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1 Quantum computation by adiabatic evolution

In 2001, Fahri, et al [18, 19] proposed a method for adiabatic quantum optimization (AQO)
and suggested on the basis of numerical simulations that it could solve 3-SAT, a well-
known NP-complete problem, in polynomial time. The P.I. [65] proved the existence of a
gap g between the energy of the ground state and the first excited state when the final
Hamiltonian has a non-degenerate ground state. But for complexity issues this is not
enough; one needs estimates on the size of the gap. Despite a great deal of interest and
attention, the question of whether or not any form of adiabatic quantum computation
(AQC) can solve hard problems remains unresolved.

However, this work generated renewed interest in the adiabatic approximation itself. In
2004, Marzlin and Sanders [46] muddied the waters with a claim to a counter-example to
the adiabatic theorem. In fact, their example contains a rapidly oscillating term, and it is
well-known to experts that the adiabatic theorem does not apply in such cases. They also
claimed that their example satisfied the hypotheses in several well-known [5, 30] mathemati-
cally sophisticated papers on the subject. This resulted in considerable confusion, especially
among computer scientists not familiar with the mathematical physics literature.

The conventional wisdom [43, 47] says that the time τ needed to make the error involved
in using the adiabatic approximation less than some fixed δ satisifies τ > C/g2 where g
denotes the minimum energy difference between the ground state and the first excited state.
By contrast, most rigorous proofs [5, 24, 30, 29, 75] of the adiabatic theorem state the result
as an asymptotic expansion for the error in approximating the exact ground state of the
final Hamiltonian by the result of adiabatic evolution. The relation between these views
was clarified by the P.I. and collaborators in [28] and during a workshop organized by the
P.I at the Perimeter Institute [3]. The situation can be summarized as follows:

• The first order correction can be written in the form C
τg2

. However, this implies only
that when t is sufficiently large, the error has this form. It does not imply that when
t > Cδ/g2, the error is less than δ!

• For a particular time-dependent Hamiltonian H(s), the asymptotic expansion begins

C1(H)

τg2
+

1

τ 2
C2(H, g) (1)

where we use notation which emphasizes that the coefficients in the expansion depend
on the Hamiltonian and can even involve gap dependence. Indeed, standard estimates
easily yield bounds [10, 28, 63] of the form

1

τ

C1(H)

g2
+

1

τ 2g6
C̃2(H) (2)
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which would require τ = O
(
g−3

)
to justify neglecting the second order term The

bound (2) is not best possible because it estimates integrals by the worst case. How-
ever, improvement requires additional information and does not allow one to conclude
that one can always make the error small by choosing τ = O

(
g−2

)
. (Claims of rigorous

proofs of O
(
g−2

)
estimates are flawed. For details see [3].)

• Alex Elgart [16] sketched an argument, based on Nenciu’s expansion, which shows

that it suffices to choose τ = O
( (log g)4

g2

)
. He used the explicit dependence of expansion

coefficients on g to determine the number of terms to use to optimize the dependence
of τ on g.

• None of these results allow one to directly translate the gap dependence for a family
of interpolating Hamiltonians {Hn,P (s)} depending on the number of qubits n and
an instance P in some class of problems. To do this one would first need to know
that expansion coefficients Ck(H) are uniformly bounded in n and P . However, in
AQO one expects the coefficients to grow with n.

It is worth emphasizing that the proof presented by the P.I. and collaborators in [28],
like other approaches [5, 24, 30, 29, 75] , is not restricted to an energy gap between the
ground state and the first excited state; an analogous result holds when there is a gap
anywhere in the spectrum. This could be useful in analyzing AQO in situations where the
final Hamiltonian has a degenerate ground state.

