STINFO COPY

AFRL-HE-WP-TP-2007-0006

Thinking Opposing Force (OPFOR)
for Joint Conflict and Tactical
Simulation (JCATYS)

Randy Jones

Soar Technology, Inc.
3600 Green Court, Suite 600
Ann Arbor MI 48105

August 2003

Interim Report for August 2002 — August 2003

Approved for public release;
distribution is unlimited.

Air Force Research Laboratory
Human Effectiveness Directorate
Warfighter Interface Division
Cognitive Systems Branch
Wright-Patterson AFB OH 45433-7604

20071017265

NOTICE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the Air Force Research Laboratory, Det 1,
Wright Site, Public Affairs Office and is available to the general public, including foreign
nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-HE-WP-TP-2007-0006

HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR
//SIGNED/ /

DANIEL G. GODDARD

Chief, Warfighter Interface Division
Human Effectiveness Directorate
Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE - OMB No. 0704.0188

Public reporting burden for this oolscbm of information is utmaled to average 1 hour per response, including the time for reviewing instructions, i isting data g and ining the

data needed, and completing and reviewing this collection of i Send comments reg g this burden esti mmynm«aspedoimmwbdimofwmnnm mdudmgmeﬂnn:l'orradudng
this burdanhoﬂepartmentul' Defense, Washinglon Headquarters Services, Di for Inf Operations and Reports (0704-0188), 1215mmDavthqhmy Suite 1204, Adington, VA 22202-
4302. Respondents should be aware thal notwithstanding any other provision of law, no person shlllbesuhjscllnanypend!yhr!uﬂwlu ly with a collection of inf jon if it does not display a currently
valld OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. N
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
August 2003 Interim August 2002 - August 2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Thinking Opposing Force (OPFOR) for Joint Conflict and
Tactical Simulation (JCATS) 5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER
63832D
6. AUTHOR(S) 5d. PROJECT NUMBER
Randy Jones
5e. TASK NUMBER
5f. WORK UNIT NUMBER
0476DMOO
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER
Soar Technology, Inc.
3600 Green Court, Suite 600
Ann Arbor MI 48105
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Materiel Command Defense Modeling and Simulation Office AFRL/HECS, DMSO
Air Force Research Laboratory 1501 N. Beauregard Street, Suite 500
Human Effectiveness Directorate Alexandria VA 22311-1705 11. SPONSOR/MONITOR’S REPORT
Warfighter Interface Division NUMBER(S)
Cognitive Systems Branch
Wright-Patterson AFB OH 45433-7604 AFRL-HE-WP-TP-2007-0006
12, DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.
AFRL/PA cleared on 02 July 2007, AFRL-07-1552.
13. SUPPLEMENTARY NOTES
14. ABSTRACT
The project discussed in this report focused on two primary research objectives. The first objective
was to evaluate the technical feasibility and costs associated with introducing autonomous human
behavior models into the Joint Conflict and Tactical Simulation (JCATS) environment. The second
objective was to evaluate and recommend improved graphical user interfaces for specifying JCATS entity
behaviors, which would aid both scenario generation and execution. This project developed a

demonstration scenario for a "“Thinking OPFOR” (Opposing Force) capability for entities in a JCATS
Military Operations in Urban Terrain (MOUT) scenario, which drove an analysis of the ability to provide
“thinking” type entities and deploying such entities within the JCATS infrastructure. This analysis
was used to propose two alternative solution paths to providing realistic human-like behaviors for
JCATS entities. For the second objective, a prototype behavior editor was designed and built to
specify autonomous entity behaviors within the current JCATS infrastructure. This prototype was used
to analyze design recommendations for alternative types of user interfaces for future JCATS tools.

15. SUBJECT TERMS Human Behavior Modeling, Joint Conflict and Tactical Simulation (JCATS), JCATS Entity
Behaviors, Synthetic Entities, Opposing Force (OPFOR)

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES John L. Camp

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area

UNCLASSIFIED | UNCLASSIFIED | UNCLASSIFIED SAR 28 code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

THIS PAGE LEFT INTENTIONALLY BLANK

Table of Contents
LD IBEOINEHOR oo i e s R 1
) TODTOBIRVOR s sucwmsinin insmreniinusanmis et o o1 5 AR AR 0 o R R RV AR R 1
30 Dehning the OBJECHIVES «iiviiticiiisimesiismmmmrmsionssssstnsnsomssasnssbomnnsmssensmsss 2
4.0 Enhancing the Behavior of JCATS Entities...........c.ccovvviiiriniiiinininnnn, 3
5.0 Thinking OPFOR Demonstration SCenarioc.oeveeuvueueninenenienennnn 4
6.0 Assessing Behavior Representation in JCATS ... 8
6.1 Inter-agent COMMUMICAHION usivasssvssussissarsieeshaeissiersssisenssinsaesonsais 8
6.2 Teammate Identificationccouieiiiiiiiiiiiii e 9
6.3 Unrestricted Autonomous Movementcceceviiiiiiiniienineninennnn. 10
6.4 Data Structures for Situational AWarenessccoevvveerneerniianinnnnn. 11
65 Dala Struchires 108 Goall vvsiivsssssmiimsiinm o sasisevisiaas v suarss 11
7.0 Evaluation of User Intexfaies . s s nmnsmvasssswemmsnem oo isse@sssms 12
8.0 Project Recommendationso.ouiiiiniiiitiiiiiiei i 18
90 DeEVErables . .comin o R SR I T v 19
10.0 Unanticipated FACtOTSuiiuiiiiiiiiiiiiiitiiiereie e eeaeaeeeeeeneens 21
11:0 Remmiiing QUESHONS o nsvinmmnssvivinsimgasiue su s i s e e s 21
12.0 Courses Of ACHON ...ouuininiinieitiiieeiteeie e e et e e eaeeeaeaesanenans 22

THIS PAGE LEFT INTENTIONALLY BLANK

v

1.0 Introduction

Joint Conflict and Tactical Simulation (JCATS) is a popular simulation system
used for training and experimentation by various elements of the US government,
including the Departments of Defense, Energy, and Treasury. JCATS provides a portable
and high-fidelity way to simulate terrain effects and large numbers of entities
participating in interactive scenarios. However, such scenarios typically require a great
deal of manpower to generate and to execute. Scenario generation involves detailed
specification of force profiles and rudimentary behaviors for a large number of entities
participating in the simulation. Scenario execution (except for very small scenarios)
generally requires the use of a number of human operators to manipulate and control the
flow of the scenario, particularly by moving around entities and making them behave in
natural ways.

