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(RSI) under the Office of Naval Research (ONR) sponsored project titled A Software Hub 
for High Assurance Model-Driven Development and Analysis.   

 

Phase I Technical Team 
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• Steve Sims (CTO) 
• David Hansel (Lead Reactis developer) 
• Dan DuVarney (Lead Reactis for C developer) 

 

Introduction 
 
Embedded software applications are rapidly growing both in number and complexity. 
Developing such software poses significant challenges to software and system engineers. 
One appealing approach, Model-Based Design (MBD), uses executable models to drive 
the design, specification, implementation, and validation phases of a system-development 
project. Growing numbers of system and software engineers are using MBD in military, 
aerospace, automotive, medical-device and other embedded applications, as it enables the 
iterative development of precise specifications and designs while at the same time 
supporting the integral involvement of application experts in the software-development 
aspects of implementation. Developers are further leveraging their modeling efforts 
through the use of code generators and model-based testing and validation tools to 
automate other activities in the system life cycle. A primary, overarching benefit of the 
MBD approach is that it promotes the early detection of design errors and safety 
violations. 
 
In the automotive and aerospace industries, the most widely used modeling notation for 
MBD is the Simulink® /Stateflow®1  language offered by The MathWorks. Other 
notations used for MBD include the Unified Modeling Language (UML), MATRIXx, the 
variant of Statecharts supported by I-Logix, SDL, Esterel, Lustre, and others. 

                                                 
1 Simulink and Stateflow are registered trademarks of The MathWorks, Inc. 
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In parallel with the commercial development of modeling languages and simulation tools, 
the Computer-Science research community has developed an array of formal-verification 
tools, including model checkers, theorem provers, and consistency checkers, and 
advanced deployment environments. These tools analyze models at a level of 
mathematically rigor that traditional, testing-based V&V approaches cannot approach; 
the level of confidence they can provide in models is therefore much higher. The 
integration of such analysis tools into MBD processes has the potential to dramatically 
improve the quality of embedded software applications while at the same reducing the 
costs associated with deploying such applications. A major obstacle to such an 
integration is the fact that each verification tool employs a different modeling notation 
and they typically do not support those notations used in commercial MBD settings. 
 
The work undertaken in this Phase I project aimed investigate the feasibility of a software 
hub as a remedy this lack of interoperability. The envisioned framework, shown in Figure 
1, would consist of a general purpose, intermediate specification language that will serve 
as the means of communication among various tools. The hub will include translators 
from various commercial modeling notations such as Simulink / Stateflow and UML into 
the hub language, as well as translators from the hub language to various analysis 
engines. The hub also offers an opportunity to develop other tool support for enhancing 
development processes, such efficient code generators that would eliminate the need for 
manual generation of source code implementations from models and leverage advanced 
deployment environments.  RSI will leverage its Reactis®2 testing and validation 
package for Simulink/Stateflow models in the development of the hub. 
 
For this Phase I project, we implemented a prototype translator from a subset of the 
widely used Simulink / Stateflow notation of The MathWorks into the SCR Abstract 
Language (SAL), the input notation of the Salsa [BS00] invariant checker.   The design, 
development, debugging, and optimization of the translator proved to be a very useful 
vehicle for exploring issues related to the design of a hub language.  The successful 
application of the translator to a test bed of example models and subsequent analysis of 
the generated output with Salsa indicates that the appropriately designed hub and hub 
language and might facilitate much greater tool interoperability than currently exists. 
 

                                                 
2 Reactis is a registered trademark of Reactive Systems, Inc. 
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Background 
 
Simulink / Stateflow.  Simulink / Stateflow is the most widely used modeling language 
for embedded applications, according to market data collected by the Venture 
Development Corporation [BL03, LB03]; it is used in many industries, including 
automotive, aerospace/military, telecommunications, and process control.  The Simulink / 
Stateflow language also shares many features with other modeling languages.  For 
example, the notation includes a facility for defining hierarchical state machines that has 
much in common with the UML state machine notation. It also includes features for 
defining architectural and data-flow components of a system that one may find in UML-
Real Time and SDL. Thus, while for commercial reasons this project will focus on 
Simulink/Stateflow, the lessons learned will be applicable to other modeling languages 
for MBD. 
 

Reactis and MWI. Reactis is a testing and validation environment for Simulink / 
Stateflow models. The tool was developed by Reactive Systems using SBIR funding 
from the National Science Foundation; the first release was in 2002. Reactis users can 
generate test data from Simulink / Stateflow models and also check whether models 
satisfy user-defined functional requirements.  Internally, Reactis works by translating 
Simulink / Stateflow models into an intermediate notation, MathWorks Intermediate 
language (MWI), developed by Reactive Systems. The motivation for this notation was 
efficiency-related; processing it was much faster than repeatedly re-analyzing the 
Simulink / Stateflow file format. Subsequently, certain RSI customers have developed an 

Figure 1: The envisioned software hub framework aims to remedy the lack 
of interoperability between commercial MBD languages and advanced 
verification and deployment tools. 
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interest in MWI as a mechanism for interoperation between the Simulink / Stateflow tool 
set and model-checking tools. In 2005, a team at the University of Minnesota and 
Rockwell Collins implemented a translator for converting a subset of MWI into an input 
format for the popular SMV model checker [BCM+92]. 
 
Salsa. Salsa is an invariant checker for models specified in the Software Cost Reduction 
Abstract Language (SAL), which is very similar to the Secure Operations Language 
(SOL) [Bha02].  To establish a formula as an invariant, Salsa carries out an induction 
proof that utilizes tightly integrated decision procedures (currently a combination of 
binary-decision-diagram algorithms and a constraint solver for integer linear arithmetic) 
for discharging the verification conditions.  Unlike other inductive provers, Salsa works 
in a totally automatic fashion. Its user interface mimics that of a model checker: given a 
formula and a model, Salsa either establishes the formula as an invariant of the model or 
provides a counter example. The use of induction enables Salsa to combat the state-
explosion problem that plagues model checkers: it can handle specifications whose state 
spaces are too large for model checkers to analyze. Also, unlike general-purpose theorem 
provers, Salsa concentrates on a single task and gains efficiency by employing a set of 
optimized heuristics. 

 

Implementation of a Prototype Translator 
 
As a vehicle for studying the feasibility of a software hub, we focused on one use case of 
such a hub, namely the application of Salsa to Simulink/Stateflow models.  We anticipate 
that the lessons learned from this slice of the hub approach will be applicable to both 
other MBD languages (such as UML) and other back end engines.  The scope of the 
Phase I work is illustrated in Figure 2. 
 

 
Reactis reads an MDL file (the file format in which The MathWorks tool suite stores 
Simulink/Stateflow models) and then outputs a MWI file storing an intermediate 

Reactis 
Reactis 
Software 

Hub 

Reactis Hub 
Language 
(RHL) 

Simulink/ 
Stateflow 

SAL Salsa 

• Most widely used 
language in automotive, 
aerospace. 
• Lessons learned will be 
applicable to other 
languages (e.g. UML) 

• Invariant 
checker 
• User-interface of 
model checker 
(easy to use) 
• Analysis engine 
is automated 
theorem prover 
(handles big 
models) 

Figure 2: The Phase I project developed a Simulink/Stateflow-to-SAL translator to 
investigate the feasibility of a hub language as a means of communication among 
different tools. 
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representation of the model.  The work undertaken in this Phase I project yielded a 
translator mwi2sal which reads an MWI file, transforms the model encoded in that file, 
and outputs a SAL file suitable for processing by Salsa.  This yields the usage scenario, 
shown in Figure 3, for applying Salsa to a Simulink/Stateflow model cruise.mdl. 

