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ABSTRACT 

Eastern North Carolina Marine Corps Forces and Installations (ENCMCFI) is 

located on the Atlantic coast of North Carolina and is therefore vulnerable to a major 

hurricane. Base commanders must weigh the substantial costs of evacuation – 

approximately $30-$50M for a full evacuation – against the risk posed by the effects of 

the storm if personnel are not evacuated.  The purpose of this thesis is to provide a 

decision aid for base commanders to identify forecast conditions that indicate the need to 

initiate an evacuation.  In order to assess the probability of a direct strike to ENCMCFI 

posed by a new storm, this thesis proposes using National Hurricane Center forecasts 

combined with a statistical model of historical forecast errors.  Additionally an analysis 

of evacuation assets available and the distances to primary evacuation locations is also 

conducted to identify available options for evacuation at the decision time.   A series of 

decision rules is created to determine whether, based on the current storm forecast and 

the available evacuation assets, evacuation is warranted now or whether it is better to 

wait until the next forecast is issued.  The results of this study indicate that the risk of 

riding out the storm at ENCMCFI and the transportation risk of evacuating are 

approximately equal given the current evacuation plan and the required decision lead 

time. 

. 
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EXECUTIVE SUMMARY 

Eastern North Carolina Marine Corps Forces and Installations (ENCMCFI) is 

located on the Atlantic coast of North Carolina and is vulnerable to damage from a major 

hurricane. Base commanders must weigh the substantial costs of evacuation – 

approximately $30-$50M for a full evacuation – against the risk posed by the effects of 

the storm if personnel are not evacuated. Evacuation planning is important to ENCMCFI 

due to the requirement for tenant forces to provide continuous war-fighting capabilities.   

A large student population in excess of 5,000 Marines without personal transportation 

complicates the problem.  The variables considered for an evacuation decision are the 

weather analysis conducted by meteorology personnel, and the evacuation transportation 

analysis performed by the operations department.  Both variables are to the evacuation 

decision.  Two obstacles hinder decision making: operations personnel do not understand 

the nuances of hurricane forecasting and meteorology personnel do not understand the 

time and distance constraints for a large scale evacuation.  The purpose of this thesis is to 

bridge the gap between meteorology and operations to assess the costs and risks involved 

in the evacuation decision. The thesis also assists the base commander in identifying 

forecast conditions that indicate the need to initiate an evacuation using storm forecast 

information and current transportation asset availability information. 

 The landfall of a major hurricane in North Carolina is a high-impact, low-

frequency event: only one category 4+ hurricane (on the Saffir-Simpson Scale) has made 

landfall in North Carolina in the past 106 years.  Hurricanes make landfall in North 

Carolina, on average, only once every 4 years.  Structures identified as hurricane shelters 

at ENCMCFI are built to withstand wind speeds of 105 knots (kts).  At 12-17 miles 

inland, ENCMCFI faces a minimal risk of storm surge.  As a result, ENCMCFI only 

needs to evacuate in the event of a direct strike from a Category 3 or higher storm.   

Base commanders must assess the risk posed by a given storm using hurricane 

forecasts from the National Hurricane Center (NHC). The NHC issues forecasts every six 

hours during a storm.  The forecasts consist of position and intensity estimates at 12 or 24 



 xvi

hour increments for up to 120 hours into the future. However, the NHC does not provide 

estimates of the probability of 105 kts winds at ENCMCFI. In order to assess the 

probability of wind speeds greater than or equal to 105 kts at ENCMCFI, this thesis 

proposes using NHC forecasts combined with a statistical model of historical forecast 

errors. Distributions for the positional and maximum wind speed forecast errors for each 

forecast time period are created using historical forecast data for hurricanes from 1996-

2005, together with estimates of the actual storm positions and intensities.   These 

forecast errors are used along with the forecast values of storm positions and intensities to 

determine a distribution of winds speeds at ENCMCFI. The resulting model assumes that 

the wind speeds at ENCMCFI, at different times, are conditionally independent given the 

associated position and intensity storm forecasts.  

A series of decision rules is created to determine whether, based on the current 

storm forecast, evacuation is warranted now or whether it is better to wait until the next 

forecast is issued.  The evacuation decision must be made before arrival of tropical-storm 

force winds.  Evacuation operations cannot occur in tropical-storm force winds.  Factors 

in this decision are the direct costs of evacuation, the transportation risk costs, and the 

risk costs of storm effects. Evacuation costs include costs for vehicles as well as travel 

and lodging costs for all personnel evacuated. Transportation risk and storm risk costs are 

estimated using historical travel and hurricane data to determine expected per-capita 

injuries and fatalities. The storm risk costs are based on the distribution of wind speeds at 

ENCMCFI.  The model of storm wind speeds at ENCMCFI is used to study the storm 

forecasts that would initiate an evacuation based on the storm risk costs rising to a level 

above that of the direct evacuation costs plus the transportation risk costs.  The results of 

this study indicate that the expected risk of riding out the storm at ENCMCFI and the 

expected risk of evacuating are approximately equal given the current evacuation plan 

and the required decision lead time.  This result is driven by uncertainty in the prediction 

of the location and the intensity of the storm 72 hours in the future. 
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I.  INTRODUCTION 

Evacuation: removal of people from a dangerous or potentially dangerous 
place  

(McDuffie 2002). 

A.  ORIENTATION 

Eastern North Carolina Marine Corps Forces and Installations (ENCMCFI) 

consists of three installations: Marine Corps Base Camp Lejeune, Marine Corps Air 

Station New River and Marine Corps Air Station Cherry Point. The bases are located on 

the southern coast of North Carolina where major hurricanes are high-impact, low-

frequency events.   Having a coastline along the Atlantic Ocean of 301 miles, a tidal 

coastline of 3,375 miles, and a geography that juts out into the North Atlantic, North 

Carolina has a long history of hurricanes (Figure 1).  Only one category 4+ hurricane on 

the Saffir-Simpson Hurricane Scale (Table 1) has made landfall in North Carolina in the 

past 106 years − Hurricane Hazel in 1954.  Overall, hurricanes make landfall in North 

Carolina on average only once every four years (State Climate Office of North Carolina, 

2006). 
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MCB Camp Lejeune
MCAS New River

MCAS Cherry Point

 
Figure 1.   Map of Eastern North Carolina with number of hurricane strikes by county 

from 1926-2005 with location of bases in ENCMCFI indicated.  Adapted from 
National Hurricane Center, Tropical Cyclone Climatology, 2007 

 

While hurricanes occur frequently in North Carolina the number of high-intensity 

hurricanes to make landfall in North Carolina has been relatively small.  Reliable 

classification of the intensity of tropical cyclones began in 1886. Since that time, there 

have been 951 tropical cyclones that have been recorded in the Atlantic Ocean and the 

Gulf of Mexico. Approximately 166 or 17.5% of those tropical cyclones passed within 

300 miles of North Carolina (State Climate Office of North Carolina, 2007).   
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B.  ENCMCFI HURRICANE BACKGROUND 

When Hurricane Floyd threatened the North Carolina coast in September 1999, 

base commanders at ENCMCFI were faced with a Category 4 hurricane with winds of 

115 knots (kts) approximately 72 hours from landfall with no evacuation plan in place.  

The decision was made for all ENCMCFI personnel to ride out the storm since there was 

no time to develop and execute an evacuation plan (T. Phillips, Director for Plans and 

Operations, ENEMCFI 2006).  Fortunately, Hurricane Floyd diminished in intensity as it 

approached the coast, and eventually made landfall in North Carolina, approximately 60 

miles south of ENCMCFI.  Since that time, an evacuation plan has been developed to 

address the mechanics of how an evacuation should take place, but there is no clear set of 

circumstances that should initiate an evacuation.  Evacuation for ENCMCFI is a special 

problem due to the need of the forces there to provide continuous war-fighting 

capabilities and a large student population, in excess of 5,000 Marines, without personal 

transportation.  In addition there are several other populations of Marines and dependents 

that require government-supplied transportation (buses and vans) in the event of an 

evacuation, either because they are needed to maintain a continuous warfighting 

capability, or because they do not have personal transportation.   

The variables considered for an evacuation decision are the weather analysis 

conducted by the meteorology personnel, and the evacuation transportation analysis 

performed by the operations department.  Both are both critical pieces of information for 

the evacuation decision.  Two elements hinder evacuation decision making; the 

operations personnel do not understand the nuances of hurricane forecasting and 

meteorology personnel do not understand time and distance constraints for a large-scale 

evacuation.  The purpose of this thesis is to bridge the gap between meteorology and 

operations to assess the costs and risks involved in the evacuation decision. The thesis 

also provides guidance to the base commander in identifying forecast conditions that 

indicate the need to initiate an evacuation based on storm forecasts and current 

transportation asset availability.  
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C.   TROPICAL CYCLONES 

Hurricanes are a type of storm referred to as a tropical cyclone.  The National 

Hurricane Center (NHC) defines a tropical cyclone as: 

A warm-core non-frontal synoptic-scale cyclone, originating over tropical 
or subtropical waters, with organized deep convection and a closed surface 
wind circulation about a well-defined center. Once formed, a tropical 
cyclone is maintained by the extraction of heat energy from the ocean at 
high temperature and heat export at the low temperatures of the upper 
troposphere. In this they differ from extra-tropical cyclones, which derive 
their energy from horizontal temperature contrasts in the atmosphere 
(baroclinic effects) (National Weather Service, 2007e). 

In the Atlantic Ocean, tropical cyclones typically begin as low-pressure 

disturbances in the atmosphere off the western coast of Africa.  If conditions are right, 

this low pressure system is fueled by the latent heat of the southern Atlantic Ocean and 

becomes better organized.  The system may begin to exhibit characteristics in the 

definition above which will cause the NHC to classify the storm as a tropical cyclone.  

When a tropical cyclone reaches a point where its sustained winds are in excess of 65 kts, 

the storm is classified as a hurricane.  Hurricanes are assigned categories according to the 

Saffir-Simpson Hurricane scale based on their maximum sustained (1-minute average) 

wind speed at an elevation of 10 m.  According to the NHC: 

The Saffir-Simpson Hurricane Scale is a 1-5 rating based on the 
hurricane's present intensity. This is used to give an estimate of the 
potential property damage and flooding expected along the coast from a 
hurricane landfall. Wind speed is the determining factor in the scale, as 
storm surge values are highly dependent on the slope of the continental 
shelf and the shape of the coastline, in the landfall region. Note that all 
winds are using the U.S. 1-minute average. (National Weather Service, 
2006a) (Table 1). 
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Saffir-Simpson Hurricane Scale 

Category Barometric 
Pressure Wind Speed Storm 

Surge Damage Potential 

1 weak 28.94" or more  
980.2mb or more 

65 - 82kts 
75 - 95mph

4 - 5ft  
1.2 - 1.5m Minimal damage to vegetation

2 moderate 
28.50" - 28.93"  

965.12 - 
979.68mb 

83 - 95kts 
96 - 

110mph 

6 - 8ft  
1.8 - 2.4m Moderate damage to houses 

3 strong 
27.91"-28.49"  

945.14 - 
964.78mb 

96 - 113kts 
111 - 

130mph 

9 - 12ft 
2.7 - 3.7m

Extensive damage to small 
buildings 

4 very 
strong 

27.17"-27.90"  
920.08 - 

944.80mb 

114 - 135kts
131 -

155mph 

13 - 18ft 
3.9 - 5.5m Extreme structural damage 

5 
devastating 

< 27.17"  
< 920.08mb 

> 135kts 
> 155mph 

> 18ft  
> 5.5m 

Catastrophic building failures 
possible 

Table 1.   Saffir-Simpson Hurricane Scale from State Climate Office of North Carolina  
 

Tropical cyclones are enormous storms, often 300-500 miles across.  The most 

obvious feature of a tropical cyclone is the eye which is an area of relative calm in the 

middle of the storm.   

1.  Wind Damage 

A tropical cyclone’s intensity is classified by the speed of its maximum winds.  

These maximum winds are located in a very small portion of the storm just on the outside 

of the eye of the storm in a portion of the cyclone referred to as the eye-wall (Figure 2), 

which is the barrier between the calm of the eye and the most ferocious winds of the 

storm.  Wind intensity decreases as distance from the eye increases, but hurricane force 

winds, classified as winds in excess of 65 kts, can often extend hundreds of miles out 

from the eye.  These winds flow in a counter-clockwise direction around the eye in the 

northern hemisphere and are parallel to the eye wall of the storm.  Due to this rotation of 

the winds about the eye, the winds on the right side of the eye (relative to the storm’s 

direction of forward motion, as seen from above), are parallel to the track of the storm.  

As a tropical cyclone moves over land, a point on the right side of the eye will feel the 

effects of the maximum winds of the storm amplified by the magnitude of the forward 
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speed of the storm.  For this reason, the right side of the eye of a tropical cyclone 

experiences the strongest winds of the storm (National Weather Service, 2005b). 

  

 
Figure 2.   Diagram of the Anatomy of a Hurricane from the National Weather 

Service, Tropical Cyclone Structure, 2005 
 

2.   Storm Surge   

While tropical cyclone forecast intensity reflects anticipated wind speeds, the 

effects of storm surge must also be considered:  9 out of 10 tropical cyclone fatalities are 

a result of flooding (not flying debris) (American Society of Civil Engineers, 2003).   The 

NHC defines storm surge as: 

An abnormal rise in sea level accompanying a hurricane or other intense 
storm, and whose height is the difference between the observed level of 
the sea surface and the level that would have occurred in the absence of 
the cyclone. Storm surge is usually estimated by subtracting the normal or 
astronomic high tide from the observed storm tide (National Weather 
Service, 2007e). 

Storm surge from tropical cyclones is a function of several factors in conjunction 

with the tropical cyclone.  Time of day, local tides, wind pushing the water ashore, the  
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low pressure (vacuum) of the storm and underwater geography all have a profound 

impact on the level of storm surge expected as the tropical cyclone comes ashore.  Figure 

3 illustrates these factors. 

 
Figure 3.   Depiction of causes of storm surge flooding from J. Wilkinson: Anatomy 

of a Hurricane 
 

The level of storm surge depends on landfall location.  It is possible to model 

storm surge levels using simulated storms.  The anticipated storm surge level of can be 

assessed by using a model developed by the National Weather Service named: Sea, Lake 

and Overland Surges from Hurricanes (SLOSH).  This model calculates potential surge 

heights from hurricanes as a function of approach direction, forward speed, and intensity.  

The results are independent of the point of landfall (USACE, 2002).   The output from the 

SLOSH model is a map that indicates where flooding can be expected during different 

categories of tropical cyclone.  Regions of two of the bases that comprise ENCMCFI, 

Camp Lejeune and MCAS New River, that can expect storm surge flooding from a 

category four or five hurricane are indicated in red in Figure 4.  While extensive flooding 

is predicted at the coast, little flooding predicted at ENCMCFI even in category-5 storms. 

This is important since the main population centers of the base are located inland. The 

SLOSH model is continually being validated and improved: 

After a SLOSH model has been constructed for a coastal basin, 
verification is conducted as real-time operational runs in which available 
meteorological data from historical storms are input into the model. The 
computed surge heights are compared with those measured from historical 



 8

storms and, if necessary, adjustments are made to the input or basin data. 
In instances where the model has given realistic results in one area of a 
basin, but not in another, closer examination has often revealed 
inaccuracies in the representation of barrier heights or missing values in 
bathymetric or topographic data. The hurricanes used to verify the 
Pamlico Sound SLOSH Model are Donna (1960), Fran (1996),  Floyd 
(1999) (USACE, 2002).  

