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1. The Knowledge Instinct 
 

To satisfy any instinctual need—for food, survival, and procreation—first and foremost 
we need to understand what’s going on around us. The knowledge instinct is an inborn 
mechanism in our minds, an instinctual drive for cognition which compels us to constantly 
improve our knowledge of the world.  

Humans and higher animals engage in exploratory behavior, even when basic bodily 
needs, like eating, are satisfied. Biologists and psychologists have discussed various aspects of 
this behavior. Harry Harlow discovered that monkeys as well as humans have the drive for 
positive stimulation, regardless of the satisfaction of drives such as hunger [i]; David Berlyne 
emphasized curiosity as a desire for acquiring new knowledge [ii]; Leon Festinger discussed the 
notion of cognitive dissonance and human drive to reduce the dissonance [iii]. Until recently, 
however, this drive for exploratory behavior was not mentioned among ‘basic instincts’ on a par 
with instincts for food and procreation.  

The fundamental nature of this mechanism became clear during mathematical modeling 
of workings of the mind. Our knowledge always has to be modified to fit the current situations. 
We don’t usually see exactly the same objects as in the past: angles, illumination, and 
surrounding contexts are usually different. Therefore, our internal representations that store past 
experiences have to be modified; adaptation-learning is required. For example, visual perception 
(in a simplified way) works as follows [iv,v,vi]. Images of the surroundings are projected from the 
retina onto the visual cortex, while at the same time memories-representations of expected 
objects are projected on the same area of cortex.  Perception occurs when actual and expected 
images coincide. This process of matching representations to sensory data requires 
modifications-improvement of representations.   

In fact virtually all learning and adaptive algorithms (tens of thousands of publications) 
maximize correspondence between the algorithm internal structure (knowledge in a wide sense) 
and objects of recognition. Paul Werbos’ chapter in this book discusses a fundamental role of 
reinforcement learning; the knowledge instinct is a reinforcement learning, when reinforcers 
include correspondence of internal mind representations to the surrounding world. Internal mind 
representations, or models, which our mind uses for understanding the world, are in constant 
need of adaptation. Knowledge is not just a static state; it is in a constant process of adaptation 
and learning. Without adaptation of internal models we would not be able to understand the 
world. We would not be able to orient ourselves or satisfy any of the bodily needs. Therefore, we 
have an inborn need, a drive, an instinct to improve our knowledge, and we call it the knowledge 
instinct. It is a foundation of our higher cognitive abilities, and it defines the evolution of 
consciousness and cultures.  

 
 
2. Aristotle and Logic 
 

Before we turn to mathematical description of the knowledge instinct, it is instructive to 
analyze previous attempts at mathematical modeling of the mind. Founders of artificial 
intelligence in the 1950s and 60s believed that mathematical logic was the fundamental 
mechanism of the mind, and that using rules of logic they would soon develop computers with 
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intelligence far exceeding the human mind. Although this belief turned out to be wrong, still 
many people believe in logic. It plays a fundamental role in many algorithms and even neural 
networks, and we start from logic to analyze difficulties of mathematical modeling of the mind.   

Logic was invented by Aristotle. Whereas multiple opinions may exist on any topic, 
Aristotle found general rules of reason that are universally valid, and he called this set of rules 
“logic”. He was proud of this invention and emphasized, “Nothing in this area existed before us” 
(Aristotle, IV BCE, a). However, Aristotle did not think that the mind works logically; he 
invented logic as a supreme way of argument, not as a theory of the mind. This is clear from 
many Aristotelian writings, for example from “Rhetoric for Alexander” (Aristotle, IV BCE, b), 
which he wrote when his pupil, Alexander the Great, requested from him a manual on public 
speaking. In this book he lists dozens of topics on which Alexander had to speak publicly. For 
each topic, Aristotle identified two opposing positions (e.g. making peace or declaring war; using 
or not using torture for extracting the truth, etc.). Aristotle gives logical arguments to support 
each of the opposing positions. Clearly, Aristotle saw logic as a tool to argue for decisions that 
were already made; he did not consider logic as the fundamental mechanism of the mind. Logic 
is, so to speak, a tool for politicians. Scientists follow logic when writing papers and presenting 
talks, but not to discover new truths about nature.  

To explain the mind, Aristotle developed a theory of Forms, which will be discussed 
later. During the centuries following Aristotle the subtleties of his thoughts were not always 
understood. With the advent of science, intelligence was often identified with logic. In the 19th 
century mathematicians striving for exact proofs of mathematical statements noted that 
Aristotelian ideas about logic were not adequate for this. The foundation of logic, since Aristotle 
(Aristotle, IV BCE), was the law of excluded middle (or excluded third): every statement is 
either true or false, any middle alternative is excluded. But Aristotle also emphasized that logical 
statements should not be formulated too precisely (say, a measure of wheat should not be defined 
with an accuracy of a single grain).  He emphasized that language implies the adequate accuracy, 
and everyone has his mind to decide what is reasonable. George Boole thought that Aristotle was 
wrong, that the contradiction between exactness of the law of excluded third and vagueness of 
language should be corrected. 

In this way formal logic, a new branch of mathematics was born. Prominent 
mathematicians contributed to the development of formal logic, including Gottlob Frege, Georg 
Cantor, Bertrand Russell, David Hilbert, and Kurt Gödel. Logicians discarded uncertainty of 
language and founded formal mathematical logic on the law of excluded middle. Many of them 
were sure that they were looking for exact mechanisms of the mind. Hilbert wrote, “The 
fundamental idea of my proof theory is none other than to describe the activity of our 
understanding, to make a protocol of the rules according to which our thinking actually 
proceeds.” (See Hilbert, 1928). In the 1900 he formulated Entscheidungsproblem: to define a set 
of logical rules sufficient to prove all past and future mathematical theorems. This would 
formalize scientific creativity and define a logical mechanism for the entire human thinking.  

Almost as soon as Hilbert formulated his formalization program, the first hole appeared. 
In 1902 Russell exposed an inconsistency of formal logic by introducing a set R as follows: R is 
a set of all sets which are not members of themselves. Is R a member of R? If it is not, then it 
should belong to R according to the definition, but if R is a member of R, this contradicts the 
definition. Thus either way leads to a contradiction. This became known as the Russell's paradox. 
Its jovial formulation is as follows: A barber shaves everybody who does not shave himself. 
Does the barber shave himself? Either answers to this question (yes or no) lead to a 
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contradiction. This barber, like Russell’s set, can be logically defined but cannot exist. For the 
next 25 years mathematicians where trying to develop a self-consistent mathematical logic, free 
from paradoxes of this type. But in 1931, Gödel (see in Gödel, 1986) proved that it is not 
possible, and that formal logic is inexorably inconsistent and self-contradictory. 

For a long time people believed that intelligence is equivalent to conceptual logical 
reasoning. Although it is obvious that the mind is not always logical, since the first successes of 
science many people came to identify the power of intelligence with logic. This belief in logic 
has deep psychological roots related to the functioning of the mind. Most of the mind processes 
are not consciously perceived. For example, we are not aware of individual neuronal firings. We 
become conscious about the final states resulting from perception and cognition processes; these 
are perceived by our minds as ‘concepts’ approximately obeying formal logic. For this reason 
many people believe in logic. Even after Gödelian theory, founders of artificial intelligence still 
insisted that logic is sufficient to explain how the mind works.  

Let us return to Aristotle. He addressed relationships between logic and the working of 
the mind as follows. We understand the world due to Forms (representations, models) in our 
mind. Cognition is a learning process in which a Form-as-potentiality (initial model) meets 
matter (sensory signals) and becomes a Form-as-actuality (a concept). Whereas Forms-actualities 
are logical, Forms-potentialities do not obey logic. Here Aristotle captured an important aspect 
of the working of the mind which has eluded many contemporary scientists. Logic is not a 
fundamental mechanism of the mind, but rather the result of mind’s illogical operations. Later 
we describe the mathematics of dynamic logic, which gives a mathematical explanation for this 
process: how logic appears from illogical states and processes. It turns out that dynamic logic is 
equivalent to the knowledge instinct. 

 
3. Mechanisms of the Mind 
 

The basic mind mechanisms making up operations of the knowledge instinct are 
described mathematically in the next section. Here we give a conceptual preview of this 
description. Among the mind’s cognitive mechanisms, the most directly accessible to 
consciousness are concepts. Concepts are like internal models of the objects and situations in the 
world.  This analogy is quite literal, e.g., as already mentioned, during visual perception of an 
object, a concept-model in our memory projects an image onto the visual cortex, which is 
matched there to an image, projected from retina.  This simplified description will be refined 
later.  

Concepts serve to satisfy the basic instincts, which have emerged as survival mechanisms 
long before concepts. Current debates regarding instincts, reflexes, motivational forces, and 
drives, often lump together various mechanisms. This is inappropriate for the development of 
mathematical description of the mind mechanisms. I follow proposals (see Grossberg & Levine, 
1987; Perlovsky 2006, for further references and discussions) to separate instincts as internal 
sensor mechanisms indicating the basic needs, from “instinctual behavior,” which should be 
described by appropriate mechanisms. Accordingly, I use the word “instincts” to describe 
mechanisms of internal sensors: for example, when a sugar level in blood goes below a certain 
level an instinct “tells us” to eat. Such separation of instinct as “internal sensor” from “instinctual 
behavior” is only a step toward identifying all the details of relevant biological mechanisms. 

How do we know about instinctual needs? Instincts are connected to cognition and 
behavior by emotions. Whereas in colloquial usage, emotions are often understood as facial 
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expressions, higher voice pitch, exaggerated gesticulation, these are outward signs of emotions, 
serving for communication. A more fundamental role of emotions within the mind system is that 
emotional signals evaluate concepts for the purpose of instinct satisfaction. This evaluation does 
not take place according to rules or concepts (like in rule-systems of artificial intelligence), but 
according to a different instinctual-emotional mechanism, described first by Grossberg and 
Levine (1987); the role of emotions in the working of the mind is considered in this book in 
chapter by Daniel Levine. Below we describe emotional mechanisms for higher cognitive 
functions.  

