
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
STATISTICAL MACHINE TRANSLATION 

OF JAPANESE 
 

THESIS 

 

Erik A. Chapla 

 

AFIT/GE/ENG/07-06

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 
 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



AFIT/GE/ENG/07-06 
 

 
 

STATISTICAL MACHINE TRANSLATION 
OF JAPANESE 

 
 

THESIS 
 
 
 

Presented to the Faculty 
 

Department of Electrical and Computer Engineering 
 

Graduate School of Engineering and Management 
 

Air Force Institute of Technology 
 

Air University 
 

Air Education and Training Command 
 

In Partial Fulfillment of the Requirements for the 
 

Degree of Master of Science in Electrical Engineering 
 
 
 
 

Erik A. Chapla, B.S.E.E. 
 
 
 
 

March 2007 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 

 
 
 
 



AFIT/GE/ENG/07-06 
 

 
 

STATISTICAL MACHINE TRANSLATION 
OF JAPANESE 

 
 
 
 
 

Erik A. Chapla 
 
 
 
 
 
 
 

    Approved: 
 
 
 
                                                                     6 March 2007 
 __________________/Signed/_____________     
  Dr. Steven Gustafson (Chairman)    date 
 
 
                                                                          6 March 2007 
 __________________/Signed/______________     
  Dr. Timothy Anderson (Member)    date 
 
 
                                                                          6 March 2007 
 _______________/Signed/_________________     
  Dr. Raymond Slyh (Member)           date 
 
 
                                                                                      6 March 2007 
 _______________/Signed/__________________     
  Dr. Richard Martin (Member)           date 
 
 
  
 
 
 



AFIT/GE/ENG/07-06 

Abstract 

Statistical machine translation (SMT) uses large amounts of language training 

data to statistically build a knowledge base for translating from one language to another.  

Before introducing this language data, usually in the form of a parallel set of sentences 

from both languages, the SMT system has no other linguistic information available to it.  

With supervised SMT, however, additional linguistic knowledge is allowed in addition to 

the training data.  When translating between languages with little or no common 

linguistic backgrounds, like English and Japanese, using supervised SMT is extremely 

useful.  By giving the system linguistic rules before training on the parallel corpus, the 

SMT system can build better alignments between words in both languages. 

This thesis investigates different ways of augmenting the training data to find the 

best possible alignments between Japanese and English texts from a large travel domain 

corpus to yield the highest numeric scores for accurate translation from Japanese into 

English.  Results show that altering the topic and locative particles and altering tense, 

politeness levels, and verb endings in the training data result in the best score 

improvement. 

 In addition to SMT experiments, automatic speech recognition (ASR) and text 

segmentation experiments are performed.  The ASR experiments yield promising results, 

but they did not improve on the error rates of the default experiments.  The text 

segmentation experiments show that by using a combination of a 2-gram and 3-gram 

windows, segments in Japanese text are correctly placed 94.4% of the time while adding 

incorrect segments to 3.2% of possible locations.   
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STATISTICAL MACHINE TRANSLATION 

OF JAPANESE 

 

I. Introduction 

One of the more difficult tasks in natural language processing is machine 

translation (MT).  Despite considerable research over the years, MT systems have yet to 

reach human levels of performance.  Before modern computers, lack of computational 

power meant that computers were limited in their ability to handle large amounts of 

linguistic data.  Thus early efforts at MT focused on less computational methods of 

translation, such as simple word-for-word or phrase-for-phrase substitutions between 

source and target languages.  Often the basic idea of a text could be found by using this 

method when languages were from similar language families.  However, in the case of 

languages that have no common linguistic background, like Japanese and English, simple 

word-for-word or phrase-for-phrase substitution often does not work well.  As 

computational power grew, researchers built rule-based systems such as SYSTRAN [28]. 

However, these rule-based systems are difficult to build and expand, leading to long 

development times and large cost.  In addition, they tend not to be robust. 

 1

 Today, considerable research effort in MT is focused on statistical machine 

translation (SMT) goes beyond these early methods by creating translations using 

statistical methods and parallel text corpora.  The main idea behind SMT is to train a 

system by aligning large amounts of source language text data with target language text 

data, thereby educating an otherwise ignorant system as to what words in the target 

language are most likely to occur given particular words in the source text.  A new set of 

source text is then input to the trained system, and, applying statistical rules learned 



during training, target text translation is output by the system.  The quality of the 

translation is directly affected by the size of the original training corpus.  The more often 

the system encounters a particular word during training, the more likely it is to 

understand the context in which the corresponding target word or words belong.  In 

addition, if very large amounts of training data are used, very sparse words and even 

unknown words during testing become less of a problem. 

 In this thesis, research efforts are made at improving Japanese-to-English SMT 

using linguistic techniques.  It is found that the performance improved most when topic 

and locative particles in Japanese are removed from the 2005 IWSLT (International 

Workshop on Spoken Language Translation) training and test data.  Other improvements 

come from altering verbs in terms of their honorific levels and inflections.  The results 

here are competitive with the top 2005 IWSLT participants, including Japanese 

participants ATR and University of Tokyo.  Word segmentation techniques are also 

examined.  These techniques are important since word segmentation can be useful in 

building a Japanese language model for Japanese automatic speech recognition (ASR) 

and in English-to-Japanese MT.  These experiments show that by applying a 2-gram 

followed by 3-gram n-gram analysis to unsegmented Japanese text, spaces are correctly 

placed between words 94.4% of the time.  In addition, ASR experiments are performed 

on Japanese speech. The most successful experiment involve replacing the fricative /hu/ 

phoneme sound with /f/.   

 2

 This thesis is organized as follows.  The next chapter provides background on 

SMT.  Chapter 3 provides background on the Japanese language, while Chapter 4 

discusses Japanese segmentation experiments and their effects on SMT performance.  



Chapter 5 discusses Japanese speech recognition and the results of some experiments 

designed to improve performance of the ASR system.  Finally, Chapter 6 presents the 

conclusions and future work.  
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II. Statistical Machine Translation Background 

 This chapter addresses some of the basic issues behind SMT, including language 

models, translation models, smoothing techniques, and decoding.  Many of the examples 

found here are based on translation from Japanese text to English text.  For more 

information on the Japanese written language and grammar, see Chapter 3. 

2.1    Statistical Machine Translation 

Statistical machine translation requires large amounts of language data from both 

source and target languages to properly train the translation system.  In the early nineties 

large bilingual corpora became available for research, thus making SMT a viable research 

field.   

All SMT is based on Bayes’ rule,  

                                        
)(

)()|()|(
JP

EPEJPJEP ⋅
= ,                                        (1) 

where J (Japanese) and E (English) are translation pairs of source and target languages, 

respectively.  P(J) is the probability of encountering the Japanese word sequence J, and 

P(E) is the a priori probability of a given English word sequence, E.  P(E) is known as the 

language model probability.  The translation model, P(J|E), is the probability that the 

Japanese word sequence J is the translation of the English work sequence E. 
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 The goal of an SMT system is to find the best estimation of the translation of a 

Japanese sentence into English, P(E|J), that maximizes the product of the two 

probabilities of the language model and the translation model.  Given a Japanese word 

sequence, J, P(J) is constant for all English translations under consideration, so the 

estimate of the translated English string simplifies to:   



                         )()|(maxarg
)(

)()|(maxarg EPEJP
JP

EPEJPE EEest ⋅=
⋅

= .              (2) 

 A basic model of an SMT system is shown in Figure 2.1.  A typical SMT system 

must have a language model, translation model, and some decoding algorithm. 

 

 

Figure 2.1 Model for a typical statistical machine translation system 
 
 
 
2.2   Language Model 

 The language model is the probability that a phrase will occur in the target 

language.  In our case, P(E) is the probability that an English string E has occurred in the 

training sentences.  If the sentence “I have reservations” occurs 20 times in a database of 

20000 sentences, P(E) = P(“I have  reservations”) = 0.001.  On the other hand, the 

sentence “Reservations have I” would rarely occur and would have a significantly lower 

probability.  Since P(E|J) is the product of P(J|E) and P(E), a language model with very 

low probability like this second example would result in a very low P(E|J) probability.  

Therefore, when computing P(E|J), P(E) acts to filter out poorly constructed strings from 

 5

Language Model 
 

P(E) 

Translation Model 
 

P(J|E) 

Decoder 
 

Eest=argmaxEP(J|E)P(E) 

English Sentence 

Japanese Sentence



the translation model by multiplying grammatically poor word sequences by a low 

probability and rewarding well-constructed sequences with a higher probability.   

 Finding the probability of some English string E is not a simple task. Since E is 

just a string of words, what is needed is the probability of that string occurring in English.  

In addition, since the probability of each word being in the string depends on preceding 

words, the probability of a string of words E is a product of multiple conditional 

probabilities:   

 
P(E)=P(w1 w2 w3 …wn-1wn)= P(w1)P(w2| w1)P(w3|w1w2)…P(wn| w1w2 w3… wn-1).  (3) 

 

 One major problem in SMT is finding the language model probability when a 

word in a phrase does not occur in the training data.   When absence happens, P(E) is 

assigned a zero probability, and no matter how well aligned the English and Japanese 

phrases are, P(E|J) is also be zero.  For example, in Figure 2.2 the first sentence is found 

in the training data, but the second, while perfectly reasonable from a language 

standpoint, is not. 

 Accomplishing such a task seems impossible since, regardless of the size of the 

corpus, all possible strings will certainly not appear.  Since this task is fruitless, the next 

best thing is to approximate the probability of such a string using the various probabilities 

in the corpus.  This approximation is done using n-grams. 
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イタリア     の      食べ物     が     好き     です。 

                        Italy       (possessive)       food     (subject)    like(d)       is.   

“Food of Italy is liked.”(lit)   or    “I like Italian food.” 

 

スペイン      の    食べ物    が     好き   です。 

Spain      (poss.)      food      (sub.)      like(d)        is. 

“Food of Spain is liked.”(lit)   or    “I like Spanish food.” 

 

Figure 2.2. Example of how a single word with zero probability (since it never appears in 
the training sentences) can affect P(E|J) despite being an otherwise grammatically well-
constructed sentence.  Here, since Spain is never seen in the training data, P(Spain) = 0. 

 

 An n-gram is a sequence of n words. In the phrase “I would like to make 

reservations,” unigrams (n=1) are each single word in the phrase, bigrams (n=2) are 

strings like “I would,” “would like,” “like to,” etc., and trigrams (n=3) have longer strings 

“I would like,” “would like to,” “like to make,” and “to make reservations.”  The 

probability of a bigram is the probability of some word given the word directly preceding 

it, or P(wn|wn-1), where the subscript is the location of a word within the sentence.  In the 

phrase just mentioned, one bigram probability would be P(w3|w2), or P(“like”|”would”). 

The probability of a trigram is P(wn|wn-2wn-1), the probability of a 4-gram is P(wn|wn-3wn-

2wn-1), and so forth. 

 In order to calculate the probability of a given n-gram string, all that is needed is 

to find number of times the string occurs in the corpus divided by the number of times the 

preceding word occurs.  Thus for a bigram the probability of a given two-word string, 

such as “would like” is  
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0.0002  0.05  0.01  0.03  0.01  0.1  P(E) = >  0 

=  0  = P(E|J) 0  0.05  0.01  0.03  0.01  0.1  P(E) = 



                                                  
∑
∑
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nn
nn w

ww
wwP .                                         (4) 

 To find a long string of words like those in Equation 3, all that needs to be done is 

to multiply bigram probabilities.  To find the probability of the phrase “I would like to 

make reservations,” for example, seven bigram probabilities are multiplied: 

 

P(“I would like to make reservations”) ≈ P(“I”|Beginning of string)P(“would”|”I”)… 

   P(“reservations”|”make”)P(End of string|“reservations”)                     (5) 

 

 If each conditional probability in this example, found individually by Equation 4, 

has a non-zero probability, then the probability of the entire string can be approximated 

regardless of whether it exists in the corpus.  However, similar to the illustration of zero-

probabilities for individual words in Figure 2.2, if any of the bigram probability elements 

in Equation 5 does not occur in the entire corpus and thus is given a probability of zero, 

the problem of a zero-probability language model, P(E), reappears.  Some n-gram strings 

have zero probabilities even though they simply have not occurred in the corpus and 

instead should have a small non-zero probability.  To overcome this obstacle, smoothing 

techniques can be used.   

