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Abstract

N. J. Balmforth and J. S. Wettlaufer
October 2006

Ice was the topic under discussion at Walsh Cottage during the 2006 Geophysical Fluid
Dynamics Summer Study Program. Professor Grae Worster (University of Cambridge) was the
principal lecturer, and navigated our path through the fluid dynamics of icy processes in GFD.

Towards the end of Grae's lectures, we also held the 2006 GFD Public Lecture. This was
given by Greg Dash of the University of Washington, on matters of ice physics and a well-
known popularization: "Nine Ices, Cloud Seeding and a Brother's Farewell: how Kurt Vonnegut
learned the science for Cat's Cradle (but conveniently left some out)." We again held the talk at
Redfield Auditorium, and relaxed in the evening sunshine at the reception afterwards.

As usual, the principal lectures were followed by a variety of seminars on topics icy and
otherwise. We had focused sessions on sea ice, the impact of ice on climate, and glaciology.

This year was a good summer for softball, with the Fellows enjoying some notable successes
on the field (against both the other WHOI teams and the staff team at the summer's close).

Some important acknowledgements: Young-Jin Kim helped out with the computers during
the first few weeks, and Keith Bradley worked his usual magic in the Lab throughout the
summer. The program continues to be indebted to W.H.O.I. Academic Programs, who once
more provided a perfect atmosphere. Most unlike the '65 Dodge, Jeanne Fleming, Penny Foster
and Janet Fields all contributed importantly to the smooth running of the program.
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GFD 2006 Lecture 1: Introduction to Ice

Grae Worster; notes by Rachel Zammett and Devin Conroy

March 15, 2007

1 Introduction

Our aim in this course is to understand some of the processes associated with ice in the
natural environment. Figure 1 shows the location of some of Earth's ice during the north-
ern winter. These ice deposits may be categorized as sea ice, ice sheets and shelves, and
permafrost.

Figure 1: Satellite image showing the ice cover in the northern hemisphere during northern
winter, showing sea ice lying in the Arctic basin, the permanent ice sheet over Greenland

and permafrost in the exposed land surface.

2 Ice sheets

Firstly, figure 1 shows the ice sheet that covers approximately 80% of Greenland. This is
about 105 years old and reaches depths of 2-3 kilometers. On large scales, ice can be treated
as a highly viscous, non-Newtonian fluid that can flow because it is a polycrystalline solid
and contains a percentage of unfrozen water (figure 2). Looking on a scale of about lO01m,

I
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Figure 2: Inage of the intersection of four ice grains. Between these grains lie the veins
containing liquid water and dissolved iInpurities. The scale bar on this l)icture is 100 pin. 3
we can see the ice grain junctions and the veins which lie between tiem. The liquid water I
contained in the veins between the ice crystals lubricates the flow, allowing the ice to flow
more easily. This water call also tranlsport dissolved impurities, which will therefore move
relative to the ice crystals; this is important when analyzing ice cores, for example. I

Figure 2 also shows that there is a curvature to the solid liquid interface which is
associated with the surface energy of the phase boundary. We will see later that this
surface energy sets the scales for morphological instabilities of the solid liquid interface, I
such as those seen in snowflakes (figure 4).

The grounded ice cap flows slowly towards the coast, sometimes flowing inlto floating ice

shelves, which ultimately break up to form icebergs. Projects such as the Greenland Ice Core 
Project (GRIP) have obtained deep ice cores from near Greenland's summit. Analyzing tlhe
properties of the ice cores, such as oxygen isotope ratios, allow inferences about, lhe ancient

climate to be drawn. I
In figure 3 we see the flow from the grounded ice sheet to a floating ice shelf (Larsen

B) in Antarctica. At the edge of the ice shelf we see the calving of icebergs; this is respon-

sible for approximately 80% of the mass lost from Antarctica. The icebergs are composed I
predominantly of freshwater ice, as the ice which coiprises the ice sheets first fell as snow.
Owing to tile density difference between water and ice, approximately 90(X of the volume
of an iceberg is below the surface of the ocean.,,

When these icebergs come into contact with the warm, salty ocean they ablate, providing
a freshwater flux to the ocean. This is important as time production of (heel) oceari waters is
sensitive to changes in the freshwater budget.

3 Sea ice 3
Secondly, there is the sea ice which fills the Arctic basin and is forined by direct freezing
of the ocean. It is typically 1- 3 ii thick and less than 10 years old; in its first, year, sea 3

23



Figure 3: (left) Satellite image of the Larsen B ice shelf on the coast of Antarctica. Near
the edge of the ice shelf, it is possible to see the icebergs formed by calving. (right) An
example of an iceberg formed by calving at the edge of an ice sheet or ice shelf. Here the

vertical face is 30 m above the surface of the ocean, meaning that approximately 300 in of
ice lie below the surface.

ice typically grows to a depth of 1 ill. This relative youth (in comparison to ice sheets
or glaciers, for example) is caused by the movement of sea ice by polar winds and ocean
currents to warmer waters, where it melts.

Many of the structures and processes observed in sea ice develop because the thermal
diffisivity of heat is much larger than the diffusivity of salt. In this course we shall see that,
sea ice can be considered as an inhomogeneous porous medium. While sheet ice only contains
water in the veins between ice crystals, sea ice has a much higher porosity (approximately
10 % in old ice and up to 40 % in new ice). The porous nature of sea ice means that it caii
also be modified by internal convection.

We shall consider sea ice to be a mushy layer, which is a two-phase reactive porous
medium. We see in figure 4 that it is not macroscopically solid; instead, it is composed

of ice platelets with salty brine between them. The platelets which form are composed of
pure ice crystals, as the crystals reject the salt contained in the ocean water. Some of this
rejected salt convects into the ocean below the sea ice, and the rest remains between the

crystals.
This convection is also seen in the laboratory. Figure 5 shows shadowgraph pictures of

sea ice growing in a laboratory. In figure 5 (left) when the sea ice is only 3 cm thick, it is
possible to see some convection occurring in the salt water below it, but it is small scale
and has no obvious structure. However, when the ice has grown to a thickness of about 13
(c-i (figure 5), it is possible to see strong convective plumes in the water below. These have

a high salt content and therefore deliver a large flux of salt to the water below. We shall
see that there is a critical ice thickness at which such plumes occur; this criterion for the
onset of convection is determined by a form of Rayleigh number.

I 3
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Figure 4: (left) Picture of a snowflake. Here the smallest scale at which insta)ilities occur
is comparable to the radius of the tip of one of the needles. (right) Horizontal cross section
of sea ice, showing both ice platelets and brine channels. The ice platelets are typically less
than 1 nin wide and form a porous matrix, which allows convection and the erosion of such
channels by the rejection of salt. These channels have a diameter of a few iuillinetres.

I
I

I

Figure 5: (left) Image of sea ice growing in the laboratory. At this time, the layer of ice I
(the dark upper region) is 3 cm thick, and it is possible to see some convection occurring
below it. (right) Image of sea ice growing in the laboratory where the layer of ice is now 13 3
cm thick, and it is possible to see the salty convective plunes below it. It is also possible to
see the 'pinching' instability at the base of these plumes. Note that the scales of the images
are different.

4I

I



I/

Figure 6: (left) An example of erosion caused to a rockery by winter frost. (right) Stone
circles as an example of differential frost heave.

cold

Figure 7: (left) Ice needles protruding from soil. (right) Photograph of a colunin of water-
saturated soil cooled at the top (Taber, 1929). The black regions are ice lenses, which
contain no soil; between these are regions of partially frozen soil. There may also be ice
between the soil particles below the lowest lens.

I5
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4 Permafrost

The final type of ice we shall consider is permafrost, or permanently frozen ground (defined
as remaining below 0C for more than two years). It occurs both on land and beneath
offshore Arctic continental shelves, and its thickness ranges from less than one ieter to
greater than 1 kilometer. Perinafrost underlies about 15% of the exposed land surface in
the Northern Hemisphere and causes defornation of the ground; we shall be looking at this
and the associated flows.

Figure 6 shows the effects of ice dainage to rocks and buildings if they are eroded by
winter frost. The ground may also 'heave', i. e. rise upwards due to water being pulled up I
from the unfrozen ground below. Differential frost heave iiay form patterned ground, such
as hummocks and the stone circles seen in figure 6. Underlying this is the force of separation
between ice and other materials: in this context, we will consider the other materials to be
silicates. We will consider how ice pushes on another material forming, for example, the ice
needles seen in figure 7.

There are still some puzzles remaining. Figure 7 shows a laboratory experiment by 
Taber where a colhiin of water-saturated soil was frozen by cooling at its top. It, iniglit be
expected that a freezing front which moves downwards is observed, but instead a sequence
of layers of alternating pure ice and partially frozen soil forms. I
5 Student Problem

If two identical ice cubes are placed in glasses of water and whisky, where the liquids are
at the saie teniperature. it is o)served that the ice cube in the whisky nielts more quicklY
than that in the water. Why? (Hint: It is not because the melting point of ice is lower in
whisky than in water.)

Answer U
Initially when the ice cube is placed into a glass of whisky at room tenl)eratmre the, icc
melts, forming a layer of cold freshwater adjacent to the phase boundary. Since water is I
denser than alcohol and the the inielted water is colder than the whisky, a plume forms
that convects the cool fresh water downwards and brings warller fluid with a higher alcohol
concentration upwards. This convective mixing of the liquid below the ice cube supplies I
a heat flux at, the phase boundary; this flux is stronger than the diffusive heat flux in tOle

absence of convection.

6 Stefan Condition

The distinguishing feature of solidification or melting is the evolution of a phase bouindarvyI
which separates solid and liquid. The speed of this interface can be determined by energy
conservation, as illustrated in figure 8, which relates the rate of energy absorption or release
to the difference ill heat fluxes across this boundary. This is fornimulated inathenitically as
follows by considering a control volume around the phase boundary

qs • n - qj, •n - pr, H.s + pVHj, = 0 => pLV,, = n • (qj - q,,). 1

6
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Figure 8: Illustration showing the control volume taken around the phase boundary and
the energy fluxes into and out of it.

Here q = -kVT is the heat flux from Fourier's law, k is thermal conductivity, n is the unit
normal vector pointing from solid to liquid, p is the density (assumed to be the saine in
each phase), V,, the interface velocity, H is the enthalpy, L = He - H, is the latent heat and
subscripts s and f denote solid and liquid respectively. We assune that the phase boundary
is in equilibrium, implying that the temperature is constant on either side of the interface.
This equation is known as the Stefan condition, attributed to Stefan in 1891.

7 Problem 1

We consider a problem posed by Stefan in 1891, where solid ice is growing into relatively
warm (7, > TB) water from a cooled boundary at z = 0 (figure 9). We assuine that
the liquid portion is at the inelting temperature T.. initially and therefore remains at this
teinl)erature. The governing equation is given by the thermal diffusion equation

=kT 0i '(2)Pe = aKt2'
where the conductivity k = pCpK is assuned to be constant, and the thermal diffusivity is
re)resented by K. The boundary conditions for this equation are then

T(t,z = 0) = TB, T (t, z = a(t)) = T1n, (3)

where z = a(t) denotes the interface position and the unknown interface velocity is deter-
mined by the Stefan condition

pL--d = k aT (4)

dt (9z z=a(t)

7.1 Solution

This problem can be solved using a similarity solution, as there is no intrinsic length scale in
the problem. We can determine the form of this similarity variable using a scaling analysis

I 7
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Solid Ice \, T(z,t)

Water r. a(t)
loT

Figure 9: Growth of a planar solid into a liquid, maintained at the melting temlerature TM

from a cooled boundary maintained at temlperature TI3. The position of the interflace as a

function of time is given by a(t).

and show that a fixed length scale cannot be formed. Let us define the appropriate scales. I
AT = 1, - TB, D and T for the temperature, length of the domain and tinle respectively.

From the diffusion equation (2) and the Stefan condition (8) we obtain the following 3
AT AT- , - H - =-- D - v "K , (5 )m

D AT TA 2 - NT,

pL- k D p,,H-T D - \TS 7 2 (/

where S = L/(cpAT) is the Stefan number. Since the relationships between D and T in (5)

arid (6) are the same, there is no intrinsic length scale, and a similarity solution is I)ossihl,.

In addition there therefore is no time scale so we choose T = t, the actual tiie, in wii(-Ii

case D N- v/t.

WXe introduce the dimensionless variable f such that

T1- T[3=AT( ATfTf I= Tfr (7)

We choose il = z/2vNt for mathematical convenience, as the similarity variable may bc

multiplied by an arbitrary constant. In addition we know from scale analysis, using the I
diffusion equation, that, length and therefore interface position can |be assumed to have tle
forniI

a 2p " t, 
(8)

where the paranleter It must be determined as part of the solution. Rewriting Hie model in

ternis of the similarity variable, we arrive at the final set of non-dimensional equations I
fl = -2ilf', (9)

f (1 0) = 0, (10) I
2 =/t) = 1 (11)

2Sji. : f"(,r: =). (1'2)3

I
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Figure 10: (a) Solution to equation (17) for the eigenvalue It as a function of the Stefan
number, S. (b) Solution to equation (7) of Lecture 2.

I The solution to equation (9) is determined using an integrating factor and determining

lf'=c e -  f = cl e y2 dy + c 2 f= erf()+c 2 . (13)

The error function, erf(71), is defined by

erf (x) = 2 e-,2 du, (14)

with the following properties

erf(0) 0, (15)

erf(oc) = 1. (16)

Boundary condition (10) implies that c2 = 0 and boundary condition (11) gives (l =
I /erf(p). Finally the Stefan condition (12) gives us an parameter equation to be solved for
the parameter /t. From equation (12) we then have

p= v'lierf (p)e",2 = F(p). (17)S

In figure 10 we plot the parameter p as a function of Stefan number. We see that the growth
speed increases as the Stefan number decreases, which corresponds to increasing the driving
temperature difference or decreasing the amount of energy required to melt a unit mass
of solid. We should note that the interface position is given by a C Vt. and the interface
velocity by 4 ox 1/vt so that the growth rate of a solid decreases with time.

7.2 Quasi Stationary Approximation

For large Stefan numbers we have relatively small sensible heat compared to latent heat
and the growth rate will be slow compared to the thermal diffusion rate. In this case, the
temperature field will evolve more rapidly than the boundary position and we have a quasi-
steady state regime for the the diffusion equation. This implies a linear profile of the solid

I 9
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temperature that is slowly decreasing in slope as the boundary moves. Integrating Laplae's
equation twice and applying boundary conditions given in (3) we obtain the linear solution

T = TB + (T,; - T3)2. (1)
(1

Substituting this solution into the Stefan condition (12) we arrive at the following expression
for the interface position a

da( _ 1 2
da- - a(0) 0 o= . (19)adt S' S

8 Student Problem

Question

Solve the Stefan problem given in problem 1 for the case p, # Pt.

Answer

When the density between the solid and liquid differ by an appreciale amount there will
be a nornmal velocity to the phase change surface due to the expansion or contraction of
the liquid as it solidifies. To formulate this effect mathematically we draw a control volume

around the moving surface and conserve minass and energy as fIlow

I. I
I pd I - ' p , p- - , 51, (20)

d j pH dV = p,H, (i - cf ) n qs dS. - / (Hr (( - VX) + n q( dSj. (21)

In the limit as dx- 0 the amount of mass and energy stored within the control vollule
becomes negligible and we are left with the following relationships

p,(a - V,) = pr(a - Vf), (22)

p,H, ( + - q;) = nq pfHr (6 - Vf) + n. q( . (23)

Since there is no motion in the solid, V, = 0 and the mass conservation relation gives us a
relationship for the fluid velocity. Substituting this relationship into the energy conservation
equation and noting that L = H, - Hj, we obtain the iodified Stefan condition. These

conditions are

V da (P - Ps) (24) i
LdaI

p, d = (qf - qs) n. (25)

The addition of a fluid velocity on the liquid side adds an advective colp)onent to the
governing temperature equation. The new mnodel can be solved by a similarity solution

II
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I as a simple extension of the last section, but does not yield any new results. Since the
temperature profile is homogeneous initially it must remain so for all time. On the other
hand, if the liquid were under-cooled (as we shall see in the third lecture) or if we were

melting the solid, the advective component would give a small correction to the interface
speed as long as p, pt.

1 References

[1] Taber, S. 1929. Frost heaving. J. Geol., 37, 428-461.
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GFD 2006 Lecture 2: Diffusion-controlled solidification I
Grae Worster; notes by Victor Tsai and Dan Goldberg

March 15, 2007 I

1 Finishing off Lecture 1

As shown in Lecture 1, an approximation for the diffusion time is

a
2

t = -. (1) I
An experiment was conducted using a comnmercial liand warmer. This is a plastic bag
containing a liquid (an aqueous solution of sodium acetate) in a metastable state i.e. at
a temperature below its freezing point. Crystallisation is initiated by flexing a tlhin metal I
disk contained in the bag and was observed to proceed at a rate of aboul 1 cm s- . Taking
0 = 10C1, K = 10-2l 2 /s gives t : 104s ; 3hrs using equation (1). A different ineclninsiml
iuist operate in the heat pack than was analysed in Lecture 1. WXe will return to this later. I
2 Diffusion-Controlled Solidification into a Supercooled Liq-

uid

Instead of considering a solid cooled from a boundary, we now consider a solid, assllled to be
at T,,, surrounded by a liquid with far-field temperature given by T1' < ',, so that the liquid

is supercooled. Again, we only consider a one-dimensional problem, with x = 0 at, the center
of the solid and x = a(t) at the solid-liquid interface. We solve the diffusion equation (in lhe
liquid) with the Stefan condition and with appropriate temperatltre boundary conditions
(T(a) = T;,, and T(oo) = 1 ):

01, O2T- (2)

pLa = -k 01 la, (3)

As before, we scale the equations and arrive at the similarity solution

TI/ = X / (4 )

T = TO + (I, - .)erf (5)

12
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I a = 2pV1K, (6)
1
wF(p), (7)

where
F(x) vl-xeX2 erfc(x). (8)

I Plotting F(x), we find that F(0) = 0, and F(x) has a maximum of 1 as x -* oo (see
figure 10b of Lecture 1). Thus, no similarity solution exists for 1/S > 1 or S < 1. In fact,
all solutions become unbounded for S < 1. This inconsistency is remedied by relaxing the
assumption of T = Tm at the interface since this is strictly only true in equilibrium. For
S < 1, however, growth is rapid, we are far from equilibrium, and molecular attachment
kinetics are important. For ice, it is typically observed that attachment and detachment
occur at a rate of approximately 1000 molecular layers per second. Below 0°C attachment is
faster than detachment and above 0°C attachment is slower than detachment. The velocity
of the boundary h is proportional to the difference between attachment and detachment.
Thus, our revised problem is given by: Diffusion equation (2) in x > a; Stefan condition (3)
at x = a; T(oc) = Tm; T(a) = T; and & = g(Tm - T), where 9 is a constant.

We again scale length with A, time with T and temperature difference with AT =

T, - T,m. This results in
A T (9)

T K _

g2 AT (10)

Using the scaling a = Ada, x = Ax', T T ,[ + AT 0, substituting and dropping primed
notation results in

i 00_ 020 (1

I t Ox2'
(00

S= 0 la+, (12)

(6.-- 1 -0, (13)

0(oc) = 0 O(a) = 0. (14)

We now consider two limits. If S > 1, then (12) gives i K< 1 soOi = I + O(S - ) or
dimensionally, Ti ; T, the analysis from lecture 1 holds and we recover the similarity solu-
tion presented there. If S < 1, then (12) does not constrain i which is instead determined
by the kinetic equation (13), which suggests looking for a solution of the form 4 = V where
V is constant. Hence, we try 0 = 0(71), where 71 = x - Vt. Substitution leads to

6 = OjC-V ,  
(15)

I a = Vt, (16)

Oi= S, (17)

arid
V = 1 -=1-S, (18)

* 13
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which is valid (exactly) if S <1. I
Finally, we note that the discrepancy between applying kinetics and using the previous

(S > 1) similarity solution is typically small, especially at large time when the kinetic
solution asymptotes to the similarity solution. Therefore, kinetics can often be neglected in
many problems involving sea ice, for example.

3 Generalized Clapeyron Equation for Interfaces in Equilib-
rium

For a planar interface an( at some reference pressure, the melting temperature is set by
a balance of the temt)erature-dependent rates of the attachnet and detachment of the
solid phase this is the reference melting/freezing point. But modification of the system I
pressure or a pressure difference between the solid and liquid phase can cause changes in
the equilibrium interfacial tem)erature. The relation governing this phenomenon is

p,,L ,) Ps
7;~ = (Ps - PI) + (PI - P) - (19)

where 1"m,Pm are the reference melting point and pressure. 'here are several examl)les of I
this effect that will appear later in these proceedings, briefly mentioned below.

3.1 Change in system pressure I
Across a planar interface, pressures will be equal when the system is in mechanical equi-
libriun. But the overall systen pressure may be elevated (or decreased), fOr example byX

hydrostatic effects. In this case the second ter on the right-hand side of the Clapeyron

equation comes into effect, with p, equal to 1). It is easy to see that the rate of change of
the melting point with respect to pressure is given by

dl , 71p - PSL (20)
( dp p.,L ( 1 '.z 2) I

For example, in the ocean this allows us to find the melting point at depth. HIydrostatic

balance gives us T , 10

d__ - Ply " 7.5 × l(-'lK/in. (21)

3.2 Curved interface dz (I1

At a curved interface, there is a force involved with the interfacial energy that factors into

the force balance, and results in an imbalance between pj and p,. This is exl)ressed by I
p5 - = -(v n). (22) •

Here -y is the interfacial energy and n is the unit normal to the interface, directed into the
liquid. With p = pl, this gives

14
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I Substrate P.

Water h P, P1

Ice

Figure 1: Interfacial premelting of a solid below the melting point. The hydrodynamic
pressure (Pl) is lower than Ps because of the thermomolecular pressure PT.

IT = I - F(V n) (23)

where F Tm (24)

F- Ps)L

Equation (23) is known as the Gibbs-Thomson equation.

3.3 Interfacial Premelting

When a solid near its bulk melting point is in contact with a gas or solid substrate, it, is
sometimes thermodynamically favorable for there to be a (very) thin liquid film between
the solid and the substrate (figure 1). Among the determining factors are the interfacial
energies per unit area between the solid and its liquid, the solid and the substrate, and the

liquid and the substrate.
The liquid pressure in the film is actually lowered relative to the solid pressure, since

intermolecular forces play a part in the mechanical equilibrium balance. This pressure

difference is described as a Thermoniolecular Pressure. A drop in interfacial temperature
follows from the Clapeyron equation.

In thermodynamic terms, the chemical potential of the liquid - that is, the incremental
change in free energy with respect to the addition of new material - is not equal to that
of the solid, as it would be in a bulk equilibrium state, since intermolecular interaction
potentials must be accounted for in minimizing the free energy of the system. The chemical
potential is a state variable, and its change is accompanied by a change in hydrodynamic
pressure.

4 Nucleation

The Gibbs-Thomson effect is nicely illustrated by a simple model of a solid particle nucle-
ating into a supercooled liquid domain (figure 2). The dynamics of the initial formation
of the particle are complex, but we will ignore such details and assume that the necessary
events have already taken place for there to be a spherical solid particle with finite radius
a at time t. The ambient temperature of the liquid is below its melting point, and further-
more, as before, we will assume that the Stefan number is large and make a quasi-stationary

* 15
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Tw < Tm

a
V 2 T=O

Crystal

Figure 2: Nucleated spherical crystal in supercooled liquid with high Stefan number.

approximation, so that temperature is harmonic in the liquid and in the solid. Thus our
system of equations is

V 2T o ,, () ) I
10 '<U

Tm- F(V" n) 'r=a

This system is solvable for a given a, even though a is changing in time. Curvature is

constant over the surface of the sphere (and is equal to 2/a), so the e(quation and boundary I
conditions are spherically symmetric and we expect a symmetric solution. 'Ile teml)erature
field in the solid is easy to diagnose: a harmonic function in a bounded dollaill with consl,alit
boundary condit ion is itself constant (and thereibre the only flux at the interface is that oi I
the liquid side). Our Stefan condition is then

pd = -k OT (27)I

Given tile spherical symmetry of the problem, the temperature field in the liquid must

have the form A + Br . Using the boundary conditions. we call deduce that. for r > (. I
T = T + (T _ _ ,,)a. (28)

With an isothermal solid, the Stefan condition then gives us

pL u = ka-l(§I; 2F I ~ .( 9

Rather than solve for a(t) exactly, it is instructive to examine the sign of the R.H.S. of
(29) and also to consider the limiting cases of small and large radii. First, note that, a is
increasing (decreasing) when it is larger (smaller) than a critical radius, a(, = 21/ (, - I ).
So a, is an unstable fixed point; larger particles will grow, and smaller particles will shrink.

16
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I

N(a)

I

ac
a (radiw)

Figure 3: Scaled distribution of population of nucleating particles

I (Note that this is just in our simple model - we are considering a single particle in a liquid
whose far-field temperature does not change; see the discussion below.)

Furthermore, we can approximate the growth rate in the limit of large and small radii.

For a > a, it is nearly proportional to a - 1 , and we get

(t). 2t(30)I~ S_
On the other hand, for a < ac, (29) becomes

I zL -2kF (31)

a
2

a =a(t) P a(0) 3 -6kF '  (32)
PL'

so the solid disappears in finite time.
Though we do not give the details, it is worth noting the case where there is an entire

population of nucleating crystals, and the temperature of the system away from a crystal
is not constrained (indeed, there is heat being given off by the solidification, and so the
system temperature on the whole will be increasing). An interesting result is that the

resulting distribution of particle size is self-similar, meaning that the probability distribution

function, scaled by 0 (not by t0), remains constant in time. Such a distribution is shown

in figure 3. Note that there is a finite cutoff (denoted by am) since particles will not grow

to arbitrarily large size after finite time.

* 17
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Liquid TmI

V2 T--4

Te

V2 T--O

Solid Tm

Figure 4: Studenlt ProblemI

5 Student Problem

Conisider p)erturlbat ions to a 1-D plaiiar interface in a, 2-D system with large Stecfaii imiber
anid far-field tempera tutre equal to the bulk nmelt,ig pohlit. The iiiterface has mi einergy
associatedl with it,, an(1 the disturbanice has a smnall amp)litulde compared wit 1h its waelxgiI
For small times, and nieglectig kinietics, how would thle iiiterface evolve?

Solution. Sice the perturb)ationl is smiall, tis p)roblem cani lbe licarizedl. iieglecthiig
higher order terms iin the small p)aranmeter ijoa, where 71() is the perturbat,ioi ampIllit,udle id( oI
is its waveiumber. With large Stefan number we cani make a qjuasi-stat imxary approxinmatioi
mnd a,ssumie t,emiperature is harmilic ini both thie liquid atid solid domiaiiis (hut not acrs
the iterface). Our equations are as follows:

z2={ C)' (34)

ij,,,- r(v -n) z=ii W
along withI the Stefani conditionl

k OT l=++k OTI=j- (5
-pL On pL + O'n~ 3

where it is the niormal velocity of' the initerface, which is equal to

From tile equation for the in1terface positionl z -71(.x, t) 0 we c i i deeiiii

n = (37)

(1 + 712)1/2



I

I and

V n7 (38)

(1 + 712 ")3/2

Now we linearize, neglecting higher-order terms, and the problem simplifies. First of
all, the smallness of the slope of the interface means that the normal derivative in (35) is a
higher-order correction to the vertical derivative, and the smallness of 71 means that evalua-
tion of the perturbed temperature field at qj is a higher-order correction to its evaluation at
zero. Likewise, the quadratic term in (36) is dropped, as is the one in (38). Our linearized
system of equations is now

SV2 T={ 0 Z{ >0 (39)

T = Tn, z - ±oo, (40)

T I + rlxx, z=0, (41)

?it = 10+ + TZ o-) (42)

I Since this is a linear problem we can anticipate the form of the solution

"(x,t) - jOC 71 (43)

T(x, z. t) = T, + 1(z)cWrx+7t. (44)

I (45)

Laplace's equation and the decay condition along with (41) give

I T(Z) = -_02 7loel l : , (46)

depending on whether z is positive or negative. The Stefan condition then shows that

2a3-k(47)
pL

Thus the interface is stable for all wave numbers and the decay constant is proportional to
a3. The stabilizing effect is intuitive: "positive" bumps (areas where the solid protrudes into
the liquid) have a lowered melting point due to Gibbs-Thomson, while "negative" bumpsI] have elevated melting point. There is then a net heat flux from negative to positive bumps,
which causes a melt/freeze pattern that counters the perturbation.

I
I
* 19
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GFD 2006 Lecture 3: Interfacial instability in slI)er-cooled
fluid

Grae Worster; notes by Robert Style and Dominic Vella

21 June, 2006 I
I

For all the systems that we have considered so far, we have chosen only to model a
planar solidification front. In many situations this is not realistic and the interface is in
fact subject to instabilities. In this lecture, we consider small perturbations to the planar
interface in order to investigate the properties of these instabilities: when do they exist,
what is the growth rate of the instability and what is the characteristic length scale? We
shall assuine non-kinetic growth to simplif.v the analysis.

1 Mechanism for instability

For a planar solid growing from a cooled boundary, all isotherms in the system are parallel t
the solid liquid interface (see Fig. 1). When we introduce a perturbation onto the interface,
the isotherms are deforined in response to the new boundary conditions (as shown in Fig.
lb). As a result of this, the isotherms are bunched where the solid protrudes into the liquid
(crests) and are spread out where the solid lags behind (troughs). In the regions wherc

the isotherms are bunchied, the temperature gradient is large and so there will he eiihanced
heat transport from liquid to solid relative to the heat transport in the planar s ystei. The
protrusion is therefore eroded. Similarly, less heat will be transported to the troughs and

so the rate of solidification is locally increased. These effects act to stabilize the interface
by levelling out any deviation from the steady planar state.

For the case of a supercooled melt, the heat flows from the solid towards the liquid.

As before, upon introduction of the perturlation. there is hunching of the isotherms above
crests on the solid-liquid interface and enhanced spacing of isotherms above the troughs.
However, the directions of the heat fluxes are reversed froin the previous case, so that, heat
is transported more rapidly away from the crests and more slowly away from the troughs.
This causes the interface to advance more rapidly at the crests, and relatively slower at tie
troughs, so that amy corrugations will grow in amplitude (Fig. 1c). Thus the interface is
unstable.

In the student exercise from the previous lecture, we saw that l)erturlations are stal-
bilized due to the Gibbs-Thomson effect. We found that the curvature of the interace
modifies the equilibriumni melting temperature to

T. = - FV. n. (1) I

20
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I T=T T >TB

I o LiQUH
T=T m

I SOLID

T=T

B

(a) (b)

T >T

I LIQUID COLD
A A A

I SOLID HOT

S(c) (d)

I
Figure 1: Schematic diagrams showing the direction of heat flow (arrows) during the evolu-
tion of the solid-liquid interface. (a) Planar solidification from a cooled front. (b) Stability
of a front growing from a cooled boundary. (c) Instability of a front growing into a super-
cooled melt. (d) Stabilization as a result of the Gibbs-Thomson effect.

I
I
I
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T >T T <T ImH m H

Heat Exchanger

I A

LIQUID z=H, T= H LIQUID V

z=O, T=T

In

SOLID IV z(x,t) SOLID V

(a) (b) I

Figure 2: Schematic diagram for (a) solidification of liquid by pulling liquid downwards
through a cooled heat exchanger and (b) melting of solid by pulling u)war(ls through a
heated heat, exchanger.

where V n is the interface curvature. Therefore, the interface tenll)erature is reduced
relative to T,, at crests in the interface an(d increased at troughs. Thus heat will flow
fron troughs to crests, causing the crests to nielt, back, while the troughs1 solidify, faster,
stabilizing the front (see Fig. d). In the following, we will consider the stability of a planar

front growing into a supercooled melt including the Gibbs-Thonison effect. As will be seen,
the Gibbs-Thonison effect stabilizes the front for small wavelengths, while the front becomes
unstable at longer wavelengths.

2 Modelling interfacial instability

In order to explore stability of a planar surface growing into a sul)ercooledi melt, we consider
the case of liquid being pulled down through a heat exchanger at a (onstant velocity V as
shown in Fig. 2. The heat exchanger maintains the temperature at IT < T,,, at a height
z = H, and the interface is assurned to be initially planar at z = 0. In ex)erinents it is V,
rather than the position of the interface, H, which is controlled and so H is an unknown:
in this problem, it will be determined from the Stefan b)ound(ary condition.

If we apply a small )erturbation z = q(x, t) to the solid liquid interface, we can inves-
tigate tile stability of the interface as follows. The pulling velocity introduces an advective
term into the heat equation, which becomes: 

I

O T 1 " 0 1 1

t =(2)

I
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I while the boundary conditions are

T=TH at (z= H), (3)

T=T.-FV.n at (z=i), (4)

and OT
pL(V + Tit) = -k aT (5)

Note that we have already linearized the Stefan boundary condition for small perturbations
by assuming that the normal to the interface is parallel to the z-axis.

In order to non-dimensionalize the equations, we choose to scale lengths with H, time
with SH'/r and write T = TH + (T,,, - TH)0. In terms of these nondimensional variables,
the advection-diffusion equation then becomes

1 a 0 (0()
SOt POzz = V,(

while the Stefan boundary condition takes the form

Sp + rit = -OZ, (7)

where the Peclet number is defined as p = VH/K and measures the strength of advection
relative to diffusion. The remaining boundary conditions can then be written as

0 = 1- yV . n (z = r1), (8)

0 0 (z= 1), (9)

where -y = F/HAT is the non-dimensional surface energy.
eXV6 initially seek a steady state such that 0 = O(z) has no t or x dependence and TJ = 0.

Equation (6) then simplies to
0" + p9' = 0 (10)I and the temperature field in the liquid is given by

0 =1 e-pz  (11)
1 - P

We can then apply the Stefan boundary condition to obtain the Peclet number (and thus
I the interface velocity) in terms of the Stefan number as

p = - log(1 - S-l). (12)

I When the Stefan number is large, we can expand Eqn. (12) in terms of S-' to show
that p S- 1 < 1. Therefore, when we consider Eqn. (6) in the large S limit, we can
discard the time derivative and advection terms (the quasi-stationary approximation) to
approximate the temperature field as

I 9 : 1 - z. (13)
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With this quasi-stationary approximation, we can now perforin a linear stability analysis I
by applying a small disturbance

11= I/iax+a, t (14)

to the interface and letting the temperature field take the form

c = 1- Z + Q(Qx+o t .  (15)

Substituting this expression for 0 into the quasi-stationary form of Eqn. (6), we obtain

/ / 2 = 0, (1()

so that 0 = Asinh c.(1 - z), (17)

in which we have applied the boundary condition at z = 1.

In order to determine the curvature of the interface, we note that for an interfae (le-

terined by the equation !j(x, z, t) = 0, the normal to the surface is given 1).

Vg

IVg"

H e r e , = z - 7 q(x , t ) a n d s oH

n - (1 + ,-t)1/2 (. 1), (18)

while the curvature, K = V • n takes the forim I
V • n I -I/'X!))

Using this expression for the curvature, we can apply the two remaining boundarY U
conditions at the solid liquid interface in order to obtain a dis)ersion relation contr olling

the rate of growth of the individual wavelengths. The Stefan condition gives

(Tii = - 0' = aA cosh o, (20)

and the Gibbs- Thomson condition gives that I

which beco)mes

A sinh o - '= - ai,l. (21)

Combining Eqns. (20) and ax (21), we obtain

A(T sinh o - oA cosh o = -o3- A cosh (v, (22)

from which we immediately have the dispersion relation

a = a coth a(1 - y-i2). (23)
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Figure 3: Plot of the dispersion relation (23) in the case - = 0.1.

This can be simplified in the limits of small and large wavelength perturbations to

3Cr -Ya f
,  az > 24

r { l+a 2 (I - -y), a< 1. (24)

Equation (23) can be used to plot the dependence of a on ct, as demonstrated in Fig. 3. lI

particular, we note two interesting properties of equation (23). Firstly, there is a critical
wavenuiber, cc,, above which o < 0 and perturbations decay in time; the interface is
stable for a > a,. There is therefore a minimum wavelength below which the instability is
eliminated. Clearly,

S= - 1/2. (25)

We can then write the minimum wavelength, A,, in dimensional terms as

A, - = 27r (He,)1/ 2 , (26)

I where

= pL AT - H (27)

I is the capillary length. The minimum wavelength is therefore proportional to the geometric
mean of the capillary length and H, which is a lengthscale for thermal diffusion. Typically

I for ice we have
f o r i=e w (3 x 10 - 2 N m - 1 ) x (3 0 0 K ) _ 3 0 n m . (2 8 )

(103 kg n - 3 ) x (3 x 105 J kg - 1) x (1 K)
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In typical laboratory experiments, H - 10-1 in and so we find that the mininum wave- I
length A, - 300 pm.

Secondly, we observe froin Fig. 3 that there is a maxiially unstable wavenunliber, O,
provided that y < 1/3. Expanding (23) for ct,, > 1 and requiring that o'(a,,) 0, we find
that

(m. = (3y) - 1/2 - "C (29)

This wavenumber corresponds to a maxinmally unstable wavelength A,. = vriA.. Since it
is this mode that grows fastest, this is the wavelength that we might expect, to observe in
experiments. Recall also that typically [c 30 nmn and H ,-- 0.1 m so that

H 10-' < 1, (30)

and our approxination that a,, > 1 is valid. Finally, we find that, A,1, 0.5 mmi for typical
laboratory experiments.

Student Problem Show that a melting inteiface is stable by considering thc above prob-
Icm with T11 > ,, and V with the opposite sign. (cf. Fig. 2b.)

Solution We note that the system is effectively identical to the previoiis case, except that
now V' = -V and zT' = (IT - 17;,) = -AT, where tilde/no tilde distinguishes betwecmi the e

melting/freezing problen, res)ectively. We also see that/) = -p, S = -S and we can define
7' TH - zT0. Thus when we non-diimensionalize the e(puations (and dropping tildes). v
find that1 00 00 I

S 7)- = V2 ° , (31)

Sp - 'it = -0 (z = T/), (32)

0= +}V.n (z= tj), (33)

and0 = 0 (z= 1). (34)

There is a steady state solution as before, such that

0= 1 ( -P (35)

and uipon applying the Stefan bonndary condition, we find that I
p = log(1 S) (3()

so that P S-' for S > 1.
As before, for large S, we can make a quasi-staionary approxination by discarding tinme

derivative and advection terms in the diffusion advection equation so that:

0 1 -s. (37)
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Figure 4: Photographs showing the development of the morphological instability discussed
here. In the middle picture, pinching is observed leaving inclusions of liquid within the

I solid.

Finally, using this linear approximnation as a basic state, we apply a small perturbation to

the interface of the form
tl iax+ct (38)

along with
0 = I z + Oe i c

(
x + t (39

which yields a similar dispersion relation to the freezing case:

a = -a coth a(1 + -Ya2). (40)

Note that the expression for a is always negative, and so the interface is stable to small

amplitude perturbations of all wavelengths.

* 3 Beyond linear theory: pinching

The morphological instability discussed in the last section is manifested as a fingering in-
stability with typical finger morphologies shown in Fig. 4. As these fingers grow, their
growth cannot any longer be understood by the linear stability analysis presented in the
last section. Instead, nonlinearities become important and the fingers themselves become
unstable to dendritic growth shown in Fig. 4. While the detailed morphology of these fingers
is difficult to understand without detailed numerical simulations, the pinching instability
of the fingers (illustrated in the middle frame of Fig. 4) can be understood by means of a
simple model. This pinching is of particular interest since it results in pockets of fluid being
trapped within the solid. Here we present a simple model of pinching, which is mathemat-
ically analogous to the model of the pinching of a liquid thread developed by Rayleigh and
Plateau.
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Figure 5: Setup showing the one dimensional model of pinching in solidification.

We consider a liquid cylinder of radius (I within a colicentric annllhis of inner and outer

radii a and R > a respectively, as shown in Fig. 5. This is the simplest geometry that will
lead to an instability since in two dimensions the surface energy acts to suppress pinching.
With a third dimension, however, there are two comi)eting curvatures: an axisyimmictric

perturbation in the cylinder radius increases the 'ring' curvature where the radius is smallest
driving fluid away from that point and driving the instability further. We assumne thait the

material properties of the two l)iases are identical.
The interface between liquid and solid is given by

(., Z, t) = ,(z,t) -,.= 0, (41)

where we are assuming that the system remains axisymnetric for all tiimes. The norimial

(pointing from solid to liquid) is then given by

(-1,a.) (42)

1I + a '

so that

Vn - !r 1 d)1 + ( d a )

1 1

-- + a2z -- + a z .

The (equilibrium) temperature along the interface is therefore given by

I1

T , I,,+F ( - (43)
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I This expression has to be combined with the conservation of heat to obtain a complete set
of equations. For long wavelength deformations, the system has time to equilibriate across
cross-sections at fixed z and so we assume that T = T(z). The conservation of heat is
considerably simplified by this approximation. In particular, if Hl,, represents the specific
enthalpy in the liquid/solid phases, then the conservation of heat for an element of height
6z requires that

p5 [7ra 2 5zHl + 7r(R 2 - a2 )zH,] = [q(z) - q(z + 6z)]7rR 2, (44)

where q = -kOT/Oz is the conductive heat flux in the system. Taking the limit 6z - 0, we
find that

p(HI - Hs)-a (7ra2) + 7ra 2p---- + 7r(R2 - a 2 )p - - 7rR2 . (45)

However, by definition we have H - H, = L and (aH/OT)p = cp so that (45) first simplifies
to

pL a (7ra2 ) + 7rR 2 pcp OT = 7rR20 a k aT

and 
then

-aT = -(k ) - pL a (7a2) (46)it pez z t 7R2/ 2tog v

This can in turn be written in terms of the solid volume fraction I = 1 - a 2/R 2 to give

aT a

PCT _ - k + pL- (47)a( t az azra

Note that (47) has the diffusive character of the heat equation that we have solved previ-

ously. However, we now have a source of heat arising from the latent heat produced in the
conversion of liquid into solid. In this respect, (47) is very similar to the conservation of
heat in a iushy layer, which we shall meet in a few lectures' time.

Under the assumption that there are no kinetic effects, T and a are related through the
Gibbs-Thomson equation (43). We can therefore eliminate T from (46) in favour of a an(I
rewrite (46) as a single equation for a(z, t):

pCpF (1-zz) (92 P aa) L 2.
RCP a,)= z (a. (48)

If we perturb the initially cylindrical fluid inclusion then we can write a(z, t) = ao + a, (z, t)
(where a0 is a constant). Substituting this expression into (48) and linearizing, we find that

S0 (ai a 2~ al pL(9
pcp- - 2 - al,zz U 2 al,zz + 2Laoalt. (49)

at \ ao j az2 (aO R2

We can then look for normal mode solutions with a, c exp(iax + at). The resulting
dispersion relation is simplified by non-dimensionalizing lengths with R and times with

29I



I

4 I
Y 2i!

0 I
-2I

0 1 2 a 3 4

Figure 6: The dispersion relation (50) showing the existence of a maximally unstable
wavenumber. Here (I( = 0.25 and S = 10, so that (52) is satisfied.

fl2/,
"  the thermal diffusion timescale. Denoting dimensionless (uantities wit " we find I

that,
i - a2 2

U -2 00

(S + (cpF2-

Where S

is the relevant Steafin number in this problem. This dispersion relation is plottcd in figure
6. Again, considering the behaviour of &T(6) in the limits (- < 1 and (- >> 1 reveals that
there is a maxinmally unstable wavenumber in this problem, provided that

1 -2
S > !ao . (52)

We expect that this maximally unstable wavenunber would give rise to a well-defined
wavelength in exl)eriments.

I
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I GFD 2006 Lecture 4: Interfacial instability in two-component
melts

Grae Worster; notes by Shane Keating and Takahide Okabe

I March 15, 2007

I
So far, we have looked at some of the fundamentals associated with solidification of pure

melts. When we try to solidify a solution of two or more components, salt and water, for

example, the character of the solidification changes considerably. In particular, the presence
of salt can depress the temperature at which ice and salt water can coexist in thermal
equilibrium. This has an important consequence for the growth of sea ice: unless there is

some other mechanism for the transport of the salt field, such as convection, the growth
of the ice is limited by the rate at which excess salt can diffuse away from the interface.
Finally, we will discuss the morphological instability in two-component melts. We shall see

that the solute field is destabilizing and can give rise to morphological instability even when
the liquid phase is not initially supercooled.

1 1 Two-component melts

1.1 A simple demonstration

We shall begin with a simple demonstration. Crushed ice at 0°C is placed in a cup with
a thermometer. We add a handful of salt at room temperature and stir briskly. The ice
begins to melt, but what happens to the temperature?

We notice that there is some melt water in the cup, which helps bring the ice and salt into
contact,, and see a fairly rapid decrease in the temperature measured by the thermometer:

after a few minutes, it reads almost -10°C. What's happening here is not melting. Rather,
we are observing dissolution of the pure ice into the mixture of salt and water. In this lecture,
we will attempt to make more explicit the distinction between melting and dissolution.

1.2 Equilibrium phase diagrams

In Figure 1, we show the equilibrium phase diagrain for a simple 2-conponent mixture, or
binary melt in this case, salt and water. The equilibrium state of a given mixture of salt
and water at temperature T and composition C (i.e., concentration of salt) and at constant
pressure can be represented on this diagram by the point (T, C). The phase diagrai is
divided into regions of different phase; this diagram is "simple" in the sense that there are
only two possible solid phases: pure ice, or solid salt. In Figure 1 these lie along the vertical

axes at 0% and 100% concentration respectively. Apart from these two solid phases, we can
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Figure 1: Equtilibrittm phiase diagram for a solution of salt and water.

also formn a liquid sohution of the two end incmbers (i.e., salt or water), or some liquid/solid
mixture of the two substances. Other materials have more compllicatedl solidl p)1hases and

nieccessarily miore complicated phlase diagrains, which we will examine 1briefly later.I
The curived line inl Figure 1 is the liqttidus, representing the templeratirre at, which at

binlary mlelt, of at givenl composition C canl exist inl eqiflibrium inl both the liquiid and solid

phase. For 0% salt, concentration, the liqvidus temperahare is simly thle melting poinlt ofI
ice O'C -~ while for 100"Y salt, it is 801'C.

W\hen we contaminate pure water at, O'C with a small ailiomit of salt, thme equlilib)rlim

freezing templerature is 10,1vcmde. Thuis, when we added a Small amlounlt of salt to the ice inlI
our exp)eriment, we saw that we still had liquid eveni at templeratures as low as -1' ' I('

Eqjuivalently, one could start with pure. miolten salt, at 801'0 C and contamninate it, wit'll a

sinall amouint of water to lower the melting point. The two liquiduis curves mneet, at, a p)oinltI
(I'E'X, E). called the eut ectic: this is the miinimutm temperature at which solid and( liquid
saltwater canl coexist inl thermodynamic equilibrium1

lf we slowly change the t.empleratuire or composition, the mixture will trace at trajectoryI
onl the phase diagraii, as shown inl Figuire 1 for the case of seawater. We start b)y coolinIg
seawater to -2'C where it reaches the liquiiduis cturve Ti. (C) and starts to freeze. Below

this temperatutre, we start, to formn puire solid ice inl celiilib)riiiii withI seawater of higherI
concentration. As more an(l more solid ice is formied, less water is available and so the salt
concentration increases steadily. We can invert the liquiduis curve T =T 1, (C) to find thle

'According to one popular story, German phNsicist Gabriel Fahiren~heit (1 686i-1736) cbose the l 7pic eui-I

tect ic temnperatunre of water, salt and am mon iumi chiloridle. being the lowest t em peratulre hie could1( acheve it)
his laboratory, as the zero of his epol illnous scale. Both Fahrenheit and Celsius are ce(nt rigrade scales: Alli-
(ders Celsius (1701-1744) chose 1000 C to corresp)ond( with the b)oilinig p)oint of wiaer at, sea level; lahirenhieitI
likewise chose a reliable, ea.s-ily reproducible, st eady temnperatunre for 10001F thle anal temperature o i

horse. It. should Ibe noted, however, th at wi kiptedlia.org lists no less thian six conmpeltintg versionis of t he sm
storv, so at th1e risk of punning, one( shInuld l)e adlv isedl to take Such1 a pocryph1 alI t ales with Ii pillnch of salt
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Figure 2: A more generic phase diagram. See text for details.

composition of the remaining liquid: C = CL (T).
It is worthwhile to extend the simple phase diagram for salt and water to one more

typical of other binary melts, as shown in Figure 2. In addition to the liquidus, there is a
solidus further subdividing the phase diagram. There are now four distinct phases, which
we describe below.I

Region I is a liquid solution of the two end members.
In region 1I, the mixture is in a solid solution, where the end members are mixed on the

lattice scale. An example of this is the silicate compound olivine, (Fe,Mg) 2 Si0 4 , although

the phase diagram is quite different from the one shown in Figure 2. Iron and magnesium
sit fairly equally in the lattice sites and will occur in different proportions depending upon
the temperature. In contrast, salt and water do not form a solid solution, and will exist, in
the solid phase only as pure substances, at least as far as we are concerned in this course.

In region III, the solid solution and the liquid phase coexist in equilibrium.
Finally, in region IV, we have a mixture of crystals of the two end members: i.e., pure

ice coexisting with pure salt crystals. In addition, there are regions of the equilibrium phase
diagram mirroring region III, where pure crystals of one end members coexist with a solid
solution of both end members. The exact location in the equilibrium phase diagram of
the transition to this region, indicated in Figure 2 by a dashed line, is difficult to measure
experimentally, because the compositional relaxation times below the eutectic are on the
order of geological timescales. We ignore such detailed structure in our analysis.

Thus, the equilibrium phase diagram can tell us a great deal about what proportion of
a mixture is in what phase, and what can coexist in equilibrium. However, it cannot tell
us anything about the geometry of the solid phase formed; whether the ice forms in layers,
or a slurry of ice crystals and salt water, or in the form of a mushy layer of dendritic ice
crystals separated by interstitial seawater, as we shall examine in the next lecture. The
microscopic details of the distribution of the phases depends strongly on how you lower the
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temperature; however, the ratio of the phases will not depend oil the history of the inixture. I
1.3 A few approximations

Before we conclude this section, let us introduce some terminology and a few approxima-
tions. Firstly, we shall assume (when necessary) that the liquidius can be ap)roxinmated by
a straight line I

and that the solidus concentration is T, -rnC 
(1)

Cs (T) kDCL (T) (2)

The parameter kD is called the distribution coefficient, and is ap)roxiinately zero for a
salt and water solution. Thus we will assume that the solution will tforin only pure cYstals
of salt, or ice.

2 Solidification of sea ice

2.1 The Stefan problem for a salt water solution

Let us now revisit the Stefan )roblein2 ; this time, however, we consider the case of salt
water in contact with a boundary at a temperature below the liquidus tem)erature of the
solution, as depicted in Figure 3

We denote by Ii and Ci respectively the interfacial temi)erature and ilm(position of the
salt water, to be deternined. We further denand that the ice and the salt water at the
interface are in thermodynaimie equilibrium so that T is the liquiis teIli)erat Ire and

= Tj. (C). (3)

This is in contrast to the Stefan problem where the interfacial temperature was siiply 'v
the melting temperature of pure ice Tn. Here, however, the temlperature at which the salt
water freezes is set by the interfacial concentration of salt. and we shall see that the rate
at which the interface advances is limited by the rate at which we can remove excess salt

from the region near the interface.
The composition of salt inside the ice will be zero, as discussed above; however, we shall

denote it by Cs to be a little more general. The far field tem)erature and (oml)osition of
the sea water are T,, and C(0 respectively. The boundary temperature T7) will be below the
liquidus temperature of the undisturbed solute field: TB < 7I. (CO).

The equations to be solved are the diffusion equation in the ice and the sea water 3
-027(

at= h 2 in a <a an a >a (4)

2Note that in this treatment, we will neglect the effects of both kinetics and surflace energy. Tin latter
case would not arise anyway, ws we are dealing only with a planar interface.

I
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3 Figure 3: Freezing of salt water.

where, for simplicity, the thermal diffusivity K is assumed to be the same in both solid and
liquid. In addition, we must solve for the salt field in the liquid region

I OC _D 0 2C
D ___ in x > a. (5)

As the composition in the solid region is constant there will be no diffusion of salt, there.
I The ratio of the solute diffusivity to the thermal diffusivity for seawater is of the order 10-2

and will play the role of a small parameter in our analysis.
In addition to the boundary and interfacial conditions, we have, as before, the Stefan

condition for the interfacial heat flux:

pLz=kaT -k ( (a)
( pL9=k a- a)+

The final equation in this problem comes from the conservation of solute. The total

quantity of salt must be conserved, so that the area under the composition curve must be
* constant: f

Ca +] C(x, t)dx = const. (7)

The time derivative of this equation is

C'& - C'i + O =0 ()

which, from the solute diffusion equation (5) becomes
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(CI - Ci) + V0C d = (9)

and finally,

(C - Q) a = -E) OC)1

Equation (10) has fornmally the same structure as the Stefan condition: instead of inter-
facial heat flux balancing the difference in heat content (enthalpy), however, equation (10)
represents the balance of the difference in salt concentration with the flux of salt across the
interface.

The solutions to the thermal diffusion equation (4) in the solid and liquid regions are,

respectively,

erf (1)I'=TB + (I 1B) ef2illnx <a (1)

T'= / (1, 1 / c erfc (ql) i 2

erfce(.

Equations (11) and (12) are similarity solutions in the diniiensioIless variahle

x

2 v/1:5)

A dimensionless interfacial position is p, which is defined by

o = 2/tvi t 14)

where, in contrast to our previous analysis, a(t) scales with the solute difflusivity D rather
than the thermal diffusivity ti. The dimensionless parameter p remains to be determined. I
We shall show, a posteriori, that p is 0 (1). Had we chosen a(t) to scale with K instead, we
would find It to be ) (C1), where,

7 r (15)

justifying our choice of the D in equation (14) rather than H,.
The solute diffusion equation (5) and boundary conditions yield the solution

C= C. + (C, - CO) erfc (el) i I > (I
erfc (ea)

where c appears in the arguments because, in the case of the solute, it. is D rather thali K
that should appear in the definitions of the dimensionless variable /I in (14).

Ini addition to the parameter [t, the interfacial temperature I1 and interfacial concentra-
tion Ci will be determined using the Stefan condition (6), the solute conservation equation
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I (10) and the liquidus relation (3). Substituting (11), (12) and (14) into the Stefan condition

yields
IL _T,/ - TB T. - T (17)

C G (ei) -F (el)

where,

* (z) = v/ zeZ2 erfz (18)

* and

F (z) V/TzeZ2 erfcz (19)

I Similarly, the solute conservation equation (10) becomes

C - = - Co (20)

For salt water, c is reasonably small, so let us examine the case of c - 0. The functions

G (z) and F (z) have the asymptotic behaviour

G(z) 2z 2  as z--,0 (21)

H F(z)t:7z as z-*0. (22)

Thus, for small c, the three terms in the Stefan condition (17) are of order 1 : f-2 : CI

arid so, to lowest order, Tj = TB + 0 (c). Inverting the liquidus relation (3) now gives us
the interfacial concentration to lowest order: Ci = CB + 0 (f) , where CB = CL (T]-3) is

the liquidus concentration associated with the temperature of the boundary. The solute

conservation equation (20) then gives

F CB - CO = C I  (23)F() CB - CS

As shown in Figure 4 , the parameter C is always strictly greater than or equal to one,

with equality only for a pure melt. Thus, unlike the problem of a crystal growing into

a supercooled melt, where we saw that for Stefan numbers of less than one there was no
similarity solution, equation (23) always has a solution.

Furthermore, equation (23) implies that p = 0 (1), justifying our choice of the solute
diffusivity D in (14) rather than the thermal diffusivity K. Thus, the rate of advance of
the planar interface is limited by the rate at which we can remove excess solute. Adjacent

to the interface is a boundary layer of thickness 0 (v/Et), as shown in Figure 5. In fact,

seawater does not behave like this because convection will also act to remove excess solute,
which we have neglected here.

I
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Figure 4: Proof that C is greater than or equal to unity. C is defined as the ratio of C,3 - C
to CB - Co. Co is the far-field composition and lies above the solid composition Cs. (/n
is the composition at the boundary and, by wssumption, lies on the liquidus curve. As ice
solidifies it leaves behind a residual of higher composition, so that C1 must be greater than

that of the solution far from the boundary, Co. Thus, the ordering of C, C() and C1 is as
shown in the figure, and C is neccessarily greater thaIn or equal to unity. I

Solid Liquid IT(x,t)To

O(\-Dt)

TL(CO)<

Constitutional supercooling

Ti=TL(Ci)

O( Kt)

Figure 5: Comparison of the actual temperature field and the liqui(us temperature as-

sociated with the compositional field. In the region where the Ti, (C) > T, the liquid is I
constitutionally supercooled.

I
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Figure 6: Cartoon indicating the values of boundary temperature below which supercooling
occurs for a given initial compostion Co.

2.2 Constitutional supercooling

Because the salt field and the temperature field have different scales of relaxation, there
exists tile possibility that, beside the interface, tile actual temperature is below the local
liquidus temperature. Thus the liquid is supercooled relative to its freezing temperature.
Tile critical condition for such constitutional supercooling is that the liquidus temperature
increase more rapidly than the actual temperature as we move away from the interface:

(9T < (OT) (24)

Approximating the liquidus by a straight line TL (C) Pz T - m,C and using our solutions

for the temperature field and salt field in the liquid (12,16) we find that
(-9XT) ", T, - F (p)

T_ T-T 2  (25)

From the asymptotic behaviour of F (z) for small z (19), we can see that the right-hand
side of (25) is typically 0 (E). Thus, generically, the critical condition (24) is satisfied, and
the liquid in the boundary layer is constitutionally supercooled.

Equation (25) can be solved to find the critical curve for constitutional supercooling oi
the equilibrium phase diagram, as depicted in Figure 6. Notice that tile region of constitu-

tional supercooling sits very close to the liquidus (for small e), so that we do not have to
lower the temperature nmch below the liquidus temperature for constitutional supercool-
ing to be prevalent. Note also that it is possible to avoid constitutional supercooling in a
region close to 0% composition. This is of relevance to the semiconductor industry, where
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Figure 7: Temperature an(l conilmsitilonal field oil the equilibrium phIase diagrami.

constitutional supercooling is undesirable as it can give rise to morphological instabilty of'I
a semhicondluctor crystal.

