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Abstract

N. J. Balmforth and J. S. Wettlaufer
October 2006

Ice was the topic under discussion at Walsh Cottage during the 2006 Geophysical Fluid
Dynamics Summer Study Program. Professor Grae Worster (University of Cambridge) was the
principal lecturer, and navigated our path through the fluid dynamics of icy processes in GFD.

Towards the end of Grae's lectures, we also held the 2006 GFD Public Lecture. This was
given by Greg Dash of the University of Washington, on matters of ice physics and a well-
known popularization: “Nine Ices, Cloud Seeding and a Brother’s Farewell; how Kurt Vonnegut
learned the science for Cat’s Cradle (but conveniently left some out).” We again held the talk at
Redfield Auditorium, and relaxed in the evening sunshine at the reception afterwards.

As usual, the principal lectures were followed by a variety of seminars on topics icy and
otherwise. We had focused sessions on sea ice, the impact of ice on climate, and glaciology.

This year was a good summer for softball, with the Fellows enjoying some notable successes
on the field (against both the other WHOI teams and the staff team at the summer’s close).

Some important acknowledgements: Young-Jin Kim helped out with the computers during
the first few weeks, and Keith Bradley worked his usual magic in the Lab throughout the
summer. The program continues to be indebted to W.H.O.l. Academic Programs, who once
more provided a perfect atmosphere. Most unlike the '65 Dodge, Jeanne Fleming, Penny Foster
and Janet Fields all contributed importantly to the smooth running of the program.
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GFD 2006 Lecture 1: Introduction to Ice

Grae Worster; notes by Rachel Zammett and Devin Conroy

March 15, 2007

1 Introduction

Our aim in this course is to understand some of the processes associated with ice in the
natural environment. Figure 1 shows the location of some of Earth’s ice during the north-
ern winter. These ice deposits may be categorized as sea ice, ice sheets and shelves, and

permafrost.

The Cryosphere

Figure 1: Satellite image showing the ice cover in the northern hemisphere during northern
winter, showing sea ice lying in the Arctic basin, the permanent ice sheet over Greenland
and permafrost in the exposed land surface.

2 Ice sheets

Firstly, figure 1 shows the ice sheet that covers approximately 80% of Greenland. This is
about 10° years old and reaches depths of 2-3 kilometers. On large scales, ice can be treated
as a highly viscous, non-Newtonian fluid that can flow because it is a polycrystalline solid
and contains a percentage of unfrozen water (figure 2). Looking on a scale of about 100pm,



Figure 2: Image of the intersection of four ice grains. Between these grains lie the veins
containing liquid water and dissolved impurities. The scale bar on this picture is 100 pm.

we can see the ice grain junctions and the veins which lie between them. The liquid water
contained in the veins between the ice crystals lubricates the flow, allowing the ice to flow
more easily. This water can also transport dissolved impurities, which will therefore move
relative to the ice crystals; this is important when analyzing ice cores, for example.

Figure 2 also shows that there is a curvature to the solid-liquid interface which is
associated with the surface energy of the phase boundary. We will see later that this
surface energy sets the scales for morphological instabilities of the solid-liquid interface,
such as those seen in snowflakes (figure 4).

The grounded ice cap flows slowly towards the coast, sometimes flowing into Hoating ice
shelves, which ultimately break up to form icebergs. Projects such as the Greenland Ice Core
Project (GRIP) have obtained deep ice cores from near Greenland’s summit. Analyzing the
properties of the ice cores, such as oxygen isotope ratios, allow inferences about the ancient
climate to be drawn.

In figure 3 we see the flow from the grounded ice sheet to a floating ice shelf (Larsen
B) in Antarctica. At the edge of the ice shelf we see the calving of icebergs: this is respon-
sible for approximately 80% of the mass lost from Antarctica. The icebergs are composed
predominantly of freshwater ice, as the ice which comprises the ice sheets first fell as snow,
Owing to the density difference between water and ice, approximately 90% of the volume
of an iceberg is below the surface of the ocean.

When these icebergs come into contact with the warm, salty ocean they ablate, providing
a freshwater flux to the ocean. This is important as the production of deep ocean waters is
sensitive to changes in the freshwater budget.

3 Sea ice

Secondly, there is the sea ice which fills the Arctic basin and is formed by direct freezing
of the ocean. It is typically 1-3 m thick and less than 10 years old: in its first year, sea



Figure 3: (left) Satellite image of the Larsen B ice shelf on the coast of Antarctica. Near
the edge of the ice shelf, it is possible to see the icebergs formed by calving. (right) An
example of an iceberg formed by calving at the edge of an ice sheet or ice shelf. Here the
vertical face is 30 m above the surface of the ocean, meaning that approximately 300 m of
ice lie below the surface.

ice typically grows to a depth of 1 m. This relative youth (in comparison to ice sheets
or glaciers, for example) is caused by the movement of sea ice by polar winds and ocean
currents to warmer waters, where it melts.

Many of the structures and processes observed in sea ice develop because the thermal
diffusivity of heat is much larger than the diffusivity of salt. In this course we shall see that
sea ice can be considered as an inhomogeneous porous medium. While sheet ice only contains
water in the veins between ice crystals, sea ice has a much higher porosity (approximately
10 % in old ice and up to 40 % in new ice). The porous nature of sea ice means that it can
also be modified by internal convection.

We shall consider sea ice to be a mushy layer, which is a two-phase reactive porous
medium. We see in figure 4 that it is not macroscopically solid; instead, it is composed
of ice platelets with salty brine between them. The platelets which form are composed of
pure ice crystals, as the crystals reject the salt contained in the ocean water. Some of this
rejected salt convects into the ocean below the sea ice, and the rest remains between the
crystals.

This convection is also seen in the laboratory. Figure 5 shows shadowgraph pictures of
sea ice growing in a laboratory. In figure 5 (left) when the sea ice is only 3 cm thick, it is
possible to see some convection occurring in the salt water below it, but it is small scale
and has no obvious structure, However, when the ice has grown to a thickness of about 13
cm (figure 5), it is possible to see strong convective plumes in the water below. These have
a high salt content and therefore deliver a large flux of salt to the water below. We shall
see that there is a critical ice thickness at which such plumes occur; this criterion for the
onset of convection is determined by a form of Rayleigh number.



Figure 4: (left) Picture of a snowflake. Here the smallest scale at which instabilities occur
is comparable to the radius of the tip of one of the needles. (right) Horizontal cross section
of sea ice, showing both ice platelets and brine channels. The ice platelets are typically less
than 1 mm wide and form a porous matrix, which allows convection and the erosion of such
channels by the rejection of salt. These channels have a diameter of a few millimetres.

Figure 5: (left) Image of sea ice growing in the laboratory. At this time, the layer of ice
(the dark upper region) is 3 c¢m thick, and it is possible to see some convection occurring
below it. (right) Image of sea ice growing in the laboratory where the layer of ice is now 13
cm thick, and it is possible to see the salty convective plumes below it. It is also possible to
see the ‘pinching’ instability at the base of these plumes. Note that the scales of the images
are different.



Figure 6: (left) An example of erosion caused to a rockery by winter frost. (right) Stone
circles as an example of differential frost heave.

Wairm

Figure 7: (left) Ice needles protruding from soil. (right) Photograph of a column of water-
saturated soil cooled at the top (Taber, 1929). The black regions are ice lenses, which
contain no soil; between these are regions of partially frozen soil. There may also be ice
between the soil particles below the lowest lens.



4 Permafrost

The final type of ice we shall consider is permafrost, or permanently frozen ground (defined
as remaining below 0°C for more than two years). It occurs both on land and beneath
offshore Arctic continental shelves, and its thickness ranges from less than one meter to
greater than 1 kilometer. Permafrost underlies about 15% of the exposed land surface in
the Northern Hemisphere and causes deformation of the ground; we shall be looking at this
and the associated flows.

Figure 6 shows the effects of ice damage to rocks and buildings if they are eroded by
winter frost. The ground may also ‘heave’, i.e. rise upwards due to water being pulled up
from the unfrozen ground below. Differential frost heave may form patterned ground, such
as hummocks and the stone circles seen in figure 6. Underlying this is the force of separation
between ice and other materials: in this context, we will consider the other materials to be
silicates. We will consider how ice pushes on another material forming, for example, the ice
needles seen in figure 7.

There are still some puzzles remaining. Figure 7 shows a laboratory experiment by
Taber where a column of water-saturated soil was frozen by cooling at its top. It might be
expected that a freezing front which moves downwards is observed, but instead a sequence
of layers of alternating pure ice and partially frozen soil forms.

5 Student Problem

If two identical ice cubes are placed in glasses of water and whisky, where the liquids are
at the same temperature, it is observed that the ice cube in the whisky melts more quickly
than that in the water. Why? (Hint: It is not because the melting point of ice is lower in
whisky than in water.)

Answer

Initially when the ice cube is placed into a glass of whisky at room temperature the ice
melts, forming a layer of cold freshwater adjacent to the phase boundary. Since water is
denser than alcohol and the the melted water is colder than the whisky, a plume forms
that convects the cool fresh water downwards and brings warmer fluid with a higher alcohol
concentration upwards. This convective mixing of the liquid below the ice cube supplies
a heat flux at the phase boundary; this flux is stronger than the diffusive heat flux in the
absence of convection.

6 Stefan Condition

The distinguishing feature of solidification or melting is the evolution of a phase boundary
which separates solid and liquid. The speed of this interface can be determined by energy
conservation, as illustrated in figure 8, which relates the rate of energy absorption or release
to the difference in heat fluxes across this boundary. This is formulated mathematically as
follows by considering a control volume around the phase boundary

gs n—q-n—pVyp,Hi+ pV, Hi=0= pLV,, =n-(q —qs) . (1)
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Figure 8: Illustration showing the control volume taken around the phase boundary and
the energy fluxes into and out of it.

Here q = —kVT is the heat flux from Fourier’s law, k is thermal conductivity, n is the unit
normal vector pointing from solid to liquid, p is the density (assumed to be the same in
each phase), V,, the interface velocity, H is the enthalpy, L = H,— H, is the latent heat and
subscripts s and ¢ denote solid and liquid respectively. We assume that the phase boundary
is in equilibrium, implying that the temperature is constant on either side of the interface.
This equation is known as the Stefan condition, attributed to Stefan in 1891.

7 Problem 1

We consider a problem posed by Stefan in 1891, where solid ice is growing into relatively
warm (715, > Tpg) water from a cooled boundary at z = 0 (figure 9). We assume that
the liquid portion is at the melting temperature 7j, initially and therefore remains at this
temperature. The governing equation is given by the thermal diffusion equation

b
—

or o ( s‘n‘) or O*T
Py k = :

il 5 =l ey (
at 0z 0z ot ot?

where the conductivity k = pe,k is assumed to be constant and the thermal diffusivity is
represented by x. The boundary conditions for this equation are then

T(t,z2=0)=Tg, T(t,z=a(t))=Tn, (3)

where z = a(t) denotes the interface position and the unknown interface velocity is deter-
mined by the Stefan condition

da AT .
75 — . 4
P dt oz (4)

7.1 Solution

This problem can be solved using a similarity solution, as there is no intrinsic length scale in
the problem. We can determine the form of this similarity variable using a scaling analysis
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Figure 9: Growth of a planar solid into a liquid, maintained at the melting temperature 79,
from a cooled boundary maintained at temperature 7'5. The position of the interface as a
function of time is given by a(t).

and show that a fixed length scale cannot be formed. Let us define the appropriate scales,
AT =1, —Tg, D and 7 for the temperature, length of the domain and time respectively.
From the diffusion equation (2) and the Stefan condition (8) we obtain the following

AT AT — :
L HF = D ~ /KT, (D)
,(JL{—_) ~ A'% = ,{.if'-_”h'%'f‘ = D~ kTS Y?, (G)

where S = L/(cpAT) is the Stefan number. Since the relationships between D and 7 in (5)
and (6) are the same, there is no intrinsic length scale, and a similarity solution is possible.
In addition there therefore is no time scale so we choose 7 = {, the actual time, in which
case D ~ /kt.

We introduce the dimensionless variable f such that

z % z
T-Tp=ATf|—=,— | =AT f| —.,1| = AT f(n). (7)
¥ SR Vv Kt '
We choose 17 = z/2v/kt for mathematical convenience, as the similarity variable may be
multiplied by an arbitrary constant. In addition we know from scale analysis, using the

diffusion equation, that length and therefore interface position can be assumed to have the
form

a = 2uvst, (8)

where the parameter p must be determined as part of the solution. Rewriting the model in
terms of the similarity variable, we arrive at the final set of non-dimensional equations

f'=-of, (9)

fn=10)=0, (10)

fin=wu)=1, (11)

28 = Fln:=ys). (12)
ol
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Figure 10: (a) Solution to equation (17) for the eigenvalue p as a function of the Stefan
number, S. (b) Solution to equation (7) of Lecture 2.

The solution to equation (9) is determined using an integrating factor and determining

yl y
(_‘—.uz dy + co = [ = cyerf(n) + co. (13)

0

The error function, erf(n), is defined by

erf(x) = —/ e~ du, (14)
0

with the following properties

erf(0) = 0, (15)
erf(oc) = 1. (16)
Boundary condition (10) implies that ¢ = 0 and boundary condition (11) gives ¢, =

1 /erf(s). Finally the Stefan condition (12) gives us an parameter equation to be solved for
the parameter j. From equation (12) we then have

l' = Vaperf(p) e = F(u). (17)

i

In figure 10 we plot the parameter p as a function of Stefan number. We see that the growth
speed increases as the Stefan number decreases, which corresponds to increasing the driving
temperature difference or decreasing the amount of energy required to melt a unit mass
of solid. We should note that the interface position is given by a v/t and the interface
velocity by @ o 1/v/t so that the growth rate of a solid decreases with time.

7.2 Quasi Stationary Approximation

For large Stefan numbers we have relatively small sensible heat compared to latent heat
and the growth rate will be slow compared to the thermal diffusion rate. In this case, the
temperature field will evolve more rapidly than the boundary position and we have a quasi-
steady state regime for the the diffusion equation. This implies a linear profile of the solid



temperature that is slowly decreasing in slope as the boundary moves. Integrating Laplace’s
equation twice and applying boundary conditions given in (3) we obtain the linear solution

I'=Tp+ (Im—T.) (18)

a
Substituting this solution into the Stefan condition (12) we arrive at the following expression
for the interface position a

da 1 2

—_—= =, = () = — vV ki, (
u(“ 5 a(0) =( = a .S\/H (19)

8 Student Problem

Question

Solve the Stefan problem given in problem 1 for the case pg # py.

Answer

When the density between the solid and liquid differ by an appreciable amount there will
be a normal velocity to the phase change surface due to the expansion or contraction of
the liquid as it solidifies. To formulate this effect mathematically we draw a control volume
around the moving surface and conserve mass and energy as follow

. ; .
£ pdV = / ps(a— Vi) dS, — / pe(a— Ve)dSe, (20)
dt Jy Js Js '

T pHdV = / psHg(a— Vi) +n-qs dSs — / peHe (0 — Vi) +n - qp dSy. (21)
at Jy JS JS
In the limit as dr — 0 the amount of mass and energyv stored within the control volume
becomes negligible and we are left with the following relationships

ps(a — V) = pela — V), (22)

psHs(a—Vi)+n-qs=peHe(a—Vy)+n-qy. (23)
Since there is no motion in the solid, Vg = 0 and the mass conservation relation gives us a

relationship for the fluid velocity. Substituting this relationship into the energy conservation
equation and noting that L = Hg — H; we obtain the modified Stefan condition. These

o 0 (7”‘ _ ””) . (24)
dt P !

psL— = (q¢ — qs) - n. (25)

conditions are

t

The addition of a fluid velocity on the liquid side adds an advective component to the
governing temperature equation. The new model can be solved by a similarity solution

10



as a simple extension of the last section, but does not yield any new results. Since the
temperature profile is homogeneous initially it must remain so for all time. On the other
hand, if the liquid were under-cooled (as we shall see in the third lecture) or if we were
melting the solid, the advective component would give a small correction to the interface
speed as long as ps &~ py.

References

[1] Taber, S. 1929. Frost heaving. J. Geol., 37, 428-461.



2

GFD 2006 Lecture 2: Diffusion-controlled solidification

Grae Worster: notes by Victor Tsai and Dan Goldberg

March 15. 2007

1 Finishing off Lecture 1

As shown in Lecture 1, an approximation for the diffusion time is

i= — (1)

An experiment was conducted using a commercial hand warmer. This is a plastic bag
containing a liquid (an aqueous solution of sodium acetate) in a metastable state i.e. at
a temperature below its freezing point. Crystallisation is initiated by flexing a thin metal
disk contained in the bag and was observed to proceed at a rate of about 1 em s~ '. Taking
a = 10cm, k£ = 10~ %cm? /s gives t =~ 10%s & 3hrs using equation (1). A different mechanism
must operate in the heat pack than was analysed in Lecture 1. We will return to this later.

2 Diffusion-Controlled Solidification into a Supercooled Lig-
uid

Instead of considering a solid cooled from a boundary, we now consider a solid. assumed to be
at T3, surrounded by a liquid with far-field temperature given by 1. < T}, so that the liquid
is supercooled. Again, we only consider a one-dimensional problem, with » = 0 at the center
of the solid and @ = a(t) at the solid-liquid interface. We solve the diffusion equation (in the
liquid) with the Stefan condition and with appropriate temperature boundary conditions
(T'(a) = Tin and T'(o0) = T ):

ar 9T

il O (9

ot . dx?’ \2)
9T

pLa = —f.'{.— P (3)
o

As before, we scale the equations and arrive at the similarity solution

@
n = s
f 2V Kt

erfe(n)

(4)

=T+ (T —To)— g
' ( e erfe(pu)



a= Q,u\/ﬁ. (6)
1 .

5= F(p), (7)

where

F(z) = Vrae® erfe(z). (8)

Plotting F(z), we find that F(0) = 0, and F(z) has a maximum of 1 as z — oo (see
figure 10b of Lecture 1). Thus, no similarity solution exists for 1/S > 1 or S < 1. In fact,
all solutions become unbounded for S < 1. This inconsistency is remedied by relaxing the
assumption of 7" = T}, at the interface since this is strictly only true in equilibrium. For
S < 1, however, growth is rapid, we are far from equilibrium, and molecular attachment
kinetics are important. For ice, it is typically observed that attachment and detachment
occur at a rate of approximately 1000 molecular layers per second. Below 0°C attachment is
faster than detachment and above 0°C' attachment is slower than detachment. The velocity
of the boundary a is proportional to the difference between attachment and detachment.
Thus, our revised problem is given by: Diffusion equation (2) in # > a; Stefan condition (3)
at x = a; T(00) = Tx: T'(a) = T;; and a = G(1,,, — T;), where G is a constant.

We again scale length with A, time with 7 and temperature difference with AT =

T — T. This results in
K

A~ GAT' (9)
2l

Using the scaling a = \a’, # = A\a’, T'= T + AT - 0, substituting and dropping primed
notation results in

o0 9% (11)
ot~ Or?’ -
0
Sa = —t.r)—( e+ (12)
dx
a=1-8;, (13)
f(oc) =0 O(a) = 6;. (14)

We now consider two limits. If S > 1, then (12) gives a < 1 s0o 0; = 1+ O(S7 ') or
dimensionally, T; & T},, the analysis from lecture 1 holds and we recover the similarity solu-
tion presented there. If S < 1, then (12) does not constrain a which is instead determined
by the kinetic equation (13), which suggests looking for a solution of the form a = V where
V is constant. Hence, we try # = 6(n), where n = x — V't. Substitution leads to

0= iV, (15)
a=Vt, (16)
8= (17)
and
V=1-6=1-S (18)
13



which is valid (exactly) if § < 1.

Finally, we note that the discrepancy between applying kinetics and using the previous
(S > 1) similarity solution is typically small, especially at large time when the kinetic
solution asymptotes to the similarity solution. Therefore, kinetics can often be neglected in
many problems involving sea ice, for example.

3 Generalized Clapeyron Equation for Interfaces in Equilib-
rium

For a planar interface and at some reference pressure, the melting temperature is set by
a balance of the temperature-dependent rates of the attachment and detachment of the
solid phase - this is the reference melting/freezing point. But modification of the system
pressure or a pressure difference between the solid and liquid phase can cause changes in
the equilibrium interfacial temperature. The relation governing this phenomenon is

s‘L 'jlm_']; : 5
’”'(.I.—}:(m—m}ﬂm—pm}(1—&)' (19)

where 1},. pn, are the reference melting point and pressure. There are several examples of
this effect that will appear later in these proceedings, briefly mentioned below.

3.1 Change in system pressure

Across a planar interface, pressures will be equal when the system is in mechanical equi-
librium. But the overall system pressure may be elevated (or decreased), for example by
hydrostatic effects. In this case the second term on the right-hand side of the Clapeyron
equation comes into effect, with p; equal to p. It is easy to see that the rate of change of
the melting point with respect to pressure is given by

"'ut .er ( .”.‘-')
— = — 1l ——]. (20)
dp psL o

For example, in the ocean this allows us to find the melting point at depth. Hydrostatic

balance gives us

i1, i :
e gt RS ¥ IR . (21)
Iz dp '

3.2 Curved interface
At a curved interface, there is a force involved with the interfacial energy that factors into
the force balance, and results in an imbalance between p; and p,. This is expressed by

ps —pr = v(V -n). (22)

Here « is the interfacial energy and n is the unit normal to the interface, directed into the
liquid. With p = p;. this gives

14
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Figure 1: Interfacial premelting of a solid below the melting point. The hydrodynamic
pressure (p;) is lower than ps because of the thermomolecular pressure pyp.

Te=Ty —T[(V-n) (23)
where m
_ T4m
= = (24)

Equation (23) is known as the Gibbs-Thomson equation.

3.3 Interfacial Premelting

When a solid near its bulk melting point is in contact with a gas or solid substrate, it is
sometimes thermodynamically favorable for there to be a (very) thin liquid film between
the solid and the substrate (figure 1). Among the determining factors are the interfacial
energies per unit area between the solid and its liquid, the solid and the substrate, and the
liquid and the substrate.

The liquid pressure in the film is actually lowered relative to the solid pressure, since
intermolecular forces play a part in the mechanical equilibrium balance. This pressure
difference is described as a Thermomolecular Pressure. A drop in interfacial temperature
follows from the Clapeyron equation.

In thermodynamic terms, the chemical potential of the liquid - that is, the incremental
change in free energy with respect to the addition of new material - is not equal to that
of the solid, as it would be in a bulk equilibrium state, since intermolecular interaction
potentials must be accounted for in minimizing the free energy of the system. The chemical
potential is a state variable, and its change is accompanied by a change in hydrodynamic
pressure.

4 Nucleation

The Gibbs-Thomson effect is nicely illustrated by a simple model of a solid particle nucle-
ating into a supercooled liquid domain (figure 2). The dynamics of the initial formation
of the particle are complex, but we will ignore such details and assume that the necessary
events have already taken place for there to be a spherical solid particle with finite radius
a at time t. The ambient temperature of the liquid is below its melting point, and further-
more, as before, we will assume that the Stefan number is large and make a quasi-stationary

15
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Figure 2: Nucleated spherical crystal in supercooled liquid with high Stefan number.

approximation, so that temperature is harmonic in the liguid and in the solid. Thus our
system of equations is

o 0 r>a
N = (25)
0 r<a
T, I — 00
P 2 . (26)

T —T(V-n) r=a

This system is solvable for a given a, even though a is changing in time. Curvature is
constant over the surface of the sphere (and is equal to 2/a). so the equation and boundary
conditions are spherically symmetric and we expect a symmetric solution. The temperature
field in the solid is easy to diagnose: a harmonic function in a bounded domain with constant
boundary condition is itself constant (and therefore the only flux at the interface is that on
the liquid side). Our Stefan condition is then

pLa = —A"_J—"h-:_,, L. (27)
or

Given the spherical symmetry of the problem, the temperature field in the liquid must
have the form A + Br~'. Using the boundary conditions. we can deduce that, for r > a,

T=Too + (T = — = Ti) - (28)
( i

With an isothermal solid, the Stefan condition then gives us
2r

pLé = ko YT — — —'Tso)- (29)
a

Rather than solve for a(t) exactly, it is instructive to examine the sign of the R.H.S. of

(29) and also to consider the limiting cases of small and large radii. First. note that a is
increasing (decreasing) when it is larger (smaller) than a critical radius, a. = 2T’/ (15, — Tx).
S0 a. is an unstable fixed point; larger particles will grow, and smaller particles will shrink.
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Figure 3: Scaled distribution of population of nucleating particles

(Note that this is just in our simple model - we are considering a single particle in a liquid
whose far-field temperature does not change; see the discussion below.)

Furthermore, we can approximate the growth rate in the limit of large and small radii.
For a > a,, @ is nearly proportional to a~', and we get

2kt .
t) = . 30
a(t) 5 (30)
On the other hand, for a < a,, (29) becomes
—2kT

pLa ~ — (31)

a*
= a(t) = (32)

so the solid disappears in finite time.

Though we do not give the details, it is worth noting the case where there is an entire
population of nucleating crystals, and the temperature of the system away from a crystal
is not constrained (indeed, there is heat being given off by the solidification, and so the
system temperature on the whole will be increasing). An interesting result is that the
resulting distribution of particle size is self-similar, meaning that the probability distribution
function, scaled by 3 (not by t2 ), remains constant in time. Such a distribution is shown
in figure 3. Note that there is a finite cutoff (denoted by a,,) since particles will not grow
to arbitrarily large size after finite time.
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Figure 4: Student Problem

5 Student Problem

Consider perturbations to a 1-D planar interface in a 2-D system with large Stefan number
and far-field temperature equal to the bulk melting point. The interface has an energy
associated with it, and the disturbance has a small amplitude compared with its wavelength.
For small times, and neglecting kineties, how would the interface evolve?

Solution. Since the perturbation is small, this problem can be linearized, neglecting
higher order terms in the small parameter 7pa, where 1 is the perturbation amplitude and o
is its wavenumber. With large Stefan number we can make a quasi-stationary approximation
and assume temperature is harmonic in both the liquid and solid domains (but not across
the interface). Our equations are as follows:

5. 0 2>
V2T = v (33)
0 z<n
i A z —
T={" 1 _ - (34)

along with the Stefan condition
k oT k oT
__._|::r,=+ + _,_|:- 1=
pL dn pL On

where a is the normal velocity of the interface, which is equal to

(3H)

a =

)
(VI+m) 1%. (36)
(

From the equation for the interface position z — n(x, 1) = 0 we can determine

(—1z, 1) e
Il = R e {-;ib
(1+n2)172
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and

Nz e

V.n= TEEIEER (38)

Now we linearize, neglecting higher-order terms, and the problem simplifies. First of

all, the smallness of the slope of the interface means that the normal derivative in (35) is a

higher-order correction to the vertical derivative, and the smallness of 77 means that evalua-

tion of the perturbed temperature field at 7 is a higher-order correction to its evaluation at

zero. Likewise, the quadratic term in (36) is dropped, as is the one in (38). Our linearized
system of equations is now

0 > ()

L]

V2T = . (39)
0 z<0
T'=1T,, =z— too, (40)
T'=Tm+Te, z=0, (41)
B o e o
e = — (—Tz|o+ + T:lo-) - (42)
pL

Since this is a linear problem we can anticipate the form of the solution

'”(.f.'. f) = ”“(u‘r:rﬂ (N. (1”
T(z,z,t) = T+ T(z)ei*toL, (44)
(45)

Laplace’s equation and the decay condition along with (41) give
T(z) = —a’T'ne™2, (46)
depending on whether z is positive or negative. The Stefan condition then shows that

_ 20°Tk
pL

o= (47)
Thus the interface is stable for all wave numbers and the decay constant is proportional to
a®. The stabilizing effect is intuitive: “positive” bumps (areas where the solid protrudes into
the liquid) have a lowered melting point due to Gibbs-Thomson, while “negative” bumps
have elevated melting point. There is then a net heat flux from negative to positive bumps,
which causes a melt/freeze pattern that counters the perturbation.
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GFD 2006 Lecture 3: Interfacial instability in super-cooled
fluid

Grae Worster:; notes by Robert Style and Dominic Vella

21 June, 2006

For all the systems that we have considered so far, we have chosen only to model a
planar solidification front. In many situations this is not realistic and the interface is in
fact subject to instabilities. In this lecture, we consider small perturbations to the planar
interface in order to investigate the properties of these instabilities: when do they exist,
what is the growth rate of the instability and what is the characteristic length scale? We
shall assume non-kinetic growth to simplify the analysis.

1 Mechanism for instability

For a planar solid growing from a cooled boundary. all isotherms in the system are parallel to
the solid-liquid interface (see Fig. 1). When we introduce a perturbation onto the interface,
the isotherms are deformed in response to the new boundary conditions (as shown in Fig.
1b). As a result of this, the isotherms are bunched where the solid protrudes into the liguid
(crests) and are spread out where the solid lags behind (troughs). In the regions where
the isotherms are bunched, the temperature gradient is large and so there will be enhanced
heat transport from liquid to solid relative to the heat transport in the planar system. The
protrusion is therefore eroded. Similarly, less heat will be transported to the troughs and
so the rate of solidification is locally increased. These effects act to stabilize the interface
by levelling out any deviation from the steady planar state.

For the case of a supercooled melt, the heat flows from the solid towards the liquid.
As before, upon introduction of the perturbation, there is bunching of the isotherms above
crests on the solid-liquid interface and enhanced spacing of isotherms above the troughs.
However, the directions of the heat fluxes are reversed from the previous case, so that heat
is transported more rapidly away from the crests and more slowly away from the troughs.
This causes the interface to advance more rapidly at the crests, and relatively slower at the
troughs, so that any corrugations will grow in amplitude (Fig. 1¢). Thus the interface is
unstable.

In the student exercise from the previous lecture, we saw that perturbations are sta-
bilized due to the Gibbs-Thomson effect. We found that the curvature of the interface
modifies the equilibrium melting temperature to

T.=Tm —TV - n, (1)
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Figure 1: Schematic diagrams showing the direction of heat flow (arrows) during the evolu-
tion of the solid-liquid interface. (a) Planar solidification from a cooled front. (b) Stability
of a front growing from a cooled boundary. (c¢) Instability of a front growing into a super-
cooled melt. (d) Stabilization as a result of the Gibbs-Thomson effect.
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Figure 2: Schematic diagram for (a) solidification of liquid by pulling liquid downwards
through a cooled heat exchanger and (b) melting of solid by pulling upwards throngh a
heated heat exchanger.

where V - n is the interface curvature. Therefore, the interface temperature is reduced
relative to 1), at crests in the interface and increased at troughs. Thus heat will How
from troughs to crests, causing the crests to melt back, while the troughs solidify faster,
stabilizing the front (see Fig. 1d). In the following, we will consider the stability of a planar
front growing into a supercooled melt including the Gibbs-Thomson effect. As will be seen,
the Gibbs-Thomson effect stabilizes the front for small wavelengths. while the front becomes
unstable at longer wavelengths.

2 Modelling interfacial instability

In order to explore stability of a planar surface growing into a supercooled melt, we consider
the case of liquid being pulled down through a heat exchanger at a constant velocity V' as
shown in Fig. 2. The heat exchanger maintains the temperature at Ty < 1), at a height
z = H, and the interface is assumed to be initially planar at z = 0. In experiments it is V',
rather than the position of the interface, H, which is controlled and so H is an unknown:
in this problem, it will be determined from the Stefan boundary condition.

If we apply a small perturbation = = n(x, ) to the solid liquid interface, we can inves-
tigate the stability of the interface as follows. The pulling velocity introduces an advective
term into the heat equation, which becomes:

T ‘,.’)"J'
ot 0z




while the boundary conditions are

T'=Ty #t (2= Hj, (3)
T=T,-IV-n at (z=n), (4)
and -
aT

pL(V +mn) = —k

0z '

Z=n
Note that we have already linearized the Stefan boundary condition for small perturbations
by assuming that the normal to the interface is parallel to the z-axis.

In order to non-dimensionalize the equations, we choose to scale lengths with H, time
with SH?/k and write T'= T + (T}, — Ty)f. In terms of these nondimensional variables,
the advection-diffusion equation then becomes

1 00 b o
—— —p— = V20, 6)
S ot . Jz [
while the Stefan boundary condition takes the form
Sp+mn = -0, (7)

where the Peclet number is defined as p = V H/x and measures the strength of advection
relative to diffusion. The remaining boundary conditions can then be written as
f ) (8)
¢ = 0 i(z=1) (9)

I
—
|
-2
=
-
t
I
=
=t

where v = I'/HAT is the non-dimensional surface energy.
We initially seek a steady state such that @ = 6(z) has no t or & dependence and 7 = (.
Equation (6) then simplies to
0" +pb =0 (10)

and the temperature field in the liquid is given by

1 —e P
f=1— ——. (11)
] —eP
We can then apply the Stefan boundary condition to obtain the Peclet number (and thus
the interface velocity) in terms of the Stefan number as

p=—log(l1 -871). (12)

When the Stefan number is large, we can expand Eqn. (12) in terms of S~! to show
that p & S°! « 1. Therefore, when we consider Eqn. (6) in the large S limit, we can
discard the time derivative and advection terms (the quasi-stationary approximation) to
approximate the temperature field as

Pl —z. (13)



With this quasi-stationary approximation, we can now perform a linear stability analysis

by applying a small disturbance
~ tar+ot {]“l)

=1
to the interface and letting the temperature field take the form
6 =1-z+ eloTtot, (15)
Substituting this expression for € into the quasi-stationary form of Eqn. (6), we obtain

6" — %0 =0, (16)

so that

# = Asinha(l — 2), (17)
in which we have applied the boundary condition at z = 1.
In order to determine the curvature of the interface, we note that for an interface de-
termined by the equation g(x, z,1) = 0, the normal to the surface is given by

Vy
n = .
Vgl
Here, g = z — n(x.t) and so
[ —71x5 1
=Tl g 1y, (18)

(14 92)1/2
while the curvature, K = V - n takes the form
V- -n=x=—n.,. (19)

Using this expression for the curvature, we can apply the two remaining boundary
conditions at the solid-liquid interface in order to obtain a dispersion relation controlling
the rate of growth of the individual wavelengths. The Stefan condition gives

on = —@ = aAcosha. (20)
and the Gibbs-Thomson condition gives that

0 — i) = —y(—nez) = —a*yi),

which becomes
. ~ 2 ~
Asinha — 7) = —a*v1). (21)

Combining Eqns. (20) and ox(21), we obtain
Aosinha — aAcosha = —a*yAcosh a, (22)
from which we immediately have the dispersion relation

o= acotha(l -—‘,nﬁ]. (23)
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Figure 3: Plot of the dispersion relation (23) in the case v = 0.1.

This can be simplified in the limits of small and large wavelength perturbations to

3
—ya©, a > 1

o= S (24)
l+(l (.'T}_ﬁr)' (\<<1‘

Equation (23) can be used to plot the dependence of ¢ on a, as demonstrated in Fig. 3. In
particular, we note two interesting properties of equation (23). Firstly, there is a critical
wavenumber, «., above which ¢ < (0 and perturbations decay in time: the interface is
stable for o > «.. There is therefore a minimum wavelength below which the instability is
eliminated. Clearly,

a. =~ V2, (25)

We can then write the minimum wavelength, A, in dimensional terms as

9 ’
Y L om (HE)Y?, (26)
o,
where T
Vst Lm =
&= — = yH 2
¢=SLAT (27)

is the capillary length. The minimum wavelength is therefore proportional to the geometric
mean of the capillary length and H, which is a lengthscale for thermal diffusion. Typically
for ice we have

(3x 1072 N m™!) x (300 K)

I : — . = — ~ 30 nm. (28)
(103 kg m™°) x (3 x 105 J kg™') x (1 K)




In typical laboratory experiments, H ~ 10~' m and so we find that the minimum wave-
length A, ~ 300 pm.

Secondly, we observe from Fig. 3 that there is a maximally unstable wavenumber, a,,,
provided that v < 1/3. Expanding (23) for a,, > 1 and requiring that ¢'(a,,) = 0, we find
that

qA—1/2 Qe o
am = (3y) " = = (29)
3
This wavenumber corresponds to a maximally unstable wavelength A, = V3A.. Since it
is this mode that grows fastest, this is the wavelength that we might expect to observe in
experiments. Recall also that typically £, ~ 30 nm and H ~ 0.1 m so that

. ,
==~ 107" & 1, (30)
H
and our approximation that a,, > 1 is valid. Finally, we find that \,, = 0.5 mm for typical
laboratory experiments.

Student Problem Show that a melting interface is stable by considering the above prob-
lem with Ty > 15, and V' with the opposite sign. (cf. Fig. 2b.)

Solution We note that the system is effectively identical to the previous case, except that
now V= —V and AT = (T —1,,) = —AT, where tilde/no tilde distinguishes between the
melting/freezing problem, respectively. We also see that p = —p, S = —S and we can define
T = Ty — ATH. Thus when we non-dimensionalize the equations (and dropping tildes). we

find that
1 b ol

=5 e = Wi, (31)
Sp—m=—0. (2=n), (32)
0=14+4V-n (z=7n)), (33)
and
=0 (z=1). (34)

There is a steady state solution as before, such that

] = P? i

and upon applying the Stefan boundary condition, we find that
p=log(1+ S (36)
so that p~ S~! for § > 1.
As before, for large S, we can make a quasi-staionary approximation by discarding time

derivative and advection terms in the diffusion-advection equation so that:

G=1-—2z (37)



Figure 4: Photographs showing the development of the morphological instability discussed
here. In the middle picture, pinching is observed leaving inclusions of liquid within the
solid.

Finally, using this linear approximation as a basic state, we apply a small perturbation to
the interface of the form
1= ?}ruu'+m (.18}

along with -~
0=1-z+ 0"+ (39)

which yields a similar dispersion relation to the freezing case:
o= —acotha(l va?). (40)

Note that the expression for o is always negative, and so the interface is stable to small
amplitude perturbations of all wavelengths.

3 Beyond linear theory: pinching

The morphological instability discussed in the last section is manifested as a fingering in-
stability with typical finger morphologies shown in Fig. 4. As these fingers grow, their
growth cannot any longer be understood by the linear stability analysis presented in the
last section. Instead, nonlinearities become important and the fingers themselves become
unstable to dendritic growth shown in Fig. 4. While the detailed morphology of these fingers
is difficult to understand without detailed numerical simulations, the pinching instability
of the fingers (illustrated in the middle frame of Fig. 4) can be understood by means of a
simple model. This pinching is of particular interest since it results in pockets of fluid being
trapped within the solid. Here we present a simple model of pinching, which is mathemat-
ically analogous to the model of the pinching of a liquid thread developed by Ravleigh and
Plateau.



]

Figure 5: Setup showing the one dimensional model of pinching in solidification.

We consider a liquid eylinder of radius a within a concentric annulus of inner and outer
radii a and K > a respectively, as shown in Fig. 5. This is the simplest geometry that will
lead to an instability since in two dimensions the surface energy acts to suppress pinching.
With a third dimension, however, there are two competing curvatures: an axisymmetric
perturbation in the cylinder radius increases the ‘ring’ curvature where the radius is smallest
driving fluid away from that point and driving the instability further. We assume that the
material properties of the two phases are identical.

The interface between liquid and solid is given by

glr,z,t) = a{z,t) —r =20, (41)
where we are assuming that the system remains axisymmetric for all times. The normal

(pointing from solid to liquid) is then given by

=
7= (7;I} (42)
v 1+ a?

so that

1 d -1 7} (1-
N = o e | pi|
rdr W 14as dz \ /1+ a?
1
 —— TG, " —— +a,..
r a

The (equilibrium) temperature along the interface is therefore given by

g
T, % T (— - a;;) . (43)

i
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This expression has to be combined with the conservation of heat to obtain a complete set
of equations. For long wavelength deformations, the system has time to equilibriate across
cross-sections at fixed z and so we assume that 7" = 7'(z). The conservation of heat is
considerably simplified by this approximation. In particular, if H;, represents the specific
enthalpy in the liquid/solid phases. then the conservation of heat for an element of height
dz requires that

) . ; .

p% [rru.zrs.:H,- + m(R? - (1.2)5::H5] = [q(:) —q(z+ 5z)]:rrR‘?. (44)
where ¢ = —kdT'/0z is the conductive heat flux in the system. Taking the limit 6z — 0, we
find that

) r o OH . ()H 5 _
p(H; — H‘,‘)a (?Tﬂz) + mwa®p (_%i + w(R% — a® :'TREE:. (45)

However, by definition we have H;— Hy, = L and (0H/0T'), = ¢, so that (45) first simplifies
to

)T () )1
pL—(Tm ) + 7R [Jf1,(,)i RE(; (K (r)—)

and then

ar J JaT d [ ma
e = k= — pL— . 46
PPt ~ oz ( e):) P o (ﬁRZ) e
This can in turn be written in terms of the solid volume fraction ¢ = 1 — a?/R? to give
Jdr 1%, Jar do _
i I(* 0z ) L o)

Note that (47) has the diffusive character of the heat equation that we have solved previ-
ously. However, we now have a source of heat arising from the latent heat produced in the
conversion of liquid into solid. In this respect, (47) is very similar to the conservation of
heat in a mushy layer. which we shall meet in a few lectures’ time.

Under the assumption that there are no kinetic effects, 7" and a are related through the
Gibbs-Thomson equation (43). We can therefore eliminate 7" from (46) in favour of a and
rewrite (46) as a single equation for a(z,1):

a il 9 (1 pL 0
— = —a,, | =kl (- —a;; | — == i 48
P ot (n. ““") 02 (n. a“) R2at &) (48)
If we perturb the initially cylindrical fluid inclusion then we can write a(z,t) = ap+a;(2,1)
(where ag is a constant). Substituting this expression into (48) and linearizing, we find that
J [ 9% [a; 2pL
pepl'— 5 (— —a “) I\F{)q — — 012z | + Fﬂnﬂ-;_r. (49)

We can then look for normal mode solutions with a; o exp(iax + ot). The resulting
dispersion relation is simplified by non-dimensionalizing lengths with R and times with
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Figure 6: The dispersion relation (50) showing the existence of a maximally unstable
wavenumber. Here ag = 0.25 and § = 10, so that (52) is satisfied.

R*/k — the thermal diffusion timescale. Denoting dimensionless quantities with =~ we find
that

- 1) ~ 1)

~ 2 ] — ape”

&= a%— 3 . (50)
(2S + a?)ai — 1 }

where

LI

Py

5 (Hhl)

is the relevant Stefan number in this problem. This dispersion relation is plotted in figure
6. Again, considering the behaviour of a(&) in the limits & < 1 and & > 1 reveals that

there is a maximally unstable wavenumber in this problem, provided that

o —9 =0\
S > %H”T (H2)

We expect that this maximally unstable wavenumber would give rise to a well-defined
wavelength in experiments.
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GFD 2006 Lecture 4: Interfacial instability in two-component
melts

Grae Worster; notes by Shane Keating and Takahide Okabe

March 15, 2007

So far, we have looked at some of the fundamentals associated with solidification of pure
melts. When we try to solidify a solution of two or more components, salt and water, for
example, the character of the solidification changes considerably. In particular, the presence
of salt can depress the temperature at which ice and salt water can coexist in thermal
equilibrium. This has an important consequence for the growth of sea ice: unless there is
some other mechanism for the transport of the salt field, such as convection, the growth
of the ice is limited by the rate at which excess salt can diffuse away from the interface.
Finally, we will discuss the morphological instability in two-component melts. We shall see
that the solute field is destabilizing and can give rise to morphological instability even when
the liquid phase is not initially supercooled.

1 Two-component melts

1.1 A simple demonstration

We shall begin with a simple demonstration. Crushed ice at 0°C is placed in a cup with
a thermometer. We add a handful of salt at room temperature and stir briskly. The ice
begins to melt, but what happens to the temperature?

We notice that there is some melt water in the cup, which helps bring the ice and salt into
contact, and see a fairly rapid decrease in the temperature measured by the thermometer:
after a few minutes, it reads almost —10°C. What's happening here is not melting. Rather.
we are observing dissolution of the pure ice into the mixture of salt and water. In this lecture,
we will attempt to make more explicit the distinction between melting and dissolution.

1.2 Equilibrium phase diagrams

In Figure 1, we show the equilibrium phase diagram for a simple 2-component mixture, or
binary melt - in this case, salt and water. The equilibrium state of a given mixture of salt
and water at temperature 1" and composition C (i.e., concentration of salt) and at constant
pressure can be represented on this diagram by the point (7, C). The phase diagram is
divided into regions of different phase; this diagram is “simple” in the sense that there are
only two possible solid phases: pure ice, or solid salt. In Figure 1 these lie along the vertical
axes at 0% and 100% concentration respectively. Apart from these two solid phases, we can
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Figure 1: Equilibrium phase diagram for a solution of salt and water.

also form a liquid solution of the two end members (i.e., salt or water), or some liquid /solid
mixture of the two substances. Other materials have more complicated solid phases and
neccessarily more complicated phase diagrams, which we will examine briefly later.

The curved line in Figure 1 is the lLguidus, representing the temperature at which a
binary melt of a given composition €' can exist in equilibrium in both the liquid and solid

phase. For 0% salt concentration, the lLquidus temperature is simply the melting point of

ice - 0°C — while for 100% salt it is 801°C.

When we contaminate pure water at 0°C with a small amount of salt, the equilibrium
freezing temperature is lowered. Thus, when we added a small amount of salt to the ice in
our experiment, we saw that we still had liquid even at temperatures as low as —10°C.

Equivalently, one could start with pure molten salt at 801°C and contaminate it with a
small amount of water to lower the melting point. The two liquidus curves meet at a point
(Tg,Cg), called the eutectic: this is the minimum temperature at which solid and liquid
saltwater can coexist in thermodynamic equilibrium’.

If we slowly change the temperature or composition, the mixture will trace a trajectory
on the phase diagram, as shown in Figure 1 for the case of seawater. We start by cooling
seawater to —2°C' where it reaches the liquidus curve Ty (C') and starts to freeze. Below
this temperature, we start to form pure solid ice in equilibrium with seawater of higher
concentration. As more and more solid ice is formed, less water is available and so the salt
concentration increases steadily. We can invert the liquidus curve 7' = 77 (C') to find the

'According to one popular story, German physicist Gabriel Fahrenheit (1686-1736) chose the triple eu-
tectic temperature of water, salt and ammonium chloride, being the lowest temperature he could achieve in
his laboratory, as the zero of his eponyvmous scale. Both Fahrenheit and Celsius are centrigrade seales: An-
ders Celsius (1701-1744) chose 100°C to correspond with the boiling point ol water at sea level: Fahrenheit
likewise chose a reliable, easily reproducible, steady temperature for 100°F -~ the anal temperature of his
horse. It should be noted, however, that wikipedia.org lists no less than six competing versions of the same
story, so at the risk of punning, one should be advised to take such apocryphal tales with a pinch of salt.
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Figure 2: A more generic phase diagram. See text for details.

composition of the remaining liquid: C' = C, (T).

It is worthwhile to extend the simple phase diagram for salt and water to one more
typical of other binary melts, as shown in Figure 2. In addition to the liquidus, there is a
solidus further subdividing the phase diagram. There are now four distinet phases, which
we describe below.

Region 1 is a liquid solution of the two end members.

In region 11, the mixture is in a solid solution, where the end members are mixed on the
lattice scale. An example of this is the silicate compound olivine, (Fe,Mg), SiO4, although
the phase diagram is quite different from the one shown in Figure 2. Iron and magnesium
sit fairly equally in the lattice sites and will occur in different proportions depending upon
the temperature. In contrast, salt and water do not form a solid solution, and will exist in
the solid phase only as pure substances, at least as far as we are concerned in this course.

In region I11, the solid solution and the liquid phase coexist in equilibrium.

Finally, in region IV, we have a mixture of crystals of the two end members: i.e., pure
ice coexisting with pure salt crystals. In addition, there are regions of the equilibrium phase
diagram mirroring region II1, where pure crystals of one end members coexist with a solid
solution of both end members. The exact location in the equilibrium phase diagram of
the transition to this region, indicated in Figure 2 by a dashed line, is difficult to measure
experimentally, because the compositional relaxation times below the eutectic are on the
order of geological timescales. We ignore such detailed structure in our analysis.

Thus, the equilibrium phase diagram can tell us a great deal about what proportion of
a mixture is in what phase, and what can coexist in equilibrium. However, it cannot tell
us anything about the geometry of the solid phase formed: whether the ice forms in layers,
or a slurry of ice crystals and salt water, or in the form of a mushy layer of dendritic ice
crystals separated by interstitial seawater, as we shall examine in the next lecture. The
microscopic details of the distribution of the phases depends strongly on how you lower the
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temperature: however, the ratio of the phases will not depend on the history of the mixture.

1.3 A few approximations

Before we conclude this section, let us introduce some terminology and a few approxima-
tions. Firstly, we shall assume (when necessary) that the liquidus can be approximated by
a straight line

Tt =~ Tym —mC (1)

and that the solidus concentration is

Cs(T) = kpCp(T) (2)

The parameter kp is called the distribution coefficient, and is approximately zero for a
salt and water solution. Thus we will assume that the solution will form only pure cystals
of salt or ice.

2 Solidification of sea ice

2.1 The Stefan problem for a salt water solution

Let us now revisit the Stefan problem?; this time, however, we consider the case of salt
water in contact with a boundary at a temperature below the liquidus temperature of the
solution, as depicted in Figure 3

We denote by T; and C; respectively the interfacial temperature and composition of the
salt water, to be determined. We further demand that the ice and the salt water at the
interface are in thermodynamic equilibrium so that 7} is the liquidus temperature and

T =Ty, (C) - (3)

This is in contrast to the Stefan problem where the interfacial temperature was simply
the melting temperature of pure ice 1},. Here, however, the temperature at which the salt
water freezes is set by the interfacial concentration of salt, and we shall see that the rate
at which the interface advances is limited by the rate at which we can remove excess salt
from the region near the interface.

The composition of salt inside the ice will be zero, as discussed above:; however, we shall

denote it by Cg to be a little more general. The far field temperature and composition of
the sea water are T, and Cy respectively. The boundary temperature 7'z will be below the

liquidus temperature of the undisturbed solute field: Ty < 11 (Cy).
The equations to be solved are the diffusion equation in the ice and the sea water
or  o*T

— = Kk inr<aandar > a (4
ot da? )

Dy - - . - - . . . 1
“Note that in this treatment, we will neglect the effects of both kinetics and surface energy. The latter
case would not arise anyway, as we are dealing only with a planar interface.
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Figure 3: Freezing of salt water.

where, for simplicity, the thermal diffusivity & is assumed to be the same in both solid and
liquid. In addition, we must solve for the salt field in the liquid region
oC 9°C
— =D— ho > 8 (5)
ot Ox?

As the composition in the solid region is constant there will be no diffusion of salt there.
The ratio of the solute diffusivity to the thermal diffusivity for seawater is of the order 10~
and will play the role of a small parameter in our analysis.

In addition to the boundary and interfacial conditions, we have, as before, the Stefan
condition for the interfacial heat flux:

o (2T ‘
pLa =k ((‘);r )ﬂ_ k (i}q-)m "

The final equation in this problem comes from the conservation of solute. The total
quantity of salt must be conserved, so that the area under the composition curve must be
constant:

oo
Csa + / C(z,t)dxr = const. (7)

Jalt)
The time derivative of this equation is
oC Dy
aC
Csa— Cia —0—/ —dz =0 (8)
. Ot

which, from the solute diffusion equation (5) becomes
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R W 0y
(Cs—Ci)a+ / D%}.Tz""r = () (9)
[ e
and finally,
5C
(Ci—Cs)a= —D(((.)i_) : (10)

Equation (10) has formally the same structure as the Stefan condition: instead of inter-
facial heat flux balancing the difference in heat content (enthalpy). however, equation (10)
represents the balance of the difference in salt concentration with the flux of salt across the
interface.

The solutions to the thermal diffusion equation (4) in the solid and liquid regions are.
respectively,

T =Ty (L= T) M— inz < a (11)
erf (M_r)
T =To + (T} = Tay) — ) ne>a (12)

N -
erfc (gv,ﬂ)
Equations (11) and (12) are similarity solutions in the dimensionless variable
v

n = = (13)
2vV/ ki

A dimensionless interfacial position is p, which is defined by

a= 2;:\"”1'7! (14)

where, in contrast to our previous analysis, a(t) scales with the solute diffusivity D rather
than the thermal diffusivity x. The dimensionless parameter p remains to be determined.
We shall show, a posteriori, that pis O (1). Had we chosen a(t) to scale with & instead, we
would find g to be O (¢71), where,
pa
D a
E= [ — (15)
e

justifying our choice of the D in equation (14) rather than .
The solute diffusion equation (5) and boundary conditions yield the solution

i . _erfe
C = Co+ (C; — Cp) M

inr>a (16)

erfe (ear)

where € appears in the arguments because, in the case of the solute, it is D rather than »
that should appear in the definitions of the dimensionless variable p in (14).

In addition to the parameter j, the interfacial temperature 7; and interfacial concentra-

tion C; will be determined using the Stefan condition (6), the solute conservation equation
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(10) and the liquidus relation (3). Substituting (11), (12) and (14) into the Stefan condition
yields

L _Ti-Tp Tu-T

= 17
Cp G (ep) F (ep) (17)

where,
G (z) = Vrze erfz (18)

and
F(z) = Jrze™ erfez (19)
Similarly, the solute conservation equation (10) becomes
Ci — Co

Ci—Cy= —— 20
1 . F (P‘,) ( )

For salt water, € is reasonably small, so let us examine the case of ¢ — (. The functions
G (z) and F(z) have the asymptotic behaviour

9

G(z) =2z as z—10 (21)

F(2) =~ nz as z— 0. (22)

Thus, for small ¢, the three terms in the Stefan condition (17) are of order 1 : ¢ % : ¢!

and so, to lowest order, T; = T + O (¢). Inverting the liquidus relation (3) now gives us
the interfacial concentration to lowest order: C; = Cg + O (€), where Cg = Cy (1) is
the liquidus concentration associated with the temperature of the boundary. The solute
conservation equation (20) then gives

oy CH == ('n
Cp—Cs

As shown in Figure 4 , the parameter C is always strictly greater than or equal to one,
with equality only for a pure melt. Thus, unlike the problem of a crystal growing into
a supercooled melt, where we saw that for Stefan numbers of less than one there was no
similarity solution, equation (23) always has a solution.

Furthermore, equation (23) implies that g = O (1), justifying our choice of the solute
diffusivity D in (14) rather than the thermal diffusivity x. Thus, the rate of advance of
the planar interface is limited by the rate at which we can remove excess solute. Adjacent

F () = (23)

to the interface is a boundary layer of thickness O (\/’Df). as shown in Figure 5. In fact,
seawater does not behave like this because convection will also act to remove excess solute,
which we have neglected here.
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Figure 4: Proof that C is greater than or equal to unity. C is defined as the ratio of C'p— (g
to Cg — Cp. Cyp is the far-field composition and lies above the solid composition C's. ('
is the composition at the boundary and, by assumption, lies on the liquidus curve. As ice
solidifies it leaves behind a residual of higher composition, so that C'g must be greater than
that of the solution far from the boundary, Cy. Thus, the ordering of Cy, Cy and C'p is as
shown in the figure, and C is neccessarily greater than or equal to unity.

Solid Liquid

T(x,1) T
O(VDrt)
- TI.( C{]) < Tacz
v Constitutional supercooling
TI =T ."..( C:)

O(Vkt)

Figure 5: Comparison of the actual temperature field and the liquidus temperature as-
sociated with the compositional field. In the region where the T, (C') > T, the liquid is
constitutionally supercooled.
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Figure 6: Cartoon indicating the values of boundary temperature below which supercooling
occurs for a given initial compostion (.

2.2 Constitutional supercooling

Because the salt field and the temperature field have different scales of relaxation, there
exists the possibility that, beside the interface, the actual temperature is below the local
liquidus temperature. Thus the liquid is supercooled relative to its freezing temperature.
The critical condition for such constitutional supercooling is that the liquidus temperature
increase more rapidly than the actual temperature as we move away from the interface:

oT T
il . 24
(r’).r')m % ( ox )“‘ (24)

Approximating the liquidus by a straight line 77, (C') = T;,, —mC and using our solutions
for the temperature field and salt field in the liquid (12,16) we find that

o

(e T 3 Pl
(%),

= ‘ :
(C; —Co)m  F(ep)
From the asymptotic behaviour of F'(z) for small z (19), we can see that the right-hand
side of (25) is typically O (¢). Thus, generically, the critical condition (24) is satisfied, and
the liquid in the boundary layer is constitutionally supercooled.

3

Equation (25) can be solved to find the critical curve for constitutional supercooling on
the equilibrium phase diagram, as depicted in Figure 6. Notice that the region of constitu-
tional supercooling sits very close to the liquidus (for small €), so that we do not have to
lower the temperature much below the liquidus temperature for constitutional supercool-
ing to be prevalent. Note also that it is possible to avoid constitutional supercooling in a
region close to 0% composition. This is of relevance to the semiconductor industry, where
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Figure 7: Temperature and compositional field on the equilibrium phase diagram.

constitutional supercooling is undesirable as it can give rise to morphological instabilty of
a semiconductor erystal.

Finally, we show in Figure 7 how the temperature and composition change as we move
from the boundary at @ = 0, through the interface at » = a(#). to the far-field position
at v — oc. Within the ice (0 < o < a_). the temperature changes smoothly while the
composition is identically zero. As we move across the boundary, the composition and
temperature change discontinuously to the liquidus curve at (C;.7;). From the interface,
the two fields change differently until they reach their far-field values. Because the thermal
and compositional diffusivities are different, the solute field changes more rapidly than the
thermal field, and so the (C,T)-curve dips below the liguidus, indicating constitutional
supercooling,.