 8

 Smoothing is a method for allocating portions of the overall probability to strings 

with zero probability.  The simplest smoothing technique is simply adding one to the 

count of all strings before computing probabilities.  Thus, if a given string occurs two 

times in the overall corpus, the total count using this method is three. Likewise, all 

previously unseen strings would have a count of one.  This method for computing the 

probability of any given bigram is 



                                          
Vw

ww
wwP

n

nn
nn +

+
=
∑
∑

−

−
− )(

1)(
)|(

1

1
1 ,                                            (6) 

where V is the number of unique words encountered in the corpus. 

 While this method eliminates the possibility of zero-probability strings, it, like 

other smoothing methods, also introduces the problem of a skewed language model.  

Since the probability of all bigrams must total to one, assigning non-zero probabilities to 

these zero-probability bigrams must come at the expense of probabilities of non-zero 

bigram strings.  Likewise, some strings are meant to have zero probability.  Using the 

example of Equation 5, it not likely for a bigram to be something like “I I” or “like like.”  

These examples should indeed rarely have a count. 

 To account for this problem, a more common method of smoothing is used.  

Witten-Bell discounting computes the probability of bigrams unseen in the training data 

based on bigrams with similar first words [5].  Unlike the above method, this smoothing 

technique does not add one to every count, thereby causing increases in probabilities that 

give an incorrect view of the overall distribution, but instead bases the increase in count 

for any particular string on how often the first part of the string occurs.  The probability 

of all such unobserved bigrams is 

                                        ∑
= −−

−
−

−
+

=
0)( 11

1
1

1
)()(

)(
)|(

nn wwcount nn

n
nn wTwN

wT
wwP ,                       (7) 
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where  is the observed number of different bigrams with w)( 1−nwT n-1 as the first word 

and  is the total number of times the first word in the bigram appears in the 

training corpus.  If there are Z different strings, where Z is the vocabulary size minus 

, starting with w

)( 1−nwN

)( 1−nwT n-1 that have no count, the probability in Equation 7 is 



                                             
))()((

)()|(
11

1
1

−−

−
− +

=
nn

n
nn wTwNZ

wTwwP                                  (8) 

when the bigram count is zero.  When the bigram count is non-zero the result is 

                                              
)()(

)(
)|(

11

1
1

−−

−
− +

=
nn

nn
nn wTwN

wwN
wwP .                                  (9) 

 The reduction in probability of encountered sequences occurs because the 

probability mass shifts slightly toward unencountered strings in Equation 8, and Equation 

9 must compensate for this shift. 

2.3   Translation Model 

The translation model is the probability that, given some English string, a native 

speaker of  both English and Japanese will translate it as a specific Japanese string, or 

P(J|E).  The translation model’s goal is to align words in the source Japanese string with 

words in the target English string, where order is not important.  Instead, the idea is to 

match words with legitimate partners regardless of order.  For example, in Figure 2.3 the 

mapping of English to Japanese is correct both in alignment and in order, but if the 

sentence in English is instead “My monkey friend’s is this,” the probability score for 

P(J|E) is similar to that of “This is my friend’s monkey.”  Informally, the task of the 

translation model is to match words between languages and give a score based on 

whether or not each word or group of words in English has a partner or partners in 

Japanese. 

This   is   my   friend’s   monkey. 

 

これ  は  私  の  友達  の  猿  です。 

Figure 2.3.  Word alignment of English and Japanese strings. 
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 Since the training data is a parallel corpus, it is easy to say that a given Japanese 

string in the training data is the translation of the English sentence to which it is paired.   

The translation is accomplished by matching each sentence in Japanese to the similarly 

numbered sentence in English.  However, knowing this process reveals little about how 

individual words within each sentence are aligned between the two languages.  One 

English word can be aligned with more that one word in Japanese and vice versa.  In 

addition, word order in Japanese is different from that of English.  In order to get 

meaningful results in word alignment, expectation-maximization (EM) is used. 

 The EM algorithm finds the best approximation of P(J|E), the probability of a 

source sentence J given a target sentence E, by first setting all probabilities to an equal 

value, and then, through an iterative process, refining the individual probabilities to 

obtain a better idea of estimate P(J|E).  Five translation models using the EM algorithm 

are examined here.  These translation models are part of the GIZA++ [20] training 

software used in this research. 

2.4   Word Based Translation Models 

 11

 This section describes a number of translation models as proposed in [5].  All 

translation models described here were created at IBM labs and are commonly referred to 

as IBM Models 1-5.  IBM Model 1 is the simplest of the five translation models.  By 

examining it in detail, it is possible to understand the basic idea of how all five models 

work.  Models 2 through 5 each have different parameters that allow them to function in 

particular ways during word alignment.  Each of these models is discussed briefly after 

the analysis of Model 1. 



 The overall goal of the translation model is to maximize P(J|E) for the training.  

First, the number of times each word in English aligns with each word in Japanese is 

counted.  In order to find the translation model P(J|E), it is necessary to sum all 

alignments for where sentence J can be translated as sentence E, or 

                                                    ∑
∈

=
ψa

EaJPEJP )|,()|( ,                                         (10) 

where J is a single Japanese sentence from the training corpus, E is the corresponding 

sentence in English, ψ is the set of all alignments, and is a specific word alignment 

from the entire set of alignments of J and E.  However odd a particular matching of words 

may seem to a human translator, to the SMT system all alignments start with identical 

probabilities. 

a

 The probability of a particular alignment a between some sentences J and E is 

                                                 
)|(
)|,(),|(

EJP
EaJPEJaP = .                                            (11) 

 Substituting Equation 10 into Equation 11 results in 

                                                
∑
∈

=

ψa
EaJP

EaJPEJaP
)|,(

)|,(),|( .                                         (12) 

 Since  is found in both Equations 10 and 12, it can be written in terms 

of individual word translation probabilities.  The rewritten version of is 

)|,( EaJP

)|,( EaJP

         ,           (13) ∏
=

−−− ⋅=
m

i

J
ii

J
i

J
iii EmwawPEmwaaPEmPEaJP

1
1,1,11,11,1 ),,,|(),,,|()|()|,(

 

where m is the length of the Japanese sentence J and is iJ
iw th  word in J. Here, the right 

hand side is divided into three parts.  Part 1 is the probability that concerns the length of 
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1 2 3 



the Japanese sentence given the English sentence.  Part 2 allows the choice of the position 

of the words in J.  Finally, Part 3 corresponds to the choice of the word w in J given the 

position, the length of J, and the English sentence. 

 In IBM model 1  is constant and is assumed to be independent of E and 

m.  This model also assumes that any given word in J has the same alignment probability 

regardless of position.  The part 2 position probability is  

)|( EmP

                                                 
1

1),,,|( 1,11,1 +
=−− l

EmwaaP J
iii ,                                    (14) 

where l  is the length of the English sentence. 

 The third assumption is that any Japanese word chosen depends only on its 

aligned English word.  Therefore, a simplified version of Part 3 in Equation 13, where 

 is the translation probability of the Japanese word  given its alignment 

with the English word , is                  
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 After combining the three assumptions made by Model 1, Equation 13 is 
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where  is the number of possible alignments and ε is the value of P( |E).  This 

result follows since  positions exist in sentence E (length + 1) and there are  

possible words in J to align with each of these positions.  Here  possible 

alignments have the potential to be an unmanageable number.  A few remedies for this 

possible problem is discussed later in this chapter.  Summing over all possible alignments 

ml )1( + m

)1( +l m

ml )1( +

a 1 through a m, Equation 16 is  
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 In order to maximize , it is necessary to adjust the translation 

probabilities in Equation 17 subject to the constraints that for each E 

)|( EJP

                                                       1)|( =∑ EJ

J
wwt .                                                   (18) 

 To solve the constrained maximization problem, Lagrange multipliers are used.  

The auxiliary function to maximize is given as 
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which is maximized by taking the partial derivative of h with respect to .  The 

partial derivative is zero for 
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 The product of the Kronecker delta functions in Equation 20 is equal to one when 

the arguments are the equal and zero when not equal. 

 Altering Equation 16 so that    

                                        
ε
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E
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and substituting this product into Equation 20 yields 
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where the underlined portion is the count of all word alignments between J and E. 
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 The number of times a word in English aligns with a word in Japanese in the 

sentence translation (J|E) is estimated from 



                       .              (23) 

 In addition, from Equation 11, is substituted for  in 

Equation 2.22.  Next, 
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Ewλ  is replaced by Ewλ )|( EJP⋅ , thereby canceling the two 

instances of  and leaving  )|( EJP

                                         ,                            (24) ),;|()|( 1 EJwwcountwwt EJ
W

EJ
E
−= λ

where Ewλ
1−  is a normalization constant.  Since the corpus has a large number of 

Japanese-English sentence pairs (here, 20,000 pairs for training), Equation 24 is now 
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where Jsent and Esent are the sentence numbers corresponding to a given pair in the parallel 

corpus, and N is the number of sentence pairs in the training corpus. 

 As mentioned earlier, there is now a potentially enormous number of alignments.  

If the Japanese and English sentences are only 8 words in length each (m = l = 8), the 

number of possible alignments is more than 43 million. The current number of 

alignments, , may be simplified using  ml )1( +
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 Substituting this equation into Equation 17 and then taking the partial derivative 

yields 
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which reduces the overall number to approximately )( ml + , or 16 alignments for the 

previous example.  

 The individual translation probabilities are now estimated using the Japanese-

English parallel sentences and Equations 25 and 27.   Brown et al [5] summarizes this 

estimation process with the four following four steps: 

1)  Choose initial non-zero values for . )|( EJ wwt

2)  Determine the word translation counts using Equation 27 

3)  Find a new estimate for  by taking counts from step 2 and using  

Equation 25. 

)|( EJ wwt

4)  Repeat starting at step 2 until converges to a maximum. )|( EJ wwt

 IBM Model 2 is similar to Model 1 except that Model 2 adds a distortion 

parameter.  Thus, when attempting to align words between Japanese and English, Model 

2 takes into account distance between words in both languages and penalizes words that 

are in distant positions.   
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 IBM Model 3 goes a step further and adds fertility, which gives the probability of 

a single word in English being the best alignment for multiple words in Japanese.  In 

Model 1 it is possible for a word in English to align with all words in Japanese.  One 

problem with Model 3 is that it uses all alignment possibilities, which greatly increases 

complexity.   However, note that the use of any of these models is not exclusive.  It is 

reasonable to take the values of  found with Model 1 and use them as inputs to 

Model 2, for example.  Thus the aforementioned processing problem associated with 

Model 3 can be greatly reduced if Model 1 is used first.  By refining results with Model 1 

)|( EJ wwt



and then using the best alignment as the input to Model 3, the total number of likely 

alignments is reduced. 

 IBM Model 4 improves on the distortion parameter from Model 2 by dividing it 

into two different sets of parameters.  The first is a separate distortion probability for 

head words, or those that are the first words in each Japanese sentence.  The second is a 

distortion probability for all non-head words, or those occurring later in the string of 

Japanese words. 

 Finally, IBM Model 5 adds a deficiency parameter to eliminate the wasting of 

probability mass on strings that cannot occur.  In other models it is possible to generate 

words at the same position in a string.   

2.5   Phrase Based Translation Models 

 Phrase based translation models overcome the limitations of word based 

translation models by allowing words or sequences of words in the source language to 

align with sequences of words in the target language.  Using such models means that the 

two sequences can have differing lengths.  Pharaoh is the phrase-based decoder used with 

this research [12].  Once a translation model and language model have been created, the 

decoder allows for the source language test data to be translated into the target language. 

2.6   Problems with SMT 
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 There are number of problems with statistical machine translation that must be 

addressed to produce quality translations.  These problems are worse for some languages, 

and they include issues with morphology, syntax, word order, and compounds.  Many of 

these issues are discussed in the following chapter and relate to Japanese.   