FinallY, we show in Figure 7 hlow the tecipe)ratutre and( conil)osit ion change ais we miove

from the l)oundary at, x =0, through the interface at 3- =(a(t). to the far-field posit ion
at x -oc. Within the ice (0 < x < a-), the tempilerature changes simoothly while thle
-ollll)ositioni is identically zero. As we move across the bound(ary, tihe comIpositionl and

templerature change diisco)ntinuously to the liquidus curve at (C~ i). From the interface,
the two fields change dliffierent ly until they reach their far-field values. Because thle thmernmial
an(l conij)ositionlal diffusivities are dlifficrent, the solute field changes more rapidly thanl thle

thermal field, and so tihe (C, T)-curve dij)s below the liquidus, indicatimng const ituitionial
sul)ercoolinlg.

2.3 Morphological instability of sea-ice growth

As we have already seen in this lecture series, ice growing into a sul)ercoole(d mnelt is uniconidi-

tionally unstable to smnall p)ertuirbtioiis of the interface. When the liquid is conistituitioniallyI
supercooledl, the nmorphlological instablity takes onl some new chiaract erist ics. which we d is-
cuss here in broad termns.

1. As in the case of the Stefan problem, the thermial field has a stabWilizing influence
onl the interface (Figure 8a). Isot hernms are coinjpressedl near I)eaks in the interfalce.

enhancing the hecat flux at those 1)oinlts, an(l rarefracted nmear t roughis, supp)lressinig thleI
heat flux. The heat flux inhibits the growth of ice at the pecaks, while reinforcing it

ait time troughs, stab)ilizing the interl'ace.

2. The compositional field, which was not p)resent in our original Stefan 1)rob)leiii is
destabilizing (Figure 8b). Like isothernms, surfaces of constant concenitration are comni-

I)ressedl near p)eaks, enhancing the flux of solute awayv from thle interf'ace. Thus, the

40



I

I ice can grow more quickly at, peaks because the solute, which inhibits growth, can
diffuse away more quickly, leading to instability.

3. As we saw in the problem of crystal growth into a supercooled liquid, surface energy is
stabilizing (Figure 8c) A divergent normal on a curved interface lowers the equilibrium
temperature near peaks and raises it at troughs, giving rise to a heat flux from the
troughs to the peaks. As in the case of the thermal field, this stabilizes the interface.

t isotherm
Liquid 

A

Solid

(a) Thermal Field is stabilizing

I +Solute is removed quickly.

Liquid A

Solid

I (b) Compositional Field is destabilizing

Liquid LowT

High T
* Solid

(c) Surface energy is stabilizing

Figure 8: Mechanisms contributing to the morphological instability in sea ice.

These three mechanisms operate on three different lengthscales: in decreasing order
they are the thermal diffusion lengtliscale, the compositional diffusion lengthscale, and the
capillary lengthscale. Thus, the interface is conditionally nstable: the interface may be
unstable, marginally stable, or completely unstable, depending upon the precise lengthscales
involved.

The condition for instability can be translated into a critical solidification rate, as shown
in the neutral stability curve in Figure 9. Likewise, we can plot the critical solidification
rate Vc as a funtion of the initial composition of the melt CO(Figure 10). For a given
value of CO, the interface is stable for sufficiently low solidification rates (typically around
I/lltms'), but as we increase the solidification rate, the interface can go unstable. If we
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increase the solidification rate more, to say lms- ', the interface can be stable again. Such I
rapid solidification is generally not of interest in ice studies, but is relevent to spot welding.

VI

unstable U
I

stable I

Figure 9: Neutral stability curve for the morphological instability. Here, V is the soliditi-

cation rate and a is the wavenumber.

ye

unstable

stable

SCO I

Figure 10: Critical solidification rate versus initial concentration of the melt.

Student Problem

Consider a lump of sea ice floating in the ocean. Both the ice and the sea waler are at
uniforn temperature I o = -2'C, say, such that, TO is greater than the liquidus t ciliperat rcu
of the far field concentration Co. There is no gravity, so convection does not play a role.
What happens, and how quickly?
Solution:
By solving the diffusion equation for the concentration field, we get,

erfc(x/2 vDt) (x > a), (26)

(C- erfc(a/2 VDt)
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I where D is the diffusion coefficient of the concentration field. On the other hand, we have
the concentration conservation:I ac (27)

S-C,& = D-0x la+o (7

Therefore,

a C Co D 1 ea 2 /4Dt (28)

IV 7rt erfc(a/2v/Dt)

Because Co > Ci, < 0: the ice is dissolving. Because of the absorption of the latent heat,
the systen cannot be isothermal: the temperature is depressed at the phase boundary.

I
I
I
I
I
I
I

I
I
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GFD 2006 Lecture 5: Formation of mushy layers I
Grae Worster; notes by Shane Keating and Ian Eisennin

March 15, 2007 I

1 Dissolution versus melting U
In this lecture we will try to elucidate the difference betweeni melting and dissolution of
a solid in the presence of a two-component liquid mixture. We will consider pure solid

ice at tem)erature T-,, < T,, which is brought into contact with salt water that has a
temperature higher than the liquidus tem)erature associated with its salt concentration
Co: 7", > TL (Co).

The solution to this )roblem is very similar to a result from Lecture 4: the temperaturc
and( composition fields in the liquid and solid admit the similarity solution

T/c + (1/, - T-") erf (eij) 1 < It (ice)

T =) erfc(-t)) (I)

{Co + (C, - C'o)-erfc (-c) " > (liquid)

erfc (it)

er/ 2fc , 

2 \IDL
a -(4)

The parameter c VD/K is assumed much less than unity. Rearranging (4), the interface
location can be written as a

(1 = 2ti DL. (5)

hae seek the tinme evolution of the solid- liquid interface. From conservation of solute we

h a eC ,,= - D O C )6

Substitution of (2) and (5) into (6) yields ( 
I

Ci C (7)1,- - F (it'()
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I where F (z) - Vze 2 erfc (z).
The initial concentration in the salt water is Co, and as it is diluted by ablation of the ice,

we expect Ci < Co; hence F (/u) is negative. It is clear from Fig. 1 that this can only occur
I for negative values of p. Thus a (t) is receding in the negative x-direction and the picture

of ice ablation causing reduced salt concentration near the interface is self-consistent.
The Stefan condition here is

pLa = k [ Ta (8)
i a-

Plugging in (1) and (5) leads to

D-L (T - T_, 0 ) e- 2""2  (Tj - -') _22 (92

-- RK c P cp Vr7erfc (-qtI) -- /erfc (cit)(9

We can simplify this result using the function F (z):
L I i - I-,, T , - T ,' ( w)- ____- F - i (10)-- F (qt) F (-qt,)*

F(z), -z<<l F(z), -z=O(1)
0 .5 .. ................... . 0 ......... : ........ : - " - -

W ........ . .-0.5 ....... . . -20 -

-20

- 1 .5 - ..... .... ... . .... . ... ...
I -1i I

-0.5 0 0.5 -1.5 -1 -0.5 0 0.5 1
z z

i Figure 1: The function F (z) =- v/7rze 2 erfc (z) appearing in (7) and (10). The function
is plotted in two different ranges of z, and approximations for -z < 1 and -z > 1 are
indicated by gray dashed lines.

The similarity variable It is unspecified at this point apart from its sign (/I is negative
since we are considering ablation). In the following subsections, we will find two different
mechanisms for the ablation of ice - dissolution and melting - which occur for different
ranges of It. A summary of the results of the remainder of this section is presented in Table
(1).

1.1 Dissolution (=O (1))

Let us consider first the case where p = 0 (1). For small z, the function F (z) =v/r z+O(z 2 )

(see Fig. 1), so that the Stefan condition (10) becomes

L (T i - )u--) o (E)). (11)
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___ __ ___ __ Dissolution Melting
Parameter scaling -P= 0 (1) -p 0

Interface position a =0 ,IDt) a = 0 ( VKt)
Interfacial temperature §1 < 1i'm Ti 'm- T

Ablation limited by Solute diffusion Heat diifusioll

Table 1: A comparison of the two dififerent ablation inechanisms: dissolution and melting

Mlultiplying both sides by c leads to

0=ii - i T C + 0O(). (12)

Thle interfacial temperature is thus approxinately the mecan of the far-field temllperature]

Tj= I +i T-c) + 0(c). (32

Since thle interface temp)erature is assumed in equilib)rium, it, must lie onl the liquidus,I
71~ (Cj). The liquidus is a decreasing function of salt conicentration (for concentnit ion

less than CE2), and concentration in the liqunid at the interface is Ci > 0, 5o thle solid- liquid

interface is colder than the salt-free melting temperature, '17 < I'.It is therefore clear.
that, thle interface temlperature is too low to melt the ice simillv by mecans of' hea t transfelr:
thme ice requires the lpresenice of the solute field to depress thle local liquidus temipenatumre
sufficiently in order to chianige phase. This situation is dlepicted in Fig. 2.

______ IIc

SOLID x=a(t) x=0 LIQUID

Figure 2: Dissolution of sea ice. Ablation rate is c ontrolled by thme tranisport, of salt iii the
liquid.

As we canl see from Fig. 2, thle thickness of the mielt layer (a(t) is of the saime order as
the thickniess of the compositional boundary layer (Dt): this is indicated by the fiact that,

'Note that in Student Problem 4 the solidl ice and1( liq1uid sea water were hot h at, the samne tenwmeratur

(T,= T,~). In this situation, the interfacial temperature Tj is dlepressed b)elow thle 6ar-hfeld tel)eraturs
by an 0(t) correction, as implied b)y (12). It is this 0O() term which we calcullatedl.
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/t 0 (1). The rate of dissolution of the solid layer is limited by the rate at which we can
supply salt to the interface: without enough solute, the liquidus temperature of the water
adjacent to the interface will not be sufficiently below the actual temperature of the waterI and the solid ice cannot change phase. Thus, this is truly dissolution in the sense that the
phase change from solid to liquid requires the presence of the salt field.

The phase diagram for this process of dissolution is shown in Fig. 3.

T
TT,

0 C, COl II -

Figure 3: Phase diagram for dissolution. Solid curve represents the trajectory in temper-I- ature vs concentration space from the solid-liquid interface to the liquid far field; contin-
uation of trajectory on solid side of interface is indicated by dashed line. Diagonal line
indicates liquidus.

In reality, gravity can play an important role in transporting solute to the interface via
convection on a faster tiiescale than that given by diffusion alone. In the next lecture we

will examine a situation incorporating convection.

1.2 Melting (p ( = OF1 ))

For the case of p - el the interface will advance at a rate proportional to ,Kt. In this
situation, ablation of the ice is controlled by heat transfer. In contrast to the previous

section, this is ablation caused by heating the material above the freezing temperature and
hence is true melting. In the case of dissolution we used a small -z approximation for F(z)

in (9); here, we will use a large -z approximation for F(z) in (7). For -p, > 1, erfc(p) 2,

and we have (see Fig. 1)
F(p) -27r/ ep 2  - i t > 1. (14)

Inserting this result, (7) becomes
Co

Ci Ce' (15)2 7rAC1,
2

which approaches zero exponentially quickly as JJ -* oc. Thus, the interface temperature
is very close to the melting temperature of fresh water: Ti = TL (Ci) Z TL, (0) = T,,. As

can be seen from Fig. 4, the interface recedes at a rate proportional to vfKt, leaving behind

a salt-poor melt layer and a compositional boundary layer at x = 0. Note that the slope
in the temperature field changes discontinuously as it moves through x = a (t) due to the
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release of latent heat. In the dissolution case this was an 0 () effect, but here it, can be I
quite significant.

!I
• IT,: <T...

I
SOLID x=a(t) x= LIQUID

Figure 4: Melting of sea ice. Ablation rate is controlled by the transl)ort of heat in the
liquid.

The phase diagrain for this scenario is depicted in Fig. 5. Note that no constitutional
supercooling is possible during dissolution or melting of sea ice.

T I

0 C, Cn C

Figure 5: Phase diagrain: as in Fig. 3, but for melting.

2 Mushy Layers H
In Lecture 1, we saw that as a planar boundary solidifies into a supercoole(t melt, the inter-
face is inor)hologically unstable to perturbations with a small but finite spatial wavelength.

For the case of a binary melt, we saw in Lecture 4 that it. was not, necessary to supercool the
liquid: differences in the rates of diffusion of heat and solute can give rise to a region where
the actual temperature of the liquid is less than the local liquidus tempcrature associated

with the compositional field. This phenomenon is known as constitutional S'ul)ercooling and
triggers morphological instability of the interface.

The evolution of the instability is depicted in cartoon form in Fig. 6. Initially small
sinusoidal perturbations can be treated using weakly nonlinear analysis (which we do not
consider here): it is observed that troughs narrow into crevasses while peaks become broader
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I and flatter. Experimental and numerical studies show that the instability proceeds via tip-
splitting and side-branching until a matrix of fine dendritic crystals is formed. At this
point, we must abandon all hope of following the exact solid-liquid interface and treat
these crystals as a region of mixed phase: a so-called mushy layer. In the case of sea-ice,
the crystals have a scale of about a millimeter; we are generally interested in scales of a
meter or more, so it is appropriate to seek an averaged description of the mushy layer. We
consider some arbitrary control volume containing representative elements of both solid and
liquid, and we average over scales intermediate between the fine scale of the solid-liquid
interface and the macroscopic scale of the sea-ice.

|A
I LIQUID

Figure 6: Evolution of the morphological instability

As we saw in the previous lecture, there are three natural lengthscales that characterize
the morphological instability driven by constitutional supercooling: the thermal diffusionI lengthscale is assumed much larger than either the solutal diffusion length or the capillary
length. Thus, we may assume that the temperature field has enough time to relax to
equilibrium between the solid and liquid phases within the mushy layer. The smallest scale,
the capillary length, is much smaller than the mesoscale homogenization and details on this
scale will be averaged out. Opinions differ, however, on whether the homogenization scale
should be larger or smaller than the solutal diffusion lengthscale, and this, as we shall see,
can impact the exact form of the field equations.

We seek an averaged description of the following fields:

* Mean temperature of the solid/liquid mixture T (x, t),

e Concentration of the liquid phase C (x, t),

I * Volume fraction of the solid phase 0 (x, t).

Averages will be taken over the control volume D bounded by surface 6D and with unit
normal n (Fig. 7).

We begin with conservation laws for this control volume. Here we will present only the
calculation for conservation of mass. From continuity,

- pdV I -pn udS, (16)
dtJ fo D

-- where 5 is the average density in the mushy layer,

P = PsO + (1 - 0) P1. (17)

_I
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LIQUID

Figure 7: Control volumlle containing solid kind liquidl in i amushy lajyer.

Here the (lensities of the solid and liqulid phases are p,~ and pl, respectively' . NWe 'ussuille
that the solid matrix is rigid and stationary 2 (although the ice c!an contimue to grow), and(

that the only thing moving is the liquidl. Thus, the mushy layer is a porous miediumn, alld
the velocity u in (16) is the Darcy velocity, or the mean volume flux of the liquid per littit

area of the med(iumT1. 'The Darcy velocity is equal to the liquidl volume trict ion timtes tile

interstitial velocity, tt (1 - (5),it.
Averaginig over the control volume D and applying the (divergence t heoremn, (17) becomes

-~ + V.(Plu)) dll=O. (8

Since (18) is true for anl arlbitrary control volume D, the integranid itself must he zero,

(p - PI) 00 + PIV -u =, (1m)

wvhere wve have eilploYed a Boussinesq approximation, assuming that the (densit ies oifliquid
an(l solid phlases are constant. Introducing the density ratio p)aramecter r p/',(19) call

be rewritten as the divergence of a non-solenoidal velocity field,

V.- u = (1 - r) 06(2()

hus, if thle solid fraction 0 is increasing (e.g., salt water is solidifying inlsidle sea ice).
then the fact that, ice has a lower density than water means that, the salt watecr will be

squleezedl out of the porous medium (we will neglect changes in density cmisedl bY salinuityV
gradients). This phleniomtenton is known as brine expulsion in sea ice.

2 hll Study in g processes ill large ice sheets, one mnight needl to worry about, (com1paction and1( defmt' ion l

of the ice matrix. F"or example, fresh melt water beneath anl ice shelf canl depressurize and form ice crystals

that, "snow" upwards onto the bottom of the shelf. This layer canl be comlpactedl signihicantly, anll( is
case the mnatri x deform ationl can not, b e neglected.
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I In a similar way, conservation of heat leads to

+ Picou VT = V. (kVT) + p,L-. (21)I , ot

Overbars represent mesoscale averaging. The gradient lengthscale of the temperature
field is assumed much longer than the homogenization scale, and so is not averaged over.
The average specific heat capacity is given by the exact expression

pCp = pscp + (1 - 0) picpl, (22)

H where cp, and cpj are the heat capacities of the solid and liquid phases.
The latent heat capacity is the difference in the enthalpies of the solid and liquid,

I L(T, C) = HI - H. (23)

While L is in general a function of both T and C, we will assume that the mushy layer isI in thermodynamic equilibrium, and hence the temperature field and the compositional field
are linked by the liquidus relation. This allows us to write L as a function of only 7' or C.

The volune-averaged conductivity will, in general, be a function of the solid fraction,
although what this functional dependence is depends upon the geometry of the nmushy layer.
For laminate layers, one can derive exact expressions for the conductivities: For the case
where the heat flux is parallel to the laminar surfaces, the conductivity is

k = kll =k + (1 - O) kj parallel heat flux, (24)

while for a perpendicular heat flux,

k- = O/k, + (1 - ) /ki perpendicular heat flux. (25)

I It can be shown that for any porous medium the conductivity is bounded by the two
laminar cases described above, so that

Sk- < T < k1j, (2(i)

as depicted in Fig. 8.
In the case of mushy layers in sea ice, the primary dendrites are plate-like and tend

to align themselves with the prevailing temperature gradient: in this case, we shall take
k = kl (0) to be a good approximation.

II When considering the conservation of heat (21), the large separation of scales between
the microscale and the thermal gradient length led to a robust averaging procedure. As
mentioned earlier in this section, the separation of scales in the case of the solute field is less

I obvious. Thus, one representation of the solute conservation equation is (for liquidus/solidus
distribution coefficient kD = 0, as is approximately the case for sea-ice):

a1 c U -+ VC=V.(DVC)+ rc . (27)

Ambiguity arises in the first term on the right-hand side of (27): by including it, we are

implicitly assuming that the solutal diffusion lengthscale is larger than the homogenization
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ks k

I
~I

Figure 8: The conductivity of a porous medium is bounded by the laminar cases of par- I
allel and perl)endicular heat flux. The range of possible porous medium conductivities is
indicated by the shaded region.

scale. If, on the other hand, the diffusion scale is coroparable to or smaller than the scale
on which we are taking volume averages, then this term vanishes. Indeed, the argument
is related to where one draws the interface between the mushy layer and the liqui(l phase,
which in turn raises questions about how one describes the mushy layer itself. In what
follows, we shall scale out the offending term; however, it is worthwhile noting that this is
a subject, of ongoing investigation.

As in the case of the volume-averaged conductivity, the salt diffusivity takes the f0)rul

D = DI (1 - 6) = D11. (28) I
The final term in (27) describes the increase of the concentration in the interstitial region

as the ice grows.
We further make the assumption that the mushy layer is in thermal equilibrium so thai

T = Tj(C) (2))

everywhere in the mushy layer. Hence the salt field and the thermal field are tied to one
another inside the mushy layer by the liquidus curve, which precludes the possibility of any
double-diffusive convection.

Finally, we require a trans)ort equation for the liquid velocity u. Since we are describing
the mushy layer as a porous medium, it, is appropriate to use Darcy's equation for flow
through a )orous medium:

pu = H (-VP + pg). (30)

Here, i is the kinematic viscosity, P is the pressure field, g is the gravitational acceleration,
and H is the permeability of the mushy layer. The latter will in general be a function of 4)

and geometry: we take it to be constant for simplicity. The introduction of the gravitational

field introduces for the first time the possibilitity of convection, altering the heat flux fromn I
the liquid region (see later lectures, and Student Problem 5).

Equations (20), (21), (27), (29) and (30), along with the relevant boundary conditions

and the equations for the liquid region, can be solved to obtain the teml)erature field, I
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I concentration field, solid fraction and fluid velocity in the mushy layer in a frame of reference
that is fixed with respect to the rigid stationary solid matrix. We consider solutions of these
equations in the next lecture.

Student Problem 5: Effect of convection on melt rate for ice
I in pure water

Problem: Consider pure (i.e., salt-free) water with far-field temperature T, > T, which is
forced in an inviscid convective flow against ice at temperature 7' =T"' 0°C (Fig. 9).
Work in an axis system that moves with the ice edge, such that the ice-liquid interface is
always at z = 0. In this frame, the water velocity field is

u = (Ex, -Ez). (31)

What is the melt rate V of the ice interface?

z WATER

u ExR - E:i
T, >T1,

Figure 9: Student Problem 5. What is the melt velocity of the ice interface in the presence
of convecting water?

Solution: We begin by seeking the temperature field in the water. In the moving axis
system, T should be stationary in time; we also assume it is homogeneous in x. Introducing
a dimensionless variable O(z) to describe the z-dependence of the temperature field, we can
write

T - T(z) = (T. - T)O(z). (32)
I Equivalently,I T(z) = T, - ATO(z), (33)

where we have defined AT = - Tmn. The water temperature boundary conditions are
I now

0(0) = 1 , (34)

0(z - 00) = 0. (35)
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The temperature field in the water satisfies the diffusion equation, I
0 +uVT V 2 T. (6) 

Inserting (33) and (31) into (36) yields

O"() - E O'() (37) I

The solution to (37) subject, to (34) and (35) is, by analogy to similar differential eqImations
solved in )revious lectures,

O(z) = erfc ()(8
w ith A = /7 FA

Given this temperature field we can find the interface velocity using the Stefan couditiou:

pLV = -k 
(39)

The derivative of the temperature field from (33) and (38) is I
Oz 0+ A- -ATO''(0) = AxT__2q (,10)

where we have used the definition of the erfc function to evaluate the derivative. Insertin g

(40), A- = pcPH (the definition of H.), the Stefan number S - L/P(AT), and the dehinition

of A, we can solve (39) to get the interface velocity

_ _ II 2 -
V =- - (41)

As in all examples, the ice melts faster if the Stefan number is small. We see iere t hat
the velocity of the melting interface depends on the square root of the convection velocity
times the diffiusion rate (a,s we might have guessed from (limensioual analysis). The flow
toward the phase boundary compresses the thermal boundary layer, which, t)y dtilensiolial
arguments, has thickness 6 - /B-E. The compressed boundary layer leads to a steeper
tem)erature gradient, thereby enhancing the heat flux from the liquid that causes melting.

II
U
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I GFD 2006 Lecture 6: Idealized mushy layers

Grae Worster; notes by Devin Conroy and Rachel Zammett

March 15, 2007I
I

1 Introduction

In previous lectures we considered solidification at a planar boundary, and we found that in
this case there was the possibility of constitutional supercooling in the liquid region ahead of
the solidification front. Such constitutional supercooling causes morphological instability of

the phase boundary, and the interface evolves until a 'mushy layer' (region of mixed phase)
is formed. A mushy layer is modeled as a two-component, reactive porous medium. We
have also seen that the growth of a mushy layer is governed by tile rate of thermal diffusion.

The morphological instability of the interface, caused by constitutional supercooling,
increases its specific surface area, and thereby enhances the latent heat release, leading
to a temperature that is greater than that obtained for a planar boundary. Increased
specific surface area also enhances the release of solute from the solid, which increases the
concentration of the interstitial fluid; this increase in concentration acts to lower tile liquidis
temperature in the mushy layer.

Therefore, if a region of constitutional supercooling is present in a mushy layer, the
liquidus temperature in the interstitial region decreases, due to enhanced release of solute,
and the actual temperature increases, due to the enhanced release of latent heat. These
telnperature changes continue until the region of supercooling in the mushy layer has been

eliminated (as shown in Figure 1); the temperature and the liquidus temperature in the
mushy layer evolve until they are equal. We therefore assume that throughout the mushy

layer the temperature is equal to the local liquidus temperature.
Our goal here is to establish the position of the interface between the liquid and the

mushy region (and also the solid and the mushy region), and to do this we treat tile nmushyI region separately as an inhomogeneous porous medium. We therefore have two unknown
boundaries to determine as part of our solution.

I 2 Governing equations

From lecture 5, we have that tile governing equations describing the evolution of the meanI- temperature T(x, t), mean concentration of the liquid phase C(x, t) and solid fraction O(x, t)
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1,(C) T(x,t)

LIQUID

- - - - -- -- - -- - -- - -- - - -- -- -

MUSHY L-AYER

SOLID

Figure 1: Schenmatic representation of the effect of increased sp)ecific surface area on a region
of conistitutional supercooling in a muIshy layer. As the specific surface area incremses, eni-
hianced latent heat release increa.ses the temperature, while enhanced release of solute lowers
the liquidlus templerature. Thus the temperature reaches an eqilibrium where T = 1 L()

this equilibrium is shown by the (lashed line which lies between the original templlerattin,
and liquidus tem iperatutre curves.

in a mushy layer arc

L)t

T C07+pi VT= V -(kVl')±+p,L 00(2)I

(I1- ) 0C+U-VC = V -(fVC) +rIC ()

at' = TL(, (l) I 4
Itu = = l1(-Vp + pg), (5)

where r =p,lpl and the remaining symbols have their usual mneaning (as dlescrib)ed ini

p)revious lectures), and we have assumie(l that the solid phiase is pure. Equations (1) (3)
arise from conserving mass, heat and solute. Equation (4) describes the assumpIlt ion that
the temperature and concentration of the interstitial liquid lie on the liquidus, mud thle fial
equation (5) is the transport equation for the Darcy velocity u.

If we considler the case in which the solid in the mnushy layer (ice) is growing, thlen noting

that p, < pl, equation (1) shows that the velocity field will have at positive (livei-ge'llcc. NVe
have an adivection-diflusion equation (2) to solve for the temperature, which is forced by*
latent heat release in the mushy layer. We also have an advection-diffusion equation for the
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I solute (3), which is modified by a source term to reflect the increase in concentration of the
interstitial fluid as a result of the formation of pure ice crystals.

We axe interested in dynamically generated fluid flows, particularly under the action of
gravity, and therefore use Darcy's law (5), which states that the fluid velocity is proportional
to the negative pressure gradient.

Equations (1)-(5) are solved in the mushy layer; the Navier-Stokes equations coupled
with advection-diffusion equations for heat and solute are solved in the liquid region, while
we consider pure diffusion in the solid phase.

I 2.1 Internal Disequilibrium

In earlier lectures, we saw that for the kinetically driven solidification of a planar interface,

the normal velocity of the phase boundary could be described by

= G(Ti, - T), (6)

I where G is the kinetic coefficient, which is assumed constant. In the case of a mushy layer,
equation (6) can be modified to

I = GA[TL(C) - T], (7)

where A denotes the specific surface area of the internal phase boundaries in the mushy

layer. Thus if T $ TL (C) in the interior of the mushy layer, the surface area A increases
and as the product GA becomes large T - TL(C).

I 3 Interfacial conditions

To generate boundary conditions for the governing equations, we apply the conservation
laws at both interfaces. The first interfacial condition, derived from equation (1) is

[u.n] = -(1 - r)v,[0]. (8)

In most circumstances, 0 is continuous between the mushy layer and the liquid, and therefore
[0] = 0. At the interface between the solid and the mushy layer, however, there may be a
discontinuity in 0, and we would expect only to be able to impose continuity of P at one

boundary as there is only one partial derivative of 0 in the governing equations.
The second boundary condition is analogous to the Stefan condition, and is given by

p,L[O]v,, = [kn.VT]. (9)

Note that there is no advective term in condition (9) as the equations of mass and heat

conservation imply that [T] = 0 at the interface; it is not obvious, however, that the same
will be true for the mean concentration, C.

The third condition, applied at the interface of the mushy layer and the liquid, is

Rv, - u.n)C]l + CmOv, = [-Dn.VC]l, (10)

The subscript denotes evaluation in the liquid; m denotes evaluation in the mushy layer.
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As we have homogenized the nmushy layer on some scale, we cannot interrogate it on I
a length scale that is smaller than this. In deriving these interfacial conditions we can
therefore no longer consider the interface between the mushy layer and the solid or liquid
phase to be a line; instead, we must consider it, to be a region with a thickness that, is I
comparable to the homogenization scale, 6.

Boundary conditions (8) and (9) are robust in this sense; condition (10) is nore contro-
versial, and depends on the relative sizes of the homogenization length scale and the length I
scale of diffusion, ID. The choice 6 < 1D allows the retention of solute diffusion in equa-
tion (3), which means that the mean concentration of the liquid phase, C, is continuous.l
Boundary condition (10) may therefore be simplified to I

C,..0,v = [-Dn.VC],,. (11)

It is also possible to suppose 6 D and consider the limit where D/ - 0, but more slowl v
than 6 - 0. In this case, the term representing diffusion of solute is removed fron equation
(3), meaning that we can no longer impose continuity of C. An analogous sitiation occurs
in fluid mechanics if the viscosity of a fluid tends to zero. In this case it is no longer possible I
to enforce continuity of the velocity field, and it is therefore possible to obtain shear layers.

The three boundary conditions (8) - (10) conie from the conservation of mass. heat aind

solute, equations (1) - (3). However, these iust be sup)lemented due to the presence of the I
additional dependent variable 6. Early work imposed 0 = 0 at the interface and required
o to be continuous, but for certain parameter regimes the problem is then mthcliiatically'•

ill-posed. There is also no good physical justification for this condition; again, it is not I
possible to interrogate the system on length scales which are smaller than 6, which implies
that a junip in 0 is allowed.

Instead, we return to our earlier descriptions of a solid liquid interface. In this case. I
we saw that there was the possibility of forming a region of constitutional supercooling,
and this (trove the morphological instability at the interface and thus the formation of tie
nmiushy layer. The criterion for formation of such a region of const,itutional supercooling was I

OT 1 , (12)

andasOn 
On

and as the mushy layer thickens, this inequality tends to an equality. We therefore make the

assumption that the mushy layer grows just quickly enough that any residual supercooling
in the liquid ahead of it is eliminated, which allows us to write the final boundary condition
(assuming the interface is solidifying),

OT -- TJn (13)

On , on
The final boundary condition consists of a specified teiiiperature at, the solid minshiy layer
interface. We now have a complete set of equations (1) (5) with boundary conditions (8).

(9), (10) and (13). This system has solutions for all paranmeter values.

4 'Ideal' mushy layers

The aim of this section is to simplify the governing equations for the evolution of a nmushY

layer while retaining all the necessary interactions. To do this, we make the following I
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I
I

TL(C)

C

Figure 2: The trajectory of T and C in the phase diagram for a mushy layer (solid curve)
compared with that when there is a planar solid liquid interface (dashed curve). The
liquidus temperature TL(C) is given by T = Tm - mC for some positive constant. m. The
temperature in the mushy layer follows the liquidus curve and thus there is no possibility
of constitutional supercooling. Note that in this case the temperature field in the liquid
region emerges at a tangent to the liquidus. In contrast, the temperature field in the solid
liquid system has a portion lying below the liquidus and thus constitutional supercooling is
possible.I
assumptions. Firstly, we assume that the densities of the solid and liquid phases are equal,
i.e. Ps = pl. Thus we have that r = 1, and conservation of mass, equation (1), gives that
the velocity is solenoidal.

We next assume that D < K, which allows us to eliminate the second derivative term in

the conservation of solute equation. Although this may appear to be a singular perturbation,

it is justified because we have a relationship between T and C in the mushy layer (equation
(4)), and we retain the second derivative in the conservation of heat equation (2). Finally,
we make the assumptions that properties are independent of phase and that the system is
above the eutectic temperature.

Using these assumptions, the governing equations (1) (5) become

L OTa- +u.VT = 'V2T + (14)

U(1-0) C+U'VC = Cao (15)

T = TL(C), (16)

P = ro(-Vp+pg), (17)

V.u = O. (18)

Here we assume that K is constant in the ideal mushy layer and also that p is constant; later
we will consider p = p(T, C).
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Liquid layer l =

. . ...... z--h

f, d'" hiT

Mushy layer C,xff- =H,,L

z=:O

Figure 3: Growth of a mushy layer from a cooled boundary at z = 0. The u11sh liquid
interface is at z = h(t) and the position of the cooled boundary is at z = 0.

The above assumptions can also be used to simplify the boundary conditions: during
solidification. equations (8), (9) and (10) become

[u.n] 0, (19)

[010 = o, (20)

[n.V7]%, = 0. (21)

In this case there is no solid layer: only the nmushy layer and the liquid region above it.

5 The case of no flow

When there is no pressure gradient, in the mushy layer and convection is not possible be(ause
there is a stable density field, the Darcy velocity is zero. In this Case there is 110 fh)w iin

the system and the advective part of the transport equations (14)- (18) can he eliminated
to obtain

0'L O0
01 _KV21, 

+ -L -  (22)Of CP Of'

0C _ 5 (2)
(1U-t0)-' (23)

T = ',(C). (24)

The second of these equations can be rearranged and integrated as follows

0 [C (I ) (I - 0) C = (x,(25)

implying that the total amount of species C is constant in time but, variable in space
according the the function (x). If initially this function is constant in the liquid (0(x) =

Co) then equation (25) reduces to

0-Co (26)

C,
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H +3h -+ .N
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I k 0.2
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Figure 4: The plot on the left shows the normalized interface position for the solid-liquid
interface, A,a and the mush-liquid interface, Ab as a function of TL(CO) - TB for experiments

(crosses) and numerics (solid line). The plot on the right shows the solid fraction as a
function of height for numerics (dashed line) and experiments (circles) corresponding to
r = .74.

which effectively constrains the amount of solid by the deviation in concentration from its
initial value. This equation can be differentiated with respect to time to obtain

OP Co OCL(T) Co dCL 1 T
at CL(T) 2  at C 2 dT ' (27)

in which we assume that the concentration follows the liquidus line as a function of tem-
perature. This new relationship for tie void fraction provides closure to the temperature

equation (22), which now becomes

[1 oOL dUL] 07i 0[ 1  C L dT = K V2 2 ,a = CeV 2T, (28)ICPo LTIat
where Cp,eff is the non-dimensional effective specific heat. This is a nonlinear diffusion

equation for T in which the effective heat capacity is enhanced by the internal release of
latent heat.

In summary we have the setup shown in figure 3 with the following governing equations

aT c92 T- = (29))
at
OT a2 T13 Cpeff = Z2

for the temperature evolution in the liquid and mushy layers respectively. In the far field
liquid we use the constant boundary condition T(t, oo) = T,, and at the base of the mushy

layer we use T(t, 0) = TB. As described previously we have the following interface conditions

aT = L7(0), = 0, [T1], = 0, (31)
TL (C- azM
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Cooled from below Cooled from above 3
stable Temperature unstable Temperature

2. No convection 6. Mushy layer

C,, < CE Mushy Layer Thermal and
Heavy fluid released compositional convection

1. Planar 3. Planar
C = A, CE, B no convection thernmal convection I

No compositional effects

5. Compositional convection 4. Mushy layer

Cc > CE in liquid and thermal convection 
light fluid released niushy layer in the liquid

Table 1: Organization of the different convective regimes is explained thoroughly in the I
text. Ill all cases we assume that the density of the fluid increases with the concentration,
C and increases with a decrease in the temperature, T. Here CE is the eutectic concentration
and C., is the concentration far from the phase boundary. 3
at z = It.

In general these equations have a similarity solution with the similarity variable q =

z/2-t and interface position h = 2A/K,t. Figure 4 shows the nmnerical solutions and

experimental results for the nornmalized interface position A as a function of I'L(Q1 ) - I'B
and the solid fraction as a function of height scaled with the moving interface.

6 Solidification and convection 3
During the solidification of a binary melt there are sonic interesting physical feature", suc )
as the formation of mushy layers and the onset of convection, that (el)end on t,he lproperties

of the released fluid and the solidification boundary. In table 6 we organize these feat ures
according to the location of the solidification boundary and the concentration, which in-
creases with density, of the rejected fluid in comparison to the far field concentration. C, 3
We now discuss each of these cases in turn.

1. In this case there is no excess solute produced by the solidifying front and the compo-
sitional density field remains uniform. Since the temperature is lowest at the bottom,
and thus the density decreases with height the temperature field is stable as well. As
a result convection will not occur and the growth rate will procee(d as in the Stefani
problem.

2. Here the concentration of the melt is less than that of the solid all(t iii general a

nushy layer will forl. Since the rejected solute makes the fluid adjacent to the I
moving boundary denser the compositional density field is stable. In addition the
thermal density field is stable., owing to the cold lower boundary, and convection will

not occur. I
3. Similar to case 1 except, that now the temperature is higher at the to) ad therefore

the density increases with height. The therinal density field is mstable anu(d may lead
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T T11 < TL C

Solid T T1, C,,

Convecting z=a(t)
liquid

~F

Iz=H

Figure 5: Schematic illustration of a solid growing into a binary melt, cooled from above.I. Since the density is larger at the top due to a lower temperature, there is thermal convection.
Here F is the flux of heat by thermal convection in the liquid.

Ito convection if the Rayleigh number is large enough.

4. In this case the residual melt adjacent to the phase boundary is lighter than the melt in

I the far field, resulting in a stable compositional density field. On the other hand, the
thermal density field is unstable and thermal convection can occur. This convection
will occur in the liquid only; the mush will remain stagnant.

5. In this case the thermal density field is stable, whereas the compositional density field
is unstably stratified. Double-diffusive convection can occur in the liquid in the form3 of fingers but will not occur in the mushy layer as the temperature and concentration
are constrained by the liquidus relationship and are therefore not independent. There
may be convection in the mushy layer leading to the formation of dissolution channels.

I 6. Here the melt is cooled from above and heavy fluid is released from the phase boundary.
The thermal and compositional density fields are both unstable and will act together
to produce convection. In addition, convection will occur in the mushy layer, whichI may alter the micro-structure of this porous medium. This is the regime for the
formation of sea ice.

- Cases 3 and 4

For cases 3 and 4 of table 6 the convection generated in the liquid acts to transport heat

from the bottom to the solidifying interface as illustrated in figure 5. The Rayleigh number

for this situation was assumed to be large (Ra > 1) and therefore the interior of the liquid

I
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is well mixed up to the thermal boundary layer. The Stefan condition will have the form I
Ps L = -k T- F, (32)

where F is the heat flux from the liquid to the solid. Naturally this heat flux will be a
function of the temperature difference between the interface and far field liquid temperature

and the strength of the fluid advection, given by I
3

(T - TL(Co)]p (33)

Here B is an experimentally determined number, v is the kinematic viscosity, (v is the
coefficient of thermal expansion and g is the acceleration due to gravity. Since we must
conserve energy, the liquid will cool down according to 3

pCp (H -a) OT = -F, (34)

due to the transfer of heat from the liquid to solid.
The position of the phase boundary as a function of time is shown in figure 6 with some

distinct, quantitatively different regimes due to the onset and development of convection.
We can make the quasi-stationary approximation

I', -T1B
k pLi + F. (35) 1

At, early time, labeled 1 in figure 6, the solid thickness is small (a << 1), the growth rate
is large (6 > 1) and the convective flux is negligible. The dominant balance is between
the first and second terms in equation (35) and the solution proceeds as in the planar case 
with a o v/t. Eventually buoyancy forces due to the unstable thermal gradient, doiminate
viscous dissipation and convection ensues (region 2 in figure 6). At. early tines the advectivc

transport, of thermal energy from the bottom to the top is enough to balance the transfer of '
heat away into the solid and the growth rate slows. Later on, the liquid cools down, reducing
the convective heat transfer in the liquid, according to equation (34) and the growth rate
proceeds according to equation (35). At long time, indicated by region 3 in figure 6, the I
temperature of the liquid has cooled down sufficiently so that the convective heat transfer
is nmch smaller than conduction in the solid. The dominant balance is again between the
first and second terms in equation (35) and the solution proceeds as in the planar case with I
a o( Vt.

7 Student problem 6

Determine the position of the interface between the mushy layer and liquid for the constant
solidification rate shown in figure 7. The governing equations and appropriate boundary
conditions in the liquid region and the mushy layer respectively, are as follows

(9T all,=7 K0 2  T(t, oc) = 1, T(t, h) = TL(Co) > h, (36)

-C(T)ra, T(t,0) = T1 , T(t, h) = T],(Co) 0 < z < h, (37)
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a aaxvt

I a x v/t 3

t

3 Figure 6: Interface position of a solidifying binary melt as a function of time. There are
three distinct regimes, labeled 1,2 and 3, which are distinguished by the relative strength
of convection occurring in the liquid region.

where C(T) = 1 - LC'Co/cCL. Along the liquidus line we have the linear expression
CL = Co + 7rT, where m = (Co - CE)l (TL(Co) - Te) is the slope. In addition we have the

I following interfacial condition

i U liquid uT mushy layer(38)

3 at. z = h.

Answer

3 The non-dimensional version of the specific heat can be expressed as

S3 C(T) = 1 - 2 (3!))
( 1 T+21 4 TL(Co) -TE)

where S is the Stefan number and Co/(Co - CE) is a concentration ratio. In the limit
> 1 and S > 1, while S/ = 0(1) we obtain C(T) = 1 - S/ = Q. Note that Q > 0.

For a constant growth rate V we can move the coordinate system by making a Galilean

transformation so that we are in a steady reference frame. Mathematically this is written

ts, x = z - Vt, so that ' = -V-. In addition it is convenient to non-dimensionalize the
equations using the following scales

I T- TL0 -E -IL, Zviz- (40)

3so that equations (36)-(37) become

O" + 0' = 0, o(c)oo= 0, o(h) = 0 z > h, (41)3 /"+20' = 0, 0(0) =-1, 0(h) -0 0< z < h. (42)
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Figurre 7: Setuip for the stuident p)rob)lemn showing the growth of a 1111ushy la yer inlto it liqulidl

fronm a cooled botindarY at z =0. lThe apparatuis is lbeing pillled at a constant veloc)itv
throuigh heat exchangers siwIh that we are in a, steady frame of reference.

The solutions of t hese equiations areI

1 0 = 6 V e h (B)0,, 'j- 1

= cQi, Ie( 1)i 0 < < h. (4-1)

The position of thle interface is calculIated bY iising the flirx condlit ion (38) O'lliqutid(
O'j,j,1Sl1% laver to Obta~in

In I + (45)
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I, GFD 2006 Lecture 7: Convection in mushy layers

Grae Worster; notes by Ian Eisennan and Victor Tsai

March 15, 2007I
I

1 Convection Setup

3 Here we perform the analysis governing the regions 5 and 6 of the table shown in Lecture 6.
Under these conditions we expect convection to occur within the mushy layer. We note that,
under strong convection, channels form within the mushy layer and are called chimneys by
the metallurgical community or brine channels in sea ice. When these channels are discussed
(later), it will be assumed that the scale of the mushy layer and the scale of the channels
are greater than the scale of the dendrites.

We begin our analysis with the ideal mushy layer equations, as derived in Lecture 6.
The results will therefore describe the physics of the convecting mushy layer but will not
agree quantitatively with experiments. Taking

p = p0[I - a(T - 7!) + O(C - Co)], (1)

3 T = TL (C) = To - m(C - Co), (2)

6 T 0- To C-c o
0 - TB -CO - CB'

AT - To - TB, (4)

the ideal mushy layer equations simplify to:

00 + U • VO = K'V20 + SAP (5)

(1- )Ou. V = - ( 0)a, (6)
&t at

u =r [VP + PoXACOg], (7)Ift
where S = L/ (CpAT), = Co/(CE - Co) = Co/AC and 03* = +3 + m a.

'Typically m o < /3 which is the reason for denoting k3* as above. For boundary con-
ditions, we have bottom temperature equal to the eutectic temperature, i.e. T(z = 0) =
T13 = TE. We also have T(z = h) = To and T(oo) = T . These boundary conditions are
for a one-dimensional problem, but, are easily generalized to multiple dimensions.
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I

( ' I
Figure 1: Phase diagraln for near-eutectic approximation. ln this a)proxinmat ion, AC is

taken to be inuch less than Co,.I

2 Near-Eutectic Approximation 3
The near-eutectic approximation (see Fig. 1) is that

>() 3
andS>1 (9) I
with

s = 0(I). (10) 3
Taking this appoxinmation yields V I/{ < I. Thus (6) yields

Oyc DO 11

Substituting this result into (5) and defining Q = 1 + S/K leads to 3
QDO = KV

2 0. (12)

Dt

Equations (7) and (12) are equivalent to those for convection in a passive )orous iedium. I
To solve the equations. we first scale length with h, time with It2!2/,., velocity with

K/ (hM), and pressure with T*ACpogh. Thus, (12) and (7) become 3
00 + U. VO = V 2 0

u = R,,[Vp- ok], (14)

where ,= 3 * A CPOgf11A2 (15)
Ni/!

and v = pl/Po. Now all variables are dimensionless. 3
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I Solving for the basic state (no time dependence or x dependence), we set 0/Ot = 9/Ox =

0 which yields 0 = -1 + z and u = 0. Next we solve the two-dimensional problem with
convection solely within the mushy layer and with a planar interface. Introducing a stream
function for the 2-dimensional velocity such that, u = (V5,, -7p), and adding a perturbation
0' to the base state temperature field, 0 = -1 + z + 0', (13) and (14) lead to

- V 20 ' V )x + ' (16)

V2V = -RmO.* (17)

Assuming no flow at either (planar) interface of the mushy layer, the boundary conditions
m are

O'(z = 0) = 0, (18)

0'(z = 1) = 0, (19)

O (z = 0) = 0, (20)

V)(z = 1) = 0. (21)

One should note that this problem is not realistic since convection in the mushy layer will
induce convection in the liquid above so that boundary condition (21) is not satisfied in
practical situations. However, the problem is still a useful conceptual problem to solve.

To start the stability analysis, we look for perturbations of the form

9' = O(z)ec ax +ot , (22)

7P =(Z)e+at. (23)

Marginal equilibrium then occurs when o- = 0, or by setting o = 0. Substitution with
this condition yields 

(4

d 2 - 2) / = -QRmO (25)

The solution to these coupled ODEs is

9 = A, sin(n7rz), (26)

= B,, sin(n7rz), (27)

( 2 7T 2 +02)2 (28)
02

Plotting -R at marginal equilibrium as a function of a we note that the first instability3(lowest value of -Rm) occurs for n = 1, thus the curve

(7r 2 + a 2)2
Rm = Rb(a) =- a2 a (29)
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Figure 2: Stability of perturbations with Rayleigh numiber R, and wavenumber (I. I
is the boundary between stability (-R, < Rb) and instability (-R"" > I?,) (,Ls fution
of a) as shown in Fig. 2. The ninimuni value of R,((Y) occurs at RVO(() = R, -- 4r 2 . If

R, > R, then instability occurs. I

Summary of key points U
" R, is a l)orous-iediuni Rayleigh numnber and is proportioil to Hh, where H is

perieal)ility of the mushy layer and h is the thickness.

" Rm depends on compositional buoyancy but on therinal diflusivity. In general, the
Rayleigh number is the ratio of buoyancy to dissipation. I

" The critical condition is modified by f= 1 + S/i. so convection is more likely when
S is large. 3

3 Parcel Argument

Consider a )arcel in t.ie mushy layer, and hence on the liquidus, that is mnoved to a (iflerent
region in the mushy layer where the fluid is warmer and saltier (but still on the liquidus).

As is illustrated in Fig. 3, the parcel initially gets warmed to the teinierature of its new I
surroundings; it then dissolves some crystals to increwse its salinity and arrive oil the liq-
uidus. The dissi)ation of buoyancy, then, is through a conibiIation of thernial diffusion aind
dissolution. I

Large Stefan number S or small ineans that there is less phase change )er miit temi-

I)erature change, and hence less dissipation of buoyancy, leading to greater instability. This
is also tihe basic mechanism of channel formation. I

From equation (11), we see that there is dissolution where the temierature of a fluid

)arcel increases. This requires the flow to be larger than the isotherii 1)rol)agatioii sl)eed. 3

I
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I Figure 3: Phase diagram for parcel being moved to warmer region within niushy layer.
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GFD 2006 Lecture 8: Interfacial pre-melting I
Grae Worster; notes by Robert Style and Dominic Vella 3

29 June, 2006 1
I

1 Interfacial Premelting

In the previous lectures, we have concentrated on solidification of ice on large scales. In 3
the last two lectures, we will switch to microscopic scale and study a phenomenon of iw-
melting: the existence of a thin liquid film on the surface of a solid below the bulk freezing
temperature. Although the thickness of the films generated by prenMelting are typically of '
the order of 100 molecular diameters, we will see that they are highly relevant: for examl)e
premelting plays an important role in the generation of frost heave.

The existence of premelted films was first postulated by Faraday and Tyndall in the
19th century in order to explain the observation that snow sticks together when coml)acted,
unlike most granular solids. The idea being that upon contact of two ice grains, the thin
film will freeze at, the contact line to join the two crystals (see Fig. 1). At, the tine however, I
it was accepted that an increase in pressure also caused melting and so in the absence of
proof of the existence of prenielted films, the pressure melting view prevailed. lecentl.y
however, exl)eriments have delivered proof of the existence of the films, and this, coul)led I
with the theoretical evidence showing that pressure melting can not, possibly explain all
observed effects has finally confirmed the validity of Faraday and Tyndall's ideas.

The presence of the film stems from a repulsive force between the solid and the air, (In I
to van der Waals forces. As we will see, this force means that it is energetically favourable
for some of the solid to melt, increasing the gap between the solid and the air. However,
as the system is below the bulk freezing temperature of the liquid, the filn is limited to I
microscopic thicknesses. It is this coImpetition between repulsive force and freezing drive
that determines the equilibrium thickness of the film. 3
2 van der Waals Forces

van der Waals forces are attractive forces arising from fluctuctions in the dipole field of I
molecules giving rise to fluctuations in nearby molecules. These fluctuations cause electro-
static forces to act between the molecules, giving rise to a potential between two molecules
that takes the form I

k120 - r6 )
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I Figure 1: The sintering of two ice blocks upon contact by freezing of the premelted film.

where k1 2 is a constant depending on the properties of molecules 1 and 2, and r is the
distance between the molecules.

2.1 Force between a molecule and an extended solid

From this expression, we can work out the attractive force between a molecule of phase 2,
separated from a semi-infinite plane of phase 1 by a distance It (see Fig. 2(i)). Letting pi
be the number density of molecules in phase 1 and D be the semi-infinite domain of phase
1, we can then integrate in cylindrical polar co--ordinates to yield the total potential

-pIkI 2dV 7 k 12p1

= [r2 + (h+z)2]3  6 3  (2)

2.2 Interaction between a slab and a semi-infinite material

We can now use this potential to calculate the potential per unit area between an infinite
slab of thickness h and a semi-infinite solid (Fig. 2(ii)), by integrating over the molecules

that make up the infinite slab. Integrating equation (2) between z = 0, h, we find that the
potential per unit area is

fh 7r k 12 p1P2 d A12 [ 1 11
= 6 -+d - d 127r L (h+d)2d2j (3)

where A1 2 = plp2k 12 is the Hamaker constant for materials 1 and 2.
From this expression, we can obtain the surface energy when two infinite solids of phases

1 and 2 are in contact. By assuming that there is a molecular cutoff distance d = r12 that

separates phases in contact, corresponding to the repulsive forces between molecules at
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Figure 2: (i) The pot,ential between a inolectile an(1 a seini- infiniUe solid1. (ii) 'Ihli potenit,ial
between a senii infinite solid and a slab). (iii) The dlerivationl of' the potential for a liqjid
filmn. The reference state (LHS) is niodlifiedi to achieve the dlesiredl pot,ential (R1-S).

short, distances, when h -~ oc in the above expressionl, we finid that the p)oteciial p~er lillit
area between t wo seinli-infinit.c p)hases separated l)y a gap of' thiickniess dI is3

0 A
= 127rd 2 '

and letting (I - 72 we obtain the sulrf'ace energy, given bY

= = A 12  (5)1
127ral 2

2.3 Thin liquid films3

We are now in a p)osition to calculate tHie pot,ential of thin liquid filmn of thickness It oin
t,op of a semi -infinite solid. We will find the pot,ential by starting with a reference st,ate of'

known energy andh then modify it, while tracking the energy changes associated withi theI
niodifications (Fig. 2(iii)). In this case, we start with a hialf- plane of solid underlying a
half-plane of liquid. As we have seenl, t his has a surface energy of - I. W\e then reniove t1he

upper portion of liqJuid to leave the dlesiredl configurat,ion. In dloinig so, we have remioved tHlev
energy associated with the attractive forces b)etween tHie renioved chunk of liquid and H ie
filmn, and the reiiioved chunk of liqjuid and the underlying solid. Therefore the energy per

unit area of the new state isI

[ 127h It, 12 ___ (1 + (T6)) (T
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I which (as h > all) gives A(7

const. - 127h2 )

where A = A,1 - All. We note that A can have either sign depending on the magnitude of

A,l and All, so the force acting on the liquid can be either attractive or repulsive, leading
to film rupture or wetting respectively. This force is known as the disjoining pressure and

-- is given by A _ ¢

PT= 67rh 3  Oh'

-- so that the force is attractive when A < 0, and repulsive when A > 0.

2.4 Two materials with an intervening liquid layer

As we will see, in real situations the liquid layer tends to be in between two phases, such
as vapour and solid, or substrate and solid. Therefore, by using a similar argument to that
of the previous section, it is possible to build the potential for a liquid layer of thickness hi
between two semi-infinite materials of phases 1,2 to find that

AI=const - 127rh 2 , (9)

where A = Al + A 21 - A 12 - All can take both signs, so that the film can also either be
wetting, or be unstable leading to rupture.

3 Premelting

Imagine a liquid film of water sandwiched between a semi-infinite block of ice and an-
other substrate (e.g. water vapour or a solid wall). In equilibrium, the Clausius-Clapeyron

equation gives
p,L(Y', - T), = P.S -P + (PI -p71)(1 - Ps/Pl). (10)

Here we shall assume, for simplicity, that p, = pl so that the last term on the right-hand
side of (10) disappears. This term is associated with pressure melting (since it includes

the (lifference between the liquid pressure and the reference pressure, Pm) and so we are
neglecting pressure melting in the calculation that, follows. Now, Ps - P, = pT, the disjoining

)ressure, which is given in terms of the film thickness It by (8). Equation (10) therefore
sim p lifi es fu rth er to : p ( - ) P =1psL(Tm -T) A (1

YPT-- 67rh/

where It is the thickness of the melt layer above the ice.
If A > 0, so that the layer is wetting, then we find immediately that

h o (T, - T) - 1/3 , (12)

provided that T < Tm. Notice from (12) that as T / T,,, I - so that the film thickness
diverges as the temperature approaches the equilibrium melting temperature. Physically,
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Figure 3: Diagram showing an ice b)lock and its premecited filini iii a horizontal temiperatulre

this is as expectedl because at the eqilibilrium mnelting templeratunrc, we c-an have bul1k liquid

in coexistence with ice.
Equation (12) shows that, below its equilib)rium inelting temperature. ice (-kin co(exist

with a thin layer of' water. This thin layer of water has; implortant conlsequlences that we

sliall investigate further in the last lecture. We begin by conIsidIerinlg a simplle miechianismi
by which flow carl le dIriven in a prenieltedl layer aIl( compare this to a mlore conventional
thin laYer flowv.3

3.1 Premelting driven flow

Consider a seiii-infinite block of ice between two vertical walls with a liquid filmn sittIing
lbetween the ice an(l its vapour as shown in Fig. 3. If the walls are maintained ati difflercnt,
temperatures (both with T' < T~)theni a temperature gradlient is set up across the widhI

of the systemn. For the liquid filmn to remain in therniod 'ynainic equilibrium, the filiin muistI
be thicker at, the hotter end of the exp)erimnent and so the ice mnelts a little here,. However1
this mneanis that the thermomnolecular pressure PT is lowerCl here and So, SinCe I)/ = J)" - ]),/,

the liquid p)ressure is higher. Therefore there is flow in thle preiiieltedI filmn froum hot to (01(1
(i.e. froin left, to right in the setup shown in Fig. 3).

Here we neglect gradients in the surface tension coefficient resulting from the temipera-

ture change an(l so there is no traction onl the interface. Thie pressure in the liquid filiui isI
therefore given by

where H(j-) is the interface position amm( rnot the film thickness h,(x). Here the Hlarnaker
constanit A = A,, + A,,, - All - A, depends onl the Hainaker const ants of the dlifferent pairs

of materials in the system.I
The flow in the liquid layer is driven by the gradlient in 1), aild( acts to cliniiiiiatc this

gradient. Eventually a static situation is reached with pl const. everywhere h)lt, with thle3
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I Premelting Marangoni
Driving force Disjoining Pressure Surface tension gradient

(normal to interface) (tangent to interface)

Direction of mass Hot to cold Hot to cold
transport

Morphology of Yes No
underlying solid

Equilibrium Stationary Dynamic
Film Thickness Thermodynamically Dynamically

Determined:

Table 1: Comparison of main characteristics of the Premelting- and Marangoni-driven film

flow problems.

interface defornmed. Here the curvature force (surface tension) balances the thermoniolecular
forces. This means that in regions of high disjoining pressure (thin films), we expect to see
large interfacial curvatures in steady state.

3.2 Marangoni driven flow

We now contrast this with the case of a thin wetting film on a rigid, solid substrate, such

as glass. Again a temperature gradient is imposed across the system but now we account
for the gradients in surface tension caused by the temperature gradient. In particular, we
note that for water, the surface tension is higher at the cold end than at the warin end and

so there is a surface tension gradient from warm to cold. This exerts a surface traction,
7 = IOu/On, which balances the surface tension gradient. We therefore have

0u -a (14)ton as

where s denotes the arc length measured along the interface. Unlike the previous case, at
equilibrium the liquid is not quiescent (see figure (4)). The gradient in surface tension will
drive a flow along the surface of the liquid from hot to cold, while the pressure reduction
under the cold region of high curvature will drive a return flow underneath the surface

flow. The equilibriui shape of the surface in this situation is controlled by a dynamic flow
balance.