In a different direction, the AQC model has been shown to be equivalent to the standard
circuit model of quantum computation. In particular, it was shown in [1] that for any
quantum circuit with L gates, one can construct an interpolating Hamiltonian which will
evolve to final state from which, with a certain probability, a measurement would give the
same result as the final state of the circuit model. They stated polynomial time estimates
based gap estimates of for two interpolating Hamiltonians. However, their proofs of these
key estimates was extremely complicated. In [12] we used a simple variational argument to
prove gap estimates for these Hamiltonians. In addition, we improved the second estimate
by a factor of L so that both gaps are O

(
L−2

)
.

2 Quantum channels

The model for noise in the transmission of quantum information is called a quantum channel
and is based on the mathematical concept known as a completely positive, trace preserving
map. The P.I. has been working on various aspects of quantum channels. Although this
work is primarily supported by the National Science Foundation and some is fairly mathe-
matical, it is relevant to our broader understanding of decoherence and entanglement. I will
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mention here some results of more direct relevance to the ARDA program and to quantum
crypotography.

2.1 Minimal conditional information

Transmission of quantum information is known to be described by the coherent information
which is non-additive, i.e., entanglement can increase the quantum capacity of a memoryless
channel. The coherent information of a channel Φ can be written as

CQ(Φ) = sup
ψ

(
S
[
Tr1 (I ⊗ Φ)

(
|ψ〉〈ψ|

)]
− S

[
(I ⊗ Φ)

(
|ψ〉〈ψ|

)])
. (3)

In [15] we consider instead the quantity

CCB(Φ) = −SCB(Φ) = sup
ψ

(
S
[
Tr2 (I ⊗ Φ)

(
|ψ〉〈ψ|

)]
− S

[
(I ⊗ Φ)

(
|ψ〉〈ψ|

)])
. (4)

The very small change in the subspace over which the partial trace is taken yields a quantity
which is not enhanced by entanglement, i.e.,

SCB(Φ⊗ Φ) = 2SCB(Φ), (5)

and can be regarded as the minimal conditional information of a channel. When combined
with recent work of Horodecki, Oppenheim and Winter [27], this gives a measure of the
extent to which a channel breaks or preserves entanglement ,which is much more precise
than the crude concept of entanglement-breaking channels. When SCB(Φ) is negative (or
CCB(Φ) > 0) it corresponds to the number of EPR pairs remaining for further use, after
exchange of information; when it is positive (or CCB(Φ) < 0), it describes the number of
EPR pairs needed to complete the transmission.

This result is part of a much broader investigation into applications of operator spaces
in quantum information. Although we subsequently found a much simpler proof of (5), it
is unlikely that the result would have been discovered without the “completely bounded”
investigations. Roughly speaking, “completely bounded” refers to a sequence of norms
associated with Id⊗Φ rather than Φ itself in a manner similar to the notion of completely
positive. This is part of the subject of operator spaces which also include concepts like
“complete isometry”, etc. It is a very natural framework for quantum information. Indeed,
it appears implicitly in work on fault tolerance and one special case is sometimes called the
diamond � norm [41]. However, much of the literature on operator spaces is very abstract
and mathematically technical.

However, the importance of CB norms is becoming increasingly evident. For example,
Kretschmann, Schlingemann and R. F. Werner [39] recently used continuity estimates for
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CB norms to prove an information-disturbance tradeoff with implications for quantum
cryptography. In February, 2007, D. Kribs and the P.I. are organizing a workshop in Banff
which will bring together mathematicians and quantum information scientists to explore
the role of operator structure in quantum information theory.