 Another common problem in SMT is dealing with out-of-vocabulary (OOV) 

words in the test data.  Since the training data is finite, it is likely that words will appear 

in the test data that have never been seen before. One benefit to working with Japanese is 

that, as discussed in the next chapter, Japanese word meaning, or at least an 

approximation of meaning, can often be deduced from individual characters making up a 

particular word.  In addition, since Japanese uses different stems to denote different parts 

of speech, reducing the meaning of the OOV word in question to a particular part of 

speech is possible.  That is, Japanese attaches characters to the end of words to give the 

reader the idea that although a given word may not be known, it is certain that it is a verb, 

adverb, adjective, etc.  In addition to other grammatical points in Japanese, these aspects 

make it possible for OOV words to be estimated by the SMT system.  There are also 

other non-linguistic approaches for solving this problem.  Bazzi and Glass [2] have 

shown that OOV words can be modeled with success by dividing them into multiple 

classes and using pattern recognition techniques to reduce word error rates to reasonable 

values. 
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III. Japanese Background 

 This chapter addresses basic issues concerning the written Japanese language, 

including the writing system, morphology, and grammar.  

3.1 Japanese Writing System  

East Asian languages such as Chinese, Japanese, and Korean (CJK languages) 

pose a number of different problems for those working on machine translation systems 

that are not encountered in Romance languages.  With supervised translation, some of 

these problems can be addressed before processing language data.  Among the most 

noticeable qualities of CJK languages is the use of writing systems based on Chinese 

characters (hanzi).  In the case of Japanese, the written language has developed to include 

not only Chinese characters (kanji), but also a pair of kana syllabaries (seen in Figure 

3.1), hiragana and katakana (each containing 102 possible characters). Kanji is mainly 

used for nouns and for verb, adjective, and adverb roots, while hiragana is used for 

inflecting verbs, adjectives, and adverbs and as particles, which are used to mark various 

grammar points within a sentence. Finally, katakana is used only for foreign loan words 

and for onomatopoeia sounds.  

The example sentence in Figure 3.2 shows how each of these kinds of characters 

is incorporated into a typical Japanese sentence.  Refer to Figure 3.1 to fully appreciate 

the use of katakana as a foreign word syllabary. 
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Figure 3.1.  Japanese kana syllabaries, hiragana for native Japanese words, word endings, 
and particles, and katakana for foreign loan words.  The pronunciations are the same for 
each.  A few exceptions, marked with the asterisk, exist: SI SHI, ZI JI, TI CHI, 
TU TSU, WO O, and small TSU is used for plosives, doubling the consonant that 
follows. 
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Vowels alone
A I U E O
あ い う え お

Consonant + vowel
A I U E O

K か き く け こ
G が ぎ ぐ げ ご
S さ し   * す せ そ
Z ざ じ   * ず ぜ ぞ
T た ち   * つ   * て と
D だ ぢ づ で ど
N な に ぬ ね の
H は ひ ふ へ ほ
B ば び ぶ べ ぼ
P ぱ ぴ ぷ ぺ ぽ
M ま み む め も
Y や ゆ よ
R ら り る れ ろ
W わ を  *

Misc. Syllables 
N ん
* っ

Consonant + y + vowel
YA YU YO

K きゃ きゅ きょ
G ぎゃ ぎゅ ぎょ
S しゃ しゅ しょ
CH ちゃ ちゅ ちょ
N にゃ にゅ にょ
H ひゃ ひゅ ひょ
B びゃ びゅ びょ
P ぴゃ ぴゅ ぴょ
M みゃ みゅ みょ
R りゃ りゅ りょ

Hiragana

 

Vowels alone
A I U E O
ア イ ウ エ オ

Consonant + vowel
A I U E O

K カ キ ク ケ コ
G ガ ギ グ ゲ ゴ
S サ シ* ス セ ソ
Z ザ ジ* ズ ゼ ゾ
T タ チ* ツ* テ ト
D ダ ヂ ヅ デ ド
N ナ ニ ヌ ネ ノ
H ハ ヒ フ ヘ ホ
B バ ビ ブ ベ ボ
P パ ピ プ ペ ポ
M マ ミ ム メ モ
Y ヤ ユ ヨ
R ラ リ ル レ ロ
W ワ ヲ*

Misc. Syllables 
N ン
* ッ

Consonant + y + vowel
ya yu yo

K キャ キュ キョ
G ギャ ギュ ギョ
S シャ シュ ショ
CH チャ チ チョ
N ニャ ニュ ニョ
H ヒャ ヒュ ヒョ
B ビャ ビュ ビョ
P ピャ ピュ ピョ
M ミャ ミュ ミョ
R リャ リュ リョ

Katakana

 



 

 

 

 

 

Figure 3.2. Simple Japanese sentence showing the use of kanji, hiragana, and katakana.  
Kanji is used for nouns and verb, adjective, and adverb roots.  Hiragana is used mostly 
for word endings, particles, markers.  Katakana is used almost exclusively for foreign 
names and words. 

 
 

Kanji used in this research are all among the jouyou kanji list of government 

approved characters for basic fluency.  This list included 1945 characters, most of which 

have been greatly simplified from the Chinese versions of the same characters.  All 

Japanese sentences used in training and testing were encoded with UTF-8 character 

encoding. 

3.2 Morphology 

Morphology deals with word formation in terms of inflection, derivation, and 

compounding.  It can be helpful for statistical machine translation in that not all words 

need to be recognized by the system to make a prediction of word meaning.  In other 

words, if a verb stem, 食べ (tabe or “eat”), for example, has already been encountered by 

the system, but 食べられません (taberaremasen or “not able to eat”) has not been seen, 

by using the base characters, it is possible to conclude that the verb “eat” is involved.  In 

addition, if verb inflections are known (in this case, られる(rareru; potential suffix) and 

ません (masen; negative suffix)), then a better approximation of the true meaning of the 

previously unobserved verb can be made. 

 21

kanji      hira            kanji        hira              kata                  kata            hira 

 私         の              名前         は           エリック        チャプラ       です。 

   I     (possessive)    name     (topic)          Erik                  Chapla            is 

“My name is Erik Chapla.” 
 



First Character Meaning Second Character Meaning Combined Meaning 

文 Writing 学 Study 文学 Literature 

芸 Art 人 Person 芸人 Artist 

風 Wind 上 Up 風上 Windward 

 
Table 3.3. Examples of derivation 

 

First Character Meaning Second Character Meaning Combined Meaning 

日 Sun 本 Origin 日本 Japan 

手 Hand 首 Neck 手首 Wrist 

花 Flower 火 Fire 花火 

 
Table 3.4. Examples of compounding 

 

Derivation is the formation of a word from another word, as in “computer” from 

the word “compute,” where both the root word and the desired word have similar 

meanings.  In Japanese, this kind of word formation is accomplished in much the same 

way as inflection described previously.  For example, the word 日本語 (nihongo; 

Japanese language) is a result of adding the character 語 (go; language) to 日本 (nihon; 

Japan).   Other examples appear in the Table 3.3. 

 Compounding, on the other hand, takes a word and with the attachment of another 

word results in a different meaning.  While compounding results in creative word 

meanings, sometimes to the point of poetry, the meanings are never directly based on any 

of the words involved.  Examples are found in the Table 3.4. 
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Fireworks 



As can be seen from these examples, derivation in Japanese is very closely related 

to compounding, so when this process is described later, both will be lumped under the 

general category of compounding. 

3.3 Japanese Grammar 

In addition to the fact that Japanese and English have entirely different scripts, 

there are a number of other problems that must be examined when attempting translation 

of Japanese text.  These include Japanese word order, formality, topic and subject 

markers, and sentence-final particles, among others. 

3.3.1 Word Order 

Word order can affect alignment of Japanese and English sentences.  English is 

known as an SVO language, meaning that typical word order within a sentence is first a 

subject, followed by a verb, and ending with an object.  A simple example of a sentence 

with SVO form is “John kicked the ball.”  Japanese, however, is a SOV language.  The 

same sentence here would be something like “John the ball kicked.”  Word order and 

alignment is not much of a problem with small sentences, but as sentence length grows 

and grammar becomes more complicated, word order becomes increasingly more 

important. 
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For MT, word order is important in that it may greatly affect language model 

probabilities.  If an English sentence is misaligned with a Japanese sentence, it may take 

much more training for the system to correctly match words between the two languages.  

If, however, the user can implement prior knowledge about the language to artificially 

alter the word order in Japanese to change it into something close to SVO form before 



any training takes place, the final translation can be greatly affected in terms of quality 

and accuracy.  

3.3.2 Formality and Politeness Levels 

Formality and politeness levels, known as keigo, within the Japanese language are 

the subject of numerous books and is an academic sub-discipline of Japanese language 

studies in its own right.  Because of the difficulty, keigo is an annoyance to most foreign 

students studying Japanese.  Keigo has multiple levels of politeness, each with differing 

words and word endings depending on the relationship between the speaker and listener.  

If, for example, a company employee is talking to the company president, a higher level 

of formality is used than if both people are friends.  Different levels include speech 

toward a low inferior (such as a pet), inferiors (employees working under you or 

children), those on equal status level (friends), those of equal position in a business 

environment, moderate superior level (when talking to one’s boss, for example), and high 

superior level (only used for those approaching the emperor).   
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Here, the problem of formality levels is addressed by making all Japanese training 

and testing sentences all on equal keigo levels.  This solution comes from analyzing the 

Japanese sentences and the corresponding English sentences.   It is evident that rarely do 

the many different levels of formality found in the Japanese sentences appear in their 

English counterparts.  In the Japanese example of Figure 3.5, two words give a sense of 

formality that is not conveyed in the English translation.   Because there are different 

politeness levels used throughout the Japanese training and test data, and therefore often 

occurrences where multiple Japanese words are assigned to the same English word 



without any hint of the politeness from the original Japanese, the solution was to reduce 

all politeness in the Japanese texts to neutral formality.    

 

何時        に        伺え     ば        よろしい      でございます         か。 

                                      good, alright (formal)      is, exist (formal) 

              何時        に        伺え      ば           いい                  です                 か。  

                                                         good, alright (neutral)     is, exist (neutral) 
 
 

When is it alright for me to visit? 
 
 

Figure 3.5. Two Japanese sentences from the test data.  The first is the original sentence 
with two formal words that give the reader the idea that the speaker is being very polite 
with his audience.  The second is the neutral form of the same sentence with both words 
reduced to their more common forms.  The English translation stays the same in both 
instances. 

 

Another part of speech examined here is the use of  -san after names and 

professions.  Examples, of this are Smith-san or Yamamoto-san appearing in the 

Japanese text.  The meaning in these cases is simply Mr./Ms./Mrs. Smith or Mr./Ms./Mrs. 

Yamamoto, respectively, in English.  In addition, the –san suffix is also applied in the 

Japanese text to professions such as sakanaya-san or kachô-san, or Mr./Ms./Mrs. fish 

store owner or Mr./Ms./Mrs. section chief, respectively, in English.  In both cases, the 

san suffix tell nothing about the gender of the person in question since all sentences in the 

training and test data are single sentences without any supporting sentences to give 

context.  It is unreasonable to eliminate the suffix, however, since it allows the system to 

conclude that the attached word is a name or profession. 
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3.3.3 Markers 

Another feature of Japanese is the use of particles.  These individual hiragana 

characters are not usually considered words, but instead act as grammatical markers.  

Because there are rarely direct translations for particles, they are one of the more 

troubling aspects of SMT for Japanese.  Take, for example, the simple sentence in Figure 

3.6. 

 
本田さん  は  何  で  大阪  へ  行く  ん  です  か。 

 
Mr. Honda        (p)       why      (p)        Osaka      (p)        go           (p)          is           (p). 

Why is Mr. Honda going to Osaka? 

 
Figure 3.6. Example of segmented Japanese sentence with English word meanings and 
particles marked with (p). 

 

 Looking at the Japanese sentence, it is obvious that many of the words translate 

directly word-for-word into English.  However, three of the five particles found in this 

example do not have direct meaning in English.  In fact, は, ん, and か are usually left 

untranslated when human translation is performed.  Respectively, these particles mark the 

preceding word as the sentence topic, nominalize the preceding verb, and act as a 

question mark.  Here, で  and  へ have multiple meanings, but usually act to show place 

of a given action. 