 
 
MWI files include two main sections, one capturing the Simulink portion of a model and 
one capturing the Stateflow portion.  A different translation strategy was required for the 
two sections.  We now discuss some of the issues encountered when developing the 
translation strategy for each component. 
In the following discussion we denote the Simulink portion of MWI as MWI-SL and the 
Stateflow portion as MWI-SF. 
 
Simulink Section of MWI 
 
Similarities with SAL 
 

A number of similarities between MWI-SL and SAL facilitate translation.   
 
Both languages incorporate hierarchical model decomposition.  In MWI-SL a model 
consists of a set of subsystems each of which may contain of a set of child subsystems.  
SAL includes the same type of model structuring mechanism, although the SAL 
terminology denotes the components modules instead of subsystems.   mwi2sal translates 
each MWI-SL subsystem to a SAL module. 
Both MWI-SL subsystems and SAL modules define component behavior using three sets 
of variables: inports, outports, and local variables in the case of MWI-SL and monitored, 
controlled, and internal variables in the case of SAL.   The two languages also define how 

cruise.mdl 

 
Salsa 

MathWorks 
simulation 

and modeling 
environment 

 
Reactis 

cruise.sal 

cruise.mwi 

 
mwi2sal 
Translator 

Developed During Phase I 

Figure 3: The mwi2sal translator (along with Reactis) provides the means for 
applying Salsa to Simulink/Stateflow models.  A prototype of this technology has 
been developed during the project. 
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each variable is updated during a simulation step in a similar fashion, namely, via a 
definition consisting of an expression that specifies how the variable is updated.  mwi2sal 
simply translates variables and definitions from the source language to the corresponding 
equivalent in the target language.  
 
The expression notations of the two languages have both similarities and differences.  
Similar constructs include standard arithmetic and logical operators as well as if-then-else 
statements.  Differences are discussed in the following section. 
 
Another way in which MWI-SL and SAL are alike is that they both employ a 
synchronous semantics.  That is a model executes by reading its inputs and then 
computing a new value for each variable before accepting a new set of inputs.  Both 
languages also compute the variable update order based on the dataflow among variable 
definitions.  
 
Differences with SAL 
 
While the similarities enumerated above facilitate translation, a number of differences in 
the languages complicate the task.  Some of these have already been addressed in the 
prototype translator, and others have been deferred until a possible Phase II project.  We 
now discuss some of these differences. 
 
The expression language used to construct variable definitions of MWI-SL has many 
more operators than that of SAL.  Some of these may be transformed via simple 
operations to SAL primitives.  For example, the SAL has no exclusive or operator, 
therefore A xor B is translated to (A or B) and not (A and B).  Other MWI-SL constructs 
can simply be discarded by the translator since they have no effect on verification.  For 
example, MWI-SL includes coverage tags that Reactis uses to track which parts of a 
model have executed.  These are not needed by Salsa.  Other constructs are more 
complicated to translate.  For example, when the translator encounters an array it 
generates a SAL variable for each element of the array and transforms all indexing of the 
array to be references to the appropriate variable. 
 
Some of the other constructs whose implementation in the translator was deferred until 
Phase II are the following. 

• Floating point values.  Single and double precision floating point types are by far 
the most commonly used types in industrial Simulink/Stateflow models.  
Therefore extension of the translator and Salsa to handle these will be necessary 
for commercial viability of the software hub.  The current Salsa invariant 
checking technique could be extended to handle real numbers during Phase II. 

• Fixed-point types.  This technique of representing real numbers using integers 
along the appropriate scaling is often used when Simulink/Stateflow models will 
ultimately be transformed into C code  that will run on a target microprocessor 
that lacks a floating point unit.  Since all underlying operations are performed on 
integers, these types could be handled by the existing Salsa along with extensions 
to mwi2sal. 
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• Multi-rate models.  The Simulink/Stateflow language allows different parts of a 
model to execute at different time intervals.  For example, one part might execute 
every second while another executes only every 5 seconds.  One possible 
approach to handling multi-rate models would be for mwi2sal to generate the 
appropriate scheduling information as a part of the SAL it outputs for a model.   If 
such that approach yields models too complex for analysis, an alternative 
approach would be to analyze the parts of the model that execute at different rates 
independently. 

• Loops.  Simulink includes several types of loop blocks and looping behavior can 
easily be modeled in Stateflow.   

• Triggered subsystems.  Non-triggered subsystems and SAL modules include 
variables that are updated according to an ordering inferred from the dataflow of 
the variable definitions.  In contrast MWI-SL triggered subsystems (and all 
variables contained therein) only executed then a triggering condition is satisfied.   

• Global variables. 
• Exceptions. 
• Math operators.  sine, cosine, … 
 

 
Stateflow Section of MWI 
 
Stateflow charts are a graphical representation of hierarchical finite-state automata 
extended with variables, functions, event broadcasting, and concurrency. Stateflow charts 
are based on Statecharts [HP98,Har87].  For more details on Stateflow, see Subsection 
“Stateflow” of Section “Reactis Hub Language” below.  MWI includes a component 
(denoted MWI-SF here) for capturing the specification of Stateflow diagrams.  This 
portion of MWI is more dissimilar from SAL than the Simulink portion discussed above, 
thereby complicating the mwi2sal implementation. 
 
The general strategy we followed to translate MWI-SF is as follows.  For each state 
containing child states, a SAL variable of enumerated type is generated.  The type 
includes one value for each child state.  The definition of the behavior each state consists 
of an if statement with a guard corresponding to each transition from or to the state or 
within the state (between child states).  Additionally updates to Stateflow variables are 
supported when they occur within state entry, during, or exit actions. 
 
Many Stateflow features have been deferred until Phase II for implementation in 
mwi2sal.  These include:  condition and transition actions, events, junctions, function 
states, multiple assignments to variables, local variables in states, temporary variables, 
non-scalar values.  Additionally, output ports must have initial values. 
 

 

User Interface 
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The mwi2sal translator currently has a command line interface.  The user launches the 
tool by giving a MWI filename as an argument.  If an optional SAL filename argument is 
also given, then the translated version of the model will be written to that file.  If no 
output file is specified the SAL output is written to standard out.  The other supported 
arguments are described below in Figure 4. 

 
 

Example Models for Testing mwi2sal 
 
The following small test bed of Simulink/Stateflow models was assembled to test the 
translator. 

• auto_pilot_orig.  A SAL model of a simple auto pilot developed by Salsa co-
creator Ramesh Bharadwaj. 

• auto_pilot.  For the purpose of testing mwi2sal we reverse-engineered a 
Simulink/Stateflow model from auto_pilot_orig. 

• gasStation.  A slightly modified example from the Reactis distribution that 
models the control software for a gas station pump control system. 