The goal of our project was to investigate particular ways of reducing the expense
involved in generating and executing JCATS scenarios. The specific approach we
adopted relied on a number of assumptions about applications of JCATS:

I. JCATS scenarios require the inclusion of synthetic entities representing opposing
force (OPFOR) and other forces. This requirement exists for most typical training
and experimentation simulations.

2. Behaviors for OPFOR and other entities in JCATS are typically generated by
human operators interacting with graphical user interfaces for controlling the
movement and other specific actions of the entities.

3. The result of the required human involvement increases the expense of using
JCATS for training and experimentation simulations. This expense comes in the
form of manpower costs in terms of training and using human participants, as well
as time costs for using humans who might better be spending their time on other
tasks. These expenses ultimately boil down to real dollar costs for the time and
expense of training human controllers and taking advantage of their time to
generate and execute simulation scenarios.

4. Autonomous software entities can reduce the manpower requirements associated
with running simulations, consequently reducing their expense.

5. Such entities must generate behaviors that are sufficiently realistic to provide
positive training and experimentation results.

6. To minimize expense and ease use, such entities must be understandable,
constructible, and maintainable by human trainers, experimenters, and operations
planners.

2.0 Objectives

Consequent to our assumptions and goals, this project focused on two primary
research objectives. The first objective was to evaluate the technical feasibility and costs
associated with introducing autonomous human behavior models into the JCATS
simulation environment. The second objective was to evaluate and recommend improved
graphical user interfaces for specifying JCATS entity behaviors, which would aid both
scenario generation and execution. In pursuit of the first objective, we designed a
demonstration scenario within JCATS that would demonstrate a “Thinking OPFOR™
capability for entities in a JCATS military operations in urban terrain (MOUT) scenario.

1

We built the demonstration scenario within the existing JCATS infrastructure, without
creating any additional supporting tools, in order to evaluate JCATS’ current abilities do
provide entities with such autonomous behaviors. We used this scenario to drive an
analysis of the JCATS system’s ability to provide “thinking” type entities, evaluating the
technical challenges of building and deploying such entities within the current
infrastructure. We used this analysis to propose two alternative solution paths to
providing realistic human-like behaviors for JCATS entities. In pursuit of the second
objective, we used human-computer interaction principles to design and build a
demonstration prototype of a behavior editor for specifying autonomous entity behaviors
within the current JCATS infrastructure. We also used this prototype to analyze design
recommendations for alternative types of user interfaces for future JCATS tools.

Further refining our research objectives, we pursued the following specific
technical objectives in the service of evaluating autonomous entity technology and
supporting user interfaces within JCATS:

I. Determine how best to simplify scenario generation for JCATS operators, using a
combination of intelligent entities and improved user interfaces.

2. Create a small set of sample intelligent behaviors within the existing JCATS
behavior infrastructure, together with supporting design methodologies for
developing such behaviors, and documentation to support future development of
similar behaviors.

3. Generate prototypes of autonomous agents and improved behavior-specification
interfaces, together with recommendations for future enhancements to the JCATS
simulation environment, in order to support easier deployment of autonomous
agents and their supporting user interfaces.

3.0 Defining the Objectives

This project centers on adding a capability to generate “thinking” synthetic
entities within JCATS. Thus, it is prudent to define which specific entity capabilities and
properties we intend. For our purposes, a “thinking” entity has the following properties:

1. Itis capable of goal-directed behavior. With this capability, entities can be
instructed with high-level goals, such as “defend this building” or “flank the
enemy”, and the entities have access to sufficient knowledge to reasonably
attempt to achieve those goals without further direction (unless further direction
would be warranted).

2. Itis capable of reactive behavior. Within the context of the specified goals, the
agent can adapt and react to changes in the environment in order to react flexibly
in ways that will still achieve the goals even in the face of changing constraints.
For example, a thinking entity will autonomously determine when it is appropriate
to take cover or return fire.

3. Itis capable of maintaining human-like situational awareness. In support of an
appropriate mixture of goal-driven and reactive behavior, the entity maintains
data structure that represent a (potentially complex) model of the current state of
the world, and conditions affecting and constraining the entity’s goals.
Maintaining such situational awareness allows the entity to manage realistic
beliefs about the world around it, and to make effective interpretations of the

environment based on its goals, environment, mission parameters, and other
relevant factors.

4.0 Enhancing the Behavior of JCATS Entities

One of our primary activities in this project was to assess two major alternatives
to enhancing the JCATS system’s ability to support ease development and deployment of
thinking entities. This effort focused on alternatives for representing and editing entity
behaviors. The first alternative considered aimed at working as much as possible within
current JCATS structures. This effort involved examining the current behavior editor and
capabilities within JCATS, and making recommendations for how the JCATS behavior
infrastructure would need to be changed in order best to support thinking entities. This
analysis focused on improving sensor and effector models that would allow the entities
unrestricted movement in the simulated terrain, and would facilitate coordination and
communication between autonomous synthetic teammates. Additionally, the analysis
examined the incorporation into the JCATS behavior engine of data structures explicitly
geared toward supporting the internal representation of complex goal interactions and
situational awareness. The primary technical challenge to this alternative involves
managing the potential expense and complexity of introducing a new behavior paradigm
into the existing software structures in JCATS. This would have the advantage of
maintaining the uniform development architecture for JCATS, but would possibly be
technically infeasible if software interactions demanded a number of changing to existing
JCATS code. This alternative would also run the risk of introducing new bugs into
existing code in places where new enhancements are necessary.

The second major alternative we considered for supporting thinking entities was
to stay within the JCATS networking protocols and environment, but develop a behavior
engine that stands outside the existing JCATS client and server software. This approach
implements a distributed model of entity behavior, where autonomous behaviors are
generated by an external “behavior server”. This distinct piece of software would have at
its core an existing software architecture for human behavior models, which would
already include structures and processes for goal-directed reasoning, reactive reasoning,
and representing situational awareness. The behavior server would add to this core
engine network interfaces that are able to communicate to JCATS servers and clients via
the existing JCATS networking protocols. The external network interface would include
messages sending behavior data from the behavior server to individual JCATS clients and
servers, as well as messages sending sensory and environmental information from the
JCATS server to the behavior server. The primary technical challenge here is to ensure
that the JCATS network protocol supports all the types of information interchange that
would be required by a behavior server. However, most of this information must be
provided to JCATS clients for display purposes anyway, so the amount of extra
information necessary is likely to be small. A large advantage of this approach is that the
networking code can be adjusted independently of the rest of the JCATS simulation,
greatly reducing the risk of introducing any new bugs into existing software.

