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INTRODUCTION 

 
This study investigated a computer-aided diagnosis (CADx) system for breast cancer by 

combining the following three data sources: mammogram films, radiologist-interpreted BI-RADS 
descriptors, and proteomic profiles of blood sera.  

Although mammography is the modality of choice for early detection of breast cancer1,2, it has a 
low positive predictive value (PPV). As a result, only 15 to 34% of women with radiographically-
suspicious, nonpalpable lesions are actually found to have a malignancy by histologic diagnosis after 
biopsy.3,4 The excessive biopsy of benign lesions raises the cost of mammographic screening5 and 
results in emotional and physical burden to the patients, as well as financial burden to society.  

In addition to mammography, both BI-RADS descriptors5 and clinical proteomics6 have been 
useful in differentiating benign from malignant breast masses. The combination of mammographic 
and proteomic information can lead to a more specific classifier for difficult cases. Ensemble 
classifiers for breast cancer combining multiple sources of information have been shown to 
outperform classifiers using only one of the information sources.7 

This research has two purposes. The first is to create three separate classifiers for breast cancer 
based on proteomic information, mammogram information, and radiologist-interpreted. The second 
is to combine the outputs of these three first-stage classifiers into one ensemble classifier for breast 
cancer, which will outperform any of the component classifiers. 

 
Note that although this predoctoral fellowship was awarded for three years, it has now been 

concluded in two years. The recipient, Jonathan Jesneck, just graduated in May 2007 and has 
resigned from the fellowship. This fellowship provided him with a solid foundation in cancer 
research and has allowed him to continue with cancer research at the Dana-Farber Cancer Institute.  
 
BODY 
 

Task 1. Build a Bayesian regression model classifier for breast cancer based on image 
features of digitized mammograms. Evaluate the model performance using honest leave-
one-out cross-validation (LOOCV) with the ROC area as the performance metric. 
Calculate the Bayesian posterior classification probability intervals to provide an honest 
assessment of the uncertainties of the predictive classifications. (Months 1-12) 

This task has been completed and has resulted in publications (see #1, #2, and #3 in 
Reportable Outcomes). On each digitized mammogram, a 512x512 region of interest (ROI) 
centered on the centroid of each calcification cluster was extracted. The automated image-
processing scheme consisted of the following steps: (1) pre-processing using unsharp masking, 
(2) segmentation of individual calcifications using a back-propagation artificial neural network 
(BP-ANN) classifier, and (3) cluster classification using another BP-ANN classifier to reduce the 
number of false positive clusters. For each cluster, the algorithm calculated 22 image-processing 
features, consisting mostly of shape features for the calcifications and calcification clusters and 
of texture features for ROIs centered on the clusters. 

Once the features had been extracted from the mammogram, they were used to distinguish 
benign from malignant calcification lesions by classification models. In addition to Bayesian 
probit regression models, for comparison we also applied two well-established CADx classifiers, 
linear discriminant analysis (LDA), artificial neural network (ANN). We also applied two 
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variants of a novel classifier, decision fusion: decision fusion to maximize the area under the 
ROC curve (DF-A), and to maximize the high-sensitivity region (TPF ≥ 0.90) partial area (DF-
P). Decision fusion was a novel classification method (See #1 in Reportable Outcomes). Figure 
1a shows the ROC curve for the Bayesian probit regression, and Figure 1b shows the set of ROC 
curves for the classifiers’ performances under 100-fold cross validation were AUC = 0.73 for 
Bayesian probit regression, 0.68 ± 0.01 for LDA, 0.76 ± 0.01 for ANN, 0.85 ± 0.01 for DF-A, 
and 0.82 ± 0.01 for DF-P. Decision fusion significantly outperformed the other classifiers (p < 
0.001).  

This result was published in Medical Phyics, the premiere peer-reviewed journal in the 
field of Medical Physics, please see Appendix #1 for the reprinted publication. 

 

 
Figure 1a: Bayesian probit regression Figure 1b: LDA, ANN, and decision fusion 
 

Task 2. Build a Bayesian regression model classifier for breast cancer based patient age 
and BI-RADS features from radiologists. Evaluate the model performance and 
classification uncertainties as in Aim 1. (Months 13-16) 

This task has already been completed and has resulted in publications (see #1 and #2 in 
Reportable Outcomes). The mammographic findings for each case in our database have been 
interpreted by dedicated breast imaging radiologists using the Breast Imaging Reporting and 
Data System (BI-RADS) lexicon from the American College of Radiology.8 The BI-RADS 
lexicon provides categorical descriptions (findings) for each mammographic feature. 

While the original research proposal focused only on microcalcification lesions, we have 
responded to one of the proposal reviewers and have extended the research project to include 
masses as well. Including masses will lend additional clinical relevance to this project. Currently, 
the radiologist-interpreted BI-RADS features are available only for mass cases. 

All of the classifiers were able to distinguish benign from malignant lesions well. The 
classifiers’ performances under 100-fold cross validation were AUC = 0.94 for Bayesian probit 
regression, 0.93 ± 0.01 for LDA, 0.93 ± 0.01for ANN, 0.94 ± 0.01for DF-A, and 0.93 ± 0.01 for 
DF-P. Decision fusion had a slight performance gain over the ANN and LDA (p = 0.02), but was 
comparable to Bayesian probit regression. The ROC curves of these classifiers are shown in 
Figures 2a and 2b. 

This result was published in Radiology, the premiere peer-reviewed journal in the field of 
Radiology, please see Appendix #2 for the reprinted publication. 
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Figure 2a: Bayesian probit regression Figure 2b: LDA, ANN, and decision fusion 

 
 

Task 3. Build a Bayesian regression model classifier for breast cancer based on 
proteomic profiles of blood serum samples. Evaluate the model performance and 
classification uncertainties as in Aim 1. (Months 16-28) 

We have completed this task and have submitted our results for publication (see #6 in 
Reportable Outcomes). 

This study enrolled 165 premenopausal women undergoing diagnostic biopsy at Duke 
Univeristy Medical Center for breast cancer between 1999-2005. Before cytoreductive surgery, 
women were consented for the study and blood was obtained. Serum, plasma, and white blood 
cells were aliquoted and cryogenically stored.  Three sets were constructed from these samples: 
1) 48 benign subjects and 2) 49 subjects with invasive breast cancers greater than 1.5 cm, and 3) 
68 healthy subjects as controls.  

While the original research proposal included proteomic data from mass spectrometry 
spectra, these spectra were found to be too noisy for the purposes of classifying malignant from 
benign lesions. We used the much more specific Enzyme-Linked ImmunoSorbent Assay 
(ELISA) protocol to extract information about blood serum proteins. Sera were assayed for 98 
different biomarkers using the Luminex platform and reagents (see #6 in Reportable Outcomes).  

To model explicitly the uncertainty due to model selection and for more robust prediction, 
we used Bayesian model averaging methods. These methods were compared with more 
traditional classifiers. Figure 3a shows the selected models for normal vs. cancer for iterated 
Bayesian model averaging of linear models. Models are ordered by selection frequency, with the 
best, most frequently selected models on the left and the weakest, rarest chosen on the right. 
Coefficients with positive values are shown in red and negative values in blue. Strong, frequently 
selected features appear as solid horizontal stripes, such as for MIF, patient age, MMP-9, and 
MPO.  Figures 3b,c,and d show the ROC curves for the three binary classification tasks.  The 
proteins allowed the models to detection lesions moderately well (AUC = 0.82 for normal tissue 
vs. malignant lesions and for normal tissue vs. benign lesions). However, the benign and 
malignant lesions had nearly identical serum protein compositions, resulting in very poor 
classification performance (AUC = 0.55). The selected proteins likely play a role in the 
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inflammatory response to a lesion, whether benign or malignant, rather than in a role specific for 
cancer.  

This result was submitted to Bioinformatics, the premiere peer-reviewed journal in the 
field of Bioinformaics, please see Appendix #6 for the reprinted publication. 

 

 
Figure 3a: Selected models for iBMA of linear models Figure 3b: ROC curves for normal tissue vs.  
for normal tissue vs. malignant lesions malignant lesions 
 

 
Figure 3c: ROC curves for normal vs. benign lesions Figure 3d: ROC curves for benign vs. malignant  
 lesions 
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Task 4. Combine the outputs of the three Bayesian regression models into one ensemble 
classifier for breast cancer diagnosis prediction. Evaluate the model performance using the 
ROC area as the performance metric. (Months 28-36) 

Between the independently collected radiology data set (737 subjects) and the proteomics 
data set (165 subjects) there were unfortunately only 12 overlapping subjects. Such a small 
sample size did not allow for the development of robust predictive models to integrate the data 
sources. To allow for computational modeling, further data collection efforts were scheduled for 
the third budget year.  However, we are relinquishing the third year because the predoctoral 
fellowship recipient, Jonathan Jesneck, has just received his PhD and graduated. Other graduate 
students in the lab, however, intend to continue the research project and to combine the data 
sources for future studies. 
 
KEY RESEARCH ACCOMPLISHMENTS 

• Developed a decision fusion model to combine various information sources 
• Classified the mammogram and BI-RADS data sets using the following classification 

models: Bayesian probit regression, linear discriminant analysis, artificial neural network, 
and decision fusion 

• Established an internal collaboration as a data source for the proteomics data set, and 
initiated preliminary analysis of that data set. 

• Classified the proteomics data set using the following classification models: iterated 
Bayesian model averaging of linear, logistics, and probit models; support vector machine, 
and least-angle regression. 

• Jonathan Jesneck received a graduate Certificate in Computational Biology and 
Bioinformatics. 

• Jonathan Jesneck received a MS in Statistics and Decision Sciences. 
• Jonathan Jesneck received a PhD in Biomedical Engineering. 

 

CONCLUSIONS 
The current work focuses on combining breast imaging and proteomics information for 

breast cancer diagnosis. This study is structured in two stages: (1) build classification models on 
each of the individual data sources, and (2) combine the models into one ensemble classifier.  

One significant research outcome was the development of a decision fusion classification 
algorithm. Decision fusion has the benefit of being robust in very noisy data sets, such as the 
calcification and proteomics data sets. On the more challenging calcification data set, decision 
fusion outperformed the other classifiers by achieving AUC = 0.85 ± 0.01. On the BI-RADS data 
set, all classifiers performed well, with decision fusion still performing the best with AUC = 0.94 
± 0.01. 

The proteomics study showed that serum proteins can detect the presence of a lesion 
reasonably well (AUC = 0.82), but they did not distinguish benign from malignant lesions (AUC 
= 0.55). The selected proteins showed evidence of secondary effects, such as inflammatory 
response, rather than acting as a biomarker specific for cancer.  

Classifiers worked well for the separate radiology data set and the proteomics data set, but 
we were prevented from building predictive models combining the information due to the very 
small number of overlaps between the two data sets. Future data collection efforts for these data 
sets will be coordinated as to maximize overlapping cases. 
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As more diagnostic testing options become available to physicians, it becomes more difficult to
combine various types of medical information together in order to optimize the overall diagnosis.
To improve diagnostic performance, here we introduce an approach to optimize a decision-fusion
technique to combine heterogeneous information, such as from different modalities, feature catego-
ries, or institutions. For classifier comparison we used two performance metrics: The receiving
operator characteristic �ROC� area under the curve �area under the ROC curve �AUC�� and the
normalized partial area under the curve �pAUC�. This study used four classifiers: Linear discrimi-
nant analysis �LDA�, artificial neural network �ANN�, and two variants of our decision-fusion
technique, AUC-optimized �DF-A� and pAUC-optimized �DF-P� decision fusion. We applied each
of these classifiers with 100-fold cross-validation to two heterogeneous breast cancer data sets: One
of mass lesion features and a much more challenging one of microcalcification lesion features. For
the calcification data set, DF-A outperformed the other classifiers in terms of AUC �p�0.02� and
achieved AUC=0.85±0.01. The DF-P surpassed the other classifiers in terms of pAUC
�p�0.01� and reached pAUC=0.38±0.02. For the mass data set, DF-A outperformed both the
ANN and the LDA �p�0.04� and achieved AUC=0.94±0.01. Although for this data set there were
no statistically significant differences among the classifiers’ pAUC values �pAUC=0.57±0.07 to
0.67±0.05, p�0.10�, the DF-P did significantly improve specificity versus the LDA at both 98%
and 100% sensitivity �p�0.04�. In conclusion, decision fusion directly optimized clinically signifi-
cant performance measures, such as AUC and pAUC, and sometimes outperformed two well-
known machine-learning techniques when applied to two different breast cancer data sets. © 2006
American Association of Physicists in Medicine. �DOI: 10.1118/1.2208934�

Key words: decision fusion, heterogeneous data, receiver operating characteristic �ROC� curve,
area under the curve �AUC�, partial area under the curve �pAUC�, classification, machine learning,
breast cancer

I. INTRODUCTION

Breast cancer accounts for one-third of all cancer diagnoses
among American women, has the second highest mortality
rate of all cancer deaths in women,1 and is expected to ac-
count for 15% of all cancer deaths in 2005.2 Early diagnosis
and treatment can significantly improve the chance of sur-
vival for breast cancer patients.3 Currently, mammography is
the preferred screening method for breast cancer. However,
high false positive rates reduce the effectiveness of screening
mammography, as several studies have shown that only 13–
29% of suspicious masses are determined to be malignant.4–6

Unnecessary surgical biopsies are expensive, cause patient
anxiety, alter cosmetic appearance, and can distort future
mammograms.7

Commercial products for computer-aided detection
�CAD� have shown promise for improving sensitivity
in large clinical trials. Most studies to date have shown
CAD to boost radiologists lesion detection sensitivity.8–11

To date, however, there are no commercial systems to
improve specificity for breast cancer screening. To fill this
need to improve the sensitivity of mammography, computer-
aided diagnosis �CADx� has emerged as a promising clinical
aid.12

2945 2945Med. Phys. 33 „8…, August 2006 0094-2405/2006/33„8…/2945/10/$23.00 © 2006 Am. Assoc. Phys. Med.



There has been considerable CAD and CADx research
based upon a rich variety of modalities and sources of medi-
cal information, such as: digitized screen-film
mammograms,13–17 full-field digital mammograms,18

sonograms,19–21 magnetic resonance imaging �MRI�
images,22 and gene expression profiles.23 Current clinically
implemented CADx programs tend to use only one informa-
tion source, although multimodality CADx programs24 are
beginning to emerge. Moreover, most CADx research has
been performed using relatively homogeneous data sets col-
lected at one institution, acquired using one type of digitizer
or digital detector, or using features drawn from one source
such as human-interpreted findings versus computer-
extracted features. Increasingly however, there is a trend to-
ward boosting diagnostic performance by combining data
from many different sources to create heterogeneous data.
We defined heterogeneous data as comprising multiple, dis-
tinct groups. Specifically, for this study, we considered as
heterogeneous any of the following data set characteristics:
Multiple imaging modalities, multiple types of mammogram
film digitizers, data collected from multiple institutions, and
various types of features extracted from the same image,
especially computer-extracted and human-extracted features.
Combining heterogeneous data types for classification is a
difficult machine-learning problem, but one that has shown
promise in bioinformatics applications.25–27

To meet the challenge of combining heterogeneous data
types, we turned to a decision-fusion method that operates by
the following two steps: �1� Classifiers use feature subsets to
generate initial binary decisions, and �2� these binary deci-
sions are then optimally combined by using decision-fusion
theory. Decision fusion offers the following advantages: It
handles heterogeneous data sources well, reduces the prob-
lem dimensionality, is easily interpretable, and is easy to use
in a clinical setting. Decision fusion has effectively com-
bined heterogeneous data in many diverse classification
tasks, such as detecting land mines using multiple sensors,28

identifying persons using multiple biometrics,29 and CADx
of endoscopic images using multiple sets of medical
features.30

The purpose of this study was to optimize a decision-
fusion approach for classifying heterogeneous breast cancer
data. We compared this decision-fusion approach to a linear
discriminant and an artificial neural network �ANN�, which
are well-studied techniques that have frequently been applied
to breast cancer CADx.13,31–33 This study evaluates these
classification algorithms on two breast cancer data sets using
two different clinically relevant performance metrics.

II. METHODS

A. Data

For this study, we chose two different breast cancer data
sets, which differed considerably in the type and number of
patient cases as well as the type and number of medical
information features describing those cases.

1. Microcalcification lesions

Data set C consisted of all 1508 mammogram microcal-
cification lesions from the Digital Database for Screening
Mammography �DDSM�.34 The outcomes were verified by
histological diagnosis and followup for certain benign cases,
yielding 811 benign and 697 malignant calcification lesions.
Figure 1 shows the feature group structure of this data set.
The feature groups were 13 computer-extracted calcification
cluster morphological features, 91 computer-extracted tex-
ture features of the lesion background anatomy, 2
radiologist-interpreted findings, 3 radiologist-extracted fea-
tures from the Breast Imaging Reporting and Data System
�BI-RADS™, American College of Radiology, Reston, VA�
�Ref. 35� and patient age. In total, data set C had 110 features
and a sample-to-feature ratio of approximately 14:1. Each
mammogram was digitized with one of four digitizers: A
DBA M2100 ImageClear at a resolution of 42 microns, a
Howtek 960 at 43.5 microns, a Howtek MultiRad850 at 43.5
microns, or a Lumisys 200 Laser at 50 microns. To study this
large heterogeneous data set, no attempt was made to restrict
cases only to a single digitizer, as was common in most
previous studies. Moreover, no standardization step was ap-
plied to the images to correct for the differences in noise,
resolution, and other physical characteristics from the vari-
ous digitizers. We used a 512�512 pixel region of interest
�ROI� centered on the centroid of each lesion �using lesion
outlines drawn by the DDSM radiologists� for image pro-
cessing and for generating the computer-extracted features.
We extracted morphological and texture �spatial gray level
dependence matrix� features, which were shown to be useful
in a previous study of CADx by Chan et al.31

FIG. 1. Feature group structure for calcification Data Set C �calcification
lesions�. The features of the calcification data set consisted of three main
groups: Computer-extracted features, radiologist-extracted features, and pa-
tient history features. The computer-extracted features were morphological
and shape features of the automatically detected and segmented microcalci-
fication clusters within the digitized mammogram images. The radiologist-
extracted features comprised both radiologist-interpreted findings and BI-
RADS features. This data set consisted of 512�512 pixel ROIs of all 1508
calcification lesions in the DDSM. This data set had many heterogenic char-
acteristics, such as that it was collected at four different institutions, scanned
on four digitizers with different noise characteristics, and included both
human-extracted and computer-extracted features, such as shape and texture
features.
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This data set had many heterogenic characteristics, such
as that it was collected at four different institutions, scanned
on four types of digitizers with different physical character-
istics, and included both human-extracted and computer-
extracted features, such as shape and texture features.

2. Mass lesions

Data set M consisted of 568 breast mass cases that were
collected in the Radiology Department of Duke University
Health System between 1999 and 2001. These cases were an
extension of the data set described in detail in our previous
studies.36,37 Definitive histopathologic diagnosis from biopsy
was used to determine outcome, yielding 370 benign and 198
malignant mass lesions. Figure 2 shows the feature group
structure of this data set. Dedicated breast radiologists re-
corded all features.

The mass data set was heterogeneous because it was com-
prised of 3 distinct types of data: 13 mammogram features,
23 sonogram features in turn drawn from 3 different lexicons

�Ultrasound Bl-RADS, Stavros, and others�,36 as well as 3
patient history features. In total, data set M had 39 features
and a sample-to-feature ratio of approximately 15:1.

B. Decision fusion

There is a growing literature in the area of distributed
detection. Although there is even some earlier work, several
of the early classical references include the work of Tenney
and Sandell,38 who introduced distributed detection using a
fixed fusion processor and optimized the local processors.
Chair and Varshney39 fixed the local processors, and opti-
mized the fusion processor. Reibman and Nolte40 extended
these previous studies by simultaneous optimization of the
local detectors while deriving the overall optimum fusion
design. Dasarathy41 summarized some of the earlier work.

Decision-fusion theory describes how to combine local
binary decisions optimally to determine the presence or ab-
sence of a signal in noise.38–42 The local binary decisions can
come from any arbitrary source.

Figure 3 provides a schematic of our decision-fusion
method. Our algorithm is a two-stage process, each with a
likelihood ratio calculation. The first stage applies a separate
likelihood ratio to each feature. These feature-level likeli-
hood ratios are then compared to separate thresholds to gen-
erate feature-level decisions. These feature-level decisions
are then fused in the second stage by computing the likeli-

FIG. 2. Feature group structure for mass Data set M �mass lesions�. The
features of the mass data set consisted of mammogram features, sonogram
features, and patient history features. The mammogram features comprised
both BI-RADS features and radiologist-interpreted findings. The sonogram
features consisted of ultrasound BI-RADS features, Stavros features, and
other ultrasound mass descriptors. All image features were radiologist-
extracted features. The mass data set was heterogeneous in including both
mammogram and sonogram views of the breast. Both mammogram and
sonogram feature sets were as well as including patient history features.

