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Abstract

We consider a multiple-input multiple-output (MIMO) rada,r sYstel Il I I I('

transmitter and receiver have multiple well-separated subarra,vs witli ml tt,i >i i,i\

containing closely-spaced antennas. Because of this genmral ait tilliiii 12 i

both the coherent processing gain and the spatial diversity gai can I,c sniIuII,I-

ously achieved. We compare several spatial spectral estimators, including Capoii

and APES, for target detection and parameter estimation. We introduce a A-el-

ized likelihood ratio test (GLRT) and a conditional generalized hikIlilh,,),, ii ,, if-I

(cGLRT) for the general antenna configuration. Based on GLRT ai w(LI. \\,

then propose an iterative GLRT (iGLRT) procedure for target detectionu aml mll -

eter estimation. Via several numerical examples, we show that iGLRT cal lrvi(e

excellent detection and estimation performance at a low computational cost.

iv



CHAPTER 1
INTRODUCTION

A multiple-input multiple-output (MIMO) radar uses multiple ait liiiiis t ,I

nultaneously transmit several linearly independent waveforms. It also uses iimtltile

antennas to receive the reflected signals. It has been shown that Y expt)oitill' I li.

waveform diversity, MIMO radar can overcome performance degradatiols (iiitsl I I ,w

radar cross-section (RCS) fluctuations [1] - [1], achieve flexible spatial transmit he ati-

pattern design [5] [6], provide high-resolution spatial spectra.l estiniacs .

significantly improve the parameter identifiabilit,y r,

The statistical MIMO radar, studied in [1] - [1], aimst atl l,siPlllg I -, illiki

tion" effect encountered in radar systems. It is well-knowii diat t lie .l( S (di I ,

which represents the amount of energy reflected from the target toward tile, ic,i\,i

changes rapidly as a function of the target aspect [19], and the locations of the trans-

initting and receiving antennas. The target scintillation causes severe degradation." Il

the target detection and estimation performance of the radar. By spacing tHie t rilms-

mit antennas, which transmit linearly independent signals, far away from each w oter.

a spatial diversity gain can be obtained as in the MIMO wireless commumnicatios to

this scintillation effect [I] - [A].

Flexible transmit beampattern designs are investigated in [5] [(]. Differewnt rmii

the statistical MIMO radar, the transmitting antennas are closely spaced. The am-

thors in [5] arid [6] show that the waveforms transmitted via closely spaced aiilltelil.

can be optimized to obtain several transmit beampatterln designs wt It tjwi i(ai 1,,

formance. For example, the covariance matrix of the waveforms c(ll )i t1iiwie

to maximize the power around the locations of interest and also to liiiiii/,c Ill(

cross-correlation of the signals reflected back to the radar by these targets. tHiiebr)v



significantly improving the performance of the adaptive MIMO radar techniques. Dlic

to the significantly larger number of degrees-of-freedom of a MIMO system. iiii I)plavt

transmit beampatterns can be achieved with a MIMO radar than wit,11 its plascd-

array counterpart.

In [9], a MIMO radar technique is suggested to improve the radar tesoilluOll.

The idea is to transmit N (N > 1) orthogonal coded waveforms by N antennas aild

to receive the reflected signals by M (M > 1) anteinas. At each receiving alielil

output, the signal is imratched-filtered using each of the traiismitted Wa yt blli> I

obtain NM channels, where the data-adaptive Capon bearnfornier [2()] is applie d. It

is proved in [9] that the beampattern of the proposed MIMO radar is obtained hY

the multiplication of the transmitting and receiving beampatterns, hence it has high

resolution. However, [9] considers only single-target scenarios.

A MIMO radar scheme is considered in [1(I] and [17] that can deal with the

presence of multiple targets. Similar to some of the MIMO radar approaches .5} - -d.

linearly independent waveforms are transmitted simultaneously via multiple a oitciiii.

Due to the different phase shifts associated with different propagation lpilisf liim

transmitting antennas to targets, these independent waveformns are hiiearlY coiiihalw,t,I

at the targets with different phase factors. As a result, the signal waveforms reflected

from different targets are linearly independent, allowing the direct application of mra.iv

adaptive techniques to achieve higher resolution and interference rejectiol ciaiiilit v.

Several adaptive nonparametric algorithms, sonie of which also moe(l .1steerill[ O el

errors, are presented in [1(j] and [17].

The MIMO radars discussed above can be grouped into two classes according to

their antenna configurations. One class is the conventional radar array, in which both

the transmitting and receiving antennas are closely spaced for coherent transmission

arid detection [5] - [171. The class other is the diverse antenna configuration. where

the antennas are separated far away from each other to achie(,e sill il\ >it ( 1i\
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[1] - [1]. To exploit the benefits of both schemes, we cozsi 1 clill'

configuration in this report, i.e., both the transmitting and receiu 'ivig dmi,l l ,

consist of several well-separated subarrays with each subarray containing closc Iv\-

spaced antennas. We establish the growth curve models [21] - [2'1] and devise several

estimators for the proposed MIMO radar system.