In order to assess these alternatives, we began by focusing on the specific
technical changes that would be required to pursue alternative one, building an enhanced
behavior capability into the existing JCATS framework. In order to identify and assess
these changes, we created a prototype “Thinking OPFOR™ demonstration scenario that

3

would include entities with a level of autonomy not usually used in JCATS scenarios.
While constructing the scenario and the behaviors of the entities, we recorded and
documented technical obstacles we encountered, and developed short-term solutions and
long-term plans for dealing with each. We also assessed the current JCATS
documentation and user interfaces for creating and editing entity behaviors. After
constructing the demonstration scenario and fully describing obstacles and potential
solutions, we held a meeting with the JCATS development team to assess the technical
feasibility of implementing each proposed solution, and compared that with the feasibility
and expected costs of pursuing alternative two (networking a behavior server with
JCATS).

5.0 Thinking OPFOR Demonstration Scenario

We designed the demonstration scenario in order to highlight particular types of
autonomous entity behavior, together with the hope of building a scenario and set of
behaviors that could be used beyond this project (for example, to see actual use in JCATS
training scenarios, or to serve as templates for other operators constructing scenarios).
The scenario 1s based on a “Delay” type mission performed by OPFOR terrorists
occupying building in an urban terrain setting. As Blue team members approach two
defensive positions, OPFOR will attempt to delay and disperse them. We constructed the
scenario with the help of Alion JCATS experts and analysts. Initial scenario design used
terrain analysis to determine the best placement for the OPFOR.

Terrain Analysis: Buildings-

‘ 3 ;'l-;u:-t church [

‘ 4 floor embassy

E floor malibleg]

- | 3 floor office |

OPFOR strategies include sniper placement on various building, plus trigger lines
for delay and retreat behaviors. Blue forces have pre-specified and scripted behaviors for
advancing on the village. Instead of using scripts for OPFOR behaviors, we created
behavior rule sets for the OPFOR to react to significant events in the environment. The
initial OPFOR behavior is to harass and delay the advance of the blue forces. OPFOR
squad leaders monitor the positions of the blue forces, and initiate a retreat when blue
forces cross a particular Line Of Advance. OPFOR squad members monitor the actions
of their leaders, and will maintain position or retreat based on their own level of
experience, assessment of the environment, and squad leader actions.

We can describe simple versions of the OPFOR behaviors using finite state
diagrams. These diagrams are not part of the JCATS interface, but they are useful tools
of summarizing the types of state-based rule sets that can be created using the existing
JCATS behavior editor (which is text-based). As an example, a simple depiction of the
squad leader’s behavior is below:

| Pruc?(edb:t 1
| Next Bulding J

The leader essentially remains in a wait state, observing blue force actions until
the blue forces are perceived to be crossing the line of advance. At this point, the leader
moves into a new state, where the rules are to select and follow a pre-specified path that
will take the leader to a new building, from which to continue the delay. The squad
members’ behavior contains a few more situations, states and conditions:

Timeout

Lost
Enemy

Each squad member begins in the Guard state, essentially observing the situation.
When a squad member acquires a blue force entity, the squad member changes to the
Firing state, and begins shooting at the target. In parallel, the squad member periodically
checks the position of the squad leader. If the squad leader is moving, the squad member
will change to a Follow state, to maintain the squad’s position with the leader. Not
depicted here is additional behavior, where the squad member may decide to retreat

5

(based on level of experience) under different circumstances, even if the squad leader has
not moved. The diagram below summarizes this additional behavior:

UnSkilled Trained
X>2 X>4

Acquition > X Acquire
Find Cover Enemny

Shot At

Each squad member has its own threshold for retreating on its own. The more
threatened the squad member feels, the more likely it will begin a retreat. If the squad
member acquires any blue forces during the retreat, it will shoot at those forces.

Clearly, these are relatively simple behaviors, so it is a stretch to call these
“Thinking” OPFORs. The point of this scenario is to demonstrate basic types of behavior
that have not typically been used in JCATS. In fact, as we will discuss in the next
section, it is very difficult to build any more sophisticated behaviors than this in the
existing JCATS behavior editor. But we still able to demonstrate at least rudimentary
forms of situational awareness, reacting to changes in the environment, and achieving
low-level goals in the context of those changes. This is also the reason we encoded
simple forms of levels of experience into the OPFOR models. The idea is to hint at the
types of parameterized variability of behavior that we would expect to get out a full-
blown force of intelligent entities. Such parameterized models are an excellent way to
reduce expense in the deployment of entities. As an example, we can build a single basic
rule set governing squad member behavior, and then tailor specifics of the behavior to
individual entity parameters that dictate the level of experience (and possibly other
factors) associated with each member. The charts below reflect the simple
parameterizations we have used for the demonstration scenario, giving different types of
reaction and goal-achievement behavior to squad members of different levels of skill
based on different assessments of the current situation. Thus, with one basic rule set, plus

the ability to do situation assessment and reaction, the autonomous entities are able to
demonstrate a variety of behaviors that enrich the scenario.

I Attribute “ —as —as ase Case 4

Enemies 16-Lots

I Engage Il

Position St St Prone

Speed Walk C laul

Experlenced Skill Matrix

I :Xt “1I)ll‘e- III | ‘ “
| ||

Position St.m(l || Crouc Prone

Speed on - Crawl
Route

Trained Skill Matnx

Attrih ute IIII
Enemies || ﬂ
Engage |I H

Speed on
Route

I Position |Iﬂ i Crouch ' | Crouch,
I | ||| Prone

Untrained Skill Matrix

6.0 Assessing Behavior Representation in JCATS

Based on the demonstration scenario, we were able to achieve our goal of creating
a reusable set of simple behaviors for future JCATS scenarios. But perhaps more
importantly, we achieved the larger technical objective of identifying specific challenges
to creating such behaviors in the current JCATS system. In this section, we detail the
technical challenges we encountered during the creation of the OPFOR agent behaviors,
the short-term solutions we applied to overcome those challenges, and the long-term
solutions we would recommend if the JCATS community decided to incorporate a robust
autonomous entity behavior capability into the existing JCATS software. The
assessments and recommendations we identified fall into five basic categories, which are
described below. We present these categories roughly in order of the magnitude of cost it
would take to address these challenges within JCATS. That is, the items early on the list
include things that we think would be relatively easy to change within JCATS, and would
have relatively little impact on other existing JCATS code. The items later on the list are
also important to building autonomous entity behaviors, but their solutions would have a
higher risk and likely greater impact on existing software.