2.2 Conjugate channels

The underlying model of noise in a quantum system regards the original system (Alice) as a
subsystem of a larger system which includes both the original system and the environment
(Bob). Either system can be described at a later time by taking a partial trace over the
other. Typically, the unitary interaction entangles the two systems so that each subsystem
is in a mixed state. In the most common scenario, Alice can prepare a variety of different
states, but Bob always uses the same state |φ〉〈φ|. The map which takes Alice’s state |ψ〉〈ψ|
to TrB U(t)|ψ ⊗ φ〉〈ψ ⊗ φ|U(t)† ≡ Φ(|ψ〉〈ψ|) at a fixed time t gives the usual notion of a
channel Φ. Bob might like to know what Alice is up to even though he never bothers to
change his initial state. Taking TrA U(t)|ψ⊗φ〉〈ψ⊗φ|U(t)† defines a map ΦC whose output
is a state ΦC(|ψ〉〈ψ|) which describes the information available to Bob at the same fixed
time t. We call this map the conjugate channel. Together with C. King, K. Matsumoto
and M. Nathanson, the P.I. has made an extensive study [33] of conjugate channels.

We have shown that the conjugate of the completely noisy map acting on a pure state
contains all the information in the original state, i.e., when the noise completely destroys
Alice’s state, Bob can recover it. We have also shown that the output of a channel or its
conjugate acting on a pure state input are identical. This allows one to obtain results about
a class of channels by studying their conjugates and vice versa. Some of our results were
obtained independently by Holevo [25], who called them “complementary.

This terminology was used earlier by Devetak and Shor [13] in their work on the quantum
capacity of a channel, but they only used it to define degradable channels, which means
that the composition with another channel yields the environment. Although channels are
rarely degradable, their quantum capacity is readily computed [9, 22, 79, 80]. Working with
Graeme Smith, the P.I. obtained a different proof [71] of the main result in [80], namely,
that a qubit channel is degradable if and only if it is extreme. This work [71] is based on
[70] and also shows that the composition of any two extreme qubit channels is also extreme.

2.3 Special unital channels

In 2003, Shor showed that additivity of minimal output entropy was equivalent to sev-
eral other important conjectures, including some about entanglement of formation. More
recently, Fukuda [21] showed that it would suffice to prove these conjecture for unital chan-
nels. This gives additional importance to understanding the properties of unital channels,
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which can be much more complicated in higher dimension than for the qubit case d = 2.

A channel can be regarded as a model of decoherence. Instead of directly examining the
decoherence of a specific physical system we have looked at the different types of channel
behavior that can arise from the mathematical definition. In recent work with N. Datta
[14] we showed that in higher dimensions d > 2 channels which are convex combinations
of unitary conjugations can exhibit behavior normally associated with non-unital channels,
such as the amplitude damping channel.

During the past year, the P.I. has been working [49] on a class of channels which
generalize the unital qubit channels. For d = pm a prime power, one can use mutually
unbiased bases to define a notion of axis, similar to one of the the three Bloch sphere axes
for qubits. A unital qubit channels can be written as

Φ : 1
2
[I +

∑
k

wkσk] 7−→ 1
2
[I +

∑
k

λkwkσk] (6)

For inputs ρ = 1
2
[I ± σk] on the k-th axis, the channel Φ has the same effect as the

depolarizing channel ρ 7→ λρ+ (1− λ)1
d
I with λ = λk. In higher dimensions, the channels

we study are also described by d + 1 “multipliers” [λ1, λ2, . . . λd+1], and the effect of Φ on
inputs on the J-th axis is identical to that of a depolarizing channel with λ = λJ . However,
these channels exhibit properties not seen for unital qubit channels. Roughly speaking,
they behave like unital qubit channels only when all multipliers are positive. Our work on
these channels has led to the construction of new bound entangled states [26] in dimension
d = 3.

3 Other work

3.1 Quantum Error Correction

Quantum error correction is now well-developed in the case of so-called stabilizer codes,
which arise as invariant subspaces of Abelian subgroups of the Pauli group. These codes
generalize some classical ideas, such as Hamming distance, to quantum settings and seem
best suited to situations in which all one-bit errors are equally likely and the noise is
uncorrelated. Unfortunately, their use in full-scale fault tolerant computation involves
concatenations requiring a large number of physical qubits for each logical unit.