Emotions evaluating satisfaction or dissatisfaction of the knowledge instinct are not 
directly related to bodily needs. Therefore, they are ‘spiritual’ emotions. We perceive them as 
harmony-disharmony between our knowledge and the world (between our understanding of how 
things ought to be and how they actually are in the surrounding world). According to Immanuel 
Kant [vii] these are aesthetic emotions (emotions that are not related directly to satisfaction or 
dissatisfaction of bodily needs).  

Aesthetic emotions related to learning are directly noticeable in children. The instinct for 
knowledge makes little kids, cubs, and piglets jump around and play fight.  Their inborn models 
of behavior must adapt to their body weights, objects, and animals around them long before the 
instincts of hunger and fear will use the models for the direct aims of survival. In adult life, when 
our perception and understanding of the surrounding world is adequate, aesthetic emotions are 
barely perceptible: the mind just does its job. Similarly, we do not usually notice adequate 
performance of our breathing muscles and satisfaction of the breathing instinct. However, if 
breathing is difficult, negative emotions immediately reach consciousness. The same is true 
about the knowledge instinct and aesthetic emotions: if we do not understand the surroundings, if 
objects around do not correspond to our expectations, negative emotions immediately reach 
consciousness. We perceive these emotions as disharmony between our knowledge and the 
world. Thriller movies exploit the instinct for knowledge: their personages are shown in 
situations in which knowledge of the world is inadequate for survival.   

Let me emphasize again, aesthetic emotions are not peculiar to art and artists, they are 
inseparable from every act of perception and cognition. In everyday life we usually do not notice 
them. Aesthetic emotions become noticeable at higher cognitive levels in the mind hierarchy, 
when cognition is not automatic, but requires conscious effort. Antonio Damasio’s view [viii] of 
emotions defined by visceral mechanisms, as far as discussing higher cognitive functions, seems 
erroneous in taking secondary effects for the primary mechanisms. 

In the next section we describe a mathematical theory of conceptual-emotional 
recognition and understanding, which is the essence of neural cognitive dynamics. As we 
discuss, in addition to concepts and emotions, this theory involves the mechanisms of intuition, 
imagination, conscious, and unconscious. This process is intimately connected to an ability of the 
mind to think, to operate with symbols and signs. The mind involves a heterarchy of multiple 
levels. It is not a strict hierarchy, but a heterarchy, because it involves feedback connections 
throughout many levels; to simplify discussion we often refer to the mind stricture as a hierarchy. 
Hierarchy of multiple levels of cognitive mechanisms: knowledge instinct, concept-models, and 
emotions, operate at each level from simple perceptual elements (like edges, or moving dots), to 
concept-models of objects, to relationships among objects, to complex scenes, and up the 
hierarchy… toward the concept-models of the meaning of life and purpose of our existence. 
Hence the tremendous complexity of the mind, yet relatively few basic principles of the mind 
organization explain neural evolution of this system. 
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4.  Neural Modeling Fields 

 
Neural Modeling Fields (NMF) is a neural architecture that mathematically implements 

the mechanisms of the mind discussed above. It is a multi-level, hetero-hierarchical system [ix]. 
The mind is not a strict hierarchy; there are multiple feedback connections among adjacent 
levels, hence the term hetero-hierarchy. At each level in NMF there are concept-models 
encapsulating the mind’s knowledge; they generate so-called top-down neural signals, 
interacting with input, bottom-up signals. These interactions are governed by the knowledge 
instinct, which drives concept-model learning, adaptation, and formation of new concept-models 
for better correspondence to the input signals.  

This section describes a basic mechanism of interaction between two adjacent 
hierarchical levels of bottom-up and top-down signals (fields of neural activation).  Sometimes it 
will be more convenient to talk about these two signal-levels as an input to, and output from, a 
(single) processing-level. At each level, output signals are concepts recognized in (or formed 
from) input signals. Input signals are associated with (or recognized, or grouped into) concepts 
according to the models and the knowledge instinct at this level. This general structure of NMF 
corresponds to our knowledge of neural structures in the brain; still, in this chapter we do not 
map mathematical mechanisms in all their details to specific neurons or synaptic connections.  

At a particular hierarchical level, we enumerate neurons by the index n = 1,... N. These 
neurons receive bottom-up input signals, X(n), from lower levels in the processing hierarchy. 
X(n) is a field of bottom-up neuronal synapse activations, coming from neurons at a lower level. 
Each neuron has a number of synapses.  For generality, we describe each neuron activation as a 
set of numbers, X(n) = {Xd(n), d = 1,... D}. Top-down, or priming signals, to these neurons are 
sent by concept-models, Mh(Sh,n), and we enumerate models by the index h = 1,... H. Each 
model is characterized by its parameters, Sh; in the neuron structure of the brain they are encoded 
by strength of synaptic connections.  Mathematically, we describe them as a set of numbers, Sh = 

{S
a

h, a = 1,... A}. Models represent signals in the following way. Say, signal X(n) is coming 
from sensory neurons activated by object h, characterized by a model Mh(Sh,n) and parameter 
values Sh. These parameters may include position, orientation, or lighting of an object h. Model 
Mh(Sh,n) predicts a value X(n) of a signal at neuron n. For example, during visual perception, a 
neuron n in the visual cortex receives a signal X(n) from retina and a priming signal Mh(Sh,n) 
from an object-concept-model h. A neuron n is activated if both bottom-up signal from lower-
level-input and top-down priming signal are strong. Various models compete for evidence in the 
bottom-up signals, while adapting their parameters for better match as described below. This is a 
simplified description of perception. The most benign everyday visual perception uses many 
levels from retina to object perception. The NMF premise is that the same laws describe the 
basic interaction dynamics at each level. Perception of minute features, or everyday objects, or 
cognition of complex abstract concepts is due to the same mechanism described in this section. 
Perception and cognition involve models and learning. In perception, models correspond to 
objects; in cognition, models correspond to relationships and situations.  

The knowledge instinct drives learning, which is an essential part of perception and 
cognition. Learning increases a similarity measure between the sets of models and signals, 
L({X},{M}). The similarity measure is a function of model parameters and associations between 
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the input bottom-up signals and top-down, concept-model signals. For concreteness I refer here 
to an object perception using a simplified terminology, as if perception of objects in retinal 
signals occurs in a single level.  

In constructing a mathematical description of the similarity measure, it is important to 
acknowledge two principles (which are almost obvious) [x]. First, the visual field content is 
unknown before perception occurred and second, it may contain any of a number of objects. 
Important information could be contained in any bottom-up signal; therefore, the similarity 
measure is constructed so that it accounts for all bottom-up signals, X(n), 
 
L({X},{M}) = ∏

∈Nn
l(X(n)).  (1) 

 
This expression contains a product of partial similarities, l(X(n)), over all bottom-up signals; 
therefore it forces the mind to account for every signal (even if one term in the product is zero, 
the product is zero, the similarity is low and the knowledge instinct is not satisfied); this is a 
reflection of the first principle. Second, before perception occurs, the mind does not know which 
object gave rise to a signal from a particular retinal neuron. Therefore a partial similarity 
measure is constructed so that it treats each model as an alternative (a sum over models) for each 
input neuron signal. Its constituent elements are conditional partial similarities between signal 
X(n) and model Mh, l(X(n)|h). This measure is “conditional” on object h being present, therefore, 
when combining these quantities into the overall similarity measure, L, they are multiplied by 
r(h), which represent a probabilistic measure of object h actually being present. Combining these 
elements with the two principles noted above, a similarity measure is constructed as follows:  

 
L({X},{M}) = 

n∈N
∏

h∈H
∑ r(h) l(X(n) | h).  (2) 

 
The structure of (2) follows standard principles of the probability theory: a summation is 

taken over alternatives, h, and various pieces of evidence, n, are multiplied. This expression is 
not necessarily a probability, but it has a probabilistic structure. If learning is successful, it 
approximates probabilistic description and leads to near-optimal Bayesian decisions. The name 
“conditional partial similarity” for l(X(n)|h) (or simply l(n|h)) follows the probabilistic 
terminology. If learning is successful, l(n|h) becomes a conditional probability density function, a 
probabilistic measure that signal in neuron n originated from object h. Then L is a total 
likelihood of observing signals {X(n)} coming from objects described by models {Mh}. 
Coefficients r(h), called priors in probability theory, contain preliminary biases or expectations, 
expected objects h have relatively high r(h) values; their true values are usually unknown and 
should be learned, like other parameters Sh. 

We note that in probability theory, a product of probabilities usually assumes that 
evidence is independent. Expression (2) contains a product over n, but it does not assume 
independence among various signals X(n). Partial similarities l(n|h) are structured in a such a 
way (described later) that they depend on differences between signals and models; these 
differences are due to measurement errors and can be considered independent. There is a 
dependence among signals due to models: each model Mh(Sh,n) predicts expected signal values 
in many neurons n.  



 

 7

During the learning process, concept-models are constantly modified. Here we consider a 
case when functional forms of models, Mh(Sh,n), are all fixed and learning-adaptation involves 
only model parameters, Sh. More complicated structural learning of models is considered in [xi, 

xii]. From time to time a system forms a new concept, while retaining an old one as well; 
alternatively, old concepts are sometimes merged or eliminated. This requires a modification of 
the similarity measure (2); the reason is that more models always result in a better fit between the 
models and data. This is a well known problem, it is addressed by reducing similarity (2) using a 
“skeptic penalty function,” p(N,M) that grows with the number of models M, and this growth is 
steeper for a smaller amount of data N. For example, an asymptotically unbiased maximum 
likelihood estimation leads to multiplicative p(N,M) = exp(-Npar/2), where Npar is a total number 
of adaptive parameters in all models (this penalty function is known as Akaike Information 
Criterion, see [ix] for further discussion and references).  

The knowledge instinct demands maximization of the similarity (2) by estimating model 
parameters S and associating signals with concepts. Note that all possible combinations of 
signals and models are accounted for in expression (2). This can be seen by expanding a sum in 
(2), and multiplying all the terms; it would result in HN items, a very large number. This is the 
number of combinations between all signals (N) and all models (H).  