The remainder of this report is organized as follows. Chapter 2 pres ,lt> t thc

MIMO radar signal model. In Chapter 3, we discuss two adaptive spatial spectrall

estimators including Capon [20] and APES [25]. In Chapter 1, we introduce a gei-

eralized likelihood ratio test (GLRT) and a conditional generalized likelihood ratio

test (cGLRT), and then propose an iterative GLRT (iGLRT) procedure for target

detection and parameter estimation. Numerical examples are provided in Chapter



U CHAPTER 2
SIGNAL MODEL

I Consider a narrow-band MIMO radar system with N and ifl subarra.vs li I ri>

mitting and receiving, respectively. The nith transirit anid T1th receive subarravs

Ihave, respectively, N, and M,, closely-spaced antennas, o = 1. 2... . k

'in = 1, 2, , Al We assume that the subarraYs nre suic.iwk 111d i I

hience, for each target, its radar cross-sections (RCS) for dliflerewitiliiii-init I iii.

subarray pairs are statistically independent of each other. Let v,,(O) anid a...,(0) Im,

thle steering vectors of the nth transmitting subarray anid theto.th receiving su Iihva

respectively, where 0 dlenotes thre target location parameter, for example its angular

location. Let the rows of 4),, be the waveforms transmitted from thle antennas of thle

nrth transmit subarray. We assume that the arrival time is known. Then. the signall

received by the rnth subarray due to thle reflection of thre tiirget mat (iii al I wII 1 I1

Ias V ( ,D
X77 a,l((0)iff ~ ~()~-Z~n zM.

where On, is the complex arrplitude proportional to tHie iCS for t1e ill. II)III

receive and transmit subarray pair and for the target at thle location 0. 'Ihi I niaIIt,

Z,rn denotes a residual term for- the unniodelled nroise. e.g.. ntetriesIiiiIi

Iother than 0 anid at other range bins, anid intentional ()I- nijint,iiiA jl1111_

notational simplicity, wve will not show explicitly the dependence ()I Z_, (I

I Let
<XT... x]Te MxL, (2 2)

A(O) =Diag[ai(0), ... , (0) G CMXM', (2 -3)

IV(0) =Diag[vi(O), ,V (0)] C NP'(2 1)

I 4



I5
and

= [,T ... Q c,x

where M = M1 + + MM and N = N, + + N are the total iiiiwi> (d

receive and transmit antennas, respectively, L is the number of data, samples of t1w

transmitted waveforms, (.)T denotes the transpose operator, and Diag(al, • • . a L,

a block-diagonal matrix with a1, , ap being its diagotial sttl)lli,1I vi(v lwl,l .

can be rewritten in the growth-curve (GC) model [2 1]- 2_]:

X = A(O)BoS(O) + Z, (2 t)

where the (in, n)th element of the M ! x N matrix B0 is 0,,,,0, Z is defined similarly to

X in (2 2), and the rows of S(O) are the reflected waveforms by the target at locatio

0, i.e.,

S(O) = V (0)¢,

Note that when N = d = 1, the signal model in (2 l,) id1i(c,, I,, I IIt)

radar model in [[6] - [ 17], whereas when N = N and A] = .1 it ,redI1a.,- I,, itII,

diversity data model in [1] - [3]. Based on this data model. We below derive two

classes of nonparametric methods, i.e., spatial spectral estimation and generalized

likelihood ratio test (GLIRT), for target detection and localization.



CHAPTER 3
SPATIAL SPECTRAL ESTIMATORS

We discuss two spatial spectral estimators for the proposed MIM() radlr sYsli(lt.

We use these methods to estimate the complex amplitudes in B0 for em, nf i i

from the observed data matrix X. The Frobenius norin of the estimated BO folrnis

a spatial spectrum in the 1D case or a radar image in the 2D case. NVe ci tlicii

estimate the number of targets and their locations by searclhing f( ili , ape, i lit

estimated spectrum (or image).

A simple way to estimate BO in (2 6) is via the Least-Squa res J1S) iilt 1l l, I

LS,O = [AH(O)A(O)]-'A(O)XSH(O)[S(O)SH(O)] - 1

where (.)H denotes the conjugate transpose. However, as any other data-independent

beamforming-type method, the LS method suffers from high-sidelobes and low reso-

lution. In the presence of strong interference and jamnming, the method coiiipletelY

fails to work. Hence, we discuss two robust adaptive spatial spectral estinlatioi

approaches that offer higher resolution and interference suppression capabilities.

3.1 Capon

The Capon estimator for B0 in (2 6) consists of two main steps [20], [26], [22].

The first step is a generalized Capon beamforming step. The seconl stel) is 1i LS

estimation step, which involves a matched filter to tile kluWii ow aiii (O/

The generalized Capon beamformer call be formulated as follows:

rnintr(WHRW) subject to WHA(O) = I.
w

where W E CMxM is the weighting matrix used to achieve noise, interference and

jamming suppression while keeping the desired signal undistorted, tr(.) denotes the
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trace of a matrix, and
1 H
I ~XXH (3i3)

is the sample covariance matrix with L being the number of data samlels.