2.3 Morphological instability of sea-ice growth

As we have already seen in this lecture series, ice growing into a supercooled melt is uncondi-
tionally unstable to small perturbtions of the interface. When the liquid is constitutionally
supercooled, the morphological instablity takes on some new characteristics, which we dis-
cuss here in broad terms.

1. As in the case of the Stefan problem. the thermal field has a stablilizing influence
on the interface (Figure 8a). Isotherms are compressed near peaks in the interface.
enhancing the heat flux at those points, and rarefracted near troughs, suppressing the
heat flux. The heat flux inhibits the growth of ice at the peaks, while reinforcing it
at the troughs. stabilizing the interface.

2. The compositional field, which was not present in our original Stefan problem, is
destabilizing (Figure 8b). Like isotherms, surfaces of constant concentration are com-
pressed near peaks, enhancing the flux of solute away from the interface. Thus, the
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ice can grow more quickly at peaks because the solute, which inhibits growth, can
diffuse away more quickly, leading to instability.

3. As we saw in the problem of crystal growth into a supercooled liquid, surface energy is
stabilizing (Figure 8¢) A divergent normal on a curved interface lowers the equilibrium
temperature near peaks and raises it at troughs, giving rise to a heat flux from the
troughs to the peaks. As in the case of the thermal field, this stabilizes the interface.

isotherm
Liquid A

(a) Thermal Field is stabilizing

Solute is removed quickly.

Liquid A

N

(b) Compositional Field is destabilizing

Liquid
q Low T

/NT/
Solid

(c) Surface energy is stabilizing
Figure 8: Mechanisms contributing to the morphological instability in sea ice.

These three mechanisms operate on three different lengthscales: in decreasing order
they are the thermal diffusion lengthscale, the compositional diffusion lengthscale, and the
capillary lengthscale. Thus, the interface is conditionally unstable: the interface may be
unstable, marginally stable, or completely unstable, depending upon the precise lengthscales
involved.

The condition for instability can be translated into a critical solidification rate, as shown
in the neutral stability curve in Figure 9. Likewise, we can plot the critical solidification
rate Vo as a funtion of the initial composition of the melt Cy(Figure 10). For a given
value of Cy, the interface is stable for sufficiently low solidification rates (typically around
lpms ™), but as we increase the solidification rate, the interface can go unstable. If we
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increase the solidification rate more, to say 1ms~!, the interface can be stable again. Such
rapid solidification is generally not of interest in ice studies, but is relevent to spot welding.

V
A

unstable

stable

>

Figure 9: Neutral stability curve for the morphological instability. Here, V' is the solidifi-
cation rate and « is the wavenumber.

VoA

unstable

stable

» C,

Figure 10: Critical solidification rate versus initial concentration of the melt.

Student Problem

Consider a lump of sea ice floating in the ocean. Both the ice and the sea water are at
uniform temperature Ty = —2°C', say, such that, Tj is greater than the liquidus temperature
of the far field concentration Cy. There is no gravity, so convection does not play a role.
What happens, and how quickly?

Solution:

By solving the diffusion equation for the concentration field, we get

erfe(a/2v Dt)
erfc(a/2v/Dt)

C =Cy+ (C; — Cp)

B 5@ (206)
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where D is the diffusion coefficient of the concentration field. On the other hand, we have
the concentration conservation:
- ocC .
_(iﬂ-:DfL“u (27)
or

Therefore,

3 (‘i _— (.'[p D l = "{,ﬁl."}!
wE =l e (28)
0F ml erfc(a/2v Dt)

Because Cy > O, a < 0: the ice is dissolving. Because of the absorption of the latent heat,
the system cannot be isothermal: the temperature is depressed at the phase boundary.
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GFD 2006 Lecture 5: Formation of mushy layers

Grae Worster: notes by Shane Keating and lan Eisenman

March 15, 2007

1 Dissolution versus melting

In this lecture we will try to elucidate the difference between melting and dissolution of

a solid in the presence of a two-component liquid mixture. We will consider pure solid
ice at temperature T < T}, which is brought into contact with salt water that has a
temperature higher than the liguidus temperature associated with its salt concentration
Co: T > 17, (Co).
The solution to this problem is very similar to a result from Lecture 4: the temperature
and composition fields in the liquid and solid admit the similarity solution
- I - )
1 o T (fa —id o) v
T = erf (ep)

1<y (ice)

: ; (1)
- g erfe(—en) S
T oo + (T - j_.x]”—‘(—:‘—f-!— 7> (liquid)
erfe (—ep)
0 n < (ice)
C = rfc G N (2)
Co + (Ci — Ch) =z .( ) n > (liquid)
erfc ()
@ (3)
= : ¢
'= oVDt
a
= (4)

2v Dt
The parameter € = \/D/k is assumed much less than unity. Rearranging (4), the interface
location can be written as

a= 2;:\/5‘ (H)
We seek the time evolution of the solid-liquid interface. From conservation of solute we
have c
50
Cia=—-D (f—) : (6)
()J' [
Substitution of (2) and (5) into (6) yields
; Co
Gi=
L F () (7)
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where F (z2) = /mze* erfc ().

The initial concentration in the salt water is Cp, and as it is diluted by ablation of the ice,
we expect C; < Cp; hence F (p) is negative. It is clear from Fig. 1 that this can only occur
for negative values of . Thus a () is receding in the negative z-direction and the picture
of ice ablation causing reduced salt concentration near the interface is self-consistent.

The Stefan condition here is

dx

arp at
pLa=k [d—l]

a~

Plugging in (1) and (5) leads to

\/§£ L= (Ti = T ) e~ W . (Ti—Tso) =W (9)
K r'q," — /merfc (—ep) vrerfe (ep) (

We can simplify this result using the function F'(z):
L Ti-Thw Ti-T-
Cp ~ Flep) F(—ep)

(10)

F(z), —z<<1 F(z), ~z=0(1)

0
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e* erfe (z) appearing in (7) and (10). The funection

Figure 1: The function F (z) = /7
f z, and approximations for —z < 1 and —z > 1 are

is plotted in two different ranges of z

indicated by gray dashed lines.

The similarity variable p is unspecified at this point apart from its sign (e is negative
since we are considering ablation). In the following subsections, we will find two different
mechanisms for the ablation of ice — dissolution and melting — which occur for different
ranges of . A summary of the results of the remainder of this section is presented in Table

(1).

1.1 Dissolution (= 0 (1))

Let us consider first the case where it = O (1). For small z, the function F (z) = /7z+0(z?)

(see Fig. 1), so that the Stefan condition (10) becomes

L ('1;- . W
Jilen) V(=)
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Dissolution Melting
Parameter scaling —pn=0(1) —u=0(T)
Interface position a=0 (\/ﬁ) a= 0 (Vkt)
Interfacial temperature L < T i ST-Th
Ablation limited by Solute diffusion | Heat diffusion

Table 1: A comparison of the two different ablation mechanisms: dissolution and melting

Multiplying both sides by € leads to
T =T T;:—=T
VTp V7 (—p)

The interfacial temperature is thus approximately the mean of the far-field temperatures!:

0=

+ Ofe). (12)

| =

T = = (a4l 00e). (13)

St

t

Since the interface temperature is assumed in equilibrium, it must lie on the liquidus,
1; = 11.(C;). The liquidus is a decreasing function of salt concentration (for concentration
less than Cf), and concentration in the liquid at the interface is C; > 0, so the solid- liguid
interface is colder than the salt-free melting temperature, 1 < 7,,. It is therefore clear
that the interface temperature is too low to melt the ice simply by means of heat transfer:
the ice requires the presence of the solute field to depress the local liquidus temperature
sufficiently in order to change phase. This situation is depicted in Fig. 2.

SOLID x=a(t) x=0 LIQUID

Figure 2: Dissolution of sea ice. Ablation rate is controlled by the transport of salt in the
liquid.

As we can see from Fig. 2, the thickness of the melt layer a(t) is of the same order as
the thickness of the compositional boundary layer (Dt); this is indicated by the fact that

"Note that in Student Problem 4 the solid ice and liquid sea water were both at the same Lemperature
(7T-~ = Tx). In this situation, the interfacial temperature 7T; is depressed below the far-field temperatures
by an O(¢) correction, as implied by {12). It is this O(¢) term which we caleulated.
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= 0O (1). The rate of dissolution of the solid layer is limited by the rate at which we can
supply salt to the interface: without enough solute, the liquidus temperature of the water
adjacent to the interface will not be sufficiently below the actual temperature of the water
and the solid ice cannot change phase. Thus, this is truly dissolution in the sense that the
phase change from solid to liquid requires the presence of the salt field.

The phase diagram for this process of dissolution is shown in Fig. 3.

(0] C; Cy C

Figure 3: Phase diagram for dissolution. Solid curve represents the trajectory in temper-
ature vs concentration space from the solid-liquid interface to the liquid far-field; contin-
uation of trajectory on solid side of interface is indicated by dashed line. Diagonal line
indicates liquidus.

In reality. gravity can play an important role in transporting solute to the interface via
convection on a faster timescale than that given by diffusion alone. In the next lecture we
will examine a situation incorporating convection.

1.2 Melting (u =0 ("))

For the case of y ~ ¢! the interface will advance at a rate proportional to v/st. In this
situation, ablation of the ice is controlled by heat transfer. In contrast to the previous
section, this is ablation caused by heating the material above the freezing temperature and
hence is true melting. In the case of dissolution we used a small —z approximation for F'(z)
in (9): here, we will use a large —z approximation for F(z) in (7). For —u > 1, erfe(p) = 2,
and we have (see Fig. 1)

F(p) ~ —2mpe® —p>1. (14)

Inserting this result, (7) becomes

Co
C—; =
2/ pet

which approaches zero exponentially quickly as || — oc. Thus, the interface temperature

(15)

is very close to the melting temperature of fresh water: 7; = T (C;) = T11,(0) = T;,. As
can be seen from Fig. 4, the interface recedes at a rate proportional to Vkt, leaving behind
a salt-poor melt layer and a compositional boundary layer at # = 0. Note that the slope
in the temperature field changes discontinuously as it moves through z = a(t) due to the
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release of latent heat. In the dissolution case this was an O (€) effect, but here it can be
quite significant.

= T STHC0)
Ty J& Y8 G
] . I._____——__/ =~ X
\:\ [ / |[ /
gOL]l) ,\':E\{” x=0
§ | : LIQUID

Figure 4: Melting of sea ice. Ablation rate is controlled by the transport of heat in the
liquid.

The phase diagram for this scenario is depicted in Fig. 5. Note that no constitutional
supercooling is possible during dissolution or melting of sea ice.

| ,[\“
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Figure 5: Phase diagram: as in Fig. 3. but for melting,

2 Mushy Layers

In Lecture 1. we saw that as a planar boundary solidifies into a supercooled melt, the inter-
face is morphologically unstable to perturbations with a small but finite spatial wavelength.
For the case of a binary melt, we saw in Lecture 4 that it was not necessary to supercool the
liquid: differences in the rates of diffusion of heat and solute can give rise to a region where
the actual temperature of the liquid is less than the local liquidus temperature associated
with the compositional field. This phenomenon is known as constitutional supercooling and
triggers morphological instability of the interface.

The evolution of the instability is depicted in cartoon form in Fig. 6. Initially small
sinusoidal perturbations can be treated using weakly nonlinear analysis (which we do not
consider here): it is observed that troughs narrow into crevasses while peaks become broader
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and flatter. Experimental and numerical studies show that the instability proceeds via tip-
splitting and side-branching until a matrix of fine dendritic crystals is formed. At this
point, we must abandon all hope of following the exact solid-liquid interface and treat
these crystals as a region of mixed phase: a so-called mushy layer. In the case of sea-ice,
the crystals have a scale of about a millimeter; we are generally interested in scales of a
meter or more, so it is appropriate to seek an averaged description of the mushy layer. We
consider some arbitrary control volume containing representative elements of both solid and
liquid, and we average over scales intermediate between the fine scale of the solid-liquid
interface and the macroscopic scale of the sea-ice.

LIQUID

Figure 6: Evolution of the morphological instability

As we saw in the previous lecture, there are three natural lengthscales that characterize
the morphological instability driven by constitutional supercooling: the thermal diffusion
lengthscale is assumed much larger than either the solutal diffusion length or the capillary
length. Thus, we may assume that the temperature field has enough time to relax to
equilibrium between the solid and liquid phases within the mushy layer. The smallest scale.
the capillary length. is much smaller than the mesoscale homogenization and details on this
scale will be averaged out. Opinions differ, however, on whether the homogenization scale
should be larger or smaller than the solutal diffusion lengthscale, and this, as we shall see,
can impact the exact form of the field equations.

We seek an averaged description of the following fields:

e Mean temperature of the solid/liquid mixture 1" (x, ),
e Concentration of the liquid phase C' (z,t),

e Volume fraction of the solid phase ¢ (x,1).

Averages will be taken over the control volume D bounded by surface D and with unit
normal n (Fig. 7).

We begin with conservation laws for this control volume. Here we will present only the
calculation for conservation of mass. From continuity,

d _

— | pdV = — [ pm - udS, (16)
dt Jp Jsp

where p is the average density in the mushy layer,

p=ps¢+(1—9)p. (17)
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Figure 7: Control volume containing solid and liquid in a mushy layer.

Here the densities of the solid and liquid phases are pe and p;. respectively. We assume
that the solid matrix is rigid and stationary? (although the ice can continue to grow), and
that the only thing moving is the liquid. Thus, the mushy layer is a porous medium, and
the velocity u in (16) is the Darcy velocity, or the mean volume flux of the liquid per unit
area of the medium. The Darcy velocity is equal to the liguid volume fraction times the
interstitial velocity, u = (1 — &)u;.

Averaging over the control volume D and applying the divergence theorem, (17) becomes

Op | )
tnd 3 7 =0. b
./” (m +V (p,u))dl 0 (18)

Since (18) is true for an arbitrary control volume D, the integrand itself must be zero.

o
(ps—p1) — +mV-u=0, (19)
ot
where we have employed a Boussinesq approximation, assuming that the densities of liquid
and solid phases are constant. Introducing the density ratio parameter r = p/m, (19) can
be rewritten as the divergence of a non-solenoidal velocity field.
dao
Viu=(1-r)—. (20)
ot
Thus, if the solid fraction ¢ is increasing (e.g., salt water is solidifying inside sea ice).
then the fact that ice has a lower density than water means that the salt water will be
squeezed out of the porous medium (we will neglect changes in density caused by salinity
gradients). This phenomenon is known as brine expulsion in sea ice.

*When studying processes in large ice sheets, one might need to worry about compaction and deformation
of the ice matrix. For example, fresh melt water beneath an ice shell can depressurize and form ice crystals
that “snow” upwards onto the bottom of the shell. This layver can be compacted significantly, and in this
case the matrix deformation cannot be neglected.



In a similar way, conservation of heat leads to

or

ﬁ$5T+m%m‘VT=Vﬂ@VTy+mL

@- (21)
ot

5

Overbars represent mesoscale averaging. The gradient lengthscale of the temperature
field is assumed much longer than the homogenization scale, and so is not averaged over.
The average specific heat capacity is given by the exact expression

Pep = dpscp + (1 — @) picyi, (22)

where ¢,s and ¢, are the heat capacities of the solid and liquid phases.
The latent heat capacity is the difference in the enthalpies of the solid and liquid,

L(T,C) = H, — H,. (23)

While L is in general a function of both T" and ', we will assume that the mushy layer is
in thermodynamic equilibrium, and hence the temperature field and the compositional field
are linked by the liquidus relation. This allows us to write L as a function of only 7" or C.

The volume-averaged conductivity will, in general, be a function of the solid fraction,
although what this functional dependence is depends upon the geometry of the mushy layer.
For laminate layers, one can derive exact expressions for the conductivities: For the case
where the heat flux is parallel to the laminar surfaces, the conductivity is

k= k= oks+ (1 — o) ky parallel heat flux, (24)
while for a perpendicular heat flux,

|
~ olks+ (1= 9) [k

It can be shown that for any porous medium the conductivity is bounded by the two

k=k, perpendicular heat flux. (25)

laminar cases described above, so that
ki <k <k, (26)

as depicted in Fig. 8.

In the case of mushy layers in sea ice, the primary dendrites are plate-like and tend
to align themselves with the prevailing temperature gradient: in this case, we shall take
k= ki (¢) to be a good approximation.

When considering the conservation of heat (21), the large separation of scales between
the microscale and the thermal gradient length led to a robust averaging procedure. As
mentioned earlier in this section, the separation of scales in the case of the solute field is less
obvious. Thus, one representation of the solute conservation equation is (for liquidus/solidus
distribution coeflicient kp = 0, as is approximately the case for sea-ice):

[ )
(1—d;)£+u-VC=V-(DVC)+r-Cqﬁ. (27)
ot ot

Ambiguity arises in the first term on the right-hand side of (27): by including it, we are
implicitly assuming that the solutal diffusion lengthscale is larger than the homogenization

o
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Figure 8 The conductivity of a porous medium is bounded by the laminar cases of par-
allel and perpendicular heat flux. The range of possible porous medium conductivities is
indicated by the shaded region.

scale. If, on the other hand, the diffusion scale is comparable to or smaller than the seale
on which we are taking volume averages, then this term vanishes. Indeed. the argument
is related to where one draws the interface between the mushy layver and the liquid phase.
which in turn raises questions about how one describes the mushy layer itself. In what
follows, we shall scale out the offending term: however, it is worthwhile noting that this is
a subject of ongoing investigation.

As in the case of the volume-averaged conductivity, the salt diffusivity takes the form

D=Dy(1-¢)=Dy. (2R)

The final term in (27) describes the increase of the concentration in the interstitial region
as the ice grows.
We further make the assumption that the mushy layer is in thermal equilibrium so that

T=1T.(C) (29)

everywhere in the mushy layer. Hence the salt field and the thermal field are tied to one
another inside the mushy layer by the liquidus curve, which precludes the possibility of any
double-diffusive convection.

Finally, we require a transport equation for the liquid velocity u. Since we are describing
the mushy layer as a porous medium, it is appropriate to use Darcy’s equation for flow
through a porous medium:

pu=I1(-=VP+ pg). (30)

Here, p is the kinematic viscosity, P is the pressure field, g is the gravitational acceleration,
and II is the permeability of the mushy layer. The latter will in general be a function of ¢
and geometry: we take it to be constant for simplicity. The introduction of the gravitational
field introduces for the first time the possibilitity of convection, altering the heat Hux from
the liquid region (see later lectures, and Student Problem 5).

Equations (20), (21), (27), (29) and (30), along with the relevant boundary conditions
and the equations for the liquid region, can be solved to obtain the temperature field,
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concentration field, solid fraction and fluid velocity in the mushy layer in a frame of reference
that is fixed with respect to the rigid stationary solid matrix. We consider solutions of these
equations in the next lecture.

Student Problem 5: Effect of convection on melt rate for ice
in pure water

Problem: Consider pure (i.e., salt-free) water with far-field temperature 7, > T, which is
forced in an inviscid convective flow against ice at temperature 7' = Ty, = 0°C (Fig. 9).
Work in an axis system that moves with the ice edge, such that the ice-liquid interface is
always at z = 0. In this frame, the water velocity field is

u=(Ez,—Ez): (31)

What is the melt rate V of the ice interface?

: WATER

-

Figure 9: Student Problem 5. What is the melt velocity of the ice interface in the presence
of convecting water?

Solution: We begin by seeking the temperature field in the water. In the moving axis
system, 7" should be stationary in time; we also assume it is homogeneous in z. Introducing
a dimensionless variable 6(z) to describe the z-dependence of the temperature field, we can
write

Teo —T(2) = (Too — Tin)0(2)- (32)
Equivalently,

T(z) =Ty — ATO(z2). (33)
where we have defined AT = T — T,,. The water temperature boundary conditions are
now

6(0) =1 ) (34)
0(z — o0) = 0. (35)
53



The temperature field in the water satisfies the diffusion equation,
ar _
— +u- VT =sVT. (36)
ot
Inserting (33) and (31) into (36) yields
Ez

K

0"(z) = ——0'(2). (37)
The solution to (37) subject to (34) and (35) is, by analogy to similar differential equations
solved in previous lectures,

0(z) = erfc (:) ; (38)

( A

2K
T.
Given this temperature field we can find the interface velocity using the Stefan condition:

with A =

5T
pLV = —.‘i'(_— (39)
0z |4
The derivative of the temperature field from (33) and (38) is
.).‘II ) l;}
£ = AT (0) = AT—, (40)
0z | o+ ' VA

where we have used the definition of the erfe function to evaluate the derivative. Inserting
(40), k = pepk (the definition of x). the Stefan number S = L/ (cpAT), and the definition
of A, we can solve (39) to get the interface velocity

| [2Ex

As in all examples, the ice melts faster if the Stefan number is small. We see here that
the velocity of the melting interface depends on the square root of the convection velocity
times the diffusion rate (as we might have guessed from dimensional analysis). The flow
toward the phase boundary compresses the thermal boundary layer, which, by dimensional
arguments, has thickness 6 ~ \/k/E. The compressed boundary layer leads to a steeper
temperature gradient, thereby enhancing the heat flux from the liquid that causes melting.



GFD 2006 Lecture 6: Idealized mushy layers

Grae Worster; notes by Devin Conroy and Rachel Zammett

March 15, 2007

1 Introduction

In previous lectures we considered solidification at a planar boundary, and we found that in
this case there was the possibility of constitutional supercooling in the liquid region ahead of
the solidification front. Such constitutional supercooling causes morphological instability of
the phase boundary, and the interface evolves until a ‘mushy layer’ (region of mixed phase)
is formed. A mushy layer is modeled as a two-component, reactive porous medium. We
have also seen that the growth of a mushy layer is governed by the rate of thermal diffusion.

The morphological instability of the interface, caused by constitutional supercooling,
increases its specific surface area, and thereby enhances the latent heat release, leading
to a temperature that is greater than that obtained for a planar boundary. Increased
specific surface area also enhances the release of solute from the solid, which increases the
concentration of the interstitial fluid; this increase in concentration acts to lower the liguidus
temperature in the mushy layer.

Therefore, if a region of constitutional supercooling is present in a mushy layer, the
liquidus temperature in the interstitial region decreases, due to enhanced release of solute,
and the actual temperature increases, due to the enhanced release of latent heat. These
temperature changes continue until the region of supercooling in the mushy layer has been
eliminated (as shown in Figure 1); the temperature and the liquidus temperature in the
mushy layer evolve until they are equal. We therefore assume that throughout the mushy
layer the temperature is equal to the local liquidus temperature.

Our goal here is to establish the position of the interface between the liquid and the
mushy region (and also the solid and the mushy region), and to do this we treat the mushy
region separately as an inhomogeneous porous medium. We therefore have two unknown
boundaries to determine as part of our solution.

2 Governing equations

From lecture 5, we have that the governing equations deseribing the evolution of the mean
temperature 7(x, 1), mean concentration of the liquid phase C'(x,t) and solid fraction ¢(x, 1)

=



T (C) Tix.1)

LIQUID

MUSHY LAYER

SOLID

Figure 1: Schematic representation of the effect of increased specific surface area on a region
of constitutional supercooling in a mushy layer. As the specific surface area increases, en-
hanced latent heat release increases the temperature, while enhanced release of solute lowers

the liquidus temperature. Thus the temperature reaches an equilibrium where T' = 7' (C"):

this equilibrium is shown by the dashed line which lies between the original temperature
and liquidus temperature curves.

in a mushy laver are

f)f;';

Viu = (1=1)—, 1)

. =" )
JT = o

n— + NI = N <(kNT) sL—, 2)

ey 5 pru (AVT) + psL 5 (

(' = L0

1-¢)= +u-VC = V:(DVO)+rC2Z, (3)
At el

1" = TplG), (4)

pa= = IK-Vp+ pg). (5)

where r = pg/p; and the remaining symbols have their usual meaning (as described in

previous lectures), and we have assumed that the solid phase is pure. Equations (1) — (3)
arise from conserving mass, heat and solute. Equation (4) describes the assumption that
the temperature and concentration of the interstitial liquid lie on the liquidus, and the final
equation (5) is the transport equation for the Darcy velocity u.

If we consider the case in which the solid in the mushy layer (ice) is growing, then noting
that pg < py, equation (1) shows that the velocity field will have a positive divergence. We
have an advection-diffusion equation (2) to solve for the temperature, which is forced by
latent heat release in the mushy layer. We also have an advection-diffusion equation for the
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solute (3), which is modified by a source term to reflect the increase in concentration of the
interstitial fluid as a result of the formation of pure ice crystals.

We are interested in dynamically generated fluid flows, particularly under the action of
gravity, and therefore use Darcy’s law (5), which states that the fluid velocity is proportional
to the negative pressure gradient.

Equations (1)-(5) are solved in the mushy layer; the Navier-Stokes equations coupled
with advection-diffusion equations for heat and solute are solved in the liquid region, while
we consider pure diffusion in the solid phase.

2.1 Internal Disequilibrium

In earlier lectures, we saw that for the kinetically driven solidification of a planar interface,
the normal velocity of the phase boundary could be described by

Up =G (Tnm —T), (6)

where G is the kinetic coefficient, which is assumed constant. In the case of a mushy layer,
equation (6) can be modified to

¢ = GA[TL(C) - T, (7)

where A denotes the specific surface area of the internal phase boundaries in the mushy
layer. Thus if 7" # T (C) in the interior of the mushy layer, the surface area A increases
and as the product GA becomes large 7'~ T (C).

3 Interfacial conditions

To generate boundary conditions for the governing equations, we apply the conservation
laws at both interfaces. The first interfacial condition, derived from equation (1) is

[un] = —(1 — r)v,[¢)]. (8)

In most circumstances, ¢ is continuous between the mushy layer and the liquid, and therefore
[@¢] = 0. At the interface between the solid and the mushy layer, however, there may be a
discontinuity in ¢, and we would expect only to be able to impose continuity of ¢ at one
boundary as there is only one partial derivative of ¢ in the governing equations.

The second boundary condition is analogous to the Stefan condition, and is given by

psL|¢lvn = [kn.VT). (9)

Note that there is no advective term in condition (9) as the equations of mass and heat
conservation imply that [T] = 0 at the interface; it is not obvious, however, that the same
will be true for the mean concentration, C.

The third condition, applied at the interface of the mushy layer and the liquid, is

[(vp — u.n)C)Y, + Crmdvn = [-Dn.VC]... (10)

The subscript ; denotes evaluation in the liquid; ,, denotes evaluation in the mushy layer.

o
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As we have homogenized the mushy layer on some scale, we cannot interrogate it on
a length scale that is smaller than this. In deriving these interfacial conditions we can
therefore no longer consider the interface between the mushy layer and the solid or liquid
phase to be a line; instead, we must consider it to be a region with a thickness that is
comparable to the homogenization scale, 6.

Boundary conditions (8) and (9) are robust in this sense; condition (10) is more contro-
versial, and depends on the relative sizes of the homogenization length scale and the length
scale of diffusion, [p. The choice d < Ip allows the retention of solute diffusion in equa-
tion (3), which means that the mean concentration of the liquid phase, C', is continuous.
Boundary condition (10) may therefore be simplified to

Cm¢vn = [-Dn.VC)! (11)

m-

It is also possible to suppose § ~ I and consider the limit where D/x — 0, but more slowly
than 0 — 0. In this case, the term representing diffusion of solute is removed from equation
(3), meaning that we can no longer impose continuity of C. An analogous situation occurs
in fluid mechanics if the viscosity of a fluid tends to zero. In this case it is no longer possible
to enforce continuity of the velocity field, and it is therefore possible to obtain shear layers.

The three boundary conditions (8) - (10) come from the conservation of mass, heat and
solute, equations (1) — (3). However, these must be supplemented due to the presence of the
additional dependent variable ¢. Early work imposed ¢ = 0 at the interface and required
@ to be continuous, but for certain parameter regimes the problem is then mathematically
ill-posed. There is also no good physical justification for this condition; again, it is not
possible to interrogate the system on length scales which are smaller than §. which implies
that a jump in ¢ is allowed.

Instead, we return to our earlier descriptions of a solid-liquid interface. In this case,
we saw that there was the possibility of forming a region of constitutional supercooling,
and this drove the morphological instability at the interface and thus the formation of the
mushy layer. The criterion for formation of such a region of constitutional supercooling was

JT Ty,
on / B n

(12)

{
and as the mushy layer thickens, this inequality tends to an equality. We therefore make the
assumption that the mushy layer grows just quickly enough that any residual supercooling
in the liquid ahead of it is eliminated, which allows us to write the final boundary condition
(assuming the interface is solidifying),

T Ty,

(13)

on|, on |’
The final boundary condition consists of a specified temperature at the solid mushy layer
interface. We now have a complete set of equations (1) — (5) with boundary conditions (8).

(9). (10) and (13). This system has solutions for all parameter values.

4 ‘ldeal’ mushy layers

The aim of this section is to simplify the governing equations for the evolution of a mushy
layer while retaining all the necessary interactions. To do this, we make the following
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Figure 2: The trajectory of 7" and C in the phase diagram for a mushy layer (solid curve)
compared with that when there is a planar solid liquid interface (dashed curve). The
liquidus temperature T',(C') is given by 1" = T,,, — mC for some positive constant m. The
temperature in the mushy layer follows the liquidus curve and thus there is no possibility
of constitutional supercooling. Note that in this case the temperature field in the liquid
region emerges at a tangent to the liquidus. In contrast, the temperature field in the solid
liquid system has a portion lying below the liquidus and thus constitutional supercooling is
possible.

assumptions. Firstly, we assume that the densities of the solid and liquid phases are equal.
i.e.ps = p;. Thus we have that » = 1, and conservation of mass, equation (1), gives that
the velocity is solenoidal.

We next assume that D < k, which allows us to eliminate the second derivative term in
the conservation of solute equation. Although this may appear to be a singular perturbation,
it is justified because we have a relationship between T" and ' in the mushy layer (equation
(4)), and we retain the second derivative in the conservation of heat equation (2). Finally,
we make the assumptions that properties are independent of phase and that the system is
above the eutectic temperature.

Using these assumptions, the governing equations (1) — (5) become

ar ¢ o e, el |
fd!—-l—u-V’I = &V f—l—q] at’ (14)

acC do .
(l—u)m+u-VC = 3 (15)
T = TL(C), (16)

pa = Ilo(=Vp+ pg), (17)

Veu = 0 (18)

Here we assume that & is constant in the ideal mushy layer and also that p is constant; later
we will consider p = p(T.C).
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Figure 3: Growth of a mushy layer from a cooled boundary at z = 0. The mush-liquid
interface is at z = h(f) and the position of the cooled boundary is at z = 0.

The above assumptions can also be used to simplify the boundary conditions: during
solidification, equations (8), (9) and (10) become

[un] =0, (19)
81, = 0. (20)
[n.VT],, = 0. (21)

In this case there is no solid layer: only the mushy layer and the liquid region above it.

5 The case of no flow

When there is no pressure gradient in the mushy layer and convection is not possible because
there is a stable density field, the Darcy velocity is zero. In this case there is no flow in
the system and the advective part of the transport equations (14)- (18) can be eliminated
to obtain

l L oo

= KT $——, 22)
ot VT G ot \22)
aC o
f <l = BT 23)
=205 Coi *
T = TL(C). (24)

The second of these equations can be rearranged and integrated as follows
() v -y ~y O
— [C (1 - c,-‘J)] = (1—9)C =C(x), (25)
a

implying that the total amount of species C' is constant in time but variable in space

according the the function C'(x). If initially this function is constant in the liguid (C'(x) =
('y) then equation (25) reduces to

(26)
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Figure 4: The plot on the left shows the normalized interface position for the solid-liquid
interface, A, and the mush-liquid interface, A, as a function of 77, (Cy) — T's for experiments
(crosses) and numerics (solid line). The plot on the right shows the solid fraction as a
function of height for numerics (dashed line) and experiments (circles) corresponding to
=T

which effectively constrains the amount of solid by the deviation in concentration from its
initial value. This equation can be differentiated with respect to time to obtain
dp  Cy 0CL(T) CodCLoT
ot CL(r)? ot C? dT at’

(27)

in which we assume that the concentration follows the liquidus line as a function of tem-
perature. This new relationship for the void fraction provides closure to the temperature
equation (22), which now becomes

Co L dCL] dT = ar L |
g - 20 C — kVT = e = V2T, 28
[ C? d:r] i L F ik (28)

where ¢j e is the non-dimensional effective specific heat. This is a nonlinear diffusion
equation for T" in which the effective heat capacity is enhanced by the internal release of
latent heat.

In summary we have the setup shown in figure 3 with the following governing equations

or 8T
or 9T ,
('-p.vfrm =k 522" (30)

for the temperature evolution in the liquid and mushy layers respectively. In the far field
liquid we use the constant boundary condition T'(t,00) = T and at the base of the mushy
layer we use T'(¢,0) = T'g. As described previously we have the following interface conditions

or*

T =Ty (Co),; [d_] =0 [Tk =0, (31)
“~JIM
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Cooled from below Cooled from above
stable Temperature unstable Temperature
2. No convection 6. Mushy layer
Coo < Cg Mushy Layer Thermal and
Heavy fluid released compositional convection
1. Planar 3. Planar
C=ACgB no convection thermal convection
No compositional effects
5. Compositional convection 4. Mushy layer
Co >Cp in liquid and thermal convection
light fluid released mushy layer in the liquid

Table 1: Organization of the different convective regimes as explained thoroughly in the
text. In all cases we assume that the density of the fluid increases with the concentration,
" and increases with a decrease in the temperature, T'. Here C'f: is the eutectic concentration
and C'» is the concentration far from the phase boundary.

at z = h.

In general these equations have a similarity solution with the similarity variable 5 =
z/2v/kt and interface position h = 2Av/kt. Figure 4 shows the numerical solutions and
experimental results for the normalized interface position A as a function of 11 (Cy) — 1
and the solid fraction as a function of height scaled with the moving interface.

6 Solidification and convection

During the solidification of a binary melt there are some interesting physical features. such
as the formation of mushy layers and the onset of convection, that depend on the properties
of the released fluid and the solidification boundary. In table 6 we organize these features
according to the location of the solidification boundary and the concentration, which in-
creases with density, of the rejected fluid in comparison to the far field concentration, ' .
We now discuss each of these cases in turn.

1. In this case there is no excess solute produced by the solidifying front and the compo-
sitional density field remains uniform. Since the temperature is lowest at the bottom,
and thus the density decreases with height the temperature field is stable as well. As
a result convection will not occur and the growth rate will proceed as in the Stefan
problem.

o

Here the concentration of the melt is less than that of the solid and in general a
mushy layer will form. Since the rejected solute makes the fluid adjacent to the
moving boundary denser the compositional density field is stable. In addition the
thermal density field is stable, owing to the cold lower boundary, and convection will
not occur.

3. Similar to case 1 except that now the temperature is higher at the top and therefore
the density increases with height. The thermal density field is unstable and may lead
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Figure 5: Schematic illustration of a solid growing into a binary melt, cooled from above.
Since the density is larger at the top due to a lower temperature, there is thermal convection.
Here F' is the flux of heat by thermal convection in the liquid.

to convection if the Rayleigh number is large enough.

4. In this case the residual melt adjacent to the phase boundary is lighter than the melt in
the far field, resulting in a stable compositional density field. On the other hand, the
thermal density field is unstable and thermal convection can occur. This convection
will occur in the liquid only; the mush will remain stagnant.

5. In this case the thermal density field is stable, whereas the compositional density field
is unstably stratified. Double-diffusive convection can occur in the liquid in the form
of fingers but will not occur in the mushy layer as the temperature and concentration
are constrained by the liquidus relationship and are therefore not independent. There
may be convection in the mushy layer leading to the formation of dissolution channels.

6. Here the melt is cooled from above and heavy fluid is released from the phase boundary.
The thermal and compositional density fields are both unstable and will act together
to produce convection. In addition, convection will occur in the mushy layer, which
may alter the micro-structure of this porous medium. This is the regime for the
formation of sea ice.

Cases 3 and 4

For cases 3 and 4 of table 6 the convection generated in the liquid acts to transport heat
from the bottom to the solidifving interface as illustrated in figure 5. The Rayleigh number
for this situation was assumed to be large (Ra > 1) and therefore the interior of the liquid
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is well mixed up to the thermal boundary layer. The Stefan condition will have the form

7
psLa= —k(_—
0z

i (32)

where F is the heat flux from the liquid to the solid. Naturally this heat flux will be a
function of the temperature difference between the interface and far field liquid temperature
and the strength of the fluid advection, given by

F= B(f‘i’)i [F = TH(E)]

K1/

3. (33)

Here B is an experimentally determined number, » is the kinematic viscosity, o is the
coefficient of thermal expansion and g is the acceleration due to gravity. Since we must
conserve energy, the liquid will cool down according to
Jdr i
pey (H —a) — = —F, (34)
? ot
due to the transfer of heat from the liquid to solid.

The position of the phase boundary as a function of time is shown in figure 6 with some
distinet, quantitatively different regimes due to the onset and development of convection.
We can make the quasi-stationary approximation
A —Tp

(

k = pLa+ F. (35)

At early time, labeled 1 in figure 6, the solid thickness is small (@ < 1), the growth rate
is large (@ > 1) and the convective flux is negligible. The dominant balance is between
the first and second terms in equation (35) and the solution proceeds as in the planar case
with a « V/t. Eventually buoyancy forces due to the unstable thermal gradient dominate
viscous dissipation and convection ensues (region 2 in figure 6). At early times the advective

transport of thermal energy from the bottom to the top is enough to balance the transfer of

heat away into the solid and the growth rate slows. Later on, the liquid cools down, reducing
the convective heat transfer in the liquid, according to equation (34) and the growth rate
proceeds according to equation (35). At long time, indicated by region 3 in figure 6, the
temperature of the liquid has cooled down sufficiently so that the convective heat transfer
is much smaller than conduction in the solid. The dominant balance is again between the
first and second terms in equation (35) and the solution proceeds as in the planar case with

a x V1.

7 Student problem 6

Determine the position of the interface between the mushy layer and liquid for the constant
solidification rate shown in figure 7. The governing equations and appropriate boundary
conditions in the liquid region and the mushy layer respectively, are as follows

8T T

= =kz—,  T(t,00) =Too, T(th)=T1(Co) 2> h (36)

T T p= . - el o~

% =CMkz—, THO=Ts THA)=TLC) 0<z<h, (37)
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Figure 6: Interface position of a solidifying binary melt as a function of time. There are
three distinct regimes, labeled 1,2 and 3, which are distinguished by the relative strength
of convection occurring in the liquid region.

where C(T) = 1 - LC}JC’;;/Q,C'E. Along the liquidus line we have the linear expression
Cr = Co+mT, where m = (Cy— Cg)/ (T1L(Cy) — T¢) is the slope. In addition we have the
following interfacial condition

— (_)i (38)
0z ! s

T
0z

liquid mushy layer

at z = h.

Answer

The non-dimensional version of the specific heat can be expressed as

|l

C(T)=1~- =i (39)

1 T
(l i E'f':.lf'u]—':"f-:)

where S is the Stefan number and &€ = Cy/(Cy — Cg) is a concentration ratio. In the limit
£>1and S > 1, while §/¢ = O(1) we obtain C(T') =1 — S/€ = 2. Note that £ > 0.

For a constant growth rate V we can move the coordinate system by making a Galilean
transformation so that we are in a steady reference frame. Mathematically this is written
as, T = z — Vi, so that % = —V(,‘;—j:. In addition it is convenient to non-dimensionalize the
equations using the following scales

J . K
0= ———, Z=z—, 40
Tp -1y v e
so that equations (36)-(37) become
0" +0' =0, 6(c0) =0, Oh)=0 z>h, (41)
0" +00' =0, 6(0)=-1, 6h)=0 O0<z<h (42)
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Figure 7: Setup for the student problem, showing the growth of a mushy layer into a liquid
from a cooled boundary at z = 0. The apparatus is being pulled at a constant velocity
through heat exchangers such that we are in a steady frame of reference.

The solutions of these equations are

0 =6 — e z> h, (43)

0 — | [l.sz[h- 2) 1

| — ef2h

D=z, (41)

The position of the interface is calculated bv using the flux condition (38) &’
A : ||q|1|n|

| Q
I + . 45)
{1+ - | [

'()’|1:|||~|1\ layer to obtain

| —

;—}:

-
'
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GFD 2006 Lecture 7: Convection in mushy layers

Grae Worster; notes by lan Eisenman and Victor Tsai

March 15, 2007

1 Convection Setup

Here we perform the analysis governing the regions 5 and 6 of the table shown in Lecture 6.
Under these conditions we expect convection to occur within the mushy layer. We note that
under strong convection, channels form within the mushy layer and are called chimneys by
the metallurgical community or brine channels in sea ice. When these channels are discussed
(later), it will be assumed that the scale of the mushy layer and the scale of the channels
are greater than the scale of the dendrites.

We begin our analysis with the ideal mushy layer equations, as derived in Lecture 6.
The results will therefore describe the physics of the convecting mushy layer but will not
agree quantitatively with experiments. Taking

p=poll —a(T —Ty) + B(C — Cy)], (1)
T=T,L(C)="Ty—m(C — Cqp), (2)
T -1T; - C
e — = =0 (3)
Ip—Tp Co—C B
AT =Ty — Tg, (4)
the ideal mushy layer equations simplify to:
00 5 Op
P V= w204 822, (5)
ot d
o dy
— @)= -Vo=—-(€E—-0 . 6
W=y Hue¥ =% (0)
I1 2 -
u=-— "— [Vp + po3* ACHg], (7)
L

where S = L/ (CpAT), £ = Cy/ (Cr — Cp) = Cyp/AC and 3* = 3+ ma.

Typically ma < 3 which is the reason for denoting 3* as above. For boundary con-
ditions, we have bottom temperature equal to the eutectic temperature, i.e. 7(z = 0) =
Ty = TE. We also have T'(2 = h) = Ty and T'(o0) = T. These boundary conditions are
for a one-dimensional problem, but are easily generalized to multiple dimensions.
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Figure 1: Phase diagram for near-eutectic approximation.
taken to be much less than Cj.

2 Near-Eutectic Approximation

The near-eutectic approximation (see Fig. 1) is that

Y

In this approximation, AC is

E>1 (8)
and
S>1 (9)
with
S
o
Taking this appoximation yields ¢ ~ 1/& < 1. Thus (6) vields
(4.0 Dt
—f—— &~ —. (11)
o Dt
Substituting this result into (5) and defining Q = 1 + S/€ leads to
Do
(12)

QO— = kV?.
Dt~ "

Equations (7) and (12) are equivalent to those for convection in a passive porous medium,

To solve the equations, we first scale length with A, time with h*Q/k, velocity with
w/ (h§2), and pressure with 3* ACpggh. Thus, (12) and (7) become

oo ,
T +u-Vl =V

(
and i
u= R, [Vp— 6kK|,
where
B = 3* AC pogllhQ
KV

and v = u/py. Now all variables are dimensionless.
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Solving for the basic state (no time dependence or x dependence), we set 3/t = d/dx =
0 which yields # = —1 + z and u = 0. Next we solve the two-dimensional problem with
convection solely within the mushy layer and with a planar interface. Introducing a stream
function for the 2-dimensional velocity such that, u = (., =, ), and adding a perturbation
0" to the base state temperature field, § = —1 + z + 6’, (13) and (14) lead to

i 06’
V2 = —p + —, (16)
ot
V2 = —Rmb;. (17)
Assuming no flow at either (planar) interface of the mushy layer, the boundary conditions
are
8'(z = 0) =0, (18)
gz =1=1, (19)
Y(z =0)=0, (20)

One should note that this problem is not realistic since convection in the mushy layer will

induce convection in the liquid above so that boundary condition (21) is not satisfied in

practical situations. However, the problem is still a useful conceptual problem to solve.
To start the stability analysis, we look for perturbations of the form

Hf = g(:)(_,in:r—%m" {22)
W = P(2)eiF ot (23)

Marginal equilibrium then occurs when o = 0, or by setting 5 = 0. Substitution with

; . Y .
( g - a--*) 0 = iad) (24)

this condition yields

dz
2 - -~
(i - (.12) U= —iaR,,0 (25)
dz
The solution to these coupled ODEs is
6= A, sin(nmz), (26)
¥ = B, sin(nwz), (27)

(':32?1'2 o )?
a2

_Rm == {28)

Plotting — R, at marginal equilibrium as a function of o we note that the first instability
(lowest value of —R,,) occurs for n = 1, thus the curve

(m% + a?)?

5 (29)

'_Rm — Rh(”) =

X
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Figure 2: Stability of perturbations with Rayleigh number I,, and wavenumber «.

is the boundary between stability (—R,, < R;) and instability (—=R,, > I}) (as a function

of a) as shown in Fig. 2. The minimum value of Ry(a) occurs at Ry(a) = R, = 4x°. If

R,, > R. then instability occurs.

Summary of key points

e R,, is a porous-medium Rayleigh number and is proportional to I1h, where I is
permeability of the mushy layer and h is the thickness.

e R, depends on compositional buoyancy but on thermal diffusivity. In general, the
Rayleigh number is the ratio of buoyancy to dissipation.

e The critical condition is modified by © = 1 + S/&. so convection is more likely when
S is large.

3 Parcel Argument

Consider a parcel in the mushy layer, and hence on the liquidus, that is moved to a different
region in the mushy layer where the fluid is warmer and saltier (but still on the liquidus).
As is illustrated in Fig. 3, the parcel initially gets warmed to the temperature of its new
surroundings; it then dissolves some crystals to increase its salinity and arrive on the lig-
uidus. The dissipation of buoyancy, then, is through a combination of thermal diffusion and
dissolution.

Large Stefan number S or small £ means that there is less phase change per unit tem-
perature change, and hence less dissipation of buoyancy, leading to greater instability. This
is also the basic mechanism of channel formation.

From equation (11), we see that there is dissolution where the temperature of a fluid
parcel increases. This requires the flow to be larger than the isotherm propagation speed.
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GFD 2006 Lecture 8: Interfacial pre-melting

Grae Worster; notes by Robert Style and Dominic Vella

29 June, 2006

1 Interfacial Premelting

In the previous lectures, we have concentrated on solidification of ice on large scales. In
the last two lectures, we will switch to microscopic scale and study a phenomenon of pre-
melting: the existence of a thin liquid film on the surface of a solid below the bulk freezing

temperature. Although the thickness of the films generated by premelting are typically of

the order of 100 molecular diameters, we will see that they are highly relevant: for example
premelting plays an important role in the generation of frost heave.

The existence of premelted films was first postulated by Faraday and Tyndall in the
19th century in order to explain the observation that snow sticks together when compacted,
unlike most granular solids. The idea being that upon contact of two ice grains, the thin
film will freeze at the contact line to join the two crystals (see Fig. 1). At the time however,

it was accepted that an increase in pressure also caused melting and so in the absence of

proof of the existence of premelted films, the pressure melting view prevailed. Recently
however, experiments have delivered proof of the existence of the films, and this. coupled
with the theoretical evidence showing that pressure melting can not possibly explain all
observed effects has finally confirmed the validity of Faraday and Tyndall's ideas.

The presence of the film stems from a repulsive force between the solid and the air, due
to van der Waals forces. As we will see, this force means that it is energetically favourable
for some of the solid to melt, increasing the gap between the solid and the air. However,
as the system is below the bulk freezing temperature of the liquid. the film is limited to
microscopic thicknesses. It is this competition between repulsive force and freezing drive
that determines the equilibrium thickness of the film.

2 van der Waals Forces

van der Waals forces are attractive forces arising from fluctuctions in the dipole field of
molecules giving rise to fluctuations in nearby molecules. These fluctuations cause electro-
static forces to act between the molecules, giving rise to a potential between two molecules
that takes the form .

12
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Figure 1: The sintering of two ice blocks upon contact by freezing of the premelted film.

where ko is a constant depending on the properties of molecules 1 and 2, and » is the
distance between the molecules.

2.1 Force between a molecule and an extended solid

From this expression, we can work out the attractive force between a molecule of phase 2,
separated from a semi-infinite plane of phase 1 by a distance h (see Fig. 2(i)). Letting p,
be the number density of molecules in phase 1 and D be the semi-infinite domain of phase
1, we can then integrate in cylindrical polar co-ordinates to yield the total potential

“-_/ _ —pikipdV 7w hip (2
; [r2 + (h+ 2)2]° 6 h®

L]
—

2.2 Interaction between a slab and a semi—infinite material

We can now use this potential to calculate the potential per unit area between an infinite
slab of thickness h and a semi-infinite solid (Fig. 2(ii)), by integrating over the molecules
that make up the infinite slab. Integrating equation (2) between z = 0, h, we find that the
potential per unit area is

A m ;\"-I'JPIP" Am 1 1 \
p= | —=22002 4 et ] 3
- A (i(:+d)~‘d 127 [(h+d)‘3 frz] (3)

where Ao = pipokys is the Hamaker constant for materials 1 and 2
From this expression, we can obtain the surface energy when two infinite solids of phases

1 and 2 are in contact. By assuming that there is a molecular cutoff distance d = o2 that
separates phases in contact, corresponding to the repulsive forces between molecules at

-]
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Figure 2: (i) The potential between a molecule and a semi-infinite solid. (ii) The potential
between a semi-infinite solid and a slab. (iii) The derivation of the potential for a liquid
film. The reference state (LHS) is modified to achieve the desired potential (RHS).

short distances, when h — oo in the above expression, we find that the potential per unit
area between two semi-infinite phases separated by a gap of thickness d is
A

h=— = 4)
L 127d? 4

and letting d — o9, we obtain the surface energy, given by

2.3 Thin liguid films

We are now in a position to calculate the potential of thin liquid film of thickness i on
top of a semi-infinite solid. We will find the potential by starting with a reference state of
known energy and then modify it, while tracking the energy changes associated with the
modifications (Fig. 2(iii)). In this case, we start with a half-plane of solid underlying a
half-plane of liquid. As we have seen, this has a surface-energy of v. We then remove the
upper portion of liquid to leave the desired configuration. In doing so, we have removed the
energy associated with the attractive forces between the removed chunk of liquid and the
film, and the removed chunk of liquid and the underlying solid. Therefore the energy per
unit area of the new state is

R L+_‘i 1 1 (6)
: S 2en? T2 \(h+on)? o2 )] A



which (as h > oy) gives

¢ = const. — i (7)

' 127ch?’
where A = Ay — Ay. We note that A can have either sign depending on the magnitude of
Ag and Ay, so the force acting on the liquid can be either attractive or repulsive, leading
to film rupture or wetting respectively. This force is known as the disjoining pressure and
is given by P ;

d¢
T = oo = (8)

so that the force is attractive when A < 0, and repulsive when A > 0.

2.4 Two materials with an intervening liquid layer

As we will see, in real situations the liquid layer tends to be in between two phases, such
as vapour and solid, or substrate and solid. Therefore, by using a similar argument to that
of the previous section, it is possible to build the potential for a liquid layer of thickness h
between two semi-infinite materials of phases 1,2 to find that

@ = const — (9)

127h?’
where A = Ay + Ay — A9 — Ay can take both signs. so that the film can also either be
wetting, or be unstable leading to rupture.

3 Premelting

Imagine a liquid film of water sandwiched between a semi-infinite block of ice and an-
other substrate (e.g. water vapour or a solid wall). In equilibrium, the Clausius-Clapeyron
equation gives

.”'::L(Tm =)

Iy

Here we shall assume, for simplicity, that ps = p; so that the last term on the right-hand
side of (10) disappears. This term is associated with pressure melting (since it includes
the difference between the liquid pressure and the reference pressure, p,,) and so we are
neglecting pressure melting in the calculation that follows. Now, ps—p; = pp. the disjoining
pressure, which is given in terms of the film thickness h by (8). Equation (10) therefore

=ps—p+ (pf = pm)(l - f?.u/l’:')- (l{l)

ﬁitll[)liﬁ(‘s further to:
eI — T A
B vy (.:‘n ) = = (1 1)

where h is the thickness of the melt layer above the ice.
If A > 0, so that the layer is wetting, then we find immediately that

B e [, =TS (12)

provided that T' < T},,. Notice from (12) that as T / T},, h — oc so that the film thickness
diverges as the temperature approaches the equilibrium melting temperature. Physically,

-]
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Figure 3: Diagram showing an ice block and its premelted film in a horizontal temperature
gradient.

this is as expected because at the equilibrium melting temperature, we can have bulk liquid
in coexistence with ice.

Equation (12) shows that below its equilibrium melting temperature, ice can coexist
with a thin layer of water. This thin layer of water has important consequences that we
shall investigate further in the last lecture. We begin by considering a simple mechanism
by which flow can be driven in a premelted layer and compare this to a more conventional
thin layer flow.

3.1 Premelting driven flow

Consider a semi-infinite block of ice between two vertical walls with a liquid film sitting
between the ice and its vapour as shown in Fig. 3. If the walls are maintained at different
temperatures (both with 7" < T,,,) then a temperature gradient is set up across the width
of the system. For the liquid film to remain in thermodynamic equilibrium, the film must
be thicker at the hotter end of the experiment and so the ice melts a little here. However,
this means that the thermomolecular pressure pp is lower here and so, since p; = ps — pr.
the liquid pressure is higher. Therefore there is low in the premelted film from hot to cold
(i.e. from left to right in the setup shown in Fig. 3).

Here we neglect gradients in the surface tension coefficient resulting from the tempera-
ture change and so there is no traction on the interface. The pressure in the liquid film is
therefore given by

A
where H(x) is the interface position and not the film thickness fii(x). Here the Hamaker
constant A = Ay + Ay, — Ay — Ay, depends on the Hamaker constants of the different pairs
of materials in the system.

Pl = _ﬂ,‘.‘a'l-{.'i':i' = { I:”

The flow in the liquid layer is driven by the gradient in p; and acts to eliminate this
gradient. Eventually a static situation is reached with p; = const. evervwhere but with the
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Premelting Marangoni
Driving force Disjoining Pressure | Surface tension gradient
(normal to interface) (tangent to interface)
Direction of mass Hot to cold Hot to cold
transport
Morphology of Yes No
underlying solid
Equilibrium Stationary Dynamic
Film Thickness Thermodynamically Dynamically
Determined:

Table 1: Comparison of main characteristics of the Premelting- and Marangoni-driven film
flow problems.

interface deformed. Here the curvature force (surface tension) balances the thermomolecular
forces. This means that in regions of high disjoining pressure (thin films), we expect to see
large interfacial curvatures in steady state.

3.2 Marangoni driven flow

We now contrast this with the case of a thin wetting film on a rigid, solid substrate, such
as glass. Again a temperature gradient is imposed across the system but now we account
for the gradients in surface tension caused by the temperature gradient. In particular, we
note that for water, the surface tension is higher at the cold end than at the warm end and
so there is a surface tension gradient from warm to cold. This exerts a surface traction,
7 = pdu/dn, which balances the surface tension gradient. We therefore have
Ou O 14
'“(j': = Ds 5 { - )

where s denotes the arc length measured along the interface. Unlike the previous case, at
equilibrium the liquid is not quiescent (see figure (4)). The gradient in surface tension will
drive a flow along the surface of the liquid from hot to cold, while the pressure reduction
under the cold region of high curvature will drive a return flow underneath the surface
flow. The equilibrium shape of the surface in this situation is controlled by a dynamic flow
balance.

Although the flow of the two liquid films are similar in many respects, there are also
several differences. These differences are summarized in table 1. In addition to these
differences, we also note that when the vapour phase is replaced with a deformable solid,
the Marangoni effect disappears but the premelting flow remains. We will consider such
deformations in the final lecture.

Student Problem Consider a thin disk of weight W, radius R and against which ice
premelts, just ahead of an interface that s solidifying at a speed V' (see Fig. 5). Find the
mazimum speed for which there is a steady state in which the disk translates ahead of the

ice.
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Figure 4: Diagram showing a thin film of water wetting a rigid substrate in a horizontal
temperature gradient. Left: The initial configuration in which a layer of liquid lies above
the solid. Right: The steady state in which flow in the layer continues because of the surface

tension gradient.
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Figure 5: Diagram for the student problem: a disc of radius R is pushed ahead of a steadily

translating ice-liquid interface.
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Solution Because of the presence of the disk, there will be a pre-melted liquid layer, of
constant thickness h, separating the disk from the solid interface. Assuming that h < R
so that the gap is ‘thin’, we can neglect effects associated with the edges of the disk. The
liquid film exerts a disjoining pressure

A
6mh3

pir':

on the disk, where A is the Hamaker constant. The disjoining force pp x m7R? repels the
disk from the ice phase.

Two forces are acting to move the disk in the direction of the ice. The first of these is
the disk’s weight W, while the second force is a suction force resulting from the inward flow
of liquid beneath the disk. This force can be calculated using lubrication theory, as follows.

In the thin gap, the horizontal fluid velocity is

z2(z — h)=—, (15)

where p(r) is the unknown fluid pressure. The depth integrated radial fluid flux is then

Q—_L u(L,L-I_QEH;_ (16)

Using the continuity equation h; + V - Q = 0, we then have
h* 16 [ 6p
L (R (17)
12p07 dr \ Or
which can immediately be integrated twice to give

3uV . .
p=—"o(r'—R? (18)
h
where we have defined zero pressure to be at » = R. This pressure force can be integrated
to give the value of the lubrication induced adhesion between the disk and the ice:

R . 4
3muV R
Foan = 2arp(r) dr = —?T“—.. (19)
0 '.Zh"]

Balancing the three forces acting on the disk we have
0= mprR® — W + Faan, (20)

which can be rearranged to give the velocity of interface advance V' in terms of the gap
thickness, h:

A 2h3W
T 9nuR? 3wuRY
Of course in an experiment V' is likely to be the control parameter, rather than h. In this
case (21) can be rearranged to give h(V'). However, the form in (21) is more convenient

-

(21)
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for our purposes since it demonstrates immediately that the steady state we have supposed
can exist only if

A
OmpuR?