This very large number of combinations was a source of difficulties (that we call 
combinatorial complexity, CC) for developing intelligent algorithms and systems since the 
1950s. The problem was first identified in pattern recognition and classification research in the 
1960s and was named “the curse of dimensionality” [xiii]. It seemed that adaptive self-learning 
algorithms and neural networks could learn solutions to any problem ‘on their own’ if provided 
with a sufficient number of training examples. It turned out that training examples should 
encompass not only all individual objects that should be recognized, but also objects in the 
context, that is combinations of objects. Self-learning approaches encountered CC of learning 
requirements.  

Rule-based systems were proposed in the 1960s to solve the problem of learning 
complexity. An initial idea was that rules would capture the required knowledge and eliminate a 
need for learning [xiv]. However, in presence of variability the number of rules grew; rules 
depended on other rules, combinations of rules had to be considered and rule systems 
encountered CC of rules. Beginning in the 1980s, model-based systems were proposed. They 
used models that depended on adaptive parameters. The idea was to combine advantages of 
learning-adaptivity and rules by using adaptive models. The knowledge was encapsulated in 
models, whereas unknown aspects of particular situations was to be learned by fitting model 
parameters (see [xv] and discussions in [ix,xvi]). Fitting models to data required selecting data 
subsets corresponding to various models. The number of subsets, however, is combinatorially 
large (NM as discussed above). A general popular algorithm for fitting models to data, multiple 
hypotheses testing [xvii], is known to face CC of computations. Model-based approaches 
encountered computational CC (N and NP complete algorithms).  

It turns out that CC is related to the most fundamental mathematical result of the 20th c., 
Gödel’s theory of inconsistency of logic [xviii,xix]. Formal logic is based on the “law of excluded 
middle,” according to which every statement is either true or false and nothing in between. 
Therefore, algorithms based on formal logic have to evaluate every variation in data or models as 
a separate logical statement (hypothesis). CC of algorithms based on logic is a manifestation of 
the inconsistency of logic in finite systems. Multivalued logic and fuzzy logic were proposed to 
overcome limitations related to the law of excluded third [xx]. Yet the mathematics of 
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multivalued logic is no different in principle from formal logic, “excluded third” is substituted by 
“excluded n+1.” Fuzzy logic encountered a difficulty related to the degree of fuzziness. Complex 
systems require different degrees of fuzziness in various subsystems, varying with the system 
operations; searching for the appropriate degrees of fuzziness among combinations of elements 
again would lead to CC. Is logic still possible after Gödel? A recent review of the contemporary 
state of this field shows that logic after Gödel is much more complicated and much less logical 
than was assumed by the founders of artificial intelligence. The problem of CC remains 
unresolved within logic [xxi]. 

Various manifestations of CC are all related to formal logic and Gödel theory. Rule 
systems relied on formal logic in a most direct way. Self-learning algorithms and neural 
networks relied on logic in their training or learning procedures, every training example was 
treated as a separate logical statement. Fuzzy logic systems relied on logic for setting degrees of 
fuzziness. CC of mathematical approaches to theories of the mind is related to the fundamental 
inconsistency of logic. 
 
5. Dynamic Logic 
 
5.1 Mathematical formulation 
  

NMF solves the CC problem by using dynamic logic [xxii,xxiii,xxiv,x]. An important aspect 
of dynamic logic is matching vagueness or fuzziness of similarity measures to the uncertainty of 
models. Initially, parameter values are not known, and uncertainty of models is high; so is the 
fuzziness of the similarity measures. In the process of learning, models become more accurate, 
and the similarity measure more crisp, the value of the similarity increases. This is the 
mechanism of dynamic logic. 

Mathematically it is described as follows. First, assign any values to unknown 
parameters, {Sh}. Then, compute association variables f(h|n), 
 
f(h|n) = r(h) l(X(n)|h) /

h '∈H
∑ r(h') l(X(n)|h'). (3) 

 
Eq.(3) looks like the Bayes’ formula for a posteriori probabilities; if l(n|h) in the result of 
learning become conditional likelihoods, f(h|n) become Bayesian probabilities for signal n 
originating from object h. The dynamic logic of NMF is defined as follows, 
 
df(h|n)/dt = f(h|n) 

h '∈H
∑ {[δhh' - f(h'|n)] ·  

[∂lnl (n|h')/∂Mh'] ∂Mh'/∂Sh' · dSh'/dt, (4) 
 
dSh/dt = ∑

∈Nn
f(h|n)[∂lnl(n|h)/∂Mh]∂Mh/∂Sh, (5) 

here 
δhh' is 1 if h=h', 0 otherwise. (6) 
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Parameter t is the time of the internal dynamics of the MF system (like a number of internal 
iterations). These equations define the neural dynamics of NMF.  

Gaussian-shape functions can often be used for conditional partial similarities, 
 

l(n|h) = G(X(n) | Mh(Sh, n), Ch).  (7) 

 

Here G is a Gaussian function with mean Mh and covariance matrix Ch. Note, a “Gaussian 
assumption” is often used in statistics; it assumes that signal distribution is Gaussian. This is not 
the case in (7): here signal is not assumed to be Gaussian. Eq. (7) is valid if deviations between 
the model M and signal X are Gaussian; these deviations usually are due to many random causes 
and are therefore Gaussian. If they are not Gaussian, appropriate functions could be used. If there 
is no information about the functional shapes of conditional partial similarities, still (7) is a good 
choice, it is not a limiting assumption: a weighted sum of Gaussians in (2) can approximate any 
positive function, like similarity.  

Covariance matrices, Ch, in (7) are estimated like other unknown parameters, as shown in 
eq.(5). Initially they are set to large values, corresponding to uncertainty in the knowledge of 
models, Mh. As parameter values and models improve, covariances are reduced to intrinsic 
differences between models and signals (due to sensor errors, or model inaccuracies). As 
covariances get smaller, similarities get crisper, closer to delta-functions; association variables 
(3) get closer to crisp {0, 1} values, and dynamic logic solutions converge to crisp logic. This 
process of concurrent parameter improvement and convergence of similarity to a crisp logical 
function is an essential part of dynamic logic. This is the mechanism of dynamic logic defining 
the neural dynamics of NMF.  
The dynamic evolution of fuzziness from large to small is the reason for the name “dynamic 
logic.” Mathematically, this mechanism helps avoiding local maxima during convergence 
[ix,xxvxxii], and psychologically it explains many properties of the mind, as discussed later. 
Whichever functional shapes are used for conditional partial similarities, they ought to allow for 
this process of matched convergence in parameter values and similarity crispness. The brain 
might use various mechanisms for realizing the dynamic logic process at various stages. The 
chapter in this book by Emilio Del-Moral-Hernandez considers neural networks with recursive 
processing elements (RPE), which might implement dynamic logic through their chaotic 
dynamics. In RPE neural networks high vagueness of dynamic logic states and the knowledge 
instinct dissatisfaction corresponds to high value of the parameter p and to chaotic wide searches. 
Low vagueness, successful perception and cognition, and the knowledge instinct satisfaction 
corresponds to low p and ordered dynamics. Similar correspondence between dynamic logic, the 
knowledge instinct, and chaotic dynamic might be applicable to discussions in Walter Freeman 
chapter in this book. Dynamic logic seems to correspond to transitions from highly chaotic to 
lower chaotic states in cortical neural activity. 

 The following theorem was proved [ix]. 
Theorem. Equations (3) through (6) define a convergent dynamic NMF system with 

stationary states defined by max{Sh}L.  
It follows that the stationary states of a NMF system are the maximum similarity states 

satisfying the knowledge instinct. When partial similarities are specified as probability density 
functions (pdf), or likelihoods, the stationary values of parameters {Sh} are asymptotically 
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unbiased and efficient estimates of these parameters [xxvi]. A computational complexity of 
dynamic logic is linear in N.  

In plain English, this means that dynamic logic is a convergent process. It converges to 
the maximum of similarity, and therefore satisfies the knowledge instinct. Several aspects of 
NMF convergence are discussed in later sections. If likelihood is used as similarity, parameter 
values are estimated efficiently (that is, in most cases, parameters cannot be better learned using 
any other procedure). Moreover, as a part of the above theorem, it is proven that the similarity 
measure increases at each iteration. The psychological interpretation is that the knowledge 
instinct is satisfied at each step: a NMF system with dynamic logic enjoys learning. 

Let us emphasize again, the fundamental property of dynamic logic is evolution from 
vague, uncertain, fuzzy, unconscious states to more crisp, certain, conscious states. 

 
5.2 Example of operation 
 

Operations of NMF are illustrated in Fig. 1 using an example of detection and tracking of 
moving objects in clutter [xxvii]. Tracking is a classical problem, which becomes combinatorially 
complex in clutter when target signals are below the clutter level. Solving this problem is usually 
approached by using multiple hypotheses tracking algorithm [xxviii], which evaluates multiple 
hypotheses about which signals came from which of the moving objects, and which from clutter. 
This standard approach is well-known to face CC [ix], because large numbers of combinations of 
signals and models have to be considered. Fig. 1 illustrates NMF neurodynamics while solving 
this problem.   

Fig. 1(a) shows true track positions, while Fig. 1(b) shows the actual data available for 
detection and tracking. It contains 6 sensor scans on top of each other (time axis is not shown). 
The data set consists of 3000 data points, 18 of which belong to three moving objects.  In this 
data, the target returns are buried in clutter, with signals being weaker than clutter (by factor of 
2).  Figs. 1(c)-1(h) illustrate evolution of the NMF models as they adapt to the data during 
iterations. Fig. 1(c) shows the initial vague-fuzzy model, while Fig. 1(h) shows the model upon 
convergence at 20 iterations. Between (c) and (h) the NMF neural network automatically decides 
how many model components are needed to fit the data, and simultaneously adapts the model 
parameters, including target track coefficients. There are two types of models: one uniform 
model describing clutter (it is not shown), and linear track models with large uncertainty. In (c) 
and (d), the NMF neural network fits the data with one model, and uncertainty is somewhat 
reduced. Between (d) and (e) NMF decides that it needs two models to ‘understand’ the content 
of the data. Fitting with 2 tracks continues until (f); between (f) and (g) a third track is added. 
Iterations stop at (h), when similarity stops increasing. Detected tracks closely correspond to the 
truth (a). In this case NMF successfully detected and tracked all three objects and required only 
106 operations, whereas a straightforward application of multiple hypotheses tracking would 
require HN ~ 101500 operations. This number, larger than the size of the Universe and too large 
for computation, prevents past algorithms from solving this problem. NMF overcoming this 
difficulty achieved about 100 times improvement in terms of signal-to-clutter ratio. This 
improvement is achieved by using dynamic evolution from vague and uncertain models to crisp 
and certain (instead of sorting through combinations).  
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Figure 1.  Detection and tracking objects below clutter using NMF: (a) true track positions; (b) actual 
data available for detection and tracking. Evolution of the NMF neural network driven by the knowledge 
instinct is shown in (c) – (h), where (c) shows the initial, uncertain, model and (h) shows the model upon 
convergence after 20 iterations. Converged model (h) are in close agreement with the truth (a). 
Performance improvement of about 100 in terms of signal-to-clutter ratio is achieved due to dynamic 
logic evolution from vague and uncertain models to crisp and certain. 
 