• Cruise Control.  Three variations of a simple cruise control model developed at 
RSI and distributed with Reactis.  In each case all floating point values were 
replaced by integer values suitably scaled.  One non-linear constraint was 
removed. 

o cruiseNoPlant.  The feedback loop linking the throttle output to speed 
was removed. 

o cruise_int_sl.  A Simulink-only version. 
o cruise_int.  Includes both Simulink and Stateflow. 

Figure 4: mwi2sal currently has a command line interface. 
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Table 1:  The number of BDD variables and atomic integer 
constraints as reported by Salsa for each example model. 

 

Example 
# BDD 

Variables 

# atomic  

integer 

constraints 
auto_pilot_orig 50 27 

auto_pilot 444 123 

gasStation 260 145 
cruiseNoPlant 186 115 
cruise_int_sl 269 200 
cruise_int 242 167 

 
 

Debugging mwi2sal 
 
This section discusses our efforts to ensure correct operation of the translator.  The 
examples described above were used in these efforts. 
 
The first step in the debugging process was to check that the generated SAL code was 
syntactically correct.  This was achieved through by repeatedly running Salsa, inspecting 
parse errors and correcting mwi2sal. 
 
After removing syntax errors, we turned our attention to validating that the SAL output 
was semantically equivalent to the Simulink/Stateflow model from which it was 
generated.  For this task we extended Salsim (the SAL simulator) to execute test suites 
generated by Reactis and exported as CSV (comma separated value) files.   Using this 
capability we did the following steps for each example in the test bed.  

1. Use Reactis to generate test suite foo.rst (as a byproduct foo.mwi is created) 
2. Export foo.rst as foo.csv 
3. mwi2sal foo.mwi foo.sal 
4. Use Salsim to execute tests in foo.csv on foo.sal.  Any differences between the 

outputs produced by SAL and those produced by the Simulink/Stateflow model 
are flagged. 

5. Based on any differences correct mwi2sal 

 

Optimizing the Tool Chain 
 
After debugging mwi2sal, we had the tool chain in place to apply Salsa to 
Simulink/Stateflow models.   Unfortunately, our initial Salsa runs were not completely 
successful.  Many checks took excessive amounts of time to run, while others never 
completed due to exhausted memory.  In this section we describe the steps we took to 
improve performance. 
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Optimization 1: Include User Constraints on Top-Level Inports 
 
Reactis includes a facility that allows users to limit the set of values that may arrive at a 
top-level input port during simulation.  A simple type editor allows for the specification 
of ranges, enumerated sets of values, and limits on how much a value may change from 
one step to the next.  SAL also includes a similar mechanism for specifying 
environmental assumptions.  Extending mwi2sal to translate these constraints specified 
within Reactis was straightforward and led to improved performance of one the test 
models. 
 
Optimization 2: Precompute Infeasible Integer Constraints 
 
Salsa offers a –f flag that causes the tool to precompute and cache sets of infeasible 
integer constraints.  The flag accepts a single argument that may be 0, 2, or 3 to indicate 
the size of the collections of constraints to be checked for feasibility during a 
preprocessing phase.  We found that changing this flag from the default value of 0 to 2 
worked best for the examples we tested.  This configuration causes Salsa to do the 
following prior to starting an invariant check. 
For each pair of atomic integer constraints A and B in the model, check whether A and B 
is satisfiable; if not, any conjunction Salsa tries to solve during the subsequent invariant 
check that includes these constraints will be known to be unsatisfiable (and therefore the 
conjunction need not be checked for satisfiability). 
 
Optimization 3: Alias Elimination 
 
By studying the SAL output of mwi2sal as well as the output statistics of Salsa we noted 
that the translator was generating a substantial number of variable aliases (variable 
definitions of the form “var x = y”).  While aliases may seem harmless, they cause Salsa 
to generate extra BDD variables and integer constraints that cause its invariant checking 
engine to get bogged down and perform poorly. 
 
Our first idea for resolving this issue was to modify mwi2sal to produce fewer aliases.  
Unfortunately, we determined that this approach would not address the bulk of the aliases 
produced by mwi2sal.   The reason for this was that, because of the way MWI “wires 
together” different subsystems, many aliases have the form x = B.y (where y is an output 
of subsystem B).  In other words the aliases cross subsystem boundaries.  Since mwi2sal 
generates a SAL module for each Simulink subsystem, it is not possible to eliminate 
these cross-module aliases during translation.  One alternative considered was to have 
mwi2sal flatten the Simulink model and generate a single SAL module.  We rejected this 
approach because we predict the utility of being able to perform Salsa checks on all 
modules within a model instead of only the top-level module. 
 
The approach we took for removing aliases was to modify Salsa itself to perform this 
task.  This enhancement required a substantial programming effort.  Since Salsa 
combines modules as it instantiates the model, a simple syntactic transformation was not 
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feasible (for the same reason it could not be done in mwi2sal, namely cross-module 
aliases).  Instead it was necessary to implement a transformation of intermediate data 
structures to eliminate the aliases. 
 

 
Figure 5: The alias elimination optimization eliminates causes a  
decrease in both BDD variables and integer constraints. 

 
As can be seen in the data below, this optimization yielded the largest benefits by far 
(approaching factor 10 improvement in several cases).   
 
Optimization 4: Port Salsa to New Compiler 
 
The final optimization that we describe was to port Salsa to the MLton Standard ML 
compiler (www.mlton.org).   This relatively new compiler takes a novel approach to 
compiling functional programs, namely whole program optimization. 
Our experiments noted a roughly factor 3 improvement in runtime performance by 
porting from the previously used SML/NJ compiler to MLton.   In addition to 
performance, MLton has several additional advantages.  It generates standalone 
executables that eliminate the need for launch scripts that can be a challenge to maintain 
on the Windows platform.  Salsa was originally developed on a Unix/Linux platform 
where such scripts are less problematic.  The porting effort required some slight 
reorganizations of the code base, some updates to reflect changes in libraries, the 
elimination of non-standard features used by the SML/NJ compiler, and the development 
of a set of .mlb files that define how a program should be compiled by MLton.  After the 
successful port, Salsa now compiles and runs under both Linux and the Cygwin 
environment on Windows. 
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Performance Statistics 
 
To measure the effectiveness of our optimization strategies we performed a set of Salsa 
runs.  Below are graphs showing the performance figures.  Results of performing 
consistency checks for disjointness (no nondeterminism) and coverage (no missing cases) 
are shown for each example model.  In the graphs, each bar shows the run time for Salsa 
to form the check indicated in the title.  The different partitions within each bar shows the 
breakdown of the different tasks associated with the check: 

• rewrite – time transforming SAL expressions into the internal representations 
used by the invariant checker. 

• int-solv – time solving sets of integer constraints. 
• bdd – time performing binary decision diagram (BDD) operations. 
• overhead – time performing all other tasks. 

 
Each bar within a graph represents a run using a different set of the optimizations 
described above.  The leftmost bar shows the case when no optimizations are used.  Each 
bar is labeled by a set of 2-character tags that indicate which optimizations were used.   

• The tag beginning with A indicates the number of constraints for top-level input 
ports that were used.   