FIG. 3. The role of likelihood-ratio thresholds for decision fusion. The first
column shows plots of the log-likelihood-ratio versus feature value for each
feature. The algorithm calculated the likelihood ratio and then thresholded it
separately for each feature. The threshold determined the ROC operating
point of the likelihood-ratio classifier of a particular feature. Next, the algo-
rithm combined the binary decisions from the feature-level likelihood ratio
classifiers using decision fusion theory to produce the likelihood ratio of the
fused classifier.
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hood ratio of the binary decision values. The second stage
combines the feature-level decisions into one fused
likelihood-ratio value, which can be used as a classification
decision variable.

Our technique offers the important advantage that it can
reduce the dimensionality of the feature space of the classi-
fication problem by assigning a classifier to each feature
separately. Considering only one feature at a time greatly
reduces the complexity of the problem by avoiding the need
to estimate multidimensional probability density functions
�PDFs� of the feature space. Accurately estimating such mul-
tidimensional PDFs likely requires many more observations
than a typical medical data set contains. Other benefits of
decision fusion are that it is robust in noisy data,43 is not
overly sensitive to the likelihood ratio threshold values,42

and can handle missing data values.44 Our decision-fusion
technique can also be tuned to maximize arbitrary perfor-
mance metrics �as described later in Sec. II C� that may be
more clinically relevant, unlike more traditional classifica-
tion algorithms that minimize mean-squared error.

1. Detection theory approach - likelihood ratio

Although decision fusion combines binary decisions re-
gardless of how those decisions were made, it is still impor-
tant to choose the right initial classifiers in order to pass as
much information to the decision fuser as possible. In our
algorithm, we used the likelihood ratio as the initial classifier
and applied a threshold to generate the binary decisions on
each feature. Previous work has shown the likelihood ratio to
be an excellent classifier for breast cancer mass lesion
data.45,46

According to decision theory, the likelihood ratio is the
optimal detector to determine the presence or absence of a
signal in noise.47 For this study, the signal to be detected was
the potential malignancy of a breast lesion. The null hypoth-
esis �H0� was that the signal �malignancy� is not present in
the noisy features, while the alternative hypothesis �H1� was
that the signal is present:

H0:X = N ,

H1:X = S + N . �1�

Sources of noise in the features included anatomical noise
inherent in the mammogram or sonogram, quantum noise in
the acquisition of the mammogram or sonogram, digitization
noise and artifacts for data set C, and ambiguities in the
mammogram reading process for the radiologist-interpreted
findings in both Data sets C and M.

The likelihood ratio is the probability of the features un-
der the malignant case divided by the probability of the fea-
tures under the benign case:

�features�X� =
P�X�H1�
P�X�H0�

, �2�

where P�X �H1� is the PDF of the observation data X given
that the signal is present, and P�X �H0� is the PDF of the data
X given that the signal is not present. The likelihood ratio is

optimal under the assumption that the PDFs accurately re-
flect the true densities. We estimated the one-dimensional
PDFs of the features with histograms. We used Scott’s rule to
determine the optimal histogram bin width,45

h = 3.5�n−1/3, �3�

where h is the bin width, � is the standard deviation, and n is
the number of observations. The interval of two standard
deviations around the mean, ��−2� ,�+2��, was then sub-
divided by the bin width, h. We assigned the values falling
outside this interval to the extreme left or right bins. Next,
we applied a threshold value, �, to the likelihood ratio to
produce a binary decision about the presence of the signal.

u = �1 if �feature � �

0 if �feature � � .
�4�

2. Fusing the binary decisions

For the signal-plus-noise hypothesis H1, the probability of
detecting an existing signal is P�u=1 �H1�= Pd and of miss-
ing it is P�u=0 �H1�=1− Pd. For the noise-only hypothesis
H0, the probability of false detection is P�u=1 �H0�= Pf and
of correctly rejecting the missing signal is P�u=0 �H0�=1
− Pf . Using these probabilities, the likelihood ratio value of a
binary decision variable has a simple form, as shown in Eq.
�5�:

�decision�u� =
P�u�H1�
P�u�H0�

= �
Pd

Pf
if u = 1

1 − Pd

1 − Pf
if u = 0.

�5�

We can then use the likelihood ratios of the individual local
decision variables to calculate the joint likelihood ratio of the
set of decision variables. Assuming that the local decision
variables are statistically independent, the likelihood ratio of
the fused classifier is a product of the likelihood ratios of the
individual local decisions.

�fusion�u1, . . . ,up� = �
i=1

p

�decision�ui�

= �
i=1

p
P�ui�H1�
P�ui�H0�

= �
i=1

p 	Pdi

Pfi

ui	1 − Pdi

1 − Pfi

1−ui

. �6�

Note that we assume statistical independence of only the
local binary decisions, not of the sensitivity, false-positive
rate, or even the features on which the local decisions were
made.

In our decision-fusion theory approach, we have made the
important assumption that all the local decisions are statisti-
cally independent. While this appears to be a very strong
assumption, using it in decision fusion often does not lower
classification performance substantially below the perfor-
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mance of the optimal decision fusion processor for correlated
decisions. Although we can construct an optimal correlated
decision-fusion processor with known decision
correlations,48 it is difficult to estimate the correlation struc-
ture of the decisions accurately, especially given many deci-
sions but only few observations. However, even with corre-
lated decisions, the simplifying assumption of independent
decisions often does not lower decision fusion performance.
Liao et al.42 have shown that, under certain conditions for the
case of fusing two correlated decisions, the independent fu-
sion processor exactly matched the performance of the opti-
mal correlated decision fusion processor. Even in many situ-
ations when the optimality conditions were not kept, the
degradation of the fusion performance was not significant.42

Another benefit of the independent local decisions assump-
tion is that decision fusion can usually recover from weak
signals and correlated features given enough decisions to
fuse.43 Because we have a large number of local decisions by
setting a separate local decision for each feature, our algo-
rithm takes advantage of this performance benefit.

C. Classifier evaluation and figures of merit

We used the receiver operating characteristic �ROC� curve
to capture the classification performance of our decision-
fusion algorithm. Assuming independent local decisions, the
PDFs of the decision-fusion likelihood ratio have a similar
product form.42

P��fusion�H1� = �
i=1

p

�Pdi�ui�1 − Pdi�1−ui,

P��fusion�H0� = �
i=1

p

�Pfi�ui�1 − Pfi�1−ui. �7�

Using the fusion likelihood ratio value as a classification
decision variable, the probabilities of detection and false
alarm are calculated as follows:

Pdfusion�	� = �
�fusion�	

P�� = �fusion�H1� ,

Pf fusion�	� = �
�fusion�	

P�� = �fusion�H0� , �8�

where 	 is a threshold on �fusion that determines the operat-
ing point on the ROC curve. By varying the value of the
threshold 	, these Pdfusion�	� and Pf fusion�	� values trace the
entire decision-fusion ROC curve.

One can use the ROC curve to quantify classification per-
formance by calculating summary metrics of the curve. Cer-
tain performance metrics have more significance in a clinical
setting than others, especially when high sensitivity must be
maintained. This study used two clinically interesting sum-
mary metrics of the ROC curve: The area under the curve
�AUC�, and the normalized partial area under the curve
�pAUC� above a certain sensitivity value.49 For this study,
we set the sensitivity value true positive fraction �TPF�
=0.90 for pAUC to reflect that diagnosing breast cancer at

high sensitivities is clinically imperative. We used the non-
parametric bootstrap method50 to measure the means and
variances of the AUC and pAUC values as well as to com-
pare metrics from two models for statistical significance.

D. Genetic algorithm search for the optimal threshold
set

The selection of the likelihood-ratio threshold values is
important to maximize performance of the fused classifier.
Threshold values very far from the best values often lowered
the fused classifier’s performance to near chance levels. A
genetic algorithm searched over the likelihood-ratio thresh-
old values for each feature to select a threshold set that maxi-
mized the desired performance metric or figure of merit
�FOM�,

�optimal = argmax FOM��fusion�u;��� , �9�

where the FOM is either AUC or pAUC, u is the set of local
decisions, and � is the set of feature-level likelihood-ratio
thresholds. The fitness function of the genetic algorithm was
set to the FOM in order to maximize the FOM value. We
optimized for cross-validation performance the following ge-
netic algorithm parameters: The number of generations,
population size, and rates of selection, crossover, and muta-
tion.

E. Decision fusion with cross-validation

We used k-fold cross-validation �k=100� to estimate the
ability of the classifiers to generalize on our data sets. For
each fold, a new model was developed, i.e., the likelihood
ratio was formed on the k−1 subsets �99% of cases� used as
training samples, and the genetic algorithm searched over the
thresholds to maximize the performance metric on these
training samples. Once the best thresholds had been found on
the training set, they were then used to evaluate the algo-
rithm on the one subset �1% of cases� withheld for valida-
tion. The resulting local decisions were then combined into
the fused validation likelihood ratio �test,fusion, as in Eq. �6�.
The process was then repeated k times by withholding a
different subset for validation, such that all cases are used for
training and validation while simultaneously ensuring inde-
pendence between those subsets.

Compiling all �test,fusion values at the end of the cross-
validation computations created a distribution of �test,fusion�X�
of the test cases. We constructed an ROC curve from the
�test,fusion�X� values, as in Eq. �8�, in order to measure the
classification performance of the decision-fusion classifier
with k-fold cross-validation.

F. Using decision fusion in a diagnostic setting

Once the model has been fully trained and validated, it
can similarly be applied to new cases by setting all of the
existing data to be the training data and applying the new
clinical case as a new validation case. The decision-fusion

2949 Jesneck et al.: Optimized approach to decision fusion of heterogeneous data 2949

Medical Physics, Vol. 33, No. 8, August 2006



algorithm would recommend to the physician either a biopsy
with a malignant classification or short-term follow-up with
a very likely benign classification.

G. Other classifiers: Artificial neural network
and linear discriminant

We compared the classification performance of the deci-
sion fusion against both an ANN and Fisher’s linear dis-
criminant analysis �LDA�, which are well-understood algo-
rithms and are popular breast cancer CADx research tools.

For the ANN, we used a fully connected, feed-forward
error backpropagation network with a hidden layer of five
nodes, implemented using the nnet package �version 7.2-20�
for statistical software �version 1.12, the R Project for Sta-
tistical Computing�. For the LDA, we used the Statistics
Toolbox �version 5.1� of MATLAB® �Release 14, Service Pack
2, Mathworks Inc, Natick, MA�. Both models were carefully
verified against custom software previously developed
within our group. We implemented our decision-fusion algo-
rithm in MATLAB, relying specifically on the Genetic Algo-

rithm and Direct Search Toolbox �version 2� to find the best
thresholds for the likelihood ratio values.

III. RESULTS

A. Classifier performance on data set C „calcification
lesions…

Figure 4 shows the validation ROC curves for the calci-
fication data. Table I lists the classification performances of
the four classifiers, while Tables II and III list the two-tailed
p values for the pairwise comparisons by AUC and pAUC,
respectively. The AUC-optimized decision fusion �DF-A�
showed the best overall performance, with AUC
=0.85±0.01, and the pAUC-optimized decision fusion
�DF-P� was slightly worse with AUC=0.82±0.01. Both
decision-fusion ROC curves were well above those of the
LDA and ANN, both in terms of AUC �p�0.0001� and
pAUC �p�0.02�. None of the features were particularly
strong by themselves; we ran an LDA on each feature sepa-
rately, yielding on average AUC=0.53±0.03, with a maxi-
mum of AUC=0.66 for the best feature.

The DF-P curve �pAUC=0.38±0.02� crossed the DF-A
curve �pAUC=0.28±0.03� at the line TPF 
 0.9. In order to

TABLE I. Classifier performance on Data set C �calcification lesions�. The
table shows the AUC and pAUC values for the ROC curves of the four
classifiers under 100-fold cross-validation. The performance values exhib-
ited a wide range. The DF-A scored the best for AUC, while DF-P scored
highest for pAUC, as expected. The decision-fusion curves soundly outper-
formed both the ANN and LDA in terms of pAUC.

Classifier AUC pAUC

DF-A 0.85±0.01 0.28±0.03
DF-P 0.82±0.01 0.38±0.02
ANN 0.76±0.01 0.14±0.02
LDA 0.68±0.01 0.09±0.06

FIG. 4. ROC curves for Data set C �calcification lesions�. The classifiers’ ROC curves for 100-fold cross-validation are shown. Figure 4�a� shows the full ROC
curves, while Figure 4�b� shows only the high-sensitivity region �TPF�0.90�. For the calcification data set, the four classifiers yielded differing classification
performance under 100-fold cross-validation. Both decision-fusion curves lay significantly above the LDA and ANN curves, both in terms of AUC and pAUC.
As expected, the decision-fusion classifiers achieved the highest scores of all the classifiers for their target performance metrics; DF-A attained the greatest
AUC, whereas DF-P attained the greatest pAUC. The DF-P curve surpassed the DF-A curve and dominated the other curves above the line TPF=0.90. In order
to gain high-sensitivity performance, DF-P sacrificed performance in the less clinically relevant range of TPF�0.90.

TABLE II. P values for AUC comparisons for Data set C �calcification le-
sions�. The confusion matrix shows the p values for the pairwise compari-
sons of the classifiers’ AUC values. All pairwise comparisons were statisti-
cally significant.

DF-A DF-P ANN LDA

DF-A 0.018 �0.0001 �0.0001
DF-P 0.0001 �0.0001
ANN �0.0001
LDA
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gain high-sensitivity performance, DF-P sacrificed perfor-
mance in the less clinically relevant range of TPF�0.9. The
DF-A beat the DF-P in terms of AUC �p=0.018� but lost in
pAUC �p�0.01�. Both decision-fusion classifiers greatly
outperformed the both the ANN �pAUC=0.14±0.02� and
LDA �pAUC=0.09±.06� in terms of pAUC.

B. Classifier performance on data set M „mass
lesions…

Figure 5 shows the validation ROC curves of the classi-
fiers for the mass data set. Table IV lists the classification
performances of the four classifiers, whereas Tables V and
VI list the p values for the pairwise comparisons by AUC
and pAUC, respectively. For this data set, all the classifiers
had higher but very similar performance, with AUC ranging
from 0.93±0.01 �LDA� to 0.94±0.01 �DF-A�. With the ex-
ception of DF-P �p=0.50�, the DF-A nonetheless signifi-
cantly outperformed both the LDA �p=0.021� and the ANN
�p=0.038� in terms of AUC. The LDA, ANN, and DF-P
curves were all very similar, for both AUC �p�0.10� and
pAUC �p�0.10�. Figure 5�b� shows the ROC curves in the
high sensitivity region above the line TPF 
 0.90. The clas-
sifiers pAUC values ranged narrowly from 0.57±0.07
�ANN� to 0.67±0.05 �DF-P�, all close enough to show no
statistically significant differences �p�0.10�. However, the
DF-P did have a higher specificity than the LDA at both 98%
sensitivity �0.37±0.10 vs. 0.13±0.13, p=0.04� and at 100%
sensitivity�0.34±0.08 vs. 0.09±0.12, p=0.03�. The DF-P

curve passed the DF-A curve approximately at the line TPF

 0.90 and yielded a slightly higher pAUC �0.67±0.05 ver-
sus 0.63±0.07�, although this improvement was not statisti-
cally significant �p=0.48�.

IV. DISCUSSION

The multitude of medical data becoming available to phy-
sicians presents the problem of how best to integrate the
information for diagnostic performance. Despite recent avail-
ability of this information, current CADx programs for breast
cancer tend to use only one type of data, usually digitized
mammogram films. Because many clinical tests provide
complementary information about a disease state, it is impor-
tant to develop a CADx system that incorporates data from
disparate sources. However, combining disparate data types
together for classification is a difficult machine-learning
problem. This study used the likelihood-ratio detector and
decision-fusion classifier to detect the presence of a malig-
nancy �a signal� within medical data �noisy features�. We
also compared the performance of this classifier to two popu-
lar classifiers in the CADx literature, LDA and ANN, and we
measured the diagnostic performance with two classification
metrics, ROC AUC and pAUC. Finally, we performed these
studies using two very different data sets in order to assess
performance differences due to the data set itself.

Data set C �calcification lesions� had a stronger nonlinear
component, indicated by the fact that the ANN AUC was
much greater than the LDA AUC. The robustness of the
decision-fusion algorithm is evident in its good performance
on this weaker, nonlinear, and noisy data set. Decision fusion
significantly outperformed the ANN and LDA on the calcifi-
cation data set for both performance metrics. Figure 4 and
Table I show that the biggest performance gain is in the
pAUC metric, for which decision fusion doubled the perfor-
mance of the other classifiers.

On Data set M �mass lesions�, all four classifiers seemed
to be saturated at a high level of performance in terms of
both AUC and pAUC, as shown in Fig. 5 and Table IV.
Performances were largely equivalent across all models, ex-

TABLE III. P values for pAUC comparisons for Data set C �calcification
lesions�. The confusion matrix shows the p values for the pairwise compari-
sons of the classifiers’ pAUC values. All pairwise comparisons were statis-
tically significant.

DF-A DF-P ANN LDA

DF-A 0.0084 0.018 �0.0001
DF-P 0.0001 �0.0001
ANN 0.016
LDA

FIG. 5. ROC curves for Data set M
�mass lesions�. For the mass data set,
all classifiers had high levels of classi-
fication performance. The DF-A and
DF-P achieved the highest AUC and
pAUC, respectively. In terms of AUC,
the DF-A outperformed both the ANN
and LDA �p=0.038 and 0.021, respec-
tively�. In �b�, the DF-P curve had
slightly more partial area than the
other curves. Despite having statisti-
cally equivalent partial areas, the DF-P
had a greater specificity than the LDA
at high sensitivities TPF=0.98 �p
=0.03�.
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cept for two trends. In terms of AUC, the DF-A outper-
formed both the ANN and the LDA �p=0.038 and 0.021,
respectively�. Although on this data set decision fusion of-
fered only relatively modest gains in pAUC, it did achieve a
significantly better specificity than the LDA at several of the
highest sensitivities of the ROC curve �p�0.05�.

This decision-fusion algorithm has many potential ben-
efits over more traditional classification algorithms. Decision
fusion can be optimized for any desired performance metric
by incorporating the metric into the fitness function of the
genetic algorithm for its search over the likelihood-ratio
thresholds. This advantage has important clinical implica-
tions, as both the physician and the CADx algorithm are
constrained to operate at high sensitivity. The performance
metric can emphasize good performance at high sensitivities
and deemphasize performance at clinically unacceptable low
sensitivities. Therefore, we expect the DF-A curve to maxi-
mize AUC and the DF-P curve to maximize pAUC. The
DF-P curve should fall under the DF-A curve for low FPF
values but should cross the DF-A curve at the line TPF
=0.90 to capture a greater pAUC value. Figures 4 and 5
show evidence that the DF-P did optimize pAUC. The DF-P
ROC curves crossed the DF-A curves at the line TPF=0.90,
and do in fact have a larger pAUC value than the DF-A
curves. Another advantage is that decision fusion is robust
and can recover from noisy weak features. The likelihood-
ratio classifier passes information about the strength or
weakness of a feature to the decision fuser, which adjusts the
influence given to that feature. This feature-strength informa-
tion is the ROC operating point �sensitivity and specificity�
determined by the likelihood-ratio threshold that was found
by the genetic algorithm search. Figure 3 shows a schematic

of this information flow from the individual features to the
decision fuser. The robustness of the algorithm also suggests
that decision fusion may be able to reach the asymptotic
validation performance with fewer data. This is important for
most medical researchers who are starting to collect new
databases and for any databases that are expensive to collect.
Because our decision-fusion technique needs to estimate
only one-dimensional PDFs, which require much fewer data
points than multidimensional PDFs, decision fusion needs
many fewer data points for training. For this reason, the
decision-fusion algorithm may be able to handle typical
clinical data sets with missing data, as shown in previous
work with decision fusion.44

Drawbacks of the decision-fusion algorithm include los-
ing potentially useful feature information by reducing the
likelihood-ratio values of the features to a binary value. Al-
though the algorithm loses some feature information in this
step, it recovers by optimally fusing the remaining binary
feature information from that point forward. In the ideal
case, if the true underlying multivariate distribution of the
data happens to be known or can be estimated with a high
degree of confidence, then the Bayes classifier can take this
information into account and is theoretically optimal. How-
ever, since the true underlying distribution is almost never
known in practice, decision fusion is a good alternative
method, especially for small and noisy data sets.