 
6.  Conscious, Unconscious, and Differentiation 

  
NMF dynamics described above satisfy the knowledge instinct and improve knowledge 

by evolving vague, uncertain models toward crisp models, which maximize similarity between 
models and data. This process of knowledge accumulation, driven by the instinct for knowledge, 
proceeds in the minds of every member in a society and constitutes an essential aspect of cultural 
evolution. Vague and uncertain models are less accessible to consciousness, whereas crisp and 
concrete models are more conscious. 

Most of the mind’s operations are not accessible to consciousness. We definitely know 
that neural firings and connections cannot be perceived consciously. In the foundations of the 
mind there are material processes in the brain inaccessible to consciousness. Jung suggested that 
conscious concepts are developed by the mind based on genetically inherited structures, 
archetypes, which are inaccessible to consciousness [xxix,xxx]. Grossberg [iv] suggested that only 
signals and models attaining a resonant state (that is signals matching models) can reach 
consciousness. It was further detailed by Taylor [xxxi]; he related consciousness to the mind being 
a control mechanism of the mind and body. A part of this mechanism is a prediction model. 
When this model predictions differ from sensory observations, this difference may reach a 
resonant state, which we are conscious about. To summarize the above analyses, the mind 
mechanisms, described in NMF by dynamic logic and fuzzy models, are not accessible to 
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consciousness. Final results of dynamic logic processes, resonant states characterized by crisp 
models and corresponding signals are accessible to consciousness. Increase in knowledge and 
improved cognition results in better, more diverse, more differentiated consciousness. 

How did the evolution of cognition and consciousness proceed? What was the initial state 
of consciousness: an undifferentiated unity or a “booming, buzzing confusion” [xxxii]? Or, let us 
take a step back in evolutionary development and ask, what is the initial state of pre-conscious 
psyche? Or, let us move back even further toward the evolution of sensory systems and 
perception. Why would an evolution result in sensor organs? Obviously, such an expensive thing 
as a sensor is needed to achieve specific goals: to sense the environment with the purpose to 
accomplish specific tasks. Evolution of organisms with sensors went together with an ability to 
utilize sensory data.    

In the process of evolution, sensory abilities emerged together with perception abilities. A 
natural evolution of sensory abilities could not result in a “booming, buzzing confusion,” but 
must result in evolutionary advantageous abilities to avoid danger, attain food, etc. Primitive 
perception abilities (observed in primitive animals) are limited to a few types of concept-objects 
(light-dark, warm-cold, edible-nonedible, dangerous-attractive...) and are directly ‘wired’ to 
proper actions (Walter Freeman and Robert Kozma chapters in this book refer to this primitive 
intelligence as low dimensional chaos; high dimensional chaos appears with higher intelligence). 
When perception functions evolve further, beyond immediate actions, it is through the 
development of complex internal model-concepts, which unify simpler object-models into a 
unified and flexible model of the world. Only at this point of possessing relatively complicated 
differentiated concept-models composed of a large number of sub-models, can an intelligent 
system experience a “booming, buzzing confusion” if it faces a new type of environment. A 
primitive system is simply incapable of perceiving confusion: It perceives only those ‘things’ for 
which it has concept-models.  If its perceptions do not correspond to reality, it does not 
experience confusion, but simply ceases to survive.  When a baby is born, it undergoes a 
tremendous change of environment, most likely without much conscious confusion. The original 
state of consciousness is undifferentiated unity. It possesses a single modality of primordial 
undifferentiated Self-World. 

The initial unity of psyche limited the abilities of the mind, and further development 
proceeded through the differentiation of psychic functions or modalities (concepts, emotions, 
behavior); they were further differentiated into multiple concept-models, etc. This accelerated 
adaptation. Differentiation of consciousness began millions of years ago.  It accelerated 
tremendously in our recent past, and still continues today [xxxiii,xxix,xxxiv].  

In pre-scientific literature about mechanisms of the mind there was a popular idea of 
homunculus, that is, a little mind inside our mind which perceived our perceptions and made 
them available to our mind. This naive view is amazingly close to the actual scientific 
explanation. The fundamental difference is that the scientific explanation does not need an 
infinite chain of homunculi inside homunculi. Instead, there is a hierarchy of the mind models 
with their conscious and unconscious aspects.  The conscious differentiated aspect of the models 
decreases at higher levels in the hierarchy, and they are more uncertain and fuzzy. At the top of 
the hierarchy there are most general and important models of the meaning of our existence 
(which we discuss later); these models are mostly unconscious. 

 
 Our internal perceptions of consciousness are due to Ego-model. This model essentially 

consists of, or has access to other model parts that are available to consciousness. It is the mind 
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mechanism of what used to be called ‘homunculus.’ It   ‘perceives’ crisp conscious parts of other 
models, in the same way that models of perception ‘perceive’ objects in the world. The 
properties of consciousness as we experience them, such as continuity and identity of 
consciousness, are due to properties of the Ego-model, [x]. These properties of unity, continuity, 
and identity, are the reasons to assume existence of this model. What is known about this 
‘consciousness’-model? Since Freud, a certain complex of psychological functions was called 
Ego. Jung considered Ego to be based on a more general model or archetype of Self. Jungian 
archetypes are psychic structures (models) of a primordial origin, which are mostly inaccessible 
to consciousness, but determine the structure of our psyche. In this way, archetypes are similar to 
other models, e.g., receptive fields of the retina are not consciously perceived, but determine the 
structure of visual perception. The Self archetype determines our phenomenological subjective 
perception of ourselves, and in addition, structures our psyche in many different ways, which are 
far from being completely understood. An important phenomenological property of Self is the 
perception of uniqueness and in-divisibility (hence, the word individual). 

According to Jung, conscious concepts of the mind are learned on the basis of inborn 
unconscious psychic structures, archetypes, [xxix]. Contemporary science often equates the 
mechanism of concepts with internal representations of objects, their relationships, situations, 
etc. The origin of internal representations-concepts is from two sources, inborn archetypes and 
culturally created models transmitted by language [xii]. 

In preceding sections we described dynamic logic operating at a single hierarchical level 
of the mind. It evolves vague and unconscious models-concepts into more crisp and conscious. 
Psychologically this process was called by Carl Jung differentiation of psychic content [xxix].  
 
 
7.  Hierarchy and Synthesis 

  
In previous sections we described a single processing level in a hierarchical NMF system. 

As we mentioned, the mind is organized in an approximate hierarchy. For example, in visual 
cortex, this approximate hierarchy is well studied [iv,v]. Not every two models are in hierarchical 
relationships (above-below or same level, more or less general, etc.). Also, feedback loops 
between higher and lower levels contradict to strict hierarchical ordering. Nevertheless, for 
simplicity, we will talk about the mind as a hierarchy (in terms of generality of models and the 
directions of bottom-up and top-down signal flows). At each level of the hierarchy there are 
input signals from lower levels, models, similarity measures (2), emotions (which are changes in 
similarity), and actions. Actions include adaptation, i.e., behavior satisfying the knowledge 
instinct.  This adaptation corresponds to the maximization of similarity, as described 
mathematically by equations (3) through (6). An input to each level is a set of signals X(n), or in 
neural terminology, an input field of neuronal activations. The result of dynamic logic operations 
at a given level are activated models, or concepts h recognized in the input signals n; these 
models along with the corresponding instinctual signals and emotions may activate behavioral 
models and generate behavior at this level.  

The activated models initiate other actions. They serve as input signals to the next 
processing level, where more general concept-models are recognized or created. Output signals 
from a given level, serving as input to the next level, could be model activation signals, ah, 
defined as 
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ah = ∑

∈Nn
f(h|n). (8) 

 
As defined previously in (3) f(h|n) can be interpreted as a probability that signal n came from 
object h; and ah is interpreted as a total activation of the concept h from all signals. Output 
signals may also include model parameters. The hierarchical NMF system is illustrated in Fig. 2. 
Within the hierarchy of the mind, each concept-model finds its mental meaning and purpose at a 
higher level (in addition to other purposes). For example, consider a concept-model “chair.” It 
has a “behavioral” purpose of initiating sitting behavior (if sitting is required by the body), this is 
the “bodily” purpose at the same hierarchical level. In addition, “chair” has a “purely mental” 
purpose at a higher level in the hierarchy, a purpose of helping to recognize a more general 
concept, say of a “concert hall,” which model contains rows of chairs.  
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Hierarchical NMF system. At each level of a hierarchy there are models, 

similarity measures, and actions (including adaptation, maximizing the knowledge instinct - 
similarity). High levels of partial similarity measures correspond to concepts recognized at a 
given level. Concept activations are output signals at this level and they become input signals to 
the next level, propagating knowledge up the hierarchy. Each concept-model finds its mental 
meaning and purpose at a higher level. 
 

 
Models at higher levels in the hierarchy are more general than models at lower levels.  For 
example, if we consider the vision system, models at the very bottom of the hierarchy correspond 
(roughly speaking) to retinal ganglion cells and perform similar functions; they detect simple 
features in the visual field.  At higher levels, models correspond to functions performed at V1 
and higher up in the visual cortex, that is detection of more complex features such as contrast 
edges, their directions, elementary moves, etc. Visual hierarchical structures and models have 
been studied in detail [iv,v], and these models can be used in NMF. At still higher cognitive 
levels, models correspond to objects, to relationships among objects, to situations, and 
relationships among situations, etc. [x].  At still higher levels, even more general models reside, 
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corresponding to complex cultural notions and relationships such as family, love, friendship, and 
abstract concepts such as law, rationality, etc. The contents of these models correspond to the 
wealth of cultural knowledge, including the writings of Shakespeare and Tolstoy.  Mechanisms 
of the development of these models are reviewed in the next section. According to Kantian 
analysis [xxxv], at the top of the hierarchy of the mind are models of the meaning and purpose of 
our existence, unifying our knowledge, and the corresponding behavioral models aimed at 
achieving this meaning. Chapter by Robert Kozma in this book considers a related neural 
architecture, K-sets, describing a hierarchy of the mind.      