• The tag beginning with F indicates which –f argument was used. 
• The tag beginning with E indicates whether aliases were eliminated.  Zero means 

no, one means yes. 
• The NJ tag indicates that the SML/NJ compiler was used to compile Salsa.  When 

NJ is not present, MLton was used. 
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Reactis Hub Language 
 
Our experience building and tuning the mwi2sal translator was a useful vehicle for 
investigating the feasibility of developing a software hub to offer better interoperability 
between commercial MBD tools and advanced verification and deployment tools.  Based 
on those experiences we have also explored many of the issues related to the design of  
the Reactis Hub Language (RHL), an intermediate representation whose purpose is to 
represent the properties of Simulink/Stateflow and UML models which are needed for 
verification and validation by both Salsa and Reactis.  In this section, an overview of the 
two input languages and output languages is presented, followed by the design of RHL. 
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Simulink/Stateflow 

Simulink and Stateflow are integrated modeling languages developed by The MathWorks. 
Simulink and Stateflow are aimed towards the design and simulation of dynamic systems, 
such as embedded control systems. This section contains a brief overview of Simulink 
and Stateflow.  For complete details, see [Mat06a,Mat06b]. 

Simulink 

Simulink is a graphical modeling and simulation language. A Simulink model is 
graphically represented by a block diagram, which is composed of a hierarchical 
collection of blocks interconnected by signal-carrying directional arcs called lines. Blocks 
are typically computational units through which data flows, entering from a set of fixed 
input ports and exiting from one or more output ports (every model must contain at least 
one signal-generating source block and signal-terminating sink block in order to be 
useful). In addition to the input signals, blocks can use previously stored values (called 
the state of the block) to compute the next output. A broad variety of data types are 
available for stored values, including numeric types, strings, arrays, and records. Signals, 
on the other hand, are restricted to numeric types only. A typical Simulink model is 
displayed in Figure 5. 
 

 
Figure 5: A Simulink Model. 

 
 At the lowest abstraction level of a block diagram are atomic blocks, which perform 
mathematical operations such as integer arithmetic, Boolean functions and signal routing. 
More complex custom blocks can be built by interconnecting previously-defined blocks 
with input and output ports and encapsulating the result.  Custom blocks may also be 
created by encapsulating Stateflow charts, which perform computations using an 
extended finite state machine paradigm, or by encapsulating C code, which is typically 
used to improve simulation performance. 
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Simulink supports both discrete- and continuous-state models. Each block has either no 
state (e.g., an add block), a discrete state (e.g., a counter block) or a continuous state (e.g., 
an integration block). Models containing one or more continuous-state blocks can be 
treated as systems of differential equations and solved using an iterative numerical 
approximation method such as the 4th-order Runge-Kutta method. Systems consisting of 
only discrete-state blocks are iteratively simulated by time sampling. The user specifies a 
sample  time for each block, and then the sample time for a model is the greatest common 
divisor of the block sample times. A simulation can either use fixed-size steps, in which 
case the model’s outputs are computed for every multiple of the sample time, or variable-
sized steps can be used, in which case the simulator pre-determines a set of multiples of 
the sample time when the model generates new outputs, and then computes the model 
outputs for those times only.  
 
Discrete Simulink simulations have a detailed, albeit informally-defined semantics. 
Before simulation begins, the model undergoes static analysis and compilation. First, the 
types and other attributes of all blocks and signals are determined, and some 
optimizations are performed. Next, the model is flattened. Flattening eliminates virtual 
subsystems by replacing them with their internal components, until the model consists 
entirely of triggered subsystems and atomic blocks. After flattening, the execution order 
(called the sorted order in Simulink terminology) of the remaining blocks is determined. 
The sorted order is based on the data-flow dependencies between blocks, so that if an 
output of block X is connected to an input of block Y, then X appears before Y in the 
sorted order. In the case of a loop, runtime algebraic methods are used at each simulation 
step to determine the output values for the blocks in the loop.  
 
The Simulink documentation describes the semantics informally; ambiguities are 
resolved by consulting the Mathworks’ Simulink implementation, which serves as a 
reference interpreter. 

Stateflow 

Stateflow charts are a graphical representation of hierarchical finite-state automata 
extended with variables, functions, event broadcasting, and concurrency. Stateflow charts 
are based on Statecharts [HP98,Har87].  Figure 6 shows a typical Stateflow chart. The 
primary components of a Stateflow chart are states (the rectangles with rounded edges in 
Fig. 1) which represent the possible execution points of a Stateflow chart, and transitions 
(the directed arcs in Fig. 1), which control changes in state.  
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States may contain one or more substates. States are labeled with a name (unique among 
all the immediate sibling states) plus a set of actions to perform. The initial state of a 
collection of states is distinguished by a transition with no source which terminates at the 
initial state. When a state is activated, its initial state is also activated, except under two 
conditions. (1) If the incoming transition terminates at or within a substate X, then X is 
activated regardless of the initial state. (2) If the state is annotated with a history junction, 
the most recently active substate is activated instead of the initial state. 
 
State actions are grouped into five categories. Entry actions are performed when a state 
first becomes active. During actions performed after each global clock tick that the state 
remains active. Exit actions are performed when a state a deactivated. On actions define 
guarded actions to be taken when the state is active and a named event is broadcast. So-
called bind actions aren’t really actions, but instead list variables which can only be 
modified within the state, and events which can only be broadcast by the state. The set of 
possible actions include assignments, complex expressions (including function calls), and 
event broadcasts. 
 
A transition is a graph composed from of one or more directed arcs called transition 
segments. Transition segments either flow into a connective junction, which will have one 
or more outgoing transition segments, or they may flow into a state, which terminates 
the transition. In addition, each transition segment can have a label which consists of a 
guard and an action.  Connective junctions are used to modify the flow of control 
between states, and can act as merge hubs, allowing multiple incoming transitions to 
share the same ending transition segments. Connective junctions can also be used to split 
incoming transition segments into multiple outgoing transition segments, in which case 

the junction acts as a conditional branch3. Note that connective junctions are not strictly 
necessary, but serve the purpose of making charts easier to understand by increasing the 

                                                 
3 Stateflow does not allow non-determinism, and uses a well-defined method for selecting a single 
transition in cases where multiple transitions are simultaneously possible. 

Figure 6: A Stateflow chart. 
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visibility of branching and by allowing common transition behaviors to be captured. 
 

 
 
 
Transition segment labels consist of an event trigger, a condition, a condition action, and 
a transition action. The (optional) event trigger gives the name of one or more events  
which must occur (i.e., be broadcast by some state). The condition is a Boolean 
expression which must be true. Together, the event trigger and the condition act as guard 
on the transition. Both must be simultaneously true for the transition segment to be 
enabled. The transition action is an action which occurs whenever the transition is taken, 
while the condition action is an action which is taken whenever the condition is evaluated 
to true regardless of whether or not the transition is actually taken. 
 
Concurrency is supported in Stateflow via a special type of state called an and-state.  An 
and-state effectively defines a sub-process of its parent state. When a state directly 
containing and-states is activated, all the and-states become simultaneously active. Each 
and-state will typically contain a sequential sub-state machine. These sub-machines then 
execute in a limited form of parallelism, where the order of execution between the and-
states is deterministically defined by the Stateflow semantics. Figure 7 shows an and-
state with two parallel sub-states (the dashed border indicates an and-state). In Stateflow 
terminology, a “regular” state (i.e., one with substates that execute sequentially) is called 
an or-state (e.g., in Figure 7, Proc1 and Proc1 are or-states). 
 