Solving the optimization problem in (3 2), we have:

Wa..n= R-'A()[AH(0)f-1A(0)]-'.  (3 1)

By using (2 6) and (3 4), the output of the Capon beamfornier cai ,ii i ,

[AH (O)ft- 1 A(O)]-IA"(O)ft-'X = B 0S(O) + [AH(O)ft-IA(O)]-A" (O)R-'Z. (3 5)

By applying the least-squares (LS) method to (3 5), the Capon estimate of B0 follows:

k.p-',O = [AH(O)R-lA(O)]-IAH(O)fI-lXSH(o)[S(o)SH(O)]-1. (3 -6)

3.2 APES

The generalized APES method is a straightforward extension of the APES iictlou I

[25] [27], which can be formulated as:

ulil II WHX - BoS(0) 112 subject to W"A(0) = I.
W'B

where I II denotes the Frobenius norm, and W is the weighting iiatiix. iliniliziiig

the cost function in (3 7) with respect to Bo yields:

BAPESO = WHXSH (0)[S(0)SH (0)]

Then, the optimization problem reduces to

rin tr(WHQW) subject to WHA(O) = 1, (3 9)

with Q = R-- XSH(O)[S(O)SH(O)]-IS(O)XII 
.

,
LI For notional simplicity, we have oluitted time diependIence of Q ()[1 0.



Solving the optimization problem of (3 9) gives the geieialized APES 1w;1111-

former weighting matrix:

WAPES,O = -A(O)[AH(O)QA(O)] - ' .  (3 11)

Inserting (,- .11) in (3 8), we readily get the APES estimate of BO as:

f3APES,O = [AH(O)Q-A(O)]-IAH(O)Q-IXSH(O)[S(o)SH(O)] - . (3 12)

Interestingly, we note that (3 1.2) has the same form as the ML estimate in [2 L]

and [22]. However, the APES estimate is derived based on the beamforming method.

arid, unlike the ML in [21] and [22], it does riot need probability (ciisitv fiiiti,ii

(pdf) of Z.



CHAPTER 4

GENERALIZED LIKELIHOOD RATIO TEST

Generalized likelihood ratio test (GLRT) has been used widely for target dc-

tection an( localization. We derive below a. GLRT and a c(ilitimail ,t'll i/rd

likelihood ratio test (cGLRT) for the proposed .lll() rMMO i. im ii ; Iii i

iterative GLRT (iGLRT) procedure for improved performiancc.

4.1 Generalized Likelihood Ratio Test (GLRT)

Throughout this chapter, we assume that the columns of the interfCr-clice ilid

noise term Z in (2 6) are independently and identically distributed (i.1i.d.) circu-

larly symmetric complex Gaussian random vectors with mean zero and an mikuown

covariance matrix Q

Consider the following hypothesis test problem:

H0' X= Z

H 1 : X = A(0)BoS(O) + Z,

i.e., we want to test if there exists a target at location 0 or not. Similarly to i]ild

[291, we define a generalized likelihood ratio (GLR) as follows:

P(0) I m1axQ f(X IH)
()= 1- LMnaXBo,Q J*(XIHI) j 2

where f(XIHj) (i = 0, 1) is the pdf of X under the hypothesis H,. Fromi \\v

note that the value of the GLR, p(O), lies between 0 and 1. If there is a target a

a location 0 of interest, we have maXB, Qf(XIH) > maxQ f(XjHo), i.e., p 1;

otherwise p . 0.

I 9



Under Hypothesis Ho, we have

f(XIHo) =-LMIQIL exp{- tr(Q-'XX")}, (1 8

where I denotes the determinant of a matrix. Maximizing ( I .) with cs(.t Ito Q

yields:

maxf(XIHo) = (7 )-"LMI 1RIL

where R is defined in (3 3).

Similarly, under Hypothesis H1 , we have

1

f(XIH,) =- MI exp {-tr{Q-[X - A(O)BoS(o)][X - A(O)BOS(O)]"}
7rMII

Maximizing (4 5) with respect to Q yields:

maxf(XIH) = (Tre) - L MI 1 [X - A(O)BoS(O)J[X - A(O)BtS(O)]//
Q L L

Hence, the optimization problem in the denominator of (1 2) reduces to

min L[X - A(O)BOS(O)][X - A(O)BOS(O)] g  (4 7)

B, L
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Following [21.] and [22] and dropping the dependence of A. S mid B (m 0 h)]

I notional convenience, we have:

1 [X- ABSI[X-ABS]H

- L[AB- XSH(SSH)-] (SSH) [AB - XSH(SSH)-]H +Iq
= QI I+±l 7 - [AnB-XSH(SSH)-] (SSH)[An-XSH(SSH)-I] 1 Q

- IQI I XssHH[ABxsH(ssH)]]HQ-

[A - xsH(ssH)H]( SSH)H

K -IQ I-~SS< SXH [Q -l -QA(AHQ-tA) -'AQ 'IXS"(sSS"
Q I + L(SSH) - I [AB- tlQ

L(ssH) [B - (AHQ -1A ) - AH (Q -XSH (ssH) -1] (AIIQ 'A) ,

[g - (AH-IA]IAHQ1XSH(SSH)-I](ssH)

