During 
this effort the primary research into advanced strategies for resolving model interoperability 
conflicts was conducted under our sister CPE program, “Framework for Building and Reasoning 
with Adaptive and Interoperable PMESII Models.”  In this section we provide a summary of the 
issues associated with interoperable PMESII modeling and the approach taken under our sister 
CPE program. 

There are several fundamental issues (and associated “hard” problems) that need to be 
addressed in supporting interoperability between PMESII sub-models in an IDE for model 
development.  The fundamental problem is one of incompatibility between one model’s 
information products and another’s information requirements.  There are several types of model 
incompatibilities that must be managed, however, as shown in Figure 4-1 below.  

• The first problem shown in the figure concerns interface incompatibility between two 
PMESII models that either already exist or are being developed independently.  If we 
intend to feed output from model A about a certain object X as input to model B, then 
mismatch between the output and input may occur in terms of the assumptions about 
the numbers and types of X’s attributes.  This is often straight-forward but tedious to 
deal with, often merely involving “translation” from one descriptive framework to 
another, e.g., from numerical values – 1, 2, 3, -- to “fuzzy” values (low, medium, 
high,…).  A bigger problem ensues when different levels of resolution are used to 
represent the same object in two different models, where low- and high-resolution 
objects must be merged between models. 

• The second problem illustrated in the figure is about ontological incompatibility 
between models that arises due to differing vocabularies and expressive powers in 
their respective ontologies.  Different teams of engineers and subject matter experts 
with a diverse range of expertise, knowledge, and cognitive capabilities 
independently creating PMESII models will inevitably develop and use different 
underlying ontologies, which, in turn, will give rise to incompatibilities across 
models.  

• While ontological incompatibility creates problems due to multiple ways of 
designating an entity, the formalism incompatibility shown in the figure is concerned 
with multiple ways of instantiating the object entity computationally represented in 
the model.  For example, uncertainty can be expressed not only in terms of 
probability values, but also via various other formalisms such as certainty factors, the 
Dempster-Shafer measure of beliefs, and numerous other qualitative dictionaries.  
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These are incompatible with each other, both in terms of their underlying conceptual 
representation of uncertainty and probabilistic reasoning, as well as in the sense of 
having different types of scales.  

• Finally, if one wants to feed the output from a model in one PMESII domain to 
another, it will require an analyst or domain expert with knowledge of both domains 
to bridge the subdomain gaps.  This is due not only to the ontological gaps between 
the domains being considered, but also to differing dynamics between the domains.  

Interface
Incompatibility

Ontological 
Incompatibility

Formalism 
Incompatibility

Subdomain
Gaps

Model A

About object of 
type X

Model B

Input Output Input Output

Bel(X) p(X)

Economy Social  
Figure 4-1: Gaps and incompatibilities between models 

The research effort under our companion CPE program, “Framework for Building and 
Reasoning with Adaptive and Interoperable PMESII Models”, focused on the development of 
methodologies and formalisms to address these issues through the application of AI techniques 
such as ontology learning, automated reverse engineering, general function inversion, semantic 
analysis, and advanced interpolation techniques.  The objective is to minimize the level of effort 
on the part of the model developer to define detailed mappings and translation functions between 
component PMESII models through advanced AI tools. 

There are some practical ways in which the results of the companion program could be 
integrated into the PMESII development toolkit.  Since the goal of the research into 
interoperability in practical terms is to reduce the burden on the model developer (rather than to 
automate the process of model integration), there are ways in which we could augment the 
toolkit to suggest linkages between sub-models to the model developer that would be based on 
an underlying reasoning process.  A straightforward way to implement this would be in 
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GRADE’s XSL wizard tool for linking component inputs and outputs.  As previously discussed 
in Section 2, GRADE provides a model integration capability through the XSLT Generator that 
allows for XML messages generated by one model component to be translated into XML 
messages that are consumable by another component.  Using the ontology matching concepts 
developed under our sister CPE program, the XSL wizard could recommend potential matches 
between the outputs of one model and the inputs of another model at linking time.  The data 
mapping and translation functions remain primarily driven by the model developer, but would be 
supported using underlying model-matching algorithms.  We believe that this provides a rapidly 
accessible solution to the model integration problem that could be greatly enhanced in the course 
of future work. 
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5. Support for PMESII Model Verification and Validation  
While the processes of validation and verification are often grouped together, they present 

very different challenges to the model developer.  Verification determines whether the model 
behaves as it is intended to behave; validation determines whether the model behaves in 
accordance with the real world phenomenon it is intended to model.  For the purposes of 
developing a modeling framework, we can consider verification as a testing and debugging issue, 
and validation as a data collection and analysis issue.  In this section we describe our 
enhancements under this effort to GRADE to provide additional support for these capabilities. 

5.1 Verification 

GRADE incorporates a number of features to facilitate model verification, including the 
ability to halt and resume execution and view model state at runtime.  GRADE’s testing and 
debugging capabilities have already been described in Section 2.2 above. 