Although the flow of the two liquid films are similar in many respects, there are also
several differences. These differences are summarized in table 1. In addition to these
differences, we also note that when the vapour phase is replaced with a deformable solid.
the Marangoni effect disappears but the premelting flow remains. We will consider such
deformations in the final lecture.

Student Problem Consider a thin disk of weight W, radius R and against which ice
premelts, just ahead of an interface that is solidifying at a speed V (see Fig. 5). Find the
maximum speed for which there is a steady state in which the disk translates ahead of the
ice.
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Hot Cold Hot C
' low highhig ,d

Water l U
(7 Gla,,".. "J / Gls

Figure 4: Diagram showing a thin film of water wetting a rigid substrate in a horizontal
temperature gradient. Left: The initial configuration in which a layer of liquid lies above

the solid. Right: The steady state in which flow in the layer continues )ecause of the surface
tension gradient.

I
I
I

WATER

m

w w
0 d

ICE TP P h

I~

p SI

Figure 5: Diagram for the student problen: a disc of radius R is pushed ahead of a steadilY
translating ice-liquid interface.
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ISolution Because of the presence of the disk, there will be a pre-melted liquid layer, of
constant thickness h, separating the disk from the solid interface. Assuming that h < R
so that the gap is 'thin', we can neglect effects associated with the edges of the disk. The
liquid film exerts a disjoining pressure

A
PT= 67rh 3

on the disk, where A is the Hamaker constant. The disjoining force PT x 7rR 2 repels the
disk from the ice phase.

Two forces are acting to move the disk in the direction of the ice. The first of these is
the disk's weight W, while the second force is a suction force resulting from the inward flow
of liquid beneath the disk. This force can be calculated using lubrication theory, as follows.

In the thin gap, the horizontal fluid velocity is

u= 1z(z-h)ap (15)

where p(r) is the unknown fluid pressure. The depth integrated radial fluid flux is then

Q u dz - h (16)0 12p a? "

Using the continuity equation ht + V • Q = 0, we then have

I" h 3 10 rOp(
12/t r r c r (17)

which can inmmediately be integrated twice to give

3f (= 2 R 2) (18)
3V 2

where we have defined zero pressure to be at r = R. This pressure force can be integrated
to give the value of the lubrication induced adhesion between the disk and the ice:

Fadh = R 2rrp(r) dr - 3r/iVR4 (19))0 2h 3

Balancing the three forces acting on the disk we have

0 = 7rPTR "2 - W + Fadh, (20)

which can be rearranged to give the velocity of interface advance V in terms of the gap
thickness, h:

A 2h 3 W (21)
9wt,R 2  37r1iR 4 '

Of course in an experiment V is likely to be the control parameter, rather than h. In this
case (21) can be rearranged to give h(V). However, the form in (21) is more convenient
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for our purposes since it demonstrates immediately that the steady state we have supposed I
can exist only if

A
V 9 _ < 0, (22)

97r/iR 2

so that
V < .'max = A (23)

If V > V,,, this equilibrium configuration no longer exists and we conclude that, the disk
is engulfed by the ice.

It is interestiig to calculate the temperature of the ice water interface beneath the (isc,
Ii. From (11) we have that

A pj,(T,, - 1i) (24

67rh 3  -"(

Using this expression to eliminate It from (21) and rearranging we find that

S_ A 1;, 2 ( A )- 1  
(25)67rp,L 3rjtR4  97r/tR 2  V(5

so that as V -- Vnax, T/ - 0 - . In other words the disk is well below the undisturbed I
phase boundary.

I
I
I
I

I
I
I
I
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GFD 2006 Lecture 9: Thermomolecular flow, thermal
regelation and frost heave

Grae Worster; notes by Takahide Okabe and Dan Goldberg

30 June, 2006

* 1 Review

In the last lecture, interactions that cause macroscopic disjoining pressure between two
materials separated by a third material were discussed. Microscopically, that disjoining
pressure may be due to non retarded Van der Waals forces, or may be due to retarded
Van der Waals forces, or to electrostatic forces. But the main results discussed below
are independent of the microscopic theory. As we will see, everything boils down to the
Generalized Clapeyron equation, which is derived from the Gibbs-Duhem relation and gives
the difference in pressure between solid and liquid phases of the same material.

Marangoni flow vs. thermomolecular flow

Let us review the discussion of the last lecture in pictures. We compared Marangoni flows
(Figure 1) with thermomolecular flows (Figure 2). Marangoni flows are driven by gradients
of the surface tension at the fluid interface, between liquid and vapor, for example. The
temperature gradient gives the gradient of the surface tension: surface tension is low at, the
warm end, and high at the cold end. That provides the surface traction on the film that
pulls the surface water to the right, building up the liquid pressure on the right due to cur-
vature, which can drive the bottom water to the left. Thus, it is possible to achieve steady
state in this way. By contrast, in thermomolecular flows, the driving force is differential
normal stresses. The temperature gradient gives the gradient of the thermomolecular pres-
sure: thermomolecular pressure is low at the warm end and high at the cold end. Therefore
hydrodynamic pressure is high at the warm end and low at the cold end in order to balance
the solid pressure. That causes flow from the warm end to the cold This distinction be-
tween Marangoni flows and thermomolecular flows is the distinction between being driven
by tangential stress or normal stress, and in the thermomolecular case, film thickness is
determined only by the temperature field, whereas, in Marangoni flow, it is determined
dynamically as water moves from one end to another. But tangential stress as a driver goes
away if vapor is replaced by solid, and we have only to consider thermonmolecular flows. We
concentrate on this situation in today's lecture.
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Hot Cold Hot ColdI

y low y high high p

Water low p U

Figure 1: Marangoni flow. Initially, water is level on the glass, but if the temtperature
gradient is given externally, it causes the difference in surface tension. This results in the

flow of surface water, and water is built up on the right. Then the pressure at the bottoin
is higher at the cold end, which causes the flow of the bottom water to the left.

vapor

Hot water Cold

Ice I

Figure 2: Since water is on ice, thernioniolecular pressure plays an important role. Ther-
inoinolecular pressure is determined by teinperature: low at the hot end and high at tile
cold end. Since thermomolecular pressure plus liquid pressure is equal to solid pressure,
liquid pressure is high at the hot end and low at the cold end, which caltses the flow to the
co eIid.

2 Premelted Film in a Capillary Tube I
Let, us consider the following thought experiment. linagine we have a capillary tube, which
is filled with water, with one end colder than ;,. Since the left end is l)elow the freezing
temperature, then there is ice on the left and water on tei right. This is a classical Stefan
problem with fixed tenp)erature field varying from cold to warin. As we saw ili the previous

lecture, the interface between ice and water simply stops when it reaches the position at
which 7' = T. Now imagine this is a real capillary tube: we need to take into account
interactions between the material of the wall of the tube and the ice, which in principle can

cause the ice to be prenielted, producing a thin layer of water next, to the wall. Because
the left, side is colder, we have relatively large disjoining pressure and low liquid pressure
on the left. This pressure gradient ias a tendency to nove fluid from warin to cold. If this

is a theoreticiai's ideal rigid capillary tube, nothing inore happens: the differential stress
is accotnodated by the wall (Figure 3). However if this wall is elastic, then the water in the

preinelted film can flow. This situation is depicted in Figure 4. NVe will make a particular
assuml)tion about the elastic tube: that it just exerts a hoop stress (circumferential stress),
not taking account of any bending moment of the wall.

The filmi is thick where it is warm and thinner where it is cold. Ne are going to take a
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I PPT+ L

I ICE WATER

T<TM T> TM

Figure 3: Rigid capillary tube

T= TM- -x

Figure 4: Elastic capillary tube

1-dimensional coordinate system x as depicted in Figure 4. Then the temperature field is
7T = T, - Gx. Let the radius of the capillary be b(x, t). Because we treat the elastic hoop
stress only, the pressure of the wall is equal to the pressure of the solid:

I p., =p, = k,(b - b,o), (1)

P = Ps - PT = k(b - bo) - pj (T, - T). (2)
ITI

Where the temperature is colder, Tm - T is larger and the liquid pressure is lower. Liquid

pressure is decreasing in the positive x-direction, and this pushes fluid in the direction
toward the cold end. The premelted film has thickness d given by

Tn- ' A (3)

Because the temperature field is stationary, the film thickness d is also independent of time.
Later, we will consider how to modify the formulation in the presence of a curved solid-
liquid interface. For the moment, we ignore this curvature. Lubrication theory gives volume

flow rate (in 2D)

q O (-x) (4)
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Conservation of mass gives i
Ob aq+  = 0 (5)

a x 3_ I)a [ d3

Ot -ax 121 OxJa [Al 1 1 (Ab p,L )

Ox [a 67rp,L Gx 12/1 O.r 7", (  7

Therefore

A AT k a [1 ( ab _ pLG)
&- 727rYp,LG Ox [x kT, (8)

This can be regarded as a inodified diffusion equation with spatially varing diff'usivity. There
is a similarity solution to (8). By using the following variables

1- ,,T,k \121tG ")()i

where

d = F( ,- ,(10)

(12)

(8) becomes dimensionless: i
1 11-9+.q' 1 (

with boundary conditions

g - 0 (,1-,c ) (15)i

where g is the dimensionless displacement. The displacement is 0 at the end, becmuise there
is no force there (we are only considering the hoop stress. If we were considering curvalt ure

stress as well, it would be nonzero.) The displacement is increasing in time. The tubc, i
expands at first, but eventually stops expanding, because the elastic 1oo) stress which

pushes back on the ice balances with the thermonolecular pIessure pushing out. If' w
leave it for infinitely long time, we get a linear deformation profile, inatching the linear
tentperature profile.
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I b-bo

I Figure 5: Similarity solution. Typical values for b - bo are - 111m when x '- 100pi.

Corresponding timescales are on the order of several days.I
3 Thermal Regelation

I hnagine there is a big block of ice containing an immersed solid particle. We impose a
teml)erature gradient VT = G such that the temperature is everywhere below the bulk
freezing point. There is a premelted filn against the object which is thinner where the

temperature is lower (Figure 6). The themomolecular force of the film is greater where it is
thinner, so there is a net force on the particle, pushing the particle downwards. Movement
of the particle can take place by the melting of ice on one side and freezing on the other, a

process known as regelation. In order for regelation to take place, liquid must be transported
within the film from the melting front to the freezing front. And in general the particle
migrates from cold region to warm region. We want to understand how to calculate this
phenonmenon.

IICEn
I VT Sustrate

I tWater

Figure 6: Solid particle in ice

For small particles, premelting is affected by curvature of the solid-liquid interface:

I Ps = P + PT + N/slV • n (16)

where p, is solid pressure, Pl is liquid pressure, PT is the pressure due to disjoining force.
The unit normal n points into the ice. The last term is a pressure due to curvature of the
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interface. We need to take the Generalized Clapeyron equation into account: I
p, L T111 - T

pL TPs-PI (17) I
A

6 +rd3 + n. (18)

Because (total force on the particle)=-(total force on the ice), I

F -,p(-n)dS (19) I
J pindS + pj L 1 ,- ndS (20) 3

= Fi + FT (21)

where D is the whole region that is not occupied by ice. Fj, is due to lul)rication pressure
and F7 is the theriomolecular force.

FT = ,LJ" -ndS = p,L J VTdV. (22)

If the thermal properties of all phases are the same, then VT = G throughout. Under this
assunlption, U

F T  - G - (volume that is not ice) (23)

L G' (inass of displaced ice). (21)

This looks similar to the princi)le of Archimedes, which states that the ul)thrust ol a body I
iimnersed in water is prol)ortional to the nass of water displaced. This notivates the terill
"thermodynamic buoyancy" to describe the total therinoniolecular force on an immierse( d
particle. The result is independent of the particular intermolecular interactions that l(terly
the thermoniolecular pressure.

To find the regelation velocity, F, inust also be dealt with, generally using lubrication
theory, or some closure such as Darcy's Law. In the next. section this is (one in investigating
the phenomenon of frost heave.

4 Frost Heave

Frost heave is a )henonmenon that involves upheaval of soil from formation of ice within the 
soil, and is known in some cases to cause the formation of "lenses' - layers of ice containing 
little or no soil particles (figure 7).

Frost heave is essentially the process of thermal regelation on a large scale in frozen soil.
There is an external temperature gradient that, leads to a thermonolecular force on the
soil particles, as in the previous example of regelation, and that balances the viscous for e's

from the trans)ort of water necessary for the regelation. I
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Figure 7: A column of frozen soil in which lenses (dark) have formed in between layers or

frozen soil (light). From Taber (1929).

I In the model presented here, the temperature gradient is assumed to be constant and
directed downwards, so at some depth (z = 0) the temperature is at the bulk freezing point,.
However, the soil is not frozen all the way down to z = 0; the ice formed in the soil pores has
an associated curvature because of the geometry of the pores, and so the Gibbs-Thomson
effect. prohibits ice formation at temperatures below the freezing point. And so there is a
f-inge region of frozen soil with lower boundary zf > 0 and upper boundary zj (the lensIboundary). Zf is set by the geometry of the soil, so if zj < zf, there is no fringe region.
Figure 8 shows the situation where there is a fringe.

First assume that a fringe does exist. A force balance on the fringe section can be calcu-
lated, as long as certain properties of the ice-soil system (e.g. volume fraction, permeability)
are known. The total upward thermomolecular force FT is equal to the thermomolecular
pressure integrated over the substrate surface:

F' = - PTn dF = i - pjG zn dF, (25)

-- where G = IVTI and F is the surface of the ice. The divergence theorem lets us write

FT p,LG z' -O)dz, (26)

where 0 is the volume fraction of ice in the soil, assumed to be only a function of z. Also
acting on the mass of ice is the hydrodynamic pressure necessary to bring water to the

freezing front (or take water away from the melting front). We can use Darcy's Law to
infer the relation between pressure and pore transport, and we can use continuity to find
the magnitude of this transport:
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Figure 8: Cross section through the fringe region. j and zj niark the lower and upper
lboundaries of the fringe. F is thie ice boundary, with unit normal pointing into the ice its

in the previous regelationi example. From Rempel ct al (2004).

I' (1 - )h(27)

and

/1,14r -fI(6)VpI' (28)I

Here 147 is the area-averagedl vertical water transport,, 1, is tlie licave velocity. pl. is
the hydv(rodlvnaniic wat,er pressure driving thie flowv, and H is tie p)ermewability of the soil. 11
is, in Igerner,al, dependent, on mnany factors, including soil hparticle geonmiet ry. However, it I,,
written as a function of ice volume fraction only to emnphivsize the fact timat perneal)ilitv\
dlecremses as ice volume fraction increases. So if O(z) amid H(O) are known hfmnctionis, we cani
calculate the hydrodynamic force acting on the fringe section:

= ~ ( JO~1 )dz

ItV1, (1 0,n,: (29)

zh is a reference point b)elow the fringe where PL goes t,o zero. The choice of --I, is somewhat
arbitrary, but the result ab)ove is not likely t,o l)e sensit,ive to z/, as most of time pr*essmure (drop)
occurs near zj, where p)ermneability is greatly reduced due( t,o the high ice concentration.

Before proceeding, niote that the above analysis also app)lies when zj < -f. i.e. there is
no( frozen fringe. The exp)ression for F-, for example, reduces to pjL(T ,-(z))7 thei

expression for the thiernioniolecular force at, the temp)eratumre ait the lenus boumndlar..
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I lens initiation

Figure 9: (a) Frost heave rate as a function on zj (in the domain where freezing occurs).
(b) Soil particle effective stress as a function of depth for different lens heights.

The only other force acting on the mass of ice is the weight above it, P0 . Solving for t
i gives

gi[pG f (I - )dz - Po] [ t  
d 

(30)

I In general, the vertical distribution of 0 and the associated permeability dependence
must be known or calculated. Rempel et al (2004) use an idealized model for ice saturation
and permeability dependence, but certain properties of the dependence of V, on zI can be

deduced for more general cases. For instance, the thermomolecular force (p,LGio:' (1 -

0)dz/Tm) is monotonic in zl, and so the heave velocity is zero for a certain value z, and
positive for higher values. Further, we expect the permeability will tend to zero as the ice
fraction goes to 1, so we expect that the denominator of ((30) becomes large with large ZI,
and so V1, tends to zero. We can then expect that Vh goes through a maximum at some
point. Rempel et al find a curve similar to that shown in figure 9(a) for the heave rate.IThe frost heave phenomenon can be demonstrated in a lab setting. A column of frozen
soil with a lens is placed longitudinally in a temperature gradient that is fixed (w.r.t. the
lab frame) as in figure 10. The entire column can be moved at constant velocity through

the gradient. Meanwhile, the lens position can move relative to tile moving frame due to
frost heave. A steady state can be found in which the lens does not move relative to the
lab frame. One can view the setup as the lens being pulled through the soil, which remains

in place as the liquid flows through it, providing the hydrodynamic force that balances the
thermomolecular force.

From figure 9(a) it is obvious that for a range of V (the rate at which tile column in
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1 water iii soil
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soil

Figure 10: The exp)erimnent described in Rempel et al. The entire system 1 is pulled upward,
while positive heave rates p)ush the soil in the opposite dlirect,ion.

the experiment is moved through the temp)erature gradient) thiere are 2 st,eadlv heave rates.
However, only one state (thle one with zi < z,) is stable to smiall I)ertllrlat ionls: if' V j (Zj) isU
sloping dlownwards, theni a small increase in Z, will slow the hleave rate, andl thle leI)s f'ronlt
will move forwardl (increasing z). Physically, a (decrease in p)ermleability limits t,he allionuilt

of liquid thiat can be brought, to the front. The situat,ion is similar for smuall (lecreases in Z1

Lens Initiation3

One might alsk how a lens will f'Orm initially. To determine where this might occur, til e
vertical force between soil particles (Fp) is exanmined. At each point, F, balances the sunm

of the overburden, the thuernomolecular force, and(lie hydrodynamic f'Orce. Thus Pp(inlter-I
particle force l)er unit, area) can be calculated fromn

dz I-P [j( 1 -0)d2 9Jd +( Po - (:31)

Note the similarity to (30) withl zj replacedl by z. The last) t,erm. p,LGz(l1
cami be seen as the additional force that would act onl the volune of integration (thiat, is,I
a volumne similar to that bounded by F in figure(8)) were the ice fraction at, z equal to
unity. If p,, becomes zero at some point,, there is virtually nothing holding the soil particles

t,ogether, and a lens has thle potential to formn.
Again, thlis expression (depends onl the specific f'orms of' 0 and nI(O). For the idlealized1

configurationi mentioned above, Rempel et al c:alculated pjz) f'Or (different values of :,I, and

found that the minimum p,, decreases with increasing zi, and( at some point pp)(-) becomes
zero at a height less than zj (figure 9(b)). If a lens were to formn at, t,his height, thlen Zj

would be eflectively decreased. One can imagine a situation, such) as, inl tie lab exp)erinment3
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I described above, in which the lens front is continually moving upward, with new lenses
periodically forming below the previous lens front. Such a phenomenon has in fact been
observed in the laboratory, and is believed to be responsible for similar patterns that are
formed in situ (figure 7).
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Some useful Statistical ThermiodynamlicsI

~John W'etlauffer: Notes by Rachel Zainiinett and1( Deviii C'onrov

March 15, 2007

1 Introduction

We are all familiar with gases, liquid and solids, which mtake up the 3 p)ossib)le states of'
a puire substance. These states of solid, liquid and gas are funictions of' p)ressure, P anid
temiperatutre, T as dlepicted qualitatively inl the pliase (diagrain figure 1. The niegat ively

slop)ed dlashied line rep)resents ice inl contact with water; the formner floating onl thle lat,ter.I
There are few other substances with this lprop)erty and miost oilier miaterials have a positivel ,
slop)ed solid liquid coexistence line. Despite substantial adIvances inl ourl understanding of'

mnicroscop)ic plienoineiia, 1n0 phase dliagraiii ill its entirel ' c!ali be compiIutedl solely. fro'(Iiil
hiif'Ormiation aibout, intermolecular iinteraction)s: phase diagrninis are prinici pally enipiricallY
deterined.

ice

critical point3

S

Figure 1: Phiase diagrami for a pure substance, shiowiing the lines of pressure~( and t,eniiperature

delineating the 3 possible llases of miatter; gas, liquid and water. The (lashied linec represenits
the special case of ice, which hlas a negatively sloped solid liquid phiase boundar.y.

2 First Law of Thermodynamics3

Inl 1830 Rudolph Clauisiuis first st.atedl what is now refe rred to as the first law of t her-
mnodynamics: the change inl internal energy E of' an isolated systemi is equal to the hieait3
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I absorbed by the system dQ minus the work done by the system on its surroundings dW.
Mathematically this can be written as

I dE = dQ - dW, (1)

where the symbol d denotes the path dependence of a differential, namely, that it, is an
inexact differential.

3 3 Second Law of Thermodynamics

Consider an isolated system consisting of two subsystems A and A', as shown in figure 2.
The boundary between A and A' allows conduction and may move like a piston, but is
impermeable to particles i. e. there is no mass transfer across it. We assume that all changes
which occur to the system are quasi-static; interactions happen on a long timescale relative3 to the relaxation time of the system.

A A'

3 condlction

mov ment

3 Figure 2: An isolated system consisting of A adjacent to A. Heat conduction is permitted
between the subsystems, and the boundary may move as a piston.

I The second law states that the number of accessible micro-states of an isolated system,
Q, never decreases. If we consider subsystem A to contain and ideal atomic gas, then the
number of accessible nicro-states of A is simply the number of places in space that may be
occupied by the gas atoms. Thus, A has QA micro-states and we assume that the voline
of A equals the volume of A' which contains no gas. We then remove the barrier between
A and A'. Initially, the system has not relaxed, but at some later time, the whole system
A + A' is available to the gas atoms that were confined to A.

The probability p that a particular micro-state is occupied is given by

I QA (2)
QA + QA'

Moreover, because QA oc VA, where VA is the volume of subsystem A and N is the mmler
of particles in the system (which is typically of the same order as Avogadro's number,

6.02 x 1023). We therefore have that p o (1)N.!2
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Finally, because the entropy, S, of a system is defined by i
S = kb II h2, (i)

where kb is Boltzmann's constant, kb 1.381 x 10- 23 J K - 1. Whence, the second law is

written as

QA'+A QA - 0 4 dS >O, (4) 3
so that the entropy of a system approaching equilibrium always increases with the equality
in equation (4) occurring when the system has reached equilibrium. We can write 3

dQ = TdS, (5)

thereby demonstrating that T is an integrating factor for the second law, and hence in the
case in which there are no mechanical interactions (no volume change) we find

d,j,()t.j = dSA + dSAI = IA - I),OQA(

We therefore see that if TA > TA,, heat will flow from A to A' until equilibrium is reached.

4 Thermodynamic Potentials

Thermodynamic potentials are homogeneous functions that are the )rincil)al tools used lo i
understand phase equilibria. They have the following l)roperties

" Thermodyamnic potentials have units of energy.

* They all involve the entropy and several, denoted say P, are such that P (x -S.

" For all systems approaching equilibrium, (IS > 0. therefore for the potientials 1), I
* for all systems approaching equilibrium, dP < 0: the thermodynanic potential is a
mnininmm. 3

By way of exanple, the internal energy of a system, E(S, V). satisfies

dE = TdS - pdV, (7) 1
and hence is a miininmm for constant entropy and volume. The enthalpy of a system,

H(S,p), is often used when a system is at constant )ressure, and is defined hy i
H = E-+pV, (8)

such that dH = 0 for constant entropy, isobaric )rocesses. The Helmnholtz free energy is I
given by

F(V T) = E -TS, 9

and hence is conserved in an isothermal, constant volume process, while the Gibbs free
energy is given by

G(T, p) = F +t pV = E - I'S +t pV, ( ,
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I From equations (7) and (10), we find

dG = -SdT + Vdp, (11

and we note therefore that dG = 0 for systems at constant temperature and pressure.
If we consider a system consisting of a solid in contact with a liquid and we ignore the

effect of surface energy, along the solid-liquid phase boundary the phases will have equal
free energies, i. e.

dG, = dGI, (12)3where the subscript s denotes evaluation in the solid and I evaluation in the liquid. Note
that we are considering solid/liquid coexistence and thus pressure and temperature are
constrained to a line, defined by Tmn(p) = p,(T), due to the Gibbs phase rule. From3 equations (11) and (12) we can write this as

-SdT,, + V5dp = -SdT,1 + Vdp, (13)3 for continuous temperature and pressure across the interface. Rearranging equation (13)
gives d1T -ViVs T(V - V) (14)

dp S-S,~ L

where the latent heat of fusion is L, and is defined as L = In the case of ice, wherc
VI < V, we see that d will have negative slope. Hence, from equation (14), we can writeI the Clausius-Clapeyron equation in the following form

dT, T.. PS>
dT) p,LTm ( - (15)

where p, and p, are the densities of the solid and liquid phases, respectively.
It should be stressed that this treatment only deals with bulk free energies and interfacial

and nucleation problems require consideration of the surface energies. This is because the
free energy of the system can be shifted due to the surface energy of the phase boundary,
intermolecular forces and other effects which extend the equilibrium domain of the liquid
phase into the solid region of the bulk phase diagram. In general, for any system in which
the surface energy plays a significant role, we can express the total Gibbs free energy as tle3 sum of bulk and surface contributions,

G = GB -+ Gsurface, (6

where GB represents the bulk free energy and is proportional to the volume of the system
and Gsurface is proportional to the surface area. Thus, the specific form of the surface area of
the solid/liquid interface in question dictates the detailed nature of the shift in equilibrium
and thereby leads to the specific effects referred to often in the principal lectures such as
the Gibbs-Thomson effect and interfacial premelting. These are reviewed in (1).

3 References

[1] J.G. DAS11, A.W. REMPEL AND J.S. WETTLAUFER, The physics of prerneltcd ice and3 its geophysical consequences, Rev. Mod. Phys. 78, 695 (2006).
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Figure 3: An equilibrium phase diagram of Gibbs free energy G as a function of temperature
T, where pressure is assumed constant. GL denotes the Gibbs free energy associated with
the liquid phase; GS that associated with the solid phase. We see that below the melting
temperature T,,,, the liquid has a greater free energy than the solid, which implies that, there 3
is a barrier to forming the solid phase.
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3 Abstract

The Extended Kadomtsev-Petviashvili (eKP) equation is studied as a model for
weakly two-dimensional interactions of two-layer solitary waves. It is known that closed
forms for two-soliton solutions to the Kadomtsev-Petviashvili (KP) equation can be
found by means of Hirota's bilinear transform, but it is determined that no such solution
can be found for eKP. A numerical model is developed that agrees with analytical results
for reflection of KP solitary waves from a wall. Numerical reflection experiments are
carried out to determine whether nonlinear eKP interactions lead to amplitude increases
similar to those seen in KP interactions. It is found that when the cubic nonlinear term
is negative, the interaction amplitude does not exceed the maximum allowed amplitude
for an eKP solitary wave solution, except in the case where the incident wave amplitude
is close to this maximum amplitude. When coefficient of the cubic nonlinear term
is positive, stationary solutions that are qualitatively different than those of the KP
equation are found.

* 1 Introduction

Long water waves whose amplitudes are small compared to the mean depth are quite corn-
mon in many geophysical settings, such as free surface disturbances and as interfacial dis-
turbances in a 2-layer system (internal waves). Solitary waves have an extensive history of
observations in such settings. Attempts at describing such waves have led to many simplified
models. Among the simplest is the Korteweg de Vries (KdV) equation for unidirectionalI propagation. The KdV equation captures the important aspects of long, finite-amplitude
waves: nonlinear steepening due to advection and dispersion from nonhydrostatic pressure.

Additional effects can be included by small modifications to the KdV equation. IfI transverse variation is small but nonzero, the Kadomtsev-Petviashvili (KP) equation can
be used. One can view the KP equation as a model for three dimensional interactions of long
waves. (The term 'three dimensional' is misleading although it is standard - though the KP
equation is derived by considering depth variation, it describes a function independent of the
vertical coordinate.) On the other hand, if unidirectional internal waves are being considered3 and the mean layer depths are nearly equal, the Extended KdV (eKdV) equation, which
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includes cubic nonlinearity, is a better asymptotic approximation to the governing equations. I
It is also a useful phenomenological model for large-amplitude waves. Combining the two
effects results in the Extended KP (eKP) equation. The inclusion of both effects in a model
is advantageous because internal solitary waves occur with some regularity where currents I
flow over bathymetry, as do three dimensional interactions of these waves. The mo(eling of
such interactions using the eKP equation is the focus of this study.

In the following two sections, the above equations are given and known closed-forin I
solutions are discussed, as are limitations of the machinery used to generate those solutions.
Then in subsequent sections, a numerical model to study three dimensional interactions of

internal waves is described, numerical results are presented, and the behavior of numerical I
solutions of the KP and eKP equations are compared and contrasted. Recommendations
for the use of eKP as a viable model for 3D interactions of internal waves are nimade.

2 KdV, mKdV, KP, and mKP

The derivation of KdV and KP from the governing equations for inviscid single- or two-layer I
flow is not trivial. Here, the equations are simply stated for a two-layer model (witlhout
rotation), and the dependence of coefficients on physical parameters is stated as well. See
[9] for a derivation.

Korteweg-de Vries and Kadomtsev-Petviashvili 3
It makes sense to first present, the KdV and KP equations for 2-layer internal waves, although
it will be seen briefly that, these are often not the best equations to use. Let hi (i = 1,2) be
tile equilibrium depths of the layers. There are three relevant parameters:

A - a B = /h 2, F - (L_- 2 it- I- -it 21

11 (L,)jw Yi ) +I i1

where a is the scale of the wave amplitude, and L,. and LY are the length scales in t,lie xm-
and y-directions. These parameters are all assumed small. If they are of the same order. 
then neglecting lower order terms within the governing equations leads to the KP equation,
given here in dimensional form: (

711 + (c + 6171) 717 + + %VYy = 0, (2)

where il is the interfacial disturbance. A rigid lid and flat bottom have been assume(d. The
coefficients are known functions of the stratification an( equilibrium layer depths: I

Ill 11 hl c 1 12  2 11~ 110  k 11i2 ()-111112 C306 2 / 111 + 112 I
where co is the linear wave speed and g' is the reduced gravity. If we s(ale q, x and y 1) ey
H = it1 + h2 , t by Hlco, and let hi = hilH (i = 1,2), and furthermore make the change of I
variables (x, t -- x - t, t), so that we are in a slowly evolving friame moving at, the linear
wave speed, (2) becomnes 3
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(lit + ainx. + + , liy7= 0, (4)

3 hi - h2  hi h2  1
01-2 h1h2 ' 6 ' 2 (5)

It should be underlined that formally, the KP equation describes propagation of two or
more waves in nearly the same direction (in this case, positive x). Propagation cannot be
in the negative x direction. The angle with the x-axis must be small. This is the difference
between glancing interactions of plane waves (where there is a small, but nonzero, angle
between propagation directions) and oblique interactions (where the angle is not small).
This is important to keep in mind because closed-form solutions to (4) exist and are not
limited by these constraints.

If there are no transverse effects (if Ly = oc, y 0), then (4) reduces to the KdV
equation:

3 , l + lrnX+ 0 1xxx = 0. (6)

Extended KdV and Extended KP

In many situations, c1 can be small. If it is small enough (formally, if it is O(A)), then in
order to balance dispersion with advection the regime of interest becomes B - O(A 2 ), and3 a higher order term is included:

(77t +0OITMx + a2712lix + Otlxxx ) + 'yij. = 0, (7)

02 3 (1 __1 h-112 2 (

(hlh 2 )2  ( h81 + h2 (8)

The coefficient 02 is negative definite. Again, neglecting transverse variation gives the eKdV
equation,

71t + k I717x + (V271 2 77x- + 01XiXX . (9)

3 Solitary Wave Interactions

Equation (7) has the following solitary wave solution [4]:

I 
(1)

b + (1 - b)cosh [k (x + my - ct)]'

where the above parameters satisfy the relations

-27/0 /2
2a, +027/0 k T/, g:-(21+o27io) c=d+',m . (11)

i Here rbo is the wave amplitude, k is the wavenumber in the x-direction, c is the phase
speed, and m is the aspect ratio, that is, the tangent of the angle between the directionIof propagation and the x-axis. Note that (10) and (11) reduce to solitary waves for the
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Figure 1: (a) A wave crest (solid line), or plane wave, pro)agating at an angle 0 to the x-
axis. (b) exact solitary wave solutions. A single KdV solitary wave (plus signs) is compared
with eKdV solitary waves (solid lines) of diflerent amplitudes, all less than qt ,,a, = 0.2524. I
KP (0.2 = 0), eKdV (m = 0), and KdV ((t2 = m = 0) equations. Also note that, while
the KP aid eKP equations describe (weakly) 2-dinensional systems, the above solution is I
essentially 1-dimensional. For 0 2 < 0,'tI0(l > 0. That is, q( carries the sign of (i, so for
definiiteness we assullie ( 1 is positive. Also, when C2 is legative- as is generally t'lie case f'Or
internal waves, i10 has a maximum value of I

o0r.max = -0 1/02- (12)

Figure 1(a) shows the configuration of the wave. The crest, moves in the positive x-direction
with angle /) to the y-axis. (m is equal to tan(i,,).) Figure 1(b) shows a KdV solitary wave
(at a given y) against several eKdV solitary waves of varying amplitudes. all of which are

less than the maximm amplitude given above. Putting terminology introduced earlier in
context, we will talk about waves with smaller b (smaller m) as glancing and with larger Ii,
(larger in) as more oblique.

Tlie interactions of multiple solitary waves traveling in the saile direction (same 711) have
interesting behavior. A large-amplitude wave that is initially behind a snall-aniplitude wave
will travel faster and eventually catch up with the smaller wave. When that happens, there

is a transient nonlinear interaction, but each wave asymptotically retains its identity and
structure as t - oc, except for a positive and negative phase shift of the larger and slnaller
wave, respectively (figure 2). KdV and eKdV solitary waves exhibit this behavior, as (1(o

KP and eKP solitary waves traveling in the same direction (but as mentioned above, the
latter two cases essentially reduce to KdV and eKdV).

This solution is also interesting because it can be described by all exact analytical 3
100 3
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(a) (b) (C)

I
I

Figure 2: Interaction of two eKdV solitary waves. The larger wave, initially behind (a),
eventually passes through the smaller one (b), but tile two waves asymptotically retain their

identity (c).

I solution. In general, trains of N solitary KdV or eKdV waves (where N is finite) can be
described by inverse scattering theory [11] or by Hirota's Bilinear Method ([11], or [5]).
The former is more powerful, but the latter is algebraic in nature aind very easy to apply.
Hirota's method involves finding a dependent-variable transform of the equations such that

the solitary wave solutions have the form of exponentials.

I Exact solution for KP reflection

It turns out that Hirota's method also yields exact solutions of the KP equation (2) for

two-dimensional solitary wave interactions. Miles ([6],[7]) derived the interaction pattern
and investigated its properties, and found behavior qualitatively different than the 1-D case.
We first summarize Miles's solution. Given two solitary wave solutions to the KP equations

with wavenumbers ki (i = 1,2), and propagation directions such that their angles with
respect to the x-axis have tangents mi, the following solution is found [8]:

I480 ) -I + ke 2 2 + (k, - +-- A 12 {(k1 + k2) 2  + k e ° c + Ae 2 °2}e - 2 0 2
= _1 2 [1 + e - 20 i + e - 2 0 2 + A1 2 e-201 -202]2

where
(ni - M2 )2 - 120(k, - k2 )

2

iOi = ki (x: + iniy - cit), A12 =Y (14)
07y(1( 1 - 711 2 )2 

-
1 (k + k2 )2 (

and ci, ki, mi satisfy (11) with a2 = 0. There are several things to notice about this
solution. First, since the phase lines are not aligned, we can take the limit 02 -- 0 or oc
with 01 constant (and vice versa), and this limit has the form (10); that is, the waves retain
their identities after interacting with each other. Second, the interaction parameter A 12 can

be negative when
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(M]1 - "12) E ( 1 3 (ki - k2), (ki +k 2 )) (27n-, 27n+) , (5

and it turns out that solutions in this parameter range, while mathenatically admissable,
are nonphysical (this point will be returned to briefly). Third, the interaction can he much
larger in amplitude than a superposition of the two waves. In fact, for waves of the same I
amplitude, the amplitude increase can be up to four-fold, as couipared with a two-fold
increase from linear superposition.

Slightly changing focus, we can consider the kinematic resonance condition for three I
solitary waves:

k, ± k 2 = K3 , in1k, ± m2k2 = m 3 k 3 , W1 ± W2 = U)3 (W Cik), (1() 

where w is frequency. In fact, given two KP solitary waves, a third satisfying (16) exists
only if one of the bounds of (15) is acheived.

It nmust be stressed that (16) is an algebraic constraint, and alone is not a suflicient,
condition for resonant interaction of solitary waves. However, Miles showed that the limiting
form of (13), as the upper bound of (15) is approached, is equal to 3

(48/3 ) k 2 11 + k 2 -22 + (k] + k2 ) 2 C2 01-O21 2 (17)01l [1+,20i +C-202] 2

Furthermore, it can be shown that this solution is asymptotic to three interacting waves
the two waves considered in (13) and a third wave that is resonant with the first two. This
can be shown by holding constant one of each of the three phase variables involved, aud I
letting the other two go to zero or c . Figure 3 shows (13) both for an oblique interactioii
and for a near-resonant interaction. Both are symmetric, i.e. Kl = k2 and 'm1 = -711 2.

The large interaction in 3(b) reseibles a third resonant wave, although it, is not actually a I
resonant wave until the angle predicted by (15) is reached.

The above discussion can be applied to glancing reflections of solitary waves against a
wall. The results are the same since the condition of no nornal flow ( 1 , = 0) at the wall I
allows one to extend the solutions by symmetry. The theory allows for regular reflection,
as described by (13) with k, = k 2 and nj = -7112, for 7n,1 > 71r1s, where

res=, (18)

where i10 is the amplitude of the incident wave. If, however, 7nl < 'M 1c., regular reflection
is no longer allowed. Instead, the interaction is described by (17), where the subscripts
1 and 2 correspond to the incident and reflected waves, respectively, and a third wave is
resonant. This third wave, which has no transverse wavenumber and travels parallel to the
wall, is know as the mach stem by analogy with a phenomenon seen in gas dynauiCs.
Since the transverse wavenunber of the inach stem is zero, and the waves are in resonancc,
the amplitude of the noach stein and of the reflected wave can be inferred froni the kinemiatic
resonance constraint (16):
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I Figure 3: (a) Oblique interaction. (b) Near-resonant interaction.

I /

I -,,,./ Cl

Figure 4: Mach reflection. The incident wave (- -) moves into the wall with phase velocity
cl, and the reflected wave (- - -) moves away at c2. The intersection of the incident, and

i reflected waves with the mach stem (-) moves away from the wall. Taken from [7].

7112 7 ,res, k 12  10 k 2, km.,h  (, 10,7ach (10 + 2ac (19)

1c ' s i fr (1 1

In this case, if k2 < kj, the interaction pattern will move away from the wall with time,
and thus the mach stem will grow in length. This configuration is shown in figure 4. The

maximum amplitude, or minup, at the wall can then be calculated as a function of nI:

7lma. 4 1 + - -(r,s/7n)2  m > res (20)

I10 (1 + Trn/71,.) 2  11 < I,nrc
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Figure 5: Theoretical KP runup at wall versus in (tangent of incident angle)

(see figure 5), which is useful since it is easy to verify by lab or numerical experinent. I
Modified KP Interactions

Iti may be apparent to the reader that the word soliton has not, use(l liberally ill) to this

point, although the term applies to the interacting solitary waves described above. One can
use the teri to describe solitary waves that can pass through each other and still retain
their identity, in which case the term applies, in a very limited way, to eKP solitarv waves
(see below). But one could also think of solitons in a loose sellse as solitary wave solutions

that are anenable to the various transform methods (e.g. Hirota's Bilinear imethod) used
to make analytical headway in describing their interactions. It is shown in [2] that tfle saine
bilinear transform methods that work quite well on KdV, eKdV, and KP (as well as mnany
other nonlinear wave equations that support solitons) break down when applied to the eKP

equation, except for the degenerate case in which all solitary waves are traveling in t he same
direction. Further, it can be shown that the eKP equation does not l)ass the PainlevP test, a

criterion in deternining whether an equation is com)letely integrable. This does not prove I
that eKP is non-integrable, but it demonstrates that exact solutions will, at the very least,
not be easy to find. For that reason, the focus of this study is numerical in natire; sin1e

(20) predicts a large amplitude increase, while (10) gives a maximumn am)litude constraint I
when a cubic terin is present, it is unclear what the results of such an experiment will be.

4 Numerical Model

There is a difficulty inherent in solving (7) numerically. If we integrate the equation in .r.
assuming that disturbances are locally confined, then

1
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Y V(X,YT,t) = Vsolitary

// //

VTI(X,Y,O) =V-71 solit ry /

// / /

XL V(x,O,t) = 0 XR

X

Figure 6: Model schematic.

7;,y y(x,y,t)dx = a2 jdx 0, (21)

a condition known as the "mass condition." In particular, a given initial condition must
satisfy this constraint; otherwise it can be shown there are waves present with infinite
group speed which propagate to x = -o [1]. Alternatively, one can examine the evolution
equation that results from an integration in x:

71t + (a rr X + a2T 2I/a, + 137lxxx- - - Y y.dx = 0. (22)

If a discretized form of (21) is not satisfied, then disturbances will appear instantaneously
far behind the initial condition. To avoid this problem, eKP is written in the form given in
section 2, but with the time derivative left in the y-momentum equation [9]:

Tit + 017ix + a2T] 2ilx + flxxx + yVj = 0, (23)

Ivt - Vx + ry= 0. (24)

The time derivative is neglected in the derivation of eKP for asymptotic consistency, but3 here is left in in order to regularize the equation, and the numerical model now solves for
both rj and V.

Most of the numerical experiments involved a single solitary wave with a transverse

comp)onent (mn ? 0) directed into a wall (y = 0) as an initial condition. In this case V
was held at zero at y = 0 for all t, and was set to the analytical solution for such a wave

at y'j, which was effectively considered to be y = +o (figure 6). 71 and V were solved on
grids that were coincident in x but staggered in y. In the y-direction, the topmost and
bottom-most, points were V-points, so boundary conditions were imposed on V but not
on tl (unless the domain was doubly-periodic). Spatial derivatives were approximated by
centered differences. First derivatives in x were 4th order, while all others were 2nd order.
The nonlinear terms were approximated by straightforward multiplication (no averaging
was done). The timestepping scheme was an Adams-Bashforth predictor-corrector method5 involving two previous timesteps, where the two initial steps were done by Heiiis method.
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Very often a simulation was restarted using the final state as a new initial condition; in this I
case the two previous timesteps were not saved. A few doubly-periodic simulations were
done where the initial condition was a superposition of different solitary waves, but the bulk
of the numerical experiments done were with the wall model described above. 1

Since no wave was expected to propagate faster than the incident wave, 71 and V were
set to zero at XR. However, conditions at XL were not as straightforward, and were handled

as follows: the solution on the first two gridpoints in the a-direction was extrapolated 1
linearly backward. This was in order to allow any disturbances, which presumably would
be traveling to x = -c, in the frame in which (23) and (24) are defined, to pass through

XL rather than reflect back into the domain. In addition, a linear damping of the form |

... /';(X)vI

was added, where It (> 0) is nonzero only in a small neighborhood of XL .. ll is is llstifie(
physically by the assumption that the incident wave, its reflection, and their interaction are I
the fastest-moving disturbances in the system, and so long as they are sufficiently resolved

away from XL, then what happens near XL should not affect their behavior. Resolution was

often higher in x than in y. The timestep was imade short, enough to avoid a CLF-type 1
instability. Tile tipper bound was determined more empirically than by theoretical nieans
due to the nonlinearity of the equations.

A simple rescaling (not given here) of 71, x;, y and I (where .- and y are scaled identicallY I
so that, angles are preserved) allows us to replace (vl, ;3, and ") as given in s(c(tioni 2 witlh
any values we choose. For programinatic ease, these paralnet ers were set to 1.5. 0.125. and

0.5, respectively. Values of 02 were found by (8) and then applying the saille scaling. I
5 Numerical Results

In the wall experiment, if 71 is scaled to the amplitude of the incident wave. q(o, then (23)
becomes

1+ V( ) 'h + Jlx ... (25)'llo na x )1

where 71O,rax was defined in section 3. If the nondimensional parameter I/io.,,,,:r is zero,
we recover KP (or, according to our model, a regularized version of KP), so the larger
this parameter, the more departure we expect from KP reflection behavior. So nunierical

exl)erilentation began by benchmarking the numerical model's ability to reproduce known 1
results. Except where explicitly stated, the values of (ti, 13 and "y in all of the experiments
described below were 1.5. 0.125, and 0.5, respectively, and 02 was coinputed 11sing IlI = 0.67.

Unidirectional eKP

As mentioned above, one should be able to generate a 2-soliton solution to the eKP equation, I
as long as both solitary waves are traveling in the same direction. Though it, does not, involve
reflection, this is still an important result. A doubly periodic domain was used. with i a large 3
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Figure 7: Doubly periodic domain used to simulate eKP soliton interactions. The initial

condition is shown here; the narrower wave crest is larger in amplitude.

I wave behind a small wave as an initial condition (figure 7). This simulation was shown to

p)roduce the typical 1-D soliton interaction pattern. Figure 2 actually shows cross-sections

of snapshots of this simulation for 'in = 0.4.

KP and eKP Reflection

Figures 8(a)-8(c) show the development of a KP interaction p)attern for dlifferent, incident
angles. In all KP experiments, the incident amplitude rjo =0.12, 7n... = 0.6. Figures are
shown for M1 in,ident greater than, equal to, and less than the resonant value. For 111icidntI0.8, the reflection pattern is symmetric, with the maximum wall amplitude ;z 2.6ij(). For
71,incident = 016, the resonant angle, we see a mach stem slowly forming with amplitude
close to 47,/o. Theory predicts a mach stem will not grow at the resonant angle, and that
the maximum amplitude achieved is 4710; however, since this is a numeric app)roximation it

is perhaps niot surprising that resonance is not acheived exactly. The fact that stemn growth3 reflected wave is difficult to see because it is so small and obscured by its own reflection
from the far wall. It is, as predicted, clearly at a far more oblique angle than the incidlent

wave. Also, the mach stem has an amplitude 77 ..w.l1 = 1.6710 that is very close to that of the

incidentd b stressed that the theory concerns stationary solutions, not transient (level-

opment from arbitrary initial conditions. Comparing transient solutions for Trtin,id,,t = 0-6I with those for rMincident = 0.8 and Minlcident. 0.15 shows that a near-resonant interaction
takes a long time to develop. This can be seen by plotting the nmaximum wall amplitude

of at the wall as a function of time. This is shown for the same simulations- in figure
8d.All of the plots show convergence to a stationary aniplitude. The small oscillations

around this niean can be explained by failure to completely resolve the peak of the wave
crest; however, this is likely not detrimental to the overall solution.
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of ) 0.711-- wa 0hoe.f15 Mash gelivn. Nteo 2.) givi m ampliTtud ve0r2t2s.tanic fIo/ afil

0.48. Comparing figures 8(a) and 9(a), we again see regular reflect ion, lbut thte interact iont
ampillitud(e is smaller for the ilP case, and in fact is smaller t han 1

Onir.Figure 9(h),
resultinig from anl incident angle with tangent 0.45. appears t.o show it reflected wave withI
angle equal t.o the incidet, t.railedl by smaller crests with mlore oblique angles. in contrastI
withi the mnach reflection p)atternt that wouldl be seen witlt KP, and a nlaxinul nilplitud(e
just, greater than 710il,w For '11,iicto = 0.15, shown iii figure 9(c), We (Io sce a patterni thtlt

looks qualitatively like mnaclh reflection, although it is not clear whether t his termn actually
applies t.o the interaction. Still, with relatively little apparent t.ranisverse variation ntear (lie
wall, one canl atiticipate that the profile at the wall looks very sitmilar toi ant eKdV solitary
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near 71o,ma. (see figure 10(c)). Note smaller.
more oblique wave crests trailing the reflected
wave.
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I(C) Mi,id,.t = 0.15. Interaction pattern resem- (d) Maximurn amplitude versus time for all

bles roach reflection. three simulations.

I Figure 9: KP reflection, 710 = 0.12, h, = 0.67 (see section 2).

wave, and this was found to be the case.
IComparing the maximum rnpof KP simulations to theory, figure 10(a), we see very

good agreement for angles less than the resonant angle. However, for angles larger than
the resonant angle the agreement is not so good. This is certainly an issue, and may be
a consequence of the use of regularized equations (see Discussion section). Still, all of

the qualitative aspects of the theory were captured, and for small angles the quantitative
agreement was good as well.

Figure 10(b) shows the same results as figure 10(a) along with the results from eKP

simulations for different values of r 0 , where mnincident has been scaled to rares, as given by
(18). Values of 770 used were 0.024, 0.05, 0.12, and 0.24, while Tlo,,,ax = 0.2524 for all cases.
Recalling (25), notice that, for i1o = 0.024 and 710 = 0.05 (dots and triangles, respectively),
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the runup plot has a qualitatively similar shape to that of KP, but the niaximum occurs at I
a smaller (scaled) incident angle and is not as large. The same could be said of i1o = 0.12,
though the maximum is barely visible, and we have seen qualitatively different results
for this amplitude. In fact, it does seem as though the eKP runup) p)lots may coincide
with that of KP where the incident angles are small enough that t1wall < 1O,7r)"'. These
points correspond to interaction patterns that look similar to mach reflection (cf. figure
9(c)), though there is not space to show all of the results. Again, it. is stressed that the
development of these interaction patterns is transient. In a few cases, the growing "inach
stem" reached the far wall before the wall amplitude became stationary, and in these cases,

the result given in figures 10(b), 10(c) is that taken just before this intersection occurred.
Obviously, the above statements (1o not apply to the case r/0 = 0.24, since o 1.

In(eed, the runup plot for T10 = 0.24 is very different than the others. Figure 10(c) shows he
same results as those in figure 10(b) without scaling amplitude by 710. Here it, is seen thatt
when 71o = 0.024,0.05,0.12, the runup is never greater than 11o,111a (solid line), but is for

ij0 = 0.24. This contrast, suggests that the range 0.12 < 71( < '11,71,r should be investigatel
for transition between the two behaviors, but this was not done in the current study. Figure
10(d) shows the result of one of the simulations where 71) = 0.24.

One might ask if a resonant interaction actually (toes occur in the eKP simulations.

Though (16) is not sufficient for resonance, it is necessary and can be checked. It is easiest
to check the first two conditions of (16) since they relate only to the wavenumbers anid not
the phase speeds, and wavenulnbers are calculated from amplitudes using (11). Firther.

the requirement that one of the bounds of (15) be satisfied for the kinenatic resonance
condition to apply holds for eKP as well as KP. This can be observed as follows. Consider
two (1 and 2) solitary wave solutions to eKP. Imagine that both wxavenmbl11)ers (kl and A'2 )

are known, and the direction of the first (il) is known (but not of the second), and the
waves are constrained to satisfy (16) for sone solitary wave with wavenninber and direction
k:j and 113 . From (11), we can give waveninibers in terms of frequencies and pro)agat ion

(irections:

4 k _y?1, i = 1,2. (26)ki

Together with (16), these two equations form a set of 5 algebraic equations for the unknowns
7w2, 7113, k3,W2,C 3 , which can then be solved for two possible values Of '11. The ilIl)ortalit,

thing to notice is that the above equations do not depend on (02, and so, even when eKP I
solitary waves are considered, the results still correspond to the bounds of (15), even though
the correspon(ling phase velocities and amplitudes are different than the KP case.

'Table 1 shows calculated wavenumnbers for the incident and reflectet waves. as well as
tie mach stem, assuming solitary wave solution (10). (The term "nitach is usel here for
lack of a better one: as mentioned before. the eKP simulations show behavior (lualitatively 

like inach reflection.) As in Miles' analysis, for KP we assume that the inach stem is at
right, angles to the wall and the the reflected angle is the resonant angle, i.e. m,,nach = 0
and ?irefl = 71 res. By inspection, we also set, m,,,a,1, = 0 for eNP, but with out am exact
solution there is no reason to assume ',reflI = "Ires, and so tnrefl had to )e imeasured. This
measurement is done by examination of the numerical solution of 7/. However, the reflected
wave crest is often either not fully developed, obscured by the far wall or the stem crest,
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the results in 'Fable 1. amplitude is stationary.

Figure 10: Reflection runup

very short in length, or very small in magnitude, or all of the above. Mea'surement of k,,fl
is problematic for these reasons, and measurement of 1refl even more so. Still, there is
no other method of verifying whether (16) is satisfied. It can be seen from Table 1 that
agreement is not bad for KP. It is worse for eKP, but improves with decreasing amplitude.

I Positive a2,

In certain cases, vertical shear and stratification can conspire to make 02 positive [3].
Equation (10) still applies, only now the amplitude can take on either sign (we are still
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Expt kizc krefl ktach 71lrefl kmz i + kreflI

KP qo = 0.12, mie = 0.15 .3464 .099 .4322 0.6 .0866 .4454
eKP ilo = 0.12, mi,c = 0.15 .3011 .1385 .3412 0.52 .0869 .4396
eKP qo 0.05, min 0.1 .2199 .0653 .242 0.45 .0489 .2852
eKP 7/o 0.0 24 ,miric 0.1 .1511 .0465 .1709 1.0 .0151 .1976 j

Table 1: Incident, reflected, and mach stein wavenumbers (ki,,, kreft. and 7(1,11, res)). I
(the term 'mach' is used even if it is not clear that there is resonance.) Equality of the last,
column with kr(lh and of the second-last column with k,fl is required by the kinniatic
resonance condition. The former criterion involves angle measurements, which are more
problenatic than wavenumber measurements, while the latter does not. I
using the convention that a, is positive). If i1o is positive, there is no maxinmin amplit ude:
if 710 is negative, it, imst be larger (in absolute value) than 2(,tj/O 2. Several silllullations

were carried out with positive C2, however the sweep of the l)arameter space was not nearly '
as complete as for negative a2. Some results are shown in figures 11 (a)-i I(c). Figure 11 (a)
is the result of a simulation in which i/0 = 0.12 and 71Lincidcrif = 0.6, as for figure 8(b). (12

is positive and set to +1, and the coefficients ctj, /J3, and( - remain as above. We see a I
pattern very similar to the KP result, but, with a sinall radiative Iattern shed froii both
the incident and reflected waves in the bottom left, corner. More interesting are the results
where q(I is negative, as in figure 11(b). Here 'tjo = -0.3, and mji,(i,,t = 0.4. There is a I
similar radiation pattern, but it is more developed. In fact, when the profile at the wall
is examined, the radiation pattern is shown to have the same )rofile s the incident wave.
and to have traveled the same distance. Figure 11(c) shows the (eveloplment of the profile I
at the wall. The larger peak is the stem seen iill 1(b); the smaller peak is the intersection
of the radiated wave crests. When compl)ared with figure 2, the wall profile of ',i looks very
similar to the interaction of two uIidirectional solitons. Given that, transverse variation I
appears small near the wall in 11(b), it is perhaps not surprising that the profile at the
wall is similar to an eKdV solution; however, it is surprising that, interaction of the incident
wave with its reflection develops into something similar to a two-soliton solution. U

A result similar to figure 11(b) is shown in [10], though in that stidyv the Modified KP
equation (which is similar to eKP with )ositive 02 and no quadratic term) was being inves-
tigated. Also, the profile of the intersection of the radiated wave crests was not, examined I
in that study.

The investigation of positive (2 was not taken further it, was meant only as a brief
exploration of different behavior and possible starting point, for further study. I
6 Discussion

We have seen that a numerical model which gives reasonable agreement with theory c(oncern-
ing the glancing interaction of two KdV solitary waves (figs. 5, 10(a)) produces soiiewhat
different behavior when two eKdV solitary waves interact, with the degree of difference de-
pending on the magnitude of the incident amplitude relative to 1/omax. When the interaction
amplitude is close to the maximum possible amplitude of an eKdV solitary wave, we see
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Figure 12: Runlup results comp)aring different regularizationi schemes, where 6 is aLs in (27).
1 corresponds t.o the results showii in figure 10(a), and 6 0.1 gives results (loser to

theory.I

whlat, appears t.o be disp)ersion occurring near the intersect ion of the interacting wvaves. TIhis
is niot surprising b)ecause the nonlinear term in the eKP equation is small when amiplituode
15 (lose to q),maxir b ut, there is no reason to expect the dhisp)ersive term t.o he snuall.

In some cases, the el\P sinmulation results in a pattern thatit resenibles a Imidl) ste ildatt
a nonsymnietric reflected wave, as in the KP simulations. However, it is not, clear whetler1
this is a stationary solution, or whether it, is a resonance of' thlree solitary waves. Lonig-tinice

simulations1 (e.g. figure 9(c)) seem t.osuggest that such a p)att.ern is stationarY mid( would lalstI
unt1il effiects of the far wall became implortant. Table 1 suggests that the kinieniatic resonance
condition is not satisfied. However, there are (lifficulties ini measuring the p)rop)erties leadhing

t.o this conclusion. We have also seen that when the incidlent, ninplitude is near the mIaxlIiumi
amplitude (figs. 10(d), 10(c)) the interaction (does not resembllle KP interactio ;1 t all.

It, was suggested above that the disagreement with theory withI resp)ect to wall ampllit ude

in KP reflection when 111incident > 71res (figure 10(a)) nmay be a result of' regularimation inI
the numerical model. This claim was investigated by generalizing (24) to

617, - V" + 71 0, (2 7)I

where 6 is a p)aranmeter b)etween 0 and1 1. Preliminary results (figure 12) show b)etter agree-
mnent, with theory for 71icdn > Mrc when 6 is smnall.

7 Conclusions and further work

One of the early goals of this study was t.o find a closed form solution for thle eKP~ equation
(aside from the degenerate onie where all waves move ini the same (directioni). The litcraltunre
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Iseemed to suggest that such a solution would be extremely difficult to find. Indeed, the
fact that some results were highly dispersive seems to indicate that the eKP equation,
unlike the KP equation, does not have soliton solutions for three dimensional solitary wave
interactions.