V. CONCLUSIONS

We have developed a decision-fusion classification tech-
nique that combines features from heterogeneous data
sources. We have demonstrated the technique on both a data
set of two different breast imaging modalities and a data set
of human-extraced versus computer-extracted findings. With
our data, decision fusion always performed as well as or
better than the classic classification techniques LDA and
ANN. The improvements were all significant for the more
challenging Data set C, but not always significant for the less
challenging Data set M. Such a statement may not reflect the
full diversity of these data sets, which differ in many re-
spects, including linear separability, numbers of cases and
features, and feature correlations. Future work will explore
the contribution of such factors in order to understand the
full potential and limitations of the decision-fusion tech-

TABLE IV. Classifier performance on Data set M �mass lesions�. The table
shows the AUC and pAUC values for the ROC curves of the four classifiers
under 100-fold cross-validation. All four classifiers performed very similarly
on this data set. The DF-A scored the best for AUC, whereas the DF-P
scored highest for pAUC, although both were still within one standard de-
viation of each of the other classifiers’ performances.

Classifier AUC pAUC

DF-A 0.94±0.01 0.63±0.07
DF-P 0.93±0.01 0.67±0.05
ANN 0.93±0.01 0.57±0.07
LDA 0.93±0.01 0.59±0.06

TABLE V. P values for AUC comparisons for Data set M �mass lesions�. The
confusion matrix shows the p values for the pairwise comparisons of the
classifiers’ AUC values. The DF-A outperformed the ANN and LDA.
Among the DF-P, ANN, and LDA, there were no statistically significant
pAUC differences.

DF-A DF-P ANN LDA

DF-A 0.50 0.038 0.021
DF-P 0.20 0.17
ANN 0.53
LDA

TABLE VI. P values for pAUC comparisons for Data set M �mass lesions�.
The confusion matrix shows the p values for the pairwise comparisons of
the classifiers’ pAUC values. None of the pAUC comparisons were statisti-
cally significant. Although pAUC scores were similar, the DF-P did have a
higher specificity than the LDA at both 98% sensitivity �0.37±0.10 versus
0.13±0.13, p=0.04� and at 100% sensitivity �0.34±0.08 versus
0.09±0.12, p=0.03�.

DF-A DF-P ANN LDA

DF-A 0.48 0.45 0.27
DF-P 0.14 0.12
ANN 0.46
LDA
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nique. In conclusion, the decision-fusion technique showed
particular strength in the task of combining groups of weak
noisy features for classification.
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   ABSTRACT
 
Purpose: To retrospectively develop and evaluate 
computer-aided diagnosis (CAD) models that include both 
mammographic and sonographic descriptors.

Materials and Methods: Institutional review board approval was 
obtained for this HIPAA-compliant study. A waiver of informed 
consent was obtained. Mammographic and sonographic 
examinations were performed in 737 patients (age range, 17–87 years), which yielded 803 breast 
mass lesions (296 malignant, 507 benign). Radiologist-interpreted features from mammograms 
and sonograms were used as input features for linear discriminant analysis (LDA) and artificial 
neural network (ANN) models to differentiate benign from malignant lesions. An LDA with all the 
features was compared with an LDA with only stepwise-selected features. Classification 
performances were quantified by using receiver operating characteristic (ROC) analysis and were 
evaluated in a train, validate, and retest scheme. On the retest set, both LDAs were compared
with radiologist assessment score of malignancy.

Results: Both the LDA and ANN achieved high classification performance with cross validation 
(area under the ROC curve [Az] = 0.92 ± 0.01 [standard deviation] and 0.90Az = 0.54 ± 0.08 for
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LDA, Az = 0.92 ± 0.01 and 0.90Az = 0.55 ± 0.08 for ANN). Results of both models generalized well 
to the retest set, with no significant performance differences between the validate and retest sets 
(P > .1). On the retest set, there were no significant performance differences between LDA with 
all features and LDA with only the stepwise-selected features (P > .3) and between either LDA 
and radiologist assessment score (P > .2).

Conclusion: Results showed that combining mammographic and sonographic descriptors in a 
CAD model can result in high classification and generalization performance. On the retest set, 
LDA performance matched radiologist classification performance.

© RSNA, 2007

   INTRODUCTION
 
Because of low specificity at mammography, many women
undergo unnecessary breast biopsy. As many as 65%–85% of
breast biopsies are performed in benign lesions (1–3). 
Unnecessary biopsy not only increases the cost of 
mammographic screening (4) but also subjects patients to 
avoidable emotional and physical burdens.

To improve the accuracy of mammography, computer aids have become available to help 
radiologists detect (5–8) and diagnose (9–12) suspicious breast lesions. Some study results 
(13,14) have shown that use of such computer-aided diagnosis (CAD) systems has increased
overall diagnostic sensitivity and specificity. Lesions determined to be very likely benign may be 
recommended for short-term follow-up rather than biopsy (13,14).

CAD models often involve breast morphologic descriptors of the Breast Imaging Reporting and 
Data System (BI-RADS) lexicon. BI-RADS was developed by the American College of Radiology 
to standardize the interpretation of mammograms (15–17). Originally, BI-RADS was applied to 
only mammography, but the crucial adjunct role of sonography has recently led the American 
College of Radiology to develop a BI-RADS lexicon for breast sonography as well (18). 
Sonographic BI-RADS is a useful tool to help standardize the characterization of sonographic
lesions (18,19) and facilitate clinician communication.

Until recently, the primary clinical role for sonography has been to aid in distinguishing simple 
cysts from solid masses, as well as to direct aspirations, wire localizations, and biopsies. Several
authors (20–24) have investigated the role of sonography in helping to differentiate malignant 
from benign breast lesions. There also have been many CAD studies (25–33) of breast 
sonography, which are based on image features automatically extracted by using computer vision 
algorithms. To the best of our knowledge, there has not yet been a published study with either 
the standardized BI-RADS sonographic findings as the basis of a predictive model or the 
combination of BI-RADS mammographic and sonographic findings for that purpose. Thus, the 
purpose of our study was to retrospectively develop and evaluate CAD models that involve both 
mammographic and sonographic descriptors.

   MATERIALS AND METHODS
 
Lesions and Patients
Institutional review board approval was obtained for this Health
Insurance Portability and Accountability Act–compliant study. A 
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waiver of informed consent was obtained. The lesions used in 
this study were an extension of an original 403-lesion data set 
described in detail in a previous study (34). They were collected 
between 2000 and 2005 at our institution. The data set included 
803 lesions, of which 296 were malignant and 507 were benign, 
and 389 were palpable and 414 were nonpalpable. There were 
737 patients whose ages ranged from 17 to 87 years, with a median age of 50 years. The same 
inclusion and exclusion criteria as described previously (34) applied to this data set. Lesions were 
selected from those recommended for biopsy and were included in the study if the lesions 
corresponded to solid masses on sonograms and if both mammographic and sonographic images
taken before the biopsy were available for review. Any complicated cysts were excluded from 
consideration. All cases were re-reviewed by one of four breast radiologists (including J.A.B.) who 
were blinded to the original report.

Features Used
All patients underwent both mammography and sonography. The mammographic examination 
consisted of both craniocaudal and mediolateral oblique views, with additional true lateral and 
spot compression magnification when clinically appropriate. Sonographic images were acquired in
both radial and antiradial projections, with and without caliper measurements. Additional 
gray-scale images were obtained in almost all patients to better depict the lesion. Doppler, color 
Doppler, and power Doppler images were not part of the routine imaging protocol but were 
reviewed when available. One of four dedicated breast radiologists (including J.A.B.) with 6–11
years of experience used BI-RADS lexicon to describe the lesions, as described previously (34). 
Information about patient physical examination findings, family history of breast cancer, and 
personal history of breast malignancy was available to each radiologist to reproduce a realistic 
clinical situation. The radiologist was blinded to the histologic diagnosis during the evaluation.

Of the total 39 features, 13 were mammographic BI-RADS features, 13 were sonographic 
BI-RADS features, six were sonographic features suggested by Stavros et al (20), four were other 
sonographic features, and three were patient history features. The 13 mammographic BI-RADS
features were mass size, parenchyma density, mass margin, mass shape, mass density, 
calcification number of particles, calcification distribution, calcification description, architectural 
distortion, associated findings, special cases (as defined by the BI-RADS lexicon: asymmetric 
tubular structure, intramammary lymph node, global asymmetry, and focal asymmetry), comparison 
with findings at prior examination, and change in mass size. The 13 sonographic BI-RADS 
features were radial diameter, antiradial diameter, anteroposterior diameter, background tissue 
echo texture, mass shape, mass orientation, mass margin, lesion boundary, echo pattern, 
posterior acoustic features, calcifications within mass, special cases (as defined by the BI-RADS 
lexicon: clustered microcysts, complicated cysts, mass in or on skin, foreign body, intramammary
lymph node, and axillary lymph node), and vascularity. The six features suggested by Stavros et 
al (20) were mass shape, mass margin, acoustic transmission, thin echo pseudocapsule, mass 
echogenicity, and calcifications. The four other sonographic mass descriptors were edge shadow, 
cystic component, and two mammographic BI-RADS descriptors applied to sonography—mass
shape (oval and lobulated are separate descriptors) and mass margin (replaces sonographic 
descriptor angular with obscured). The three patient history features were family history, patient 
age, and indication for sonography.

In addition to the BI-RADS and Stavros et al descriptors, the radiologists also recorded their 
assessment about the malignancy of the lesion as an integer ranging from 0 for unquestionably 
benign to 100 for unquestionably malignant. This assessment rating was not used as an input to 
the CAD models but rather as a comparison to the models' output for classification performance.

Predictive Modeling, Sampling, and Feature Selection



For models in this study, we (J.L.J. and J.Y.L. by consensus) used linear discriminant analysis 
(LDA) and artificial neural networks (ANNs). The LDA was a Fisher linear discriminant. The ANNs 
were three-layer (one hidden layer), feed-forward, and error back-propagation models. These are 
the most common methods used in many previous studies by our group, as well as the rest of the 
field.

To assess the usefulness and risk of using CAD models in the clinic, it is crucial to have a good 
estimate of their performance in future cases (or generalization). For limited data and more 
complicated models, the traditional method of cross validation could still pose a danger of 
optimistically biasing the testing performance; it is common to optimize certain global parameters 
(such as feature selection for the LDA or number of hidden nodes of an ANN) to maximize 
cross-validation performance. With cross validation, one is able to use knowledge of all the data 
to make modeling decisions, whereas with generalization such information is not available for yet 
unseen future cases. Therefore, optimizing the models for cross-validation performance could 
lead to reduced generalization performance.

To avoid these overfitting pitfalls and to better estimate generalization ability of each model, we 
used a train, validate, and retest scheme. In this scheme, the data set was divided into sets: a 
train and validate set and a retest set. The retest set was not used until the models were 
finalized, so as not to influence any of the modeling process. All modeling decisions were made 
only on the train and validate set. The model parameters were optimized to maximize cross 
validation on the train and validate set. Once the model's parameter values were set, the model 
was then trained on the entire train and validate set. The trained model was then applied to the 
retest set.

In particular, for our data set of 803 lesions, we chose the first 500 lesions in chronologic order for 
the train and validate set and the remaining 303 lesions for the retest set. We chose architecture
and parameter settings for the ANN to optimize its cross-validation performance on the train and 
validate set. Once the modeling decisions had been made, we trained the LDA and ANN on all 
the lesions in the train and validate set to determine a single, final set of weights, which were then 
applied to the retest set.

In addition to aiding model training and assessment, the train, validate, and retest scheme can 
also reduce bias in feature selection. Using this scheme, we investigated the effect of feature 
selection on the generalization performance of an LDA. Using only the validate set, we performed 
stepwise feature selection. We then used these selected features to train an LDA on the train 
and validate set. We then applied the trained LDA model to the retest set. Finally, on the retest 
set, we compared the generalization performance of the LDA with only the stepwise-selected 
features and that of the LDA with all the features.

Classifier Performance Evaluation and Statistical Analysis
To use the LDA or ANN model as a diagnostic aid, one could select a threshold value, so that 
lesions with output values less than the threshold would be considered very likely benign and 
therefore candidates for follow-up rather than biopsy. Those lesions with model outputs greater 
than the threshold would be considered suspicious for malignancy and recommended for biopsy.

Varying the threshold value results in a trade-off between sensitivity and specificity. The entire 
range of sensitivity and specificity values for a classifier is illustrated by using the receiver 
operating characteristic (ROC) curve (35,36). To quantify a classifier's performance, we (J.L.J. and 
J.Y.L. by consensus) used the following five summary measures of the ROC curve: area under 
the ROC curve (Az), the partial area (0.90Az), and the specificity, positive predictive value, and
negative predictive value for a given sensitivity level. Az represents the average specificity across 
all sensitivities and ranges from 0.5 (chance performance) to 1.0 (perfect performance). Because 
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high sensitivity is essential for a classification task, a more relevant performance measure is 0.90Az, 
which represents the average specificity performance of the classifier at sensitivities from 90% to 
100%.

Whereas the two previous measures provide an overall summary of performance, the remaining 
three are clinically relevant measures that correspond to a single threshold value, which for breast 
cancer applications is usually chosen to deliver nearly perfect sensitivity, such as 98% (37,38). 
Note that for this data set, the actual positive predictive value of the clinical decision to refer to 
biopsy was 37%, which is typical of our institution. Because our study included only 
biopsy-verified lesions, sensitivity was 100% and specificity was 0% for cancer detection by 
definition.

These classifier performance metrics allowed us to compare classifier performance statistically. We 
used the nonparametric bootstrap method (39) to measure the means and variances of the 
classification metric values, as well as to compare metric results of the two models for statistical 
significance. Although we assumed statistical independence of the lesions for modeling, 8% (66 
of 803) of the BI-RADS data set included multiple lesions per patient. To adjust for clustering of
data values, we used cross validation by patient, which ensured that no lesions from the same 
patient appeared in more than one of the train, validate, and retest sets. A P value of less than 
.05 was considered to indicate a significant difference.

   RESULTS
 
Generalization between Validating and Retesting
The LDA achieved high classification performance, with Az = 0.92
± 0.01 and 0.90Az = 0.54 ± 0.08 on the train and validate set and 
Az = 0.92 ± 0.02 and 0.90Az = 0.52 ± 0.08 on the retest set (Table 
1). Results of the LDA generalized well; there were no significant 
differences between the performance metric results of the 
validate set and those of the retest set (P > .10). In addition to the entire ROC curves of the LDA 
performance, results with individual thresholds also generalized well. The same threshold value 
determined similar true-positive fraction (sensitivity) and false-positive fraction (1 – specificity)
operating points in the high-sensitivity region on both ROC curves (Table 2).
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Table 1. Classification Performance of LDA as Measured with ROC 
Curve
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Table 2. Generalization of LDA Thresholds

 
The ANN also performed well, achieving Az = 0.92 ± 0.01 and 

0.90Az = 0.55 ± 0.08 on the validate
set and Az = 0.91 ± 0.02 and 0.90Az = 0.57 ± 0.06 on the retest set. The ANN performed



comparably on the validate and retest sets, with no significant differences in either metric (P > 
.10).

Comparison of LDA and ANN Performance
The two types of models, LDA and ANN, had similar performances on both the validate and retest 
sets; the differences were not significant (P > .10). In the interest of brevity, tables with the results
of ANN performance are not included in our study because of their close similarity to tables with 
LDA performance results. ROC curves for the LDA and ANN in both testing paradigms (Fig 1) 
showed that discrepancies among the curves were minor, and the curves overlap each other with 
essentially indistinguishable classification performance.
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Figure 1a: (a) Full ROC curves for classifier performance: 
validate set versus retest set. (b) Partial ROC curves for 
classifier performance: cross validation versus retest set. 
Results of LDA and ANN generalized well on retest data 
set, as shown by their overlapping ROC curves. 
Validation ROC curves (solid curves) lie close to retest 
ROC curves (dashed curves). LDA and ANN had virtually 
indistinguishable classification performances. FPF = 
false-positive fraction, TPF = true-positive fraction.
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Figure 1b: (a) Full ROC curves for classifier performance: 
validate set versus retest set. (b) Partial ROC curves for 
classifier performance: cross validation versus retest set. 
Results of LDA and ANN generalized well on retest data 
set, as shown by their overlapping ROC curves. 
Validation ROC curves (solid curves) lie close to retest 
ROC curves (dashed curves). LDA and ANN had virtually 
indistinguishable classification performances. FPF = 
false-positive fraction, TPF = true-positive fraction.

 
Feature Selection and Generalization of Simplified Model
Performance of stepwise feature selection for the LDA resulted in the following 14 features: 
patient age, calcification distribution, calcification description, associated findings, comparison 
with findings at prior examination, anteroposterior diameter, indication for sonography, Stavros et 
al mass shape, mammographic BI-RADS mass margin, edge shadow, cystic component, 



sonographic lesion boundary, surrounding tissue effects, and sonographic special findings. An 
LDA with only these stepwise-selected features performed comparably to the LDA with all the 
features, with no significant difference (Az = 0.92 ± 0.02 vs 0.91 ± 0.02, respectively; P > .3). A
table with performance results of the LDA with stepwise-selected features was not included in our 
study because of its close similarity to the table with results of the LDA with all features.

Comparing LDA to Radiologist Assessment of Malignancy
Like the LDA, radiologist assessment also achieved high classification performance on the retest 
set (Table 3), with Az = 0.92 ± 0.02 and 0.90Az = 0.52 ± 0.06 on the retest set. There were no 
significant differences between any of the performance metric results of the LDA and radiologist 
assessment (P > .2). For example, on this retest data set, the LDA and radiologists performed 
with similar negative predictive values (97% ± 1 vs 98% ± 1, respectively; P = .25).
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Table 3. LDA versus Radiologist Assessment on Retest Set

 
With regard to ROC curves for the LDA with all features, the LDA with the stepwise-selected 
features, and radiologist assessment of malignancy (Fig 2), there were no significant differences 
in any of the performance metric results among the three ROC curves (P > .2). Although the 
radiologist curve crossed the LDA curves several times, even at the points of greater divergence, 
the differences were not significant (P > .2). In a lesion in which the LDA and radiologist 
disagreed (Fig 3), the LDA correctly classified the lesion as benign.
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Figure 2a: (a) Full ROC curves: LDA versus radiologist on 
retest set. (b) Partial ROC curves: LDA versus radiologist 
on retest set. ROC curves for LDA with all features, for 
LDA with stepwise-selected features, and for radiologist 
assessment of malignancy. In retesting, LDA, both with all 
features and with only stepwise-selected features, 
performed similarly to radiologists. There were no 
significant differences in any performance metric results 
among the three ROC curves (P > .2). Although the 
radiologist curve crossed LDA curves several times, even 
at points of greater divergence, differences were not 
significant (P > .2). FPF = false-positive fraction, TPF = 
true-positive fraction.
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Figure 2b: (a) Full ROC curves: LDA versus radiologist on 
retest set. (b) Partial ROC curves: LDA versus radiologist 
on retest set. ROC curves for LDA with all features, for 
LDA with stepwise-selected features, and for radiologist 
assessment of malignancy. In retesting, LDA, both with all 
features and with only stepwise-selected features, 
performed similarly to radiologists. There were no 
significant differences in any performance metric results 
among the three ROC curves (P > .2). Although the 
radiologist curve crossed LDA curves several times, even 
at points of greater divergence, differences were not 
significant (P > .2). FPF = false-positive fraction, TPF = 
true-positive fraction.
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Figure 3a: (a) Mediolateral oblique mammogram in 
26-year-old patient demonstrates ill-defined, oval-shaped, 
equal-density mass (arrow) in posterior left breast. 
Radiopaque marker immediately anterior to mass indicates 
that this mass was palpable. (b) Sonogram in same patient 
demonstrates oval, circumscribed mass (arrow) with parallel 
orientation and no posterior acoustic features. 
Histopathologic diagnosis indicated that this lesion was 
necrotic breast tissue. Follow-up examination findings 
confirmed no interval change 2 years after biopsy. LDA 
considered this lesion relatively benign, with a score of 0.33 
of 1.00, whereas radiologist considered it more indicative of 
malignancy, with a score of 85 of 100.
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Figure 3b: (a) Mediolateral oblique mammogram in 
26-year-old patient demonstrates ill-defined, oval-shaped, 
equal-density mass (arrow) in posterior left breast. 
Radiopaque marker immediately anterior to mass 
indicates that this mass was palpable. (b) Sonogram in 
same patient demonstrates oval, circumscribed mass 
(arrow) with parallel orientation and no posterior acoustic 
features. Histopathologic diagnosis indicated that this 
lesion was necrotic breast tissue. Follow-up examination 
findings confirmed no interval change 2 years after 
biopsy. LDA considered this lesion relatively benign, with 
a score of 0.33 of 1.00, whereas radiologist considered it 
more indicative of malignancy, with a score of 85 of 100.