B 2)I > IQI I1+ 1 (SS11)-!SXH[0- ~1H-A-1AQ-1 ]XSH(SI)~9

where Q is defined in (:3 10). To get (41 8), we have used the fact that II + XYI -

I + YX I [3lo], and the equality in (1 9) holds when B equates to the APES estiliiate

I in (3 12). Note that

1 I + L(ssH)-sxH [ -1 
- Q-A(AHQ-A)- A"Q-]XS(SS"1)

1Q I [Q(S ' - Q-IA(AH -A- SAH(SSHR- Q)1

L 2R A(AHQ-A)-'AHQ )-(I (Q)

[B IRII- AH(AHQ-1A)-IAH(Q -  (-Sl

- (IIA(AHQ-1 A)-I(AHIS -9A)I, , I 9)

1 From (' (I), (d 9) and (1 10), it follows that

maxf(XIH1) ( e)-LM IRILIA(O)Q-A(O)ILIAH(O)R-A(O)-L. ( 11)
1 ,X

1I S1),SH[01-0'( -A-A0
1I1 01-01( 01)1 O1(t_0
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Substituting (]. I) and (I 1i.1) into (] 2) yields:

S(0) lA H (O)ft-'A(O)lI(1 2
P(O) {1 AH()QI-A(O) I 1(12

We remark that when there are multiple targets, and the IIII1I)cI ()I

(say K) are known a priori, the GLRTT in (1 12) can be extended to a iniltill-ii1t

counterpart by considering the following hypothesis testing problem:

HK: X = 1 (k)kS(Ok) + Z.

As a parametric method, this nultivariate GLRTT can provide b)etter target detectioni

arid parameter estimation performance than its univariate counterpart. Hl-(,\,,i.III(

multivariate GLITT is corniputationally intensive becauise it nieeds to s(fnliM ilwI

IK-dimensional parameter space fOk IK 1. Moreover, the iiinib)er (4 largels i, lot LVl\

known a priori in practice.

I We propose below an iterative GLRT (iGLRT), which require only onc-dioewnsiuoll

3 ~search (like the univariate GLRTT), but provides a target dletectionl and 1Jhorimwer

timation performance close to the multivariate GLRT.

4.2 Conditional Generalized Likelihood Ratio Test (cGLRT)

Before we dlescrib)e the iGLRT procedure, we first consider the fOllowig IlYpol.11-

esis testing problem, referred to as the conditional generalized likelihood ratio test

(cGLRT). Suppose that we know that there are p targets at the locations OkI}A=I,

and we want to (determnine if there are any additional targets. This prob)leni cain b

formulated ini the following hypothesis testing problemi:

HP: ~~x = Fl A(O-)B )S((-) Z

IP1: A(O)BoS(O) + E"- A(Q )Bf S(tU -
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Note that both the equations in (I 11) are in the form of the block-diagoiial growJti

curve (BDGC) model studied in [21]. For convenience, we rewrite ( I ) as:

HP: X = AkPSIMI + Z

HP+I • X = &P+BP+t+lS+ + Z)

where

Bk =Diag(B6 , B,,,)

Ap [A(01) . A(0,,)].

p [S
T (0 1 ) ST(6,)]'.

I, = Diag(Bo, B6,, Bo")

Ap+1 = [A(O) A(01)'" A(O,p)], I' 20)

§ + = [ST(O) ST(&,) ... S T(,,)] T. 1 21

Similarly, we define a conditional generalized likelihood ra, t,io (cGLB ) as f0lhlws:

()(0jj6IPk-1) = e I maxf,Q f(XIHP) I I1
ruaxk, Q f(XI HS,,) J-

where f(X]Hj) is the pdf of X under the Hi hypothesis, and Q is the covariance

matrix of the columns of Z.

We first consider the optimization probleni of the tiiiieio i

mnizing f(XlHp) with respect to Q yields:I ML'

maxf(XIHp) = (7re) - M (X - A,f3p§p)(X - k3p§)2
Q L

Hence, the optimization problem reduces to

min i APBPSp)(X - ApBp S ) with f3 = Diag(BO,, B6) (1 24)

IL
DiIBl o,) , 4

tI
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The optimization problem in (l 21) does not appear to admit a close(d-fOniii k)ltI i

because bp is a block-diagonal matrix. Herein, we adopt a technique used in I,j to

approximate a closed-form solution.

Note that

L(x - A'Pbpp)(X - APbPSP)l

- -(X - . S, )(Hs, + nls P)(X - ABpS)"

- 1(Xns,, - s - ,B-sp)M f/
L -(Xn1, - A,bp,s)(XI - APBPSP,,)"Oy' + IQ,. ( )-,

I where
I. - - =I I -1

Jj§, = S§(S§SH ) -s, [II - i-I, 2G)

and
X = -L XL, 1 27r

with (.)- denoting the generalized matrix inverse.