From time to time, as discussed, a system forms a new concept or eliminates an old one. 
Many pattern recognition algorithms and artificial neural networks lack this important ability of 
the mind. It can be modeled mathematically in several ways; adaptive resonance theory (ART) 
uses vigilance threshold [xxxvi], which is similar to a threshold for a similarity measure [ix]. A 
somewhat different mechanism of NMF works as follows. At every level, the system always 
keeps a reserve of vague (fuzzy) inactive concept-models (with large covariance, C, eq.7). They 
are inactive in that their parameters are not adapted to the data; therefore their similarities to 
signals are low. Yet, because of a large fuzziness (covariance) the similarities are not exactly 
zero. When a new signal does not fit well into any of the active models, its similarities to inactive 
models automatically increase (because first, every piece of data is accounted for and second, 
inactive models are vague-fuzzy and potentially can “grab” every signal that does not fit into 
more specific, less fuzzy, active models). When the activation signal ah of eq.(8) for an inactive 
model, h, exceeds a certain threshold, the model is activated. Similarly, when an activation signal 
for a particular model falls below a threshold, the model is deactivated. Thresholds for activation 
and deactivation are set usually based on information existing at a higher hierarchical level (prior 
information, system resources, numbers of activated models of various types, etc.). Activation 
signals for active models at a particular level { ah } form a “neuronal field,” which serve as input 
signals to the next level, where more abstract and more general concepts are formed, and so on 
along the hierarchy toward higher models of meaning and purpose. 

Models at a higher level act as “eyes” perceiving the models at a lower level. Each higher 
level in the hierarchy is the “mind of a homunculus” perceiving the meaning of what was 
recognized at a lower level. As mentioned, this does not lead to an infinite regress, because 
higher level models are more general, more uncertain, and more vague and fuzzy. 

Let us note that in the hierarchical structure (Fig. 2) concept-models at the bottom level 
of the hierarchy correspond to objects directly perceived in the world. Perception mechanisms to 
a significant extent are determined by sensor organs which evolved over billions of years. 
Models at this level are to a large extent the result of evolution and to a lesser extent the result of 
cultural constructions. These models are “grounded” in “real” objects existing in the surrounding 
world. For example, “food” objects are perceived not only by the human mind, but also by all 
pre-human animals.  

This is not true for concept-models at higher levels of the hierarchy. These more abstract 
and more general models are cultural constructs (to some extent). They cannot be perceived 
directly in the surrounding world (e.g., concept-models of “rationality,” or “meaning and purpose 
of life”). These concepts cannot just emerge in the mind on their own as some useful 
combination of simpler concepts.  Because there are a huge number of combinations of simpler 
concepts, an individual human being does not have enough time in his or her life to accumulate 
enough experiential evidence to verify the usefulness of these combinations. These higher level 
concepts accumulate in cultures due to languages. An individual mind is assured about the 
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usefulness of certain high-level concept-models because he can talk about them with other 
members of the society (with a degree of mutual understanding). Concepts acquired from 
language are not automatically related to events or combinations of objects in the surrounding 
world. For example, every five-year-old knows about “good guys” and “bad guys.” Yet, still at 
40 or 70 nobody could claim the he or she can perfectly use these models to understand the 
surrounding world. Philosophers and theologians have argued about the meaning of good and 
evil for thousands of years, and these arguments are likely to continue forever. The study of 
mechanisms relating language concepts to concept-models of cognition have just begun 
[x,xii,xxxiv,xxxvii,xxxviii]. 

The hierarchical structure of the mind is not a separate mechanism, independent from the 
knowledge instinct. Detailed neural and mathematical mechanisms connecting these two are still 
a matter of ongoing and future research [x,xii,xxxiv,xxxvii]. Here we outline some basic principles of 
the knowledge instinct operation in the mind hierarchy.  Previous sections described the 
mechanism of differentiation, creating diverse and detailed models, acting at a single level of 
hierarchy. At a single level, the meaning of each model is to satisfy the knowledge instinct by 
finding patterns in the input data, bottom-up signals, and adapting to these patterns. There are 
also meanings and purposes related to bodily instincts: for example, food objects can be used to 
satisfy needs for food and desires for eating. In this chapter we limit our discussion to spiritual 
needs, to the knowledge instinct. 

We have discussed that models acquired deeper meanings and purposes at higher 
hierarchical levels. The knowledge instinct acting at higher levels and aesthetic emotions at 
higher levels are perceived more consciously then at lower levels. The pure aesthetic feeling of 
harmony between our knowledge and the surrounding world at lower levels is below threshold of 
conscious registration in our minds. We do not feel much joy from the understanding of simple 
objects around us. But we do enjoy solving complex problems that required a lot of time and 
effort. This emotional feel of harmony from improving-creating high level concept-models is 
related to the fact that high level concepts unify many lower level concepts and increase the 
overall meaning and purpose of our diverse knowledge. Jung called this synthesis, which he 
emphasized is essential for psychological well being. 

Synthesis, the feel of overall meaning and purpose of knowledge, is related to the 
meaning and purpose of life, which we perceive at the highest levels of the hierarchy of the 
mind. At those high levels models are intrinsically vague and undifferentiated, not only in terms 
of their conceptual content, but also in terms of differentiation of conceptual and emotional. At 
the highest levels of the mind the two are not quite separable. This inseparability, which we 
sometimes feel as a meaning and purpose of our existence, is important for evolution and 
survival. If the hierarchy of knowledge does not support this feel, the entire hierarchy would 
crumble, which was an important (or possibly the most important) mechanism of destruction of 
old civilizations. The knowledge instinct demands satisfaction at the lowest levels of 
understanding concrete objects around, and also at the highest levels of the mind hierarchy, 
understanding of the entire knowledge in its unity, which we feel as meaning and purpose of our 
existence. This is the other side of the knowledge instinct, a mechanism of synthesis [xxix]. 
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8.  Evolutionary Dynamics of Consciousness and Cultures 

  
8.1 Neurodynamics of differentiation and synthesis 

  
Every individual mind has limited experience over the lifetime. Therefore, a finite 

number of concept-models are sufficient to satisfy the knowledge instinct. It is well appreciated 
in many engineering applications, that estimating a large number of models from limited data is 
difficult and unreliable; many different solutions are possible, one no better than the other. 
Psychologically, the average emotional investment in each concept decreases with an increase in 
the number of concepts, and a drive for differentiation and creating more concepts subsides. 
Emotional investment in a concept is a measure of the meaning and purpose of this concept 
within the mind system, that is, a measure of synthesis. Thus, the drive for differentiation 
requires synthesis. More synthesis leads to faster differentiation, whereas more differentiation 
decreases synthesis.  

In a hierarchical mind system, at each level some concepts are used more often than 
other, they acquire multiple meanings, leading to a process opposite to differentiation. These 
more general concepts “move” to a higher hierarchical levels. These more general, higher-level 
concepts are invested with more emotion. This is a process of synthesis increase.  

Another aspect of synthesis is related to language. Most concepts within individual minds 
are acquired with the help of language. Interaction between language and cognition is an active 
field of study (see [xii] for neurodynamics of this interaction and for more references). Here we 
do not go into the details of this interaction, we just emphasize the following. First, creation of 
new concepts by differentiation of inborn archetypes is a slow process, taking millennia; results 
of this process, new concepts, are stored in language, which transmits them from generation to 
generation. Second, a newborn mind receives this wealth of highly differentiated concepts 
“ready-made,” that is without real-life experience, without understanding and differentiating 
cognitive concepts characterizing the world; a child at 5 or 7 can speak about much of existing 
cultural content, but it would take the rest of life to understand, how to use this knowledge. This 
is directly related to the third aspect of language-cognition interaction: language model-concepts 
are not equivalent to cognitive model-concepts. Language models serve to understand language, 
not the world around. Cognitive models that serve to understand the world are developed in 
individual minds with the help of language. This development of cognitive models from 
language models, connection of language and cognition is an important aspect of synthesis.  

Let us dwell a bit more on this aspect of synthesis. Learning language is driven by the 
language instinct [xxxix]; it involves aesthetic emotions; a child likes to learn language. However, 
this drive and related emotions subside after about 7, after language is mostly learned. During the 
rest of life, the knowledge instinct drives the mind to create and improve cognitive models on the 
basis of language models [xii]. This process involves aesthetic emotions related to learning 
cognitive concepts. Again, synthesis involves emotions.  

 People are different in their ability to connect language and cognition. Many people are 
good at talking, without fully understanding how their language concepts are related to real life. 
On any subject, they can talk one way or another without much emotional investment. Synthesis 
of language and cognition involves synthesis of emotional and conceptual contents of psyche. 

Synthesis of emotional and conceptual is also related to hierarchy. Higher level concepts 
are more general and vaguer. They are less differentiated not only in their conceptual precision, 
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but also their conceptual and emotional contents are less differentiated. Important high-level 
concepts are more emotional than low-level, mundane, everyday concepts. They are also less 
conscious (remind, more differentiation leads to more conscious content). Therefore, synthesis 
connects language and cognition, concepts and emotions, conscious and unconscious. This is 
opposite of differentiation; we all have high-value concepts (related to family life, or to political 
cause, or to religion) which are so important to us and so emotional, that we cannot “coldly 
analyze,” cannot differentiate them. “Too high” level of synthesis invests concepts with “too 
much” emotional-value contents, so that differentiation is stifled. 