 
Histograms of the LDA output and radiologist assessment values for the retest set (Fig 4) showed 



that the values for the benign lesions (such as in Fig 5) tended to be on the left side of the 
histogram plot with values around zero. Values for the malignant lesions (such as in Fig 6) were 
concentrated on the right side of the plots, around 1 for the LDA values and around 100 for 
radiologist assessment values. There were few values in the center regions compared with those 
on the extremes.
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Figure 4a: Histograms of (a) LDA output values and (b)
radiologist assessment. Histogram counts for truly benign 
lesions are shown in gray, and those for truly malignant 
lesions are shown in black. For classification, a threshold 
would be applied to LDA output, so that output values 
below the threshold would be designated benign and 
those above it would be designated malignant.
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Figure 4b: Histograms of (a) LDA output values and (b)
radiologist assessment. Histogram counts for truly benign 
lesions are shown in gray, and those for truly malignant 
lesions are shown in black. For classification, a threshold 
would be applied to LDA output, so that output values 
below the threshold would be designated benign and 
those above it would be designated malignant.
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Figure 5a: (a) Mediolateral oblique mammogram in 52-year-old 
patient demonstrates oval, well-circumscribed, equal-density mass 
(arrow) in superior left breast. (b) Sonogram in same patient 
demonstrates oval, hypoechoic solid mass (arrow) with circumscribed 
margins, parallel orientation, and posterior acoustic shadowing. 
Histopathologic results indicated benign fibroadenoma. Both LDA 
and radiologist correctly considered this lesion very benign, with 
scores of 0.02 of 1.00 and 0 of 100, respectively.
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Figure 5b: (a) Mediolateral oblique mammogram in 
52-year-old patient demonstrates oval, well-circumscribed, 
equal-density mass (arrow) in superior left breast. (b)
Sonogram in same patient demonstrates oval, 
hypoechoic solid mass (arrow) with circumscribed margins, 
parallel orientation, and posterior acoustic shadowing. 
Histopathologic results indicated benign fibroadenoma. 
Both LDA and radiologist correctly considered this lesion 
very benign, with scores of 0.02 of 1.00 and 0 of 100, 
respectively.
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Figure 6a: (a) Mediolateral oblique mammogram in 57-year-old 
patient demonstrates ill-defined, irregularly shaped, equal-density 
mass (arrow) in superior right breast. (b) Sonogram in same patient 
demonstrates ill-defined, irregularly shaped mass (arrow) with 
posterior acoustic shadowing and without parallel orientation. 
Histopathologic diagnosis indicated that this malignant lesion was 
invasive ductal carcinoma. Both LDA and radiologist correctly 
considered this lesion very malignant, with scores of 0.99 of 1.00 
and 95 of 100, respectively.

 

View larger version (170K):

Figure 6b: (a) Mediolateral oblique mammogram in 
57-year-old patient demonstrates ill-defined, irregularly 
shaped, equal-density mass (arrow) in superior right 
breast. (b) Sonogram in same patient demonstrates 
ill-defined, irregularly shaped mass (arrow) with posterior 
acoustic shadowing and without parallel orientation. 
Histopathologic diagnosis indicated that this malignant 
lesion was invasive ductal carcinoma. Both LDA and 
radiologist correctly considered this lesion very malignant, 
with scores of 0.99 of 1.00 and 95 of 100, respectively.
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ROC curves for generalization performance (Fig 2) suggest that radiologists may be able to 
achieve considerable improvements in performance by shifting their diagnostic performance to a 
more desirable operating point on the ROC curve. For example, they may perform at 52% 
specificity, 60% positive predictive value, and 98% negative predictive value by adjusting their 
mental threshold to reduce their sensitivity slightly to 98% sensitivity, which would have resulted in 
the delayed diagnosis of 2% of cancers that may be identified by using interval change at a 
short-term follow-up diagnostic study. Likewise, if the radiologists were hypothetically to adopt all 
the recommendations of the computer model, they could have perhaps attained 37% specificity, 
53% positive predictive value, and 97% negative predictive value at that same 98% sensitivity 
level.

   DISCUSSION
 
To the best of our knowledge, our study is the first CAD study not
only to use sonographic BI-RADS features but also to combine 
BI-RADS features of sonography with those of mammography. In 
addition, to justify the clinical use of a CAD system on new 
patients, it is important to estimate its generalization performance. 
We have estimated the generalization performance of both LDA 
and ANN models on our data set by using a train, validate, and 
retest scheme on our data set. There was good evidence of generalization for the LDA and ANN 
because there was no decrease in performance from the validation curves to the retest curves.

The LDA and ANN had virtually indistinguishable classification performance, which indicated that 
the BI-RADS data were highly linear. In general, such results would support the use of the LDA 
model, which is simpler than the nonlinear ANN and therefore less likely to be susceptible to 
overtraining problems. Our study results, however, demonstrated that there were no problems 
with overtraining, as both models performed similarly during the retesting phase.

Because CAD systems typically give as output a range of values, applying a certain threshold to 
the output determines the operating point (sensitivity and specificity settings) at which the clinical 
decision is made. Knowing the CAD operating point helps the clinician incorporate it into an 
overall diagnostic decision. We have shown that results with LDA thresholds from the validation 
ROC curve generalized well to the retest ROC curve in the clinically important high-sensitivity
region, which suggests that these threshold values could be used clinically with the LDA on future 
lesions.

Because the task of collecting many features can be cumbersome, we investigated CAD 
performance with only a subset of the features by performing stepwise feature selection. Of the 
14 selected features, three also had been found to have high malignancy predictive value from a 
previous study (34): Stavros et al mass shape, mammographic mass margin, and sonographic 
lesion boundary. To ensure that the selected features were adequate to allow the CAD system to 
achieve good generalization on new lesions, a train, validate, and retest scheme was required. 
Only the train and validate set was used to select the features, which were then tested in a CAD 
model on the retest set. LDA with only the 14 stepwise-selected features performed just as well as 
an LDA with all 37 features. The small number of features required for good performance 
suggests that this CAD model may be able to offer the benefit of having a second reader without
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greatly slowing workflow. Similar feature definitions caused some features to be collinear. While 
data collinearity does potentially bias the selected model to be optimistic, the rigorous use of 
cross validation followed by completely independent retesting demonstrated that the results did 
generalize without optimistic bias.

LDA results distinguished benign from malignant lesions no differently than did radiologist 
assessment scores for our data set. The generalization performance results suggest that 
radiologists may be able to achieve a more desirable operating point on their ROC curve by 
adjusting their mental threshold to have slightly lower sensitivity but much higher specificity. If the 
radiologists were to adopt all the recommendations of the computer model, they could 
substantially increase specificity while maintaining a high sensitivity level.

The radiologists in this study were experienced dedicated breast imagers. It is hoped that 
less-specialized radiologists using such a system could improve their diagnostic performance 
closer to that of breast specialists. In practice, it remains to be determined how radiologists would 
use the results from such computer models, in particular whether they would modify a 
recommendation for biopsy to a recommendation for short-term follow-up in those lesions deemed
to be very likely benign. It also remains unknown whether the 2% of cancers mistakenly referred 
to follow-up would prove to remain early stage, such as with the current clinical practice of 
following up probably benign lesions.

There were limitations to our study. The BI-RADS data collection included multiple lesions per 
patient for 66 of 803 lesions. Our study criteria included solid masses rather than cysts and the 
use of only biopsy-proved lesions. Additionally, radiologists allowed mammograms to influence 
their recording of the sonographic features, because they analyzed mammograms immediately 
before sonograms. The study was organized in this manner to better reflect actual clinical practice 
in which the mammogram is obtained immediately prior to the sonogram and decisions are made 
by using all available data. They also could have shifted their diagnostic sensitivity and specificity
levels from their usual clinical levels because they were aware that the lesion diagnoses had 
been resolved, and therefore, their assessment ratings did not directly affect patient care.

In conclusion, the results of model classification and generalization performance on our data set 
suggest that the models could be used as a CAD system for future mass lesions. Because the 
results with LDA threshold values generalized well, the desired operating point on the ROC curve 
could be set for future lesions, which increases the usefulness of the CAD system. Because the 
stepwise-selected features were adequate for good classification and generalization, they could
be used in a CAD system that would require only minimal feature collection. In our study, we were 
not trying to improve diagnostic accuracy of dedicated breast imagers but rather to offer a tool to 
radiologists to allow a substantial decrease in the number of unnecessary benign breast biopsies 
while minimizing the number of delayed breast cancer diagnoses.

   ADVANCES IN KNOWLEDGE
 

Both mammographic and sonographic Breast Imaging 
Reporting and Data System descriptors are useful in a 
computer-aided diagnosis (CAD) system for differentiating 
malignant from benign breast masses with high performance 
(area under the receiver operating characteristic curve, 0.92 
± 0.02). 
Results with this multimodal CAD system generalized well to new lesions, an important step 
for the consideration of incorporating a CAD system into clinical use. 



TOP
ABSTRACT
INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
ADVANCES IN KNOWLEDGE
References

   ACKNOWLEDGMENTS
 
We thank David DeLong, PhD, for help with statistical analysis, Brian Harrawood, BA, for the ROC 
bootstrap code, Carey Floyd, Jr, PhD (deceased), and Georgia Tourassi, PhD, for insightful 
discussions, and Andrea Hong, MD, and Priscilla Chyn, MD, for data collection.

   FOOTNOTES
 

Abbreviations: ANN = artificial neural network • Az = area under the ROC curve • BI-RADS =
Breast Imaging Reporting and Data System • CAD = computer-aided diagnosis • LDA = linear
discriminant analysis • ROC = receiver operating characteristic

Authors stated no financial relationship to disclose.

Author contributions: Guarantors of integrity of entire study, J.L.J., J.Y.L.; study concepts/study 
design or data acquisition or data analysis/interpretation, all authors; manuscript drafting or 
manuscript revision for important intellectual content, all authors; manuscript final version 
approval, all authors; literature research, J.L.J.; clinical studies, J.A.B.; statistical analysis, J.L.J., 
J.Y.L.; and manuscript editing, all authors

   References
 

Kopans DB. The positive predictive value of mammography.
AJR Am J Roentgenol 1992;158:521–526.[Free Full Text]

1.

Ciatto S, Cataliotti L, Distante V. Nonpalpable lesions
detected with mammography: review of 512 consecutive
cases. Radiology 1987;165:99–102.[Abstract]

2.

Meyer JE, Eberlein TJ, Stomper PC, Sonnenfeld MR.
Biopsy of occult breast lesions: analysis of 1261
abnormalities. JAMA 1990;263:2341–2343.[Abstract]

3.

Cyrlak D. Induced costs of low-cost screening mammography. Radiology
1988;168:661–663.[Abstract]

4.

Warren Burhenne LJ, Wood SA, D'Orsi CJ, et al. Potential contribution of computer-aided
detection to the sensitivity of screening mammography. Radiology
2000;215:554–562.[Abstract/Free Full Text]

5.

Zheng B, Chang YH, Wang XH, Good WF, Gur D. Feature selection for computerized mass
detection in digitized mammograms by using a genetic algorithm. Acad Radiol
1999;6:327–332.[Medline]

6.

Qian W, Clarke LP, Song D, Clark RA. Digital mammography: hybrid four-channel wavelet
transform for microcalcification segmentation. Acad Radiol 1998;5:354–364.[Medline]

7.

Qian W, Li L, Clarke L, Clark RA, Thomas J. Digital mammography: comparison of adaptive
and nonadaptive CAD methods for mass detection. Acad Radiol 1999;6:471–480.[Medline]

8.

Chan HP, Sahiner B, Helvie MA, et al. Improvement of radiologists' characterization of
mammographic masses by using computer-aided diagnosis: an ROC study. Radiology
1999;212:817–827.[Abstract/Free Full Text]

9.

Chan HP, Sahiner B, Lam KL, et al. Computerized analysis of mammographic
microcalcifications in morphological and texture feature spaces. Med Phys
1998;25:2007–2019.[Medline]

10.

Jiang Y, Nishikawa RM, Schmidt RA, Metz CE, Giger ML, Doi K. Improving breast cancer
diagnosis with computer-aided diagnosis. Acad Radiol 1999;6:22–33.[Medline]

11.

Huo Z, Giger ML, Vyborny CJ, Wolverton DE, Schmidt RA, Doi K. Automated computerized12.



classification of malignant and benign masses on digitized mammograms. Acad Radiol
1998;5:155–168.[Medline]
Baker JA, Kornguth PJ, Lo JY, Williford ME, Floyd CE Jr. Breast cancer: prediction with
artificial neural network based on BI-RADS standardized lexicon. Radiology
1995;196:817–822.[Abstract]

13.

Lo JY, Baker JA, Kornguth PJ, Floyd CE Jr. Effect of patient history data on the prediction
of breast cancer from mammographic findings with artificial neural networks. Acad Radiol
1999;6:10–15.[Medline]

14.

Kopans DB. Standardized mammography reporting. Radiol Clin North Am
1992;30:257–264.[Medline]

15.

D'Orsi CJ, Kopans DB. Mammographic feature analysis. Semin Roentgenol
1993;28:204–230.[Medline]

16.

American College of Radiology. Breast Imaging-Reporting and Data System (BI-RADS). 3rd 
ed. Reston, Va: American College of Radiology, 1998.

17.

American College of Radiology. Ultrasound. In: Breast Imaging-Reporting and Data System 
atlas (BI-RADS atlas). 4th ed. Reston, Va: American College of Radiology, 2003.

18.

Mendelson EB, Berg WA, Merritt CR. Toward a standardized breast ultrasound lexicon,
BI-RADS: ultrasound. Semin Roentgenol 2001;36:217–225.[Medline]

19.

Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker S, Sisney G. Solid breast nodules:
use of sonography to distinguish between benign and malignant lesions. Radiology
1995;196:123–134.[Abstract]

20.

Rahbar G, Sie AC, Hansen GC, et al. Benign versus malignant solid breast masses: US
differentiation. Radiology 1999;213:889–894.[Abstract/Free Full Text]

21.

Jackson VP. The role of US in breast imaging. Radiology 1990;177:305–311.[Medline]22.
Jackson VP. Management of solid breast nodules: what is the role of sonography?
Radiology 1995;196:14–15.[Medline]

23.

Zonderland HM, Coerkamp EG, Hermans J, van de Vijver MJ, van Voorthuisen AE.
Diagnosis of breast cancer: contribution of US as an adjunct to mammography. Radiology
1999;213:413–422.[Abstract/Free Full Text]

24.

Chang RF, Kuo WJ, Chen DR, Huang YL, Lee JH, Chou YH. Computer-aided diagnosis for
surgical office-based breast ultrasound. Arch Surg
2000;135:696–699.[Abstract/Free Full Text]

25.

Chen D, Chang RF, Huang YL. Breast cancer diagnosis using self-organizing map for
sonography. Ultrasound Med Biol 2000;26:405–411.[Medline]

26.

Giger ML. Computerized analysis of images in the detection and diagnosis of breast
cancer. Semin Ultrasound CT MR 2004;25:411–418.[Medline]

27.

Horsch K, Giger ML, Vyborny CJ, Venta LA. Performance of computer-aided diagnosis in
the interpretation of lesions on breast sonography. Acad Radiol
2004;11:272–280.[Medline]

28.

Drukker K, Giger ML, Vyborny CJ, Mendelson EB. Computerized detection and
classification of cancer on breast ultrasound. Acad Radiol 2004;11:526–535.[Medline]

29.

Drukker K, Horsch K, Giger ML. Multimodality computerized diagnosis of breast lesions
using mammography and sonography. Acad Radiol 2005;12:970–979.[Medline]

30.

Drukker K, Giger ML, Metz CE. Robustness of computerized lesion detection and
classification scheme across different breast US platforms. Radiology
2005;237:834–840.[Abstract/Free Full Text]

31.

Moon WK, Chang RF, Chen CJ, Chen DR, Chen WL. Solid breast masses: classification
with computer-aided analysis of continuous US images obtained with probe compression.
Radiology 2005;236:458–464.[Abstract/Free Full Text]

32.

Chen DR, Chang RF, Chen CJ, et al. Classification of breast ultrasound images using
fractal feature. Clin Imaging 2005;29:235–245.[Medline]

33.

Hong AS, Rosen EL, Soo MS, Baker JA. BI-RADS for sonography: positive and negative
predictive values of sonographic features. AJR Am J Roentgenol
2005;184:1260–1265.[Abstract/Free Full Text]

34.

Metz CE. Basic principles of ROC analysis. Semin Nucl Med 1978;8:283–298.[Medline]35.
Metz C. Evaluation of CAD methods. In: Doi K, MacMahon H, Giger ML, Hoffmann KR, eds.
Computer-aided diagnosis in medical imaging. Amsterdam, the Netherlands: Elsevier
Science, 1998; 543–554.

36.

Zhou XH, Obuchowski NA, McClish DK. Statistical methods in diagnostic medicine. New 
York, NY: Wiley, 2002.

37.



Jiang Y, Metz CE, Nishikawa RM. A receiver operating characteristic partial area index for
highly sensitive diagnostic tests. Radiology 1996;201:745–750.[Abstract]

38.

Efron B, Tibshirani RJ. An introduction to the bootstrap. New York, NY: Chapman & Hall, 
1993.

39.

This Article

Abstract 

Figures Only

Submit a response

Alert me when this article is cited

Alert me when eLetters are posted

Alert me if a correction is posted

Citation Map

Services

Email this article to a friend

Similar articles in this journal

Similar articles in PubMed

Alert me to new issues of the journal

Download to citation manager

Google Scholar

Articles by Jesneck, J. L.

Articles by Baker, J. A.

PubMed

PubMed Citation

Articles by Jesneck, J. L.

Articles by Baker, J. A.

HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH SEARCH RESULT

RADIOLOGY RADIOGRAPHICS RSNA JOURNALS ONLINE



The Effect of Data Set Size on Computer-Aided Diagnosis of Breast 
Cancer: Comparing Decision Fusion to a Linear Discriminant 

 
Jonathan L. Jesneck1,2, Loren W. Nolte1,3, Jay A. Baker2, Joseph Y. Lo1,2 

 
1 Department of Biomedical Engineering, Duke University, Durham, NC 27708 

2 Duke Advanced Imaging Laboratories, Department of Radiology,  
2424 Erwin Road, Suite 302, Durham, NC 27705 

3 Department of Electrical and Computer Engineering, Duke University, Durham, NC 27705 
 
 

ABSTRACT 
 

Data sets with relatively few observations (cases) in medical research are common, especially if the data are 
expensive or difficult to collect. Such small sample sizes usually do not provide enough information for computer 
models to learn data patterns well enough for good prediction and generalization. As a model that may be able to 
maintain good classification performance in the presence of limited data, we used decision fusion. In this study, we 
investigated the effect of sample size on the generalization ability of both linear discriminant analysis (LDA) and 
decision fusion. Subsets of large data sets were selected by a bootstrap sampling method, which allowed us to 
estimate the mean and standard deviation of the classification performance as a function of data set size. We applied 
the models to two breast cancer data sets and compared the models using receiver operating characteristic (ROC) 
analysis. For the more challenging calcification data set, decision fusion reached its maximum classification 
performance of AUC = 0.80±0.04 at 50 samples and pAUC = 0.34±0.05 at 100 samples. The LDA reached a lower 
performance and required many more cases, with a maximum of AUC = 0.68±0.04 and pAUC = 0.12±0.05 at 450 
samples. For the mass data set, the two classifiers had more similar performance, with AUC = 0.92±0.02 and pAUC 
= 0.48±0.02 at 50 samples for decision fusion and AUC = 0.92±0.03 and pAUC = 0.55±0.04 at 500 samples for the 
LDA. 
 
Keywords:  Decision Fusion, Computer-Aided Diagnosis, Sample Size, Receiver Operating Characteristic (ROC) 
Curve, Classification, Breast Cancer 
 
 

1. INTRODUCTION 
 
Many medical data sets are difficult and expensive to collect, often resulting in limited data set size. A small number 
of cases usually precludes accurate predictive modeling. Early modeling offers many advantages, such as earlier 
identification of data collection problems, of unsatisfactory patient sampling, of expensive but uninformative 
features, and perhaps earlier discovery of flaws in the scientific experiment design. Many medical experiments 
expose subjects to possibly avoidable risk that could be detected by better and earlier modeling.  
 
The amount of available data affects each model differently. Model complexity tends to produce a tradeoff between 
modeling power and generalization; simpler models may be more robust to noise in the data but may not be able to 
capture the full complexity of the data’s patterns, whereas more complicated models may model the patterns better 
but are more susceptible to overfitting. In addition to the number of samples available, the ratio of number of 
features to number of samples can also affect classifier performance. Many classical models tend to overtrain on 
data sets with few samples and many features. This overtraining effect becomes more pronounced with smaller 
sample size.  
 