Consider the idempotent matrices Ils,, and -I Assiiie Owt tw itiii i

data samples is large enough, i.e., L > .Np. Note that S1, iI A .1, . I 1, I

Hence, we have:

rank(IIg,) < Np and rank(n-,,) > L - Np, (1 28)

with rank(-) denoting the rank of a matrix. Then, we have

Q = O(1), (1 29)
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and

L

I(Xf - A3p ) (XH _ A3 T 0 1)30

1 L~

Therefore, we get:

L (Xlj§, - Ap3St)(XIl - A BpI3p ) T O-I L = 0 <<1. (1 31)IZ

Let {JAi}i 1 be the eigenvalues of the matrix in ( ). which satisfy tlt A

Through some matrix manipulations, we obtain:

L(xLls - kpf3pSp)(xrik - APBPSP T - + I

M M= II(l+ Aj) I1+ yAi
Ii:1i1

S1+ I tr (XI, - APS)(XIIs - Ap,f3pS)TQ;]
1 L- 1 1 - II vec(Qp 2 Xfl§) - vec(Q 2ApBpSp) 1, 1

where vec(.) denotes vectorization operator (stacking the columns of a matrix on top

of each other), respectively, and Qp 2 is the Hermitian square root of Q;'. In (1 32),

we have omitted the high-order terms of {Aj} for the approximation.

Hence, for a large number of data samples, the optimization problem in ( )

can be approximated as:

nin vec(QP 2XIIs) - vec(Q,, 2 A,,B,,S,,)1!

I with k3r = Diag(Bbl,, - o,.i

To solve the above optimization problem, we introduce below two partitioned

matrix operations and two lemmas without proof (see [21] for the detailed proofS).
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Definition 1. Let G be a partitioned TnatT-iX with G,,, beirng the (I, J1) fM (/. I -

I1, 2, J) submatrix of G. Then the block- diagonal vectorization operatlou i Ilid

by

vecb(G) ['vec(Gl,l vec(G 2 2 j e(j T

Definition 2. Let E7 and Q2 be two partitioned 'rat.ricc.s itIl ( ill/illi ll poll1/11

and with Ei,j and Qjij being~* the (i', J) th subrnatries o./! (jtid Q. Ii 0Y i/i.I I

the generalized Khatri-Rao product [M'j is defined by,t

X ( 2ij rij0Qj (4-35)

where [.1], denotes the (i, j) th submnatrix of the given partitioned Tnatrix and 0 denotes

the KroneckeT mnatrix product.

Note that both the block-diagonal vectorization vecb(.) and the genleralizedl

Khatri-Rao product ® are dlefinled based onl a particular matrix partitionuing. i.e..

different matrix partitionings will lead to different results. Throughowt this wjmrt,

the partitioned matrix operation are all based onl the partitionings in ( I I)-

I It is also worth pointing out that matrix partitioning may be "inherited" throuughu uiii-

trix operations. For example, for the partitioned matrix A g ivel h% v I) A,/,/ A

is a p x p partitioned matrix with the (i, j)th (i, 1 . 2 i iIiiu,11 I IX H

A H (O)A(O3).

Lemma 1. Let E and S1 be two partitioned mnatriceswith A' b/ock roll's au 1 /ld

columrns, and let G be a block-diagonal rmatrix with comnpatible duraefsnn,,;u (riad mv-

formal partitioning with r, and Q. Then

vccb(EG 7f) = (Q * E)vecb(G). 1 30

H ~ ~Lernma 2. Let U and V be two partitioned rnat'n.ccs witi 1 block; rowt (111d .1 b/u) A

columns, and let H and F be two partitioned rnatrices wit I b/ack lon, audmi/ A
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columns and with corripatible dimensions with U and V, respectively. Tb(ti,

(U ® V)H(H ® F) = (U HH) ®) (V/F). I;

Now, let

3p = vecb(Bp), (4-38)

i.e.,
p, = [vec T(B 6,) '.. vec"(B 6,,)] I T9

By using Lemma 1 (with K = 1 and J = p), we obtain:

veI(Q- 2 k I $ _ Q

Hence,

vec(Op Xfl5s) - vec(Qp A 13kSp) 112

2 Xr_ § - -p-
-> II vec(Q X ,) - vec(' (0- s r

Ltr(Q1ft') - LM - vecbH(kQ-IX H) X

[(§§H~)T 4) ( kHQIA - 1 vecb(AHQ X§),-p - - l) eb( Q XS

where we have used Lemmas 1 and 2, and the equality holds when

(Hfp)- r1 vec(Q, 2 XI).

I _

By using (1 23), (1 25), (1 82) and (I 11). it follow i that

max J*(X I Hp)tQ,Bp (7re)Al g( ,' pAp,(0, IO ,



18

where

g(1 ) I - M + tr(QR)-vecbH(_&HQ)XSI) X

IP L (S H) ® (A1Q)A-HT H -1 (kQ1 ) ,

* ( A vecb( Q'X (s )

Similarly, we have:

[max f(XIHp+I)j ( ( 0
LQ,Bl,+ (7Ce)" f](0. 0)j.-••- . 1),, iQ j,'

where Qpl+ and g(O, 6 , , 6p) are defined similarly to Q, in md q

in (' 4), respectively.