In addition to verification at the model level within GRADE, we added the capability to 
perform low-level verification at the component level, a development strategy commonly used in 
software development called unit testing.  Unit testing describes a technique that requires a 
model developer to create a dedicated and corresponding test for each and every feature they 
create.  As models evolve from prototypes through beta testing to real-world use, the underlying 
unit tests can provide reassurance that fundamental and core pieces of a model are behaving as 
expected, even if the model as a whole is incomplete or undergoing modification.  The use of 
unit tests to ensure correct behavior during the course of model changes is known as regression 
testing. 

To allow model developers to employ the unit testing methodology to verify PMESII models 
and sub-models, we used the XmlUnit1 open source project to expand the existing GRADE unit 
testing capabilities to enable verification of model inputs and outputs for regression testing.  
GRADE’s existing unit testing capabilities relied on native Java API calls within the GRADE 
code, and were limited to features and functionality that were embedded within the GRADE 
modeling environment.  The inclusion of XmlUnit enables a similar testing structure that can 
operate on the inter-model and intra-model messages, as opposed to the native Java API calls.  

                                                 
1 http://xmlunit.sourceforge.net/ 

http://xmlunit.sourceforge.net
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As a result, this capability is now available to non-programmers, such as analysts and model 
developers, to define valid model inputs and outputs for regression testing. 

5.2 Validation 

A framework enabling the integration of PMESII models must also provide support for the 
validation of the behavior of the individual and aggregated models.  Some relevant lessons can 
be learned from AFRL’s Agent-based Modeling and Behavior Representation (AMBR) program, 
which focused on the development of model comparison and validation strategies in the context 
of human behavior modeling (Gluck & Pew, 2001).  One of AMBR’s clear conclusions was that 
the primary requirement for model validation is that the model being evaluated must run in the 
same problem space as the empirical data collection process, and furthermore, must enable the 
collection and analysis of the same behavioral features between the empirical study and the 
modeled behavior.  This guarantees that the data captured from the model and the data captured 
from the world are of equivalent types, and can provide a useful basis for evaluation.  Therefore, 
what is required of a framework for validation are the flexibility and tools to collect the 
appropriate data from the model.  If the framework is adequately equipped, the user can capture 
data from the model and compare it with the data gathered empirically.  

Validation of the model’s behavior may take a number of different forms, from an intuitive 
assessment of realistic behavior by a subject-matter expert to a statistical comparison of the 
model’s output with real-world data.  However, all forms of validation require that a model 
framework have the ability to:  1) collect output/model state data, 2) visualize model-generated 
data for examination and evaluation, and 3) export collected data in appropriate formats for 
statistical analysis in external software.  

Our IDE supports the first requirement (data collection) through its logging API, which 
allows the user to specify the variables in the model that he/she wishes to log for analysis and 
evaluation. GRADE’s logging API was described in detail in Section 2.3 above.  GRADE 
supports the second requirement, that of visualization, through its visualization workspace and 
AgentComponentVisualizer interface, which allow component state to be examined from 
historical data.  Support for visualization and evaluation for custom component technologies 
depends on the component developer to create an appropriate GUI to be returned by the 
AgentComponentVisualizer interface (such as the visualization GUI we implemented for the 
Ptolemy Component, described in Section 3.2.3).  Moreover, the Graphing Component created 
under this effort provides an additional tool for examining and evaluating model-generated data.  
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The third capability, that of data export and interoperability with statistical analysis packages, is 
currently only partially supported.  Model-generated data is logged and stored in an XML 
format, which can be converted into formats enabling analysis with standard statistical analysis 
packages such as MATLAB (http://www.mathworks.com) or SPSS (http://www.spss.com).  
However, this process must currently be performed manually through the use of XSLT or other 
XML processing tools.  The addition of native conversion tools to the PMESII IDE itself is a 
potential direction for future work. 

http://www.mathworks.com
http://www.spss.com


 37 

6. Support for PMESII Model Analysis 
As the key requirement of the Commander's Predictive Environment is to enable the 

commander to anticipate possible futures, any framework for the integration of heterogeneous 
PMESII models must provide support for such a capability.  Under this effort, we have focused 
our efforts in three areas to provide an analytical capability for the Commander’s Predictive 
Environment.  The first of these was our prototype of an example “Commander’s Interface,” 
which was intended to abstract out the technical details of model implementation and allow a 
commander to interact with the PMESII models in such a way as to support active decision-
making.  During the course of the program, however, it became clear that a more appropriate end 
user of such a tool would be the model analyst rather than the commander, so we clarified our 
use case accordingly and re-labeled the tool as the “Analyst’s Interface.”  A detailed description 
of the tool is included in Section 6.1 below.  Our work with the Analyst’s Interface led us to 
conclude that its most valuable feature was its ability to interactively graph model outputs, so to 
make this functionality directly accessible to the model developer within the PMESII IDE itself 
we developed the Graphing Component, described in Section 6.2.  Finally, we implemented a 
number of advanced analytical capabilities under a related program, HASMAT, which we 
describe in Section 6.3. 