 
Figure 4.   SLOSH map of Camp Lejeune, N.C. of Camp Lejeune 

 

D.   TROPICAL CYCLONE FORECASTS 

When a low-pressure system or tropical wave develops in the Atlantic Ocean and 

demonstrates characteristics typical of a tropical cyclone, NHC forecasters begin tracking 

and forecasting that storm.  The forecasts are a result of several models, including 

numerical global weather models that use global weather patterns to create forecast 

tracks.  Forecasters at NHC use these data as well as satellite imagery and data collected 

from aircraft flying through the storm to create an official forecast of the tropical cyclone.  
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Official forecasts are issued by NHC every 6 hours for time periods 12, 24, 36, 48, 72, 96 

and 120 hours into the future.  The forecasts include the projected position of the eye and 

the estimated intensity of the storm.  These forecasts are issued in both a numerical 

format and with the graphical depiction shown in Figure 5.  

 

 
Figure 5.   Hurricane Isabel, 2003 forecast image issued at 11AM EDT, 15 

September, 2003 from National Weather Service 
 

In the graphical forecast, the forecast position of the eye of the storm is indicated 

by the black circles and the line connecting those points is the forecast track of the eye of 

the storm, commonly referred to as the forecast track:  

NHC forecast tracks of the center can be in error; track forecast errors in 
recent years were used to construct the areas of uncertainty for the first 3 
days (solid white area) and for days 4 and 5 (white stippled area). These 
areas of uncertainty are formed by enclosing the area swept out by a set of 
circles (not shown) along the forecast track (at 12, 24, 36 hours, etc). The 
size of each circle is set so that two-thirds of historical official forecast 
errors over a 5-year sample fall within the circle. The historical data  
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indicate the entire 5-day path of the center of the tropical cyclone will 
remain within the outer uncertainty area about 60-70% of the time 
(National Weather Service, 2007c). 

The white area around the track indicates a region within the mean historical 

distance from the official position forecasts.  This white region is commonly referred to 

as the “error cone” and is created by connecting the error radii at the various forecast time 

intervals.   

Along with the position forecasts, NHC publishes intensity forecasts to provide an 

estimate of the level of damage that a particular storm will cause so that the region where 

the tropical cyclone is forecast to go can adequately prepare.  A new intensity probability 

forecasting product, NHC’s Surface Wind Speed Probabilities forecast was first issued in 

2006 and is described by NHC as follows: 

The Tropical Cyclone Surface Wind Speed Probabilities text product 
provides probabilities, in percent, of sustained wind speeds equal to or 
exceeding 34-, 50-, and 64-knot wind speed thresholds. These wind speed 
probabilities are based on the track, intensity, and wind structure forecasts 
and uncertainties from the National Hurricane Center and the Central 
Pacific Hurricane Center and are computed for coastal and inland cities as 
well as offshore locations (e.g., buoys) (National Weather Service, 2007d).  

Figure 6 is a NHC wind speed probabilities forecast for Tropical Storm Ernesto in 

2006.  The NHC produces forecast products that are aimed at providing the most 

information to the largest population with the goal of saving lives and minimizing 

property damage.  In the Wind Speed Probabilities product, the NHC forecast only 

indicates the anticipated extent of winds in excess of 64 kts (and lower winds speed 

thresholds), which is not sufficient for the evacuation decision at ENCMCFI.   
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Figure 6.   Hurricane Ernesto Wind Speed Probabilities forecast issued: 30 Aug, 2006 

from National Hurricane Center 
 
 

ZCZC MIAPWSAT5 ALL                                                   
TTAA00 KNHC DDHHMM                                                   
TROPICAL STORM ERNESTO WIND SPEED PROBABILITIES NUMBER  23           
NWS TPC/NATIONAL HURRICANE CENTER MIAMI FL   AL052006                
0900 UTC WED AUG 30 2006                                             
                                                                     
AT 0900Z THE CENTER OF TROPICAL STORM ERNESTO WAS LOCATED NEAR       
LATITUDE 25.6 NORTH...LONGITUDE 80.9 WEST WITH MAXIMUM SUSTAINED     
WINDS NEAR 40 KTS...45 MPH...75 KM/HR.                               
                                                                     
CHANCES OF SUSTAINED (1-MINUTE AVERAGE) WIND SPEEDS OF AT LEAST      
   ...34 KT (39 MPH... 63 KPH)...                                    
   ...50 KT (58 MPH... 93 KPH)...                                    
   ...64 KT (74 MPH...119 KPH)...                                    
FOR LOCATIONS AND TIME PERIODS DURING THE NEXT 5 DAYS                
                                                                     
PROBABILITIES FOR LOCATIONS ARE GIVEN AS IP(CP) WHERE                
    IP  IS THE PROBABILITY OF THE EVENT BEGINNING DURING             
        AN INDIVIDUAL TIME PERIOD (INDIVIDUAL PROBABILITY)           
   (CP) IS THE PROBABILITY OF THE EVENT OCCURRING BETWEEN            
        06Z WED AND THE FORECAST HOUR (CUMULATIVE PROBABILITY)       
                                                                     
PROBABILITIES ARE GIVEN IN PERCENT                                   
X INDICATES PROBABILITIES LESS THAN 0.5 PERCENT                      
LOCATIONS SHOWN WHEN THEIR TOTAL CUMULATED 5-DAY                     
   PROBABILITY IS AT LEAST 2.5 PERCENT                               
                                                                     
Z INDICATES COORDINATED UNIVERSAL TIME (GREENWICH)                   
   ATLANTIC STANDARD TIME (AST)...SUBTRACT 4 HOURS FROM Z TIME       
   EASTERN  DAYLIGHT TIME (EDT)...SUBTRACT 4 HOURS FROM Z TIME       
   CENTRAL  DAYLIGHT TIME (CDT)...SUBTRACT 5 HOURS FROM Z TIME       
                                                                     
                                                                    
  - - - - WIND SPEED PROBABILITIES FOR SELECTED  LOCATIONS - - - -   
                                                                     
               FROM    FROM    FROM    FROM    FROM    FROM    FROM  
  TIME       06Z WED 18Z WED 06Z THU 18Z THU 06Z FRI 06Z SAT 06Z SUN 
PERIODS         TO      TO      TO      TO      TO      TO      TO   
             18Z WED 06Z THU 18Z THU 06Z FRI 06Z SAT 06Z SUN 06Z MON 
                                                                     
FORECAST HOUR    (12)   (24)    (36)    (48)    (72)    (96)   (120) 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
LOCATION       KT                                                    
                                                                     
MOREHEAD CITY  34  X   X( X)   8( 8)  14(22)   7(29)   2(31)   X(31) 
MOREHEAD CITY  50  X   X( X)   1( 1)   3( 4)   3( 7)   X( 7)   X( 7) 
MOREHEAD CITY  64  X   X( X)   X( X)   1( 1)   1( 2)   1( 3)   X( 3) 
  
WILMINGTON NC  34  X   1( 1)  13(14)  19(33)   6(39)   1(40)   X(40) 
WILMINGTON NC  50  X   X( X)   2( 2)   4( 6)   4(10)   1(11)   X(11) 
WILMINGTON NC  64  X   X( X)   X( X)   2( 2)   1( 3)   X( 3)   X( 3) 
  
$$                                                                   
FORECASTER STEWART                                                   
                                                                        
NNNN
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E.   THESIS SCOPE AND PURPOSE 

The following chapters develop a quantitative analysis of the decision to evacuate 

base personnel under the command of ENCMCFI.  The factors that should influence that 

decision are examined by the analysis.  This thesis is focused exclusively on preservation 

of human lives. While protecting property from damage is a consideration for base 

commanders, it is not the primary purpose of this thesis.  Thus actions to prevent property 

damage are assumed to be implemented in a manner that will not affect the evacuation 

decision or timelines.  The overall purpose of this thesis is to develop quantitative support 

for a base commander’s evacuation decision.  This thesis identifies what evacuation 

options are available based on storm dynamics.  The key decision variables to this 

problem are: 

• What size and intensity storm (at landfall) should initiate an evacuation? 

• What does the forecast of that storm look like at lead times required to 
execute an evacuation?  In particular, given a storm’s current position and 
forecast, how much risk and variability are there in the forecast track and 
intensity forecast? 

• Assuming that an evacuation is necessary, how many personnel and 
dependents should be sent to which evacuation destination by which mode 
of transportation (Commercial Bus, Air, Organic ground transport, etc…)?   

• Additionally, as the storm comes closer, when do options begin to incur 
greater risk because they never become more costly to execute, and when 
are they no longer viable?   

The thesis will also propose a model to estimate the probability of adverse 

impacts – which occur when winds reach 105 kts – at ENCMCFI for a threatening storm, 

based on its forecast. Local area building codes dictate that buildings should be built to 

withstand sustained winds of 105 kts, as discussed in Chapter II.  The model use will be 

illustrated using historical data. Chapter II contains the methodology for the statistical 

tropical cyclone model and displays how probabilities of winds exceeding 105 kts at 

ENCMCFI are obtained.   

Chapter III contains the decision model using the storm probabilities generated as 

described in Chapter II to compare direct costs and risk costs of evacuating versus 
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remaining.  The decision model should give guidance on the best evacuation decision. 

Chapter IV is an analysis of historical tropical cyclones to illustrate the performance of 

the model. Chapter V contains conclusions and recommendations for further research.  



 14

  

THIS PAGE INTENTIONALLY LEFT BLANK 



 15

II. CALCULATING RISK TO ENCMCFI 

When a tropical cyclone forecast indicates that a storm will come close to 

ENCMCFI, there is a need to assess the risk to ENCMCFI.  The risk of winds 105 kts or 

greater occurring at ENCMCFI must be estimated.  Three main variables that influence 

the probability of winds exceeding 105 kts at ENCMCFI: storm location (represented by 

its center, or estimated location of minimum pressure), storm intensity (measured by 

maximum wind speed) and the radius of maximum winds of the storm.  The combination 

of extreme values in all three variables indicates that an evacuation is warranted.  

Forecast storm position is often misleading because it represents the tropical cyclone as a 

single point in space, and does not depend on the intensity or size of the storm.  Even the 

current position of the storm is not exact.  This position is an estimate of the center of the 

eye.  This chapter describes the method to assess the effect of a current storm on 

ENCMCFI using historical storm information. 

A. DATA  

Atlantic Basin tropical cyclone forecast data and actual storm data from 1996-

2005 are used to capture the variability in the storm location and intensity.  The forecast 

data are recorded in a series of data files referred to as the A-Decks, which contain the 

official NHC forecast position and the forecast data from all of the weather models that 

go into the creation of the official forecast (National Weather Service, 2007a).  During 

the course of a tropical cyclone, the NHC issues forecasts every six hours.  These 

forecasts estimate the position of the storm at time periods 12, 24, 36, 48, 72, 96, 120 

hours in the future.  Let fT  be the set of forecast time periods: 

{12,24,36,48,72,96,120}fT ∈ .  For reasons that will be illustrated later in this 

chapter, there is a need to calculate storm parameters at intervals smaller than the forecast 

intervals.  Let ST  be the set of intervals every 3 hours from 12 hours to 120 hours: 

{12,15,18,...,117,120}ST ∈ .  After the Atlantic Hurricane season ends, the NHC 
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conducts a review of satellite data and issues a corrected “best track” which is 

disseminated in a dataset referred to at the B-Decks.  The NHC defines “best track” as: 

A subjectively-smoothed representation of a tropical cyclone's location 
and intensity over its lifetime. The best track contains the cyclone's 
latitude, longitude, maximum sustained surface winds, and minimum sea-
level pressure at 6-hourly intervals. Best track positions and intensities, 
which are based on a post-storm assessment of all available data, may 
differ from values contained in storm advisories. They also generally will 
not reflect the erratic motion implied by connecting individual center fix 
positions (National Weather Service, 2007b).  

B.  STORM POSITION ERROR 

1.  Position Error 

The center of a tropical cyclone is the most commonly used forecast data point.  It 

gives the most general storm effect information.  Through the analysis of differences 

between NHC forecast position and the best track storm position for a given forecast lead 

time, it is possible to create historical error distributions about the forecast storm position.  

The error is the distance from the forecast position to the actual storm position at a given 

time.  The forecast track is used as the direction of travel (decision makers at ENCMFCI 

will have only forecast information when they are making hurricane evacuation 

decisions). 

2.  Cross Track Error and Along Track Error  

Positional errors of tropical cyclone forecasts are broken down into components: 

Cross Track Error (XTE) is the error perpendicular to the forecast track and Along Track 

Error (ATE) is the error parallel to the forecast track.  These terms are commonly used to 

describe the difference between a forecast track and the actual course traveled.  Elsberry 

and Peak (1986) state: “A prediction of a cross track component to the left or right of the 

present track is of considerable interest because of the different damage patterns to the 

left and right of the path.  An increase or decrease in the forward displacement relative to 

a persistence forecast would assist in forecasting the time of storm passage.” In addition 

to storm forecasting, XTE and ATE are used in many navigational programs to provide 
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insight into position errors.  As in marine navigation, the decomposition of absolute 

position errors into different components enables forecasting errors to be analyzed and 

exploited in more detail; in particular, biases can be computed.  By relating the error to 

the track of the storm at a given time period, it is possible to represent the forecast error 

in relation to the storm better than using simple latitudinal and longitudinal direction 

errors.  XTE has the biggest impact on where the storm will eventually go, and it may fall 

on either side of the forecast track.  Positive XTE values indicate displacement to the 

right of the forecast track, and negative values indicate displacement to the left of the 

track.  ATE affects the time a storm reaches a specified location.  Figure 7 illustrates the 

method for calculating XTE and ATE.  The XTE and ATE are calculated from one 

forecast time to the next forecast time.  

 

 
Figure 7.   Illustration of XTE and ATE calculations 
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( , 3, ) Position of storm  (actual position if 3,  else forecast position) at
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( , , ) Actual position of storm  at 

p

p
a

t s s t
t

t s s t

τ τ
τ τ

τ τ τ

Λ + − = =
+ −

Λ + = +  (Vector of latitude and longitude)

( , , ) Forecast position of storm  at  based on forecast given at 

(Vector of latitude and longitude)
( , , ) Great circle distance between positions 

p
f

p
a

t s s t

t s

τ τ τ τ

τ τ

Λ + = +

∆ + = Λ ( , 3, ) and ( , , ),  
calculated using Formula 2.1

( , , ) Great circle distance between positions ( , 3, ) and ( , , ),

calculated using Formula 2.1
( , , ) The bearing in degr

p
a

p p
f f

a

t s t s

t s t s t s

t s

τ τ τ τ

τ τ τ τ τ τ

θ τ τ

+ − Λ +

∆ + = Λ + − Λ +

+ = ees from magnetic North from ( , 3, ) to

( , , ) calculated using Formula 2.2

( , , ) The bearing in degrees from magnetic North from ( , 3, ) to

( , , ) calculated using Formula 

p

p
a

p
f

p
f

t s

t s

t s t s

t s

τ τ

τ τ

θ τ τ τ τ

τ τ

Λ + −

Λ +

+ = Λ + −

Λ + 2.2

( , , ) The difference in bearing in degrees between ( , , ) and 
( , , ), calculated using Formula 2.3
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( , , ) The ATE distance between ( , 3, ) and ( , , ),
calculated using Formula 2.5
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The calculation of ATE involves the same variables as the calculation of XTE 

with a similar trigonometric relationship.  If the storm traveled further than forecast, the 

ATE is positive; if the storm traveled less distance than forecast, the ATE is negative.  In 

order to determine these error distances, the distance from the forecast position to the 

verifying storm position must be calculated.  Since the earth is approximately spherical, 

simple two-dimensional trigonometric calculations will not provide accurate distance 

measures, especially at longer distances. Great circle distance calculations must be 

performed in order to accurately determine these distances.  Equations 2.1 through 2.5 

(Williams, 2006) are used to calculate XTE and ATE.  The bearing between forecast and 

actual positions must also be calculated.  These calculations are displayed in equations 

2.2 and 2.3. 