Substituting (1 43) and (1 15) into (4 22) yields the conditional GLR:

p(0{1 }) -  1- IQ,,+ (1 1i)

4.3 Iterative Generalized Likelihood Ratio Test (iGLRT)

The basic idea of the iterative generalized likelihood ratio test (iGLRT) is h,)

detect and localize targets sequentially. In each step of the iteration, the rcsul,s

from the previous iterations and steps are exploited for the detection and localization

of new targets by calculating cGLR. Specifically, we first perform GLPT to get tia,

location of the dominant target, and the following targets are (1(' u, + Iii I .1

by using cGLRT conditioned on the most recently available estimiaites. The det, ilK,d

steps of iGLRT are described in Table I.

Once the locations of the targets are determined, the amplitudes of the reflected

signals can be estimated by using the AML estimator in [24]:

= [(H~ 1 A) ® (S'H T] 1vecb(AKQ R XS{), (4 47)

where Ak , S" and Q are defined similar to A., Ap and Qp in (I ), (i !9) and

('1 27), respectively.
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Table 4-1: iGLRT algorithin

Step 1:
- Calculate p(O) in (,1 12) for each 9.
- Compare p(O) to a threshold po: if /)(0) < p, fOr il 0. I 1ii l I,i ,

otherwise, i =arg naxo p() go to Step 11.
Step 1: For k =1 2, -- do the following:
- Calculate p(O { 0} - ) in ('1 1() for each 9.
-IIf < po for all 0, then go to Step III:

otherwise, 0 k+ I = arg maxo p(01{i },).

Step III: Repeat the following substeps until convergence for A - 1. 2, Ix
(suppose that A' targets are detected in Steps I and II)

- Calculate p(0{k}i#k) for each 0.
-Update kA, by argrnaxo (O{OI}.$k).

We note that Step III of the above iGLRT algorithm actually 1i1iiiiize 11w

function g(01, Ok) with respect to {0k}jk= by using the cyclic miniizatio ((MI

technique [33]. Under a imild condition, i.e., L > N'., we have .1(0,.

Furthermore, we know that the CM algorithm monotonically decreases the cost fuc-

I tion. Hence, the iGLRT algorithm is convergent. When A' is the true nuinther (f

targets, iGLRT reduces to an approximate (parametric) inaxiniui likelihol (,st iiim-

tor. As we will show via numerical examples, the inean-squarcd-crr()i .NIF') dI, I w

estimate of iGLRT approaches the corresponding Crainr-Rao bound (('RB) 1,r l

large number of data samples. On the other hand, we note that i(;LRT neceds oIlY

one-dimensional search and hence is computationally efficient.



CHAPTER, 5
NUMERICAL EXAMPLES

In this chapter, we first compare the Cramr-Rao bounds (CRBs) for MIMO

radars with different antenna configurations, and then present. the (l detclioii amii

localization performance of the proposed mnethods.

5.1 Cramr-Rao bound

We first study the Cram6r-Rao bound under various antenna c)itigttl) i."

Consider a MIMO radar system with M = N = 8 antennas for transmitting and

receiving. We assume that the receiving and transmitting antennas are grouped into

multiple subarrays (each being a uniform linear array with half-wavelength spacing

between adjacent elements):

* MIMO Radar A: 1 subarray with 8 antennas for transmitting and receiving:

* MIMO Radar B: 2 subarrays each with 4 antennas for transmitting, and I

subarray with 8 antennas for receiving;

* MIMO Radar C: 8 subarrays each with 1 antenna for transmitting, and 1 sub-

array with 8 antennas for receiving;

9 MIMO Radar D: 2 subarrays each with 4 aiftemnas fol t ra e iili ill ,I), (,- ,\

ing.

We assume that the transmitted waveforms are linmarly ortliozguiil I (,)t ho j 11

the total transmitted power is fixed to be 1, i.e., Rq, = 1I.

We consider a scenario in which K = 3 targets are located at, 0 = -40 0'., =

-4' and 03 = 0", and the elements of {Bfk}a=1 are independently and identically

distributed (i.i.d.) circularly symmetric complex Gaussian random var ii,l,s wi i

zero mean and unit variance. There is a strong .jaimnmer at 1WF with ailnplitll Ic lIt)).

i.e., 40 dB above the reflected signals. The received signal has L = 128 sulapsl1w,s

20
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and is corrupted by a zero-mean spatially colored Gaussian noise with an inknown

covariance matrix. The (p,q)th element of the unknown noise covariance matrix is

I 0.901-qjP- 2 (p')'

Figures 5 [(a) arid 5 1(b) show tie cunmlative (leiisit v fiili,w ((l)l"> Id I 1> ,

CRBs for MIMO radar with various antenna configurations wlieti SNIH --20 (111 11, w

CRB of 02 is similar to that of 03 and hence is not shown.) The (DFs im' ohl 1, 1

by 2000 Monte-Carlo trials. In each trial, we generate the elements of' {Bo, I

randomly, and then calculate the corresponding CRBs using (A 18) given by in the

Appendix. For comparison purposes, we also provide the CDF of the phased-array

(single-input multiple-output) counterpart, i.e., the special case of the above MIMO

radar when N = 1, with the same total transmission power. As expected, the MINI()

radar provides much better performance than the phased-array cotuterpat. D1( to

the fading effect of the elements of {Bo,}'.l, the CRB of MIMO Radan A vi>,

within a large range. Within a 95% confidence interval (i.e., when CDF \',aries mholl

2.5% to 97.5%), its CRB for 01 varies approximately from 5 x 10- 7 to 5 x 10 :'. Th

CRBs for MIMO Radar C varies within a sniall range.