6.1 Analyst’s Interface 

The motivation behind our prototype of the Analyst’s Interface was to provide an aggregated, 
accessible view of model results that could be used to support decision-making by a commander 
or other decision-maker.  Such a tool would allow the commander or a member of his staff to 
easily generate model inputs (representing DIME actions that could be taken), and monitor 
model responses over time in a presentation framework that would be more intuitive than the 
PMESII IDE itself.  For example, in the context of the recruiting and training SROM model, the 
commander might specify a specific allocation of troops to the recruiting and training of specific 
capabilities within the modeled region.  The models would then be executed against this input 
set, and the commander could monitor the overall effects on high-level PMESII variables, e.g., 
unemployment, economic stability, crime rates, etc., in an intuitive graphical interface.  This 
would isolate the commander from the detailed outputs and implementation details that would be 
of interest to the model developer, while providing the commander with intuitive and targeted 
real-time decision support leveraging the models constructed using the GRADE tool set. 
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As indicated above, while we initially envisioned these tools as directly supporting the 
commander’s decision-making, during the course of the effort it became clear through 
conversations with AFRL that the more appropriate end user of the output to which we are 
providing access through these graphical tools is the Model Analyst.  This decision does not 
compromise the added value to the overall GRADE-enabled PMESII modeling environment, but 
rather, simply isolates a more intuitive use case of the resulting tools. 

In Figure 6.1 below, we provide an overview design vision for the PMESII model analysis 
tools that we designed.  This set of model-centered tools supports the analyst’s interactions with 
the underlying GRADE-based models defining the dynamics of the systems of interest, e.g., 
nation state models of economics, insurgency activity, etc.  In the upper left of the graphic, we 
provide a simple selection tool for the analyst to select from among the range of available 
GRADE models defining the PMESII environment for execution and analysis.  The selection of 
a specific model will result in the input fields for that model being captured from the selected 
GRADE model (via its XML Schema-based input/output specification) and populating the 
tabular input sets shown below on the left.  Here, the analyst can configure the input parameters 
to the model to examine model responses to some set of “controllable” DIME actions, e.g., US 
troop allocations to support recruiting and training of indigenous security forces.  The model 
inputs are defined as either “global” parameters or “regional” parameters.  This is motivated by 
our program’s ongoing relationship with the national and regional modeling paradigm of the 
SROM/NO’EM efforts at AFRL/RI.  In future work, we would revisit this structure to define 
more abstract and generalized input categories for the analyst to interact with the underlying 
models.  Once model inputs are specified, the analyst “executes” the model with the given input 
set via the mechanism in the lower left.  

On the right side of the figure, we display the outputs of the model’s execution.  Also due to 
our program’s interactions with the NO’EM modeling methods, we present results in a national 
and regional structure.  This would also be revisited under future work to generalize the interface 
to other potential representative structures.  We envision providing a map-based overview of the 
result of the model execution.  Model output parameters (defined by the underlying GRADE 
model’s output XML schema) are captured and populate the callout regional data sets on the 
right of the map.  Because the complexity of the underlying model cannot be predicted, and the 
resulting output parameter set may be significantly larger than the representative set provided 
here, we envision that the analyst will be able to dynamically select the output parameters of 
greatest interest in a given study for display in these data sets.  The data shown in the callout 
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regional data sets show instantaneous values of specific parameters through the size of the green 
(above nominal) and red (below nominal) value bars shown, as well as the first derivative rate of 
change of those parameters shown through the decorator arrows that indicate rate of positive or 
negative change in value, i.e., more arrow decorators imply higher rate of change. 

 

 

Figure 6-1: An Overview of the Analyst’s Interface 

As the user selects specific outputs in the callout data sets, the overview map shows the 
comparison of that value set across the modeled regions through fill color.  In the figure above, 
we show the number of indigenous active duty security personnel operating within each region.  
Beneath the map view, we provide a modeled timeline that the analyst can manipulate to 
examine the trends of model output parameters over simulated time.  As the user drags the 
timeline back and forth, the output data sets will display the values as described for that point in 
time.  

Finally, in the lower right, we also provide the analyst with graphical displays of selected 
model outputs in time-series data plots, which allows for easier access to trend data throughout a 
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model run for more detailed analysis.  As the user manipulates the timeline (as described above), 
these data plots shift a marker to identify the value at the selected time.  

During this effort we also created an initial implementation of the analyst’s interface in 
software, and have demonstrated the integration of an example GRADE-defined PMESII model 
to populate the interface.  

6.2 Graphing Component 

As described above, the Analyst’s Interface provides time-series data plots to visualize the 
results of a given model execution.  We found this to be an essential tool both for verifying that 
example models were behaving as expected during model development, and for studying the 
dynamics of models during analysis.  Because of its demonstrated utility for both model 
development and analysis, we focused a final part of our development effort on adding a 
graphing capability directly to GRADE.  In addition to its utility for PMESII model 
development, the Graphing Component serves as a useful case study to illustrating the 
considerations involved in adding new analytical capabilities to GRADE. 

We had two principal design options for integrating a graphing capability into the IDE.  They 
were to 1) build a graphing capability into the IDE itself as an additional feature of the Debug 
workspace, or 2) create a new component for graphing that would receive model output and 
display it in its Debug GUI.  The advantages and disadvantages of each of these approaches are 
summarized in Table 6-1. 