( )1

Distance between positions  and 

cos sin( ) sin( ) cos( ) cos( ) cos( )i j i j i j

i j

r lat lat lat lat lon lon−= × × + × × −
   (2.1) 
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1 ( )
Bearing between two points  and tan
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j i
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−
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    (2.2) 

where 
 the latitude of position ;   the longitude of position 
 the latitude of position ;   the longitude of position 

i i
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= =
= =

 

( , , )  ( , , ) ( , , ) f at s t s t sα τ τ θ τ τ θ τ τ+ = + − +       (2.3) 

( )( , , ) ( , , ) sin ( , , )E fX t s t s t sτ τ τ τ α τ τ+ = ∆ + × +     (2.4)  

( )( , , ) ( , , ) cos ( , , )E fY t s t s t sτ τ τ τ α τ τ+ = ∆ + × +     (2.5)  

3.  Storm Position Probability Distribution 

To be useful in calculating the risk a given storm poses to ENCMFCI, the 

historical data must be organized to assess a conditional probability distribution for the 

future storm position given the storm forecast.  Using historical Atlantic basin tropical 

cyclone data, the XTE and ATE are calculated for each historical forecast position for 

storms from 1996-2005 as described in Figure 7.    The NHC forecasts the location of the 

storm’s center to the nearest 0.1 degree; since one degree is approximately 60 nm, a 

maximum error of 6nm of error exists in each position estimate. Using this limitation in 

forecast fidelity as a basis, all of the forecast errors are placed into 6nm bins about the 

forecast position for each forecast time period.  The errors are compiled into a master 

error matrix as depicted below in equations 2.6 and 2.7. 
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For each value of Ft T∈ , ( , , )BX t sτ τ + and ( , , )BY t sτ τ + are calculated , sτ∀  

and compiled to create an error matrix of actual storm errors about the forecast storm 

position for each time period Ft T∈ .  ( , , )BX t sτ τ +  and ( , , )BY t sτ τ + are the XTE and 

ATE error bin numbers for each historical forecast.  This is a floor function if the error is 

negative (left of behind the forecast position), and is a ceiling function if the error is 

positive.  Let PM  be the 3-dimensional matrix of  observed joint frequency distribution of 

historical storm position errors, where ( , , )PM x y t  is the number of historical errors 

falling in XTE bin x and ATE bin y for a given Ft T∈ . 

C.   STORM INTENSITY ERROR 

The second parameter used in calculating the risk to ENCMFCI is the intensity of 

the storm.  The NHC quantifies tropical cyclone intensity as the maximum 1-minute 

sustained wind speed (Landsea, 2006).  This wind-speed is forecast by the NHC for the 

same time periods as the positions.  While position error forecast accuracy has improved 

over time, errors in forecasting storm intensity still plague forecasters.  Tropical cyclone 

intensity is an unpredictable feature of a storm.  Hurricane Wilma in 2005 intensified 

from a rather benign 60 kts tropical storm into a 150 kts Category 5 hurricane in just 24 

hours (National Hurricane Center, 2006b).  The 24-hour forecast for this time period was 

80 kts; the error was 70 kts.  This lack of forecasting skill makes a historical perspective 

very valuable for decision makers at ENCMCFI.  In the absence of other information, the 

question “What have other storms like this done in the past?” comes to the forefront.  

Intensity is especially important to ENCMCFI decision makers.  The ability to safely 

shelter base occupants is compromised in storms with winds of 105 kts or more due to the 

engineering limits of the shelters.  Current building codes for coastal North Carolina 

require that new buildings withstand a three-second wind gust of 130 kts which translates 

to a 105 kts sustained wind load (The Institute for Business and Home Safety, 2005).  

Wind speed is the driving factor in the tropical cyclone evacuation decision due to this 

vulnerability of local structures to extreme hurricane force winds. 
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Intensity data, much like the positional data, comes from the official NHC 

forecasts and post-season best track data.  Intensity error is measured as the difference 

between the forecast storm intensity at a forecast period and the actual intensity from the 

best track data set.  A storm whose intensity exceeds the forecast value has a positive 

error, and a storm whose intensity is below that of the forecast value has a negative error.  

Let: ( , , )i
a t sτ τΛ +  be the actual intensity of storm s at tτ + , and ( , , )i

f t sτ τΛ +  be the 

forecast intensity of storm s at tτ +  based on forecast given at τ . Time τ  forecast 

intensity error for lead time t  for storm s = ( , , )i
f t sτ τΛ + − ( , , )i

a t sτ τΛ + . 

For each forecast time period, the frequency historical storm intensity errors 

(since forecasts are issued to the nearest 5 kts, errors are automatically binned) are 

calculated and stored in a matrix IM  for use in estimating the probability of a storm’s 

winds exceeding 105 kts, given the forecast intensity, as discussed later in this chapter. 

Figure 8 displays an example of the resulting frequency distribution for a forecast time 

period of 48 hours, on a forecast of 90 kts.  Note that the error distribution is centered 

about 90 kts.  ( , )IM w t  is the observed frequency of historical storm intensity errors of w 

kts for lead time Ft T∈ .  

 
 

Figure 8.   48-Hr intensity frequency distribution from 1996-2005 Atlantic Tropical 
Cyclones (2977 Tropical Storms total), assuming a forecast of 90 kts. 
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D.  STORM SIZE 

The size of a tropical cyclone is another factor that influences whether a tropical 

cyclone affects ENCMCFI: “Hurricane winds can extend outward to about 25 miles from 

the storm center of a small hurricane and to more than 150 miles for a large one.  The 

area over which tropical-storm force winds occur is even greater, ranging as far out as 

almost 300 miles from the eye of a large hurricane” (National Oceanic and Atmospheric 

Administration, 1999).  While the swath of tropical-storm force winds can extend 

hundreds of miles, the maximum winds of the storm are located just outside of the eye 

wall of the tropical cyclone.  The most intense winds occur in this narrow area.  Thus 

locations near the eye of a storm passes suffer the worst effects of the storm.  Size and 

intensity are not correlated: stronger storms are not necessarily bigger.  In 2005, 

Hurricane Wilma had maximum winds of 160 kts and an eye of only 2nm in diameter 

before the eye then grew to a more typical size of 40nm-60nm in diameter.  Hurricane 

Carla, in 1961, had a diameter of hurricane-force winds of 300 miles, and diameter of 

tropical-storm force winds of 500 miles (Weather Research Center, 2005).   

To report a tropical cyclone’s size, forecasters typically measure the radius of 

winds if a given speed.  The radius of maximum winds, the radius of hurricane-force 

winds and the radius of tropical-storm force winds are the three most widely reported and 

measured.  These size parameters are included in the A-decks and are broken down by 

quadrant of the storm to indicate any irregularity in the shape of a storm.  Winds in a 

tropical cyclone are not symmetric, as is indicated by the wind-speed map for Hurricane 

Fabian, in 2003, shown in Figure 9.  The strongest winds of tropical cyclones in the 

Atlantic Ocean are typically on the right side of the storm relative to the direction of 

travel.  The direction of travel is indicated with an arrow in Figure 9.  Accuracy in 

forecasting the shape of the wind-field inside of a tropical cyclone is very difficult to 

attain.  The wind field will be treated as symmetric about the eye of the storm due to lack 

of reliable information about the wind speeds in each quadrant of a tropical cyclone.   
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Figure 9.   Windspeed isoquants (in kts) for Hurricane Fabian in 2003. Source: 

AMOL Hurricane Research Division website.( Atlantic Oceanic and 
Meteorological Laboratory 2007) 

 

The two size parameters that really matter to decision makers at ENCMCFI are 

the radius of winds of at least 105 kts and the radius of tropical-storm force winds (i.e. at 

least 34 kts).  The arrival of tropical storm force winds will put an end to evacuation 

operations.  Base commanders consider moving personnel in tropical storm force winds 
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too dangerous.  For storms with intensities of less than 105 kts, evacuation is not needed.  

For storms with intensities well above 105 kts, representing the size of the storm with 

either the radius of maximum winds or the radius of hurricane force winds is inadequate.  

Using the radius of maximum winds may underestimate the dangerous area of the storm, 

and may not prompt an evacuation when one is required.  On the other hand, using the 

radius of hurricane-force winds (65 kts or greater) may overestimate the region of 

adverse conditions, and may erroneously indicate that an evacuation is warranted.  

Measures reported by NHC do not directly estimate probability of winds exceeding 105 

kts at ENCMCFI.  Thus another procedure to estimate the radius of winds in excess of 

105 kts is considered.   

Willoughby et al. (2006) propose a parametric procedure to determine the wind 

profile of a tropical cyclone.  By using the maximum winds and latitude of the tropical 

cyclone, a sectionally continuous wind profile can be derived through the use of a power 

function and the sum of two exponential functions.  Using equation 2.8, the radius of 

winds in excess of 105 kts ( r  for 0 105V = ) for a given storm are estimated with the 

forecast intensity as the value of MaxV .  The other parameters are functions of MaxV .   

1 2

(1 ) exp expMax Max
O Max

r R r RV V A A
X X

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
= − × − + × −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
    (2.8)  

1
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ϕ
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= − −

= + −
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=
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r
V
=
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The results of applying this formula to extrapolate the radius of winds in excess of 

105 kts are depicted in Figure 10.  According to the Willoughby (2006) model, 105 kts 

winds occur in a region from 19-24nm from the storm’s center.  This radius is estimated 

as 24nm for all storms with winds in excess of 105 kts in further calculations.  



 25

 

Radius of 105Kts Winds as a Function of Maximum Winds
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Figure 10.   Application of Willoughby et al (2006) Formula estimating the radius of 

maximum winds and radius of 105 kts winds as a function of maximum wind 
speed. 
 

This formulation does not apply to the estimation of the radius of tropical-storm 

force winds.  The radius of these winds is an NHC forecast variable included in the 

official forecast.  These values are issued for each quadrant due to the asymmetry of a 

storm’s wind profile.  The maximum single quadrant value for each forecast time period 

is used in further calculations. 

E.  INTERMEDIATE TIME POINT ESTIMATION 

Given the distances that tropical cyclones can travel during a 12 or 24-hour 

forecast period, it is possible for a storm to affect ENCMCFI between forecast periods 

but not at either forecast point.  In order to properly assess the potential risk, it is 

necessary to estimate the probability of winds affecting ENCMCFI between two 

observations.  The errors in position increase approximately linearly as the forecast time 

period increases as is illustrated in Figure 11. Thus a weighted-average approach to 

estimating the values of the variables at intermediate time points is appropriate.   
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Figure 11.   Mean Atlantic basin errors from 2002-2006 from Franklin (2007) 

 

Intermediate time points have been modeled by creating error distributions for 

both position and intensity at three-hour intervals between the forecast time periods.  Let 

ST  be the set of time points in the future for which storm probabilities are calculated, ST : 

{12,15,18,…,117,120}.  The estimates at the intermediate points have been created by 

using a weighted average of the actual error matrices at times ft T∈  above and below the 

intermediate point.  The frequency of errors observed in each intermediate bin is the 

weighted average of the observed frequency in the bins for the time periods immediately 

above and below the intermediate point (Figure 12).  Weights are proportional to the time 

from the intermediate point to the endpoints.   
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Figure 12.   Illustration of intermediate point calculation procedure, showing a 3×3 
section of the positional error matrix PM , with values indicating the frequency of 

historical errors in each bin. 
 

F.  INTEGRATING THE POSITION, INTENSITY, AND STORM SIZE 

When a forecast is issued by NHC, the forecast positions are input into the model.  

The cross track distance and along track distance to ENCMCFI are calculated from each 

forecast point at each forecast and intermediate time period.  The track for this 

calculation is a straight line connecting the previous forecast position to the current 

forecast position.  Let: ( , )a
DX tτ τ +  be the cross track distance (in nm) from forecast 

position at time tτ +  to ENCMFCI based on time τ  forecast and let: ( , )a
DY tτ τ +  be the 

along track distance (in nm) from forecast position at time tτ +  to ENCMFCI based on 

time τ  forecast.  To use this distance information with the master error matrix, the cross 

and along track distances must be transformed into their corresponding bins in the error 

matrix.  Distances are divided by 6nm and the resulting normalized distances are 

assigned.  Let  ( , )a
BX tτ τ +  be the bin indicating the XTE that would put the storm at 

ENCMFCI at time tτ +  based on time τ  forecast: 

( , ) ( , )( , )   if ( , ) 0,  otherwise
6 6

 indexes XTE bins: , 250 250, 0

a a
a aD D
B D

X t X tX t X t

x x Z x x

τ τ τ ττ τ τ τ
⎢ ⎥ ⎡ ⎤+ +

+ = + <⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

∈ − ≤ ≤ ≠

  (2.9) 

Let:  ( , )a
BY tτ τ+  be the bin indicating ATE that would put storm at CLNC at time t τ+  

based on time τ  forecast: 

 
( , ) ( , )( , )   if ( , ) 0,  otherwise

6 6
 indexes ATE bins: , 250 250, 0

a a
a aD D

B D
Y t Y tY t Y t

y y Z y y

τ τ τ ττ τ τ τ
⎢ ⎥ ⎡ ⎤+ +

+ = + <⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

∈ − ≤ ≤ ≠

  (2.10) 
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To generate an estimate of the probability that the center of the storm is in a 

position that would bring winds 105 kts or greater to ENCMCFI, the radius of maximum 

winds must be considered in the model as well as the size of the ENCMCFI complex.  

ENCMCFI cannot be viewed as a single point since the three major bases that make up 

the greater ENCMCFI area are over 30nm apart at their most distant points.  Since a 

single evacuation decision is being made for the entire base complex, the eye passing 

within a certain distance of any point in this area is considered grounds for evacuation.  

The relevant distance from the eye is equal to the radius of winds (24nm) in excess of 

105 kts estimated using equation 2.8.   Combining the radius of winds with the size of the 

ENCMCFI complex produces a box of approximately 78nm square, which translates to 

thirteen 6nm bins per side of the square.  The square is offset to the left (seven bins to the 

left and six to the right) due to the asymmetry shown in Figure 9.  Estimating the 

probability that the eye causes winds in excess of 105 kts requires the fraction of 

historical storm position errors for the forecast time period that would put the storm 

inside the box surrounding ENCMCFI (equation 2.11).  Let Strike
105 ( , )tρ τ τ +  be the 

estimated probability that the storm’s center will be within 24nm of ENCMFCI at time 

tτ + based on forecast at τ : 

( , ) 6 ( , ) 6

Strike ( , ) 7 ( , ) 7
250 250105

250 250

( , , )
( , )

( , , )

a a
B B

a a
B B

X t Y t

P
x X t y Y t

P
x y

M x y t
t

M x y t

τ τ τ τ

τ τ τ τρ τ τ

+ + + +

= + − = + −

=− =−

+ =
∑ ∑

∑ ∑
 (2.11) 

The estimate of the probability that the storm’s intensity will exceed 105 kts at a 

time step is calculated using the vector of historical intensity errors, ( , )IM w t , for the 

forecast time period t.  The difference between the current forecast intensity and 105 kts 

is calculated.  This error is compared to the values in the error matrix.  The estimated 

probability of intensity error exceeding this difference is the frequency of errors that 

would produce intensity of 105 kts or greater:  

105 ( , )Int tρ τ τ +  = the fraction of historical storm intensity forecast errors for time 

period t that would make actual intensity at time t τ+  ≥  105 kts based on forecast at τ . 
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( )105 ,Int
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( , )
( , ) ( , )

i
f

I
w t

I
w

M w t
t M w t

τ τρ τ τ ≥ −Λ ++ =
∑

∑     (2.12) 

The overall estimated probability of winds exceeding 105 kts at ENCMCFI at a 

given time period is calculated by equation 2.13 and is the product of the estimated strike 

probability and the estimated intensity probability.  The probability distribution of a 

storm’s position relative to ENCMCFI is assumed to be independent of the storm’s 

intensity: 
Strike Int

105 105 105( , ) ( , ) ( , )t t tρ τ τ ρ τ τ ρ τ τ+ = + × +       (2.13) 

Another variable that must be considered is the estimated probability that winds 

will exceed 34 kts for a given time period.  This event would cause evacuation operations 

to cease (discussed further in Chapter III).  This calculation is conducted in much the 

same manner as the probability of winds of 105 kts or greater, except that the NHC 

forecasts the radius of winds for the 34 kts level.  The probability of winds exceeding 34 

kts at ENCMCFI is calculated using equation 2.14.  Let 34 ( , )tρ τ τ +  be the fraction of 

historical storm positions that are within ( , )R tτ τ +  nm of ENCMCFI at time tτ +  

based on forecast at τ  determined using XTEs and ATEs.  Additionally let: ( , )R tτ τ +   

be the radius of tropical storm force winds at time tτ +  based on forecast at τ . A 

conversion of the distance of ( , )R tτ τ +  into bins, is displayed in equation 2.14. 