Here only the seven most common particles in the Japanese language are 

employed.  These particles are described briefly in Table 3.7.  Along with common 

meanings for each, also included are the probabilities of each occurring in the training 

and test data in terms of occurrences of each versus total word count. 
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Particle Meaning Token Probability (%) 
は Marks the topic of sentence 4.7 
が Indicates subject of sentence 1.7 
に Marks location of action/Indirect 

object/Passive/Causative 
3.6 

へ Marks location of action 0.2 
で Indicates location/use of something/time of action 1.3 
の Indicates possession/Indefinite 

pronoun/Nominalization 
4.2 

か Marks question  5.5 
を Indicates direct object 

 
Table 3.7.  Seven most common particles in Japanese along with meaning and 
approximate percentage of occurrences within the training and test data. 

 

One of the experiments involved substituting and eliminating various particles 

from the text data based on knowledge of Japanese grammar.  For example, one attempt 

at improving the overall translation assumes that は (topic marker) and が(subject 

marker) perform the same basic function.  Since the concept of topic and subject are so 

closely related in Japanese, it may be possible to only use one marker instead of both, 

thus eliminating some confusion by the system.   Another example of a hypothesis tested 

here concerned replacing all occurrences of the locative particle へ with the locative 

particle に.  It is generally accepted that  へ always performs the same function as に in 

its locative meaning.  This correspondence does not, however, work in the opposite 

direction, replacing に with  へ, since に has various meanings that go beyond that of  へ. 

3.3.4 Context 

As indicated earlier, Japanese is a highly contextual language.  This fact alone 

poses many problems for the MT system.  Entire portions of sentences can be left out for 

the convenience of the speaker.  For example, if the topic has already been referred to in 
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2.5 



a previous sentence, or even if the topic is generally understood without being previously 

mentioned, the topic can be omitted from there on.  If two people see someone sleeping, 

one of them may just say “sleeping” (寝ている or neteiru) about the sleeping person.  

There is no need to say in such a sentence who the sleeping person is or what the person’s 

gender is.  Since it is understood by everyone involve, only this single verb is necessary.   

A one word sentence like this would be matched in the English data as something 

like “He/She/It is sleeping.”  The SMT system can only assume, therefore, that the single 

Japanese word is three words. 

One way to deal with this problem is to artificially insert “missing” words into the 

Japanese to make the corresponding sentences match well.  Another way is to eliminate 

words from the English training sentences to match those in the Japanese.  Both methods 

would require supervised human intervention and take, for even a few thousand sentences 

of language data, many hours to correct.  In addition, the test data must be changed to 

match the format of the training data.  For these reasons, the problems of context are not 

addressed here. 

3.3.5 Other Grammar Points 
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Numbers pose another problem to performing SMT on the Japanese data available.  

The way all numeric information (times, dates, money, bus numbers, etc.) is displayed in 

the training and test data is with kanji characters representing numbers from zero to nine, 

with no tens, hundreds, thousands, etc.  Unlike normal written Japanese, where large 

numbers have separate characters for marking tens, hundreds, and thousands places, the 

data used here has none of these place markers.  This absence is inconvenient because 

each individual number character in the sentences in the texts used here is separated from 



its neighbors by a space, making them appear as individual words and therefore making 

them more susceptible to errors in alignment.  For example, consider the string of 

characters in Figure 3.8, taken from Japanese data. 

 
一二三四 

(1,234 in this data) 
 

一千二百三十四 
(1,234 in normal Japanese texts) 

 
一千          二百          三十          四 

(possible version of correctly spaced 1,234) 
 

Figure 3.8. Example of numeric information from Japanese data used here and what this 
string of numbers looks like in other Japanese texts (newspaper, books, etc.).  In addition, 
the third line shows the way the corrected string would appear in research here, with 
spaces included. 
 

 Since the Japanese sentences throughout the text data include spaces between 

individual words, it impossible without context to know if the sequence in Figure 3.8 

means, “one-two-three-four” (for a bus, train, or hotel room number) or “one thousand 

two hundred and thirty-four.”  In a typical Japanese sentence, when the former (and more 

uncommon) case is meant, 一二三四 would be written.  If on the other hand the latter 

meaning is being conveyed,  一千二百三十四 is likely to be written, where the 

characters 千 (“thousand”), 百 (“hundred”), and  十(“ten”) are included to tell the reader 

that this is one complete number instead of four distinct ones.  These cues are not 

available here, so much meaning is immediately lost.  There is no place marker for the 

ones place in Japanese.  It is also possible to use 万 (“ten thousand”) and 億 (“one 
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hundred million”) as place markers, but these do not seem to appear in any of the data 

used in this research. Lack of context again plays a detrimental role in translation. 

 One way to remedy this problem is to artificially insert place marker characters 

(千, 百, and 十) into number strings when appropriate.  It is also be necessary to 

eliminate spaces between each of these new characters and the preceding number that 

they modify to avoid possible alignment errors.  There are a number of problems with 

this solution.  First, it is extremely time consuming, since it would require the user to 

make corrections to the number strings. There is no way for the researcher to quickly 

make changes to the numeric examples, since each example must be considered 

separately.  This inability leads to a second problem.  Most of the Japanese sentences in 

the training data have no supporting sentences from which to draw context.  There is no 

way of knowing which of the two above cases are meant. Third, correcting each number 

and leaving no spacing between parts of the numeric strings results in numbers that are 

too specific.  In order to build a good language model, it is necessary to find multiple 

occurrences of words, but in this case there are very limited examples of each case.  In 

the previous example, 一千二百三十四 is very specific, and in all likelihood will never 

occur again, even in extremely large corpora. 
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IV.   Japanese Word Segmentation 

 The first part of this chapter concerns methods for applying word segmentation to 

raw Japanese text to prepare it for processing.  The text used in the SMT experiments is 

from the 2005 IWSLT campaign, and was already word segmented by others.  Many 

times, however, text must first have spaces inserted between words before any SMT work 

can be performed.  The first part of this chapter explains the methods for dealing with 

text that has not been segmented.  The second part of this chapter details other 

experiments performed on Japanese sentences, after they are word segmented, to alter the 

performance of the SMT system. 

4.1 N-grams and Segmentation of Japanese Text 

Segmentation creates spaces between words in a string of text and is a necessary 

step for SMT of Japanese text.  In the data used here, all sentences are already segmented, 

but if new sentences are mined from the internet, books, newspapers, etc., segmentation 

would have to be performed on each sentence.  Segmentation can be done by native 

Japanese speakers or by using an algorithm that applies spaces where needed to 

unsegmented text.  The former is best if time is not a factor, since a native speaker is 

always more skilled at properly segmenting text than the most well trained SMT system. 
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Segmentation is an important issue with Japanese text because, unlike English 

sentences, where each word is clearly defined with a space between it and its neighbors, a 

normal Japanese sentence is a long string of characters with no spaces.  Figure 4.1 shows 

an example of an unsegmented English sentence and its Japanese equivalent.  Unlike 

native English speakers who have little problem reading the string 

“Itlookslikeitwillraintoday” and assigning the correct meaning to it, the SMT system has 



little chance of extracting any meaning from either the unsegmented English or Japanese 

sentence and will instead see both as a single word composed of a string of characters, 

not a group of unsegmented individual words. A first step, therefore, is to artificially add 

spaces between words. 

 

Itlookslikeitwillraintoday. 

 

It looks like it will rain today. 

 

今日は雨が降りそうです。 

 

今日 は 雨 が 降り そう です。 

Figure 4.1.  Unsegmented and segmented versions of English sentence and translated 
Japanese sentence. 

 
 

 Unlike the unrealistic unsegmented English sentence in Figure 4.1, the 

unsegmented Japanese equivalent sentence is completely normal.  If fact, other than 

elementary children’s texts, text with spaces between words is rarely seen in Japanese.  

Therefore, for SMT a typical Japanese sentence must be changed into an atypical, 

unrealistic one.  To change Japanese text into something that the system can process with 

each word clearly separated by space, an algorithm must be used to segment each 

sentence in both the training and test data before continuing on with other machine 

translation tasks.   
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今日は雨が降りそうです。 

 
 

今    日    は    雨    が    降    り    そ    う    で    す  。 

今日は    雨が降    りそう    です  。 

今日は雨が    降    り    そうで    す  。 

今    日は雨    が    降りそ   うです。 

 
Figure 4.2.  Original unsegmented Japanese sentence in the above box and four possible 
ways the algorithm may break the sentence into component words.  The spacing here 
does not imply that these are correct word boundaries, but instead indicates where a 
poorly trained system may place spaces. 
 

The method employed here uses n-grams, or windows of length n, to find and 

compare probabilities of a potential word to those of its neighbors.  This method is a 

variation on the method of Ando and Lee [1].  Their research is primarily focused on 

segmentation of character strings composed entirely of kanji, as opposed to strings of 

more colloquial, less official Japanese used here that also incorporates hiragana and 

katakana characters.  In more difficult texts such as technical papers, business journals, 

and legal documents, there are often long strings of eight or more kanji with no kana.  

These strings of characters therefore often look like Chinese.  In the simpler travel 

domain, strings of more than three consecutive kanji characters are rarely seen and the 

long kanji string phenomenon poses no problems.  Figure 4.2 shows some of the possible 

(and incorrect) ways that a sentence can be segmented.   

 The main idea behind the segmentation method used here is to examine groups of 

characters around a given point in a string of characters and decide, by using word 

probabilities, whether or not a space should be inserted at that point.   
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This method uses more than one n-gram window to make the decision.  For 

example, move a 2-gram window (or window holding only two characters at a time) over 

a given sentence, followed by a 3-gram window over that same text, then do so with each 

possible combination of windows (i.e. a 2-gram window with a 3-gram window, a 2-gram 

with a 4-gram, etc.).  It is found that using a combination of 2-gram and 3-gram windows 

gives the best results, while any other combination results in more segmentation errors.   

Charts showing the numeric results of all segmentation experiments attempted are found 

in Section 4.4. 

The main problem with unsupervised segmentation versus human-led 

segmentation is that a computer addressing this problem has no knowledge of how a 

Japanese sentence should be properly segmented.  The task at this stage is basically like 

giving a Japanese sentence to an English speaker, who has never seen Japanese text, and 

asking him to find the individual words.  Here n-gram analysis is useful.  The system 

takes a sample window of n consecutive characters in a given sentence and examines the 

probability of that sample in relation to the probabilities of adjacent samples. The number 

of consecutive characters of the sample and of the comparison samples is based on the 

number of the n-gram window length.  For example, if one uses 5-gram analysis, the 

window used is five characters in length and all adjacent samples used for comparison are 

also five characters long. 

4.2 Data Used 
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 The text segmentation technique must take into account that the word 

segmentation system has a large amount of data to work with, both in terms of reference 

words and in test data sentences.  Without segmentation, n-gram analysis would be 



useless since all word occurrences would be equally likely.  Training allows for 

individual word probabilities to be compiled so that reliable statistics can be referenced 

during testing.   

 The first part of data collection requires a corpus of Japanese words that would 

allow the system to have accurate probabilities for word occurrences.  In order to have 

accurate probabilities, and because of the sheer number of possible words in the Japanese 

language, the corpus must be extremely large, most likely with a size of at least a few 

million characters.  The optimal corpus should contain the two 102 character kana 

syllabaries and the 1945 kanji characters required for literacy.  These kanji characters, 

known as jouyou kanji, are from a list compiled by the Japanese Ministry of Education in 

1981 that consists of 1,006 elementary school kanji and 939 secondary school kanji.   The 

list was created to give Japanese knowledge of all kanji needed to read a typical 

newspaper.  In addition to the 1945 characters, the corpus should also contain all 

combinations of kanji and kana characters that would form intelligible words, since 

words are often composed of a combination of individual characters (kanji + kanji, kanji 

+ kana, and two or more kana characters together). 
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 An existing body of data is used because creation of such a large corpus is not a 

feasible task.  Girardi and Kelly [10] collected and put into the public domain a large 

amount of Japanese text data from the Mainichi Shimbun, one of Japan’s main 

newspapers.  Their work collected four years of daily newspaper text and resulted in 

nearly 70,000 different words.  In addition, they totaled the number of occurrences of 

each word over the four year period, with the most common word occurring over three 

million times and the least common word occurring only a handful of times.  This list is 



important in that it allows the creation of a sorted lookup table with probabilities for 

nearly every Japanese word that could appear in the testing stage.  In fact, at no time 

during testing did the system find a word for which it had no previous reference. 