Table 6-1: Advantages and Disadvatages of Graphing  Feature Design Choices 

 Advantages Disadvantages 

Built-In IDE 
Capability 

• Graphing capability is automatically 
incorporated into every component; the 
developer does not have to configure a 
connection between each component he 
would like to graph 

• Graphing tool can be incorporated into 
the existing Debug workspace GUI 

 

• Requires an additional interface to 
identify which elements in the input or 
output schema should be graphed, and 
which should be considered as the X 
or Y axis 

• Graphing capability is very tightly 
coupled to Debug workspace; it will be 
relatively more difficult to change 
graphing approaches or packages 

• The graphing capability would only be 
able to display input from a single 
component; it would not be able to 
graph data received from multiple 
components 

Component-
Based 

Approach 

• Leverages the existing XSL wizard 
interface for mapping data from other 
components to input dimensions (i.e., 
axes) in the graphing component; the 

• Requires a new component to be 
instantiated and mapped for each 
unique graph configuration 
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XSL wizard can also provide basic type 
checking 

• The component could (using input 
groups if necessary) process information 
from multiple components and allow the 
user to graph one component’s output 
against the other 

• The graphing component could also 
have a View GUI that would allow 
interactive graphing of component data 
model logs  

• Component development has a clear 
development path whereas making 
modifications to the Debug GUI would be 
marginally more complicated/unfamiliar 

• Congruent with the future direction of 
GRADE, which will represent GUI 
elements as components 

 

• Introducing a component whose only 
“output” is its Debug display is a 
departure from the current GRADE 
development paradigm (but is 
congruent with the future direction of 
GRADE) 

 

We chose the component-based approach for its flexibility, extensibility, and its ability to 
leverage existing features such as the XSL wizard.  A screenshot of the Graphing Component 
being used to graph model-generated data is shown in Figure 6-2.  The Graphing Component is 
configured like all other GRADE components:  it is instantiated by dragging and dropping it 
from the component palette, configured by opening up its Editor GUI, and linked to other 
components using the XSL Wizard.  The configuration interface for the Graphing Component 
allows the model analyst to specify whether the data to be graphed is time-series data or X-Y 
data, and the number of series to plot.  

The Graphing Component provides a variety of useful functions to the model developer: 

• Intuitive, interactive model verification.  The graphing component is a much more 
useful tool for most applications for determining if a model is behaving as expected 
than the component listeners alone (which allow for monitoring of individual XML 
messages) 

• The ability to simultaneously graph outputs of multiple instances of a model.  The 
graphing component allows the user to simultaneously graph and compare the outputs 
of models that have been initialized with different parameters.  An example of this 
would be to compare trajectories of public opinion across different regions using 
multiple regional models. 
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• Graphing output of one component against the output of another component.  The 
component can be configured to receive input in pairs (using input groups) and use 
one component’s input for the X-axis and use another’s for the Y-axis.  An example 
of this would be to chart the value of public opinion as a function of infrastructure 
availability. 

  

Figure 6-2: Using the Graphing Component to Visualize Model Data in the Debug 
Workspace 

While we still believe that specialized statistical capabilities are better left to analysis 
packages such as MATLAB or SPSS, the ability to graph model output within the PMESII IDE 
using the Graphing Component proved to be an essential capability for model verification, 
validation, and analysis. 

6.3 Advanced Analysis Capabilities Using HASMAT 

Making predictions using PMESII models requires two types of “what if” analysis, depicted 
in Figure 6-3.  The first type, causal reasoning, enables analysis from causes to effects.  This 
allows the user to consider the effects of potential DIME actions on the PMESII models under 
consideration.  The second type, diagnostic reasoning, enables reasoning from effects to causes.  
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This allows the user to specify the desired (or actual) PMESII effects and determine the DIME 
actions that are most likely to achieve this result while minimizing undesirable second- or third-
order effects.  Supporting these two types of reasoning using PMESII models requires specific 
statistical sampling and analysis techniques which we have studied and implemented under a 
related program for AFRL/RHCS, the Human and System Modeling and Analysis Toolkit 
(HASMAT).  While the focus of HASMAT is the modeling of social networks rather than nation 
states, both HASMAT and CPE require software tools to gather and analyze data generated from 
repeated simulations of model behavior.  The approaches taken by both HASMAT and CPE to 
support these advanced analysis capabilities are discussed further in the subsections below. 

 
Figure 6-3: Analytical Reasoning Enabled by PMESII Model Integration 

6.3.1 Causal Reasoning 

In this type of analysis, the user specifies a set of DIME actions and the analysis indicates 
how these actions would influence the given PMESII models.  Due to the nonlinearity of the 
systems being modeled, and the incompleteness of information about system state, it is 
unreasonable to expect that PMESII models will provide high-fidelity predictive capabilities.  
Rather, the predictive value of the models lies in their ability to generate the distribution of 
plausible outcomes across multiple courses of action.  Under HASMAT we have implemented a 
generic Monte Carlo sampling capability to support this type of data collection and analysis.  
This sampling framework can be used both with HASMAT models and PMESII models 
generated using GRADE. 
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Monte Carlo sampling refers to a family of algorithms that approximate a function f by 
calculating f(x), for a randomly chosen x, over many iterations.  Sampling is a useful 
approximation technique in cases where the function to be computed is difficult or impossible to 
calculate exactly.  For complex nonlinear models such as PMESII models, randomized sampling 
provides an effective approach to approximating model outputs because it is independent of the 
underlying formalisms being used by the model. 