< 0, (22)

so that

A

V < Viax = m

(23)
If V> Vipax this equilibrium configuration no longer exists and we conclude that the disk
is engulfed by the ice.
[t is interesting to calculate the temperature of the ice-water interface beneath the disc,
1;. From (11) we have that
_1_ s {‘"J'{T’” = f’:l (24)
Grh? f = ' e

Using this expression to eliminate h from (21) and rearranging we find that

AT, 2 A :
T —1; = — - - —'t') (25)
67 pol 3mpuRY \ 9r e R?

so that as V. — V,u, 1) — —oco. In other words the disk is well below the undisturbed
phase boundary.
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GFD 2006 Lecture 9: Thermomolecular flow, thermal

regelation and frost heave

Grae Worster; notes by Takahide Okabe and Dan Goldberg

30 June, 2006

1 Review

In the last lecture, interactions that cause macroscopic disjoining pressure between two
materials separated by a third material were discussed. Microscopically, that disjoining
pressure may be due to non retarded Van der Waals forces, or may be due to retarded
Van der Waals forces, or to electrostatic forces. But the main results discussed below
are independent of the microscopic theory. As we will see, everything boils down to the
Generalized Clapeyron equation, which is derived from the Gibbs-Duhem relation and gives
the difference in pressure between solid and liquid phases of the same material.

Marangoni flow vs. thermomolecular flow

Let us review the discussion of the last lecture in pictures. We compared Marangoni flows
(Figure 1) with thermomolecular flows (Figure 2). Marangoni flows are driven by gradients
of the surface tension at the fluid interface, between liquid and vapor, for example. The
temperature gradient gives the gradient of the surface tension: surface tension is low at the
warm end, and high at the cold end. That provides the surface traction on the film that
pulls the surface water to the right, building up the liquid pressure on the right due to cur-
vature, which can drive the bottom water to the left. Thus, it is possible to achieve steady
state in this way. By contrast, in thermomolecular flows, the driving force is differential
normal stresses. The temperature gradient gives the gradient of the thermomolecular pres-
sure: thermomolecular pressure is low at the warm end and high at the cold end. Therefore
hydrodynamic pressure is high at the warm end and low at the cold end in order to balance
the solid pressure. That causes flow from the warm end to the cold This distinction be-
tween Marangoni flows and thermomolecular flows is the distinction between being driven
by tangential stress or normal stress, and in the thermomolecular case, film thickness is
determined only by the temperature field, whereas, in Marangoni flow, it is determined
dynamically as water moves from one end to another. But tangential stress as a driver goes
away if vapor is replaced by solid, and we have only to consider thermomolecular flows. We
concentrate on this situation in today’s lecture.
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Hot Cold Hot
¥ low v high

Cold

Figure 1: Marangoni flow. Initially, water is level on the glass, but if the temperature
gradient is given externally, it causes the difference in surface tension. This results in the

flow of surface water, and water is built up on the right. Then the pressure at the bottom
is higher at the cold end, which causes the flow of the bottom water to the left.

vapor

Hot| %" —"""ICold

lce

Figure 2: Since water is on ice, thermomolecular pressure plays an important role. Ther-
momolecular pressure is determined by temperature: low at the hot end and high at the
cold end. Since thermomolecular pressure plus liquid pressure is equal to solid pressure,
liquid pressure is high at the hot end and low at the cold end, which causes the flow to the
cold end.

2 Premelted Film in a Capillary Tube

Let us consider the following thought experiment. Imagine we have a capillary tube, which
is filled with water. with one end colder than T},. Since the left end is below the freezing
temperature, then there is ice on the left and water on the right. This is a classical Stefan
problem with fixed temperature field varying from cold to warm. As we saw in the previous
lecture, the interface between ice and water simply stops when it reaches the position at
which 7" = T;,. Now imagine this is a real capillary tube: we need to take into account
interactions between the material of the wall of the tube and the ice, which in principle can
cause the ice to be premelted, producing a thin layer of water next to the wall. Because
the left side is colder, we have relatively large disjoining pressure and low liquid pressure
on the left. This pressure gradient has a tendency to move fluid from warm to cold. If this
is a theoretician’s ideal rigid capillary tube, nothing more happens: the differential stress
is accomodated by the wall (Figure 3). However if this wall is elastic, then the water in the
premelted film can How. This situation is depicted in Figure 4. We will make a particular
assumption about the elastic tube: that it just exerts a hoop stress (circumferential stress),
not taking account of any bending moment of the wall.

The film is thick where it is warm and thinner where it is cold. We are going to take a
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Figure 3: Rigid capillary tube
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]

Figure 4: Elastic capillary tube

I-dimensional coordinate system x as depicted in Figure 4. Then the temperature field is
1 =T, — Gu. Let the radius of the capillary be b(x,t). Because we treat the elastic hoop
stress only, the pressure of the wall is equal to the pressure of the solid:

Puw =pPs = A[!‘J — bu). {”

psL .. - o
D= Ps— PT"= ‘['“J = hll) — T (Im = IJ {2]
I
Where the temperature is colder, T;, — 71" is larger and the liquid pressure is lower. Liquid
pressure is decreasing in the positive z-direction, and this pushes fluid in the direction
toward the cold end. The premelted film has thickness d given by
Tn-T _ A

T ~ 6ndd

psL (3)

Because the temperature field is stationary, the film thickness d is also independent of time.
Later, we will consider how to modify the formulation in the presence of a curved solid
liquid interface. For the moment, we ignore this curvature. Lubrication theory gives volume

flow rate (in 2D)
(]3 f’)p; y
=—|—-—=). 4
9 12 ( f);r) )
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Conservation of mass gives

db g
g=r — == {) 5
ot ' or )
b o [ d* op :
e, = oen | (6)
ot dr | 12p Ox
0 | ATy 1 1 A 51 g
— _(— = e — (}\(—, = '“ (I" i [ i ]
dr |b6mpsL G 12 dr T
Therefore
b AT,k 9 [1(db plG .
ot T2mrupsLG oz |z \ Ox kT ' :

This can be regarded as a modified diffusion equation with spatially varing diffusivity. There
is a similarity solution to (8). By using the following variables

b _ PsLC (KT 3 ” -
) — U — - [f1W) x
0 Tk 12.G g\l )
where
d=P(T ~T.)—3, (10)

(AT
p:(b * ) _ (11)
h?r;;l.;f,

1
124G\ 3
i ( = ) =3 (12)

(8) becomes dimensionless:

144 1 L iy
.«,;” = ==y + =g — =g (13)
’ ] 3" gl
with boundary conditions
g=10 (n=0), (14)
g—0 (n— o). (15)

where g is the dimensionless displacement. The displacement is 0 at the end, because there
is no force there (we are only considering the hoop stress. If we were considering curvature

stress as well, it would be nonzero.) The displacement is increasing in time. The tube

expands at first, but eventually stops expanding, because the elastic hoop stress which
pushes back on the ice balances with the thermomolecular pressure pushing out. If we
leave it for infinitely long time, we get a linear deformation profile, matching the linear
temperature profile.
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b-b,

Figure 5: Similarity solution. Typical values for b — by are ~ lum when z ~ 100pm.
Corresponding timescales are on the order of several days.

3 Thermal Regelation

Imagine there is a big block of ice containing an immersed solid particle. We impose a
temperature gradient V1" = G such that the temperature is everywhere below the bulk
freezing point. There is a premelted film against the object which is thinner where the
temperature is lower (Figure 6). The themomolecular force of the film is greater where it is
thinner, so there is a net force on the particle, pushing the particle downwards. Movement
of the particle can take place by the melting of ice on one side and freezing on the other, a
process known as regelation. In order for regelation to take place, liquid must be transported
within the film from the melting front to the freezing front. And in general the particle
migrates from cold region to warm region. We want to understand how to calculate this
phenomenon.

ICE

VT

\_f

irticle

Water

Figure 6: Solid particle in ice

For small particles, premelting is affected by curvature of the solid-liquid interface:
ps=p+pr+ys2V-n (16)

where p; is =olid pressure, p; is liquid pressure, pp is the pressure due to disjoining force.
The unit normal n points into the ice. The last term is a pressure due to curvature of the



interface. We need to take the Generalized Clapeyron equation into account:

Tm = :{ -

_!J,.-L—?,— = Ps— D (17)
A

= + 1tV - . (18)

Because (total force on the particle)=—(total force on the ice),

F = - / ps(—m)dS (19)
Jap
' g F ol
= pmdS + / psL———ndS (20)
JabD JID m
= F’“—FF‘;' (21)

where D is the whole region that is not occupied by ice. F,, is due to lubrication pressure
and Fp is the thermomolecular force.
] T, =T ) 2 DA
Fr = / psL———ndS = '“ / V1'dv. (22)
apD *‘l‘ f'lm JD

m

If the thermal properties of all phases are the same, then V1" = G throughout. Under this
assumption,

oL . . .
Fpr = T G : (volume that is not ice) (23)
L e .
= 7 G - (mass of displaced ice). (24)

This looks similar to the principle of Archimedes, which states that the upthrust on a body
immersed in water is proportional to the mass of water displaced. This motivates the term
“thermodynamic buoyancy”™ to describe the total thermomolecular force on an immersed
particle. The result is independent of the particular intermolecular interactions that underly
the thermomolecular pressure.

To find the regelation velocity, F,, must also be dealt with, generally using lubrication
theory, or some closure such as Darcy's Law. In the next section this is done in investigating
the phenomenon of frost heave.

4 Frost Heave

Frost heave is a phenomenon that involves upheaval of soil from formation of ice within the
soil, and is known in some cases to cause the formation of “lenses” - layers of ice containing
little or no soil particles (figure 7).

Frost heave is essentially the process of thermal regelation on a large scale in frozen soil.
There is an external temperature gradient that leads to a thermomolecular force on the
soil particles, as in the previous example of regelation, and that balances the viscous forces
from the transport of water necessary for the regelation.
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Figure 7: A column of frozen soil in which lenses (dark) have formed in between layers or
frozen soil (light). From Taber (1929).

In the model presented here, the temperature gradient is assumed to be constant and
directed downwards, so at some depth (2 = () the temperature is at the bulk freezing point.
However, the soil is not frozen all the way down to z = 0; the ice formed in the soil pores has
an associated curvature because of the geometry of the pores, and so the Gibbs-Thomson
effect prohibits ice formation at temperatures below the freezing point. And so there is a
fringe region of frozen soil with lower boundary zy > 0 and upper boundary z; (the lens
boundary). z; is set by the geometry of the soil, so if z; < 2y, there is no fringe region.
Figure 8 shows the situation where there is a fringe.

First assume that a fringe does exist. A force balance on the fringe section can be calcu-
lated, as long as certain properties of the ice-soil system (e.g. volume fraction, permeability)
are known. The total upward thermomolecular force Fp is equal to the thermomolecular
pressure integrated over the substrate surface:

sLG
Fr=1% -/p',r'll dal' =12 - P',‘ / zn dl, (25)
I m r
where G = |[VT'| and I is the surface of the ice. The divergence theorem lets us write
LG 3 _
Pr="5 (1 — ¢)dz, (26)
1 m 0

where ¢ is the volume fraction of ice in the soil, assumed to be only a function of z. Also
acting on the mass of ice is the hydrodynamic pressure necessary to bring water to the
freezing front (or take water away from the melting front). We can use Darcy’s Law to
infer the relation between pressure and pore transport, and we can use continuity to find
the magnitude of this transport:
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Figure 8: Cross section through the fringe region. z; and z mark the lower and upper
boundaries of the fringe. I' is the ice boundary, with unit normal pointing into the ice, as
in the previous regelation example. From Rempel et al (2004).

W= (1-¢)V (27)
and
W = —11(¢)Vp,.. (28)

Here W is the area-averaged vertical water transport. V}, is the heave velocity. pp is
the hydrodynamic water pressure driving the How, and II is the permeability of the soil. 11
is, in general, dependent on many factors, including soil particle geometry. However, it is
written as a function of ice volume fraction only to emphasize the fact that permeability
decreases as ice volume fraction increases. So if ¢@(z) and II(¢) are known functions, we can
calculate the hydrodynamic force acting on the fringe section:

F,=1%- / prndl’
JTI

5
— _/ 21 - ¢)d=

- 0z

. A (1 =) . .
= uVjy ,/:“ (0) dz. (29)
zj, 18 a reference point below the fringe where p; goes to zero. The choice of z;, is somewhat
arbitrary, but the result above is not likely to be sensitive to z;, as most of the pressure drop
oceurs near z;, where permeability is greatly reduced due to the high ice concentration.
Before proceeding, note that the above analysis also applies when z; < zy. i.e. there is
no frozen fringe. The expression for Fy, for example, reduces to psL(1;, — ]"l:;))]"’”—,]. the

expression for the thermomolecular force at the temperature at the lens boundary.

bote



h (a)

" (b)
‘(P
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Figure 9: (a) Frost heave rate as a function on z; (in the domain where freezing occurs).
(b) Soil particle effective stress as a function of depth for different lens heights.

The only other force acting on the mass of ice is the weight above it, Py. Solving for V),

gives
. _ [psLG /:I I /:; 1-9¢2 1" .
Vi = 1 —¢)dz — P, N Vgl . 30
o= [0 ] [ [ o

<h

In general, the vertical distribution of ¢ and the associated permeability dependence
must be known or calculated. Rempel et al (2004) use an idealized model for ice saturation
and permeability dependence, but certain properties of the dependence of V), on z; can be
deduced for more general cases. For instance, the thermomolecular force (p,LG [;'(1 -
@)dz/T,,) is monotonic in z;, and so the heave velocity is zero for a certain value z; and
positive for higher values. Further. we expect the permeability will tend to zero as the ice
fraction goes to 1, so we expect that the denominator of ((30) becomes large with large z;,
and so Vj, tends to zero. We can then expect that V), goes through a maximum at some
point. Rempel et al find a curve similar to that shown in figure 9(a) for the heave rate.

The frost heave phenomenon can be demonstrated in a lab setting. A column of frozen
soil with a lens is placed longitudinally in a temperature gradient that is fixed (w.r.t. the
lab frame) as in figure 10. The entire column can be moved at constant velocity through
the gradient. Meanwhile, the lens position can move relative to the moving frame due to
frost heave. A steady state can be found in which the lens does not move relative to the
lab frame. One can view the setup as the lens being pulled through the soil, which remains
in place as the liquid flows through it, providing the hydrodynamic force that balances the
thermomolecular force.

From figure 9(a) it is obvious that for a range of V' (the rate at which the column in
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Figure 10: The experiment described in Rempel et al. The entire system is pulled upward.
while positive heave rates push the soil in the opposite direction.

the experiment is moved through the temperature gradient) there are 2 steady heave rates.
However, only one state (the one with z; < z.) is stable to small perturbations; if V), (z;) is
sloping downwards, then a small increase in z; will slow the heave rate, and the lens front
will move forward (increasing z). Physically, a decrease in permeability limits the amount
of liquid that can be brought to the front. The situation is similar for small decreases in z,.

Lens Initiation

One might ask how a lens will form initially. To determine where this might occur, the
vertical force between soil particles (F),) is examined. At each point, F, balances the sum
of the overburden, the thermomolecular force, and the hydrodynamic force. Thus p,, (inter-
particle force per unit area) can be calculated from

: - R —@)? psLG | [* :
Falz) =W ——l: — - —¢)dz — z(1 — ¢(z ; 31
p(2) !H‘/:n (o) dz + Py T (1 —o)d (1 —o(2)) (31)

0

Note the similarity to (30) with z; replaced by z. The last term, p,LG=z(1 — ¢(2))/ 1},
can be seen as the additional force that would act on the volume of integration (that is,
a volume similar to that bounded by I' in figure(8)) were the ice fraction at z equal to
unity. If p, becomes zero at some point, there is virtually nothing holding the soil particles
together, and a lens has the potential to form.

Again, this expression depends on the specific forms of ¢ and Il1(¢). For the idealized
configuration mentioned above, Rempel et al calculated p,(z) for different values of z;, and
found that the minimum p, decreases with increasing z;, and at some point p,(z) becomes
zero at a height less than z; (figure 9(b)). If a lens were to form at this height, then z;
would be effectively decreased. One can imagine a situation, such as in the lab experiment
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described above, in which the lens front is continually moving upward, with new lenses
periodically forming below the previous lens front. Such a phenomenon has in fact been
observed in the laboratory, and is believed to be responsible for similar patterns that are
formed in situ (figure 7).
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Some useful Statistical Thermodynamics

John Wetlauffer: Notes by Rachel Zammett and Devin Conroy

March 15, 2007

1 Introduction

We are all familiar with gases, liquid and solids, which make up the 3 possible states of

a pure substance. These states of solid, liquid and gas are functions of pressure, P and
temperature, 1" as depicted qualitatively in the phase diagram figure 1. The negatively
sloped dashed line represents ice in contact with water; the former floating on the latter.
There are few other substances with this property and most other materials have a positively

sloped solid-liquid coexistence line. Despite substantial advances in our understanding of

microscopic phenomena, no phase diagram in its entirely can be computed solely from
information about intermolecular interactions; phase diagrams are principally empirically
determined.

we

o Crincal pomt

Figure 1: Phase diagram for a pure substance, showing the lines of pressure and temperature
delineating the 3 possible phases of matter; gas, liquid and water. The dashed line represents
the special case of ice, which has a negatively sloped solid-liquid phase boundary.

2 First Law of Thermodynamics

In 1850 Rudolph Clausius first stated what is now referred to as the first law of ther-
modynamics: the change in internal energy E of an isolated system is equal to the heat
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absorbed by the system d( minus the work done by the system on its surroundings d W.
Mathematically this can be written as

dE =dQ — dw, (1)

where the symbol d denotes the path dependence of a differential, namely, that it is an
iezact differential.

3 Second Law of Thermodynamics

Consider an isolated system consisting of two subsystems A and A’, as shown in figure 2.
The boundary between A and A’ allows conduction and may move like a piston, but is
impermeable to particles i. e. there is no mass transfer across it. We assume that all changes
which occur to the system are quasi-static; interactions happen on a long timescale relative
to the relaxation time of the system.

<<-}-z=
condyiction

e

movegment

Figure 2: An isolated system consisting of A adjacent to A’. Heat conduction is permitted
between the subsystems, and the boundary may move as a piston.

The second law states that the number of accessible micro-states of an isolated system,
2, never decreases. If we consider subsystem A to contain and ideal atomic gas, then the
number of accessible micro-states of A is simply the number of places in space that may be
occupied by the gas atoms. Thus, A has (14 micro-states and we assume that the volume
of A equals the volume of A” which contains no gas. We then remove the barrier between
A and A’. Initially, the system has not relaxed, but at some later time, the whole system
A+ A’ is available to the gas atoms that were confined to A.

The probability p that a particular micro-state is occupied is given by

_ Q4
e P

Moreover, because (24 ‘."'/‘;i\ . where Vj is the volume of subsystem A and N is the number
of particles in the system (which is typically of the same order as Avogadro’s number,

6.02 x 10%%). We therefore have that p (%)A
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Finally, because the entropy, S, of a system is defined by
S =k, In €2, (3)

where Ay, is Boltzmann’s constant, k, = 1.381 x 1072* J K~'. Whence, the second law is
written as
Qarga—Ny20=4dS 20, (4)

so that the entropy of a system approaching equilibrium always increases with the equality
in equation (4) occurring when the system has reached equilibrium. We can write

dQ =14dS. ()
thereby demonstrating that T is an integrating factor for the second law, and hence in the

case in which there are no mechanical interactions (no volume change) we find

1 1
AS7otar = dSa +dSy = (j— - !—) a0 4. (6G)
A A

We therefore see that if 74 > T4/, heat will flow from A to A’ until equilibrium is reached.
| |

4 Thermodynamic Potentials

Thermodynamic potentials are homogeneous functions that are the principal tools used to
understand phase equilibria. They have the following properties

e Thermodynamic potentials have units of energy.

e They all involve the entropy and several, denoted say P, are such that PP x -S.

For all systems approaching equilibrium, dS > 0, therefore for the potentials P,

for all systems approaching equilibrium, dP < 0: the thermodynamic potential is a
minimun.

By way of example, the internal energy of a svstem, E(S, V), satisfies
dE =TdS — pdV, (7)

and hence is a minimum for constant entropy and volume. The enthalpy of a system,
H(S,p), is often used when a system is at constant pressure, and is defined by

H=E+pV, (8)

such that dH = 0 for constant entropy. isobaric processes. The Helmholtz free energy is
given by
F(V.T) = E -TS, (9)
and hence is conserved in an isothermal, constant volume process, while the Gibbs free
energy is given by
G(T,p)=F+pV=E-T8S+pV, (10)
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From equations (7) and (10), we find
dG = —S8dT + Vdp, (11)

and we note therefore that dG = 0 for systems at constant temperature and pressure.

If we consider a system consisting of a solid in contact with a liquid and we ignore the
effect of surface energy, along the solid-liquid phase boundary the phases will have equal
free energies, i. e.

dG, = dG, (12)

where the subscript s denotes evaluation in the solid and [ evaluation in the liquid. Note
that we are considering solid/liquid coexistence and thus pressure and temperature are
constrained to a line, defined by T5,(p) = pm(T). due to the Gibbs phase rule. From
equations (11) and (12) we can write this as

—SsdT, + Vidp = —Sid1;, + Vidp, (13)

for continuous temperature and pressure across the interface. Rearranging equation (13)
gives

d]‘m ‘/f - L:s' :rm r
ccund L S P )Y 14
dp S — 8 L (Vi 5) e

where the latent heat of fusion is L, and is defined as L =

-“;ﬁ In the case of ice, where

Vi < V. we see that d—“;;“ will have negative slope. Hence, from equation (14), we can write
the Clausius-Clapeyron equation in the following form

ATy _ T (1 ~ g) . (15)
dp psL Pl

where pg and p; are the densities of the solid and liquid phases, respectively.

It should be stressed that this treatment only deals with bulk free energies and interfacial
and nucleation problems require consideration of the surface energies. This is because the
free energy of the system can be shifted due to the surface energy of the phase boundary,
intermolecular forces and other effects which extend the equilibrium domain of the liquid
phase into the solid region of the bulk phase diagram. In general, for any system in which
the surface energy plays a significant role, we can express the total Gibbs free energy as the
sum of bulk and surface contributions,

G = GB + Gsurftu'('- (16)

where G g represents the bulk free energy and is proportional to the volume of the system
and Ggyr face is proportional to the surface area. Thus, the specific form of the surface area of
the solid/liquid interface in question dictates the detailed nature of the shift in equilibrium
and thereby leads to the specific effects referred to often in the principal lectures such as
the Gibbs-Thomson effect and interfacial premelting. These are reviewed in (1).
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Figure 3: An equilibrium phase diagram of Gibbs free energy G as a function of temperature
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T, where pressure is assumed constant. (G denotes the Gibbs free energy associated with
I L 28

the liquid phase: (Gg that associated with the solid phase. We see that below the melting

temperature T, the liquid has a greater free energy than the solid, which implies that there

is a barrier to forming the solid phase.
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Abstract

The Extended Kadomtsev-Petviashvili (eKP) equation is studied as a model for
weakly two-dimensional interactions of two-layer solitary waves. It is known that closed
forms for two-soliton solutions to the Kadomtsev-Petviashvili (KP) equation can be
found by means of Hirota’s bilinear transform, but it is determined that no such solution
can be found for eKP. A numerical model is developed that agrees with analytical results
for reflection of KP solitary waves from a wall. Numerical reflection experiments are
carried out to determine whether nonlinear eKP interactions lead to amplitude increases
similar to those seen in KP interactions. It is found that when the cubic nonlinear term
is negative, the interaction amplitude does not exceed the maximum allowed amplitude
for an eKKP solitary wave solution, except in the case where the incident wave amplitude
is close to this maximum amplitude. When coefficient of the cubic nonlinear term
is positive, stationary solutions that are qualitatively different than those of the KP
equation are found.

1 Introduction

Long water waves whose amplitudes are small compared to the mean depth are quite com-
mon in many geophysical settings, such as free surface disturbances and as interfacial dis-
turbances in a 2-layer system (internal waves). Solitary waves have an extensive history of
observations in such settings. Attempts at describing such waves have led to many simplified
models. Among the simplest is the Korteweg de Vries (KdV) equation for unidirectional
propagation. The KdV equation captures the important aspects of long, finite-amplitude
waves: nonlinear steepening due to advection and dispersion from nonhydrostatic pressure.

Additional effects can be included by small modifications to the KdV equation. If
transverse variation is small but nonzero, the Kadomtsev-Petviashvili (KP) equation can
be used. One can view the KP equation as a model for three dimensional interactions of long
waves. (The term ‘three dimensional’ is misleading although it is standard - though the KP
equation is derived by considering depth variation, it describes a function independent of the
vertical coordinate.) On the other hand, if unidirectional internal waves are being considered
and the mean layer depths are nearly equal, the Extended KdV (eKdV) equation, which
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includes cubic nonlinearity, is a better asymptotic approximation to the governing equations.
It is also a useful phenomenological model for large-amplitude waves. Combining the two
effects results in the Extended KP (eKP) equation. The inclusion of both effects in a model
is advantageous because internal solitary waves occur with some regularity where currents
flow over bathymetry, as do three dimensional interactions of these waves. The modeling of
such interactions using the eKP equation is the focus of this study.

In the following two sections, the above equations are given and known closed-form
solutions are discussed, as are limitations of the machinery used to generate those solutions.
Then in subsequent sections, a numerical model to study three dimensional interactions of
internal waves is described, numerical results are presented, and the behavior of numerical
solutions of the KP and eKP equations are compared and contrasted. Recommendations
for the use of eKP as a viable model for 3D interactions of internal waves are made.

2 KdV, mKdV, KP, and mKP

The derivation of KdV and KP from the governing equations for inviscid single- or two-layer
flow is not trivial. Here, the equations are simply stated for a two-layer model (without
rotation), and the dependence of coefficients on physical parameters is stated as well. See
[9] for a derivation.

Korteweg-de Vries and Kadomtsev-Petviashvili

[t makes sense to first present the KdV and KP equations for 2-layer internal waves, although
it will be seen briefly that these are often not the best equations to use. Let h; (2 = 1.2) be
the equilibrium depths of the layers. There are three relevant parameters:

[ ."llu ? " (LQ-)E i.J'}\;-“)
,‘1 = i—s )G' ==! — 3 I = h = — 5 ( 1)
h-” (LI) Ly . h| + ."Jg

where a is the scale of the wave amplitude, and L, and L, are the length scales in the a-

|

and y-directions. These parameters are all assumed small. If they are of the same order,
then neglecting lower order terms within the governing equations leads to the KP equation.
given here in dimensional form:

(r;, + (co + 1) e + ;;'r;;,;r;,.) + Yy = 0, (2)

where 7 is the interfacial disturbance. A rigid lid and flat bottom have been assumed. The
coeflicients are known functions of the stratification and equilibrium layer depths:

cohihe . | 5 .5 - hyho }
= —¢og—————, |/ —, Y= =00, ¢ =9gho, hg=+——, (13)
2 hho 6 2 v hy + ho '
where ¢q is the linear wave speed and ¢’ is the reduced gravity. If we scale 7). 2 and y by
H = hy+ hg,t by H/ep, and let h; = h;/H (i = 1.2). and furthermore make the change of
variables (x,f — x — t,1), so that we are in a slowly evolving frame moving at the linear
wave speed, (2) becomes
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(me + c1mMz + Bizzz )y + Y1y = 0, (4)

. 31'3.[ — .-‘.1.2 3 — h.]h.'z i 1 i
Sk P8 77T @)
It should be underlined that formally, the KP equation describes propagation of two or
more waves in nearly the same direction (in this case, positive ). Propagation cannot be
in the negative x direction. The angle with the z-axis must be small. This is the difference
between glancing interactions of plane waves (where there is a small, but nonzero, angle
between propagation directions) and oblique interactions (where the angle is not small).
This is important to keep in mind because closed-form solutions to (4) exist and are not
limited by these constraints.

If there are no transverse effects (if L, = oo, v — 0), then (4) reduces to the KdV
equation:

a)

m+ anny + B1ppe = 0. (6)

Extended KdV and Extended KP

In many situations, a; can be small. If it is small enough (formally, if it is O(A)), then in
- . . . . .~ . . [ ]

order to balance dispersion with advection the regime of interest becomes B ~ O(A*#), and

a higher order term is included:

(?,r, + a1y + u-_;nz?;;,- + .'3?}”_7)J_ + ¥y = 0, (7)
3 7 s h3+h3
N Y ]
(hihg)? |8 hy + ho

The coefficient as is negative definite. Again, neglecting transverse variation gives the eKdV
equation,

g = (8)
m + oy + (‘rz”z?.-'.‘r. + BNzga = 0. (9)

3 Solitary Wave Interactions

Equation (7) has the following solitary wave solution [4]:

n = o ( 10)
b+ (1 = b)cosh? [k (x + my — ct)]’
where the above parameters satisfy the relations
— 0T & . T . 5
b=——"— k=/—, ¢=— (201 +a91), c = ¢+ ym*. (11)
201 + arjp 43 (§] (2en 28

Here 7 is the wave amplitude, & is the wavenumber in the z-direction, ¢ is the phase
speed, and m is the aspect ratio, that is, the tangent of the angle between the direction
of propagation and the r-axis. Note that (10) and (11) reduce to solitary waves for the
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Figure 1: (a) A wave crest (solid line), or plane wave, propagating at an angle 6 to the a-
axis. (b) exact solitary wave solutions. A single KdV solitary wave (plus signs) is compared
with eKdV solitary waves (solid lines) of different amplitudes. all less than 10 = 0.2524.

KP (ae = 0), eKdV (mm = 0), and KdV (a2 = m = 0) equations. Also note that, while
the KP and eKP equations describe (weakly) 2-dimensional systems, the above solution is
essentially l-dimensional. For as < 0,190, > 0. That is. 1y carries the sign of oy, so for
definiteness we assume vy is positive. Also, when as is negative, as is generally the case for

internal waves, 7p has a maximum value of

Ho,maxr — _”Hj“?‘ “‘-3)

Figure 1(a) shows the configuration of the wave. The crest moves in the positive r-direction
with angle 1 to the y-axis. (m is equal to tan(yr).) Figure 1(b) shows a KdV solitary wave
(at a given y) against several eKdV solitary waves of varying amplitudes, all of which are
less than the maximum amplitude given above. Putting terminology introduced earlier in
context, we will talk about waves with smaller 1/ (smaller m) as glancing and with larger v
(larger m) as more oblique.

The interactions of multiple solitary waves traveling in the same direction (same m) have
interesting behavior. A large-amplitude wave that is initially behind a small-amplitude wave
will travel faster and eventually catch up with the smaller wave. When that happens, there
is a transient nonlinear interaction, but each wave asymptotically retains its identity and
structure as f — oc, except for a positive and negative phase shift of the larger and smaller
wave, respectively (figure 2). KdV and eKdV solitary waves exhibit this behavior, as do
KP and eKP solitary waves traveling in the same direction (but as mentioned above, the
latter two cases essentially reduce to KdV and eKdV).

This solution is also interesting because it can be described by an exact analytical
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Figure 2: Interaction of two eKdV solitary waves. The larger wave, initially behind (a),
eventually passes through the smaller one (b), but the two waves asymptotically retain their
identity (c).

solution. In general, trains of N solitary KdV or eKdV waves (where N is finite) can be
described by inverse scattering theory [11] or by Hirota's Bilinear Method ([11], or [5]).
The former is more powerful, but the latter is algebraic in nature and very easy to apply.
Hirota’s method involves finding a dependent-variable transform of the equations such that
the solitary wave solutions have the form of exponentials.

Exact solution for KP reflection

It turns out that Hirota’s method also yields exact solutions of the KP equation (2) for
two-dimensional solitary wave interactions. Miles ([6],[7]) derived the interaction pattern
and investigated its properties, and found behavior qualitatively different than the 1-D case.
We first sumimarize Miles's solution. Given two solitary wave solutions to the KP equations
with wavenumbers k; (¢ = 1,2), and propagation directions such that their angles with
respect to the r-axis have tangents m;, the following solution is found [8]:

. (i‘i) ﬁ?fr'w' +k;‘§(.'"m2 +(k‘g _;i.z);z{_\-‘:zﬁl-m-,. +A1'z{(;i'| +ﬂ‘2)2+;i'-:j(.‘ 20, +kff‘ 20, }‘,_ 20, 20-;‘

x] [1 + =201 4 =202 4 Am{,-m._gyz]:!

(13)
where | | |
(my —ma)? — %”(»’\71 — k)2

;= ki(x+myy—cit), A= (14)

(my —mgy)? — %‘—i(h + kp)2’

and ¢;, k;, m; satisfy (11) with a; = 0. There are several things to notice about this
solution. First, since the phase lines are not aligned, we can take the limit #o — 0 or oc
with @ constant (and vice versa), and this limit has the form (10): that is, the waves retain
their identities after interacting with each other. Second, the interaction parameter As can
be negative when
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203
IT'(M + ko) | = (2m—, 2my), (15)

(my —me) € (k1 — ko).

and it turns out that solutions in this parameter range, while mathematically admissable,
are nonphysical (this point will be returned to briefly). Third, the interaction can be much
larger in amplitude than a superposition of the two waves. In fact, for waves of the same
amplitude, the amplitude increase can be up to four-fold, as compared with a two-fold
increase from linear superposition.

Slightly changing focus, we can consider the kinematic resonance condition for three
solitary waves:

ki £ ko = kg, myky £ moke = maks, wi tws =wy (w; = ciky). (16)

where w is frequency. In fact, given two KP solitary waves, a third satisfying (16) exists
only if one of the bounds of (15) is acheived.

It must be stressed that (16) is an algebraic constraint, and alone is not a sufficient
condition for resonant interaction of solitary waves. However, Miles showed that the limiting
form of (13), as the upper bound of (15) is approached, is equal to

(4&3) *.'!z(_,;zm + k267202 4 (ky + ko)2e201—202 -
i s f 2 2 ) 7

T\ o 1+ 201 +,.—'.m-_.]'3

Furthermore, it can be shown that this solution is asymptotic to three interacting waves
the two waves considered in (13) and a third wave that is resonant with the first two. This
can be shown by holding constant one of each of the three phase variables involved, and
letting the other two go to zero or oc. Figure 3 shows (13) both for an oblique interaction
and for a near-resonant interaction. Both are svmmetric, i.e. k) = Ao and my; = —mi.
The large interaction in 3(b) resembles a third resonant wave, although it is not actually a
resonant wave until the angle predicted by (15) is reached.

The above discussion can be applied to glancing reflections of solitary waves against a
wall. The results are the same since the condition of no normal flow (17, = 0) at the wall
allows one to extend the solutions by symmetry. The theory allows for regular reflection,
as described by (13) with ky = ko and my = —ms, for m; > m,.s, where

J"J’ '
@m = \/“'”", (18)

TMives
r 2

where 7 is the amplitude of the incident wave. If, however, m; < mes. regular reflection
is no longer allowed. Instead, the interaction is described by (17), where the subscripts
1 and 2 correspond to the incident and reflected waves, respectively, and a third wave is
resonant. This third wave, which has no transverse wavenumber and travels parallel to the
wall, is know as the mach stem by analogy with a phenomenon seen in gas dynamics.
Since the transverse wavenumber of the mach stem is zero, and the waves are in resonance,
the amplitude of the mach stem and of the reflected wave can be inferred from the kinematic
resonance constraint (16):
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(a) (b)

Figure 3: (a) Oblique interaction. (b) Near-resonant interaction.
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Figure 4: Mach reflection. The incident wave (- —) moves into the wall with phase velocity
c1, and the reflected wave (- - -) moves away at ¢o. The intersection of the incident and
reflected waves with the mach stem (—) moves away from the wall. Taken from [7].

My 120 o my 123 . 5
.2 = ;'J A‘H‘Hh"h = [1 -1 )’t‘l s o, mach = —— Nach: ( 19)
“"J“f,\' (03] ?'”F'(.\ l'i|

M9 = Myes, ko =k

[n this case, if ko < ky, the interaction pattern will move away from the wall with time,
and thus the mach stem will grow in length. This configuration is shown in figure 4. The
maximum amplitude, or runup, at the wall can then be calculated as a function of m:

1
Thnax A (l -1 | = (”Jr'(-.-\-f’z"”:}:) m > Myes (20)
o (1+ m_;"m,.m'}-‘) M < Myes
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Figure 5: Theoretical KP runup at wall versus m (tangent of incident angle)
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Modified KP Interactions

[t may be apparent to the reader that the word soliton has not used liberally up to this
point, although the term applies to the interacting solitary waves described above. One can
use the term to describe solitary waves that can pass through each other and still retain
their identity, in which case the term applies, in a very limited way, to eKP solitary waves
(see below). But one could also think of solitons in a loose sense as solitary wave solutions
that are amenable to the various transform methods (e.g. Hirota's Bilinear method) used
to make analytical headway in describing their interactions. It is shown in [2] that the same
bilinear transform methods that work quite well on KdV, eKdV, and KP (as well as many
other nonlinear wave equations that support solitons) break down when applied to the eKDP
equation. except for the degenerate case in which all solitary waves are traveling in the same
direction. Further, it can be shown that the eKP equation does not pass the Painlevé test, a
criterion in determining whether an equation is completely integrable. This does not prove
that eKP is non-integrable, but it demonstrates that exact solutions will, at the very least,
not be easy to find. For that reason, the focus of this study is numerical in nature; since
(20) predicts a large amplitude increase, while (10) gives a maximum amplitude constraint
when a cubic term is present, it is unclear what the results of such an experiment will be.

4 Numerical Model

There is a difficulty inherent in solving (7) numerically. If we integrate the equation in .
assuming that disturbances are locally confined, then
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V(xyq.t) = Vsolitary

YT,
Y
AL V(x.01) =0 xR
X
Figure 6: Model schematic.
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Ty (Z,y,1)de = — / ndxr = (), (21)
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a condition known as the "mass condition.” In particular, a given initial condition must
satisfy this constraint; otherwise it can be shown there are waves present with infinite
group speed which propagate to x = —oo [1]. Alternatively, one can examine the evolution
equation that results from an integration in x:

o0
M+ aqnne + rrgr,=2'r}_r + Bilpzr — 1 / Nyydax = 0. (22)

If a discretized form of (21) is not satisfied, then disturbances will appear instantaneously
far behind the initial condition. To avoid this problem, eKP is written in the form given in
section 2, but with the time derivative left in the y-momentum equation [9]:

e+ c e + e + Bgze + ¥V, = 0, (23)
Vi—Ve+ny=0. (24)

The time derivative is neglected in the derivation of eKP for asymptotic consistency. but
here is left in in order to regularize the equation, and the numerical model now solves for
both n and V.

Most of the numerical experiments involved a single solitary wave with a transverse
component (m # 0) directed into a wall (y = 0) as an initial condition. In this case V
was held at zero at y = 0 for all ¢, and was set to the analytical solution for such a wave
at yp, which was effectively considered to be y = 4+oc (figure 6). 7 and V' were solved on
grids that were coincident in x but staggered in y. In the y-direction, the topmost and
bottom-most points were V-points, so boundary conditions were imposed on V' but not
on 77 (unless the domain was doubly-periodic). Spatial derivatives were approximated by
centered differences. First derivatives in o were 4th order, while all others were 2nd order.
The nonlinear terms were approximated by straightforward multiplication (no averaging
was done). The timestepping scheme was an Adams-Bashforth predictor-corrector method
involving two previous timesteps, where the two initial steps were done by Heun'’s method.
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Very often a simulation was restarted using the final state as a new initial condition; in this
case the two previous timesteps were not saved. A few doubly-periodic simulations were
done where the initial condition was a superposition of different solitary waves, but the bulk
of the numerical experiments done were with the wall model described above.

Since no wave was expected to propagate faster than the incident wave, 1 and V' were
set to zero at . However, conditions at x; were not as straightforward, and were handled
as follows: the solution on the first two gridpoints in the x-direction was extrapolated
linearly backward. This was in order to allow any disturbances, which presumably would
be traveling to x = —oc¢ in the frame in which (23) and (24) are defined, to pass through
ay rather than reflect back into the domain. In addition, a linear damping of the form

= .. —plx)y
Vi= ... —p(z)V

was added, where i (> 0) is nonzero only in a small neighborhood of ;. This is justified
physically by the assumption that the incident wave, its reflection, and their interaction are
the fastest-moving disturbances in the system, and so long as they are sufficiently resolved
away from x; . then what happens near x;, should not affect their behavior. Resolution was
often higher in = than in y. The timestep was made short enough to avoid a CLF-type
instability. The upper bound was determined more empirically than by theoretical means
due to the nonlinearity of the equations.

A simple rescaling (not given here) of 1, z, y and ¢ (where ' and y are scaled identically
so that angles are preserved) allows us to replace ay, 4, and v as given in section 2 with
any values we choose. For programmatic ease, these parameters were set to 1.5, 0.125, and
0.5, respectively. Values of o were found by (8) and then applying the same scaling.

5 Numerical Results

In the wall experiment, if ) is scaled to the amplitude of the incident wave, 1q, then (23)
becomes

"'-r'!' + g (” = L?}‘Z) 'r}.r =T ‘)’ff.r.r,r (25)
o, max

where 1)y ;e Was defined in section 3. If the nondimensional parameter 1g/10 mar is zero,
we recover KP (or, according to our model, a regularized version of KP), so the larger
this parameter, the more departure we expect from KP reflection behavior. So numerical
experimentation began by benchmarking the numerical model's ability to reproduce known
results. Except where explicitly stated, the values of o, # and 5 in all of the experiments
described below were 1.5, 0.125, and 0.5, respectively. and as was computed using 1l = 0.67.

Unidirectional eKP

As mentioned above, one should be able to generate a 2-soliton solution to the eKP equation,
as long as both solitary waves are traveling in the same direction. Though it does not involve
reflection, this is still an important result. A doubly periodic domain was used, with a large
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Figure 7: Doubly periodic domain used to simulate eKP soliton interactions. The initial
condition is shown here; the narrower wave crest is larger in amplitude.

wave behind a small wave as an initial condition (figure 7). This simulation was shown to
produce the typical 1-D soliton interaction pattern. Figure 2 actually shows cross-sections
of snapshots of this simulation for m = 0.4.

KP and eKP Reflection

Figures 8(a)-8(c) show the development of a KP interaction pattern for different incident
angles. In all KP experiments, the incident amplitude no = 0.12, m,.s = 0.6. Figures are
shown for m;,cident greater than, equal to, and less than the resonant value. For m,cident =
0.8, the reflection pattern is symmetric, with the maximum wall amplitude =~ 2.6r)y. For
Mincident = 0.6, the resonant angle, we see a mach stem slowly forming with amplitude
close to 47y. Theory predicts a mach stem will not grow at the resonant angle, and that
the maximum amplitude achieved is 47y: however, since this is a numeric approximation it
is perhaps not surprising that resonance is not acheived exactly. The fact that stem growth
is very slow and amplitude increase is close to 4 is encouraging. At mipeident = 0.15, the
reflected wave is difficult to see because it is so small and obscured by its own reflection
from the far wall. It is, as predicted, clearly at a far more oblique angle than the incident
wave. Also, the mach stem has an amplitude 7,,,y = 1.67)p that is very close to that of the
incident wave.

It should be stressed that the theory concerns stationary solutions, not transient devel-
opment from arbitrary initial conditions. Comparing transient solutions for m neidgent = 0.6
with those for mipeciden: = 0.8 and mjpeidgent = 0.15 shows that a near-resonant interaction
takes a long time to develop. This can be seen by plotting the maximum wall amplitude
of n at the wall as a function of time. This is shown for the same simulations in figure
8(d). All of the plots show convergence to a stationary amplitude. The small oscillations
around this mean can be explained by failure to completely resolve the peak of the wave
crest; however, this is likely not detrimental to the overall solution.
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Figures 9(a)-9(c) show analogous results for eKP interactions with 7, = 0.12. A value
of 0.67 was chosen for h; as given in section 2, giving 1o mer = 0.2524, and no/No.mar =
0.48. Comparing figures 8(a) and 9(a), we again see regular reflection, but the interaction
amplitude is smaller for the eKP case, and in fact is smaller than 1y e.. Figure 9(b).
resulting from an incident angle with tangent 0.45, appears to show a reflected wave with
angle equal to the incident, trailed by smaller crests with more oblique angles, in contrast
with the mach reflection pattern that would be seen with KP, and a maximum amplitude
just greater than 1o maz. For mineigen: = 0.15, shown in figure 9(c), we do see a pattern that
looks qualitatively like mach reflection, although it is not clear whether this term actually
applies to the interaction. Still, with relatively little apparent transverse variation near the
wall, one can anticipate that the profile at the wall looks very similar to an eKdV solitary
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Figure 9: KP reflection, ng = 0.12, h; = 0.67 (see section 2).

wave, and this was found to be the case.

Comparing the maximum runup of KP simulations to theory, figure 10(a), we see very
good agreement for angles less than the resonant angle. However, for angles larger than
the resonant angle the agreement is not so good. This is certainly an issue, and may be
a consequence of the use of regularized equations (see Discussion section). Still, all of
the qualitative aspects of the theory were captured, and for small angles the quantitative
agreement was good as well.

Figure 10(b) shows the same results as figure 10(a) along with the results from eKP
simulations for different values of 19, where mjycident has been scaled to myes, as given by
(18). Values of 19 used were 0.024, 0.05, 0.12, and 0.24, while 1y maer = 0.2524 for all cases.
Recalling (25), notice that, for 79 = 0.024 and 7y = 0.05 (dots and triangles, respectively),
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the runup plot has a qualitatively similar shape to that of KP, but the maximum occurs at
a smaller (scaled) incident angle and is not as large. The same could be said of 7y = 0.12,
though the maximum is barely visible, and we have seen qualitatively different results
for this amplitude. In fact, it does seem as though the eKP runup plots may coincide
with that of KP where the incident angles are small enough that 1,01 < M0.mar. These
points correspond to interaction patterns that look similar to mach reflection (cf. figure
9(c)). though there is not space to show all of the results. Again, it is stressed that the
development of these interaction patterns is transient. In a few cases, the growing "mach
stem” reached the far wall before the wall amplitude became stationary, and in these cases,
the result given in figures 10(b), 10(¢) is that taken just before this intersection occurred.

Obviously, the above statements do not apply to the case 1y = 0.24, since 1719/10.mar = 1.
Indeed, the runup plot for 19 = 0.24 is very different than the others. Figure 10(¢) shows the
same results as those in figure 10(b) without scaling amplitude by 7. Here it is seen that
when 1y = 0.024,0.05,0.12, the runup is never greater than rjgmmaer (solid line), but is for
1o = 0.24. This contrast suggests that the range 0.12 < 1y < 19,0 should be investigated
for transition between the two behaviors, but this was not done in the current study. Figure
10(d) shows the result of one of the simulations where 7y = 0.24.

One might ask if a resonant interaction actually does occur in the eKP simulations.
Though (16) is not sufficient for resonance, it is necessary and can be checked. It is easiest
to check the first two conditions of (16) since they relate only to the wavenumbers and not
the phase speeds, and wavenumbers are calculated from amplitudes using (11). Further,
the requirement that one of the bounds of (15) be satisfied for the kinematic resonance
condition to apply holds for eKP as well as KP. This can be observed as follows. Consider
two (1 and 2) solitary wave solutions to eKP. Imagine that both wavenmmbers (k) and A»)
are known, and the direction of the first (m;) is known (but not of the second), and the
waves are constrained to satisfy (16) for some solitary wave with wavenumber and direction
kg and mg. From (11). we can give wavenumbers in terms of frequencies and propagation
directions:

‘iliﬁ.';“’ = % — ",-'m.;-".-.f =1, 2. (26G)

]
Together with (16), these two equations form a set of 5 algebraic equations for the unknowns
ma, ms, kg, woe,wsy, which can then be solved for two possible values of my. The important
thing to notice is that the above equations do not depend on ay, and so, even when eKI
solitary waves are considered, the results still correspond to the bounds of (15), even though
the corresponding phase velocities and amplitudes are different than the KP case.

Table 1 shows calculated wavenumbers for the incident and reflected waves, as well as
the mach stem, assuming solitary wave solution (10). (The term "mach” is used here for
lack of a better one: as mentioned before, the eKP simulations show behavior qualitatively
like mach reflection.) As in Miles™ analysis, for KP we assume that the mach stem is at
right angles to the wall and the the reflected angle is the resonant angle, i.e. m0en = 0
and Mot = Myes. By inspection, we also set my,u0n = 0 for eKP, but with out an exact
solution there is no reason to assume Myefl = Myress and so Myefi had to be measured. This
measurement is done by examination of the numerical solution of 7. However, the reflected
wave crest is often either not fully developed, obscured by the far wall or the stem crest,
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Figure 10: Reflection runup

very short in length, or very small in magnitude, or all of the above. Measurement of k..
is problematic for these reasons, and measurement of m,.p even more so. Still, there is
no other method of verifying whether (16) is satisfied. It can be seen from Table 1 that
agreement is not bad for KP. It is worse for eKP, but improves with decreasing amplitude.

Positive o,

In certain cases, vertical shear and stratification can conspire to make ag positive [3].
Equation (10) still applies, only now the amplitude can take on either sign (we are still
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Expt Kine krf’ﬂ knach Mye fl L’,’}‘fﬁ‘f’" Kine + kn-ﬂ
KP | no=0.12,mjn. = 0.15 | .3464 | .099 | .4322 [ 0.6 0866 4454
eKP | 19 = 0.12,m;p. = 0.15 | .3011 | .1385 | .3412 | 0.52 | .0869 4396
eKP | 1o = 0.05,mn. = 0.1 | .2199 | .0653 | .242 | 0.45 | .0489 2852
eKP | 70 = 0.024, 1m0, = 0.1 | .1511 | .0465 | .1709 | 1.0 0151 1976

Table 1: Incident. reflected. and mach stem wavenumbers (k;,.. Krepr, and Kypqen. resp).
(the term 'mach’ is used even if it is not clear that there is resonance.) Equality of the last
column with K40, and of the second-last column with k.5 is required by the kinematic
resonance condition. The former criterion involves angle measurements, which are more
problematic than wavenumber measurements, while the latter does not.

using the convention that ay is positive). If 7 is positive, there is no maximum amplitude;
if 79 is negative, it must be larger (in absolute value) than 2a, /ag. Several simulations
were carried out with positive as. however the sweep of the parameter space was not nearly
as complete as for negative ay. Some results are shown in figures 11(a)-11(c). Figure 11(a)
is the result of a simulation in which 7y = 0.12 and m;,cigent = 0.6, as for figure &(b). a9
is positive and set to +1, and the coeflicients «q, 3, and 4 remain as above. We see a
pattern very similar to the KP result, but with a small radiative pattern shed from both
the incident and reflected waves in the bottom left corner. More interesting are the results
where 1 is negative, as in figure 11(b). Here 1y = —0.3. and m,eident = 0.4. There is a
similar radiation pattern. but it is more developed. In fact, when the profile at the wall
is examined, the radiation pattern is shown to have the same profile as the incident wave,
and to have traveled the same distance. Frigure 11(c¢) shows the development of the profile
at the wall. The larger peak is the stem seen in 11(b): the smaller peak is the intersection
of the radiated wave crests. When compared with figure 2, the wall profile of 1 looks very
similar to the interaction of two unidirectional solitons. Given that transverse variation
appears small near the wall in 11(b), it is perhaps not surprising that the profile at the
wall is similar to an eKdV solution; however, it is surprising that interaction of the incident
wave with its reflection develops into something similar to a two-soliton solution.

A result similar to figure 11(b) is shown in [10], though in that study the Modified KP
equation (which is similar to eKP with positive as and no quadratic term) was being inves-
tigated. Also, the profile of the intersection of the radiated wave crests was not examined
in that study.

The investigation of positive ay, was not taken further — it was meant only as a brief

exploration of different behavior and possible starting point for further study.

6 Discussion

We have seen that a numerical model which gives reasonable agreement with theory concern-
ing the glancing interaction of two KdV solitary waves (figs. 5, 10(a)) produces somewhat
different behavior when two eKdV solitary waves interact, with the degree of difference de-
pending on the magnitude of the incident amplitude relative to 19 uae- When the interaction
amplitude is close to the maximum possible amplitude of an eKdV solitary wave, we see
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what appears to be dispersion occurring near the intersection of the interacting waves. This
is not surprising because the nonlinear term in the eKP equation is small when amplitude
is close 1o 19 mar, but there is no reason to expect the dispersive term to be small.

In some cases, the eKI simulation results in a pattern that resembles a mach stem and
a nonsymmetric reflected wave, as in the KP simulations. However, it is not clear whether
this is a stationary solution, or whether it is a resonance of three solitary waves. Long-time
simulations (e.g. figure 9(c)) seem to suggest that such a pattern is stationary and would last
until effects of the far wall became important. Table 1 suggests that the kinematic resonance
condition is not satisfied. However, there are difficulties in measuring the properties leading
to this conclusion. We have also seen that when the incident amplitude is near the maxinnm
amplitude (figs. 10(d), 10(c¢)) the interaction does not resemble KI” interaction at all.

It was suggested above that the disagreement with theory with respect to wall amplitude
in KP reflection when mineident > myres (figure 10(a)) may be a result of regularization in
the numerical model. This claim was investigated by generalizing (24) to

OVi— Vit 1y =0, (27)

where 0 is a parameter between () and 1. Preliminary results (figure 12) show better agree-
ment with theory for my,cident = Mpes when 8 is small.

7 Conclusions and further work

One of the early goals of this study was to find a closed form solution for the eKP equation
(aside from the degenerate one where all waves move in the same direction). The literature
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seemed to suggest that such a solution would be extremely difficult to find. Indeed, the
fact that some results were highly dispersive seems to indicate that the eKP equation,
unlike the KP equation, does not have soliton solutions for three dimensional solitary wave
interactions.

That issue aside, the results of this study constitute a tool to gauge the KP and
eKP equations as representative models of internal waves with small transverse variation.
Oceanographic data was not used in this study; however, the two models exhibit qualita-
tively different behavior, and this behavior can be compared with that of actual internal
solitary waves. For instance, tidal flow over bathymetry may cause glancing internal solitary
wave interaction with some regularity, and might be useful to be able to predict the nonlin-
ear amplitude increase based on known parameters such as stratification and background
currents.

The results shown in figure 12 suggest that the disagreement with theory shown in
figure 10(a) is due to regularization, and that a different regularization such as (27) with ¢
small might yield better agreement. However, this must be investigated further. and this
investigation is the subject of ongoing work.

The investigation of the eKP equation with positive ap was not very extensive, but it
still yielded interesting results. There were small radiative waves in all eKP simulations
(including those with negative o, although they are not visible in the plots shown), but
we saw from figures 11(b), 11(c) that these radiative waves may have interesting structure.
Further analysis of the parameter space is certainly warranted.
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Mush-liquid interfaces with cross flow

Devin Conroy

March 15, 2007

1 Introduction

The solidification of a binary melt growing into a supercooled region may lead to the for-
mation of a mushy layer as a result of morphological instability of the plane boundary.
Mushy layers are reactive porous media that suppress constitutional supercooling caused
by the rejection of residual solute. When the rejected solute causes a statically unstable
density stratification, compositional convection can occur, provided the Rayleigh number is
large enough. Past experiments and theoretical results have shown that channels can form
between convection cells, where fluid of high solute concentration has a maximum vertical
velocity, which acts to dissolve the interior of the mushy layer. The channels grow in time,
providing the path of least resistance for the continually convecting fluid, which is fed by
the continual growth of solid and rejection of solute.

Figure 1: Mushy layer of ammonium chloride crystal grown from an aqueous solution,
showing the structure of two complete chimneys. Taken from Worster (2000)

Fluid contained within the interior of a mushy layer, as shown in figure (1), is convected
out through the chimneys and replaced by fluid from above. Along the walls of the chimney,
fluid is then Aowing from mush to liquid across a solidifying interface, and along the top of
the mushy layer fluid is flowing from liquid to mush across a solidifying interface. Recently
Schulze and Worster (1999, 2005) have examined the appropriate boundary conditions to be
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applied at these interfaces in order to determine the position of the mush-liquid interface.
In general there are four separate cases corresponding to a solidifying or dissolving boundary

and whether the flow of material is from mush to liquid or from liquid to mush. Three of

those conditions have been explored using one-dimensional models but the fourth, which
is the topic of this study, requires the low to be at least two dimensional. The dissolving
boundary occurs initially when the chimney first forms from a liquid inclusion but later on
the walls of the chimney are actually in a solidifying regime. In this case the fluid is leaving
the mush across a solidifying boundary and we want the time-rate of change of temperature
following a material particle at the interface to be zero. This condition, which is equivalent
to the isotherms being tangent to the streamlines, is a relatively new idea that still requires
exploration in order to fully understand the nature and consequences of it.

2 Governing Equations

In this analysis we are looking at the configuration illustrated in figure 2 (see Le Bars et.
al. 2006), which is a simplified model designed to explore the nature and consequences
of a solidifying mush-liquid interface having material flowing from mush to liquid. It is a
convenient way of exploring a 2-dimensional low with a 1-dimensional analysis. In addition
we require a 2-D temperature field in which the upper and lower boundary temperatures
vary linearly with # in order to maintain the same mathematical structure as the stream
function 1. In addition we require the solid fraction and interface position to be independent
of the horizontal distance .