Stateflow events may represent inputs from the external environment (which is probably 
a Simulink model), or may be generated by actions. An action within an and-state can 
generate a broadcast event, which is sent to all siblings of the and-state (i.e., all the 
processes which started at the same time as the current processes), or it may produce a 
directed event, which is sent to a named state.  
 
If the state which receives an event is not active, nothing happens. If the state is active, 
the state is first checked to see if it triggers a transition exiting directly from the state. If 
such a transition is found, the current state is exited (and any exit actions are executed), 
after which the actions associated with the transition are executed, and finally the 
destination state of the transition is entered. Determining whether a transition is eligible 
to be executed is complicated because of the possibility of junctions. The Stateflow rules 
specify a canonical order for searching the digraph of transition segments to find a state-

Figure 7: Stateflow chart with and-states and transition junctions. 
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to-state transition path. The search is short-circuited, i.e., the first such path found is 
taken, and other possible paths ignored. This eliminates non-determinism in cases where 
multiple transitions are simultaneously possible. 
 
A final variant of event is the function call event. Function call events are similar to a 
function call with no return value (although the return value(s) can be passed via other 
means). The Simulink simulator allows recursive function call events, although other 
Simulink tools, such as the HDL code generator, reject recursive models. 
 
This concludes the overview of Stateflow/Simulink. It should be emphasized once again 
that many details were omitted for the sake of brevity. See the reference manuals 
[Mat06a, Mat06b] for the full details. 
 

UML 

UML (Unified Modeling Language) is a modeling language designed to visually capture 
the design of a software system. UML provides the system designer with a dozen or so 
diagrams, each of which is used to reflect a particular aspect of a system’s design. UML 
diagrams can be partitioned into four main areas (structural, dynamic, physical, and 
model-management). Of these, only the first two are particularly relevant to the design of 
RHL. In the following sections, an overview of the structural and physical UML 
components is presented. A much more detailed presentation can be found in the UML 
reference manual [RJB04]. 

 

 

 
Figure 8. A UML communications diagram (from UML Reference Manual, pg. 107) 
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Object Orientation 

UML is intended to support object oriented design (OOD). The essential features 
required by OOD are objects, classes, inheritance, and dynamic message dispatching. 
An object encapsulates state. Objects are similar to records whose fields cannot be 
directly accessed, but are instead hidden behind an interface of function which 
manipulate the field values (in OO terminology, these functions are called methods). 
A method is invoked in response to a message received from another object. The method 
may do any or all of the following: modify the state of the object, send messages to other 
objects, or compute a value (in classic OO, all values are objects) that is returned to the 
calling object. 
 
A class is similar to a type. It provides one or more ways to construct objects of the class, 
what methods are available for those objects, and the type signatures of the methods. 
Classes are organized into a tree, typically with a universal class such as Object at the 
root. When a class is a child of another class within this tree, it is said to be a subclass of 
its ancestor classes (which are called superclasses). A subclass inherits from its 
superclass, which means that any method defined in the superclass is also defined in the 
subclass. The subclass may modify the behavior of any inherited methods, but the type 
signature must remain compatible with the type of the method defined in the superclass. 
 
The power of inheritance comes from the combination of sub-typing and dynamic 
message dispatching. In any OO system, all subclasses of a class are also subtypes of the 
class. For example, assume that a class Figure has two subclasses, Circle and Square. 
Figure defines a method draw(x, y), which draws a copy of itself at location (x ,y). A 
designer building a Screen class need not know anything about Circle or Square in order 
to display Figures on a Screen object. The designer can simply maintain a collection of 
Figures and send the draw message to each Figure in the container in order to paint the 
entire Screen. Since any subclass of Figure is also a subtype of Figure, both Circle 
objects and Square objects, as well as any instances of any other Figure subclass can be 
stored within a Screen object without modifying the code. When the message draw is 
sent to a Figure object, the message is dynamically dispatched to the deepest 
implementation of draw within the class tree, i.e., if the Figure object was originally 
constructed as a Square and then cast to type Figure, then the method Square.draw will 
be invoked, and not the method Figure.draw. Dynamic dispatching is commonly 
implemented by adding an extra pointer to each object which points to an array of 
pointers to functions which implement the methods defined for the object. 

Structural Diagrams 

UML structural views capture the static structure of a software system. The static views 
are particularly oriented towards object-oriented designs, although non-object-oriented 
systems can also be represented. There are five standard structural diagrams provided by 
UML. These are: (a) class diagrams, which depict relationships such as inheritance 
between classes, (b) internal structure diagrams, which depict internal components of a 
class and the interfaces provided-by and required-by the class, (c) collaboration 
diagrams, which depict the interactions between objects that occur when a particular 
service is performed by the system, (d) component diagrams, which show the internal 
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structure of system modules in a manner similar to class diagrams, and (e) use case 
diagrams, which include both system components and external agents and depict 
communication patterns during a specific usage of the system. 

Dynamic Diagrams 

UML Dynamic diagrams capture the runtime behavior of a software system. The 
dynamic diagrams are: (a) state machine diagrams, which specify the behavior within 
objects using a notation similar to Stateflow, (b) activity diagrams, which depict 
communication and concurrency between the activities performed by a system using a 
notation reminiscent of Petri-nets, (c) sequence diagrams, which show communication 
patterns between potentially concurrent objects along a time axis and  (in cases where 
asynchronous messages are sent) impose a partial order on the actions performed by the 
objects involved, and (d) communication diagrams, which depict communication patterns 
between objects without a time axis, instead relying upon enumerated tags to indicate the 
order of message passing. Communication diagrams are the closest analog to Simulink 
models in the UML. 
 
UML communications diagrams have several components. The first are objects, which 
appear as boxes labeled with the class-name of the object. The second are connectors, 
which represent potential paths for inter-object communications. Third are specific 
communications which follow connectors in a specific direction. There are three types of 
communications: asynchronous messages, synchronous calls, and return messages. 
A typical communications diagram appears in Figure 4. Calls and messages are labeled 
with a sequence number (to indicate temporal ordering), a name, and parameter values.  

State Machine Diagrams 

UML state machine diagrams are quite similar to Stateflow charts, consisting of states, 
and transitions. As in Stateflow, UML states are hierarchical. UML uses the term simple 
states to indicate a state with no sub-states, and composite state to indicate a state with 
sub-states. A state with sub-states that execute sequentially is called a nonorthogonal 
state. Nonorthogonal states are similar to Stateflow or-states. An orthogonal state defines 
two or more sub-state machines which execute in parallel. UML Orthogonal states are 
similar to Stateflow and-states, with one significant difference being that the order of 
execution between simultaneously enabled parallel states is not defined. A UML Initial 
state is the same as a Stateflow initial state. In addition to the initial state, UML also 
provides a final state, which terminates execution of the parent state (i.e., the state 
immediately enclosing the final state). Stateflow sub-charts, on the other hand, have no 
final state, but instead execute until a transition is taken which exits the parent state. 
UML also provides terminate states, which stops execution of all parent state machines. 
Terminate states have no direct equivalent in Stateflow, although they can be simulated 
by broadcasting an event which is recognized by all states as a halt command. It should 
also be noted that in single-threaded Stateflow (sub-) charts, a transition exiting the 
outermost parent is equivalent to a terminate state. 
 