In this study, we investigated the effect of sample size on the generalization ability of two computer-aided diagnosis 
(CADx) models. The first model was linear discriminant analysis (LDA), a common CADx model for breast cancer 
data. The second model was a decision-fusion method that has shown promise for small, noisy data sets1. Our 
decision-fusion technique offers the significant advantage that it can reduce the dimensionality of the feature space 



of the classification problem by assigning a classifier to each feature separately. Considering only one feature at a 
time greatly reduces the complexity of the problem by avoiding the need to estimate multidimensional probability 
density functions (PDFs) of the feature space. Accurately estimating multidimensional PDFs likely requires many 
more observations than a typical medical data set contains2. Considering only one-dimensional PDFs may allow the 
decision-fusion technique to reach asymptotic testing performance using many fewer cases than other classifiers 
require. 
 
Other benefits of decision fusion are that it is robust in noisy data3, is not overly sensitive to the likelihood ratio 
threshold values4, and can handle missing data values5. Our decision-fusion technique can also be tuned to optimize 
arbitrary performance metrics that may be more clinically relevant, unlike more traditional classification algorithms 
that optimize mean squared error, such as the LDA. 
 
 

II. METHODS 
 
2.1 Data 
This study used two breast cancer data sets: one of mass lesions and one of calcification lesions. 
 
The mass lesion data set is an extension of the earlier subset described by Hong, et al. from this research group6. The 
cases were collected between 2000 and 2005 at Duke University. The data set included 803 lesions, of which 296 
were malignant and 507 were benign, and 389 were palpable and 414 nonpalpable. The patient ages ranged from 17 
to 87 years, with a median age of 50 years. Patients underwent both mammography and sonography, and outcome 
was determined through definitive histopathological diagnosis. One of three dedicated breast radiologists with 6-11 
years of experience described each lesion using Breast Imaging Reporting and Data System (BI-RADSTM, American 
College of Radiology, Reston, VA)7 mammography, BI-RADS sonography, and Stavros sonography descriptors6. 
Of the total 38 features, 13 were mammographic, 22 were sonographic, and 3 were patient history features. 
 
Second, we used a calcification data set that consisted of 1508 mammogram microcalcification lesions from the 
Digital Database for Screening Mammography (DDSM)8, which is publicly available. The outcomes were verified 
by histopathological diagnosis and follow-up for certain benign cases, yielding 811 benign and 697 malignant 
calcification lesions. The feature groups were 13 computer-extracted calcification cluster morphological features, 91 
computer-extracted texture features of the lesion background anatomy, 2 radiologist-interpreted findings, 2 
radiologist-extracted features from the BI-RADS lexicon and patient age. In total, calcification data C set had 109 
features and a sample-to-feature ratio of approximately 14:1. Each mammogram was digitized with a resolution of 
either 43.5 microns (Howtek 960 or MultiRad850 digitizer) or 50 microns (Lumisys 200 Laser digitizer). We used a 
512x512 pixel ROI centered on the centroid of each lesion (using lesion outlines drawn by the DDSM radiologists) 
for image processing and for generating the computer-extracted features. We extracted morphological and texture 
(spatial gray level dependence matrix) features, which were shown to be useful in previous studies of CADx such as 
by Chan, et al.9. 
 
2.1 Decision Fusion 
For the decision-fusion classifier, histograms of each feature were constructed as an estimate of the probability 
density in order to construct an empirical likelihood ratio for that feature. Then, a binary decision was made by 
comparing the likelihood ratio value to a given threshold, which in turn determined the sensitivity and specificity of 
the decision. Finally, the decision fusion theory allowed the individual binary decisions to be combined optimally to 
produce one final binary decision.  
 
First, each feature was considered separately and classified by a likelihood ratio classifier. According to decision 
theory, the likelihood ratio is the optimal detector to determine the presence or absence of a signal in noise10. The 
null hypothesis (H0) was that the signal is not present in the noisy features, while the alternative hypothesis (H1) was 
that the signal is present.  

 

! 

H
0
: X = N

H
1
: X = S + N

 (1) 

 



The likelihood ratio is the probability of the features under the malignant case divided by the probability of the 
features under the benign case: 
 

! 

"(X) =
P(X |H1)

P(X |H0)
, (2) 

 
where p(X|H1) is the PDF of the observation data X given that the signal is present, and p(X|H0) is the PDF of the 
data X given that the signal is not present. The likelihood ratio is optimal under the assumption that the PDFs 
accurately reflect the true densities. For classification, we can apply a threshold value, τ, to the likelihood ratio to 
produce a binary decision, u, about the presence of the signal. 

 

! 

u =
1  if " # $

0  if " < $

% 
& 
' 

 (3) 

 
Since we assigned a separate likelihood ratio classifier to each of p features, we applied a separate threshold to each 
classifier’s output value to produce p binary decisions. A genetic algorithm searched over the joint set of thresholds 
in order to maximize the classification performance of the fused binary decisions. The genetic algorithm search time 
was capped at 30 generations for this study due to computational cost. 
 
Decision-fusion theory describes how to combine local binary decisions optimally to determine the presence or 
absence of a signal in noise11-15. The decision fuser optimally fuses all the local decisions according to the operating 
points on the receiver operating characteristic (ROC) curve at which the local decisions were made. Assuming 
statistically independent decisions, the likelihood ratio of the fused classifier is a product over the “yes, signal 
present” (ui = 1) decisions multiplied by a similar product over the “no, signal absent” (ui = 0) decisions.  
 

 

  

! 

" fused (u1,K,up ) =
Pdi

Pfii

u=1

#
1$ Pdi
1$ Pfii

u= 0

# , (4) 

 
where Pdi is the probability of detection or sensitivity, and Pfi is the probability of false detection, or (1-specificity), 
for the ith local decision. The ROC curve can be computed from the unique likelihood-ratio values of the fused 
classifier as shown in Equation (5). 

 

  

! 

Pdfused ( j) = P(" fused ,i |H1),
i= j

p

#    j = 0,K, p

Pf fused ( j) = P(" fused ,i |H0),
i= j

p

#    j = 0,K, p

 (5) 

 
2.2 Linear Discriminant Analysis 
The baseline classifier was linear discriminant analysis (LDA), which served as a benchmark for the linear 
separability of the data set.  
 
2.3 Sampling and Validation 
In order to study the effect of sample size on the classifiers’ performances, we randomly selected subsets of the data 
sets. We varied the number of selected cases from 50 to 500, which covers typical data set sizes in preliminary 
CADx research. Ten random draws of each data subset size were drawn to assess selection effects. On each subset, 
both classifiers were trained and validated using 10-fold cross-validation. For each sample size such as 100 cases, 
classifiers were developed using ten bootstrap samples of that number of cases, which allowed the calculation of the 
mean AUC and pAUC values along with their standard deviations. 
 
2.4 Classifier Comparison 
Each classifier was evaluated using ROC analysis. Two clinically interesting summary metrics of the ROC curve 
were used: the area under the curve (AUC) and the normalized partial area of the curve (pAUC), which is measured 
above sensitivity of Pd = 0.9. 
 



 
III. RESULTS 

 
Figure 1 plots the classification performance against the number of cases. The classifiers’ performances were scored 
both by ROC AUC (Fig. 1a and 1c) and pAUC (1b and 1d).  

On the calcification data (Fig. 1a and 1b) decision fusion achieved a maximum of AUC = 0.80±0.04 at 50 samples 
and pAUC = 0.34±0.05 at 100 samples. The LDA had a lesser performance, with AUC = 0.68±0.04 and pAUC = 
0.12±0.05 at 450 samples. The LDA had the expected testing trend of slowly increasing performance with 
increasing sample size, but decision fusion showed the opposite trend. Perhaps inadequately trained, decision fusion 
decreased with sample size both in AUC and pAUC. Note that all of these are validation results from k-fold cross-
validation, which normally should minimize effects of training bias. 

For the mass lesion data (Fig. 1b and 1d), the two classifiers’ performances had more similar trends. Decision fusion 
reached a maximum of AUC = 0.92±0.02 and pAUC = 0.48±0.02 at 50 samples, and the LDA reached AUC = 
0.92±0.03 and pAUC = 0.55±0.04 at 500 samples. No significant performance differences between the classifiers 
were seen in sample sizes greater than 100. For very small data sets of 50 cases, decision fusion outperformed the 
LDA. In both data sets, decision fusion approached its final AUC value with many fewer cases than the LDA 
required. All plots except Fig. 1b showed that decision fusion had a smaller slope than the LDA. 

 

 
 (a) AUC vs. Sample Size, Calcification Data (b) pAUC vs. Sample Size, Calcification Data 
 

 
 (c) AUC vs. Sample Size, Mass Data (d) pAUC vs. Sample Size, Mass Data 

Figure 1: Classifier performance vs. Sample Size 



Decision fusion significantly outperformed the LDA on the calcification data set. The performance difference was 
greatest for small data sets. However, on the larger data sets, the performance gap narrowed to 0.06. In part (b), 
decision fusion achieved pAUC = 0.34±0.05 at 100 samples and then fell to pAUC = 0.2±0.02 at 500 samples. 
Although the two classifiers had very similar performance on the mass data set, decision fusion still outperformed the 
LDA for very small sample sizes.   

 
 

IV. DISCUSSION 
 

Decision fusion had its biggest classification performance gain over the LDA on the noisier, more nonlinear data set, 
the calcification data set. On the mass data set, both the LDA and decision fusion performed very similarly for data 
sets larger than 50 samples. On very small data sets of 50 samples, which are common among initial CADx studies, 
decision fusion outperformed the LDA. For the mass data set at least, a particular strength of the decision-fusion 
algorithm is that it is able to estimate asymptotic testing performance with many fewer cases than other classifiers 
require. Figure 1 shows that decision fusion was able to achieve approximately the same testing performance with 
50 cases as with 500 cases.  
 
The general downward slope of the decision fusion curves for the calcification data set may be due to inadequate 
training. For computational convenience, we limited the genetic algorithm’s search time to only 30 generations. 
Whereas 30 generations were adequate for small data sets smaller than 150 cases, larger data sets required more 
genetic algorithm generations for complete optimization. A much longer run of 3000 generations on all available 
1508 cases in the calcification lesion data set improved decision fusion’s performance under 100-fold cross-
validation to AUC = 0.85±0.01 and pAUC = 0.28±0.03, which exceeded the performance for all data points shown 
in Fig. 1a and 1b. A similar more thorough optimization on all available 803 cases in the mass data set allowed 
decision fusion to reach AUC = 0.94±0.01 and pAUC = 0.63±0.07, which likewise also exceeded the performances 
in Fig. 1c and 1d. 
 
The improvements were usually significant for the more challenging calcification data set, but not for the mass data 
set. Such a statement may not reflect the full diversity of these data sets, which differ in many respects, including 
linear separability, numbers of cases, numbers and types of features, and feature correlations. Future work will 
explore the contribution of such factors using controlled simulation data sets in order to understand the full potential 
and limitations of the decision-fusion technique. 
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Abstract 

Background 

To serve as useful and reliable medical tools, computational models and computer-aided 

diagnosis (CADx) systems must be properly trained.  Training models on complex medical data 

often requires numerous training samples, which may be expensive to collect.  To minimize the 

data collection costs and to ensure that the models generalize well to future cases, it is important 

to estimate the minimum number of samples needed for a particular modeling and classification 

task.  

Method 

This study focuses on the decision-fusion classifier, which optimally combines input binary 

decisions.  Here we present a Bayesian approach to estimate the minimum number of training 

samples at which decision fusion reaches its asymptotic testing performance.  To demonstrate 

the actual performance of the described Bayesian theory, we performed a large series of Monte 

Carlo simulation studies, varying parameters such as feature count and feature strength. The 

simulation results were then used to make sample size inferences on real medical data sets.  

Results 



Minimum training set size decreased with both signal strength (signal-to-noise ratio, SNR) and the 

number of features at a constant SNR per feature.  Minimum sample size increased when a 

constant whole-dataset SNR was diluted across various numbers of features. 

Conclusions 

For a decision-fusion classification task, this method uses signal strength and feature count to 

estimate the minimum sample size.  Having enough training samples allows the classifier to be 

adequately trained to generalize optimally on future cases.  To help extend this simulation study 

for application on real medical data, readers are provided with sampling guidelines to estimate the 

minimum training set size for their own data sets.  

Key Words 

decision fusion; sample size; Bayesian estimation; generalization; ROC curve; computer-aided 

diagnosis (CADx) 

End of Abstract 

 

 

I. Introduction 

 

Computational models and computer-aided diagnosis (CADx) systems are becoming increasingly 

important in medicine.  In order for these models to serve as a useful medical tool, they must be 

properly trained and must generalize well to new cases.  Good generalization depends heavily 

upon proper training, which requires an adequate number of training samples.  However, training 

cases are often difficult to acquire; collecting medical data is often time-consuming and 

expensive.  To make best use of limited resources and to allow computational models to be 

properly trained, it is important to estimate the minimum required size of a data set. 

 

Many studies have shown that small data sets adversely affect modeling efforts.  Fukunaga and 

Hayes [1] and Raudys and Jain [2] have conducted reviews of the large literature of finite-



sample effects.  Pertaining specifically to finite-sample effects on CADx, Chan et al. [3, 4] 

showed how a small sample size introduces bias and degrades the CADx classifier performance.  

This effect has been explored in depth for linear classifiers [5, 6] and artificial neural networks 

(ANNs) [7-9].  Finite sample size is especially important when classifier training is performed in 

conjunction with classifier design and feature selection [6, 8, 10].   

 

The finite-sample effect confounds traditional classifiers because they have only a few samples 

from which to estimate the structure of a complicated data set.  Estimating multidimensional 

probability density functions (PDFs) is a difficult problem in statistical learning. One method for 

tackling this problem is to consider only one dimension at a time.  With limited observations, it is 

far easier to estimate a one-dimensional PDF than a high-dimensional PDF. 

 

One classifier designed to meet this challenge is decision fusion.  The decision fusion algorithm 

operates by the following two steps: (1) Local classifiers use feature subsets to generate initial 

binary decisions, and (2) With decision-fusion theory we then combine these binary decisions 

optimally.  The algorithm is described in detail in previous work [11].  One of decision fusion’s 

main advantages is that it avoids the problem of having to estimate multidimensional probability 

distribution functions (PDFs).  Our decision fusion technique reduces the dimensionality of the 

classification problem’s feature space by initially considering only one feature at a time.  By 

estimating only the one-dimensional distribution of each feature separately, decision fusion is able 

to capture underlying trends in the data by using fewer training samples than many 

multidimensional modeling techniques. 

 

The purpose of this study was to identify the minimum sample size for a decision fusion 

classification.  The minimum sample size was defined as the minimum number of training 

samples that decision fusion required to achieve its asymptotic classification performance.  We 



developed a Bayesian method to model the uncertainty from the finite-sample effect and explore 

this uncertainty’s effect on decision fusion’s classification performance.  This method’s 

performance trends were shown in a large series of Monte Carlo simulation runs.  

 

 

II. Methods 

 

A. Decision fusion 

Stemming from the field of distributed detection, decision fusion has a growing literature.  In early 

work, Tenney and Sandel [12] optimized the local processors and kept fixed the fusion 

processor, whereas Chair and Varshney [13] fixed the local processors and optimized the fusion 

processor.  Reibman and Nolte [14] optimized the local and fusion processors simultaneously 

and derived the overall optimum fusion design.  Dasarathy [15] summarized this previous work.  

Jesneck et al. [11] used genetic algorithms to optimize of the decision fusion algorithm into 

arbitrarily high dimensions. 

 

The goal of decision fusion is to detect the presence or absence of a signal in noise [16].  Signal 

detection is formulated in decision fusion theory by optimally combining local binary decisions 

[11-15, 17].  Although the local binary decisions can come from any arbitrary source, previous 

work [11, 18, 19] demonstrated the benefit of using a likelihood-ratio classifier.  The likelihood 

ratio is probability of the feature assuming the signal is present in noise (

! 

H
1
: X = S + N ) divided 

by the probability of the feature assuming the signal is absent (

! 

H
0
: X = N ): 

 

! 

" feature (X) =
P(X |H1)

P(X |H0)
 (1) 



where 

! 

S  is the signal, 

! 

N  is noise, 

! 

P(X |H1)  is the PDF of the observation data 

! 

X  given that 

the signal is present, and 

! 

P(X |H0)  is the PDF of the data 

! 

X  given that the signal is not 

present.  

 

Once the classifier output value 

! 

" feature  has been calculated, it can then be subjected to a 

threshold 

! 

"  to make a binary decision 

! 

u . 

 

! 

u =
1 if " feature # $

0 if " feature < $

% 
& 
' 

 (2) 

Any particular threshold determines a corresponding operating point on the local classifier’s 

receiver operating characteristic (ROC) curve.  Each ROC operating point consists of a pair of 

probabilities 

! 

(Pd,Pf ), where 

! 

Pd  is the probability of detection, and 

! 

Pf  is the probability of false 

alarm, at which a local binary decision is made.   

 

Our decision fusion algorithm applies a separate likelihood-ratio classifier to each feature.  The 

local classifier receives an input feature value, 

! 

X , and produces an output value, 

! 

" feature , which 

is compared to a threshold 

! 

"  to yield a binary decision 

! 

u .  The likelihood ratio of a single binary 

decision 

! 

u  can be written in a simple ratio form: 

 

! 

"decision (u) =
P(u |H1)

P(u |H0)
=

Pd

Pf
if u =1

1# Pd

1# Pf
if u = 0

$ 
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& & 
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& 
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 (3) 

 

The set of binary decisions and their ROC operating points are then fused into a likelihood-ratio 

value, which takes the form of a product over the “yes” decisions (

! 

u
i
=1) and the “no” decisions 

(

! 

u
i
= 0): 
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" fusion (u1,...,up ) = "decision (ui
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 (4) 

where 

! 

Pd
i
and 

! 

Pfi  are the probabilities of detection and false alarm, respectively, for the ith local 

binary decision, 

! 

u
i
.   

 

With this product form of the decision fusion likelihood, we assume that the local decisions are 

statistically independent [11].  While we could in fact construct an optimal correlated decision 

fusion processor with known decision correlations [20], correctly estimating the decision 

correlations would require a large number of training samples.  Limited to few observed samples, 

therefore, we make the decision independence assumption.  Although the decision independence 

assumption appears to be very strong, its application in decision fusion often does not 

substantially lower classification performance in practice [17].  Note that we assume statistical 

independence only of the binary decisions, not of the sensitivity, false-positive rate, or even the 

features on which the local decisions were made. 

 

To measure classification performance, the decision-fusion likelihood-ratio value 

! 

" fusion  can be 

used as the output value of the decision fusion algorithm.  By applying thresholds to this output 

value, we can use ROC analysis to measure the algorithm’s classification performance.  In 

addition to a qualitative assessment of the ROC curve’s shape, we can quantify performance by 

using figures of merit, such as the area under the ROC curve (AUC).  

 

B. Uncertainty about the values of the local ROC operating points 



The optimality of decision fusion is guaranteed only if we know the ROC operating points exactly. 

These values are easily calculated on training data; a threshold 

! 

"  applied to the observed 

classifier output value 

! 

" feature  yields the operating point values 

! 

Pdtrain ,Pftrain( )
"
, as shown 

Equation 2.  But in order for decision fusion to achieve optimal generalization performance, we 

must also be able to determine the ROC operating points for future cases.  However, for testing 

data or future samples this calculation is impossible because we cannot explicitly determine 

which ROC operating points are determined by that same threshold 

! 

" .  When applied to new 

samples, this threshold will yield different operating point values 

! 

Pdtest ,Pftest( )
"
.  Large 

differences between the training and testing ROC operating points, 

! 

Pdtrain " Pdtest ,Pftrain " Pftest( )
#

, will degrade the decision fusion’s performance on future 

observations.  But small differences will allow decision fusion to generalize at near-optimal levels.  

Statistical learning theory states that such a training-testing difference shrinks with more training 

samples, because both observed training and testing values converge to asymptotic values 

determined by the data’s underlying probability distribution [21].   

 

Therefore we can use a statistical framework to estimate how many training samples are required 

for good generalization on future cases.  In order to estimate the minimum number of samples 

required for decision fusion to reach its asymptotic classification performance, we can model the 

uncertainty of the 

! 

Pd  and 

! 

Pf  estimates.  By choosing different thresholds, we can estimate the 

uncertainty of each operating point on the ROC curve.  Figure 1 shows a local classifier’s ROC 

curve with its uncertainty band.  An arbitrary threshold determines a particular operating point, 

shown by the dot.  For this study we chose the threshold 

! 

" =1.  The vertical and horizontal 

arrows in Figure 1 represent the ROC operating point’s uncertainty. The following statistical 

methodology describes how to model this uncertainty. 

 

C. Estimating the 

! 

Pd,Pf( )
"
 uncertainty 



To estimate the uncertainty of the ROC operating points, one could use any of the following three 

estimation methods: ROC parametric fitting, sampling of a fixed ROC curve, and sampling of the 

input data.  