The next step in the data collection process finds hundreds of new sentences from 

Japanese newspapers for testing.  It is necessary for this sentence data to be from 

newspapers since the original vocabulary data was mined from newspapers.  It is 

important to collect data that would have similar style, format, and vocabulary so that the 

testing data is of the same sort as the training data.  Otherwise, there can be no real way 

of knowing that word occurrences matched correctly. 

In order to analyze collected data, it must be in a numeric form and not in normal 

Japanese text.  To accomplish this task, the entire set of words from the training and test 

data is translated into UTF-8 format so that a numeric code could be used to represent 

each Japanese character.  Each character has its own unique five-digit UTF-8 identifier, 

so every word can be examined as a group of multiple five-digit numbers instead of a 

group of Japanese characters, which greatly simplifies the process, for now the entire 

lookup table of trained data and the testing data is in a numeric form like the following 

(instead of Japanese text):  10453 10433 16785 12340 12819 10983 19893 10912 … 

The training data table therefore has the format shown in Table 4.3 after all 

characters where converted into UTF-8.  The top part the table shows a few sample lines 

from the thousands of words and occurrences from the raw data that could be referenced, 

while the bottom table is the same sample after the Unicode conversion is created.   
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Word # of occurrences P(occurrence) Rank 

の 3104746 0.010796 1 

はばたく 40153 0.000156 5601 

漢字 3693 0.000035 12007 

 

 

UTF-8 Code # of occurrences P(occurrence) Rank 

12403 3104746 0.010796 1 

10516 15652 

16199 16546 

40153 0.000156 5601 

16150 12601 3693 0.000035 12007 

 
Table 4.3. Sample lines for the lookup table for Japanese word probabilities.  The top 
table is from the large lookup table before any numeric alteration.  The bottom is the 
same table after characters were changed into Unicode for easy numeric reference and 
sorting.  There is one Unicode number for each character in a word, therefore, since the 
second word has four characters, it is necessary to keep track of for Unicode numbers in 
exact order each time this word is referenced in a sentence. Otherwise, the same four 
characters can be referenced, but character order can not be guaranteed. 
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A few other decisions are made about the text data used for testing.  The first 

decision is whether or not to leave or delete all punctuation and symbols.  Again, this 

decision is taken care of by humans in the text information provided for SMT research 

explained later, but for testing the segmentation algorithm the newspaper data has 

punctuation and symbols left in.  Obviously, punctuation can provide useful information 

to a person reading a text.  However, since punctuation provides the system with 

information that makes analysis difficult, since no punctuation is included in the word 



lookup table, and since punctuation is not very useful in Japanese, it is decided to 

uniformly clean all sentences of punctuation.   

Second, a decision as to whether or not to analyze the first and last group of 

characters of a sentence is needed.  This decision is important since n-gram analysis takes 

into account the score of boundaries before and after the current boundary being analyzed.  

If the current candidate boundary for a space occurs at the beginning of a sentence 

(directly after the first character of the sentence), it means that the boundary directly 

before that space occurs before the start of the sentence, which is illogical.  In order to 

rectify this problem and still allow for the possibility of individual characters at the 

beginning and end of sentences, special rules for such cases are created.  For example, if 

the boundary in question occurs between the first and second characters of the sentence, 

only the next possible boundary is considered for comparison, and a possible boundary 

before the first character is disregarded.  In addition, when the boundary being proposed 

for a space occurs directly before the last character of the sentence, only the previous 

boundary is considered for comparison.  These exceptions only requires about twenty 

extra lines of code. 
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The final problem concerns the size of the corpus needed for training.  Since the 

corpus contains many thousands of words, the size of the lookup table of sorted words 

needed for reference by the test data greatly slows overall processing.   In addition, since 

the first fifty percent of word occurrences are less than 0.1% of the total number of words 

(since the most common words have a large number of occurrences), the size of the table 

is due mostly to words that will probably never be seen during testing.  In other words, it 

is very likely that each time a test sentence is analyzed with the lookup table, the system 



needs to sort through much computational dead weight to find the statistics of the word.  

Other than sorting the data, not much can be done about this problem, since there is no 

guarantee that any of the characters in the table will be unused.  Therefore, the entire 

table is retained for the entire testing portion of this work. 

4.3 Japanese N-gram Analysis 

To illustrate n-gram analysis, consider a 3-gram window, where each sample 

window contains three consecutive characters.  For clarity, instead of Japanese characters, 

consider a sentence “ABCDEFGH,” where each English letter represents a single 

Japanese character.  The first step in n-gram analysis is to propose a place in the sentence 

where a space may occur.  This proposal occurs on a rolling basis through the sentence.  

That is, for 3-grams, the first possible space is after the first character of the sentence.  

Once a decision is made on whether or not to put a space at that location, the length-3 

window moves one character to the right and a possible space is proposed after the 

second character.  This process continues until the end of the string of characters.  This 

process of using n-grams is somewhat different from the process described in Section 2.2, 

where Japanese n-grams refer to sequences of n characters. 
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In this example, assume that the likelihood of a space between the third character 

C and the fourth character D must be found.  A temporary boundary is placed at this 

location, and the proposal is made that ABC is a word, followed by a space (located at 

the temporary boundary just proposed), then the start of a new word at character D and 

continuing for some unknown length.  To test this space proposal, the next step examines 

the probabilities of the three-character string before the proposed boundary, ABC, and the 

three-character string directly following the proposed boundary, DEF.  



Next, the probabilities of the two possible three character sets that straddle the 

boundary between C and D are examined.  These character strings are BCD and CDE.  

The probability of the left three characters, ABC, is compared to BCD and CDE.  This 

comparison is done by finding these probabilities in the look-up table of thousands of 

word occurrences, which is previously created during training.  The same comparison is 

then done with the right side characters, DEF, comparing its probability of occurrence 

with the probabilities of the boundary-straddling characters, BCD and CDE.  This process 

is illustrated in Figure 4.4.  
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A score is given to the proposed boundary based on the number of times the 

characters on the left and right sides have larger probabilities than the characters that span 

the boundary.  Thus when the character strings on the right and left sides occur more 

times than character strings that span the boundary, it is likely that the boundary is the 

location at which a space should naturally occur.  In other words, if the boundary is 

proposed between characters C and D, and the words ABC and DEF occur much more 

often than BCD or CDE, the boundary is most likely correct.  However, before creating a 

space at this location, the score for the boundary is compared in a final step to scores of 

boundaries directly before and directly after the proposed space.   



 

Figure 4.4. Example of n-gram analysis of Japanese character strings showing the first 
three steps. 

 

This final step slides the length-3 window to the right by one character and 

examines the next possible boundary position, between D and E.  A score is given to this 

boundary as before, and if the score for the boundary between C and D is higher than the 
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A B C D E F G H  
P(A) P(BCD) 

P(AB) 

P(ABC) 

A B C D E F G H  
P(ABC) P(DEF) 

P(BCD) P(CDE) 

A B C D E F G H  
P(AB) P(CDE) 

P(ABC)

P(BCD) 



score for the preceding boundary (between B and C) and also higher than the score for 

the following boundary (between D and E), then a space is placed into the Japanese 

sentence between characters C and D.  If not, no space is placed there.  This process is 

repeated for each potential space location. 

A decision is needed on whether or not to give higher scores to more common 

occurrences or simply to work on a point by point basis.  Ando and Lee provide a 

solution to this problem [1].  Using the TANGO (Threshold And maximum N-Grams that 

Overlap) algorithm, they total the number of times the left and right n-sized windows 

have word occurrences larger than any windows that overlap the proposed word 

boundary.  If in the previous example, ABC occurs more than BCD and more than CDE, 

the proposed boundary is given two points.  If the right side word occurrence is greater 

than BCD but not greater than the occurrence of CDE, another point is added to the 

proposed boundary score.  The equation used is 
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where vn(k) is the preliminary boundary score, n is the order of the n-gram, I is a binary 

indicator (1 when inequality is true and 0 when false), s is the word on the left (or right) 

of the boundary, and t is the occurrence of the straddling words. 
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 The score from 2- to 8-gram as n-gram length increases has the potential to  

increase dramatically because there are more comparisons to more straddling words in 

larger n-grams.  Therefore, a weight is added to normalize scores from one n-gram type 

to another type.  The TANGO algorithm takes the score found above and averages it with 

all n-gram types used for that particular boundary.  In addition, a random component is 

added to the equation to account for stray words that appear as valid components of other 



valid words, but that are not meant to be taken in that manner in the particular context of 

the sentence.  Thus, a Gaussian is added to account for uncertainty in the area of the 

sentence near the boundary.  The equation used is 
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where N is total n-gram order and N(0,1) is the standard normal distribution with zero 

mean and unit variance. 

 After finding the score for a particular proposed space location, a boundary is 

placed at the particular location, L if it is true that 

                                   v N (L)> v N (L-1)   AND    v N (L)> v N (L+1).                           (30) 

 In this case L-1 and L+1 are locations one place to the left and right,  which 

means that if the score of the boundary in question is larger than the score of both 

immediate neighbor boundaries, then a space is inserted at the current proposed boundary. 

 It is possible to perform word segmentation on a particular group of sentences 

then immediately perform word segmentation on the same sentences using a different 

length window.  By doing this, larger or smaller words and tokens that are left 

unsegmented in the first pass, are more likely to be found on the second pass.  The reason 

for this is that if a word is passed over and not segmented from its neighbors, it is because 

it fell outside of the size of the n-gram window.  If a second pass using a larger window is 

used, the probability of a particular word being missed a second time must decrease [11]. 
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 The research here is unique because it deals with more realist Japanese text than 

other researchers have used.  The closest research to this topic performed n-gram analysis 

on strings of kanji characters [1], which is not a common case.  In colloquial Japanese 

found in newspapers, books, and magazines, strings are more likely to be composed of 



kanji, hiragana, and katakana and not just kanji alone.  This more realistic type of data is 

what is used in experiments found here.  Since this kind of data appeals to a much wider 

audience, the research found here is useful and unique. 

4.4 Word Segmentation Results 

 Figures 4.5 and 4.6 show the results of the word segmentation experiments using 

one n-gram window and two n-gram windows, respectively.  When using one n-gram 

window, the most successful method is to word segment using a 2-gram analysis.  The 

result shows that correctly placed spaces between words occur 83.2% of the time, which 

is significantly better than the other n-gram lengths.  When using two n-gram windows, 

doing n-gram analysis with a 2-gram followed by a 3-gram window performs even better, 

correctly placing spaces between words 94.4% of the time. 
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Figure 4.5. Probabilities of occurrences for 2-gram through 8-gram techniques compared 
to actual space probability.  The occurrences are for correct space placement, incorrect 
placement, and missing spaces. 
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Figure 4.6.  Probabilities of occurrences for combination pairs of 2-gram through 8-gram 
techniques compared to actual space probability.  The occurrences, as before, are for 
correct space placement, incorrect placement, and missing spaces altogether. 
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V.   Japanese Statistical Machine Translation 

 The previous chapter described methods for taking raw Japanese sentences 

without any word segmentation and adding segments between words.  This addition is of 

course not necessary if the data used is properly word segmented in advance.  

Experiments described take place on segmented Japanese text where human translators 

have gone through the entire corpus and placed segments where they are required.  

Included in this section is information about the corpus used, steps performed to train the 

data, scoring of results, and information about the various experiments performed.  

Results from these experiments appear after a discussion of each experiment. 

5.1 Corpus and Software 

 A parallel English-Japanese corpus is used.  The language information is collected 

from the 2005 IWSLT test set.  The training data consists of 20,000 sentences in both 

languages.  Also, GIZA++ and Pharaoh, are used for alignment and decoding. 

5.2 Training 

 The first step in training finds word alignments using GIZA++, which is a 

program that trains translation models from the English-Japanese parallel training data by 

implementing the IBM models 1-5 described in Section 2.4.  This algorithm uses the 

Japanese and English training texts to align words and phrases in both an English-to-

Japanese and a Japanese-to-English direction.   
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 The next step extracts phrases from the word-aligned sentences created by 

GIZA++ and then Pharaoh decoder.  Pharaoh takes the phrases from a phrase table after 

GIZA++ has aligned all sentences, and then decodes using this phrase table (translation 

model) and the language model to provide a translation.  