6.1 Inter-agent Communication

One of the key benefits to autonomous entities is (or ought to be) their ability to
communicate and coordinate their actions in teams. Standard procedure for team
behavior in JCATS (and other simulation systems) is to have one or more human
operators use graphical user interfaces to control the behaviors of individual entities in
coordinated ways. Because the coordination really is taking place between human
operators, there is no need for communication between the entities themselves, because
they are not, in fact, autonomously coordinating with each other. However, as the
number of entities increases, and as the desired level of coordination becomes more
sophisticated (for example, realistic maneuvering in various formations, with
simultaneous reaction to unexpected events), it become onerous even for an experienced
group of human operators to generate realistic coordinated behaviors. Thus, having
entities that can coordinate on their own is an area that we expect to have some of the
biggest cost savings, when such entities can be used in place of human operators.

In order to implement such coordination, however, the entities must be able to
communicate with each other. They need to pass situation assessments to each other,
leaders need to be able to give orders to subordinates, they need to communicate about
progress and achievement of team and individual goals, and in the long run the entities
must also be able to communicate with human commanders and operators. Currently in
JCATS there 1s no facility for message passing between entities, because that has just
never been a mode of operation in which JCATS entities have been deployed so far.

To work around this limitation in the demonstration scenario, we needed to make
use of any mode of communication we could find that is currently implemented within
JCATS. In the current system, the only type of information that entities can detect from
each other is physical presence. That is, for example, a squad member can detect whether
its squad leader is currently in sight or not, but has no other way to gather information
from the leader. Thus, we used physical presence as a communication signal. The squad
leader assesses the situation, and decides whether to begin a retreat. When the leader
decides to retreat, it will start moving to a new building. As soon as the squad members

8

detect that the leader has disappeared, they assume that the leader has begun the retreat,
so (depending on level of experience) they will then select their own paths of retreat.
This 1s obviously a very rudimentary form of communication, and is one of the primary
reasons that the behaviors in the demonstration scenario are rather simple, while still
demonstrating the ability to react to situations and coordinate team behavior.

Clearly, a long-term solution to this challenge is to introduce into JCATS a
message-passing facility between entities. This could be as simple as allowing string-
based text messages to transmit back and forth, or it could be a more formalized digital
representation of some command language. In either event, this would require adding the
facility for entities to “activate” or send a message to a particular entity, and it would
require a new perceptual facility for entities to receive such messages. There are already
sufficient mechanisms in JCATS’ behavior rules to generate and process such messages
(although those could probably also be improved and tailored to language), so a message-
passing facility should be relatively low-risk and low-cost, while also greatly increasing
the types of coordinated behaviors that could be implemented.

6.2 Teammate Identification

In the current JCATS model, entities that belong to the same force do not perceive
and acquire each other. This is presumably for reasons of efficiency. If there are human
controllers supervising the behaviors of all the entities in a single force (which again is
currently the standard mode of operation for JCATS), then the human operators will
already know the positions of various members on that force. Thus, there is no reason to
incur the computational expense of processing the visual acquisition algorithm for all the
pair-wise acquisitions that might possibly occur between force members. However, for
realistic coordinated behavior in autonomous teams, it is necessary for the entities to have
realistic sensing of their force-mates. This is particularly important given the
workaround solution we applied to the communication challenge (presented above). We
found that the only way to communicate intent between a squad leader and the squad
members was for the squad members to detect (visually) whether the squad leader is
present. However, this becomes impossible if the squad members cannot ever detect
their leader, because the acquisition model doesn’t process acquisitions between
members of the same force.

Our workaround solution to this problem was to create a separate force for the
squad leaders. JCATS allows us to make this separate force and additional “friendly”
force (friendly to the OPFOR squad members, that is), but also allows the acquisition
algorithm to run. With this workaround, squad members were successfully able to detect
the presence or absence of their leaders.

An additional complication, however, is that JCATS does not provide any unique
identifying information about entities. When one entity acquires another, the acquisition
information includes the force of the acquisition and its force type (such as “scout” or
“machine gunner” or “squad leader”™), but there is no way to distinguish between
individual squad leaders. One possible workaround for this is to make a unique force
type of each squad leader, such as “squad leader fred” and “squad leader john”, but this
quickly becomes onerous.

Long-term solutions to these challenges would allow the acquisition model to run
between entities on the same force. Presumably it would be fairly simple to add a flag

9

allowing this to the existing JCATS code, and doing so would have a small impact on
existing code. It would have a potential impact on the efficiency of a running scenario,
so it would likely make sense to have this be an optional flag that would only be selected
when necessary for autonomous entities. Additionally, we recommend that JCATS adds
unique identifying information for entities (such as a call-sign) that can be included in the
acquisition information. This would allow a squad member to distinguish between its
various squad-mates, as well as between other members of the same force.

6.3 Unrestricted Autonomous Movement

Currently in JCATS, entities can only move independently once they have been
directed to follow explicit paths pre-specified by a human operator. The operator does all
the reasoning about navigating the terrain, moving around obstacles, and reacting to
terrain changes. The operator also can take control of when an entity begins to follow a
path, which postures the entity assumes, when it stops, and other aspects of movement.
Because all of this is assumed to be controlled by a human, there is no need for the
entities even to perceive (in a “cognitive” sense) the terrain. That is, entities will “react”
to the terrain in the sense that they will stop moving if they are told to walk through a
wall, or similar situations. But the entities have no capability of being “aware” of such
terrain features, so they cannot independently make decisions about what to do or where
to go.