That issue aside, the results of this study constitute a tool to gauge the KP and
eKP equations as representative models of internal waves with small transverse variation.
Oceanographic data was not used in this study; however, the two models exhibit qualita-
tively different behavior, and this behavior can be compared with that of actual internal
solitary waves. For instance, tidal flow over bathymetry may cause glancing internal solitaryI wave interaction with some regularity, and might be useful to be able to predict the nonlin-
ear amplitude increase based on known parameters such as stratification and background
currents.I The results shown in figure 12 suggest that the disagreement with theory shown in
figure 10(a) is due to regularization, and that a different regularization such as (27) with 6
small might yield better agreement. However, this must be investigated further, and this
investigation is the subject of ongoing work.

The investigation of the eKP equation with positive 02 was not very extensive, but it
still yielded interesting results. There were small radiative waves in all eKP simulations
(including those with negative a 2, although they are not visible in the plots shown), but
we saw from figures 11(b), 11(c) that these radiative waves may have interesting structure.3 Further analysis of the parameter space is certainly warranted.
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I Mush-liquid interfaces with cross flow

Devin Conroy

March 15, 2007

1 Introduction

3 The solidification of a binary melt growing into a supercooled region may lead to the for-
ination of a mushy layer as a result of morphological instability of the plane boundary.
Mushy layers are reactive porous media that suppress constitutional supercooling caused
by the rejection of residual solute. When the rejected solute causes a statically unstable
density stratification, compositional convection can occur, provided the Rayleigh number is
large enough. Past experiments and theoretical results have shown that channels can form
between convection cells, where fluid of high solute concentration has a maximum vertical
velocity, which acts to dissolve the interior of the mushy layer. The channels grow in time,
providing the path of least resistance for the continually convecting fluid, which is fed by
the continual growth of solid and rejection of solute.

I
I
I

Figure 1: Mushy layer of ammonium chloride crystal grown from an aqueous solution,3 showing the structure of two complete chimneys. Taken from Worster (2000)

Fluid contained within the interior of a mushy layer, as shown in figure (1), is convected
out through the chimneys and replaced by fluid from above. Along the walls of the chiniey,
fluid is then flowing from mush to liquid across a solidifying interface, and along the top of
the mushy layer fluid is flowing from liquid to mush across a solidifying interface. Recently
Schulze and Worster (1999, 2005) have examined the appropriate boundary conditions to be
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applied at these interfaces in order to determine the position of the mush -liquid interface. I
In general there are four separate cases corresponding to a solidifying or dissolving boundary
and whether the flow of material is from mush to liquid or from liquid to mush. Three of

those conditions have been explored using one-dimensional models but the fourth, which
is the topic of this study, requires the flow to be at least two dimensional. The dissolving
boundary occurs initially when the chimney first forms from a liquid inclusion but later on

the walls of the chimney are actually in a solidifying regime. In this case the fluid is leaving
the mush across a solidifying boundary and we want the time-rate of change of temperature
following a material particle at the interface to be zero. This condition, which is equivalent

to the isotherms being tangent to the streamlines, is a relatively new idea that still requires
exploration in order to fully understand the nature and consequences of it.

2 Governing Equations

In this analysis we are looking at the configuration illustrated in figure 2 (see Le Bars et.
al. 2006), which is a simplified mnodel (esigned to explore the nature and conse(uences I
of a solidifying mush-liquid interface having material flowing front mush to liquid. It is a
convenient way of exploring a 2 dimensional flow with a 1 dimensional aimlysis. In additioil

we require a 2-D temperature field in which the upper and lower 1ouilary temperatures
vary linearly with x in order to maintain the same mathematical stnicture as tile stream
function (,. In addition we require the solid fraction and interface posit ion to be inldel)eIdeit
of the horizontal distance x.

Fluid flows froin the botftoni bomdary into the mushy layer at a velocity ii l and out of

the top boundary at a velocity HT, where 1'T < I'VB. Since we are strict ly int(Tested in tlC
case in which the mushy layer is growing, we take the lower boundary to b,e colder than the
upper boundary (in < Ol < 112), where M is the slope of the liquidus curve iin the phasc

diagrain. The mushy layer is solidifying at a rate da/dt, where a(t) is the position of the
interface. In addition we are pulling the whole apparatus downwards at a constant speed I"
which will be equivalent to the growth rate of the mush-- liquid iiterface in the non-inovilig

reference frame at steady state. 3
2.1 Mushy Layer

Within the mushy layer (0 < z < a) we have a reactive porous iiedilii that requires I
appropriately volume averaged equations for temperature, 1' and conceitration. C. 11cIc
we assume that tile ideal mushy layer equlations apply (see Worster 1997), namely

07' L do V L t)@
OT +q.VT = KV21 + (1)
Ot c. Ot cl) 0z (1

(1-0) 0C+q. VC = (C-C.,) 00- Vop (2)

7' = Ti,(C)= -1C. (n) ,

where the diffusion of salt is assumed to be negligible and the temperature field in the nmnsh
is constrained to the concentration field by the liquidus relationship. Here q = u - VI', H is 3
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liquid T = -mlx

-- [T]= 0 [T]=O0 = 0 /- - at

I -- z a(t)
mushy layer

ST =-m 2x CB mCx B/ 0=

Figure 2: Diagram showing a channel of infinite length with a mushy layer contained in
the region z < a and a liquid layer above. There is a flow of relatively cool fluid from the

bottom boundary at a rate WB and a flow out of the channel at a smaller velocity, WT.
The left hand boundary is fresh, i.e. no solute, and non-permeable.

I the thermal diffusivity, L is the latent heat, cp is the specific heat, P is the solid fraction and
C, is the concentration in the solid. In this analysis we will assume that the solid is pure, i.e.

C, = 0, and that the liquidus temperature TL decreases linearly with solute concentration.
At the bottom of the channel we assume that the temperature and bulk concentration vary
linearly with distance x as

3 T(x, 0, t) = -T2x, Cbulk(x, 0, t) = (1 - OB) C(T) = (1 - OB) mbX, (4)

where mb = Mn2 /rM is the slope of the solute concentration and /13 is the lower boundary

solid fraction that must be determined as part of the solution. It should be noted that the

bulk concentration presented here comes from some outer solution and only applies when
the q flow is from mush to liquid. If the flow is in the opposite direction then as we will see
in the next section, the bulk concentration must be imposed at the upper surface.

2.2 Liquid Layer

In the liquid layer above the mush (a < z < h) we again assume that the diffusion of salt, is
negligible compared to advection and we use the following equations

07,-- + q VT = rV 2T, (5)
at

- + q VC = O. (6)
at

At the upper surface we also assume that the temperature decreases linearly from the3 boundary x = 0 with the relationship

T(x, h) = -n 1, x, (7)

3 where the condition mi < m < m 2 must be imposed for a solidifying interface.
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Since the concentration field is controlled by the advection equation and we have imposed I
a solid fraction at the lower boundary the concentration equation (6) is decoupled from
the system provided that the q-flow is out of the top boundary. The concentration field,
without the effect of diffusion, just follows the streamlines with the unknown mush liquid I
concentration. On the other hand if the q flow is from liquid to mush then the advection of
bulk concentration from the upper boundary must be used to determine the temperature
at the mush-liquid interface. In this case we impose a bulk concentration at, the upper
boundary of the form

Cbulk(x, h) = C(T) = mI,t x, (8) 1
where the solid fraction is zero.

2.3 Interface Conditions

At, the interface between the Inush and liquid layers (z = a) we follow Worster (2000) and
use the conditions

[T] = 0, [7',] = 0, 40 = 0, z=ao,()

where the last one conies from the assumption that the diffusion of solute is negligible.
A subtle boundary condition presented in Schultz (2005) based on the complete removal

of constitutional supercooling, requires that streamlines be tangent to isotherms in the case
that fluid flows from the mush to the liquid across a solidifying boundary. This condition
essentially means that the change in temperature moving with a material l)article is zero at
the interface, expressed mathematically as

Dq_7 -0-a +(u-Vk)V=V , (10)
D t at

where q represents the mean velocity of the material particles, k is the unit vector in tie
vertical direction and we have shifted our coordinate system to move at the tulling speed 3
V.

This condition can be justified by considering the change in temperature following a
material particle, which according to the idea of equilibrium (see Worstcr 2000) will have

the following property

Dq 7 Dq 7T'(C) 1
Dt Dt ( '

in the liquid at the mush-liquid interface z = a. In order to ensure that the liquid is not
locally supercooled we require the change in solute concentration to be zero, Dq T/D t = 0
and from the liquidus condition this translates to D q 1,(C)/Dt = 0. Therefore a fluid
particle moving at the mean velocity q must be warming up as it, crosses the interface. On

the mush side of the interface equation (2) can be expressed as

Dqc OC Dvo- = 0 - + C (12)
Dt at Dt (2
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I where the superscript v represent the mean velocity of the solid particles i.e. DV/Dt =

0/Ot - Vk - V. Since the solid fraction is zero at the mush-liquid interface the first term
on the right-hand side is zero. For a solidifying mush the change in solid fraction with time

moving with the solid must be increasing Dv 0/D t > 0 and therefore equation (12) give the
opposite condition

Dq <0 (13)
Dt

on the mush side of the interface. As long as the temperature gradients and velocities are

continuous across this interface then equation (10) must be true.

* 2.4 Velocity Profiles

In the setup shown in figure (2) we assume that the velocity profiles have the same structure
as the well known solution for a corner flow (e.g. Batchelor 1967) in the case of a pure fluid,
which are given in terms of a stream function by

Su= (u,w) = , , V = -Vxf(z). (14)

This formulation applies in both the mushy and liquid layers and allows us to satisfy conti-
nuity exactly in the case of a two-dimensional incompressible flow. We impose the following

conditions on the boundaries of the domain

W (x, 0) = WB, 7,.(x, h) = 0, w(x, h) = WT, Ou 0 (15)

where the last condition expresses no horizontal shear and is only used for the Darcy
Brinkman formulation (see below).

2.4.1 Stokes-Darcy Formulation

Darcy's equation is commonly used in the study of porous media and has had success when
compared to experimental observation (See Bear 1972). Strictly the equation applies for a
low Reynolds number flow when the permeability is sufficiently small, which is the case in

most types of porous media. Outside the mushy layer we have a thin channel that obeys
Stokes equation for a thin gap. These equations are

-VP= Lu 0<z<a-5, (16)

3 VP = V 2u a - 6 < z < h, (17)

where the permeability Hl is given by the following non-divergent function

ri = rio(1 - 0)3, (18)

in terms of the solid fraction 0 and 3 is the thickness of a transition zone to be explained
3 next.
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At the mush-liquid interface it is well known and expected that the pressure and vertical I
mass flux are continuous, although this is not necessarily the case for the horizontal velocity.
Since we cannot interrogate the porous media very close to the interface there is a region of
depth 3 where Darcy's equation is not valid. In this region the pressure is balanced by both I
fluid-solid and fluid-fluid interactions, where the thickness of the transition zone 3 then is
defined to be the depth at which viscous dissipation at the solid walls dominate. Following
Le Bars et.al. (2006) the depth of this transition zone is given by

3 Dakj (19) 

where c is a scaling coefficient k = H/Ho, Da = rH/h 2 is the Darcy number and subscript,
i indicates the level a - 3. Since this thickness is normally small, Oi < 1 Ind( we call to
leading order write this equation as

3 c Da. (20)

Within the transition zone the appropriate equation is not straightforward tut the sin
plest approach is to extend either Darcy's or Stokes equation into this region. Beavers and I
Joseph (1969) verified experimentally that Darcy's equation works well. The problem with
this approach is that the horizontal velocity is not continuous which is inconsistent with
condition (10). As an alternative Le Bars et. al. (2006) extended Stokes equation into the I
transition zone which also matches well to the results of Beavers and Joseph (1969). The
advantage to this method is that the velocities are continuous at the mush- liquid interface
and so we use this approach here. With this method the matching conditions at the level I
z = o - 3 between the two regions are

[u]=0, [w]=0, [P]=0 z=a-, (21)

where the brackets denote a jump in the enclosed quantity.
Equations (16) and (17) can be simplified by substituting in the stream function rela-

~Itionship an(l eliminating the pressure to get the following equations

z fl 0(22)

f" = 0. (23)

in the mush and liquid respectively. Finally the boundary conditions in terms of f are I
f'(h) = 0, f(h) = V f(0) = _(4

with the following matching conditions in terms of f at z = a -

[f]=0, [f']=0, f' (25) 

where + denotes the liquid and - the mushy layer. 3
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2.4.2 Darcy-Brinkman formulation

An alternative to the above approach is to use a continuous formulation in terms of the
Darcy-Brinkman equation

VP = V2u - -H(q5), (26)

which turns into Stokes equation in the liquid where the step function 4 = 0 and H(O) = 0.
This equation has the advantage of being solvable on a single domain, which makes it

-. favorable for problems in more than one-dimension, particularly when there are intricate
changes in topography. Since fluid-fluid stresses are taken into account in this formulation
the velocity is continuous at the mush-liquid interface and a transition zone does not need

I to be defined. Eliminating the pressure and substituting in the relationship for the stream
function we get

f... = f...(0 - 1ld /+f" H(O) + f' [(- _ /)(H (27)

where the boundary conditions in terms of the unknown function, f, are

f'(h) = 0, f(h) = WT, f(0) = B f"(0) = 0. (28)

2.5 Non-dimensionalization

We seek a steady solution in the moving reference frame (0/Ot = -VO/Oz) and non-
dimensionalize temperature and concentration with the imposed boundary couditions as
follows

T= x [-M2 + (m2 - ma)O(z)], C =x 71 2 + O1 1 (z)] (29)

We then scale the length with the width of the channel, h, and the velocity with the interface
speed, V. Equations (1), (2) and (5) become!S

O'(f - 1) - f'( (- W) = Pe0" - S(P'  0< z<a, (30)

S[(O- 1)0- W1 = f'(O- W) - fO' 0 < z < a, (31)
d O'(f- 1) - f' (0 - (e) = PCO" a < z < 1, (32)

Swhere Pe = k/(V h) is an inverse Peclet number and S = L/(CP h(n12 - 11)) is a Stefan
number. Here ' = m 2/(m 2 - n 1l) is the deviation in the horizontal temperature gradient
of the lower boundary f172 from the upper boundary ril and essentially gives us a measure
of the temperature difference. This non-dimensional parameter could be recast in terms of

solute concentrations as W = ?lb/(mb - In/7n), where 712b = Tn2 /i7 is the concentration of
solute at the lower boundary and ml/m is the gradient in the solute concentration at the
liquidus temperature. Since we assume the channel to be infinitely long we will look for
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Figure 3: Mushi-liquid interface position a(zz, 6) as at function of -m for 0,, .2, .5 and .9

corresp)onding to the lower, middle and upper lines respectively.I

large x solutions such that, S/1x - 0, which redluces our s 'ysten i of equat ions t.o functionis of'
Only. The boundary condlitions in the new variable 6 beom IV011

0) 0, 0(1) =1. (3

0= 0, [6] = 0. [62] = 0 z a (34)

withi the unknowns 0, (p, a and the velocitY f (let erined front either thle DiucY-St okes
formulation as I

*~ +) 0 , f" o . (35)

P(1) = 0, f (1) t f f(0) 1 1*1. (:1(;)

If]I 0, If]1 0, = - __,_ z - 5 (37)

l \\D, A-

or the Darcy-Brinkimin formulation as

.. .+ (0 H(b) + .f'. (
f,(1) = 0, f( 1) WT fnti I vB, f(0) = o. (3!9)

In the above equation Da = rlO/h 2 is the Darcy numberand in te liquid layer the governing
eluati ol rednuces to f... = 0f

3 Solutions for VVB WT < V

It, is of interest to obtain a solution in which the direction of flow in the moving reference
frame is front liquid to mush along a solidification boundary. In this case tle condition
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required to determine the location of the mush-liquid interface is different from condition
(10) as has been discussed previously. When the velocity of the upper and lower boundaries
are equal, an exact solution is possible and its solution has interesting qualitative features
that we would like to understand. In this case the governing equations, obtained by taking
f = WB and f' = 0 in equations (30)-(32) are

0'(WB - 1) = Pe 0" (40)
d[(0 - 1)0 - O] = -WBO', (41)I 

0'(WB - 1) = Pe0". (42)

The solution to the temperature equations (40) and (42) in general are 0 = Aexp(-zw) + B
where r = (1 - WB)/PC. Applying the boundary conditions 0(0) = 0, O(a) = 0" and
0(1) = 1 we get

O -a -a= 1 0 < z < a (43)
0~~ = Oa ezw - _w al t(4

e-aw - e-w

The position of the mush-liquid interface is determined such that the first derivatives of the
temperature field are continuous, which is determined, with a little algebra, from

1

a=--1ln[Oae- w + 1-Oa]. (45)

By integrating equation (41) and applying the boundary condition O(a) = 0 at the mush
liquid interface, we obtain

= (1 - WB)(O - Oa) (4)0 - IKI46

which gives the solid fraction as a function of the temperature profile equation (43).
In this frame of reference there is effectively a flow from the liquid to the mush in which

case information about the solute concentration is transported from the upper boundary.
Since there is only 1-dimensional flow with no solute diffusion the concentration in the
liquid is constant and given by equation (8). This concentration translates to the mush
side of the interface because of local equilibrium (see Schulze and Worster 1995) and gives
a relationship for the interface temperature in non-dimensional form as

0= ( - mit) (47)

From this equation we can obtain a relationship for the solid fraction at the lower boundary
i n t h e f o r m B r M 2 t ) ( 1I B ) ( 4 8 )

which is obtained by evaluating equation (46) at z = 0.
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The solution to equation (45) has been plotted in figure (3) as a function of the pa- I
rameter L for different values of the interface temperature 0 a, From these profiles it is
immediately evident that the position of the niish-liquid interface decreases with C which
can be interpreted as an increase in the velocity WB. In this caise there is a larger transport I
of relatively cool fluid from below that decreases the average temperature of the systen and
the thickness of the mushy layer must increase.

Sinilarly the position of the mush liquid interface is shown to increase with the interface I
temperature, which can be better understood by recasting this temperature in the form

0 ( (1 - 4n, r. (49) I
where 710, = 1112 /1 is the horizontal derivative of the concentration at, the lower boundIary.
The first term on the right hand side gives us a measure of the teniperature difference in I
the system in that a large value of Y' can be thought of ats decreasing the temperature of the
upper boundary. The second terin is a ratio of the horizontal concentration gradient betweeni
the top and botton boundaries, in which a large value of r implies a larger concentration 
of solute. In either case a large Y' or r indicates that the average temperature in the syst en
is cooler and the position of the mush liquid interface nmust, grow into the channel in order
to reduce the anount of constitutional supercooling.

4 Numerical solution I
lVe have solved( the full set of equations (30)- (32) and either the Stokes DarcY form1la-

tion (35) or the Darcv Brinknan formulation (38) numerically using a shooting method i
combined witl a fourth-order Runge-Kutta ode solver. The position of the minush liquid
interface is (etermined such that d) = 0 an( q - VT = 0 ats a function of the G parameters,
VI, 1V, 'K', Da, Pc and c in our system of equations.

In figure (4) we show the general characteristics of the inmiierical solution for a fixe(dl t
of )arameter values. Here we have used the Darcy-Brinknian formulation for (onsistcyic *
and reserve a discussion concerning the com)arison between the two fornuilations for the i
next section. The four plots show typical profiles for the solid fraction, 0, temperature. (
first derivative of the teniperature, 0', vertical velocity, f and the horizontal velocity, ]'. In
addition we have )lotted the non-diniensional form of condition (10), which is written is i

(If
G, = 0'(f*- 1) - d,(0 - W) ()= 0. (50

This condition can be interpreted as the point at which the isothernis are tangent to the 
streamlines or equivalently the point at which horizontal advection is balanced by vertical

advection of' thernial energy. I
4.1 Comparison between Darcy-Brinkman and Stokes-Darcy formula-

tions

Le Bars et. al. (2006) showed that the Stokes Darcy and Darcy Brinkman fOrinulations are
nearly equivalent for a suitably chosen transition zone depth and in the limit of smiall DarcY 3
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Figure 4: Numerical solution to the full set of coupled equations showing the solid fraction,
m, temperature, 0 (solid line), tenperature gradient,O' (dashed line), advective coml)onent
of the thermal energy equation, G, the vertical velocity, f (solid line) and the horizontal
velocity, -f' (dashed line). In plot (b) the dotted lines show the zero level and interface

position. Here we use the following parameter values 013 = .2019, W = 1.667, VV'T = 1.5,
IIT3 = 2.6 and Pc = 1.

number. The former method is somewhat less convenient in that it requires the solution
to be broken up into two domains and the results are sensitive to the choice of scaling
coefficient, c. We have plotted a typical solution in figure (5), comparing the numerical
solutions for both approaches in which the best choice for the scaling coefficient is c = 1. As

we expect the difference in the temperature, volume fraction, vertical velocity and horizontal
velocity profiles are very small for the Darcy number Da = 1 x 10- 4 chosen for comparison.
In this case the transition zone thickness is 6 = .01, which is a small fraction of the domain

height. By numerical experimentation we found that the discrepancy between the two
formulations did indeed decrease with Darcy number but had a lower bound since the
liquid layer (1 - a) - 0 as Da - 0.

4.2 Diagnostics

IIn this section we will compare the effect of the four parameters, Da, W, W T and TVB oil

the the mush- liquid interface position, a and the lower boundary solid fraction, !1. We fix
the Peclet number to unity and use the Darcy-Brinkmnan formulation for consistency.

I
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Figure 5: Comparison between the profiles for solid fraction 0, temperature 0, vertical
velocity ] and horizontal velocity J for the Darcy-Brinkman (solid line) and Stokes-Darcy

formulations (Dashed line). Here we have used the following parameter values ' = 3.333.
11' = 1.1, 1V = 1.3, Pc = 1 Da = 1 x 10- ' and c = 1.

4.2.1 Effect of Da I
The Darcy nimber is a scale for the )ermeability in that a large Da implies less resistance
to the flow and a small Da implies more resistance. Therefore we would expect that as Du i
decreases the flow rate would also decrease. In our case we have forced a constant velocit v
at, the lower boundary and must conserve mass at any )oint in our system. The result
than of a decrease in Da is to decrease the horizontal pressure gradient in the mush forcing
the horizontal velocity to decrease. From figure (6) we see that as Da is inade similher
the position of the mush-liquid interface must increases in order to satisfy the t.aigen '(
condition (10). Since in this case the horizontal velocity is decreasing the streamliines will
tend to straighten out and therefore diverge from the tangency condition. Since tile vertical
velocity must decrease at the end of the channel and a horizontal velocity must exist, at

some point in the system in order to conserve iass, there will only be sufficient curvatureI
towards the upper boundary.

In the second graph of figure (6) we have plotted the solid fraction profiles O(z) for tlirc

values of the Darcy number. As a consequence of the horizontal velocity decreasing with I
Da, the advection of thermal energy )ecomes smaller near the lower )oun(lary of the iimushIlY
layer. From equation (31) we can see that the solid fraction gradient must also decrease

in this region and for small Da, 0' approaches zero. Away from the lower boundary the I
horizontal velocity must increase, which leads to larger thermal advection and a steeper
solid fraction gradient,.
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Figure 6: Numerical solution to the full set of coupled equations showing the thickness of the
liquid layer (left), 1 - a as a function of the Darcy number Da and the solid fraction profiles
(right) for Da = .002, .01 and .1 corresponding to OB = .077, .09 and .128 respectively. Here
the other three parameter values are set to WT = 1.1, WB = 1.6 and W' = 1.43.

4.2.2 Effect of Wc

The parameter W is defined as the deviation in the horizontal temperature gradient of the
lower boundary r1 2 from the upper boundary 7n, and really gives us a measure of the
temperature difference in the system. As in the analytic solution of section (3), an increaseI in YC has the effect of decreasing the thickness of the liquid layer, as seen in figure (7). Since
a large value of W'o can be thought of as decreasing the temperature of the upper boundary,
the average tenlt)erature in the system is lower and at steady state the nmshy layer mustIgrow further into the channel. In addition we require condition (10) to be satisfied, in which
the position of the nmush-liquid interface must occur at a point where the isotherms and
streamlines are locally tangent. For fixed velocity boundary conditions the streamlines are

to leading order independent of W, and we can concentrate on the form of the isotherms as
a function of the temperature boundary conditions. As was indirectly indicated to above,
the vertical temperature gradient decreases with an increase in r since the difference in

temperat ure across the channel is decreasing. Because of the form of the streamnlines in the
channel the position of the tangency point occurs more towards the upper boundary as the
isotherms straighten out.

In addition figure (7) shows a plot of the lower boundary solid fraction as a function of
'. As this parameter is increased the thermal gradient decreases, as, discussed above, but

since the non-dinensional temperature gradient scales with Wc, 0' actually increases. As a
result of this the thermal advection term in non-dimensional form becomes larger. With

reference to equation (31), we can see that in this case the solid fraction gradient increases
and with it 0B.

4.2.3 Effect of velocity

The velocity boundary conditions have a strong effect on the structure of the velocity field
within the mush and liquid layers and is an important parameter controlling the advective
flux of solute and temperature throughout the system. In figure (8) we have plotted the
thickness of the liquid layer as a function of the lower boundary velocity WB for different
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Figure 7: Numerical solution to the full set of coupled equations showing the thickness of
the liquid layer (left), 1 - a and the lower boundary solid fraction (right.), 013 as a function
of W, . Here the other three parameter values are set to 1WT7 = 1.1, W13 = 1.6 and Da = .01.

values of the upper boundary velocity WT. This figure shows that the position of the mush
liquid interface increases with WB, which is not surprising since we would expect, there to
be a larger flux of cool fluid from the bottom. In addition a larger lower boundary flux has
the effect of increasing the horizontal velocity and stretching tile stream lines further down
the channel. As a result the mush-liquid interface is driven further upwards in order to
both suppress constitutional supercooling and find a point of local tangency between the
isotherms and the streamlines. By the same reasoning an increase in W7, will straighten out i
the streamlines and thus increase the thickness of the liquid layer as shown in figure (8).

Similarly to the discussions in section (4.2.1) and (4.2.2) an increase in lower boundary
velocity acts to increase the advective transport of thermal energy. This causes the solid i
fraction to increase and with it the solid fraction at the lower boundary )/? as shown in
figure (8).

5 Conclusion

In this paper we have explored the behavior of a boundary condition originally presented by I
Schulze and Worster (1999). This condition requires local tangency between the isotheris
and streamlines at a mush-liquid interface when the flow is from mush to liquid across a

solidifying boundary. The condition naturally occurs along the chimney walls of a mush I
layer and requires a two dimensional flow and temperature field to be satisfied. For this
reason we constructed a simplified model that has these properties built in but that, can be
reduced to a one-dimensional problem. The appropriate equations to use for the velocity i
field within the reactive porous media can be separated into two groups, Darcy and Darcy-
Brinkman, which are only equivalent in the limit of a small Darcy number. The first is
a two-domnain approach that, requires a transition zone of order Da2' to be defined andI
the second is a continuous domain approach. We solved the governing equations (31)
(32) with either the Stokes-Darcy formulation (35) or the Darcy Brinknman formulation

(38) numerically and compared solutions for both of these fornmulations. From comparisons
of velocity, temperature and solid fraction profiles we discovered, as we expected, that
the difference between the two formulations decreased as the Darcy number was imide
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Figure 8: Numerical solution to the full set of coupled equations showing the thickness of
the liquid layer (left), 1 - a and the lower boundary solid fraction (right), OB as a function
of WB for W- = 1.2, 1.3 and 1.5. Here the other two parameter values are set to W = 1.43

and Do = .01.

smaller. In addition we used the numerical solution with the Darcy-Brinkman formulation
to determine the behavior of the liquid layer thickness, 1 - a and the lower boundary solid

fraction OB as a function of the four parameters Da, W WB and WT. Since a small Darcy
number tends to decrease the horizontal velocity within the mushy layer the position of the

mush-liquid interface must occur near the upper boundary were mass conservation forces
the streamlines to have sufficient curvature in order to satisfy the tangency condition. The
lower velocity also decreases the advective transport of the thermal energy near the lower
boundary which tends to suppress the solid fraction gradient. In the case of large Y,', the
thermal gradient decreases and therefore straightens out the isotherms, which results in the
point of tangency occurring closer to the upper boundary. Because the non-dinensional form
of the temperature is scaled with 'e, the non-dimensional temperature gradient increases.
resulting in a larger thermal advection term and therefore an increase in OB. Similarly an
increase in the lower boundary velocity WB results in a larger advection of thermal energy
which lengthens out the streamlines. This forces the tangency point to occur further up the

channel and increases the solid fraction at the lower boundary.

6 Future Work

The problem presented in this paper has been solved numerically for the steady state case
and could lead to a larger study. The next step in the analysis would be to reformulate
the equations in terms of enthalpies. Since in this case the temperature and solid fraction
are consolidated into a single equation the numerical procedure would be simplified. With
this new formulation we could more easily solve the transient problem numerically to gain
a better understanding of how the mushy layer evolves with our current setup.

Experiments have found that tributaries form along the chimney walls, most likely due
to some instability within the reactive porous medium. We have used our simplified model
to examine the initiation of this feature, using linear stability analysis. In this case the basic
state is the numerical solutions presented here and we look to see under what conditions
the perturbations grow in time. This analysis is still in the beginning stages and still needs
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mnore refining to obtain a reasonable solution.I
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* Abstract

With recent observations of diminishing sunner Arctic sea ice extent, the hypothesis of
a "tipping point" in summer ice cover has been the focus of a number of studies. This

view suggests that as summer Arctic sea ice cover retreats it will reach a critical point
after which the ice-albedo effect will cause the summer ice cover to disappear altogether.
We have examined the heuristic argument behind this hypothesis using an idealized, but
observationally constrained, model of Arctic sea ice with representations of ice and ocean
mixed layer thermodynamics, varying open water fraction, an energy balance atmosphere,
and scalable CO 2 . We find that summer ice cover retreats toward an ice-free summer ocean

at an accelerating rate in a scenario with exponentially increasing CO 2 . However, we find no
critical CO 2 concentration or "tipping point" using observationally based parameter values.
Ve identify in the extended parameter space a bifurcation associated with multiple summer
ice cover states and a cusp catastrophe, and we find that it occurs far from the physically
realistic parameter regime. Our results suggest that the argument for a "tipping point" in
summer Arctic ice cover brought on by ice albedo may not hold up when quantified. The

reason is related to the fact that ice cover has only just begun to retreat at the time of
maxinum sunlight (June), and the mininmm ice area occurs in September when there is
very little Arctic sunlight.

1 Introduction

The retreat of summer sea ice cover in the Arctic is one of the most dramatic signals of recent
climate change. While winter ice cover has remained fairly constant, summer ice extent has
diminished significantly during the past few decades (Fig. 1), with annual minimum extent
shrinking by 20% between 1979 and 2005 [34]. The high sensitivity of Arctic sea ice cover
is believed to be related to the difference in albedo (i.e., reflectiveness) between sea ice and
the open water that is exposed when it melts. Bare or snow-covered sea ice reflects most
sunlight back to space, while the dark ocean surface absorbs most incident light. Global
climate models have long predicted reduced Arctic sea ice cover as an amplified response to
global warming (e.g., Manabe and Stouffer [15]), prompting speculation more than a decade
ago about the use of Arctic ice observations to provide an early indicator of climate changeI [35].
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Figure 1: Diminishing Northern Hemisphere sumnmer sea ice extent based on satellite obser- I
vations [3]. Ice extent is defined as the area of grid boxes with ice concentration of at least

15%, and September nonthly mean values are plotted (note that September is the mollth

of minimum ice cover). The gray dashed line indicates a linear fit.

The ice-albedo effect could potentially lead to multiple states, and scientists have long

co jectured that the Arctic might support a second stable state under current climate

forcing which is at, least seasonally ice-free (e.g., Ewing and Donn [5]). Heuristically, one •

might indeed expect that ice-free and ice-covered stable states could exist. separated by

an unstable state in which the Arctic is partially covered by ice and absorbs just enough

sunlight to maintain the ice edge at the freezing temll)erature: adding a slight amiount of'

additional ice to this intermediate state would lead to less solar absorption, cooling, Ind

hence further expanded ice cover. As the background climate is warmed, the unstable statec

woUld require more and more ice so that it reflects enough sunlight for the ice e(lge to

remain at the freezing tem)erature. This warming could be caused 1y rising greenhouse I
gas levels, for example, or by some mechanism leading t.o increased heat transport, int,o the

Arctic. At a particular level of warming, the background climate would beconme so hot that

the Arctic ocean would remain above the freezing point, even if it were fully covered with I
ice. At this point the stable ice-covered state and unstable intermediate state would imerge

and disappear in a saddle-node bifurcation, leaving only the ice-free state. This scenario

suggests that if the Arctic were in the ice-covered state and climate were warined beyond I
the bifurcation )oint, it would make a rapid and irreversible transition to the ice-free stat.,

exhibiting behavior which is described mathematically as a catastro)he.

InI light of the continued recent, retreat, of summer Arctic sea ice cover [29], the idea that I
we may be ap)roaching a threshold has been receiving a tremendous amount of attention in

the popular press. Often employing the term made popular by the title of Malcolm Glad-

well's bestselling sociological treatise Thc Tipping Point (2000). widesprea(d speculations I
have suggested that the ice albedo effect lay cause an otherwise gradual global warming

to pass a point of no return, beyond which the Arctic would rapidly approach a state which

is ice-free each summer. The cover of the 3 April 2006 issue of Timc Magazine suggests in I
large bold letters: "Be Worried. Be Very Worried.... Earth at the tipping point." Dimin-

ishing Arctic sea ice is a nmajor focus of the cover story. A iews feature in Naturc oi 15h
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I June 2006 titled "The tipping point of the iceberg" discusses the increasing interest in the
idea of tipping points in the climate system. The article states that among several plausibleStipping points under discussion, Arctic sea ice has received the most recent attention. It
reports that 234 newspaper articles mentioned a tipping point in connection with climate
change during the first five months of 2006, a stark increase from 45 such articles in 2004.

In the scientific literature, discussions about a bifurcation point in summer sea ice areI slightly less abundant, but several recent papers speculate about it. Lindsay and Zhang [14]
write, "The late 1980s and early 1990s could be considered a tipping point during which
the ice-ocean system began to enter a new era of thinning ice and increasing sunner open
water because of positive feedbacks. It remains to be seen if this era will persist.... However,
at this point we can only state the tipping point as a hypothesis." This is based on forcing
an ice-ocean model with atmospheric observations and finding significantly increased heat

absorption since the 1980s associated with ice albedo; they do not actually look for hys-
teresis. Overpeck et al [25] conclude that the arctic appears to be heading on "a trajectory
to a new, seasonally ice-free state" because of the ice-albedo feedback. They add, "The
processes and interactions among primary components of the Arctic system, as presently
understood, cannot reverse the observed trends toward significant reductions in ice", imply-
ing that the system has passed a bifurcation point and ice will continue to decrease until itUarrives at a new state. Serreze and Francis [28] speculate about similar bifurcation behavior:
"We are likely near the threshold when absorption of solar radiation during sumnmer limits
ice growth the following autumn and winter, initiating a feedback leading to a substantial
increase in Arctic Ocean surface air temperatures." These papers do not actually claim
that there is a "tipping point". Rather, they express it as a hypothesis and discuss its
plausibility.

It is not at all obvious, however, that the ice-albedo effect would lead to nltiple Arctic
sea ice states and hence allow for the possibility of a catastrophe. There are many stabilizing
feedbacks in the Arctic clinmate system. Perhaps the most important of these in the context
of sea ice is the fact that thin ice grows considerably more rapidly than thick ice. For
example, Untersteiner [33] gives an annual increase in thickness of 0.8i for ice that is 0.6hn
thick at the start of the growing season, but an increase of only 0.2m for ice that is initiallyI 2.2m thick. Furthermore, if there were a second stable state that is at least seasonally
ice-free, it, would seem likely that both states would have been explored by the climate
system in the past during the significant variability associated with glacial cycles. But most,
paleoclimate reconstructions suggest that there was year-round Arctic sea ice for at least
the past million years (e.g., Moran et al [21]).

In this project, we have attempted to quantitatively investigate the plausibility of a
catastrophe in summer Arctic sea ice cover. One possible approach for such an inquiry
would be to employ the sophisticated global climate models which are used to predict future

climate change. As described in Section 2, however, these models disagree markedly in their
simulations of Arctic sea ice changes in a warming climate. Instead, we have approached
the problem by constructing an idealized model of the coupled Arctic ice-ocean-atnioslhere
system. The model is physically stripped down to essentials, but it is observationally

constrained and includes all the ingredients in the heuristic argument for multiple summer
ice cover states brought on by the ice-albedo effect. To that extent, a, positive result would
imply only the plausibility of a "tipping point", but a negative result provides a somewhat
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stronger refutation. The model is described in Section 3. It is an extension of the Arctic sea I
ice and atmosphere model of Thorndike [31] with additions to allow for partial ice cover,
an ocean mixed layer which is always active, a simple paranieterization of ice dynaiics,

scalable CO 2 , and a change in the treatment of atmospheric heat transl)ort which is expecte(d
to be more realistic in climate states that may be very different from today. The model
is re)resented by four coupled ordinary differential equations that evolve ice vohine, ice
-rea, ice surface temperature, and ocean mixed layer temperature. These equations have I
thresholds at the freezing temperature for the ice surface and ocean mixed layer, as well as
a threshold in the evolution of ice area associated with whether the ice volume is decaying.

The model results are described in Section 4. We begin by examining the model solution
in the parameter regime representing the climate today. We find only one sea ice state.
in contrast to the "tipping point" hypothesis. An exponential inicrease in CO 2 leads to

retreating summer ice cover at an accelerating rate. When CO 2 is increased somewhat 
beyond the point where the ocean beconmes ice-free each sununer, the Arctic continues
to b)e completely ice-coverel ever' winter. When CO2 is further increased, however, this
seasonally ice-covered state gives way to a state which is ice-free year-round. Only at this
point do multiple states exist: for a range of CO 2 values, both seasonal ice cover and ice-free
year-round states are possible, leading to a fold catastrophe in winter ice cover as C02 is
varied.

This suggests that the stabilizing effect of the growth-thickness relation nmy quantita-
tively outweigh the ice albedo effect. Jo quantity the extent to which the former dominates

in this model, we explore the parameter space in search of a region with multiple suniner
ice cover states. We find such a region, bounded by a saddle-node bifurcation of cycles,
when we significantly reduce the latent, heat of sea ice fusion. Ai investigation of the cusp

catastroPhe in C0 2--latent heat parameter space reveals that the actual Arctic appears to
be far from the region where CO 2 changes (!all cause a "tipping point" in suiinier sea ice
Cover.

Concluding remarks and caveats regarding limitations of the idealized model are dis-

cussed in Section 5.

2 Arctic sea ice changes predicted by global climate models

Sophisticated global climate models (GCMs) have been used extensively to predict, future
chimnate change associated with increasing levels of atmospheric CO 2 . About, two dozen of

these models are being evaluated for the incipient Fourth Assessment Report (AB,4) of the
Intergoverniental Panel on Climate Change (IPCC). The models tyl)ically have horizontal
resolutions of 1 to 4' in the occan component and similar equivalent spectral resolutions
in the atmospheric component; the atlmosphere and ocean components each typically hiav
10 to 50 vertical layers. All of time GCMs include represenitations of sea ice, with varying
levels of complexity in the sea ice models.

A possible approach to address the plausibility of a catastrophe in summer Arctic sea
ice cover would be to increase CO 2 in one of these GCMs, continue the simulation until
the model is sufficiently spun up, and then decrease C02 and look for hysteresis in the ice
:over. This hysteresis would imiply a bifurcation or "tipping point. The siml ation would

be rather computationally intensive, as it would likely take more than 1000 simulation years I
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I to sufficiently reach a steady state for the elevated CO 2 value.
The first 100 years of a similar experiment has already been evaluated with many of

these GCMs for the Special Report on Emission Scenarios (SRES) A1B scenario, which
is one of the CO 2 future emission scenarios investigated in the IPCC AR4. The IPCC
AR4 Model Output Database at the Lawrence Livermore National Laboratory Program for
Climate Model Diagnosis and Intercomparison currently has ice cover data for the "Climate
of the 20th Century" and "SRES AIB" experiments from 16 of the models. We acquired
the monthly gridded data from Run 1 for each of these experiments and computed the time
series of total Northern Hemisphere sea ice extent by summing the area of grid boxes with
ice concentration greater than 15%. The 16 models are as follows: BCCR BCM2 (Norway),
CGCM3.1 T47 (Canada), CGCM3.1 T63 (Canada), CNRM CM3 (France), CSIROI Mk33 A(Australia), ECHAM5 (Germany), GISS AOM (United States), GISS ER (United States),
HadCM3 (United Kingdom), HadGEM1 (United Kingdom), INM CM3 (Russia), IPSL
CM4 (France), MIROC3.2 low resolution (Japan), MIROC3.2 high resolution (Japan), MRI
CGCM 2.3.2a (Japan), and NCAR CCSM3.0 (United States).I_ The average seasonal cycle in Northern Hemisphere ice extent during 1980-1999 for each
of the 16 models is plotted in the top panel of Fig. 2. Ice extent during the same period
computed from ice concentration measurements derived by Cavalieri et al [3] from satellite
observations is included for comparison. The agreement between models and observations
is decent (cf. Parkinson et al [26]): observed ice extent varies between 6 and 16 million km 2

during the seasonal cycle, and the intermodel spread is roughly ±3 million kl 2 (although
it is slightly greater than this during summer).

Predicted Northern Hemisphere summer minimum sea ice extent during 2000-2100 hr
the "SRES A1B" experiment varies widely between the models. While the MIROC3.2 high
resolution model simulates an ice-free summer Arctic starting in 2030, GISS ER simulates
that in 2100 summer ice cover will be reduced by only 15%. The other models fill the space
of predictions in between. In should be noted that these GCMs show better agreement, in
their predictions of future global mean temperatures, which is the result typically receiving
the most attention. This formidable intermodel spread in simulated ice cover discourages3 the use of GCMs to assess the possibility of a future catastrophe in Arctic sea ice cover.
It motivates an approach using an idealized model with more transparent physics, which is
the method pursued in this report.

In a related project carried out this summer (Eisenman, Untersteiner, and Wettlaufer,
in prep), we used an idealized model to examine the possibility that the spread in IPCC
AR4 sea ice predictions is related to the sea ice models in the GCMs having been tuned
to simulate observationally reasonable ice cover today, despite a large spread in sinulated
Arctic cloudiness which would otherwise lead to widely differing simulated present ice cover.
The detailed results of the project have been left out of this report for brevity.

U3 Model description

Here the idealized model of the coupled Arctic sea ice, ocean, and atmosphere used in this

project is described. It is an extension of the model of Thorndike ([31], hereafter T92),
which is a single-column model with representations of vertical sea ice thermodynanmics3and a thermal radiative balance atmosphere. When the ice melts to zero thickness in
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the minimium in the 1980-1999 mnean seasonal cycle. Thie intcrinodel spread is fOrmiille
discouraging the use of GCMIs to assess thle p)ossib)ility of' a future ice cat,astrophie and1(

motivating the use of an idlealized1 model.I

Thiorridike's model, a thermodynamic ocean mixed layer is evolved until it, reaches tHie
freezing temp)cratntre, at which point sea ice begins t.o form again. Thorridike's mnodel
displays two stable st,at,es. One is state ice-covered year-round and the other is ice-frec
year -rond(. A third state also exists with seasonal ice cover, hut it is ustable.

Trhe modlel used here is extended to allow lpartial ice cover, which reqluires an oceanl
mnixedl layer which is always in communication with the atmosphere unless the occanl is
completely ice-coveredl. Thie ice area is evolved using a methodology bas,ed on Iliblvr [10].

A simple paranmeterizatiomn of ice (dynamics is included. Thme atmnosphere used here is nerl *v
idlentical to Thorndike's, excep)t that C0 2 can be variedl and mieridional heat, trans"port into
thie model domnain depends on tHec implied mneridhionmal tem peratu tre gradhienmt rat her than

being specifmed at a constanit value.
The state variables (Table 1) are ice volume, ice area, ice surface t emperat iurc, and(

ocean mixed layer t,enilperatuire. Their evolution is rep)resent ed l)y fou r ordinmary (Iiifeiremt ial 3
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U Table 1: Model state variables.
V Ice volume divided by area of box (units of m).
A Ice area (fraction of box covered by ice).
7 Ice surface temperature (°C).
Th Ocean mixed layer temperature (0C).

equations with thresholds associated with the freezing temperature of the ice surface and
occan mixed layer, as well as a threshold in the evolution of ice area associated with whether
the ice volume is growing or decaying. The physical derivation of these equations is described3 below.

3.1 Sea ice

3.1.1 Ice thermodynamics

Here we discuss the derivation of the idealized thermodynamuic equations in T92, which3 have been used in this model, starting from the fundanental conservation law for heat
transport in a two-phase, two-component system. We discuss the equations of Maykut and
Untersteiner [19] as an intermediate step.

As sea ice grows, differences in the rates of diffusion of heat and salt in seawater give rise
to a region adjacent to the ice-water boundary where the water is constitutionally super-
cooled. This triggers morphological instability of the interface: perturbations to a planar
interface grow because they protrude into the constitutionally supercooled region. Due to

this effect, sea ice develops a lamellar solid-liquid interface characterized by millimeter-
scale blades of ice with brine filling the narrow spaces between them. This is in contrast
to the more familiar situation of lake ice, which experiences none of these salinity-related
phenomena and grows with a planar solid-liquid interface.

At thermodynamic equilibrium, the interstitial brine in sea ice is at the freezing tein-
perature, maintaining the same temperate as the ice crystals immersed in it. As explained
by Maykut and Untersteiner [19], a rise in temperature causes ice crystals to melt until the
brine is diluted sufficiently to raise its freezing point to the new temperature. Hence the
heat capacity of a slab of sea ice is different from that of a simple solid: the brine pockets
serve as a thermal reservoir, enhancing the effective heat capacity.

This suggests a treatment of sea ice in which quantities are averaged over regions con-
taining both ice and interstitial brine. A region of mixed phase for a two-component fluid
(here salt and water) is called a mushy layer. Sea ice thermodynamics can thus be de-
scribed as a problem of vertical heat conduction in a mushy layer with the upper boundary
condition determined by the balance of surface fluxes.

The mushy layer equation for conservation of heat can be written (Worster [36], equation
6.20)

CMT + CbU- VT V - (kmVT) + C0 +(1)

where T is the mushy layer temperature, ¢ is the solid fraction (i.e., fraction of the volume3 which is ice), £ is the latent heat of fusion per unit volume (proportional to the difference in
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enthalpy between brine and ice), and AR represents the absorption of solar radiation that I
has passed through the surface of the ice. Here the mean volumetric specific heat capacity,
c,n = cio+ cb(I - 0), is related to the volunetric specific heat of ice (ci) and brine (e). Th' l

mean thermal conductively of the mushy layer is approxiinated to be k... = kjo + kb(1 - I
where ki and kb are the thernial conductivities of pure ice and brine; this relationship is
exact if the ice lamellae are oriented parallel to the heat flux, which is a good approximation
for sea ice. Note that in (1) we have corrected the typographical error (verified via personal
communication with Grae Worster) in the factor multiplying the advective term in Worster
[36] equation 6.20.

Feltham et al [6] showed that under certain physical assumptions the niushy layer coiiser-
vation equation (1) reduces to the temperature diffusion equation in the model of Maykut
and Untersteiner [19], which most current models of sea ice thermodynamics are based 3
on. Here we present a brief summary of the derivation in Felthanl et al. Assuning local
thermodynamic equilibrium (i.e., brine is at freezing temperature) and a linear liquidus
relationship (i.e., linear dependence of brine freezing temperature, TL, on brine salinity, S), 3
we can relate the temperature to the brine salinity as

T = T (S) = TjL(0) - FS. (2) I

We introduce the bulk salinity, Sbulk = (1-0q)S, using the assumption that, the concenttration
of salt incorl)orated into the ice crystals is negligible compared to the brine salinity. This
allows us to write the solid fraction 0 in terIs of brine salinity and hence, by (2), in terlms
of temperature:

I'SbulkFS- 0 (3)3

Here we have defined 0 = T - TI(0) = T - 273°C.
Maykut anid Untersteiner [19] use a prescribed tim-independcent vertical salinity profilc

for SbI..Ak, neglect brine flow (u = 0), and consider temperature variations in tle vertical
only. Under these assumptions, (1) becomes

OT 0 ( > T) )

C(4 F - keftL(1)}
' at 0Z o ' I OZ" ) +  . 4

with cff c', - £ and k,ttr - k,,. Inserting (3) and the definitions of ca a(d k,,,, the
effective nushy layer heat capacity and conductivity can be written

C FSI b C FSb,u1k (5)3(:f = Ci 0 0 2

and

, ff = ki - 7Sb.lk (k -A,) (") 30

Equations (5) and (6) are equivalent to Felthan et al [6] equations 14 and 15 (with their
equation 14 corrected for a typ,ographical error, verified by personal communication with I
Danny Felthami, in the sign of the second tern).

Approximate formulas for effective heat capacity and conductivity were derived by Uin
tersteiner [32]. Because they were found to be in good agreement with the theoretical 3
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I expressions of Schwerdtfeger [27] and Ono [24], they were used by Maykut and Untersteiner

[19]. Feltham et al [6] demonstrate that sea ice heat capacity and conductivity obtained
by Schwerdtfeger [27] are identical to the mushy layer result (5)-(6) when L/pi is assuned
constant, the conductivity of bubbly ice is assumed equal to ki, the volumetric heat capacity
of pure water is assumed equal to Cb, and the densities of pure water, pure ice, and sea ice
are all assumed equal.

i The equation in Maykut and Untersteiner [19] describing the evolution of the tem-
perature profile (their equation 6) has capacity and conductivity terms with parameters

I multiplying powers of temperature and salinity in identical form to (5)-(6), with the ex-
ception that they do not have the Sbulk/O term in (5). By illustrating this equivalence,
Feltham et al [6] demonstrate that these terms in the thermodynamic model of Maykut

and Untersteiner [19] are firmly grounded in the physics of mushy layers, thereby showing
exactly how the terms account for both the fractional inclusion of brine pockets and the
energy associated with phase change when this fraction evolves.

Maykut and Untersteiner [19] use a scaling argument to neglect the vertical derivativeI of keff, simplifying (4) to
OT 02T

Ceff - = keff + AR. (7)

They specify seasonally varying snowfall and include a layer of snow above the ice in which
temperature evolves according to

-sow0z + Ai?. (8)

In this layer, unlike in the mushy sea ice, the volumetric heat capacity ((,)) and con-

ductivity (ksOw) are constant parameters. The boundary condition at the upper surface,
hT, is a flux balance when the ice is below the freezing temperature and a Stefail3 condition for surface melt otherwise:

[k T] 0Ftop= 0 T(hT)<O°C (9)
I Lsnow h dhT T(hT,) = O'C

L~-J dt

where L is the latent heat of fusion of the surface material and Ftp represents the sun of
sensible, latent, downward and upward longwave, and shortwave heat fluxes at the surface.

All but the upward longwave flux are specified in their model based on observations. The
fluxes balance at the snow-ice interface (z = h,j):

ksnow O [eftf a (1)

i At the base of the ice layer, z = hB, a Stefan condition for ice growth or melt is applied:

-.. ..-F 0 t- 
d h

. (11)

dII[ O 1 1B dt

Here Fbot is the flux from the ocean mixed layer into the base of the ice, which is a specified
constant. Note from (9) and (11) that Maykut and Untersteiner evolve the upper and lower
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surfaces of the ice, hq- and hB, sep)arately. The actual p)redicted ice and snow thicknesses
are hi,~ = , - hB1 and h,m hT - 11i

The thermodynamic sea ice mnodel of Maykut, and Untersteiner [191 is summarized imy

(7)-(11). They solved it numerically onl a 10cm vertical grid1 with 12 hour time steps usingI
a $3 million 1960s 1BM mainframe computer.

The simplified thermodynamic equations in T92 c:an be (derived from (7)-( 11) l)y une-

glecting snow an(l sensible and latent surfaice heat fluxes, assuming the sea ice effective heatI
capacity and conductivity to be independent of temlperature and salinity (c,ff(' S') = c
k,ff (T, S) =k), applroximating all shortwave radiation to be albsorb)ed at the upper sur-

face (AR~ 0), and applying the quasi-stationary approximiation to the (diffuision] equlationm
(7). This leads to equations for the evolution of surface temp)eratulre i and( ice thickness
11 17 - 1113. The quasi-stationary approximiation, which is ba-sed onl assuming a large

Stefan niunber S =-L/ (cPAT), allows the left hand side of (7) to be integrated with tIheI
assumption of a linear temperature p)rofile:

'i l c f h "" ' ( a / z - h 1 \1 1, ch dTj (12)
B I- (cat) IC./h dz ot h- / 1 ) 2 (it

This leads to an integrated version of the diffusioni equation (7),

c h d 'i0 7[ 
12 dit 0 1- OzJ (3

Inserting into (13) the boundary conditions (9) and (11) leads to two sets of eq(ulation.",
dlependling Onl whet her or not the surface is melting. Ini either ease, the linear int ernal3
enmperature gradient is usedl for the lower boundary terin (k~[Y'/)]h = Wil/im) b)ecaulse

of the Stefain (ondit ion at the edge, and the lower boundarY ondoit ion (11) becomles

-L d'h 1? = -kli- Fj), I. (14)I
(it It

When I' < O'C, the first uipper boundary condition in (9) gives k [0T1/0z]j,, = T , top Insert-

mng this into (13) anol using (1111(it = (1/i (11T - 1B) = -dl/h/?/d/ ill (14) leads toI

c"d -(" Ftj) - k1'i- (15

dtt h1i

WVhen i = O'C, the Stefan condition at the upper edlge leads to the use of the internal

temperature gradient for the upper boundary termn, k [OT/O?z] ,,, = 0 T Il. Using the secondl
upperC boundary condition in (9), Ldlij,ldt = ATilli - F,,,, (13) and (14) beconme

(i ,(17)1
LLl=- Ftol) - Fbot. (dt

Thorndike [31] separates the sea ice seasonal cycle into discrete steps representing cool-
ing, growing, warming, and nielting. He uses (15)-(16) (luring growing and (17)-( 18) (hlirinig
melting, and dhiring the warming and( cooling steps he uses equations to evolve i ando ih

which are equivalent to letting dhBl/dt =0 inl the lower bounudarv conilition (11).I
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I In the model presented here, we use a continuously evolving seasonal cycle, using (15)-
(16) or (17)-(18) depending on whether Tj < 0°C. Because we allow partial ice cover, unlike
in the models of Maykut and Untersteiner [19] and Thorndike [31], we evolve ice volume
rather than ice thickness. In the ice-covered fraction of the model domain A, this vertical
thermodynamic growth of the ice is represented by re-writing (16) and (18) as

dV (L- =A -k- - Flt'~ (19)
dt h )I

Ln = A (-Ft.p - Fbt) 
(20)

dt

I3.1.2 Evolution of ice area

T92 describes the entire Arctic by a single ice thickness, using a thermodynamic ocean3 mixed layer model which becomes active only when all the ice melts. In the model used
here, an open water fraction is included. When the open water fraction is small, it describes
the area of the Arctic covered by leads; when it is large, it describes extended regions of

I ~ open water.
While the thermodynamic sea ice equations in this model are derived from fundamental

physics, the area evolution is based on the observationally motivated methodology of Hibler
[10]. Hibler introduced this methodology to evolve ice concentration (fraction of grid covered
by ice) in each model grid box, allowing models to account for the presence of subgrid-scale
leads. Many of the GCMs today with the most, sophisticated sea ice representations include3similar paranieterizations of subgrid-scale leads and thickness distributions based on this
methodology. The box model used here effectively includes a single grid box, so Hibler's
methodology can be similarly applied to the ice area in this box.3 It should be noted that the open water fraction in this model, as in Hibler [10] and
similar models, is not meant to represent a truly ice-free region. R3ather, the model domain
is split into a fraction containing thick ice, with the rest covered by a mixture of exposed

m3] ocean and thin ice as in observed leads. The volume of this thin ice is assunied to be
negligible compared to the thick ice volume.

Hibler [10] presents a dynaniic model in which the thermodynamic sea ice growth rate3l is specified as a function of ice thickness and season, and concentration grows based on
the growth rate for zero-thickness ice. Here the thermodynamics are computed, and con-
centration increases when Tmj reaches zero and tries to keep cooling: the mixed layer flux
imbalance Fn goes to making new ice volume as

dA F( 1

dt L ho

As in Hibler, an equivalent thickness h0 must be assigned to the new volume to give it a
horizontal area. This parameter controls the rate at which ice cover grows; it is not to be

viewed literally as the typical thickness of new ice.
Area grows only when the mixed layer freezes; when the Stefan condition at the ice3 base leads to volume growth, the ice grows vertically downward and area remains fixed.
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Figure 3: Schematic illustrating the p)rop)ortionality between the rate of chmaige of ice area
and tlhe thermodynamic dlecrease of vohlnme. This methodology follows Hibler 110].1

Area deca,vs, however. when volunle is thermodynamically lost. Following the treatmient ili

Hibler, when dt < 0 area dlecreases asI

dIA _ AdV (2
dt 2V dt (2

The proportionality between volumec and area rates of change is based oilian argumntl
in Hibler about the ice thickness (listribultion in the model domain. Assume that the ice
is distrib)uted evenly in thickness b)etween 0 and 2V'/A. This gives a meami thickness of'I
V/A. (Note. however, that, in bo0th Hibler's model and the mlodlel presciitedl here thle t her-
iliodyllailic grow-,,thl of ice is a nonlinear function of thickness anid is comlput ed und(er t li 3
assunmption that all ice is of the mean thickness V/A, rat her than using anl eveni (list rib)ut iou
betweeii 0 aind 217/A.) It is assumed that all ice in the 0 to 217/A (list ribult loll imelt s at, tlie,

smiie rate. Hence the rate of area decay is given by the rate, of thickniess (dccki timest ilie

inverse slope of the thickniess dlistrib)ution

AA=_lidA__V A AV. (23)

dh A 2V7/A 2V
This is illustrated schematically inl Fig. 3.