5.3 Scoring of results 

 In order to evaluate the quality of English translations created by the system, it is 

customary to use a numeric method for scoring results.  This was accomplished by 

comparing the artificial machine translations created by the SMT system to human 

translations in terms of n-gram matches using two such scoring methods, BLEU and 

NIST. 

 BLEU (Bilingual Evaluation Understudy) [22] scores range from 0 (worst) to 1 

(best).   compares a set of candidates (machine translations) to a set of references (human 

translations) by counting the number of matches between n-grams in both.  As the 

number of matching n-grams increases, the BLEU score also increases.  The default 

number of n-grams used in BLEU scoring is 4, so that the total score is based on the 

combined results of unigrams, bigrams, trigrams, and 4-grams. 

 BLEU scores are based on n-gram counts and are correlated with the human 

judgments of accuracy and fluency. In addition, a brevity penalty is given to translations 

to better judge the quality of each translated sentence  Accuracy measures how often 

identical words are used in both the candidate and the reference sentences.  If all of the 

words in the candidate have a matching word in the reference, the candidate is considered 

highly accurate.  Fluency measures how well strings of words in the candidate match 

with strings of words in the reference.  Finally, brevity gives a measure of the length of 

the candidate sentence.  Examples of these three qualities are shown in Figure 5.1.   
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Figure 5.1 Example sentences showing accuracy, fluency, and brevity. 

 
 

 Candidate 1 is less accurate than the candidates 2 and 3, since candidate 1 has six 

of nine possible words that match those in the reference, while all of the words in both 

candidates 2 and 3 have matches in the reference.  Since a human will most likely select 

candidate 1 as the best translation when compared to the reference, accuracy does not 

mean much in isolation.  In terms of fluency, candidate 1 is scored highest since it has 

four matching bigrams (“is down,” “street to,” “to the,” and “the right”) versus one 

bigram match for candidate 2 and two matches for candidate 3.  In addition, candidate 1 

has two matching trigrams (“street to the” and “to the right”) versus zero for candidate 2 

and one for candidate 3 and one matching 4-gram (“street to the right”) versus zero 

matches for the other two candidates.  Finally, candidate 3 is the briefest of the three 

sentences and therefore has the worst brevity score.  Again, none of these three qualities 

works well by itself, and they should instead be considered together to obtain a more 

accurate score. 

 The BLEU methodology accounts for these three attributes by first finding a 

precision score pn which contains an accuracy and a fluency score, then augmenting it 

with a penalty for brevity, where pn is  
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Candidate 1 
A clinic is down this street to the right. 

Candidate 2 
Street is hospital the to down the right. 

Reference 
The hospital is down the street to the right. 

Candidate 3 
Hospital is down. 
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 Thus, pn is found by totaling all n-gram matches between a given candidate 

sentence or candidate string and a reference divided by the total number of n-grams in the 

reference. 

 Once the precision score is found, the BLEU score is calculated by modifying pn 

with a brevity penalty, BP.  This penalty accounts for small sentences that may have high 

precision despite being poor translations.  Examining Figure 5.1, it is immediately 

obvious that candidate sentence 3 is a poor translation since it conveys little of the 

meaning of the reference sentence.  In terms of fluency, all three words appear in the 

reference translation, and in terms of accuracy both bigrams (“hospital is” and “is down”) 

and the entire trigram string (“hospital is down”) appear in the reference translation.  

Thus, despite being a poor translation, without some penalty for small sentence length, 

candidate 3 receives good precision and accuracy scores.  The brevity penalty is 

    

                                                                                         ,                                              (32) 

 

where c is the length of the candidate sentence or string in words and r is the reference 

sentence length.  The BLEU score is computed by summing all weighted precision scores 

and multiplying the result by the brevity penalty so that 

                                              ,                                    (33) ⎟
⎠

⎞
⎜
⎝

⎛
⋅= ∑

=

N

n
nn pwBPBLEU

1
logexp

 49

 
                    1               if c>r 
   BP =             
                          if c≤r )/1( cre −



where N is the number of n-grams used (e.g., N=4 for unigram to 4-gram, N=3 for 

unigram, bigram, and trigram), and wn is a weight equal to 1/N. 

 The NIST (National Institute of Standards and Technology) [19] score is similar 

to BLEU score, but instead uses the arithmetic mean of weighted n-gram values.  NIST 

scores start at 0 as the worst score and increase as precision increases.  The NIST scoring 

formula is 
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where N is the n-gram size (default is N=5), β acts as a brevity penalty similar to that of 

the BLEU score, Lsys is number of scored words in the SMT translation, and Lref is the 

number of reference translation words averaged over all reference translations.   

5.4 Experiments 

 Here, multiple hypotheses are examined, and their BLEU and NIST scores are 

compared.  In order to obtain baseline scores, 20,000 unaltered sentences are used for 

training.  Each candidate score can be compared to this common set of scores to find 

whether changes result in improvements or reduced scores.  The baseline BLEU score is 

0.3967 and the NIST score is 6.7814. 
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 The first experiment is based on creating uniform politeness levels (see Section 

3.3.2) throughout the training and test data.  The Japanese verbs arimasu (あります) and 

gozaimasu (ございます) have identical meanings but different formality levels.  

Arimasu is a plain form verb and is the English equivalent of the verb “to be,” while 

gozaimasu is a much more formal version of this verb.  After reviewing the training 

English translations, despite arimasu in some sentences and gozaimasu in others, there 



appears to be no difference in the formality of the corresponding English translations.  

Thus, the system is using two very common Japanese words to describe the same English 

word or words.  It appears that reducing the formality of all sentences to normal plain 

form by replacing all occurrences of gozaimasu with arimasu will improve translation.  

The BLEU score for this experiment is 0.3973 and NIST score is 6.7494, both nearly 

identical to the baseline scores. 

 The second experiment eliminated the topic marker wa (は) in all sentences (see 

Section 3.3.3 for more on grammatical markers).  There are approximately four thousand 

occurrences of this marker that are eliminated from the text data.  Since Japanese is a 

SOV language, the subject (here topic) of the sentence almost always appears at the 

beginning of the sentence.  The addition of a topic marker may be unnecessary in most 

sentences, and in fact is seen as an additional word, therefore adding more variability and 

confusion to a sentence that may otherwise be clear.  The elimination may not work for 

every case because it is grammatically acceptable to delay using the topic, and therefore 

wa, until the end of a sentence, especially when the speaker wants to emphasize the topic.  

However, cases where the topic appears early in a sentence greatly outnumber cases 

where the topic is displaced. Therefore, removing the topic marker is advisable.  The 

BLEU score is 0.4154, 2 points higher than the baseline, and NIST score is 7.1092, which 

is the best of all experiments. 
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 The third experiment concerned the use of the particle he (へ).  The particle 

always serves the same purpose as the locative component of the particle ni (に), 

although ni itself has many other grammatical uses than he.  Thus, merely replacing all 

occurrences of he with ni in the training and test data may simplify many sentences that 



contain these particles, thereby increasing the overall quality of translation.  There seems 

to be no need to have two particles for identical tasks.  Slightly more than one thousand 

occurrences of the particle he are replaced with this experiment.  One possible problem 

with this experiment is that, since ni has other grammatical uses, these uses can  be 

attributed to he.  The experiment’s BLEU score is 0.4047, nearly a one point 

improvement over the baseline, and the NIST score is 6.8177.  

 The fourth experiment concerns the subject particle ga (が).  As mentioned earlier, 

wa and ga are extremely close in meaning.  The idea of topic and subject is difficult to 

specify for human translators and would most likely cause problems in SMT.  Thus it 

may be desirable to eliminate as much confusion as possible between the two markers by 

eliminating occurrences of ga.  If deleting all occurrences of wa from the training and test 

data improves translation quality, then it is reasonable to assume that eliminating the 

subject marker ga may also improve performance.  Nearly five thousand occurrences of 

ga are deleted from the text for this experiment.  The BLEU score is 0.4018, and the 

NIST score is 6.8455, with no significant improvements over the baseline scores. 
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 The fifth experiment involves correcting problems with numbers in the Japanese 

data set.  The numbers 1 through 9 appear many times in the data, each represented by a 

single kanji character.  Although it can also be written as a single character (零), “zero” is 

instead written using two katakana loan characters, ze and ro (ゼ and ロ) throughout all 

of the Japanese sentences.  Thus, to describe the string of ten numbers from zero to nine, 

eleven different characters are used.  Many of the translated sentences output by the 

system which had numbers (in terms of time, money, etc.) have either poor alignment 

between the two languages or missing numbers in the English translation.  For this reason, 



all occurrences of zero as two characters (ゼロ) in the Japanese training and test sets are 

replaced with the single character (零) for zero.  The BLEU score is 0.3966 and the NIST 

score is 6.9759.  The scores for this experiment show that no significant improvement is 

made by making the change from two characters to one.  

 The sixth experiment altered all verbs in the Japanese data sets to better deal with 

segmentation errors in the original text, make a uniform formality, and remove 

extraneous verb endings, among other aspects.  This task is formidable, but it seems 

worthwhile because it has potential for a large impact on scores.  An example of major 

changes made is shown in Figure 5.2.  The first change separates all –te form verbs into 

their verb root and the te (て) particle.  The te character is added on to a verb to allow for 

affixation of another verb.  By separating verb roots from the te particle, the assumption 

is that the individual word parts are seen as “go and buy” versus “go buy” in English, for 

example. 

 Also, there is a segmentation problem with the verb-mashou form, where mashou 

(ましょう) adds volition to the preceding verb, as in “let’s eat” or “let’s go.”  The 

problem here is that in the text data mashou usually appears as masho+ u (ましょ and 

う) with a misplaced space between the two mora, and also as mashou ( ましょう) with 

no space.  To correct this problem, all occurrences of masho+ u are changed to mashou.   
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Figure 5.2.  Example sentence showing the multiple changes made in the sixth 
experiment.  These include the elimination of feminine and conviction endings and 
honorific prefixes as well as dividing verbs from their te (and) forms and combining any 
of the incorrectly segmented imperative verb endings mashou. 
 
 

 The original text in both training and testing has honorific prefixes attached, 

seemingly at random, to verbs.  These prefixes, as before, did not seem to carry over into 

the English sentences, so they are eliminated throughout.  

 Finally, stripping of two sentence final particles, wa (わ) and yo (よ), which are 

attached to verbs, is performed on all sentences.  In both cases neither the feminine 

particle wa (not to be confused with the topic marker wa) nor the particle yo (marking 

strong assertion by the speaker) seem to have significant influence on the English 

translation.  Note that wa may also be a sentence final particle spoken by men in Kansai 

(Osaka-Kyoto-Kobe) dialect.  Regardless of the source, none of the corresponding 

English sentences gain meaning or change in dialect by having this particle attached.  

Thus, in Japanese sentences where wa is used, it quite obvious that a woman is speaking, 
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                                                   verb +  te                  verb separated from te 

                                 mashou or masho+u                  mashou   

                                         verb+(wa or yo)                 verb only  (eliminate ending) 

                               honorific prefix +verb                 verb only  (eliminate prefix) 

 

            御     主人          と       公園    に   行って   食べ     ましょ    う     わ。 

 

     (hon.)   husband     with        park        to      go (and)       eat              let’s        (fem) 

 

                   主人        と      公園   に    行っ     て    食べ      ましょう。 

“Let’s go eat lunch with your husband at the park.” 



but in the corresponding English there is never an indication that the speaker is a woman.  

In addition, when yo is used to show that the speaker is certain of what is said in a 

particular Japanese sentence, this strong conviction rarely translates to the corresponding 

English sentence.  For these reasons, both particles are eliminated from the Japanese for 

this experiment.  The BLEU score here is 0.4216, which was about 2.5 points higher than 

the baseline score.  Unfortunately, the NIST score is 6.3126, lower than the baseline. 

 In addition to the various individual experiments attempted, combinations of each 

are tried where they make sense grammatically.  For example, experiment 8 combines 

experiments 2 and 3 and determines if removing both the topic marker wa and replacing 

the locative marker he gives favorable results. 