Full-blown terrain reasoning is a particular human skill that has proven extremely
difficult to automate. However, such reasoning is not strictly necessary in a simulated
environment. The simulated terrain can be preprocessed and marked with significant
attributes, if necessary. This would allow intelligent entities to do certain types of path
planning and navigation without having to solve the entire problem of human-level
terrain reasoning. However, to implement this capability, the entities must at least be
able to sense these terrain markers, such as waypoints. In addition, if entities are to move
autonomously and flexibly, they must be able to specify their own paths to follow after
they have done route planning through a set of waypoints and landmarks. Similarly,
entities must be able to decide and act on their own, when it is necessary to abandon an
old path (for example, to react to a change in the environment), assume new postures,
change plans, etc.

Our workaround solution for the demonstration scenario was to pre-specify a
large number of alternative paths for the individual entities to follow, each with a unique
identifier. At run-time, the entities can then do some amount of reasoning to select
between these paths, because the JCATS behavior engine provides that capability.
However, the entities must know beforehand which paths will be available, and what
their unique identifiers are (there is no facility for the entities to “perceive” a new path on
the fly...they must know about it ahead of time).

A longer-term solution would build into JCATS new types of sensors, allowing
the entities to perceive particular types of landmarks and waypoints associated with the
terrain. Additional, new entity actions would allow entities to construct new paths (or to
engage in more flexible, non-path-driven movement), and to initiate their own commands
about how to execute movements and follow (and abandon) paths. This is a medium-
risk, medium-payoff endeavor in JCATS. It is not clear how easy it would be to
implement the desired navigation and movement capabilities, but it seems likely that they

10

could be relatively self-contained within existing path-following modules in the code. In
terms of payoff, such changes would make more flexible types of terrain navigation
possible, but the existing path-choosing types of behavior may be adequate for many
types of autonomous entities.

6.4 Data Structures for Situational Awareness

We have asserted that a key aspect of a “thinking” synthetic agent is the ability to
interpret and assess the environment, and maintain sophisticated internal representations
of the situation. This assertion relies on the assumption (based on evidence from human
reasoning) that it is impossible to generate intelligent behavior without first making some
kind of coherent sense out of the environment. This may be particularly true for goal-
driven types of behavior, where goals persist even across significant changes in the
situation. But even for reactive behavior, such behavior can only be appropriate if the
agent is sensible about how it updates its internal awareness model in reaction to
environmental changes.

Internal awareness models require some sort of internal state to be represented
inside the entities. Any behavior language that supports some type of internal state
structures (such as typical variables in compute languages) will be capable of
representing internal state in at least a rudimentary form. The current JCATS behavior
engine does allow each entity to maintain a set of user variables, which can persistently
maintain information about the situation. However, the specific design of the data
structures available has a large impact on how easy it is to represent different kinds of
situations, especially as the situations become more complex. JCATS user variables can
hold simple propositional information, such as individual strings of characters or
numerical values. However, most intelligent systems provide data structures for
representing strongly typed relational information. Such data structure allow for more
efficient processing of the data, and also allow behavior designers to use more natural
design for the types of information that needs to be stored.

Because JCATS does provide user variables for internal state information, we
were able to maintain simple forms of situational awareness representations in the
demonstration scenario. However, it is clear that future development and maintenance of
more sophisticated “thinking” entities will require more sophisticated types of internal
data structures. At the very least, the representational structures should be expanded to
support object-oriented types of data that provide strong typing and definitions of
relationships between objects. Better would be to provide logical styles of representation,
such as Prolog, Lisp, and current rule-based artificial intelligence languages provide.
Such data structures could be confined to the behavior module of JCATS, limiting their
impact on other portions of the JCATS code. However, it would be a significant effort to
build such facilities into the behavior engine, and would have possible implications on
the run-time efficiency of JCATS scenarios.

6.5 Data Structures for Goals

Another significant part of the internal state information that an intelligent agent
must represent involves its management of goals that drive behavior. Similar to
situational awareness, simple goal regimes can be represented by fairly simple state
variables. In state-based behavior engines, like that provided in JCATS currently, it is

11

often the case that the “current goal” is stored in the current state variable. However,
goal information could also be maintained in the user variables that JCATS provides.
Thus, for the simple types of autonomous entities we developed for the demonstration
scenario, we were able to use existing structures within JCATS to represent goal
information. However, more complex agents that reason flexibly in a large range of
situations generally require much more sophisticated types of goal structures. Many
intelligent agents require the ability to perform hierarchical decomposition on their tasks,
and therefore must represent goal hierarchies easily. Additionally, one hallmark of
intelligent behavior is the ability to switch between multiple tasks appropriately as fluid
situations demand. Thus, it is often necessary for intelligent entities to represent multiple
simultaneous hierarchies of active goals, as well as to represent the relationships and
constraints between the various goals. This requires representation of relational and
hierarchical information that is similar to the requirements for representing situational
awareness in complex situations.

Because of these representational requirements, and additional facility for
maintaining complex goal structures should be a further long-term requirement for
intelligent entities within JCATS. The tradeoffs for these facilities are essentially the
same as the tradeoffs for representing situational awareness, since goals are (from one
point of view) a functional subset of the situational awareness data structures.

7.0 Evaluation of User Interfaces

As we have suggested, the highest level goals of this project are to determine
particular ways for reducing the costs of generating and executing effective scenarios in
JCATS simulations. A large part of our effort is directed toward reducing manpower
requirements by improving the ability to deploy autonomous entities. However, another
method for achieving significant cost savings in any software system is to improve user
interfaces that humans use when interacting with the software. Therefore, we also
focused our efforts on analyzing existing user interfaces for specifying and executing
entity behavior in JCATS, in order to create recommendations and prototypes for
improved interfaces.

As with any user interface, the current user interfaces for entity behavior in
JCATS are inspired by a particular conceptual model. The conceptual model in JCATS
centers on rule-based finite state machines. The basic view of behavior is that, at any
specific time, an entity is in a particular szate. Each state has a set of rules associated
with it, which are only relevant to behavior while the agent is in that state. Individual
rules can make interpretations of sensed information, set the values of user variables,
initiate external actions in the simulated world, or cause the agent to change into a new
state. The collection of states that an individual agent can navigate defines a stare
machine. Consequently, the graphical editors for developing behaviors in JCATS consist
of individual text-based editors for specifying state machines, individual states, and
individual rules. The run-time user interface allows a human operator to attach a
particular state machine to an entity. A snapshot of the various text-based editors appears
below.