To evaluate the CRB performance, we define an uiita g( (CIM1 1'i I

probability p, denoted by CRBP, as:

P(CRB > CRBP)=p.

Figures 5 2(a) - (d) show the outage CRB0 .01 and CRB0.1 of 01 and 03, as functions of

SNR. As expected, the SNR gains depend on the probability p. As we can see, when

p = 0.01, MIMO Radar C outperforms the other rada configurations. iml [[()\id(o,s

around 20 dB and 12 dB improvements in SNR compared to the phaset1-aarry ii)- i

MIMO Radar A, respectively. On the other hand, Figure 5 2(d) shows that NIIE()

radars A arid B outperform others when p = 0.1.
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5.2 Target Detection and Localization

We focus below oil MIMO Radar B, i.e., a MIMO radar svsteiii withl 2 sill,

rays (each with 4 antennas) for transmitting and 1 subarray (with 8 ailtellias) tol

receiving.

We first consider a scenario in which 3 targets are located at 01 = -40' =

-20' and 03 = 00 with the corresponding elements in B 0,, B 02 and B0, being fixed to

2, 2 and 1, respectively. The other simulation pararieters are the same as for Figure

5 1. The Frobenius norm of the spatial spectral estimates of Bo \'rsll . , hi6l I \

using LS, Capon arid APES are given by Figures 5 8A(a)-(c). For (omlpiiiis,l I p I .I

we show the true spatial spectrum via dashed liles il these igtil-sc .> >A,,,"v Ii,(11

Figure 5 3, the LS method suffers from high-sidelobes atid poor es i-cs o l 1)(1,i,'>

Due to the presence of the strong jamming signal, the LS estimator fails to w-ork

properly. Capon and APES possess excellent interference and jaluiiig siptic r,si ii

capabilities. The Capon method gives very narrow peaks aroitii t lw t; t I ,i l,i-

However, the Capon estimates of B0 , B02 and B0:, are biased dlowiwtvilI. 'Ilic A I '1

method gives more accurate estimates around the target loatioiis tt its t*,solItl,l

is worse than that of Capon. Note that in Figures 5 3(a)-(c), a false peak ocecirs a,t

0 = 10' due to the presence of the strong jarriner. Although the jammer waveform is

statistically independent of the waveforms transmitted by the MIMO radar, a false

peak still exists since the jamrner is 40 dB stronger than the weakest target a1liIt IIt

number of data samples is finite. Figures 5 3(d)-(e) give the ULI'. ;li I 1 1(; I. I

results, as functions of the target location parameter 0. For eoiiilcv. it

5 3(e), we have included all cGLR functions obtained hY i(;LIiT. l If l ill ill ,,

target. As expected, we get high GLRs (cGLRs) at the target, locations l id h,ow

GLRs (cGLRs) at other locations including the jammer location. By comparing the

GLR with a threshold, the false peak due to the strong jammer can be detected anl
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rejected, and a correct estimate of the number of the targets can be obtained bY bot II

methods.

Next we consider a more challenging example, where 02 is -4' while all the other

simulation parameters are the same as before. As shown in Figure 7 (c). iew AlIS.

Capon and GLRT methods fail to resolve the two (l05eV SpXi(.3,I t ,, ,i .

and 03 = 00. On the other hand, iGLRT gives well-resolved prli ks III' !a , I

target locations. To illustrate the procedure of the iGLR,r algoritlihii. , 'i\'. ii,

GLR, and cGLRs obtained in Steps I and II of iGLRT in Figures 7 . "ad

5 5(a)-(b) show the GLR p(O) and the cGLR p(OIOi), respectively, where 01 is the

estimated location of target 1 from p(O). As we can see, there is no peak at arouid

03 = 00 in both figures. Yet a clear peak is shown in p(001, 92) in Figure - (c).

which indicates the existence and location of target 3. The cGLR p(0 101. 021 0) iii

Figure 5 5(d) shows that no additional target exists other than the targets at 0)I. €)

and 93. In other words, the iGLRT method correctly estimates the number of targets

to be 3.