Fluid Hows from the bottom boundary into the mushy layver at a velocity Wy and out of

the top boundary at a velocity Wy, where W < Wi, Since we are strictly interested in the
case in which the mushy layer is growing, we take the lower boundary to be colder than the
upper boundary (m, < m < ms), where m is the slope of the liquidus curve in the phase
diagram. The mushy layer is solidifying at a rate da/df, where a(t) is the position of the
interface. In addition we are pulling the whole apparatus downwards at a constant speed V
which will be equivalent to the growth rate of the mush-liquid interface in the non-moving
reference frame at steady state.

2.1 Mushy Layer

Within the mushy layer (0 < z < a) we have a reactive porous medium that requires
appropriately volume averaged equations for temperature, 7" and concentration, €'. Here
we assume that the ideal mushy layer equations apply (see Worster 1997), namely

1 o, LO®  VLd¢
W'{‘qv.( == th‘i‘;;(“ r‘;, “:. ll]
oC : o Ao .
— ¢ NC = T=C) |l ==-V=—=, 2
(1 ~Plgy Ta-ve i (“}(nr ; r'):) \&)
T = Tp(€) = —miC. (3)

where the diffusion of salt is assumed to be negligible and the temperature ficld in the mush
is constrained to the concentration field by the liquidus relationship. Here ¢ = u—Vk, s is
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Figure 2: Diagram showing a channel of infinite length with a mushy layer contained in
the region z < a and a liquid layer above. There is a How of relatively cool fluid from the
bottom boundary at a rate Wy and a flow out of the channel at a smaller velocity, Wy.
The left hand boundary is fresh, i.e. no solute, and non-permeable.

the thermal diffusivity, L is the latent heat, ¢, is the specific heat, ¢ is the solid fraction and
(s is the concentration in the solid. In this analysis we will assume that the solid is pure, i.e.
Cs = 0, and that the liquidus temperature T, decreases linearly with solute concentration.
At the bottom of the channel we assume that the temperature and bulk concentration vary
linearly with distance a as

T(x,0,t) = —mox, Chuik(z,0,t) = (1 — ¢p) C(T) = (1 — dB) mypx, (4)

where my, = ma/m is the slope of the solute concentration and ¢p is the lower boundary
solid fraction that must be determined as part of the solution. It should be noted that the
bulk concentration presented here comes from some outer solution and only applies when
the ¢ low is from mush to liquid. If the flow is in the opposite direction then as we will see
in the next section, the bulk concentration must be imposed at the upper surface.

2.2 Liquid Layer

In the liquid layer above the mush (a < z < h) we again assume that the diffusion of salt is
negligible compared to advection and we use the following equations

ot
+q-VC =0. (6)

+q-VT = kV2T, (5H)
ac’
ot

At the upper surface we also assume that the temperature decreases linearly from the
boundary a = 0 with the relationship

T(xz,h) = —my . (

b |
—

where the condition m; < m < mg must be imposed for a solidifying interface.
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Since the concentration field is controlled by the advection equation and we have imposed
a solid fraction at the lower boundary the concentration equation (6) is decoupled from
the system provided that the g-flow is out of the top boundary. The concentration field,
without the effect of diffusion, just follows the streamlines with the unknown mush-liquid

concentration. On the other hand if the g flow is from liquid to mush then the advection of

bulk concentration from the upper boundary must be used to determine the temperature
at the mush-liquid interface. In this case we impose a bulk concentration at the upper
boundary of the form

Couik(z, h) = C(T) = my x, (

where the solid fraction is zero.

2.3 Interface Conditions
At the interface between the mush and liquid layers (z = a) we follow Worster (2000) and
use the conditions

[T]=0, [T.]=0. 6=0, z=a, (9)

Il

where the last one comes from the assumption that the diffusion of solute is negligible.

A subtle boundary condition presented in Schultz (2005) based on the complete removal
of constitutional supercooling, requires that streamlines be tangent to isotherms in the case
that fluid flows from the mush to the liquid across a solidifving boundary. This condition
essentially means that the change in temperature moving with a material particle is zero at
the interface, expressed mathematically as
s POV M | (u-vi)-vr=o, (10)
Dt ot

where ¢ represents the mean velocity of the material particles. & is the unit vector in the
vertical direction and we have shifted our coordinate system to move at the pulling speed
V.

This condition can be justified by considering the change in temperature following a
material particle, which according to the idea of equilibrium (see Worster 2000) will have
the following property

qm q T
DT _ D'TL(C)

11
Dt — Dt (1)

in the liquid at the mush-liquid interface z = a. In order to ensure that the liguid is not

locally supercooled we require the change in solute concentration to be zero, D97 /Dt = ()

and from the liquidus condition this translates to D91} (C)/Dt = 0. Therefore a fluid

particle moving at the mean velocity ¢ must be warming up as it crosses the interface. On

the mush side of the interface equation (2) can be expressed as
DiC  oC Dv¢

@

Dt Y&t YDt

(12)
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where the superscript v represent the mean velocity of the solid particles i.e. DV/Dt =
d/0t — Vk - V. Since the solid fraction is zero at the mush-liquid interface the first term
on the right-hand side is zero. For a solidifying mush the change in solid fraction with time
moving with the solid must be increasing DV ¢/Dt > 0 and therefore equation (12) give the
opposite condition

DT
<0 (13)
Dt
on the mush side of the interface. As long as the temperature gradients and velocities are
continuous across this interface then equation (10) must be true.

2.4 Velocity Profiles

In the setup shown in figure (2) we assume that the velocity profiles have the same structure
as the well known solution for a corner flow (e.g. Batchelor 1967) in the case of a pure fluid.
which are given in terms of a stream function by

oy oY

u=(u,w) = (d_‘__) ' Y =-Vaf(z). (14)

dx

This formulation applies in both the mushy and liquid layers and allows us to satisfy conti-
nuity exactly in the case of a two-dimensional incompressible low. We impose the following
conditions on the boundaries of the domain

du

w(x,0) = Wg, w(z,h)=0, w(xz. h)=Wp, =0 (15)

0z x,z=0

where the last condition expresses no horizontal shear and is only used for the Darcy
Brinkman formulation (see below).

2.4.1 Stokes-Darcy Formulation

Darcy’s equation is commonly used in the study of porous media and has had success when
compared to experimental observation (See Bear 1972). Strictly the equation applies for a
low Reynolds number flow when the permeability is sufficiently small, which is the case in
most types of porous media. Outside the mushy layer we have a thin channel that obeys
Stokes equation for a thin gap. These equations are

—VP:%U 0<z<a—4, (16)
VP:;LVQU a—0<z<h, (17)

where the permeability II is given by the following non-divergent function
I =1(1 - ¢)°, (18)

in terms of the solid fraction ¢ and 4 is the thickness of a transition zone to be explained
next.



At the mush-liquid interface it is well known and expected that the pressure and vertical
mass flux are continuous, although this is not necessarily the case for the horizontal velocity.

Since we cannot interrogate the porous media very close to the interface there is a region of

depth § where Darcy’s equation is not valid. In this region the pressure is balanced by both
fuid-solid and fluid-fluid interactions, where the thickness of the transition zone & then is
defined to be the depth at which viscous dissipation at the solid walls dominate. Following
Le Bars et.al. (2006) the depth of this transition zone is given by

(19)

where ¢ is a scaling coefficient k = I1/I1, Da = I1/h? is the Darcy number and subscript,
i indicates the level a — 4. Since this thickness is normally small, ¢; < 1 and we can to
leading order write this equation as

8 ~ eV Da. (20)

Within the transition zone the appropriate equation is not straightforward but the sim-
plest approach is to extend either Darcy’s or Stokes equation into this region. Beavers and
Joseph (1969) verified experimentally that Darcy’s equation works well. The problem with
this approach is that the horizontal velocity is not continuous which is inconsistent with
condition (10). As an alternative Le Bars et. al. (2006) extended Stokes equation into the
transition zone which also matches well to the results of Beavers and Joseph (1969). The
advantage to this method is that the velocities are continuous at the mush- liquid interface
and so we use this approach here. With this method the matching conditions at the level
2 = a — ¢ between the two regions are

] =0, [w]=0, [P]=0 z=a-4, (21)

where the brackets denote a jump in the enclosed quantity.
Equations (16) and (17) can be simplified by substituting in the stream function rela-
tionship and eliminating the pressure to get the following equations

a (1" _ g
= (-ﬁ) =0, (22)

=g (23)
in the mush and liquid respectively. Finally the boundary conditions in terms of [ are

f'(h)y=0.  f(h)= l':;", f(0) = 2 (24)

with the following matching conditions in terms of f at z =a —4§

[fl=0 [fl=0; H'==%=, (25)

where + denotes the liquid and — the mushy layer.



2.4.2 Darcy-Brinkman formulation
An alternative to the above approach is to use a continuous formulation in terms of the
Darcy-Brinkman equation

VP V2u — %H((b). (26)

=L
which turns into Stokes equation in the liquid where the step function ¢ = 0 and H(¢) = 0.
This equation has the advantage of being solvable on a single domain, which makes it
favorable for problems in more than one-dimension, particularly when there are intricate
changes in topography. Since fluid-fluid stresses are taken into account in this formulation
the velocity is continuous at the mush-liquid interface and a transition zone does not need
to be defined. Eliminating the pressure and substituting in the relationship for the stream

function we get
=5 [(r.b -y (L)] 5 [QJ H(¢)+ f' [{_1 —p2 (H("‘"))J 27)

dz \1-¢ I[1(¢) dz \ II(¢)

where the boundary conditions in terms of the unknown function, f, are

Wy Wi

f'(h) =0, f(h) = i f(0) = R F(0) =10. (28)
2.5 Non-dimensionalization
We seek a steady solution in the moving reference frame (3/dt = —V 9/dz) and non-

dimensionalize temperature and concentration with the imposed boundary conditions as
follows

mo ney — msy
e 8

T=x|-ma+ (mg—m)f(z)], C==x 4(z) (29)

m 1

We then scale the length with the width of the channel, h, and the velocity with the interface
speed, V. Equations (1), (2) and (5) become

O(f—1)— f (0 —€)= Peb" - %r_,-‘)" 0<z<a, (30)
(—lﬁ[(f.:‘? -1)0-%¢|=f'(0-%)-f8 0<:z<a, (31)
O(f=1)—f'(0—¢)= Ped" a<z<1, (32)

where Pe = k/(V h) is an inverse Peclet number and S = L/(C}, h(my — my)) is a Stefan
number. Here € = my/(my — m,) is the deviation in the horizontal temperature gradient
of the lower boundary ms from the upper boundary m and essentially gives us a measure
of the temperature difference. This non-dimensional parameter could be recast in terms of
solute concentrations as € = my/(my — my/m), where m;, = ma/m is the concentration of
solute at the lower boundary and mj/m is the gradient in the solute concentration at the
liquidus temperature. Since we assume the channel to be infinitely long we will look for
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Figure 3: Mush-liquid interface position a(w, ) as a function of @ for #, = .2..5 and .9
corresponding to the lower, middle and upper lines respectively.

large @ solutions such that, S/a ~ ), which reduces our system of equations to functions of
z only. The boundary conditions in the new variable # become

#0) =0, di1)= 1, (33)
o =0, 6] =0, B:l=0 2=a (34)

with the unknowns #.¢.a and the velocity f determined from either the Darey-Stokes

f} f’ I
A g — 0. 35
0= ( k ) ! =9)

formulation as

F11) = 0; f(1) = Wy, £(0) = Wg. (36)
[f] =0, [fi]=1, = —}‘i—’—l-_. :=a-4. (37)

or the Darcy-Brinkman formulation as

1 1 d 1 " 1l —¢ ! 1 =0 d H[f,-'l]) !
— By — ] }— i — " | H{(d e . a8
/ f [(U '}(]: ( | — r_';)] +f [A'(m}Dn] 1(0)+ ] { Da d:z ( k(¢) | \95)

f(1)=0, f(]"; = Wr, f(0) = Wg, F70)=0. (39

& 7 . . . - .
In the above equation Da = Ily/h* is the Darcy number and in the liquid layer the governing
equation reduces to f =0

3 Solutions for W =Wy <V

It is of interest to obtain a solution in which the direction of flow in the moving reference
frame is from liquid to mush along a solidification boundary. In this case the condition
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required to determine the location of the mush-liquid interface is different from condition
(10) as has been discussed previously. When the velocity of the upper and lower boundaries
are equal, an exact solution is possible and its solution has interesting qualitative features
that we would like to understand. In this case the governing equations, obtained by taking
f=Wg and f' =0 in equations (30)-(32) are

6 (Wg —1) = Pef” (40)
d : /
:l(o— 1)0 — €¢] = —Wgb', (41)
0'(Wg —1) = Ped". (42)

The solution to the temperature equations (40) and (42) in general are # = Aexp(—zw)+ B
where @w = (1 — Wg)/Pe. Applying the boundary conditions #(0) = 0, #(a) = 6, and
0(1) = 1 we get

,—2W _ ]
0=0,5—— 0<z<a (43)
e—aw — 1 -
e —e %
=140, —1)——— a<z<h (44)

{J"'{I’..T\." s F—E‘ == ol

The position of the mush-liquid interface is determined such that the first derivatives of the
temperature field are continuous, which is determined, with a little algebra, from

1 e 2

a=-——In [Hat‘ Y41 Ha] . (45)

(% ¥
By integrating equation (41) and applying the boundary condition ¢(a) = 0 at the mush
liquid interface, we obtain

(1 - H‘IB)(H - Hu)

s 4 f)
@ 0@ (46)

which gives the solid fraction as a function of the temperature profile equation (43).

In this frame of reference there is effectively a flow from the liguid to the mush in which
case information about the solute concentration is transported from the upper boundary.
Since there is only l-dimensional flow with no solute diffusion the concentration in the
liquid is constant and given by equation (8). This concentration translates to the mush
side of the interface because of local equilibrium (see Schulze and Worster 1995) and gives
a relationship for the interface temperature in non-dimensional form as

G, =% (l — m.-m,) : (47)
mo

From this equation we can obtain a relationship for the solid fraction at the lower boundary
in the form

mm ) .
bp = ( - — 1) (1-Wp) (48)
ma
which is obtained by evaluating equation (46) at z = 0.
125



The solution to equation (45) has been plotted in figure (3) as a function of the pa-
rameter w for different values of the interface temperature €,. From these profiles it is
immediately evident that the position of the mush-liquid interface decreases with @ which
can be interpreted as an increase in the velocity Wg. In this case there is a larger transport
of relatively cool fluid from below that decreases the average temperature of the system and
the thickness of the mushy layer must increase.

Similarly the position of the mush-liquid interface is shown to increase with the interface
temperature. which can be better understood by recasting this temperature in the form

g, =€ ( - ﬂ) =%, (49)
Ty

where 1, = my/m is the horizontal derivative of the concentration at the lower boundary.
The first term on the right hand side gives us a measure of the temperature difference in
the system in that a large value of % can be thought of as decreasing the temperature of the
upper boundary. The second term is a ratio of the horizontal concentration gradient between
the top and bottom boundaries, in which a large value of » implies a larger concentration
of solute. In either case a large ¢ or r indicates that the average temperature in the system
is cooler and the position of the mush-liquid interface must grow into the channel in order
to reduce the amount of constitutional supercooling.

4 Numerical solution

We have solved the full set of equations (30)-(32) and either the Stokes Darcy formula-
tion (35) or the Darcy Brinkman formulation (38) munerically using a shooting method
combined with a fourth-order Runge-Kutta ode solver. The position of the mush liquid
interface is determined such that ¢ = 0 and ¢ - V7T = 0 as a function of the 6 parameters,
Wy, Wg, €., Da, Pe and ¢ in our system of equations.

In figure (4) we show the general characteristics of the numerical solution for a fixed set
of parameter values. Here we have used the Darcy- Brinkman formulation for consistency
and reserve a discussion concerning the comparison between the two formulations for the
next section. The four plots show typical profiles for the solid fraction. ¢. temperature, .
first derivative of the temperature, #’, vertical velocity, f and the horizontal velocity, f'. In
addition we have plotted the non-dimensional form of condition (10), which is written as

3 df i _
G=0(f-1)~=(-%), Gla)=0. (50)
This condition can be interpreted as the point at which the isotherms are tangent to the
streamlines or equivalently the point at which horizontal advection is balanced by vertical
advection of thermal energy.

4.1 Comparison between Darcy-Brinkman and Stokes-Darcy formula-
tions
Le Bars et. al. (2006) showed that the Stokes Darcy and Darcy- Brinkman formulations are

nearly equivalent for a suitably chosen transition zone depth and in the limit of small Darcy
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Figure 4: Numerical solution to the full set of coupled equations showing the solid fraction,
¢, temperature, # (solid line), temperature gradient,f’ (dashed line), advective component
of the thermal energy equation, G, the vertical velocity, f (solid line) and the horizontal
velocity, —f' (dashed line). In plot (b) the dotted lines show the zero level and interface
position. Here we use the following parameter values ¢ = .2019, € = 1.667, W = 1.5,
Wp =26 and Pe = 1.

number. The former method is somewhat less convenient in that it requires the solution
to be broken up into two domains and the results are sensitive to the choice of scaling
coefficient, ¢. We have plotted a typical solution in figure (5), comparing the numerical
solutions for both approaches in which the best choice for the scaling coefficient is ¢ = 1. As
we expect the difference in the temperature, volume fraction, vertical velocity and horizontal
velocity profiles are very small for the Darcy number Da = 1 x 10~ chosen for comparison.
In this case the transition zone thickness is § = .01, which is a small fraction of the domain
height. By numerical experimentation we found that the discrepancy between the two
formulations did indeed decrease with Darcy number but had a lower bound since the
liquid layer (1 — a) — 0 as Da — 0.

4.2 Diagnostics

In this section we will compare the effect of the four parameters, Da, €, Wr and Wg on
the the mush-liquid interface position, a and the lower boundary solid fraction, ¢ 5. We fix
the Peclet number to unity and use the Darcy-Brinkman formulation for consistency.
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Figure 5: Comparison between the profiles for solid fraction ¢, temperature ¢, vertical
velocity f and horizontal velocity f’ for the Darcy-Brinkman (solid line) and Stokes-Darcy
formulations (Dashed line). Here we have used the following parameter values 4 = 3.333.
Wr=11, Wg=13,Pe=1Da=1x10"*and c=1.

4.2.1 Effect of Da

The Darcy number is a scale for the permeability in that a large Da implies less resistance
to the flow and a small Da implies more resistance. Therefore we would expect that as Da
decreases the How rate would also decrease. In our case we have forced a constant velocity
at the lower boundary and must conserve mass at any point in our system. The result
than of a decrease in Da is to decrease the horizontal pressure gradient in the mush forcing
the horizontal velocity to decrease. From figure (6) we see that as Da is made smaller
the position of the mush-liquid interface must increases in order to satisfy the tangency
condition (10). Since in this case the horizontal velocity is decreasing the streamlines will
tend to straighten out and therefore diverge from the tangency condition. Since the vertical
velocity must decrease at the end of the channel and a horizontal velocity must exist at
some point in the system in order to conserve mass, there will only be sufficient curvature
towards the upper boundary.

In the second graph of figure (6) we have plotted the solid fraction profiles ¢(z) for three
values of the Darcy number. As a consequence of the horizontal velocity decreasing with
Da, the advection of thermal energy becomes smaller near the lower boundary of the mushy
layer. From equation (31) we can see that the solid fraction gradient must also decrease
in this region and for small Da, ¢" approaches zero. Away from the lower boundary the
horizontal velocity must increase, which leads to larger thermal advection and a steeper
solid fraction gradient.
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Figure 6: Numerical solution to the full set of coupled equations showing the thickness of the
liquid layer (left), 1 —a as a function of the Darcy number Da and the solid fraction profiles
(right) for Da = .002,.01 and .1 corresponding to ¢ = .077,.09 and .128 respectively. Here
the other three parameter values are set to Wy = 1.1, Wg = 1.6 and ¢ = 1.43.

4.2.2 Effect of &

The parameter ¢ is defined as the deviation in the horizontal temperature gradient of the
lower boundary ms from the upper boundary m; and really gives us a measure of the
temperature difference in the system. As in the analytic solution of section (3), an increase
in % has the effect of decreasing the thickness of the liquid layer, as seen in figure (7). Since
a large value of ¢ can be thought of as decreasing the temperature of the upper boundary,
the average temperature in the system is lower and at steady state the mushy layer must
grow further into the channel. In addition we require condition (10) to be satistied, in which
the position of the mush-liquid interface must occur at a point where the isotherms and
streamlines are locally tangent. For fixed velocity boundary conditions the streamlines are
to leading order independent of % and we can concentrate on the form of the isotherms as
a function of the temperature boundary conditions. As was indirectly indicated to above,
the vertical temperature gradient decreases with an increase in ¢ since the difference in
temperature across the channel is decreasing. Because of the form of the streamlines in the
channel the position of the tangency point occurs more towards the upper boundary as the
isotherms straighten out.

In addition figure (7) shows a plot of the lower boundary solid fraction as a function of
¢'. As this parameter is increased the thermal gradient decreases, as discussed above, but
since the non-dimensional temperature gradient scales with ¢, 8’ actually increases. As a
result of this the thermal advection term in non-dimensional form becomes larger. With
reference to equation (31), we can see that in this case the solid fraction gradient increases
and with it ¢p.

4.2.3 Effect of velocity

The velocity boundary conditions have a strong effect on the structure of the velocity field
within the mush and liquid layers and is an important parameter controlling the advective
flux of solute and temperature throughout the system. In figure (8) we have plotted the
thickness of the liquid layer as a function of the lower boundary velocity Wp for different
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Figure 7: Numerical solution to the full set of coupled equations showing the thickness of
the liquid layer (left), 1 — a and the lower boundary solid fraction (right), ¢ g as a function
of €. Here the other three parameter values are set to Wy = 1.1, Wy = 1.6 and Da = .01.

values of the upper boundary velocity Wy This figure shows that the position of the mush
liquid interface increases with Wy, which is not surprising since we would expect there to
be a larger flux of cool fluid from the bottom. In addition a larger lower boundary flux has
the effect of increasing the horizontal velocity and stretching the stream lines further down
the channel. As a result the mush-liquid interface is driven further upwards in order to
both suppress constitutional supercooling and find a point of local tangency between the
isotherms and the streamlines. By the same reasoning an increase in Wy will straighten out
the streamlines and thus increase the thickness of the liquid layer as shown in figure (8).

Similarly to the discussions in section (4.2.1) and (4.2.2) an increase in lower boundary
velocity acts to increase the advective transport of thermal energy. This causes the solid
fraction to increase and with it the solid fraction at the lower boundary ¢p as shown in
figure (8).

5 Conclusion

In this paper we have explored the behavior of a boundary condition originally presented by
Schulze and Worster (1999). This condition requires local tangency between the isotherms
and streamlines at a mush-liquid interface when the flow is from mush to liquid across a
solidifying boundary. The condition naturally occurs along the chimney walls of a mushy
layer and requires a two dimensional flow and temperature field to be satisfied. For this
reason we constructed a simplified model that has these properties built in but that can be
reduced to a one-dimensional problem. The appropriate equations to use for the velocity
field within the reactive porous media can be separated into two groups, Darcy and Darcy-
Brinkman, which are only equivalent in the limit of a small Darcy number. The first is
a two-domain approach that requires a transition zone of order Da? to be defined and
the second is a continuous domain approach. We solved the governing equations (31)

(32) with either the Stokes-Darcy formulation (35) or the Darcy Brinkman formulation
(38) numerically and compared solutions for both of these formulations. From comparisons
of velocity, temperature and solid fraction profiles we discovered, as we expected, that
the difference between the two formulations decreased as the Darcy number was made
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Figure 8: Numerical solution to the full set of coupled equations showing the thickness of
the liquid layer (left), 1 — a and the lower boundary solid fraction (right), ¢ 5 as a function
of Wg for Wy = 1.2,1.3 and 1.5. Here the other two parameter values are set to ¢ = 1.43
and Da = .01.

smaller. In addition we used the numerical solution with the Darcy-Brinkman formulation
to determine the behavior of the liquid layer thickness, 1 — a and the lower boundary solid
fraction ¢p as a function of the four parameters Da, ¥ Wy and Wy, Since a small Darcy
number tends to decrease the horizontal velocity within the mushy layer the position of the
mush-liquid interface must occur near the upper boundary were mass conservation forces
the streamlines to have sufficient curvature in order to satisfy the tangency condition. The
lower velocity also decreases the advective transport of the thermal energy near the lower
boundary which tends to suppress the solid fraction gradient. In the case of large %', the
thermal gradient decreases and therefore straightens out the isotherms, which results in the
point of tangency occurring closer to the upper boundary. Because the non-dimensional form
of the temperature is scaled with ¢’, the non-dimensional temperature gradient increases,
resulting in a larger thermal advection term and therefore an increase in ¢ . Similarly an
increase in the lower boundary velocity Wg results in a larger advection of thermal energy
which lengthens out the streamlines. This forces the tangency point to occur further up the
channel and increases the solid fraction at the lower boundary.

6 Future Work

The problem presented in this paper has been solved numerically for the steady state case
and could lead to a larger study. The next step in the analysis would be to reformulate
the equations in terms of enthalpies. Since in this case the temperature and solid fraction
are consolidated into a single equation the numerical procedure would be simplified. With
this new formulation we could more easily solve the transient problem numerically to gain
a better understanding of how the mushy layer evolves with our current setup.
Experiments have found that tributaries form along the chimney walls, most likely due
to some instability within the reactive porous medium. We have used our simplified model
to examine the initiation of this feature, using linear stability analysis. In this case the basic
state is the numerical solutions presented here and we look to see under what conditions
the perturbations grow in time. This analysis is still in the beginning stages and still needs
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more refining to obtain a reasonable solution.
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Arctic catastrophes in an idealized sea ice model

lTan Eisenman

March 15, 2007

Abstract

With recent observations of diminishing summer Arctic sea ice extent, the hypothesis of
a “tipping point” in summer ice cover has been the focus of a number of studies. This
view suggests that as summer Arctic sea ice cover retreats it will reach a critical point
after which the ice-albedo effect will cause the summer ice cover to disappear altogether.
We have examined the heuristic argument behind this hypothesis using an idealized, but
observationally constrained, model of Arctic sea ice with representations of ice and ocean
mixed layer thermodynamics, varying open water fraction, an energy balance atmosphere,
and scalable CO5. We find that summer ice cover retreats toward an ice-free summer ocean
at an accelerating rate in a scenario with exponentially increasing CQO,. However, we find no
critical CO»y concentration or “tipping point” using observationally based parameter values.
We identify in the extended parameter space a bifurcation associated with multiple summer
ice cover states and a cusp catastrophe, and we find that it occurs far from the physically
realistic parameter regime. Our results suggest that the argument for a “tipping point™ in
summer Arctic ice cover brought on by ice albedo may not hold up when quantified. The
reason is related to the fact that ice cover has only just begun to retreat at the time of
maximum sunlight (June), and the minimum ice area occurs in September when there is
very little Arctic sunlight.

1 Introduction

The retreat of summer sea ice cover in the Arctic is one of the most dramatic signals of recent
climate change. While winter ice cover has remained fairly constant, summer ice extent has
diminished significantly during the past few decades (Fig. 1), with annual minimum extent
shrinking by 20% between 1979 and 2005 [34]. The high sensitivity of Arctic sea ice cover
is believed to be related to the difference in albedo (i.e., reflectiveness) between sea ice and
the open water that is exposed when it melts. Bare or snow-covered sea ice reflects most
sunlight back to space, while the dark ocean surface absorbs most incident light. Global
climate models have long predicted reduced Arctic sea ice cover as an amplified response to
global warming (e.g., Manabe and Stouffer [15]), prompting speculation more than a decade
ago about the use of Arctic ice observations to provide an early indicator of climate change
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Figure 1: Diminishing Northern Hemisphere summer sea ice extent based on satellite obser-
vations [3]. Ice extent is defined as the area of grid boxes with ice concentration of at least
15%, and September monthly mean values are plotted (note that September is the month
of minimum ice cover). The gray dashed line indicates a linear fit.

The ice-albedo effect could potentially lead to multiple states, and scientists have long
conjectured that the Arctic might support a second stable state under current climate
forcing which is at least seasonally ice-free (e.g., Ewing and Donn [5]). Heuristically, one
might indeed expect that ice-free and ice-covered stable states could exist, separated by
an unstable state in which the Arctic is partially covered by ice and absorbs just enough

sunlight to maintain the ice edge at the freezing temperature: adding a slight amount of

additional ice to this intermediate state would lead to less solar absorption, cooling, and
hence further expanded ice cover. As the background climate is warmed, the unstable state
would require more and more ice so that it reflects enough sunlight for the ice edge to
remain at the freezing temperature. This warming could be cansed by rising greenhouse
gas levels, for example, or by some mechanism leading to increased heat transport into the
Arctic. At a particular level of warming, the background climate would become so hot that
the Arctic ocean would remain above the freezing point even if it were fully covered with
ice. At this point the stable ice-covered state and unstable intermediate state wonld merge
and disappear in a saddle-node bifurcation, leaving only the ice-free state. This scenario
suggests that if the Arctic were in the ice-covered state and climate were warmed beyond
the bifurcation point. it would make a rapid and irreversible transition to the ice-free state,
exhibiting behavior which is described mathematically as a catastrophe.

In light of the continued recent retreat of summer Arctic sea ice cover [29], the idea that
we may be approaching a threshold has been receiving a tremendous amount of attention in
the popular press. Often employing the term made popular by the title of Malcolm Glad-
well's bestselling sociological treatise The Tipping Point (2000), widespread speculations
have suggested that the ice-albedo effect may cause an otherwise gradual global warming
to pass a point of no return. bevond which the Arctic would rapidly approach a state which
is ice-free each summer. The cover of the 3 April 2006 issue of Time Magazine suggests in
large bold letters: “Be Worried. Be Very Worried.... Earth at the tipping point.” Dimin-
ishing Arctic sea ice is a major focus of the cover story. A news feature in Nature on 15
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June 2006 titled “The tipping point of the iceberg” discusses the increasing interest in the
idea of tipping points in the climate system. The article states that among several plausible
tipping points under discussion, Arctic sea ice has received the most recent attention. It
reports that 234 newspaper articles mentioned a tipping point in connection with climate
change during the first five months of 2006, a stark increase from 45 such articles in 2004.

In the scientific literature, discussions about a bifurcation point in summer sea ice are
slightly less abundant, but several recent papers speculate about it. Lindsay and Zhang [14]
write, “The late 1980s and early 1990s could be considered a tipping point during which
the ice-ocean system began to enter a new era of thinning ice and increasing summer open
water because of positive feedbacks. It remains to be seen if this era will persist.... However,
at this point we can only state the tipping point as a hypothesis.” This is based on forcing
an ice-ocean model with atmospheric observations and finding significantly increased heat
absorption since the 1980s associated with ice albedo; they do not actually look for hys-
teresis. Overpeck et al [25] conclude that the arctic appears to be heading on “a trajectory
to a new, seasonally ice-free state”™ because of the ice-albedo feedback. They add, “The
processes and interactions among primary components of the Arctic system, as presently
understood, cannot reverse the observed trends toward significant reductions in ice”, imply-
ing that the system has passed a bifurcation point and ice will continue to decrease until it
arrives at a new state. Serreze and Francis [28] speculate about similar bifurcation behavior:
“We are likely near the threshold when absorption of solar radiation during summer limits
ice growth the following autumn and winter, initiating a feedback leading to a substantial
increase in Arctic Ocean surface air temperatures.” These papers do not actually claim
that there is a “tipping point”. Rather, they express it as a hypothesis and discuss its
plausibility.

It is not at all obvious, however, that the ice-albedo effect would lead to multiple Arctic
sea ice states and hence allow for the possibility of a catastrophe. There are many stabilizing
feedbacks in the Arctic climate system. Perhaps the most important of these in the context
of sea ice is the fact that thin ice grows considerably more rapidly than thick ice. For
example, Untersteiner [33] gives an annual increase in thickness of 0.8m for ice that is 0.6m
thick at the start of the growing season, but an increase of only 0.2m for ice that is initially
2.2m thick. Furthermore, if there were a second stable state that is at least seasonally
ice-free, it would seem likely that both states would have been explored by the climate
system in the past during the significant variability associated with glacial cycles. But most
paleoclimate reconstructions suggest that there was year-round Arctic sea ice for at least
the past million years (e.g., Moran et al [21]).

In this project, we have attempted to quantitatively investigate the plausibility of a
catastrophe in summer Arctic sea ice cover. One possible approach for such an inquiry
would be to employ the sophisticated global climate models which are used to predict future
climate change. As described in Section 2, however, these models disagree markedly in their
simulations of Arctic sea ice changes in a warming climate. Instead. we have approached
the problem by constructing an idealized model of the coupled Arctic ice-ocean-atmosphere
system. The model is physically stripped down to essentials, but it is observationally
constrained and includes all the ingredients in the heuristic argument for multiple summer
ice cover states brought on by the ice-albedo effect. To that extent, a positive result would
imply only the plausibility of a “tipping point”, but a negative result provides a somewhat
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stronger refutation. The model is described in Section 3. It is an extension of the Arctic sea
ice and atmosphere model of Thorndike [31] with additions to allow for partial ice cover,
an ocean mixed layer which is always active, a simple parameterization of ice dynamics,
scalable CQOy, and a change in the treatment of atmospheric heat transport which is expected
to be more realistic in climate states that may be very different from today. The model
is represented by four coupled ordinary differential equations that evolve ice volume, ice
area, ice surface temperature, and ocean mixed layer temperature. These equations have
thresholds at the freezing temperature for the ice surface and ocean mixed layer, as well as
a threshold in the evolution of ice area associated with whether the ice volume is decaying.

The model results are described in Section 4. We begin by examining the model solution
in the parameter regime representing the climate today. We find only one sea ice state,
in contrast to the “tipping point” hypothesis. An exponential increase in CO» leads to
retreating summer ice cover at an accelerating rate. When COy is increased somewhat
beyond the point where the ocean becomes ice-free each summer. the Arctic continues
to be completely ice-covered every winter. When CO, is further increased, however, this
seasonally ice-covered state gives way to a state which is ice-free year-round. Only at this
point do multiple states exist: for a range of CO9 values, both seasonal ice cover and ice-free
vear-round states are possible, leading to a fold catastrophe in winter ice cover as COy is
varied.

This suggests that the stabilizing effect of the growth-thickness relation may quantita-
tively outweigh the ice-albedo effect. To quantify the extent to which the former dominates
in this model, we explore the parameter space in search of a region with multiple summer
ice cover states. We find such a region, bounded by a saddle-node bifurcation of cvcles,
when we significantly reduce the latent heat of sea ice fusion. An investigation of the cusp
catastrophe in CO,-latent heat parameter space reveals that the actnal Arctic appears to
be far from the region where COy changes can cause a “tipping point”™ in summer sea ice
cover.

Concluding remarks and caveats regarding limitations of the idealized model are dis-
cussed in Section 5.

2 Arctic sea ice changes predicted by global climate models

Sophisticated global climate models (GCMs) have been used extensively to predict future
climate change associated with increasing levels of atmospheric CO,. About two dozen of
these models are being evaluated for the incipient Fourth Assessment Report (AR4) of the
Intergovernmental Panel on Climate Change (IPCC). The models typically have horizontal
resolutions of 19 to 4% in the ocean component and similar equivalent spectral resolutions
in the atmospheric component: the atmosphere and ocean components each typically have
10 to 50 vertical layers. All of the GCMs include representations of sea ice. with varying
levels of complexity in the sea ice models.

A possible approach to address the plausibility of a catastrophe in summer Arctic sea
ice cover would be to increase CO» in one of these GCMs, continue the simulation until
the model is sufficiently spun up, and then decrease COy and look for hysteresis in the ice
cover. This hysteresis would imply a bifurcation or “tipping point™. The simulation would
be rather computationally intensive, as it would likely take more than 1000 simulation years
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to sufficiently reach a steady state for the elevated CO4 value.

The first 100 years of a similar experiment has already been evaluated with many of
these GCMs for the Special Report on Emission Scenarios (SRES) A1B scenario, which
is one of the COy future emission scenarios investigated in the IPCC AR4. The IPCC
AR4 Model Output Database at the Lawrence Livermore National Laboratory Program for
Climate Model Diagnosis and Intercomparison currently has ice cover data for the “Climate
of the 20th Century” and “SRES A1B” experiments from 16 of the models. We acquired
the monthly gridded data from Run 1 for each of these experiments and computed the time
series of total Northern Hemisphere sea ice extent by summing the area of grid boxes with
ice concentration greater than 15%. The 16 models are as follows: BCCR BCM2 (Norway).
CGCM3.1 T47 (Canada), CGCM3.1 T63 (Canada), CNRM CM3 (France), CSIRO Mk3
(Australia), ECHAMS (Germany), GISS AOM (United States), GISS ER (United States),
HadCM3 (United Kingdom), HadGEM1 (United Kingdom), INM CM3 (Russia), 1PSL
CM4 (France), MIROC3.2 low resolution (Japan), MIROC3.2 high resolution (Japan), MRI
CGCM 2.3.2a (Japan), and NCAR CCSM3.0 (United States).

The average seasonal cycle in Northern Hemisphere ice extent during 1980-1999 for each
of the 16 models is plotted in the top panel of Fig. 2. Ice extent during the same period
computed from ice concentration measurements derived by Cavalieri et al [3] from satellite
observations is included for comparison. The agreement between models and observations
is decent (cf. Parkinson et al [26]): observed ice extent varies between 6 and 16 million km*
during the seasonal cycle, and the intermodel spread is roughly 43 million km? (although
it is slightly greater than this during summer).

Predicted Northern Hemisphere summer minimum sea ice extent during 2000-2100 for
the “SRES A1B” experiment varies widely between the models. While the MIROC3.2 high
resolution model simulates an ice-free summer Arctic starting in 2030, GISS ER simulates
that in 2100 summer ice cover will be reduced by only 15%. The other models fill the space
of predictions in between. In should be noted that these GCMs show better agreement in
their predictions of future global mean temperatures, which is the result typically receiving
the most attention. This formidable intermodel spread in simulated ice cover discourages
the use of GCMs to assess the possibility of a future catastrophe in Arctic sea ice cover.
It motivates an approach using an idealized model with more transparent physics, which is
the method pursued in this report.

In a related project carried out this summer (Eisenman, Untersteiner, and Wettlaufer,
in prep), we used an idealized model to examine the possibility that the spread in IPCC
ARA4 sea ice predictions is related to the sea ice models in the GCMs having been tuned
to simulate observationally reasonable ice cover today, despite a large spread in simulated
Arctic cloudiness which would otherwise lead to widely differing simulated present ice cover.
The detailed results of the project have been left out of this report for brevity.

3 Model description

Here the idealized model of the coupled Arctic sea ice, ocean, and atmosphere used in this
project is described. It is an extension of the model of Thorndike ([31], hereafter T92),
which is a single-column model with representations of vertical sea ice thermodynamics
and a thermal radiative balance atmosphere. When the ice melts to zero thickness in
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Figure 2: Simulated Northern Hemisphere sea ice extent in 16 IPCC AR4 GCMs. (Top
panel) Average seasonal cycle during 1980-1999 from “Climate of the 20th Century™ exper-
iment. Ice extent derived from satellite observations during the same period is indicated
by a black line. Note the decent agreement between models and observations. (Bottom
panel) Predicted decrease in annual minimum monthly mean ice extent during 2000-2100
from “SRES AIB” experiment. Minimum extent is plotted for each model as a percent of
the minimum in the 1980-1999 mean seasonal c¢ycle. The intermodel spread is formidable.
discouraging the use of GCMs to assess the possibility of a future ice catastrophe and
motivating the use of an idealized model.

Thorndike's model, a thermodynamic ocean mixed layer is evolved until it reaches the
freezing temperature, at which point sea ice begins to form again. Thorndike's model
displays two stable states. One is state ice-covered year-round and the other is ice-free
year-round. A third state also exists with seasonal ice cover, but it is unstable.

The model used here is extended to allow partial ice cover, which requires an ocean
mixed layer which is always in communication with the atmosphere unless the ocean is
completely ice-covered. The ice area is evolved using a methodology based on Hibler [10].
A simple parameterization of ice dynamics is included. The atmosphere used here is nearly
identical to Thorndike’s, except that COs can be varied and meridional heat transport into
the model domain depends on the implied meridional temperature gradient rather than
being specified at a constant value.

The state variables (Table 1) are ice volume, ice area, ice surface temperature, and
ocean mixed layer temperature. Their evolution is represented by four ordinary differential
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Table 1: Model state variables.

Vv Ice volume divided by area of box (units of m).
A Ice area (fraction of box covered by ice).

T: Ice surface temperature (°C).

Tyu  Ocean mixed layer temperature (°C).

equations with thresholds associated with the freezing temperature of the ice surface and
ocean mixed layer, as well as a threshold in the evolution of ice area associated with whether
the ice volume is growing or decaying. The physical derivation of these equations is described
below.

3.1 Sea ice
3.1.1 Ice thermodynamics

Here we discuss the derivation of the idealized thermodynamic equations in T92, which
have been used in this model, starting from the fundamental conservation law for heat
transport in a two-phase, two-component system. We discuss the equations of Maykut and
Untersteiner [19] as an intermediate step.

As sea ice grows, differences in the rates of diffusion of heat and salt in seawater give rise
to a region adjacent to the ice-water boundary where the water is constitutionally super-
cooled. This triggers morphological instability of the interface: perturbations to a planar
interface grow because they protrude into the constitutionally supercooled region. Due to
this effect, sea ice develops a lamellar solid-liquid interface characterized by millimeter-
scale blades of ice with brine filling the narrow spaces between them. This is in contrast
to the more familiar situation of lake ice, which experiences none of these salinity-related
phenomena and grows with a planar solid-liquid interface.

At thermodynamic equilibrium, the interstitial brine in sea ice is at the freezing tem-
perature, maintaining the same temperate as the ice crystals immersed in it. As explained
by Maykut and Untersteiner [19], a rise in temperature causes ice crystals to melt until the
brine is diluted sufficiently to raise its freezing point to the new temperature. Hence the
heat capacity of a slab of sea ice is different from that of a simple solid: the brine pockets
serve as a thermal reservoir, enhancing the effective heat capacity.

This suggests a treatment of sea ice in which quantities are averaged over regions con-
taining both ice and interstitial brine. A region of mixed phase for a two-component fluid
(here salt and water) is called a mushy layer. Sea ice thermodynamics can thus be de-
scribed as a problem of vertical heat conduction in a mushy layer with the upper boundary
condition determined by the balance of surface fluxes.

The mushy layer equation for conservation of heat can be written (Worster [36], equation
6.20) )
(t,,,_(.}—f—k(tbu-V’I': AVAE {K‘;,,V?')%—ﬁ@ + Ap (1)

ot ot
where 1" is the mushy layer temperature, ¢ is the solid fraction (i.e., fraction of the volume
which is ice), £ is the latent heat of fusion per unit volume (proportional to the difference in
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enthalpy between brine and ice), and Ap represents the absorption of solar radiation that
has passed through the surface of the ice. Here the mean volumetric specific heat capacity,
em = o+ (1 —9), is related to the volumetric specific heat of ice (¢;) and brine (¢;). The
mean thermal conductively of the mushy layer is approximated to be k,,, = ko + ky(1 — @),
where k; and ky, are the thermal conductivities of pure ice and brine; this relationship is
exact if the ice lamellae are oriented parallel to the heat flux, which is a good approximation
for sea ice. Note that in (1) we have corrected the typographical error (verified via personal
communication with Grae Worster) in the factor multiplying the advective term in Worster
[36] equation 6.20.

Feltham et al [6] showed that under certain physical assumptions the mushy layer conser-
vation equation (1) reduces to the temperature diffusion equation in the model of Maykut
and Untersteiner [19]. which most current models of sea ice thermodynamics are based
on. Here we present a brief summary of the derivation in Feltham et al. Assuming local
thermodynamic equilibrium (i.e., brine is at freezing temperature) and a linear liquidus
relationship (i.e.. linear dependence of brine freezing temperature, T, on brine salinity, S),
we can relate the temperature to the brine salinity as

T =T.(S) = Tr(0) - TS. (2)

We introduce the bulk salinity, Sy = (1—¢)S, using the assumption that the concentration
of salt incorporated into the ice crystals is negligible compared to the brine salinity. This
allows us to write the solid fraction ¢ in terms of brine salinity and hence, by (2). in terms
of temperature:
rb‘hm’k
0
Here we have defined # =7 — 17(0) =1 — 273°C.
Maykut and Untersteiner [19] use a prescribed time-independent vertical salinity profile

(3)

A—

for Spuk. neglect brine flow (u = 0), and consider temperature variations in the vertical
only. Under these assumptions, (1) becomes

arT () T
v r—— — — ;‘-_ il _.'1 . £
Cefl 557 s ( ofl H:) + Ap (4)

with cor = ¢y — [% and kg = Ay Inserting (3) and the definitions of ¢, and A,,. the

effective mushy layer heat capacity and conductivity can be written

I Shuik : TS )
Ceff = C; ““%{f'h—“él‘i‘ﬂ-% (5)
and -
Koy =i — — "% (b — ki) it
efl 0 (K ) (6G)

Equations (5) and (6) are equivalent to Feltham et al [6] equations 14 and 15 (with their
equation 14 corrected for a typographical error. verified by personal communication with
Danny Feltham, in the sign of the second term).

Approximate formulas for effective heat capacity and conductivity were derived by Un-
tersteiner [32]. Because they were found to be in good agreement with the theoretical
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expressions of Schwerdtfeger [27] and Ono [24], they were used by Maykut and Untersteiner
(19]. Feltham et al [6] demonstrate that sea ice heat capacity and conductivity obtained
by Schwerdtfeger [27] are identical to the mushy layer result (5)-(6) when L/p; is assumed
constant, the conductivity of bubbly ice is assumed equal to k;, the volumetric heat capacity
of pure water is assumed equal to ¢, and the densities of pure water, pure ice, and sea ice
are all assumed equal.

The equation in Maykut and Untersteiner [19] describing the evolution of the tem-
perature profile (their equation 6) has capacity and conductivity terms with parameters
multiplying powers of temperature and salinity in identical form to (5)-(6), with the ex-
ception that they do not have the Sp /0 term in (5). By illustrating this equivalence,
Feltham et al [6] demonstrate that these terms in the thermodynamic model of Maykut
and Untersteiner [19] are firmly grounded in the physics of mushy layers, thereby showing
exactly how the terms account for both the fractional inclusion of brine pockets and the
energy associated with phase change when this fraction evolves.

Maykut and Untersteiner [19] use a scaling argument to neglect the vertical derivative
of ke, simplifying (4) to

Arry 2
f-'vl[(;_j; = *'eﬂ% + Ar. (7)
They specify seasonally varying snowfall and include a layer of snow above the ice in which
temperature evolves according to
P a2
f%nnwf;}_a; = "snow% + Ag. (8)

In this layer, unlike in the mushy sea ice, the volumetric heat capacity (csnow) and con-
ductivity (Kgow) are constant parameters. The boundary condition at the upper surface,
z = hyp, is a flux balance when the ice is below the freezing temperature and a Stefan
condition for surface melt otherwise:

T 0 T (hr) < 0°C .
'Ifsnt)w [g} = F‘fup = dhw v .,( i } — [[))
9z |, Lz T (hy) = 0°C

where L is the latent heat of fusion of the surface material and Fj,, represents the sum of
sensible, latent, downward and upward longwave, and shortwave heat fluxes at the surface.
All but the upward longwave flux are specified in their model based on observations. The
fluxes balance at the snow-ice interface (z = hy;):

i oT
Ksnow [ﬁ] = |ikoﬁ" - ] . (10)
0z hai+ oz hyi—
At the base of the ice layer, = = hp. a Stefan condition for ice growth or melt is applied:
JdT dh
- [A-m,—] - Frot =—-L—". (11)
-2 dt

Here Fj,, is the flux from the ocean mixed layer into the base of the ice, which is a specified
constant. Note from (9) and (11) that Maykut and Untersteiner evolve the upper and lower
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surfaces of the ice, hy and hp. separately. The actual predicted ice and snow thicknesses
are hice = hgi — hp and hgpow = hp — hg;.

The thermodynamic sea ice model of Maykut and Untersteiner [19] is summarized by
(7)-(11). They solved it numerically on a 10cm vertical grid with 12 hour time steps using
a $3 million 1960s IBM mainframe computer.

The simplified thermodynamic equations in T92 can be derived from (7)-(11) by ne-
glecting snow and sensible and latent surface heat fluxes, assuming the sea ice effective heat
capacity and conductivity to be independent of temperature and salinity (cog(7,5) = ¢,
ke(1.S) = k), approximating all shortwave radiation to be absorbed at the upper sur-
face (Ar = 0), and applying the quasi-stationary approximation to the diffusion equation
(7). This leads to equations for the evolution of surface temperature 7; and ice thickness
h = hp — hp. The quasi-stationary approximation. which is based on assuming a large
Stefan number S = L/ (¢, AT), allows the left hand side of (7) to be integrated with the
assumption of a linear temperature profile:

ha or s [ z—hg ch dT,
iz{e— ) =¢ o] =2 § =T e ot 12
./.’u; f (‘ ot ) : -/-’I,l: f ((H (h"f' i h” )) 2 dt { |

This leads to an integrated version of the diffusion equation (7),

h dT; T a1
ch dl - r)_[ _ i . (13)
2 dt = hy oz I

Inserting into (13) the boundary conditions (9) and (11) leads to two sets of equations

depending on whether or not the surface is melting. In either case. the linear internal
temperature gradient is used for the lower boundary term (k [H’!'fr'):;,m = Kk1;/h) because
of the Stefan condition at the edge, and the lower boundary condition (11) becomes

{UU; 1

i EP

L 7 — Fyor (14)

When 7; < 0°C, the first upper boundary condition in (9) gives k [EJT,"EJ:]“‘I, = Fiop. Insert-
ing this into (13) and using dh/dt = d/dt (hp — hg) = —dhg/dt in (14) leads to

%‘. I.{{F‘ = }".‘nh — KT/ h, (15)
L% = _k%‘ — Fpor- (16)

When 7; = 0°C, the Stefan condition at the upper edge leads to the use of the internal
temperature gradient for the upper boundary term, & [E)T/f):]_,‘_r = kT;/h. Using the second
upper boundary condition in (9), Ldhy/dt = KT;/h — F,p, (13) and (14) become

i =0, (17)
L:‘% = “}?Inp T !':"mf‘ (IH}

Thorndike [31] separates the sea ice seasonal cycle into discrete steps representing cool-
ing, growing, warming, and melting. He uses (15)-(16) during growing and (17)-(18) during
melting, and during the warming and cooling steps he nses equations to evolve 1% and h
which are equivalent to letting dhp/dt = 0 in the lower boundary condition (11).
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In the model presented here, we use a continuously evolving seasonal cycle, using (15)-
(16) or (17)-(18) depending on whether 77 < 0°C. Because we allow partial ice cover, unlike
in the models of Maykut and Untersteiner [19] and Thorndike [31], we evolve ice volume
rather than ice thickness. In the ice-covered fraction of the model domain A, this vertical
thermodynamic growth of the ice is represented by re-writing (16) and (18) as

dV T;
_— FE P (
L =A ( k5 F,,f,,) . (19)
and v
(L
LI =A(_F|‘u;i_]::'m!‘)- (2“}

3.1.2 Evolution of ice area

T92 describes the entire Arctic by a single ice thickness, using a thermodynamic ocean
mixed layer model which becomes active only when all the ice melts. In the model used
here, an open water fraction is included. When the open water fraction is small, it describes
the area of the Arctic covered by leads; when it is large, it describes extended regions of
open water.

While the thermodynamic sea ice equations in this model are derived from fundamental
physics, the area evolution is based on the observationally motivated methodology of Hibler
[10]. Hibler introduced this methodology to evolve ice concentration (fraction of grid covered
by ice) in each model grid box, allowing models to account for the presence of subgrid-scale
leads. Many of the GCMs today with the most sophisticated sea ice representations include
similar parameterizations of subgrid-scale leads and thickness distributions based on this
methodology. The box model used here effectively includes a single grid box, so Hibler's
methodology can be similarly applied to the ice area in this box.

It should be noted that the open water fraction in this model, as in Hibler [10] and
similar models, is not meant to represent a truly ice-free region. Rather, the model domain
is split into a fraction containing thick ice, with the rest covered by a mixture of exposed
ocean and thin ice as in observed leads. The volume of this thin ice is assumed to be
negligible compared to the thick ice volume.

Hibler [10] presents a dynamic model in which the thermodynamic sea ice growth rate
is specified as a function of ice thickness and season, and concentration grows based on
the growth rate for zero-thickness ice. Here the thermodynamics are computed, and con-
centration increases when 75, reaches zero and tries to keep cooling: the mixed layer flux
imbalance F,; goes to making new ice volume as

dA  Fy :
E N Lhu. (21)

As in Hibler, an equivalent thickness hy must be assigned to the new volume to give it a
horizontal area. This parameter controls the rate at which ice cover grows: it is not to be
viewed literally as the typical thickness of new ice.

Area grows only when the mixed layer freezes: when the Stefan condition at the ice
base leads to volume growth, the ice grows vertically downward and area remains fixed.
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Figure 3: Schematic illustrating the proportionality between the rate of change of ice arca
and the thermodynamic decrease of volume. This methodology follows Hibler [10].

Area decays, however, when volume is thermodynamically lost. Following the treatment in
Hibler, when % < () area decreases as

dA A dV
dt ~— 2V dt’

The proportionality between volume and area rates of change is based on an argument
in Hibler about the ice thickness distribution in the model domain. Assume that the ice

is distributed evenly in thickness between 0 and 2V/A. This gives a mean thickness of

V/A. (Note, however, that in both Hibler’'s model and the model presented here the ther-
modynamic growth of ice is a nonlinear function of thickness and is computed under the
assumption that all ice is of the mean thickness V/A, rather than using an even distribution
between 0 and 2V/A.) Tt is assumed that all ice in the 0 to 2V/A distribution melts at the
same rate. Hence the rate of area decay is given by the rate of thickness decay times the
inverse slope of the thickness distribution

dA AV A

A
AA = A} = — = —AV. 2
"d4h T A 2V/A Tm (23)

This is illustrated schematically in Fig. 3.

Note that new ice area forms at 7; = 0, hence increasing the subzero ice surface tem-
perature when area is expanding during the growing season. This would add the term
—(T'JA)dA/dt to dT'/dt. Since 1" typically changes between 0°%and 30°C while A evolves
between (.75 and 1, (1/7)dT’/dt tends to be far larger than (1/A)dA/dt, and the term is
expected to be insignificant and has been neglected.

Dynamics are represented in the model by requiring that A < 0.95 (because of the
constant convergence and divergence of the wind field) and by imposing a net annual export
of 10% of the ice area based on observations of Kwok et al [13]. The latter adds the terms
—vpA and —vpV to the area and volume evolution equations.
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3.2 Atmosphere
3.2.1 Radiative equilibrium

The model has a gray-body thermal equilibrium atmosphere, as in T92 (¢f. Goody and
Yung [9], Section 9.2), which is used to compute the downward longwave radiation at the
surface as a function of the surface temperature. To find this relationship it is necessary
to derive the full atmospheric vertical profiles of temperature and downward and upward
propagating longwave radiation. The atmosphere is assumed to be transparent to shortwave
(solar) radiation. A poleward atmospheric heat transport into the Arctic, D, is accounted
for in the model.

With longwave extinction coefficient x(z) and atmospheric density p(z), the amount
of upward propagating longwave Fip at a given height can be found using dFyp/dz =
plz)k(z)Firp(2). This can be solved for intensity as a function of height,

Fup(z) = Fup(0) exp ( ] ” pmf:’) = Fup(0) exp(n(2)). (24)
]

where Fip(0) is longwave radiated from the surface. Here we have defined the optical height,
n(z) = [y prdz’. An advantage of measuring height using 7 instead of z is that x(z) and
p(z) drop out of the equations and the atmosphere can be described by a single parameter,
the total optical thickness N = n(oc). Physically, an optical thickness of N means that a
longwave photon typically passes through 1/N of the atmosphere before being absorbed.
The longwave radiation from the surface can be linearized in surface temperature, 7.

Al

about the freezing temperature, Ty = 0°C
Fup(0) = o(Ts + 273K)* ~ a + VT, (25)

Here T} is assumed to be measured in °C.

The atmosphere is absorbing and reradiating longwave radiation at all heights. The
intensity of downward radiation from the atmosphere above is given by Fpn (1), which
must be zero at the top of the atmosphere:

Fpn(N) = 0. (26)

The amount of radiation absorbed by a layer of thickness dn is (Fyp(n) + Fpn(7)) dn. We
assume the poleward heat transport is distributed evenly in optical height, so each layer
gains D/Ndn of heat from this advection. The longwave radiation from a given layer is
given by 2R(n)dn, where R(7n) = a + bT'(n) and the factor of 2 accounts for radiation from
the top and bottom of the layer. In thermodynamic equilibrium, this leads to

D
— . a7
N 2R(n). (27)

Fup(n) + Fpn(n) +

The fluxes vary in height because of absorption and reradiation:

LR = —Fyp(n) + R(), (28)
o3 = Fpn () = R(n). (29)
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Equations (27)-(29) are a system of one algebraic and two differential equations. They can

be solved using the boundary conditions (25)-(26) to give R, Fyyp, and Fpy at all heights

1. The only part of the solution which is needed for the model is the dependence of the

downward longwave radiation at the surface on surface temperature, which is found to be
N D

Fon(0) = (a+¥L3) 5 + 5 (30)

3.2.2 Seasonal cycle

a

The seasonal cycle in this model if forced by varying specified shortwave radiation Fi,.
atmospheric optical thickness N, and 0-70°N temperature which is used to compute the
poleward heat transport D (described in Section 3.2.3). T92 uses a step-function seasonal
cycle, with summer vales of N and F§, for half the year and winter values for the other
half. This allows him to arrive at a closed form analytical solution to the model equations.
We solve the equations numerically, and hence we can use a continually varying seasonal
cycle.