12

From a usability point of view, using text-based editing tools for each of these
tasks does not particularly support the finite-state-machine conceptual model. However,
we should emphasize that this mismatch is not particularly surprising, because the
behavior editor in JCATS has so far always served essentially as a placeholder for a
“behavior implementation to be named later”. It was never intended that the current
behavior module would provide the ultimate solution for sophisticated entity behaviors in
JCATS. However, it is possible to consider the existing tools as a starting point.

In analyzing user interfaces, we again considered two primary alternatives. In the
spirit of trying to minimize costs and provide a “good enough” solution, we investigated
the possibility of developing new user interfaces that support a computer programmer’s
conceptual model for building finite state machines. This would be a graphically oriented
interface that allows intuitive manipulate of machines, states, and rules. We also
investigated a better long-term alternative, which would significantly alter the conceptual
paradigm for specifying behaviors, abandoning some of the inflexibility associated with
finite state machines.

For both of these analyses, we applied techniques from the field of human-
computer interaction. We used a GOMS (Goals, Operators, Methods, and Selections)
analysis to create a breakdown of the tasks that a behavior developer must engage in, and
combined that with a heuristic evaluation of the current JCATS interfaces and proposed
interfaces of our own design. These analyses started by identifying the necessary user
actions for specifying a behavior model using the current JCATS behavior engine and
user interfaces. We used that identification as a roadmap to drive the heuristic evaluation
of cognitive analysis of the thought processes a behavior developer must engage in, and
the interfaces available for the developer to translate intentions into action. The results of
this analysis provide a set of usability and functionality requirements for a JCATS
behavior editor, together with quantitative metrics for evaluating the existing and
proposed interfaces.

13

Here we summarize some of the larger lessons learned, and present them with
some examples. To begin with, as we have mentioned, the current JCATS behavior
editor supports a somewhat complex conceptual model. This model is geared toward
software engineers, and not toward subject matter experts. As a result, anybody using
these editors must do the work themselves of translating “knowledge level” descriptions
of appropriate behaviors down to the finite-state-machine model expected by the
behavior editor. Additionally, the developer must further translate concepts at the state-
machine level into textual commands in a particular syntax to be entered manually in
various text-based widgets.

i -
(State 1

..

The need for this multi-layer translation introduces inconsistent approaches to
building behavior models, because each individual developer might perform the
translation steps differently. It also introduces multiple potential points of failure, at
which bugs might be introduced into the design or implementation of the behavior. The
conceptual model mixes modes of thought, requiring the developer to address conceptual
concerns and engineering concerns simultaneously. Finally, because behaviors are
ultimately realized in distributed sets of rules that may be shared across states and states
that may be shared across machines, there is poor support of the encapsulation of
behaviors at a higher level of abstraction.

Our analysis suggests that the long-term solution is to introduce an improved
conceptual model into JCATS for defining entity behaviors. The new model we center
on concepts and structures at the task level. This would improve the possibility of having
subject matter experts participate in the design of behavior implementations, and would
also remove the onus of subjective translation of behaviors by developers into low-level
states and rules. The low-level implementation in the new model would be generated
automatically by software from higher-level specifications of behavior that focus on

14

entity goals, intended actions relevant to pursuing those goals, belief maintenance
structures and processes, and primitive actions.

Goal 1 Goal 2
Defend Objective Defend Self

v v
o O
Operator Operator

-

The proposed conceptual model would improve the ability to encapsulate
behaviors by allowing them to be expressed in a hierarchically goal-oriented
representation language. This would in turn improve the ability to compose behavior
units into more complex hierarchical structures. Because goals are first-class entities,
they can be represented in a logically distinct fashion from the underlying
implementation, and can also be kept logically separate from each other. When an entity
needs to reason about multiple simultaneous goals, it can do so by explicitly attending to
each goal, instead of embedding implicit goal combinations into the state machine. Most
notably from a usability perspective, this conceptual model much more closely matches
the types of task decompositions that users and subject matter experts use when thinking
about behavior. This reduces the number of steps necessary to translate from task-level
descriptions to implementation-level details.

An advantage of this conceptual model is that it could, in theory, map to the
existing state-based model, and this mapping could be encoded in automated tools for
translating behavior representations. However, the new model would also support
specifications of behavior for other types of behavior engines, such as modern cognitive
architectures for building human-like agent systems.

We used this new conceptual model, together with our usability analysis of the
state-based model, to design prototype behavior development tools that could be used in
the existing JCATS behavior editor, or in more sophisticated future editors. The new
editor begins with a graphical editor for high-level “Behaviors”. “Behavior” descriptions
provide a detailed specification of the actions for a single entity that can be combined to
form “Orders”.

An additional screen allows “Orders” to be composed from individual behaviors.
“Orders™ are high-level conceptual objects that focus on mission objectives, as opposed
to particular sub-tasks of missions. Orders can be defined as state machines, where each
state is itself an abstract behavior. The behaviors are more detailed state machines. In

15

addition, the orders are displayed in the environmental context in which they are to be
executed, which can aid the developer in debugging the behaviors, or can also aid users
in validating the behaviors.

Prototype Behavior Editor

Protdtype Orders Editor

16

Additional prototype behavior editors allow developers and users to specify
coordinated actions for teams of agents, as well as assigning team roles, mixtures of
experience levels, and other team-oriented features. The “Team Skills” interface allows
to composition of team behaviors from previously defined individual behaviors. It allows
team behaviors to be defined from previously constructed templates that include
specifications for an appropriate mix of skill levels, or it can allow teams to be composed
by custom selection of individual parameter settings for the team members.

[CQ Missions —Camp Lejeune & x|
File Edit View Tools Hdp
DD EI D El L__I L0 L__I I:J
[} camp Lejeund Team 1: Camp Lejeune Skills
-El Hission
- & Routes Team Skills Teraplate: [Canp Tramed Temorst ¥
- Team 1 Teara Skill Level: Custom Y
. '
¥ Operxation
@Riflemand
® Ri £1 eman2) Team Skilks
~% Team 2 Name Optien Skill
Indirect Fire Scatter Mednnn A
: Arr Attack Lorenrgmg kre Lowr A
TIET Grenade Sup OP Low /]
Grenade Cowver Mednmm L
Flank Rapid Flank 2 Medhom
Offensive Ehcircle Shake Tlaeaver Low
Breach MOUT Breach Dednmm
Traveling biednnn
AmnEar Ovenaratch Low
Re ; Dismowted Recon Mednnn
COrmAlEsan.ce Fire dire ct Fire Lowr
| Delay dion
s | Withdrewal E:r
(a4) [(Deails] Deciphion) LI

Team Skills Editor

Finally, an integrated map-based editor can allow initial placement of forces,
together with visual planning of force routes, navigation, and other activities. In the
current JCATS system, the map-oriented planning interface is completely distinct from
the behavior editor. However, it seems clear that behavior specifications will often refer
to map elements and elements of the terrain. Thus, to maximize ease of use, we propose
a graphical map editor that is tightly integrated with the other behavior editing tools.