To summarize, differentiation and synthesis are in complex relationships, at once 
symbiotic and antagonistic. Synthesis leads to spiritual inspiration, to active creative behavior 
leading to fast differentiation, to creation of knowledge, to science and technology. At the same 
time, “too” high level of synthesis stifles differentiation. Synthesis is related to hierarchical 
structure of knowledge and values. At the same time, high level of differentiation discounts 
psychological emotional values of individual concepts, and destroys synthesis, which was the 
basis for differentiation. In sections 3, 4 and 5 we presented a NMF / DL mathematical model of 
neurodynamics of differentiation. We lack at present same detail level of neurodynamics of 
synthesis. In this section we make first steps toward developing mathematical evolutionary 
model of interacting differentiation and synthesis. Both mechanisms act in the minds of 
individual people. Future detailed models will develop neural mechanisms of synthesis, will 
account for mechanisms of cognition, emotion, and language, and will study multi-agent 
systems, in which each agent possesses complex neurodynamics of interaction between 
differentiation and synthesis. We call such an approach neural micro-dynamics. Lacking these 
micro-dynamics models, in this section we develop simpler models averaged over population. 

  
8.2 Macro-dynamics 

  
As a first step here we develop simplified evolutionary dynamic models similar to mean 

field theories in physics.  These models describe the neural mechanisms of differentiation, 
synthesis, and hierarchy using measures averaged over population of interacting agents, 
abstracting from details of emotional and language mechanisms. A future challenge would be to 
relate these models to nonlinear dynamic models discussed in this book in chapters by Walter 
Freeman and Robert Kozma. We call this averaging method “neural macro-dynamics.” We start 
with simplest dynamic equations inspired by neurodynamics of differentiation and synthesis, 
discuss their properties, and evaluate needed modification toward developing a “minimal” 
realistic model. Results of this analysis can be used in sociological cultural studies to understand 
past, present, and future of cultures, emerging cultural phenomena, and to improve current and 
future models. 

We characterize accumulated knowledge, or differentiation, by a “mean field” averaged 
quantity, D, which represents the average number of concept-models used in a population. When 
considered alone, separate from other mechanisms driving neurodynamics, the simplest 
dynamical equation is 

 
dD/dt = a. (9) 
 

This equation describes linear growth in the complexity of culture as measured by accumulated 
knowledge, or differentiation, D. The next step toward more realistic modeling accounts for the 



 

 19

fact that differentiation involves developing new, more detailed models from the old ones. 
Therefore the speed of differentiation is proportional to accumulated knowledge, i.e., 

 
dD/dt = aD. (10) 
 

Here, a is a constant. The solution of this equation describes an exponential growth of 
knowledge, i.e., 

 
D(t) = D0 exp(at). (11) 
 

Both of the above equations could be considered “minimally realistic” in the short term. In the 
long term, however, they are too optimistic, too simple, and not realistic.  We know that 
continuous growth in knowledge may exist in some cultures over limited time periods, however 
occasionally the growth in knowledge and conceptual diversity is interrupted and culture 
disintegrates or stagnates. This is true in all known cultures, e.g., Western culture disintegrated 
and stagnated during the Middle Ages. Whereas some researchers have attributed the 
disintegration of Roman Empire to barbarians or to lead poisoning [xl], here we would like to 
search for possible intrinsic spiritual, neurodynamic mechanisms.  

According to our previous discussions, and following Jung analysis [xxix], a more 
complicated dynamic of knowledge accumulation involves synthesis, S. Synthesis characterizes 
the relationship between knowledge and its instinctive, emotional, value in the society. For 
example, a ratio of the similarity measure and differentiation, LL/D, measures a degree of 
satisfaction of the knowledge instinct (2) per concept-model. A closely related, but more 
instrumental, measure available for sociological research [xli] is an average measure of emotional 
investment per concept in a society. With the growth of differentiation, the emotional value of 
every individual concept diminishes, and therefore the simplest neurodynamic equation for 
synthesis is (below, b is a constant) 

 
dS/dt = -bD. (12) 
 
According to the previous analysis, synthesis inspires creativity and stimulates 

differentiation. The simplest modification of eq.(9), accounting for influence of synthesis is 
 
dD/dt = aS. (13) 
 

These equations are similar to the brain dynamic equations for KII-sets discussed in R. Kozma 
chapter in this book. Together, eqs. (12) and (13) lead to oscillating solutions with frequency ω 
and phase φ0, i.e., 

 
D(t) = D0 cos(ωt + φ0),    ω = sqrt(ab) 
S(t) = -(D0 ω / a) sin(ωt + φ0). (14) 
 

These solutions are unsatisfactory, however, because here D and S can assume negative values, 
whereas differentiation and synthesis cannot become negative by their very definition.  

A more realistic equation for differentiation would account for the following. The speed 
of differentiation is proportional to accumulated knowledge, D, and is enhanced by synthesis, S, 
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and is therefore proportional to D*S. We have to take into account that, psychologically, 
synthesis is a measure of the meaning and purpose in knowledge and culture, it is a necessary 
condition for human existence, and it has to remain positive. When synthesis falls below certain 
positive value, S0, knowledge loses any value, culture disintegrates, and differentiation reverses 
its course, i.e., 

 
dD/dt = a D (S - S0). (15) 
 

Still, eq. (12) is unsatisfactory since it always leads to decrease in synthesis, so that any cultural 
revival and long term accumulation of knowledge is impossible.  The long-term joint solution of 
eqs. (15) and (12) is D ≈ 0, S ≈ S0. 

From the previous analysis, we know that synthesis is created in hierarchies. Diverse, 
differentiated, knowledge at particular level in a hierarchy acquires meaning and purpose at the 
next level. The simplest measure of hierarchy, H, is the number of hierarchical levels, on 
average, in the minds of the population. A useful measure would have to account for conceptual 
hierarchy and the hierarchy of values. Accounting for hierarchical synthesis, eq.(12) can be re-
written as 

 
dS/dt = -bD + dH. (16) 
 

Here, d is a constant. If the hierarchy, H, is genetically or culturally fixed to a constant value, 
eqs. (16) and (15) have several joint solutions. Let us explore them. First, there is a long-term 
solution with constant knowledge and synthesis: 
 

D = (b/d) H 
S = S0. (17) 

 
Here, differentiation and synthesis reach constant values and do not change with time. The 
hierarchy of concepts (and values) is rigidly fixed. This could be a reasonable solution, 
describing highly conservative, traditional societies in a state of cultural stagnation.  The 
conceptual hierarchy, H, reaches a certain level, then remains unchanged, and this level forever 
determines the amount of accumulated knowledge or conceptual differentiation. Synthesis is at a 
low level S0. All cultural energy is devoted to maintaining this synthesis, and further 
accumulation of knowledge or differentiation is not possible.  Nevertheless, such a society might 
be stable for a long time. Some Polynesian and New Guinean cultures, lacking writing or 
complex religion and practicing cannibalism, still maintained stability and survived for millennia 
[xlii]. Chinese culture had stagnated since early BCE until recent times, although at much higher 
level of the hierarchy. It would be up to cultural historians and social scientists to evaluate 
whether such cultures are described by the above mathematical solution and, if so, what 
particular values of model parameters are appropriate. 

Alternatively, if evolution starts with S > S0, differentiation first grows exponentially ~ 
exp( a (S-S0) t ). This eventually leads to the term –bD in (16) overtaking dH, so that synthesis 
diminishes and the differentiation growth exponent is reduced. When S < S0, differentiation falls 
until bD = dH, at which point differentiation grows again, and the cycle continue. This type 
solution is illustrated in Fig. 3.  
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Figure 3.  Evolution of differentiation and synthesis described by eqs. (15, 16) with 

parameter values a = 10, b = 1, d = 10, S0=2, H0 = 3, and initial values D(t=0) = 10, S(t=0) = 3. 
 

 
Here, the solid line indicates the cycles of differentiation. When comparing this line with 

historical cultural data, one should remember that the time scale here has not been determined. 
Cycles that peak when cultures flourish and end with devastation and loss of knowledge take 
centuries. However, we should not disregard much shorter cultural cycles, for example, fascism 
in Germany or communism in Soviet Union, which have occurred in the 20th century.  Fig. 3 
indicates the loss of about 85% of knowledge (D) within a cycle; is this reasonable? Before 
answering this question, we should emphasize that the frequency of oscillations and top-to-
bottom amplitude depend upon the values of the parameters used. We had no data with which we 
could select scientifically correct values for the parameters. It will be up to sociologists and 
cultural historians to decide upon appropriate parameter values. Another topic for future studies 
will be the appropriate measure of D. Possibly, the proper measure of D is an average knowledge 
per person, not over the entire population, but only over the part of population actively involved 
in running states. In “well managed” societies, educated people are actively involved in society 
management. In “badly managed” societies, like Soviet Union, educated people were excluded 
from voicing their opinion, and a few poorly educated people made the decisions. Therefore, 
85% loss of knowledge during fast oscillations may represent the loss of knowledge and 
synthesis in the “ruling class,” but not in the entire society. 

Notwithstanding these arguments, the wild oscillations in differentiation and synthesis 
shown in Fig. 3 may not be reasonable. It might be an indication that eqs. (15, 16) are simplified 
and may be missing some important mechanisms creating synthesis. Roles of mechanisms such 
as religion, art, music are discussed in the last section; their mathematical modeling is beyond 
the scope of this chapter. 

Oscillating solutions similar to Fig.3 are also possible if evolution starts with S < S0.  
First, differentiation will fall, but then dH will exceed bD (in eq.16), synthesis will grow and thus 
the oscillating solutions ensue. These oscillating solutions describe many civilizations over 
extended periods of time, e.g. Western civilization over millennia. Again, it would be up to 
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cultural historians and social scientists to evaluate which cultures are described by this solution, 
and what particular values of model parameters are appropriate. 

The dashed line in Fig. 3 indicates the cycles of synthesis. In this example synthesis falls 
to 0, which is probably not realistic. We could have keep synthesis strictly positive by selecting 
different values of parameters, but these kinds of detailed studies are not our purpose here. We 
would like to emphasize that there is presently no scientific data that can be used to select 
reasonable parameter values for various societies; this is a subject of future research. Similarly, 
the many cycles exactly repeated in this figure indicate the simplistic nature of this model. 