 

In parametric modeling of the ROC curve, a common assumption is the binormal assumption: the 

data points from class 0 (hypothesis 

! 

H
0
) and class 1 (hypothesis 

! 

H
1
) have normal distributions 

[22-24].  Under this assumption, the ROC parameters are fit.  Along with point estimates for the 

curve’s parameters, the fit also gives us the parameters’ variances.  With these variances we can 

model the uncertainty of the ROC operating points and estimate the minimum sample size [25].  

This study did not use this ROC modeling technique in order to avoid the potential limitations of 

the binormal assumption.  

 

In nonparametric bootstrap sampling, we use an empirical ROC curve.  We can perform bootstrap 

sampling over the set of values of the output decision variable, which generates a set of 

bootstrapped ROC curves [26].  From generated ROC curves, we can calculate the confidence 

bands along the ROC curve.  For any particular operating point, this method can calculate the 

! 

Pd  and 

! 

Pf variances.  Note that for this method the classifier is run only once, producing a 

single set of values of it output decision variable.  Sampling is then performed on these output 

values to generate many similar ROC curves.  This study did not use this technique in order to 

avoid possible biases due to single draws of small samples that were not representative of their 

underlying distributions. 

 

For a nonparametric method that is more computationally expensive but also potentially less 

biased, we could sample the input data points.  Whereas the above method performs sampling 

after a single run of the classifier, this method runs the classifier for each sampling draw.  With 



each data sample, the classifier runs and generates an ROC curve.  It is this second 

nonparametric sampling method that we have used in this study. 

 

D. A Bayesian method to integrate over the 

! 

Pdtrain ,Pftrain( )
"
uncertainty 

Once we have estimated the ranges of the ROC operating points, we can pass this information to 

the decision fusion algorithm by constructing a Bayesian model.  In a Bayesian setting, we define 

an a priori distribution of the ROC operating points.  Although any form for the distribution can be 

used, we chose a small uniform distribution centered on the training estimates 

! 

Pdtrain ,Pftrain( )
"
 

[17]. 

 

! 

Pd
"
~U Pdtrain "

#$Pd ,Pdtrain "
+ $Pd( )

Pf
"
~U Pftrain "

#$Pf ,Pftrain "
+ $Pf( )

 (5) 

Here 

! 

2"
Pd

 and 

! 

2"Pf are the distribution widths of 

! 

Pd  and 

! 

Pf , respectively.  The a priori 

distribution of 

! 

Pd,Pf( )
"
allowed us to integrate over the 

! 

Pd,Pf( )
"
 uncertainties in order to get a 

marginal estimate of the decision-fusion likelihood-ratio value. 

 
  

! 

" fused #
= L

Pf1

$
Pd1

$ " fused Pd,Pf( )
Pf p

$
Pd p

$
#

 d(Pd
1
)d(Pf

1
)Kd(Pdp )d(Pf p )  (6) 

Since this integral has no known analytical solution, it was approximated with a Monte Carlo 

simulation study. 

 

E. Monte Carlo simulation 

Our Monte Carlo simulation consisted of three main steps: (1) Generate input data, (2) Train the 

decision fusion classifier to the observed data and model the uncertainty of the ROC operating 

points, and (3) Apply the trained decision fusion classifier to the testing data.  These three steps 

were performed under various conditions, so as to observe trends in decision fusion’s 

classification performance.  The goal was to identify the minimum number of training observations 

needed for the decision fusion algorithm to achieve its asymptotic classification performance. 



 

The first step of the Monte Carlo simulation was to generate the input data 

! 

X .  We drew sample 

! 

X  values from normal distributions.  Both training and testing data sets were drawn for each 

Monte Carlo sampling iteration.  These samplings produced a large set of ROC curves.  On these 

ROC curves we applied the threshold 

! 

" =1 as in Equation 2 and calculated the 5% and 95% 

quantiles for the ROC operating points. 

 

For the second step, we used the 5% and 95% percentiles to set the domains of the a priori 

distributions of the ROC operating points

! 

Pd,Pf( )
"
.  Then we drew sample ROC operating points 

from their respective distributions (Equation 5).  For each draw, we computed the decision fusion 

likelihood-ratio value 

! 

" fusion  (Equation 4).  Next, we averaged the computed likelihood-ratio 

values over all the drawn ROC operating points to yield a marginal estimate of the likelihood-ratio 

value: 

 
  

! 

ˆ " fused =
1

pM
L

Pf1

#
Pd1

# " fused Pd,Pf
Pf p

#
Pd p

#  (7) 

Here 

! 

p  is the number of features and 

! 

M  is the number of draws in the Monte Carlo simulation.  

We ran the simulation for approximately 500,000 sampling iterations. 

 

In the third step, the trained decision fusion models were applied to independent testing data.  

Classification performance was measured with ROC analysis. 

 

F. Investigating decision fusion’s asymptotic behavior 

Using the above Bayesian method, we investigated the asymptotic classification performance of 

the decision fusion algorithm.  The goal was to determine the minimum number of training 

samples at which the asymptotic value was reached.  The training sets had varying numbers of 

observations, from 10 to 1000, whereas testing sets always comprised at least 1000 



observations.  The training and testing sets were independent.  As the sample size varied, the 

performance trends were analyzed under various data set conditions and algorithmic parameter 

settings.  Over the simulated data sets, we varied the features’ signal-to-noise ratios (SNRs) and 

the number of features, which determined the number local binary decisions to fuse. We varied 

the degree of overlap between the distributions of the two classes, which created various signal 

strengths, with signal-to-noise ratios (SNRs) ranging from 0.05 to 5.0 per feature.  

 

To measure the effect of diluting the signal across features, we also held constant the signal 

strength of the entire data set, but we spread the signal evenly across various numbers of 

features.  For example, we chose a whole data set SNR = 10, which we divided into 2 features at 

SNR = 5.0 each, 5 features at SNR = 0.4 each, 10 features at SNR = 0.2 each, and 20 features at 

SNR = 0.1 each.  We identified the number of training samples at which the asymptote was 

reached by asymptote was reached when the AUC was within 0.01 of the asymptote: 

! 

AUC
n
" AUC# < 0.01 where 

! 

AUC
n
 is the testing AUC for n training samples, and 

! 

AUC"
 is 

the asymptotic testing performance. 

 

In order to demonstrate decision fusion’s performance on data sets of many very weak features, 

we spread the whole data set SNR = 10 across 200 features at SNR = 0.05 each.  At such a low 

signal strength, each feature’s signal was deeply buried in noise.  We ran both the Bayesian 

decision fusion algorithm and linear discriminant analysis (LDA) on this weak data set, for various 

numbers of training samples. 

 

III. Results 

 

Table 1 lists the asymptotic testing performance levels and the minimum sample size for various 

experimental conditions.  The Monte Carlo simulations showed that more training samples 

increased the expected value and decreased the variance of the testing metric AUCtest.  Decision 



fusion achieved its highest testing performance with more local binary decisions coming from 

stronger features (higher SNRs).  

 

Although the Monte Carlo simulation was run many times for different settings of various 

variables, for clarity we focus here on one representative algorithmic setting: the fusion of two 

decisions, coming from features with a SNR of 1.0 and created by applying the threshold 

! 

" =1.  

To investigate how the training set size affected decision fusion’s testing performance, we varied 

the number of training samples from 10 to 1,000.  Figure 2 shows means and ranges of the ROC 

operating points, both training and testing.  Note that we use the notation 

! 

Pd  and 

! 

Pf  for the 

theoretical operating point values but 

! 

TPF  and 

! 

FPF  for their respective observed values.  The 

drawn 

! 

TPF  and 

! 

FPF values reached their asymptotic distributions for training sets of 500 or 

more samples.  Figure 3 shows the operating points’ estimation errors 

! 

TPF
train

"TPF
test( )

#= 0
 

and 

! 

FPF
train

" FPF
test( )

#= 0
.  Similarly to the operating points’ values, their errors also reached 

their asymptotic distributions at 400 observations.  These drawn operating point values created 

the set of decision fusion ROC curves shown in Figure 4a.  As the number of training samples 

increased, the band of resulting ROC curves shifted from a loose band around the chance 

diagonal line (for 10 training samples, shown in red) to a tight band at much higher performance 

(for 1000 training samples, shown in magenta).  The areas under these ROC curves are shown at 

the red line in Figure 5c.  The bold, solid red line delineates the mean of the AUC values, and the 

dotted red lines mark the 5% and 95% percentile ranges.  Agreeing with Figures 2, 3, and 4a, this 

figure shows that at approximately 400 training samples decision fusion reached its asymptotic 

testing performance: AUC = 0.75 (with a 90% confidence interval of 0.74 to 0.76). 

 

Figures 4 and 5 also show the testing performance for other algorithmic settings, such as other 

numbers of decisions to fuse and stronger or weaker features.  In Figure 5 the input features 

varied from weak with SNR = 0.1 to stronger with SNR = 1.0.  For the very weak features (Figure 



5a), none of the decision fusion curves attained their asymptotes by 1000 training samples.  

Stronger features (Figures 5b and 5c) allowed the decision fusion algorithm to reach its 

asymptotic values.  

 

Figure 6 shows the testing performance with the whole data set signal held constant at SNR = 10.  

In different algorithm runs, the signal was split over 2, 5, 10, and 20 decisions.  For each 

scenario, decision fusion achieved the same asymptotic testing performance, 

! 

AUC" = 0.95 ± 0.01.  This asymptotic testing performance was reached at 50 training samples 

for 2 decisions, at 90 training samples for 5 decisions, at 300 training samples for 10 decisions, 

and at 400 training samples for 20 decisions.  

 

Comparing the testing performances of decision fusion and LDA, Figure 7 shows the classifiers’ 

performance trends on a very weak data set of 200 features, each with SNR = 0.05.  The mean 

testing AUC values appear in bold, and the thin dotted curves indincate the 5% to 95% quantile 

bands.  Both classifiers started at near-chance, poor discrimination for very small sample sizes.  

Decision fusion outperformed LDA at 100 training samples (

! 

p <10
"6 ) and even at 20 training 

samples (

! 

p <10
"3 ), although, with so few training cases, both classifiers performances were only 

marginally better than chance guessing (

! 

AUC = 0.51 for LDA and 

! 

AUC = 0.54  for decision 

fusion). 

 

IV. Discussion and Conclusion 

Because of the high cost of collecting many medical data sets, it is important to estimate the 

minimum sample size needed for a scientific study.  Although calculating this estimate is difficult 

for many machine learning algorithms, it is easier for decision fusion.  This study describes a 

Bayesian technique for estimating the minimal number of training samples at which decision 

fusion reaches its asymptotic testing performance.  Numerous Monte Carlo simulations 

investigated the effect of training sample size on decision fusion’s testing behavior. 



 

The Monte Carlo simulations demonstrated certain general decision fusion performance trends.  

As expected, small training sets created test ROC curves that are near the chance diagonal line.  

Larger data sets created better-performing test ROC curves.  These test ROC curves approached 

their asymptotic shape as the number of training observations is increased.   

 

As expected, adding more signal energy to the data set increased the classification performance.  

Keeping constant the SNR per feature, the test performance increased with more local decisions 

to fuse.  The asymptotic testing levels always rose sequentially from the task of fusing two 

decisions to that of fusing 100 decisions.  For very small training set sizes, however, sparse-

sampling effects caused the testing curves to cross; fusion of 100 decisions underperformed the 

fusion of fewer decisions (Figure 5).  However, the performance differences here were not 

statistically significant.  In addition to boosting classification performance, more local decisions 

also decreased the variances of the resulting ROC curves and their areas.  The testing 

performance also rose with increasing signal strength of the features.  Weak features caused the 

decision fusion algorithm to need many more training samples in order to reach its asymptotic 

testing performance.  More training features were also needed for the 

! 

Pd  and 

! 

Pf  draws to 

reach their asymptotic distributions.  

 

Holding the whole-dataset SNR constant, we spread the signal energy across various numbers of 

features.  This signal spreading added uncertainty to the decision fusion problem.  To recover 

from this extra uncertainty and dimensionality, decision fusion needed more training samples.  

However, as long as the whole-dataset SNR was held constant, decision fusion eventually 

reached the same asymptotic AUC performance level, as shown in Figure 6.  To illustrate an 

extreme example of signal spreading, a whole-dataset SNR of 10 was spread across 200 

features, creating a large number of very weak features.  Figure 7 shows that decision fusion 

outperformed an LDA, even on very few training samples.  Although admittedly these 



performance values are poor for this extremely challenging data set, Figure 7 demonstrates 

decision fusion’s performance benefit over more traditional classifiers.  Because the decision 

fusion algorithm does not need to estimate multidimensional PDFs, it is an especially useful tool 

for weak datasets with few training samples. 

 

The presented decision fusion algorithm was based on two important assumptions.  The first 

assumption was that the local binary decisions were statistically independent.  Although this 

independence assumption seems restrictive, it often does not lower the classification 

performance below that of the optimal decision fusion processor for correlated decisions, which 

requires more data to train accurately [17].  Note that we assume only the local binary decisions 

to be statistically independent, but not the sensitivity, false-positive rate, or even the features on 

which the local decisions were made.  The second assumption was that the local classifiers’ 

outputs were normally distributed.  This assumption was made only for convenience in this 

simulation study, but it is not necessary for real data.  The distributions of the local classifiers’ 

ROC operating points can be estimated using either a parametric fit for the ROC curve or a 

bootstrap sampling technique.  

 

In our previous work [11], we applied the decision fusion algorithm to two real medical data sets.  

We can use the sample size methods described in this study to estimate whether those medical 

data sets were large enough for decision fusion to achieve its asymptotic performance. Data set 

M consisted of breast mass features, and data set C consisted of breast calcification features.  

The classification goal was to distinguish benign from malignant lesions.  The breast mass data 

set M (mass lesions) was the easier classification problem, with decision fusion yielding 

! 

AUC = 0.94 ± 0.01. Figure 8a shows the histogram of SNR values of the 38 features.  Data set 

C (calcification lesions) presented a much more challenging classification problem (Figure 8b), 

with 110 very weak features (almost all with

! 

SNR < 0.10 ).  The large number of very weak 

features lead decision fusion to yield 

! 

AUC = 0.85 ± 0.01, even with 1508 training samples.  By 



comparing the decision fusion performance on similar generated data sets from the simulation 

study, the described Bayesian methodology suggested that the breast mass data set M did in fact 

have enough training samples for decision fusion to reach its asymptotic performance level.  The 

calcification data set C, however, did not have enough samples for decision fusion because of the 

large number of very weak features. 

 

Although the majority of results presented here were from simulated data, it is important to 

explain how to use this algorithm on real medical data.  Researchers can use the following steps: 

1. Choose local binary classifiers for the features.  Each feature should have its own 

separate classifier, such as a likelihood ratio classifier. 

2. Pick ROC operating points at which these local classifiers will operate.  Previous work 

[11] showed how to use a genetic algorithm to choose these local operating points in 

order to optimize decision fusion’s classification performance. 

3. Estimate the uncertainty range of the chosen ROC operating points.  This estimation can 

be done by either the ROC curve fitting or nonparametric sampling methods, as 

described in section C. 

4. Integrate over the operating point uncertainty using the described Bayesian approach, 

which is implemented by a Monte Carlo simulation.  Run the decision fusion algorithm 

using the drawn ROC operating point values. 

The source code is available on the Supplemental Materials website. 

 

In conclusion, we have described a Bayesian technique to estimate the minimum number of 

training samples at which decision fusion reaches its asymptotic testing performance.  Although 

the technique has been introduced on simulated data, the approach is general and can be applied 

to real medical data.  
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List of Tables 

 

Number of 
decisions 

Feature SNR Asymptotic AUCtest Minimum required 
training samples 

2 0.1 0.58 (0.56, 0.59) 1000 
2 1.0 0.76 (0.76, 0.77) 550 
5 0.1 0.65 (0.63, 0.66) 950 
5 1.0 0.89 (0.88, 0.89) 450 
10 0.1 0.69 (0.67, 0.72) 700 
10 1.0 0.95 (.095, 0.96) 550 
100 0.1 0.86 (0.83, 0.89) 850 
100 1.0 1.0 (0.99, 1.0) 70 
 

Table 1: Asymptotic classification testing performance levels of decision fusion under various 

experimental conditions.  
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Figure 1: Diagram of uncertainty of an ROC operating point.  Uncertainty is formulated as a 

statistical distribution of ROC curves.  Solid line shows the observed ROC curve, and dotted lines 

form 5% and 95% percentile bands.  A particular threshold determines a specific operating point, 

shown by the dot. Distance between bands shows ranges of the specific operating point 

probability of false alarm 

! 

Pf  horizontally and probability of detection 

! 

Pd  vertically.  As the 

number of training observations is increased, leading to asymptotic classification performance, 

the testing ROC curve and its uncertainty band approach their stable shapes and positions.



 

(a) Drawn TPF values and training set size (b) Drawn FPF values and training set size 

Figure 2: Monte Carlo simulations of ROC operating points determined by the threshold 

! 

" =1, for 

the task of fusing two local binary decisions.  Each local binary decision resulted from the 

threshold applied to noisy feature variables with signal-to-noise ratio (SNR) of 1.0.  Figure 2a 

shows the true positive fraction (TPF or 

! 

Pd ) values, and Figure 2b shows the false positive 

fractions (FPF or 

! 

Pf ) values, with mean values shown in bold, surrounded by 5% and 95% 

quantile curves.  Train and test ROC operating points matched up well.  There was wide variance 

for small training sets, but for more than 400 train samples, TPF and FPF values attained 

asymptotic values.



 

 

Figure 3: Generalization error of estimated ROC operating points (shown in Figure 2) as a 

function of the number of training samples.  Generalization errors are differences between the 

train and test values, 

! 

TPF
train

"TPF
test( )

#= 0
 and 

! 

FPF
train

" FPF
test( )

#= 0
.  For decision fusion 

task of fusing two decisions from features with SNR = 1.0, errors reach asymptotic values at 

approximately 400 samples. 



 

Figure 4:  Multiple test ROC curves are shown for fusing five decisions from features with SNR =  

2.  These ROC curves show testing classification performance; the decision fusion algorithm was 

trained on training sets of varying sizes and then applied to a constant and independent testing 

set of 1000 observations.  As the number of training cases increased, the test ROC curves rose 

from a high-variance set around the change diagonal line (10 samples, green curves) to a low-

variance set at high performance (100 train samples, red curves).  Adequate number of training 

samples allows the test ROC curves approach their asymptotic shape. 

 



 

 

 

Figure 5: Effect of SNR on testing convergence.  Testing AUC versus the number of training 

samples is plotted for features each with SNR = (a) 0.1, (b) 0.5, and (c) 1.0.  For every signal 

strength scenario, more features provide more information and faster convergence to a higher 

asymptotic value, since all features have the same SNR value.  For example, with 100 features at 

SNR = 1.0 (Fig. 5c, purple curve), testing AUC levels off with only 50 samples, whereas with the 

same SNR per feature but fewer features, many hundreds of samples are needed (Fig. 5c, red, 



green, and blue curve).  As the individual feature SNR increases between the sub-plots, 

convergence also occurs with fewer training samples.  



 

Figure 6: Testing AUC versus the number of training samples, with the total SNR of the whole 

data set kept constant at SNR = 10.  The mean AUC values are plotted in bold, and the 5% and 

95% confidence bands are shown in light dotted lines.  To measure the effect of diluting the signal 

across features, the signal was spread evenly across various numbers of features.  Having more 

but weaker features introduced extra uncertainty into the classification problem.  Therefore 

decision fusion required more training samples in order to reach its asymptotic performance 

value.  We used the stopping rule that the asymptote was reached when the AUC was within 0.01 

of the asymptote: 

! 

AUC
n
" AUC# < 0.01 where 

! 

AUC
n
 is the testing AUC for n training 

samples, and 

! 

AUC"
 is the asymptotic testing performance.  Decision fusion reached the 

asymptotic testing value 

! 

AUC" = 0.95 ± 0.01 at 50 training samples for 2 decisions, 90 training 

samples for 5 decisions, 300 training samples for 10 decisions, and 400 training samples for 20 

decisions. 

 



 

Figure 7: Comparison of classifiers linear discriminant analysis (LDA) and decision fusion using a 

very large dimensional problem with weak features (total SNR of 10 split among 200 features, 

each with SNR = 0.05).  The classifiers’ mean AUC values are shown in bold, with the 5% and 

95% percentile bands shown in dotted lines.  Decision fusion consistently outperformed LDA on 

this very weak data set. 