17

8.0 Project Recommendations

After completing our analyses, demonstrations, and prototypes, we held a meeting
with the JCATS developers at Lawrence Livermore, to discuss our proposed alternatives
and assess the technical feasibility of various approaches to enhancing JCATS support for
autonomous entities. These discussions produced a clear technical recommendation that
we subsequently presented to the JCATS configuration control board, constituted of the
primary user communities for JCATS.

rﬁ—[;l Missions — Camp Lejeune

HEx

File Edit

View Tools

Hedp

00 OO DO

M cdon \brary

Tljis !]Ilﬁfl

Map Ii:n;].ulunl;i mpﬁr‘i I S,

_—yY » T
o i

RS
]

bl
m Camp Leje\n\cl

Mission Map: Camp Lejeune
- ssion | | o S —— -.
—ﬁloutes h
JRetrogra
f Peximite Rx-_.r::‘ah
Lal
- Team 1 I
L P Team 2 0:+
2ad
Entity

Route Name: [Fast Retrograde 1

Route Type: |Retrograde ¥

Integrated Map Editor for Behaviors

Regarding the software engine for producing autonomous entity behavior, we
Judged that integrating enhancements into the existing JCATS code base would be of
prohibitively high risk and cost. The potential benefits of such an approach would be to
ensure a uniform presentation of interfaces and processes for the various capabilities that
JCATS provides. The primary disadvantage would be that such an approach would break
modularity. Essentially, we would be taking a very well engineered simulation engine,
and forcing it simultaneously to become a very well engineered autonomous behavior
engine. These are conceptually distinct facilities (although they ultimately need to
integrate together). Good software engineering practices dictate that we keep these
components separate as much as possible, so each can perform their tasks as efficiently
and conceptually cleanly as possible.

18

Thus, our strong recommendation (together with the JCATS developer) is that the
JCATS development path pursue the alternative of building a separate “behavior server”
that would network with JCATS servers and clients to provide desired autonomous entity
behaviors. This approach has numerous advantages:

e [t would minimize “reinventing the wheel”, by trying to duplicate years of
effort in building intelligent agent architectures within the existing JCATS
code. There are several sophisticated cognitive architectures and intelligent
agent architectures that could serve as the basis for the behavior server.

e [t would minimize intrusion into the existing JCATS code base, thus greatly
reducing the risk of introducing new bugs into the mature JCATS code. This
would allow software maintenance of the behavior server and other JCATS
components to proceed relatively independently, which is nearly always the
correct approach for long-lived, large, and complex software systems.

e [t would minimize the run-time impact of the behavior engine on existing
operations with JCATS. Because the JCATS simulation and the behavior
simulation would occur in different processes (and possibly in most
applications on different machines, networked together), the behavior server
would not impact the run-time efficiency of the rest of the simulation. It is
likely that the behavior server would generate additional network traffic,
which could slow down some simulation processes. But, because of the
separation of the two, it would be an easy matter to disconnect the behavior
server from the network in those cases where thinking types of entities are not
required. Thus, the behavior server alternative provides an optional behavior
capability that does not have to have an impact on legacy applications of
JCATS.

9.0 Deliverables

This project has produced a number of deliverable items, which we enumerate
and describe here. We have attempted to produce a variety of deliverables to maximize
the potential payoff of our efforts. Our desire is that the primary conclusions and
recommendations of this project will be used to justify efforts to create a behavior server
and integrated behavior editing tools for JCATS. We believe such tools would also be
reusable in other simulation environments. However, it is worth pointing out that there
may currently be no desire in the JCATS community for the sophisticated level of entity
behaviors that have been the subject of our investigation. In that case, the expense of
creating a behavior server for JCATS would likely not be justified. But we hope that the
other deliverables we have produced, such as documentation, analyses, prototypes, and
examples, will prove useful for operators and behavior developers even if there is no
future work on enhancing the JCATS behavior engine and editors.

. A “Thinking OPFOR” Graphical Editor. We completed construction of a
prototype editor for autonomous entity behaviors, based on usability
analyses of behavior construction tasks. Supporting this prototype, we
have also generated documentation describing the analysis and usability of
the existing JCATS editor. The prototype does not actually generate
JCATS behavior files, but we have documented how it can be made to do
so. The prototype does generate behavior specifications in XML, which

19

should serve as a sufficiently generic specification language for translating
behaviors into JCATS or other types of behavior engines.

A Demonstration Rule Set for “Thinking OPFOR” Behavior. Using the
existing JCATS behavior tools (not our prototypes), we generated
autonomous entity behavior sets within the demonstration MOUT scenario
that we used for our studies. Due to the limitations of the current JCATS
behavior engine, these behaviors are not as sophisticated as we originally
hoped they would be. However, even given the modest amount of
autonomy they exhibit, these behaviors are still significantly different
from the entity behaviors usually used in JCATS. Standard JCATS
scenarios require human operators to interpret, assess, and control the
entities. The rule sets we developed at least allow a small degree of
autonomy, including simple assessments of (and reaction to) the situation,
and simple versions of behavior coordinated in teams. The behaviors run
in the existing JCATS simulation, and are parameterized using various
“skill levels” for the OPFOR teammates. Thus, the behavior files should
provide a modest reusable library for operators who want to incorporate
them into their own JCATS scenarios. We have also generated
documentation and graphical depictions of the behavior set, to add future
operators in understanding what we have generated.

JCATS Portion of Field Test Plans. This document describes the testing
plan we undertook to evaluate the current JCATS behavior engine and
associated user interfaces.

Baseline Scenario Translated into JCATS. The baseline scenario for our
prototype demonstration of autonomous entities was designed and
translated into JCATS format primarily by our project partners at Alion.
We made additional enhancements to the JCATS implementation, and the
resulting JCATS specification files can be reused by anyone who wants to
run them within JCATS.