Maykut and Untersteiner [19] force their model with specified shortwave forcing based
on observations of solar radiation incident at the surface. The values differ significantly
from the astronomically constrained top-of-the-atmosphere radiation, because the trans-
missivity of the Arctic atmosphere is typically only 40-70% [17]. We forced the model with
a non-negative sine-wave approximation to the monthly mean data used by Maykut and
Untersteiner (Fig. 4).

The optical thickness is higher during summer than winter because of increased cloudi-
ness. T92 tuned the values of N to simulate a seasonal cyele in ice thickness similar to the
more complicated model of Maykut and Untersteiner [19]; although the choice of N values
was motived by matching Fpy(0) with observed surface downward longwave flux, using
summer and winter values of N which better match the cited Fpy(0) observations (and
simulated surface temperature) cause all the ice to melt in the model of T92 for any initial
condition (not shown). The requirement that N be tuned to some extent is not surprising
in light of the many simplifications in the model, including neglecting sensible and latent
heat fluxes.

Bjork and Soéderkvist [2] constructed a single-column model with a sophisticated rep-
resentation of the Arctic ocean, 40 evolving ice thickness categories, and an atmospheric
thermal equilibrium model based on T92. They prescribed N to follow the observed annual
cycle of cloudiness but tuned its magnitude to give an observationally reasonable cycle of ice
thickness. We followed a similar procedure, using a non-negative sine-wave approximation
to the Arctic cloudiness observations made by Maykut and Church [17] (Fig. 4). This leaves
the seasonal maximum and minimum values of N as tunable constants, and we chose values
to give a physically reasonable seasonal cyele in ice thickness.

3.2.3 Poleward heat transport

T92 specifies a constant poleward heat flux in the atmosphere equivalent to a vertical flux
of 100W /m*, which is based on observations [23]. He finds a state similar to the observed
present-day Arctic, as well as a second stable state in which the Arctic is ice free with ocean
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Figure 4: Seasonal cycle in specified model forcing (black lines), and observations the forcing
is based on (gray circles and dashed line). (left) Shortwave radiation (W/m?) chosen to
fit observed incident solar flux at the surface [19]. (right) Optical thickness of the model
atmosphere, which is scaled to match Arctic cloudiness (percent) [17].

mixed layer temperatures varying seasonally between 6° and 14°C. As mentioned in T92, it
is unlikely that the real atmosphere would maintain the present-day poleward heat transport
with the meridional temperature gradient significantly reduced. Thorndike later expanded
on this idea, letting D be a function of the meridional temperature gradient between two
boxes in a highly idealized climate model with no seasonal cycle or ice thermodynamics [30].
This method of approximating D is frequently employed in idealized atmospheric models
(e.g., Chen et al [4]), and we have adopted it here.
We let
D(T;) = kp (To—ron — T) (31)

with Tj_7on specified to vary seasonally based on NCEP-NCAR [12] observed climatologi-
cal 1000mb temperature which was averaged both zonally and 0°-70°N. We used kp = 3.3,
equivalent to the value in Thorndike [30], which matches observed poleward heat transport
[23] fairly well using T from the standard model run (Fig. 5). Note that when this param-
eterization for D is inserted into the model of T92 the ice-free states disappears. leaving
only the state resembling the present-day Arctic.
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Figure 5: (left) Observed 0-T0°N mean seasonal cycle in 1000mb atmospheric temperature
To-7on (gray circles and dash) and a sinusoidal fit used in the model (black). (right)
Observed poleward heat transport D (gray circles and dash), and computed values of D,
which use Tjy_7on and simulated Arctic surface temperature T, in the standard model run.
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3.2.4 Surface flux exchange

The surface is split into a region containing ice and an open water region, with average
surface temperature

Ts = AT; + (1 — A)T,,. (32)
Surface downward longwave radiation, Fpx(0), was computed in Section 3.2.1 using the
average surface upward radiation Fip(0) = a+bT;. We assume that the downward longwave
radiation is everywhere uniform in the model domain and depends only on T, but we
compute the upward radiation separately for ice and open water as Fyp(0) = a + b1; and
Fiip(0) = a + bl respectively. The longwave emissivities of ice and open water, both
roughly 0.95 or greater, have here been approximated to 1. (Note, however, that open
water and ice differ significantly in microwave emissivity, which is what satellite observing
systems like SSM/1 are based on.) This leads to a surface longwave radiation imbalance

above ice or open water of

5 — P
«(T.Ty) = Fyp(0) ~ Fon (0) = ; :L”N = D(;'“] +b (’f‘ =T 2”:\) . (33)
with T'=T; or T' = T,,; inserted.

Shortwave radiation is also absorbed at the surface, adding an energy flux (1 — o) Fl,
with a = a,y over open water and a = o, over ice. When ice is melting at the surface
(1; = 0), a lower albedo is used to account for the ice and the presence of melt ponds (o).
The value of ay,, is chosen based on observations of fractional pond cover in summer and
melt pond albedos [7].

3.2.5 Addition of CO,

We can crudely vary COjy in the model by enhancing the Arctic optical thickness and
adjusting 1y_7on in the equation determining poleward heat transport. Changes in radiative
forcing are typically approximated to have a logarithmic dependence on CO» concentration,
and values associated with CO; doubling are commonly discussed. The 1IPCC TAR [11]
cites a range of 1.5 to 4.5°C for the equilibrium response of an atmospheric GCM to each
doubling of COs, so we add 3°C to T_7on for COy doubling.

The IPCC TAR gives a range of 3.5-4.1 W/m? for the direct longwave radiative forcing
due to a doubling of CQ,. suggesting 3.7 W/m? as the best estimate (their Section 6.3.1).
Solving (30) for N, we can write the relationship between optical thickness and longwave
forcing as

N=g—onl0)=Dj2 (34)
a+ bl — F_:;;\,'{[]} ~+ 10/'.3
Replacing N with N + AN and replacing Fpy(0) with Fpy(0) + AF. this shows that the
change in optical thickness associated with an increase in longwave forcing is

o NO+N2) ( AF ) i
AN = == AP 0| =—— | . a
Fon(0) - D727 Y \Fpn(0) (35)

We insert into (35) mean values for N, Fpn(0), and D from the standard model run, which

leads to an increase in N of AN = (.2 associated with the enhancement in radiative forcing

of AF = 3.7 W/m?.
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Based on this, we vary CO; in the model by replacing N with N + AN logy(co2) and
replacing To_7on with To_7on + AT logy(co2), where co2 represents the factor multiplying
present-day atmospheric CO9 concentrations, AN = 0.2, and AT = 3°.

3.3 Ocean mixed layer

The mixed layer is modeled as a thermodynamic reservoir. Its characteristic depth is H,,; =
50m as in T92 (cf. observations of Morison and Smith [22]).

The flux of heat entrained through the bottom of the mixed layer is specified to be
Fent = 0.5W/m? based on observations [22]. The turbulent heat flux between the ocean
and the base of the ice is given by Fy, = pepcpunAT, where p and ¢, are the density
and specific heat of seawater, ¢, = 006 is the heat transfer coefficient, u-o is the friction
velocity (square root of kinematic stress at ice-ocean interface), and AT is the difference in
temperature between ocean and ice [20]. Using a typical value of u-, = 0.5cm/s based on
observations (18] and inserting AT = T},; (since 7" = 0 at the base of the mixed layer) leads
to

F‘u' = FJ’TmI {'“'}

with v = pepepua = 120W /m?.
The total heat flux into the mixed layer is thus

‘Um! = (1 - A) (_f(:{'mh'f;} = (l = (-l'mf)Fﬂr-‘} o A‘T]‘Imf S Fm:h‘- {3"’_)

If 75,y > 0, this leads to heating or cooling according to

d1y . _—
cmi Hmi = Fo, (38)

dt
and no new ice area is formed, F,; = 0. When the mixed layer reaches the freezing tem-
perature (71, = 0) and tries to keep cooling, the temperature remains at the freezing point
(dT,y;/dt = 0) and any additional heat loss goes into the formation of new ice (Fy; = —F,;).

3.4 Summary

The model is described schematically in Fig. 6. It consists of four coupled ODEs which
are first-order and non-autonomous (F,. N, and D have time dependence). The model
equations described in Sections 3.1-3.3 are summarized below.
The surface longwave radiation imbalance is
2a D(T;

: - ) e _ I 2T, .
Y B w(r— : 39
) =575 g to\ =T+ N (39)

with surface temperature Ty = AT; + (1 — A)T,,,; and atmospheric poleward heat transport
given by
D(Ts) = kp (To-7on — 1) - (40)

The mixed layer flux imbalance,

Fou = (I~ A) (_E(Y;u.‘-rﬂi) =t (1 — o1} Faw) — AVt + Fentr, (41)
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Figure 6: Schematic summarizing the model sea ice, atmosphere, and ocean thermodynam-

1CS.

normally causes warming and cooling in the mixed layer and no production of new ice arca,

‘”:ru‘}Lflu'n’“,;é“l = 1!“”,; and Fm — 4l (42)
i
When 1,,; = 0 and F,,;; < 0, however, the mixed layer flux imbalance goes into forming new
i"i‘.
"”Im.f
dt

The equations for ice surface temperature and volume evolution are

=0 and Fni=—Fui. (43)

hdli - _ (T3 Ts) + (1 — a4)Foy — BR2, (44)
L% = A (_% - ‘.-’.]‘m!) + Fri —wlLV, (45H)

except during surface melt, 7; = 0 and —€(0,7%) + (1 — o) Fyy > 0, when ice melts at the
top and bottom according to

4L =, (46)

LL = A(e(0,T5) — (1 — cmp) Fsw — ¥Tomt) — voLV. (47)

Here we have used the ice thickness, h = V/A.

dA  Fu A v
_— = — —P e =13 "i 48
dt ~ Lhy 2V ( dr) % i

where the ramp function R(x) is 0 if # < 0 and R(x) =« if a2 > 0.

The area evolves as

The model parameters are listed in Table 2.

150



Table 2: Model parameters.

Fundamental physical parameters

c ice heat capacity 2 x 10° J/m3/K
L ice latent heat of fusion 3 x 108 J/m3
Comi mixed layer heat capacity 4 x 10% J/m3/K
k ice thermal conductivity 2 W/m?/K
a for LW radiation: o (Tf)d 320 W/m?
b for LW radiation: 4o (ﬂt"_f)3 4.6 W/m?/K

Parameters based closely on observations
Fis shortwave radiation at ice or ocean surface seasonal, 0 to 300 W/ m?
To—7oN 0°-70°mean temperature seasonal, 8 to 22°C
«; ice albedo 0.65
y ocean albedo 0.20
Qmp ice albedo during surface melt 0.55
¥ ocean-ice heat exchange coefficient 120 W/m? /K
Hei mixed layer depth 50 m
Foigi heat flux entrained into mixed layer 0.5 W'/mg
kp atmospheric heat transport constant 3.3 W/m?/K
g dynamic export of ice from model domain ~ 0.10 yr—!
1 — Ajere  minimum lead fraction 0.05
ho equivalent thickness for newly formed ice 0.5 m

Tunable parameter, based loosely on observations

N optical thickness seasonal, 2 to 4.4

4 Results and discussion

The standard model run, using the parameter values in Table 2, is presented in Fig. 7. lce
thickness (h = V/A) varies seasonally from 2.5 to 3.7m, in rough agreement with observa-
tions. This agreement in simulated thickness extrema, while encouraging, is not surprising
since we were able to tune the maximum and minimum seasonal values of N. Thickness
reaches a minimum in late October and a maximum in late May, which agrees fairly well
with Maykut and Untersteiner [19] who find minimum thickness in October/November and
maximum thickness in June.

The ice surface temperature (1;) varies between 0°and -32°C, and the associated tra-
jectory in T, versus V state space matches fairly well with the results of Maykut and
Untersteiner [19] and similarly Thorndike [31].

The minimum area occurs in September, in agreement with observations. The model
domain represents roughly the entire Arctic Ocean. Satellite observations [3] of the 1980-
1999 mean seasonal cycle in ice extent north of T0°N (solid gray line) and 75°N (dashed gray
line) are plotted next to simulated ice area for comparison. Note the fairly good agreement.

The mixed layer temperature varies between 0°and 0.23°C. When multiplied by ~, it
gives the ocean-ice heat flux. The annual average flux is F,, = 5.4 W/m?, which compares
well with the observational estimate by Maykut and McPhee [18] of 5.1 W/m?.
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Figure 7: Standard run results. There is only one stable periodic orbit in this parameter

regime, and any initial condition eventually converges on it. Plots represent evolution of

the model state during the course of the annual eycle. The first four are the state variables:
ice volume divided by box area V' (m), ice surface temperature 1; (°C), ice area A (fraction
of box covered by ice). and ocean mixed layer temperature 13,,; (°C). The bottom center
plot represents the model trajectory through the state space projected onto the 7; V' plane.
The bottom right plot shows the evolution of ice thickness (h = V/A): note that the bump
in September is related to ice area rapidly expanding while volume slowly grows, causing
the average thickness to abruptly drop. Satellite observations [3] of the 1980-1999 mean
seasonal cycle are included in the ice area plot for comparison; the solid gray line indicates
ice extent north of 70°N and the dashed gray line indicates ice extent north of 75°N (both
are plotted in units normalized to have a maximum value of 0.95).
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Figure 8: Response of the model solution to scaling the COy parameter, which is crudely
related to atmospheric CO4 concentration. Values on the horizontal axis represent factors
multiplying the COs concentration today, with each tick mark representing one doubling.
For each level of COy, the model solution is a periodic orbit in the 4-dimensional state
space. Solutions are represented here by four numbers: the summer (gray) and winter
(black) extrema of ice volume (left) and ice area (right). There is no hysteresis (or “tipping
point™) in summer ice cover. When CO3 levels reach about 5x the present-day value in this
model, the Arctic becomes ice-free each summer. Further increase of CO3 leads to multiple
states and hysteresis in winter ice cover, with an associated fold catastrophe: one state has
ice only in winter and the other is ice-free year-round. The multiple states exist in a narrow
range on the plots around the COy level of 16x the present-day value. The straight dotted
lines indicate the presence of an unstable state.

Varying the initial condition leads to no multiple states in the standard parameter
regime: every initial condition eventually converges on the limit cycle plotted in Fig. 7.
This disagrees with the “tipping point” hypothesis in which a second stable state which is
ice-free each summer would exist today.

We varied COy, gradually raising the value and lowering it again to look for hysteresis
and hence multiple states. The summer and winter extrema in ice volume and ice area are
plotted in Fig. 8. A scenario in which CO9 exponentially increases in time is equivalent
to moving to the right on the horizontal axis at a constant speed: note the accelerating
approach to an ice-free summer (right; gray line). However. we find no “tipping point” in
summer ice cover.

When COj is further increased to the point where the ocean becomes ice-free year-
round, multiple states appear in a fairly narrow region of the parameter space. The region
is bounded on each side by a saddle-node bifurcation of cycles where a fold catastrophe or
“tipping point” occurs. Here, in an increasing CO; scenario, when the COq level crosses
a threshold the climate rapidly switches from a state characterized by nearly ice-covered
winters to a state which is ice-free vear-round. Note that the slight kink in the black line on
the right in Fig. 8 (COo= 16, A = 0.95) corresponds to a solution in which ice cover grows
continuously throughout the winter and nearly fills the model domain each vear before it
begins to melt.

As indicated in Fig. 8, a catastrophe brought on by the demise of multiple sea ice states
can occur when one state is ice-free year-round, but not when one state is ice-covered year-
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Figure 9: Simulated ice area in the standard run (black solid line) and a seasonal ice cover
run with COs increased by 5.3x (black dashed line), compared with solar forcing in the
model (gray line; W/m?). In the seasonal ice cover state, as in present-day observations,
the minimum in ice area occurs several months after the maximum in sunlight. leading to
limited overlap between significant open water and intense Arctic sunlight. This mitigates
the ice-albedo effect. causing it to be outweighed by stabilizing effects and hence avoiding
a “tipping point™ in the approach to an ice-free summer.

round as today. As an ice-free summer is approached in an increasing COo scenario, the
stabilizing thermodynamic thickness-growth effect (i.e.. thin ice grows fastest) appears to
outweigh the destabilizing ice-albedo effect. In an attempt to understand why the heuristic
argument for a “tipping point™ discussed in Section 1 failed in this model for the case the
present-day Arctic Ocean approaching ice-free summers, we consider why the argument
seemed to succeed for the approach to an ice-free year-round state.

Fig. 9 compares the model solar forcing, which is based on Arctic surface observations
(ef. Fig. 4), with simulated ice cover, which agrees fairly well with observed ice cover
(ef. Fig. 7). In both the standard run (solid line) and the enhanced CO, seasonal ice
cover solution (dashed line), there is a significant phase lag between the times of maximum
sunlight and the times of minimum ice cover. This is indeed to be expected: the ice area
rate of change correlates fairly well with solar intensity. For the ice-albedo effect to lead to
multiple states and a catastrophe, the seasonal ice cover state must absorb significantly more
sunlight than a state which is ice-covered year-round with the same parameters. But the
temporal overlap in the seasonal ice state between having small ice area and experiencing a
high intensity of sunlight is somewhat limited: the sun shines on a fairly extended ice cover
for much of the summer. Compared to the seasonal ice state, the ice-albedo effect leads to
a far bigger change when making the transition to a year-round ice-free state in which the
sun shines on open water all summer.

To assess the extent to which the ice-albedo effect failed to lead to a “tipping point”™
in summer ice cover, we investigated whether a region exists anywhere near the physically
realistic parameter regime where there are multiple summer ice cover states. We began
by pushing the disparity between ice and ocean albedo to the extreme. This was not
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Figure 10: Multiple sea states under the same forcing. Plots represent evolution of the
model variables during the seasonal cycle, as in Fig. 7, for the thin ice (left) and thick ice
(right) states. Here L* = 10 (i.e. sea ice latent heat of fusion is reduced 10x) and CO9 has
been increased to 1.5x the present-day value. It should be emphasized that we are pushing
the idealized model to the extremes in search of multiple summer ice states brought on by
the ice-albedo effect: neither a 10x diminished latent heat of fusion nor a simulated 19m
ice thickness are purported here to be physically realistic.

enough to lead to multiple states. We experimented with allowing the ice albedo to depend
on thickness following the parameterization of Maykut [16]. We tried varying the loosely
constrained parameters. None of these approaches led to multiple summer ice cover states.

The stabilizing thickness—growth effect becomes less pronounced as ice gets thicker (i.e.,
very thick ice does not grow much slower than fairly thick ice), so we considered allowing
excursions into state-space regions with large thickness. The most straightforward way to
do this is to make it easier to grow ice by reducing the latent heat of fusion. Defining the
original and observationally constrained sea ice latent heat to be L.y, we scaled the latent
heat according to

L= Lz‘;"” . (49)
Letting L* = 10 led to multiple summer ice cover states (Fig. 10).

Although the multiple states demonstrated in Fig. 10 are related to the ice-albedo effect,
it should be noted that it is not the difference in albedo between open water and ice that is
primarily responsible. Rather, it is the difference between the cold sea ice albedo (a;) and
the albedo used to account for the presence of melt ponds when 7; = 0 (ayy,,). Both states
have minimal temporal overlap between extended open water and intense sunlight, but the
thin ice state has the ice surface at 7; = 0 for much of the peak of the summer, while in
the thick ice state the surface temperature remains below the freezing temperature for the

entire year.

Varying COy with L* = 10, we finally find the desired catastrophe (or “tipping point™)
in summer ice cover. This is illustrated in Fig. 11.

Next, we vary both COs and L* to explore the parameter space and find the edge of
the region associated with multiple summer ice states. To do this, we slowly increase and
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Figure 11: As in Fig. 8, by with L* = 10. Now two regions exist with multiple sea ice

states, and there is a catastrophe in summer ice cover (discontinuity in gray solid line).

then decrease COy for an array of L* values and look for hysteresis. The result is presented
in Fig. 12. There are two regions of multiple states, each bounded by lines on which a
saddle-node bifurcation of cycles occurs. These lines are associated with a cusp catastrophe:
entering and then exiting either of these regions by slowly varying the parameters will lead
to a catastrophe in which the current state suddenly disappears and the system rapidly
approaches a new state.

Fig. 12 suggests that a catastrophe in summer ice cover would be possible if the latent
heat of ice fusion were reduced from the observationally constrained value by a factor of at
least 4x. The latent heat of sea ice can change depending on salinity, and observed sea ice
has a salinity of roughly 0-8ppt (varying both vertically and seasonally). Theoretical and
empirical formulas suggest that the latent heat of melting sea ice is about 25% lower for ice
with 8ppt salinity than for pure ice (e.g., Bitz and Lipscomb [1]). The dominant variability
in global mean ocean salinity over the past million years is associated with glacial cyeles,
during which salinity varies about the mean value of 35ppt by about lppt becanse of the
reduction in ocean volume caused by the presence of large ice sheets on land. If the mean
ocean salinity change associated with glacial cycles were carried into a change in mean sea
ice salinity, it would lower the latent heat of fusion by 3%. This implies that a reduction
in the latent heat of fusion of sea ice by 4x (i.e, 75%) would be quite significant, and it is
unlikely that it could be physically realized in the foreseeable future.

5 Conclusions

We have extended Thorndike’s [31] idealized Arctic sea ice model to allow for partial ice
cover, adding an active ocean mixed layer and scalable COy. This model simulates an ac-
celerating approach to an ice-free Arctic summer as COy concentrations exponentially rise,
suggesting that the approach may be fairly abrupt. We find two regions in the parameter
space where multiple states are possible because of the ice-albedo effect. One region has
multiple winter ice cover states (with both states ice-free in summer); the other has multiple
summer ice cover states (with both states ice-covered in winter). Catastrophes are associ-
ated with exiting either region. but the actual Arctic appears to be far from the region in
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Figure 12: Regions where multiple states are possible in CO5 versus latent heat parameter
space. A saddle-node bifurcation of cycles associated with a cusp catastrophe occurs at the
edge of each shaded region. Inside each shaded region there are three possible solutions: two
stable periodic orbits and one unstable periodic orbit. The gray “x" marks the present-day
physical world. This implies that for a “tipping point” in summer ice cover to be possible,
the latent heat of sea ice fusion would have to be 4x smaller than it is in the present-
day physical world (L* = 4). This model does find a “tipping point” in the distant but
physically realizable parameter space (L* = 1, COs= 20x present-day) associated with the
transition from seasonal ice cover to a state which is ice-free all year.



parameter space where CO9 changes could cause a catastrophe in summer ice cover.

This research suggests that a “tipping point” in summer Arctic sea ice cover brought
on by the ice-albedo affect, which has been conjectured to be likely for the 21st century,
does not occur in a physically realistic region of the parameter space. In light of the fact
that the seasonal minimum in ice cover occurs several months after the time of maximum
Arctic sunlight, the destabilizing ice-albedo effect is not sufficient to outweigh the stabilizing
thickness-growth effect and produce multiple summer sea ice states.

This model is a significantly idealized representation of the physical world. Similar to
Thorndike [31], the model does not include ridging, snow, sensible and latent heat exchange,
salinity, or cloud feedbacks. It is possible that other bifurcations would be introduced by
adding more realistic physics to the model. For example. a wide variety of parameterizations
of sea ice albedo variations have been presented in previous studies (e.g., Maykut [16], Flato
and Brown [8]) and may affect these results. Furthermore, despite our fairly thorough
investigations. other bifurcations may be hiding nearby in the ~ 20-dimensional parameter
space.

Nonetheless, all the physics in the standard argument for a “tipping point™ brought on
by ice albedo has been faithfully represented in this model. This result suggests that the
popular heuristic may not hold up when properly quantified.

Acknowledgments

This work benefited significantly from discussions with many visitors and stafl at the GFD
summer program. | am particularly grateful to John Wettlaufer who supervised the summer
project, as well as Norbert Untersteiner, John Walsh, Jamie Morison, Dick Moritz, Danny
Feltham, Goran Bjork, Bert Rudels, Doug Martinson. Andrew Fowler. George Veronis, and
Victor Tsai. 1 would also like to thank Alan Thorndike, who's 1992 paper formed the
foundation for this model, for a helpful phone meeting in August. This work drew upon
research carried out during the spring with Eli Tziperman, and I am grateful for his advising
and also for helpful conversations with Cecilia Bitz during that time. Lastly, 1 would like
to thank the other GFD fellows and staff for a great summer.

The TPCC AR4 data was downloaded from https://esg.11nl.gov:8443. | appreciate
the 16 modeling groups for making their data available and the Program for Climate Model
Diagnostics and Intercomparison at Lawrence Livermore National Laboratory for compiling
the data and allowing me access to it for this project. NCEP-NCAR Reanalysis data was
provided by the NOAA/OAR/ESRL PSD website.

References

(1] C. M. Brrz AND W. H. LipscoMB, An energy-conserving thermodynamic model of
sea 1ece, Journal of Geophysical Research-oceans, 104 (1999), pp. 15669-15677.

[2] G. BJORK AND J. SODERKVIST, Dependence of the Arctic Ocean ice thickness distri-
bution on the poleward energy flux in the atmosphere, Journal of Geophysical Research-
oceans, 107 (2002).



[3] D. CavALIERI, C. PARKINSON, P. GLOERSON, AND H. ZWALLY, Sea ice concentra-

(4]

8]

9]

[10]

[11]

[12]

[13]

[14]

15]

16]

1

tions from Nimbus-7 SSMR and DMSP SSM/I passive microwave data, Boulder, CO,
USA: National Snow and Ice Data Center, (1997, updated 2005).

D. CHEN, R. GERDES, AND G. LOHMANN, A 1-D atmospheric energy-balance model
developed for ocean modeling, Theoretical and Applied Climatology, 51 (1995), pp. 25
38.

M. EWING AND W. L. DONN, A theory of ice ages, Science, 123 (1956), pp. 1061-1066.

D. L. FELTHAM, N. UNTERSTEINER, J. S. WETTLAUFER, AND M. G. WORSTER,
Sea ice is a mushy layer, Geophysical Research Letters, 33 (2006).

F. FETTERER AND N. UNTERSTEINER, Observations of melt ponds on Arctic sea ice,
Journal of Geophysical Research-oceans, 103 (1998), pp. 24821-24835.

G. M. FLAaTO AND R. D. BROWN, Variability and climate sensitivity of landfast Arctic
sea 1ee, Journal of Geophysical Research-oceans, 101 (1996), pp. 25767-25777.

R. Goopy AND Y. YUNG, Atmospheric Radiation: Theoretical Basis, Oxford Univer-
sity Press, 2 ed., 1989.

W. D. HIBLER, A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9 (1979),
pp. 815-846.

J. T. HoucHTON, Y. DING, D. GRIGGS, M. NOGUER, P. .J. VAN DER LINDEN, AND
D. X1A0sU, eds., IPCC third assessment report: Climate change 2001: The scientific
basis, Cambridge University Press, Cambridge, UK, 944pp, 2001.

E. KaLnay, M. KanamiTsu, R. KisTLER, W. CoLLINS, D. DEAVEN, L. GANDIN,
M. IREDELL, S. SaHA, G. WHITE, J. WOOLLEN, Y. Znu, M. CHELLIAH,
W. EBisuzaki, W. Hicains, J. Janowiak, K. C. Mo, C. ROPELEWSKI, J. WANG,
A. LEETMAA, R. REYNOLDS, R. JENNE, AND D. JOSEPH, The NCEP/NCAR 40-
year reanalysis project, Bulletin of the American Meteorological Society, 77 (1996),
pp. 437-471.

R. Kwok, G. F. CUNNINGHAM, AND S. S. PANG, Fram strait sea ice outflow, Journal
of Geophysical Research-oceans, 109 (2004).

R. W. LINDSAY AND J. ZHANG, The thinning of Arctic sea ice, 1988-2003: Have we
passed a tipping point?, Journal of Climate, 18 (2005), pp. 4879-4894.

S. MANABE AND R. J. STOUFFER, CoZ2-climate sensitivity study with a mathematical-
model of the global climate, Nature, 282 (1979), pp. 491-493.

G. A. MAYKUT, Large-scale heat-exchange and ice production in the central Arctic,
Journal of Geophysical Research-oceans and Atmospheres, 87 (1982), pp. 7971-7T984.

G. A. MAYKuUT AND P. E. CHURCH, Radiation climate of Barrow, Alaska, 1962-60,
Journal of Applied Meteorology, 12 (1973), pp. 620-628.

159



[18]

[19]

[20]

[21]

23]

[24]

[25]

G. A. MaykuTt AND M. G. MCPHEE, Solar heating of the Arctic mized layer, Journal
of Geophysical Research-oceans, 100 (1995), pp. 24691-24703.

G. A. MAYKUT AND N. UNTERSTEINER. Some results from a time-dependent ther-
modynamic model of sea ice, J. Geophys. Res., 76 (1971), pp. 1550-1575.

M. G. McpPHEE, Turbulent heat-flux in the upper ocean under sea ice, Journal of

Geophysical Research-oceans, 97 (1992), pp. 5365-5379.

K. MoORAN, J. BACKMAN, H. BrINKHUIS, S. C. CLEMENS, T'. CRONIN, G. R. DICK-
ENS, F. Eynaup, J. GAarracceca, M. JAKOBSSON, R. W. JORDAN, M. KAMINSKI,
J. KING, N. Koc, A. KrRyLov, N. MARTINEZ, J. MATTHIESSEN, D. MciNnrOy, T. C.
MOORE, J. ONODERA, M. O'REGAN, H. PALIKE, B. REA, D. R10, T. SAKAMOTO,
D. C. SmrrH, R. STEIN, K. ST JOHN. 1. SuTtOo, N. Svuzuki. K. TAKAHASHI,
M. WATANABE. M. YAMAMOTO, J. FARRELL. M. FrRANK. P. KuBik, W. JOKAT,
AND Y. KRISTOFFERSEN, The Cenozoic palacoenvironment of the Arctic ocean, Nature,
441 (2006), pp. 601-605.

J. MORISON AND J. D. SMITH, Seasonal-variations in the upper Arctic ocean as ob-
served at T-3, Geophysical Research Letters, 8 (1981), pp. 753 750.

N. NAKAMURA AND A. H. OQorr, Atmospheric heat budgets of the polar-regions,
Journal of Geophysical Research-atmospheres, 93 (1988), pp. 9510-9524.

N. ONo, Physics of Snow and Ice, vol. 1. Inst. of Low Temp. Sci., Hokkaido, Japan,
1967, ch. Specific heat and heat of fusion of sea ice, pp. H99-610).

J. OVERPECK., M. STUurM. J. A. Francis, D. K. PerovicH, M. C. SERREZE,
R. BENNER, E. C. Carmack, F. 5. C. II1, S. C. GERLACH, L. C. HAMILTON,
L. D. HinzmMAN, M. HoLLAND, H. P. HunTINGTON, J. R. KEY, A. H. LLOYD,
G. M. MacDonNaALD, J. McFADDEN, D. NoonE, T. D. ProwsE, P. SCHLOSSER,
AND C. VVRVSMARTY, Arctic system on trajectory to new, seasonally ice-free stale,
EOS. 86 (2005). pp. 309-313.

C. L. PARKINSON, K. Y. VINNIKOV, AND D. J. CAVALIERI, Evaluation of the simu-
lation of the annual cycle of Arctic and Antarctic sea iee coverages by 11 major global
climate models, Journal of Geophysical Research-oceans, 111 (2006).

P. SCHWERDTFEGER. The thermal properties of sea ice, J. Glaciol.. 4 (1963), pp. 789
807,

M. C. SERREZE AND J. A. Francis, The Arctic amplification debate, Climatic
Change, 76 (2006), pp. 241-264.

J. C. STROEVE, M. C. SERREZE, F. FETTERER, T. ARBETTER, W. MEIER,
J. MASLANIK, AND K. KNOWLES, Tracking the Arclic’s shrinking ice cover: Another
extreme September nmunvmum in 2004, Geophysical Research Letters, 32 (2005).

160



[30]

[31]

[32]

(33]

[34]

[35]

[36]

A. THORNDIKE, A minimal model of sea ice and climate, in Ice Physics and the Natural
Environment, N. U. J.S. Wettlaufer, J.G. Dash, ed., Springer-Verlag, 1999, pp. 169-
183.

A. S. THORNDIKE, A toy model linking atmospheric thermal radiation and sea ice
growth, J. Geophys. Res., 97 (1992), pp. 9401-9410.

N. UNTERSTEINER, On the mass and heat budget of Arctic sea ice, Arch. Meteorol.
Geophys. Bioklimatol., Ser. A. 12 (1961), pp. 151-181.

, Ice budget of the Arctic ocean, in Proceedings of the Arctic Basin Symposium,
1963, pp. 219-230.

G. WALKER, The tipping point of the iceberg, Nature, 441 (2006), pp. 802-805.

J. E. WALSH, Climate change: The Arctic as a bellwether, Nature, 352 (1991), pp. 19
20.

M. WORSTER, Perspectives in Fluid Dynamics, Cambridge University Press, 2000,
ch. Solidification of fluids, pp. 393-446.

161



Breaking moraine dams by catastrophic erosional incision

Rachel Zammett

March 15, 2007

1 Introduction

Glacial lakes occur in many mountainous areas of the world, such as the European Alps
or the Cordillera Blanca mountain range in north-central Peru. Here we consider those

glacial lakes that were formed during the period of glacier retreat that followed the end of
the Little Ice Age (figure 1). Such lakes are typically up to a kilometre long, hundreds of

metres wide and up to a hundred metres deep and are often dammed on at least one side
by moraine (sediment deposited by a glacier).

Mid-nineteenth century
glacier surface

Present-day
glacier surface

glaciertoe

Moraine-dammed lake'

Figure 1: Schematic diagram of a glacial lake, taken from Clague and Evans [2]. The
upper (grey) glacier surface is that of a long, thick glacier that would have advanced during
the Little Ice Age. When this period of cool climate ended, glaciers retreated rapidly and
substantially: such a thin. retreating glacier is labelled ‘modern day glacier’. It is during a
period of glacier retreat that a glacial lake is typically formed. The moraine dam is shown
at the right of the picture. If the toe of the retreating glacier (which is often unstable and
heavily crevassed) suddenly deposits a large amount of ice into the lake, a displacement
wave which can overtop the dam is initiated.

Moraine dams fail in two main ways. As glacial lakes are often located in steep alpine
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valleys (where avalanches and rockfalls are common), or beneath the unstable toe of a
retreating glacier, there is the possibility that a large amount of ice or rock may suddenly
fall into the lake. This initiates a displacement wave: one such rock avalanche in Peru
deposited O(10°) m?® of rock in glacial lake Safuna Alta, and initiated a displacement wave
estimated to be over 100 m high [8]: more generally, it is estimated that avalanches typically
create displacement waves up to 10 m high [4]. Such a displacement wave can overtop the
moraine dam and erode its downstream face.

In general, however, we have seen experimentally that one such overtopping wave does
not cause the dam to fail. Instead, we observed that some of the initial wave is reflected
back into the lake, leading to the formation of a seiche wave (a standing wave in an enclosed,
or partially enclosed, body of water). Such waves are often observed to occur naturally in
harbours due to tidal influence, for example [13].

The subsequent reflected waves can also overtop the dam, and it is these repeated
overtopping events and associated erosion of the dam that lead to the incision of a channel
on the downstream face of the dam. If such a channel is eroded to a sufficient depth quickly
enough, it becomes a conduit through which the lake can drain; it is this mechanism of lake
drainage that we term ‘catastrophic erosional incision’.

Evidence for more than one overtopping event has been seen in several such drainage
floods [9], and the possibility of a ‘series’ of waves was identified by Costa and Schuster
(4]. The only mention in the literature of a seiche wave in connection with dam failure is
found in Hubbard et al. [8], where examination of a moraine dam after a rockfall-initiated
displacement wave indicated at least ten reflected waves. We show here how the reflected
waves play a crucial role in the failure of the dam.

The other mechanism by which a moraine dam can break is that of gradual overtopping,
whereby the lake water level slowly increases until the water overtops and then breaches
the dam. Such a water level rise can be caused by excessive snowmelt or rainfall: the
moraine which dammed Lake Tempanos in Argentina failed in the 1940s due to meltwater
accompanying a 350 m glacier retreat [16].

Drainage of a glacial lake can release O(10°) m® of water and have a peak discharge of
103-10" m3 57! [2]. As the subsequent floodwater moves down valley, it entrains sediment
and can form a debris flow. One such debris flow, initiated by a glacial lake flood in Peru
in 1941, devastated the city of Huaraz, killing over 6000 people [5]. While the majority of
such floods occur in remote, uninhabited valleys, these locations are now often considered
for recreation, tourism and as sites for hydro-electric power stations, for example. Thus
understanding the hazards associated with such a flood is of prime importance.

In this project, there are two main issues we will address. Firstly, we shall consider
the threshold behaviour of the phenomenon - why didn’t the moraine dam break in the
case of Laguna Safuna Alta, despite an initial wave 100 m high and at least ten subsequent
seiche waves” We also consider how to estimate the peak discharge from such a catastrophic
drainage event, as this can be used as a measure of how destructive the resulting flood will
be.
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2 Experiments

We performed a series of experiments over the summer, both as a qualitative exploration
of the phenomenon and to quantify some of the theoretical results outlined in Section 3
below. In all cases we used the experimental setup shown in figure 2: a rectangular glass
tank with length 125 cm, width 20 cm and depth 30 em. This was open at one end (the
right hand end in figure 2), so that sediment and water could drain from the tank. At the
open end, we built a sediment dam. This dam was approximately 10 cm high and 40 em
wide at the base and was made using a mould to endeavour to keep the dams uniform in
shape. The tank was then filled with water, and the experiment was left until water had
seeped through the entire dam. A single wave was then initiated at the left hand end of the
tank: this was to simulate the displacement wave initiated by a rockfall or avalanche.

Figure 2: Experimental setup.

Sediment properties

We used four different sediments in the dambreak experiments. These were grit and three
types of sand with different particle size distributions. The properties of these sediments
(when dry) are summarised in Table 1.

Glacial moraine is characterized by a wide range of particle sizes, from fine clays to large
boulders. This sediment is poorly sorted and loosely consolidated; lake drainage typically
occurs by seepage through the dam. Clarke [3] shows an example of moraine from Trapridge
glacier with a bimodal particle size distribution; this is a feature of many moraines. In order
to reproduce such a bimodal particle size distribution, we therefore made two mixtures of
sand and grit. The properties of these mixtures (when dry) are summarised in Table 2.

The sediments and their properties will also be discussed in Section 3 below, where we
consider the erosion of the dam.
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l Sediment p (10° kg m~3) | Porosity | Repose N Modal particle size (pm) ‘
Caribbean Sand N/A N/A N/A 250
Florida Sand 2.34 0.38 39°/34° 310
Beach Sand 2.34 0.35 40°/33.5° 950
Grit 2.42 0.42 37°/28° 1150

Table 1: Properties of individual sediments when dry. Sediment density was calculated
from the weight of a given sediment volume once the sediment porosity was determined.
Sediment porosity was measured by measuring how much water was absorbed by a given
volume of sediment. The column headed ‘Repose’ shows the angles of repose of the dry
sediment; the first value is the angle of repose associated with tilting a pile of sediment, the
second that associated with creating a conical pile of the sediment. The differing values are
due to the bistability of the system [11]. Modal particle size was estimated from particle
size distributions which were obtained by laser diffraction. Some of the properties of the
Caribbean sand were not determined.

| Mixture Composition p (10% kg m~3) | Porosity | Repose ’
1 Caribbean Sand/Grit 2.38 0.32 38.5°/33°
2 Florida Sand/Grit 2.36 0.37 44°/34°

Table 2: Properties of sediment mixtures, determined as in Table 1. As the mixtures are
bimodal by design, we have omitted the modal particle size column.

2.1 Results

Here we consider results from qualitative experiments. We first consider the results of
experiments using the individual sediments, some of which are shown in Table 3. We see
that grit alone makes a poor dam - its high porosity means that the lake drains out rapidly.
and thus makes the dam unstable. It is also difficult to incise a channel in the downstream
face because overtopping water simply seeps into the dam rather than eroding it. In contrast,
the sands are, in general, better in terms of ease of channel incision. However, they are also
prone to slumping when wet, indicating that they would make a poor dam; sand dams were
occasionally observed to break before a wave was initiated.

Some of the results for the sediment mixtures are shown in Table 4. Although it is
not clear from this table that dams constructed from the sediment mixtures were easier to
break by catastrophic incision than those made from the individual sediments, they were
qualitatively observed to be better in terms of both initial dam stability and ease of channel
incision. These observations lead to the conclusion that it is perhaps the composition of
moraine that leads such dams to fail via catastrophic erosional incision - the distribution
of particle sizes both increases the dam stability, making the existence of a lake possible,
and allows for easier channel incision. This may explain why the phenomenon is not seen
in other natural dams, such as landslide dams for example.

165



‘ Sediment 1 ] 2 l 3 4 ]

Play Sand | 1/9 | 1/14 | 2/19 | 1/12

Beach Sand | 2/16 | 1/19 | 2/14 | 2/16
Grit X 1/6 X X

Table 3: Experimental results for the individual sediments. The columns show different
experimental runs. The first number in each column is the number of waves that needed to
be initiated for dambreak. The second number is the total number of waves that overtopped
the dam before incision occurred. The onset of incision is taken to be the point at which
the lake drains independently of the action of the seiche wave. A cross denotes a dam which
did not break.

[ Mixture [ 1 2 3 ‘ 1 ‘
1 X |2/28|1/15| 1/8
2 1/13 | 1/56 | 2/24 | 1/13
Table 4: Experimental results for the sediment mixtures. The table is laid out as Table 3
above.
3 Theory

In this section. we split the problem in two. Firstly, we model the seiche wave in the
lake using shallow water theory in one dimension. We then use a hydraulic model for the
dambreak itself, before considering a unified theory to explain the interaction between the
seiche wave and the dam.

3.1 Describing the seiche wave

We work in two dimensions, o and z. Water of velocity u = (u(x, z, ), w(x, z.1)) and depth
h(x,t) flows over an erodible bed with elevation ((x,t) . We assume that the horizontal
extent of the flow is much greater than its depth; the lake is much longer than it is deep.
In this case, we have that “}—{ > % and thus the continuity equation implies that u > w.
Conservation of vertical momentum then implies that the pressure is hydrostatic to leading
order, and irrotationality that u is independent of =.

We therefore write conservation of mass and horizontal momentum in the following form

h + (hu), = 0, (1)
w+uy = —glh+Qr— D(uh) + vy, (2)

where u is the depth averaged velocity, given by

] 'J':-t—t.;
= - /L wdz, (3)

and D(u,h) is a drag term which represents frictional effects. with the properties that
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Figure 3: The co-ordinate system used in the shallow water theory.

‘—{.{‘% > 0 and '7’;—’;‘2 < (; drag increases with velocity and decreases with depth. A full derivation

of the shallow water equations may be found in Stoker [18], for example.
In fluvial systems, it is common to use the Chezy drag law, given by
D(u,h) = r‘f@. (4)
[
where ¢y is the dimensionless Chezy drag coefficient. Typically, for a smooth watercourse
such as a glass tank, ¢; = O(10~%) [1], while for a rough watercourse, such as a rocky alpine
stream, it may be as large as 0.1 [6].

However, this formula is not appropriate to use in the context of our experiments, where
the flow was observed to be laminar. In 1959, Keulegan determined that for a standing wave
in a glass rectangular tank, the drag is primarily accounted for by laminar viscous boundary
layers on the tank walls and base [10]. This theory was later modified to account for the
effects of surface tension and surface contamination [12], but we shall consider these to be
small corrections.

To modify Keulegan’s linear theory for our purposes, we note that shallow water theory
can also be used in the boundary layers near the tank walls. Using the same arguments as
above, we write conservation of momentum as

Up = ——Pz+ Vitzs, (H)
'{.P

and then, given that p. = 0, we eliminate the hydrostatic pressure to obtain
Usp = Vlsss. (6)

We then pose a time periodic solution of the form u = f(z)e™! (and consider only the real
part of this solution) to obtain
f=C+ Ape*r>, (7)
¢ i ; ; w R :
where Ay and ' are constants of integration, and K = 2—(1 + 7). The boundary condi-
V 2v°

tions are

o =) a5 'z — 09, (8)

U — U, as 7 — 09, (9)

u =0, z =), (10)
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Figure 4: Comparison of the Chezy and linear drag laws with experiment. where a seiche
(standing) wave was initiated in a rectangular tank. The values used were ¢y = 0.001,
v =1x10"% We see that the linear drag theory (solid magenta line) is a much better fit to
the data than the nonlinear Chezy drag law (dashed line). Stars denote the experimental
data.

where ug is the flow velocity in the main body of fluid outside the boundary layer. The
solution is therefore
u = uge™ (1 — g (11)

and the vertical velocity gradient at the base is given by

uz|._o = Kug. (12)

In the shallow water equations for the main flow, we therefore have

)
T — + Vg, ( ].”
A

w + vy = —glh+¢)p — V’
where the drag term is now D(u, h) = /5 5. We set a = \/? thus a has units of velocity.
We illustrate the difference between the drag laws by comparing them with the results
from a simple laboratory experiment (figure 4), where a standing wave was initiated in a
closed, rectangular glass tank. Figure 4 shows that that the linear drag is a much better fit
to the data than the Chezy drag; we therefore use linear drag in the theory that is to follow,
However, we note that in a glacial lake where the Reynolds numbers are much higher, it is
likely that the Chezy formula will be more appropriate.
We consider a lake with mean depth H(x), on which there is a seiche wave of amplitude
(. t), such that the total water depth is given by h(x,t) = H(x) + ny(a. t). Equations (1)
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and (2) then become

e+ [(H + n)ulx 0. (14)
w+uuy, = —g(H+n+)z— rr% + Vitgy. (15)

We now nondimensionalise using the following scales

t ~ l u~U, n~N, H~Hy, h~Hy, (~Hy x~0L, (16)

(78

where w is the frequency of the seiche wave. Equations (14) and (15) become

UH
wNmn + T”[(H +enuly = 0, (17)
) 72 gHg] ) U % U ‘
wl — U, = -— € o= koo (8
Uu + i L, 7 (H+en+()s “H“ o + UL*’” rrs (18)

where € = Tx. <« 1. To retain a balance in equation (17), we choose U = ewlL, and we
L

assume that (H + (), = 0, i. e. the undisturbed free surface is flat, to obtain,

m+ (Hu)y = —e(nu)y, (19)
U

£t m + EJ-)'H.IT. (2”)

w+ 0Ny = —ul, —

where the dimensionless parameters are given by

gHy ) r i

L}:m. I):m.

= T @)
and we have rescaled the drag and viscosity terms with ¢; i. e. we have assumed that they
are small.

We now assume that there are a fast and a slow timescale in the problem, such that

{% = % + E% On dropping the *, equations (19) and (20) become
m+ (Hu), = —e(nu)y —enr, (22)
au o
u + By = —cully —e———— + EVUzy — EUT. 23
1 T a H + en T T { }

We now pose expansions in the form u ~ ug+¢euy + ... and n ~ 99 +em + .... To leading
order, equations (22) and (23) are

ot -+ (J”'h‘.l])ll. = (. (24)

uy + Bnoe: = 0. (25)

Differentiating equation (24) with respect to time and using equation (25), we obtain the
single equation for the wave height, n:

nott = B(H 1oz )z (26)
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In the simple case of a rectangular tank of constant depth Hy and width L, such that the
scaled boundaries are at x = 0 and z = 1, (where we require the velocity to vanish, so
7, = 0 if we assume time periodic solutions), there are solutions of the form

n = Ae' cos (%) (27)

. ra B v g H . . . . .
where we require 7 = /3, i.e. w= —‘%’-—L' In dimensional terms, the solution for 1 is

; T
n = Ae™" cos (f) (2R)

This first approximation to the behaviour of the seiche wave will be used in Section 3.3
below.

Numerical solutions for a given basal topography

It is possible to solve equation (26) numerically for a given basal topography. if we again
assume time periodic solutions. We replace the right hand boundary, previously a vertical
tank wall, by a non-erodible dam of prescribed shape, so that dimensionlessly H = 0 at
a = 1. As this is an eigenvalue problem, we require three boundary conditions. On the
left boundary, x = 0, we require that u = 0. At z = 1 (where H = 0) we require that the
solution is regular. For the case of a uniformly sloping base, an analytic solution may be
found in terms of Bessel functions, such that 7 ~ Jo(x1/?) [19]. This analytic solution is
shown in figure 5. We set y = 1 — &, such that close to » = 1,

ne~Jol(1 =y)'3) ~ 14001 —y). (29)
To ensure we obtain a regular solution, we therefore require that 1 =1 at x = 1. We note
that near x = 1, H ~ —(1 — x)H_, where H, = H'|
equation (26) to write

L—1+ Again setting y = 1 — ., we use

—w’n = BH. [yff)f. (30)

which gives, to leading order,
w'n = BH.Y. (31)

The three boundary conditions are therefore

n=>0 on r =0, (32)
=1 on x = 1, (3:3)
w?n = BH.y on r=1. (34)

Note that if H, = 0. the problem is ill-posed, as boundary conditions (33) and (34) then
imply both 7 =0 and n = 1 at = 1. A numerical solution of equation (26) with boundary
conditions (32) - (34) for a dam of Gaussian shape is shown in figure 6.
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Figure 5: Numerical result for a uniformly sloping bed, with initial water depth given by

H(x) = 1—x. The upper solid line is the water surface, the lower line the basal topography.
The dashed line indicates the initial water level.
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Figure 6: Numerical result for a uniformly sloping bed, with initial water depth given by
H(z) =1-1Llexp (—(x — 1.05)*/(2 x 0.12)). The upper solid line is the water surface, the
lower line the basal topography. The dashed line indicates the initial water level.

Higher order terms
We consider solutions of equation (26) of the form

(n0,u0) = (N,iU)A(T)e™" + c.c., (35)
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thus N, U are real. Equations (24), (25) and (26) then become

wN = —=(HU),, (36)
U = BN, (37)
—w:N = B(HN,)., (38)

with solutions as above. To the next order in €, we then have

me+ (Huy)e = —(nowo)z — nor (39)
YL
uye + ‘7’”1-!‘ = —luglpy — ? + VUQzr — UQT- (1”)

We now use equation (35) to write equations (39) and (40) in terms of N and U

N + f!‘]'fﬂ )y = _j‘___l'.!‘f\.r{j(_?im-r o -_.1‘_,'.;_'\"}@.‘! + c.c. (41)
, i . i AU ™! . ; i g
Uy + Bre = AUt —2AAUU, — 2220 L i AU e — iApUe™! + ¢{42)

H

We can find particular solutions to remove any terms on the right hand sides of equations
(41) and (42) which are not multiples of ¢'“'. The remaining parts which are proportional to
el are potentially secular in time, and must therefore be removed in order to find a uniform
asymptotic approximation over the fast time {. Discarding the non-secular inhomogencous

e

terms, and assuming that 1y = n (x)e™" and u; = uy ()™, the system we therefore look

to solve is

iwn + (Huy)y = —ApNe! (43)
AU ™! _ :
iwt) + By = —”"T‘ + iv AUz ™" — iApUe™t. (44)

Equations (43) and (44) may be rewritten as

iwm + (Hw)e = 1, (45)
i+ Bmis = b, (46)
where
I, = —ArN, (47)
I, = —'”';“: + iV AU,y — iArU. (48)

We combine equations (45) and (46) to obtain
\;:'"'.t“ + B(Hny) = —iwl) + (HIp),. (49)

and then integrate equation (49) with respect to x. After integrating by parts and using
the seiche equations (36) and (37). we obtain

S|
/ N [—iwly + (HI2),] da = 0, (50)
(4]
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which can be simplified using equations (47) and (48) to give
1 1 1
—QAT/ wN? dz + (IA/ NU; dx + VA/ N(HUzz)zdx = 0. (51)
0 0 0

This then gives a solution of the form A = Age™ ", where v is evaluated numerically using
equation (51). The calculation can be repeated for dissipative terms given by Chezy drag
and viscosity, vielding

1 ; ’ 4A|Ale 1
A-;-/ wN?%dz = —.'/A/ N(HUg;), dx + ——L/ N(U|U|)z dz. (52)
0 0 0

m

Again, the integrals in equation (52) may be evaluated numerically for any given basal
topography H(xz), and this allows the relative importance of the dissipative terms to be
quantified.

3.2 Modelling the dambreak
Erosion
The flux of sediment is governed by a (dimensionless) critical value of the Shields stress,

defined by
7

us
T — ——, {r].”
" RgD

where R = Lﬂ:“—’i is the specific gravity, D is a typical particle diameter and u, is the

threshold velocity, which is particular to the sediment and is determined empirically. The
idea is that the fluid How needs to exceed the threshold velocity in order to exert enough
shear stress at the base to lift particles into suspension and thereby erode the bed.

We follow Parker [20], [21] and use the following empirical, dimensionless erosion law

- 1.5 _
E(u) = (:—:5 — 1) for wu > u., (54)
(0 for wu < u,.

A law of this type captures the two important features of any erosion law: below a certain

threshold, there is no erosion, and for large values of the Shields stress (or velocity, in this

case), erosion has a power law behaviour. The exponent in equation (54) is again empirically

determined and, while not universally agreed upon, it is common to use the value 1.5 [14].

In fluvial systems, the Exner equation (conservation of sediment) is commonly used to
model the erosion of the dam (which has elevation ((x,t)),

¢ dqgs

I=X)5 + 52

where A, is the sediment porosity and g is the sediment flux, which is again determined

empirically as a function of the Shields stress.
However, it is also possible to consider the evolution of the dam height to be the net

=0, (H5)

=1
()
—

effect of erosion and deposition,

ﬁ’ﬁ

— = —wk(u) + wsC, (56)
ot
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where the first term on the right hand side of equation (56) represents erosion and the
second represents deposition. w is a sediment-dependent constant with units of velocity, w
is a particle settling velocity, and C is a depth-averaged volumetric sediment concentration.
Equation (56) must then be supplemented with an equation to describe the evolution of .
and it is usual to use an advection-diffusion equation, moderated by erosion and deposition,
thus

hCy +uCy) = khCypp + wE(u) — wyC, (57)

where & is the sediment diffusivity. As a first approximation, we assume there is no depo-
sition; thus we eliminate C' and simply use

JC i

— = —wk(u). (H8)

ot

We caleulated w experimentally using equation (58), and performing erosion experiments

where we measured the dam height, ¢ (at a fixed point in space as a function of time), and

the flow velocity u. We followed Parker [14] and calculated w, using the following empirical

relationship for 7,
—Nnr ¢ —0.6 . ~T7.1Re;® =
7. = 0.5 [0.22Re, ™" + 0.06 x 10 ! : (5H9)

where Re), is the particle Reynolds number, defined as

(RgD)'"* D
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Re, = (60)
Equation (59) coupled with equation (53) allows estimation of u, and thus w. Typical values
for the sediments used experimentally are given in Table 5. It is much more complicated to
estimate sediment parameters for a mixture of sediments, and so this was not attempted.
For calculations involving particle diameter (such as estimation of the particle Reynolds
number), the modal particle size was used.

[ Sediment ] Rey, ] T ‘ wy (ms ) ‘ w (m s~T) ‘

[ Playsand | 20 [ 0.0198 | 9 x107% | 9.6 x 1077

| Beach sand | 107 | 0.0169 | 1.5 x 1072 | 4.7 x 10~
Grit 147 | 0.0179 | 1.7x 1072 | 4.9 x 1078

Table 5: Empirically and experimentally determined sediment properties.

Hydraulic Control

We now use a hydraulic model coupled with erosion to describe the dambreak. Hydraulic
models are commonly used to describe stratified flows over sills in the ocean, see Pratt [15],
for example. The benefit of using such a model is that at one or more locations in the
system the flow adjusts to a well-defined state; i.e.it is in some sense ‘controlled’™ by this
critical point. Here, the location of hydraulic control will be the point at which the dam
height is a maximum.
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Hydraulic control theory also assumes steady flow. From equation (58), we have that
the timescale over which erosion occurs is tp ~ ?’,{Tn Using typical values from Table 5,
y =1x 1072 ms ! and w=5x 107% m s~!, and a typical experimental value H = 0.1
m, we estimate that {p =~ 100 s. This implies that for the dambreak ;’)’7 < 1, and we can
therefore neglect the time derivatives in the shallow water equations (1) and (2). As a first
approximation, we also neglect drag and viscosity (although it is possible to include these
in the description, see Pratt [15], Hogg and Hughes [7]).

We can therefore integrate the equations for conservation of mass and momentum with
respect to @ to obtain

q = hu, (61)

u? +g(h+¢) =B, (62)

bI| =

where ¢ is the constant water flux (with units m? s~') and B is the energy, sometimes
referred to as the Bernoulli constant.

We consider the problem of a reservoir of depth H and length L, which must drain over
a dam of maximum height (,,,. Here, the subscript ,, will be used to denote evaluation of
a function at this maximum of ¢; thus wu,, is the flow velocity at the highest point of the
dam. We assume that the dam has finite width, and thus ¢ = 0 outside some finite region.
We can therefore use equations (61) and (62) to write

1 ¢?
2.H?
if we assume that the depth of the reservoir is much greater than the depth of the water

flowing over the dam, i.e. H > h. Using equation (61), we may write the non-integrated
momentum equation in the form

B + gH =~ gH, (63)

- 2

—gCzu :

- (64)
us —gq

and thus for the velocity gradient to be defined at all points in the system, we require that

u? = gq at the point where ¢, = 0; i.e. where ¢ = (,,. We therefore obtain

1
2\ 3
Uy = (g‘?)‘]_‘~ hpm = i = (i> . (65)

Note that we can use the expressions in equation (65) to write the Bernoulli constant as

B &
B = Suy, + 9Gm. (66)

Equations (63) and (66) allow us to relate upstream variables to those at the maximum
height of the dam.