The P.I. has been collaborating with H. Pollatsek (Mt. Holyoke College), on the gen-
eralization of stabilizer codes using the action of non-Abelian groups. In 2002, we found a
pair of new 7-bit codes and a large class of 9-bit codes which can correct all 1-bit errors
[59]. However, we also showed that the 9-bit codes could not correct all double errors of a
particular type (e.g., ZrZs) as we had hoped.
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Our codes differ from the “Clifford codes” associated with “nice error bases” as proposed
by Knill [38] and developed by Klappenecker and Rötteler [32, 34, 35]. The most significant
difference is that the KKR approach does not yield new binary codes. We also require that
the code be a subspace spanned by bases for the trivial representation of a group, and
reserve the other irreducible representation for error correction.

In 2004, we began to study codes associated with the dihedral group, which one can
describe by considering 4,5, 8 or 9 qubits arranged in a square array of the form

1 2
5

4 3

1 6 2
9 5 7
4 8 3

(7)

with the middle qubit labelled “5” omitted in the case of 4-bit and 8-bit codes. The
dihedral group is the symmetry group generated by reflections across the 4 symmetry
planes of a square. (The arrays above give different, but equivalent, realizations of this
group.) Although the group actions do not affect the center qubit, it can be useful for
achieving orthogonality.

We constructed a large class of new 4-bit and 5-bit error detection codes which are
invariant under the dihedral group. (These are different from the non-additive 5-bit code of
Rains, et al [62], which is invariant under a much larger non-Abelan group.) Unfortunately,
we were unable to construct 4-bit or 5-bit codes which can also correct one type of error
(e.g., all single bit flips). This was disappointing because we had hoped to use the 4-bit
and 5-bit codes to build up new 9-bit codes

One intriguing possibility remains. We had originally regarded the arrays above as
vehicles for defining the symmetry, but did not require that the qubits form a lattice.
However, we found some codes which could correct certain errors on nearest neighbor sites
in a lattice. This may eventually be worth pursuing as a method of generating special codes
for particular physical implementations.

3.2 Norm contraction effects of noise

In [58] we considered the question of when the p-norm of the output of a quantum channel
is less than that of the input. This question has arisen in several contexts in physics,
including quantum information theory [23, 61, 77]. We proved that the p-norm is decreasing
if and only if the channel is unital. This has an interesting corollary with implications for
decoherence [6]. It is natural to ask if one can always remove the “non-unital” part of a
channel in a way that yields a unital map which is a valid quantum operation. We showed
that this is possible for qubit channels, but that for d > 2 the resulting map might not be
completely positive.
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3.3 Expository papers

The P.I. has written a number of expository articles including [66, 67, 68, 69]. Although
the grant did not support graduate students and the P.I.’s position makes it difficult for
her to have any, she has contributed to graduate training in other ways. She assisted in
the supervision of M. Nathanson, a recent student of C. King at Northeastern University.
She has written several expository article on quantum entropy [67, 68, 69] intended to
make the proofs of important entropy inequalities accessible to graduate students and
less mathematically sophisticated scientists working in quantum information theory. In
addition, the P.I. wrote an introduction [66] to quantum information theory for engineers
working in nanotechnology.
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[72] G. Schaller, S. Mostame, R. Schützhold: “A Note on Adiabatic Quantum Computing.”
quant-ph/0510183

[73] P. W. Shor, “Equivalence of Additivity Questions in Quantum Information Theory”,
Commun. Math. Phys. 246, 453– 472 (2004). quant-ph/0305035

[74] M. S. Siu “From quantum circuits to adiabatic algorithms” Phys. Rev. A 71, 062314
(2005). quant-ph/0409024

[75] S. Teufel, Adiabatic perturbation theory in quantum dynamics (Springer, 2003).