 

(a) SNR histogram for breast mass data set M (b) SNR histogram for breast calcification 

data set C 

Figure 8: Histograms of the feature signal-to-noise ratio (SNR) values for data sets of (a) breast 

mass lesions and (b) a breast calcification lesions used in our previous study [11].  The 

calcification data set consisted of much weaker features (lower SNR) and thus presented a much 

more challenging classification problem.  With stronger features, the mass data set presented an 

easier classification problem. 
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Abstract—Computer-assisted diagnosis (CAD) systems are 
becoming increasingly popular for the diagnostic interpretation 
of radiologic images.  These CAD systems often involve the 
stacked generalization of several different decision models.  
Combining decision models is a common meta-analysis 
strategy to improve upon the diagnostic performance of each 
individual model. This study investigates how data handling 
schemes may affect the performance evaluation of CAD 
systems that rely on stacked generalization.  The study is based 
on a multistage CAD system for the detection of masses in 
screening mammograms.  The CAD system consists of a series 
of knowledge-based modules that operate at the Level 0 
capturing morphological as well as multiscale textural 
information. Then, the knowledge-based predictions are 
combined with a Level 1 classifier.  The study shows that a 
leave-one-out sampling scheme appears to be an effective and 
relatively unbiased strategy to estimate the overall performance 
of a CAD system that is based on stacked generalization. 
However, extra caution should be placed on the complexity of 
the Level 1 combiner.  When the available dataset is relatively 
small, a relatively simple learning system such as a 
backpropagation neural network with very few hidden nodes is 
preferable to avoid optimistically biased estimates of diagnostic 
performance. 

I. INTRODUCTION 
TACKED generalization is a popular technique to 
combine multiple decision models in an attempt to 

improve classification performance [1]. The individual 
decision models are considered the first level of analysis.  
The outputs of these models are then combined with a level 
one generalizer to improve upon the performance of the 
individual models.  Several studies have confirmed the 
effectiveness of stacked generalization, although the amount 
of improvement is strongly dependent on the actual database 
and problem at hand [2]. 
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In particular, stacked generalization is applied extensively 
in medical computer-assisted decision (CAD) systems for 
the diagnostic interpretation of radiologic images.  CAD 
systems typically follow a modular approach.  The different 
modules are designed to operate on different subsets of 
features (e.g., morphological, textural, clinical, etc.) and/or 
employ different types of decision algorithms such neural 
networks, support vector machines, decision trees etc.  These 
CAD modules are considered the first level classifiers.  
Then, a higher-level decision model is used to combine the 
lower-level outputs to achieve greater diagnostic 
performance [e.g., 3-10].  

There are several choices for combining the lower level 
decisions.  These choices range from simple voting schemes 
such as average, maximum, and majority vote to more 
elaborate learning systems.  Specifically, artificial neural 
networks are a popular choice for high level decisions 
because they can capture and model complex relationships 
among the lower level decision models. 

Although there are numerous published studies on stacked 
generalization, most of these studies focus on two key 
issues: (i) how to choose the lower level models that serve as 
its inputs, and (ii) how to choose the higher-level model.  
However, as Wolpert stated in his defining paper [1], there 
are no set rules regarding these decisions and stacked 
generalization remains to a large extent a “black-box” 
operation. Consequently, the effectiveness of combining 
classifiers strongly depends on the particular problem at 
hand. 

 The purpose of this study is to address the issue of data 
handling when building modular CAD systems that rely on 
stacked generalization. In general, data handling is a critical 
issue in CAD since limited availability of clinical data is a 
common restriction.  Therefore, CAD researchers rely on 
sophisticated data handling schemes such as leave-one-out 
crossvalidation or bootstrapping to capitalize on the 
available data [11,12].  Previous studies suggest that these 
handling schemes may lead to optimistic estimates of 
predictive performance when limited datasets are reused not 
only for train/testing complex decision models but also for 
optimizing the feature selection process as well as the 
architecture and training parameters of the decision models 
[13,14].  The data handling issues becomes increasingly 
more important with multilevel CAD systems.  The same 
available data need to be used effectively to train and test the 
full CAD system without introducing any optimistic bias. 
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With multiple classifiers stacked at different levels, the risk 
of introducing a positive bias by reusing data across levels is 
real when evaluating the diagnostic performance of the full 
CAD system.  We aim to address this concern with respect 
to our own CAD system for the detection of masses in 
screening mammograms.  This is an empirical investigation 
of how the data-handling scheme may affect the reported 
performance of a CAD system that relies on stacked 
generalization to improve its diagnostic performance.  

II. THE CAD SYSTEM 

A. Overview  

Previously we presented a knowledge-based CAD (KB-
CAD) system for the detection of masses in screening 
mammograms.  The details of this system are provided 
elsewhere [15,16].  This is a brief description. 

The knowledge-based CAD system is designed to provide 
a second opinion regarding the presence or absence of a 
mass at a specific mammographic location that is under 
scrutimization.  A 512x512 pixel region of interest (ROI) is 
extracted around the indicated location.  The query ROI is 
compared to a knowledge database of mass and normal ROI 
templates with known ground truth. A decision is made 
based on how well the query ROI matches the mass 
templates relative to those templates depicting normal breast 
parenchyma. Template matching is based on information-
theoretic principles such as mutual information [17]. The 
underlying hypothesis of this detection scheme is that if the 
query region contains a mass, it should match the mass 
templates better than the normal templates, thus resulting in 
a higher decision index.   

 

 
Fig. 1.  Schematic representation of a CAD system composed of stacking 
several knowledge-based decision algorithms.  

Although the mutual information between two ROIs could 
be measured directly without any image preprocessing, in a 
previous study we reported that entropy-based filtering of 
the ROIs could substantially contribute to improving the 
diagnostic performance of the system [18].  Therefore, we 
proposed a two-level CAD system by stacking together 
several KB-CAD modules (Fig. 1). 

B. Level 0 Classifiers 

The Level 0 classifiers are essentially seven different KB-
CAD systems operating on the same query ROI that is 
preprocessed differently. The first KB-CAD system operates 
on the unprocessed ROI while the remaining operate on 
different preprocessed versions of the same ROI. 
Specifically, the query ROI is preprocessed with an entropy-
based filter. The filter essentially replaces the intensity value 
of each ROI pixel with a new value that captures the local 
image entropy around the pixel. The filtering step is repeated 
at several scales by varying the neighborhood size of the 
entropy-based filter (3x3, 7x7, 9x9, 11x11, 15x15, and 
21x21 pixels).  Therefore, the Level 0 classifiers are 
designed to capture intensity-based similarity as well as 
multiscale textural similarity between the query and the 
templates stored in the knowledge database.  For each quer 
ROI and its preprocessed versions, a separate prediction is 
made using the series of KB-CAD systems. 

C. Level 1 Classifier 

The next step is to combine the Level 0 predictions into 
one final prediction regarding the query. Since the outputs of 
the Level 0 decision models is a continuous value rather than 
a binary decision, there are several options for meta-
analysis.  Some commonly used choices are the maximum 
value, minimum value, the average value, or some weighted 
average of the KB-CADk predictions.  

Backpropagation neural networks (BP-ANN) are a 
popular choice for combining predictions due to their ability 
to capture complex, non-linear relationships among the 
various decision models [19,20].    A BP-ANN was 
constructed to combine the seven predictions into one 
comprehensive decision regarding the presence or absence 
of mass.  The neural network had a three-layer, feed-forward 
architecture.  Experiments with variable number of hidden 
nodes were performed to assess whether the conclusions of 
the study are affected by the complexity of the BP-ANN. 
The BP-ANNs were constructed using the JMP Software 
(available from SAS, Cary, NC). In addition, the maximum, 
minimum, and average prediction decision models were 
applied for comparison. 

III. DATABASE 
The available database for this study consisted of screen-

film mammograms selected from the Digital Database for 
Screening Mammography (DDSM) [21]. Cases from the 
Lumisys volumes were selected and 512x512 pixel ROIs 



 
 

 

were automatically extracted around annotated malignant 
and benign masses. In addition, normal ROIs were extracted 
from normal mammograms and from the cance-free breasts 
of abnormal mammograms that did not contain any 
annotations.  In total, there were 1,820 ROIs available. Of 
those, there were 901 ROIs depicting a mass and 919 ROIs 
depicting normal breast parenchyma.  

IV. EXPERIMENTAL DESIGN 

The purpose of a typical CAD study is to capitalize on the 
available data so that the system can be effectively trained 
and tested without compromising its ability to generalize.  
For the specific CAD system at hand, data is required for the 
following tasks: 1) build the knowledge database for the 
Level 0 KB-CAD modules, 2) test the KB-CAD modules, 3) 
train the Level 1 neural network, and 4) test the neural 
network and ultimately the full multi-level CAD system.  
Note that with the simpler maximum, minimum, and average 
vote decision models, task 3 is obsolete since no training is 
necessary.  Ideally, different subsets of ROIs should be used 
to achieve the above tasks without introducing any 
optimistic biases. 

Since the available database is limited, it is difficult to 
know the optimal way to use the available data to 
effectively achieve the above four tasks. Using as many 
ROIs as possible to build the knowledge database for the 
Level 0 CAD modules is critical for accurate generalization 
to new ROIs.  Building a diverse and comprehensive 
knowledge database is a critical component of an effective 
CAD system [22].  However, reserving too much of the 
available data for building the Level 0 classifiers would 
reduce the ability of the Level 1 BP-ANN to train 
effectively and learn important relationships among the 
seven KB-CAD modules.  Therefore, the generalization 
performance of the ANN could be severely compromised.   

We experimented with the implementation of various data 
handling schemes to assess the impact of data handling on 
the reported results.  Starting with the original database of 
1,820 ROIs, the database was randomly split in 3 sets of 
roughly equal size and equal mass prevalence.  Table I 
provides the relevant statistics. 

TABLE 1: Dataset Statistics 

DATASET MAIGNANT 
MASSES 

BENIGN 
MASSES 

NORMAL 

SET 1 166 137 304 

SET 2 156 139 312 

SET 3 167 136 303 

ALL 489 412 919 

 Then, the following data handling schemes were 
implemented: 

SCHEME 1:  Set 1 was used as the knowledge database 
of the Level 0 KB-CAD modules.  These modules were then 
tested on Set 2. The KB-CADk outputs on Set 2 were used 
as the training data for the Level 1 ANN.  Finally, the two-
level CAD system was tested on Set 3 which was reserved 
from the beginning as the validation set.  Scheme 1 is 
essentially the preferred strategy if there are enough 
available data since it keeps the training/testing of each level 
independent from one another. The obvious drawback of 
this scheme is that only 1/3 of the database is available for 
each task. 

SCHEME 2:  Sets 1 and 2 were used for developing and 
testing the level 0 KB-CAD systems based on the leave-one-
out sampling scheme [12].  In other words, each ROI from 
the 1,214 ROIs in sets 1 and 2 was excluded once to serve 
as the query while the remaining 1,213 served as the 
knowledge database. The process was repeated until each 
ROI served as the query.  The 1,214 KB-CAD outputs were 
used as the training set for the Level 1 BP-ANN. The 
trained BP-ANN was finally tested on set 3 which was 
reserved from the beginning as the validation set.  The 
advantage of this scheme is that it maximizes on the 
available cases for training/testing the Level 0 classifiers 
and for training the Level 0 BP-ANN.  The drawback is that 
the final validation set is still limited to 1/3 of the available 
data (i.e., set 3). 

SCHEME 3:  The final scheme employs the leave-one-out 
sampling scheme for both the level 0 and level 1 classifiers.  
Although this scheme capitalizes on the available data, it is 
unclear whether it introduces any optimistic bias by 
essentially reusing the available cases in a cascading format. 

V. RESULTS 

A. Performance of Level 0 KB-CAD Modules 
The diagnostic performance of all classifiers was assessed 

using Receiver Operating Characteristics (ROC) analysis 
[23].  The reported index of performance is the area under 
the ROC curve.  Generally, a higher area index reflects a 
better diagnostic performance.  The ROC area index is 
considered a more appropriate performance criterion for 
medical diagnostic problems because it is independent of the 
decision threshold and the disease prevalence.  We used the 
ROCKIT algorithm developed by Metz et al. to fit and 
compare ROC curves [24,25]. 

 Table II summarizes the performance of the Level 0 
classifiers depending on the data-handling scheme. The table 
shows the same general trend. As the size of the knowledge 
database increases (from scheme 1 to scheme 3), so does the 
performance of the KB-CAD modules.  This is particularly 
true for some modules (e.g., KB-CAD3, KB-CAD4, KB-
CAD5, KB-CAD6) where statistically significant 
improvement was observed with a two-tailed p-value < 0.05. 

 



 
 

 

 
TABLE II: Testing ROC area index for all level 0 classifiers 

depending on the data-handling scheme 

MODULE SCHEME 1 SCHEME 2 SCHEME 3 

KB-CAD1 0.83±0.02 0.87±0.02 0.87±0.01 

KB-CAD2 0.67±0.02 0.68±0.02 0.69±0.01 

KB-CAD3 0.78±0.02 0.78±0.02 0.81±0.01 

KB-CAD4 0.78±0.02 0.78±0.02 0.82±0.01 

KB-CAD5 0.76±0.02 0.76±0.02 0.80±0.01 

KB-CAD6 0.72±0.02 0.75±0.02 0.75±0.01 

KB-CAD7 0.76±0.02 0.78±0.02 0.79±0.01 

B. Performance of Level 1 Combiner 

Similarly, the diagnostic performance of the BP-ANN was 
also assessed using ROC analysis based on the three data 
handling schemes.  The BP-ANN performance is shown in 
Table III.  Results are reported for three different sizes of the 
hidden layer (i.e., 3,6,9 hidden nodes). BP-ANNj denotes a 
network with j hidden nodes.  Note that the training 
parameters of the BP-ANNs were kept fixed across all data 
handling schemes.  Specifically, all networks were trained 
with 50 training iterations and 0.001 overfit penalty. 

In addition, the Table includes the ROC performance of 
the simple Level 1 combiners (i.e., maximum, minimum, 
and average prediction).  The simpler combiners generate a 
decision index DI by taking the maximum (Eq. 1), minimum 
(Eq. 2), or average (Eq. 3) value of the seven KB-CAD 
predictions on the dataset designated for final validation 
depending on the data-handling scheme. 

! 

DI
max

=max{KB_CADj} where j = 1,2,...,7  [1] 

! 

DImin =min{KB_CADj} where j = 1,2,...,7   [2] 

! 

DIavg =

KB_CADj

j=1

7

"

7
            [3] 

 
TABLE III: Testing ROC area index for the Level 1 classifier 

depending on the data-handling scheme 

LEVEL 1 SCHEME 1 SCHEME 2 SCHEME 3 

BP-ANN3  0.89±0.02 0.92±0.01 0.92±0.01 

BP-ANN6  0.86±0.02 0.91±0.01 0.93±0.01 

BP-ANN9  0.84±0.02 0.89±0.01 0.93±0.01 

Maximum 0.87±0.02 0.89±0.02 0.87±0.01 

Minimum 0.76±0.02 0.76±0.02 0.78±0.01 

Average 0.88±0.02 0.90±0.02 0.88±0.01 

 
Figure 2 shows the corresponding ROC curves of the 

CAD system under all three data handling schemes and for 
all Level 1 combiners. Although the reported ROC 
performance for Scheme 1 and Scheme 2 is based on the 
validation set 3, the ROC performance for Scheme 3 is based 
on the full dataset, as previously explained. 

 

 

 
Figure 2: ROC performance of Level 2 combiners accrding to the three data 
handling scheme investigated: (a) scheme 1, (b) scheme 2, (c) scheme 3. 

Overall, the performance of the BP-ANN improved as the 
size of the training set increased from 607 (for Scheme 1), to 
1,214 (for Scheme 2), to 1,819 (for Scheme 3).  The increase 
was statistically significant, particularly for the more 



 
 

 

complex BP-ANNs.  This is not surprising considering that 
as the number of hidden nodes increases, more training 
examples are necessary to improve the genaralizabilty of the 
BP-ANN. In contrast, the simple combiners had inferior 
performance compared to the BP-ANN under all data 
handling schemes.  This result confirms that non-linear 
networks are more effective as Level 1 stacking combiners. 

VI. CONCLUSIONS 
We have addressed the issue of data handling when using 

stacked generalization to improve the diagnostic 
performance of CAD systems.  Our empirical study was 
based on a typical multistage CAD system developed for the 
detection of masses in screening mammograms.  The CAD 
system relied on knowledge-based modules that operate at 
the Level 0 capturing morphological as well as multiscale 
textural information. Then, the knowledge-based predictions 
were combined with a Level 1 classifier. Our study showed 
the following. 

First, BP-ANNs are more effective Level 1 combiners 
than the simpler choices such as maximum, minimum, and 
average combiners.  Although simple, these combiners do 
not make use of any Level 1 learning.  In contrast, BP-ANNs 
capitalize on subtle, yet important relationships that exist 
among the Level 0 predictions.  Second, the complexity of 
the BP-ANNs should be dictated by the amount of available 
data.  Simpler BP-ANN architectures should be employed 
for limited datasets to avoid issues of under-training and 
poor generalization.  Finally, a leave-one-out sampling 
scheme appears to be an effective and relatively unbiased 
strategy to estimate the overall performance of a CAD 
system that is based on stacked generalization. However, 
extra caution should be placed on the complexity of the 
Level 1 combiner.  When the available dataset is relatively 
small, a relatively simple classifier such as a BP-ANN with 
very few hidden nodes is preferable to avoid optimistically 
biased estimates of diagnostic performance. 
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ABSTRACT
Motivation: Screening mammography for breast cancer is less
effective for younger women. To complement mammographic
screening for premenopausal women, we investigated the feasibility
of a diagnostic blood test using serum proteins. This study used a set
of 98 serum proteins and choose diagnostically relevant subsets via
various feature-selection techniques. To account for model selection
uncertainty, we applied iterated Bayesian model averaging because
of its good generalization performance and tendency to select a
small set of features. We assessed generalization performance
using leave-one-out cross-validation (LOOCV) and receiver operating
characteristic (ROC) curve analysis.
Results: The classifiers were able to distinguish normal tissue from
breast cancer with a classification performance of AUC = 0.80

with the proteins MIF, MMP-9, and MPO. The classifiers separated
normal tissue from benign lesions similarly at AUC = 0.78.
However, the serum proteins of benign and malignant lesions were
indistinguishable (AUC = 0.55). The classification tasks of normal
vs. cancer and normal vs. benign selected the same top feature:
MIF, which indicates inflammatory response. Overall, the considered
features showed promise in detecting lesions but are probably more
indicative of secondary effects rather than specific for malignancy.
Availability: The software and data set are available at
http://deckard.duhs.duke.edu/resources.html.
Contact: joseph.lo@duke.edu

1 INTRODUCTION
Breast cancer is unfortunately a very common and lethal disease.
It strikes one in eight women (Amer. Cancer Soc., 2007), accounts
for one-third of all cancer diagnoses (Lacey et al., 2001), and is
the second leading cause of cancer death among American women
(Ferrini et al., 1996). For American women in 2007, Jemal et al.
(2007) estimate 178,480 new breast cancer cases and 40,460 deaths.

Despite such discouraging morbidity and mortality statistics,
breast cancer patients significantly improve their chance of survival
with early diagnosis and treatment (Cady and Michaelson, 2000).
Currently the preferred screening tool is mammography. However,

∗To whom correspondence should be addressed

screening mammography suffers from only moderate sensitivity
rates (estimated at 75% to 90%) (Ferrini et al., 1996) and high false
positive rates, with only 13-29% of suspicious masses determined to
be malignant by biopsy (Meyer et al., 1984; Rosenberg et al., 1987;
Yankaskas et al., 1988). While mammography’s positive predictive
value (PPV) ranges from 60% to 80% in older women (age 50-69),
it is only 20% in women under age 50 (Ferrini et al., 1996).

Mammographic screening is more problematic for younger
women (Tabar et al., 1995; Kerlikowske et al., 1995), whose denser
breast tissue occludes lesions. Premenopausal women account for
approximately one third of breast cancer patients in Britain and
other high-risk countries (Simpson et al., 1988). Younger patients
tend to experience more aggressive forms of breast cancer and have
significantly lower survival rates and higher local and distant relapse
rates than older patients (de la Rochfordiere and Asselain, 1993). In
fact, Dubsky et al. (2002) found that, after lymph node status, young
age was the second most powerful risk factor for breast cancer
recurrence and mortality.

To boost the diagnostic performance in younger women,
mammographic screening can benefit from additional and
complementary technologies, such as protein profiling and gene
expression profiling. Although some progress has been made using
gene expression profiling of excised breast tissue samples (van’t
Veer et al., 2001; Perou et al., 1999; Gruvberger et al., 2001; Martin
et al., 2000; Zajchowski et al., 2001; Sorlie et al., 2001; West et al.,
2001), collecting such data requires invasive biopsies, which is less
practical for screening programs, and it is unclear what advantage
these invasive tests would have over routine histopathological
analysis of biopsy samples.

