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Abstract

We consider a multiple-input multiple-output (MIMO) radar systemn whicre hoth 1
transmitter and receiver have multiple well-separated subarrvavs with cach suluiran
containing closely-spaced antennas. Because of this eeneral antenna contiem i
both the coherent processing gain and the spatial diversity gain can be st
ously achieved. We compare several spatial spectral estimators, including Capon
and APES, for target detection and parameter estimation. We introduce a general
ized likelihood ratio test (GLRT) and a conditional generalized likeliliood i
(¢cGLRT) for the general antenna configuration. Based on GLRT and ¢GLRT. wi
then propose an iterative GLRT (iGLRT) procedure for target detection and parann
eter estimation. Via several numerical examples, we show that iIGLRT can provide

excellent detection and estimation performance at a low computational cost.



CHAPTER 1
INTRODUCTION

A multiple-input multiple-output (MIMO) radar uses multiple antenas 1o s
multaneously transmit several linearly independent waveforms. It also uses mltiple
antennas to receive the reflected signals. It has been shown that by exploiting tlis
waveform diversity, MIMO radar can overcome performance degradations causcd 1l
radar cross-section (RCS) fluctuations [1] - [1], achieve flexible spatial transmit heamn-
pattern design [5] [6], provide high-resolution spatial spectral estimates el
significantly improve the parameter identifiability ||+

The statistical MIMO radar, studied in [1]| - [ 1], atns at vesisting the “scmnilla
tion” effect encountered in radar systems. It is well-known that the RCS of ot
which represents the amount of energy reflected from the target toward the recenve
changes rapidly as a function of the target aspect [19], and the locations of the trans-
mitting and receiving antennas. The target scintillation causes severe degradations in
the target detection and estimation performance of the radar. By spacing the trans-
mit antennas, which transmit linearly independent signals. far away from each other.
a spatial diversity gain can be obtained as in the MIMO wireless communications to
this scintillation effect [1] - [1].

Flexible transmit beampattern designs are investigated in [5] [(i]. Different trom
the statistical MIMO radar, the transmitting antennas are closely spaced. The au-
thors in [5] and [6] show that the waveforms transmitted via closely spaced antenis
can be optimized to obtain several transmit beampattern designs with superion (e
formance. For example, the covariance matrix of the waveforms can he optimized
to maximize the power around the locations of interest and also to minimize the

cross-correlation of the signals reflected back to the radar by these targets. thereby
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significantly improving the performance of the adaptive MIMO radar techniques. Due
to the significantly larger number of degrees-of-freedom of a MIMO syvstenn. nnproved
transmit beampatterns can be achieved with a MIMO radar than with its phascd
array counterpart.

In [9], a MIMO radar technique is suggested to improve the radar resolution
The idea is to transmit N (N > 1) orthogonal coded waveforms by N antennas and
to receive the reflected signals by M (M > 1) antennas. At each receiving antenna
output, the signal is matched-filtered using each of the transmitted wavetors o
obtain NM channels, where the data-adaptive Capon beamformer [20] is applied. [
is proved in [9] that the beampattern of the proposed MIMO radar is obtained by
the multiplication of the transmitting and receiving beampatterns, hence it has high
resolution. However, [Y)] considers only single-target scenarios.

A MIMO radar scheme is considered in [16] and [17] that can deal with the
presence of multiple targets. Similar to some of the MIMO radar approaches [7] - |
linearly independent waveforms are transmitted simultaneously via multiple antennas
Due to the different phase shifts associated with different propagation paths fron
transmitting antennas to targets, these independent waveforis are linearly combined
at the targets with different phase factors. As a result, the signal waveforms reflected
from different targets are linearly independent. allowing the direct application of manv
adaptive techniques to achieve higher resolution and interference rejection capabilit
Several adaptive nonparametric algorithms, some of which also model steering vecton
errors, are presented in [16] and [17].

The MIMO radars discussed above can be grouped into two classes according to
their antenna configurations. One class is the conventional radar array, in which both
the transmitting and receiving antennas are closely spaced for coherent transmission
and detection [5] - [17]. The class other is the diverse antenna configuration. where

the antennas are separated far away from each other to achicve spatial diversing won



(1] - [1]. To exploit the benefits of both schemes, we consider a general anteng
configuration in this report, i.e., both the transmitting and receiving antenm aravs
consist of several well-separated subarrays with each subarray containing closcly
spaced antennas. We establish the growth curve models [21] - [21] and devise several
estimators for the proposed MIMO radar system.