UML also provides junction pseudostates, which are very similar to Stateflow junctions. 
In addition, UML state machines may also contain choice pseudostates. A choice 
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pseudostate is essentially a specialized junction which represents a case statement. The 
choice junction has multiple guarded outgoing transition segments, at least one of which 
must be true every time the junction is activated (an [else] guard can be used to guarantee 
this). 
 
UML also provides a shallow history pseudostate, which is identical to the Stateflow 
history junction. In addition, UML provides a second type of history pseudostate, the 
deep history pseudostate. Deep history means that each time the enclosing compound 
state is exited, the last state is pushed onto the stack and upon the next entry to the state, 
the initial state is determined by the state on top of the history stack. The history stack of 
the compound state is not popped until the enclosed state sub-machine reaches a final 
state, at which point one state is popped from the history stack. Deep history states 
provide support for recursion. In Stateflow/Simulink recursion is not possible because 
there is no call/return mechanism between blocks.  
 
In addition to orthogonal states, UML state machines may use fork and join junctions to 
create and manage concurrency. Fork and join junctions are represented by bars (similar 
to Petri-nets). A bar with one incoming transition arc and multiple outgoing arcs is a fork, 
while an arc with multiple incoming arcs and one outgoing arc is a join. When a fork 
transition is taken, all the target states are simultaneously activated. A join junction acts 
in the opposite manner, by blocking until all the source states are active and any guards 
are satisfied at which point the target state is activated. Joins are used to synchronize 
activity by waiting until two or more sub-processes complete before proceeding. Forks 
and joins are generalizations of the orthogonal state concept, with one major difference 
being that a fork need not ever be matched with a join, in which case a model may spawn 
an unbounded number of processes, resulting in an infinite-state system. 
 
 UML provides four kinds of event. A call event represents a synchronous call from an 
external object with parameters the parameters values (if any) are bound to variables 
specified by the receiver of the call event. Call events are similar to Stateflow function 
call events. A signal event is similar to a call event, but is asynchronous. A time event 
occurs at a specified point in time, which may be either absolute or relative. A change 
event is a trigger which occurs when a given expression is satisfied. The event triggers 
immediately at the point when the expression changes from unsatisfied to satisfied (e.g.,  
if the expression is x > 0, and the initial value of x is -1, the first assignment of a non-
negative value to x will trigger the event). Signal events can be used to create systems 
which are very difficult to understand, as they create implicit and potentially very 
complex communication patterns.  

RHL Requirements 

RHL is intended to serve as an intermediate representation which can read models 
expressed in either UML or Simulink/Stateflow , and translate them into forms which can 
be processed by Reactis and Salsa as well as other  tools in the future. Hence, RHL must 
provide a set of features which are sufficiently broad to support the essential components 
of  both UML and Simulink/Stateflow while avoiding constructs which produce 
intractable behavior in verification tools (e.g., unbounded state growth).  
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 A fundamental basic required feature is support for Statechart-like finite automata 
extended with mutable variables which can hold values of standard types such as numeric 
types, arrays, records and textual strings. These EFAs must also have the ability to 
communicate with each other and their external environment via messages.  
 
Additionally, some sort of encapsulation mechanism (or mechanisms) is required to 
represent UML objects and Simulink blocks. The encapsulation will need to provide 
interfaces and communication methods capable of supporting function calls, method 
dispatching, and data flow interfaces. 
 
There are also a number of common language features which are problematic and which 
should be restricted in RHL. First is dynamic memory allocation. Dynamically allocated 
data structures pose extreme difficulties for verification, as they can introduce infinite 
states and require the verification system to handle pointers. Furthermore, guidelines for 
embedded control systems (the primary target of RHL) commonly recommend against 
the use of dynamic allocation, in part to avoid unpredictable real-time behavior due to 
garbage collection. Hence, this restriction should not be too burdensome. 
 
Function calls are another challenge. Arbitrary recursion can lead to unbounded growth 
in the state space and make verification intractable. To avoid this, RHL will allow tail 
recursion only. This will have the benefit of making it possible to flatten models by 
inlining all function calls. In the experience of the author, embedded control systems 
rarely employ recursion, so restricting its usage is reasonable. 
 
The use of concurrency can also result in systems which are difficult to verify. Programs 
which dynamically spawn new processes have unbounded state growth. Even if process 
spawning is bounded, state space growth is exponential in the number of asynchronous 
processes. To avoid these problems, RHL will restrict concurrency to within orthogonal 
states (i.e., Stateflow or-states). This will constrain the amount of state explosion, 
particularly for Stateflow, which imposes a total ordering on the execution of 
simultaneously enabled transitions. 
 
Restrictions on object behavior result primarily from the need to avoid dynamic memory 
allocation. RHL will require all objects to be created at the start of program execution. 
Classes and inheritance will be supported, and the passing of objects of parameters will 
be allowed. RHL will allow pass-by-reference of parameters for objects only. This will 
provide a useable subset of OO features while allowing pointers to be eliminated by 
cloning functions for each different combination of objects passed as a parameter and 
then eliminating the parameter via partial evaluation. This restriction will require model 
designers to limit the number of times that objects are passed as parameters.  
 
RHL will not provide any pointer mechanisms beyond the passing of arguments by 
reference. There will not be an explicit pointer type. Since dynamic memory allocation is 
already prohibited, there should be much less need for pointers in RHL models. 
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A final restriction is that only discrete states will be supported. Continuous states are not 
possible in digital systems, so this is a quite reasonable restriction. Along the same lines, 
instantaneous feedback loops (feedback loops without a delay) are not allowed, as such 
loops are only used to construct models of analog systems. 

RHL Overview 

Since RHL will be machine-generated, no purely textual syntax is required. The RHL 
syntactic components are instead defined as nodes in an abstract syntax tree (AST). Each 
AST node is essentially a variant record whose fields contain the attributes of the node. 
Every node has two essential attributes. First is the identifier of the node. All identifiers 
are assumed to be unique. Since RHL is generated from a previously parsed program, it’s 
reasonable to require that all textual identifiers have already been bound and replaced 
with unique identifiers, so that there are no aliasing or scoping issues. 
 
A second attribute common to all nodes is the tag of the node. The tag expresses the basic 
variety of the node, which is further refined by any additional attributes attached to the 
node. Some of the attributes presented may seem redundant. To eliminate redundancy, 
some attributes may be made virtual by deriving the attribute value from from other 
attributes upon request. We now present the set of AST nodes, organized by tag.  

Model 

Models are the top-level RHL construct. Attributes defined on Models are: 
• Globals – a list of all global variables defined within the model. 
• Blocks – a list of all simulation blocks defined within the model. 
• Types – a list of types defined within the model. 
• Classes – the class hierarchy (i.e., the root of the inheritance tree). 