Sampling can be used to analyze any model that incorporates both: 1) a representation of the 
cause-effect relationships between model elements; and 2) a specification of the relative 
likelihoods of inputs or initial states of model elements for which such conditions are not 
explicitly specified by the user.  The first condition requires only that the model being sampled 
have some predictive capability.  For example, Hidden Markov Models, belief networks, neural 
networks, and rule bases all meet this criteria; a purely analytical tool such as a Topic Tree or 
Concept Map does not.  The second condition requires that the model specify a distribution of 
initial conditions for model elements, including the likelihood that various actions (either Blue or 
Red) will be observed.  This allows the sampling algorithm to select random inputs according to 
a plausible distribution. 

Given that the PMESII models in the system meet these two criteria, a user would perform a 
causal analysis using the HASMAT sampling tool in the following manner: 

1. Specify Conditions.  The user first specifies the set of assumptions to be evaluated by 
the analysis; this includes not only the DIME actions of interest but also assumptions 
about the state of hidden variables in the models.  The user also specifies the number 
of iterations to be performed by the sampling algorithm. 

2. Select Data Collection Parameters.  The user then selects the elements within the 
models for which state data will be collected. 

3. Begin the Simulation.  The HASMAT tool samples the PMESII models repeatedly.  
At each iteration, the states of variables not explicitly set in Step 1 are randomized to 
a permissible state given information about the relative likelihood of the initial states 
of the variable.  The effects of the model inputs are propagated through the model and 
the framework collects system state data for the variables selected by the user in Step 
2.  

4. View Collected Data. The user then views the data collected in Step 3, viewing the 
relative frequencies of various outcomes. 

A screenshot of the HASMAT tool is shown in Figure 6-4.  The tool allows the model 
analyst to specify initial conditions for input variables and view the resulting simulation data in a 
graphical format for analysis.  By performing this type of simulation-based analysis for multiple 
DIME actions, the user would be able to determine which actions result in a greater likelihood of 
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achieving the desired effects as well as which actions result in a greater likelihood of causing 
undesired effects.  

 

 

Figure 6-4: Graphing Aggregated Model Output Usng HASMAT 

6.3.2 Means-Ends and Sensitivity Analysis 

The second type of reasoning of interest to a PMESII modeler is means-ends analysis:  for a 
given effect or system state, what are the actions that can be taken to achieve the desired state?  
This type of analysis is very difficult to do using heterogeneous models and remains an area of 
future work for both the PMESII modeling toolkit and HASMAT.  Outlined here are some 
potential approaches to supporting this type of analysis. 

One approach to answering these types of queries would be to perform a forward-chaining 
analysis for each set of actions under consideration; the set of actions most likely to achieve the 
desired result could be selected empirically based on the results of each analysis.  Such an 
approach is clumsy and inefficient, however, since the forward-chaining reasoning process is 
itself computationally expensive, and performing a brute force means-ends analysis in this 
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fashion with the large number of possible action sets that are likely to be possible would quickly 
become prohibitively complex and computationally expensive. 

One solution is to reduce the search space of possible actions or input states using a 
technique known as sensitivity analysis.  Sensitivity analysis computes, typically using black-
box sampling techniques, how variability in the output of a model depends on variation in its 
inputs.  Because it uses sampling, sensitivity analysis can also be applied to any type of model 
formalism: only the inputs and outputs are observed.  In the case of reasoning using PMESII 
models, we can use sensitivity analysis to determine which actions or input variables are most 
relevant in determining the outcome or effect in which we are interested.  Once we have 
identified a subset of relevant actions, we can then perform a brute-force, means-ends analysis in 
the manner described above to determine the optimal combination of those actions. 

To illustrate this process further, consider the following example.  Suppose a group of 
modelers have developed a network of PMESII models specifying the interrelationships between 
the economic and political elements of a particular country.  A user of the CPE framework 
wishes to use the aggregated model to gain insight into the types of actions that can be taken to 
boost public confidence in the existing government.  Because of the complexity of the model and 
the number of possible inputs and actions, the user performs a sensitivity analysis and determines 
that the factors most critical in determining public confidence are the supply of electricity, the 
visibility of police in the community, and the price of gasoline.  Having identified this subset of 
factors, the user performs a brute-force means-ends analysis and determines that public 
confidence can be maximized by increasing electricity supply by 20%, maintaining the current 
high level of police forces, and reducing taxes on gasoline by 3%. 