The remainder of this report is organized as follows. Chapter © presents the
MIMO radar signal model. In Chapter 3, we discuss two adaptive spatial spectral
estimators including Capon [20] and APES [25]. In Chapter 1, we introduce a gen-
eralized likelihood ratio test (GLRT) and a conditional generalized likelihood ratio
test (¢cGLRT), and then propose an iterative GLRT (iGLRT) procedure for target

detection and parameter estimation. Numerical examples are provided in Chapte



CHAPTER 2
SIGNAL MODEL

Consider a narrow-band MIMO radar system with N and M subarrays for trans
mitting and receiving, respectively. The nth transmit and mth receive subarravs
have, respectively, N, and M,, closely-spaced antennas, n = 1. 2. -~ . N .l
m,= 1, 2, we, M. We assume that the subarrays are sufficientlyv sepavated. il
hence, for each target, its radar cross-sections (RCS) for different transont ol voeey
subarray pairs are statistically independent of each other. Let v, (#) and a,, (¢ |
the steering vectors of the nth transmitting subarray and the mth receiving subarray.
respectively, where  denotes the target location parameter, for example its angular
location. Let the rows of ®,, be the waveforms transmitted from the antennas of the
nth transmit subarray. We assume that the arrival time is known. Then, the signal
received by the mth subarray due to the reflection of the target at # can he wiitten
as

N
Xon =) 8m(0)Brng Ve (0) @+ Loy, m=1, - . M 2

n=1
where (,,,¢ 1s the complex amplitude proportional to the RCS for the (i wth
receive and transmit subarray pair and for the target at the location #. The watris
Z,, denotes a residual term for the unmodelled noise, e.g.. interferences frong toaree

other than # and at other range bins, and intentional or wnintentional e

notational simplicity, we will not show explicitly the dependence of Z,, on #

Let
X=[X] «:XT)T e M, (2 2)
A(6) = Diagla,(8), - -- , ag(f)] € CM*M (2-3)
V() = Diag[vy(6), - -- , vg()] € CV*V, (2-1)
1



by |

and

where M = My + -+ My and N = Ny + .-« + Ny are the total numbers of

receive and transmit antennas, respectively, L is the number of data samples of the

transmitted waveforms, (-)7 denotes the transpose operator, and Diag(a,. - .a,, | is
a block-diagonal matrix with a;,--- ,a,, being its diagonal subwatvices Tlhen
can be rewritten in the growth-curve (GC) model [21] - [22]:

X = A(0)ByS(f) + Z, (2 0

where the (m, n)th element of the M x N matrix By is ,une, Z is defined similarly to

X in (2 2), and the rows of S(f) are the reflected waveforms by the target at location

f, i.e.,
S(A) =V'(0)®. L
Note that when N = M = 1, the signal model in (2 0) reduces 1o the MIMO)
radar model in [16] - [17], whereas when N = N and M = M it reduces 1o 1h

diversity data model in [1] - [3]. Based on this data model. We below derive two
classes of nonparametric methods, i.e., spatial spectral estimation and generalized

likelihood ratio test (GLRT), for target detection and localization.



CHAPTER 3
SPATIAL SPECTRAL ESTIMATORS

We discuss two spatial spectral estimators for the proposed MIMO radar svston
We use these methods to estimate the complex amplitudes in By, for cach # of interest
from the observed data matrix X. The Frobenius norm of the estimmated By forius
a spatial spectrum in the 1D case or a radar image in the 2D case. We can then
estimate the number of targets and their locations bv searching tor the peaks i 1l
estimated spectrum (or image).

A simple way to estimate By in (2 i) is via the Least-Squares (LS) tet hod
Biso = [A"(0)A(0) ' A(0)XS" (6)[S(6)S" (6)] . bl

where (-)7 denotes the conjugate transpose. However, as any other data-independent
beamforming-type method, the LS method suffers from high-sidelobes and low reso-
lution. In the presence of strong interference and jamming, the method completely
fails to work. Hence, we discuss two robust adaptive spatial spectral estimation
approaches that offer higher resolution and interference suppression capabilities
3.1 Capon

The Capon estimator for By in (2 6) consists of two main steps [20], [26], [22].
The first step is a generalized Capon beamforming step. The second step is an LS
estimation step, which involves a matched filter to the known wavetor Sif

The generalized Capon beamformer can be formulated as follows
n&mr(w”RW) subject to WHA(#) = 1. (3 2)

where W € CM*M is the weighting matrix used to achieve noise, interference and

jamming suppression while keeping the desired signal undistorted, tr(-) denotes the



trace of a matrix, and

- 1
R = EXX” (3 3)

is the sample covariance matrix with L being the number of data samples

Solving the optimization problem in (3 2). we have:
W = RTTA(0) A (O)RT'A(0)] . (3
By using (2 6) and (3 1), the output of the Capon beamformer can he written s
[AT@O)RAMB)]) AT (OR'X = BsS(0) + [AZ(O)RTAWB)'ATOR'Z. (3 D)
By applying the least-squares (LS) method to (3 5), the Capon estimate of By, follows:
Bouweno = [AT(O)RTIA())'AH (0)RT'XS (6)[S(6)S (8)] . (3-6)