3
2 < o
f]H = .-_)'“m + 9Gm- ((”)
To complete the system, we couple equations (61) and (62) with equations describing the
drainage of the lake,

% = —q, (GR)
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and the erosion of the dam,

9
% = —wE(u). (6G9)
Nondimensionalisation

We nondimensionalise the system of equations (61), (62), (68) and (69) using the following

scales
u ~ Uup, h ~ hl]. l’f L )"I“. C ~ JI[}. tr~ fn. q ~ o, E ~ E,-‘[], (T[”
and thus obtain
(——EL) q = hu, (71)
houg
| u'f, 2 hg ) _
e -+ —_— }' -+ — B“ 2]
2 .‘;"Hu” (Hn . (l
L 1H
Hy\ dH = —q, (73)
I'ﬂ1.“;] fH
Hy ¢ : g
p— - —f: 3 l'l]
('H-'f[]f_’:[]) ot (”) {

where B* is the dimensionless Bernoulli constant.
houg. and as we are interested in the timescale over which

We make the choices g
erosion occurs, we choose t) = Ho Equations (71) — (74) then become

wiy
g = hu, (7H)
EF.‘quu"jﬂ-nh +( = B*, (76)
dH (77)
T = —ilJ i
: dt !
I o B ;
— = —=FE(u), 78)
ot (u) {
where the dimensionless parameters are the Froude number, F? = ;’—}}-‘; the ratio of the
water height at the dam peak to the reservoir height, o = "-‘ﬁ_ and a measure ol how
quickly erosion occurs relative to lake drainage, p = %1 We now make the further

choices hg = Hy and ug = /¢Hy, such that a = F? = 1.

The dimensionless form of the erosion law (equation (61)) is
E(u) = (u® - 8°)1°, (79)

3
- tp s 5 5 2 o .
where £y = | — | ., 0 = — and the subscript | indicates that £ = 0 when the quantity in
U (V14

the brackets is less than zero.

We take typical experimental values: Hy = 0.1 m, w =5x 1077

et L= 1 g =1
ms ' and u, =1 x 1072 m s, to obtain

p=0.5 6=10"2% Ey=1x10. (80)
Again, we estimate fy = 100 s, which should be both the timescale for erosion and for lake
drainage in our experiments (as g is O(1)).
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| L 5

Figure 7: Schematic diagram of the two domains under consideration: a lake of length L
and depth H adjacent to a dam of width o and height . such that ¢ <« L and, initially,
H ~ (:m-

3.3 Unified theory: spatially distributed dam

In order to combine the theory of the seiche wave (outlined in Section 3.1) with the hydraulic
model, we consider the following configuration, shown in figure 7: a rectangular lake of
length L and mean level H (1), on which there is a seiche wave of amplitude n(x.t). The
lake is adjacent to a dam of height {(z,¢) and width o, where ¢ < L.

We now revisit the scalings used Sections 3.1 and 3.2. In the lake,

1 gH .
h=H +en, !m_m_\{_:i__'f_ x~L, wu~e\/gHy, (81)
!
while over the dam,
Hy
f~ —., xT~a, u~+\gHp. 82)
u.-'f.*u J 0 {

We impose the condition that the timescale in the lake must be of the same order as that
over the dam. However, we note that velocities in the lake are O(¢g) smaller than those over
the dam, which means that the dam ‘sees’ the seiche wave as a gradual change in water
depth, to which it can adjust instantaneously. We also note that = derivatives are much
larger over the dam than in the lake.

We assume that there is a right hand boundary of the lake which lies close to the
edge of the dam, » = x,_, such that {(z,_.t) = 0. We consider the water height at this
fixed point, given dimensionally by h(z,_,t) = H(zs—.t) + n(x,—,t), and we suppose that
Nay_ 1) = 1n(t) satisfies the ordinary differential equation

i+ 9+ wn =0, (83)

¥

where v = 7 is the damping coeflicient calculated in Section 3.1, and w(H) is the seiche

mvgH

and

frequency. As we assume that the lake is a rectangular basin, we have that w =
thus v = y(H).
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Figure 8: Solution of the spatially distributed system in the case of no dambreak, with

initial conditions 7y = 0.03 m, Hy = 0.0825 m, {p = 0.01 m. In the top plot. the upper
(red) line shows the evolution of the maximum height of the dam. (,,. while the lower

(blue) line shows the lake depth, H. We see that in this case there is no dambreak, as the
lake level never exceeds the maximum height of the dam. The top plot shows that after
approximately 42 s, erosion switches off while drainage continues: however, the velocities
attained by the fluid are below the threshold and thus erosion cannot occur. The bottom
graph shows the corresponding decay of the seiche amplitude.

We couple equation (83) with equations (62), (68) and (69); these are four equations for
the four variables 1, H, ¢ and u. Numerical solutions to this system are shown in figures 8

10. We see that by changing the initial water depth, Hy, (and thus the initial level of the

lake below the dam). we change from a regime where dambreak is possible to one where it
is not. This motivates the following attempt to identify the parameters in the system which
govern this threshold behaviour.
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Figure 9: Snapshots of the solution in the case of dambreak, with initial conditions 79 = 0.03
m, Hy = 0.09 m, (o = 0.01 m. The upper (red) line is the water level, h; the lower (blue)
line the dam surface, (. For all graphs, the z axis is position and the y axis height. The
initial dam elevation is a parabola with endpoints at # = 0 and @ = 1. The solution is
shown at time intervals of 200 s, and then at the time when the dam has completely eroded
away (2544 s). Note the steepening of the downstream face of the dam as erosion progresses.
This solution has 50 evenly spaced gridpoints.
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Figure 10: Solution in the case of a dambreak, for initial conditions 7o = 0.03 m, Hy = 0.09
i, (g = 0.01 m (corresponding to figure 9). In the top plot, the (red) line, which is the line
that is initially upper, shows the evolution of the maximum height of the dam, (. while
the lower (blue) line shows the lake depth H. This plot shows erosion events, followed by
periods of inactivity when the water level drops below the dam. and neither drainage nor
erosion can occur. After seven such events H > (,,, but drainage is still modulated by the
seiche wave. The bottom graph shows the seiche amplitude. We note that as H becomes
small so must w, and to compensate for this, the amplitude of the seiche wave must increase.
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3.4 Unified theory: point dam

To understand the governing parameters in the problem, we make a further simplification
and assume that the dam can be approximated by a point, at which ¢ = (,,,. This reduces
the model to the dimensional system

i+yn+w?n = 0, (84)

dH 153‘

— = —q=--1 85
7 q 7 (85)

i{ﬂ = —wkE(un), (86)
dt
2q X ¢ et

Uiy = [%(H +n— L,,,)] : (87)

Equation (87) motivates the definition of a new variable, § = H + 17— (;;. Thus when ¢ > 0
the height of the water in the lake is greater than the height of the dam, so the lake can
drain over the dam. When 6 > #, (corresponding to the threshold velocity for erosion, wu,),
erosion can occur. For # < 0, the water level is below the dam and neither drainage nor
erosion can occur.

Using this definition of #, we write equation (87) as

2g 1/2
Uiy = (—}H) ; (88)
and combine equations (84) and (85) to obtain a single ordinary differential equation for 6
6 = wE(#) — DO*? + 7, (89)
L (ag\P2 | ——_ ‘ :
where D = -7 (F;i) is a drainage parameter (with units of velocity) and E(f) =

, 1/2
E [(5{’-9) } If we consider that H is approximately constant, then we can write the
solution for the seiche wave in the form

" sin wt. (90)

11 =1)pe
In this case, # can be evaluated as a function of time, as shown in figure 11. We see that
there are time intervals over which drainage can occur; i.e. where # > 0, and marginally
shorter intervals where 6 > 6, and erosion can occur. Erosion acts to increase these time
intervals (by decreasing (,,, and thus ), while drainage and damping act to reduce these time
intervals (by decreasing H and 1 respectively). We therefore see that there is a competition
between erosion, which acts to increase €, and lake drainage and seiche damping, which act
to decrease 6.

This allows us to identify five parameters in the problem: the initial values 6 and 79, the
drainage parameter D, the erosion parameter w and the parameter governing the damping
of the seiche wave, v. We see from figure 11 that decreasing 6y (the initial difference between
the mean lake level and the dam height) and increasing the initial seiche amplitude 7, will
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Figure 11: Schematic diagram of 6§ = H + 1 — (;; as a function of time. When 6 > 0,
drainage may occur, and when # > 6,, erosion switches on. Initially, n = 0 (from eguation
(90)), and thus 6y is simply (H — ()|, At time t = f 0~ H+ 19— Gn.

both act to increase the intervals over which erosion and drainage can occur, and thus
increase the likelihood of a dam break - which is what one might intuitively expect. To
investigate these parameters further, we use a difference method to crudely approximate
the derivatives in equations (84) - (87). More specifically. if

dy

- =1Ww:t). (91)

we use a difference scheme (essentially the forward Euler method) to write
Yn = Yn—1 + Aff{yr:— 1y = l.}'~ (92)

where At is the time interval over which we consider the change in y. In terms of our model.

we let nn be the number of erosion ‘events’ i.e. time intervals over which @ > 0. Then we set

At = 1,1, where T,,_| is the time interval over which the (n — 1)th erosion event occurs.
Using figure 11, it can be estimated that

T 2 ey — Bl
;AR LA sin~! (E) (93)
Whin—1 wWr—1 =1
e _ TVl TR
where w;,_| = —~———. The system is now
e = fp1€ wn (94)
H = Ho -1, o= (95)
n - n-— [[L L] '
L:” — (n—l = ”"Y;J—IE{”H—l}- ({](l:'
2¢ ) b2 .
by — _; ['”N + T — Qn} . (97)
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Equations (93)-(97) may be solved numerically. Figure 12 shows a comparison between
results from this model and those of the spatially distributed model outlined in Section 3.3
above. We see that there is agreement between the models, indicating that the simple dis-
cretised model may be sufficient to estimate the critical values of the governing parameters.

We have now answered the question posed initially regarding threshold behaviour of
this system - in the context of this simple model, at least. Understanding such behaviour
is useful in terms of hazard mitigation. For example, many moraine dams in the Cordillera
Blanca are drained by artificial channels [8]. Figure 12 allows an estimate to be made of
how low the lake level should be in order that no reasonably sized wave can break the dam.

We also wish to use our model to estimate the peak discharge of a drainage flood. The
hydraulic model gives the ‘weir formula’ for the discharge,

ARGRY 3/2
q= (_i) g (H — Gm)™", (98)
which is simply obtained from equations (61) and (65). We compare this formulation with
the experimentally determined flux. Figure 13 shows time series of water depth in a lake
which drained by catastrophic erosional incision. The smaller tank width of 5 em was chosen
to prevent channelization occurring; channels formed in the 20 cm wide tank.

We used the data from figure 13 to estimate the maximum value of % Using a value
L =1 m, we were then able to estimate the maximum value of ¢ using equation (77). This
value was then multiplied by the width of the lake. To use the weir formula, we estimated
the maximum value of H — (;;; during the experiment. We then multiplied this value by the
width of the channel (5 ¢m in both cases, as the channel which formed in the 20 cm wide
tank also had approximately this width).

Thus we obtain, for the narrow tank,

Qdata = 1 x 107* m®s77, Quweir = 1 x 1074 m3s71,
while for the wide tank,
Qdata =4 x 107" m%™!,  Queir =1 %1073 m®s~1,

We see that the predictions agree in the case of the narrow tank, but there is an overesti-
mation of the peak discharge by the weir formula in the case of the wide tank. This may
be due to our approximation of the channel as a breach of constant width.
We can compare the weir formula with empirically derived estimates of the peak dis-
charge. Clague and Evans [2], for example, give
GG e R, a=
(gd*)"'~

where d is the breach depth, k is the rate (speed) of breach growth and V is the lake
volume. We see that, in the case of a square breach, the weir formula would also have a
d”/? dependence, indicating that a simple hydraulic model may capture some elements of
the flood well. However, the dynamics of the channel are missing from the model, and will
undoubtedly play an important role.
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Figure 12: Comparison of the discretised point dam model with the spatially distributed
model. We fix all parameters and vary only the initial wave amplitude 7, and the initial
distance between the mean water level in the lake and the dam, (H — () |l=0. Above
the upper (black) line we are in the physically unrealistic regime where 7 is too small to
overtop the dam: in this case, catastrophic incision will never oceur. The lower (magenta)
line indicates the results from the difference model: above this line, there is no dam break.
This makes physical sense, as it implies that decreasing 7y makes it more difficult to break
the dam, while increasing the initial lake level makes it ecasier. On top of this are plotted
results from the spatially distributed model: (red) stars indicate parameter values where
incision occurred; (black) circles where it did not. We see that there is agreement between
the models, although more numerical simulations using the spatially distributed model
should be performed.
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Figure 13: Time series of H(t)+n(?) for experiments performed in a 5 cm wide tank (upper
blue stars) and a 20 ¢m wide tank (lower magenta stars). The initial fluctuations in the

data are due to the seiche wave.
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4 Conclusions and future work

In this project, we have formulated and solved a one dimensional model to try and under-
stand the breaking of a moraine dam by a mechanism which we term catastrophic erosional
incision. We have seen that, experimentally, dissipation of the seiche is accounted for by
linear drag and that the dambreak can be described using a hydraulic model. On joining
these two simple theories together, we are able to make some rough estimates of the thresh-
old behaviour of the phenomenon. These estimates agree qualitatively with experimental
results.

Experimentally, we have confirmed the applicability of a linear damping law for the
seiche wave. We have seen that the bimodal particle size distribution of moraine may
explain why moraine dams are prone to fail in such a spectacular fashion: the combination
of large boulders and fine sands makes the dam stable, but the loose consolidation means
that it is also easily eroded. We have also compared a theoretical formulation of the peak
discharge with experiment.

However, there is much future work to be done. The first step would be to include
deposition in the model, as this is observed to occur experimentally. For example, as the
dam erodes in the numerical simulation (figure 9), the downstream face of the dam steepens.
However, experimentally the downstream face is much shallower, and the dam never erodes
away completely: a dam of constant. shallow downstream slope (and approximately one
quarter of the original height) remains. This final shape can perhaps be explained by
the effects of deposition. Modelling this would involve either using the Exner formulation
or incorporating the depth-averaged volumetric sediment into the model as deseribed in
Section 3.2.

Improvements could also be made in the description of the interaction between the seiche
wave and the dam. We can use numerical methods, such as those described in Section 3.1.
to allow for a more realistic basal topography. The sciche mode for such a topography, as
shown in figure 6, can be coupled with a ‘runup’ law [19] to describe how far the seiche
wave moves up the dam, and thus allow for a better coupling of the one dimensional seiche
theory with the hydraulic model.

The next important step is to add an extra spatial dimension to the model in order to
study the channelization instability and understand the channel dynamics. Even a basic
understanding of the channel dynamics would allow for a better estimate of the peak dis-
charge to be made. Figure 14 shows an experiment when four channels formed initially on
the downstream face of the dam; two of these channels were incised to a sufficient depth
to drain the lake, and did so simultaneously. It is therefore clear understanding the chan-
nelization process is key to understanding these catastrophic drainage events. Comparison
can be made with the channelization instability of a flowing sheet over an erodible bed
(Smith-Bretherton model, [17]), whereby a thicker layer of water acts to increase erosion,
and thus deepen a channel. It should be noted. however, that in its original form such a
model is mathematically ill-posed.

Finally, there is scope for more experimental exploration of some of the ideas here - a
test of the results in figure 12, for example, where more accurate measurements than those
obtained in our experiments would be required. Experiments could also be useful in helping
to understand the channel dynamics.
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Figure 14: Photograph from laboratory experiments, flow is from top to bottom. Here two
channels (one on the far left, one on the far right) are draining the lake (located at the top
of the picture) simultaneously. Four channels formed initially on the downstream face of
the dam.
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Patterns of convection in a mushy layer

S.R. Keating

March 15, 2007

Abstract

A solidification front advancing into a binary melt is often preceded by a mushy
layer of fine dendritic crystals in thermodynamic equilibrium with solutal liquid in
the interstices. One of the most striking features of such directional solidification
and most undesirable in industrial contexts — is the formation of vertical channels
of zero solid fraction in the mushy layer. These “chimneys” are believed to form as a
consequence of coupling between dissolution, solidification and compositional convection
within the mush.

In this work, we extend the weakly nonlinear analysis of previous studies to the case
of a continuous horizontal planform, in an effort to understand better the structure
and spatial distribution of chimneys in a mushy layer. The relevent pattern equation is
derived and has the form of a Swift-Hohenberg equation with an additional quadratic
term. We show that this quadratic term is only present for the case of a hexagonal
array of rolls and breaks the symmetry between up-flow and down-flow at the center
of hexagons. Such symmetry-breaking is ultimately rooted in the non-Boussinesq solid-
fraction dependence of the permeability within the mushy layer. Finally, we show that in
a periodic domain the pattern equation exhibits localized structures which we interpret
as nascent chimneys.

"Work is the curse of the drinking classes.” -Oscar Wilde
"One of us has to go.” -Oscar Wilde (last words, attrib.)

"Press On!” -EAS

1 Introduction

A mushy layer can be thought of as the means by which a solidification front adjusts
to constitutional supercooling in a two-component melt.
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The mush itselfl is a forest of
dendritic crystals — generated via morphalogical instability of the solid-liquid interface

in thermodynamic equilibrium with solutal liquid in the interstices. It can also be thought
of as a reactive porous medium in which the solid fraction, and hence the permeability, is
dynamically coupled to the flow. Mushy layers are found in a wide variety of situations in
nature and industry: large alloy castings, sea ice, lava lakes and Earth's inner-core boundary



are a few examples. For an overview of mushy layers and other issues in solidification theory,
see Davis [1].

One of the most compelling features of mushy layers, and most undesirable in the context
of industrial applications, is the formation of "chimneys” — quasi-vertical channels of zero
solid fraction from which solute-poor residual liquid is expelled from the mush into the
adjacent liquid region [2]. Such chimneys manifest themselves as "brine channels™ in sea
ice and are believed to give rise to "freckles” in alloy casting and geological formations.

Weakly nonlinear analysis of a simplified model of convection in a mushy laver was
first carried out by Amberg & Homsy ([3]: hereafter AH93) and Anderson & Worster ([4];
hereafter AWY95). In both of these treatments a discrete planform was assumed three
rolls of different amplitude were superimposed at 120 degrees to one another. In AW95 the
relative stability of rolls (one non-zero amplitude), hexagons (three equal amplitudes) and
mixed modes (three finite amplitudes, two equal) was calculated and it was concluded that
there exists a transcritical bifurcation to hexagons.

AWO5 also indicated the presence of a Hopf bifurcation. giving rise to an oscillatory
instability examined in more detail in a later paper [5]. In constrast to an oscillatory
instability detected earlier by Chen, Lu and Yang [6], and which owed its origin to double-
diffusive convection in the liquid above, the instability of Anderson & Worster [5] is due to
physical interactions internal to the mush itself. A number of authors have developed the
theory of these oscillatory modes [7. 8, 9]. In this work, we shall focus attention on the
direct mode, leaving its extension to the oscillatory case a subject for future research.

In this work we ask the following question: what determines the structure and spatial
distribution of the chimneys? This article proceeds as follows: we briefly review the formu-
lation of AH93 and AW95 in section 2 and the linear theory of Anderson & Worster [3] in
section 3. In section 4 we extend the weakly nonlinear analvsis of AW95 to the case of a
continuous horizontal planform and derive the relevant pattern equation. In section H, we
calculate explicit expressions for the coefficients appearing in the pattern equation in terms
of the physical parameters of the sytem for the near-marginal case of an infinitesimally thin
band of wavenumbers centred on the critical value. We show in section 6 that the general,
stationary pattern equation possesses solutions with localized structure and interpret these
as nascent chimneys. Finally, in section 7 we discuss our results,

2 Formulation

We outline here the formulation of AH93 and subsequent studies [4, 5, 7, 8, 9, 10, 11], as
depicted in fig.(1). The mush is modelled as a single porous layer sandwiched between liguid
above and solid below. For mathematical expedience we prescribe a constant solidification
speed V' and assume that the mush is dynamically decoupled from both the liquid and
the solid. These and subsequent assumptions are considered in detail in the references
cited above and will not be discussed further here. It is sufficient to note that, while
the assumptions simplify the analysis considerably. they preserve the essential physical
interactions of interest.

It is assumed that, within the mushy layer, interstitial liquid is in thermodynamic equi-
librium with fine-grained dendritic crystals. so that the temperature and solute fields are
coupled via a liquidus relation
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Liquid

Figure 1: The model system. A solidification front advances into a binary alloy at a rate
V. A mushy layer of thickness d is sandwiched between the two regions and advances with
the front. The solid is at the eutectic temperature T’z and solid composition Cg; the liguid
region is at the far-field composition Cy and associated liquidus temperature T (Cy). See
text and references for further discussion.

T'=T3:(0). (1)
The far-field composition Cy and temperature T, are taken to be above the eutectic compo-
sition (Cy > C'g), and above the far-field liquidus temperature (T > 17 (Cp)), respectively.
The temperature field 7', solid fraction ¢, fluid velocity u and pressure p within the mushy
layer are then governed by equations describing heat balance, solute balance, Darcy’s law
for low in a porous medium, and mass continuity; the non-dimensional ideal mushy layer
equations in a reference frame moving with the solidification front are given by Worster [12]

as

(O — ;) (0 —SP)+u-Vo = V2, (2)

(O —0:.)((1—9)0+Co)+u-Vo = 0, (3)
K(¢)u = —Vp— Rabz, (4)

V:u = 0. (H)

The non-dimensional temperature field (or, via the liquidus relation (1), the composi-
tional field) is
g = T-T,(Co) C-0Cy
Ty (Co)—=Te Co—Ckg’

(6)

191



Symbol | Physical Quantity Symbol | Physical Quantity ‘
L Latent heat o] Expansion coefficient
l Specific heat g Gravitational acceleration
g Eutectic temperature IT1(0) | Permeability at zero solid-fraction
T Far-field temperature K Thermal diffusivity
Cg Eutectic composition v Kinematic viscosity
Co Far-field composition d Mushy layer thickness
Cg Solid composition V Speed of solidification front

Table 1: Physical quantities appearing in the dimensionless parameters S, C and Ra, and
the mushy layer equations (2-5). For further details see cited references.

while lengths, times and velocities in (2-5) have been scaled with #/V, x/V? and V re-
spectively, with & as the thermal diffusivity. The function K (¢) appearing in equation
(4) measures the variation of permeability Il (¢) with solid fraction, with respect to some
zero-solid-fraction permeability I1(0). assumed finite:

5 I1(0)
K(gp)= - 7
(¢) () (7)
The dimensionless parameters appearing in (2-5) are the Stefan number
S=— ! —, (8)
e (11, (Co) — Tg)
the concentration ratio
L (9)
C (1 (a‘:‘
and the Ravleigh number
3 (Coy—Cp)gll(0)/V
Ra= (Co £) g _lr_/_. (10)

VK
The various physical quantities appearing in (8-10) are listed in table (1). Futher discussion
of these parameters and their physical significance can be found in the references cited above.

A fourth dimensionless parameter, the dimensionless mush thickness & = d/ (x/V),
appears in the boundary conditions:

O0=—-1,w=0 onz=10, (11)

g=0w=006=0 onz=4d (12)

Boundary conditions (11) and (12) correspond to impermeable rigid plates co-moving with
the upper and lower boundary of the mushy layer. The lower plate, between the solid and
the mush, is maintained at the eutectic temperature 7', while the upper boundary between
the liguid and the mush (that is, at zero solid fraction ¢). is maintained at the far-field
liquidus temperature 7', (Cy).
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A more physically plausible kinematic upper boundary condition might be one of con-
stant pressure p. Chung and Chen [10] considered a stress-free upper boundary condition
and, while their analysis was much more involved than that of AH93 and AW95, no qualita-
tively new results were uncovered. We therefore proceed with confidence that the boundary
conditions (11) and (12) preserve the interactions of interest without undue complication.

To isolate a parameter regime for which there is a physically interesting interplay be-
tween dissolution, solidification and convection we adopt the following additional scalings:
we consider a thin mushy layer (6 < 1) [3]:_ we assume a near-eutectic approximation
(C=C/6=0(5"1")) [13]; and we assume a large Stefan number (S = S/6 = 0 (67')) [4].
The reader may consult the cited references for further details on these scalings. We note in
passing, however, that a key implication of the near-eutectic approximation (C = O (67'))
is that the solid fraction is small, and hence the permeability is uniform to lowest order. As
a consequence, we follow AH93 and expand the permeability in the small solid fraction:

K()=1+Ki¢p+Kogp?+--- (13)

where, on physical grounds, we demand that K}, Ky, etc. are non-negative.

3 Linear theory

We continue to follow AH93 and AW95 and rescale space and time as

x — O0x, (14)
t - 8% (15)

and introduce the effective Rayleigh number

R? = §Ra. (16)

Note that, following the notation of AH93 and AW95, R is the square root of the effective
Rayleigh number.

The dynamical fields 6, ¢, u and p are separated into a stationary basic state and a
perturbation:

i — 6};(:)+Fﬁ(x.f).

¢ — ¢p(z)+ed(x,t),
u — 0+4+eu(x.t),
p — pplz)+ep(x,t1), (17)

where the subscript "B’ denotes the basic state and € is the amplitude of the perturbations.
Subtracting the basic states from the equations of motion and eliminating the pressure p
via the incompressibility condition, we obtain the equations for the perturbations 6, ¢ and
u:
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((Sfl): — i€ 'E};-) ((} - ?f_,-‘:) = H'f)}; (z)w+ V-8 = eRu- Vo,

(¢

(6c). — r’l"}r'};-) ((l = fir,-’);,»_(:] —ep) O — (9“ = (_)) (,-'J) —HH:” (z)w = eRu-V6,
(

V2 (Ku) — 0y (u-VK) — R9,0.0 = 0,

V2 (Kv) =y, (u-VK) — R0,0-0 = 0,

V2 (Kw) — 9. (u-VK) + RV30 - 0.
V-u =i 0. (18)

The equations of motion (18) can be written as

(L—=T&)v =e€N, (19)

where v = {f. ¢, u} is the vector of perturbed fields, £ — T, is the linear operator.
We discard the nonlinearity N by setting ¢ to zero, and look for solutions of the form
Voke (2) exp (ik - x + ot) satisfying

(Lok — 0Tok) Voke = 0. (20)

Here, k = (k;. ky) and x = (., y). Note that, as a consequence of the assumption that
K = O (€), variations in the permeability appear only at higher order.

The matrix operators Ly, and Ty, the linear fields vgi,. the growth rate o and the

basic states i () and ¢p (2) can be expanded in powers of 6 and the linear equation (20)
solved perturbatively. Thus, we have

En.&- '{3_} = f-'-un -+ [ql(:-{:[ + .- (21)
Voko (2) = voo + ﬁ-\"u] + e (22)
”:f’l]+f§.n|+-'- [2:“

2 —1 -2 3—1)2 L
=S _'5"([ RTe )+ (24)
Op(z) = (z - IJ—riZT)_”.+... (95)

We now substitute the expansions (21-25) into the linear equation (20) and at cach order
in ¢ obtain a linear ordinary differential equation for the linear fields vy (2) . vop (2) - -.
At O (67') we find

-"T”(,'l““ = (]. {‘.3“]

implying that agg = O (4).
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At O (8%), we find solutions

|k| Q(IU
o0, = — frsinmz, Woo, = fr—— 0 o7
== Sk v} (27)
B .o Uﬁ‘y ; ‘
oo, = k—gu."m,k. Voo, = g'._z'“"”lh.-' (28)

where, as a consequence of incompressibility, the planform f} satisfies

Viifi = =k fi, (29)
and we have introduced € = 1+ S/C. The zeroth-order growth rate is given by
w2 + k2 R?
= ; -1], 30
do 0 (Rfm (*) ) (30)

where R2, (k) describes the neutral curve

2 2\4
B (% + k?)
Raolh) = et 31)
o0 (k) e (
The neutral curve (31) has a minimum of 472/Q at k. = 7.
In addition to the solutions (27) and (28), we require the linear perturbation to the solid
fraction ¢y. However, the condition (26) requires that we consider terms of higher order in
d. To lowest order,

72 4+ k2 T (
=) .

o -
g cosmz + —sinwz + e "”-""’) i (32)
QC 72 - {(}'/ri}" j

me

Dok (2) =

Notice that this expression is valid for the case of both ¢ = O (1) and ¢ = O (4). In the
former, condition (26) demands that ¢g = O (§), while the latter implies that ¢g = O (1).
Anderson & Worster [5] showed that, for the case of o = O(d), the dispersion relation
admits complex solutions, indicating the presence of an oscillatory instability. As we will be
performing weakly nonlinear analysis near the marginal stability curve (R = Ryo (k)+0O (€))
in the asymptotic limit ¢ < 6 < 1, we will be considering only the case of ¢ = O (4), in
which case (32) reduces to

m+k x (

r : o1 . —a1(1—2) Qe
dook (2) = — = - 5 (cosmz + —sinmz +-e Tt (33)
QC 72+ o

s
This is precisely the result of Anderson & Worster [5]. We shall employ this result for
ook (2) throughout our analysis.
4 Weakly nonlinear analysis
In this section, we perform a finite-amplitude perturbation expansion of the equations of

motion in the spirit of AH93 and AW95. In contrast to these studies, and those of subsequent
authors, we retain horizontal spatial information by considering a continuous horizontal
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planform rather than prescribing a discrete superposition of rolls. Again, unlike previous
authors, we shall not a priort assume that the critical wavenumber k. is the only mode
excited. Rather, we consider a continuous band of wavenumbers, centred on k.. In section 5,
we restrict our attention to an infinitesimally thin band of wavenumbers, thus reproducing
the results of previous studies. What is different about this approach is that we retain
information about horizontal gradients in the amplitude equation thus obtained, and hence
need make no a priori assumptions about the pattern. Note that in this caleulation we do
not rely upon a separation of scales to retain some slow spatial dependence of the amplitudes,
as in standard derivations of the Ginzburg-Landau equation for example. Rather, spatial
dependence is preserved in the wavenumber &, which is allowed to vary.

We follow AW95 and perform an asymptotic expansion in the ordered limit ¢ < 6 < 1.
That is, we first expand v = {#,¢,u} and R in €: then, at each order, we expand in o:

v = (voo+dve +---)+e(vio+dvi+---)

+62 (07 va 1+ vag+ vy e )+ (34)
R = (Rygy+dRoyy+--)+e(Ry+dRy+ )

+€° (Rog +0Rgy + - ) + -+ (35)

Notice that, as a consequence of S, C =0 (67'), we must include in the expansion the
field vo | = {0,¢9 _.0}. It is also worthwhile noting that, because of the presence of a
term of order 257!, the expansion (34) is singular in the limit § < ¢ < 1, when the order
is reversed.

We now substitute expansions (34) and (35) into the equations of motion (19) and look
for slow time dependence ¢ = €¢2dy. The perturbation expansion then proceeds as follows:

@) (f”f’_[]) i Loo-voo =0,

O(%'): Loo-var = —Loi - Voo,
O (r]ﬁ”) : Loo-vio = —Lip-voo+ Ny,
(J(rlfii): Loo - V11 = —L11 -voo — Lio - vor + Ny,

@ ((—21’5_ : ) H C{]” *WVWo_1 = 'J.r-:._] 3 U’_J‘Vlna.
O (_"2""“) o Loo-vay =To 1 -0rvor + Tao - Oprvon — Lo - Vin
—Lyovio — Lot - va,—1 + Ny,

At each step in the perturbation expansion. we obtain a system of linear, inhomogencous
ordinary differential equations of the form

1—:[1!] ‘Voan = Imu- {:“;]
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As is well-known (see, for instance, [14, 15, 16]) a solution to (36) exists if and only if
the inhomogeneities Z,,,, are orthogonal to the solutions v of the adjoint problem. That is,

1
/ dzv-Z,,, = 0. (37)
0

In the present problem, neither the differential operator nor the boundary conditions is
self-adjoint.
The solvability condition at O (¢'6?) gives:

Rig'=10. (38)

This is a direct consequence of the assumption that Ky = O (e).
The solvability condition at O (6260) gives the pattern equation for the planform fy :

9 ’
MOrfr = —=Roo [k| fr + M{f2Y + N {3}, 39
kO fi /o 20 k| fx i} {f°} (39)
where
M{f?} = /tipdqd’2 (k— p — q) Mipgfofa: (40)
N {f:j} i [(“(hndnéz (k —l—m — n}-kahrmfl'fmfuv (41)

Here My, and Ny, the kernals of the integrals (40) and (41) are complicated func-
tions of the horizontal wavevectors k, p, q, 1, m, and n.

Close to marginality, the coeflicient of the linear term on the right-hand side of (39) can
be expressed as

2 72 + k? ( R* )
—— Rop k| ~ - L | | 42)
ook Taa ' m (

This is exactly the linear growth rate oy. Expanding about the critical wavenumber k. = 7

we find
k2 %
(—2 - l) ; (43)

so that in real space the pattern equation for the planform f = f (x,y) becomes

‘ 2 . -

Morf=pf = (VE+1)" f+ufi-vf (44)

This has of the form of a Swift-Hohenberg equation [17] with an addtional quadratic

term. In (44), we have replaced the integrals M {f"} and N {f:‘} with numbers j.f? and
v f3; we shall calculate explicit expressions for u and v in the following section.
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5 Evaluation of the integrals

As discussed in section 4, the primary motivation for deriving a general pattern equation
for a continuous planform fi (or, in real space, f(x.y)) was to avoid making any a priori
assumptions about the pattern. Rather, one can proscribe some arbitrary initial pattern (for
instance, a random one) and. with the aid of a small computer, investigate its evolution. For
Swift-Hohenberg-like pattern equations, one typically sees a number of patterns competing
with one another until the planform settles into a fixed pattern and evolves no further.
The final pattern generally falls into one of three categories: discrete rolls, hexagons (up or
down), or labyrinths - which can be thought of as a planform frustrated between rolls and
hexagons.

It is interesting to caleulate explicit expressions for the coefficients g and v for discrete
planforms. This is aided by the observation that, close to criticality the planforms f,, f, ete.
are confined to a narrow band of wavenumbers centred on k. = 7, as depicted in fig. (2).
Under these conditions it is possible to evaluate the integrals M ”-z} and N {f*}. That
is, we assume that f, = f ()0 (|p| — m) where a is the angle p makes with k = kx, without
loss of generality. Under this assumption, all wavevectors must be of the same length and
so only certain tessellations will satisfy the delta functions present in the integrands.

Y

fiky

—

Ty
3~
J

Figure 2: Support for f;.. We assume that fj is confined to a narrow band of wavenmmbers
centred on k. = 7.
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Concretely, the quadratic term M {fz} in the pattern equation (44) is integrated over
wavevector triads {k, p, q} satisfying the condition

k=p+q (45)

fikfipp -~

Figure 3: Allowed tesselations satisfying the condition k = p+q. As k, p and q are all
of the same length (k. = ), the triplet must form an equilateral triangle. Thus, the only
planform possessing a quadratic term in its pattern equation is an "hexagonal array”.

As all wavevectors are of the same length, the triad {k, p. q} must form an equilateral tri-
angle. Consequently, the only planform possessing a quadratic term in its pattern equation
is one with an equiangular array (“hexagonal array”) of three superposed rolls, as depicted
in fig. (3). This is the discrete case considered by AH93 and AW95. It is interesting to
note that the appearance of a quadratic term is a special case of the more general pattern
equation for a continuous planform.

We summarize this result as follows:

uf? == (Ky/QC) f(5) [ (%) for a hexagonal array. (46)
=10 otherwise, :
where f* () = f (a+ 7).
In the case of the cubic term, the 4-tuple {k. 1, m n} must satisfy
k=14+m+n, (47)

so that {k, 1, m, n} form an equilateral parallelogram (fig. (4)). For general angle o
between k and 1 (say). we find that

; 8r° [ 8 3 — cosa w 3+ cosa . . :
P == = R _ i 2
pie = o : da {5 + 5 —Aecec (1 + cosa)” + 5 leces 1 — cosa) } f(O)|f (o))
22:1_.") Kl‘_J 2m ) 9

As both rolls (a = 0) and hexagons (a € {0, 7/3, 2r/3}) are special cases of (47),
we expect the cubic term to appear in pattern equations for both planforms, with the
coefficients
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T finy

\

k) iy ¥ ftm)

Figure 4: Allowed tesselations satistying the condition k =1+ m+n. The 4d-tuple
{k. I. m. n} forms an equilateral parallelogram. If all four wavevectors lie along the same
axis, this corresponds to the case of three interacting 1D rolls.

)

1

vf® = #° (2.:;1'. + ?;10}\7) £(0) ‘f (—;) \ 4 ‘_,f (3;)

= &"J " ] .
472 (2_.\’-1 - T,I{-lr(“_”) TO)[f(0)]"  for a hexagonal array,

= " (2,34 + T‘:;"ls?t(i-ﬁ) (O |f (ll_‘]i: for rolls. (49)

Note that (48) is positive definite, indicating that, in the absence of a quadratic term in the
pattern equation. the bifurcation is supercritical.

Finally, we note that the coefficient in front of the time derivative in the pattern equation
(44) is sign-altering:

A=l =2
QC?

(50)

Thus, for a particular parameter regime A may be negative or even vanish. As AW95 noted.
this indicates the presence of a Hopf bifurcation. In this work. we do not consider this
regime of parameter values and consider the direct mode only. A derivation of the full
pattern equation in the presence of a Hopf bifurcation remains a topic for further research:
in the meantime, our analysis is valid away from A = O (4) in parameter space.

6 Nascent chimney solutions to the pattern equation

For a stationary planform, the pattern equation (44) reduces to a non-linear inhomogenous
ordinary differential boundary value problem and is easily handled by numerical mathe-
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matical tools such as MATLAB. Figure (5) depicts the solution in a periodic domain with
representative values of p = 3.9, 1 = 0.1 and v = 1.0. See caption for details.

i 1 - —_—

-9

I
na

HoriziniaPposition (x)In critical wazl«elengths °

o o

Vgﬂicai position (zéwithin mushy layer Planform amplitude in arbitrary units

[R=]
Y
r

1
o

Horizcm’a’? position (x}?n critical wageienglhs

Figure 5: Stationary solutions for the planform (fop) and perturbed fields (bottom). Hori-
zontal position in each is measured in units of the critical wavelength. In the upper figure,
the planform amplitude is plotted in arbitrary units. In the lower figure, the streamfunction
is plotted in the z-z plane. Moving from left to right, the direction of rotation of the rolls is
alternately clockwise and counter-clockwise. The region indicated by the vertical hatched
lines represents a nascent chimney. In the background of the lower diagram, the temper-
ature perturbation (left) and solid fraction pertubation (right) are indicated by contours.
The units of these perturbations are arbitrary.

7 Discussion

As we have noted, the pattern equation derived in section (4) has the form of a Swift-
Hohenberg equation with an additional quadratic term. The Swift-Hohenberg equation
arises in a wide variety of physical, chemical and biological contexts and has a substan-
tial literature associated with it (see Cross & Hohenberg [17] and references therein for a
comprehensive review of this topic).

The quadratic term appearing in the pattern equation (44) breaks the symmetry between
up and down. As we have noted, this quadratic term appears only for planforms made up
of three rolls superposed at 120° to one another. If all three rolls have an equal amplitude,
the unit cell is a hexagon. Thus, we recover the result of AH93 that the transition to three-
dimensional hexagons is transcritical. The sign of the quadratic term determines whether
there is up-flow or down-flow at the center of the hexagons.
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We also note that the expression for the quadratic term (46) is proportional to K;. Thus,
symmetry-breaking between up-flow and down-flow at the center of hexagons is ultimately
rooted in the non-Boussinesq effect of permeability variation with solid fraction. As K| is
strictly positive on physical grounds, the overall sign of the quadratic term is determined
by the planform f («) itself, at least in this pared-down model.

Finally, it is amusing to note that while hexagons may determine which way is up
by looking at the flow direction in their centre. rolls and all other planforms have no such
method of distinguishing up from down. Translation of rolls and parallelograms by a half-cell
merely exchanges the two directions. In this way, the hexagonal planform is fundamentally
different from all other patterns: it is manifestly asymmetric.
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The evaporation of a salty film

Rob Style

March 15, 2007

1 Introduction

Evaporation of water is an important phase transformation that appears in many guises
throughout everday life. Its effects range from processes intrinsically involved in the at-
mospheric water cycle, to the regulation of body temperature in hot environments, the
production of coffee ring stains beneath a spilt coffee droplet and to important processes
underlying microfluidics.

Although evaporation as a pure bulk phase transformation is well understood, when one
adds solutes to the liquid, or brings the liquid into contact with a substrate, we obtain a
new and rich variety of possible behaviours that we can access experimentally and analyse
theoretically.

A well known example of is the effect of combining a solute with evaporation is given
by the ‘tears of wine’ phenomenon [1],[2]. When one swills a glass of wine, a liquid film is
produced up the side of the glass above the bulk lignid. Alcohol evaporates more rapidly in
the film away from the bulk wine, and the film becomes depleted of alcohol. This depletion
decreases the surface concentration of the film relative to that of the bulk wine, leading
to a gradient in surface energy. This gradient causes a marangoni flow. drawing liquid up
into the film above the bulk wine. Eventually, enough liquid is drawn up into the film
that it becomes unstable to gravity and falls like a tear of wine. Any gradient in surface
temperature or concentration will cause Marangoni flows, and thus marangoni flows can be
extremely important in the presence of phase transitions, particularly evaporation.

A second complexity is introduced by the addition of a substrate into the problem
[3].  Although the wetting of substrates has been well studied [4], there are still many
interesting phenomena associated with the evaporation of films that have only recently
received attention, such as the investigation of coffee ring formation by a sessile, particle
laden droplet [5], the observations of a finite contact angle in an evaporating wetting film
[6], and of particular interest, the experiments of Du and Stone on evaporatively grown salt
trees [7].

Neufeld has recently performed a series of experiments observing the evaporation of a
sessile, salty droplet (private communication). Although simple in nature, the experiments
show several key features that we wish to understand (see Fig. 1). Namely:

e Overturning of liquid in the bulk
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e Salt crystal deposition in the bulk, initiating at the outer edge
e Formation of a thin, rough salt crystal film beyond the edge of the bulk droplet

e Continual growth of the outer limit of this thin salt film

(5 (6)

Figure 1: Plan view of the evaporation of a 5Sul droplet of saturated NH,Cl solution. Room
temperature is 22°C and relative humidity is 42%. The images are shown at approximately
six minute intervals. (1) Just post commencement of the experiment: some salt is observed
at the edge of the droplet when evaporation is highest. (2) Precursor film growth observed
around droplet. (3) Some dendritic growth observed in the bulk droplet: these crystals
are effected by flow in the droplet. (4) Bulk liquid reduces in radius while precursor film
continues to spread. (5) Dewetting occurs at the centre of the droplet and hence bulk liquid
is no longer exposed to air. (6) Precursor film continues to grow and dewetted area covered
in growth similar in appearance to outlying precursor growth.

In this work, we will demonstrate the basic processes at work in the evaporation of a
salty droplet by way of simplified models and show that the above observations stem from
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the combined action of these processes. In this way, we will be able to understand the
processes important for the growth of evaporatively grown salt trees which we aim to study
in later work. For the current study, of most interest is the creation of the salt erystal under
and beyond the edge of the bulk droplet. Vapour transport of salt cannot account for the
deposition beyond the confines of the bulk droplet, so we ascribe the presence of the salt
to the evaporation of a thin film of liquid fed by Marangoni flow from the bulk droplet.
We will see that the growth of the salt-crystal from this film is subject to a new instability
associated with the development of supersaturation at the liquid-vapour boundary.

We describe the mechanism for this new instability as follows. A thin film of constant
salt concentration sits atop a planar salt crystal with which it is in equilibrinm. The vapour
pressure in the surrounding atmosphere is reduced so that evaporation occurs from the
surface of the film and so that salt previously dissolved in the evaporated portion of liquid
is rejected into the surface layer of the film (salt having effectively zero partial pressure in
the vapour phase). This causes supersaturation at the liquid-vapour interface that diffuses
towards the solid-liquid interface. In this manner, salt will be transported from the liguid
vapour interface to deposit upon the salt erystal. However, as the salt crystal will be growing
into an increasing supersaturation, the interface will be unstable to small perturbations.

In many aspects, this salt precipitation is similar to the unstable solidification front of
a salt freezing from a binary alloy [8]. For comparison, we briefly review the theory of

constitutional supercooling,.

Imagine a pure, planar salt crystal, growing from a binary alloy (water and salt). We
set the far field composition and temperature of the alloy to be ¢ and 15 respectively.
and assume that the liquidus relationship between concentration ¢ and temperature 1" is
approximately linear so that

Tr(¢) = me+ 1. (1)

Then T (cx) < T so that the far field liguid is not supercooled. Also. the temperature
at the solid-liquid interface 7; < T is such that the solid is in equilibrium with the
surrounding liquid so that we must have 1T; = T (¢;).

Now. in front of the advancing salt front, water must be being rejected so that ¢, < ¢
Thus we will see solutal and thermal boundary layers in front of the advancing front. across
which the salt and temperature respectively will vary between their interface and far field
values. The diffusivity of heat & is much larger than the diffusivity of salt in water Dy,
and so the thermal boundary layer will be thicker than the solutal boundary layer. If we
translate the solutal concentration into the equilibrinm liquidus temperature in the liquid
from Eq.(1). we then see (Fig. 2) that this implies that there will be a region directly ahead
of the advancing solid front where the liquid is at a temperature below the liquidus if

JT

9z

e
< m —

‘)'
dz |, (2)

sl

sl
This ‘constitutional supercooling’ is produced by rejection of solvent in front of the solid-
ification front. and it is well known that the front is unstable to small perturbations [9]

leading to dendritic growth as has been observed experimentally, for example in the case of

ammonium chloride, by Huppert [10].
Therefore in both situations, we produce salt from a binary alloy of salt and water.
Also in both cases. there is a local inerease of the free energy of the system above the
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Figure 2: Diagram demonstrating the origin of constitutional supercooling at the salt-liquid
interface (cf principle lectures by MGW for added details).
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Figure 3: Close up of salt dendrites at the surface of a mushy layer advancing into ammo-
ninm chloride solution [10].

equilibrium value (supersaturation/supercooling) which drives the salt-liquid interface to
become unstable. One final similarity is that in both situations convection can oceur due to
density differences associated with gradients in temperature and concentration. However,
the key difference lies in the fact that constitutional supercooling is caused by water rejection
at the salt crystal boundary, and is always immediately relieved by immediate solidification
upon the salt erystal. However in the evaporative case, supersaturation is produced at some
distance. namely the film thickness, away from the deposited salt erystal and therefore leads
to differing growth behaviour and the possibility of homogenecous nucleation of salt at the
liquid-vapour interface for rapid enough evaporation rates. The simple observation that
the crystal forms produced by both processes vary significantly (Fig. 3) tells us that this
difference is important in determining growth characteristics, and thus worthy of study.

2 Model of an evaporating film

In order to wade through the mire of ccompeting processes involved in producing the com-
plex patterns seen experimentally, we begin by considering a simple modelconsisting of a
planar salt interface, covered with a film of uniform thickness d In this manner we can
systematically study the most important physical mechanisms at play. We can control
the water vapour pressure P in the surrounding atmosphere and so initially we choose a
vapour pressure such that the water in the film is in equilibrium with the water vapour and
the film has uniform concentration ¢; in equilibrium with the underlying salt crystal. We
then reduce P so evaporation occurs at the liguid-vapour interface at a rate E where E
is measured in volume per second per unit area of surface.

At this point it is useful to make explicit the assumptions that we make in order that
we may justify them later:

e Because of the disparity between solutal and thermal diffusivities. thermal effects are

neglected in the dynamics of the systen.
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Figure 4: Schematic diagram for the evaporation of a film of salty liquid

e The filin is of uniform thickness, and vapour pressure over the film is constant so that
there is no marangoni flow feeding the film,

e The salt concentration is sufficiently low that the advection-diffusion equations hold,
e The addition of salt to a volume of liquid does not change the volume: p;(¢) =const.

Therefore we have a film as shown in Fig.(4), in the frame of reference of the liguid
vapour interface. In the liquid, the concentration of the salt satisfies the diffusion-advection
equation, so that we have

dc de
ooz

which we can nondimensionalise by scaling times with do/FE and lengths with dy, where d,

= D, V?c, (3)

is the initial thickness of the quasi-stationary film, to give

de  de =
Ps o= = = V. 4
¢ [f)f i):‘} W (4)

where nondimensional variables are denoted by a tilde, and the effective Peclet number
Pe = dyE/D; is the ratio of evaporation to diffusion rates. A natural starting point in
the analysis of the phenomenon is therefore to select a small Peclet number by choosing
a slow evaporation rate (or sufficiently small film). We will then use a quasi-stationary
approximation so that d & dy throughout the analysis.
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As boundary conditions for the problem, there are several natural conditions arising
from the formulation. These consist of equilibrium at the solid-liquid interface

¢lg=¢r +CKy, (H)

conservation of salt at the solid-liquid interface

e P ;
IJRT = “’ + h}f‘suﬂ- (6)
~ lsl
thinning of the film
d=—-F, (7)
and conservation of salt at the liquid-vapour interface
de X
[);'_ = E("‘;'A {h‘]
0z I

where we define Ky to be the curvature of the solid liquid interface, C to be the Gihbs
Thomson coefficient for the equilibrium salt concentration (see Appendix A), V' is the growth

velocity of the salt crystal, h is the height of the crystal surface, and e and gy are the

salt concentrations at the liquid-vapour interface and in the salt crystal respectively.

We will require one more boundary condition to complete the set of equations, and this
will come from the relationship between the evaporation rate E, the concentration at the
liquid-vapour interface ¢y and far field vapour pressure P. The evaporation rate will
depend upon the dynamics of the vapour, in that the transport of water vapour from the
interface will be determined by the water vapour gradient at the liquid- vapour interfacce

a9
,gﬁ = 5, (9)
0% |
where D, is the diffusivity of water vapour in air and P, is the local water vapour pressure.
Therefore to obtain the water vapour pressure profile for a steady diffusion of vapour in a
background of air, we must solve Laplace’s equation in the vapour with boundary conditions
ploc) = Px and
P, = Py(1 — er), (10)

where [ is the vapour pressure at pure equilibrium, and ¢y is the concentration of salt
at the film surface (see Appendix B). For pure evaporation, these boundary conditions
reduce to constant values at the surface of the droplet and in the far field, and so good
approximations to the evaporation rate can be made by assuming simple geometries for
the droplet [5],[11]. For fast evaporation rates, there is a jump in vapour pressure from the
equilibrium vapour pressure, given by Eq.(10) that will be controlled by the Hertz Knudsen

relationship, which written as the boundary conditions will add some detail to the form of

the How. However in this paper, since E is an experimentally controllable parameter, we
will assume constant evaporation rate.

For small Peclet number, the diffusion-advection equation reduces to Laplace’s equation,
and so the solutal field in the film for planar growth is given by

(-x(r";-—t';_)j + ¢y, (11)
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Applying boundary condition (8) gives

CL
o 12
==y (12)

and so the rate of growth of the solid is given by
o 0 (13)

Csalt

This agrees with our intuition, because for the small Peclet number limit, information
is diffused rapidly across the film, and so we expect evaporation to occur simultaneously
with salt precipitation. Equation (13) demonstrates that if we evaporate a layer of water
of thickness dd. simultaneously an amount of salt equivalent to the salt dissolved in dd is
precipitated corresponding to instantaneous diffusion.

We are now in a position to conduct a quasi-stationary linear stability analysis of the
film. In the film, there is a slow time dependence of the basic state given by O(¢/ey) ~
PeE/d. We will impose a perturbation upon the solid-liquid interface which will grow on
a faster timescale (that we can check a posteriori). Therefore we designate slow and fast
timescales as (PeE/d)t = t* and (E/d)t = 7 respectively so that

a 0 a
o ot or

We label the linear, quasi-stationary state given by Equation (11) as ¢g(z.1*), and impose

a dimensionaless perturbation with a fast timescale upon the solid-liquid interface

h = ?‘u 'k‘i‘_'_""_ (14)

We assume a form
T t*) = colz, %) + &(2, t*)et™F+oT, (15)

Lo 1)

of
Then the diffusion advection equation (3) in the frame of reference of the solid-liquid
interface becomes

o D T ¢ 0%¢ ol T L
P('J(-;r* (“U _+_‘-.(,1k_7 -+.r}1’) + P(,n(.(_rk.r+n’r = ”:"jl L}:: - A.z(_ (,rA.r-fnr. U(‘}
which in the small Peclet number limit, reduces to
s o
— — k% =0, (17)
0z2
and has solution
¢ = Asinh kz + Bcosh kz. (18)

Applying boundary conditions in the small Peclet number limit, we obtain

A = —htanh kd [%k‘z + 1"(?117!'])(‘}
and
d 1 — Pe

B:hrﬁ+n\” y
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Table 1: Table of typical values for the ammonium chloride/water system at 7' = 20°C

Constant Value Units
L 212 wt
~st 5 %10~ Jm==
i 1.787 x 1073 kgm™'s!
R 8314 | JK'mol™!
m 4.79 Kwt% !
i 107 m?g—}
%; 4 x1079 | kgs™ 2 wt% ™!
Ps 5.6x10" | molm ™
C ~7 %107 wt% m
E 10~7 ms !

so that applyving the Equation (6) for the conservation of salt at the solid-liquid interface,
we find the dimensional dispersion relationship

1 e = .
o= ktanhkd [Ec;, + DCK?] . (19)
Csall ]
For relatively short wavelengths, we can approximate this as
i o "
0= —|Ee¢;, + D.CEk?). (20)

100" ) '

as is plotted in Fig.(5).

Using typical values from Table (1), we find from Eq.(20) that the cutoff wavenumber
ke = 6.2 x 10°m~ ", so that the small wavelength approximation is justified. The maximum
growth rate can also be derived from Eq.(20). and we find that k.. = 3.57 x 10°m~ ! and
Omar = 6.4 % 107%s7! corresponding to a time period of around 3 hours. For this instability
to be relevant. we require that the growth rate be faster than the rate of thinning of the
film, so that E/d < 0,34, and we find that d > 1.5 x 10~°m. Therefore we expect that in
the precursor film (typically around a micron thick). with these conditions, the instability
will not have time to develop, unless there is a flow of liquid in to replace evaporated
material. We must also remember that for a sufficiently thin film such as the precursor film,
electrostatic forces will retard the evaporation rate of the film, and so for a full treatment,
we will need to include these effects.

We note that for £ ~ 10~ "ms™ ', the Peclet number is d x 102, and so for most natural
situations, the Peclet number will be reasonably small. We also note that when the film
is sufficiently thick. convection of the film will set in due to the increase in density at the
surface of the film, and the stationary approximation of the liquid in the film will no longer
be valid.

212



0.01 T ;

0

=0.01
= =002+
©

=0.03

-0.04

-0.05 : g : -
0

k(m™") x 10°

Figure 5: Plot of growth rate against wavenumber for small Peclet number.



3 Large Peclet number

When the evaporation rate is sufficiently high, or the film is sufficiently thick, the rate of
diffusion of salt across the film becomes small relative to the thinning rate of the film. This
means that there will be a solutal boundary layer at the liquid vapour interface with on
some time scale, the salt-liquid interface unaware of the presence of evaporation at the
upper surface.
Therefore, in the frame of reference of the liquid-vapour interface, the diffusion-advection
equation for salt concentration becomes
de de e

T A h‘. — =55
ot 0z (0 i

(21)

so that before the diffusive information reaches the salt-liquid interface, the profile will
satisfy the time independent form of Eq.(21) so that

E(z+d)
e

e Ds —1
e=ep+ (er—eL) | —F—| - (22)

Applyving Eq.(6) for the conservation of mass at the liquid-vapour interface, we find that
R ¢ . o
CT = CLf (23)

which, we note gives the same result as for the small Peclet number case (Eq.(12)) when
we take the small Peclet number limit of this expression. From this expression. we notice
that the surface value of the salt concentration in the film will increase very rapidly with
Peclet number. Therefore, there will be some value of the Peclet number above which
the concentration at the liquid-vapour interface is sufficiently high to cause homogenecons
nucleation.

In order to estimate the critical Peclet number above which homogeneous nueleation
will occur. we need to calculate the energy required to ereate a critical nucleus of salt from
solution.

The free energy change associated with creating a nucleus of radius » of salt from salt
solution is

| o=

7, (24)

AG = ~ygdnr? + (s (T, Ps) — (T, Py, )]

-,

where the first term on the right hand side stems from the energy change required to create
a solid-liquid surface between the two phases, and the second term is the change in free
energy associated with the change of phase.

Expanding the chemical potentials of the two phases about equilibrium, we have

g(Ty Pg) — u(T; Pr,c) = —RT In(c/cy), (25)

and therefore

L 4 .
AG = qq4nr° — Rl 111[r'_ff'r'.f,i§7r:“". (26)
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As can be seen, this free energy change has a maximum at r = r*, so that if » < »*,
the nucleus will shrink to zero and if » > r*, the nucleus will diverge and homogeneous
nucleation occurs. The critical energy is therefore

A 167r",'2, o)
AG= PP R?T?In(c/cL)’ (27)
For homogeneous nucleation to occur, the thermal fluctuations in the film must be large
relative to the critical free energy of nucleation. This means that the Gibbs number g =
AG(r*)/kT must be smaller than O(100) for nucleation to occur [12] (note that this estimate
will depend upon the nature of the system). Approximating c/c; = e'® from Eq.(23), we
thus obtain that

Pe <1 (28)

for no homogeneous nucleation, and so the large Peclet number case is unviable.