[76] D. M. Tong, K. Singh, L. C. Kwek, C. H. Oh “Quantitative conditions do not guarantee
the validity of the adiabatic approximation” Phys. Rev. Lett. 95, 110407 (2005). quant-
ph/0509073

[77] V. Vedral, M. B. Plenio, M.A. Rippin and P.L. Knight, Phys. Rev. Lett. 78 2275
(1997).

[78] R. Verch and R. Werner, “Distillability and positivity of partial transposes in general
quantum field systems” Rev.Math.Phys. 17, 545–576 (2005). quant-ph/0403089

[79] M. M. Wolf, D. Perez-Garcia and G. Giedke, “Quantum Capacities of Bosonic Chan-
nels” quant-ph/0606132

[80] M. M. Wolf and D. Perez-Garcia “Quantum Capacities of Channels with small Envi-
ronment” quant-ph/0607070

12





1 Quantum computation by adiabatic evolution


In 2001, Fahri, et al [18, 19] proposed a method for adiabatic quantum optimization (AQO)
and suggested on the basis of numerical simulations that it could solve 3-SAT, a well-
known NP-complete problem, in polynomial time. The P.I. [65] proved the existence of a
gap g between the energy of the ground state and the first excited state when the final
Hamiltonian has a non-degenerate ground state. But for complexity issues this is not
enough; one needs estimates on the size of the gap. Despite a great deal of interest and
attention, the question of whether or not any form of adiabatic quantum computation
(AQC) can solve hard problems remains unresolved.


However, this work generated renewed interest in the adiabatic approximation itself. In
2004, Marzlin and Sanders [46] muddied the waters with a claim to a counter-example to
the adiabatic theorem. In fact, their example contains a rapidly oscillating term, and it is
well-known to experts that the adiabatic theorem does not apply in such cases. They also
claimed that their example satisfied the hypotheses in several well-known [5, 30] mathemati-
cally sophisticated papers on the subject. This resulted in considerable confusion, especially
among computer scientists not familiar with the mathematical physics literature.


The conventional wisdom [43, 47] says that the time τ needed to make the error involved
in using the adiabatic approximation less than some fixed δ satisifies τ > C/g2 where g
denotes the minimum energy difference between the ground state and the first excited state.
By contrast, most rigorous proofs [5, 24, 30, 29, 75] of the adiabatic theorem state the result
as an asymptotic expansion for the error in approximating the exact ground state of the
final Hamiltonian by the result of adiabatic evolution. The relation between these views
was clarified by the P.I. and collaborators in [28] and during a workshop organized by the
P.I at the Perimeter Institute [3]. The situation can be summarized as follows:


• The first order correction can be written in the form C
τg2


. However, this implies only
that when t is sufficiently large, the error has this form. It does not imply that when
t > Cδ/g2, the error is less than δ!


• For a particular time-dependent Hamiltonian H(s), the asymptotic expansion begins


C1(H)


τg2
+


1


τ 2
C2(H, g) (1)


where we use notation which emphasizes that the coefficients in the expansion depend
on the Hamiltonian and can even involve gap dependence. Indeed, standard estimates
easily yield bounds [10, 28, 63] of the form


1


τ


C1(H)


g2
+


1


τ 2g6
C̃2(H) (2)


1







which would require τ = O
(
g−3


)
to justify neglecting the second order term The


bound (2) is not best possible because it estimates integrals by the worst case. How-
ever, improvement requires additional information and does not allow one to conclude
that one can always make the error small by choosing τ = O


(
g−2


)
. (Claims of rigorous


proofs of O
(
g−2


)
estimates are flawed. For details see [3].)


• Alex Elgart [16] sketched an argument, based on Nenciu’s expansion, which shows


that it suffices to choose τ = O
( (log g)4


g2


)
. He used the explicit dependence of expansion


coefficients on g to determine the number of terms to use to optimize the dependence
of τ on g.