Because sensitivity analysis determines the variability of model output according to its 
inputs, it can provide results of interest other than just the relevance of an input.  For example, 
the rate of change of model output as a result of input may be of even greater significance for a 
model user in selecting an optimal course of action.  For example, if the model indicates a strong 
non-linearity or “tipping point” in the output variable under consideration, this would indicate 
the importance of gathering additional information to determine how close to this tipping point 
the system being modeled actually is.  Or, the model may indicate that the results of an action on 
an output variable may be highly variable, with a large standard deviation; this would indicate a 
higher risk associated with the action, especially in cases where the impacts of the action being 
taken are difficult to control. 
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7. Support for Multi-Resolution PMESII Modeling 
Selecting the appropriate level of modeling resolution to apply to a given PMESII analysis is 

an art in and of itself, especially considering the large number of variables and dimensions 
representing the complete operational environments.  Weighing the cost in terms of 
computational performance against the benefits of high fidelity behavior modeling can be very 
difficult.  However, it is rarely the case that all potential behaviors in a given scenario must be 
represented at high fidelity levels.  Rather, only those behaviors that are likely to have the most 
impact on a PMESII outcome of interest need to be modeled, and likely only a subset of them 
need to be modeled at high levels of detail or fidelity, at different times over the course of a 
scenario.   

What this calls for, then, are two things:  1) a pre-built “library” of models that represent the 
same entity/function, but at different levels of resolution; and 2) a mechanism by which these 
models can be “switched” in and out of the larger PMESII model environment, as a function of 
the dynamically-varying resolution need or fidelity requirement. 

We believe that the ability to automatically determine how to match models (map inputs to 
outputs) when substituting a higher-fidelity representation for a lower-fidelity one, or vice versa, 
at runtime, is not an essential feature for multi-resolution modeling using the toolkit.  In the most 
typical use case for multi-resolution modeling, the model developer would specify the input-
output mappings between components for both the high and low fidelity versions at design time, 
while at runtime the toolkit would perform the appropriate substitutions of one version of the 
model for the other.  By performing this step at design time the model developer creates the “pre-
built library of models” identified above as the first essential element for multi-resolution 
modeling. 

To enable the second of these key elements, the “switching” mechanism to automatically 
substitute one version of the model for another, we must find a way to define and dynamically 
recognize when it is appropriate to adjust the level of resolution of a given PMESII model 
component.  While we did not make any specific enhancements to GRADE during this effort to 
support real-time switching between models of varying levels of fidelity, we have experience 
with using GRADE’s existing capabilities to perform multi-resolution modeling from previous 
work in the air traffic modeling domain.  This work is instructive here because it shows how, by 
virtue of the flexibility of the GRADE programming model, a GRADE model can itself be used 
to control the execution of other GRADE models. 
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For the project “Distributed Air-Ground Negotiation Optimization,” (DAGNEG), we 
modeled the air traffic dynamics of large numbers of aircraft as part of NASA’s inquiry into 
whether a decentralized model of air traffic management would result in fewer airspace conflicts.  
The decision-making and negotiating behavior of pilots and air traffic controllers was modeled 
using human behavior models (HBMs) implemented as GRADE agents.  Because instantiating 
an HBM for each aircraft in the simulation was computationally prohibitive, we used a multi-
resolution approach, in which an HBM for a pilot or controller was instantiated only in cases in 
which flight plans indicated a potential conflict; in non-conflict situations the aircraft followed 
pre-defined flight plans and only position and direction were tracked. 

In this scenario, the logic governing model-switching was clear-cut:  employ a higher-fidelity 
representation (Human Behavior Model) in conflict situations and a low-fidelity representation 
(aircraft position and flight plan) otherwise.  To perform the switching, we encapsulated this 
decision-making logic into another GRADE model, the Management Agent, which consisted of 
three components.  The Management Agent received information on the status of simulation 
entities as input, and instantiated other GRADE agents to serve as high-fidelity HBMs for 
selected entities as appropriate. 

This example demonstrates the ability of GRADE models to control the instantiation of other 
GRADE models.  While this represents a fairly sophisticated use of GRADE that would require 
some skill on the part of a model developer, a similar approach could be used to manage model 
switching for multi-resolution PMESII modeling as well.  A potential direction for future 
development would be to build this simulation analysis and model substitution capability into 
GRADE as one of its native features to make this process simpler and more straightforward for 
the model developer. 
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8. PMESII Model Management Infrastructure 
The final development challenge that we addressed within our PMESII modeling IDE 

development effort focused on the maintenance and distribution of model components and 
aggregates through the community of potential users, which would include not only military 
analysts, but also economists, psychologists, sociologists, cultural anthropologists, etc.  Expertise 
from all of these communities will be critical to the development of complete and accurate 
PMESII models that can be used reliably within the CPE.  As such, the IDE must support the 
straightforward sharing of model components, collaboration in model development, and strict 
model management practices.   

To meet the needs of both individual model developers that require model development 
capabilities, as well as groups of developers that require change tracking and collaboration 
support, we integrated the existing open-source public license version-control technology, 
Subversion, within GRADE, which enables the development of shared libraries of models and 
careful maintenance of model development histories.   