( , )( , )  
6

 indexes  bins: , 0 250
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The probability of winds exceeding either 105 kts or 34 kts in a given time period 

is a function not only of the storm forecast, but also of the time period duration.  The 

probability of 34 kts winds arriving before evacuation operations are complete must be 

quantified to describe the risk of delaying evacuation operations.  Let ( )W tτ +  be the 

maximum wind speed at ENCMCFI at time tτ + . This is a random variable at the 

decision time τ .  Its probability distribution is a function of the time τ  forecast.  

Evacuation decisions will be made soon after the release of tropical cyclone forecasts by 

NHC.  For the evacuation decision, the most important event is winds exceeding 105 kts 

at ENCMCFI at any point over the entire duration of the storm.  Since NHC only issues 

forecasts out to 120 hours, this is the farthest in the future that it is possible to estimate 

the probability of a given storm impacting ENCMCFI.  Thus the result that we are 

interested in is: 

[ ]( 12) 105 ( 15) 105 ( 18) 105 ... ( 120) 105P W W W Wτ τ τ τ+ ≥ ∪ + ≥ ∪ + ≥ ∪ ∪ + ≥  (2.16) 

[ ]( ) 105P W tτ + ≥  for a given t can be estimated as ( )105 , tρ τ τ + , as displayed in 

equation 2.13.  The events of 105 kts winds at ENCMFCI at different times are assumed 

to be conditionally independent given the forecasts of positions and intensities at those 

times. Thus an estimate of: 

 [ ]( 12) 105 ( 15) 105 ( 18) 105 ... ( 120) 105P W W W Wτ τ τ τ+ ≥ ∪ + ≥ ∪ + ≥ ∪ ∪ + ≥  can be 

calculated using equation (2.17). 

[ ] ( )( )105( 12) 105 ... ( 120) 105 1 1 ( , )
St T

P W W tτ τ ρ τ τ
∈

⎡ ⎤
+ ≥ ∪ ∪ + ≥ = − − +⎢ ⎥

⎣ ⎦
∏   (2.17) 

Similarly, the probability of tropical storm force winds arriving at ENCMCFI 

must be evaluated over different time periods.  While winds that exceed 105 kts at any 

time is a decision factor for evacuation, the arrival of tropical storm force winds is only a 

factor if it occurs while tropical cyclone evacuation operations are underway.  This may 

be the determining factor for the evacuation decision because it represents the time at 

which the ability to evacuate will be lost for the duration of the storm.  Similar to the 

discussion above, [ ]( ) 34P W tτ + ≥  for a given t can be estimated by 34 ( , )tρ τ τ + .  The 
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events of tropical storm force winds at ENCMCFI at different times are assumed to be 

conditionally independent given the forecasted positions of the storm and its forecasted 

intensities.   The estimated probability of tropical storm force winds occurring at 

ENCMCFI over a specific time period is given by equation 2.18 where ψ  is the last time 

period in the future for which the tropical storm force wind probability is relevant. 

[ ] ( )( )34

12

( 12) 34 ... ( ) 34 1 1 ( , )
St T

t

P W W t
ψ

τ τ ρ τ τ
∈
≤ ≤

⎡ ⎤
⎢ ⎥+ ≥ ∪ ∪ + Ψ ≥ = − − +⎢ ⎥
⎢ ⎥⎣ ⎦
∏   (2.18) 

Equations 2.17 and 2.18 will perform an important role in the overall decision 

problem which will be addressed in the next chapter. 
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III. DECISION PROBLEM FOR ENCMCFI 

Do you want to have 100% chance that two people will die, or a 2% 
chance that 100 people will die? - 

Dr. Eva Regnier, December 9, 2006 
 

Forecasting the storm is only half of the greater problem of whether or not to 

evacuate in the face of an approaching storm.  NHC forecast accuracy improves as lead 

time decreases.  Thus, the decision becomes whether to evacuate now or wait for possibly 

more reliable information in the forecast that will be issued six hours later.  The 

evacuation decision must be made before arrival of tropical-storm force winds.  

Evacuation operations cannot occur in tropical-storm force winds.  The risk of evacuation 

is measured both in terms of monetary cost and expected number of fatalities.  The risks 

include both direct costs and the risk of casualties associated with evacuation, and the 

costs due to casualties to those personnel who might remain in the area during a major 

hurricane.  The costs involved are well documented direct evacuation costs incurred for 

travel and per-diem (lodging and meals for those evacuated) as well as less tangible costs 

of casualties.  The uncertainties in the prediction of wind speeds and the risk of casualties 

make this decision complex.  This chapter describes the framework for a model that 

includes these costs (both direct expenditures and monetized risks of casualties), in a 

single equation to identify when an evacuation should be ordered.  

A.   THE JUSTIFICATION FOR EVACUATING 

All ENCMCFI personnel unable to evacuate will be forced to experience any 

storm effects that the area endures.  The structures aboard ENCMCFI designated as 

hurricane evacuation shelters are rated to withstand only up to 105 kts of sustained winds 

(U.S. Marine Corps, Eastern North Carolina Marine Corps Forces and Installations, 

2005).   
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1.  Local Shelters 

According to the destructive weather order currently in effect at ENCMCFI: 

Past and current building codes have not required buildings on Marine 
Corps Base, Camp Lejeune to be designed for winds exceeding 110 to 120 
MPH [95 kts to 105 kts] Design criteria applied to current shelters, new 
schools, and other new construction does not include special provisions 
for winds above 120MPH [105 kts] (U.S. Marine Corps, Eastern North 
Carolina Marine Corps Forces and Installations, 2005).  

This design limitation drives the decision to evacuate in the face of a Category-3 

or higher hurricane.  The buildings designated as hurricane shelters, are limited in 

capacity and thus the entire population of ENCMCFI cannot be safely sheltered on base.  

Personnel residing on the bases of ENCMCFI would have priority access to on-base 

shelters.  Municipal shelters would serve personnel living off base.  Base residential 

houses are rated to only 100mph [83 kts].  The majority of personnel at the base who do 

not evacuate will be sheltered in the strongest buildings on base.   

The internal dynamics of tropical cyclones are impossible to predict reliably.  It is 

possible for Category-2 storms to have localized winds in excess of 105 kts in some 

area(s) for short periods of time.  Since the internal dynamics of a tropical cyclone are not 

forecasted, it is not possible to accurately estimate structural damage of individual 

buildings.  The most likely scenario during a hurricane is that there will bea small number 

of buildings with many people in them resulting in a high risk for widespread casualties 

in the event of a shelter collapse.   

2.  Storm-Related Casualty Estimation 

a. Estimation of the Number of Storm-Related Casualties 

Assuming that some personnel remain at ENCMCFI, estimating the 

number of casualties during a particular storm is especially hard since there is no succinct 

historical dataset that captures storm-related casualties.  Using historical data collected 

from U.S. Army Corps of Engineers (USACE) Hurricane Evacuation Study reports, and 

from National Oceanic and Atmospheric Administration (NOAA) Storm Reports, the 
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number fatalities that occurred during previous hurricanes can be determined by county.  

Based on these data, future losses are estimated as a percentage of the number of 

personnel that remain in the area where a hurricane comes ashore.  Three major tropical 

cyclones whose effects were primarily wind related are identified in Table 2 and the 

number of fatalities in the counties directly affected by the hurricane landfall is compared 

to the population of that county  (adjusted by the estimated evacuation rate) at that time.  

The evacuation rate is the estimated fraction of the population that evacuated.  The 

fatality rate for those personnel who do not evacuate is estimated as 0.0049%. 

 

Year Storm Category 
Pop 

Remain 
Death 
Rate: Population1

Evac. 
Rate Fatalities

1989 Hugo 4 73,790 0.00012197 295,159 0.752 93 
1992 Andrew 4 1,181,308 0.00001270 3,192,725 0.634 155 
2004 Charley 4 464,500 0.00001722 725,782 0.366 87 
   Average: 0.000049    

Table 2.   Recent major storm fatalities in coastal regions. 

 

Data obtained from the Morbidity and Mortality Reports published by the 

Centers for Disease Control (CDC) are used to estimate the expected number of injuries 

in the population of personnel who ride out a major hurricane at ENCMCFI.  This 

                                                 
1 U.S. Census Bureau, (2004 Aug 5). Time Series of Intercensal Estimates by County. Retrieved May 

22, 2007, from U.S. Census Bureau Web site: 
http://www.census.gov/popest/archives/2000s/vintage_2001/CO-EST2001-12/CO-EST2001-12.html. 

2 U.S. Army Corps of Engineers. (1990). Hurricane Hugo Assessment Review of Hurricane 
Evacuation Studies Utilization and Information Dissemination Tallahassee: 

3 National Atmospheric and Oceanic Administration. (1989). September 1989 Storm Data (ISSN 
0039-1972). Washington D.C.: Retrieved on  May 22, 2007 from NOAA Website: 
http://www1.ncdc.noaa.gov/pub/orders/BED14711-1190-3DE3-DD7E-2D2958A1939D.PDF. 

4 U.S. Army Corps of Engineers. (1993). Hurricane Andrew Assessment - Florida Review of 
Hurricane Evacuation Studies Utilization and Information Dissemination Tallahassee: 

5 National Atmospheric and Oceanic Administration. (1992). August 1992 Storm Data (ISSN 0039-
1972). Washington D.C.: Retrieved on  May 22, 2007 from NOAA Website: 
http://www1.ncdc.noaa.gov/pub/orders/BED14711-1190-3DE3-DD7E-2D2958A1939D.PDF. 

6 McCarty, C (2005).Florida's 2004 hurricane season: local effects. Florida Focus. 1, 1-13. 
7 National Atmospheric and Oceanic Administration. (2005). September 2005 Storm Data (ISSN 

0039-1972). Washington D.C.: Retrieved on  May 22, 2007 from NOAA Website: 
http://www1.ncdc.noaa.gov/pub/orders/BED14711-1190-3DE3-DD7E-2D2958A1939D.PDF. 
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information is compiled based on reports from hospital emergency departments in 

different regions of the country which provide only general information to causes of the 

injuries.  There is no clear data correlating injuries to specific causes (i.e. from windborne 

storm effects) as there are for the storms used for the creation of the fatality rate.  Using 

the injury information from the CDC, the Multi-hazard Mitigation Council (a council of 

the National Institute of Building Sciences) has estimated the expected injury rate from a 

hurricane at 0.55% (National Institute of Building Science, 2005).  This value is used to 

estimate injury rates for personnel who remain on base during a hurricane. 

b.  Casualty Cost Methodology 

In order to combine direct expenses incurred in evacuating personnel with 

the risks of casualties, monetized values for deaths and injuries are needed. The 

monetized value (cost) of each casualty was produced using information from the 

Department of Defense instruction 6055.7, Accident Investigation, Reporting and Record 

Keeping (U.S. Department of Defense, 2000).  The information in the instruction was 

computed in 1988.  Table 3 displays the computation methodology, with figures adjusted 

for inflation. The costs per person are different across personnel categories.  It is assumed 

that injuries and fatalities will occur in the same proportion represented in the general 

population; therefore, the costs are estimated to be a weighted average of the values 

across personnel categories.  Injuries are assumed to result in permanent partial disability.  

The fatality cost is the cost from the instruction plus the cost of life insurance.  Based on 

the data in Table 3, an injury to a person is estimated to cost $257,000 and a fatality is 

estimated to cost $625,000. 

 

Table 3.   Casualty cost estimation values from U.S. Department of Defense Instruction 
6055.7 and calculation of population-weighted average costs per person 

Population 
Population

Size 
% of Total 
Population 

Permanent Partial
Disability Cost 

Fatality 
Cost 

Officers 4729 4.79% $248,000.00 $1,076,000.00 
Enlisted 47473 48.11% $197,000.00 $614,000.00 
Civilian Employees 4019 4.07% $428,000.00 $887,000.00 
Dependents 42457 43.03% $308,000.00 $562,000.00 

Total: 98678 
Weighted 
Average: $256,611.01 $624,886.12 
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3.   Storm Aftermath 

After the hurricane moves out of the area, additional costs are incurred by 

personnel who ride out the storm aboard ENCMCFI.  Historically, in the aftermath of 

large hurricanes in southeastern North Carolina, the Cape Fear River and the Neuse River 

flood.  The flooding places the extreme eastern part of North Carolina on an island.  

Many roads into the area are cut off.  Delivering relief supplies and infrastructure repair 

capabilities into the region becomes extremely difficult, until the coastal flooding 

diminishes.  After Hurricane Floyd in 1999, many rivers inland did not crest for 4-6 days 

after the storm (U.S. Department of Commerce, 2000).  Based on this fact, the duration of 

the storm aftermath period will be estimated to be five days.  This value is chosen 

because ENCMCFI is not located in the areas that experienced the worst flooding after 

Hurricane Floyd.  The Marine Corps is uniquely equipped to be self-sustaining.  Marine 

units have the capability to make clean water, to establish and maintain global secure 

communications and to feed large numbers of personnel.  These resources are assumed to 

be used in hurricane response.  It is assumed that damage to local infrastructure, 

specifically power supply, will prevent base dining facilities from operating. The cost per 

day of supporting a person in the storm’s aftermath is estimated by the cost of placing a 

Marine on “Field Rations”.  Field Rations is the Marine Corps term for government 

provided meals in the field.  This cost will be applied to both Marines and dependents 

that remain in the area.   

4.  Storm Risk Costs 

Using the information outlined in this section, it becomes possible to estimate the 

cost of personnel remaining behind during a major storm.  To compare to direct costs, 

costs must be assigned to fatalities and injuries that personnel at ENCMCFI incur during 

a major hurricane.  A fatality or injury to a Marine or dependent that could have been 

evacuated from the area incurs a financial cost for medical expenses, life insurance 

claims, and in the case of an Active Duty Marine, replacing that Marine. These costs are 

summarized in Table 3. In addition, there are non-financial costs to the family and the 
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Marine Corps for the loss of life.  To account for these non-financial costs, a penalty cost 

for storm related injuries and fatalities may be assessed.  A sensitivity analysis is 

conducted with respect to the monetized cost of deaths. 

B.   THE EVACUATION PROBLEM   

ENCMCFI is faced with a difficult problem when it comes to tropical-cyclone 

evacuation decisions.  In addition to the need to leave the local area to avoid the most 

intense effects of the storm, an inland safe haven capable of withstanding significant 

wind effects and safely supporting a large number of people must be identified: 

After hurricane Hugo in North Carolina and Andrew in south Florida it 
became apparent that storm surge was not the only life-threatening feature 
of hurricanes. Destructive hurricane force winds and tornadoes affected 
many inland counties as far as 100 miles from the coast (USACE, 2002).   

This need to find inland evacuation destinations coupled with the number of 

personnel and dependents that are stationed at ENCMCFI make this a decision problem 

of enormous magnitude.  Sites have been chosen in North Carolina and South Carolina to 

house evacuees from ENCMCFI.  The ENCMCFI population can be broken down into 

three blocks for the purposes of evacuation.  Let b index the personnel blocks: 

1: Personnel requiring Long Evacuation
= 2: Personnel requiring Short Evacuation

3: Self Evacuation Population
b

⎧
⎪
⎨
⎪
⎩

 

The evacuations of blocks one and two are competing for the same assets and thus 

decisions regarding their evacuation are connected.  The Self evacuation population uses 

their own transportation assets.  The evacuation decision for this group is independent of 

the block one and two decisions.   