Now we consider the elements in B0 , B02 and B0 , as i.i.d complex Gaussian

random variables with mean zero and unit variance. The other )arameters aret Iic

same as those in Figure 5 G. The Figures 5 i(a)-(h) present Hie (I)f's (d II (, MSI-

of 01 arid 03 as well as the CRBs, when SNR = 20 dB and L = 128. As cim

see, the MSEs of the iGLRT are very close to the corresponding CRBs. Figures

5 7(a)-(b) show the outage MSE0.1 and CRB0.1 when p = 0.1 as functions of SN

when L = 128. Again, the MSEs are very close to the corresponding the CRBs,

and decreases almost linearly as SNR increases. Figure 5 1 gives the outage MSE0.

and CRB0.1 as functions of L when SNR=20 dB. As expected, the outage MSE,

approaches the corresponding CRB0.1 as L increases.
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CHAPTER 6
CONCLUSIONS

We have considered a multiple-input multiple-output (MIMO) radar sYsteni with

a general antenna configuration that can be used to achieve both the colic ewt In,r)-

cessing gain and the spatial diversity gain. We have first introduced svewral spit ml

spectral estimators, including Capon and APES, for target detectioii iund p iii iiiiwt ,i

estimation. By using our results on the growth curve models, we hal've pnwidcd ( i

generalized likelihood ratio test (GLRT) and a conditional generalized likelihood ra-

tio test (cGLRT), and then proposed an iterative GLRT (iGLRT) proced(re fir Ili

MIMO radar system. Via several numerical examples, we have showli t hait t l I 1.11

method can provide excellent target detection and parameter estimation pcif(lrliii(v

at a low computational cost.
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I APPENDIX A
CRAMtR-RAO) BOUND

Consider a MIMO radar system with K targets. 'Ilicti lic vie (-t-I\-

be written asK

x Y ZA(OkBk VT (0k)4) + Z.(AI
k=13 Let

1 3 [veCT (Bo,) .. vec"'(130,)IT, (

and

O3R = Re(A3 /3 = Im"(0), (A -4)

where Re(.) and Imn(-) dlenote the real and imaginary parts, respectivelY. Asslum, I Ilil

the colunins of Z are i..d. circularly symmetric complex Gm issimtf i r VI I)

I with zero-mean anid an unknown covariance matrix Q.

3Using the samne argunient as in Appendix A of [221] we knovv t Iiiit t ic ii ikia I(\ I

in Q will riot affect the CRBs of /3 anid 0. Hence, we needl onlY to cAcIllili I(,

3 following Fisher information rnatrix with respect to 0, OR, anid /31:

F (0, 0) F(O,/3OR) F(O,/0 1)I FIM =F(O3R,0) F(03R, OR,) F(O, 013) (A 5)

F(O3,0) F(O3,,OR) F(/31,)3,)

where F(a,O/) denotes the Fisher information matrix with respect to a and /3.

1 30
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Note that

F(Oj, Oj) = 2 Re tr a [Ek1AOkBo,V"A4"

a [-1 A(01,)B OkV(0k)(b1

and

a [I:k=l A(Ok)B, V(k)] A(Oi)BokVT(O,)4) + A(Oi)Bo,V(O,) ,,  A 7)

where

a (0k)- aA(ok) and (Ok) OV(Ok) ( )
00 00

Inserting (A 7) into (A 6) and after some matrix manipu1laio mm. \v(d ,)t,

F(Oi, 0) = 2LRetr {[AH(O)Q-IA(o,)] [Bo V1 (O,)R,,,,V'o, B'; }
2L Re tr { [AH(Oi)Q-'A(Oj)] [Boj V T (O,)R,,V*(0,)B'] } +

2L Re tr { [AH(0,)Q - IA( 0y)] [Bo, VT(Oj)R44v*(O,)B" }

where Rq4 = _ )H is the covariance matrix of the transmitted waveforms. Hence,

3 F(0,0) = 2Re(Foo), (A 1,

where Foo is a K x K matrix with its (i, j) element being:

[Foo]ij = Ltr { [A(Oi)HQ-A(oj)] [BojVT(O)R. 1 V'(O,)Bj]0}

Ltr { [AH (Oi)Q-1A(03 )] [Boj VT(Oj)R,4VT(Oi)B]} +

L tr { [AH(0i)Q - lA(0j)] [Boj VT(0j )R4, q)V*(0,)B ] }+
L Re {[AH(0i)Q-'A(Oj)] [BO,V 7'(0j)Rq,V*(O,)BO"] }
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Similarly, we have

FT(O, OR) = F(OR, 0) = 2 Re(Fifo), (A 12)

FT(o,)31 ) = F(/1, 0) = 2 Im(F,jo). A

F( 3 R, OR) = F(OI,, 01,) = 2 Re(F&I) (A 1 I

and
a FT(03R,f0I) = F(f,,f3R) 2Ir(F,j), (A 15)

where Fo[3 and F,3 are both partitioned matrices with K x K and K x K blocks and

with their submatrices being, respectively,

[F o]ij =Lvec{[A H(0Q)Q -IA (Oj)] [BoV (Oj)R j)VN (O )] + +

L vec { [AH(Oi)Q - 1A(0 j )] [Bo, VT(oj)R( V*(0)] }
and

[FO,]ij = L[VT(O.)R44V*(Oj)] 0 [A"(Oi)Q-'A(j)], (A 17)

with 0 denoting the Kronecker product.

Substituting Equations (A 9) - (A 7) into (A ()). and after soic( I I hIx II,

nipulations, we get

CRB(O) =- Re [Foo - FoOF-1 } - (

and

CRB(3) = F- + F1FHCRB(O) FoF .A ,
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