 Experiments 9 and 10 show that despite their individual experiments making 

improvements on the baseline score, combining two experiments together does not mean 

that the resulting experiment will work well.  The tenth experiment, for example, 

combines two experiments that performed well individually, and in the case of 

experiment 2, result in a very good NIST score, but perform poorly when combined. 

 Finally, to show how character segmentation performs compared to the word 

segmented baseline experiment, an eleventh experiment is performed.  NIST and BLEU 

scores drop, but not considerably, in any of the character segmentation experiments.  

Results of all experiments performed can be found in Table 5.3. 
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Experiment BLEU Score NIST Score 

Baseline w/20000 sentences of training data 0.3967 6.7814 

1) Change Arimasu/gozaimasu  0.3973 6.7494 

2) Deleted wa 0.4154 7.1092 

3) Remove he 0.4047 6.8177 

4) Remove ga 0.4018 6.8455 

5) Alter zeros 0.3966 6.9759 

6) Clean verbs and prefixes/suffixes 0.4216 6.3126 

7) Remove wa, ga, and he 0.4024 6.9293 

8) Remove wa and he 0.4436 6.5185 

9) Remove ga and he 0.3809 6.9309 

10) Remove wa and ga 0.3952 6.7384 

11) Baseline with character segmentation 0.3940 6.7201 

12) Experiment 1 with character segmentation 0.3822 6.7031 

12) Experiment 2 with character segmentation 0.4057 6.7213 

13) Experiment 3 with character segmentation 0.4020 6.7948 

 
Table 5.3.  SMT experiments performed with BLEU and NIST scores. Included are less 
successful experiments that fall below the baseline scores.  Also included are results from  
character segmentation experiments.   
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VI. Japanese Speech Recognition 

 In translating from Japanese spoken data into English, a speech recognition 

component must be added to the overall system.  Automatic speech recognition (ASR) 

systems allow for speech data to be output as text.  In other words, the ASR component 

takes Japanese speech and outputs Japanese text to be used as the input to the SMT 

system already described.  

 This chapter describes the basics of Japanese ASR, including different methods 

for setting up the pronunciation dictionary and an explanation of sampling audio from 

Japanese speech.  Conclusions are also made as to which method is best depending on 

word, syllable, and phoneme error rates.  The SONIC program [23] performs speech 

recognition on audio samples from Japanese news broadcasts after training on pairs of 

audio samples and corresponding text transcriptions.   

6.1 Automatic Speech Recognition 

ASR systems rely only on training data for a priori knowledge.  In additional, 

knowledge useful in training comes from applying known information about Japanese 

pronunciation and basic syllabary used as a written representation of sounds.   

The speech recognition experiments conducted in this thesis examine how 

changing the speech recognition system pronunciation dictionary affects the error rates of 

output text.  The data consist of pairs of Japanese text sentences mined from Japanese 

news and spoken versions of each sentence in audio format.  The audio components are 

taken from native Japanese speakers who simply read each sentence out loud, as 

illustrated in Figure 6.1. 
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じゅういちがつふつか 
 

 
 
 
Figure 6.1. Sample from a Japanese text sentence (“November 2nd” in English) and the 
audio waveform of the sample spoken by a native Japanese speaker. 

 
 

There are roughly 10,000 sentences of Japanese text in the GlobalPhone database 

[27] used in the ASR experiments conducted here, and the total time of all sound clips is 

about 28 hours. About 25 hours are used for training, and the remaining 3 hours are used 

for testing.  The data are as follows: Training data are a total of 90,028 seconds of speech 

with 116 speakers (31 female and 85 male), and testing data are a total of 11,316 seconds 

of speech with 11 speakers (3 female and 8 male). 

 The speech and text data used here is from the GlobalPhone database, originally 

created to especially accommodate researchers working on large-vocabulary multilingual 

speech recognition [27]. In practice, acoustic models need at least 100,000 spoken words 

and language models need at least 200,000 spoken words to achieve reliable probabilities.  

There is an average of 10 spoken words per sentence in the GlobalPhone database.  In 

addition, there are 200 sentences per speaker, and 127 speakers, for a total of 

approximately 254,000 spoken words.  The number of Japanese syllables per sentence is 

52.1 and the total number of syllables (or individual Japanese kana characters) is more 

than 1.3 million. 
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 GlobalPhone has native Japanese speakers reading excerpts from the Nippon 

Keizai newspaper, which consists of mostly similar-article reporting styles and, therefore, 



has a uniform grammar and linguistic style, which results in a large speech database with 

corresponding transcripts.  

An overall view of the speech recognition system is found Figure 6.2.  In the 

following sections each of the components is described in detail. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.2. Diagram of the main features of the trained speech recognition system 

 

6.2 Phoneme Map 
 

The system must be trained with all possible phonemes, or basic word sounds.  

For example, if the Japanese word watashi is spoken, it may be phonologically displayed 

as /W  AA  T  AA  SH  IY/, where each of the six elements between the slashes is a 

written representation of the phonemes that make up the word. 

Figure 6.3 shows how the individual waveform that represents the sound of the 

word being spoken can be considered as a collection of smaller waveforms, each of 
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which represents a phoneme.  For the system to be able to recognize the first block in 

Figure 6.2 as /JH/ instead of one of the other phonemes, it is necessary to train the system 

with audio that has a large number of each of the phoneme waveforms.  Thus, when a 

waveform is encountered that has features close to those of the segment on the far left, 

the system approximates this sound as /JH/.   

 

 
 
Figure 6.3. Japanese audio waveform broken down into smaller waveforms, each 
corresponding to individual phonemes. 
 

 

A second pre-training step maps Japanese text to the different phonemes shown in 

Table 6.4.  Since Japanese is composed of an entirely different alphabet than English, it is 

necessary to define how each Japanese kana “letter” is assigned to the phonemes in Table 

6.4.  One kana can represent one or two phonemes.  A chart showing the possible 

assignment of kana to phonemes is in Figure 3.1.   

The complete phonetic symbol set in Table 6.4 is the set of sound representations 

that the SONIC software uses to define each sound. 
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Phone As in Phone As in Phone As in 

AA father EY mate OY boy 
AE had F fate P pin 
AH hut G gale R real 
AO for HH head S sorry 
AW down IH is TS guts 
AX alone IX pen GD hag 
AXR better IY wee SH she 
AY fire BD lab T tell 
B bear DD mad TH throw 
CH chill KD walk UH good 
D dine JH just UW cool 
PD top K kill V violin 
TD got L long W well 
DX letter M man Y yes 
DH those N no Z zip 
EH head NG sing ZH measure 
ER bird OW mole SIL silence 

 
Table 6.4. Symbols used by SONIC to represent 51 possible phoneme sounds 

 
 

 Suppose that the system is to correctly align the string of characters わたし with 

its audio waveform.  The first step determines how these three characters sound if spoken.  

In this case, わ is a written representation of the phoneme sounds /W/ and /AA/, た is /T/ 

and /AA/, and し is /SH/ and /IY/.  The system is then trained with all English 

approximations of the 51 phonemes and their approximate phoneme features, and thus 

the word わたし in Japanese text is broken down into a string of six individual audio 

waveforms.  The exceptions to the pronunciations of the syllables found in Figure 3.1 are 

that し is pronounced /SH  IY/, じ is /JH  IY/, ち is /CH  IY/, つis /TS  UW/, and を is 

/OW/. 
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6.3 Pronunciation Dictionary 

 The pronunciation dictionary holds the training data words found in the total body 

of written texts and their corresponding pronunciation and is based on the phoneme map.  

It is created from text words not yet encountered.  For example, if the word わたし is 

encountered for the first time, it is placed in the dictionary as is.  Then the individual 

characters are referenced in the English phone set in Table 6.4, so that   わたし is paired 

with the pronunciation /W  AA  T  AA  SH  IY/.   Thus, each time the system encounters 

the word わたし it knows the basic pronunciation and the overall audio waveform for the 

word based merely on the six phonemes that make up the text word.  An excerpt from the 

pronunciation dictionary is shown in Figure 6.5. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5. Example of possible entries in the pronunciation dictionary.  The left side is 
the Japanese word as it is found in the text.  Only one instance is necessary for the 
dictionary, so even if the word is extremely common it only appears once.  The right side 
is the pronunciation of the word based on the way the phone map was originally 
configured.  If the configuration of the phone map is altered between one character and 
one phoneme sound, the pronunciations in this dictionary changes for thousands of words 
that contain that sound. 
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さびしい /S  AA  B  IY  SH  IY/ 
さみしい /S  AA  M  IY  SH  IY/ 
さむい /S  AA  M  UW  IY/ 
しずかな /SH  IY  Z  K  AA  N  AA/ 
. 
. 



6.4 Feature Extraction 

This component forms feature representations of each audio waveform.  Figure 

6.6 is an overview of the feature extraction process.   

The first step in processing the audio signal applies a low-pass filter with a cutoff 

frequency of 8 kHz.  An 8 kHz bandwidth is sufficient to carry all human speech 

information.  Next, the signal is digitally sampled at 16 kHz.  A pre-emphasizing filter is 

then applied to the audio signal to remove glottal source effects.   A first-order FIR filter, 

                                                                                                            (35) 11)( −⋅−= zzH α
 

is used, where α is close to 1 (SONIC uses α = 0.97 as a default value) and z is a one 

sample delay. 

Next, the spectrum magnitude of the audio signal is found from the DFT of the 

signal.  A scale change is then made on the frequency axis to the Mel scale frequency by  
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where f is the real frequency (Hz) and fM is the Mel frequency (mels). The Mel (short for 

melody) scale represents the human auditory frequency perception better than the linear 

frequency scale of the Fourier transform. 



 
 

Figure 6.6. Overview of technique to find the Mel Frequency Cepstral Coefficients as 
features of the speech recognition system 

 
 

 This new spectrum is passed into a set of triangle filters that divide the Mel 

frequency scale into a number of regions, e.g., a default value of 12 regions in SONIC.  

Filtering yields a set of 12 log-energy terms, e[1] through e[12],  
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where j is the number of terms from 1 to 12 , N is the value of an N-point DFT, wj[k] is 

the weight of the jth filter to the kth frequency of the sampled signal s(n),  and SMEL[k] is 

the magnitude of the same signal in the Mel frequency scale. 

 The mel frequency cepstral coefficients (MFCCs) result from taking the Fourier 

transform of the log of the Fourier transform.  The discrete cosine transform (DCT) is 

taken instead of the FT, but the classification as cepstral coefficients still applies.  Each 

of the 12 Mel Frequency Cepstral Coefficients (i = 1 to 12) is found using the DCT of the 

energy terms 
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where P is always assumed to be 12.  After the DCT is found, the mean is eliminated 

from each of the features to find the final values of each of the coefficients, i.e.,  
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 The result is a 12 dimensional feature vector, and to each vector a thirteenth 

element is added to hold the log energy term of the sampled signal.  This term is found  

by taking the log of all summed squared samples from 1 to the number of samples in the 

frame N of audio in question, i.e., 
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 The final step finds 13 first and 13 second order derivatives of the 13 elements of 

the vector to generate a 39 dimensional feature vector. 

6.5 Language Model  
 
 The language model creates a reference for probabilities of each individual word.  

Similar to SMT, ASR uses Bayes’ rule, 
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where O is the observed sequence of feature vectors extracted from sampled speech and 

W is the proposed sequence of speech that corresponds to the string of observed feature 

vectors.  Also, P(W) is the language model, and P(O|W) is the acoustic model.  Speech 

recognition finds the best sequence of words given some observed feature vectors.  The 

estimate for a word sequence that maximizes P(W|O) is 
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 The language model gives the probability that a phrase occurs in the target 

language.  Similar to its use in SMT, the language model serves to decrease the 

likelihood of low probability word sequences output by the recognizer. 