Block 

Blocks represent functional blocks in a data-flow computation. When invoked during a 
simulation, a block reads from a set of variables that contain the inputs to the block, 
performs some computation (driven by a state machine), and then writes its outputs to 
another set of variables, which will be used as inputs to other blocks. Attributes defined 
on Blocks are: 

• State – The state machine which controls the computation performed by the 
block. 

• Inputs – A list of variables representing input lines. 
• Outputs – A list of variables representing output lines. 

 
To facilitate integration with UML, Blocks are also considered to be objects which can be 
invoked via a method invoke(). 

Line 

Simulink lines are implemented as variables. Line variables are restricted to numeric 
types as required by Simulink. 
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State 

A state can either represent a single atomic state, or an entire state machine. The 
attributes of states are: 

• SubStates – A list of sub-states, if this state encapsulates a sub-state machine. 
Atomic states are recognized by an empty SubStates attribute. 

• InitialSubStates – A list of initial sub-states. If there is only one initial state, then 
the sub-state machine is sequential. If there are two or more initial states, then the 
sub-state machine is a parallel machine. 

• InTrans – A list of incoming transitions. 
• OutTrans – An ordered list of outgoing transitions. The transitions are ordered by 

selection priority in case more than one transition is simultaneously enabled. A 
state with no outgoing actions is considered to be a final state. 

• EntryActions – A sequence of actions to be performed upon entry to the state. 
• ExitActions – A sequence of actions to be performed upon exiting the state. 
• StayActions – A sequence of actions to be performed while remaining in the state. 
• Memory – An integer memory depth. The depth indicates how many previous 

states are remembered when the sub-machine encapsulated within the current 
state is exited. A depth of 0 means that the state sub-machine is memoryless. A 
depth of 1 means the sub-machine has a shallow history. Depths greater than one 
are used to bound the depth of the deep history stack (to avoid unbounded state 
issues).   

Junctions 

Junctions are used to construct transition graphs. Their only attributes are a set of 
incoming transition segments and a list of outgoing transition segments (see the definition 
of transitions below for an explanation of transition segment). 

Transitions 

Transitions are directed graphs which control changes in state. The attributes of a 
transition are: 

• Sources – The set of states which are a source for any transition segment in the 
transition. 
• Destinations – The set of states which are a destination of transition segment in 
the transition. 
• Segments -- Segments are the edges of the graph; the attributes of a segment are: 

o Source – The start of the segment. Must be a state or junction.  
o Destination -- The end of the segment. Must be a state or junction. 
o Guard – A Boolean condition which must hold true in order for the 

transition segment to be enabled. 
o ConditionActions – A sequence of actions taken whenever the condition is 

evaluated to true, regardless of whether or not the transition containing the 
transition segment actually fires. 

o Actions – A sequence of actions taken whenever the transition containing 
the transition segment fires. 
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Actions 

An action represents computations which can have side-effects. Actions are further 
divided into sub-categories: 

• Assignment – an assignment action represents the replacement of a stored value. 
Assignments have two attributes: 

o LExpr – An l-expression which computes a reference to the storage unit to 
update. 

o RExpr – An expression which computes the value to be stored. 
• Signal – A signal is a synchronous message which is multicast to some set of 

states. Attributes of signals include: 
o Id – As mentioned earlier, all nodes have unique identifier attributes. The 

id is listed here because it is used to find a receiver for the signal. 
o Destination – a list of states. The signal is sent to the listed states as well 

as the transitive closure of all their sub-states, so sending a signal to the 
root state will broadcast the signal to all states in the model. 

o Parameters – a list of expressions, which can be evaluated to compute the 
actual parameter values. 

• Call – A Call is a synchronous message sent to a function or object instead of a 
state. A return value may be passed back to the sender. The attributes of a call 
include: 

o Target – A variable (which must hold a reference to an object) or function. 
o  Parameters – A list of expressions used to compute the actual parameter 

values. 
o Return – A variable which will hold the return result. 
o IsTail – If true, execution jumps to the target. The destination of the 

transition labeled by the call action must be a final state, which should be 
labeled with the tail call action only (i.e., no other actions are allowed). 
There should also be no return variable. 

• Return – A return action terminates execution of a state machine invoked via a 
call. It is subject to the same restrictions as tail calls. The only attribute is an 
expression which is evaluated to compute the value to be returned. 

Guards 

A guard is used to enable the crossing of transition segments. Guard attributes include: 
• EventSet – A list of signals, any one of which will satisfy the event component of 

the guard. If the list is empty, then the event condition is vacuously true. 
• Condition – An expression which yields a Boolean result when evaluated. 

Both the event set and the condition must be simultaneously satisfied for the guard to be 
satisfied. 

Variables 

Variables are containers for values. The primary attributes of a variable are: 
• Type – the type of the variable. 
• Initializer -- an expression used to initialize the variable. 
• Storage – the domain in which the variable is to be allocated (Static Memory or 

Stack). 
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Objects 

A variable whose type is a class is a reference to an object. 

Functions 

Functions provide interfaces which can accept call messages. The actual computation is 
done by a state machine encapsulated within the function. Attributes of functions include: 

• Type – the type of the function. 
• Class – if the function is a method, the class to which method belongs. 
• This – A variable which contains a hidden parameter used to implement some 

methods. The type of the variable must be the same as the Class attribute. 
• Parameters – a list of variables where incoming actual parameter values will be 

stored. 
• State – the state machine which performs the function computation. 

Types 

A type is used to infer the set of possible values variable, expression, etc. can hold and 
what operations can be legally performed on values. The attributes of a type vary 
depending on a sub-tag, which further refines the type. Type sub-tags and their associated 
attributes are as follows: 

• Atomic -- Atomic types are primarily numeric primitive types with pre-defined 
semantics. These include integer, floating-point, fixed point, and string. Attributes 
of atomic types are: 

o Signedness – (integers only) indicates if the type domain includes negative 
values. 

o Size – Gives the width of the type (e.g. 32 bits, 16 bits, 8 bits, etc.). 
o Bounds – Optional upper and lower bounds on the value domain. 
o Precision – (fixed point) tells the number of digits in the fractional 

component of a fixed-point value, or (floating point) gives the size of the 
mantissa. 

o Exponent Range -- (floating point) gives the range of possible exponent 
values.  

• Array – Array types are sequentially allocated storage units, all of the same type. 
Array attributes are: 

o Element Type – the type of value stored in the array. 
o Bounds – A list of pairs specifying the range of valid index values for each 

dimension of the array. 
o Organization – Row major or column major. 

• Record – Record types are sequentially allocated storage units. Unlike arrays, the 
storage unit types are heterogeneous. The only attribute of a record is an ordered 
sequence of element types. (This is because the field names will have already 
been replaced with field indices at the time the RHL code is generated.) 

• Object -- Object types are encapsulated records whose type can be determined at 
runtime and which can only be accessed via methods defined in the class. The 
only attribute of an object is its Class. 
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• Tuple – Tuple types are essentially records without field names. Tuples are 
primarily used to construct functional types. The only attribute of a tuple is an 
ordered list of its element types, which must be of  length 2 or longer. 