Let ( , )R b t  be the number of personnel in block b that remain at ENCMCFI at 

time t.  The initial number of personnel at ENCMCFI when a hurricane threatens is 

represented by 0 (0) (1,0) (2,0) (3,0)MR R R R= + + .  Let ( , )MR sτ τ +  be the number of 

personnel remaining at ENCMCFI if no further evacuations occur after time sτ +  and 
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the evacuation starts at timeτ .  Let ( , )H b t  be the number of personnel in each block b 

that are evacuated from ENCMCFI at time t.  As an evacuation progresses the number of 

personnel from each block at ENCMCFI will decrease, as is illustrated in equation (3.1). 

( , ) ( ,0) ( , )
t

R b R b H b t
τ

τ
<

= −∑        (3.1) 

All values in this section come from products developed by LtCol Dewald, the 

Deputy Director for Training and Operations for ENCMCFI.  All of these values are 

based on actual data collected from ENCMCFI.  The population at ENCMCFI is a fluid 

one due to troop rotations and personnel assignments, so the actual values when a 

hurricane threatens may be slightly different (E. Dewald, Deputy Director for Training 

and Operations, ENCMCFI, 2006).  

1.  Personnel Blocks 

a.  Long Evacuation: Students, Prisoners and Special Needs 

A large student population is assigned to ENCMCFI, for primary military 

training following recruit training.  These students are not allowed to have personal 

vehicles.  They must be positively moved by the government in the course of an 

evacuation.  Approximately 5,500 students are present at ENCMCFI during the hurricane 

season.  Approximately 450 support staff that will evacuate with the students. Grouped in 

the same block are approximately 250 short and medium-term prisoners incarcerated at 

Camp Lejeune.  These personnel, along with their support staff, would be positively 

moved in the course of an evacuation.  All of the members of this block (6,200 in total) 

are scheduled to evacuate to Ft Jackson in Columbia, S.C.   

Some families of service members are unable to evacuate themselves.  

This block is comprised almost totally of dependents of active duty service members who 

do not have the means to evacuate themselves in the face of an impending storm.  This 

population is very fluid and will depend on deployment cycles among other factors.   

ENCMCFI estimated the size of this population to be approximately 1,300. All of these 
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personnel must be positively moved, and are scheduled to evacuate to Shaw Air Force 

Base in Sumter, S.C.  The distance from ENCMCFI to the long evacuation destinations is 

approximately 225 miles.  With no delay the one-way travel time is approximately 5 

hours in government vehicles.  

The evacuation costs and time required are essentially identical for 

evacuation to Ft Jackson and Shaw Air Force Base. Therefore, the 6,200 students and 

prisoners and the 1,300 dependents are grouped together in block 1, for a total of 

(1,0)R = 7,500. 

b.  Short Evacuation: Deployed Warfighting Capability, Alternate 
Headquarters and Immediate Reentry Capability  

As a member of the U.S. National Defense structure, ENCMCFI has 

responsibilities to the National Command Authority to maintain a force in readiness that 

is able to deploy on short notice.  Members of this rapidly deployable unit must be 

mustered at least daily.  Additionally, Marines scheduled to deploy overseas within 30 

days would be evacuated with this block of personnel to ensure that troop rotations occur 

on time. The number in this block averages 2,500 Marines (one reinforced battalion).  

Due to rotation cycles in global conflicts this number may vary from 2,500-9,500 

personnel.  One thousand members of an alternate command headquarters will evacuate 

with this block to enable continuity of command.  This group is scheduled to evacuate to 

Ft Bragg, N.C.   

In the event of a total base evacuation, a 350-member immediate re-entry 

unit will be evacuated to Seymour Johnson Air Force Base to be the first personnel to 

return to ENCMCFI immediately following the storm.  This block is comprised mostly of 

engineers and heavy-machinery operators who will facilitate re-opening of ENCMCFI.   

Since Ft Bragg and Seymour Johnson Air Force Base evacuations are 

essentially the same cost and driving time from ENCMCFI, all these groups are 

combined for a total of: (2,0)R = 3,850.  The distance from ENCMCFI to Ft Bragg is 

approximately 100 miles.  With no traffic delay, a one way trip takes approximately two 

hours.
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c.  Released Personnel   

The vast majority of personnel at ENCMCFI will be released at least 24 hours 

prior to storm landfall to evacuate themselves to the destination of their choosing.  This 

population size is approximately (3,0)R =  90,000 service members, dependents and 

civilian employees.  This population is expected to have their own means of 

transportation, and will receive mileage reimbursement based on rates from the Joint 

Federal Travel Regulation (JFTR).  Base commanders will direct those Marines who are 

not married to car-pool.  One vehicle per every 3 people is assumed. 

2.   Transportation   

Even though the vast majority of the base population is expected to move 

themselves in the course of an evacuation, there are expected to be approximately 

(1,0) (2,0)R R+  = 11,350 and possibly up to 18,000 personnel who require transportation 

to their designated evacuation site.  ENCMCFI has a limited number of organic assets 

available to move these personnel, but has the capability to execute multiple trips.  The 

use of commercial assets such as buses, to evacuate ENCMCFI personnel is not a reliable 

option (as discussed later).  With the assets that are currently available, three round trips 

are required to move the entirety of the positive move population.   

a. Transportation Travel Time  

Because the base is required to execute multiple trips using its organic 

assets, the time it takes to make these trips becomes a critical planning factor.  As a storm 

grows closer, however, the local population will begin to evacuate the area.  This 

evacuation traffic increases the time for ENCMCFI assets to make these round trips.  The 

USACE has developed “Clearance Time,” a metric which has been estimated based on 

studies of past hurricane evacuations.  The estimated metrics are updated and maintained 

by the USACE through their “Hurricane Evacuation Study” program.   

Clearance Time: the time required to clear the roadways of all evacuating 
vehicles. It therefore determines the minimum time period, in hours to the 
arrival of sustained 34-knot winds, necessary for a safe evacuation. 
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Clearance times are based on three variables: 1) Saffir/Simpson hurricane 
category; 2) expected evacuee response rate; and 3) tourist occupancy 
situation (where applicable) (USACE, 2002).  

These values represent clearance of the entire roadway not just the time 

estimated for one vehicle to move through the system.  These times are not static, and 

they vary through a range based on the response rate: 

Another critical behavioral aspect of the transportation analysis is the 
response rate (timing) of the evacuating population. Behavioral data shows 
that actual departures of the evacuating population can occur over a period 
of many hours, or sometimes in a few hours. For this study, clearance 
times were tested for three evacuation response rates (slow, medium and 
fast) (USACE, 2002). 

 

Figure 13.   Graph displaying the effects of different response rates on the evacuation 
clearance times.  From USACE, Hurricane Evacuation Study. 

 

The effect of clearance times on the ability for ENCMCFI to maximize 

use of transportation assets is important. Table 4 displays clearance times for the counties 

where ENCMCFI installations are located.  These times are the total clearance times for 

the entire county population to clear the road network to the I-95 corridor.  The values for 

Pamlico South include locations on barrier islands that depend on ferries to complete 

their evacuation.  These locations do not include members of the ENCMCFI population.   
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Response

Rate 
CAT 1-2 
(hours) 

CAT 3-5 
(hours) 

Onslow County rapid 8.5 10.5 
 medium 9.5 11.25 
 long 12.25 12.5 
Pamlico South rapid 12.25 18.5 
 medium 13.25 19.75 
 long 14.5 20.75 
Pender County rapid 4.75 6 
 medium 6.25 6.5 
 long 9.25 9.25 

Table 4.   ENCMCFI county clearance times in hours from USACE HES (2002) 
 

While the clearance times provide insight, the value that is most important 

to this decision problem is the maximum “Worst Household Commute Time”. This value 

is the maximum time that one vehicle could expect to spend getting through the road 

network.  For the counties involved the estimate is 3 to 7.5 hours (USACE 2002).  Since 

the long evacuation travel time was estimated at 5 hours without traffic delays, the trip to 

the destination takes between 8 and 12.5 hours one way with evacuation-related traffic 

delays.  The return leg will not encounter the same level of congestion, so this return trip 

is faster.  Thus the round-trip time for a block 1 (long evacuation) wave is estimated at 24 

hours. 

Similarly a block 2 (short evacuation) one way trip is estimated at 2 hours 

without traffic congestion, so a range of 5 to 9.5 hours is the estimated time in an 

evacuation scenario.  The return trip is also faster thus the round trip for the short 

evacuation wave is estimated at 12 hours.  This time includes mustering personnel, 

loading the vehicles, traveling to the evacuation site, unloading at the site and returning.  

Refueling time is also included. 

b. ENCMCFI Transportation Assets 

For those personnel who must be moved by the government, a limited 

number of evacuation means are available. Table 5 lists the organic ENCMCFI 

evacuation assets.  The total number of personnel that can be moved in one wave with 

these assets is 3,945.  This is well short of the necessary total positive move population of 
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approximately 11,300; thus, these assets will be used in successive round trips to enable 

the complete evacuation.   Both short and long moves are included in the 11,300 

personnel estimate.  The assets must complete two round trips and a one-way trip to 

move the entire population.  The troop rotation cycle may increase the total to 18,000. 

Five waves would evacuate the entire positive move population in this case.   

Asset Name: 
Asset  
Type: 

Number 
Available

 
Capacity

Total per 
Wave 

Inter-City Bus 1 2 49 98 
Adult Bus 2 18 44 792 
School Bus 3 17 44 748 
46 PAX Troop Transport 4 4 46 184 
56 PAX Troop Transport 5 1 56 56 
62 PAX Troop Transport 6 1 62 62 
20 PAX Adult Bus 7 1 20 20 
28 PAX Adult Bus 8 8 28 224 
36 PAX Adult Bus 9 3 36 108 
12 PAX Van 10 13 12 156 
8 PAX Van 11 139 8 1112 
7 PAX Compact Van 12 11 7 77 
Cargo Van 13 154 2 308 
 Total: 3945 

Table 5.   Available transportation assets at ENCMCFI from Marine Corps Installations 
East 

 

There are other options for the movement of these personnel, such as 

contracted commercial buses; however, buses require at least 24 hours of prior notice 

before they are available.  These buses will be in high demand in the face of an 

approaching storm.  In the aftermath of Hurricane Katrina, was been determined that in 

future similar emergencies, these assets will be managed by the Federal Emergency 

Management Agency (FEMA).  These buses will be tasked at the national level to assist 

in the evacuation of the entire population.  Any use of these buses is uncertain and for 

this reason, in this thesis, these assets are not included in the evacuation asset matrix. 

Activating self-evacuation is the last decision that can be made as a storm 

approaches because of the flexibility of people leaving in their own vehicles. If this 

population is ordered to depart simultaneously, the local transportation infrastructure will 

not support the traffic.  The evacuation would be occurring in the midst of evacuating 

other local municipalities and counties.  Traffic flow rates will be greatly reduced.  This 
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execution must be phased over time. The interaction with other evacuation efforts will 

determine clearance times from the coast of North Carolina.  Up to 24 hours would be 

needed for self-evacuation. 

3.  Evacuation Costs 

a. Travel Costs 

When the Marine Corps orders an evacuation, the costs incurred by those 

evacuating become the responsibility of the government.  This not only extends to the 

population that the government has to positively move, but to those who self-evacuate as 

well (U.S. Marine Corps Forces Command, 2007).  This travel cost is not insignificant, 

so cost-saving measures are in the best interest of the Marine Corps.  Costs for 

government-owned transportation assets are calculated based on ENCMCFI planning 

estimates (E. Dewald, Deputy Director for Plans and Operations, ENEMCFI, personal 

communication, Dec 3, 2006).  Individual travel costs are computed by using an estimate 

of self evacuation distances and current government privately-owned-vehicle mileage 

reimbursement rates from the JFTR.  Travel costs are a function of the vehicle making 

the trip, and not the number of personnel moved. 

b. Temporary Additional Duty Costs 

All personnel ordered to evacuate will be entitled to lodging expenses and 

per-diem rates for meals. This increases evacuation costs considerably because of the 

possibility of a long-duration evacuation in a catastrophic storm.  Let ( )LC b be the TAD 

cost for one person from block b for one day as referenced from the JFTR. 

c. Deaths and Injuries 

With approximately 100,000 Marines, family members and civilian 

personnel (E. Dewald, Deputy Director for Plans and Operations, ENEMCFI, personal 

communication, Dec 3, 2006), moving large distances in the midst of a large-scale coastal 

evacuation, traffic fatalities and injuries are likely.  Assuming an average one-way 
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evacuation distance of 250 miles, the evacuation will consist of over 50,000,000 

passenger miles in a congested road network.  According to the National Transportation 

Safety Administration, in 2004, the average rate of fatalities on the roads of the United 

States was 1.44 per 100,000,000 passenger miles with 94 injuries over the same distance 

(U.S. Department of Transportation, 2005). These figures were compiled over the entire 

year and not exclusively during times of crisis and extreme congestion.  These estimates 

may not reflect the actual numbers of traffic fatalities and injuries.   

C.  THE OVERALL DECISION PROBLEM   

Given all of the factors, deciding whether to order a base-wide evacuation is 

extremely complex and involves making very large financial commitments based on the 

occurrence of events whose probabilities are not well known.  The decision is essentially 

a balancing of financial estimates with projected injuries and fatalities. When a forecast is 

issued at timeτ , the decision is whether to use the available assets to evacuate a wave of 

personnel.  This is not a one-time decision.   A new forecast is issued every six hours. As 

the storm forecast changes, a decision not to continue evacuation may result. 

1.   Calculation of Individual Components 

Two separate decision processes exist. One involves personnel who require 

provided transportation (positive move population).  The other involves the much larger 

population who will self evacuate.  The reason for this separation is based on 

transportation needs. The positive move population requires more logistical support, and 

requires a longer evacuation lead time than the self-evacuation population. Both compete 

for organic transportation assets.  A wave of 3,945 long evacuation personnel are 

assumed to be evacuated first (24 hours round-trip) the second wave consists of the 3,945 

short evacuation personnel are evacuated (12 hours round trip).  Next 3,710 long 

evacuation personnel (12 hours one way) and 210 short evacuation personnel (6 hours 

one way) comprise the third wave. This ordering reflects the constraints of these 

personnel based on their military duties.  A complete positive move evacuation will 

require approximately 24+12+12 = 48 hours.  When the last wave of vehicles reaches 
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their evacuation destination, those vehicles will remain at that location; thus, the last 

wave is only calculated to be a one way trip.   

Let ( ), ,A v bτ  be the number of transportation assets of type v used at time τ  to 

evacuate personnel from block b.  To determine the assets available at a given time, the 

number of assets sent on earlier evacuation trips (not yet available) must be calculated.  

This calculation is displayed in equation 3.1. ( )' ,A v τ  is the number of vehicles of type v  

available for evacuation at time τ  and acts as a constraint on ( ), ,A v bτ  as is indicated in 

equation 3.2 

( ) ( )

( )

0

24 12

0

, ( , ,1) ( , ,2)  ,

Where  is the initial number of vehicle of type  at ENCMCFI

F Ft T t T
t t

A v A v A v t A v t v

A v v
τ τ

τ τ
∈ ∈
> − > −

⎡ ⎤
⎢ ⎥′ = − − ∀⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑   (3.1) 

( ) ( ), ,1 , , 2 '( , ) ,A v A v A v vτ τ τ τ⎡ ⎤+ ≤ ∀⎣ ⎦       (3.2) 

To determine risk levels, it is important to calculate the number of personnel 

evacuated at each forecast decision point.  Let 

{ } transportation asset type, 1,2,...14v v= ∈ , and let ( )Q v  be the capacity of 

transportation asset v.  Let ( , )H b t  be the number of personnel in each block b that are 

evacuated from ENCMCFI at time t,  ( , ) ( , , ) ( ) ,
v

H b t A v t b Q v b t= × ∀∑  The maximum 

number of personnel that can be evacuated from ENCMCFI at time τ is displayed by 

equation 3.3. 