Note that new ice area forms at 1i = 0, hence increasing the subzero ice surface temi-

peraturc when area is expandling (luring the growing season. '[his would add] thme teriii
-(TIA)dAldt to dlT/dt. Since T typically changes between Wand 30'C while A evolves
bJetweenl 0.75 and 1, (11T)dT1dt tends to be far larger thani (11A)dAldt, and the( term is
expectedl to b)e insignificant, and has been neglected.

Dynamics are rep)resenlted in the model by requiring that A < 0.95 (because of tl 1i

constkint convergence an(l divergence of the wind field) and hy Imiposinig a net, annlual exportI
of 10W% of the ice area ba sed onl observations of Kwok et al [13]. Th'le latter add(s t he terll'si

-i,,(A and -,voV to the area and volume evolution equations.

1443



I

I 3.2 Atmosphere

3.2.1 Radiative equilibrium

Tile model has a gray-body thermal equilibrium atmosphere, as in T92 (cf. Goody an(I
Yung [9], Section 9.2), which is used to compute the downward longwave radiation at the
surface as a function of the surface temperature. To find this relationship it is necessary
to derive the full atmospheric vertical profiles of temperature and downward and upward
propagating ]ongwave radiation. The atmosphere is assumed to be transparent to shortwave
(solar) radiation. A poleward atmospheric heat transport into the Arctic, D, is accounted
for in the model.

With longwave extinction coefficient n(z) and atmospheric density p(z), the amount3 of upward propagating longwave Fup at a given height can be found using dFup/dz =

p(z)K(z)Fup(z). This can be solved for intensity as a function of height,

Fup(z) = Fup(O) exp ( ptdz') = Fup(O) exp(q7(z)), (24)

where Fp(O) is longwave radiated from the surface. Here we have defined the optical height,

i(z) = fo ptKdz'. An advantage of measuring height using 71 instead of z is that K(z) and
p(z) drop out of the equations and the atmosphere can be described by a single parameter,
the total optical thickness N = 7(oo). Physically, an optical thickness of N means that a
longwave photon typically passes through 1/N of the atmosphere before being absorbed.

Tihe longwave radiation from the surface can be linearized in surface temperature, T.',
i about the freezing tenmperatutre, T, = O'C:

Fup(O) = a(T, + 273K)4 z a + b. (25)

Here T, is assumed to be measured in 'C.
The atmosphere is absorbing and reradiating longwave radiation at all heights. The

intensity of downward radiation from the atmosphere above is given by FD(I), which
Smust be zero at the top of the atmosphere:

FDN(N) = 0. (26)

I The amount of radiation absorbed by a layer of thickness dil is (FUp(ij) + FDN (71)) d7j. We
assume the poleward heat transport is distributed evenly in optical height, so each layer
gains D/Ndr] of heat from this advection. The longwave radiation from a given layer isI given by 2R(ij)dqj, where R(rl) = a + bT(r) and the factor of 2 accounts for radiation from
the top and bottom of the layer. In thermodynamic equilibrium, this leads to

= DI FLp(11) + FDN(TI) ± - = 2R(ri). (27)

The fluxes vary in height because of absorption and reradiation:

dFup(??) = FIp(TI) + R(rj), (28)d?]

d ) FDN(71) - R(ij). (29)
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Equations (27)-(29) are a system of one algebraic and two differential equations. They can I
be solved using the boundary conditions (25)-(26) to give R, Fup, and F)N at all heights
q1. The only part of the solution which is needed for the model is the dependence of the
downward longwave radiation at the surface on surface temperature, which is fouId to be

N D

FDN(O) = (a + bl,) + (30) 3
3.2.2 Seasonal cycle

The seasonal cycle in this model if forced by varying specified shortwave radiation F,.,.,
atmospheric optical thickness N, and 0 70'N temperature which is used to conpute the
poleward heat trans)ort D (described in Section 3.2.3). T92 uses a step-function seasonal
cycle, with summer vales of N and F, for half the year and winter values for the other
half. This allows him to arrive at a closed form analytical solution to the model equations.
We solve the equations mnerically, and hence we can use a continually varying seasonal

cycle.
Maykut and Untersteiner [19] force their model with specified shortwave forcing )ased(

on observations of solar radiation inci(ent at the surface. The values difl'er significantly
from the astronomically constrained top-of-the-atmosphere radiation, because the trimans-
missivity of the Arctic atmosphere is typically only 40 70% [17]. We forced tHie model with
a non-negative sine-wave approximation to the monthly mean data used )v Maykut and
Untersteiner (Fig. 4).

The optical thickness is higher during summer than winter because of increitsed cloudi-
ness. T92 tuned the values of N to simulate a seasonal cycle in ice thickness similar to the
more coImplicated model of Maykut and Untersteiner [19]; although the choice of N values
was inotived by matching FI)N(0) with observed surface downward longwave flux, using
suminer and winter values of N which better match the cited FDN(O) Observations (Olud

simulated surface temperature) cause all the ice to nclt, in the model of T92 for any initial
condition (not shown). The requirement that N be tune(l to some extent is not surprising
in light, of the Iany simplifications ill the model, including neglecting sensil)le and latent
heat fluxes.

Bji3rk and S6derkvist [2] constructed a single-colunimI model with a sophisticate(d rep-
resentation of the Arctic ocean, 40 evolving ice thickness categories, and an atMniosl)ieric
therinal equilibrium io(lel based on '1'92. They prescribed N to follow the observed ammual
cycle of cloudiness but, tuned its magnitude to give an observatioiially reasonable cycle of ice
thickness. We followed a sinilar procedure, using a non-negative sine-wave apl)roxiIiation
to the Arctic cloudiness observations made l)y Maykut and Church [17] (Fig. 4). This leaves
the seasonal maximum and minimun values of N as tinable constalnts, anid we chose values
to give a physically reasonable seasonal cycle in ice thickness.

3.2.3 Poleward heat transport

T92 specifies a constant poleward heat flux in the atmosphere equivalent to a vertical flux I
of 1(00W!nm2 , which is based on observations [23]. Ie finds a state similar to the observe,d

present-day Arctic, as well as a seconl stable state in which the Arctic is ice free with ocean 3
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Figure 4: Seasonal cycle in specified model forcing (black lines), and observations the forcing
is based on (gray circles and dashed line). (left) Shortwave radiation (W/m 2 ) chosen to
fit observed incident solar flux at the surface [19]. (right) Optical thickness of the model
atmosphere, which is scaled to match Arctic cloudiness (percent) [17].

mixed layer temperatures varying seasonally between 6' and 14'C. As mentioned in T92, it

is unlikely that the real atmosphere would maintain the present-day poleward heat transport
with the meridional temperature gradient significantly reduced. Thorndike later expanded
on this idea, letting D be a function of the meridional temperature gradient between two

boxes in a highly idealized climate model with no seasonal cycle or ice thermodynamics [30].
This method of approximating D is frequently employed in idealized atmospheric models

(e.g., Chen et al [4]), and we have adopted it here.

We let
D(T) = kD (TO-70N - 11s) (31)

with 7'b-70N specified to vary seasonally based on NCEP-NCAR [12] observed clinmatologi-
cal 1000mb temperature which was averaged both zonally and 0°-70'N. We used kD = 3.3,
equivalent, to the value in Thorndike [30], which matches observed poleward heat transport,
[23] fairly well using T, from the standard model run (Fig. 5). Note that when this param-
eterization for D is inserted into the model of T92 the ice-free states disappears, leaving
only the state resembling the present-day Arctic.

20 120
z

z15 c3100

08
110

J FMAMJJASOND J FMAMJJASOND

Figure 5: (left) Observed 0-70'N mean seasonal cycle in 1000rm b atmiospric temperature

'0-70N (gray circles and dash) and a sinusoidal fit used in the model (black). (right)
i Observed poleward heat transport D (gray circles and dash), and computed values of D,

which use TO-70N and simulated Arctic surface temperature T, in the standard model run.
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3.2.4 Surface flux exchange I
The surface is split into a region containing ice and an open water region, with average

surface temperature
., = AT, + (1 - A)T,,,. (32)

Surface downward longwave radiation, FDN(O), was compnted in Section 3.2.1 using the
average surface upward radiation Flip(O) = a+bTs. \Xe assume that the downward longwave I
radiation is everywhere uniform in the model domain and depends only on Ts, bnt we
compute the upward radiation separately for ice and open water as Fu,(0) = a + b i and

Fp (0) = a + bT/.. respectively. The longwave emissivities of ice and open water, both I
roughly 0.95 or greater, have here been approximated to 1. (Note, however, that open
water and ice differ significantly in microwave emissivity, which is what satellite observing

systems like SSM/I are based on.) This leads to a surface longwave radiation imbalace I
above ice or open water of

c(7(, 1) I E1(0) - FDN(O) - 2aN - 2 1 )+ b -T- T, + 2T

with 7'= T or T= T,,inserted.

Shortwave radiation is also absorbed at the surface, adding an energy flux (1 - ().,

with a = o",l over Open water and (t = ai over ice. When ice is melting at the sirfice
(1' = 0), a lower albedo is used to account for the ice and the l)resence o(f melt ponds (o,1,).
The value of .mp is chosen based on observations of fractional pond cover in sumner ai(
melt pond albedos [7].

3.2.5 Addition of CO2

We can crudely vary CO 2 in the Model by enhancing the Arctic optical thickness and
adjusting 16-70N in the equation determining poleward heat transport. Changes in radiative

forcing are typically approximated to have a logarithmic dependence on C(O2 concentration,
and values associated with C02 donbling are commonly discissed. The IPCC TAI [11]
cites a range of 1.5 to 4.5°C for the equilibrium response of an atmospheric GCM to each
(oubling of C0 2 , so we add 3C to /7)-0N for CO 2 doubling.

The IPCC TAR gives a range of 3.5-4.1 W/n 2 for the direct longwave radiative fo0rcing
(hue to a douh)ling of C0 2 , suggesting 3.7 W/m 2 as the b)est estimate (their Section 6.3.1).
Solving (30) for N, we can write the relationship between optical thickness and longwave
forcing as

N 2 FDN(0) - D/2 (3)a + bl', - FN (0) + D/2

Replacing N with N + AN and replacing FL)N(O) with F[N(0) + AF, this shows that, the
change in ol)tical thickness associated with an increase in longwave forcing is

AN = N(l1+NN2) AF +(0 (_ F )2.(5

FDN(0) - D/2 F FD ) (35)

We insert into (35) mean values for N, FLN(0), and D from the standard model run, which
leads to an increase in N of AN = 0.2 associated with the enhancement in radiative forcing
of AF = 3.7 W/m 2 .
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I Based on this, we vary CO 2 in the model by replacing N with N + AN log 2(co2) and
replacing b-70N with TO-70N + ATlog 2(co2), where co2 represents the factor multiplying
present-day atmospheric CO 2 concentrations, AN = 0.2, and AT = 30 .

3.3 Ocean mixed layer

The mixed layer is modeled as a thermodynamic reservoir. Its characteristic depth is H,i =

50m as in T92 (cf. observations of Morison and Smith [22]).
The flux of heat entrained through the bottom of the mixed layer is specified to be

Fnt = 0.5W/m 2 based on observations [22]. The turbulent heat flux between the ocean
and the base of the ice is given by Fw = pCPChU.oAT, where p and cp are the density
and specific heat of seawater, Ch = 006 is the heat transfer coefficient, u. 0 is the friction
velocity (square root of kinematic stress at ice-ocean interface), and AT is the difference in
temperature between ocean and ice [20]. Using a typical value of u., = 0.5cm/s based on
observations [18] and inserting AT = 1ml (since T = 0 at the base of the mixed layer) leads
to

F. = yTr.l (36)

with " PcpChU 0 = 120W/m 2.
The total heat flux into the mixed layer is thus

Fm = (1 - A) (-E(t,T,T) + (1 - ami)Fsw,) - Ay'7T,,i + Fe,,tr. (37)

If §1,j > 0, this leads to heating or cooling according to

___ IT m I = F,,I, (38)dt

and no new ice area is formed, F, = 0. When the mixed layer reaches the freezing teiii-

perature (§/;hi = 0) and tries to keep cooling, the temperature remains at the freezing point
(dT,,ldt = 0) and any additional heat. loss goes into the formation of new ice (Fi = -F,,,j).

1 3.4 Summary

The model is described schematically in Fig. 6. It consists of four coupled ODEs which
are first-order and non-autonomous (F8 w, N, and D have time dependence). The model
equations described in Sections 3.1-3.3 are summarized below.

The surface longwave radiation imbalance is

2a D(T) b T-T,+ 2T,

2±N - 2 2±N) 3

with surface temperature Ts = AT + (1 - A)Ti and atmospheric poleward heat, transport
given by

D(T,) = kD (TO-70N - i/s). (40)

The mixed layer flux imbalance,

Fmj = (1 - A) (-m(Tm,Ts) + (1 - o,.I)Fsw) - A"yTm + F,, t,, (41)
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Figure 6: Schematic summarizing the model sea ice, atmosphere, and ocean therniodvli-
i(s.

normially causes warming and cooling in the mixed layer aid no production of new ice area. 1
. dT,j

c7njHj i F,i and F",i - 0. (42)

When ,j = 0 and F,,/ < 0, however, the mixed layer flux iiiibahmce goes into forming new
ice.

dt = 0 and Fj = -FMj. (43)

The equations for ice surface temperature and voluie ev)lution are

di - (i,77T ) + (1 - cv')/.,1 , , (44)

L =v A (\ 1 - -T,,) + Fji - vLV, (45)

except during surface melt, §8 = 0 and -(0, iT,) + (1 - ) > 0, when ice iielts at lhe
top and brottom according to

di 0,
L = A ( (0,T.) - (1 - Om,p)Fsi - 'l,1) - VoLV (.17)

Here we have used the ice thickness. h= VIA.
The area evolves as

dA - j A ( dl ) ,,u,A (48)

where the ramp function 7(x) is 0 if x < 0 and R(x) = x ifx > 0.

The nodel paramieters are listed in Table 2. I
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H Table 2: Model parameters.
Fundamental physical parameters

c ice heat capacity 2 x 106 j/m 3/K
L ice latent heat of fusion 3 x 108 J/m 3

C"I' mixed layer heat capacity 4 x 106 J/m 3 /K
k ice thermal conductivity 2 W/m 2/K
a for LW radiation: ( (Tf1 ) 4  320 W/m 2

b for LW radiation: ,or (f ) 3 4.6 W/m 2 /K
Parameters based closely on obsermations

F,. shortwave radiation at ice or ocean surface seasonal, 0 to 300 W/m 2

TO-70N 0°-70'rnean temperature seasonal, 8 to 22°C
Oi ice albedo 0.65
ao ocean albedo 0.20
amp ice albedo during surface melt 0.55
Y ocean-ice heat exchange coefficient 120 W/m 2/K
Hm I mixed layer depth 50 in
Fentr heat flux entrained into mixed layer 0.5 W/m 2

kD atmospheric heat transport constant 3.3 W/m 2 /K
Vo dynamic export of ice from model domain 0.10 yr- 1

1 - Amax minimum lead fraction 0.05

ho equivalent thickness for newly formed ice 0.5 in
Tunable parameter, based loosely on observations

N optical thickness seasonal, 2 to 4.4

I 4 Results and discussion

The standard model run, using the parameter values in Table 2, is presented in Fig. 7. Ice
thickness (h = V/A) varies seasonally from 2.5 to 3.7m, in rough agreement with observa-
tions. This agreement in simulated thickness extrema, while encouraging, is not surprising
since we were able to tune the maxinmm and minimum seasonal values of N. Thickness
reaches a mininmm in late October and a maximum in late May, which agrees fairly well
with Maykut and Untersteiner [19] who find minimum thickness in October/November and
maximum thickness in June.

The ice surface temperature (T') varies between 0 and -32°C, and the associated tra-
jectory in ; versus V state space matches fairly well with the results of Maykut and
Untersteiner [19] and similarly Thorndike [31].

The minimum area occurs in September, in agreement with observations. The modelI domain represents roughly the entire Arctic Ocean. Satellite observations [3] of the 1980-
1999 mean seasonal cycle in ice extent north of 70'N (solid gray line) and 75°N (dashed gray
line) are plotted next to simulated ice area for comparison. Note the fairly good agreement.I The mixed layer temperature varies between 0 and 0.23°C. When multiplied by -Y, it,
gives the ocean-ice heat flux. The annual average flux is F, = 5.4 W/m 2 , which conpares
well with the observational estimate by Maykut and McPhee [18] of 5.1 W/m 2.
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Figure 7: Standard run results. There is only one stable periodlic orh)it in this pilarailleter
reginle, and any initial condition eventually converges onl it. Plots represenit, evoluition of'

the model state duiring the course of the annual cycle. The first, fOtir are the state vari;ilvs:
ice volume dlivided by box area V (in), ice surface temperature I J ('C), ice area A (fract ion

of box covered1 by ice), and ocean inixedl laver temperature TIi, ('C). Thme lbotto eniter

p)lot rep)resenits the model trajectory thbroughi the st.at.e space pro jectedl onito the Tj V' planle.
The bottom right, p)lot shows the evolution of ice thicknless (h = V/A); note that thme b)umplj
in September is related to ice area rapidly expanding while volume slowly grows, causinigI
the average thickness t.o abruptly dIrop). Satellite observations11 [3] of the 1980-1999 Ilican
sea,sonal cycle are included in the ice area plot, for compilarisoni; the solid gray line ind(icat es

ice extent north of'70'N and the dashed gray line indicates ice extent, north of 75'N (both1

are plotted iii units niornialized to have a maximutm value (of 0.95).
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Figure 8: Response of the model solution to scaling the CO 2 parameter, which is crudely
related to atmospheric CO 2 concentration. Values onl the horizontal axis represent factors
multiplying the CO 2 concentration today, with each tick mark representing one doubling.
For each level of C0 2 , the model solution is a periodic orbit in the 4-dimensional state

space. Solutions are represented here by four numbers: the summer (gray) and winter
(black) extrema of ice volume (left) and ice area (right). There is no hysteresis (or "tipping
point") in summer ice cover. When CO 2 levels reach about 5 x the present-day value in this
model, the Arctic becomes ice-free each summer. Further increase of CO 2 leads to multiple
states and hysteresis in winter ice cover, with an associated fold catastrophe: one state has
ice only in winter and the other is ice-free year-round. The multiple states exist. in a narrow
range on the plots around the CO 2 level of 16x the present-day value. The straight dotted
lines indicate the presence of an unstable state.

U Varying the initial condition leads to no multiple states in the standard parameter
regime: every initial condition eventually converges on the limit cycle plotted in Fig. 7.
This disagrees with the "tipping point" hypothesis in which a second stable state which is

ice-free each summer would exist today.
We varied C0 2 , gradually raising the value and lowering it again to look for hysteresis

and hence multiple states. The summer and winter extrema in ice volume and ice area arc
plotted in Fig. 8. A scenario in which C0 2 exponentially increases in time is equivalent
to moving to the right on the horizontal axis at a constant speed: note the accelerating
approach to an ice-free summer (right; gray line). However, we find no "tipping point" in

summer ice cover.
When CO 2 is further increased to the point where the ocean becomes ice-free year-

round, multiple states appear in a fairly narrow region of the parameter space. The region
is bounded on each side by a saddle-node bifurcation of cycles where a fold catastrophe or
"tipping point" occurs. Here, in an increasing CO 2 scenario, when the CO 2 level crosses
a threshold the climate rapidly switches from a state characterized by nearly ice-covered
winters to a state which is ice-free year-round. Note that the slight kink in the black line on
the right in Fig. 8 (CO 2 1 16, A ; 0.95) corresponds to a solution in which ice cover grows
continuously throughout the winter and nearly fills the model domain each year before it,
begins to melt.

As indicated in Fig. 8, a catastrophe brought on by the demise of nmltiple sea ice states
can occur when one state is ice-free year-round, but not when one state is ice-covered year-
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Figure 9: Simulated ice area in the standard run (black solid line) and a seasonal ice C(over
run with CO2 increased by 5.3x (black dashed line), compared with solar forcing in the
model (gray line; W/ni 2 ). In the seasonal ice cover state, as in present-day observations,

the minimum in ice area occurs several months after the maximum in sunlight, leading t o)
limited overlap between significant open water and intense Arctic sunlight. This mitigates
the ice albedo effect, causing it to be outweighed by stabilizing effects and hence avoiding
a 'tipping point" in the approach to an ice-free summer.

round as today. As an ice-free suniner is approached in an increasing CO2 scenario, tle
stabilizing thermodynamic thickness-growth effect (i.e.. thin ice grows fastest) appears h

outweigh the destabilizing ice- albedo effect. In an ateml)t to uiderstanl why the heuristic
argument for a "tipping point" discussed in Section 1 failed in this model for tfle case Hie
present,-day Arctic Ocean approaching ice-free summers, we consider why the argument

seemed to succeed for the approach to an ice-free year-round state.

Fig. 9 compares the model solar forcing, which is based on Arctic surface observations
(cf. Fig. 4), with simulated ice cover, which agrees fairly well with observed ice cover
((f. Fig. 7). In both the standard run (solid line) and the enhanced CO), seasonal ice
cover solution (dashed line), there is a significant phase lag between the t,inies of 1naxiIIIuIII
sunlight and the tinies of minimum ice (over. This is indeed to be ex)ect,ed: tie ice ara
rate of change correlates fairly well with solar intensity. For the ice albedo effect to lead to
multiple states and a catastrophe, the seasonal ice cover state must absorb significantly more
sunlight than a state which is ice-covered year-round with the same parameters. But tHie

tem)oral overlap in the seasonal ice state between having small ice area alnd experiencing a
high intensity of sunlight is somewhat limited: the sun shines on a fairly exten(led ice cover

for much of the smnmer. Compared to the seasonal ice state. the ice-albedo effect leads to

a far bigger change when making the transition t,o a year-round ice-free state in which the
sun shines on open water all summer.

To assess the extenit t.o which the ice-albedo effect fauiled to lead to a "Opi~ping lpoint"
in summer ice cover, we investigated whetfher a region exists anywhere near tle physically
realistic parameter regime where there are multiple summer ice cover stat'es. We began
by pushing the disparity between ice and ocean albedo to the extreme. This was not
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Figure 10: Multiple sea states under the same forcing. Plots represent evolution of the
model variables during the seasonal cycle, as in Fig. 7, for the thin ice (left) and thick ice
(right) states. Here L* = 10 (i.e. sea ice latent heat of fusion is reduced 10x) and CO 2 has
been increased to 1.5 x the present-day value. It should be emphasized that we are pushing
the idealized model to the extremes in search of multiple sumner ice states brought on by

the ice-albedo effect: neither a lOx diminished latent heat of fusion nor a simulated 191n
ice thickness are purported here to be physically realistic.

Ienough to lead to multiple states. We experimented with allowing the ice albedo to depend

ol thickness following the parameterization of Maykut [16]. We tried varying the loosely
constrained parameters. None of these approaches led to multiple summer ice cover states.

The stabilizing thickness-growth effect becomes less pronounced as ice gets thicker (i.e.,
very thick ice does not grow much slower than fairly thick ice), so we considered allowing
excursions into state-space regions with large thickness. The most, straightfirward way to
do this is to make it easier to grow ice by reducing the latent heat of fusion. Defining the
original and observationally constrained sea ice latent heat to be Lo,ig, we scaled the latent
heat according to

L*

Letting L* = 10 led to multiple summer ice cover states (Fig. 10).
Although the multiple states demonstrated in Fig. 10 are related to the ice-albedo effect,

it should be noted that it is not the difference in albedo between open water and ice that is
primarily responsible. Rather, it is the difference between the cold sea ice albedo (0i) and
the albedo used to account for the presence of melt ponds when Tj = 0 (0,p). Both states
have minimal temporal overlap between extended open water and intense sunlight, but the
thin ice state has the ice surface at i = 0 for much of the peak of the summer, while in
the thick ice state the surface temperature remains below the freezing temperature for the

entire year.
Varying CO 2 with L= 10, we finally find the desired catastrophe (or "tipping point")

in summer ice cover. This is illustrated in Fig. 11.
Next, we vary both CO 2 and L* to explore the parameter space and find the edge of

the region associated with multiple summer ice states. To do this, we slowly increase and
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Figure 11: As in Fig. 8, by with L* = 10. Now two regions exist with multiple sea ice

states, and there is a catastrophe in summer ice cover (discontinuity in gray solid line). I
then decrease C0 2 for an array of L* values and look for hysteresis. 'The result, is presented
in Fig. 12. There are two regions of multiple states, each bounded t)y lines on which a

saddle-node bifurcation of cycles occurs. These lines are associated with a cusp catastrophe:
entering and then exiting either of these regions by slowly varying the parameters will lead
to a cata.strophe in which the current state suddenly disappears and the sYsteni rapidly
approaches a new state.

Fig. 12 suggests that a catastrophe in summer ice cover would be possible if the latent I

heat of ice fusion were reduced from the observationally constrained value by a factor of at
least 4 x. The latent heat of sea ice can change depending on salinity, and observed sea ice
has a salinity of roughly 0-8ppt (varying both vertically an( seasonally). Ilicoretical and
empirical formulas suggest that the latent heat of melting sea ice is about 25(Y( lower for iceI
with 8ppt salinity than for pure ice (e.g., Bitz and Lipscomb [1]). The dominant variabilily
in global mean ocean salinity over the past million years is associated with glacial cycles,
during which salinity varies about the mean value of 35ppt by about, lppt because of' the
reduction in ocean volume caused by the presence of large ice sheets on land. If the mean
ocean salinity change associated with glacial cycles were carried into a, change in mean sea
ice salinity, it would lower the latent heat of fusion by 3%. This iml)lies that a reduction 
in the latent heat of fusion of sea ice by 4x (i.e, 75%) would be quite significant, anda it is
unlikely that it could be physically realized in the foreseeable future. 

5 Conclusions

XVe have extended Thorndike's [31] idealized Arctic sea ice model to allow for )artial ice
cover, adding an active ocean mixed layer and scalable CO 2. This model sinulates an ac-
celerating at)l)roach to an ice-free Arctic summer as CO 2 concentrations exponentially rise, I
suggesting that the approach niay be fairly abrupt. We find two regions ill the paranieler

space where multiple states are possible because of the ice albedo effect. One region has
multiple winter ice cover states (with both states ice-free in summer): the other has nmultiple I
summer ice cover states (with both states ice-covered in winter). Catastrophes are associ-
ated with exiting either region, but the actual Arctic appears to be far from the region in
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Figure 12: Regions where multiple states are possible in CO 2 versus latent heat parameter

space. A saddle-node bifurcation of cycles associated with a cusp catastrophe occurs at, the
edge of each shaded region. Inside each shaded region there are three possible solutions: two
stable periodic orbits and one unstable periodic orbit. The gray "x" marks the present-day
physical world. This implies that for a "tipping point" in summer ice cover to be possible,
the latent heat of sea ice fusion would have to be 4x smaller than it is in the present-
day physical world (L* = 4). This model does find a "tipping point" in the distant but
physically realizable parameter space (L* = 1, CO 2 = 20x present-day) associated with the
transition from seasonal ice cover to a state which is ice-free all year.

1
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parameter space where C0 2 changes could cause a catastrophe in sunnner ice cover. I
This research suggests that a "tipping point" in summer Arctic sea ice cover brought

on by the ice-albedo affect, which has been conjectured to be likely for the 21st century,

does not occur in a physically realistic region of the parameter space. In light of the fact
that the seasonal mininmum in ice cover occurs several months after the time of maxiium
Arctic sunlight, the desta)ilizing ice-albedo effect is not sufficient to outweigh the stabilizing

thickness- growth effect and produce multiple summer sea ice states.
This model is a significantly idealized representation of the physical world. Similar to

Thorndike [31], the model does not include ridging, snow, sensible and latent heat exchange,

salinity, or cloud feedbacks. It is possible that other bifurcations would be introduced hy
adding more realistic physics to the model. For example, a wide variety of paranieterization 1s

of sea ice albedo variations have been presented in previous studies (e.g., Maykut 116], Flato

and Brown [8]) and may affect these results. Furthermore, despite our fairly thorough
investigations, other bifurcations may be hiding nearby in the - 20-diniensional paraneter
space.I

Nonetheless. all the physics in the standard argunient for a -tipping point" brought on

by ice albedo has been faithfully represented in this model. This result suggests that the

p)opuilar heuristic may not 1h01( up when p)roperly quantifiedl.
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Breaking moraine dams by catastrophic erosional incisionI

Rachel Zammett

March 15, 2007 I
I

1 Introduction

Glacial lakes occur in maniy mountainous areas of the world, such as the European Alps
or the Cordillera Blanca mountain range in north-central Peru. Here we consider those
glacial lakes that, were formed during the period of glacier retreat that followed the end of
the Little Ice Age (figure 1). Such lakes are typically up to a kilometre long, hundreds of ,
metres wide andl up to a hundred metres deep and are often dammed on at least one side
by moraine (sediment deposited by a glacier).

Mid-nineteenth century
gLeciersurface

Present-day
Slaciersurface

A B

Figure 1: Schematic diagram of a glacial lake, taken from Clague and Evans [2]. The•

upper (grey) glacier surface is that, of a long, thick glacier that, would have advanced during I
the Little Ice Age. When this period of cool climate ended, glaciers retreated rapidly and
substaitially; such a thin, retreating glacier is labelled 'mo(lern day glacier'. It is (hiring a
period of glacier retreat that a glacial lake is typically formed. The moraine dam is shown I
at the right of the pictirre. If the toe of the retreating glacier (which is often unstable and
heavily crevassed) suddenly deposits a large amount of ice into the lake, a (isllacement
wave which can overtop the dam is initiated. I

Moraine (als fail inl two main ways. As glacial lakes are often located in steep alpine
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I valleys (where avalanches and rockfalls are common), or beneath the unstable toe of a
retreating glacier, there is the possibility that a large amount of ice or rock may suddenly
fall into the lake. This initiates a displacement wave: one such rock avalanche in Peru
deposited 0(106) m 3 of rock in glacial lake Safuna Alta, and initiated a displacement wave
estimated to be over 100 m high [8]: more generally, it is estimated that avalanches typically
create displacement waves up to 10 m high [4]. Such a displacement wave can overtop the
Imoraine dam and erode its downstream face.

In general, however, we have seen experimentally that one such overtopping wave does
not cause the dam to fail. Instead, we observed that some of the initial wave is reflected
back into the lake, leading to the formation of a seiche wave (a standing wave in an enclosed,
or partially enclosed, body of water). Such waves are often observed to occur naturally in
harbours due to tidal influence, for example [13].

The subsequent reflected waves can also overtop the dam, and it is these repeated
overtopping events and associated erosion of the dam that lead to the incision of a channel
o the downstream face of the dam. If such a channel is eroded to a sufficient depth quickly
enough, it becomes a conduit through which the lake can drain; it is this mechanism of lake
drainage that we term 'catastrophic erosional incision'.

Evidence for more than one overtopping event has been seen in several such drainage
floods [9], and the possibility of a 'series' of waves was identified by Costa and Schuster
[4]. The only mention in the literature of a seiche wave in connection with dam failure is
found in Hubbard et al. [8], where examination of a moraine dam after a rockfall-initiated
displacement wave indicated at least ten reflected waves. We show here how the reflected
waves play a crucial role in the failure of the dam.

The other mechanism by which a inoraine dam can break is that of gradual overtopping,
whereby the lake water level slowly increases until the water overtops and then breaches
the dam. Such a water level rise can be caused by excessive snowmelt, or rainfall: the
moraine which dammed Lake Tempanos in Argentina failed in the 1940s due to nieltwater
accompanying a 350 il glacier retreat [16].

Drainage of a glacial lake can release 0(106) m3 of water and have a peak discharge of
1 3 1 04 11 3 S- 1 [2]. As the subsequent floodwater moves down valley, it entrains sediment
and can form a debris flow. One such debris flow, initiated by a glacial lake flood in Peru
in 1941, devastated the city of Huaraz, killing over 6000 people [5]. While the majority of
such floods occur in remote, uninhabited valleys, these locations are now often considered
for recreation, tourism and as sites for hydro-electric power stations, for example. Thus
understanding the hazards associated with such a flood is of prime importance.

I tIn this project, there are two main issues we will address. Firstly, we shall consider
the threshold behaviour of the phenomenon - why didn't the moraine dam break in the
case of Laguna Safuna Alta, despite an initial wave 100 in high and at least ten subsequent
seiche waves? We. also consider how to estimate the peak discharge from such a catastrophic

drainage event, as this can be used as a measure of how destructive the resulting flood will
be.

I
I
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2 Experiments I
We performed a series of experiments over the summer, both as a qualitative exl)horation
of the phenomenon and to quantify some of the theoretical results outlined in Section 3 I
below. In all cases we used the experimental setup shown in figure 2: a rectangular glass
tank with length 125 ciii, width 20 cn and depth 30 cm. This was open at one end (the

right hand end in figure 2), so that sediment and water coul drain from the tank. At the I
open end, we built a sediment dam. This darn was approximately 10 cm high and 40 c(ii
wide at the base and was made using a mould to endeavour to keel) the dams uniform in

shape. The tank was then filled with water, and the experiment, was left until water had I
seeped through the entire dam. A single wave was then initiated at the left hand end of the
tank; this was to simulate the displacement wave initiated by a rockfall or avalanche.

Figure 2: Experimental setup. I
Sediment properties

We used four different sediments in the dambreak experiments. These were grit, and three
types of sand with different particle size distributions. The )ro)erties of these sediments

(when dry) are summarised in Table 1.
Glacial moraine is characterized by a wide range of particle sizes, front fine clays t.o large

boulders. This sedinent is poorly sorted and loosely consolidated; lake drainage tyl)icallY

occurs by seepage through the daim. Clarke [3] shows an example of moraine froin Trapridge I
glacier with a bimodal )article size distribution; this is a feature of many moraines. In order
to reproduce such a bimodal particle size distribution, we therefore mnade two mixtures of'

sand and grit. The properties of these mixtures (when dry) are suniniarised in Table 2. I
The sediments and their pro)erties will also be discussed in Section 3 below, where we

consider the erosion of the dam.

1
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I Sediment p (10 kg m - 3 ) I Porosity I Repose I Modal particle size (jm)

Caribbean Sand N/A N/A N/A 250
Florida Sand 2.34 0.38 390/340 310
Beach Sand 2.34 0.35 400/33.50 950

Grit 2.42 0.42 370/28 1150

' Table 1: Properties of individual sediments when dry. Sediment density was calculated
from the weight of a given sediment volume once the sediment porosity was determined.
Sediment porosity was measured by measuring how much water was absorbed by a givenI volume of sediment. The column headed 'Repose' shows the angles of repose of the dry
sediment; the first value is the angle of repose associated with tilting a pile of sediment, the
second that associated with creating a conical pile of the sediment. The differing values are
due to the bistability of the system [11]. Modal particle size was estimated from particle

size distributions which were obtained by laser diffraction. Some of the properties of the
Caribbean sand were not, determined.

Mixture Composition p (103 kg m - ) Porosity Repose

I Caribbean Sand/Grit 2.38 0.32 38.50/330
2 Florida Sand/Grit 2.36 0.37 440/34-

'Table 2: Properties of sediment mixtures, determined as in Table 1. As the mixtures are
bimodal by design, we have omitted the modal particle size colunn.

2.1 Results

I Here we consider results from qualitative experiments. We first, consider the results of
ex)eriments using the individual sediments, some of which are shown in Table 3. We see
that grit alone makes a poor dam - its high porosity means that the lake drains out rapidly,
and thus makes the dam unstable. It is also difficult to incise a channel in the downstream

face because overtopping water simply seeps into the dam rather than eroding it. In contrast,
the sands are, in general, better in terms of ease of channel incision. However, they are also
prone to slumping when wet, indicating that they would make a poor dam; sand dams were
occasionally observed to break before a wave was initiated.

Some of the results for the sediment mixtures are shown in Table 4. Although it is
not clear from this table that dams constructed from the sediment mixtures were easier to
break by catastrophic incision than those made from the individual sediments, they were
qualitatively observed to be better in terms of both initial dam stability and ease of channel
incision. These observations lead to the conclusion that it is perhaps the composition of

moraine that leads such dams to fail via catastrophic erosional incision - the distribution
of particle sizes both increases the dam stability, making the existence of a lake possible,
aud allows for easier channel incision. This may explain why the phenomenon is not seen

in other natural dams, such as landslide dams for example.

I
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Sediinent 1 2 13 14

Play Sand 1/9 1/14 2/19 1/12
Beach Sand 2/16 1/19 2/14 2/1(6

Grit X 1/6 X X

Table 3: Experimental results for the individual sedlimenits. The columns show different

exp)erimnental runs. The first number in each column is the number of waves that, needled toI
be initiated for damibreak. The second number is the total niumb)er of walves tIat. overtopped
the dami lbefore incision occurred. The onset of incision is taken to be the poinit at which

the lake dIrainis indlependlently of the action of the seiche wave. A cross denOt,es a dami whichI
did tiot, lbreak.

Mlixture 1 2 3 14

1 IXi 2/28 1/15 1/8
2 1/13 1/5 2/24 1/13

Table 4: Experimental results for the sediment mixtures. The tiible is laid out, as Table 3
above.

3 Theory

In tis sect ion, we split the p)robleml iii two. Firstl '.v we model the seiche wave in the
lake using shallow water theory in one dimension. W\e then nse a hydrauilic model for thle

dmlnbreak itself, before considering a unified theory to exp)laini thle int eract ion between t lie
seichie wave and the (lain.

3.1 Describing the seiche wave

NVe work in two dimiensions, x and z. Water of velocity U u(.,t)w(,,f) and( depth

hi(x,tI) flows over an erodhible bed with elevation ((x, t) We aissume that the horizontalI
extent of the flow is much greater than its depth; the lake is niuch longer than it is (heel).

In ths cae, wehavethat- )>-- - and thus the continuity equation imlies that, it >~ Il.

Conservation of vertical momentum theni impillies that, th l e sshure is hv.d rosta t ic t.o leadlin g
ordler, and( irrot ationality that it is independlent of z.

We therefore write conservation of miass and horizontal nionentuin in the following Foi,i1

h,t + (it)X = (1, (1)

'tt ±iiii, = -fl(h + D(u-, It) + va (2)

where it is the dep)th averagedl velocity, given by,

'i = I J dz' (:i)I

and D(ua,h) is a (drag termn which represents frictional effects. with the p)rop)erties thmt3
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Sh(x,t) u(x -WATE R -

(x, t) BED

x

Figure 3: The co-ordinate system used in the shallow water theory.

>0and W < 0; drag increases with velocity and decreases with depth. A full derivation
of the shallow water equations may be found in Stoker [18], for example.

In fluvial systems, it is common to use the Ch6zy drag law, given by

D(u, h) = cf hUI (4)

where cf is the dimensionless Ch zy drag coefficient. Typically, for a smooth watercourse
such as a glass tank, Cf O(10-') [1], while for a rough watercourse, such as a rocky alpine
stream, it, may be as large as 0.1 [6].

However, this formula is not appropriate to use in the context of our experiments, where
the flow was observed to be laminar. In 1959, Keulegan determined that for a standing wave
in a glass rectangular tank, the drag is primarily accounted for by laminar viscous boundary
layers on the tank walls and base [10]. This theory was later modified to account for the

effects of surface tension and surface contamination [12], but, we shall consider these to be
small corrections.

To modify Keulegan's linear theory for our purposes, we note that shallow water theory

can also be used in the boundary layers near the tank walls. Using the same arguments as
above, we write conservation of momentum as

U t = Px + WUz, (5)
P

and then, given that Pz ; 0, we eliminate the hydrostatic pressure to obtain

Uzt = . (6)

We then pose a time periodic solution of the form u f(z)eiwt (and consider only the real
part of this solution) to obtain

f = C+ A±e+A , (7)

where A± and C are constants of integration, and K = ( + i). The boundary condi-

tions are u 0 + 0, as z - 00, 
(8)

u -+ U0, as z - 0, (9)
iu = 0, z = 0, (10)
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0.1
* Experimental results

0.09. Chezy drag
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0
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Number of reflections

Figure 4: Comparison of the Chbzy and linear drag laws with experiient, where a seiche
(standing) wave was initiated in a rectangular tank. The values used were ('f = 0.001,

1 x 10- . We see that the linear drag theory (solid magenta line) is a nnich better fit to
the data than the nonlinear Chzv drag law (dashed line). Stars (lenot e the experilliental
data.

where Uo1 is the flow velocity in the main bodY of fluid outsid(e the bo iudarY layer. The
solution is therefore

U= ltodw C,t(1 - A*-Z_-). ( 11 )

aii(l the vertical velocity gradient at the base is given by

sIZIo = Kuo. (12)

In the shallow water equatiois for the inain flow, we therefore have

'at + +u -g(h ± ) - + vu,, (13)
2 'i

where the drag term is iiow D(u, h) = ' We set, o thus (v has iiiiits of velocity.
We ilhlstrate the ldifference between the drag laws by com)aring them with the results

from a siInple laboratory experinient (figure 4), where a standing wave was initiated in a

closed, rectangular glass tank. Figure 4 shows that that the linear drag is a naich better fit
to the data than the Ch zv drag; we therefore use linear drag in the theorv that is to follow.
However, we note that in a glacial lake where the Reynolds iniibers are iich higher, it is

likely that the Chzy formula, will be more appropriate.
We consider a lake with mean depth H !(x), on which there is a seiche wave of anil)litud(e

q.(x, t), such that the total water depth is given by h(:r, t) = H(x) + 'q(.r, t). E(tuations (1) 3
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I and (2) then become

+ [(H + = 0, (14)
'it

ut + uu-- -g(H +,q + --+uu. (15)

We now nondimensionalise using the following scales

1
t - U, 71 - N, H -, Ho, h -. Ho, ( Ho, x L, (16)

where w is the frequency of the seiche wave. Equations (14) and (15) become

I UHo
wN7tt + Lo [(H + e I)u], = 0, (17)

U 2  gHo U It U
LW(UH t+ + - L - HH + +IU--= (18)
L L H H-+ ij; L

where E = < 1. To retain a balance in equation (17), we choose U = EwL, and we
assume that (H + ) = 0, i. e. the undisturbed free surface is flat, to obtain,

mit + (Hu). = -E(ru).,, (19)
'U

'it + On", -IIU. - Eel '  + Ev uxx, (20)H1- + E7-1

where the dimensionless parameters are given by

I gHo - a (1

, ,wHo' wL 2' (21)

and we have rescaled the drag and viscosity terms with -; i. e. we have assumed that they
are small.

We now assume that there are a fast and a slow timescale in the problem, such that
,Tt + On dropping the equations (19) and (20) become

ilt + (Hu)x = -- (qu), - EiI7, (22)
(YUI O

Ut + i, = -EUUx - E- + EVUx - EPUT. (23)

We now pose expansions in the form it - uo + Eu + ... and r; - TIo + em +.... To leading
order, equations (22) and (23) are

7iot + (Huo), = 0, (24)

uot +,3ijo, = 0. (25)

Differentiating equation (24) with respect to time and using equation (25), we obtain the
single equation for the wave height, r/:

ilott = 3(Hroz)z. (26)
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In the siniple case of a rectangular tank of constant depth H0 and width L, such that the I
scaled boundaries are at x = 0 and x = 1, (where we require the velocity to vanish, so
il = 0 if we assumne tie periodic solutions), there are solutions of the form

I= Ae it cos , (27)(~) I
where we require 7r = V9, i. = W . In dimensional ternis, the solution for i/ isL

1= ' () (28)

This first al)proximation to the behaviour of the seiche wave will be used in Section 3.3
below. I
Numerical solutions for a given basal topography I
It is possible to solve equation (26) numerically for a given basal tot)ograp)hv, if' we again
assunme time )eriodic solutions. We rel)lace the right. hand boundary, 1)revioisly a vertical
tank wall, by a non-erodible dam of prescribed shape, so that (linensionlessly H = 0 al I
x = 1. As this is an eigenvalue )roblem, we require three boundary conditions. Oil th(,l

left boundary, x = 0, we require that u = 0. At x = 1 (where H = 0) we require that tli
solution is regular. For the case of a unifornfly sloping base, an anal ytic soliftion inay )(
found in terms of Bessel functions, such that Tj- J0(.x "2) [19]. This anall ic solution is
shown in figure 5. We set y = 1 - x, such that (lose to x 1,

'- 410[(1 - y)l/ 2 ] -1 + 0(1 - 1). (29) I
To ensure we obtain a regular solution, we therefore require that ij = 1 at 'r = 1. We n(t/I
that near x = 1, H - -(1 - i)H', where H' = H'I,=,. Again setting y = I - x, we usc
equation (26) to write (.q,HA>mi)' , (30)

which gives, to leading order,
L = /. (31)

The three )oundary conditions are therefore I
71 = 0 on x =0, (32)

77 = I on a = 1. (33)

LIU2t = 3H'%i ' on a = 1. (34)

Note that if H' = 0, the problem is ill-posed, as boundary conditions (33) and (34) then I
imply both tj = 0 and tj = 1 at x = 1. A numerical sohltion of equation (26) with boundarY
conditions (32) - (34) for a dain of Gaussian shape is shown in figure 6.

I
170

I



I
I

*~0.8-

0.6-

I _ 0.2

~0-I C

-0.4

-0.6-a)

"-0.8 .. .

0 .02 0.4 0.6 0.81

x

I Figure 5: Numerical result for a uniformly sloping bed, with initial water depth given by
H(x) = I - x. The upper solid line is the water surface, the lower line the basal topography.
The dashed line indicates the initial water level.
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Figure 6: Numerical result for a uniformly sloping bed, with initial water depth given by
H(x) = 1 - 1.1 exp (-(x - 1.05)2/(2 x 0.12)). The upper solid line is the water surface, the
lower line the basal topography. The dashed line indicates the initial water level.

I
Higher order terms

We consider solutions of equation (26) of the form

(,qo, uo) = (N, iU)A(T) e' + c.c., (35)
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thus N, U are real. Equations (24), (25) and (26) then become I
wN -(HU),, (36)

U 0 N,-, (37) I
-w 2N = O(HN:,r)x, (38)

with solutions as above. To the next order in E, we then have I
rilt + (H'1)i* = - (tj 0uo). - ij,(39)

fl + /37/1i = -0 1ox - H__ + UuO.x. - uOr. (40)

We now use equation (35) to write equations (39) and (40) in terms of N and 17:

ilit + (Hul), = -iA 2NUc2i
-' - AI,N(i-' t + c.c. (41)

Ult Ofil, = A2UUr, 2i
- - 2 - HAA*W +ivA; - iAjUct t + (2) I

We can find particular solutions to remove any terms on the right hand sides of equations
(41) and (42) which are not multiples of c iL". The remaining parts which are )roportional to
CiWt are potentially secular in time, and must therefore be removed in order to find a unifOrIlI

asymptotic apl)roximation over the fast time t. Discarding the non-secular inhiomogencous

terms. and aLssuming that ill = "/I (x)c z' t and iL = 11, (r)cwI , the sYstem we therefore look I
to solve is

iwill + (Hul) , = -A,Nciu t  (43)

iwal + ;01., - A ."AUxxcWI ' - iA' 1 ' t .  (44)H

Equations (43) and (44) may be rewritten Hs

iWtll + (Hul)x = 1,, (45)

iw1 + 3l/Ex = 12, (46)

where

1e = -ATN, 
(47)

12 - H + ivAUxx - iA7 ,U. (48)

NWe conbine equations (45) and (46) to obtain

Wll + j (Hillx) = -iwlj + (H):r, (49) I
and then integrate equation (49) with respect to x. After integrating by )arts and using

the seiche equations (36) and (37), we obtain

N [-iwIl + (HI 2 ),.] dx = 0, (50)
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I which can be simplified using equations (47) and (48) to give
f0 fl f0

-2AT wN 2 dx + otA NUx dx + vA N(HUxx), dx = 0. (51)

This then gives a solution of the form A = AoeT, where -y is evaluated numerically using
equation (51). The calculation can be repeated for dissipative terms given by Ch zy drag
and viscosity, yielding

AT f wN 2 dx = -vA f N(HUx)x dx + 4AIAlcf N(UIUI)x dx. (52)0 fo 7r J

Again, the integrals in equation (52) may be evaluated numerically for any given basal
topography H(x), and this allows the relative importance of the dissipative terms to be
quantified.

3.2 Modelling the dambreak

Erosion

3 The flux of sediment is governed by a (dimensionless) critical value of the Shields stress,
defined by

1 2
2 = (53)

RgD '

where R = P is the specific gravity, D is a typical particle diameter and ?. is the
threshold velocity, which is particular to the sediment and is determined empirically. The
idea is that the fluid flow needs to exceed the threshold velocity in order to exert, enough
shear stress at the base to lift particles into suspension and thereby erode the bed.

We follow Parker [20], [21] and use the following empirical, dimensionless erosion law

I2 _- 1 f o r i > l. ,

E (u) u )5 o >t7 (54)
0 for u < u*.

A law of this type captures the two important features of any erosion law: below a certain
threshold, there is no erosion, and for large values of the Shields stress (or velocity, in this
case), erosion has a power law behaviour. The exponent in equation (54) is again empirically
determined and, while not universally agreed upon, it is common to use the value 1.5 [14].

In fluvial systems, the Exner equation (conservation of sediment) is commonly used to
I model the erosion of the dam (which has elevation ((x, t)),

_ 0q8  55
i(I - Ap)- + x=0, (55)

where A is the sediment porosity and q, is the sediment flux, which is again determined
empirically as a function of the Shields stress.

However, it is also possible to consider the evolution of the dam height to be the net
effect of erosion and deposition,

Ot wEu) + w,C, (56)
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where the first term on the right hand side of equation (56) represents erosion and the I
second represents deposition. w is a sediment-dependent constant with units of velocity, w

is a particle settling velocity, and C is a depth-averaged volumetric sediment concentration.

Equation (56) must then be supplemented with an equation to describe the evolution of C, I
and it is usual to use an advection-diffusion equation, moderated by erosion and deposition,

th u s h (Ct) ) = K C ,+ w E (u ) - ,u, C , (5 7 )

where K is the sediment diffusivity. As a first approximation, we assume there is no del)o-
sition; thus we eliminate C and simply use

0( - wE(,u). (58)

We calculated w experimentally using equation (58), and performing erosion experiment,,s

where we measured the dam height, ( (at a fixed point in space as a function of timc), and

the flow velocity u. We followed Parker [14] and calculated u. using the following empirical I
relationship for 7,

r,= 0.5 [O.22Re7 ° 6 + 0.06 x 10-I.7Rc,°' , (59)

where Rep is the particle Reynolds number, defined as

Rep (RgD)l/2 D

Equation (59) coupled with equation (53) allows estimation of u. and thus ai. Typical values
for the sediments used experinmentally are given in Table 5. It is much more coinplicated to

estimate sediment parameters for a mixture of sediments, and so this was not atteml)ted.
For calculations involving particle diameter (such as estiimation of the particle Reynolds 

number), the modal particle size was used.

Sediment I Rep T, u. (n s- 1) w (in s- I)

Play sand 20 0.0198 9 x 10-  9.6 x 10-9  I
Beach sand 107 0.0169 1.5 x 10- 2 4.7 x 10-8

Grit 147 0.0179 1.7 x 1()-2 4.9 x 10-"

Table 5: Empirically and experimentally determined sediment )ro)erties. I
Hydraulic Control

We now use a hydraulic model coupled with erosion to describe the danbrcak. Hydraulic
models are conmonly used to describe stratified flows over sills in the ocean, see Pratt [15],

for example. The benefit of using such a model is that, at. one or more locations in the

system the flow adjusts to a well-defined state; i. e. it is in sonic sense 'controlled' by this
critical point. Here, the location of hydraulic control will be the point at, which the dain
height is a inaxinium.
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I Hydraulic control theory also assumes steady flow. From equation (58), we have that
the timescale over which erosion occurs is tE " . Using typical values from Fable 5,
u = 1 x 10-2 m s- 1 and w = 5 x 10-8 m s- 1, and a typical experimental value H = 0.1
In, we estimate that tE Z 100 s. This implies that for the dambreak 0 K< 1, and we can
therefore neglect the time derivatives in the shallow water equations (1) and (2). As a first
approximation, we also neglect drag and viscosity (although it is possible to include these
in the description, see Pratt [15], Hogg and Hughes [7]).

We can therefore integrate the equations for conservation of mass and momentumn with
respect to x to obtain

q = hu, (1)

S+ g(h+ B, (62)I 2
where q is the constant water flux (with units m2 s-1) and B is the energy, soinetinies
referred to as the Bernoulli constant.

We consider the problem of a reservoir of depth H and length L, which must drain over
a dam of maximum height (.. Here, the subscript m will be used to denote evaluation of
a function at this maximum of (; thus u,, is the flow velocity at the highest point of the
dam. We assume that the dam has finite width, and thus = 0 outside some finite region.
We can therefore use equations (61) and (62) to write

I 1- q 2

2 H 2 + gH ; gH, (63)

if we assume that the depth of the reservoir is much greater than the depth of the water

flowing over the dan, i. e. H > h. Using equation (61), we may write the non-integrated
momentum equation in the formI ____u

ux 'u3 - gq' (34)

and thus for the velocity gradient to be defined at all points in the system, we require that
= gq at the point where (, = 0; i. e. where = ,,. We therefore obtain

UM =(gq) 1, hm ±q (q2 (65S)

Note that we can use the expressions in equation (65) to write the Bernoulli constant as

B = 3 U n+ (66)
2 7n

Equations (63) and (66) allow us to relate upstream variables to those at the inmxinum

height of the dam,

gH = 3 U + g(.o (67)

To complete tie system, we couple equations (61) and (62) with equations describing the
drainage of the lake,

dH
L d = -q, (68)
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and the erosion of the dam, I
- -wE(,u). (w))

Nondimensionalisation

We, nondiiensionalise the system of equations (61), (62), (68) and (69) using the following

scales
it,-tio, Ih Io, H,- !HO, < Ho, t,- to, q - qo, E -Eo. (70)

and thus obtainJ

1ho o ) q = hu,, (71)

2'to 2 (to)h± >(2( tH'E + hIt + B*, (72)

LHO' dH q,(3
qoto ) dt - '()•

H.,o 0
WtOE() )t (74)I

where B* is the dimensionless Bernoulli constant.
We make the choices qo = hyuo, and as we are interested in the tirnescale over which

erosion occurs, we choose to = Equations (71) (74) then become

q = hu- (75)

F2o22 + oh + = B*, (7(i)
(IH
It q, (77)(It

E _2), (78)

qi tierai
where the dimensionless parameters are the Froude nuImber, F2  of tglle
water height at the dm peak to the reservoir height,, oI -=1- and a imew-;re of how

quickly erosion occurs relative to lake drainage, It We now make the further

choices Ito) = Ho and u() = VyHo, such that (v = F 2 = 1.
The dimensionless form of the erosion law (equation (61)) is

E('u) = (i,2 35 (79)

Ut 0 u*t

where E0 = , = - and the subscript + indicates that E = 0 when the quantity ill
'U

0() )

the brackets is less than zero.
We take typical experimental values: H0 = 0.1 in w - 5 x 10-s il s - 1, L = I in, t0 = I

in s - I and u, = 1 x 10- 2 m s - 1, to obtain

it = 0.5, 6 = 1()- 2 , Eo 1 X 105. (80) I
Again, we estimate to = 100 s, which should be both the timescale for erosion and fOr lake
drainage in our experiments (as p is 0(1)).
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I I " L

L G-o "

I Figure 7: Schematic diagram of the two domains under consideration: a lake of length L
and depth H adjacent to a dam of width cr and height (, such that a7 << L and, initially,

I H - (,..

3.3 Unified theory: spatially distributed dam

In order to combine the theory of the seiche wave (outlined in Section 3.1) with the hydraulic
model, we consider the following configuration, shown in figure 7: a rectangular lake of

length L and mean level H(t), oil which there is a seiche wave of amplitude il(x, t). The
lake is adjacent to a dam of height ((x, t) and width a, where a << L.3 We now revisit the scalings used Sections 3.1 and 3.2. In the lake,

1 vgH0h= H + Eq, t- . . . V 1Lgu--HH 81

I while over the dam, 
) L

HO
owEo' VgHo.  (82)

I We impose the condition that the timescale in the lake must be of the same order as that
over the dam. However, we note that velocities in the lake are O(E) smaller than those over
the dam, which means that the dam 'sees' the seiche wave as a gradual change in water
depth, to which it can adjust instantaneously. We also note that x derivatives are much
larger over the dam than in the lake.

We assume that there is a right hand boundary of the lake which lies close to the
edge of the dam, x = x-, such that ((xa, t) = 0. We consider the water height at this
fixed point, given dimensionally by h(x,-, t) = H(x,-, t) + rl(x,-, t), and we su)pose that
i/(x_, t) = r(t) satisfies the ordinary differential equation

i) + -Yil+ 2I = 0, (83)

where -Y -H is the damping coefficient calculated in Section 3.1, and w(H) is the seiche

frequency. As we assume that the lake is a rectangular basin, we have that w = gH and
L

thus y(H).
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Figure 8: Solution of the spatially distributed system in tile case of i1o danibreak. wit h
initial conditions 10 = 0.03 in, H0 = 0.0825 im, (O = 0.01 in. In the top l)lot, the upper
(red) line shows the evolution of the niaximluni height of the dai, (,, while the lower
(blue) line shows tile lake depth, H. Wve see that in this case there is no (lanil)reak, as tile
lake level never exceeds the maxitum height of the dail. The top) plot shows that after
approximately 42 s, erosion switches off while drainage continues however, t le velocities
attained by the fluid are below the threshold and thus erosion canniot, occur. bott lOm 1

graph shows the corresl)onding d(ecay of the sciche amplitude.