For the far less invasive blood draw, however, it is fitting
and convenient to perform protein profiling. Proteins offer
detailed information about tissue health conditions, allowing the
identification of cancer type and risk, and thereby prompting
potentially better targeted and more effective treatment. Serum and
plasma protein-based screening tests have already been developed
for many diseases, such as Alzheimer’s disease (Hye et al., 2006),
cardiovascular disease (Wang et al., 2006), prostate cancer (Polascik
et al., 1999), and ovarian cancer (Gorelik et al., 2005).

c© Oxford University Press 2007. 1
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Table 1. Subject demographics.

Normal Benign Malignant Total

Number of subjects 68 (41%) 48 (29%) 49 (30%) 165 (100%)
Mean age (years) 36± 8 38± 9 42± 4 38± 8

Race: Black 23 (41%) 19 (34%) 14 (25%) 56 (34%)
Race: White 45 (41%) 29 (27%) 35 (32%) 109 (66%)

For breast cancer, however, there are currently very few markers
used clinically. Limited success has been reported for identifying
breast cancer proteins using mass spectroscopy of the tumor tissue
(Kreunin et al., 2007), but to date no strong protein biomarkers
for breast cancer have been found in serum. Some studies have
shown correlations between individual circulating proteins and
breast cancer (Malkas et al., 2006), but to our knowledge these
promising proteins have not been assessed collectively to identify
the most promising subset for breast cancer detection.

The goals of this study were to identify promising serum proteins
to detect breast cancer and to investigate the feasibility of using
these protein levels in a screening tool based on statistical models.
For improved predictive performance on this noisy data set, we used
iterated Bayesian model averaging (Hoeting et al., 1999) of classical
regression models (linear, logistic, and probit). To better understand
the cancer-specificity of the screening test, we also ran the classifiers
on proteins of benign lesions and of normal breast tissue.

2 METHODS

2.1 Data Collection
This study enrolled 165 women undergoing diagnostic biopsy at Duke
University Medical Center for breast cancer from June 1999 to October
2005. Table 1 shows the demographics of the study population.

Blood sera were collected under the HIPAA-compliant protocol ”Blood
and Tissue Bank for the Discovery and Validation of Circulating Breast
Cancer Markers.” Blood was collected from subjects prior to surgical
resection. All specimens were collected in red-stoppered tubes and processed
generally within 4 hours (but not greater than 12 hours) after collection
and stored at −80◦C. Sera were assayed using the Luminex platform and
reagents for the 98 proteins shown in Table 2. In addition to the protein
levels, patient age and race were also recorded.

2.2 Regression with Variable Selection
In order to incorporate these proteins into a breast cancer screening tool, we
must build statistical models linking the protein levels to the probability of
malignancy. We used the following three common regression models: linear
regression Yi = Xiβ + ε, ε ∼ N(0, σ2), logistic regression Pr(Yi =

1|β) =
exp(Xiβ)

1+exp(Xiβ)
, and probit regression Pr(Yi = 1|β) = Φ(Xiβ),

where Y is the response vector, X is the matrix of observed data, β is
the vector of coefficients, ε is additive noise, and Φ(·) is the cumulative
distribution function of the normal distribution.

These models become unstable and predict poorly if there are relatively
few observations and many features. It is better to choose a subset useful
features, but when the number of features, p, is large, it is computationally
infeasible to compare the full set of 2p models. Various feature-selection
techniques navigate the model search space, either by a deterministic
heuristic, such as stepwise feature selection, or stochastically, such as
Bayesian model selection (Lee et al., 2003; Sha et al., 2004).

Table 2. List of the 98 serum proteins measured by ELISA assay (Luminex
platform).

ACTH FSH IP-10 PROLACTIN
Adiponectin G-CSF Kallikrein 10 RANTES
AFP GH Kallikrein 8 Resistin
Angiostatin GM-CSF Leptin S-100
Apolipoprotein A1 GROa LH SAA
Apolipoprotein Apo A2 Haptoglobin MCP-1 SCC
Apolipoprotein Apo B HGF MCP-2 sE-Selectin
Apolipoprotein Apo C2 IFN-a MCP-3 sFas
Apolipoprotein Apo C3 IFN-g Mesothelin(IgY) sFasL
Apolipoprotein Apo E IGFBP-1 MICA sICAM-1
CA 15-3 IL-10 MIF sIL-6R
CA 19-9 IL-12p40 MIG sVCAM-1
CA-125 IL-13 MIP-1a TGFa
CA72-4 IL-15 MIP-1b TNF-a
CD40L (TRAP) IL-17 MMP-1 TNF-RI
CEA IL-1a MMP-12 TNF-RII
Cytokeratin 19 IL-1b MMP-13 tPAI-1
DR5 IL-1Ra MMP-2 TSH
EGF IL-2 MMP-3 TTR
EGFR IL-2R MMP-7 ULBP-1
EOTAXIN IL-4 MMP-8 ULBP-2
ErbB2 IL-5 MMP-9 ULBP-3
FGF-b IL-6 MPO VEGF
Fibrinogen IL-7 NGF
Fractalkine IL-8 PAI-I(active)

Regardless of the variable selection method, choosing only one model for
prediction comes with an inherent risk. When multiple possible statistical
models fit the observed data similarly well, it is risky to make inferences
and predictions based only on a single model (Hoeting et al., 1999). In this
case predictive performance suffers, because standard statistical inference
typically ignores model uncertainty.

2.3 Accounting for Model Uncertainty
We accounted for model-selection ambiguity by using a Bayesian approach
to average over the possible models. We considered a set of models
M1, . . . ,MB , where each model Mk consists of a family of distributions
{p(D|θk,Mk)} indexed by the parameter vector θk , whereD = (X,Y ) is
the observed data. Using a Bayesian method (Hodges, 1987; Draper, 1995;
Hoeting et al., 1999; Berger and Pericchi, 2001; Chipman et al., 2001; Clyde
and George, 2004) to average over the set of considered models, we first
assigned a prior probability distribution p(θk|Mk) to the parameters of each
model Mk . This formulation allows a conditional factorization of the joint
distribution,

p(D, θk,Mk) = p(D|θk,Mk) p(θk|,Mk) p(Mk). (1)

Splitting the joint distribution in this way allowed us to implicitly embed
the various models inside one large hierarchical mixture model. This
form allowed us to fit these models using the computational machinery of
Bayesian model averaging.

2.4 Bayesian Model Averaging
Bayesian model averaging (BMA) accounts for model uncertainty by
averaging over the posterior distributions of multiple models, allowing for
more robust predictive performance. If we are interested in predicting a
future observation Df from the same process that generated the observed
dataD, then we can represent the predictive posterior distribution p(Df |D)
as an average of over the models, weighted by their posterior probabilities
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(Rafftery, 1995; Rafftery et al., 1995; Hoeting et al., 1999):

p(Df |D) =
X
k

p(Df |D,Mk) p(Mk|D) (2)

where the sum’s first term p(Df |D,Mk) is a posterior weighted mixture of
conditional predictive distributions

p(Df |D,Mk) =

Z
p(Df |θk,Mk) p(θk|D,Mk)dθk, (3)

and the sum’s second term p(Mk|D) is a model’s posterior distribution

p(Mk|D) =
p(D|Mk) p(Mk)P
k p(D|Mk) p(Mk)

, (4)

which incorporates the model’s marginal likelihood

p(D|Mk) =

Z
p(D|θk,Mk) p(θk|Mk)dθk. (5)

2.5 Promoting Computational Efficiency by
Considering Sets of Promising Models

BMA allows us to average over all possible models, containing all possible
subsets of features. However, considering many models would require
extensive computations, especially when computing the posterior predictive
distributions. Such computations would be prohibitively long for a relatively
quick screening tool.

Because it was computationally infeasible to consider all possible 2100

models, we first chose a subset of the models. For computational efficiency
in model selection, this study followed Yeung et al. (2005) and used a
deterministic search based on an Occam’s window approach (Madigan and
Raftery, 2004) and the ”leaps and bounds” algorithm (Volinsky et al., 1997)
to identify models with higher posterior probabilities.

2.6 Promoting Feature Sparsity with Iterated BMA
In order to make a more economical screening test, it was important to
limit the number of proteins to assay, which required the classification
models to use a small subset of features. But Bayesian model averaging was
designed to model the model-selection uncertainty and to improve predictive
performance (Rafftery, 1995), not to choose a small set of features. To
promote feature sparsity, we applied an iterative adaptation of BMA (Yeung
et al., 2005). This method initially ranks each feature separately by the ratio
of between-group to within-group sum of squares (BSS/WSS) (Dudoit et al.,
2002). For protein j the ratio is

BSS(j)

WSS(j)
=

P
i

ˆ
I(Yi = 0)(X0j −Xj)

2 + I(Yi = 1)(X1j −Xj)
2
˜P

i

ˆ
I(Yi = 0)(Xij −X0j)2 + I(Yi = 1)(Xij −X1j)2

˜
(6)

where I(·) is an indicator function,Xij is the level of protein j under sample
i,X0j andX1j are respectively the average levels of protein j in the normal
and cancer groups, andXj is the average level of protein j over all samples.

Ordered by this (BSS/WSS) ranking, iterative BMA runs traditional
BMA within each iteration and discards proteins that have low posterior
probabilities of relevance, Pr(bj 6= 0|D) < 1%, where

Pr(bj 6= 0|D) =
X
Mk∈<

Pr(Mk|D) (7)

where < is the subset of the considered models M1, ...,MB that include
protein j. By discarding proteins that have small influence on classification,
this iterative procedure keeps only the most relevant proteins.

2.7 Comparing BMA to Other High-Dimensional
Classifiers

To compare iterated BMA’s classification and generalization performance,
we also classified the data using two other dimensionality-reducing
methods: a support vector machine (SVM) (Vapnik, 1999) with recursive
feature selection (Guyon et al., 2002; Zhang et al., 2006) and least-
angle regression (LAR, a development of LASSO) (Efron et al.,

Table 3. Features chosen by BMA of linear models, normal vs. cancer

Protein Description

MIF (macrophage migration inhibitory factor) Inflammation
MMP-9 (matrix metalloproteinase) Breakdown of extracellular matrix
MPO (myeloperoxidase) Inflammation, produces HOCl

2004). All modeling was performed using the R statistical software
(version 2.4.1), and specifically the BMA package (version 3.0.3)
for iterated BMA, the packages e1071 (version 1.5-16) and R-SVM
(http://www.hsph.harvard.edu/bioinfocore/RSVMhome/R-SVM.html) for the
SVM with recursive feature selection, and the lars package (version 0.9-5)
for least angle regression. We extended the iBMA package to compute the
full predictive distributions (as in Figure 5) within cross-validation using
an MCMC approach. We sampled from the posterior distributions of the
models’ regression coefficients and to sample from the posterior predictive
distributions, as in Equations 2 and 3.

2.8 Evaluating Classification Performance
The classifiers’ performances were analyzed and compared using receiver
operating characteristic (ROC) analysis. To estimate generalization
performance on future cases, all classifiers were run with leave-one-out
cross-validation (LOOCV). Feature selection was performed within each
fold of the cross-validation, and feature strength was determined by a
feature’s selection frequency over the folds.

3 RESULTS
3.1 Normal versus Cancer
Figure 1 shows a plot of the models chosen by Bayesian model
averaging of linear models for the classification task of normal vs.
cancer. The models are ordered by selection frequency, with the
most frequently selected model on the left and the least selected
model on the right. Strong, often chosen features will appear as
horizontal bands across the plot. Feature coefficients are shown in
red for positive coefficient values and blue for negative values. The
strongest features are listed in Table 3.

Figure 2 shows the marginal posterior probability distribution
functions (PDFs) for the first 9 features. These PDFs of the
coefficients were produced by model averaging. The supplementary
materials show similar plots for the rest of the features and for the
classification tasks of normal tissue vs. benign lesions and normal
vs. malignant lesions.

Table 4 shows the classification error, and Figure 3 shows
the classifiers’ receiver operating characteristic (ROC) curves. All
classifiers were run with leave-one-out cross-validation (LOOCV).

The models were also compared in terms of the model size. Figure
4 plots a heatmap of the normalized feature selection frequencies.

Figure 5 plots the full posterior predictive distributions for BMA
of logistic models. Similar plots for BMA of linear and probit
models are available in the supplementary materials.

3.2 Normal versus Benign, and Benign versus Cancer
Whereas a cancer screening test depends primarily on distinguishing
normal tissue from cancer, one can potentially improve the test’s
specificity by classifying benign lesions. In addition to detecting
cancers by classifying normal vs. cancer, we also sought proteins
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Models selected by BMA

Model #

1 3 5 8 11 15 20 25 31 38 46 55 66 85

IL.17

MIP.1a

sVCAM.1

MPO

MMP.3

CA.125

CA.19.9

ACTH

IL.8

MMP.9

Apolipoprotein.Apo.E

Haptoglobin

Age

MIF

Fig. 1. Models selected by BMA of linear models, normal vs. cancer.
Models are ordered by selection frequency, with the best, most frequently
selected models on the left and hte weakest, rarest chosen on the right.
Coefficients with positive values are shown in red and negative values in
blue. Strong, frequently selected features appear as solid horizontal stripes.

Table 4. LOOCV classification errors,
normal vs. cancer

Model FN FP

BMA of linear models 19 8
BMA of logistic models 15 12
BMA of probit models 18 7
SVM with RFS 18 12
LAR 24 5

Classification was performed at the threshold
of 0.5 for the classifiers’ outputs.

that distinguished normal tissue from benign lesions and also benign
from malignant lesions.

Figure 6 shows the matrix of selected models for BMA of linear
models. The LOOCV classification performance is shown by the
ROC curves in Figure 7.

Figure 8 shows the matrix of selected models for BMA of linear
models. The classifiers’ ROC curves are shown in Figure 9. For both
classification tasks, the supplementary materials list the selected
proteins and plot the full posterior predictive distributions of the
BMA models.

4 DISCUSSION
The group of assayed proteins showed promise in distinguishing
normal tissue from lesions. As shown by in Figure 3, for example,
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Fig. 2. Marginal posterior distributions of the coefficients, for BMA of
linear models, for the classification task of normal vs. cancer. The vertical
axis shows the probability values, and the horizontal axis shows the value
of the feature j’s coefficient βj . The height of the vertical line segment at
βj = 0 represents the probability that the coefficient is exactly zero. The
nonzero part of the distribution is scaled so that the maximum height is equal
to the probability that the coefficient is nonzero.
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Fig. 3. Normal vs. Cancer, ROC curves. There were no statistically
significant differences among the areas under the curves.
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Fig. 4. Heatmap of normalized frequencies of selected features, normal vs.
cancer, for the following classifiers: BMA of linear, logistic, and probit
models; least angle regression, and linear, logistic, and probit regression
with stepwise feature selection. The feature selection frequencies were
averaged over all folds of the LOOCV. For comparison across techniques,
the frequencies in each column were scaled to sum to one. Less-frequently
selected features appear as cooler dark red colors, whereas more frequently
selected features appear as hotter, brighter colors. Models that used fewer
features appear as dark columns with a few bright bands, whereas models
that used more features appear as denser smears of darker bands. Iterated
BMA showed a higher feature concentration than did stepwise feature
selection.
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Fig. 5. Posterior probabilities of malignancy, normal vs. cancer. The
probabilities came from the iterations of the MCMC chain and are shown
as boxplots, with blue for normal subjects and red for subjects with cancer.

BMA of linear models detected 92% of malignancies at a false
positive rate of 60% (specificity of 40%). All five classifiers
achieved very similar performance, distinguishing normal tissue

Models selected by BMA

Model #

1 2 3 5 7 9 12 16 20 25 31 38 47

MPO

Apolipoprotein.Apo.E

Apolipoprotein.Apo.C2

MCP.3

Fibrinogen

Apolipoprotein.Apo.C3

EGF

TNF.RII

CEA

MMP.9

SCC
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Apolipoprotein.Apo.B

MIF

Fig. 6. Models selected by BMA of linear models, normal vs. benign
lesions.

ROC Curves, Normal vs. Benign Lesions
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Fig. 7. ROC curves for normal vs. benign. There were no statistically
significant differences among the areas under the curves.

from cancer moderately well. The classifiers correctly called
approximately 144 of the 171 cases (Table 4) and had an area under
the ROC curve of approximately AUC = 0.80 (Figure 3).

Although the selected serum proteins (Table 3 and supplementary
materials) were moderately successful at detecting the presence
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Models selected by BMA

Model #

1 3 5 7 9 12 16 21 26 32 40 49 61
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CA.125
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Fig. 8. Models selected by BMA of linear models, ordered by frequency of
selection, for the classification task of benign vs. cancer. This part of the data
set had only one consistently selected feature: MICA.
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Fig. 9. ROC curves for benign vs. cancer. None of the classifiers were able
to distinguish benign from malignant lesions.

of cancer, their classification performance within benign lesions
suggested that the proteins were probably more indicative of
secondary effects rather than specific for cancer. Proteins for both
benign and normal lesions resulted in very similar classification

performances, with AUC = 0.80 for malignant lesion and
AUC = 0.78 for benign lesions (Figures 3 and 7). Nearly
identical classification results suggest that the proteins may signal
more vague states of biological or immunological stress. A good
candidate for the dominating biological effect is inflammation, since
the top protein selected for both normal vs. cancer and normal
vs. benign was macrophage migration inhibitory factor (MIF),
which has been shown to be active in inflammation. The protein
composition was very similar for benign and malignant lesions,
as seen by the classifiers’ inability to distinguish benign from
malignant lesions (AUC = 0.52). Although this classification
task did have one consistently chosen feature, human major
histocompatibility complex class I chain-related A (MICA), it did
not allow for good predictive performance (Figure 9).

In fact this question of secondary effects raises the general
concern about identifying circulating biomarkers: are the
observed marker candidates actually relevant to the disease under
consideration? This concern pertains especially to general and
common secondary effects, such as immune response. Although it is
difficult to address this concern with certainty, helpful study designs
would control for known likely secondary causes and collect enough
samples to average over unintended secondary causes. Longitudinal
studies would also lessen the effect of transient secondary causes.

To quantify and compare classification performances, we
used ROC analysis, which fairly compares classifiers that may
be operating at different sensitivities due to arbitrary decision
thresholds applied to the classifiers’ output values. Although our
data set comprised three classes (normal, benign, and cancer),
current ROC methods required us to split an inherently three-class
classification problem into three different two-class tasks: normal
vs. benign, normal vs. cancer, and benign vs. cancer. The field of
ROC analysis is still in development for the three-class problem;
no consensus has yet been reached about how to quantitatively
score the resulting six-dimensional ROC hypersurface. However,
for other methods of classifier comparison, such as the generalized
Brier score or discrete counts of classification errors, full three-class
models could have been used.

This study’s classification results came from a group of 98
serum proteins (Table 1), which is relatively small sample of
all detectable serum proteins. Future studies may identify other
proteins with stronger relationships to breast cancer, or predictive
performance could also benefit from a much larger group of weakly
associated proteins. Perhaps it will become more feasible to screen
large populations with protein-based tests that require a larger set
of proteins when the design and manufacturing costs lower for
microfluidics chips. Such arrays would simplify the process of
automating blood tests in a high-throughput fashion. However, with
current assay technology and cost-benefit analysis of screening
programs, the fixed cost per protein assayed essentially limits the
number of proteins used for screening. To lower screening costs, we
chose small subsets of the features via feature-selection methods.
As seen in Figure 4, BMA and least-angle regression were able to
classify well using a far smaller set of features than those chosen by
stepwise feature selection.

By creating redundant features, feature correlations impede
many feature-selection techniques. For stochastic feature-selection
methods that select for informative, non-redundant features, two
highly correlated features are each likely to be chosen in alternation.
Similarly, a cluster of highly correlated features causes the feature
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selection technique to spread the feature selection rate among each
feature in the cluster, essentially diluting each feature’s selection
rate. Severe dilution of selection rates can cause none of the cluster’s
features to be chosen. Future work will entail adding cluster-based
methods to the iterated BMA algorithm.

The true benefit of protein-based breast cancer screening will
depend on its relationship to existing imaging-based screening. The
proteins will boost diagnostic performance only if they provide
complementary and non-redundant information with the clinical
practice of mammograms, sonograms, and physical examination.
The relationship of imaging and protein screening remains to be
determined in future work.

5 CONCLUSION
We have performed feature-selection and classification techniques
to identify blood serum proteins that are indicative of breast cancer.
The best features to detect breast cancer were MIF, MMP-9, and
MPO. While the proteins could distinguish normal tissue from
cancer and normal tissue from benign lesions, they could not
distinguish benign from malignant lesions. Since the same protein
(MIF) was chosen for both normal vs. cancer and normal vs. benign
lesions, it is likely that this protein plays a role in the inflammatory
response to a lesion, whether benign or malignant, rather than
in a role specific for cancer. While the current set of proteins
show promise in detecting breast cancer, their true usefulness in
a screening program remains to be seen in their integration with
current imaging-based screening practices.
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