'( , ) ( )
v

A v Q vτ ×∑          (3.3) 

a.  Direct Evacuation Cost Calculation 

The evacuation decision is assumed to be an all-or-nothing proposition; if 

it makes sense to evacuate one person, than it will make sense to evacuate the maximum 

number possible at that time step.  At each decision time the first cost that must be 

calculated is the cost of the evacuation using all available evacuation assets.  This cost is 
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displayed in equation 3.4.  Let ( ),EC sτ τ +  be the cost of evacuating (transportation plus 

TAD costs) for those people evacuated at time sτ +  incurred by the decision to evacuate 

made at timeτ .  Let ( , )TC b v  be the cost of asset v executing a block b evacuation wave 

and let ( )LC b  be the TAD cost for one person from block b for one day as referenced 

from the JFTR.  For the purpose of this thesis, the evacuation duration is assumed to be 

seven days, under the assumptions that most evacuations will occur approximately two 

days prior to the arrival of the storm and it will take five days to return personnel to the 

area.   

( )

( )

Direct Evac Costs

duration of 
evacuation (days)

TAD costs

, ( , ) ( , , )

( ) 7 ( , )

E T
v b

L
b

C s C b v A v s b

C b H b s

τ τ τ

τ

+ = × +

⎛ ⎞
⎜ ⎟

+ × × +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∑

∑
         (3.4) 

b.   Evacuation Risk Cost Calculation 

The evacuation risk at a particular decision time must be estimated.  Using 

the data outlined in this chapter, this estimate is displayed in equation 3.5.  Let 

( ),REC sτ τ +  be expected transportation risk cost of injuries and fatalities in the 

population evacuated at time sτ +  (monetized penalty incurred by the evacuation 

decision made at timeτ ).  Let i
TC  be the risk cost (≥$257,000) for each injury 

experienced during the course of an evacuation. Let ( )i
TZ b be the probability a person 

from block b will experience an injury in the course of an evacuation (94 per 100,000,000 

passenger miles).  Let f
TC  be the risk cost (≥$625,000) for each fatality experienced in 

the course of an evacuation.  Let ( )f
TZ b be the probability per person from block b of 

fatality experienced in the course of an evacuation (1.44 per 100,000,000 passenger 

miles). 
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( ) ( ) ( )( ), ( , ) ( ) ( )i i f f
RE T T T T

b
C s H b s Z b C Z b Cτ τ τ+ = + × × + ×∑    (3.5) 

c. Evacuation Fatality Risk Calculation 

Similarly, the expected number of fatalities can be estimated.  Let 

( ),REL sτ τ +  be the expected number of fatalities in the population evacuated at time 

sτ +  due to risk incurred by the evacuation decision made at time τ . 

( ), ( , ) ( )f
RE T

b

L s H b s Z bτ τ τ+ = + ×∑       (3.6) 

d.  Storm Risk Cost Calculation 

Risk to personnel who are not evacuated is calculated as described in 

Chapter II.  The estimate is displayed in equation 3.7.  Let ( ), ( , )RS MC R sτ τ τ +  be the 

storm-related risk measured by expected fatality and injury costs (monetized penalty) if 

no further evacuations occur after sτ +  when the decision to evacuate is made at time τ .  

Recall that ( , )MR sτ τ +  is the number of personnel remaining at ENCMCFI if no further 

evacuations occur after time sτ +  and the evacuation starts at timeτ .  Let i
SC be the 

penalty cost for each injury due to direct storm effects (≥$257,000).  Let i
SZ  be the 

probability of injury per person due to direct storm effects.  Let f
SC  be the penalty cost 

per fatality due to direct storm effects (≥$625,000).  Let f
SZ  be the probability of fatality 

per person due to direct storm effects.  Let BC  be the cost of supporting one person at 

ENCMCFI during post-storm cleanup operations. 

( ) ( ) ( )( ), ( , ) ( , ) i i f f
RS M S S S S B MC R Z C Z C C Rτ τ τ τ τ= × + × + ×    (3.7) 

e. Storm Fatality Risk Calculation 

The expected number of fatalities due to storm effects for personnel not 

evacuated must be estimated.  Let ( ), ( , )RS ML Rτ τ τ  be the estimate of storm-related 
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fatalities incurred if no further evacuations occur afterτ .  Equation 3.8 displays this 

calculation. 

( ), ( , ) ( , ) f
RS M S ML R Z Rτ τ τ τ τ= ×        (3.8) 

2.   Implementation of the Decision model 

The decision process becomes a comparison at each decision opportunity of the 

risk and cost of evacuating at the current decision time versus postponing evacuation 

until the next forecast is issued in 6 hours versus the risk of not evacuating at all.   The 

major variables in this decision are whether the storm is going to affect ENCMCFI, and 

whether tropical-storm force winds will interrupt evacuation.  The key comparison is 

between total cost and risk for a full evacuation started at this decision time against the 

same cost and risk if no action is taken immediately but evacuation is initiated in 6 hours. 

a. Cost to Commence Evacuation at Current Time 

The expected total evacuation cost for evacuation starting at time τ  is 

displayed in equation 3.9.  The expected total evacuation cost includes the cost of 

evacuating first wave and the cost of evacuating the second and third waves times the 

probability that tropical storm force winds do not prevent their departures.  It is assumed 

that the first wave will successfully complete evacuations before tropical-storm force 

winds arrive.   Evacuation risk costs in subsequent waves occur because of the 

probability of tropical storm force winds not interrupting evacuation.  
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   (3.9) 

Storm costs are the expected costs resulting from the effects of 105 kts 

winds at ENCMCFI if an evacuation is interrupted by 34 kts winds.  For the calculation 

of this risk, the estimated probability of 34 kts winds occurring prior to a given wave’s 

evacuation is calculated and multiplied by the estimated probability that 105 kts winds 

occur after the given wave’s scheduled evacuation.  If 34 kts winds should prevent a 

wave from evacuating, then those personnel will be susceptible to the risk of 105 kts 

winds.  If 105 kts winds occur prior to their evacuation, then 34 kts winds occurred prior 

to that and thus they would not have been able to evacuate.  

Equation 3.10 displays the expected storm costs of an incomplete 

evacuation of waves two and three: the evacuation is interrupted by tropical storm force 

winds.  The probability that the second and third wave personnel are unable to evacuate is 

multiplied by the probability that the storm arrives and winds in excess of 105 kts are 

experienced at ENCMCFI after those evacuation times.  
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 (3.10) 

Therefore the expected cost of evacuating, or continuing evacuation at the 

current forecast time is:[ ](3.9) (3.10)+ . 

b.  Expected Fatalities at Current Forecast Time 

The expected number of fatalities due to evacuation is calculated in the 

same manner as the cost risk equations 3.9 and 3.10.  Equation 3.11 displays the expected 

total number of evacuation fatalities due to an evacuation starting at time τ . 
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Similarly, equation 3.12 displays the expected number of fatalities from 

storm risk. 
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 (3.12) 

 

c. Cost to Evacuate at Next Forecast Time 

To evaluate the expected cost of waiting until the next forecast to start 

evacuation, the calculations are conducted in much the same manner.  Now the 

probability that the first wave is unable to evacuate due to the arrival of tropical storm 

force winds enters the equation.  This will require new notation since these calculations 

will be computed concurrently with the ones evaluating the costs of evacuating at the 

current forecast time.  Let ( 6, 6 )d
MR t sτ+ + +  be the total number of personnel that 

remain ENCMCFI at time 6 sτ + +  if no further evacuations occur after time 6 sτ + +  

due to the evacuation decision made at time 6τ + .  Let ( )6, 6d
EC sτ τ+ + +  be the cost of 

evacuating (transportation plus TAD costs) for those people evacuated at time 6 sτ + +  

incurred by the decision to evacuate made at time 6τ + .  Let ( )6, 6d
REC sτ τ+ + +  be 

expected transportation cost of injuries and fatalities in the population of people 

evacuated at time 6 sτ + +  in monetized penalty incurred by the evacuation decision 

made at time 6τ + .  The expected evacuation costs are displayed in equation 3.14.  The 

expected direct evacuation cost includes the cost of evacuating all the positive move 

population multiplied by the probability that tropical storm force winds have not 

prevented their departure.  The evacuation risk costs are calculated in the same manner. 
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Note that these expected costs will be less than or equal to the expected evacuation costs 

in equation 3.4 because they are multiplied by the probability that tropical-storm force 

winds will arrive and prevent the costly evacuation. 
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 (3.14) 

 

Expected storm costs are calculated as shown in equation 3.15 by 

multiplying the probability ENCMCFI personnel are unable to evacuate by the 

probability of winds in excess of 105 kts at ENCMCFI.   
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           (3.15) 
 

The expected cost of waiting until the next forecast is issued before 

initiating or continuing evacuation can be calculated by:  [ ](3.14) (3.15)+  

d.  Expected Fatalities at Next Forecast Time 

The expected number of fatalities due to evacuation transportation for an 

evacuation that starts at 6τ +  is calculated in the same manner as the risk cost equations 

3.14 and 3.15.  Let ( )6, 6d
REL sτ τ+ + +  be the expected number of fatalities in the 

population of people evacuated at time 6 sτ + +  due to transportation risk incurred by the 

evacuation decision made at time 6τ + .  Equation 3.16 displays the expected total 

number of evacuation fatalities due to evacuation starting at time 6τ + . 
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   (3.16) 

 

Similarly, equation 3.17 displays the expected number of fatalities from 

storm risk if the evacuation decision is made at τ +6. 
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(3.17) 

 

e. Cost of Not Conducting Evacuation Operations 

To determine the expected cost not evacuating, the storm risk cost is 

calculated as the entire population of ENCMCFI multiplied by the probability that the 

storm will cause winds to exceed 105 kts at ENCMCFI at some time in the future.  Let 
0 ( )MR t  be the total number of personnel that remain ENCMCFI at time t if no evacuation 

operations are conducted.  This calculation is displayed in equation 3.18.  
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f. Estimated Fatalities from Not Evacuating 

To determine the expected number of fatalities resulting from not 

evacuating, the estimated storm fatalities must be calculated for the entire population of 

ENCMCFI multiplied by the probability that the storm will cause winds to exceed 105  

kts at ENCMCFI at some time in the future.  This calculation is displayed in equation 

3.19.  
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  (3.19) 

3. Decision Rule 

Quantitative support to a base commander’s evacuation decision is provided by 

this model output in terms of deterministic output based on two decision rules.  Two sets 

of decision rules are developed: the first computes expected costs and the second 

computes expected fatalities.  Both decision rules use two comparisons. For the expected 

costs decision rule, the first comparison is whether the expected cost of evacuating at the 

current time [ ](3.9) (3.10)+ ,  is less than the expected cost resulting from not 

evacuating  (3.18).  If the expected cost of evacuating is less, an evacuation is considered.  

This comparison will prevent evacuation operations from being considered when the 

probability of having a major impact at ENCMCFI is small.   

Similarly an analogous calculation of expected fatalities if an evacuation starts at 

the current forecast point is compared to the expected number fatalities for no evacuation.   
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To calculate expected fatalities at this decision time, the first comparison determines 

whether the expected number of fatalities resulting from evacuating at the current time 

[ ](3.11) (3.12)+ ,  is less than the expected fatalities resulting from not evacuating  

(3.19). 

The second comparison is whether the expected cost to begin evacuation 

operations now is less than the expected cost of beginning the evacuation at the next 

forecast decision point [ ](3.14) (3.15)+ .  Costs and (risk-reduction) benefits of 

removing the population from the ENCMCFI area immediately are compared with costs 

and benefits of waiting until the next decision point.  The risk of waiting six hours for 

new forecast information is that the probability of being unable to evacuate may increase.  

The analogous decision rule dealing with expected fatalities is whether the expected 

number of fatalities from the decision to begin evacuation operations now is less than the 

expected number of fatalities from beginning the evacuation at the next forecast decision 

point [ ](3.16) (3.17)+ .  This comparison is conducted by comparing the results of the 

sum of equations 3.9 and 3.11 with the sum of equations 3.14 and 3.15 for the expected 

costs.  For the expected fatalities, [ ](3.12) (3.13)+  and [ ](3.16) (3.17)+  are compared.  

This estimated cost decision rule is to initiate or continue evacuation only if:  

[ ] ( ) ( )( ) ( )(3.9) (3.10) min 3.14 3.15 , 3.18⎡ ⎤+ << +⎣ ⎦ .   (3.20) 

The estimated fatalities decision rule is: 

[ ] ( ) ( )( ) ( )(3.12) (3.13) min 3.16 3.17 , 3.19⎡ ⎤+ << +⎣ ⎦ .   (3.21) 

If these criteria are met, then evacuation is indicated and will be referred to as the 

“evacuation signal.”  Base commanders at ENCMCFI will typically set their own 

decision thresholds, and will consider both decision rules in their evacuation decision.  

This model will be further illustrated through the analysis of historical storms in Chapter 

IV.   
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IV.  MODEL IMPLEMENTATION AND ANALYSIS 

A. INTRODUCTION 

In order to study the implications of the model and decision rules outlined in 

Chapter III, historical storms can be used to identify times when ENCMCFI should have 

considered evacuation.  This chapter applies the model and decision rules to historical 

storms. Because in recent history no storms have brought 105 kts winds to ENCMCFI, 

two historical hurricanes ─ Floyd and Isabel ─ will be modified to simulate making 

landfall with winds in excess of 105 kts. A third, hypothetical, storm has been created to 

represent the worst case storm for the model.  This hypothetical storm is a 165 kts 

hurricane that makes a slow landfall at ENCMCFI.  This storm will be analyzed to 

determine the conditions that the worst case will produce, in terms of probabilities of 105 

kts winds, and the evacuation decision rule.   

At ENCMCFI, wind effects are the most dangerous aspect of a hurricane strike; 

however most hurricane deaths are caused by flooding. Therefore, the threats to life are 

not as severe for ENCMCFI as for installations in a storm-surge susceptible area. To 

illustrate how the increased risk associated with storm surge would change the results, 

analysis in this chapter modifies fatality rates to demonstrate the behavior of the model in 

areas with storm surge risk.  Finally, a sensitivity analysis with respect to the cost of 

fatalities is conducted.  

B. ANALYSIS OF HISTORICAL HURRICANES 

Using the decision rules outlined in Chapter III, evacuation decisions based on 

historical storms are assessed.  Hurricane Floyd and Hurricane Isabel are analyzed to 

assess model output based on known storm end states. Both of these storms were very 

intense early in their lives, prior to decreasing in intensity before landfall. To model a 

storm that is a greater threat to ENCMCFI, the intensities of these storms are adjusted  
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upward.    At their strongest points Hurricane Floyd was a strong Category-4 hurricane 

with 135 kts winds, and Hurricane Isabel was a Category-5 storm with 140 kts winds 

(National Weather Service, 2000).   

To simulate these storms coming ashore at their maximum intensity, their wind 

intensity profile from their strongest point was copied to the time when they were 

approaching and making landfall in the vicinity of ENCMCFI. The enhanced-intensity 

storms will be referred to as Hurricane Floyd+ and Hurricane Isabel+. Appendix 1 

displays the forecast intensities and the simulated forecast intensities for Floyd+ and 

Isabel+.  This analysis provides a good illustration of the model in the face of a very 

dangerous storm.  Forecast conditions that trigger model evacuation signals are 

highlighted. 

1. Model Analysis - Hurricane Floyd+ 1999 

Prior to looking at the expected costs and fatalities, the analysis of Hurricane 

Floyd+ must first begin with the model computed probabilities.  Hurricane Floyd will 

make landfall at advisory number 35.  Figure 14 displays the results of equations 2.17 

and 2.18 for Hurricane Floyd+ for the computation that the probability of winds 

exceeding 105 kts occurring at ENCMFI at any time in the next 120 hours, and the 

probability of 34 kts occurring in the next 42 hours as a function of the advisory number 

(advisories occur every 6 hours).  In the three wave evacuation decision, 42 hours would 

cover the estimated amount of time for all three waves to clear the area (the last wave 

will require a further 6 hours to reach its destination after clearing the vulnerable area).   