Excursion Scenario Translated into JCATS. Our original intent was to
demonstrate two specific scenarios within JCATS. As conditions
changed, we decided on combining the two scenarios into a single
scenario that highlights the technical objectives of both. Thus, the
originally planned “baseline” and “excursion™ scenarios are compressed
into a single scenario that serves now as our prototype demonstration
scenario.

Final Version of JCATS Portion of User’s Manual. While performing our
evaluations of the existing behavior editing tools within JCATS, we also
generated user documentation to make it easier for developers to specify
entity behaviors within the existing JCATS behavior engine. We feel this
documentation provides more useful information than the behavior
documentation currently incorporated into JCATS.

20

10. Unanticipated Factors

We feel we have made a substantial contribution to knowledge about autonomous
entity behavior, particularly with regard to the JCATS simulation system, and we feel
that we have done so by meeting all of the requirements of the contract for this project.
However, as with any research project of sufficient size, we did run into some roadblocks
that resulted in various adjustments to our original plans. Some of the technical obstacles
and work-around are described earlier in this report, but we feel it is worth describing
some of the remaining roadblocks and adjustments here.

To begin with, this project demanded much more travel than originally planned.
This travel was extremely useful, because it allowed us close contact with various
members of the JCATS user community, in order to refine the direction of our research,
and to help us ensure we were producing results that would be useful to the community.
However, travel does impose a cost, and this project had a limited amount of funds.
Therefore, we did have to trade off some of our originally planned efforts to make up for
the additional travel costs we incurred.

One of the primary changes in this regard was to reorganize the demonstration
scenario we constructed within JCATS. Our original intent was to construct a set of
demonstration scenarios highlighting various levels of autonomous behavior. Partly in
response to the need to cut costs, we changed plans to instead provide a single
demonstration scenario that would exhibit a variety of different types of autonomous
behavior. We attempted to compensate in part for this change by expanding our efforts to
model a variety of skill levels in the team member behaviors. Thus, we think this change
overall had a benefit, because it encouraged us to do an even better job of building a
parameterized behavior rule set that can be reused to generate various levels of behavior.
While we were doing this reimplementation of the original scenarios, we encountered a
further unexpected quirk in JCATS’ simulation of aggregate entities. It turns out that
aggregate units within JCATS share perceptual information with each other, so they are
sometimes more powerful as an aggregate than they would be if they were represented as
individual units. In order to eliminate this unrealistic advantage (thereby keeping the
scenario interesting), we retooled the entire original scenario to replace the aggregate
blue force units with an equivalent (and large) number of individual JCATS units.

11. Remaining Questions

This project has prepared groundwork and produced results that could be taken in
a variety of different directions, depending on future levels of interest and funding. We
feel the primary remaining question to determining where to allocate future resources is
whether there would be a significant operational benefit to adding autonomous entities to
existing simulation systems such as JCATS. We have attempted to argue the potential
long-term cost savings of including such agents, and there are other simulation systems
that have successfully incorporated autonomous agents of varying levels of competence.
However, the simulation user community must ultimately answer the question, after
being informed by the technical community with the types of studies we have completed
here. It would be beneficial to extend this work by analyzing current and (hypothetical)
future user needs for simulation, as well as existing costs for developing and deploying
scenarios. Based on those results, it would be useful to revisit the question of the value

21

of autonomous entities, and then possibly use the results of this project to achieve
whichever goals are deemed most useful for simulated entity behavior.

Related to the emphases of this project, an additional question is to evaluate the
operational benefit of improved user interfaces for specifying entity behavior, including
entity planning and control. Even if the current technology for entity behavior in JCATS
is adequate, 1t seems clear that improved user interfaces would decrease the cost of
creating and deploying entity behaviors, and probably also increase the frequency of their
use.

12. Courses of Action

Based on the results of our research and an assessment of the answers to the
above questions, it may be useful to enumerate potential courses of action from this point.
The first obvious potential choice is to maintain the status quo. It is clear that the current
version of JCATS is popular, and serves a number of customer needs. Perhaps there is no
significant benefit to improving entity behavior or user interfaces for the types of tasks
that JCATS is currently used for. Additionally, depending on the amount of use new
behaviors and interfaces would get, it may not justify the expense of investing in their
development. We feel this is probably not true, but again the true answer may not be
known without a more formal assessment of customer needs, requirements, preferences,
and expenses. By maintaining things as they are, it is still possible to generate some
limited types of autonomous entities.

A somewhat conservative alternative would be to maintain the existing behavior
engine in JCATS, but to supplement the user interfaces with new ones based on our
analyses and prototypes (or of some other improved design). The advantage to this
approach is that there would be relatively small cost to introducing the new user
interfaces, and they would allow cheaper development of simple behavior models. Also,
adding these new user interfaces would consist of incremental code changes that could be
folded into the existing JCATS development cycle.

A third option would be to restructure the current JCATS behavior system
significantly, following the recommendations we generated to overcome current technical
obstacles to generating sophisticated entity behaviors. Of course, this option should only
even be considered if there is judged to be a value to having smarter autonomous entities
in JCATS simulation. But even if that value exists, we would recommend against this
option, for the reasons we have outlined earlier in this report. We include the option here
in the report summary for the sake of completeness. The benefit of this approach is that it
would provide the infrastructure for sophisticated autonomous agents. But the
disadvantages are that this approach would significantly impact the current JCATS
development cycle, and the ultimate solution would then be tied to JCATS, limiting the
potential for a behavior module that could be reused in other simulation systems.

A fourth option, and the option we recommend if thinking synthetic entities prove
to be desirable to the user community, is to create an independent “behavior serve” that
communicates with JCATS servers and clients using the JCATS network protocol.
Again, we have described this approach and its advantages previously in this report, but
we summarize here. The primary disadvantage to this option is that it would likely
involve a medium to high cost investment to complete such a project. However, the
benefits would be worth it if we are correct about the cost-saving value of autonomous

22

entities. This approach would build on existing systems for building cognitive and
intelligent agents, thus providing infrastructure for building entities that can have very
complex and sophisticated behaviors. In addition, although the behavior server would
include a component for communicating with JCATS, the behavior engine itself would
essentially be independent of the details of the JCATS simulation environment. This
opens up the potential for reusing the behavior server in other types of simulation
systems, and also for using the behavior server in heterogeneous simulation
environments, perhaps networking JCATS with other simulation engines.

23