• None of these results allow one to directly translate the gap dependence for a family
of interpolating Hamiltonians {Hn,P (s)} depending on the number of qubits n and
an instance P in some class of problems. To do this one would first need to know
that expansion coefficients Ck(H) are uniformly bounded in n and P . However, in
AQO one expects the coefficients to grow with n.


It is worth emphasizing that the proof presented by the P.I. and collaborators in [28],
like other approaches [5, 24, 30, 29, 75] , is not restricted to an energy gap between the
ground state and the first excited state; an analogous result holds when there is a gap
anywhere in the spectrum. This could be useful in analyzing AQO in situations where the
final Hamiltonian has a degenerate ground state.


In a different direction, the AQC model has been shown to be equivalent to the standard
circuit model of quantum computation. In particular, it was shown in [1] that for any
quantum circuit with L gates, one can construct an interpolating Hamiltonian which will
evolve to final state from which, with a certain probability, a measurement would give the
same result as the final state of the circuit model. They stated polynomial time estimates
based gap estimates of for two interpolating Hamiltonians. However, their proofs of these
key estimates was extremely complicated. In [12] we used a simple variational argument to
prove gap estimates for these Hamiltonians. In addition, we improved the second estimate
by a factor of L so that both gaps are O


(
L−2


)
.


2 Quantum channels


The model for noise in the transmission of quantum information is called a quantum channel
and is based on the mathematical concept known as a completely positive, trace preserving
map. The P.I. has been working on various aspects of quantum channels. Although this
work is primarily supported by the National Science Foundation and some is fairly mathe-
matical, it is relevant to our broader understanding of decoherence and entanglement. I will
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mention here some results of more direct relevance to the ARDA program and to quantum
crypotography.


2.1 Minimal conditional information


Transmission of quantum information is known to be described by the coherent information
which is non-additive, i.e., entanglement can increase the quantum capacity of a memoryless
channel. The coherent information of a channel Φ can be written as


CQ(Φ) = sup
ψ


(
S
[
Tr1 (I ⊗ Φ)


(
|ψ〉〈ψ|


)]
− S


[
(I ⊗ Φ)


(
|ψ〉〈ψ|


)])
. (3)


In [15] we consider instead the quantity


CCB(Φ) = −SCB(Φ) = sup
ψ


(
S
[
Tr2 (I ⊗ Φ)


(
|ψ〉〈ψ|


)]
− S


[
(I ⊗ Φ)


(
|ψ〉〈ψ|


)])
. (4)


The very small change in the subspace over which the partial trace is taken yields a quantity
which is not enhanced by entanglement, i.e.,


SCB(Φ⊗ Φ) = 2SCB(Φ), (5)


and can be regarded as the minimal conditional information of a channel. When combined
with recent work of Horodecki, Oppenheim and Winter [27], this gives a measure of the
extent to which a channel breaks or preserves entanglement ,which is much more precise
than the crude concept of entanglement-breaking channels. When SCB(Φ) is negative (or
CCB(Φ) > 0) it corresponds to the number of EPR pairs remaining for further use, after
exchange of information; when it is positive (or CCB(Φ) < 0), it describes the number of
EPR pairs needed to complete the transmission.


This result is part of a much broader investigation into applications of operator spaces
in quantum information. Although we subsequently found a much simpler proof of (5), it
is unlikely that the result would have been discovered without the “completely bounded”
investigations. Roughly speaking, “completely bounded” refers to a sequence of norms
associated with Id⊗Φ rather than Φ itself in a manner similar to the notion of completely
positive. This is part of the subject of operator spaces which also include concepts like
“complete isometry”, etc. It is a very natural framework for quantum information. Indeed,
it appears implicitly in work on fault tolerance and one special case is sometimes called the
diamond � norm [41]. However, much of the literature on operator spaces is very abstract
and mathematically technical.