3.2 APES
The generalized APES method is a straightforward extension of the APES et hod

[25] [27], which can be formulated as:
&ig | WHX —ByS(#) ||* subject to W"A(#H) = 1. § 7

where || - || denotes the Frobenius norm, and W is the weighting matrix. Minimizing

the cost function in (3 7) with respect to By yields:
Bareso = WHXSH(0)(S(6)S"(6)] . (38
Then, the optimization problem reduces to
min tr(W7QW) subject to WHA(9) =1, (3-9)

with

Q=R- -EXS”(H}[S{()}S”((}}] 'S(g)x ! b

For notional simplicity, we have omitted the dependence of Q ou ¢/



Solving the optimization problem of (3 U) gives the generalized APES oo

former weighting matrix:

Wreso = QTA(0)[AT ()QA(6)] . (3-11)

Inserting (3 11) in (3 §), we readily get the APES estimate of By as:
Besso = [A7(0)QA(6)] " AT (0)Q XS (0)[S(0)S" (8)] . (3 12)

Interestingly, we note that (3 12) has the same form as the ML estimate in [21]
and [22]. However, the APES estimate is derived based on the beamforming method.,
and, unlike the ML in [21] and [22], it does not need probability density function

(pdf) of Z.



CHAPTER 4
GENERALIZED LIKELIHOOD RATIO TEST

Generalized likelihood ratio test (GLRT) has been used widely for target de-
tection and localization. We derive below a GLRT and a conditional eoncralized
likelihood ratio test (¢cGLRT) for the proposed MINO vacar. aned then progn
iterative GLRT (iGLRT) procedure for improved performance.

4.1 Generalized Likelihood Ratio Test (GLRT)

Throughout this chapter, we assume that the columns of the interference and
noise term Z in (2 ) are independently and identically distributed (i.i.d.) circu-
larly symmetric complex Gaussian random vectors with mean zero and an unknown
covariance matrix Q.

Consider the following hypothesis test problem:
H[] v X=17
Hy: X = A(0)BysS(H) + Z.

i.e., we want to test if there exists a target at location # or not. Similarly to [2~] and

[29], we define a generalized likelihood ratio (GLR) as follows:

maxq f(X[He) 17\
)=41- - ; J, 2
pl9) { [mameQ S(X|Hy)
where f(X|H;) (« = 0, 1) is the pdf of X under the hypothesis H,. From | ). we

note that the value of the GLR, p(f), lies between 0 and 1. If there is a target at
a location 6 of interest, we have maxg q f(X|H)) > maxq f(X|Hy), ie.. p =~ 1;

otherwise p = 0.



10
Under Hypothesis Hg, we have
. 1
f(X|Hy) = ——— exp{—tr(Q'XX*)}, (4 :3)
TLM|QIL -
where | - | denotes the determinant of a matrix. Maximizing (|1 2) with respect 1o Q
yields:
max f (X|Ho) = (me) "R ", N

where R is defined in (3 3).

Similarly, under Hypothesis H;, we have

: 1 N : ;
f(X[H,) = TIAQE P {—tr{Q7'[X — A(6)BsS(0)][X — A(6)B,S(#)]"}} .
l ‘-J
Maximizing (1 5) with respect to Q yields:
1. ,
mqax_f(_XH-[l) = (me)~M 71X — A(0)B,S(0)][X A(0)ByS(H))" |G
Hence, the optimization problem in the denominator of (1 2) reduces to
1
i ‘E’X = A({'})BHS(H)”X - A((})B”S(OJ]H ] (4-7)
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Following [21] and [22] and dropping the dependence of A. S and B on # fo

notional convenience, we have:

I

Il

=

1
‘E[X — ABS][X — ABS)”

‘%[AB—XS”(SS”)“I](SS”)[AB X84 (S8%) Q‘

QT+ iQ‘% [AB — X8"(S8")~"](SS")[AB - xs”(ss“)-l]”Q -4

QT L(SS”J [AB - xs"(s8")7']"Q"

[AB - X8"(88")7'](88")}|

Q| I+i(SS”J“'%SX"’[Q"—Q-IA{A”Q-'A:"A”Q '1x8" (88"
%(SS”) [B— (A¥QriA) AT G- 1X87 (887 aF Q' A) »
[B - (APQ'A)*A#QIXS#(S87) 1] (SSH)1

1

|Q| I L szf)——sxﬁ [Q I—Q_!A(AHQ_IA)_IA”Q_i]XS”(SS”}{511 )

where Q is defined in (3 10). To get (1 8), we have used the fact that [I + XY

I+ YX] [30], and the equality in (1 9) holds when B equates to the APES estimate

in (:

12). Note that

|Ql - i(ss”}—%sx” [Q—I . Q—IA(A.’{Q-AIA IAH ]XS”(SS”
QI+ [Q'—Q'AAYQ'A)TAYQ (R - Q)
R—-AATQ'A)'AYQ (R~ Q)|

IR||T -

AH(AHQ—IA)—IAH(Q—! N R EJI

IR||(A"Q~'A) (A"RTA)|,

From (1 6), (1 9) and (1 10), it follows that

léu%f(xm,) = (ne) "M |R|74“|AZ(O)QA(Q) L AT (ORAM0) L. (4-11)



Substituting (1 1) and (1 1) into (1 2) yields:

p(6) = 1-'A"(”)R'IA“’” (112)
|AH(0)Q'A®0)| | i

We remark that when there are multiple targets, and the number of tareers
(say K) are known a priori, the GLRT in (1 12) can be extended to a multivariate

counterpart by considering the following hypothesis testing problem:

H(] . X=1Z7
" (4-13)
Hi: X =YK A(6:)By,S(0:) + 2.

As a parametric method, this multivariate GLRT can provide better target detection
and parameter estimation performance than its univariate counterpart. However the
multivariate GLRT is computationally intensive because it needs to scarch in thi
K —dimensional parameter space {f;}f_,. Moreover, the number of tarsets is Ll
known a priori in practice.

We propose below an iterative GLRT (iGLRT), which require only one-ditnensional
search (like the univariate GLRT), but provides a target detection and paraimceter os-
timation performance close to the multivariate GLRT.

4.2 Conditional Generalized Likelihood Ratio Test (cGLRT)

Before we describe the iGLRT procedure, we first consider the following livpotl-
esis testing problem, referred to as the conditional generalized likelihood ratio test
(cGLRT). Suppose that we know that there are p targets at the locations {(ﬂ. o
and we want to determine if there are any additional targets. This problem can be

formulated in the following hypothesis testing problem:

H, - X =3 A(6x)B;, S(b) + Z

k=

Hpr1: X =A(0)BgS(0) + Xk , A(6,)B,; S(t,) - Z



Note that both the equations in (1 11) are in the form of the block-diagonal growtl

curve (BDGC) model studied in [21]. For convenience, we rewrite (1 | 1) as:

H, X=A,B,S,+2 -
Hui : X=AnuB8u 4, |
where
B, = Diag(B;. . B; )
A, = [A6) --- A(6)].
S, = [87(6;) -+ ST(6,)]".
B,.1 = Diag(By,B;, . B;) L
A, = [A(B) A(B) --- A(6))), (1 20)
Spr1 = [ST(6) ST(6:) --- ST(6,))". | 2]

Similarly, we define a conditional generalized likelihood ratio (¢cGLR) as follows

ﬂ(l‘)l{g;‘ P ) - 1 B H]-ICD(B,..Q j(x“lpj L i s
- maxg o [(X[H,o) | [ -

where f(X]|H;) is the pdf of X under the H, hypothesis, and Q is the covariance
matrix of the columns of Z.
We first consider the optimization problem of the numerator in \ i

mizing f(X|H,) with respect to Q yields:

. sl - - - A
max f(X|H,) = (we)~ML E(X - A,B,S,)(X - A,,B;.S,,J”i 23
Hence, the optimization problem reduces to
1 s G o 5
min [—(X — A,B,S,)(X - A,,B,,S,,)”‘ with B, = Diag(B; , -+, B; ). (4-24)

B, |L



The optimization problem in (1 21) does not appear to admit a closed-fori solution
because B, is a block-diagonal matrix. Herein, we adopt a technique used in [31] to
approximate a closed-form solution.

Note that

1(X — A,B,8,)(X - A,B,5,)"
- %(x - A,B,S,)(Ig, + g )(X - A,B,S,)"|
= %(xnsp — A,B,S,)(XIIg, — A,B,S,)" + Q,,'
= %(xngp - A,B,S,)(XII;, — A,B,S,)"Q;" + 1 Q.. 25)
where
Il;. =87(5,5/)8, My =1-Tig, | 26)
and
Q, = %XH;.;PX”. (1 27

with (-)~ denoting the generalized matrix inverse.

Consider the idempotent matrices Ilg and IIg . Assume that the mnbe
"
data samples is large enough, i.e., L > Np. Note that S, is an Np x L it

Hence, we have:
l'mlk(ng,,) < ."i"p and rank(IT3 ) > L — Np, (1 28)

Sy

with rank(-) denoting the rank of a matrix. Then, we have

Q, = 0O(1), (1 20)



and

(XIIg, — A,B,S,)(XIIg — A,B,S,)’

r

SIS

(X - A,B,S,)II5 (X - A,B,S,)" =0 (

], (1 30

el R

Therefore, we get:

1 Ty R 1
(XTI, — A,B,S,)(XIT5, - A,B,8,)7Q;" = 0 (f) < 1. (4-31)

Let {\:}M, be the eigenvalues of the matrix in (1 31). which satisfy that 0 < \

Through some matrix manipulations, we obtain:

T(XHS,. - A;,B;.S?,){XI—[S“ s APBPSI'}’ Q,, 4 I‘
M M
= H(l FA) 1+ )N
i=1 =1
| 1 - = = = Balliem P
= 1+ I tr [[Xl—lg‘_ - EAPBJ‘S!‘){.XHS,, AFBPS;,}"QI, '}
| [ ~ 1 ==tz 5= & = .
= 14 7 | vec(Qp ‘an,.) —vec(Qp *A,B,S,) |I7, (<1 32

where vec(-) denotes vectorization operator (stacking the columns of a matrix on top

- L =
of each other), respectively, and Q, * is the Hermitian square root of Q,'. In (1 32),
we have omitted the high-order terms of {);} for the approximation.

Hence, for a large number of data samples, the optimization problem in (1 1)

can be approximated as:

nin | \-'c-'((Q;:%XHS,.} vee(Q, LA.HBH'SJ'l I

i

with B, = Diag(B; , ---, B; ). Il 33

,

To solve the above optimization problem, we introduce below two partitioned

matrix operations and two lemmas without proof (see [21] for the detailed proofs).
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Definition 1. Let G be a partitioned matriz with G, bewng the (i, j)th (1.
1,2, ---J) submatriz of G. Then the block-diagonal vectorization operation s de fined
by

vech(G) £ ["‘.?l'-.’f.'(Ggll)T vee(Goo)T - vee(G, )l (1 34)

Definition 2. Let X and 2 be two partitioned matrices with conformal partitio
and with X; ; and ; ; being the (i, j)th submatrices of X and . respectively e

the generalized Khatri-Rao product [12] is defined by

[E® )i, £ Ti; ®Q,, (4-35)

where [-);; denotes the (i, j)th submatriz of the given partitioned matriz and @ denotes
the Kronecker matriz product.

Note that both the block-diagonal vectorization vech(-) and the generalized
Khatri-Rao product ® are defined based on a particular matrix partitioning. i.c
different matrix partitionings will lead to different results. Throughout this report
the partitioned matrix operation are all based on the partitionings in (| [6G) - (+ Z1).

It is also worth pointing out that matrix partitioning may be “inherited™ throngh

trix operations. For example, for the partitioned matrix A given by | ~).. AA
is a p x p partitioned matrix with the (¢, j)th (¢, = 1. 2. p) o subat s b
A" (6,)A ;).

Lemma 1. Let X and 2 be two partitioned matrices with K block rows and 1 bloch
colurnns, and let G be a block-diagonal matriz with compatible dimnensions and con-

formal partitioning with ¥ and 2. Then

vech(EGNT) = (2 ® ) vech(G). (1 36

Lemma 2. Let U and 'V be two partitioned matrices with 1 block row and J bloch

columns, and let H and F be two partitioned matrices with | block vow and I bl
; I



columns and with compatible dimensions with U and V, respectively.

Now, let

By using Lemma 1 (with K

Hence,

where we have used Lemmas 1 and 2, and the equality holds when

By using (1

_f.f..

B=(T)T,)
23), (11 25), (1

32) and (1

[me}x f(X] H;J]}
Q.B,

B, = vecb(

[\-(-(:T(Bm s

| \-'n(:(Q;EXHgP} = F;}B,, II*

1
L

(UeV)"He®F)=(U'H)® (V'F).

B,),

vece! ( B,-,P )

1 and J = p), we obtain:

VOC(Q;}APBPSP) = [S:; ® (QIJ J A]]ﬁ )

[ \-'[’('(Q;EXHSP) E \’(‘t'(Q; A;,Bpg,‘) | 2
a il " o L . v - |

| vee(Qp ? XTIy ) || —vec” (Qp *XTg )T, (T, T,) ' T vec(Q, °

LN'(Q;IRJ =M = um-h”(A:,"'Q;lXSf,’} >

- 3 - = - 1 - = ’
((8,51)" ® (AQ;'A,)]  vech(AQ;'XSH)

- 1 = .
!FP vee(Q, * XTIl )

L1). it follows that

—~
-~

(me)M g(6y, -+~ , 6,) (.2j

Then.,

(4-38)

(4-39)

XTIl



where

9f, -+, 0,) = 1-M+tr(Q,'R) - = L et (AZQF'XSY)
[(S;,Sj,’) (A”Q—'A)]_ vech(AHQFIXSH). (4-44)
Similarly, we have:

1

i ]
[m_nx j'{X|I—IF,*1)} z
QB+ (me)M g(6.6,.--- .6,)|Q,
where Q,,+| and ¢(6, 6y, - };,) are defined similarly to Q,, in | ) anel g6

in (1 441), respectively.
Substituting (1 13) and (1 15) into (1 22) yields the conditional GLR:

a (‘J(H. é] P U;r |Qp 1 |
91{0,}) =41 - 4 : 1-16)
p(01{6;}) { g(6y,--.6,)|Q,| s

4.3 Iterative Generalized Likelihood Ratio Test (iGLRT)

The basic idea of the iterative generalized likelihood ratio test (IGLRT) is to
detect and localize targets sequentially. In each step of the iteration, the results
from the previous iterations and steps are exploited for the detection and localization
of new targets by calculating ¢cGLR. Specifically, we first performmn GLRT to get the
location of the dominant target, and the following targets are detectod andd Tocalizod
by using ¢cGLRT conditioned on the most recently available estimmates. The detailod
steps of iGLRT are described in Table I

Once the locations of the targets are determined, the amplitudes of the reflected

signals can be estimated by using the AML estimator in [21]:
B [ AHQ IA.« ® (gﬁgk}-r]_I\-'(-.'{'l,\(AEQ;-\,'XS;-\'{). (4-47)

where A, Sy and Qj are defined similar to A,, A, and Q,, in (1 18), (1 19) and

(11 27), respectively.



19

Table 4-1: iGLRT algorithm

Step I:
- Calculate p(#) in (1 12) for each 6.
- Compare p(€) to a threshold po: if p(A) < py for all . then Sty

otherwise, f, = argmaxy p(f). go to Step 11

Step II: For k =1, 2, ---, do the following;

- Calculate p(ﬁHr‘;i}f"__,) in (1 16) for each 6.

- If ;)(9]{9,}5‘1) < po for all @, then go to Step 111;
otherwise, 9;,.., = arg nmaxy p(ﬁ[{r‘j; H_,)

Step III: Repeat the following substeps until convergence for & = 1. 2. . K
(suppose that K targets are detected in Steps I and II)

- Calculate [}(HHF‘}! bizk) for each 6.

- Update 6, by arg max; p(ﬁ|{(),},-,4;\._).

We note that Step III of the above iGLRT algorithm actually minimizes 1l
function g(6,,--- , 05 ) with respect to {9;}{‘_, by using the cyclic minimization (C'\)

technique [33]. Under a mild condition, i.e., L > NK. we have g(#,.--- .0, 1 1
Furthermore, we know that the CM algorithm monotonically decreases the cost funic-
tion. Hence, the iGLRT algorithm is convergent. When K is the true number of
targets, iGLRT reduces to an approximate (parametric) maximum likeliliood estina-
tor. As we will show via numerical examples, the mean-squarcd-ervor (NSE) of 1l
estimate of iGLRT approaches the corresponding Cramér-Rao bound (CRB) for

large number of data samples. On the other hand, we note that iGLRT needs onlv

one-dimensional search and hence is computationally efficient.



CHAPTER 5
NUMERICAL EXAMPLES

In this chapter, we first compare the Cramér-Rao bounds (CRBs) for MIMO
radars with different antenna configurations, and then present the detection and
localization performance of the proposed methods.

5.1 Cramér-Rao bound

We first study the Cramér-Rao bound under various antenna configurations
Consider a MIMO radar system with M = N = 8 antennas for transmitting aud
receiving. We assume that the receiving and transmitting antennas are grouped into
multiple subarrays (each being a uniform linear array with half-wavelength spacing
between adjacent elements):

e MIMO Radar A: 1 subarray with 8 antennas for transmitting and receiving;

e MIMO Radar B: 2 subarrays each with 4 antennas for transmitting, and 1
subarray with 8 antennas for receiving;

e MIMO Radar C: 8 subarrays each with 1 antenna for transmitting, and 1 sub-
array with 8 antennas for receiving;

e MIMO Radar D: 2 subarrays each with 4 antennas for transmitting anel e

ing.
We assume that the transmitted waveforms are linearly orthogonal 1o cach othior
the total transmitted power is fixed to be 1, i.e., Rgqg = _{:l.
We consider a scenario in which K = 3 targets are located at #, = —40°. #, =

—4° and 03 = 0°, and the elements of {By, };_, are independently and identically
distributed (i.i.d.) circularly symmetric complex Gaussian random variables witl
zero mean and unit variance. There is a strong jammer at 107 with amplitude 100

i.e., 40 dB above the reflected signals. The received signal has L = 128 snapshots

20



and is corrupted by a zero-mean spatially colored Gaussian noise with an unknown

covariance matrix. The (p,q)th element of the unknown noise covariance matrix is

(p—q)n
Olp—alei—=—_

SFIIR“'Q

Figures 5 1(a) and 5 1(b) show the cumulative density functions (CDEF<) ol 1]
CRBs for MIMO radar with various antenna configurations when SNR =20 13 |l
CRB of 6, is similar to that of f3 and hence is not shown.) The CDFEFs are abtaied
by 2000 Monte-Carlo trials. In each trial, we generate the elements of {By, };_,
randomly, and then calculate the corresponding CRBs using (A [8) given by in the
Appendix. For comparison purposes, we also provide the CDF of the phased-array
(single-input multiple-output) counterpart, i.e., the special case of the above MIMO
radar when N = 1, with the same total transmission power. As expected, the MIMO
radar provides much better performance than the phased-array counterpart. Due to
the fading effect of the elements of {Byg,}i_,, the CRB of MIMO Radar A varics
within a large range. Within a 95% confidence interval (i.e.. when CDF varies from
2.5% to 97.5%), its CRB for #, varies approximately from 5 x 1077 to 5 x 107" The
CRBs for MIMO Radar C varies within a small range.