In Figure 14 and subsequent figures in this chapter, the NHC forecast advisories are listed 

sequentially along the x-axis.  In Figure 14, even with the enhanced intensity, the 

probability of 105 kts winds reaches its maximum at advisory 32 with a value of 

approximately 0.16.   
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Hurricane Floyd+ - Probability of Winds Exceeding 105 kts and 34 kts by Advisory Number
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Figure 14.   Hurricane Floyd+ Estimated Probabilities of winds in excess of 34 kts and 

105 kts at ENCMCFI 
 

Advisory 32 was issued approximately 12 hours prior to landfall.  The forecast 

and actual track of the storm are displayed in Figure 15.  In this figure, the outer circle 

represents the radius of 34 kts winds, which will shortly reach ENCMCFI.  The forecast 

track of the storm is indicated by the larger squares and the actual track is indicated by 

the small solid squares.  Advisory 32 would have been one of the last possible 

opportunities to evacuate. 
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Figure 15.   Hurricane Floyd advisory 32 from Hurrevac2000 

 

Figure 16 displays the resulting expected total costs, calculated as described in 

Chapter III using equations [ ](3.9) (3.10)+ , [ ](3.14) (3.15)+  and ( )3.18 . The 

expected costs decision rule recommend no evacuation.  The first indication of a potential 

need to evacuate is when the cost of evacuating at a given time is greater than waiting 

until the next forecast.  This cost difference begins at advisory 28.  The probability of 34 

kts winds in the next 42 hours has just begun to increase (Figure 14).  This difference in 

cost is due to the risk of 34 kts winds interrupting the evacuation.  At advisory 28, the 

cost of waiting until the next forecast is actually lower than the cost of evacuating at 

advisory 28.  The probability of wind in excess of 105 kts is still relatively low at this 

point while the probability of 34 kts winds is higher.  As a result, personnel maybe 

prevented from evacuating.  The 105 kts winds are not forecast to arrive; thus, costs 

saved by not evacuating are greater than the monetized risk cost of 105 kts winds at 

ENCMCFI.  The decision rule comparing the cost of evacuating now and the cost of not 

evacuating results in a very clear signal not to evacuate.  The cost of never evacuating is 
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so low that even with the storm 12 hours away at advisory 32, the cost of evacuating is 

more than twice the cost of never evacuating.  Based on the decision rule outlined in 

Chapter III, evacuation is not indicated in this case. 

Hurricane Floyd+ - Expected Transportation Costs Plus Monetized Risk Costs
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Figure 16.   Hurricane Floyd+ expected evacuation cost plus monetized risk cost. 

 

Another way to look at the evacuation decision is to ignore direct evacuation costs 

and to look only at the expected number of fatalities.  Figure 17 displays the expected 

fatalities from the model using the inputs from Chapter II and Chapter III.  Again there is 

a peak at advisory 32, but the difference in fatality risk between full evacuation and no 

evacuation at this time step is less than one expected fatality.  



 66

Hurricane Floyd+ - Expected Fatalities
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Figure 17.   Hurricane Floyd+ Expected Fatalities 

 

Based on these figures, even with the increased intensity of Hurricane Floyd, the 

model indicates that not evacuating is the best decision.  The cost of a full evacuation is 

approximately $36M.  According to the model the net avoided risk of evacuating is a 

difference of less than one expected fatality, which cannot justify the $36M expenditure.   

2. Model Analysis - Hurricane Isabel+ 2003 

Hurricane Isabel+ yields similar results.  Hurricane Isabel makes landfall just 

north of ENCMCFI at advisory 50.  Figure 18 displays the estimated probabilities from 

the storm model for Hurricane Isabel+.  The maximum value of the estimated probability 

of winds exceeding 105 kts at ENCMCFI is higher than for Floyd+, reaching a maximum 

of just over 0.2 at forecast advisory 41.  This is a significant result because the storm is 

still approximately 60 hours from landfall, and the probability of 34 kts winds rises 

sharply after this advisory.  Another interesting result is at advisory 47, where there is 

another increase in the probability of 105 kts winds.   
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Hurricane Isabel+
 Estimated Probabilities of Winds Exceeding 105 kts and 34 kts by Advisory Number
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Figure 18.   Hurricane Isabel+ Estimated Probabilities of winds in excess of 34 kts and 

105 kts at ENCMCFI 
 

At forecast advisory 41 (Figure 19) the forecast (indicated by the large squares) is 

in line with the actual track of the storm (indicated by the smaller squares), and both are 

just north of ENCMCFI.   
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Figure 19.   Hurricane Isabel advisory 41 from Hurrevac2000 
 

The results for Isabel+ (Figure 20) are similar to the results from Hurricane 

Floyd+.  The model recommends waiting until the next forecast at all points except 

advisory 47.  There is a definite increase in the cost of not evacuating at advisory 41, but 

there is no apparent difference between the costs of evacuating now and waiting until the 

next forecast.  
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Hurricane Isabel+ - Expected Evacuation Cost Plus Monetized Risk Cost
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Figure 20.   Hurricane Isabel+ expected evacuation cost plus monetized risk cost 

 

If costs were not a factor, and the decision were based purely on an evaluation of 

the expected fatalities of evacuation or remaining at ENCMCFI, there is still not a clear 

indication from the model as to which decision is better. Figure 21 shows that when the 

expected number of fatalities is at its maximum for this storm at advisory 41, the 

difference between evacuating now and not evacuating at all is less than one expected 

fatality.  There is a slight evacuation signal given at advisory 47, but it is so small that 

again it cannot justify the expenditure of $36M. 
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Hurricane Isabel+ - Expected Fatalities
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Figure 21.   Hurricane Isabel+ Expected Fatalities 

 

Hurricane Floyd and Hurricane Isabel had potential for a major impact on 

ENCMCFI.  Modified hurricanes with greater intensities are considered.  Yet the 

expected cost model does not recommend evacuation for either of the storms even with 

the modified intensities. The expected number of fatalities for not evacuating is within 

one expected fatality for both storms.   A hypothetical “worst case” storm is created in 

the next section to study if the model will ever recommend an evacuation. 

3. Model Analysis – Worst Case Storm 

The worst storm considered for the storm model is a slow moving storm that is 

very intense.  For this test case, a storm that moves in a straight line through ENCMCFI 

(Figure 22) is created with an intensity of 165 kts for each time step.  This figure reflects 

the highest historical tropical cyclone intensity in the Atlantic basin of 165 kts 

(Hurricanes Camille 1961, and Allen 1980) (National Weather Service, 2007d).  This 

storm will make landfall at advisory 7.  In order to make the evacuation differential as 
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evident as possible, the storm was created with a very small, 60nm diameter of 34 kts 

winds, as is indicated by the outer circle in Figure 22.   

 
Figure 22.   Track and Forecast for Hypothetical “Worst-Case” Storm 

 

The probabilities of winds in excess of 105 kts occurring at ENCMCFI for this 

storm are much larger than for the two storms analyzed in sections 1 and 2.  This is due to 

the slow movement of the storm and the forecast of the track of the storm directly 

through the center of ENCMCFI.  The position errors are more densely distributed 

around the forecast point than further away.  This density leads to higher probabilities of 

winds in excess of 105 kts at ENCMCFI in any hurricanes that move through the center 

of the ENCMCFI box because more of this density is captured by the box in successive 

forecast time periods.  Figure 23 displays the probabilities as the storm makes landfall at 

advisory 7.  The dark line represents the probability of 105 kts winds occurring at 

ENCMCFI in the next 120 hours, and the gray line represents the probability of 34 kts 

winds occurring at ENCMCFI in the next 42 hours.    



 72

Worst Case Storm - Probability of Winds Exceeding 105 kts and 34 kts by Advisory Number
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Figure 23.   Worst Case Storm Estimated Probabilities of winds in excess of 34 kts and 

105 kts at ENCMCFI 
 

With such large probabilities, the evacuation indication should be very clear.  The 

plot of the cost of not evacuating is similar to that of the plot of the estimated probability 

of 105 kts winds.  While there is a clear signal from that test, there is not a difference in 

the cost of evacuating at the current advisory vs. waiting until the next advisory (until 

forecast advisory 6) just prior to landfall.  This behavior is due to the sensitivity of the 

evacuation decision to the probability of the arrival of 34 kts winds.  In the examples with 

Hurricanes Floyd+ and Isabel+, the extent of tropical storm force winds was much larger 

(160 and 200 nm) compared to this hypothetical storm (60nm).    
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Worst Case Storm - Expected Evacuation Costs Plus Monetized Risk Costs
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Figure 24.   Worst case storm, transportation and monetized risk costs 

 

The fatality output displayed in Figure 25 has a stronger evacuation signal, but the 

difference in expected fatalities is not large. The reason for the small difference in the 

expected number of fatalities becomes evident when the rates that are assumed in the 

evacuation and storm risk fatalities are more closely analyzed.  As was discussed in 

Chapter III, the transportation risk is calculated at 1.44 fatalities per 100,000,000 

passenger miles.  This translates to approximately 0.8 for the evacuation of all personnel 

involved.  Storm fatalities are estimated to be approximately 5 for the entire population of 

ENCMCFI, based on data from Table 3.1.  Since this worst case storm leads to very large 

values for the probability of 105 kts winds and 34 kts winds occurring at ENEMCFI, the 

results of this worst case storm are close to the largest this model can produce using the 

costs and casualty rates outlined in Chapter III. 
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Worst Case Storm - Expected Fatalities
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Figure 25.   Worst case storm, expected fatalities 

 

Based on this worst case storm, with the rates used for fatalities and casualties 

used in the model, it is unlikely that there will be a large evacuation signal for ENCMCFI 

for this storm model with enough lead time to evacuate all ENCMCFI personnel.  This is 

due to the low estimated probabilities of 105 kts winds that occur in enough time to 

evacuate.   

C. ANALYSIS OF THE MODEL INCLUDING STORM SURGE 

1. Change of Fatality Rate 

According to the analysis results, the current model formulation is unlikely to 

recommend an evacuation at ENCMCFI under any forecast conditions.  The maximum 

cost of casualties for riding out a worst case storm at ENCMCFI is computed in equation 

4.1 using data from Chapter III.  The ratio of the evacuation costs (actual and risk costs) 

and the storm risk cost of the entire ENEMCFI population remaining is 0.337, therefore 

in order for the model to signal an evacuation, a probability of winds greater than 105 kts 
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at ENCMCFI of greater than 0.337 is required.  Furthermore, a period of at least 48 hours 

without any probability of 34 kts winds at ENCMCFI is required.  Using the information 

displayed in Figure 23, the probability of 105 kts winds occurring at ENCMCFI does not 

increase to above 0.337 until advisory 3, which is 24 hours from landfall and only 18 

hours from the arrival of 34 kts winds.  Even with this worst case hurricane, the model 

cannot compute an evacuation signal in enough time to complete the evacuation.   

Maximum Storm Risk
Fatality Risk Cost: 4.9 Expected Fatalities  $625,000 = $3,062,500
    Injury Risk Cost: 550 Expected Injuries  $257,000 = $141,350,000
                                              

×
×

       Total Storm Risk Cost = $144,412,500 
Maximum Evacuation Cost:
Fatality Risk Cost: 0.77 Expected Fatalities  $625,000 = $481,250
        Injury Risk Cost: 47 Expected Injuries  $257,000 = $12,07

×
× 9,000

                                         Transportation and TAD Costs = $36,200,000
                                                       Total Evacuation Cost = $48,760,250

 (4.1) 

This lack of an evacuation signal is a counterintuitive result given the severity of 

hurricane effects, and is largely due to the minimal storm surge risk that ENCMCFI 

experiences due to its inland location.  Two sets of parameters, aside from the storm 

probabilities govern the model ─ storm and transportation risk and cost parameters.  By 

changing the values of these parameters, insights into the behavior of the model become 

apparent.  The first change is to remove the assumption that ENCMCFI is in a location 

that is safe from storm surge.  A fatality rate of 0.00237 was experienced along the 

Mississippi Gulf Coast during Hurricane Katrina, most of which was due to storm surge 

fatalities (National Oceanic and Atmospheric Administration 2006).   The cost model 

results of using this fatality rate with the Hurricane Isabel+ data used in the previous 

section are indicated in Figure 26.  The expected costs are much larger, and there is an 

evacuation signal at advisory 41.  Recall from Chapter I that according to the American 

Society of Civil Engineers, 9 out of 10 storm related fatalities are a result of storm surge 

and coastal flooding.  Increasing the expected fatalities to reflect the risk of storm surge 

changes the evacuation decision.  The determination that ENCMCFI is not in an area at 

large risk due to storm surge is a result of the SLOSH model analysis by NOAA.  These 
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models are constantly being updated and should their analysis of the storm surge 

potential at ENCMCFI change; the appropriate rates would need to be included in the 

model to reflect the true risks involved. 

Hurricane Isabel+ - Storm Surge
Expected Evacuation Cost Plus Monetized Risk Cost
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Figure 26.   Hurricane Isabel+, expected transportation and monetized risk costs with 

larger storm surge fatality rate 
 

The fatality model output shows a very different set of results from the non-storm 

surge numbers.  The risk of remaining in an area exposed to a storm of this magnitude is 

apparent early in the forecast cycle.  The expected fatality cost of never evacuating is 

roughly 5 times that of evacuation at any given forecast time, with a maximum difference 

of approximately 50 expected fatalities.  The large expected number of fatalities in the 

evacuation decisions comes from the probability that all of the ENCMCFI population will 

not be able to evacuate, and will be subject to the storm effects.  These evacuation 

decisions result in non-zero transportation risk costs and storm risk costs in both the cost 

of evacuation at the current forecast, and in the decision to wait 6 hours. 
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The larger expected number of fatalities is expected because storm surge places 

anyone who may ride out a major hurricane at risk.  Part of the reason that the cost model 

expected fatalities results are in such discord with the is the relatively low value that the 

DoD uses for calculating risk to human lives.   
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Figure 27.   Hurricane Isabel+, expected fatalities – large storm surge fatality rate 
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V.  CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The analysis of the model output in Chapter IV has important implications for the 

hurricane evacuation decision of ENCMCFI.  Based on this analysis, three conclusions 

can be made: 

1. Based on the small storm surge risk at ENCMCFI, an ordered full 

evacuation of ENCMCFI personnel is not the best option due to 

ENCMCFI’s protected location and relatively low risk of storm-related 

fatalities. 

2. If the estimated risk of storm surge at ENCMCFI should increase, the 

evacuation decision process must be re-analyzed. 

3. The results of this model are sensitive to the monetary value placed on 

the expected number of fatalities 

These conclusions will be discussed in further detail in this chapter. 

1. An Ordered Full Evacuation of ENCMCFI Personnel is Not the Best 
Option Due to ENCMCFI’s Location and Relative Risk 

Using the information from the analysis of the enhanced historical storms 

Hurricane Floyd+ and Hurricane Isabel+ in Chapter IV, the signal to evacuate from the 

model is never strong enough to indicate an evacuation.  In both of these storms, the cost 

model did not indicate that evacuation was necessary, and the expected fatality risk 

model indicated only very small differences between evacuating and not evacuating.  

This result is peculiar to the location of ENCMCFI and their low risk from the effects of 

coastal flooding and storm surge.  The occurrences of 105 kts winds being at ENCMCFI 

at different times are assumed to be conditionally independent given the forecasts of 

positions and intensities at those times. Using the non-storm-surge effects rates, even in  
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the worst case storm, the risks of evacuating are only marginally smaller than not 

evacuating at all (4.5 expected fatalities from storm risk vs. 0.8 expected fatalities for 

evacuating).   