However, the importance of CB norms is becoming increasingly evident. For example,
Kretschmann, Schlingemann and R. F. Werner [39] recently used continuity estimates for
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CB norms to prove an information-disturbance tradeoff with implications for quantum
cryptography. In February, 2007, D. Kribs and the P.I. are organizing a workshop in Banff
which will bring together mathematicians and quantum information scientists to explore
the role of operator structure in quantum information theory.


2.2 Conjugate channels


The underlying model of noise in a quantum system regards the original system (Alice) as a
subsystem of a larger system which includes both the original system and the environment
(Bob). Either system can be described at a later time by taking a partial trace over the
other. Typically, the unitary interaction entangles the two systems so that each subsystem
is in a mixed state. In the most common scenario, Alice can prepare a variety of different
states, but Bob always uses the same state |φ〉〈φ|. The map which takes Alice’s state |ψ〉〈ψ|
to TrB U(t)|ψ ⊗ φ〉〈ψ ⊗ φ|U(t)† ≡ Φ(|ψ〉〈ψ|) at a fixed time t gives the usual notion of a
channel Φ. Bob might like to know what Alice is up to even though he never bothers to
change his initial state. Taking TrA U(t)|ψ⊗φ〉〈ψ⊗φ|U(t)† defines a map ΦC whose output
is a state ΦC(|ψ〉〈ψ|) which describes the information available to Bob at the same fixed
time t. We call this map the conjugate channel. Together with C. King, K. Matsumoto
and M. Nathanson, the P.I. has made an extensive study [33] of conjugate channels.


We have shown that the conjugate of the completely noisy map acting on a pure state
contains all the information in the original state, i.e., when the noise completely destroys
Alice’s state, Bob can recover it. We have also shown that the output of a channel or its
conjugate acting on a pure state input are identical. This allows one to obtain results about
a class of channels by studying their conjugates and vice versa. Some of our results were
obtained independently by Holevo [25], who called them “complementary.


This terminology was used earlier by Devetak and Shor [13] in their work on the quantum
capacity of a channel, but they only used it to define degradable channels, which means
that the composition with another channel yields the environment. Although channels are
rarely degradable, their quantum capacity is readily computed [9, 22, 79, 80]. Working with
Graeme Smith, the P.I. obtained a different proof [71] of the main result in [80], namely,
that a qubit channel is degradable if and only if it is extreme. This work [71] is based on
[70] and also shows that the composition of any two extreme qubit channels is also extreme.


2.3 Special unital channels


In 2003, Shor showed that additivity of minimal output entropy was equivalent to sev-
eral other important conjectures, including some about entanglement of formation. More
recently, Fukuda [21] showed that it would suffice to prove these conjecture for unital chan-
nels. This gives additional importance to understanding the properties of unital channels,


4







which can be much more complicated in higher dimension than for the qubit case d = 2.


A channel can be regarded as a model of decoherence. Instead of directly examining the
decoherence of a specific physical system we have looked at the different types of channel
behavior that can arise from the mathematical definition. In recent work with N. Datta
[14] we showed that in higher dimensions d > 2 channels which are convex combinations
of unitary conjugations can exhibit behavior normally associated with non-unital channels,
such as the amplitude damping channel.


During the past year, the P.I. has been working [49] on a class of channels which
generalize the unital qubit channels. For d = pm a prime power, one can use mutually
unbiased bases to define a notion of axis, similar to one of the the three Bloch sphere axes
for qubits. A unital qubit channels can be written as


Φ : 1
2
[I +


∑
k


wkσk] 7−→ 1
2
[I +


∑
k


λkwkσk] (6)


For inputs ρ = 1
2
[I ± σk] on the k-th axis, the channel Φ has the same effect as the


depolarizing channel ρ 7→ λρ+ (1− λ)1
d
I with λ = λk. In higher dimensions, the channels


we study are also described by d + 1 “multipliers” [λ1, λ2, . . . λd+1], and the effect of Φ on
inputs on the J-th axis is identical to that of a depolarizing channel with λ = λJ . However,
these channels exhibit properties not seen for unital qubit channels. Roughly speaking,
they behave like unital qubit channels only when all multipliers are positive. Our work on
these channels has led to the construction of new bound entangled states [26] in dimension
d = 3.