We note that for intermediate Peclet number, we cannot treat the profile as quasi
stationary, and so a full treatment of the instability will require a numerical evaluation of
the instability from the initial conditions, or otherwise a modified model. One possibility
would be to assume a flow perpendicular to the plane of the instability that maintains the
film at constant thickness. This model may be applicable to the case of the precursor film.

Finally, we note that for a thick enough film, there is the possibility of convection in the
the film due to the salty cold liquid overlying hot, fresh liquid. As previously mentioned,
we expect the thermal effect to be small relative to the solutal effect due to the high
thermal diffusivity relative to solutal diffusivity in the system. In order to estimate the
film thickness at which Rayleigh-Benard convection sets in, we approximate the system
by Ralyeigh-Benard convection with a solid base and an open top. Letting the critical
Rayleigh number be Ra, = 1000, and taking the small Peclet number limit (which holds up
to films of the order of 1mm thick), we find that [13]

Bgd®(cr — ¢r)

Ra, = AT
5

~ 1100 (29)
where all the symbols take their standard meanings. Thus we expect Rayleigh Benard
convection to set in when d = 2mm.

4 Flow in a thin film

Consider a droplet of salt solution evaporating on an infinite planar substrate. Evaporation
is driven by the far-field vapour pressure below the equilibrium vapour pressure of the film.
Towards the edge of the droplet, the liquid film is exposed to the drier air above the adjacent
dry substrate, while in the centre of the droplet, the ambient air is more moist due to the
homogeneity of the environment more than a diffusion length from the edge. This means
that the evaporation rate will change from the centre to the edge of the film, and hence
there will be a gradient in salinity along the surface of the film and an associated marangoni
flow.

The Marangoni effect is a well known process whereby gradients in surfactant concen-
tration in liquids cause associated gradients in surface tension. These gradients then drive
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a flow from regions of low surface tension to regions of high surface tension. Unlike for most
solutes, where the Marangoni coefficient, or gradient in surface tension associated with a
change in solute is negative, for ionic salts such as ammonium chloride and sodium chloride,
the surface tension gradient,

7Y} o —
O . 4x 107 m 2 wt% ! (30)

de

is positive [14]. This means that as the evaporation rate. and hence the salinity. increases
towards the edge of the film, we will see an outwards marangoni flow associated with the
salinity gradient. We can analyse the flow in order to determine the volume flow rate, and
the possibility of this flow as a volume source for precursor film growth.

Assuming that the film is thin enough that we can use lubrication theory. when we
incorporate the marangoni flow, the equation of conservation of solute (3) becomes

de e T B ... 8% T
=il :_",_'_:1’).-.‘.—'_;} -U_-.-':—;,-- (31)
ot Jz IR z* az*
where g is the dynamic viscosity of water and
f)"“lr“. e (32)
T=———— 32
de Ox

is the surface stress, and in order to simplify the model. we will assume that the the liquid
is a planar film of constant thickness d. and that the surface concentration is linear in
[15], which is equivalent to the assumption that the vapour pressure is linear in & (Fig. 6).

We would like to investigate whether adding a linear surface concentration gradient will
significantly vary the concentration profile in the film. Therefore, we will consider the small

Peclet number case in the instance that the surface concentration is given by
cr =¢p+ Gz, (33)

By imposing this concentration profile, we have also imposed a horizontal lengthscale upon
the problem given by (¢o — ¢r)/G, which we will assume is large relative to d so that we
can reduce equation (31) to

e _ 8%

h;-‘ dr 9z
and so upon non-dimensionalisation of lengths with ¢, and concentrations such that ¢ =
(cop — ep)e + ¢p. the governing equations become

.08 D%

i = —, 34)
A 02 [
with
c(0) =0, (35)
and
é(d) =1+ o, (36)
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where F' = 7d* /Dy is the ratio of the diffusive response time to the viscous response time
over the film and we have required 0 = Gd/(co — ¢1) = GDs to be small as previously
mentioned. Estimating ¢p — ¢, = p from the small Peclet number, this implies that for
typical evaporation rates. G < 2700wt %m ', which will be satisfied over all but the very
edges of the droplet (see Appendix C).

We proceed by seeking a separable solution to the equations, by setting (dropping tildes)

c¢(x,z) = X(x)Z(z) so that

.\—l L dl} .
FT:J\:_Z-_“ (37)
where A is a constant. Thus we see that
. As
X = A¢ -'"r

which is of the right form to match Eq. (36) if we set A\/F' = §, so that our assumption of
a small exponent value is appropriate for dr < 1.
Thus we see that
5 BTG i
wDg(co — )™

and by letting z = a. with
1

pDg(co—cr)\*®
o =|——m— ;
(JHT(;

the Z equation reduces to Airy's Equation
Z"¢) - Z(¢)¢ = 0. (38)
Therefore we find the dimensional solution to the concentration profile to be

Bi (57) Ai(0) — Ai (57) Bi(0) | _cx (39)
Bi (1) Ai(0) — Ai (1) Bi(0) ' h

G

cr + (co — 1) f(2)e @D

¢ = ¢+ (eg—eyp)

I

Thus we see that the relative importance of the Marangoni flow is given by the size of the
parameter a: when a is large, we can Taylor expand Eq. (39) to see that

Ga .

cxcep+ (e —cp)=elco—<n = ¢p+ (cop— ¢y + Ga)=
o o
so that we may effectively ignore the horizontal flow, and treat the concentration profile
as linear. However, when a is sufficiently small. the solution can deviate from the linear
solution.
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Figure 7: f(x) calculated for a = 1,10. To good approximation ¢ = z/d for a > 1.

In Appendix C, we treat the question of the value of G for an evaporating droplet.,
from which we obtain a reasonable upper estimate for G near the edge of the droplet of
2.7 x 10°wt%m~!'. For films in the small Peclet number limit, this implies a > 1 except
within 2d of the edge of the droplet where geometry dependent factors will be important.
Therefore there will be no significant alteration to the linear profile across the bulk of the

film (cf Fig. 7).

5 Linear stability of a film including marangoni flow

In the previous section, we investigated the concentration profile for a film with a con-
centration gradient applied to the upper surface giving rise to a Marangoni flow. As has
been seen previously, the underlying salt—crystal growth is diffusively unstable, and so the
solid-liquid boundary will become corrguated. When we include a Marangoni flow with the
perturbation, we expect the perturbation to move upstream because the flow will compress
the solutal boundary layer on the upstream side, and thus promote growth in that direction.
We can analyse this effect as follows.

From the previous section we saw that the steady state solutal profile for small Peclet
number can be closely approximated by

- [£F;

c=cp+ (cp — r:;‘):f{f“‘“"f-'. (40)
(

for Gx/(co — 1) < 1. Hence we will use the linear approximation throughout.

Assuming that we are in the lubrication limit and that any perturbations are long
wavelength, the non-dimensional governing equations are the same as previously (Eqns.
34-36). Therefore the steady state can be taken as that given in Eqn. (40).
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If we apply a perturbation of the form

5= h(_r.‘r.r-& at

to the solid-liquid interface (where we do not expect o to be real), then ¢ = ¢g(&,2) +
c(z)explikr + ot), where ¢ is the steady state solution. Neglecting the Gibbs-Thomson
effect, and dropping tildes we find that

ikFe =&, (41)

and we can convert this to Airy’s equation by transforming

z=1 (i.']}*") : CE0G,
L[ (ol

Ai(0)Bi () - Ai () Bi(0)

Thus

and by applying the boundary condition for conservation of salt (Eqn. ). we obtain the
dispersion relation for the svstem

_ Dy (f-‘:, - rn) A (:L) - Ai (]f) Bi'(0)

= = . e I (43)
XL =c /| Ai0)Bi () — Ai (&) Bi(0)

Figure 8 shows the imaginary part of o, as a function of 4. As expected, the velocity
of the travelling waves disappears for small £ (large ). and we see that o is significant
relative to the timescale V/d associated with the growth of the salt for 3 < 1. From
the previous linear stability analysis, we found that the most unstable wavenumber was
Kmar = 3.57 x 10°d, which corresponds to 3 = (1.2 x 107" /4*G)"Y/3 and therefore we see
from the appendix estimates of G that the travelling velocity of the waves may be significant
for sufficiently thick films.

It should be mentioned that this is only a longwave analysis of the problem, and for k
small, the entire Laplacian must be considered in Eq. (34). This will also reintroduce the
instability considered in the first linear stability analysis. However this analysis should give
a good indication of the relative size of the travelling wave velocity.

6 Volume flow rate due to Marangoni flows

We are interested in whether the gradient in surface concentration across a droplet is suffi-
cient to act as a source for precursor film growth. From the Appendix. we have that

der 2cpdDy(Pr — Pyx) r

o, — = 3 R i 7 -

h TDP, (R2 — 2)3
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Figure 8: Im(o) from the dispersion relation for the travelling wave instability in terms of
a.

and from lubrication theory. the volumetric flow rate is

/d Oy ocl ; d?® Oy de
o deor ,n‘ T 20 de O

so that the fow rate is given by

c;d3Dy(P; — Ps) i r
wuD P, de (R2 — r2)3 ;

As discussed in the Appendix, we will ignore the region at the edge of the droplet, as there
will be local shape complications there that will effect the expression for ¢y. In order to
avoid this, we calculate ¢ at a distance d from the edge of the droplet, to find that for
R = lem, d = 1079 that ¢(R — d) = 3.4d or 1.2cmhr™! which is in line with typical growth
rates of the film.

It should be noted that there are only sufficiently large concentration gradients to main-
tain this flow rate near to the edge of the film. However away from the edge, decreases in
curvature associated with the Marangoni flow should draw fluid outwards to help maintain
the source of liquid to the edge.

7 Conclusions
In this work, we have considered the processes involved with the growth of salt from an ses-

sile, salty, evaporating droplet. The chief result is that we have demonstrated the existence
of a new instability of the growing salt crystal due to evaporation at the liquid-vapour
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interface. The instability stems from the creation of supersaturation at the evaporating
interface, which diffuses through the film to the growing salt crystal. Hence the salt crystal
grows into an increasing supersaturation and the interface will be unstable. The instability
differs from the morphological instability of a binary alloy [8] in that in the new instability.
the creation of supersaturation is created at some distance away from the advancing salt

front. Whereas with morphological instability, the supersaturation is caused by rejection of

solvent immediately adjacent to the salt front.

We find that for typical evaporation rates, the instability will be important for films of

thickness d > 1.5 x 107m. For sufficiently thick films (d ~ O(1mm) ), convection will set
in and the formulation becomes invalid. Marangoni convection may also be important, as
well as thermal effects, howeverthese are expected to be small relative to the solutal effects.

For a growing droplet. there will exist gradients in surface tension associated with the
gradient in evaporation rate across the liquid-vapour interface. Associated with these gra-
dients in surface tension there will be a Marangoni flow that drives liquid outwards, feeding
the precursor film observed in experiments. We have analvsed the effect of the Maragoni
flow on solutal profile in the small Peclet number regime (relevant for typical film thick-
nesses), and find that there will be no significant alteration to the solutal profile across the
film except in the tip region. where geometry effects are expected to be important.

We have also analysed the effect of the Marangoni flow upon corrugation of the salt
surface. We find that the flow induced compression of the upstream boundary layer of the
surface roughness causes increased solid growth thereby creating an upstream travelling
solid/liquid wave. The calculated travelling wave velocity suggests that the process will
be operative in sufficiently thick films. Finally an estimate of the overall flow rate due
to Marangoni How in a precursor film shows that the Hlow is sufficient to cause observed
spreading rates of the precursor film.

As noted in the text, numerical work is necessarv to properlv analvse the intermediate
Peclet number case and solutal convection, and we hope to achieve these in further studies.
For the future, we aim to produce a more complete model of the precursor film including
electrostatic double layer forces and van der Waals forces and to extend the results from the
current work to produce a more complete model of the processes involved in salty droplet
evaporation and salt tree formation.

8 Acknowledgements

But of course, there are many thanks to be given for helping make such a fun and productive
summer. I am indebted to all the staff and fellows for many useful discussions on the poreh
and for keeping me amused throughout. In particular, I would like to thank Grae for
helping me find that last boundary condition, Alan for helping me delve into some of the
murkier depths of thermodynamics, Jerome for performing the experiments at incredibly
short notice, Victor and Devin for teaching me how to throw properly and Rachel for the
amusing episode with the lobster. Finally, I owe a huge debt of gratitude to my supervisor
John Wettlaufer who has patiently guided and encouraged me throughout the summer.



9 Appendix A: Derivation of the Gibbs—Thomson co—efficient
&

In order to obtain an approximation for C, the dependence of the equilibrium salt concen-

tration at an interface upon curvature, we start with the liquidus relationship at a curved

surface including solute:

Ysilm
f

where T;, is the melting temperature of a pure liquid salt, m is the slope of the liquidus,

T=T,—m(l —c)+

K (45)

¥st 18 the surface energy of the liquid-salt interface and Ly is the heat of solution of the
salt. We note that we have assumed that the curvature term is independent of solution
concentration, so the resulting expression will not be exact.

Rearranging, we obtain
J‘Im —T - A.l".‘;.‘fm

c=1-— K 40)
m 'mﬁj- (307
we we recognise as
c=ci(T)+CK (47)
where ¢, (1) is the liquidus concentration, so that we find
Yol
e sl m‘ (48)
mLy
Taking typical values of the constants, £; = 4 x 108Jm~, T},, = 273K and 74 = 5 x

10~ 2J m~2, we find that C ~ =7 x 107 ?wt% m.

10 Appendix B: Equilibrium vapour pressure and surface
concentration
We consider the effect upon equilibrium vapour pressure of adding salt to a liguid. In
equilibrium, the chemical potentials of the two phases are equal:
ui(T, Pyc) = po(T, P), (49)
where the subscripts correspond to liquid and vapour respectively and we have assumed the
vapour pressure of salt to be zero.

Expanding the chemical potentials about pure equilibrium at temperature T and vapour
pressure Py, and using the Gibbs-Duhem equation [Wood Battino|,

(T, Po) + u(P — Po) — kT'c = py(T, Py) + vo (P — Fy), (50)
where vy < v, are the volumes per mole of each phase, so that using
(T, Py) = po(T, Po). (51)
we obtain KT
P — J—h = ——, (‘I-“?]
Uy
which for an ideal gas becomes
P = Py(1 —c). (53)
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11 Appendix C: Estimating the magnitude of ¢

For a realistic experiment, the controllable factors are the temperature T', the initial salinity
of the droplet, the initial volume of the droplet and the far field water vapour pressure P
Therefore there will be a variation in local vapour pressure at the surface of the droplet
which is determined by local equilibrium with the droplet and diffusion in the vapour.

Assuming that the vapour is stagnant above the droplet so that vapour transport occurs
by diffusion alone, then the vapour pressure will satisfy Laplace’s equation

VP = 0. (54)

A number of studies [11],[5] have modelled the evaporation rates of a pure droplet by
treating the vapour diffusion problem identically to an electrostatic problem. Poulard et
al. assumed that the droplet is effectively a flat disc, which is appropriate for fluids with
small contact angles to the substrate. while Deegan et al achieved a more accurate result
by considering the electrostatic field associated with a lens. As we require an estimate only,
we will assume the evaporation rate matchs that for a disc held at constant surface vapour
pressure so that the evaporation rate is approximately

_2D,(P—Px) |

E =~ [;"l;"l}
ﬂ'!’ﬂ R‘E = i"2

where D, is the diffusion rate of water vapour in the air, P, is atmospheric pressure, I’y is
the vapour pressure for a droplet in equilibrium with the vapour, 7 is the radial coordinate
for the dise, and I? is the radius of the disc.

Although in deriving the evaporation rate, we have assumed a constant vapour pressure
(and hence constant surface concentration which is only an approximation). this should
provide us with a reasonable approximation for the local surface vapour pressure.

We will now convert the local evaporation rate into the surface concentration ¢,
as follows, Using the boundary condition for conservation of mass at the liquid vapour
interface,

e

D,—
oz

= Ecr, (56)

and using the approximations

de cr — Cf
(0 d

g (7’ - "") (58)
HI CL

2¢;dD (P — Px) 1

;T‘Dxl}n v‘:"?" = J""']-

we find that

and so

ey — e =

so that

ey B 2¢1dD (P — Px) r

r 7D P, (R2 — 1r2)2



As we expect there to be shape determined complications at the edge of the droplet we

take » = R — d to obtain an upper limit upon C, and r = 0 for a lower limit. Therefore,
for a 6% difference in relative humidity so that (P; — Px)/FPs &~ 1.8 x 107, and letting

d=

10~%m, we find that a reasonable approximation for G is that it will vary from 0 to

2.7 x 103wt% m~"! across the droplet.
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A particle-simulation method to study mixing efficiencies

Takahide Okabe

March 15, 2007

1 Introduction

Mixing by fluid flows is a ubiquitous natural phenomenon that plays a central role in many
of the applied sciences and engineering. A geophysical example is the mixing of aerosols
(e.g., CO, supplied by a volcano, say, or by human activity) in the atmosphere. Aerosols
are dispersed by molecular diffusion on the smallest scales but are more effectively spread
globally by atmospheric flows. The density—and density fluctuations—of some aerosols
influence the albedo of the earth and thus have an environmental impact. Hence it is
important to understand fundamental properties of dispersion, mixing, and the suppression
of concentration fluctuations by stirring flow fields.

At the most basic level, the mixing of a passive scalar can be modeled by an advection-
diffusion equation for the scalar concentration field with a specified stirring flow field. 1In
this work we will focus on problems where fluctuations in the scalar field are generated
and sustained by temporally steady but spatially inhomogeneous sources. The question of
interest here is this: for a given source distribution, how well can a specified stirring flow
mix the scalar field? Mixing can be measured by the scalar variance over the domain. A
well-mixed scalar field will have a relatively uniform density with “small” variance while
increased fluctuations in the scalar density will be reflected in a “larger” variance. We put
quotes around the quantifiers small and large because the variance is a dimensional quantity
whose magnitude depend on the choice of units employed. A dimensionless measure of the
scalar fluctuations is necessary to give precise meaning to these characterizations.

Several years ago Thiffeault et al [1] introduced the notion of “mixing efficiency” for
a velocity field stirring a steadily sustained scalar by comparing the bulk (space-time)
averaged density variance with and without advecting flow. In the absence of stirring the
mixing is accomplished by molecular diffusion alone, which can be very effective on small
scales but is not generally very good at breaking up and disbursing large scale fluctuations
quickly. Stirring can greatly enhance the transport of the scalar from regions of excess
density to regions of depletion, however, suppressing the variance far below its diffusion-
only value. The magnitude of this variance suppression by the stirring, i.e., the ratio of the
variance without stirring to the variance in the presence of stirring, is a dimensionless
quantity that provides a sensible gauge of the mixing efficiency of the flow. Different
advection fields will have different efficiencies stirring scalars supplied by different sources.

[Sv]
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It is then of obvious interest both to determine theoretical limits on mixing efficiencies for
various source configurations and to explore whether those limits may be achieved.

In this project we develop a computational scheme that is easy to implement and appli-
cable to the study of mixing by any advection field and with any source distribution. The
idea is to develop a method that accurately simulates advection and diffusion of large num-
bers of passively advecting particles introduced by a steady source, and to measure density
fluctuations by “binning” the particles to produce an approximation of the “hydrodynamic”
concentration field. Unlike a numerical PDE code, a particle code does not prefer specific
forms of advection or source (PDE methods generally work best with smooth fields). There
is. however. no free lunch: the accuracy of the particle code is ultimately limited by the
finite number of particles that can be tracked. The limitation to finite numbers of particles
inevitably introduces statistical errors due to discrete fluctuations in the local density and
systematic errors in the variance measurements due to binning. But these problems can be
addressed and as will be shown in this report, for some applications the method proves to
be computationally efficient and guantitatively accurate.

The most significant upside of a particle code-—and one of the most significant motiva-
tions for this work—is that it can easily handle (i.e.. resolve) small scales in sources and,
subsequently, in the concentration field. It is even applicable to delta-function sources whose
resolution requirements would strain standard PDE methods. Delta-function scalar sources
are the most singular physically relevant distributions. and at the same time the simplest
to implement in a particle tracking scheme: just introduce the particles at the same point
in space. A delta-function source could serve, for example, as a model of a smoke stack
supplyving an aerosol into the atmosphere when the smallest scales in the flow are larger
than the radius of the outlet.

The remainder of this report is organized as follows. In section 2 the mathematical
model is presented. basic quantities characterizing mixing phenomena are defined, and some
general results about mixing efficiencies are reviewed. In section 3 the particle simulation
scheme is explained in detail. The problems inherent to a discrete particle method. and
solutions to these problems. are also discussed. The particle code as implemented is numer-
ically validated in section 4. There. the variance from the particle code is compared with
exact solutions and the results of a PDE code for some benchmark problems. In section
5 the particle method is used to measure the mixing efficiency of a particular statistically
homogeneous flow stirring ever smaller-scale sources (down to a delta-function source). This
is a new result, and it is qualitatively and quantitatively compared to previous analysis of
upper bounds on the mixing efficiency for such sources. We close this report with conclusive
remarks and provide appendices containing details of the computer code used to implement
the scheme.

2 Basic facts about the mixing efficiency problem
In this section we review basic facts about the mixing efficiency problem as formulated
by Thiffeault. Doering & Gibbon el al [1] and further developed by Plasting & Young [2],

Doering & Thiffeault [3], and Shaw et al [4]. The dynamics is given by the advection-
diffusion equation for the concentration of a passive scalar p(f.x) with time-independent
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but spatially inhomogeneous source field S(x):

dp R
-%+u-Vp=ntAp+S(x). (1)
(
where x is the molecular diffusivity and u(t,x) is a specified advection field that satisfies
(at each instant of time) the incompressibility condition

V.u=0. (2)

For simplicity, the domain is the d-torus, i.e., [0, L)* with periodic boundary conditions. We
will limit attention in this report to stirring fields that satisfy the properties of statistical
homogeneity and isotropy defined by

wi(x,) = 0 (3)

S e
wi(X,)uj(x,:) = —0;; (4)
d

where the overbar is time average and U is the root mean square speed of the velocity field,

a natural indicator of the intensity of the stirring (recall that d is the spatial dimension).

These statistical properties are shared by homogeneous isotropic turbulence on the torus.
We are interested in fluctuations in the concentration p so the spatially averaged back-

ground density is irrelevant. It is easy to see from (1) that the spatial average of p grows

linearly with time at the rate given by the spatial average of S. Hence we may change

variables to spatially mean-zero quantities

- - A I )
a(t,x) = p(t,x) — Id /d'!:r.‘ p(t,x) (5)
and
1
s(x) = S(x) - - [mws(xn -
that satisfy
o0
% +u-Vl = kA0 + s(x). 7

(We must also supply initial conditions for p and/or # but they play no role in the long-time
statistically steady statistics that we are interested in.)

The “mixedness” of the scalar may be characterized by, among other quantities, the
long-time averaged variance of p, proportional to the long-time averaged L? norm of 6,

2
(6?) = i fi/u dt % / dz 6°(1, x) (8)

The smaller (#?) is, the more uniform the distribution is. The “mixing efficiency” of a
stirring field is naturally evaluated by comparing the scalar variance to the variance with

229



the same source but in the absence of stirring. To be perfectly precise, we compare (6%) to
(6,%) where 6 is the solution to

0
S H.‘ﬁ{}“ == h'(X) {[}}
ot
(with, say. the same initial data although these will not affect the long-time averaged fluc-
tuations). Formally, then, the dimensionless mizing efficiency is defined

(10)

This efficiency carries the subseript 0 because we can also define multiscale mixing efficien-
cies by weighting large /small wavenumber components of the scalar fluctuations:

(IVP6o|°)
. (p=-1,0,1). (11)

(Iv76]?) -
As discussed in Doering & Thiffeault [3], Shaw et al [4] and Shaw [5], £+ provide a gauge
of the mixing efficiencies of the How as measured by scalar fluctuations on relatively small
and large length scales respectively. In this project, however, we will focus exclusively on
the mixing efficiency at “moderate” length scales, &.

There is a theoretical upper bound on &y valid for any statistically stationary homoge-
neous and isotropic stirring field [3, 5, 4]:

2 ko [8(K)[* /K

& VTS (32)
R e? 1.0
T o SR/ (K + Bk2)
where s(k) are the Fourier coefhicients of the source and the Péclet number
UL
Pe := —. {13)
=

is a dimensionless measure of the intensity of the stirring. Generally we anticipate that &
is an increasing function of Pe and the estimate in (12) guarantees that £y(Pe) < Pe as
Pe — oo, the scaling expected if there is any residual variance suppression in the singular
vanishing diffusion limit (i.e., & — 0 with all other parameters held fixed).

The upper limit to the mixing efficiency in (12) depends on the stirring field only through
U via Pe. but it depends on all the details of the source distribution. As studied in depth
in references [3, 4, 5], the structure of the scalar source can have profound effects on the
behavior, i.e., the high Pe scaling, of &. It is precisely this source-dependence of the
qualitative behavior of £y(Pe) that motivates this development of a computational method
that can handle singular source distributions.

In the remainder of this report we focus on the two-dimensional torus (d = 2) and for
computational simplicity and efficiency we take as the stirring field the “random sine flow™
defined for all time by

: 2wy ; . . e = i F
. wsin( =+ + o, )1 for nT"<t<nT+1T1/2
nfl:x) = ) {_,;’_-,_ ol ) gEl A 7 o (14)
wsin( == + ¢y, )j for nT'+1/2<1t<(n+1)1
where T is the period, n = 0,1,2,.... and ¢, and ¢, are random phases chosen indepen-
dently and uniformly on [0,27) in each half cycle. Then U = w/ V2.
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3 A particle code

In a particle code to solve the advection-diffusion equation, the concentration field p is
represented by a distribution of particles. Particles introduced by generating random loca-
tions using the properly normalized source S(x) as a probability distribution function, and
advecting them with the flow. Given a particle distribution, p(¢,x) is measured by covering
the domain with bins counting the number of particles per bin.

A particle code is employed because it can deal with a small-scale source. It is easily
applicable for any source fields and advection fields, while the spectral method prefers fields
whose Fourier expansion is simple. The downside of a particle code is that it necessarily
introduces statistical errors: the number density of particles calculated by dividing the
domain into bins is only resolved down to the lengthscale of bin size, and the measurement
of p always includes error due to the use of finite number of particles.

In this section the numerical scheme based on a particle code is explained. The code
mainly consists of three parts: 1) Time evolution, 2) calculation of variance, and 3) a
particle subtraction scheme. The time evolution is realized by displacing each particle with
appropriate advection and diffusion, and by adding new particles in accordance with a
source term. We calculate spatial variance at a random instant once each half cycle in order
to take its time average. A subtraction scheme removes group of particles that are well-
mixed and this not participating in time evolution any longer. The subtraction scheme is
necessary and crucial to prevent a calculation from slowing down due to an ever increasing
number of particles in the system. Details of the code are presented in the appendix.

3.1 Variance calculation

The variance (6%) is measured by monitoring the fluctuations in the number of particles per
bin and time averaging. In two dimensions the domain is divided into /2 bins and the code

9 - . . . L . . ww .
calculates (n*) where n is the number of particles in a bin and (6?) is initially approximated
by

2
(n?) — (n)? = (IT“) (6?). (15)

We say “initially” because the expression above includes both the hydrodynamic fluctuations
of interest and discreteness fluctuations resulting solely from the fact that each bin contains
a finite number of particles. We will discuss corrections to this expression for the variance
to account for this effect below in Section 3.3. Beyond these inevitable fluctuations due
to discreteness, because of the binning density fluctuations are observed only down to the
length scales ~ fT which is one of the sources of error in this procedure.

The variance is calculated once per each half period, and the instant when it is calculated
is determined randomly in order to obtain an unbiased time average. Thus each half period
is divided into two parts, before and after variance caleulation, and the particle transport
and source processes are appropriately adapted.
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Figure 1: Gaussian due to diffusion only.  Figure 2: Distorted Gaussian due to shear.

3.2 Time evolution: particle transport

At each time step. the system is evolved by advection and diffusion. and by the source
terms. IMirst we focus on particle motion, and then on the particle input.

An advection-only equation would be solved by evolving particles along characteristics,
and a diffusion-only equation would be solved by adding Gaussian random noise to each par-
ticle. With both advection and diffusion we need to solve a stochastic differential equations
to determine the proper displacement of the particles during a time step. The stochastic
differential equation is

dX = u(t. X)dt + V2 dW (16)

where W(1) is a standard vector-valued Wiener process.

In order to solve (16) we will assume that the displacement due to the noise in a half-
period 7'/2 is much smaller than the wavelength of the random sine flow. Then during each
half period the drift field u(t, X) experienced by each particle can be approximated by a
constant flow with a linear shear superposed. For the first half of the period for a particle
starting at (zg, yo) = (X(f = 0). Y (t = 0)) we approximate (16) by

dX
dy
and for the second half of the period, starting from (a7, y,) = (X(t =T1/2).Y (t = T/2)),

dX = 2k dW,

” . -2; ." ." e - -
dY = u':«'m(% + ¢t + w cos| ',_‘“- -+ r,-‘)"]t'}‘—_'-(,\ — xh)dt + V2K dW.

'EI‘HiII(E—T}‘_i‘“—' + @)dt + ”.(.“5(3_7;3_'_' + r,‘_:}""T”()' — yo)dt + 2k dW,
V2 AW,

Il

(17)

Il

(1IR)

Therefore, during the first half period we evolve the position of a particle through a time
interval At (where At < 7T'/2 need not be small) by the map

r f

92

271 i . . 12 [ . . _

r— X+ wsin( I.“ + 0) At + \,-" FH'HN" + 254t x Ny + \f SS2RAL x Ny (19)
J ¢ U T

¥y — yo+ V2rAL x Ny (20)



where N; and Ny are independent N(0,1) random variables. A similar map is employed
during the second half of the period. These stochastic maps include the shear—in the
approximation that the shear remains constant for each particle during each half cycle
that causes a “distortion” of a Gaussian cloud of particles; see Figures 1 and 2.

3.3 Time evolution: particle input

The steady scalar source is realized by introducing new particle one by one using normal-
ized S(x) as a probability distribution function. Numerically, such probability distribution
function can be realized by mapping uniform random numbers with an inverse of cumulative
probability distribution function in question. In Figures 3, 4 and 5, sample source terms are
visualized by putting many (in these examples 10) particles at once. The monochromatic
source in Figure 3 is S(x) = A[l + sin(27(x + y)/L)].

Figure 3: Monochromatic Figure 4: Square (a = %} Figure 5: Square (a = ILI")

In the actual time evolution of the system, however, new particles are added one by
one. Since new particles are put in constantly, the total number of particles increases which
makes computation slow down. To cope with increasing particles, we will implement a
particle subtraction scheme as described in the next section.

3.4 Background noise and subtraction scheme

Particles eventually get well mixed, and the “older” particles do not contribute the value
of the hydrodynamic variance. There is no added value in keeping track of those particles,
and we can simply remove them from the system after a sufficiently long time. In fact it
is necessary to implement such a particle subtraction scheme so that computation goes on
without slowing down.

A subtraction scheme eliminates particles which are “well-mixed”, but we need to be
careful about the well-mixedness in a particle code. If the system is completely mixed. the
hydrodynamic variance (62) = 0. But since 6(t,x) is represented with a finite number of
particles and bin of a finite size, (Hg)m(,n_..,,,m; is nonzero even when the particles are uniformly
distributed: (n?) has the same amount of fluctuations as the error we might have when N,
particles are randomly thrown in [? bins. Thus when the particles are uniformly distributed
(n?) — (n)? is the order of Na"/f2 as illustrated in Figures 6 and 7. There fﬁm‘.,mn-mi(f}
where the overline now represents the volume average—is plotted in the diffusion-only case
with the monochromatic initial condition. Instead of approaching 0, n‘)’_'),,,(.m.,n..;(f) goes to
Nai/l?. We call this departure from 0 a background fluctuation, and we refer to the error
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due to the use of the finite number of particles and finite size of a bin as error due to
discreteness.

Figure 6: & = 1072, Ny = 10*, 10? bins Figure 7: x = 107%, Nyj; = 10%, 10* bins

These background fluctuations must be removed to obtain hyvdrodynamic variance that
we are interested in. The effect of this subtraction is illustrated in Figures 8 and 9. When
the initial density is p(0,x) = A[l + sin(2#(x + y)/L)],

ar? 27
p(t,x) = A {1 +e tTgin ( i (@ + ;;_})} > (21)

the instantaneous hydrodynamic variance, i.e., #2 = (p — p)?, is

02(t) = L)f R (22)
As illustrated in Figure 9. after background fluctuations are subtracted off we obtain the
correct behavior, i.e.. exponential decay. In Figure 8 it might be difficult to tell the differ-
ence, but in the log-linear plot in Figure 9 it is obvious that €2 shows exponential decay
only after background noise is removed. From this point on, this background noise is always
removed when (62) is calculated.

Figure 8 Normal plots Figure 9: Log-normal plots
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Figure 10: Normal plots Figure 11: Log-normal plot.

A group of particles can be discounted, removed from further consideration, once their
variance reaches the level of background fluctuation. In the actual code, we keep track the
An particles put in a half period as a group and they are removed after they participate in
the time evolution for a time f., where t, is a typical time scale for An particles to reach
the background fluctuation level. The “lifetime” ¢, depends on the number of particles
in the cohort we are regarding as “old”, the form of the source field, the advection field,
and of course the diffusion coefficient . This lifetime is estimated by plotting a transient
behavior of the variance of An particles under the particular advection and/or diffusion
conditions of interest. In Figures 10 and 11, 10° particles, initially distributed as for the
monocromatic source, are mixed by diffusion or advection-diffusion. Eventually both cases
end up in a well-mixed state (in the figures, background fluctuations are already removed)
and t, is estimated to be ~10 in the case of advection-diffusion and ~45 in the case of
only diffusion. These values of t. would then be used for long time average measurements
for these particular source, stirring and diffusion conditions. For each source, stirring or
amplitude of diffusion, such a transient calibration simulation must be repeated to determine
the appropriate value of ¢, .

3.5 Benchmark Tests

In this section we report the results of specific simulation where the particle code results
can be compared to either exact solutions or numerical solutions of the inhomogeneous
advection-diffusion partial differential equation. These benchmark tests serve as a check
of the code and give some quantitative information about our particle tracking scheme’s

accuracy.

3.5.1 Simulation parameter independence

First of all, the measures of hydrodynamic variances should be independent of An (the
number of particles introduced each half-cycle of the stirring) or the bin size that is used
to estimate p(t,x). The parameter independence can be checked by changing the value
of An or | with other conditions fixed. Here, we illustrate An independence by showing
the exponential decays of transient variance for several values of An. x is 0.01, 0.001,
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0.0001, respectively, and An = 10%(red), 10°(green) and 10° (blue) (Figures 12, 13 and
14). The plots show exponential decay until the particles are well-mixed, as expected, and

™! 1 o | ._—__‘—_'—-_‘—'—‘-——.

Figure 12: #=0.01 Figure 13: £=0.001 Figure 14: £#=0.0001

the exponential decay rates are independent of An (at least in the range [107,10°] tested).
The straight lines fit to the data here are the exact theoretical values with no adjustable
parameters.

3.5.2 Diffusion-only with steady source

Secondly we consider diffusion-only with a steady source since (6,°) can be calculated exactly

for these cases. It is possible to solve Eq. (9) analytically by Fourier expansion:

Oo(t.x) =Y bo(t.k)e'*> (23)
k=0
s(x) = a(k)e*™ (24)
k0

Note that #(t.k = 0) = 0 and that §(t.k = 0) = 0. because #(t.x) and s(x) have zero
spatial means. The inhomogeneous diffusion equation is

I‘I)ﬁ.l] iy . \
e — —h'!\"'lq[]“.k] + H[k:‘ {'_').—II
It
so that
- s k A ." 1.2
fo(t, k) = {—) + ( fp(0,k) — s(k.} Ll (26)
KR* Kkk?

Plugging this expression into the definition of (6,).

"0 ‘ | /1 | ¥ ) ) o e e -
0,°) = ;IF.IA]L i [I :HF /ff!.f‘ Z Oo(t. K)o (1. K el kHK) (27)
- " k.k'+#0
1 ¢ ; :
= lim T/ dt 3 1o(t, k)2 (28)
TR i k#0
| S(k)|? _
- Ll
A k#0
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We now check if the particle simulation code produces this value with three kinds of sources:

(1) a monochromatic source, (2) a square source and (3) a delta-function source.
For the monochromatic source,

('”ng> =

. St
2 = .
(6y") = 108742 (30)
. ‘ (Au) LA
2 . = ‘
(#y°) + (bin vol.) = 128712 (31)

and the comparison of theory and simulation is presented in tabular form:

K

(8[}2)miculatcd

theoretical values

0.05
0.02
0.01
0.005
0.002
0.001
0.0005

0.1290+0.0076

)

0.7914+0.0032

3.21540.010
12.370+0.014
78.836+0.052
312.82+0.13
1236.394-0.29

0.128324
0.802029
3.208119
12.8324
80.2029
320.8119
1283.24

For the square sources

g xe[—5+;’ —+L_,]

8\x)= { 0 otherwis

the variances are

se

(6,°)

|
D’[,_,
[
—
~| =
=) U
[
1M
=
L)
+ |
-
)
e
P ey

sin(k12)\* /sin(k29)\? s
&) kn)

: 116 (An)\° 1 sin(k5) . sin(k25) 2 -

2 — 2 2 [

: = — [ E . - 3
(Hn ) o T | (Af) = (klh o A.z-]‘ ( ,{l.] ( A‘_z { 5_)

and the simulations yield

{1 = %
K (09" )calculated  theoretical values
0.01 45.5934£0.041 45.862
0.005 177.7504£0.092 183.448
__ 1
‘ a= 10
K (()‘UE)R.M(..,k,,m theoretical values
0.01  141.593+£0.075 142.092
0.005  565.99£0.19 H06R.37
—; :fs
. a = 20
K (6%)calculated  theoretical values
0.01  150.502+0.086 150.615
0.005  599.79+0.20 602.46
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Finally, for the delta-function source

s(x) = Sé (J‘— {—;)6(_{;— i;) (35)

we have

. 1 §* 1
(”{12:} = 7'_1 9 Dy D (:“))
g S (ky* + ko)
; I (An 2 | 1 An 2 :
B e e = — | .I%:3.8669 % 102, 37)
(no’) w2 (Af) lgn (k2 + ky2)2 K2 (Ar) " 37)

(Note that (37) can be obtained by letting a — 0 in (34).) We can check if the code outputs
the same value:

K [ (()”'2),]“.“,\,,,.(.‘1 theoretical values
0.02 100  37.77240.023 38669
0.01 100 142.673+£0.064 154.678
0.02 200 2.412740.0025 24168
0.01 200 9.4448+0.0044 9.6674
0.02 400 0.151164+0.00024 0.15105
0.01 400 0.59042+0.00034 0.60421
0.005 400  2.3600040.00085 2.41684

24 ; 3
In those results, (#,°)measurea tends to be smaller than the theoretical values because variance
calculation is based on bins of a finite size and the contribution from smaller scales is not
. .« f £) . .

included. I (6,) neasurea 18 compared with, say,

'k!“ P

1 [5(k)? -
2 L k4 (38)

k+#0

the discrepancies would be smaller. Also, note that in the case of a delta function source,
the bin size needs to be very small-—at least in the neighborhood of the source —in order
to obtain accurate values.

3.5.3 Advection, diffusion and a steady source

Finally, we compare the full advection-diffusion-source code with the results of a spectral
method applied to the inhomogeneous advection-diffusion partial differential equation. In
Figure 15, the mixing efficiency is plotted against Pe for the case of the monochromatic
source stirred by the random sine flow. The green curve shows the theoretical upper bound
and the red curve is calculated by spectral method [4. 5. The blue points are from the
particle code. This comparison shows that the code accurately calculates mixing efficiencies
and that it can be effectively as accurate as spectral method even with An is as small as
107,
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Figure 15: Benchmark test for the mixing efficiecy with a monochromatic source.

4 New applications

The particle code is applicable for small-scale sources, as shown in the diffusion-only case
in the previous section. Figures 16, 17 show, repectively, the upper bounds on the mixing
efficiencies and the measured values of the mixing efficiencies for square and delta function
sources. The theoretical upper bounds and data plots are for source sizes L/2,L/10, L/50
and a delta function source (from top to bottom in each plot). The upper bound analysis
predicted that as the source gets smaller, the £y(Pe) curves are lowered. While the upper
bound for any finite-size source is asymptotically ~Pe, the delta function source behaves

o= in the large Pe limit.

As the source gets smaller, the measured mixing efficiencies get smaller in a way that is

~

qualitatively remarkably similar to that shown by the bounds. That is, Figures 16 and 17
show that the observed mixing efficiencies qualitatively display the same features as that
of upper bounds as far as source-size is concerned. The bounds and simulation data are
plotted together for comparison in Figure 18,

5 Future Works and Conclusions

We have confirmed that we can use a particle code to study hydrodynamic mixing efficien-
cies. The particle method reproduces theoretical values and previous numerical simulation
correctly. As we saw, the outputs may be as accurate as a PDE code. Moreover, the number
of particles used to represent the passive scalar field can be as small as 10%. The particle
method is particularly useful for simulations at high Péclet number and with a wide variety,
including singular measure-valued source distributions. In this project. the same code was
used effectively for a monochromatic source, square sources and a delta-function source.
The code efficiently produced reliable results for all these cases.
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Figure 17: The plot of mixing efficiencies

What we have done here is just the very beginning of investigations exploiting the
particle code. There are lots of problems to be explored. Firstly, we can adapt the method
to other stirring fields. In this paper only the random sine flow was used. but it is possible
to extend this approach to other advection fields such as sine flows with a variety of wave
numbers or turbulent flows. Secondly, simulations in three dimensions important. The
distinction between mixing efficiencies for the finite-size square sources and a delta function
source is predicted to be much more apparent in 3D. The extension of the particle method
to 3D is straightforward although simulations will require much more computation power
(more particles and more bins will be necessary). Thirdly, the mixing efficiency on large
length scales, £, can be calculated in principle even though only £y was caleulated in this
project. Fourthly, we would like to see the results of the small-scale sources reported here
reproduced by another numerical scheme. Then the results presented in this report can
serves as a benchmark test for new codes.
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Figure 18: Upper bounds (solid lines) and simulation data (points). The different colors
represent the different source sizes.
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Appendices

In these appendices we explain the detail of the code, including the actual imple-
mentation.

A Calculation of Variance

The domain is divided into 1#1 bins (i.e. bin size is deltal=L/l) in order to calculate
instantaneous variances. Given positions of all the particles, (p[n].x and p[n].y
(n=1, 2, ---, N_all), the number of particles in each bin (bin[c], ¢=1.2, ---, 1*1)
is counted as follows.

for(n=1; n<=N_all; n++){
u=(int) (p[n] .x/deltal);
v=(int) (p[n].y/deltal);
bin[v*1+u+1]=bin[v*1+u+1]+1;

)

u and v are horizontal and vertical positions of a bin. Bins are labeled from bottom
left to top right, and if a bin is located at (u. v), the label is v*¥1+u+1. Variance
calculation follows.

nbar=(double)N_all/(double) (1%*1);

a=0;

for(c=1;c<=1%1;c++)

{
a=a+(bin[c]-nbar)*(bin[c]-nbar)/((double)l*(double)l);
¥

var=a-nbar;
In the last line, background fluctuation is removed.

B Miscellaneous components on time evolution

B.1 Periodic boundary condition

for(n=1; n<=N_all; n++) {
while(p[n].x>L){p[n].x=p[n].x-L;}
while(p[n] .x<0.0){p[n].x=p[n].x+L;}
while(p[n].y>L){p[n].y=p[n].y-L;}
while(p[n] .y<0.0){p[n].y=p[n].y+L;}



B.2 Source term

Source term is realized by adding a new particle one by one in accordance with S(x).
In the case of a square source, a new particle is generated every An/Af, using a
probability distribution function

o}

o —a 4 L a_ L \
pla,y) =4 o X € | 2 T3 T 2] (39)
0 otherwise

The corresponding code is

void source(double a, double *xo, double *yo){
double x1,x2;

x1=a*(double)rand () /(double) RAND_MAX+0.5-0.5%*a;
x2=a*(double)rand() /(double) RAND_MAX+0.5-0.5%a;
*x0=x1;

*yo=x2;

}

A monochromatic source is a little bit difficult. We need to generate a pair of random
numbers which follow

27, &
plr.y) =1+ sin (Tl{,r - f;}) x € 0. L]" (40)
Because this probability distribution function is tilted. let us consider it in the new
coordinates (§.1) = (;%tJ'w-y).ﬂﬁ{—n'*—y)). Then. the probability distribution
funciton becomes

| 27 .
p(€) = —= (1 +:«'in(T\/§£)) £ € [0.v2].n € [0.v2). (41)
V< -

1 is given by uniform random numbers, and £ is given by mapping uniform random
numbers by the inverse of the cumulative distribution function of (41):

& % L L o A 19)
\/§ A .li'r(“h \/ﬁLcﬁ ['...

The subroutine inv maps a uniform random number y with the function above by
using bisection method up to the accuracy of 0.01*deltal. Then source subroutine

rotates the frame by T and imposes periodic boundary conditions.

void source(double deltal, double *xo0, double *yo){
double x1,x2,y,z1,z2;

y=(double)rand() /(double) RAND_MAX;

x1=inv(y,deltal) ;
x2=sqrt(2.0)*(double)rand()/(double)RAND_MAX;
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z1=(x1-x2)/sqrt(2.0)+0.5;
z2=(x1+x2) /sqrt(2.0)-0.5;
while(z1>1.0){z1=z1-1.0;}
while(z1<0.0){z1=z1+1.0;}
.03}
033

E]

while(z2>1.0){z2=z2-1
while(z2<0.0){z2=2z2+1
*x0=2z1;
*yo=z2;

}

2

double inv(double y, double deltal)
{

double small, mid, large;

int 1;

small=0.0;

large=sqrt(2.0);
while(large-small>0.01*deltal)

{

mid=0.5%(large+small) ;

if (func(large,y)*func(mid,y)<0.0){small=mid;}
else{large=mid;?}

}

return(mid) ;

}

double func(double x,double y)
{

double z;
z=-y+x/sqrt(2.0)+1.0/(4.0*pi)-cos(4.0*pi*x/sqrt(2.0))/(4.0*pi);
return(z) ;

}

B.3 distorted Gaussian profile: (noise) subroutine

The following code is just the noise parts of (19) and (20). Normal Gaussian noises
(y1, y2) are generated by using Box-Muller method.

void noise(double kappa, double S, double dt, double *randl, double
*rand2) {

double x1,x2,yl,y2, a,b,c;
x1=((double)rand()+0.01) /((double) RAND_MAX+0.01) ;
x2=((double)rand()+0.01) /((double) RAND_MAX+0.01) ;

(]
1N
[y ]



yl=sqrt (-2.0*log(x1))*cos(2.0*pi*x2) ;
y2=sqrt (-2.0*log(x1))*sin(2.0*pi*x2) ;
a=S*sqrt (0.5*kappa) *dt*sqrt (dt) ;

b=sqrt (kappa*S*Sxdt*dt*dt/6.0+2.0*kappa*dt) ;
c=sqrt(2.0xkappax*dt) ;

*randl=a*yl+b*y2;

*rand2=c*yl;

}

B.4 Subtraction scheme

It is easy to implement subtraction scheme. Subtraction of N4 older particles is done
by re-labeling particles.( Nyq + 7)th particle becomes ith particle. and the number of

all the particles gets smaller by Ngq. In this code, Nyg = An.

if (j>=cutoff){
N_all=N_all-deltan;
for(n=1;n<=N_all;n++){
pln] .x=p[n+deltan].x;
pln] .y=p[n+deltan].y;
}

}

C Time evolution

The following code is time evolution from the beginning of the period to variance
calculation.

phi=2.0*pix*rand()/(double)RAND_MAX;
randt=(double)rand () /(double) RAND_MAX;
for(c=1;c<=1%1;c++)

{

bin([c]=0;

}

a=0.0;

t_obs=deltat*randt;

N_obs=(int) (deltan*randt) ;

for(n=1;n<=N_all ;n++)

{

noise(kappa, -w*2.0*pixcos(2.0*pi*p[n].y/L+phi)/L, t_obs, &randi,
&rand2) ;
pln].x=p[n].x-t_obs*w*sin(2.0*pi*p[n].y/L+phi)+randi;
pln] .y=p[n].y+rand2;
while(p[n].x>L){p[n].x=p[n].x-L;}
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while(p[n] .x<0.0){p[n].x=p[n].x+L;}
while(p[n].y>L){p(n].y=p(n].y-L;}
while(p[n].y<0.0){p[n].y=p(n].y+L;}
u=(int) (p[n] .x/deltal);

v=(int) (p[n] .y/deltal);

bin[v*1l+u+1]=bin[v*1+u+1]+1;

k

for(n=1;n<=N_obs;n++)

{

dt=t_obs-deltat*(double)n/(double)deltan;
source(deltal, &xo, &yo);

noise(kappa, -w*2.0*pi*cos(2.0*pi*yo/L+phi)/L, dt, &randl, &rand2);
p[n+N_all] .x=xo-dt*w*sin(2.0*pi*yo/L+phi)+randl;
p[n+N_all] .y=yo+rand2;

while(p[n+N_all] .x>L){p[n+N_all] .x=p[n+N_all].x-L;}
while(p[n+N_all] .x<0.0){p[n+N_all] .x=p[n+N_all].x+L;}
while(p[n+N_all] .y>L){p[n+N_all] .y=p[n+N_all].y-L;}
while(p[n+N_all] .y<0.0){p[n+N_all] .y=p[n+N_all].y+L;}
u=(int) (p[n+N_all] .x/deltal);

v=(int) (p[n+N_all] .y/deltal);
bin[v*l+u+1]=bin[v*1+u+1]+1;

),

N_all=N_all+N_obs;

nbar=(double)N_all/(double) (1*1) ;

First, random phase (phi), the time to calculate variance (t_obs) and the number
of particles added into the domain from the beginning of the period to the variance
calculation (N_obs) are calculated. In the first for-loop, the particles which already
existed at the beginning of the period are evolved based on (19) and (20), bound-
ary conditions are imposed and (coarse-grained) concentration field is recovered by
binning. In the following for-loop, new particles from a source term are added with
source subroutine. dt is a time from particle creation to the variance calculation.
which is different from particle to particle. Those new particles are evolved in the
same way as existing particles. The time evolution after the variance calculation is
implemented in the same way. The time evolution of the second half of the period is
similar except that the random sine flow is vertical.



On Thin Ice: The Mechanics of Failure in Sea lce

Dominic Vella

March 15, 2007

1 Introduction

Sheets of Hoating ice are rarely at rest or found in isolation. They are driven by wind and
water stresses and hence collisions with other sheets are unavoidable. The focus of this
report is on the mechanical aspects of slow collisions between thin sheets of floating ice.
Such interactions underlie the mosaic of patterns found in the world’s most extensive bodies
of floating ice — sea ice — and hence are of geophysical importance. However, we are drawn
to the topic by the simple fact that the patterns resulting from collisional interactions arce
visually arresting and may have mechanical implications that extend beyond the system
that motivates our work. We begin with a description of some of the phenomenology that
we aim to understand.

[n sea ice. where the “sheets” of relevance are called “floes”. collisions are observed to
create three families of patterns. The creation of each family, which can be characterized
by a post-collision pattern or morphology. can be envisioned either as the result of the
compression of a single sheet, or floe, of ice that fails and forms two floes which continue to
collide. or the collision between two pre-existing floes. Often, due to the inhomogeneities
of the floes involved, or the forcing that drives them together, some combination of these
three patterns is observed in the field.

The most destructive of these families of ice patterns is the pressure ridge in which
the two ice floes break up as they collide thereby forming a “sail” and a “keel” of highly
fractured ice blocks. Less destructive are the two types of rafting illustrated in figure 1:
simple rafting and finger rafting. In simple rafting, one ice floe rides over the adjoining floe
without the creation of a large amount of rubble. Finger rafting is similar to simple rafting
in the sense that the two floes alternately ride over and under one another forming a series
of interlocking fingers. Generically, these fingers have very sharp linear features that are
particularly striking — as is the well-defined spacing of the fingers.

For those interested in geophysical scale modelling of the interaction of sea ice with the
atmosphere and the ocean, these deformation processes are particularly important. For
example, the ridging and rafting of ice alters the albedo of the ice cover significantly (in
rafting. the ice doubles in thickness and so appears much whiter than surrounding ice) and
plays a major role in the mechanical redistribution of sea ice thickness [2]. Rothrock [15]
also provides reasons for studying these deformation phenomena:
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Figure 1: Rafting of thin sea ice. Left: ‘simple’ rafting of one floe over another in the
Beaufort Sea. Note the crack formation parallel to the free edge of the ice. Right: ‘finger’
rafting in the Amundsen Sea. Photographs courtesy of Wilford Weeks [21].

“If we knew what the constitutive equation for pack ice should be, we would not
need to pay attention to the mechanisms of floe interaction. But the simple fact
1s that we are not at all sure about the constitutive equation ... we have turned
to the study of these mechanisms rafting, ridging, shearing, and opening
to deduce what we can about the large-scale mechanical behavior of pack ice.”

Because the families of deformation patterns are intrinsically interesting, our outlook
on the value of this study is one of optimism. We would like to understand the formation
of finger structures in finger rafting and determine what the characteristic width of the
resulting fingers is. We would also like to characterize the precise conditions under which
each of the three deformation patterns is observed.

2 Governing equations

Throughout this report, we shall model an ice floe as a thin elastic sheet floating on a
denser liquid: water. In this section we describe the governing equations for a thin plate,
including the effects of in-plane forces. Some detail on the origin of these equations is given
by Mansfield [12].

The midplane displacement, w(a,y), of a thin elastic plate subject to a pressure p is
determined by a balance of forces on the plate. If we introduce a force function ¢ to ensure
that forces are balanced in the plane of the plate, then the normal force balance leads to
the governing partial differential equation

BViw = p+ [w,y] (1)
where B is the bending stiffness, or flexural rigidity, of the plate and

Pad*b  _ 0*a 0*b  0*a 0%
b == - 2—— + ——.
dx= dy* dxdy drdy  Oy* dr~
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B is related to the plate thickness, h, as well as the elastic properties of the material (the
Young's modulus, E, and Poisson ratio. v) by
; Eh®
Br= s, (3)
12(1 — )

For an elastic sheet (of density pg) floating on a liquid (of density p) the pressure p is
simply the hydrostatic pressure in the liquid. With no forces other than gravity acting, the
sheet will float with w = ws = h(1/2 — ps/p). For simplicity. therefore. we shall measure
all vertical displacements relative to this equilibrium level. The pressure p is then given by
p = —pgw from which it immediately follows that

BVYw + pgw = [w, ] (4)

For a displacement (u, v, w), the in-plane strains, ¢;;, are given by

l,..2 l,.2 ! \ [~
€rg = Ugp + 5Woe, €y = Vgy+ W5, €y = sliy + U + W, ), ()

where w . denotes the partial derivative of w with respect to o and so on (hopefully avoiding
confusion with the various components of tensors). The displacements u and © may be
eliminated from these relationships using the condition of compatibility (e.g.. [12], pg. 13).
Relating the strains to the in-plane forces and hence to the derivatives of the force function
. it is possible to show that

Vg = = Ehjw, w). (6)

Equations (4) and (6) may be non-dimensionalized by rescaling lengths with ¢, =
{pr_r;}1-"1 and the force function ¢ with the bending stiffness. In this analysis, (.. the
length scale over which vertical deflections of the floe decay, plays a central role. We use
uppercase letters to denote dimensionless quantities so that X = o /(.. ©® = /B and so on.
Equations (4) and (6) may then be rewritten as

VIW 4+ W = [@, W], (7)

and
Vie = —1s[w W] (8)
respectively. Equations (7) and (8) are commonly attributed to one or both of Foppl and
von Karman (e.g., [12]).
In (8) we have introduced the dimensionless stretching stiffness

Eh

S=E——rm,
(Bpg)'/?

(9)

which measures the relative ease with which the ice floe stretches and bends to accommodate
deformation. Note that because B ~ h*, § ~ h='/2, and hence for the thin ice floes that are
of interest here, we expect to find that § > 1 so that deformation can be accommodated
more easily by bending than stretching. This expectation is vindicated by substituting some
typical values for the material properties of ice, as is shown by the data collected in table 1.
This table also gives typical values for the characteristic length ¢, based on these material
properties.
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Material Properties Values for h = (0.1 m
Ice type | E (GPa) v om (MPa) {, (m) S Reference
Fresh 03-12 | 0.33 1-3 3.1+0.1 107 8, 17]
Sea 0.1-09 — 0.1-04 1 —-1.7 1-3x10° [22]
Sea 1 0.29 0.4 1.75 3.4 x 103 5]

Table 1: Typical values from the literature for the mechanical properties of ice. Here, a,,
is the yield strength, to be introduced later. Also shown are the implied values of the
characteristic length £, and the non-dimensional stretching stiffness, S.

T T
—> —

water
/ X=a

“ z=w)

Figure 2: Schematic diagram showing a floating thin elastic sheet buckling under a com-
pressive load 7.

3 The buckling failure of an ice floe

The most striking deformation patterns in sea ice are observed when two ice Hoes collide.
This commonly occurs when a lead opens in thick ice and a thin layer of ice is formed by
the freezing of ocean water in the lead. The movement of the thicker ice subjects the thin
ice growing over the lead to large forces, which cause it to buckle and ultimately to fracture
forming two or more floes. In this section we consider the buckling and subsequent failure
of this thin ice.