When the analysis is performed using a fatality risk rate that includes the 

possibility of storm surge related deaths, the evacuation decision is very different.  The 

expected cost model does not indicate that an evacuation is warranted in the Hurricane 

Isabel+ case, but the expected fatality model indicates that evacuation is warranted.  This 

disparity between the storm surge results and the non-storm surge results highlights 

sensitivity to the fatality rate.  Under the assumption that the current SLOSH model 

results at ENCMCFI are correct, an evacuation is not warranted.   

This thesis modeled the evacuation with a positive move population of 11,300 

personnel.  This number could increase to as many as 18,000 personnel, requiring five 

evacuation waves to move all of these personnel.  This additional lead time will push the 

evacuation decision back to a time period when the forecast accuracy is not good enough 

to make evacuation decisions.  Should ENCMCFI encounter this scenario, the first 

evacuation decision will have to be made no later than approximately 60 hours prior to 

the arrival of 34 kts winds. 

2. If the Estimated Risk of Storm Surge at ENCMCFI Should Increase, 
the Evacuation Decision Process Must be Re-Analyzed 

The conclusion that ENCMCFI is not in the primary risk zone for storm surge is a 

critical part of this analysis.  These estimates are based on results from the SLOSH 

models from NOAA.  The models are reanalyzed continually based verification of  

forecasts compared to actual storms.  The SLOSH model is described in detail in Chapter 

I.  If the SLOSH model changes to indicate that ENCMCFI is in fact in a region 

susceptible to storm surge flooding, then the evacuation decision model must be re-

evaluated to determine an appropriate risk rate.  
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3. The Results of this Model are Sensitive to the Monetary Value Placed 
on the Expected Number of Fatalities 

The analysis highlighted a sensitivity of the model to the cost of expected 

fatalities.  The DoD Instruction 6055.7 values are much lower than those used by other 

government agencies such as the Environmental Protection Agency and the Federal 

Railroad Administration (Office of Management and Budget, 2000).  Figure 28 illustrates 

this sensitivity by applying different fatality costs to the model at advisory 47 of 

Hurricane Isabel+ using the storm surge fatality rate.  The fatality cost ($625,000) is 

multiplied by the factor on the x axis.  With just two times the DoD 6055.7 value, there is 

a different evacuation signal, and the results increase with the multiplier. 
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Figure 28.   Cost model results of Hurricane Isabel+ advisory 47, with varying fatality 

risk cost 
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Rather than using expected costs, a better indicator of the relative risk is the 

expected evacuation fatalities at a given forecast time compared to the expected fatalities 

when starting evacuation at the next forecast time or not evacuating at all.  While this 

result would incur sensitivity to the risk parameters, it produces more valid estimates.  

B. RECOMMENDATIONS FOR FURTHER RESEARCH 

An analysis of storms using storm tracks rather than position and intensity at 

independent discrete forecast times may provide better insight into the actual motion of 

hurricanes.  This thesis uses a model that treats the winds occurring at ENCMCFI at each 

individual forecast time as conditionally independent random variables given the 

forecast; in reality these hurricanes move in tracks that tie these positions together.  A 

study of the historical tracks of hurricanes could provide a better estimate of the 

probability of extreme conditions occurring at ENCMCFI.   

Another valuable area of study would be a more complete analysis of fatalities 

and injuries due to both hurricane storm effects and from evacuation transportation.  

Since the results of the model developed in this thesis are sensitive to changes in the 

estimated fatality and injury rates, a closer investigation of these rates would produce a 

more valid model.  The creation of a model that relates storm risk rates to the category of 

hurricane and the cause of death or injury, whether from wind effects or storm surge, 

would produce the ability to custom tailor model results based on different categories of 

hurricanes.  Such a model would enable decisions makers to have different evacuation 

scenarios for different levels of storms.  By contrast this model includes only two storm 

conditions: less than or greater than 105 kts winds at ENCMCFI. 

Since the transportation risk numbers used in this thesis were taken from non-

evacuation figures, a more complete analysis of the hazards of evacuating would shed 

light on the evacuation decision and would provide better input data to the model.  

Evaluating the model across all parameter ranges would provide greater insight 

into the ranges of model output values.  This analysis only varied the rates based on 

storm surge effects and fatality costs.  Further research into the ranges of the model 

parameters and the model’s sensitivity to those changes would be insightful.  Through 
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this further study, moments could be generated for model input parameters enabling 

probabilistic input.  With data to support representing enough parameters as distributions, 

model output could be described with confidence intervals.  This representation would 

better capture the stochastic nature of the problem. 
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APPENDIX  

A. HURRICANE FLOYD INTENSITY FORECAST 

Hurricane Floyd 
  Forecast Lead Time 

Adv 
# Forecast Time: 0 12 24 36 48 72 

1 1999-09-07T18:00 25 30 35 45 55 75 
2 1999-09-08T00:00 30 40 50 60 70 80 
3 1999-09-08T06:00 35 45 55 65 75 90 
4 1999-09-08T12:00 40 45 55 65 75 90 
5 1999-09-08T18:00 45 50 60 70 80 90 
6 1999-09-09T00:00 45 60 70 80 90 95 
7 1999-09-09T06:00 45 60 70 80 90 95 
8 1999-09-09T12:00 50 60 70 80 90 95 
9 1999-09-09T18:00 60 60 70 80 90 100 

10 1999-09-10T00:00 60 60 70 80 90 100 
11 1999-09-10T06:00 60 70 75 80 85 100 
12 1999-09-10T12:00 70 80 85 90 95 105 
13 1999-09-10T18:00 70 80 85 90 95 105 
14 1999-09-11T00:00 80 80 80 85 95 105 
15 1999-09-11T06:00 95 90 90 90 95 105 
16 1999-09-11T12:00 95 95 95 95 100 105 
17 1999-09-11T18:00 90 95 100 105 110 110 
18 1999-09-12T00:00 85 95 100 105 110 110 
19 1999-09-12T06:00 95 100 100 105 110 110 
20 1999-09-12T12:00 105 110 115 120 120 120 
21 1999-09-12T18:00 115 120 120 120 120 120 
22 1999-09-13T00:00 125 130 135 135 130 125 
23 1999-09-13T06:00 135 135 135 135 130 125 
24 1999-09-13T12:00 135 135 135 135 135 65 
25 1999-09-13T18:00 125 135 135 135 135 50 
26 1999-09-14T00:00 115 135 135 125 120 50 
27 1999-09-14T06:00 105 135 130 125 120 50 
28 1999-09-14T12:00 105 125 125 125 120 40 
29 1999-09-14T18:00 110 120 120 120 65 45 
30 1999-09-15T00:00 115 120 120 110 60 45 
31 1999-09-15T06:00 110 120 120 65 55 45 
32 1999-09-15T12:00 100 110 75 55 45 45 
33 1999-09-15T18:00 95 95 70 60 45 45 
34 1999-09-16T00:00 90 85 60 50 50 50 
35 1999-09-16T06:00 90 80 65 50 50 50 
36 1999-09-16T12:00 70 60 50 50 50 50 
37 1999-09-16T18:00 60 50 45 45 45 45 
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38 1999-09-17T00:00 50 45 45 45 45 45 

39 1999-09-17T06:00 50 50 50 50 50 50 

 
(National Weather Service, National Hurricane Center, 2007a) 
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B HURRICANE FLOYD+ INTENSITY FORECAST 

Hurricane Floyd+ 
  Forecast Lead Time 

Adv 
# Forecast Time: 0 12 24 36 48 72 
1 1999-09-07T18:00 25 30 35 45 55 75 
2 1999-09-08T00:00 30 40 50 60 70 80 
3 1999-09-08T06:00 35 45 55 65 75 90 
4 1999-09-08T12:00 40 45 55 65 75 90 
5 1999-09-08T18:00 45 50 60 70 80 90 
6 1999-09-09T00:00 45 60 70 80 90 95 
7 1999-09-09T06:00 45 60 70 80 90 95 
8 1999-09-09T12:00 50 60 70 80 90 95 
9 1999-09-09T18:00 60 60 70 80 90 100 

10 1999-09-10T00:00 60 60 70 80 90 100 
11 1999-09-10T06:00 60 70 75 80 85 100 
12 1999-09-10T12:00 70 80 85 90 95 105 
13 1999-09-10T18:00 70 80 85 90 95 105 
14 1999-09-11T00:00 80 80 80 85 95 105 
15 1999-09-11T06:00 95 90 90 90 95 105 
16 1999-09-11T12:00 95 95 95 95 100 105 
17 1999-09-11T18:00 90 95 100 105 110 110 
18 1999-09-12T00:00 85 95 100 105 110 110 
19 1999-09-12T06:00 95 100 100 105 110 110 
20 1999-09-12T12:00 105 110 115 120 120 120 
21 1999-09-12T18:00 115 120 120 120 120 120 
22 1999-09-13T00:00 125 130 135 135 130 125 
23 1999-09-13T06:00 135 135 135 135 130 125 
24 1999-09-13T12:00 135 135 135 135 135 135 
25 1999-09-13T18:00 145 140 135 130 125 115 
26 1999-09-14T00:00 140 130 135 130 125 115 
27 1999-09-14T06:00 140 130 135 130 125 115 
28 1999-09-14T12:00 140 135 135 135 130 125 
29 1999-09-14T18:00 140 140 135 135 130 125 
30 1999-09-15T00:00 135 135 130 130 130 125 
31 1999-09-15T06:00 130 130 130 130 130 120 
32 1999-09-15T12:00 135 135 135 130 130 125 
33 1999-09-15T18:00 140 140 140 135 135 130 
34 1999-09-16T00:00 135 135 130 130 130 125 
35 1999-09-16T06:00 130 130 130 130 130 120 
36 1999-09-16T12:00 135 135 135 130 130 125 
37 1999-09-16T18:00 140 140 140 135 135 130 
38 1999-09-17T00:00 50 45 45 45 45 45 

39 1999-09-17T06:00 50 50 50 50 50 50 

 
(National Weather Service, National Hurricane Center, 2007a) 
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C HURRICANE ISABEL INTENSITY FORECAST 

Hurricane Isabel 
  Forecast Lead Time 

Adv # Forecast Time: 0 12 24 36 48 72 96 120 
1 2003-09-06T06:00 35 40 45 55 65 65 35 40 
2 2003-09-06T12:00 40 40 45 55 65 65 40 40 
3 2003-09-06T18:00 45 50 60 65 70 75 45 50 
4 2003-09-07T00:00 55 60 65 70 75 80 55 60 
5 2003-09-07T06:00 60 60 65 70 75 85 60 60 
6 2003-09-07T12:00 65 75 85 95 100 100 65 75 
7 2003-09-07T18:00 70 75 85 95 100 100 70 75 
8 2003-09-08T00:00 80 85 90 95 100 100 80 85 
9 2003-09-08T06:00 95 100 105 110 115 115 95 100 

10 2003-09-08T12:00 110 115 120 120 120 120 110 115 
11 2003-09-08T18:00 110 120 125 125 125 125 110 120 
12 2003-09-09T00:00 115 120 125 120 115 110 115 120 
13 2003-09-09T06:00 115 120 125 120 115 110 115 120 
14 2003-09-09T12:00 115 120 125 120 115 115 115 120 
15 2003-09-09T18:00 115 120 125 120 115 115 115 120 
16 2003-09-10T00:00 110 115 115 115 115 115 110 115 
17 2003-09-10T06:00 110 115 115 115 115 115 110 115 
18 2003-09-10T12:00 115 115 115 115 115 115 115 115 
19 2003-09-10T18:00 120 125 120 120 120 115 120 125 
20 2003-09-11T00:00 125 125 125 120 120 115 125 125 
21 2003-09-11T06:00 125 125 125 120 120 115 125 125 
22 2003-09-11T12:00 135 130 130 125 120 115 135 130 
23 2003-09-11T18:00 145 140 135 130 125 115 145 140 
24 2003-09-12T00:00 140 130 135 130 125 115 140 130 
25 2003-09-12T06:00 140 130 135 130 125 115 140 130 
26 2003-09-12T12:00 140 135 135 135 130 125 140 135 
27 2003-09-12T18:00 140 140 135 135 130 125 140 140 
28 2003-09-13T00:00 135 135 130 130 130 125 135 135 
29 2003-09-13T06:00 130 130 130 130 130 120 130 130 
30 2003-09-13T12:00 135 135 135 130 130 125 135 135 
31 2003-09-13T18:00 140 140 140 135 135 130 140 140 
32 2003-09-14T00:00 135 140 135 130 125 120 135 140 
33 2003-09-14T06:00 135 140 135 130 125 120 135 140 
34 2003-09-14T12:00 135 135 135 130 125 120 135 135 
35 2003-09-14T18:00 140 135 135 130 125 120 140 135 
36 2003-09-15T00:00 130 135 130 125 120 115 130 135 
37 2003-09-15T06:00 125 130 130 125 120 115 125 130 
38 2003-09-15T12:00 120 115 115 115 115 110 120 115 
39 2003-09-15T18:00 115 110 105 105 105 100 115 110 
40 2003-09-16T00:00 105 105 100 100 100 60 105 105 
41 2003-09-16T06:00 100 100 100 100 100 55 100 100 
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42 2003-09-16T12:00 95 85 85 90 95 45 95 85 

43 2003-09-16T18:00 95 90 90 90 95 30 95 90 
44 2003-09-17T00:00 95 95 95 95 65 40 95 95 
45 2003-09-17T06:00 95 95 95 95 60 35 95 95 
46 2003-09-17T12:00 90 95 95 70 50 30 90 95 
47 2003-09-17T18:00 90 95 95 60 40 30 90 95 
48 2003-09-18T00:00 90 95 65 50 40 30 90 95 
49 2003-09-18T06:00 90 90 60 45 35 30 90 90 
50 2003-09-18T12:00 90 65 45 30 30 0 90 65 
51 2003-09-18T18:00 85 55 35 30 25 0 85 55 
52 2003-09-19T00:00 65 40 30 25 25 0 65 40 
53 2003-09-19T06:00 50 35 30 25 25 0 50 35 

54 2003-09-19T12:00 35 35 35 35 0 0 35 35 

 
(National Weather Service, National Hurricane Center, 2007a) 
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D HURRICANE ISABEL+ INTENSITY FORECAST 

Hurricane Isabel+ 
  Forecast Lead Time 

Adv # Forecast Time: 0 12 24 36 48 72 96 120 
31 2003-09-13T18:00 140 140 140 135 135 130 125 105 
32 2003-09-14T00:00 135 140 135 130 125 120 110 100 
33 2003-09-14T06:00 135 140 135 130 125 120 110 100 
34 2003-09-14T12:00 135 135 135 130 125 120 110 70 
35 2003-09-14T18:00 140 135 135 130 125 120 105 35 
36 2003-09-15T00:00 130 135 130 125 120 115 90 35 
37 2003-09-15T06:00 125 130 130 125 120 115 60 35 
38 2003-09-15T12:00 120 115 115 115 115 110 60 30 
39 2003-09-15T18:00 115 110 105 105 105 100 50 30 
40 2003-09-16T00:00 135 135 135 130 130 125 120 110 
41 2003-09-16T06:00 140 140 140 135 135 130 125 105 
42 2003-09-16T12:00 115 115 115 115 115 115 110 110 
43 2003-09-16T18:00 120 125 120 120 120 115 115 115 
44 2003-09-17T00:00 125 125 125 120 120 115 115 115 
45 2003-09-17T06:00 125 125 125 120 120 115 115 115 
46 2003-09-17T12:00 135 130 130 125 120 115 115 115 
47 2003-09-17T18:00 145 140 135 130 125 115 115 115 
48 2003-09-18T00:00 140 130 135 130 125 115 115 110 
49 2003-09-18T06:00 140 130 135 130 125 115 115 110 
50 2003-09-18T12:00 140 135 135 135 130 125 110 105 
51 2003-09-18T18:00 140 140 135 135 130 125 115 105 

52 2003-09-19T00:00 135 135 130 130 130 125 115 105 

 
(National Weather Service, National Hurricane Center, 2007a) 
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