  
8.3 Expanding hierarchy 

  
Expanding knowledge in the long term requires expanding hierarchical levels. As 

discussed, differentiation proceeds at each hierarchical level, including the highest levels. In this 
process, knowledge accumulating at a particular level in the hierarchy may lead to certain 
concept-models being used more often than others. These concepts used by many agents in a 
population in slightly different ways acquire more general meanings and give rise to concepts at 
a higher level. Thus, increasing differentiation may induce more complex hierarchy, and the 
hierarchy expands, i.e., 

 
dH/dt = e dD/dt. (18) 
  
Eqs. (18), (16), and (15) describe a culture expanding in its knowledge content and in its 

hierarchical complexity. For example, a solution with fixed high level of synthesis can be 
described by 

 
S = const > S0, 
D(t) = D0 exp( a(S - S0)t ), 
H(t) = H0 + ec D0 exp( a(S - S0)t ). (19) 
 

This solution implies the following “critical” value for parameter e, 
 
ec =  b / d . (20) 
 
Fig. 4 illustrates this expanding-culture solution with constant synthesis. If e > ec, than 

synthesis, differentiation, and hierarchy grow indefinitely, as shown in Fig. 5.  
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                                    Fig. 4                                                                   Fig. 5   
 
Figure 4.  Exponentially expanding solutions. Evolution of differentiation, synthesis, and 
hierarchy is described by eqs. (15, 16, 19) with parameter values a = 10, b = 1, d = 10, S0=2, H0 
= 1, and initial values D(t=0) = 10, S(t=0) = 3. In Fig. 4 e = b/d = 0.1 (eq.20). 

 
Figure 5.  Exponentially expanding solutions. Evolution of differentiation, synthesis, and 
hierarchy is described by eqs. (15, 16, 19) with parameter values a = 10, b = 1, d = 10, S0=2, H0 
= 1, and initial values D(t=0) = 10, S(t=0) = 3. In Fig. 5  e = 1.06. 

 
  

These solutions with unbounded growth in knowledge, its hierarchical organization and, 
in Fig. 5, growing stability (synthesis) are too optimistic compared to the actual evolution of 
human societies.  

If e < ec, then synthesis and knowledge hierarchy collapse when differentiation destructs 
synthesis. However, when differentiation falls, H0 > ec D0 exp( a(S - S0)t ), synthesis again starts 
growing, leading to the growth of differentiation. After a fast flourishing period, synthesis again 
is destructed by differentiation when its influence on synthesis overtakes that of the hierarchy, 
and culture collapses. These periods of collapse and growth alternate, as shown in Fig.6. 
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Figure 6.  Alternating periods of cultural growth and stagnation, same parameter values as above, 
except e = 0.99 < b/d. 
 

This assumption of the hierarchy growing in sync with differentiation (18) is too 
optimistic. The growth of hierarchy involves the differentiation of models at the highest level, 
which involve concepts of the meaning and purpose of life. These concepts cannot be made fully 
conscious, and in many societies they involve theological and religious concepts of the Highest. 
Changes in these concepts involve changes of religion, such as from Catholicism to Reformation, 
they involve national upheavals and wars, and they do not always proceed smoothly as in (18). 
Currently we do not have theory adequate to describe these changes; therefore we proceed within 
a single fixed religious paradigm. This can be approximately described as constant hierarchy H, 
as in the previous section. Alternatively we can consider slowly expanding hierarchy, 

 
H(t) = H0 + e*t. (21) 
 

The solution of eqs. (15, 16, 21) is illustrated in Fig. 7. 
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Figure 7.  Oscillating and growing differentiation and synthesis (eqs. 15, 16, 21); slow growth 
corresponds to slowly growing hierarchy, e = 0.1. Note, increase in differentiation leads to 
somewhat faster oscillations. 
 
 

This growing and oscillating solution might describe Judeo-Christian culture over the 
long period of its cultural evolution. Whereas highly ordered structure is a consequence of the 
simplicity of equations, this solution does not repeat exactly the same pattern, rather the growth 
of hierarchy leads to growth of differentiation, and to faster oscillations. Note, the evolution and 
recoveries from periods of stagnation in Western culture were sustained by the growing 
hierarchy of knowledge and values. This stable, slow growing hierarchy was supported by 
religion. However, science has been replacing religion in many people’s minds (in Europe more 
so than in the US) approximately since the Enlightenment (the 18th c.). The current cultural 
neurodynamics in Western culture are characterized by the predominance of scientific 
differentiation and the lack of synthesis. More and more people have difficulty connecting 
scientific highly-differentiated concepts to their instinctual needs. Many turn to psychiatrists and 
take medications to compensate for a lack of synthesis. The stability of Western hierarchical 
values is precarious, and during the next down-swing of synthesis hierarchy may begin to 
disintegrate, leading to cultural collapse. Many think that this process is already happening, more 
so in Europe than in the US.  
 
8.4 Dual role of synthesis 
 

The previous section considered only the inspirational role of synthesis. The effect of 
synthesis, as discussed previously, is more complex: high investment of emotional value in every 
concept makes concepts “stable” and difficult to modify or differentiate [xii]. Therefore, a high 
level of synthesis leads to stable and stagnating culture. We account for this by changing the 
effect of synthesis on differentiation as follows: 
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dD/dt = a D G(S),    G(S) = (S - S0) exp(-(S-S0)/ S1) (22) 
dS/dt = -b D + d H (23) 
H(t) = H0, or H(t) = H0 + e*t. (24) 
 

Solutions similar to those previously considered are possible: a solution with a constant value of 
synthesis similar to (17), as well as oscillating and oscillating-growing solutions.  

A new type solution possible here involves a high level of synthesis with stagnating 
differentiation. If dH > bD, then according to (23) synthesis grows exponentially, whereas 
differentiation levels off, and synthesis continues growing. This leads to a more and more stable 
society with high synthesis, with high emotional values attached to every concept, while 
knowledge accumulation stops, as shown in Fig. 8.  

 
 

 
Figure 8.  Highly stable society with growing synthesis, high emotional values attached to every 
concept, while knowledge accumulation stops; parameter values: D(t=0)= 3, H0 = 10, S(t=0) = 
50, S0 = 1, S1 = 10, a = 10, b = 1, d = 10, e=1.  
 
 

 
Cultural historians might find examples of stagnating internally stable societies. 

Candidates are Ancient Egypt and contemporary Arab Moslem societies. Of course, these are 
only suggestions for future studies.  Levels of differentiation, synthesis, and hierarchy can be 
measured by scientific means, and these data should be compared to the model. This would lead 
to model improvement, as well as to developing more detailed micro-neurodynamic models, 
simulating large societies of interacting agents, involving the mind subsystems of cognition and 
language [xliii]. And we hope that understanding of the processes of cultural stagnation will lead 
to overcoming these predicaments and to improvement of human condition. 

 
8.5 Interacting cultures 

  
Let us now study the interaction of cultures having different levels of differentiation and 

synthesis. Both are populations of agents characterized by NMF-minds and evolutionary eqs. 
(22, 23, 24). Culture k=1 is characterized by parameters leading to oscillating, potentially fast 
growing differentiation and a medium oscillating level of synthesis (“dynamic” culture). Culture 
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k=2 is characterized by slow growing, or stagnating differentiation, and high synthesis 
(“traditional” culture). In addition, there is a slow exchange by differentiation and synthesis 
among these two cultures (examples: the US and Mexico (or in general, immigrants to the US 
from more traditional societies); or academic-media culture within the US and “the rest” of the 
population). Evolutionary equations modified to account for the inflow and outflow of 
differentiation and synthesis can be written as 

 
dDk/dt = ak Dk G(Sk)   + xkDk (25) 
dSk/dt = -bkDk + dkHk  + ykSk (26) 
Hk      = H0k + ek*t (27) 
 

Here, the index k denotes the opposite culture, i.e., for k=1, k = 2, and v.v; parameters xk and yk 
determine the interaction or coupling between the two cultures. Fig. 9 illustrates sample solutions 
to these equations.  

In Fig. 9 the evolution starts with two interacting cultures, one traditional and another 
dynamic. Due to the exchange of differentiation and synthesis among the cultures, traditional 
culture acquires differentiation, looses much of its synthesis, and becomes a dynamic culture. Let 
us emphasize that although we tried to find parameter values leading to less oscillations in 
differentiation and more stability, we did not find such solutions. Although parameters 
determining the exchange of differentiation and synthesis are symmetrical in two directions 
among cultures, it is interesting to note that traditional culture does not “stabilize” the dynamic 
one, the effect is mainly one-directional, that is, traditional culture acquires differentiated 
knowledge and dynamics. Wild swings of differentiation and synthesis subside a bit only after t 
> 5, when both cultures acquire a similar level of differentiated knowledge; then oscillations can 
partly counterweigh and stabilize each other at relatively high level of differentiation. It would 
be up to cultural historians and social psychologists, to judge if the beginning of this plot 
represents contemporary influence of American culture on the traditional societies. And if this 
figure explains why the influence of differentiation-knowledge and not highly-emotional 
stability-synthesis dominates cultural exchanges (unless “emotional-traditionalists” physically 
eliminate “knowledge-acquiring ones” during one of their period of weakness). Does partial 
stabilization beyond t > 5 represent the effect of multiculturalism and explain the vigor of 
contemporary American society? 
 
 



 

 28

 
 
Figure 9.  Effects of cultural exchange (k=1, solid lines: D(t=0)= 30, H0 = 12, S(t=0) = 2, S0 = 1, 
S1 = 10, a = 2, b = 1, d = 10, e=1, x = 0.5, y = 0.5; k=2, dotted lines: D(t=0)= 3, H0 = 10, S(t=0) = 
50, S0 = 1, S1 = 10, a = 2, b = 1, d = 10, e=1, x = 0.5, y = 0.5). Transfer of differentiated 
knowledge to less-differentiated culture dominates exchange during t < 2 (dashed curve). In long 
run (t > 6) cultures stabilize each other and swings of differentiation and synthesis subside (note 
however, that in this example hierarchies were maintained at different levels; exchange of 
hierarchical structure would lead to the two cultures becoming identical). 
 