3 Other work


3.1 Quantum Error Correction


Quantum error correction is now well-developed in the case of so-called stabilizer codes,
which arise as invariant subspaces of Abelian subgroups of the Pauli group. These codes
generalize some classical ideas, such as Hamming distance, to quantum settings and seem
best suited to situations in which all one-bit errors are equally likely and the noise is
uncorrelated. Unfortunately, their use in full-scale fault tolerant computation involves
concatenations requiring a large number of physical qubits for each logical unit.


The P.I. has been collaborating with H. Pollatsek (Mt. Holyoke College), on the gen-
eralization of stabilizer codes using the action of non-Abelian groups. In 2002, we found a
pair of new 7-bit codes and a large class of 9-bit codes which can correct all 1-bit errors
[59]. However, we also showed that the 9-bit codes could not correct all double errors of a
particular type (e.g., ZrZs) as we had hoped.
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Our codes differ from the “Clifford codes” associated with “nice error bases” as proposed
by Knill [38] and developed by Klappenecker and Rötteler [32, 34, 35]. The most significant
difference is that the KKR approach does not yield new binary codes. We also require that
the code be a subspace spanned by bases for the trivial representation of a group, and
reserve the other irreducible representation for error correction.


In 2004, we began to study codes associated with the dihedral group, which one can
describe by considering 4,5, 8 or 9 qubits arranged in a square array of the form


1 2
5


4 3


1 6 2
9 5 7
4 8 3


(7)


with the middle qubit labelled “5” omitted in the case of 4-bit and 8-bit codes. The
dihedral group is the symmetry group generated by reflections across the 4 symmetry
planes of a square. (The arrays above give different, but equivalent, realizations of this
group.) Although the group actions do not affect the center qubit, it can be useful for
achieving orthogonality.


We constructed a large class of new 4-bit and 5-bit error detection codes which are
invariant under the dihedral group. (These are different from the non-additive 5-bit code of
Rains, et al [62], which is invariant under a much larger non-Abelan group.) Unfortunately,
we were unable to construct 4-bit or 5-bit codes which can also correct one type of error
(e.g., all single bit flips). This was disappointing because we had hoped to use the 4-bit
and 5-bit codes to build up new 9-bit codes


One intriguing possibility remains. We had originally regarded the arrays above as
vehicles for defining the symmetry, but did not require that the qubits form a lattice.
However, we found some codes which could correct certain errors on nearest neighbor sites
in a lattice. This may eventually be worth pursuing as a method of generating special codes
for particular physical implementations.


3.2 Norm contraction effects of noise


In [58] we considered the question of when the p-norm of the output of a quantum channel
is less than that of the input. This question has arisen in several contexts in physics,
including quantum information theory [23, 61, 77]. We proved that the p-norm is decreasing
if and only if the channel is unital. This has an interesting corollary with implications for
decoherence [6]. It is natural to ask if one can always remove the “non-unital” part of a
channel in a way that yields a unital map which is a valid quantum operation. We showed
that this is possible for qubit channels, but that for d > 2 the resulting map might not be
completely positive.
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3.3 Expository papers


The P.I. has written a number of expository articles including [66, 67, 68, 69]. Although
the grant did not support graduate students and the P.I.’s position makes it difficult for
her to have any, she has contributed to graduate training in other ways. She assisted in
the supervision of M. Nathanson, a recent student of C. King at Northeastern University.
She has written several expository article on quantum entropy [67, 68, 69] intended to
make the proofs of important entropy inequalities accessible to graduate students and
less mathematically sophisticated scientists working in quantum information theory. In
addition, the P.I. wrote an introduction [66] to quantum information theory for engineers
working in nanotechnology.
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