6.6 Acoustic Model 
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The acoustic model, P(O|S) from Bayes’ rule, maps acoustic features to distinct 

phonetic representations by modeling each phoneme sound with a set of Hidden Markov 

Model (HMM) states.  As stated before, a 39-dimensional feature vector is created for 

each sample.  The acoustic model uses these vectors to assign a mixture of Gaussian 



distributions to represent each HMM state.  The likelihood of any particular emission 

from a given state is   
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where D = 39 dimensions, M is the number of Gaussians distributions, wm are weights 

that allow all Gaussians to sum to one, and  is the diagonal covariance matrix found 

during the feature extraction phase.  Since the underlying Gaussian distributions are 

continuous and since the HMMs representing encountered phonemes consist of a mixture 

of many of these distributions, the overall HMM structure used by the acoustic model is 

said to be continuous.   

m
2σ

 A string of phonemes is represented by HMMs as shown in Figure 6.7.  Each 

phoneme HMM contains three states, one for the start, middle, and end of each phoneme. 

   The pattern recognition portion of the system brings together the pronunciation 

dictionary, feature extraction, language model, and acoustic model modules of the system 

and generates an optimal text sequence.  Thus it attempts to find the string of words and 

characters that best matches the probabilities found by the other parts of the system.  This 

task is accomplished using a Viterbi decoding algorithm to search through every possible 

recognition choice. 
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State 1 State 2 State 3 State 1 State 2 State 3 

1-P1 1-P2 1-P3

P1 P2 P3 P1 P2 P3

1-P1 1-P2 1-P3

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11

/W/ /AA/ 

 
Figure 6.7. Example of phonemes with underlying Hidden Markov Models.  The 
observations (in this case O1 through O11) vary depending on HMM state transitions, use 
of monophone, diphone, or triphone models, and string of sounds in question.  This 
example is for the first two phonemes of the spoken word watashi.  If encountered again, 
/W/ and /AA/ may have completely different observations. 

 
 

6.7 Automatic Speech Recognition Experiments 

 
 The following hypotheses on actions that may affect speech recognition routines 

are based on knowledge of the Japanese language:   

• Clean all speech of fragments  
• Use all speech including fragments 
• Change postalveolar flap /r/ in all occurrences to alveolar lateral approximant /l/ 
• Change postalveolar flap /r/ in all occurrences to voiced alveolar plosive /d/ 
• Replace palatal fricative /h/ from /hu/ with labio-dental fricative /f/ sound  
• Replace velar stop /g/ in /ga/ with nasal /n/  

The postalveolar flap /r/ sound found in Japanese speech is a mixture of both the 

alveolar lateral approximant sound /l/ found as the first letter of the word “letter” and the 

voiced alveolar plosive sound /d/ found as the first letter in the word “dad.”  For this 

reason, substituting /r/ for /l/ and /r/ for /d/ seem to be suitable choices.  In addition, the 
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syllable /hu/ in Japanese is often approximated as an /f/ sound as in the word “far,” and 

/ga/ is also approximated by a nasal sound /n/ similar to the sound /ng/ in the word 

“song.”  These approximations explain the final two hypotheses.    

6.8 Default training data 

Fragments are parts of sentences that contain mistakes by the speakers. For 

example, if the sentence “I like to take long walks” is misspoken as “I love…,” it is 

considered a fragment.  Japanese speech data fragments and their corresponding texts are 

kept along with the correctly spoken sentences.  Thus, each time an incorrectly spoken 

sentence is kept, the amount of acoustic training data increases.   

 Although the uncleaned acoustic training data improves word error rates, the 

hypothesis is that for syllable and phoneme error rates such data is actually detrimental 

because many of the mistakes made when reading sentences change the statistics on 

individual syllables.  For example, by halting in the middle of a word, a single syllable 

can be introduced into the total dictionary that is not meant to appear.  In addition, if the 

goal of the overall system is to output text to an SMT, the language model statistics can 

also be altered significantly by broken words and incorrectly spoken syllables, thus 

changing the efficiency of the SMT system.  Therefore, using the unfragmented default 

training data for all other hypotheses may be advantageous.   
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Table 6.8 shows the numeric results from the six ASR experiments.  The first 

experiment where fragmented speech is left in the language data yields nearly identical 

results for each error as the second experiment with deleted speech fragments.  In terms 

of word error rates (WER) and their components, the default error rates are best, with 

/hu/ /fu/ WER the best of all alternatives.  Replacing /r/ with /l/ and /r/ with /d/ performs 



poorly because five different sounds are replaced for each hypothesis, which allows for 

deletion, insertion, and substitution errors at more possible points.  The hypotheses that 

substitutes only one sound for one other sound has better performance in every type of 

error rate, but still underperforms when compared to the two default hypotheses. None of 

the experiments is successful in improving Japanese ASR performance.   

 
 #1 (Fragment) #2 (No fragment) #3 (L) 

Deletion 4.0 ± 1.0 4.1 ± 1.0 5.3 ± 1.2 
Insertion 3.7 ± 1.7 3.9 ± 1.8 8.2 ± 2.2 

Substitution 20.1 ± 6.3 20.4 ± 6.2 33.2 ± 6.0 
Total 27.8 ± 8.2 28.3 ± 8.0 46.7 ± 8.0 

 
 #4 (D) #5 (HU) #6 (Nasal) 

Deletion 5.8 ± 1.5 3.0 ± 0.4 3.9 ± 0.8 
Insertion 6.6 ± 1.4 4.4 ± 0.7 4.6 ± 1.2 

Substitution 41.4 ± 2.3  21.2 ± 1.9 26.7 ± 4.5 
Total 53.8 ± 5.1 28.6 ± 2.8  35.2 ± 6.4 

 
Table 6.8. Mean and standard deviation of deletion, insertion, substitution, and totoal 
word error rates (in percent) for the test speakers 
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VII. Results and Conclusions 

This chapter summarizes the results from experiments in the word segmentation, 

SMT, and ASR parts of this research and discusses future work and possible ways to 

improve results found here. 

7.1 Word Segmentation Results 

Results from Tables 4.5 and 4.6 show that smaller n-gram windows work best to 

segment Japanese newspaper text data.  When used alone, 2-gram analysis results in 

spaces at 45.9% of all possible locations, whereas the actual space probability from 

hundreds of sentences is 55.2%.    In addition, 2-grams yields for incorrect placement of 

spaces 5.8% of the time.  The result for 2-grams space probability is about twice as 

favorable as any of the other n-gram results.  Also, in using a 2-gram window along with 

a 3-gram, the space probability increases to 52.1%, and incorrect space classification 

decreases to 3.1%.  Thus, 94.4% of all segments are found by the system using this 

method. 

The reason for the smaller n-gram windows working best may be that the average 

Japanese word is only a few characters long.  Larger n-gram windows, therefore, tend to 

skip over entire groups of words and particles and only find longer individual words, 

while smaller n-gram windows are more likely to catch each occurring word larger or 

small. 

7.2 Results from SMT experiments 
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 Table 7.1 shows the BLEU scores from the baseline and three best SMT 

experiments compared to highest scoring experiments performed by participants in the 

2005 IWSLT campaign.  



Experiment BLEU Score 

Baseline w/20000 sentences of training data 0.3967 

2) Deleted wa 0.4154 

6) Clean verbs and prefixes/suffixes 0.4216 

8) Remove wa and he 0.4436 

ATR-C3 0.4770 

Microsoft 0.4060 

ATR-SLR 0.3880 

University of Tokyo 0.3720 

 
Table 7.1. Comparison of best SMT experiment results to best 2005 IWSLT results 

 
 

The three best BLEU scores in order are experiments 8, 6, and 2.  In comparison 

only the ATR-C3 experiment resulted in better BLEU scores.  Each of these three 

experiments score higher than the Microsoft, ATR-SLR, and University of Tokyo 

experiments.  This appears to be good considering that aside from Microsoft, the groups 

conducting SMT research are all Japanese groups.   

Experiment 8 scores over two points higher than 6 and nearly five points higher 

than the baseline experiment.  Because of this result and since the experiment is relatively 

easy to perform, Experiment 8 seems to be the best choice of the eight experiments.  In 

terms of NIST scores, Experiments 6 and 8 do not perform as well.  Instead Experiment 1 

is best followed by Experiment 5. 
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The ratio of time to performance must be taken into account when performing 

these experiments.  An experiment like 2, where a single particle is removed from the 



data, takes little time and can be accomplished by means of a simple algorithm.  

Experiment 6, on the other hand, takes considerable time to set up, and since its 

performance in terms of BLEU score was close to that of 2, it may not be worth the effort 

to implement a complex algorithm to clean the training and testing data sets. 

Some of the worst performing experiments under both scoring methods are 

Experiments 9 and 10, both failing to do better than the baseline scores.  The reason may 

be grammatical.  As mentioned earlier, merely deleting or replacing a particle, as in these 

cases, may lead to confusion by the system.  In the case of the third experiment, it is 

possible that the system is aligning some of the other grammatical meanings for the 

particle ni with the replaced locative particle he.  In other words, it appears that a 

meaning like “when” or “toward” may be used when “to” is the only possible meaning of 

he.  This result is, however, rather confusing since the final experiment performs well and 

has experiment 3 as a component.  In addition, removing both the topic and subject 

particle proves unproductive.  This is probably due to the fact that both topic and subject 

can appear in the same sentence, and without a marker telling which is which, it is likely 

that they can be switched.  Therefore, as expected Experiment 10 performs poorly. 

7.3 Results from ASR experiments 
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  Comparing the first and second experiments shows that there is no significant 

difference in any of the error rates when using either fragmented or unfragmented speech.  

Since the language data yields nearly identical results, the remaining four experiments 

use fragmented speech since it allows for the use of slightly more training data.  When 

examining the experiments in terms of word error rates (WER), the /hu/ /fu/ experiment 

performs the best, nearly matching both of the default experiments.  All of the other 



experiments perform much worse.  One of the reasons for this may be the relatively small 

test size.  With only nine speakers, there may not be enough acoustic speech data to get 

accurate results.  Another problem is that dialect is neglected in the ASR experiments.  

The speakers used for testing may be of a different dialect subset of speakers, and 

because of this may very well have dialectical differences from the training speakers than 

can affect the performance of the system.  This can be examined in the future 

experiments. 

 It is interesting to note that the experiments do not perform poorly in all aspects.  

The major problem seen in Table 6.8 comes from the fact that substitution errors are quite 

high when compared to the two default experiments.  What this might mean is that the 

system is not properly trained and that incorrectly substituted phonemes occur more often 

than they should because of this poor training.  This may be another area for 

improvement in the future. 

The graphs found in the Appendix show the results for the six ASR experiments.  

The graph for each experiment shows error rates for deletion, insertion, and substitution 

errors as well as total word error rate. The continuous densities found in these graphs 

represent the data points from each of the experiments.  Each probability density is found 

by using unimodal Gaussian Parzen windows [7], where a Gaussian is located at each of 

the nine data points, the variance is increased until only one peak appears in the overall 

distribution, and the curve is standardized so that it has unit area.  Using these graphs is 

useful for giving an idea of where each kind of error falls in relation to other errors. 
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7.4 Future Research 

 It may be of interest to compare results found here with a complete speech 

recognition/machine translation system that takes Japanese speech in audio format, 

changes it into Japanese text transcriptions, and finally outputs English text (or speech).  

Since the text data into the machine translation component of this new system is based on 

imperfect speech recognition outputs, scores are likely to decrease significantly.  

However, in the interest of speech-to-text technology and the ability to interpret speech 

into another language without human help, this comparison could be a good next step.  

 In the ASR experiments, it may be of interest to look at the effects of dialect on 

results.  For example, substituting a nasal /g/ sound for a regular /g/ sound only appears in 

the Japanese language for some dialects.  Since the speakers are randomly chosen without 

regard to dialect, this substitution does not affect all cases.  The same is true for the 

substitution of /fu/ for /hu/.  In both cases, if speaker dialects are considered in the 

training and test data, both of these hypotheses may show improvement over either of the 

default cases, which may be a subject for future research. 

 Finally, comparing the BLEU scores from the SMT experiments with scores from 

the 2005 IWSLT evaluation campaign shows that the experiments here work quite well.  

The eighth experiment has a score of 0.4436, which is higher than all scores in the 

standard evaluation and all but one score in the evaluation using supplied language data 

plus tools[8].  Adapting the experiments used here with the techniques used in the 

IWSLT campaign may be a good next step in further improving scores. 
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taken out of the training and test data. 
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