We couple equation (83) with equations (62), (68) and (69); these are four equations for I
the four variables q, H, < and u. Numerical solutions to this system are shown iii figures 8

10. We see that by changing the initial water depth, H0 , (and thus the initial level of tile
lake below the damn), we change from a regime where danbreak is possible to one where it
is miot. This motivates the following attempt to identify the parameters in the systeli which
govern this threshold behaviour. 3

I
I
I
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Figure 9: Snapshots of the solution in the case of dambreak, with initial conditions i/o 0.03
in, H0 = 0.09 m, (o = 0.01 m. The upper (red) line is the water level, h; the lower (blue)
line the dain surface, (. For all graphs, the x axis is position and the y axis height. The
initial dam elevation is a parabola with endpoints at x = 0 and x = 1. The solution is

shown at time intervals of 200 s, and then at the time when the dam has completely eroded
away (2544 s). Note the steepening of the downstream face of the dam as erosion progresss.
This solution has 50 evenly spaced gridpoints.
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Figure 10: Solution in the case of a dambreak, for initial conditions ?/() = 0.03 m, H0~ = 0.0!)
mn, 40 = 0.01 rn (corresponding to figure 9). In the top plot, the (red) line, which is the line,

that is initially upper, shows the evolution of the mlaximumn height of the danm, <,,, while
the lower (blue) line shows the lake dlepth H. This lot shows erosion events, followed by
p)eriods of inactivity when the water level drops below the daIn, an(l neither drainage norI
erosion can occur. After seven such events H > m, but drainage is still modulated by theI
seiche wave. The bottom graph shows the seiche amplitude. We note that as H becoiies
small so must w, and to compensate for this, the amplitude of the seiche wave must~ inereau x
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I 3.4 Unified theory: point dam

To understand the governing parameters in the problem, we make a further simplification
and assume that the dam can be approximated by a point, at which = C,. This reduces
the model to the dimensional system

i) + ',+ + C", r7 = 0, (84)
LdH

L-d = -q (85)I __t

d wE(umn), (8(i)dt ],1/2
UM 2 (H + / 2 (87)

Equation (87) motivates the definition of a new variable, 0 = H + ,q- . Thus when 0 > 0

the height of the water in the lake is greater than the height of the dam, so the lake can
drain over the dam. When 0 > 0, (corresponding to the threshold velocity for erosion, u.),
erosion can occur. For 0 < 0, the water level is below the dam and neither drainage nor
erosion can occur.

Using this definition of 0, we write equation (87) as

Um Z(= 0)1/2 (88)

3 and combine equations (84) and (85) to obtain a single ordinary differential equation for 0

0 = wE(O) - DO 3/2 + il, (8!)

where D = ()32 is a drainage parameter (with units of velocity) and E(0)

[(2 )1/2] . If we consider that H is approximately constant, then we can write the

solution for the seiche wave in the form

I = 970e- -Yt sin wt. (90)

In this case, 0 can be evaluated as a function of time, as shown in figure 11. We see that
there are time intervals over which drainage can occur; i.e. where 0 > 0, and marginally

shorter intervals where 0 > 0. and erosion can occur. Erosion acts to increase these time
intervals (by decreasing (m and thus 0), while drainage and damping act to reduce these time

intervals (by decreasing H and q respectively). We therefore see that there is a competition

between erosion, which acts to increase 0, and lake drainage and seiche damping, which act
to decrease 0.

This allows us to identify five parameters in the problem: the initial values 00 and 7)0, the

drainage parameter D, the erosion parameter w and the parameter governing the damping
of the seiche wave, -y. We see from figure 11 that decreasing Oo (the initial difference between3 the mean lake level and the dam height) and increasing the initial seiche amplitude i1o will

I 181

I



I

0 I
I

-- --- -/ - -- --
00 TII

Figure 11: Schematic diagram of 0 = H + tj - (, as a function of tmne. When 0 > 0, I
drainage may occur, and when 0 > 0, erosion switches on. Initially, qi 0 (fromn equation
(90)), and thus 00 is simply (H - (-,) t."At time t ;: 0 ZI ± iH o - (n..

both act to increase the intervals over which erosion and drainage can occur, and thus
increase the likelihood of a dam break - which is what one might intuit ively ex)ect. To I
investigate these parameters further, we use a difference method to crudely a))roximale

the derivatives in equations (84) - (87). More specifically, if

dy -f0,0,t- = f(y,' t), (91)

we use a diflerence schenie (essentially the forward Euler method) to write

= YTI ± Atf _ (-I . G_ In), (92)

where At is the time interval over which we consider the change in y. In terms of our modl,
we let n, be the number of erosion 'events' i. e. time intervals over which 0 > 0. Then we set

At = 7,- 1, where 7,, is the time interval over which the ('n - 1)tlh erosion event, occurs.
Using figure 11, it can be estimated that

T =_I,- - sin- - ) (9) 1
U 11-_1 WTI-I1?n

where Wt) 7 - The system is now I
lIn = -/-( ., (.94)

H = H,,-1 - T', (95)

(n = (n-i - W,7;?-_i E(Un, - ), (9 (i)3

[2y= (H,, + r,, - 1 (97
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I Equations (93)-(97) may be solved numerically. Figure 12 shows a comparison between

results from this model and those of the spatially distributed model outlined in Section 3.3
above. We see that there is agreement between the models, indicating that the simple dis-
cretised model may be sufficient to estimate the critical values of the governing parameters.

We have now answered the question posed initially regarding threshold behaviour of
this system - in the context of this simple model, at least. Understanding such behaviour
is useful in terms of hazard mitigation. For example, many moraine dams in the Cordillera
Blanca are drained by artificial channels [8]. Figure 12 allows an estimate to be made of
how low the lake level should be in order that no reasonably sized wave can break the dam.

We also wish to use our model to estimate the peak discharge of a drainage flood. The
hydraulic model gives the 'weir formula' for the discharge,

q= (2) 3 / 2 1/2(H - )3/2, (98)

3 which is simply obtained from equations (61) and (65). We compare this formulation with
the experimentally determined flux. Figure 13 shows time series of water depth in a lake
which drained by catastrophic erosional incision. The smaller tank width of 5 cm was chosen

to prevent channelization occurring; channels formed in the 20 cm wide tank.
We used the data from figure 13 to estimate the maximum value of d. Using a value

L = 1 m, we were then able to estimate the maximum value of q using equation (77). This

value was then multiplied by the width of the lake. To use the weir formula, we estimated
the maximum value of H - (, during the experiment. We then multiplied this value by the
width of the channel (5 cm in both cases, as the channel which formed in the 20 cm wide
tank also had approximately this width).

Thus we obtain, for the narrow tank,

Qdata 1 X 10- 4 n113 S
- 1', Q,ei 1 X 10- 4 M3s - 1.

while for the wide tank,

I Qdata =4 x 10- 4 m 3 s- 1, Qweir = 1x 10- 3 In3s - 1 .

We see that the predictions agree in the case of the narrow tank, but there is an overesti-

mation of the peak discharge by the weir formula in the case of the wide tank. This may
be due to our approximation of the channel as a breach of constant width.

We can compare the weir formula with empirically derived estimates of the peak dis-
charge. Clague and Evans [2], for example, give

Q -,Qo (A)(gd5) 1 / 2  A kV
(qd7)12'

where d is the breach depth, k is the rate (speed) of breach growth and V is the lake

volume. We see that, in the case of a square breach, the weir formula would also have a
d5/ 2 dependence, indicating that a simple hydraulic model may capture some elements of
the flood well. However, the dynamics of the channel are missing from the model, and will

undoubtedly play an important role.
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Figure 12: Comparison of the dIiscretisedl point dain modlel with the spatially dlistribult ed

m1odel. We fix all p)armlneters and vary only the initial wave amp)lituide ij( and the initial
distance between thie mnean water level in the lake and the dam, (H - (,r~) t-0. Ab)ovc
the upper (black) line we are in flhe physically unrealistic regime where 1/0 is too smiall to

overtop the darn iii this case, cata9trophic incision will never occur. The lower (niagenot;a)
line indicates the results from the dlifference niodel: ab)ove this line, there is o dlain lbre'lk.
This makes physical sense, as it, imp)lies that dlecreasing il( makes it, more dlifficuilt, to b)reak

the damn, while increasing the initial lake level makes it ea-sier. On t'op) of' this are plot tedl
results fromn the spatially distrib)uted mnodel: (red) stars indicate parameter values where
incision occurred; (black) circles where it, did not. We see that there is agreement between
the miodels, although more numerical simulations using the sp)atialy distributed miodel
should be p)erformned.
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4 Conclusions and future work I
Il this project, we have formulated and solved a one dilensional nodel to try and under-
stand the breaking of a moraine dam by a mechanism which we tern catastrophic erosional I
incision. We have seen that, experimentally, dissipation of the seiche is accounted for b
linear drag and that the daimbreak call be described using a hy(raulici model. Oil joining
these two simple theories together, we are able to make some rough estimates of the thresh- I
o1( behaviour of the phenomenon. These estimates agree qualitatively with experimental
results.Experimentally, we have confirmed the applicability of a linear damping law for t1(, I
seiche wave. We have seen that the bimodal particle size distribution of moraine may
explain why moraine dams are )rone to fail in such a spectacular fashion: the combination

of large boulders and fine sands makes the dam stable, but the loose consolidation means U
that it is also easily eroded. We have also compared a theoretical formulation of the )eak
discharge with experiment.

However, there is much future work to be done. The first step would be to include I
deposition in the model, as this is observed to occur experimnentally. For examnl)le, as ti(,
dam erodes in the numerical simulation (figure 9), the downstrean face of the dam stee)ens.
However, experimentally the downstream face is much shallower, and the dam never ero(les I
away comnpletely: a dan of constant, shallow downstream slope (and approxiniately one

quarter of the original height,) remains. This final shape can l)erhaps )e explaile(l 1)' v
the effects of deposition. Modelling this would involve either using the Exier formulation I
or incorporating the depth-averaged volumetric sediient, into th(, niodel a. deseribed in

Section 3.2.

Improvements could also be made in the description of the interact ion between the seiche
wave an( the daim. We can use numerical methods, such as those (escribed in Section 3. 1.
to allow for a more realistic basal topography. 'File seiche mode for such a topography, a.s

shown in figure 6, can be coupled with a 'runup' law [19] to (escribe how far the seiche I
wave moves up the dam, and thus allow for a better coupling of the one dimenisiomal sciche
theory with the hydraulic model.

The next important step is to add an extra spatial dtiniension to the model in order to I
study the channelization instability and understand the channel dynamics. Even a basic
understanding of the channel dynamics would allow for a better estinmate of the peak dis-

charge to be made. Figure 14 shows an experiment when four channels forned initially on
the downstream face of the dai; two of these channels were in(cise(d to a sufficient (el)th
to drain the lake, and (lid so simultaneously. It is therefore clear understanding the chian-
ielizatioli process is key to understanding these cata,strophic drainage events. Conparison I

can be made with the channelization instability of a flowing sheet over an erodible bed
(Sinith-Bretherton model, [17]), whereby a thicker layer of water acts to increase erosiou,

and thus deepeI a channel. It should be noted, however, that in its original form such a
miodel is imatheinatically ill-posed.

Finally, there is scope for more experimental ex)loration of sonme of the i(leas here - a

test of the results in figure 12, for examplle, where more accurate nmesurements than those U
obtained in our experinents would be required. Experiments could also be usefll in helping
to understand the channel dynamics.
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Figure 14: Photograph from laboratory experiments, flow is from top to bottom. Here two
channels (o(e on the far left, one on the far right) are draining the lake (located at the top
of the picture) simultaneously. Four channels formed initially oi the downstream face of
the dam.I
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I Patterns of convection in a mushy layer

S.R. Keating

March 15, 2007

Abstract

A solidification front advancing into a binary melt is often preceded by a mushy
layer of fine dendritic crystals in thermodynamic equilibrium with solutal liquid in
the interstices. One of the most striking features of such directional solidification -

and most undesirable in industrial contexts - is the formation of vertical chanels
of zero solid fraction in the mushy layer. These "chimneys" are believed to form as aI consequence of coupling between dissolution, solidification and compositional convection
within the mush.

In this work, we extend the weakly nonlinear analysis of previous studies to the case
of a continuous horizontal planform, in an effort to understand better the structure
and spatial distribution of chimneys in a mushy layer. The relevent pattern equation is
derived and has the form of a Swift-Hohenberg equation with an additional quadratic
term. We show that this quadratic term is only present for the case of a hexagonal
array of rolls and breaks the symmetry between up-flow and down-flow at the center
of hexagons. Such symmetry-breaking is ultimately rooted in the non-Boussinesq solid-
fraction dependence of the permeability within the mushy layer. Finally, we show that in
a periodic domain the pattern equation exhibits localized structures which we interpret
as nascent chimneys.

"Work is the curse of the drinking classes." -Oscar Wilde

"One of us has to go." -Oscar Wilde (last words, attrib.)

I "Press On!" -EAS

I 1 Introduction

A mushy layer can be thought of as the means by which a solidification front adjusts
to constitutional supercooling in a two-component melt. The mush itself is a forest of
dendritic crystals - generated via morphalogical instability of the solid-liquid interface
in thermodynamic equilibrium with solutal liquid in the interstices. It can also be thought,

of as a reactive porous medium in which the solid fraction, and hence the permeability, is
dynainically coupled to the flow. Mushy layers are found in a wide variety of situations in
nature and industry: large alloy castings, sea ice, lava lakes and Earth's inner-core boundary
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are a few examples. For an overview of mushy layers and other issues in solidification theory I
see Davis [1].

One of the most compelling features of mushy layers, and most undesirable in the context,

of industrial applications, is the formation of "chinieys" - quwsi-vertical channels of zero
solid fraction from which solute-poor residual liquid is expelled from the mush into the
adjacent liquid region [2]. Such chimneys manifest themselves as "brine channels" in sea
ice and are believed to give rise to "freckles" in alloy casting and geological format ions. U

Weakly nonlinear analysis of a simplified model of convection in a mushy layer was
first carried out by Aniberg & Homsy ([3]: hereafter AH93) and Anderson &,, Worster ([4];
hereafter AW95). In both of these treatments a discrete planforni was assuied three I
rolls of different ainPlitude were superimlposed at 120 degrees to one another. In AW95 tlie
relative stability of rolls (one non-zero amplitude), hexagons (three equal aml)litudes) and

mixed modes (three finite amplitudes, two equal) was calculatedk and it was concluded that I
there exists a transcritical bifurcation to hexagons.

AW95 also indicated thel presence of a Hopf bifurcation, giving rise to an oscillatory 
instability examined in inore detail in a later paper [5]. In constrast to aii oscillatorY I
instability detected earlier by Clien, Lu and Yang [6]. and which owed its origin to double-
diffusive convection in the liquid above, the instability of Anderson & Worster [5] is dlue to

physical interactions internal to the nmush itself. A number of authors have developed tle I
theory of these oscillatory modes [7. 8, 9]. In this work, we shall focus attention oi th,
direct Iiode, leaving its extension to the oscillatory case a subject for future research.

In this work we ask the following question: what determines the structure and spatial I
distribution of the chimneys? This article proceeds as follows: we briefly review the f'oriii-
lation of AH93 and AW95 in section 2 and the linear theory of Anderson & Worster [5] in

section 3. In section 4 we extend the weakly nonlinear analysis of A\V95 to the case of a
continuous horizontal planforin and derive the relevant pattern equaion. In section 5, we
calculate explicit expressions for the coefficients a)pearing in the pattern equation in teriis

of the physical parameters of the sytemn for the near-marginal case of an iniilitesiiiially thin I
band of wavenunibers centred on the critical value. We show in sect ion 6 that the general.
stationary pattern equation possesses solutions with localized structure and inter)ret these

as nascent chimneys. Finally, in section 7 we discuss our results.

2 Formulation

We outline here the formulation of AH93 and subsequent studies [4, 5, 7., 8, 9, 10, 11], s
depicted in fig.(1). The mush is modelled as a single )orous layer sandwiched between liquid
above and solid below. For mathematical ex)edience we )rescribe a constant solidification
speed V and assume that the mush is (ynamically dlecoutpled from both the liquid and
the solid. These and subsequent issunl)tions are considered in detail in the references
cited above and will not be discussed further here. It is sufficient to note that, while
the assuml)tions simplify the analysis considerably. they preserve the esseintial physical
interactions of interest.

It is assumed that, within the mushy layer, interstitial liquid is in thermodynamic e(lui-
librium with fine-grained dendritic crystals. so that the temperature and solute fields are
coupled via a liquidus relation
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Liquid

Iv
z=d

I
I

z=OI

I Figure 1: The model system. A solidification front advances into a binary alloy at a rate
V. A mushy layer of thickness d is sandwiched between the two regions and advances with
tie front. The solid is at the eutectic temperature TE and solid composition C.s; the liquid
region is at the far-field composition Co and associated liquidus temperature TI. (Co). See

text and references for further discussion.I
T = TL (C). (1)

I The fir-field composition Co and temperature 7 are taken to be above the eutectic coml)o-
sition (CO > CE), and above the far-field liquidus temperature (T > Ti. (Co)), respectively.
The temperature field T, solid fraction 0, fluid velocity u and pressure p within the mushy

layer are then governed by equations describing heat balance, solute balance, Darcy's law
for flow in a porous medium, and mass continuity; the non-dimensional ideal imishy layer
equations in a reference frame moving with the solidification front are given by Worster [12]

( - o)(o- SO) + U. vO = V2o, (2)

Oct- az)((1 - )0+CO)+ u. VO = 0, (3)
I C (0) u =- Vp - !Ra0i, (4)

V-u = 0. (5)

The ion-dimensional temperature field (or, via the liquidus relation (1), the composi-

tional field) is

ST - I1J (Co) C - Co ((i)

Tr (Co) - CoC ' - C('
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Symbol I Physical Quantity ~ ymbol Physical Quantity]
L Latent heat /3 Expansion coefficient

Qi Specific heat g Gravitational acceleration

I],, Eutectic temlperature HI (0) Permeability at zero) solid-fract ion
L ~Far-field temperature K Thermal diffusivity

0JE Eutectic composition V K inemnatic viscositY

C o Far-field comnposit ion d 'Mushy laver thickness
CS - -Solid Composition -_VT Speed of solidification fron

Table 1: Physical quantities appearing in the dimension less p)arameters S, C and Ra, andI
the nmuslyvhlayer equationis (2-5). For further details see cited references.

while lengths. timles andl velocities in (2-5) have been scaled with t;1V, /I,,2 11i(l 1', r,(

spectively, with K, as the thermal (difiusivity. The funiction k.( )) app~earinig iii epult ionl
(4) measures the variation of' permeability 11 (0) with solid firact ion, with resp)ect to somec
zero-solid-fraction p)ermealbility 11 (0), assiled finite:

Ic (0 1(0) (7)

Th'le dimiension less parameters app)earinmg in (2-5) are the Stefhun numbier'

cl (T L(o)-T (S)

lhe conicenltrat ioni ratioI

c =CS - 0(o0

and thei Rayleigh number C E

3u (C() - (71') gnl (0) H/V1)
RO VK

The various pliYsical (juantities app)earing in (8- 10) are list,ed in table (1) Futhuer (discussiomn
of these p)arameters an(l their p)hysical significance can be f'Ound iiifthe references cited(lbove.

A fourth dimnension less p)aramneter, the dilmensionless nsli thickness 6~=d /

appears in the boundary conditions:

() = -1,u 11 0 onil 0. (1

S= 0, ''= 0, = 0 oiz = 6. (12)I

Boundary, conditions (11) and (12) corresp)ond( to impermeable rigid p)lates co-moving with

the upper and lower b)olundary of the umushy' layer. Ime( lower plae, betweeni the solid mndI
the imnishi, is maintained at the eutectic tel)ecratutre i,while the upper)C boundary betwee (I

the liquid and te ienush (that is, at zero solidl fraction 0). is nmintained at thle filu-faid

liquidusi t emp)eriture T1, (0C3).I
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I A more physically plausible kinematic upper boundary condition might be one of con-
stant pressure p. Chung and Chen [10] considered a stress-free upper boundary condition
arid, while their analysis was much more involved than that of AH93 and AW95, no qualita-
tively new results were uncovered. We therefore proceed with confidence that the boundary
conditions (11) and (12) preserve the interactions of interest without undue complication.

To isolate a parameter regime for which there is a physically interesting interplay be-
tween dissolution, solidification and convection we adopt the following additional scalings:
we consider a thin mushy layer (6 < 1) [3]; we assume a near-eutectic approximation
(C = 0/ = 0 (6-1)) [13]; and we assume a large Stefan number (S = S/ = 0 (6-1)) [4].
The reader may consult the cited references for further details on these scalings. We note in
passing, however, that a key implication of the near-eutectic approximation (C = 0 (W ))
is that the solid fraction is small, and hence the permeability is uniform to lowest order. As
a consequence, we follow AH93 and expand the permeability in the small solid fraction:

K (0) = 1 +)C1 0 +C2 2 + (13)

where, on physical grounds, we demand that KCI, IC2, etc. are non-negative.

I 3 Linear theory

We continue to follow AH93 and AW95 and rescale space and time as

x -+ 6x, (14)

t ,- 62 t, (15)

and introduce the effective Rayleigh number

R' = 6Ra. (16)

Note that, following the notation of AH93 and AW95, R is the square root of the effective
Rayleigh number.

The dynamical fields 0, 0, u and p are separated into a stationary basic state andi a
perturbation:

0 -- OB (Z) + FO (X,t),

-~ O B (Z) + fo (x,t),
U B(Z+ EU (X,t) ,u -f 0+cu(x,t),

P- pB (Z) +p(x,t, (17)

where the subscript, 'B' denotes the basic state and c is the amplitude of the perturbations.
Subtracting the basic states from the equations of motion and eliminating the pressure p
via the incompressibility condition, we obtain the equations for the perturbations 0, 0 and| u:
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(6az ( 2 eJI.) (0-- RWO' (Z),U, + V2 0 (HI R O,

(60~- 2Lr) (I - 6 0(3- 6) 0 - (03- OH ~-6 z w t ~l O

V 2 (krII) - 0, (u. VK) - R,00zO =, I
V2 (KC,r) - 0, (u VIC) - R/0)0:o = 0,

V 2 (I,1,) - o0 (u. VIC) + RV202 0,

V u = 0. (18)

The e(uations of motion (18) can be written as

(£C - TOI)v = (19)

where V = {0, 0, u} is the vector of perturbed fields, £ - TOI is the linear opcrator.
NVe discar(1 the nonlinearity N 1y setting ( to zero., an( look for solutions of the torin
VO)k, (z) exI) (ik x + a-t) satisfying

(ICOA - ( 7T) VOk, = 0. (20)

Here, k (,. k,4 ) and x = (. y). Note that, as a consequence of the assuIl)tion that

k 1 = 0 ( ), variations ill the perieability appear oilv at higher order.
The iinatrix operators £Ok (1,1 TOAk, the linear fiels VOk,, tle growth I rate a and thI

asic states t 3 (z) aIild OB (z) can be expanded in )owers of 6 and t he linear equat ioi (20)

solved perturbatively. Thus, we have

oA. (z) '£oo + 6,co + ... (21)

VoA,u (z) = Voo + vl +-- (22)

a = a( + 6a 1 + --. (23)

(j. fl z) - - 1 ~ -2 ZA _* (221)
0

2  + (24)2C ) I
Oil(z) = (Z -_ 1) -6 2 + .. (25)

We now substitute the expansions (21 25) into the linear equation (20) and at each order
in 6 obtain a linear ordinary differential equation for th(e linear fields Vo0 (z) vol (z)
At 0 (6-') we find

yoOoo = 0, (26)

implying that a(o = 0 (6).
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I At 0 (30), we find solutions

p00k IkI /, 0  I11
000, = -fksin7rz, WOOk fk 1Jl + 2C k2 S i Il7 Z  (27)

ikx , ik

U0ok = -CWO0k, 1)00 w k (28)

where, as a consequence of incompressibility, the planform fk satisfies

i VHfk = -k 2 fk, (29)

and we have introduced Q = 1 + S/C. Tile zeroth-order growth rate is given by

I r 2 +k 2  R 2

(O- Q R- k) 1), (30)

where R20 (k) describes the neutral curve

(7
2 + k2)

2

Rg0 (k) - (31)iQk2

The neutral curve (31) has a minimum of 47r2 /Q at, k(, = 7.
In addition to the solutions (27) and (28), we require the linear perturbation to the solid

fraction Oo. However, the condition (26) requires that. we consider terms of higher order in
6. To lowest order,

00k (Z) C-7Z+_ilr 7 2 ±+k 2  7r (7 + -1z fk. (32)Q 7r 2 + (os + 76/

Notice that this expression is valid for the case of both a = 0 (1) and a = 0 (3). In the
former, condition (26) demands that 00 = 0 (6), while the latter implies that 00 = 0 (1).
Anderson & Worster [5] showed that, for the case of a = 0 (3), the dispersion relation
admits complex solutions, indicating the presence of an oscillatory instability. As we will be
)erforming weakly nonlinear analysis near the marginal stability curve (R = R00 (k) + 0 ())
in the asymptotic limit e < 3 < 1, we will be considering only the case of a = 0 (3), in

which case (32) reduces to

4)00k (Z) - w 2 + 7k2  O cSiu - -- Sin17rz - e-(1z)) fA (33)

This is precisely the result of Anderson & Worster [5]. We shall employ this result for

Oook (z) throughout our analysis.

4 Weakly nonlinear analysis

I In this section, we perform a finite-amplitude perturbation expansion of the equations of
motion in the spirit of AH93 and AW95. In contrast to these studies, and those of subsequent
authors, we retain horizontal spatial information by considering a continuous horizontal
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p)lanlforin rather than prescribing a discrete superposition of rolls. Again, unlike previousI
authors, we shiall not a pHoHi assume that the critical wavenumber k, is the only nmode
excitedl. Rather, we consider a, continuous band of wavenuibers, centredl oil k,.. In sect.ioni 5,

we restrict our. attention to ail infinitesiially thin band of wavenumnbers, thus reproducingI
the results of previous studies. What is different about this approach is that we retainl
information about horizontal gradients in the amplitude equation thus obt ained, kind hliicc
need mnake 110 0, pWZi07i aSSUMptions about the pattern. Note that, in t his calculation we (1o
not, rely upon aseparation of scales to retain some slow spatial dlep)endeniceof themnpillit udes,
as in standard1 derivations of the Ginzburg-Landau equation for example. Rather, spatiail

dependence is preserved iIi the wavenumber k, which is allowed to vary.I
WXe follow AW95 and perform anl asymptotic expansion in the ordered liiiiit (C << K5< 1.

That is. we first expind v ={O, (), ul and R in e; then, at each ordler. we exp)and in (5:

+f (6 1 V2±- V20 +4- 6V21 +± ) + (341)
R = (Roo + Mol + .. )+(RIO + R I±+

-: 2(R 2 0-i+(6R2 1 +±-- -) +± (35)

Notice that, as a consequence of S, C = (6-1) , we must include iii thle exponisioni the

field V 2 - = (0O 02, 1, 01.- It is also worthwhile notiiig that , because of t lie presenice of a1

teril of order ((i thelanin(34) is singular in the liniit (5 << i, < 1. when thle ordecr
1s reversedl.

Nenow sub)stitumte expansions (34) and (35) into the e(jimt ions of' Inol lon (19) and1look

for shxov t ilic depeindenice 01 = (2 i,,. The p)erturbationl exp~ansioni th11(n pro)ceedls as fifflos:

o ((060) : 'Coo Vo0  = 0.1

o ((56) r-O VOI -Ct1 ol )

o W605~) Co vlo = -,CIO voo + N1IO.

0 ((1(51) Coo. vII = -,LI Ivoo - CIO Vol +I N, 1.

0 (C26-~1 COO-V2- = T2-1 0T00

0)((261)) f-00 V2 0  = 2 & 7'VOI + 20 0TVO0 - C20 -VOO

-,C10 VIO - £01I V2-1 + N20,I

At each step) iii the p)ertuirbation expansion, we obtain a system offlinear, inhonliogeneoums

ordinary differential equiatijons of the formn

'CO* vilin =, Zril36)
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I As is well-known (see, for instance, [14, 15, 16]) a solution to (36) exists if and only if
the inhomogeneities Iron are orthogonal to the solutions V_ of the adjoint problem. That is,

j oIdZ,.,,= 0. (37)

In the present problem, neither the differential operator nor the boundary conditions is
self-adjoint.

The solvability condition at 0 (0 5) gives:

I Rio 0 . (38)

This is a direct consequence of the assumption that I1 = 0 (c).
The solvability condition at 0 (E2 60 ) gives the pattern equation for the planform fA,

2

Akidrfk = 2-R 20 kl fk + M {f 2} + A {f 3 }, (39)

where

I M {f 2} Jdpdq62 (k - p - q) Mkpqfpfq, (40)

I{f3 } fddmdn52 (k -1- m - n).hVkn fif,1fn. (41)

Here Mkpq and NVkjmi, the kernals of the integrals (40) and (41) are complicated fulc-
tions of the horizontal wavevectors k, p, q, 1, m, and n.

Close to marginality, the coefficient of the linear term on the right-hand side of (39) can
b e e x p r e s s e d a s 2 I 2  + V R 2

I2~~0 Ik R2 (Rjk) - (42)

This is exactly the linear growth rate a0 . Expanding about the critical wavenumber k, = 7,
we find

I ) 4 ( R I) (43)

so that in real space the pattern equation for the planform f = f (x, y) becomes
_A'fI = pf - (V2 + 1)2 f + -f2 (44)

This has, of the form of a Swift-Hohenberg equation [17] with an addtional quadratic
term. In (44), we have replaced the integrals M {f 2} and K( {f 3} with numbers 11f 2 and
vf 3 ; we shall calculate explicit expressions for it and v in the following section.
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5 Evaluation of the integrals

As dliscussedl in section 4, the primary motivation for deriving at general patltern epualtioll

for a continuous p)lanforin fk (or, in real space, f(x,',y)) was to avoid mnaking any a primriI
assumptions about the pattern. Rather, one c,an proscribe sonmc arbitrary init ial pattern (for
instance, a random one) and, with the aid of a small comp)uter, ivestigate its evoluition. For

Swift-Holienherg-like lpat.tern equations, one typ)ically sees a number of p)atternis competinigI
with one another until the planform settles into a fixed p)attern and evolves 11o further.
The final pattern generally falls into one of three categories: (liscrete rolls, hexagons (ipl or

down), or labyrinths - which can be thought, of as a planforin frustrated b)etween) rolls andI
hexagons.

It, is int eresting to calculate exp)licit exp)ressions for the coefhicien~ts p. an(l il for dIi'scret e

p)lanfornis. This is aided by the olbservationl that, close to criticalit'y tile p)lanlfOrmus cf t c.I
MVe c0lifinedl t.o a narrow bIand of wavenumbers centred(l n = 'T, as delpict ed inl fig. (2).
Under these conditions it is possib)le t.o evaluate the integrals M- {./*' I and MT{1 Thit

is, we assumle that J*P , ](oe) 6 (Ipl - 7r) where ai is the angle p makes with k = A-:, without
loss of generality. Under this assumption, all wavevectors must, be of thle samue length anld
so only cert'lam tessellations will satisfy the delta functions present inl thle integramids.

'XI

kc k

Figure 2: Support, for I.We assumne that, Jris confine(d to a narrow band of waivelluull)rs

centred oil k,( = 7-.
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I Concretely, the quadratic term M { f 2 } in the pattern equation (44) is integrated over
wavevector triads {k, p, q} satisfying the condition

I k p + q (45)

(k),t(p) -- .- -- -. fQk) Op f(q)

/
/  

N

/ / N
/ q\/
/ /

Figure 3: Allowed tesselations satisfying the condition k =p + q. As k, p and q are all
I of the same length (k, = 7), the triplet must form] an equilateral triangle. Thus, the onlY

planforin possessing a quadratic term in its pattern equation is aln "hexagonal array".

I As all wavevectors are of the same length, the triad {k, p, q} must form an equilateral tri-

angle. Consequently, the only planform possessing a quadratic term in its pattern equation
is one with an equiangular array ("hexagonal array") of three superposed rolls, as depicted

I in fig. (3). This is the discrete ca,se considered by AH93 and AW95. It is interesting to

note that the appearance of a quadratic term is a special case of the more geueral pattern
equation for ai continuous planfori.

I We suimmarize this result a,s follows:

1, = 7r:' (k,"1/90) f (,! ) f*-) for a hexagonal array, (6

I ~ ~~where f * (a ) = f (a + 7r). ohrie

In the ca se of the cubic term, the 4-tuple {k, 1, rn n} must, satisfyI =l+m+n, (47)

so thatme let, , n, n form an equilateral ptallelogram (fig. (4)). For general angle o
between k and (say), we find thate

Vf 8le Con2sequently, 8 3o - cosar +possn 3 + cos a (I _ Coe)2 f (0) ef (()I

9 c 0+ 9 -4cosa ( cs) 9 + 4cos(,

s o227e withan 2 q g r df (0) f ara" os ()e(48)

As both rolls (a - 0) and hexagons ( E 0, r/3, are special catses of (47),
we expect the cubic term to appear in pattern equations for both planforms, with theI coefficient,-
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t(k). 01I
Fiur 4: Alwdtseains 4tsyn h odtink I+m+n Il -ii

fk 1, niIjfrsa qiaea aallga.Ifalfu aeetosleaogfi a

wxis, thscrepnstth caeoth intca in IDrls

J"f; = 5IC2- 2 f(27, I

Figue fla4) Alloiedtltindcatifing fithe (Iii bnce= ± o ±' qudati ter.i il e
{pktt1,rn, eqan, orms aneuilaIterl isarslpelrra. I l orwvvcosleaogtes

aFs insly,w orenl to t he caeffithre inototeratine eivav olls.patrneqato

(44) (i.s si.gn1 () (al2 fotaheagianara:

=A = Q~" C - 2f (0)50

Nte thdiate8 s 1 st ie(elne i(iagta,iithe aheseice of a Hofbiucaan.Idras ok.w t c consider thes

pattern equlationl tle prisicaiof is sprriicaflonrmisatpcfo.uteeerh

FiiNasc eniite thaiey ouiitins oto the p ii eatvei le 1 )ttern equato

this iIastthear pifremte ofattr H eqfiuation. I44 thiucs work, wen(10nnot inolioellouthis

ordhinary (difflerential houndary value problei andl is easillvh aimidledl bY nuicrical iinatile-I
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I matical tools such as MATLAB. Figure (5) depicts the solution in a periodic domain with
representative values of p = 3.9, p = 0.1 and v = 1.0. See caption for details.

4

I V

I1 - 9 69 1-12 -9 -6 Horizint-position (x)9n critical waelengths 6

g.0

0

a-,

> -12 -9 -6 Horizonid position (x)0n critical wa3velengths 6 9 12

Figure 5: Stationary solutions for the planforn (top) and perturbed fields (botton). Hori-

zontal position in each is mesured in units of the critical wavelength. In the tpper figure,
the planfrin amplitude is plotted inl arbitrary units. In the lower figure, the streanfuction

is plotted in the x-z plane. Moving from left to right, the direction of rotation of the rolls is
I alternately clockwise and counter-clockwise. The region indicated by the vertical hatched

lines represents a nascent chimney. In the background of the lower diagram, the temper-
ature perturbation (left) and solid fraction pertubation (right) are indicated by contours.
The units of these perturbations are arbitrary.

3 7 Discussion

As we have noted, the pattern equation derived in section (4) has the form of a Swift-
Hohenberg equation with an additional quadratic term. The Swift-Hohenberg equation
arises in a wide variety of physical, chemical and biological contexts and has a substain-
tial literature associated with it (see Cross & Hohenberg [17] and references therein foir a
conlprehensive review of this topic).

The quadratic term appearing in the pattern equation (44) breaks the symmetry between
up and down. As we have noted, this quadratic term appears only for planffbrms made up

of three rolls superposed at 1200 to one another. If all three rolls have an equal amplitude,
the unit cell is a hexagon. Thus, we recover the result of AH93 that the transition to three-
dimensional hexagons is transcritical. The sign of the quadratic term determines whether

there is up-flow or down-flow at the center of the hexagons.
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We also note that the expression for the quadratic terin (46) is proportional to ki. Thus,I
symmietry- breaking between uip-flow and dlown-flow at, the center of hexagons is ultimately
rooted in ithle noin-Bot ssiesq effect of p)ernlieability variation wi tlh solid fraction . As k, is

strictly p)ositive onl phlysical groundl(s, the overall sign of' the qluadlratic termi is determinedI
by the planforIn f ((v) itself, at least in tis p)ared-dowil mlodel.

Finally, it is amuising to note that while hexagons may det ermine which way is up

by looking at the flow direction in their centre, rolls and all other planforins have no suich
met hod of distinguishing uip fromt down. Translation of' rolls and p)arallelogram.", by a hialf-cell
inerelv exch anges the two directions. In this way, the hexagonal planfOrmn is fundamentall.y

dlifferent from all other patterns: it is manifestly asymmnetric.
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The evaporation of a salty filmin

Rob) Stlyle

March 15, 2007

1 Introduction

Evaporation of water is anl impIortant phase transformation that appears inl manYv guise",
throughout everdav life. Its effects range from processes intrinsically involved ill thle at -
nmospheric water cycle, to thle regulation of body templerature inl hot enivironment s, thle

p)roduct ion of coffee ring staiiis b)eneath a sp)ilt coffee dlrop)let mnid to important processes
und(erlying ilicroffluidics.

Although evaporation as a pure~ bulk phase transformat ion is well undl(erstoodl. whien )i(

add(s solutes to the liquid, or brings the liqjuidl into cont act with ita substrate. we obtmail AI
newN auid rich variety of lpossib)le behaviours that we canl access exl)erimiitalv and mmlYsc
thieore icall v.

A well known example of' is the effect, of combining a solute with Iweap)onitioni is given
bYthe 'tears of wine' plieniomenon [1],[2]. Whenm one swills a glass of' wine(, a liquid film i1

produced uip the side of the( glass above the( bulk liquid. Alcohiol evaporates miore raid(l.. II

lie filil away, froml thle bulk wine(, and the filmi ibecomnes dlepleted of alcohiol. This dcple1 Io0I
decreases the surface concentraition of the filmn relative to that of' the bulk wine(, leading
to a gradient ill surface energy. This gradlient causes a miarangoid flow, (drawinig liqid ipl

int o the filin above the bulk wine. Eventually, enough liquid is drawn upl int o thle film 
that it becomes unstable togravity and falls -like a erof wn.Ail'Vgrdet l ,ufc

tempjeratm-re or concentration will cause Marangoni flows, andl thlis niarangoiii flows (-ill) b

extreinely important ili the presenlce of phase transitionis, particularly ev;iporation].I
A secondl compllexity is introduced by the addition of a substrate into the problemi

[3]. Althbough thle wetting of substrates has been well studied [4]. t here are still mianiiv

interesting phienomnena associatedl with the evap)orat ion of filmsl that have oill." recent lY
received attention, such as the investigation of coffee ring formation bY a sessile, Imirt ice
ladenl droplet, [5], the observations of a finite contact angle ili an evaporaing wet tinig film

[6], an(d of p)art icular interest, the exp)erinicnts of Du and Stone oii evaiporativel.v groWni saltI
trees [7].

Neirfeld hias recently perfornied a series of' experiments ob)servinlg the evapIlorlIioll of' a

sessile. salt,y drop)let (private (oinminnication) . Although siniple inl iatir.% the exp)eriliiwit sI
show several key features that we wish to understanld (see Fig. 1). Mncimlyv:

*Overturning of liquid inl thle builk
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I ,* Salt crystal deposition in the bulk, initiating at the outer edge

* Formation of a thin, rough salt crystal film beyond the edge of the bulk droplet

* Continual growth of the outer limit of this thin salt film

I

I

I
1 (1) (2)

I (3) (4)

I
I

(5) (6)

Figure 1: Plan view of the evaporation of a 5pl droplet of saturated NH 4 Cl solution. Room
temperature is 22°C and relative humidity is 42%. The images are shown at approximately
six minute intervals. (1) Just post commencement of the experiment: some salt is observed

at the edge of the droplet when evaporation is highest. (2) Precursor film growth observed
around droplet. (3) Some dendritic growth observed in the bulk droplet: these crystals
are effected by flow in the droplet. (4) Bulk liquid reduces in radius while precursor film

continues to spread. (5) Dewetting occurs at the centre of the droplet and hence bulk liquid
is no longer exposed to air. (6) Precursor film continues to grow and dewetted area covered
in growth similar in appearance to outlying precursor growth.

In this work, we will demonstrate the basic processes at work in the evaporation of a
salty droplet by way of simplified models and show that the above observations stemi from

205

I



I

the combined action of these processes. In this way, we will be able to understand the I
processes important for the growth of evaporatively grown salt trees which we aim to study
in later work. For the current study, of most interest is the creation of the salt crystal under

and beyond the edge of the bulk droplet. Vapour transport of salt cannot account, for the
(]eposition beyond the confines of the bulk droplet, so we ascribe tile presence of the salt
to the evaporation of a thin fihn of liquid fed by Marangoni flow from the bulk droplet.
We will see that the growth of the salt-crystal fron this filn is subject to a new instability
associated with the development of supersaturation at the liquid- vapour boundary.

We describe the mechanism for this new instability as follows. A thin filn of colistalit,

salt concentration sits atop a planar salt crystal with which it, is in equilibrium. The vapour I
pressure in the surrounding atmosphere is reduced so that evaporation occurs froin tit,
surface of the filn and so that salt, previously dissolved in the evaporated portion of liquid
is rejected into the surface layer of the filn (salt having effectively zero partial l)ressure iii
the vapour phase). This causes supersaturation at the liquid vapour interfice that, diffuses
towards the solid liquid interface. In this manner, salt will be trans)orted from the liquid
vapour interface to deposit upon the salt crystal. However, as the salt, crystal will he growing
into ti increasing sup)ersaturation , the interface will be unstable to small )erturlations.

In many aspects, this salt, )recil)itation is similar to the unstable solidification hront of'
a salt freezing from a binary alloy [8]. For comparison, we briefly review tit( thivory of'
constitutional supercooling.

Imagine a pure, planar salt. crystal, growing from a binary alloy (water and salt,). \Ve

set the far field composit ion and temperature of the alloy to be (-v and TX respectively.

and assume that the liquidus relationship between concelntration c anld telillpeitlre ' is
a )iroxi Ilat ely linear so) that I I

i1poxliitl ile. otla(ic) = ',mc + 16). (1)

Then TL(c,) < 7, so that the far field liquid is not supercooled. Also, the teiperature

at the solid liquid interface T < TOc is such that the solid is in equilibrium witi tit,

surrounding liquid so that we must have i = Tjc).
Now, iii front of the advancing salt front, water must be being rejected so that ci < .

Thus we will see solutal and thermal boundary layers in front of the advancing frolt, across

which the salt and temt)erature respectively will vary between their interface and far field

values. The diflusivity of heat K is much larger t haii the diffusivity of salt. ili water D,

and so the thermal boundary layer will be thicker than the solutal boundary layer. If we
translate the solutal concentration into the equilibrium liquidus teml)erature in tie liquid

from Eq.(1), we then see (Fig. 2) that this implies that there will be a region directly ahead

of the advancing solid front where the liquid is at a teml)erature below the liquidus if'

Oz 0c . (2)

This 'constitutional supercooling' is produced by rejection of solvent in front of tlie solid-
ification front, and it, is well known that the front is unstable to smiall perturbations [9]
leading to dendritic growth as has been observed experimentally, for example in tie case of
ammoniumn chloride, by Huppert [10].

Therefore in both situ iations, we produce salt, from a binary alloy of salt, and water.
Also in boti cases, there is a local increase of the free energy of the sYstem above tI(
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TL(c.) T,

I LIQUID

SUPERI J COOLING

I SALT

I

I

Figure 2: Diagram demonstrating the origin of constitutional supercooling at the salt liquid
interface (cf principle lectures by MGW for added details).

I
I
I
I
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Figure 3: Close upI of salt dendr11ites at the surface of ai miushy layer advancing inlto aiumo-l

niumi chloride soluion [10].

eq1 uilibriuml value (suipersatuiratioii/siipec(oolinlg) which dIrives the salt liquid interfa8ce 1(o

become unstable. One final similarity is that in both sit uatijons conlvectioll cmi occur duie to
(lensity' differences associatedl with gradlienits in templerature and conlceintrat ion. However.
the key dlifference lies in the fact, that constitutional Sup)ercooling is causedl 1)'y Wvater re,ject loll

at the salt crYstal boundary, and is always ihinuiediatelY relieved b.v iuilniedilte soliditicaItiollI
upon the salt, crystal. However in the evalporative case, suplersitulrat ion is produced at somie

distance. namely the filmn thickness, away fromn thle dlepositedl salt crYst; almidl therefore leadIs
to differing growthl behaviour andl the p)ossibilit 'V of hionlogencouls 111icleat ion of salt at t lieI
liquid- vapour interlace for rap)id enough evaiporation rat es. Th'le siiiple observat i(11 Ht 1lt
lie crvst al fOrnis prodlucedl by bo0th processs vary siiihai lv (Fgi)t(1 a i

(difference is implortanit in dleterminuing growth1 cliaract erist ics. aild thbus Nvort l1Y of st uidY.

2 Model of an evaporating film

InI order to wamle through the inire of cconiipetinig proc.es iiivolved iii producing the co-(-
plex p)atterns seen exp)eriiciltally. we begin by coiisidering at simple iodelcoulsistiiig of' al

planar salt interface, covered with a filin of uniformi thickness (d In t his miainier we cani
systematically study the most implortant phlysical iiiechiaiis at plY. NNT c;III control
the water vapour p)ressurIe P,,. in the surrounding atimosphiere mid( so iinitiall ,N we choose aI

vapour p)ressulre such that the water in the filin is in equilibrim withI the water vapour anid
the film has uniform conicentration CL in equilib)rium with thle uiiderl 'iviig salt, cry"stal. XVe
then redulce P,, so evap)orationl occurs at the liquid vapour iiiterface at a rate E where E

is mneasulredl ii volumec per second( per unit area of Surface.
At this point, it, is useful to make exp)licit the assumlptionis timat we iiiake iii order tluat

we mIay1 Justify t.hein later:

9 Because of the (disparity b)etweein solut al an(d thIermnal difhusivit ies. thierniml effect s aIre

neglected in the dlynamnics of the system.
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z=C

* SALT

I

Figure 4: Schematic diagram for the evaporation of a film of salty liquid

U * The film is of uniform thickness, and vapour pressure over the filn is constant so that
there is no marangoni flow feeding the film,

I* The salt concentration is sufficiently low that the advection--diffusion equations hold,

* The addition of salt to a volume of liquid does not change the volume: pl(c) =const.

I Therefore we have a filn as shown in Fig.(4), in the frame of reference of the liquid
vapour interface. In the liquid, the concentration of the salt satisfies the diffusion advection
equation, so that we haveIc Oc

t E- = D,V 2 c, (3)

which we can nondimensionalise by scaling times with do/E and lengths with do, where do
is the initial thickness of the quasi-stationary film, to give

Pe [c - a c (4)

where nondimensional variables are denoted by a tilde, and the effective Peclet number
Pe = doE/D, is the ratio of evaporation to diffusion rates. A natural starting point in
the analysis of the phenomenon is therefore to select a small Peclet number by choosing
a slow evaporation rate (or sufficiently small film). We will then use a quasi stationary

SaIpproximation so that d do throughout the analysis.
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As boundary conditions for the problem, there are several natural conditions arising I
from the formulation. These consist of equilibrium at the solid-liquid interface

cl = cL + CIC,I, (5)

conservation of salt at the solid-liquid interface

D, C (V ± h)c. 0 l, (6) I
Oz s

thinning of the film 1

and conservation of salt, at the liquid vapour interface

Dc 
O Ec, (8)

where we define K, to be the curvature of the solid-liquid interface, C to be the Gibbs

Thomson coefficient for the equilibrium salt concentration (see Appendix A), V is the growth
velocity of the salt crystal, h is the height of the crystal surface, and c'j and (",t are the

salt, concentrations at, the liquid-vapour interface and in the salt, crystal respectively.
We will require one more boundary condition to complete the set, of equations, and this

will come friom the relationship between the evaporation rate E, the concentration at the

liquid-vapour interface CT and far field vapour pressure P,,. The evaporation rate will
(epend upon the dynamics of the vapour, in that the transport of water vapour from the
interface will be determined by the water vapour gra(ient at, the liquid valpour int-erfacc

D11 O1 , (E)

where D,,. is the diffusivity of water vapour in air and P,,, is the local water vapour pr'ssurie.
Therefore to obtain the water vapour pressure profile for a steady diffusion of val)ouri ii a

background of air, we nust solve Laplace's equation in the vapour with boundary conditions

p(oc) = P,c and

Ph" = PO(1 - cT), (10)

where P0 is the vapour pressure at pure equilibrium, and( CT is the concentration of salt
at the film surface (see Appendix B). For pure evaporation, these boundary conditions
reduce to constant values at the surface of' the droplet and in the far field, and so good

approximations to the evaporation rate can be made by assuming simple geometries for I
the droplet [5],[11]. For fast evaporation rates, there is a juimp in vapour pressure from the
equilibrium vapour pressure, given by Eq.(10) that will be controlled by the Hertz Knudsen

relationship, which written as the boundary conditions will add some detail to the form of '
the flow. However in this paper, since E is an experimentally controllable parainleter, we

will assume constant evaporation rate.

For small Peclet number, the diffusion-advection equation reduces to Laplace's equatiol, I
and so the solutal feld in the film for planar growth is given by

(CT - cL) L. (11)
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I Applying boundary condition (8) gives

CL1 - Pe (12)

and so the rate of growth of the solid is given by

V =E CT (13)
Csalt'

This agrees with our intuition, because for the small Peclet number limit, information
is diffused rapidly across the film, and so we expect evaporation to occur simultaneously
with salt precipitation. Equation (13) demonstrates that if we evaporate a layer of water
of thickness 6d, simultaneously an amount of salt equivalent to the salt dissolved in 6d is

I precipitated corresponding to instantaneous diffusion.
We are now in a position to conduct a quasi-stationary linear stability analysis of the

film. In the film, there is a slow time dependence of the basic state given by O(CICL)
PeE/d. We will impose a perturbation upon the solid-liquid interface which will grow on
a faster timescale (that we can check a posteriori). Therefore we (esignate slow and fast
timescales as (PeE/d)t = tV and (E/d)t = T respectively so that

a a) a
Ot Ot* OT

We label the linear, quasi-stationary state given by Equation (11) as co(z, t*), and impose
a diniensionaless perturbation with a fast timescale upon the solid-liquid interface

h = h +  (14)

We assume a form
C( ., T,t*) = CO(Z,t*) + gQ(.t*) Ckx' + T. (15)

Then the diffusion advection equation (3) in the frame of reference of the solid- liquid
interface becomes I--( -ik -+)(T iki+7r + a2 2 ,j (16)

which in the small Peclet number limit, reduces to

- 2 = O, (17)

and has solution

A sinh k 7 + B cosh k '. (18)

I Applying boundary conditions in the small Peclet number limit, we obtain

SA =- h t.anhkd k2 + Pe CL

and

3B C [k' + Pe c
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'Fable 1: liable of typ)ical values for the ammfonium1 chloride/watecr s.vst,enl at T' 20'(C

Constant Value Units
C,27.2 w t X

'Y'1 5 x< 10-2 In 2

p 1.787 x 1()- kgm-' S_

R 8.314 J1K- 1 inol-
Ma 4.79 K wt(Y,-

D, 10-9 11n2 s_

42 x l0~ kgs t%

c -7 x 10-1' wt%/xIIn
E 10-7 Ills-

so that applying thle Equation (6) for the conservat,ion of salt at, tile solidl liqIuidllt,crf'aCC1
we find fh li iensional disp)ersion relationship

(= Ik tanhi kd LJEcl, + D,C A.2] .(

For relativelY short wavelenigt1is. we cami al)lroxi]iite this asI

(7 = A.[Ecl + D, CA.]. (20)
100

as is p)lot ted ill Fig. (5).
Using typical values froni Table (1), we find froni Eq. (20) that thle (litoff wavenumbierI

k(. = 6. 2 x 10 5,11-1 so that the small wavelengthI approxinliat,ionl is justified. The nilaximumi

growt h rate can also be (derived from Eq.(20),. and we find t hat kL>j,01 = 3.57 x l0)m 1i and
0mx 6.4 x1()-,- correspondhing to a tinie period of around 3 hours. For this instoabilityV

to be relevant. we require that time growt,h rate b)e fist cer than thle rate of thliinmg of' thleI

film,l so thla Eld < or,,,(,., and1 we find that d > 1.5 x 1()- 5 111. I,j)eret,ore we expect tHant inl

the precursor film (typicall * around a micron thick), witIi tHiese coniionbs. thle iiist ability,
will not have time to dlevelop), unless there is at flowv of liquid inl to rep)lace evaporated(
iliat,erial. We muist also remiemiber that for a sufficiently thin filmn such as thle p~recursor fiflii

electrostatic forces will retard tHie evap)oration ratec of' thle filin, and so for a full t,reatmienit,I
we will needl to include these effect,s.

We otetht fr £'~10'i1n,, 1. th elet, nmbnler is (I all 0 ( an So f'or miost, natina

situat.ions, the Peclet niumbiler will be reasonlablyv sniall. XVe allso iiot e t hatl when thle fillii
is sufficiently thick, convection of the filni will set, inl due to thec iiicrease inl denlsity at thei
surface of thle filli, and the stationary npplroximiationi of the liquid ill thle filii will no( lonige

be Valid.I
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IFigure 5: Plot of growth rate against waventinber for small Peclet numb)er.
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3 Large Peclet number1

When the evap)oration rate is sufficiently high, or the filin is sufficiently thick, thle rate of

dliffusion of salt across the filil becomles smnall relative to the thinning rate of the filmn. ThisI
mieanls that there will be a solutal boundary layer at the liquidl vapour interface with oil
somie tune scale, the salt-iqulid interface unaware of the p)resence(( of evaporation at the

upper surface.I
Therefore, in the framne of reference of the liquid-vapour interface. the dliffusioni adlvectioni

equlat ion for salt conicenitrat ion becomes3

Oc Oc 2

-- E--= d~ (21)

so that lbefore the (diffusive information reaches the salt liquid interface. the profile willI
satisfy the tinie independent forni of Eq.(21) so that

E(z 4 d)

C =~ CL+ (CT -CL) [d j (22)

Applyving Eq. (6) for the conservation of miass at the liquid-vapour interlace, we find thlat

OTC LiCP (23)

which, we note gives the samne result, a s for the small Peclet miuiniber ca:se (Eq. (12)) whieni
we take thle smnall P~eclet number liniit of this exp)ressioni. Fromi this expressioni. we not ice

that thle surfce valuec of the salt conicentrat ion inl the filmn will increase very' rapidly' withI
Peclet numiber. Therefore, there will be soiiie valuec of, the Peclet iuni11ber abovle whiich
the coiicentration at, the liquid vapour interlace is suffhcienitlY high to cause lioniogenioi is

niucleat ion.
InI ordler to estiniate the critical Peclet number above which hinogenieouis nucleati101

will occur, we need to calculate the energy requiired to create a critical nucleus (if salt, fron
solutioii.

The free energy change associatedl with creating a nucleus of radlius 7, of salt froii salt

soluioI isAG = '), 147rr2 + [I', (T, ' o- p(I, " , c)] 7,' (24)I
:3

where the first termn onl the right liand side stemis froii the energy change requirecd to (realte
a solid-liquid surface between the two p)hases, and thle secondl terni is the chiange iii freec
energy associatedl with the change of phase.

Expanding the chinical p)oteintials of the two phiases abouit equiilibriliii. we have

/10'T, lt ~(T1, P1, C) =-1?!1 l(C1CL ), (25)

kind therefore3

AG = -y ,47, 2 _ RTjlnl(C1/ci) :i.(2i
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As can be seen, this free energy change has a maximum at 7- = r*, so that if r < r*,
the nucleus will shrink to zero and if r > r*, the nucleus will diverge and homogeneous
nucleation occurs. The critical energy is therefore

AG(T-*) = 167r^j1 27
P 2R2 T 2 In(c/cL) (27)

For homogeneous nucleation to occur, the thermal fluctuations in the film must be large
relative to the critical free energy of nucleation. This means that the Gibbs number g =
AG(r*)/kT nmust be smaller than 0(100) for nucleation to occur [12] (note that this estimate
will depend upon the nature of the system). Approximating c/CL = CPe from Eq.(23), we
thus obtain that

Pe < 1 (28)

for no homogeneous nucleation, and so the large Peclet number case is unviable.
We note that for intermediate Peclet number, we cannot treat the profile as quasi

stationary, and so a full treatment of the instability will require a numerical evaluation of
the instability from the initial conditions, or otherwise a modified model. One possibility
would be to assume a flow perpendicular to the plane of the instability that maintains the
film at constant thickness. This model may be applicable to the case of the precursor film.

Finally, we note that for a thick enough film, there is the possibility of convection in the
the film due to the salty cold liquid overlying hot, fresh liquid. As previously mentioned,
we expect the thermal effect to be small relative to the solutal effect due to the high
thermal diffusivity relative to solutal diffusivity in the system. In order to estimate the
film thickness at which Rayleigh- Benard convection sets in. we approximate the system

by Ralyeigh-Benard convection with a solid base and an open top. Letting the critical
Rayleigh number be Ra, ; 1000, and taking the small Peclet number limit (which holds up3 to films of the order of im thick), we find that, [13]

Ra,gd 3 (CT - CL) 1100 (29)
D,

where all the symbols take their standard meanings. Thus we expect Rayleigh Benard
convection to set in when d : 27m.

4 Flow in a thin film

Consider a droplet of salt solution evaporating on an infinite planar substrate. Evaporation
is driven by the far-field vapour pressure below the equilibrium vapour pressure of the film.
Tlowards the edge of the droplet, the liquid film is exposed to the drier air above the adjacent
dry substrate, while in the centre of the droplet, the ambient air is more moist due to the
homogeneity of the environment more than a diffusion length from the edge. This means
that the evaporation rate will change from the centre to the edge of the film, and hence
there will be a gradient in salinity along the surface of the film and an associated nmarangoni
flow.

'File Marangoni effect is a well known process whereby gradients in surfactant concenl-
tration in liquids cause associated gradients in surface tension. These gradients then (rive
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a flow from regions of low surface tension t~o regions of high surface tension. Unlike for miostI
solutes, where the Marangoni coefficient, or gradient in surface tension associatedl withI a
change in solute is negative, for ionic salts such as arnmonium chloride and( sodliumi cloridIe.

the surface teiisioin gradient,,

4__ x 10 4 io.1 mn 2 wt%(o (3io)

is positive 114]. This means that as the evap)oration rate. and hence the salinity, increases
towards the edge of the film, we will see anl outwardls inarangoni flow associatedl with the

salinity gradient. We can anal 'yse the flow in order to dletermuine the volume flow rate, mnd
the p)ossihility of this flow as a volume source for precursor film growth.