This question is addressed in Fig. 10, which extends Fig. 9 to longer time scale. In long 
run (t > 5) cultures stabilize each other and swings of differentiation and synthesis subside. Note, 
that in this example hierarchies were maintained at different levels. Is this representative of 
Catholic and Protestant communities coexisting with approximately equal levels of 
differentiation and synthesis, but different hierarchies? This is a question for social 
psychologists. We would like to emphasize that co-existence of different cultures is beneficial in 
long run: both communities evolve with more stability. 
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Figure 10.  Effects of cultural exchange, same as Fig. 5 at longer time scale. In long run (t > 5) 
cultures stabilize each other and swings of differentiation and synthesis subside. Note, that in this 
example hierarchies were maintained at different levels (exchange of hierarchical structures 
would lead to the two cultures becoming identical). 
 
9.  Future Directions 
 
9.1 Neurodynamics of music: synthesis of differentiated psyche 
 

High levels of differentiation, according to models in the previous section, are not stable. 
By destroying synthesis, differentiation undermines the very basis for knowledge accumulation. 
This led in the previous section to wild oscillations in differentiation and synthesis. Here we 
analyze an important mechanism of preserving synthesis along with high level of differentiation, 
which will have to be accounted for in future models. 

Let us repeat that synthesis, which is a feeling of meaning and purpose, is a necessary 
condition of human existence. Synthesis is threatened by the differentiation of knowledge. It is 
difficult to maintain synthesis in societies, like contemporary Western societies, which possess 
high differentiation and much abstract knowledge.  In contrast, it is easier to maintain synthesis 
in traditional societies, where much of knowledge is directly related to the immediate needs of 
life. Since time immemorial, art and religion have connected conceptual knowledge with 
emotions and values, and these provided cultural means for maintaining synthesis along with 
differentiation. A particularly important role in this process belongs to music, since music 
directly appeals to emotions [xliv,xlv]. 

Music appeared from the sounds of voice, i.e., from singing. The prosody or melody of 
voice sounds, rhythm, accent, tone, and pitch are governed by neural mechanisms in the brain. 
Images of neural activity (obtained by magnetic resonance imaging, MRI) show that the human 
brain has two centers controlling melody of speech; an ancient center located in the limbic 
system, and a recent one in the cerebral cortex. The ancient center is connected with direct 
uncontrollable emotions, whereas the recent center is connected with concepts and consciously 
controlled emotions. This fact was learned from medical cases in which patients with a damaged 
cortex lost the ability for speaking and understanding complex phrases, while still were able to 
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comprehend sharply emotional speech [xlvi].  
Prosody of speech in primates is governed by a single ancient emotional center in the 

limbic system. Conceptual and emotional systems in animals are less differentiated than in 
humans. Sounds of animal cries engage the entire psyche, rather than concepts and emotions 
separately. An ape or bird seeing danger does not think about what to say to its fellows. A cry of 
danger is inseparably fused with recognition of a dangerous situation, and with a command to 
oneself and to the entire flock: “Fly!” An evaluation (emotion of fear), understanding (concept of 
danger), and behavior (cry and wing sweep) – are not differentiated. The conscious and 
unconscious are not separated: recognizing danger, crying, and flying away is a fused concept-
emotion-behavioral synthetic form of thought-action. Birds and apes can not control their larynx 
muscles voluntarily. 

Emotions-evaluations in humans have separated from concepts-representations and from 
behavior.  For example, when sitting around the table and discussing snakes, we do not jump on 
the table uncontrollably in fear every time “snakes” are mentioned. This differentiation of 
concepts and emotions is driven by language. Prosody or melody of speech is related to 
cognition and emotions through aesthetic emotions. This connection of concepts with emotions, 
conscious models with unconscious archetypes, is synthesis. The human voice engages concepts 
and emotions. Melody of voice is perceived by ancient neural centers involved with archetypes, 
whereas conceptual contents of language involves conscious concepts. Human voice, therefore, 
involves both concepts and emotions; its melody is perceived by both conscious and 
unconscious; it maintains synthesis and creates wholeness in psyche. [xlvii] 

Over thousands of years of cultural evolution, music perfected this inborn ability. 
Musical sound engages the human being as a whole—such is the nature of archetypes, ancient, 
vague, undifferentiated emotions-concepts of the mind. Archetypes are non-differentiated, their 
emotional and conceptual contents, their high and low are fused and exist only as possibilities. 
By turning to archetypes, music gets to the most ancient unconscious depths as well as to the 
loftiest ideas of the meaning of existence. This is why folk songs, popular songs, or opera airs 
might affect a person more strongly than words or music separately. The synthetic impact of a 
song, connecting the conscious and unconscious, explains the fact that sometimes mediocre 
lyrics combined with second-rate music might still impact listeners.  When music and poetry 
truly correspond with each other and reach high artistic levels, a powerful psychological effect 
occurs. This effect uncovers mechanisms of the mysterious co-belonging of music and poetry. 
High forms of art effect synthesis of the most important models touching the meaning of human 
existence.  Popular songs, through interaction of words and sounds, connect the usual words of 
everyday life with the depths of the unconscious. This explains why in contemporary culture, 
with its tremendous number of differentiated concepts and lack of meaning, such an important 
role is taken by popular songs. [ix,xxxiv,xlviii].  

Whereas language evolved as the main mechanism for the differentiation of concepts, 
music evolved as the main mechanism for the differentiation of emotions (conscious emotions in 
the cortex). This differentiation of emotions is necessary for unifying differentiated 
consciousness: synthesis of differentiated knowledge entails emotional interactions among 
concepts [xlix]. This mechanism may remedy a disturbing aspect of the oscillating solutions 
considered in the previous section, i.e., the wild oscillations of differentiation and synthesis. 
During every period of cultural slowdown about 85% of knowledge collapsed. In previous 
sections we defined the knowledge instinct as the maximization of similarity, and we defined 
aesthetic emotions as changes in similarity. Future research will have to make the next step, 
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which will define the mechanism by which differentiated aesthetic emotions unify contradictory 
aspects of knowledge. We will model neural processes, in which diverse emotions created by 
music unify contradictory concepts in their manifold relations to our cognition as a whole. We 
will have to understand processes in which the knowledge instinct differentiates itself and the 
synthesis of differentiated knowledge is achieved.  
 
9.2 Experimental evidence 
 

The knowledge instinct is clearly a part of mind operations [i,ii,iii]. Can we prove its 
ubiquitous nature and connection to emotional satisfaction or dissatisfaction?  Can we measure 
aesthetic emotions during perception (when it is usually subliminal)? Can we measure aesthetic 
emotions during more complex cognition (when it is more conscious)? Does brain compute 
similarity measures, and if so, how is it done? Does it relate to aesthetic emotions as predicted by 
the knowledge instinct theory? Does it operate in a similar way at higher levels in the hierarchy 
of the mind? Operations of the differentiated knowledge instinct, and the emotional influence of 
concepts on cognition of other concepts, are virtually obvious experimental facts.  However, 
detailed quantitative studies of this phenomenon are missing. For example, can we prove that 
emotionally sophisticated people can better tolerate cognitive dissonances (that is, conceptual 
contradictions) than people less sophisticated emotionally (it would be important to control other 
variables, say IQ). 

Dan Levine studies emotional effects on learning [l]. In his experiments normal subjects 
gradually accumulated cognitive knowledge, whereas emotionally impaired patients could not 
properly accumulate cognitive knowledge. Subject emotions in his experiments were not related 
to any bodily need, rather these were aesthetic emotions. Are these aesthetic emotions limited to 
the cortex, or are ancient emotional mechanisms also involved? 

Mechanisms of conceptual differentiation at a single level in a hierarchy described in 
section 4 correspond to psychological and neurophysiological experimental evidence. These 
include the interaction between bottom-up and top-down signals, and resonant matching between 
them as a foundation for perception [vi,li]. Experimental evidence is less certain for these 
mechanisms being repeated at each hierarchical level. Experimental evidence for dynamic logic 
is limited to the fact that imagination (concept-models voluntary recollected from memory with 
closed eyes) are vague and fuzzy relative to actual perceptions with open eyes. Dynamic logic 
makes a specific suggestion that top-down (model) signals form a vague-fuzzy image that 
gradually becomes more specific until it matches the perceived object. This prediction might be 
amenable to direct verification in psychological experiments.  

Norman Weinberger studied the detection of a specific acoustic tone, using an electrode 
to measure the response from the cellular receptive fields for acoustic frequencies in the brain 
[lii]. Dynamic logic predicts that the initial response will be fuzzy and vague. During learning, the 
neural response will gradually become more specific, more “tuned.” This trend was actually 
experimentally observed. As expected according to dynamic logic, the frequency receptive field 
became more “tuned,” in the auditory cortex. The auditory thalamus, however, an evolutionarily 
older brain region, did not exhibit dynamic-logic learning. It would be more difficult to confirm 
or disprove this mechanism at higher levels in the hierarchy. 
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9.3 Problems for future research 
 

Future experimental research will need to examine, in detail, the nature of hierarchical 
interactions, including the mechanisms of learning hierarchy.  This research may reveal to what 
extent the hierarchy is inborn vs. adaptively learned. Studies of the neurodynamics of interacting 
language and cognition have already begun [x,xii,liii]. Future research will need to model the 
differentiated nature of the knowledge instinct. Unsolved problems include: neural mechanisms 
of emerging hierarchy, interactions between cognitive hierarchy and language hierarchy [xi,xii]; 
differentiated forms of the knowledge instinct accounting for emotional interactions among 
concepts in processes of cognition, the infinite variety of aesthetic emotions perceived in music, 
their relationships to mechanisms of synthesis [xxxiv,xlvii,xlviii]; neural mechanisms of interactions 
of differentiation and synthesis, and evolution of these mechanisms in the development of the 
mind during cultural evolution.  

Cultural historians can use the results of this chapter as a tool for understanding the 
psychological mechanisms of cultural evolution.  The results may explain how differentiation 
and synthesis have interacted with language, religion, art, and especially music, and how these 
interactions have shaped the evolution of various cultures.   Social psychologists can use the 
results of this chapter as a tool for understanding the psychological mechanisms governing 
present conditions. It is possible to measure the levels of differentiation and synthesis in various 
societies, and to use this knowledge for improving human conditions around the world.  It will 
also be possible to predict future cultural developments, and to use this knowledge for preventing 
strife and stagnation, and for stimulating wellbeing. 
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Acronyms: 
 
BCE Before the Common Era 
 
CC Combinatorial Complexity 
 
DL Dynamic Logic 
 
NMF Neural Modeling Fields 
 
 