• Function – A function type is used describe the input and output domains of a 
function or method. The attributes of a function are: 

o InputType – The input type of the function. 
o OutputType – The output type of the function 
o SubTag – Indicates whether the type is a function, an object method, or a 

class method. 
o Class – (methods only) gives the class to which the function belongs. 

Classes 

A class defines an abstract data type which encapsulates data that only be accessed via a 
set of supplied methods. Class attributes include: 

• Superclass – The parent class of the class. The pre-defined class Object is the root 
superclass. The class will inherit data members and methods from its parent class. 

• Subclasses – A list of the classes of which this class is a parent. 
• Methods – a list of functions (all of which must be methods of  the class). 
• SharedDataMembers – a list of variables, which represent data members shared 

between all objects of the class. 
• ObjectDataMembers – an ordered list of types. This list defines the fields of the 

record encapsulated within each object of the class. 

Expressions 

The set of expressions provided by RHL will incorporate standard Boolean and numeric 
operators, field access for records, array indexing, type casting, constant values for all the 
primitive types, and variables (i.e., an expression which loads the value of a variable). 
Operator precedence is not an issue since the expressions will already be in tree-form. 
Expressions are completely typed. Operators have type signatures, with distinct operators 
for each type (e.g., there is separate 32-bit integer addition and 64-bit real addition). The 
sub-expressions of any operators must match the expected input types of the operator 
(e.g., there is no implicit cast which allows the addition of an integer to a floating-point 
value, as in C). The interface which supports RHL code generation can be designed to 
insert these casts automatically to reduce the burden on tools which generate RHL 
models. 
 
Not included in the set of expression operators are operators with side-effects, such as an 
increment operator.  
 
L-expressions compute assignable storage locations. The set of RHL l-expressions is 
small due to the lack of pointers.  

Type Checking 

The type system for RHL is fairly simple, due to the fully typed expressions, and the lack 
of a pointer type. The type rules can be briefly summarized as follows: 

• A value of any numeric type can be cast to any other numeric type. 
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• A reference to an object can be cast to a reference to a superclass of the object. 
• The type of constant, variable, or function expression is contained in an attribute 

of the node which defines the constant/variable/function. 
• The type of a compound expression is the output type of the operator. 
• Numeric and Boolean operators have the same input and output types. 
• The type of a cast operation is manifest in the cast. 
• For every type T, there are Binary relational operators which operate on two 

values of type T and produce a Boolean result. 

Semantics 

The semantics of RHL will be primarily taken from Simulink/Stateflow, as the UML 
semantics are much sparser (and ambiguous) in comparison. The behavior of state 
machines will largely follow the behavior of a Stateflow machine with the same structure. 
The primary difference is the addition of calls to methods. A call to a method is 
dispatched by consulting the actual (runtime) type of the target object. For example, 
assume that class Z has subclasses X and Y, all of which implement a method f(), and 
there is a variable z which is a reference to an object of class Z. When the method z.f() is 
called, the implementation of f() which is called could be in any of the classes. If z was 
assigned the result of casting a reference to an object to type X to an object of type Z, then 
the f() that will be called is the f() defined in X (not Z). 

Compilation 

A primary requirement of RHL is that it must be possible to compile a model expressed 
in RHL into a simpler form which can be utilized by verification tools such as Salsa or 
Reactis. This can be done by using a series of passes which iteratively reduce the 
complexity of an RHL program. The complexity levels are as follows: 

• RHL0 – Full RHL. 
• RHL1 – RHL without dynamic method dispatching. 
• RHL2 – RHL1 without call messages. 
• RHL3 – RHL2 without events. 

 
RHL1 is produced by creating specialized clones of functions for each actual type of 
object that  is passed as a parameter, so that the actual object type can be statically 
determined. For example, assume that classes X and Y are subclasses of class Z, and that 
function f(Z z) invokes the method z.g(). If f is called with objects of both type X and Y, 
then  f will be replaced with two variants: f_X(X z) and f_Y(Y z). These variants will 
statically know which instance of the g method to call in the X class tree (i.e., f_X will 
call X.g and f_Y will call Y.g). This of course means that the callers of f will also have to 
be modified to call one of the specializations of  f.  
 

RHL2 is produced by inlining all function calls. This is not technically difficult, as there 
is no recursion and no dynamic message dispatching to worry about. For example, if 
f_X(X z) is called from two call sites with the objects x1 and x2 respectively, then f_X(X 
z) will be inlined twice, once at the first call site with z replaced by x1, and again at the 
second call site, with z replaced by x2. 
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RHL3 is produced by replacing events with variables and expanding the number of 
transitions. A unique variable is allocated for every event action. The value of this 
variable is an integer enumeration which designates the transition that will fire when the 
action is taken. The event actions are then replaced with transitions that set the value of 
the event variable, as follows: a transition from state q1 to q2 labeled with an event action 
e (and corresponding event variable ve) is replaced with a two-step transition. The first 
step is an unguarded transition segment from q1 into a (new) junction j1. The second step 
is taken from a group of parallel transition segments, all of which go to q2. For every 
possible receiving transition ti of the event with guard gi, a transition segment from j1 to 
q2 with guard gi is created, whose action is ve  :=  i. One final wrinkle is that the case 
where no receivers are enabled must be handled. This is done by adding a transition 
segment from j1 back to q1 which has no guard conditions and is prioritized last among all 
the outgoing transitions segments of j1. 
 
Once the event senders have been transformed, every event guard is replaced with a test 
on the corresponding event variable. For example, a transition tk with a guard waiting for 
event w (whose event variable is vw) and condition x > w will have the guard modified to 
be (vw = k) and (x > w). In order to avoid re-triggering, an action [vw := -1] must be added 
to the set of actions performed by transition tk. As a final note, it is worth pointing out 
that it is assumed all event variables are initialized to -1, which represents the case where 
no receiving transition is enabled. 

Related Work 
 
In recent years, model-based development has gained credibility in industry as a practical 
approach to improve software quality. In particular, the industry-defined languages UML 
and Stateflow/Simulink have grown in popularity as a basis for expressing models of 
software system architecture and design. The rapid spread of these modeling languages 
has fueled an interest within the research community to find techniques which can bring 
the benefits of formal verification methods to models developed in UML and 
Stateflow/Simulink. 
 
Work related to our efforts includes efforts to formalize the semantics of UML and 
Stateflow/Simulink.  Some attempts have been made to formalize the semantics of 
Stateflow, such as [Ham05, HR04].  UML has attracted much more attention in this area, 
due to its many ambiguities. Recent works include [AA00, CF05, FSKdR05, HH05, 

LS06, TA06]. More relevant to RHL are translation techniques. [SSC+04, JH05] use 
translation methods as a basis for verification of Simulink model properties.  
Certain RSI customers have developed an interest in MWI as a mechanism for 
interoperation between the Simulink / Stateflow tool set and model-checking tools. In 
2005, a team at the University of Minnesota and Rockwell Collins implemented a 
translator for converting a subset of MWI into an input format for the popular SMV 
model checker [BCM+92].  The literature on UML translation into verifiable forms is 
quite extensive and includes [AHK+04, Bos99, CC04, CE06, CF05, DMB02, Esh06, 
HM05, GH04, KAM06, LCA04, LMM99, MCG+04, PMP01, SB06, SCH02, VGP01]. 
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