Assuniing that the filmn is thin enough that we call use lubricit ion t heor ' . whieu xve

inicorp)orate th linarangoni flow, the equation) of conservation of solute (3) beconlieS

d)c &! T 2 c 0)2(

Of [0 z , Ix )2 + "dx2 '

where pi is the d,ynamnic viscosity of water and

T = O-Y,0 (32)

is the surface stress. and inl order to siniplifyv tie model. we will a ssumec that thle tie liquid3
is a p)laniar filin of' constant thlickness d, and that the surface conicentit tion is linlear inl x
15], which is equivalent to thle assumiiptioni that the vaipoiir pressureT is hiiiar ill x (Fig. G).

NN'c would like to investigate whether adding a linear surf ace coucutrat ion gradicuit willI
significant lY Vary the coniceiitrationi profile iIi the filin. Th'lerefore, we will conisidler th leSiuill
ichet nu1nih1er ca se inl the iiistance that, thle surface coiicentitio is111 giveii bY3

c-I = q) + Gx. (3

By* iiiposinig t his concentration11 profile, we have also implosedl a horizouital lengthiscale up1)1on
the problemi given by (CO - COI )G, which we will assumec is large relative to d so that wec
can reduce euait ion (31) to

T OC 0 92(c

x e)Z2

aiid so upon nionm diniensioumalisation of lengthis with d,. mIid coniceutritioins such1 that c

(i-CL) & + CL, the governing equatioiis b)ecOmleI

IzF -9Z (3m)

with

a(dC(0) = 0, (35~)3

&(d) =1 -+ 6:1. 7,)
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where F = Td2/pD, is the ratio of the diffusive response time to the viscous response timl e
over the film and we have required 6 = Gd/(co - CL) ;z GD, to be small as previously
mentioned. Estimating co - cL = p from the small Peclet number, this implies that for
typical evaporation rates, G < 2700wt.% -i, which will be satisfied over all lut the very
edges of the droplet (see Appendix C).

We proceed by seeking a separable solution to the equations, by setting (dropping tildes)
c(x, z) = X(x)Z(z) so that

X' Z"
F A = - (37)

x ZZ,
where A is a constant. Thus we see that

A 

which for small values of the exponent becomes

X:A(I+) 1

which is of the right form to match Eq. (36) if we set, A/F 6, so that our assuniption ofI
a small exponent value is appropriate for 6.,r < 1.

Thus we see that

Z" - ZdSG 1
D,(co - CzZ,

and by letting (= . with

(ID.,(c( - cj) !( d3TG )
the Z equation reduces to Airy's Equation I

z"(() - Z(()( = o.

Therefore we find the dimensional solution to the concentration profile to be1

Bi ( Ai(0) - Ai ( ) Bi(0) (:.9)1

= Cf +(c0-cl [Bi (-L) Ai( ) - Ai )Bi(0)
G;x

C + (c() - cj f)f(z)e, ("*-"1)l

Thus we see that the relative im)ortance of the Marangoni flow is given by the size of the
parameter i: when o is large, we can Taylor expand Eq. (39) to see that 3

C;zt c + (C( - CI) (coj - c/ +

so that we may effectively ignore the horizontal flow, and treat the concentration profih
as linear. However, when (i is sufficiently small, the solution can deviate from the lincinu
solution.
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3 Figure 7: f(x) calculated for a 1, 10. To good approximation c = z/d for (i > 1.

In Appendix C, we treat the question of the value of G for an evaporating droplet,I from which we obtain a reasonable upper estimate for G near the edge of the droplet. of
2.7 x 103 wt/n - 1 . For films in the small Peclet number limit, this implies a > 1 except
within 2d of the edge of the droplet where geometry dep)endent factors will be import ilt.

Therefore there will be no significant, alteration to the linear profile across the bulk of the
film (cf Fig. 7).

5 Linear stability of a film including marangoni flow

3 In the previous section, we investigated the concentration profile for a film with a con-
centration gradient applied to the upper surface giving rise to a Marangoni flow. As has
been seen previously, the underlying salt-crystal growth is diffusively unstable, and so the
solid-liquid boundary will become corrguated. When we include a Marangoni flow with the
perturbation, we expect the perturbation to move upstream because the flow will compress
the solutal boundary layer on the upstream side, and thus promote growth in that direction.I- We can analyse this effect as follows.

From the previous section we saw that the steady state solutal profile for small Peclet,
number can be closely approximated by

C = CL + (Co - CL)-e('ocL) (40)
d (0

for Gx/(co - CL) < 1. Hence we will use the linear approximation throughout.
Assuming that, we are in the lubrication limit and that any )erturbations are long

wavelength, the non-dimensional governing equations are the same as previously (Eqns.

34-36). Therefore the steady state (can be taken as that given in Eqn. (40).
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If we apply a perturbation of the forni I
z = I

i + t I

to the solid liquid interface (where we do not expect a to be real). then + co(.i, ) +
c(: )cxp(ikh' + at), where (.o is the steady state solution. Neglecting the Gibbs Thomson
eflect, and dropping tildes we find that I

ikF = (41)

and we can coivert this to Airy's equation by transforming

Thus [Ai Bi Ai( Bi

- Ai Bi(O) ]
and by applying the boundary condition for conservation of salt (Eqn. 6), we ol)tain tle
(lispersion relation for the system

aT = iD (L CO) [iJ ,~ () B '(0] (43)1(12eL Ai'(0)Bi( )-Ai (+) Bi(() 3
Figure 8 shows the iniaginary part of a, as a function of o3. As expected. the v,ocity

of the travelling waves disappears for sniall k (large 3), and we see that a is significant

relative to the tiiescale V/d associated with the growth of the salt for ; < 1. From
the previous linear stability analysis, we found that the niost unstable waveiniber was
k,,., . x 3.57 x 10'd, which corresponds to /3 = (1.2 x 10- l//41(7)1/: and therefore we see

from the appendix estimates of G that the travelling velocity of the waves may be significant
for suficiently thick filins.

It should be mentioned that this is only a longwave analysis of the )roblem, and for k

snall, the entire Laplacian nmust be considered in Eq. (34). This will also reintroduce the
instability considered in the first linear stability analysis. However this analysis should give
a good indication of the relative size of the travelling wave velocity.

6 Volume flow rate due to Marangoni flows

We are interested in whether the gradient in surface concentration across a droplet is suii-
cient to act, as a source for precursor film growth. From the Appendix. we have that

OC' 2cidD,(P1 - Pe) r
0' irDP, (R - ,2 )
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3 Figure 8: In(cr) from the dispersion relation for the travelling wave instability in terms of

I and from lubrication theory, the volumetric flow rate is

Id 0-yOc I d2 &"

Oc 97. /1 2p. Oc Or'

so that the flow rate is given by

cid'D,(P - P.) 07 7__3_(44)

q = ir/,DP, OC (Rf2 - 7,2)" (44)

I As discussed in the Appendix, we will ignore the region at the edge of the droplet, as there
will be local shape complications there that will effect the expression for cl,. In order to
avoid this, we calculate q at a distance d from the edge of the droplet, to find that for

R = lcm, d = 10-6 that q(R - d) : 3.4d or 1.2cm hr- 1 which is in line with typical growth
rates of the film.

It, should be noted that there are only sufficiently large concentration gradients to main-
tain this flow rate near to the edge of the film. However away from the edge, decreases in
curvature associated with the Marangoni flow should draw fluid outwards to help maintain3 the source of liquid to the edge.

* 7 Conclusions

In this work, we have considered the processes involved with the growth of salt from an ses-
sile, salty, evaporating droplet. The chief result is that we have demonstrated the existence
of' a new instability of the growing salt crystal due to evaporation at the liquid-vapour
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interface. The instability steis from the creation of supersaturation at the evaporating I
interface, which diffuses through the film to the growing salt crystal. Hence the salt crystal
grows into an increasing supersaturation and the interface will be unstable. The instability 
(liffers from the morphological instability of a binary alloy [8] in that, in the new instability,
the creation of supersaturation is created at some distance away from the advancing salt,
front. Whereas with morphological instability, the supersaturation is caused by r(jection of'
solvent immediately adjacent to the salt front.

We find that for typical evaporation rates, the instability will be important for fihins of
thickness d > 1.5 x 10- 5 in. For sufficiently thick films (d - O(Imin) ), convection will set,
in and the formulation becomes invalid. Marangoni convection inav also be inportant, as
well as thermal effects, howeverthese are expected to be simall relative to the solutal ef-Fects.

For a growing drol)let. there will exist gradients in surface tension ssociated with the
gradient in evaporation rate across the liquid-vapour interface. Associated with these gra-
dients in surface tension there will be a Marangoni flow that, drives liquid outwards, feed(ing
the precursor filn observed in experiments. We have analysed tlie effect of the Maragoni
flow on solutal profile in the small Peclet number regime (relevant for typical fili thick-
nesses), and find that there will be no significant alteration to the solutal )rofile across tie
film except in the ti) region, where geometry effects are ex)ecte(d to be imil)ortant.

We have also analysed the effect, of the Marangoni flow upon corrugation of the salt
surface. Xe find that the flow induced compression of the upstream boundary layer of the
surface roughness causes increased solid growth thereby creating an u)stream travelling
solid/liquid wave. The calculated travelling wave velocity suggests that the process will
be o)erative in sufficientlY thick filns. Finally an estimate of the overall flow rate due
to Marangomi flow ill a precursor filin shows that the flow is sufficient to cause o)bserve(d

spreading rates of the precursor film.
As noted in the text. nmnerical work is necessary to properly analyse the interiie(liat e

Peclet numnber case and solutal convection, and we hope to achieve these in flirther studies.
For the fiutnre, we aim to produce a more complete model of' lhe ire'ursor filmi includiilg I
electrostatic double layer forces and van der Waals forces and to extend the results froiii tlie
current, work to produce a nore com)lete model of the processes involved in salty (lrople
evaporation amn(t salt tree formation.
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1 9 Appendix A: Derivation of the Gibbs-Thomson co-efficient
C

I In order to obtain an approximation for C, the dependence of the equilibrium salt concen-
tration at an interface upon curvature, we start with the liquidus relationship at a curved3 surface including solute:

TTm - (1 - c) +1l/nK (45)£f

where 1;n is the melting temperature of a pure liquid salt, m is the slope of the liquidus,I -, is the surface energy of the liquid-salt interface and Cf is the heat of solution of the
salt. We note that we have assumed that the curvature term is independent of solution
concentration, so the resulting expression will not be exact.

Rearranging, we obtain

c=1 Tm- T _ -ylIn C (46)3rn mI

we we recognise asI

C = CL(T) + CIC (47)

where (eL(T) is the liquidus concentration, so that we find

C w (48)

Taking typical values of the constants, £f = 4 x 108Jn - 3 , i,, = 273K and -I = 5 x
10- 2 J m - 2, we find that C - -7 x 10- 9 wt% m.

10 Appendix B: Equilibrium vapour pressure and surface
3concentration

V e consider the effect upon equilibrium vapour pressure of adding salt to a liquid. In3equilibrium, the chemical potentials of the two phases are equal:

p (T, P, c) = t,, (T, P), (49)
where the subscripts correspond to liquid and vapour respectively an(l we have assumed the
vapour pressure of salt to be zero.

Expanding the chemical potentials about pure equilibrium at tem)erature T and vapour

3 pressure P0 , and using the Gibbs-Duhem equation [Wood Battino],

/i ((T, Po) + v(P - Po) - kTc = 1i,(T, Po) + v,,(P - Po), (50)

where vj K< v, are the volumes per mole of each phase, so that using

I 1 (T, Po) ,t,(T, Po), (51)

we obtain

P - Po -kc, (52)

which for an ideal gas becomes3 P = PO(l - c). (53)
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11 Appendix C: Estimating the magnitude of GN

For a realistic experiment, the controllable factors are the temperature T, the initial salinity

of the droplet, the initial volume of the droplet, and the far field water vapour pressure P,,. I
Therefore there will be a variation in local vapour pressure at the surface of the droplet

which is determined by local equilibrium with the droplet and diffusion in the vapour.

Assuming that the vapour is stagnant above the droplet so that vapour transport occurs I
by diffusion alone, then the vapour pressure will satisfy Laplace's equation

V2 P = 0. (54)

A number of studies [11],[5] have modelled the evaporation rates of a pure droplet )v

treating the vapour diffusion problem identically to an electrostatic problem. Poulard et

al. assumed that the droplet is effectively a flat disc, which is appropriate for fluids with

sinall contact angles to the substrate, while Deegan et al achieved a more accurate resnilt

by considering time electrostatic field associated with a lens. As we require an estimate only,
we will assume the evaporation rate imatchs that for a disc held at constant surface vapour

pressure so that the evaporation rate is approximately

E 2Dv(Pi - P ) 1 (55)

where D, is the diffusion rate of water vapour in the air, P is atmospheric pressue, 1I is I
the vapour pressure for a droplet in equilibrium with the vapour, r is the radial coordiiate

for the disc, and R is the radius of the disc.

Although in deriving the evaporation rate, we have assumed a constant, vapour pressure
(and hence constant surface concentration which is only an approximation), this should

provide us with a reasonable approximation for the local surface vapour pressurc.

We will now convert the local evaporation rate into the surface concentration Cii[f

as follows. Using the boundary condition for conservation of niass at the liquid vapour

interface,
D 0c E(D - = EcT,' (56i)

and using the approxinlations

0( C CT - CL

C'I' = CL and - - (57)Oz d 3
we find that

E=D,C ( -CL) (58)

and 
so

2cl dD,j PI - P.) 1
CT - CL =2 7rDIP- R - r 2  3

so that
OCT 2cjdD,(PI - Pc) r

D, P, (R 2 ) 3
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IAs we expect there to be shape determined complications at the edge of the droplet we
take r = R - d to obtain an upper limit upon C, and r = 0 for a lower limit. Therefore,
for a 6% difference in relative humidity so that (Pi - P,,)/Pa P" 1.8 x 10- 3, and letting
d = 10-6M, we find that a reasonable approximation for G is that it will vary from 0 to
2.7 x 103wt% m- 1 across the droplet.
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I= A particle-simulation method to study mixing efficiencies

Takahide Okabe

March 15, 2007

I
1 Introduction

I Mixing by fluid flows is a ubiquitous natural phenomenon that plays a central role in many
of the applied sciences and engineering. A geophysical example is the mixing of aerosols
(e.g., CO 2 supplied by a volcano, say, or by human activity) in the atmosphere. Aerosols
are dispersed by molecular diffusion on the smallest scales but are more effectively spread
globally by atmospheric flows. The density-and density fluctuations-of some aerosols
influence the albedo of the earth and thus have an environmental impact. Hence it is
important to understand fundamental properties of dispersion, mixing, and the suppression
of concentration fluctuations by stirring flow fields.

At the most basic level, the mixing of a passive scalar can be modeled by an advection-
diffusion equation for the scalar concentration field with a specified stirring flow field. In
this work we will focus on problems where fluctuations in the scalar field are generated
and sustained by temporally steady but spatially inhomogeneous sources. The question of
interest here is this: for a given source distribution, how well can a specified stirring flow
mix the scalar field'? Mixing can be measured by the scalar variance over the domain. A
well-mixed scalar field will have a relatively uniform density with "small" variance while
increased fluctuations in the scalar density will be reflected in a "larger" variance. We put
quotes around the quantifiers small and large because the variance is a dimensional quantity
whose magnitude depend on the choice of units employed. A dimensionless measure of the
scalar fluctuations is necessary to give precise meaning to these characterizations.

Several years ago Thiffeault et al [1] introduced the notion of "nixing efficiency" for
a velocity field stirring a steadily sustained scalar by comparing the bulk (space-time)
averaged density variance with and without advecting flow. In the absence of stirring the
mixing is accomplished by molecular diffusion alone, which can be very effective on small
scales but is not generally very good at breaking up mid disbursing large scale fluctuations
quickly. Stirring can greatly enhance the transport of the scalar from regions of excess
density to regions of depletion, however, suppressing the variance far below its diffusion-
only value. The magnitude of this variance suppression by the stirring, i.e., the ratio of the
variance without stirring to the variance in the presence of stirring, is a dimensionless
quantity that provides a sensible gauge of the mixing efficiency of the flow. Different
advection fields will have different efficiencies stirring scalars supplied by different sources.
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It is then of obvious interest both to determine theoretical limits on miixing efficiencies for
various source conhigurations and to explore whether those limits mnay be achieved.

In this p)roject we (develop a comiputational scheme that is eas *' to implement and appli-

cab)le to the study of mixing by any advection field and with any source (list ribultioni. ThieI
idea is to (develop) a mnethod that accurately simulates advection and diffusion of large muni-
bers of p)assively adlvectinig p)articles introduced by a steady source, an(l to ineasure density
fluctuations by "binning" thle particles to produce anl approximation of the "hydrod 'iyalnic"
conicentration field. Unlike a numerical PDE code, a particle codle (does not p)refer specific
fori s of advection or source (PDE methods generally work best with sinoothI fields;). There

ns,umbeer o free lunch: thle accuracy of the particle code is nlt imately limit ed by theI
finite mneofparticles tha a etakd The liniitation to finite numbiilers of particles
inevitab)ly introduces statistical errors due to dliscrete fluctuations in tbe local dlensit.y aind

systematic errors in the variance measurements (Inc to binning. B3ut, these prob)lemns call lbeI
addressed aIi( as will be shown in this report,, for soul(, applications the imet hod proves,5 to
be conipuit at ionall , efficient, and1 (IiiantitativelY accurate.

The l1ost, significant, upsidle of a p)article codle-anld onle of' the 1lost significant iio)t,iva'-
tions for this work ---is that, it canl easily handle (i.e., resolve) sniiall scales iii sources and(.
sub)sequieintly. in the concenitratioin field. It is even applicable to deAta-fiuct ion sourc'es wliose

resolution requirements would strain standard PDE nmethiods. Delta-fuAnction scalar sources
are t lie most singular phiYsicallY relevant dlist ributioiis. and at the saine t inie the simpllest
to imiplemnent iii a particle trackinig schemne: Just introduice the particles at thle saie poinit

i spce A (delt a-functi101 source (0ou1( serve, for exampille, as a;i ni( de of' a siiioke st.ackI

supl)l*lying aii aerosol into thle atmiosphlere when the smiallest scales ii tfie flow. are larger
thall thle radius of thle ouitlet,

The renmaiiider of this report, is organizedl as follows. Ii sectim 2 thle iiat hemiat ical
mlodel is p)resen t ed , basic quianltit ies chiaract erizinig mnixing plienomieiia are dlefin ed, ailid S0ii1iC
geineral resuIlts about miixing efficiencies are reviewed. Ili sectioni 3 thle particle siumlat,ion

"Cliill isexplailied ini detail. Tllc, problemis inherent to a discrete par-ticle iletilod. and
solut ions to t liese prob)lemus, are also (discussed. The particle codle as impiilemienit ed is mnuier-
icallY validated ill sectioni 4. Ilhere, the varianice fromie particle code is compared wit li

exact solution"s and the results of a PDE code for soiie benichimark p)robilems. lIn sect ion
5 the particle mnietho 1 i0( u5sed1 to nieasiire the mixing efliciency (i o a hart icular stat isticall ,
homogeneous flow stirring ever smaller-scale sources (down to a delta-funmct ionl source). This

is a new result. and it, is qualitatively and quialtitat ivel.y compilaredl to p)reviouis anmalysis; of'
uipper bounds; oii the mlixing efficiency for such sources. 'We close this rep)ort withI conmcluisive
renjarks and p)rov'ide applend(ices containing (details of thle compijuter code uisedl to imiplemenit

the scheile.

2 Basic facts about the mixing efficiency problem

Iii t his sect ion we review b)asic facts ab)out the mixing efficiencY problem as formiulated

by Tbiiffeault, Doering & Gibbon cl. al [1] and further (developed 1). Plastinig &, Y1ounmg [21 I
Doerinig k- Thiffeault [3], and Shaw ct al [4]. The dynanics is givemn 1) the adIvectin
(diffuisioni equationi for the concenitrat ion of a passive scalar p(t. x) with t imie-indepeidenit
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I but spatially inhomogeneous source field S(x):

O + u Vp = KAp + S(x), (1)I cat

where K is the molecular diffusivity and u(t,x) is a specified advection field that satisfies
(at each instant of time) the incompressibility condition

V. u = 0. (2)

I. For simplicity, the domain is the d-torus, i.e., [0, L]d with periodic boundary conditions. We
will limit attention in this report to stirring fields that satisfy the properties of statistical

homogeneity and isotropy defined by

j(x, = 0 (3)
U 2

- ui(x,.)Uj(x,.) d 67ij (4)

where the overbar is time average and U is the root mean square speed of the velocity field,
a natural indicator of the intensity of the stirring (recall that d is the spatial dimension).
These statistical properties are shared by homogeneous isotropic turbulence on the torus.

We are interested in fluctuations in the concentration p so the spatially averaged back-Iground density is irrelevant. It is easy to see from (1) that the spatial average of p grows
linearly with time at the rate given by the spatial average of S. Hence we may change
variables to spatially mean-zero quantities

0(t, x) : p(t, x) - J x P (t, X') (5)

3 and

3 s(x) = 8(x) - j d/d.' S(x') (6)

that satisfy

00 (7)
0 + u V0 = KAO + s(x). (7)

(We must also supply initial conditions for p and/or 0 but they play no role in the long-time
statistically steady statistics that we are interested in.)

The "mixedness" of the scalar may be characterized by, among other quantities, the
long-tine averaged variance of p, proportional to the long-tinie averaged L2 norm of 0,

{02):1 ' 1 o f--7(02) := li, J dt ddx 02 (t, x) (8)

The smaller (02) is, the more uniform the distribution is. The "mixing efficiency" of a
stirring field is naturally evaluated by comparing the scalar variance to the variance with
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the same source but in the absence of stirring. To be perfectly p)recise, we compare (0) toI

(002) where Oo is the solution to

O= KAOo +,S(X)()3

(with, say, the same initial (data although these will not, affect the long-t ine averaged fluc-
tunations). Formally, then, the dimnensionless mixingk efficicey is definedl

This efficiency carries thle subscript 0 because we canl also define mnultiscaulc inixin cfftiin-
cics bY~ weighting large/sniall wavenumnber components of' the scakar fluctunationls:

C IVp o 2))
(71P0 2  (v = -1.0I,1). (11)

As discussed in Doering & Thiffeault [3], Shaw et al [4] and Shiaw [5], E1provide at gauge,

of the mxing efficiencies of thle flow as measumredl by scalar fluctuations oii relatively, v small

and large length scales resp)ectively. In this project, however, We will focus eXCl-sivelY oni

the mnixing efficiency at, "moderate' length scales, Co.I
There is a theoretical upper b)ound oi So validl for any statist ically stiationa ary homnoge-

necouis anid isotrolpic stirrimng field [3, 5, 4]:

Eki) Zkso k)I/(O + (1dA-)

where ' (k) are thle Fourier coefficients oif thle source mid( the N(clet nmbuer

pc := UL 13

is at dimuensionless nmasure of thle lilt eisit,v of, thle stirring. Geiierallvy We aniticipat e t hat Co
is anl icreasing funiction of' Pe an(l thle estimate iii (12) guaritees that1 CO(Pc) </ Pc aIs

Pe - oc, the sealing cxp)ect ed if there is any residual variance suppression iii thle singular
vanishing diffusion limlit, (i.e., S - 0 with all other paramleters luid fixed).

'Flue upper limit, to the mlixing efficiency in (12) depenids onl the stirring field only' thlrough

U via Pc, but it depends onl all the (letzails of' the source distrib)utionl. As st uied( ii dlepthI
iii references [3, 4, 5], thle structure of the scalar source can have p)rofound( (fflects oii thli
behavior, i.e., the high Pe scaling, of 4. It, is precisely t his souirce-depenidemice of thle

qualitative behavior of Co(Pe) that, motivates this developmienit of a comil)utatiolmal iiethodl
that, can handle singular source (distribuitions.

In the remainder of this report, we focus onl the two-dimensional torus (d =2) amid for

colliplitkat ionial Sillilplicit.y and efficiency we take as the st irrimig field the -rand(omni sine flow-
(defilied for all time b1w

=~ ~ I fsn2 ~±@) or nT K f < 7?T+ T /2 (1ti(t, x) =-(I
. '1Vsin( ! + 0,)* for 0' + T/2 < t < (,n + I)T

where T' is the period. 'n = 0, 1. 2- . and( b and1 q5 are naindoin hase's chloseni indepeni-

(dently and unifornmly on [0, 2n) in each half' cYcle. Then U1 = wl V2.
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1 3 A particle code

In a particle code to solve the advection-diffusion equation, the concentration field p is
represented by a distribution of particles. Particles introduced by generating random loca-
tions using the properly normalized source S(x) as a probability distribution function, and
advecting them with the flow. Given a particle distribution, p(t, x) is measured by covering
the domain with bins counting the number of particles per bin.

A particle code is employed because it can deal with a small-scale source. It is easily
applicable for any source fields and advection fields, while the spectral method prefers fields
whose Fourier expansion is simple. The downside of a particle code is that it necessarily
introduces statistical errors: the number density of particles calculated by dividing the
domain into bins is only resolved down to the lengthscale of bin size, and the measurementI of p always includes error due to the use of finite number of particles.

In this section the numerical scheme based on a particle code is explained. The code
mainly consists of three parts: 1) Time evolution, 2) calculation of variance, and 3) a

particle subtraction scheme. The time evolution is realized by displacing each particle with
appropriate advection and diffusion, and by adding new particles in accordance with a
source term. We calculate spatial variance at a random instant once each half cycle in orderI. to take its time average. A subtraction scheme removes group of particles that are well-
mixed and this not participating in time evolution any longer. The subtraction scheme is
necessary and crucial to prevent a calculation from slowing (town due to an ever increasing

number of particles in the system. Details of the code are presented in the appendix.

3.1 Variance calculation

The variance (02) is measured by monitoring the fluctuations in the number of part icles ier
bin and time averaging. In two dimensions the domain is divided into 12 bins and the code

calculates (n2) where n is the number of particles in a bin and (02) is initially approximated
by

( n') _ (1,,2= (,) 2 (02). (15)

We say -initially" because the ex)ression above includes both the hydrodynamic fluctuationsI of interest and discreteness fluctuations resulting solely from the fact that each bin contains
a finite numnl)er of particles. We will discuss corrections to this expression for the variance
to account for this effect below in Section 3.3. Beyond these inevitable fluctuations due
to discreteness, because of the binning density fluctuations are observed only down to the
length scales - L, which is one of the sources of error in this procedure.

The variance is calculated once per each half period, and the instant when it is calculated

is determined randomly in order to obtain an unbiased time average. Thus each half l)eriod
is divided into two parts, before and after variance calculation, and the particle trans)ort
and source processes are appropriately adapted.
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Figure 1: Gaussian due to diffusion only. Figure 2: Distortedl Gaussian duie to shear.

3.2 Time evolution: particle transport

At, each time step,. the system is evolved by advection and (diffusion, and by thle sourceI
terms. First, we foius onl particle motion, and thmen onl the p)article inpu)it.

Anl advect ion-only equation wouldI be solved by evolvin~g particles along (characterist ics.

and a (diffusion-only equation would be solved by adding Gaussian random noise to each par-I
ticle. With both advection and diffusion we need to solve a stochastic (liffileeial equmat ioIl.
to (leterinme the proper disp)lacemlent of the p)articles (luring a tinme Step. The St ochiast ic

differential equat ion is

dIX = u (t, X) dt + 2 -K (/W(1)

where WV(t) is a stand(ardl vector-valued Wiener priocess.
In ordler to Solve (16() we will assuime that the dlisp)lacemienlt dule to thei noise inl a iimof-

p)eriod T/2 is much smaller t han the wavelength of the randlom sine flow. Then dlurinig eachI
hialf period the drift, field u(t, X) experienced 1w each p)article c-an be approximat ed 1Y a
constant flow with a linear shear superp)osedl. For the first, half of the p)eriodl for a p)articleh

starting at (Xo, Yo) = (X (t = 0), Y~(t = 0)) we approximlate (1(6) by

(X= 11 Sin11( + ) ()It + os ( O L2 )2 ,_Y) (i td{dY = / 2H dll + w1 v/2 (111',)dt (17)

and for thle secondlihalf of the period, starting fromn (.x(), y')) = (X (t =T/2), Y (I =T/2)),

{ X =~ -,/2 dT/Vt± j( -i) (18)1

Therefore, during the first, hialf p)eriodl we evolve the p)osit ion of a p)article thlroiugh a tillic
interval At (where At < T/2 needl not be smiall) by the inal)

27yo 1 1 - I
X ( + 1V Sill( + 0) At + -S 2 KAt 3 + 2KAt x AN1 + - 1-S2 SAf 3 X N2 (1f))

- L 6 2
Y- Yo+ V2t;At xN 2  (20)
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I where N1 and N 2 are independent N(O, 1) random variables. A similar map is employed
during the second half of the period. These stochastic maps include the shear-in the
approximation that the shear remains constant for each particle during each half cycle-
that causes a "distortion" of a Gaussian cloud of particles; see Figures 1 and 2.

*3.3 Time evolution: particle input

The steady scalar source is realized by introducing new particle one by one using normal-
ized S(x) as a probability distribution function. Numerically, such probability distribution
function can be realized by mapping uniform random numbers with an inverse of cumulative

probability distribution function in question. In Figures 3, 4 and 5, sample source terms are
visualized by putting many (in these examples 104) particles at once. The monochromatic
source in Figure 3 is S(x) = A[I + sin(27r(x + y)/L)].

Figure 3: Monochronmatic Figure 4: Square (a L) Figure 5: Square (a =

In the actual time evolution of the system, however, new particles are added one by
one. Since new particles are put in constantly, the total number of particles increwses which
iakes computation slow down. To cope with increasing particles, we will implement a

partile subtraction scheme as described in the next section.

3.4 Background noise and subtraction scheme

Particles eventually get well mixed, and the "older" particles do not contribute the value
of the hydrodynamic variance. There is no added value in keeping track of those l)artiles,
and we can simply remove them from the system after a sufficiently long time. In fact it
is necessary to implement such a particle subtraction scheme so that coml)utation goes on
without slowing down.

A subtraction scheme eliminates particles which are "well-mixed", but, we need to be
careful about the well-mixedness in a particle code. If the system is completely mixed, the
hydrodynamic variance (02) = 0. But since 0(t, x) is represented with a finite number of
particles and bin of a finite size, (0 2 )rn sured is nonzero even when the particles are unifornly
distributed: (n2 ) has the same amount of fluctuations as the error we might have when NaI

particles are randomly thrown in 12 bins. Thus when the particles are uniformly distributed
71- (n) 2 is the order of Naj/1 2 as illustrated in Figures 6 and 7. There 2,mew-ured(t)H where the overline now represents the volume average-is plotted in the diffusion-only case

with the monochromatic initial condition. Instead of approaching 0, 2 measur"(1) goes to

Nall/1 2 . We call this departure from 0 a background fluctuation, and we refer to the error
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due to the use of the finite number of particles and finite size of a bin ws error due to I
discreteness.

1 5

4S 55

1 4 1so

0' 40O

1 2S 5

2 30

1 15

05 1 I. . . ..S

10 2' 00 40 50 0 70 M0 90 100 0 10 20 0 40 1 1 00 0

Figure 6: ' = 0-,Na 10 4 104 bins Figure 7: K = 10-, Nai, = 10, 10' bils,

These background fluctuations must be removed o obtain hydrodynamic variance that
we are intl erested in. The effect of this subtraction is illustrated in Figures 8 and 9. NNicil

the initial dcnlsit' is p(O, x) =A[I +t sin(27r(J, + y)IL)],I

p(t,=x) A I + L- _
t sin -- (x+ Y) (21)

the instantaneous hydrodynamic variance, i.e., 2 = (p - ))2. is

2 I2
2(t) = ce . (22)

As illustrated in Figure 9, after background fluct uations are subtracted off wc obtain t lie
correct behavior, i.e., exponential decay. In Figure 8 it might be difficult to tell the differ-
ence, but in the log-linear plot in Figure 9 it is obvious that 02 shows eX)ol(,,t ial (lCcay '

onlY after background noise is removed. From this point on. this background noise is alwaysremoved when (02) is calculated.

50 , ' I 10 ,

40' '1 I
30 0

'°i I
IC 0001

1 1 21 3 40 50 60 o 0 30 100 10 t 2o 3 0 S Ii. 01 00s , o

Figure 8: Normal plots Figure 9: Log-norial ph)ts
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Figure 10: Normal plots Figure 11: Log-normal plot.

A group of particles can be discounted, removed from further consideration, once their
variance reaches the level of background fluctuation. In the actual code, we keel) track the
An particles put in a half period as a group and they are removed after they participitte in
the time evolution for a time t, where t is a typical time scale for An particles to reach
the background fluctuation level. The "lifetime" t. depends on the number of particles
in the cohort we are regarding as "old", the form of the source field, the advection field,
and of course the diffusion coefficient r,. This lifetime is estimated by plotting a transient
behavior of the variance of An particles under the particular advection and/or diffusion
conditions of interest. In Figures 10 and 11, 105 particles, initially distributed as for the
iionocromatic source, are mixed by diffusion or advection-diffusion. Eventually both cases
endi up in a well-nixed state (in the figures, background fluctuations are already removed)
and t. is estimated to be -10 in the case of advection-diffusion and -45 in the case of
only diffusion. These values of t. would then be used for long time average measurements
for these particular source, stirring and diffusion conditions. For each source, stirring or
ainplitude of diffusion, such a transient calibration simulationi must be repeated to determine
the appropriate value of t,

3.5 Benchmark Tests

In this section we report the results of specific simulation where the particle code results

can be compared to either exact solutions or numerical solutions of the inhomogeneous
advection-diffusion partial differential equation. These benchmark tests serve as a check
of the code and give some quantitative information about our particle tracking scheme's

accuracy.

3.5.1 Simulation parameter independence

First of all, the measures of hydrodynamic variances should be independent of An (the
numtber of particles introduced each half-cycle of the stirring) or the bin size that, is used

to estimate p(t,x). The parameter independence can be checked by changing the value
of An or I with other conditions fixed. Here, we illustrate An independence by showing
the exponential decays of transient variance for several values of An. K is 0.01, 0.001,
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0.0001, respectively, and An = 104 (red), 105(green) and 10'( (blue) (Figures 12, 13 ani I
14). The plots show ex)onential decay until the particles are well-mixed, as expected, aiil

,IIAI

Figure 12: h=0.01 Figure 13: t=0.001 Figme 14: N=0.0001

the expoiieiitial decaY rates are in(lepen(lent of An (at least. in the range [101, 1 ()t] teste(l).
The straight lines fit, to the (hita here are the exact theoretical values with io a(ljustab,le

parameters. I
3.5.2 Diffusion-only with steady source

Secondly we consider diffusioi-oilY with a steady source since (0) ) call be calciilat,ed exact lY

for these cases. It is )ossi)le to solve Eq. (9) analytically by Fourier ex)aisimln:

00(t,x-) o 6 (t ,kx k(2)
k5O

S(X) = I ' (k)c ik.x (24)

k5O

Note that O(t,k = 0) = 0 and that ,(t,k = 0) = 0, because 0(t,x) and s(x) have zero

slatial meais. The inhomogeiieous (liffisioin equation is

_ h -k 2()(t, k) + .(k) (25)

002so that(k 

(k -K 2tOo t, k) + 0(0, k) - (26)KAI

Plugging this expression into the definition of (0 2),

(Oo02) = it 1  i k')x (27)

__ d Z Oo(t , k) O(t,k)c
C' l i. k,k'540

1 i7 ,

= lira -/ dtl_ " IO(tk)[: (28)

_ 1 J((k)I2  (28)

k#+O

236

I



I

We now check if the particle simulation code produces this value with three kinds of sources:
(1) a monochromatic source, (2) a square source and (3) a delta-function source.

For tile monochromatic source,

S2 L4

1287r 4K2

2) = (002- An)2TL4

(no (0o) (bin vol.) - 12842 (31)1287r4 K

and the comparison of theory and simulation is presented in tabular form:

(002 )calculated theoretical values
0.05 0.1290±0.0076 0.128324
0.02 0.7914±0.0032 0.802029
0.01 3.215±0.010 3.208119
0.005 12.370±0.014 12.8324

0.002 78.836±0.052 80.2029
0.001 312.82±0.13 320.8119
0.0005 1236.39±0.29 1283.24

For the square sources

*S(X)={ 2 2 (32)s()= 0 otherwise

the variances are

(02) 1 16S' 1 (sin(kl )) 2 (sin(k2 )) 2

-2 L4  2 2 2 2)2 k2

- 2 )2 2

(n0 2 116 (An) 1 (sin(k L)2) (sin (k2 )2 (34)
K2F 0 At) k:40(k, +±k2 ) k k 2 )

i and the sinmulations yield

L

(002 )calculated theoretical values
0.01 45.593±0.041 45.862

0.005 177.750±0.092 183.448

a L
a- =

S (00 2)caIculated theoretical values

0.01 141.593±0.075 142.092
0.005 565.99±0.19 568.37

L

)(00 )calculat,d theoretical values
0.01 150.502±0.086 150.615

0.005 599.79±0.20 602.46
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Filially, for the delta- function sourceI

(35)

We have

(002) 1iS 2  1(f
K27 L>1 (kJ2 +± )

k?__ 2 ~n

W 2( ) 1 3__ :.8669 x 10. (37)
At k:/O(A 1 2' h.222 2 A

(Note that (37) canl be obtainied by letting o -~ 0 in (34).) We cami (heck if the codle olitpiltsI
the saime valuie:

K /1 (Oo2 )measured t heoretical vallues
0.02 100 37.772±0.023 38.669
0.01 100 142.673±0.064 154.6 78

0.02 200 2.4127±0.002,5 2.4 168I
0.01 200 !).4448±0.0044 9.6674
0.02 400 0.15116±0.00024 0.15105

0.01 400 0.59042±0.00034 0.6i0421I
0.005 400 2.36000±0.00085 2.41684

III those r-eslults, (0)2) mlemsulred tend(s to be smaller t hali thIe t heorel icall valics b ecalisc varialwe~
calcullationl is ba.sed onl binls of a finite size and( the miit riltioll froml simaller sc-ales is I 1(ot

inlclded. If' (0)2) mecasured is coIilIpaxe(I with. sa-v',

I 1 : Al ' 1, (k) 12  
(3 )

k540

the (fisc rel)aicies wvotil(l lbe smaller. Also, iote t hat ini the cawse of a dlelta f ilmctioll soi n-c.
the bll size iiee(ls to be very small at least, ini the nleighiborhioodi of the source in) ordler

to obtain acciiiate valuies.

3.5.3 Advection, diffusion and a steady source

FiniallY. we -oiiplare the fuill adlvec-tionl-diffilsion-sourc.e c(de withI the re(Sullts of a spectral
mletlhodl app)lic(l to the inhomonogenemis a(lvection-diffusioli partial (lifl'erciit ial eulaltionl. III
Figure 15, the mixing efficienicy is plotted againist Pc for the case of the imoniochriomat icI

source stirredI ly tthe rand(om sine flow. The greeni ctirve shows the theoretic-al uipper houndl
andI le rd crveis alclatd y spectral met hod [4, 5]. Thel( ble poits ar fmi t1 lie

p)article code. Tis complarisonl shows that~ the code a-ccurately calculates mlixinig efficienicies
aid( that, it cami be effectivelY as accurate as spectral miethod- even with An is ats smiall as
10'1.

238



I

I 1000

I
100

W/

10

10 100 1000 10000

Pe

Figure 15: Benchmark test for the mixing efficiecy with a monochromatic source.

4 New applications

The particle code is applicable for small-scale sources, as shown in the diffusion-only case
in the previous section. Figures 16, 17 show, repectively, the upper bounds on the mixing
efficiencies and the measured values of the mixing efficiencies for square and delta function
sources. The theoretical upper bounds and data plots are for source sizes L/2, L/10, L/50

and a delta function source (from top to bottom in each plot). The upper bound analysis
predicted that as the source gets smaller, the SO(Pe) curves are lowered. While the upper
bound for any finite-size source is asymptotically -Pe, the delta function source behaves

eP in the large Pe limit.
As the source gets smaller, the measured mixing efficiencies get smaller in a way that, is

qualitatively remarkably similar to that shown by the bounds. That is, Figures 16 and 17
show that the observed mixing efficiencies qualitatively display the same features as that
of upper bounds as far as source-size is concerned. The bounds and simulation data are

l)lotted together for comparison in Figure 18.

5 Future Works and Conclusions

We have confirmed that we can use a particle code to study hydrodynamic mixing efficien-
cies. The particle method reproduces theoretical values and previous numerical simulation
correctly. As we saw, the outputs may be as accurate as a PDE code. Moreover, the number
of particles used to represent the passive scalar field can be as small as 104 . The particle
i iethod is l)articularly useful for simulations at high Pclet number and with a wide variety,

including singular measure-valued source distributions. In this project, the same code was
used effectively for a monochromatic source, square sources and a delta-function source.

I The code efficiently produced reliable results for all these cases.
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Figure 17: The plot of mixing efficiencies I
What we have done here is just the very beginining of investigations ex)loiting the

)article codle. There ar(e lots of problems to be explored. Firstl v, we can adapt, the method
to other stirring fields. In this paper only the rand(om sine flow was use(L but it is possible
to extend this apl)roach to other advection fields such as sine flows with a variety of wave
numbers or turbulent flows. Secondly, simulations in three dimensions important. Them

distinction )etweel mixing efficiencies for the finite-size square sources and a delta fiictioin
source is predicted to be muiich more apparent in 3D. The extension of the )article i1ethd(
to 3D is straightforward although simulations will require much more com)utation )ower

(more particles and more bins will be necessary). Thirdly, the mixing efficiencY on largeI
length scales, S , can lbe calculated in prilciple eveii though only £0 was calculated in this

lroject. Fourthly, we would like to see the results of the small-scale sources re)orted here

reproduced by another numerical scheme. Then the results presented in this re)ort, call
serves as a benchmark test for new codes.

I
I
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Figure 18: Upper bounds (solid lines) and simulation data (points). The different colors
represent the different source sizes.l
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I Appendices
3 In these appendices we explain the detail of the code, including the actual imple-

Inentation.

I A Calculation of Variance

The domain is divided into 1*1 bins (i.e. bin size is deltal=L/I) in order to calculate
instantaneous variances. Given positions of all the particles, (p [n] . x and p [n] . y
(n=l, 2, . ., N-all), the number of particles in each bin (bin[c], c=1,2, 1*1)

I is counted as follows.

for(n=l; n<=N_all; n++){
u=(int) (p[n] .x/deltal);
v=(int) (p[n] .y/deltal);
bin [v*l+u+1] =bin [v*l+u+1] +1;

u and v are horizontal and vertical positions of a bin. Bins are labeled from bottom3 left to top right, and if a bin is located at (u, v), the label is v*l+u+l. Variance
calculation follows.

nbar=(double)N-all/(double) (1*1);
a=O;

for(c=1;c<=l*l;c++)

f
a=a+(bin[c]-nbar)*(bin[c]-nbar)/((double)l*(double)l);
}5 var=a-nbar;

In the last line, background fluctuation is removed.

B Miscellaneous components on time evolution

B.1 Periodic boundary condition

for(n=l; n<=N-all; n++) {I- while(p[n] .x>L){p[n] .x=p[n] .x-L;}
while(p [n] .x<O.O){p[n] .x=p[n] .x+L;}
while(p[n].y>L){p [n] .y=p[n] .y-L;}
while(p[n] .y<O.O){p[n].y=p[n] .y+L;}
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B.2 Source term I
Source tern is realized by adding a new particle one ),y one inI accordance with S(x).
In the case of a square source, a new ])article is generated every An/At. using a 3
probability distribution function

1 x E [_a + Ls, a + 1,]2()
0 otherwise

The corresponding code is I
void source(double a, double *xo, double *yo){

double xl,x2;
xl=a*(double)rando()/(double)RANDMAX+0.5-0.5*a;
x2=a*(double)rando/(double)RANDMAX+O.5-0.5*a;

*xo=xl; I
*yo=x2 ;

A mionochromatic soice is a little bit difficult. We need to gencrate a pair of randoii
nmnnbers which follow

I~x +~1±Sili 2,T (.1 + -) x G [0. 1]2  (10)I

Because this probability distribution finiction is tilted, let us colnsidetr it in tlie new 3
coordinates ( ,ij) ( x±~.~- Tlethefi pi-obab)iitY distribultion

fiicitoll becoIles

1 7 27
I + 1 ± sin( v2 ) E [0. V/2], il C [0. 2v]. (41)

,ij is given by uniform random nmnnbers, and is given by mnapping niniforn raiand
nuinbers by the inverse of the cumulative distribution function of (41):

+±L- Lcos ( 47 ) (.42)
V2 47T 4 -, 2

The subroutine inv maps a uniform random numnber y with the function a)ove 1)v
using bisection method up to the accuracY of 0. 01*deltal. Then source subrout inc
rot,ates the fr'ame by ' and imposes perio(dic bolundarY con(litions.

void source(double deltal, double *xo, double *yo){
double xl,x2,y,zl,z2;

y=(double)rando/(double)RAND_MAX;
xl=inv(y,deltal);
x2=sqrt(2.0)*(double)rando/(double)RAND-MAX; 3
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z2=(x1+x2) /sqrt (2.0)-0. 5;
while(z1>1 .0)Iz1=z1-1 .0J}I while(z1<0.0)Wz=z1+1 .0J}
while(z2>1.0)fz2=z2-1 .0;1
while (z2<0 .0)W{z=z2+1 .0;J
*xo=zl;
*yo=z2;

double inv(double y, double deltal)I {
double small, mid, large;
int i;I small=0.0;
large=sqrt(2.0);
while (large-small>0 .01*deltal)I {
mid=0.5* (large+small);
if(func(large,y)*func(mid,y)<O.O){small=mid;II elseflarge=mid;J}
I3 return (mid);
I

3 double func(double x,double y)
f
double z;z=yxsr(.510(.*i-o(.*ixsr(.)/40p)
return(z);

II
B.3 distorted Gaussian profile: (noise) subroutine

The following code is just the noise parts of (19) and (20). Normial Gaussian noises
(yl, y2) are generated by using Box-Muller mnethod.

I void noise(double kappa, double S, double dt, double *randl, double
*rand2) I

U ~ ~~double xl,x2,yl,y2, a,b,c;_MX01)

3 xl=((double)rando+0.01)/((double)RAND-MAX+0.01);
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yl=sqrt(-2.0*log(xl))*cos(2.0*pi*x2);I
y2=sqrt(-2.0*log(xl))*sin(2.0*pi*x2);
a=S*sqrt(0.5*kappa)*dt*sqrt(dt);
b=sqrt (kappa*S*S*dt*dt*dt/6.0+2. 0*kappa*dt);
c=sqrt (2. 0*kappa*dt);
*randl=a*yl+b*y2;
*rand2=c*yl;

}

B.4 Subtraction scheme i
It, is easy to in)lement, subtraction scheni. Subtraction of A/,,,, older )articles is don c
by re-labeling (artic1cs.(.Vlj + l)th particle becomes ith particle, and the m111ber of

all the particles gets smaller by No,(,. In this code, N(]( = All.

if (j>=cutoff) { I
N_all=N_all-deltan;
for(n=1;n<=N_al1;n++)f{

p[n] .x=p[n+deltan] .x;
p[n] .y=p[n+deltan] .y;

}I

C Time evolution 3
Thc following (ode is tiime, evolution from the begifiling f) the )eri()( I( variMICC
(alculation.

phi=2.0*pi*rand/(double)RAND_MAX;
randt=(double)rando/(double)RAND-MAX; i
for(c=l ;c<=l*1; c++)
{
bin[c]=0;3
}i

a=0.0;
t-obs=deltat*randt; I
N_obs=(int) (deltan*randt);
for(n=1;n<=N_al1;n++)

{ I
noise(kappa, -w*2.0*pi*cos(2.0*pi*p[nl.y/L+phi)/L, t_obs, &randl,
&rand2);
p[n] .x=p[nl .x-t_obs*w*sin(2.0*pi*p[n] .y/L+phi)+randl;
p[n] .y=p[n].y+rand2;
while(p [n] .x>L){p [n] .x=p[n] .x-L;}
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I while(p[n] .x<O.O){p[n] .x=p[n].x+L;I
while(p[n].y>L){p[n].y=p[n].y-L;}
while(p[n] .y<O.O)f{p [n].y=p [n] .y+L;}
u=(int) (p [n] .x/deltal);
v=(int) (p [n].y/deltal);
bin [v*l+u+l] =bin [v*l+u+1] +1;
}

II for (n=l ;n<=N-obs ;n++)

dt=t _obs-deltat*(double)n/(double)deltan;

source(deltal, &xo, &yo);

noise(kappa, -w*2.0*pi*cos(2.0*pi*yo/L+phi)/L, dt, &randl, &rand2);

p[n+N-all] .x=xo-dt*w*sin(2.O*pi*yo/L+phi)+randl;

p [n+N-all] y=yo+rand2;
while(p[n+N_all] .x>L){p[n+N_all] .x=pn+N_alll .x-L;}
while(p[n+N-all] .x<O.O){p[n+N-all] .x=p[n+N-all] .x+L;}
while(p[n+N-all] .y>L){p[n+N-all] .y=p[n+N-all] .y-L;I

while(p[n+N-all] .y<O.O){p[n+N-all] .y=p[n+N-alll .y+L;}

u=(int) (p[n+N-a111.x/deltal);
v=(int) (p[n+N-a11] .y/deltal);

bin [v*l+u+l] =bin [v*l+u+1l +1;
}

N_all=N_all+N-obs;

nbar=(double)N-all/(double) (1*1);

SFirst, random phase (phi), the time to calculate variance (tobs) and the nmber
of particles added into the domain from the beginning of the period to the variance
calculation (N-obs) are calculated. In the first for-loop, the particles which already
existed at the beginning of the period are evolved based on (19) and (20), bound-
ary conditions are imposed and (coarse-grained) concentration field is recoveredI by
binning. In the following for-loop, new particles from a source term are added with
source subroutine. dt is a time from particle creation to the variance calculation,
which is different from particle to particle. Those new particles are evolved in the
same way as existing particles. The time evolution after the variance calculation is
implemented in the same way. The time evolution of the second half of the period is

similar except that the random sine flow is vertical.

2
I
I
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On Thin Ice: The Mechanics of Failure in Sea Ice I
Dominic Vella ,

March 15, 2007 I
I

1 Introduction

Sheets of floating ice are rarely at rest or found iii isolation. They are driven bv wind and
water stresses and hence collisions with other sheets are uImavoidable. The focus of' this
report is on the mechanical aspects of slow collisions between thin sheets of floating ice.
Such interactions underlie the mosaic of patterns found in the world's most extensive bodies I
of floating ice - sea ice and hence are of geophysical importance. However, we are drawil
to the topic by the simple fact that the )atterns resulting from collisional interactions are

visually arresting and may have imechalnical implications that extend beyond the systelm I
that motivates our work. We begin with a description of some of the lphenomenology thal
we aim to uiderstaild.

In sea ice, where the "sheets" of relevance are called "floes" , collisions are observed I
create three families of tpat terns. The creation of each faiily, which can be cliaracterized
by a post-collision patteln or morplhology, can be envisioned eit'her as the result of the
compression of a single sheet, or floe, of ice that fails and forms two floes which continue to I
collide. or the collision between two pre-existing floes. Often, due to the ihlioiogelieities
of the floes involved, or the forcing that drives thein together, SOIMI colibilation of, lhese

three patterns is observed in the field. I
The most destructive of these families of ice patterns is the pressure ridge in which

the two ice floes break tp as they collide thereby forming a "sail" and a "keel" of' highly

fractured ice blocks. Less destructive are the two types of' rafting illustrated in figure 1 I
simple rafting and finger rafting. In simple rafting, one ice floe rides over the aljoining floe
without the creation of a large aniomit of rubble. Finger rafting is similar to simple raftin g

in the sense that the two floes alternately ride over and uinder one another forming a series I
of interlocking fingers. Generically, these fingers have very sharp linear featu'es thai are
particularly striking - as is the well-defined spacing of the fingers.

For those interested ii geophysical scale modelling of the interaction of sea ice wil hi tle I
atmosphere and the ocean, these deformation processes are particularly import(ant. For
example, the ridging and rafting of ice alters the albedo of the ice (-over significantl , (ili

nafting, the ice doubles ini thickness and so appears imnch whiter than surrounding ice) and I
pliys a major role iii the mechanical redistribution of sea ice thickness [2]. Rothrock [15]
also provides reasons for studying these defornmation phenoniena: 3

248 I

I



I
I

I
I

3 Figure 1: Rafting of thin sea ice. Left: 'simple' rafting of one floe over another in the
Beaufort Sea. Note the crack formation parallel to the free edge of the ice. Right: 'finger'
rafting in the Amundsen Sea. Photographs courtesy of Wilford Weeks [21].

"If we knew what the constitutive equation for pack ice should be, we would not
need to pay attention to the mechanisms of floe interaction. But the simple factI.. is that we are not at all sure about the constitutive equation ... we have turned
to the study of these mechanisms - rafting, ridging, shearing, and opening3 to deduce what we can about the larqe-scale mechanical behavior of pack icc."

Because the families of deformation patterns are intrinsically interesting, our outlook
on the value of this study is one of optimism. We would like to understand the formation
of finger structures in finger rafting and determine what the characteristic width of the
resulting fingers is. We would also like to characterize the precise conditions under which3 each of the three deformation patterns is observed.

2 Governing equations

I Throughout this report, we shall model an ice floe as a thin elastic sheet floating on a

denser liquid: water. In this section we describe the governing equations for a thin plate,
including the effects of in-plane forces. Some detail on the origin of these equations is given

by Mansfield [12].
The midplane displacement, w(x,y), of a thin elastic plate subject, to a pressure p is

determined by a balance of forces on the plate. If we introduce a force function o to ensure
that forces are balanced in the plane of the plate, then the normal force balance leads to
the governing partial differential equation

-_.IB, = p + [w, (1)

3where B is the bending stiffness, or flexural rigidity, of the plate and

02b 02 b 02 a 0%2 02a 02b

ba2 ay2  xi)yxg + Oy 2 0X2
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B is related to the plate thickness, It, as well as the elastic p)roperties of the material (the
Young's modulus, E, andl Poisson ratio, v) by

12(l - V2)

For an elastic sheet, (of dlensity p,s) floating onl a liquid (of dlensity p) the press5ure p~ is

simp)ly the hydrostatic pressuire in the liquid. With no forces other than gravity act inig. t heI

sheet will float, with u,=w ),- h( 1/2 - p,lp). For simplicity, therefore, we shall mneisure
all vertical dislplaceineints relative to this equilibrium level. The pressure p is then givenl bY3
p = -pgir fromn which it immediately follows that

B V,111 + 111W = [I'll" (41)1

For a dlisp)lacenment (it * e. tw), the in-planc strains, f i. are given by

1,2 1 *2 1 +(5
Txx = 11X + 72 r U, y -C V, ± - '~+Uxi

wherev,,,. (denotes the partial derivative of w with respect to x and so onl (hopefully, avoidhing
confusion with the various comp)onients of' tenos. The dislplacemnent' ita and 1im niav be
eliminated froni these relationships using the condIit ion of conipatibility (e.g.. [12], pg. 13).
Relat ig the strainls to the inl-plane forces and hecnce to thle derivatives of thle force Funict ion

;it is p)ossible to show that vy=-E[w ].()I

Equations (4) and (6) mlay' be non-dimiensionalized by resciling hecigthls withI
(Blpy) 11-1 and the force function y with thle b)ending stiffness. In this all,ysis, i- thle
lengthI scale over which vertical dMefect ions of' the floe decay, pilYS 1 c*cIiti;il role. WVe use
uppercase lette(rs to den(ote dlimnsionImless (quantities So1 t mit N = .1.11, (1 =/ 13 mid So on.

Equat ionis (4) and (6) may then be rewritten as-,

117 + 11 = [4, 11 (7)

respectively. Equations (7) and (8) are comumonly attributed to one( or both of F6ppl and
vonl K irnii (e.g., [12]).I

In (8) we have initrodlucedl the (dimensioiniless stretching stiffness

(Bp!j)112 '()I

which mneasures the relative ease with which the ice floe stretches andh benlds to ;1ccoluiliiodIate
deformiationi. Note that because B -ht 31 S _/1-1i/2 , and hence for the thin ice floes t hat, are
of interest here, we expect to find that, S >~ I so thmt dleforimition c-an be accommiodlat ed

mou(re easily by bending than stretching. This exlpectat ion is vindicated by , substituting son)ie
typ)ical values for the muaterial prop)erties of ice, as is shown by, the (data collect ed in table 1.
This table also gives tylpical values for the chiaracterist ic length (, based onl these mIIater ual

p)rop)erties.3
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I Material Properties Values for h = 0.1 m
Ice type E (GPa) v cm (MPa) f. (m) S Reference

Fresh 0.3 - 12 0.33 1 - 3 3.1 ± 0.1 101 [8, 17]

Sea 0.1-0.9 - 0.1 -0.4 1 - 1.7 1 - 3 x 103  [221
Sea 1 0.29 0.4 1.75 3.4 x 103  [5]

Table 1: Typical values from the literature for the mechanical properties of ice. Here, (T,,,

is the yield strength, to be introduced later. Also shown are the implied values of the
characteristic length f. and the non-dimensional stretching stiffness, S.

Sair Y

X=-a water X=a

Z= WOX

3 Figure 2: Schematic diagram showing a floating thin elastic sheet buckling under a coni-
pressive load T.

* 3 The buckling failure of an ice floe

The most, striking deformation patterns in sea ice are observed when two ice floes collide.
This commonly occurs when a lead opens in thick ice and a thin layer of ice is formed1 by
the freezing of ocean water in the lead. The movement of the thicker ice subjects the thin
ice growing over the lead to large forces, which cause it to buckle and ultimately to fracture
forming two or more floes. In this section we consider the buckling and subsequent failure
of this thin ice.