Within GRADE, there are now additional menu-driven tools that allow the model developer 
to “connect to” a Subversion repository maintained on an available network resource.  
Screenshots and a workflow diagram for these tools are shown in Figure 8-1.  Subversion 
provides typical file-based version control features that allow us to construct a database 
repository of versioned GRADE model files (the configuration of a GRADE model is maintained 
in an XML specification file, and these are the versioned instances of models).  We have also 
provided graphical interfaces for the model developer to open GRADE models from the 
connected Subversion repository, and version and save models within the repository, along with 
identifying and descriptive information describing the model contents and capabilities, as shown 
in Figure 8-2.  Finally, we have provided an interface for the model developer to search for 
specific models within the repository, based on key terms in the model description data.  The 
search interface is illustrated in Figure 8-3. 

 



 50 

 

Figure 8-1: Integrated Model Management Tools within GRADE 

 

 Figure 8-2: Managing Model Revision History 
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Figure 8-3: Open From Repository (Search Tab) 

 

8.1 Designing a Model Ontology: Internal GRADE Model Study 

While the search tool provides the model developer the ability to retrieve version-controlled 
GRADE models from the repository based on simple keyword searches of text associated with 
models, we also pursued a more advanced and structured approach to the descriptive “tags” 
associated with these models.  Our initial objective was to provide an “ontology” of model 
descriptors that would allow us to capture the critical features of a given model within a 
searchable structure that could then enable more advanced search and integration of 
heterogeneous model components by the PMESII modeling community.  

In an effort to gain a better appreciation for how an enhanced model property set could be 
used to help developers integrate unfamiliar models, we undertook an informal in-house study.  
The purpose of the study was to identify the most relevant and critical information that could be 
encoded in such a descriptive ontology. In the study, current and former GRADE model 
developers were paired together and assigned a model with which they were unfamiliar.  The 
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study task was to go through the process of understanding and running the model while 
documenting the types of additional information that would have been most useful for 
understanding the model. 

The results from the study are shown in Table 8-1.  The feedback from the study participants 
emphasized a combination of unstructured descriptive text (comments) and low-level model 
attributes that could be derived programmatically by the GRADE IDE for presentation to the 
user, e.g., component input schemas.  There are a number of potential reasons for why a 
consensus on high-level model or domain-specific properties did not emerge.  As the types of 
metadata recommended by study participants are analogous to the free-text comments and 
keyword information that are currently encoded in software documentation formats such as 
Javadoc (http://java.sun.com/j2se/javadoc/), the familiarity of the study group with software 
engineering tools and practice might have led them to look for similar tools and practices to 
support GRADE model development.  Another possible reason could be that the study task may 
not have been sufficiently demanding or the models of sufficient complexity to require more 
sophisticated metadata for model understanding.  

Table 8-1: Model Metadata Parameters Recommended by Study Participants 

Metadata Entered by the Model Developer 
Parameter Name Description 
Top-Level and Module-Level 
Comments 

(free text input) 

Domain Domain of the model (text input) 
Required Services List of the GRADE services required for the model (selected from a list of available 

services) 
Input/Output Components List of the components of the model that can be an input or output node for the model 

(selected from list of all components in the model) 

Metadata Determined Automatically by GRADE 
Parameter Name Description 
Required Java Version E.g., 1.4.2, 1.5, 1.6, etc. 
Component Types Used E.g.,  Belief Networks, Ptolemy, Fuzzy Logic, etc. 
Component Names List of the names of all the components in the model 
Input/Output Format The format of input or output for this model including any schemas defining the format 
Other Metadata E.g., date, author of last modification, version number, etc. 

Ultimately, the most effective way to develop an effective ontology for PMESII model 
sharing will be to work with a population of model developers and analysts that is actively 
working with PMESII models.  We consider this a promising direction for future work. 

http://java.sun.com/j2se/javadoc


 53 

9. Conclusions and Recommendations 
In this section, we summarize our findings in Section 9.1 and offer recommendations for a 

follow-on effort in Section 9.2. 

9.1 Summary 

During the course of our CPE Toolkit development effort, we accomplished the following 
results: 

First, we performed a review of the state of the art in PMESII modeling capabilities to 
develop further insight into the full range of technical requirements to support the predictive 
modeling of PMESII effects as a function of possible DIME actions.  The results of this review 
were used to identify the current and future technical requirements for the proposed PMESII 
modeling IDE.  Our review and requirements analysis was informed by the ongoing work of 
AFRL/RI NO’EM research group, who shared several of their SROM models with our team. 

Second, we reviewed a variety of PMESII modeling tools and chose Ptolemy as the 
focus of our integration effort.  Based on the understanding gained through the requirements 
specification process, we selected, in conjunction with AFRL, the Ptolemy systems dynamics 
modeling framework to be the primary focus of our modeling tool integration effort.  As Ptolemy 
is the platform currently being used by the NO’EM group for PMESII model development, this 
choice had a number of distinct advantages: immediate relevance to the CPE domain; availability 
of existing models for use as examples; Java implementation with a non-restrictive license; 
storage of models using the Modeling Markup Language (MoML), a well-defined XML file 
format with a published Document Type Definition (DTD); and an existing graphical editor 
(Vergil) for creating and maintaining Ptolemy models. 