To evaluate the CRB performance, we define an outage CRI3 (TTTRY

probability p, denoted by CRB,, as:
P(CRB > CRB,) = ». (|

Figures 5 2(a) - (d) show the outage CRBgq; and CRBy; of #; and #4, as functions of
SNR. As expected, the SNR gains depend on the probability p. As we can see, when
p = 0.01, MIMO Radar C outperforms the other radar configurations. and provides
around 20 dB and 12 dB improvements in SNR compared to the phased-array and
MIMO Radar A, respectively. On the other hand, Figure 5 2(d) shows that MINO

radars A and B outperform others when p = 0.1.



5.2 Target Detection and Localization

We focus below on MIMO Radar B, i.e., a MIMO radar system with 2 subai
rays (each with 4 antennas) for transmitting and 1 subarray (with 8 antennas) for
receiving.

We first consider a scenario in which 3 targets are located at ¢, = —40°, #, =
—20° and #3 = 0° with the corresponding elements in By, , By, and By, being fixed to
2, 2 and 1, respectively. The other simulation parameters are the same as for Figure
5 1. The Frobenius norm of the spatial spectral estimates of By versus . obtained I
using LS, Capon and APES are given by Figures & 3(a)-(c). For comparison purposes
we show the true spatial spectrum via dashed lines in these fgures. s scen i
Figure 53, the LS method suffers from high-sidelobes and poor resolution problons
Due to the presence of the strong jamming signal, the LS estimator fails to work
properly. Capon and APES possess excellent interference and janunning suppression
capabilities. The Capon method gives very narrow peaks aronnd the tarect lociation
However, the Capon estimates of By,, By, and By, are biased downward. The APES
method gives more accurate estimates around the target locations hut its resolution
is worse than that of Capon. Note that in Figures 5 3(a)-(c), a false peak occeurs at
! = 10° due to the presence of the strong jammer. Although the jammer waveform is
statistically independent of the waveforms transmitted by the MIMO radar. a false
peak still exists since the jammer is 40 dB stronger than the weakest target and the
number of data samples is finite. Figures 5 3(d)-(e) give the GLRT. and the iG]
results, as functions of the target location parameter 6. For convenience. in e
5 3(e), we have included all cGLR functions obtained by iGLRT. cacli mdicatine o
target. As expected, we get high GLRs (¢GLRs) at the target locations and low
GLRs (¢GLRs) at other locations including the jammer location. By comparing the

GLR with a threshold, the false peak due to the strong jammer can be detected and
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rejected, and a correct estimate of the number of the targets can be obtained by botl
methods.

Next we consider a more challenging example, where f; is —4° while all the other
simulation parameters are the same as before. As shown in Figure 5 i(¢). the APES.
Capon and GLRT methods fail to resolve the two closelv spaced tareor~ o 1
and #; = 0°. On the other hand, iGLRT gives well-resolved peaks aronmnd 1l
target locations. To illustrate the procedure of the iGLRT algorvithin. we wive 1l
GLR, and ¢GLRs obtained in Steps I and II of iGLRT in Figures (a)-(ed). Fignres
5 5(a)-(b) show the GLR p(f) and the cGLR p(0]6,), respectively, where 6, is the
estimated location of target 1 from p(@). As we can see, there is no peak at around
3 = 0° in both figures. Yet a clear peak is shown in {J{HIF}]‘H?] in Figure 7 7(e¢).
which indicates the existence and location of target 3. The ¢GLR p(#|6,.6,,05) in
Figure 5 5(d) shows that no additional target exists other than the targets at #,.
and Fi, In other words, the iGLRT method correctly estimates the number of targets
to be 3.