In the two-dimensional buckling problem (illustrated in figure 2) there are no variations

in the Y direction (i.e. into tile page). The displacement of the ice plate, TV, is therefore
independent of Y and the F6ppl -von KArimin equations (7)-(8) simplify to the system

3 VV4X + W = -ID,2 yW 2 X, V4 . (10)

Since W = W(X), 1,2Y = f(X) and so ,xy = A(X) + Yf'(X). However, 4,xy is just the
traction exerted on the ice in the Y-direction, i.e. into the page. This traction is zero for

compression purely in the X-direction and so we have f'(X) = 0 and f(X) is a constant.
Since the traction in the X direction is T at the boundary X = a, we have ,2(a) = -T3and so f(X) = -T. Equation (10) therefore reduces to the ordinary differential equation

WA 4X +rW2X + W 14= 0. (11)

I The relevant, boundary conditions to accompany (11) deserve some discussion. The thin
layer of ice covering a lead is normally frozen into the thicker ice at. the edge of the lead. We3 therefore take the boundaries of the thin ice at X = ±a to be clamped so that I,x (±a) =
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TV(±a) =0. The synmnetry conditions about XA 0 suggest that a solution is the formI
W(X) =A cos MX where the wavenumber k satisfies

k- TA' +1I= 0. (12)3

There are, t herefore, two possible waventinibers, k±, given b.,

kA =I;-(T ± \T 2 4). (3

In general 1V(X) will contain bo0th of the wavenunmbers giveni ini (13). Tie cond(it ion of* zero

vertical dlisp)lacemlent at X = ±a is satisfied by

W (X) =A (cosAk+X cos k- X (4

where A is some (as yet, undetermined) constant. The remaining boundary 'onidit ion t hat
11 'N(±a ) 0 leads to a condition relating k± anld A-, narielY thle dlispersioni relaltion3

k+ tain Aka =Ak tani A-a. (15)

Since A± A-k±(T), the solutions of' (15) dletermine the CO1ilprVSSiVC f'OrCe T l-ejlir(d to

produce this dlisphicemnent. For ai given value of a, (15) has an infinite number of'solutions,
the smiallest, of* which is T = 2. This corresponds to thec simillest, value of T f' which A-

and k- are reafl; it is shown in Appendix A that there are 11o solutions of (15) fOr- compillex

A. NNheil T = 2, A+ = A- and (14) shows that 1<1"= 0. Each ValneC Of T > 2 that, solves
(13) corresp)ond(s to a dlifferent, inode of* bickling in the ice floe. WVe shiall coiisider oldy N, t 
lowest mlode of buicklinig, which corresp)ond(s to the smnallest Value1 Of' > 2 that solves (15) 3

Having dletermnedl 7- by solving (15) the solution for thle shampe of the buckled ice floc
is given by (141) up to the( mut ltiplicat,ive constant A. TIllie value iof' A is deteriincd e 1) t v Hie
natural length, L, of the ice floe ini its undleformned state. Neglecting any st retchiig of' t lic

ice floe and assuming smiall deformations, the conitour lengthI of' thle (lef0ornieed floe m1u1st bc
eqlual to its nat ural lengthl, i.e.

L J (+ I2 ) /2 dX ;: 2a + / W\N. (1I

In geiieral, the ice floe may accommllodate somle of the impilosed (deformat ion 1)'y (oilliprcssing

(negative st ret cling) . 'To account f*or this, we recall the exp)ressioni for the strain Vx' givenI

in (5) and express the strain in terinis of the force function 4)

1 T
u,N + Al",vb) (17)

Integrating t his exp)ressioni between X = -a and a and( using sYninietrY abont X 0. wec
find thatI

1j),2(A 2a(l + T/S). (18)

Substituting the forni of W(X) from (14), we find that

1,J (I X = A 2 [a (k 2 + k 2) + ak 2 tain1 A+ ( + A+ t an A+ ] (9
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U which can be substituted into (18) to give A. Since k+ and T are determined by the
numerical solution of (15), they depend only on the value of a. The shape of the ice floe
can, therefore, be completely determined numerically for given values of a and L.

Beyond some critical compression, the stresses within the ice floe become so large that a
crack is initiated within the ice and the ice fails, forming multiple floes. We now quantify this
expectation using the results just obtained for the buckled shape of the floe. Throughout
this report we shall assume that failure occurs when the maximum stress throughout the
thickness of the ice floe reaches some critical failure stress, denoted by Cr,. For elastic
plates, the stress varies linearly with the perpendicular distance, z, from the mid-plane. In

particular, from [12] p. 5 we have

Ez
G (1 - (20)

where Al is the bending moment. The maximilm stress is then achieved at the plate surface3 (zJ = h/2) and the ice will fail if

Eh = 6JAlI,J
a,,<2(1 - V2)BM

m axl - h2 (21)

Implicit in the derivation of the failure criterion in (21) are two assumptions. The first,
is that. ice behaves like a brittle material on the timescales of interest to us here. The second
,ssumption is that, strains vary linearly throughout the thickness of the floe. While these
two assumptions are not always appropriate for floating ice, they are extremely convenient
and are in good agreement. with experiments to determine the miaxinmm load that, can be
1borne by an ice floe [91.

In the buckled state considered here,!B 3I IIxl 1K"WxxI, (22)

and so the ice will fail when IW xx ll 2 *( I V2) or.. (23)

' h E

Note that this relation suggests that for ice of given material properties, thin ice floes can
support relatively large curvatures without breaking. By fixing L and calculating I I W, xx'
numerically for different degrees of compression, we find that typical ice floes fail while the
ice deformation is small. In particular, figure 3 shows that the maximum slope of the
interface is small at failure even for very thin ice floes. The linear theory presented here is,
therefore, self-consistent and we may continue to make use of the linearized equations for3 the remainder of this report.

We note also from figure 3 that ice is very fragile and breaks readily under compression.
To emphasize this point further, figure 4 shows the dimensional amplitude of the floel de-
flection at failure as a function of ice thickness. This shows that we can only expect to see
very small amplitude buckles in unbroken ice. This is in accordance with the observation
of Weeks [21] that it is very difficult to observe these buckles in the field unless there is

I drifting snow to highlight them.
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Figure 3: The nagnihide of the maximum sheet curvat,lire, ii t'xx l,, as a fillictionl of' the

largest gradient of the buckling mode, Jj1V , Ij,. Here S = 103, L = 50 and we have t aken
T,,, = 2 x 1(P5 Pa. E = 3 x 108 Pa and v = 0.3 to plot horizontal dashe(d lines corresponding
to the Illaxilmnuinl curvature possible before failure for four different ice thicknesses. 3

I
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Figure 4: The ulaxiiui dimensional deflection of a buckled ice floe as a function of ic(

thickness, h. Here S = 1W, L = 50 and we have taken(7,, = 2 x 105 Pa, E= 3 x 10' Pa
and v = 0.3 a-s typical values [14].
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UFigure 5: Photograph showing an end-on view of simple rafting. T1e overriding floe has
failed in places, suggesting a close link b)etween simp)le rafting and pressure ridIging. Courtesy

S of John Wettlaufer.

Z=W(X)

Figure 6: Schematic of two ice floes on the brink of rafting.

g4 Rafting versus ridging

Having explored how a thin ice floe can buckle and then break under compression, we nowI move onl to consider what happens once the ice has broken but, the compression has tiot,
ceased. For simplicity, we shall consider two ice floes colliding, although the analysis in the

Cprevious section shows that two or more breaks may occur in general. Two outcomes of
this collision seem plausible: either one ice floe may ride over the top of the other ('simple'
rafting) or both ice floes may break as they come into contact causing an accumulation of
rubble in a ridge. The photograph in figure 5 shows that these two possibilities are very

closely related. Here, we show that there is a critical thickness above which ridging, rather
than rafting, should occur. This is a result first derived by Parmerter [14], though we
develop a much simplified model that leads to essentially the same result. This simplified
analysis highlights the important physical principles that determine when rafting can occur.

Consider two ice floes in the configuration shown in figure 6 -- the two floes are on
the brink of rafting. In this scenario, any tension within the floes can only be balanced

by friction in the very small overlapping region. We shall neglect this friction and hence
neglect the tension within the floes. This means that the shape of each floe is governed by
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(11) simplified by thle assertion that Tr 0, i.e.I

1 ,X + W = 0. (24)3

Solving this equation subject to thle jumip in plate height at XN 0:

11(0-) - 1I17(0+) = H h/lif,.

and the continuity of the first, three derivatives of TV at X 0, we find that

vv(X) ex {~ (XIv2) cos (XIv2-) < 0) (25)

From this expression, it is a simpJle matter to show that the maximum bending miomient inI
the two plates occurs at A'= ±7r/2v/2 and( hias, a value

IM11ax~ Bli exp(-r/4) (26i)1
2 v2/2

For rafting to be p)ossible we require that this bending moment, be less than tihe mnaxium
allowed by thle failure criterion (21). In diimensionless terms, we requlirc that time thlickness~
satisfy

H < H,(. 2'-'/81 E (27) (~-17

for rafting to be possible. Note that dlilmensional analysis leads us to exp)ect that If, =

PIE(- ). 'Fhe funct ional form of f canniot, he det erminedl withbout tis d~ (et ailed (alcullation,~m
however. In dlimensionial terins, (27) reads

?2 2

1< /2 1- (Tin_ _ 28

wvhich las the same dlependence onl material p)rolpert ies as the result, given by' Parierter
14ut with a p)refactor 12.8 rather than 14.2. Our approach has thle adlvaltage of'

being analytic. rat her than numerical, and( arises from a mu11ch siimpler model of' thme raft'ing
p)rocess.

We c-an use the typical values given in t,able 1 for the imaterial p)rop)erties of* ice t o give all
estimate for It, Because these properties are seitive funct ions of temperature and salinity,
we must, he careful to use est imates of (T,, andl E ob)servedl in tIhe saine saimple mixinig3
values from a weak sanmple (small aT,,) with those of a stiff sample (large F) can confuse thei

issue. W~e find( that. 12 cm < ht, < 19 cm, which brackets the transit ion thickness of' 15 ciin

dlescribedl in the context of field observations 124].
Above the critical thickness given in (28) we expect that the ice floes will break beforeI

rafting c,an occur and a p)ressure ridge will be formed. In particular, the maxiuim beindiing
umomlent occurs a dlimnensional (distance 7(.*/2v/2 away from the coiitact region and( so Nvc

exp)ect, that, a, crack will formn here and will be p)arallel t0 the edlge of the floe. '1'lle simpllleI
rafting shown in figure 1 shows just such a (rack forming. NVe expect also t hat tice blocks
wxit hin thle resulting pressure ridlge should have this typical size. W~eeks and( Xovacs 12,1]3
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Figure 7: Schematic of two ice floes preloaded by rubble formed during failed rafting.

3 report that in one particular pressure ridge they found ice of thickness 30 cm and thick-
ness/length ratio in the range 0.1 - 0.2. This compares well with the calculated ratio, which
should lie in the range 0.07 - 1.2 based on the typical material properties of ice.3 On occasion, ice has been reported to raft, even though it was well above the critical
thickness given in (28); rafting has been reported in ice up to 2 m thick. In these instances.
it is also reported that the region where rafting occurs is covered with rubble formed 1)
previously broken ice. Babko et al. [2] suggested that the presence of this rubble could lift
one floe above the other, thereby facilitating rafting. In particular, consider two floes on the
brink of rafting, as shown in figure 7. If these floes are too thick to raft in the configuration
shown in figure 6, pieces will break off of them. The weight of overlying rubble formed from
the overlying floe will depress the subducting floe further while the buoyancy of submerged
ice blocks from the subducted floe will lift the overlying floe further. Here, we present a

I simple model to quantify how much of an effect this preloading could have and whether it
can significantly alter the critical thickness at which rafting occurs.

We imagine that the region -L < X < L is covered in rubble: this weighs down the ice
floe with X > 0 and lifts the ice floe with X < 0. The shape of the two floes is obtained by

solving (24) modified to incorporate the loading produced by the rubble. The appropriate
boundary conditions are the same as in the earlier calculation leading to (25). This yields
the floe displacementU ~ ~~I(l-r) co + r

(exp(r) costj + !r exp( ) cos {, X < -L

H(1 - r) - H ('-) exp(-r/)cos r1+ -exp( )cos -L < X < 0
W(X)= 2 (29)

-Hr - exp(-r;)cosi7+ f-r e p[)Cos 0 < X < L

g(l-T)exp(-rl) cos ,! - H exp(- ) cos , X > L,

where r" - ps/P is the non-dimensional density of the ice and

X+L X-L

The maximum bending moment in either floe may then be determined numerically using
the solution in (29) for given values of r and L. The results in figure 8 show the maximum
curvature as a function of the extent of rubble, L, for three different values of the densitv
ratio r. These curves show that as L - oc the maximum curvature tends to a constant value.
Considering the asymptotic limit L > 1, we find that the maximum value of I '.x.YjI

occurs at, X - ±7r/2 3/ 2 ± L from which it immediately follows that, the maxinmm curvature
throughout, the system is

Hr r/4 (31)

IIVxxl ~257
I 257

I



0.3 ...... .1... .... r =0 9

0251
r =0.7

0.21

r=0.5_I

0 1 2 3 4 5 6

Figure 8: The im-ximiiimi curvature in ice floes loaded/supported with rubblle over a hiorizoni-
tal exteiit of'L for three different values of 7-= p,/p. The dlied lines show lihe aSYmipi oti
result (31). which is valid for L >~ 1.1

Followinig tlie, same p)rocedulre t hat led to (27). we find1 that, the mi aximmuu i l li-dielisionalii
thickness, II(*, for which rafting cani occur is

251 7W'/SP(l - V2)1/2 (a)/2 (32))

which is precisely' thle samle result as presented in (27) miodhifiedl bY a faict or r-12 i.e. H(*

For (c, 1 .9 and( so in dimensional termis this mechanism can account for an increasec

of about 25%7 in the maximumiii thickness for which rafting can occur (h* = I-/( :1.23h,.).
It. seenis that this nmechianismi could( exp)lain rafting in slightly' thicker ice (up to h Z 25 cm,i

saY.) but does not exp)lain rafting in much thicker ice. XVVe t herefore conlclud(e t hat thle largeI
dliscrep)ancY must inistead1 be attributed to variations in the miechainical p)rop)erties of' Ilie
ice, as well as the compillex rhecology and1 geometry [16] of sea ice. III this regard,. note ina

the (data presented by Weeks and Anderson [22] shows t hat (77T is a ver,v senisitive fimict ion
of salinity while E is niore sensitive to templeratuire.

5 Finger rafting

In the relminder of t his report, we shiall be concerned with understanding a more exot ic
form of rafting between two ice floes: the format ion of interlockiiig fingers that ride over
and un(der one another. This is commonly called finiger rafting because of the st rikinig finger

p)atternis t hat form (see figure 1).3
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* 5.1 Field observations

Several authors have written about the phenomenology of finger rafting from their obser-3 vations in the field. These include not only observations in sea ice (starting with Weeks
and Anderson [23]) but also observations in fresh water ice by Weber [20] and Green [7].
Tuhkuri and Lensu [19] have also observed some evidence of finger rafting in their ice-tank
experiments using a mixture of ethanol and water. With the exception of the field obser-
vations of Mahoney and others [11], all observations of finger rafting have been limited to
very thin ice; typically h, < 10 cm.

As well as being the thickest ice for which finger rafting has been reported, the wave-
length of the fingering pattern observed by Mahoney is also large. Does the thickness of the
ice influence the wavelength of the finger rafts that are formed? We have collated the re-
ported estimates of ice thickness and the wavelength of the fingering pattern (reported and
measured from published photographs). Table 2 shows this collection of data, and seems
to suggest that the narrowest fingers occur in the thinnest ice. This correlation between ice3thickness and wavelength was suggested by Green [7] although Weeks and Anderson [23]
believed that there was no such correlation.

3 5.2 Finger rafting in wax

To the best of our knowledge, finger rafting has been reported only in ice floating on water.
This might lead the reader to think that the appearance of fingers is reliant on some l)roperty

of ice that is not common in solids. To investigate whether this is in fact the case, an(l hence

determine the extent to which the phenomenon is of a general mechanical nature, we have3 conducted experiments using very thin layers of solid sealing wax floating on water to niinic

ice floes. The sheets of wax were manufactured by pouring molten wax onto a solid substrate
covered with a flexible film of polyvinylidene chloride (a.k.a. saran wrap). After the wax
has cooled, the polyvinylidene chloride film may be peeled away leaving a thin wax sheet.

It, is difficult to ensure that the thickness is uniform, but this seems not to matter a great
deal.

The mechanical properties of the same sealing wax were kindly characterized by Larry

Wilen of Unilever using an ultrasonic apparatus. His experiments showed that for frequen-

3 Thickness Wavelength Ice type Reference Symbol
2 - 3 mm 6 - 20 cm Fresh ice [7] U
3 - 8 mm 2 m Fresh ice [7] N

1 - 2 cm 10 in Fresh ice [7] N
2 - 6 cm 2 - 8 m Sea ice [23] A

2.5 - 6.9 cm 4 - 6 in Ethanol water [19] *
3.5 - 4.5 cm 7 - 9 m Sea ice [6] 0
1.3- 1.5 in 20- 100 in Sea ice [11] #

Table 2: Field observations of ice thicknesses in which finger rafting has )een reported and
the wavelength of the resulting fingering pattern. The symbols indicated are use( to plot
these data in figure 11.
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Figure 11: Wavelength of fingering pattern, A, for floating sheets with differing characteristic
lengthscales, f.. The data plotted here are a combination of those in table 2 (obtained froni
the field observations of others) and our own experiments with thin sheets of wax floating on
water (denoted by x). The colouring of points signifies the type of solid in which the finger
rafting was observed sea ice, fresh ice and . The line shows the theoretical
prediction (40).

cies in the range 10-2 - 102 Hz the Young's modulus lies in the range 1.57 x 10' - 1.16 x
109 Pa, assuning a Poisson ratio v = 0.3. These experiments also demonstrated a solid-
solid phase transition in the wax at a teniperature close to 35°C. Above this temperature
the wax becomes ductile and does not fail under loading. Rather, it, deforms plastically. We
therefore ensured that the wax was allowed to cool to room temperature before performing

the experiments reported here.
The thin wax sheets were floated on water with their long edges in contact and then

pushed together by hand. As shown in figures 9 and 10, we observed finger rafting. Ex-
perimental constraints, the most important of which were the ability to accurately control
the thickness of the wax and to avoid edge effects in the transverse direction, linited the
number of fingers observed. However, the fingers shown in figures 9 and 10 have the strong

rectilinear features reported of finger rafting ice. Moreover, plotting the typical wavelength
of this fingering pattern (A) as a function of the characteristic length f. seems to show
reasonable collapse with field observations of finger rafting in ice, as shown in figure 11.

Note that f. - h3 / 4 and so there is some correlation between A and h.

* 5.3 A physical mechanism

Several authors have suggested that finger rafting occurs because of wave action [3, 4, 23].
Although their mechanisms differ in terms of details, the essential ingredients are the same
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andl may he paraphrased as follows. Finger rafting is initiatedl wheni a small portion of oneI
ice floe is deposited onl top of another ice floe by an a(lvancing wave crest. This leaves
at port ion of' the ice out of water and not suipported fly another ice floe. A tear forms iii

tis area (since sea ice is not strong enough to support its own weight) and a first finger isI
formned. As the wave crest passes oin, the other ice floe p)rotrudes onto the first, tears and(
forins a finger pointing in the opplosite direction to the first. As inore waves are incident, onl

the ice, a series of' prototype interlocking fingers is formed which grow ats the ice floes areI
compressed and the ice floes plough through one another.

While this explanation mnay', be correct in many' cii'cumnstances, it, cannot formn thme basis

of a general theory of finger rafting. Firstly, in nature finger rafting occurs when thiei'e isI
wind bult, no open water for the generation of a swell [7]. Secondly, t he iiiechiatiisni above
relies oii the fact that sea ice caiinot support its own weight and so will fail ifi' ot supportedI
l) ,v either water or ot her regions of ice. This is certainlyv not thle case for the thlinI slieets
of wax used in our laboratory exp)eriinents, aii( is also unlikely to he tlie ca,se, in the f'resh
water situations for which finger rafting has b)een observed.

An alt eriiative exp)lanationi relies onl sonie small overlalp between the two icc floes (secc
figure 12): if a siiall portion of ice floe A overrides ice floe B at. a poinit C. floe A is
lifted slightly' at the point C by thle add(itionial buoyancy provided by the priesenc(e of' floe

13. Conversely, floe B is depressed at the p)oint C 1)'y the additional load providled by thleI
presenice of floe A. As we have seen many tiiiies alreadY in t his repo(rt, thle chlar'act eristic'
r'esp)onse of' anl ice floe to such p)ert urb)ationis is not, mi(Iotoic dcca 'v in thle far field but

i'athier aii oscillatory deflection imodulated by an exp)onenitial (Ieca. We thierefOre expectI
that, away froini the point C bothI floes A and B will have an oiscillatoi'Y vertical deflec'tion)i
showii sc'hemiatically iii figure 12. lIn par'tic'ular', the free edges of thle two floes should have

an osc('itr * Ny vertic'al dheflectioli. M\ oreoveir. b)ecause t( ienut ial pert u'rbations to each of' thI eI
floes are of opposite sign, this osc'illat ions remlaini out of' phlase allonlg tie( lengthI of I'llic

fed (ge: ('rests of floe A corresp)ond to ti'oughs of floe B and Vice Versa. TYhe free edlges
of' the two floes are dlispilacedI Vertically relative to oiie aniot her. Thus, these otit of' phaseI
oscillations caulse thle two floes to form iiiterlockiiig thumsts (hiriiig subsequent comupre,s;sioni.

Because the dislpla'enment of the floe (decays exp)onentially away fi'oin the p)roti-lisioll.
we (10 iiot, expect an overlap at, one place to be sufficient for finiger raftinig evei'ywlicre;
the vertical displacement must be a reasonable fraction of the thickness for- thle oscillations
we desci'ibe to give rise to floes running over one( aiiother. Instecad, we pr~ihoos t hat tie(

r'afting p)rop)agates alonig thle edlge rather like a zipper: when rafting occurs in one( place thleI
dlisplacements nearby are sufficient to cause finiger rafting there too and so oil. This wave
of'rafting should travel at the speed of gi'avity waves iii water ('overedh wvith an elastic sheet.

'Pie l)lia se sp)eedl, c, of these waves [18] dlep)ends onl their waventiiiber. A', and is given by"

(2 =B-'
m + fl!j (

p.,hk-2 + f)A'

lIn our wax experimients, the speed of the waves wvith waventinibei' t is tYpi('ally around
0.5 ins-i, niaking t his zipperiiig unobser'vab)le witlinI thle scope of' the tecluiology We em-

ployed. For i('e of thickness 1t0 cin, this wave sp)eed is onl thle or'(dcr (of' 5 ins,
The muec'hanisni we have dlesc'ribed does not rely onl any, ina~ter'ial propcr'tivs that am-(

pec'uiliar to ice, though we (10 require the solid material to be able to tear to form11 fiigers as.,
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Figure 12: Plan view of two ice floes A and B colliding. A small protrusion in floes A
leads to an overlap of the floes in a small region, C. This overlap causes oscillations in the
vertical position of the floes, which decay away from C. The sign of these displacements is
indicated by the +/- symbols in the figure. Notice that the oscillations along the free edge
are exactly out, of phase in the two floes causing the two floes to alternately ride over an(.

I under each other under compression (arrows).

the two floe edges are pushed past one another. This condition seems also to be satisfied

by wax whereas other materials, such as aluminium foil, do not tear sufficiently easily and
so cannot form these fingers.

i 5.4 The deflection of a semi-infinite elastic plate

A mechanisn resembling that presented above seems to have been outlined briefly by Fuku-

tomni and Kusunoki [6]. They discuss finger rafting only cursorily and give a very vague
presentation of a model of a point force acting on an infinite elastic sheet to give sone idea
of the scale of fingers formed. However, they give no details of their calculations nor of the

equations solved. Here, we rectify this situation by presenting a thorough analysis of the
problem.

eVve modify the earlier analysis of rafting to incorporate tile effect of a vertical load, F,

oi a seni-infinite ice floe. Again neglecting the in-plane forces, we find that the (eflection
of the floe satisfies

V 4 W+W = F(X, Y) (34)

The Green's function for the deflection of an semi-infinite elastic plate oin an elastic
foundation was given by Kerr and Kwak [10] as well as Nevel [13]. Because an elastic
foundation is exactly analogous mathematically to a floating sheet, we shall make extensive

use of their result in what follows. In particular, if a concentrated force of dimensional
magnitude f is applied at, the point (X0 , YO), as shown schenmatically in figure 13, then time

I
I
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Figure 13: A point force F acting at the point (X 0 , I')) on a semi-infinite floating elastic I
sheet.

vertical displacenent at a point (X, Y) is given by

f I V (X, Y: X'Y) [Kei(RO) + Kei(R+)] + f A(X 0 ok)( - x cosk- X

k+ [2k2 + (I - V)02]
'_[2k±_ +-(1 -)o

2 ] silk_X cos o() -Y) do. (35)

k- [2A,2 (I - V)(T2]

Here Kei is the Kelvin function of zeroth order [1], R' is given by I

=[( ± XO)I + (r - Y,)) ] (3(i)

A± is given t)v 

I

and ~ ~+ 1 1]-1/ 
3

A (X0.) " cX)(-k+Xo) 2k+
U+.1 4 [k2_ + (1 - V)y2] - (1 - ,/)2()

[_(A- + A!+ v, 2 ) coSA!_Xo - A-4(A.2 + .2- (n2 ) Sil A. X]. (:18)

This exl)ression simplifies considerably if we look at the cmse of a point mass acting at the I
origin (i.e. X0 = Y() = 0). In particular, the profile of the plate along the free edge (X = 0)
takes thle foriii

F(./W(0, I) = F (-Kei(IYI) + A(O,() cos o (o) , (39)

where F = f/pgf,3. This funct ion call be plotted numerically but, what is of most intcrestI

here is the position of the zeros of IV(0, Y), since these (etermnine tli(, regions ill which lhe
two ice floes can most easily ride over one another. The smallest Y satisfving I (0, )2') = ) I
is Y* 4.507 with the next root occurring at Y* :- 7.827. Since the vertical displacement
decays exponentially with increasing 1. we take the distance between these first two roots

to be that (etermining the wavelength of the finger rafting pattern with tlie position of' I
264

I



subsequent fingers determined once the initial fingers are in place. We therefore expect
that

\ ; 2(7.827 - 4.507)t. = 6.64[., (40)

which agrees well with the results presented in figure 11.
While the case of a point mass acting on an elastic sheet is a convenient abstraction,

our actual interest lies in determining how an ice floe responds to having a finger fronm
another ice floe pressed on top of it. We therefore consider a finger of width 2a protruding
a distance 2b onto another ice floe. Each infinitesimal element of the protruding finger
contributes to the displacement of the overridden floe. Since the equation governing the
displacement of the ice is linear, we can sum these displacements to give the displacement
field due to the presence of the finger. An element of width 6Y and length 6Xo has a weight,
f = -p,ghf'6Xo6Yo. Summing the displacement due to all of these elements, we find that

W(X, Y) j f W(X, Y; X0, Y0 ) dY dX 0

_Ps hiP w (a,b,X,Y). 
(41)

We are particularly interested in determining whether we need a large perturbation to
initiate finger rafting. For the mechanism of finger rafting proposed here to be reasonable.

I we need the edge displacement induced by the overlap to be comparable to the ice thickness
near the position where the load is being applied. To investigate whether this is the case,
we calculated the rescaled displacement at the origin, w(a, b, 0,0), as a function of finger
size for a square finger (i.e. a = b). Because of the definition of ce, the displacement becomes
of the same order as the thickness when w= 0(1).

The numerically determined dependence of w oil a is shown in figure 14. These results
show that as a finger gets larger the vertical displacement at. the origin grows quickly.

Indeed, upon expanding the integrals in the definition of W for a, b < 1, we find that

w(a, b, 0, 0) - 4ab A(0, a) da - Kei(0) ; 1.848ab, (42)7r[FI

which agrees with the numerically computed values shown in figure 14 when b = a < 1.
This asymptotic result, is useful because it shows that the displacement grows quadratically
as the finger size increases this ensures that increasing the size of the )erturbation makes
a large difference to the displacement field, since the size of the force applied by the finger
increases greatly. In particular, the displacement does become 0(1) even for relatively small
finger sizes (i.e., values of a).

We also note that for a > 1, w(a, a, 0,0) - 1. This is to be expected since in the
limit that an ice floe is overlain by another floe, it must sink a vertical distance p,lpt, to
increase its Archimedes buoyancy enough to balance the overlying weight.

5.5 A threshold thickness

Just as there was a critical thickness above which simple rafting is not possible, we expect
that there might, also be a critical ice thickness above which simple rafting, rather than
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0.8,

0 0

Figure 14: Plot, of' L.c(a, a, 0, 0) for various value s of finger s ize o (solid line). 'I'le dashed
lines ind(icate t he asympltotic expression (42) validl inl the limit (o << 1 and( thle liinit L, w
Validl for (a >~ 1.

finger rafting, will take place. Based Onl intuition glealledl f'roIl inlanv. field1 obiserva,mions

W\eeks [211 suggest,s that for ice thicker than aroundl 10) cm, finger raft ing lbecoliies narer,
p)resumIuably result,ing instecad inl simple rafting.

As we found with tdie rafting/ridging transition dlisculssedl earlier, we exp)ect Ilhat, lhe
genleral ionl of* large IlomielAts withliin thle ice nmy cause thle Stresses wit himi thle ice to( exceed
the muaxilmuml value that the ice c'an supil, 7,t , For sinhlplicit,y, we will conisidler thle
Ili(iililts genleratedl ill a) plate when a rectanigular finger of widt4ii 2a1 ai( lenmgthI 2b) from

another floe sits above it. (The finger is inmaginled to occupyv the region 0 < X < 2b, IV'I < (I.)
ExIplicit formulae f'Or tie nioloients genierat,e(l bY a point, force are given b.", Kerr amid K wak
[10]j hut, are not reprodluced hecre. After int egrat,ing d iese expressions over lie s'quare

0 <K Xo < 2b, Pol < o (as f'or displacements ill the last sect,ioii), thle iioiuieiits inl thle X nd
Y dlirect,ions miaY l)e writ tvii

- B p, Bh
AI~~7(X, ~ T2 t, -- ( 1 ,x±v''y ~(a. b, X, Y)

AI!/j(X, B B(,/II",X + Wxv) - )Bh /I(o, b, X, Y),

resp)ect,ively.
Tme funlctionis /1, and( Ity imay he evaluated hy iuminerical qIuadlrat,uire. (url iiliericnl

results are inl perfect agreement withl those t,ahulated by Nevel [13], over his linfit,ed range
(if values of a and b. We find that thle largest mniienits genleratedl are il i, /1 lAb. 0() So that
time f'ailure of thle ice floe shiouldl he imanifested inl a (rack perpendiculaIr to the floe edlge.

This is contrary to the failure of simiple raft ing ini which a crack formied parallel to thle free
edlge of the ice floe.

To finid a critical thuickniess ahove which finger raftinig can no0 longer occur, we look

266



*0.3

0.2

i 0.1

*0._
0 1 2 3 4 5 6 7

Figure 15: Plot of py (A/4, b, 0, 0) as a function of the finger length b.

Ifor the maximum value, Ite, of /i.(a, b, 0, 0). Since we expect individual fingers to have a
dimensional width of A/2, where A is given by (40), we choose a = A/4[. and calculate
py (a, b, 0, 0) for this value of a.

Figure 15 shows the numerically computed values of py(A/ 4[., b, 0, 0). This demonstrates
that there is indeed a maximum value, it, : 0.292. Given this maxinun moment we require
that,

6 p, BhU ,Yn> h2 PC2T12 (43)

for the finger to be able to grow indefinitely without, the ice beneath it breaking. This

condition is satisfied provided that

H p< [p 2(1- _V 2 )] 1/2 ( r 1/2 2.6 C", 1/2

The critical thickness at which finger rafting cannot happen scales with oT,/E in pre-
cisely the same way as the critical thickness at which simple rafting gives way to ridging.
However, the prefactor is different (and smaller!) suggesting that for a given value of a,,/E
we may be able to transition between finger rafting, simple rafting and ridging just beI varying the ice thickness. The condition in (44) may be recast in dimensional terms as

h 1< p 1 2 Um (45)

Ps 3psgpc E

Taking typical values for the material properties of sea ice, we find that this transition
thickness lies in the intervalI4 cm < h, < 8 oiin. (46)

This estimate is in reasonable agreement with the suggestion of Weeks [21] for a transition
thickness on the order of 10 cm and is consistent with most of the field observations collected
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Figure 16: Regime diagram showing the values of o,,,/E and H for which we exp)ect to ob)
serve each of t,he dleformation types observedl. Phot,ographs courtcs), of XWilf'Ord NVecks [21].

inl table 2, for which finger raft.ing is observed inl ice of thickness upl to around 6 c-ill. T his
also p)rovidles somie quantit,ative supp)1ort for the st,atement, of WVeeks and IKovacs [24] that:

"'Although lc.s strikingulheni, obserivcdrom Ithc alir, Simicra igu of thin i cc.. . is

actually manc cononon than fin gcvrrating4.-

Because the mnaximumi bending moment inl the floe is 1 (a, b,0(10), we exp)ect that at crack
will forill perp)endicular to it.s edge. Perhaps this means t hat the finger 1breaks tfliroughi t1he
floe and( is subduict ed benieat h along with thle remainder of' thle raft inl simplle rafting'! WC
exp)ect that above the critical thicknless a finger might st,art to growv but will fall t hrough
the underlying ice once it, reached a lengthl of' at, most U[, However, we areV un1aware ofI
ohbservat.ionls wherein finger rafting mnet,amlorp)hoses into simplle raft ing againist. which to
check this p)icture.

6 Conclusions

XVe have stud(ied the mechanics of ice floe failure using idlews from thlin plate thleor.y. Because
ice is so weak ((7,,/E < 1), thin plate theory allows us to stiludy the buckling inst abilit '

of an ice floe comphressed by the motion of' imuch thicker flanking floes il1) to the( p)oint, atI
which thle ice fails. NNTc then focused onl thec three mainl typ)es of dlefornmat ion that result fronm
he sublseqjuent, collision of two floes. By considering t,he forces induced 1) thlese (differenlt

dleformnat ions we determinled quantitative conditions on the (differenit ice thicknesses for whichI
each of these (deformation p)atternis is observed. Ini part icuilar. bY p)lott ing thle dimenisionless

conditions (27) and (44) onl thec same graph, we obt.ain a regime diagraini showing thle3
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I values of or/E and H for which finger rafting, simple rafting and pressure ridging should
be observed. Such a regime diagram is shown in figure 16. Although our main interest,
lies in the applicability of these results to floating ice, our experiments with wax sheets

demonstrate that finger rafting may also be observed in systems other than ice. However,
we do not expect the regime diagram shown in figure 16 to be quantitatively valid for other
materials: ice typically has am,/E < 10- 3 so that the transitions between different regimes
always have H < 1, and thus thin plate theory is valid. This is not generally the case for
other materials.

Appendix A: The wavenumber in buckling is real

In section 3 we assumed that the wavenumber k observed in buckling is purely real so thatI there are no exponentially decaying modes. Here, we prove this assertion by suplosing
instead that there is a complex pair of wavenumbers k± satisfying (12). Since the tension
-r is real, k± must be complex conjugates of one another and we may write k± = k, ± iki.

The dispersion relation (15) then reads

(kr + iki) tan(k, + iki)a = (k, - iki) tan(k, - iki)a. (47)

Expanding this equation and equating imaginary parts gives

aki cos2 aki akr
f(aki) -- = g(ak,). (48)

cosh 2 aki tanli akr

A plot of the functions f and g reveals that their ranges do not overlap and so there caiot
be any solution of (48) our assumption that k was imaginary is incorrect, and we have

shown that k is, in fact, real.
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The Formnationi of Star Patterns oni Lake IceI

Victor C. Tsai

March 15, 2007

1 AbstractI

St ar-like p)atternls have been found on1 mian,y lakes that, have a snow cover onl top) of a thll

ice layver. A number of workers have (descrihied these 'lake stars' lbut t here have beeil 110 I
attempts at conlstructinlg a mathlematical inodel of the foriitioni process. Here we puit

fo~rthI a mat hemat ical modIel that dlescribes the forimation of radial fingers emmanating fromn a

ceninal source. Performn g linear staIbility N,1alysis oni thme stead(lv state solution, we aire able
to accurately p)re(dict the formationi of fingers but the number of' fingers is very' senisit ive to

input parameters. NVe also carry' out scaledl exp)erimnilts5. At sinall times and( to first order.

the results of thiese experimlents agree with our linear theor.y.

2 Introduction

It is a cominioll occurrenice t hat snow, falls onl lakes that already have a thlinily ice coveredI

surface. Holes oft en formi in the thbin ice (jor reasons not well understood [3]). after whlichl
warmn lake water flows thbrough the hole and( thbroughi the snoxv laYer. This wari waler
inelt s the snow and leaves (lark regions where the snlow has inelted iway. Th'le patternl left
b , t his pr1ocess looks st ar-like (see Figure 1) and we (all this pat,tern a laike star.' Lake
stars have been dlescrib)ed a number of times (e.g. [3, 2. 5]) but veryv little work hlas been
done to understanid thle formation p)rocess. Kinight. [3] out lines a phlysicnl Pleal that is 111enilt

to dlescribje the p)rocess, but no attempt is inade at, deterniimiii)g whet her this idea can be3
translated into ai phi'ysical miodel that, produces results consistent withI field ob.)'vrvat ion.

The mnain idlea of Knight is that locations withI fa.ster flow rates inelt p)referenltially, leading

to eveni faster flow rates and( therefore to an instability that results in finlgers. This ideai isI
quialit atively similar to mii.-v othler geollnorphlologic instaibilitY Suhl as the onies dliscumssed
bY Schiorghiofer et al. [4]. We take this idea as the starting point for our model.

3 Mathematical Model

3.1 Mathematical Formulation

III order to m1odel the phi ' sics of Lake star formation, wve niake a imiher of' asslinip)tifflis.
Nlaiv of' these assumnptions are nIot, strictlY t rue but are reasonable approximations thalt
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Figure 1: Typical lake star pattern. The branched arms are approximately 1 i in length.

facilitate the attainment of a simple solution that can be easily compared with observations.3We shall discuss each assumption when it is made.
We begin our analysis by supposing that there exists a central hole through which warm

lake water can seep. Both Katsaros [2] and Woodcock [5] attribute these holes as well3 as the associated lake star patterns to convection patterns within the lake. However, at
least in sonic circumstances the holes seem to be formed from protrusions (e.g. sticks that

poke through the ice surface) [3] thus castilg doubt on the convection idea. Lake stars are
observed in all of these circumstances so we treat the hole formation as independent of,
but necessary for, lake star formation. As discussed by Knight [3], the hole results in a
water level that extends above the thin ice and into a slush (wet snow) layer. WVe therefore
treat this (warm) water region as having a constant height above the ice or equivalently a
constant pressure head. This pressure head drives flow of water through the slush layer.
subject to a melting condition (Stefan condition) at, the water-slush interface. We treat
flow within the slush as a Darcy flow of water at 0°C. Temperature within the liquid region
is assumed to obey the (advection-diffusion) heat equation. The water in both the liquid
and slush regions is treated as incompressible. In order to fully specify the mathematical3 problem, we require an outer boundary at which the pressure head is also known. While
pressure measurements have not been made in the field, circular water-saturated regions
(a few meters in radius) typically surround the lake stars. It therefore seems reasonable
to assume that the differential pressure head falls to zero somewhere in the vicinity of this
circular boundary. The actual boundary at which the differential pressure head is zero likely
is not completely uniform (as in Figure 4 of Knight [3]) but is at least a good approximationIespecially before strong finger formation (i.e. in the linear regime in which we perform our
analysis). Finally, we treat, the system as a two-dimensional flow. This cannot be strictly
true for two reasons. First, the water in contact with ice must be at 0°C whereas we
treat this water as having an average temperature above freezing. However, perhaps this
assumption is reasonable in a depth averaged sense. Second, the decreasing pressure head
in the radial direction must be accompanied by a corresponding drop in water level, thus
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Boundar
Condition

BC at r=r
BC at =a P=

arC,/,rL 3TT=

Fieeai P)ePOW r=

Ii akngt ievet (8 ( i E quat n i-io n T=T efre t i riig bcenor aci a r.P=pI

hegre. For tchemaicr~ of te sme anaysi themoelt her.w l goe Icr;),ti( lsloin wo

nsent( str.(er e tions note how ite.oaiso the snlsiy0s( l~e tem ;1(l t ac c,r iei. mor

maistg the cldiestion nuinfeOreviou Therfore,) th iing 1f1rhea ia more m-cuae, Wv

have the following system of equations (see also Figure 2):3

TI = 0 a (d. 1) <~ < U'(2)I

V 1) 0 (1,(0,t) < r < 1-(. (4)

uiY UT la, I. (1(. I)
= v (-1 0 <'P~ r K 7.(. (7)I
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3 with boundary conditions

- VT r =a(5, t), (8)

ST r =a(O, t) , (9)

0 r=ro

* p o r a((P,t) , (10)
10 = ()

where (1) describes advection-diffusion in the liquid, (4) and (5) describe mass conservation
with a Darcy flow (7) in the slush, (8) is the Stefan condition, and (9) and (10) are the
temperature and pressure boundary conditions, respectively. Note that (3) and (5) can bothI be satisfied since the liquid region has an effectively infinite permeability. T is temperature,
u is Darcy fluid velocity, p is pressure, and a denotes the liquid-slush interface. Liquid
properties are K (thermal diffusivity), Cp (specific heat) and pi (dynamic viscosity). Slush
properties are H (permeability), (solid fraction) and L (latent heat).

Non-dimensionalizing the equations yields

0- + u. VO =CV 2 0 ro<r < a(,t), (11)
0 0=0 a(O, t) < r< (12)

p = 1ri < r < a(O, t), 1m)

3 p = 0 a(O,t) < r < 1, (14)

V u = 0 ri < r < a(o,t), (15)3 u ua-, r = a(0,t), (1()
u=-Vp a(+,t) <r< 1, (17)

with boundary conditions

S=-VO r=a(O,t), (18)
1 r ri

O= 0 r=a(o,t), (19)

- 0 7- =l
-{1 r=ri

- p{1 r=a(o, t), (20)
__0 7-= l
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where all variables are niow nion-dimensionial with lenigth, velocity, pressure. mid temiperature3

scaled (respectively) by

u - o (22)

pjf.o' (23)

T -~ T '= T6 (24)

anid noni-diineiisioial p)aramieters fanid S are givenl by3

_ (25)

IN the lake star sYstem, liquid temperatures must be less than or equal to 4-1 C simic the
lake is frozenl at the top. Mlakinig conservative estimat,es, To < 4'C'. > 0.3 mnd LICI 'P

80'C t,heni S > 6 >~ 1. Estimating u( (1cm/hir < 'u( < l0Ocm/hr) and r() (0.3mi < r() < 3m)

from the hield olbservatimns of Kniight [3] and using K in, '5 yieldsf < 0).1 I <1
Assuming S >~ 1 (quasi-sthationary approximation, which we adopt hleiCIfOkrt,h) alidl ( < I,
equations (11) - (20) arc easily solved for a purely radial flow with c(-Oiridricn] sYmmietrY

(no C) dlependlence) mid1 circular liquid-slush interface. This (bomundarY laver) solutimn is

U = '11g') i,Kr < 1 (27j

P log(r) >(.(8
P log((I() r> (Ij

Zr 1 - !(-I/Ig(aOI)+t2() (

aSo oito 

((io)
-I/ log(ao) + 2:

where equatim)1 (30) has an approximate implicit solutioni for (o) given by I
a, 0 2  log(ao) I

3.2 Linear Stability Analysis

In order to study the growth of perturbations fromi steady state, we perform ai linear stnabilit v y
analYsis aromnd t his cyliiidrically symmetrical flow. Iii this linear applroxiiniationl, we still
have a purely radial flow since the 'Iziutit al compIJolienlt of flow ('liters quamdraticallY witll)

pert urbit.ionis froni stecady state. Setting

r a + (r. (32)1
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I = co' (33)Sik', '+at

Oo + f(r)ek , (34)

i a = ao + Egcek+t, (35)

we first solve (14) subject to (20). For g < 1 and c < k' then

Ilog(r) -gexp(ik'' + at) (rP _o(o + I- r> ao, (36)
logao) -ao log (ao) \ao/

1 1 k' gexp(ik'O'+ at) (r -k/-1

+ -- r > ao. (37)
71 - log(ao) r -ao log(ao) \ao/

Substituting (37) into (16) and satisfying (15) yields

1 1 k'
= I I -:+ 9 exp(ik'' + at) r <ao. (38)

-log(ao) * 7 -rlog(ao)

Substituting (38) into (11), and dropping terms of O(e) gives

1 - f , k' 2  k'1 9 o0o (39)
-ao log(ao) af- f -ao log(ao) Or,

U where ( riao = 1 + cr'/ao, with boundary conditions given by

Sf (r' = -0c) 0, (40)

f (r' = geik' ' + Yt) = 0. (41)

To first, order in 9, (41) is equivalent to

f(r' = g) - -Or, (42)

USolving (39) subject to (40) and (42) gives

i__ (r' -- 9 a1 Ak ° e + r' + 9 r'/(-aoilog(ao))' (3

f (71 -aolog(ao) -k'log(ao)) k' log 2 (ao) ) (43)

i with

A+_ 12 + U-/ 1@2)with2ao -log(ao) + C f+  (- log(ao) + )2± )

1-k1 (44)

-2aO log(ao) 1+ log 2 (ao) +

I- Equation (18) can be rewritten as

1 00
a= SO- Ir'=gexp(ik'O'+7t), (45)
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a/j°g2(a) - - - 00o
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Figure 3: Stability curve: Nondiniiisioial growth rate T versus nondimen.sional waveIIIIII-

her k'. Scales for the axes are given at the upper left (a axis) and the lower right corners
(A' axis). ( is plotted for the range of plausible a( (blue and red curves) and for the
approximation (47) (green curve). 3
so that suhstituting (43) into (45) gives the nondiniensional growth rate (a) as a function 1

of wave nunler (A'):

1 / + 4A.,2 log2(,() 1)N/

= 2oo log2 (uo)S -k'log(() 1) . ( ( )

Equation (46) can be at)proxinated in 0 < a< 1 as

log2  ) ( 1 - x ). (-17)

where x - k' log(aO)/ao.
The stability curve (46) and the approxinmation (47) are plotted in Figure 3. TheI

essential features of (46) are a maximum in the range 0 < AV < a()/log(a(), Zero growth
rate at k' = a0/ log(ao) and a linear increase in stabilitY with A' for large A'. The iaximun I
growth rate occurs at approximately

-2 log(uo))' (48)

with (non(liiensional) growth rate

(Tmax 45a log2 (uo) (4!))

Translating (48) and (49) back into dimensional quantities, we find that Ilie most, unstable

mode has angular size given by

Odc77TC. -20'K I o (50)
Itol*o \ ( a 0 ) / (((
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I and has growth rate given by

Idiw =4Sro log 2 (ro/ao) ) (51)

3.3 Numerical Results

I For observed lake stars, some of the relevant parameters are not well constrained. A plau-
sible guess for r0 is the radius of the wetted (snow) region around the lake stars since it,

is a reasonable estimate that if there were significant excess pressure at this point then
the wetting from would have advanced further. Field observations [3, 5, 2] constrain this
wetted radius to be 1.5m < ro < 4m. However, it is also possible that the effective value

of ro (r' f f ) is less than this either because the wetted radius is smaller earlier in the star

formation process or because the ambient pressure level is reached prior to reaching the
wetting front. The most logical interpretation of a0 is either as the radius of the lake star

'(rlakestar) or as the radius of the roughly circular liquid-filled region at, the center of the
U lake star (r-iquid) (see Figure 4). From field observations [3, 5, 2] hm < ?l,k,,t, < 2ni and

0.Im < rliquid < 0.5m. Although ro, rlakestar and rliquid each have a substantial range, the

ratios Ilakestar/ro and I"liquid/r 0 are observed to have a somewhat smaller range of values:

0.3 -< rakestar/ro < 0.6 and 0.07 < rliquid/ro < 0.15. These constraints are useful since
equations (50) and (51) are more sensitive to ao/ro than ao or r0 independently. Here we

take a0 z rliquid as the appropriate value of ao during the initial stages of star formation,
although perhaps 1,ef is sufficiently less than ro that I'lakestar1r0) is a better approximation
to ao/rJf than rtIquid /rO. Knight [3] estimates the rate of advance of the wetting front to

3 be somewhat less than 10cm/hr. If the interpretation of -() above is correct then this rate
gives a reasonable estimate of uO as 1.4.10-5m/s < u0 < 2.8- 10 5 n1/S. K is well constrained
by measurements to be K z 10-71n2s - .3 Using these parameter values, our linear theory predicts the most unstable mode to
have wavelength between 8' and 130'. Letting N equal the number of branches, then
N = 360°/01,g so that we expect between three and 45 branches (initially). These values

of N encompass the observed values for lake stars (4 < N < 15), although the largest

values (15 < N < 45) are never observed. Despite the dearth of field observations, we are
encouraged by many qualitative features such as the fact that stars with larger values of

ao/ro seem to have a larger number of branches. Additionally, our analysis predicts that
(given constant ao/ro) larger values of r0 and u0 would result, in more branches. Larger

P0 (higher water height within the slush layer) and larger H (less well-packed snow) would
result in larger values of uO. Thus, some of the variability among field observations is likely

to be due to variations in these quantities (for which we have no direct, observations).

At this point, it is worth restating the fact that the theory presented here is only a linear3 one and the phenomenon of lake stars is highly non-linear since the dendritic arms are far

from small perturbations to a radially symmetric pattern. Since the non-linear growth

phase is likely difference from the linear one, it should not be surprising that our model
results only approximately agree with observations. In order to more accurately predict

observations, one could perform a weakly non-linear pattern formation analysis (e.g. as

in Cross and Hohenberg [1]) (which may result in a Landau-type equation) or one could

solve the system numerically. Both of these approaches would likely yield improved results.
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Figure 4: Schematic showing r() P, t
I'akcstar alid 'I'liu id

However, while it is true that, a inore complex pliV sical model inay, provide miore detailed

p)redlictions than t iO(l oel dlevelop)ed liere, the state of, the fieldI observat ioiis does llot atI
this tuime warranlt that level of (let ail.

4 Experimental SetupI

To c:lieck the validitY of our analysis, We performl lahorat ory ( xperillienits. The goal of'tlis

exp)erimients is more to test, thle conceptual idleas inl our1 simple inathiiiat ical miodel t han 1o

make a (quanititative connection with the ohbserved lake st ars. Ill these experimemnts. we (ool
a circular pllate to slightly below fr-eezing ( -0.5'C); place a 0.5 to 1I-Ciii high, r-olglyl-

circular layer of slush onl to1 ): and( flow 1VC water through the slush (see Figure 5).I
lb simunlate wet snowv we place ice ili a high-power blender tiil t lie slush is vislially,

uiniformi, although there is inevitably a ranige of grain sizes. lb fori thle circular layer olh

slush we hand-pack the slush dlirectly oil the (01(1 circular plate. NN ,e attIeiplt, to ,0r,ni a I
constant thickness, roughly circular layer simphly by molding thle slush andl remloving excess
ssh until the correct, geometry remiains. Durinig this process air bubbles are soliiet illies

incorporated which causes the slush p)ernicalitY to he variable. This variable per-IiieabiilitlyI
likely affects our qu.antit at ive results.

NVc p)erformi the experimenlt 14 t ilnies. The p)ar~ameters t hat w'e var ' v are thle iliit ial size
of the water-filled central hole ((a0), the initial size of* the circular slush lay, er (ro), amnd theI
flo rate (Q) (which dleterililues It()). Ill each I-111 anl at tenlipt, is Iiiadle to mianually vary'

the flow rate so that, the water level (Ito) inl the central hole remains rougly* conistalit. Ill
many of' the runs, we begin the Cxperinient, without thle centrail hole. Ill p)ract ice, however,
the( first few,N drIop)s of warini water create a circular hole withI radis one( to three tiiiies t lie
radius oIf the nozzle that dlivers thle water (0.ciii < aio < I .Ocin ). It is sigiiicantly iiore3
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I Figure 5: Experimental Setup: A 30 cm diameter plate with a built in manifold is connected
to a cooling reservoir and maintained within a degree of freezing. A separate reservoir of3 fresh water 1V above freezing delivers fresh water at IVC to the center.

difficult to prepare a uniform (permeability) sample with a circular hole initially present.
Ihese runs are therefore more difficult to interpret.

Ve observe fingering of some type in every experimental run. From this we can conclude
that fingers are a robust feature under the conditions provided. However, there seem to l)e
two distinct types of fingering: small-scale fingering (see Figure 6) that forms soon after the
start, of the ex)eriment, and larger channel-like fingers (see Figure 7) that are ubiquit,ous
at later times of the experiment and often extend from the central hole to the outer edge
of the slush. Since the channel-like fingers provide a direct path for water to flow (without
Darcy flow within the slush), these are likely not directly analogous with lake star fingers.
The initial small-scale fingering, on the other hand, have characteristics more like the lake
stars. We therefore assume that these small-scale features are the ones of interest. One
should note, however, that the larger channel-like fingers seem to form out of small-scale
fingers, so there may be a continuum of finger-like features and it is likely that the channels

represent a very non-linear growth of the small-scale figures. In each experiment we measure
a 0 , r 0 , h0 , Q, and distance between fingers (df), which we tabulate in Table 1. From these
quantities, we can calculate u0 = Q/(2rroho), 0caIc Odegrees [from equation (50)] and
O,, = 18 0 °df/(7rao), and therefore compare scaled experiments both with the model and

field observations.I
5 Comparison of Theory, Experiment and Field Observa-

3 tions

In Figure 8 we plot ¢obs versus Ocalc for the various field observations for which we have esti-3 Imates of parameters, the laboratory experiments described above, and the model [equation
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Figure 6: TYpical exp)erimfent,al run where small-scale fingers aire p)resent . For scale, t l1e
nmozzle liead hams dliamet,er of 5 nin.

Figure 7: Typimcal run where channels form. Tis pict,ure is t,aken from tice und(ersidce. Note:

pamrt of time slush b)roke off' whenm it w~as flipped to iniage it. Time mllllmm1bers oi thle mI-lc] are
im ('i11.
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Figure 8: Comparison of theory, experiment and field observations. Circles are field obser-
vations (cyan = best, constrained field observation, black = range of plausible field obser-
vations), crosses are experimental results (red: flag = 1, green: flag = 2, see Table 1), red
line is theory, green line is best-fit line of unflagged (blue) experimental results. Note: all
experimental results have error bars of at least a factor of two in the x-coordinate and 3(X
in the y-coordinate (see Table 1).
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Expt # ao (ciii) ro (cii) ho (mmii) Q (ml/min) (if ((cill) flag
1 1.0 8 3 29 0.8 0
2 1.0 8 3 11 0.5 0
3 0.5 10 2 9 1.0 2
4 1.5 10 3 14 0.3 0
5 1.5 9 :3 14 0.5 0
6 2.5 8.5 10 143 2.5 1
7 2.5 10 10 86 3.0 1
8 0.7 10 3 14 1.0 0
9 0.5 4.5 3 14 0.4 0

10 1.0 9 10 128 0.9 1
11 2.0 10.5 10 128 0.4 0
12 1.0 3.5 10 71 0.2 0
13 0.3 7.5 1 14 0.5 2
14 0. 6 7 314 0.5 0

Table 1: Experimental Results: Runis with flag I seeni to have chianniels buIt showv llo

(lear small-scale fingers. Ili thiese cases, channel spacing is taken for (If. Runs withI flag
= 2 were not wvell dlocumienitedl (blurry p)hotos) and( therefore dlifficult to int erpret . Errors
are approximnat ely 0.3 ciii, 0.5 cmil, 2 ill. 5 iinl/iiiini and 0.2 cini (respectivelY) for the five
m(ieasuredl quantities.

(50)]. The most obvious ftutlre of Figure 8 is the large aniont of sc~atter ill b)othI th le x-
periinieiita l and( observat,ionial (lat,a. M\oreover, tlhe data does not lie oil Ole one-to0-onecuv

p)redict,edl bY the iodlel. Howvever, the dlata are not, orders of iaignituode oflffromi thle miodel
p)redlictioiis, anl thec experimental results evenl trend inl thle right dhirect ion, linvinig al hest -lit
slope of 0.34. We also A,eipt to filld trend(s inl the experiIllitll (latl anot, repiresenlt ed
by the inod(1( by comlparing y/ -- OobsOcac v~s. various comubiilat iolis of, conltrol paramiet ers
(-= X) including V0 (), r/uo. Yoilo. 7'o/a()ioy('ro/aO) and iog('r(/1a()/1(oa n). For all plIot,s of'
yvs.x,our miodlel predicts a zero slope (and y-itercep)t of 1). A nion-rand(omi dlep)end(ence

of y onl x would point t,o failure of some part of our modlel. Thus, to test thle validity' of
our miodel, we perform significance test,s Onil n1lon-flagged diata wit'l ll e 111ll lYvpot liesis
being a nion-zcro slope. Ili all caises5, the nutll hlypotiesis is accept,ed (not reject ed) at tile
95W% confidence level. Thus, although the agreenment, is far froml p)erfect, the simpllle illiodel
captures all of the significant trendls inl the exp)erimienital data.

6 Conclusions

Bly quantifying anl(l extending the qualitative ideas of lnight [3], we have coulst,ruct,ed al

Mathematical model that, is able to exlplain flhe radiating finger-like p)at,teris oil lake ice t hat

we call thle lake st ars. The miodel y ields a prediction for t'lle wavelenigthl of thle most, mmulst able
nuiodle as a function of various physical paraumeters [equation (50)] that agrees dlecenitl ly withl

field observations. We also performn cxlperinuient,s ill which we ob)serve a similar fingerinig

p)at tern. To first, order. the expjerimntal results also aigree withl the model. allthbough there
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is substantial scatter in the data. The disagreement between field observations, model,
and experiment can be attributed to poor measurements and the limitations of the simple
theory, as discussed in more detail in Sections 3.3 and 4. We expect that adding complexity
to the model should yield better quantitative results but that the general idea of the model
and the qualitative predictions that result from it should remain valid.
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