Third, we researched advanced strategies for model integration in partnership with our 
companion CPE program.  While GRADE provides a base level of support for interoperable 
PMESII modeling by virtue of the fact that it provides a common environment for model 
development and a common protocol (XML) in which they can communicate, there are a number 
of challenges associated with resolving interoperability conflicts between PMESII models 
beyond the data-level.  During this effort we worked with the team of our sister CPE program, 
“Framework for Building and Reasoning with Adaptive and Interoperable PMESII Models,” to 
conduct research into advanced strategies for resolving model interoperability conflicts and 
explore practical approaches for incorporating these strategies into the PMESII modeling toolkit. 
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Fourth, we developed an enhanced suite of PMESII model verification and validation 
tools.  GRADE provides a suite of model verification and validation capabilities that can be 
applied by the model developer to analyze model behavior, both at the individual component 
level and at the integrated model level, to ensure that models behave as intended by the 
developer.  We enhanced these features by incorporating the open-source testing framework 
XmlUnit for model and sub-model verification, and by developing a Graphing Component to 
allow the model developer to visualize model output for both verification and validation.  

Fifth, we developed an enhanced PMESII model analysis infrastructure.  An end goal of 
the CPE program is to provide a modeling environment that will enable both the causal and 
diagnostic analysis of the complex operational environment of modern warfare, so that 
commanders can effectively predict the potential effects of candidate DIME actions or generate 
potential DIME actions that are most likely to generate some set of desired PMESII effects.  In 
support of this objective, we created an Analyst’s Interface allowing the model analyst to 
perform model validation and analysis at a higher levels of abstraction; we developed a Graphing 
Component, as indicated above, to allow the model developer to visualize model-generated data 
within the PMESII modeling IDE; and we developed a framework for advanced analytical 
techniques under HASMAT, a related program for simulation-based model analysis. 

 Sixth, we developed strategies for supporting multi-resolution modeling.  It is rarely the 
case that all potential behaviors in a given scenario must be represented at high fidelity levels.  
Rather, only those behaviors that are likely to have the most impact on a PMESII outcome of 
interest need to be modeled, and likely only a subset of them need to be modeled at high levels of 
detail or fidelity, at different times over the course of a scenario.  What this calls for is a 
mechanism by which models of varying fidelity can be “switched” in and out of the larger 
PMESII model environment.  During this effort we explored the use of GRADE models as a 
means of controlling this switching process for the PMESII domain, as informed by our previous 
work on multi-resolution modeling in other domains. 

Finally, we developed a model management infrastructure for the PMESII modeling 
toolkit.  The development of practical PMESII models that will accurately reflect the complex 
operational environments of urban and national warfare will require model inputs and expertise 
from a wide range of disciplines, including economics, political science, sociology, psychology, 
and cultural anthropology.  To support the development of such multi-disciplinary models our 
toolkit must support development and adaptation by multiple users, including maintenance of 
individual models and model libraries.  To meet the needs of both individual model developers 
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that require model development capabilities, as well as groups of developers that require change 
tracking and collaboration support, we integrated the existing open-source public license version 
control technology Subversion within GRADE, which enables the development of shared 
libraries of models and careful maintenance of model development histories.   

9.2 Recommendations for Future Work 

Potential directions for future work include the following: 

• Integration of additional PMESII modeling technologies.  In particular the integration 
of our in-house tools OCCAM, for social network modeling and concept graph 
development, and PRISM, for reasoning using situation theory, could prove valuable 
for modeling and relatively straightforward from a software engineering perspective. 

• Implementation of advanced model incompatibility resolution tools.  During their 
research effort, our companion CPE program explored a number of strategies that 
could be employed to support the model developer in integrating heterogeneous 
models with different types of model incompatibilities.  A potential avenue for future 
work would be to select one or more of these approaches for implementation and 
integration into the toolkit. 

• Advanced model analysis tools.  Currently rudimentary support for Monte Carlo 
simulation runs and large-scale data capture is provided by the HASMAT toolkit.  In 
future work these analytical tools could be extended to provide a richer interface for 
specifying model initialization parameters and support for diagnostic reasoning using 
sensitivity analysis. 

• Built-in support for model-switching in multi-resolution modeling scenarios.  
Currently model-switching logic can be defined by using an additional GRADE 
agent; by providing this functionality as a built-in feature of GRADE this process 
could be made easier and more straightforward for the model developer. 

• Metadata for model management.  In partnership with a group of PMESII model 
developers and analysts, we would determine a set of descriptive parameters to apply 
to models to support model integration and re-use.  Based on the results of this study 
we would then develop tools in the PMESII model management infrastructure to 
leverage these parameters. 
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While any of the areas listed would prove to be valuable directions for future work, the most 
essential avenue would be to perform a study in partnership with a group of model analysts and 
subject matter experts to determine the effectiveness of the toolkit as it now stands for creating 
useful and meaningful PMESII models. Such a study would inform the future development of all 
aspects of the tool, including additional modeling technologies, advanced analytical capabilities, 
metadata for model management, etc.  At this point in the development of the toolkit it is 
essential to refine its capabilities in partnership with the potential user community to maximize 
the benefit to that community. 
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