Now we consider the elements in By, By, and By, as i.i.d complex Gaussian
random variables with mean zero and unit variance. The other parameters are the
same as those in Figure 5 (. The Figures 5 ti(a)-(b) present the CDIEFs of the VS|
of #; and 63 as well as the CRBs, when SNR = 20 dB and L = 1258 As we can
see, the MSEs of the iGLRT are very close to the corresponding CRBs. Figures
5 T(a)-(b) show the outage MSE;; and CRBy; when p = 0.1 as functions of SNR
when L = 128. Again, the MSEs are very close to the corresponding the CRBs.
and decreases almost linearly as SNR increases. Figure 5 X gives the outage MSE,
and CRBy; as functions of L when SNR=20 dB. As expected. the outage MSE, |

approaches the corresponding CRBj; as L increases.
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CHAPTER 6
CONCLUSIONS

We have considered a multiple-input multiple-output (MIMO) radar system with
a general antenna configuration that can be used to achieve both the colicrent pro-
cessing gain and the spatial diversity gain. We have first introduced several spatial
spectral estimators, including Capon and APES, for target detection and pataiet
estimation. By using our results on the growth curve models. we have provided
generalized likelihood ratio test (GLRT) and a conditional generalized likelihood ra-
tio test (¢cGLRT), and then proposed an iterative GLRT (iGLRT) procedure for the
MIMO radar system. Via several numerical examples, we have shown that the Gl
method can provide excellent target detection and parameter estimation pertortnance

at a low computational cost.



APPENDIX A
CRAMER-RAO BOUND

Consider a MIMO radar system with K targets. Then the reccoived siepal

be written as

X = i A(6,)By, VT (6,)® + Z. (A1)
=
Let |
0=1[6, - 0|, \ 2
B = [vec" (By,) -+ vec" (By,)]". (A-3)
and
Br=Re(B) B, =Im(B), (A-4)

where Re(:) and Im(-) denote the real and imaginary parts, respectively Assume that
the columns of Z are w.i.d. circularly symmetric complex Ganssian random vecto
with zero-mean and an unknown covariance matrix Q.

Using the same argument as in Appendix A of [22] . we kuow that the unknowns
in Q will not affect the CRBs of 3 and 6. Hence, we need only to calculate the

following Fisher information matrix with respect to 8, 3, and 3,:

F(6.0) F(6.,B;) F(6.5)
FIM = (F(Br,0) F(BrBr) F(BrpB;)| - (A D)
F(B8,.6) F¥(B,.Br) F(B0))

where F(a, 3) denotes the Fisher information matrix with respect to a and (3.
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Note that

) i
A(6)By, VT (0,)®|

d {
F(6;,6;) = 2Retr

00,
(A b
0 [Z A(0,)Bg, VT(6,)®
00,
and
0 [T AGBL VT (0)®] i
5 = A(6,)Bo, VI(0,)® + A(6,)B,, V' (6,)®. (A T
09,
where
v OA(0) : AV ()
0) = ' and V(6;) = - (A R)
MOl =54 #0d Vid)="% 38
Inserting (A 7) into (A () and after some matrix manipulations. we obtain
F(6:,6;) = 2L I?.{-n-{[A”{U,}Q"A(Hj)l By, VI'(#,) R V" (0,) B/ :
2an.1-{[A”(9,)Q 'A(6;)] [Bo, VT (6,)Raa V ((;,}B,.’,f]} <
(A 9

2LR(:I'.1'{[A”(O,)Q LA(6,)] [Ba, VT (6,)Ras V" (6,)BY } '

2L Retr {[A(6,)Q " A(6,)] [By, V7 (6;)Raa V" (6) B } )

where Rop = +®®" is the covariance matrix of the transmitted waveforms. Hence,
P I
F{9.9) :212{.’(Fu”). (A 10

where Fgy is a K x K matrix with its (¢, ) element being:

[Fooli; = L tr {[A (:)"Q7'A(6,)] [Bo, V" (6,)RasV ‘(H,}Bff]} '
ke {[A”w,)Q-'A(af-H lBa,VT{H.;}R«-«-V"'HLJBff } t
L tr {[A”(H-,:)Q_IA )] B, VT (6;,)Raa V" (6, }Bfa!]} '

LHtr{[A”(U,)Q_]A(UJ)][BU (6, Rea V" (0,)B7/] |
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Similarly, we have
FT(0,8;) = F(B; 0) = 2Re(Fg), (A-12)
F7(6,8,) = F(B,,0) = 2In(Fy). (A 13
F(Br,Br) =F(B;,8;) = 2Re(Fyy). R L1
and
FT(Br.B;) = F(B;,Bg) = 2Im(Fg;s), (A 15)

where Fys and F 34 are both partitioned matrices with K x K and K x K blocks and

with their submatrices being, respectively,

[Fsglis :L\.v[;-_(_-{gA”( JQA(6;)] [By, V )Rq,q‘v'm,];},
(A 106)
vac{{A”((},)Q LA(6,)] [Bo, VT (6,)Raa V* (0 J]}
and
[Fssli; = LIVT(6:)Raa V' (6;)] ® [A7(6,)Q ' A(6;)], (A-17)
with ® denoting the Kronecker product.

Substituting Equations (A 9) - (A 13) into (A 0). and after some mwatvis

nipulations, we get

1 I
CRB(6) = 3{m (735~ FU,.;FJ;_..LFLLJ} . (A 18)

and

CRB(B) = F;} + F;\FY CRB(8) Fy,F ;! \ 1Y
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