In the two-dimensional buckling problem (illustrated in figure 2) there are no variations
in the Y direction (i.e. into the page). The displacement of the ice plate, W, is therefore
independent of Y and the Foppl -von Karman equations (7)-(8) simplify to the system

Wax + W =00y Woy, Vo =0. (10)

Since W = W(X), ® 9y = f(X) and so ® xy = A(X)+Y f'(X). However, ® yy is just the
traction exerted on the ice in the Y —direction, i.e. into the page. This traction is zero for
compression purely in the X —direction and so we have f'(X) = 0 and f(X) is a constant.

Since the traction in the X direction is 7 at the boundary X = a, we have ® oy (a) = —7
and so f(X) = —7. Equation (10) therefore reduces to the ordinary differential equation
Waix +7Wox + W =0. (11)

The relevant boundary conditions to accompany (11) deserve some discussion. The thin
layer of ice covering a lead is normally frozen into the thicker ice at the edge of the lead. We
therefore take the boundaries of the thin ice at X = %a to be clamped so that W y(fa) =



W(+£a) = 0. The symmetry conditions about X = 0 suggest that a solution is the form
W(X) = Acos kX, where the wavenumber k satisfies

K —7k?+1=0. (12)
There are, therefore, two possible wavenumbers, k4, given by
ki =g(r+V72-4). (13)

In general W (X ) will contain both of the wavenumbers given in (13). The condition of zero
vertical displacement at X = 4a is satisfied by

cosh, X cosh_ X )

H'(,\'):.:‘l( - (14)

cos kya coshk_a
where A is some (as yet undetermined) constant. The remaining boundary condition that
Wy (za) = 0 leads to a condition relating k&, and k_, namely the dispersion relation

kytankia = k_tank_a. (15)

Since ky = ki(7), the solutions of (15) determine the compressive force 7 required to
produce this displacement. For a given value of a, (15) has an infinite number of solutions,
the smallest of which is 7 = 2. This corresponds to the smallest value of 7 for which A,
and A_ are real: it is shown in Appendix A that there are no solutions of (15) for complex
ky. When 7 = 2, by = k_ and (14) shows that W = 0. Each value of 7 > 2 that solves
(15) corresponds to a different mode of buckling in the ice floe. We shall consider only the
lowest mode of buckling. which corresponds to the smallest value of 7 > 2 that solves (15).

Having determined 7 by solving (15) the solution for the shape of the buckled ice floe
is given by (14) up to the multiplicative constant A. The value of A is determined by the
natural length, L. of the ice floe in its undeformed state. Neglecting any stretching of the
ice floe and assuming small deformations, the contour length of the deformed floe must be
equal to its natural length, i.e.

B =

L:/(HH&W%wz%+./nﬁ¢y (16)

i 1} il

In general, the ice floe may accommodate some of the imposed deformation by compressing
(negative stretching). To account for this, we recall the expression for the strain ¢ y x given
in (5) and express the strain in terms of the force function &

= - l T ey
{ X F %” N T Exx = E( b_'.!'l' = L"l’_-_g_\') = —L—q, (17)
Integrating this expression between X = —a and a and using svmmetry about X' = (), we
find that =
/ H'I'f‘\- dX =L —2a(1+7/8). (1R)
)
Substituting the form of W(X) from (14), we find that
(1l
/ W% dX = A? l—_i(!\'} + k%) + ak® tan®* kya + ky lnnﬂuru] . (19)
4]



which can be substituted into (18) to give A. Since k4 and 7 are determined by the
numerical solution of (15), they depend only on the value of a. The shape of the ice floe
can, therefore, be completely determined numerically for given values of a and L.

Beyond some critical compression, the stresses within the ice floe become so large that a
crack is initiated within the ice and the ice fails, forming multiple floes. We now quantify this
expectation using the results just obtained for the buckled shape of the floe. Throughout
this report we shall assume that failure occurs when the maximum stress throughout the
thickness of the ice floe reaches some critical failure stress, denoted by o,,. For elastic
plates, the stress varies linearly with the perpendicular distance, z, from the mid-plane. In
particular, from [12] p. 5 we have

Ez
(1-v%)B

O =

Mi;, (20)

where M is the bending moment. The maximum stress is then achieved at the plate surface
(|z] = h/2) and the ice will fail if

Eh 6] Minax|
m < O T J’ll'mm: = — .
Im S ST OB | h2

(21)

Implicit in the derivation of the failure eriterion in (21) are two assumptions. The first
is that ice behaves like a brittle material on the timescales of interest to us here. The second
assumption is that strains vary linearly throughout the thickness of the floe. While these
two assumptions are not always appropriate for floating ice, they are extremely convenient
and are in good agreement with experiments to determine the maximum load that can be
borne by an ice floe [9].

In the buckled state considered here,

A!”nmx| =

B,
=Wl (22)

and so the ice will fail when

r 2[*(1_U2)0—m 9
W xx|ly = S (23)
Note that this relation suggests that for ice of given material properties, thin ice floes can
support relatively large curvatures without breaking. By fixing L and calculating |[[W x x|
numerically for different degrees of compression, we find that typical ice floes fail while the
ice deformation is small. In particular, figure 3 shows that the maximum slope of the
interface is small at failure even for very thin ice floes. The linear theory presented here is,
therefore, self-consistent and we may continue to make use of the linearized equations for
the remainder of this report.
We note also from figure 3 that ice is very fragile and breaks readily under compression.
To emphasize this point further, figure 4 shows the dimensional amplitude of the floe de-
flection at failure as a function of ice thickness. This shows that we can only expect to see
very small amplitude buckles in unbroken ice. This is in accordance with the observation
of Weeks [21] that it is very difficult to observe these buckles in the field unless there is
drifting snow to highlight them.
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Figure 3: The magnitude of the maximum sheet curvature, [[W x x||_. as a function of the
largest gradient of the buckling mode, [|[W x|[_. Here § = 10%, L = 50 and we have taken
om = 2x 10" Pa, E = 3% 10° Pa and v = 0.3 to plot horizontal dashed lines corresponding
to the maximum curvature possible before failure for four different ice thicknesses.

0.04 -

0.03 ==

0.02

[lw]| (m)

0.01

0 0.02 0.04 0.06 0.08 0.1
h (m)

Figure 4: The maximum dimensional deflection of a buckled ice Hoe as a inetion of ice
thickness, h. Here S = 10, L = 50 and we have taken a,, = 2 x 10° Pa, E = 3 x 10® Pa

and v = (.3 as typical values [14].



Figure 5: Photograph showing an end-on view of simple rafting. The overriding floe has
failed in places, suggesting a close link between simple rafting and pressure ridging. Courtesy
of John Wettlaufer.

Z=WX)

X

Figure 6: Schematic of two ice floes on the brink of rafting.

4 Rafting versus ridging

Having explored how a thin ice floe can buckle and then break under compression, we now
move on to consider what happens once the ice has broken but the compression has not
ceased. For simplicity, we shall consider two ice floes colliding, although the analysis in the
previous section shows that two or more breaks may occur in general. Two outcomes of
this collision seem plausible: either one ice floe may ride over the top of the other (‘simple’
rafting) or both ice floes may break as they come into contact causing an accumulation of
rubble in a ridge. The photograph in figure 5 shows that these two possibilities are very
closely related. Here, we show that there is a critical thickness above which ridging, rather
than rafting. should occur. This is a result first derived by Parmerter [14], though we
develop a much simplified model that leads to essentially the same result. This simplified
analysis highlights the important physical principles that determine when rafting can occur.

Consider two ice floes in the configuration shown in figure 6 the two floes are on
the brink of rafting. In this scenario, any tension within the floes can only be balanced
by friction in the very small overlapping region. We shall neglect this friction and hence
neglect the tension within the floes. This means that the shape of each floe is governed by
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(11) simplified by the assertion that 7 =0, i.e
Wax+W =0. (24)
Solving this equation subject to the jump in plate height at X = 0:
W(™)—-W(0")=H = h/t,,
and the continuity of the first three derivatives of W at X = (0, we find that

i —{\p (X/V?2)cos(X/V?2), X<0 }
W(X) = :
—“Q"le)(_-\f\/ﬁ cos( .\/\/‘E‘J. X 0.
From this expression, it is a simple matter to show that the maximum bending moment in
the two plates occurs at X = 4+7/2v/2 and has a value
Bhe exp(— /1

e i (26)
L3 ‘_)\/_

| Mipax| =

For rafting to be possible we require that this bending moment be less than the maxinnum
allowed by the failure criterion (21). In dimensionless terms. we require that the thickness
satisty
H < H, = 2/4¢"/8(1 — »2)V (")1 (27)
E
for rafting to be possible. Note that dimensional analysis leads us to expect that H,. =
flom/E). The functional form of f cannot be determined without this detailed calculation,

however. In dimensional terms, (27) reads

Tm (28)
g E° 3

which has the same dependence on material properties as the result given by Parmerter

[14] but with a prefactor &~ 12.8 rather than 14.2. Our approach has the advantage of

being analytic, rather than numerical, and arises from a much simpler model of the rafting
;)]'l)('(‘HH.

We can use the typical values given in table 1 for the material properties of ice to give an
estimate for /.. Because these properties are sensitive functions of temperature and salinity.
we must be careful to use estimates of o, and E observed in the same sample mixing
values from a weak sample (small o) with those of a stiff sample (large E') can confuse the
issue. We find that 12 em < h,. < 19 em, which brackets the transition thickness of 15 ¢
described in the context of field observations [24].

Above the critical thickness given in (28) we expect that the ice floes will break before
rafting can occur and a pressure ridge will be formed. In particular, the maximum bending
moment occurs a dimensional distance wl,/2v/2 away from the contact region and so we
expect that a crack will form here and will be parallel to the edge of the floe. The simple
rafting shown in figure 1 shows just such a crack forming. We expect also that the blocks
within the resulting pressure ridge should have this typical size. Weeks and Kovaes [24]
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Figure 7: Schematic of two ice floes preloaded by rubble formed during failed rafting,.

report that in one particular pressure ridge they found ice of thickness 30 cm and thick-
ness/length ratio in the range 0.1 —0.2. This compares well with the calculated ratio, which
should lie in the range 0.07 — 1.2 based on the typical material properties of ice.

On occasion, ice has been reported to raft even though it was well above the critical
thickness given in (28); rafting has been reported in ice up to 2 m thick. In these instances.
it is also reported that the region where rafting occurs is covered with rubble formed by
previously broken ice. Babko et al. [2] suggested that the presence of this rubble could lift
one floe above the other, thereby facilitating rafting. In particular, consider two floes on the
brink of rafting, as shown in figure 7. If these floes are too thick to raft in the configuration
shown in figure 6, pieces will break off of them. The weight of overlying rubble formed from
the overlying floe will depress the subducting floe further while the buoyancy of submerged
ice blocks from the subducted floe will lift the overlying floe further. Here, we present a
simple model to quantify how much of an effect this preloading could have and whether it
can significantly alter the critical thickness at which rafting occurs.

We imagine that the region —L < X < L is covered in rubble: this weighs down the ice
floe with X > 0 and lifts the ice floe with X < 0. The shape of the two floes is obtained by
solving (24) modified to incorporate the loading produced by the rubble. The appropriate
boundary conditions are the same as in the earlier calculation leading to (25). This yields
the floe displacement

M exp(n) cos n + %1 exp(€) cos €, X < -L
W(X) = H(l-r7r)- # exp(—n)cosn + % exp()cosé, —L< X <0 (29)
i —Hr — ”—‘%ﬂ exp(—n) cosn + %-1 exp(&) cos €. 0<X <L s
- L‘,") exp(—n)cosn — %—’3 exp(—E&) cosé, X > L,
where r = pg/p is the non-dimensional density of the ice and
X+L X-L
e n= 2 (30)

The maximum bending moment in either floe may then be determined numerically using
the solution in (29) for given values of » and L. The results in figure 8 show the maximum
curvature as a function of the extent of rubble, L, for three different values of the density
ratio r. These curves show that as I, — oc the maximum curvature tends to a constant value.
Considering the asymptotic limit L > 1, we find that the maximum value of [[W yx||
oceurs at X ~ +7/2%2+ L from which it immediately follows that the maximum curvature

throughout the system is
Hr
Wy y i AR 31
W x x| o W) (31)
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Figure 8: The maximum curvature in ice floes loaded /supported with rubble over a horizon-
tal extent of L for three different values of r = p¢/p. The dashed lines show the asymptotic
result (31). which is valid for L > 1.

Following the same procedure that led to (27), we find that the maximum non-dimensional
thickness, H}, for which rafting can ocenr is

HE =

[

(32)

T
L

?:-l_..-' 1( .‘T-."ﬁ{ l = “3}]-’ (n”r ) 1/2
rlf= .

E

which is precisely the same result as presented in (27) modified by a factor =2, i.e. H =
r—12H,.

For ice, » = (.9 and so in dimensional terms this mechanism can account for an increase
of about 25% in the maximum thickness for which rafting can occur (h> = r*h. = 1.23h,).
It seems that this mechanism could explain rafting in slightly thicker ice (up to h =~ 25 cm,
say) but does not explain rafting in much thicker ice. We therefore conclude that the large
discrepancy must instead be attributed to variations in the mechanical properties of the
ice, as well as the complex rheology and geometry [16] of sea ice. In this regard. note that
the data presented by Weeks and Anderson [22] shows that o, is a very sensitive function
of salinity while E is more sensitive to temperature.

5 Finger rafting
In the remainder of this report, we shall be concerned with understanding a more exotic
form of rafting between two ice floes: the formation of interlocking fingers that ride over

and under one another. This is commonly called finger rafting because of the striking finger
patterns that form (see figure 1).
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5.1 Field observations

Several authors have written about the phenomenology of finger rafting from their obser-
vations in the field. These include not only observations in sea ice (starting with Weeks
and Anderson [23]) but also observations in fresh water ice by Weber [20] and Green [7].
Tuhkuri and Lensu [19] have also observed some evidence of finger rafting in their ice-tank
experiments using a mixture of ethanol and water. With the exception of the field obser-
vations of Mahoney and others [11], all observations of finger rafting have been limited to
very thin ice: typically h < 10 cm.

As well as being the thickest ice for which finger rafting has been reported, the wave-
length of the fingering pattern observed by Mahoney is also large. Does the thickness of the
ice influence the wavelength of the finger rafts that are formed? We have collated the re-
ported estimates of ice thickness and the wavelength of the fingering pattern (reported and
measured from published photographs). Table 2 shows this collection of data, and seems
to suggest that the narrowest fingers occur in the thinnest ice. This correlation between ice
thickness and wavelength was suggested by Green [7] although Weeks and Anderson [23]
believed that there was no such correlation.

5.2 Finger rafting in wax

To the best of our knowledge, finger rafting has been reported only in ice floating on water.
This might lead the reader to think that the appearance of fingers is reliant on some property
of ice that is not common in solids. To investigate whether this is in fact the case, and hence
determine the extent to which the phenomenon is of a general mechanical nature, we have
conducted experiments using very thin layers of solid sealing wax floating on water to mimic
ice floes. The sheets of wax were manufactured by pouring molten wax onto a solid substrate
covered with a flexible film of polyvinylidene chloride (a.k.a. saran wrap). After the wax
has cooled, the polyvinvlidene chloride film may be peeled away leaving a thin wax sheet.
It is difficult to ensure that the thickness is uniform. but this seems not to matter a great
deal.

The mechanical properties of the same sealing wax were kindly characterized by Larry
Wilen of Unilever using an ultrasonic apparatus. His experiments showed that for frequen-

Thickness Wavelength Ice type Reference | Symbol

2 -3 mm 6 — 20 cm Fresh ice (7] &

3-8 mm 2m Fresh ice (7] I

1 —2cm 10 m Fresh ice (7] "

2—6cm 2—-8m Sea ice [23] A
2.5—6.9 cm 4—6m Ethanol-water (19] *
3.5—4.5 cm 7—9m Sea ice 6] O
1.3—1.5m | 20— 100 m Sea ice (11] ¢

Table 2: Field observations of ice thicknesses in which finger rafting has been reported and
the wavelength of the resulting fingering pattern. The symbols indicated are used to plot
these data in figure 11.
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Figure 9: Experimental realization of finger rafting in thin wax sheets floating on water,
Here the thickness of the wax sheets is in the range 150 — 500 pm and the length of the
sheets is around 40 ecm. For clarity, the edge of the fingered wax sheets has been highlighted
with a white line.

Figure 10: Plan view of finger rafting as observed in thin wax sheets of thickness in the
range 170 — 380 pm. The total field of view here is around 30 cmi.
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Figure 11: Wavelength of fingering pattern, A, for floating sheets with differing characteristic
lengthscales, £,. The data plotted here are a combination of those in table 2 (obtained from
the field observations of others) and our own experiments with thin sheets of wax floating on
water (denoted by x). The colouring of points signifies the type of solid in which the finger
rafting was observed sea lce, fresh ice and - . The line shows the theoretical
prediction (40).

cies in the range 1072 — 102 Hz the Young's modulus lies in the range 1.57 x 10% — 1.16 x
10” Pa, assuming a Poisson ratio » = 0.3. These experiments also demonstrated a solid-
solid phase transition in the wax at a temperature close to 35°C. Above this temperature
the wax becomes ductile and does not fail under loading. Rather, it deforms plastically. We
therefore ensured that the wax was allowed to cool to room temperature before performing
the experiments reported here.

The thin wax sheets were floated on water with their long edges in contact and then
pushed together by hand. As shown in figures 9 and 10, we observed finger rafting. Ex-
perimental constraints, the most important of which were the ability to accurately control
the thickness of the wax and to avoid edge effects in the transverse direction, limited the
number of fingers observed. However, the fingers shown in figures 9 and 10 have the strong
rectilinear features reported of finger rafting ice. Moreover, plotting the typical wavelength
of this fingering pattern (A) as a function of the characteristic length £, seems to show
reasonable collapse with field observations of finger rafting in ice, as shown in figure 11.
Note that £, ~ h%% and so there is some correlation between A and h.

5.3 A physical mechanism

Several authors have suggested that finger rafting occurs because of wave action [3, 4, 23].
Although their mechanisms differ in terms of details, the essential ingredients are the same
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and may be paraphrased as follows. Finger rafting is initiated when a small portion of one
ice floe is deposited on top of another ice floe by an advancing wave crest. This leaves
a portion of the ice out of water and not supported by another ice floe. A tear forms in
this area (since sea ice is not strong enough to support its own weight) and a first finger is
formed. As the wave crest passes on, the other ice floe protrudes onto the first, tears and
forms a finger pointing in the opposite direction to the first. As more waves are incident on
the ice, a series of prototype interlocking fingers is formed which grow as the ice floes are
compressed and the ice floes plough through one another.

While this explanation may be correct in many circumstances, it cannot form the basis
of a general theory of finger rafting. Firstly, in nature finger rafting occurs when there is
wind but no open water for the generation of a swell [7]. Secondly. the mechanism above
relies on the fact that sea ice cannot support its own weight and so will fail if not supported
by either water or other regions of ice. This is certainly not the case for the thin sheets
of wax used in our laboratory experiments, and is also unlikely to be the case in the fresh
water situations for which finger rafting has been observed.

An alternative explanation relies on some small overlap between the two ice floes (see
figure 12): if a small portion of ice floe A overrides ice Hoe B at a point C, floe A is
lifted slightly at the point C by the additional buoyancy provided by the presence of floe
B. Conversely, floe B is depressed at the point C' by the additional load provided by the
presence of floe A. As we have seen many times already in this report, the characteristic
response of an ice floe to such perturbations is not monotonic decay in the far field but
rather an oscillatory deflection modulated by an exponential decay. We therefore expect
that away from the point C both floes A and B will have an oscillatory vertical deflection,
shown schematically in figure 12. In particular, the free edges of the two Hoes should have
an oscillatory vertical deflection. Moreover, bhecause the initial perturbations to each of the
floes are of opposite sign, these oscillations remain out of phase along the length of the
free edge: crests of floe A correspond to troughs of floe B and vice versa. The free edges
of the two floes are displaced vertically relative to one another. Thus. these out of phase
oscillations cause the two floes to form interlocking thrusts during subsequent compression.

Because the displacement of the floe decays exponentially away from the protrusion,
we do not expect an overlap at one place to be suflicient for finger rafting everywhere:
the vertical displacement must be a reasonable fraction of the thickness for the oscillations
we describe to give rise to floes running over one another. Instead, we propose that the
rafting propagates along the edge rather like a zipper: when rafting occurs in one place the
displacements nearby are sufficient to cause finger rafting there too and so on. This wave
of rafting should travel at the speed of gravity waves in water covered with an elastic sheet.
The phase speed, ¢, of these waves [18] depends on their wavenumber, &, and is given by

2 Bk + pg

= —— 33
pshk? + pk (35)

In our wax experiments. the speed of the waves with wavenumber £ is typically around

0.5 ms™ ", making this zippering unobservable within the scope of the technology we em-

ploved. For ice of thickness 10 ¢m, this wave speed is on the order of 5 ms—1.
The mechanism we have described does not rely on any material properties that are

peculiar to ice, though we do require the solid material to be able to tear to form fingers as
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Figure 12: Plan view of two ice floes A and B colliding. A small protrusion in floes A
leads to an overlap of the floes in a small region, C. This overlap causes oscillations in the
vertical position of the floes, which decay away from C. The sign of these displacements is
indicated by the +/— symbols in the figure. Notice that the oscillations along the free edge
are exactly out of phase in the two floes causing the two floes to alternately ride over and
under each other under compression (arrows).

the two floe edges are pushed past one another. This condition seems also to be satisfied
by wax whereas other materials, such as aluminium foil, do not tear sufficiently easily and
so cannot form these fingers.

5.4 The deflection of a semi-infinite elastic plate

A mechanism resembling that presented above seems to have been outlined briefly by Fuku-
tomi and Kusunoki [6]. They discuss finger rafting only cursorily and give a very vague
presentation of a model of a point force acting on an infinite elastic sheet to give some idea
of the scale of fingers formed. However, they give no details of their calculations nor of the
equations solved. Here, we rectify this situation by presenting a thorough analysis of the
problem.

We modify the earlier analysis of rafting to incorporate the effect of a vertical load, F',
on a semi-infinite ice floe. Again neglecting the in-plane forces. we find that the deflection
of the floe satisfies

ViW + W = F(X,Y) (34)

The Green's function for the deflection of an semi-infinite elastic plate on an elastic
foundation was given by Kerr and Kwak [10] as well as Nevel [13]. Because an elastic
foundation is exactly analogous mathematically to a floating sheet, we shall make extensive
use of their result in what follows. In particular, if a concentrated force of dimensional
magnitude f is applied at the point (Xg, Yp), as shown schematically in figure 13, then the
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Figure 13: A point force F acting at the point (Xy.Ys) on a semi-infinite foating elastic

sheet.

vertical displacement at a point (X,Y) is given by

PGS o o s VRSN o SRR B s o _
T 7 W(X.Y:Xo.Yo) = —3|Kei(Ry)+ Kei(Ry }] +/ A(Xp.a)e " L cos k- X
0

2 4 (1-)o?]
b 2#33_ — (1 — ;/}nz]

sin k_ \} cosa(Y —Yy) da. (35)

Here Kei is the Kelvin function of zeroth order [1], R is given by

RE = [(X £+ Xo)* + (Y — Yp)?]'/? (36)
ki is given by
e = (%[\/r.-wlii])]"". (37)

and

exp(—kyXo) '.33(:’; — (1 = v)a?
Vot +1  4k3 [A""J + (1 — .'f)ff“’] — (1 —w)2al

(k- (K2 + K5 +va®)cosk_Xo — ks (2 + K5 —va®)sink_Xg] . (38)

A(Xg. ) =

x

This expression simplifies considerably if we look at the case of a point mass acting at the
origin (i.e. Xy =Yy = 0). In particular. the profile of the plate along the free edge (X = 0)
takes the form
o : o
W(0,Y) = — (—I\'(‘i[!}'[} + / A0, @) cos e’ (1r|) , (39)
" JA

where F' = f/pgf?. This function can be plotted numerically but what is of most interest
here is the position of the zeros of W(0,Y), since these determine the regions in which the
two ice floes can most easily ride over one another. The smallest Y, satisfving W(0.Y,) =0
is Y. =~ 4.507 with the next root occurring at Y, ~ 7.827. Since the vertical displacement
decays exponentially with increasing Y. we take the distance between these first two roots
to be that determining the wavelength of the finger rafting pattern with the position of
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subsequent fingers determined once the initial fingers are in place. We therefore expect
that

A = 2(7.827 — 4.507)¢, = 6.64¢., (40)

which agrees well with the results presented in figure 11.

While the case of a point mass acting on an elastic sheet is a convenient abstraction,
our actual interest lies in determining how an ice floe responds to having a finger from
another ice floe pressed on top of it. We therefore consider a finger of width 2a protruding
a distance 2b onto another ice floe. Each infinitesimal element of the protruding finger
contributes to the displacement of the overridden floe. Since the equation governing the
displacement of the ice is linear, we can sum these displacements to give the displacement
field due to the presence of the finger. An element of width §Yy and length 6 X has a weight

f = —psght?5Xy6Yy. Summing the displacement due to all of these elements, we find that
2b i
W(X.,Y) = / / W(X,Y: Xy, Yp) dYy d Xy
0 —a
ps h .
= ——w(abX,Y). (41)
p L.

We are particularly interested in determining whether we need a large perturbation to
initiate finger rafting. For the mechanism of finger rafting proposed here to be reasonable,
we need the edge displacement induced by the overlap to be comparable to the ice thickness
near the position where the load is being applied. To investigate whether this is the case.
we calculated the rescaled displacement at the origin, w(a,b,0,0), as a function of finger
size for a square finger (i.e. a = b). Because of the definition of w, the displacement becomes
of the same order as the thickness when w = O(1).

The numerically determined dependence of w on a is shown in figure 14. These results
show that as a finger gets larger the vertical displacement at the origin grows quickly.
Indeed, upon expanding the integrals in the definition of w for a,b < 1, we find that

dab o o
w(a,b,0,0) ~ — / A0, ) dae — Kei(0) | = 1.848ab, (42)
0

m

which agrees with the numerically computed values shown in figure 14 when b = a < 1.
This asymptotic result is useful because it shows that the displacement grows quadratically
as the finger size increases — this ensures that increasing the size of the perturbation makes
a large difference to the displacement field, since the size of the force applied by the finger
increases greatly. In particular, the displacement does become O(1) even for relatively small
finger sizes (i.e., values of a).

We also note that for a > 1, w(a,a,0,0) ~ 1. This is to be expected since in the
limit that an ice floe is overlain by another floe, it must sink a vertical distance psh/pf, to
increase its Archimedes buoyancy enough to balance the overlying weight.

5.5 A threshold thickness

Just as there was a critical thickness above which simple rafting is not possible, we expect
that there might also be a critical ice thickness above which simple rafting, rather than
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|w(a,a,0,0)

Figure 14: Plot of w(a,a.0.0) for various values of finger size a (solid line). The dashed
lines indicate the asymptotic expression (42) valid in the limit @ < 1 and the limit w ~ 1
valid for a > 1.

finger rafting. will take place. Based on intuition gleaned from many field observations
Weeks [21] suggests that for ice thicker than around 10 em, finger rafting becomes rarer,
presumably resulting instead in simple rafting.

As we found with the rafting/ridging transition discussed earlier, we expect that the
generation of large moments within the ice may cause the stresses within the ice to exceed
the maximum value that the ice can support. o,,. For simplicity., we will consider the
moments generated in a plate when a rectangular finger of width 2a and length 26 from
another floe sits above it. (The finger is imagined to occupy the region 0 < X < 2bh, Y| < a.)
Explicit formulae for the moments generated by a point force are given by Kerr and Kwak
[10]. but are not reproduced here. After integrating these expressions over the square
0 < Xy <2b, Yy € a (as for displacements in the last section). the moments in the X and
Y directions may be written

B . s Bl e
Maa(X,Y) = —(Wxx +vWyy) = 2220 (a,b, X,Y)
- P

My (X,Y) = - (E{V”‘”\'.\' + Wyy) = %%m;{n. b, X,Y),
respectively,

The functions i, and g, may be evalnated by numerical gquadrature. Our numerical
results are in perfect agreement with those tabulated by Nevel [13], over his limited range
of values of a and b. We find that the largest moments generated are in y,(a,b,0.0) so that
the failure of the ice floe should be manifested in a crack perpendicular to the floe edge.
This is contrary to the failure of simple rafting in which a crack formed parallel to the free
edge of the ice floe.

To find a critical thickness above which finger rafting can no longer occur. we look
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Figure 15: Plot of p,(A/4£,,b,0,0) as a function of the finger length b.

for the maximum value, i, of p,(a,b,0,0). Since we expect individual fingers to have a
dimensional width of A/2, where A is given by (40). we choose a = A/4f, and calculate
fty(a,b,0,0) for this value of a.

Figure 15 shows the numerically computed values of i, (A/4¢,,b,0,0). This demonstrates

that there is indeed a maximum value, j1o = 0.292. Given this maximum moment we require
that Bi
6 ps Bh

Om > -5 Hoa {l.ﬂl
h= p (=

for the finger to be able to grow indefinitely without the ice beneath it breaking. This
condition is satisfied provided that

H < [!’T’Q(%x"j)] - (%)1 ~ 2.6 (%)1 (44)

The critical thickness at which finger rafting cannot happen scales with o,,,/E in pre-
cisely the same way as the critical thickness at which simple rafting gives way to ridging.
However, the prefactor is different (and smaller!) suggesting that for a given value of o,/ E
we may be able to transition between finger rafting, simple rafting and ridging just be
varying the ice thickness. The condition in (44) may be recast in dimensional terms as

i BASE By (45)
Ps 3psgpise E
Taking typical values for the material properties of sea ice, we find that this transition
thickness lies in the interval
4 em < h <8 cem. (46)

This estimate is in reasonable agreement with the suggestion of Weeks [21] for a transition
thickness on the order of 10 cm and is consistent with most of the field observations collected
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Figure 16: Regime diagram showing the values of a,,/E and H for which we expect to ob-
serve each of the deformation types observed. Photographs courtesy of Wilford Weeks [21].

in table 2. for which finger rafting is observed in ice of thickness up to around 6 cm. This
also provides some quantitative support for the statement of Weeks and Kovacs [24] that:

“Although less striking when observed from the air. ssmple vafting of thin wee. . . as

actually more common than finger rafting.”

Because the maximum bending moment in the floe is ju,(a. b, 0.0), we expect that a crack
will form perpendicular to its edge. Perhaps this means that the finger breaks through the
floe and is subducted beneath along with the remainder of the raft in simple rafting? We
expect that above the critical thickness a finger might start to grow but will fall through

the underlying ice once it reached a length of at most 4¢,. However, we are unaware of

observations wherein finger rafting metamorphoses into simple rafting against which to
check this picture.

6 Conclusions

We have studied the mechanics of ice floe failure using ideas from thin plate theory. Becanse
ice is so weak (o,,/E < 1). thin plate theory allows us to study the buckling instability
of an ice floe compressed by the motion of much thicker flanking floes up to the point at
which the ice fails. We then focused on the three main types of deformation that result from
the subsequent collision of two floes. By considering the forces induced by these different
deformations we determined quantitative conditions on the different ice thicknesses for which
each of these deformation patterns is observed. In particular, by plotting the dimensionless

conditions (27) and (44) on the same graph, we obtain a regime diagram showing the
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values of a,,/F and H for which finger rafting, simple rafting and pressure ridging should
be observed. Such a regime diagram is shown in figure 16. Although our main interest
lies in the applicability of these results to floating ice, our experiments with wax sheets
demonstrate that finger rafting may also be observed in systems other than ice. However,
we do not expect the regime diagram shown in figure 16 to be quantitatively valid for other
materials: ice typically has 0,,/E < 1072 so that the transitions between different regimes
always have H < 1, and thus thin plate theory is valid. This is not generally the case for
other materials,

Appendix A: The wavenumber in buckling is real

In section 3 we assumed that the wavenumber k observed in buckling is purely real so that
there are no exponentially decaying modes. Here, we prove this assertion by supposing
instead that there is a complex pair of wavenumbers k4 satisfying (12). Since the tension
7 is real, k4 must be complex conjugates of one another and we may write ky = k. £ ik;.
The dispersion relation (15) then reads

(kr + ik;) tan(k, + ik;)a = (k, — ik;) tan(k, — ik;)a. (47)
Expanding this equation and equating imaginary parts gives

ak; cos? ak; ak,

flaky) = = glak,). (4R)

cosh? ak; tanhak, —
A plot of the functions f and g reveals that their ranges do not overlap and so there cannot
be any solution of (48) our assumption that k was imaginary is incorrect and we have
shown that k is, in fact. real.

Acknowledgments My experiments in wax would not have been possible without Keith
Bradley's tolerance of my burning wax in the lab, the use of Neil Balmforth's camcorder,
Lary Wilen's careful measurements of the Young's modulus of sealing wax and Rachel’s
impromptu (and uncalled for) karaoke sessions. 1 am grateful to Marcus Roper. L. Ma-
hadevan and Neil Balmforth for discussions about the theoretical side of this work. Two
people deserve special thanks. Firstly, Wilford Weeks has been incredibly forthcoming with
all of the information that he has on these phenomena: he provided photographs from his
upcoming book, his own translation of the Fukutomi and Kusunoki paper and has replied
to what must seem like a deluge of emails. Secondly, for introducing me to this topic,
helping in the lab, numerous conversations and maintaining his enthusiasm throughout the
summer, cheers jsw!

References

(1] M. ABraAMOWITZ AND 1. A. STEGUN, Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables, Dover, New York. 1964.

[2] O. BABKO, D. A. ROTHROCK, AND G. A. MAYKUT, Role of rafting in the mechanical
redistribution of sea ice, J. Geophys. Res., 107 (2002). doi: 10.1029/1999JC000190.

269



3]
[4]

[5]

(6]

[7]

8]

9
[10]

[1]

(13]

[14]

[15]

[16]

[17]

[18]

119]

M. DUNBAR, Thrust structures in young sea ice, J. Glaciol., 3 (1960), pp. 724 T32.

— . Note on the formation process of thrust structures in young sea ice, J. Glaciol.,

4 (1962), pp. 147-150.

R. J. Evans AnND N. UNTERSTEINER, Thermal eracks in floating ice sheets, J. Geo-
phys. Res., 76 (1971), pp. 694-703.

T. Fukuromi AND K. KusuNOK1, On the form and formation of hummocky tce ranges,
Low. Temp. Sci., 8 (1951). pp. 59-88. In Japanese (free translation by S. Takagi and
W. F. Weeks).

J. C. GREEN, Finger-rafting in fresh-water ice: Observations in Lake Superior, ).
Glaciol., 9 (1970). pp. 401-404.

P. V. Hosss, Ice Physics, Oxford University Press, 1974.

A. D. Kerr, The bearing capacity of floating ice plates subjected to static or quasi-
statie loads, J. Glaciol., 17 (1976). pp. 229 268.

A. D. KERrR AND S. S. Kwak, The semu-infinite plate on a winkler base, free along
the edge, and subjected to a vertical force, Archi. Appl. Mech.. 63 (1993), pp. 210 218,

A. Manoney, H. EilckEN, L. SHAPIRO, AND T. C. GRENFELL. lce motion and
driving forces during a spring ice shove on the Alaskan Chukchi coast, J. Glaciol., 50
(2004), pp. 195-207.

E. H. NIANSFIELD, The Bending and Stretching of Plates, Cambridge University Press.
1989,

D. E. NEVEL, A semi-infinite plate on an elastic foundation, Tech. Rep. 136, Cold
Regions Research and Engineering Laboratory, 1965.

R. R. PARMERTER, A model of simple rafting in sea ice, J. Geophys. Res., 80 (1975).
pp. 1948-1952.

D. A. Rornrock, The mechanical behaviour of pack ice. Annu. Rev. Earth Planet.
Sci., 3 (1975), pp. 317-342.

D. A. ROTHROCK AND A. S. THORNDIKE, Measuring the sea ice-floe size distribution.
J. Geophys. Res., 89 (1984). pp. 6477-6486.

E. M. ScHULSON, The structure and mechanical behaviour of wee. JOM, 51 (1999).
pp. 21=27.

V. A. SQuIRE, W. H., RoBINSON, P. J. LANGHORNE. AND T'. G. HASKELL, Velicles
and aireraft on floating ice, Nature, 333 (1988), pp. 159-161.

J. TUHKURI AND M. LENSU, Laboratory tests on ridging and rafting of ice shects, ).
Geophys. Res., 107 (2002), p. 3125.



[20] J. N. WEBER, Ice thrust structures, J. Glaciol., 3 (1958), p. 291.
[21] W. F. WEEKS, On Sea Ice, University of Alaska Fairbanks Press, 2006. In Preparation.

22] W. F. WEEKS AND D. L. ANDERSON, An experimental study of strength of young sea
ice, Trans. Am. Geophys. Un., 39 (1958), pp. 641-647.

[23] ——, Sea ice thrust structures, J. Glaciol., 3 (1958), pp. 173-175.

24] W. F. WEEKS AND A. KoVvAcs, On pressure ridges, Tech. Rep. IR505, Cold Regions
Research and Engineering Laboratory, 1970.

bo
-1



The Formation of Star Patterns on Lake Ice

Victor C. Tsai

March 15, 2007

1 Abstract

Star-like patterns have been found on many lakes that have a snow cover on top of a thin
ice laver. A number of workers have described these ‘lake stars” but there have been no
attempts at constructing a mathematical model of the formation process. Here we put
forth a mathematical model that describes the formation of radial fingers emanating from a
central source. Performing linear stability analysis on the steady state solution, we are able
to accurately predict the formation of fingers but the number of fingers is very sensitive to
input parameters. We also carry out scaled experiments. At small times and to first order,
the results of these experiments agree with our linear theory.

2 Introduction

It is a common occurrence that snow falls on lakes that already have a thinly ice covered
surface. Holes often form in the thin ice (for reasons not well understood [3]). after which
warm lake water flows through the hole and throngh the snow layer. This warm water
melts the snow and leaves dark regions where the snow has melted away. The pattern left
by this process looks star-like (see Figure 1) and we call this pattern a ‘lake star.” Lake
stars have been described a number of times (e.g. [3. 2, 5]) but very little work has been
done to understand the formation process. Knight [3] outlines a physical idea that is meant
to describe the process, but no attempt is made at determining whether this idea can be
translated into a physical model that produces results consistent with field observation.
The main idea of Knight is that locations with faster flow rates melt preferentially, leading
to even faster flow rates and therefore to an instability that results in fingers. This idea is
qualitatively similar to many other geomorphologic instability such as the ones discussed
by Schorghofer et al. [4]. We take this idea as the starting point for our model.

3 Mathematical Model

3.1 Mathematical Formulation

In order to model the physics of lake star formation, we make a number of assumptions.
Many of these assumptions are not strictly true but are reasonable approximations that



Figure 1: Typical lake star pattern. The branched arms are approximately 1 m in length.

facilitate the attainment of a simple solution that can be easily compared with observations.
We shall discuss each assumption when it is made.

We begin our analysis by supposing that there exists a central hole through which warm
lake water can seep. Both Katsaros [2] and Woodcock [5] attribute these holes as well
as the associated lake star patterns to convection patterns within the lake. However, at
least in some circumstances the holes seem to be formed from protrusions (e.g. sticks that
poke through the ice surface) [3] thus casting doubt on the convection idea. Lake stars are
observed in all of these circumstances so we treat the hole formation as independent of.,
but necessary for, lake star formation. As discussed by Knight [3], the hole results in a
water level that extends above the thin ice and into a slush (wet snow) layer. We therefore
treat this (warm) water region as having a constant height above the ice or equivalently a
constant pressure head. This pressure head drives flow of water through the slush layer,
subject to a melting condition (Stefan condition) at the water-slush interface. We treat
flow within the slush as a Darcy flow of water at 0°C. Temperature within the liquid region
is assumed to obey the (advection-diffusion) heat equation. The water in both the liquid
and slush regions is treated as incompressible. In order to fully specify the mathematical
problem, we require an outer boundary at which the pressure head is also known. While
pressure measurements have not been made in the field, circular water-saturated regions
(a few meters in radius) typically surround the lake stars. It therefore seems reasonable
to assume that the differential pressure head falls to zero somewhere in the vicinity of this
circular boundary. The actual boundary at which the differential pressure head is zero likely
is not completely uniform (as in Figure 4 of Knight [3]) but is at least a good approximation
especially before strong finger formation (i.e. in the linear regime in which we perform our
analysis). Finally, we treat the system as a two-dimensional flow. This cannot be strictly
true for two reasons. First, the water in contact with ice must be at 0°C whereas we
treat this water as having an average temperature above freezing. However, perhaps this
assumption is reasonable in a depth averaged sense. Second, the decreasing pressure head
in the radial direction must be accompanied by a corresponding drop in water level, thus
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Figure 2: Schematic of the geometry of the model. The perspective is looking down on a

nascent star. The equations are shown in the domains of the system and described in more

detail below.

making the vertical dimension non-uniform. Therefore, the driving force is more accurately

described as deriving from an axisymmetric gravity current. Regardless, the front whose

stability we assess is controlled by the same essential physical processes that we model

herein. For the purposes of the simple analysis presented here. we shall ignore these two

sccond order effects but note that the analysis could be extended to account for them.
Translating the description in the previous paragraph into mathematical language,

have the following system of equations (see also Figure 2):

Jl

M

P=ro

= +u-VI' =gV r;<r< alo.t).
n

=) H(L’). |f:| <P <10

v < alo,t).

Vip=0 a(¢,t) <t <rp,

V-u=1(

u |lr =t ey
I1

u===Vp
Iz

< r<ale,t),

r=ald.t),

alg.t) < r < ro.
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with boundary conditions

= —CE‘TW' r = a(¢,t), 8)
Iy r=r;
T'=4¢0 r=a(et), (9)
0 r=mrg
Po T =T
p=4<po r=aleot), (10)
0 r=mr

where (1) describes advection-diffusion in the liquid, (4) and (5) describe mass conservation
with a Darcy flow (7) in the slush, (8) is the Stefan condition, and (9) and (10) are the
temperature and pressure boundary conditions, respectively. Note that (3) and (5) can both
be satisfied since the liquid region has an effectively infinite permeability. 7' is temperature.
u is Darcy fluid velocity, p is pressure, and a denotes the liquid-slush interface. Liquid
properties are s (thermal diffusivity), C'p (specific heat) and g (dynamic viscosity). Slush
properties are Il (permeability), £ (solid fraction) and L (latent heat).
Non-dimensionalizing the equations vields

6 ;
(_7 +u-VO=eV20 1o<r<aldt), (11)
(
=0 a(o,t)<r<l, (12)
p=1 r<r<a(o,t), (13)
Vip=0 a(p,t) <r<l, (14)
Vou=0 r<r<alg,t). (15)
W b = r=a(p,t), (16)
u=-Vp alp.t)<r<l, (17)
with boundary conditions
i €
a= —§V9 r=a(e,t), (18)
l =y
=<0 r=alo,t), (19)
B =l
I ® =7y
p=%1 r=aldit); (20)
0 =1
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where all variables are now non-dimensional with length, velocity, pressure and temperature
scaled (respectively) by

."' ~ Thy (.2”
I,
T i (22)
T
P ~ po, (23)
T~Ty T=To0. (24)

and non-dimensional parameters ¢ and S are given by

K |
E= —, (25)
Uprn
£L
S=— (26)
( I‘IU

In the lake star system. liquid temperatures must be less than or equal to 4°C since the

lake is frozen at the top. Making conservative estimates, Ty < 4°C, & > 0.3 and L/Cp =
80°C then S > 6 > 1. Estimating ug (lem/hr < ug < 10cm/hr) and rg (0.3m < ryp < 3m)
from the field observations of Knight [3] and using & ~ 10~ m?s™! yields ¢ < 0.1 < 1.
Assuming S > 1 (quasi-stationary approximation, which we adopt henceforth) and e < |,
equations (11) - (20) are easily solved for a purely radial low with eylindrical symmetry
(no ¢ dependence) and circular liquid-slush interface. This (boundary layer) solution is

1 L

Uu=ur=————=—1 ri<ir<l. (27)
Iu;_‘;(fm] Lig

log(r)
Dy = L > ag. (28)
log(ag)
- :I[ 1/ log(agp)+2¢)
”U =1- (—) T < ay, EE!I!
g
Sapa
Sl = 1. (30)

-1/log(ag) + 2
where equation (30) has an approximate implicit solution for ag given by

2
a L. @ _ { san
T“ - —}Hl-rl{ig{”(jj = ; {-;1’

3.2 Linear Stability Analysis

In order to study the growth of perturbations from steady state. we perform a linear stability
analysis around this cylindrically symmetrical flow. In this lincar approximation, we still
have a purely radial flow since the azimuthal component of flow enters quadratically with

perturbations from steady state. Setting

r=ay+ er'. (32)
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¢ = e,
Sl L)
0 =60+ f(r")e* o+,
ik'¢'+ot

a = ap + €ge

we first solve (14) subject to (20). For ¢ < 1 and ¢ < k' then

log(r gexp(ik'¢’ + ot Ny
_ log(r)  gexp( )(?) -

= s
log(ag) —agp log(ap) agp

so that

1 1 k' gexp(ik'd' +at) [ r =Ry
H= ————— + — 4+ — S T > ap.
—log(ag) r e —ap log(ap) ap
Substituting (37) into (16) and satisfying (15) vields
1 L &
W= ———+ — + — - p— — c'xp(H\"rj;’ +ot) 1 < ag.
—log(ag) r e —rlog(ag)
Substituting (38) into (11), and dropping terms of O(¢) gives
1" I P ) 3 v kg 100
—ay In;,;'{_u.u)g ’ u.f] Y —ap log(ap) or!

where ( = r/ap = 1 + er’/ap. with boundary conditions given by

fir' = —0) =0,

f{?" s lq{_f}."f;"‘i*ﬂf} = ”.

To first order in g, (41) is equivalent to

p aty

r=g)=—g9g—-.

I 9) 95
Solving (39) subject to (40) and (42) gives
Y l Ate! Y] r' [(—ag loglag))
fo)= (1 - ) & i QORI
—aq log(ap) —k"log(ap) k' log®(aq)

with

S et F( L2y
2ag \ —log(aq) ‘ \/—]t)g(ru;] ‘

1 /1+ i Y
—2ag log(ag) \ ]ng"}[rm]

Equation (18) can be rewritten as

&

1 06

="=7 r'=gexplik’'o'+at)+
S (h.! G exi
e
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Figure 3: Stability curve: Nondimensional growth rate o versus nondimensional wavenuni-
ber k’. Scales for the axes are given at the upper left (o axis) and the lower right corners
(k" axis). o is plotted for the range of plausible ay (blue and red curves) and for the

approximation (47) (green curve).

so that substituting (43) into (45) gives the nondimensional growth rate (o) as a function
of wave number (k'):

1 / . 9 iy
= — 1+ 4k log®(ag) — 1 — = = 1) 4 46)
% 2aplog(ay)S (\f og™\a0 ) ( =k log(ap) =

Equation (46) can be approximated in 0 < o < 1 as

() \ -
(Tk.,i_..f'f]—,r]. (47)
log“(ap)S
where © = =k log(ap) /ap.

The stability curve (46) and the approximation (47) are plotted in Figure 3. The
essential features of (46) are a maximum in the range 0 < &' < ay/log(agy). zero growth
rate at &' = ag/ log(ay) and a linear increase in stability with &’ for large &’. The maximum
growth rate occurs at approximately

maxr ™

. (48)
_2 I“}__E‘{U;]}

with (nondimensional) growth rate
)

T (49)
45 ll)g"[””)

~
Tmar ~

Translating (48) and (49) back into dimensional quantities, we find that the most unstable
mode has angular size given by

T20° kK T (0 =
Ddegrees = (—- log{ — |, (H0)
upry (] ]




and has growth rate given by

Gdim = - (“—”) (51)
i 4Srglog?(ro/ag) \10/)

3.3 Numerical Results

For observed lake stars, some of the relevant parameters are not well constrained. A plau-
sible guess for rq is the radius of the wetted (snow) region around the lake stars since it
is a reasonable estimate that if there were significant excess pressure at this point then
the wetting from would have advanced further. Field observations [3, 5, 2] constrain this
wetted radius to be 1.5m < ro < 4m. However, it is also possible that the effective value
of ry (r:;”) is less than this either because the wetted radius is smaller earlier in the star
formation process or because the ambient pressure level is reached prior to reaching the
wetting front. The most logical interpretation of ay is either as the radius of the lake star
(Ttakestar) OF as the radius of the roughly circular liquid-filled region at the center of the
lake star (rjiquia) (see Figure 4). From field observations (3, 5, 2] 1m < 7iakestar < 2m and
0.1m < 7iiquia < 0.5m. Although 1o, riakestar and 7jiguia each have a substantial range, the
ratios Tjakestar/T0 and Tyiguia/To are observed to have a somewhat smaller range of values:
0.3 £ Takestar/T0 S 0.6 and 0.07 < rguia/70 S 0.15. These constraints are useful since
equations (50) and (51) are more sensitive to ag/rg than ag or rg independently. Here we
take ag & 7yiuiq as the appropriate value of ag during the initial stages of star formation.
although perhaps 'r':,'” is sufficiently less than rq that riggesiar/To is a better approximation
to uU/'rf;H than ryguiq/70. Knight [3] estimates the rate of advance of the wetting front to
be somewhat less than 10cm/hr. If the interpretation of ro above is correct then this rate
gives a reasonable estimate of ug as 1.4-107°m/s < up < 2.8-107°m/s.  is well constrained
by measurements to be x = 10~ "m2s~ 1.

Using these parameter values, our linear theory predicts the most unstable mode to
have wavelength between 8° and 130°. Letting N equal the number of branches, then
N = 360°/dueq so that we expect between three and 45 branches (initially). These values
of N encompass the observed values for lake stars (4 < N < 15), although the largest
values (15 < N < 45) are never observed. Despite the dearth of field observations, we are
encouraged by many qualitative features such as the fact that stars with larger values of
ap/rp seem to have a larger number of branches. Additionally, our analysis predicts that
(given constant ag/ro) larger values of ryp and ug would result in more branches. Larger
po (higher water height within the slush layer) and larger II (less well-packed snow) would
result in larger values of ug. Thus, some of the variability among field observations is likely
to be due to variations in these quantities (for which we have no direct observations).

At this point, it is worth restating the fact that the theory presented here is only a linear
one and the phenomenon of lake stars is highly non-linear since the dendritic arms are far
from small perturbations to a radially symmetric pattern. Since the non-linear growth
phase is likely difference from the linear one, it should not be surprising that our model
results only approximately agree with observations. In order to more accurately predict
observations, one could perform a weakly non-linear pattern formation analysis (e.g. as
in Cross and Hohenberg [1]) (which may result in a Landau-type equation) or one could
solve the system numerically. Both of these approaches would likely yield improved results.
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Figure 4: Schematic showing rg, rf,”. Tlakestar a0d Thguid-

However, while it is true that a more complex physical model may provide more detailed
predictions than the model developed here, the state of the field observations does not at
this time warrant that level of detail.

4 Experimental Setup

To check the validity of our analysis, we perform laboratory experiments. The goal of these
experiments is more to test the conceptual ideas in our simple mathematical model than to
make a quantitative connection with the observed lake stars. In these experiments, we cool
a circular plate to slightly below freezing (= —0.5°C): place a 0.5 to l-cm high, roughly
circular layer of slush on top: and fow 1°C water through the slush (see Figure 5).

To simulate wet snow we place ice in a high-power blender until the slush is visually
uniform, although there is inevitably a range of grain sizes. To form the circular laver of
slush we hand-pack the slush directly on the cold circular plate. We attempt to form a
constant thickness, roughly circular layver simply by molding the slush and removing excess
slush until the correct geometry remains. During this process air bubbles are sometimes
incorporated which causes the slush permeability to be variable. This variable permeability
likely affects our quantitative results,

We perform the experiment 14 times. The parameters that we vary are the initial size
of the water-filled central hole (ag), the initial size of the circular slush layer (ry). and the
flow rate (@) (which determines ug). In each run an attempt is made to manually vary
the How rate so that the water level (hqy) in the central hole remains roughly constant. In
many of the runs, we begin the experiment without the central hole. In practice, however.
the first few drops of warm water create a circular hole with radius one to three times the
radius of the nozzle that delivers the water (0.5cm < ag < 1.0cm). It is significantly more
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Figure 5: Experimental Setup: A 30 cm diameter plate with a built in manifold is connected
to a cooling reservoir and maintained within a degree of freezing. A separate reservoir of
fresh water 1° above freezing delivers fresh water at 1°C to the center.

difficult to prepare a uniform (permeability) sample with a circular hole initially present.
These runs are therefore more difficult to interpret.

We observe fingering of some type in every experimental run. From this we can conclude
that fingers are a robust feature under the conditions provided. However, there secem to be
two distinct types of fingering: small-scale fingering (see Figure 6) that forms soon after the
start of the experiment, and larger channel-like fingers (see Figure 7) that are ubiquitous
at later times of the experiment and often extend from the central hole to the outer edge
of the slush. Since the channel-like fingers provide a direct path for water to flow (without
Darcy flow within the slush), these are likely not directly analogous with lake star fingers.
The initial small-scale fingering, on the other hand, have characteristics more like the lake
stars. We therefore assume that these small-scale features are the ones of interest. One
should note, however, that the larger channel-like fingers seem to form out of small-scale
fingers, so there may be a continuum of finger-like features and it is likely that the channels
represent a very non-linear growth of the small-scale figures. In each experiment we measure
ag. ro, ho, Q, and distance between fingers {_n’f\l. which we tabulate in Table 1. From these

quantities, we can calculate ug = Q/(27roho), dcatc = Ddegrees [from equation (50)] and
Oobs = 180°%ds/(map), and therefore compare scaled experiments both with the model and

field observations.

5 Comparison of Theory, Experiment and Field Observa-
tions
In Figure 8 we plot ¢,p5 versus ¢uq. for the various field observations for which we have esti-

mates of parameters, the laboratory experiments described above, and the model [equation
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Figure 6: Typical experimental run where small-scale fingers are present. For scale. the
nozzle head has diameter of 5 mm.

Figure 7: Typical run where channels form. This picture is taken from the underside. Note:
part of the slush broke off when it was flipped to image it. The numbers on the ruler are

111 C111.
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Figure 8: Comparison of theory, experiment and field observations. Circles are field obser-
vations (cyan = best constrained field observation, black = range of plausible field obser-
vations). crosses are experimental results (red: flag = 1, green: flag = 2, see Table 1), red
line is theory, green line is best-fit line of unflagged (blue) experimental results. Note: all
experimental results have error bars of at least a factor of two in the x-coordinate and 30%
in the y-coordinate (see Table 1).
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Expt # ap (em) 719 (em)  ho (mm) @ (ml/min) d; (cm) fag

1 1.0 8 3 29 0.8 0
2 1.0 8 3 11 0.5 0
3 0.5 10 2 9 1.0 2
A 1.5 10 3 14 0.3 0
5 1.5 9 3 14 0.5 0
§ 2.5 8.5 10 143 2.5 1
7 2.5 10 10 306 3.0 1
8 0.7 10 3 14 1.0 0
9 0.5 4.5 3 14 0.4 0
10 1.0 9 10 128 0.9 I
11 2.0 10.5 10 128 0.4 0
12 1.0 3.5 10 71 0.2 0
13 0.3 7.0 3 14 0.5 2
14 0.6 7 3 14 0.5 0

Table 1: Experimental Results: Runs with Hag = 1 seem to have channels but show no
clear small-scale fingers. In these cases, channel spacing is taken for dy. Runs with flag
= 2 were not well documented (blurry photos) and therefore difficult to interpret. Errors
arc approximately 0.3 cm, 0.5 ¢, 2 mun, 5 ml/min and 0.2 ¢ (respectively) for the five
measured quantities.

(50)]. The most obvious feature of Figure 8 is the large amount of scatter in both the ex-
perimental and observational data. Moreover, the data does not lie on the one-to-one curve
predicted by the model. However, the data are not orders of magnitude off from the model
predictions, and the experimental results even trend in the right direction, having a best-fit
slope of 0.34. We also attempt to find trends in the experimental data not represented
by the model by comparing y = @pbs/Ocate vS. various combinations of control parameters
(= x) including rg. ag, 70/ao. rouo, ro/aolog(re/ag) and log(ro/an)/(apugy). For all plots of
y vs. &, our model predicts a zero slope (and y-intercept of 1). A non-random dependence
of y on & would point to failure of some part of our model. Thus. to test the validity of
our model, we perform significance tests on all non-flagged data with the null hypothesis
being a non-zero slope. In all cases. the null hypothesis is accepted (not rejected) at the
95% confidence level. Thus, although the agreement is far from perfect, the simple model
captures all of the significant trends in the experimental data.

6 Conclusions

By quantifying and extending the qualitative ideas of Knight [3], we have constructed a
mathematical model that is able to explain the radiating finger-like patterns on lake ice that
we call the lake stars. The model yields a prediction for the wavelength of the most unstable
mode as a function of various physical parameters [equation (50)] that agrees decently with
field observations. We also perform experiments in which we observe a similar fingering
pattern. To first order, the experimental results also agree with the model. although there
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is substantial scatter in the data. The disagreement between field observations, model,
and experiment can be attributed to poor measurements and the limitations of the simple
theory, as discussed in more detail in Sections 3.3 and 4. We expect that adding complexity
to the model should yield better quantitative results but that the general idea of the model
and the qualitative predictions that result from it should remain valid.
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