
2007.5 ARO-43318MS 551067 Final  

 
 1 

  
REPORT DOCUMENTATION PAGE 

 

 
Form Approved  

                           OMB NO. 0704-0188 

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comment regarding this burden estimates or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503. 
1. AGENCY USE ONLY ( Leave Blank) 
 
 

2.  REPORT DATE  
    May 1,2007 

3.  REPORT TYPE AND DATES COVERED 
Final report: July 3, 02 – Dec. 31, 06 

4.  TITLE AND SUBTITLE       
 Structural and Electrical-Optical Characterizations of 
Semiconductor-Atomic Superlattice 

5.  FUNDING NUMBERS 
 
             
  DAAD19-02-1-0290 

6.  AUTHOR(S)         
          Raphael Tsu  

 

7.  PERFORMING ORGANIZATION NAME(S) AND  ADDRESS(ES) 
      UNC-Charlotte, Charlotte NC 28223       

8.  PERFORMING ORGANIZATION  
     REPORT NUMBER   
            

 9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
    U. S. Army Research Office 
    P.O. Box 12211 
    Research Triangle Park, NC 27709-2211 
 

10.  SPONSORING / MONITORING 
       AGENCY REPORT NUMBER   
 
       43318.1-MS 

11.  SUPPLEMENTARY NOTES 
      The views, opinions and/or findings contained in this report are those of the author(s) and should not be 
construed as an official Department of the Army position, policy or decision, unless so designated by other 
documentation. 
 
12 a.  DISTRIBUTION / AVAILABILITY STATEMENT 
          Approved for public release; distribution unlimited. 
 

12 b.  DISTRIBUTION CODE   
                    

13.  ABSTRACT (Maximum 200 words) I thank Dr. John Prater for allowing me to extend this work covering the electron wave 
impedance and Capacitance of Discrete electron system. 
(A) Semiconductor-Atomic Superlattice (SAS) consisting of Si-Si/O/Si-Si as a period. By repeating, a superlattice, SL is formed. 
Oxygen is introduced by gas adsorption, resembling mono-oxide rather than SiO2 which cannot be epitaxial. This epi-system has 
a theoretical strain ~ 6%, which is not prohibitive. This SAS shows PL and EL ~2.3eV. Reverse current in I-V  is reduced more 
than 2 orders of magnitude, may be used as an epitaxial gate for possible 3D ICs. 
(B) By defining a wave impedance or wave conductance the ratio of  Poyting vector to energy stored, similar to the definition of 
photons, for electron, G = ge2/h, commonly known as fundamental conductance, where g = 1,2,3…More remarkably, in 3D, we 
found that g is a tensor consisting of integers as well as fractions. 
(C) We consider N electrons confined inside a dielectric sphere, by minimizing the total interaction energy due to electron-
electron term, polarization terms as well as self polarization term, we found that the E/N interaction energy per electron versus 
N consists of features identical to the periodic table of elements, while using Poisson equation instead of Schrodinger equation. 
More remarkably is the fact that Pauli’s exclusion principle was never imposed.  
14.  SUBJECT TERMS 
              

15.  NUMBER OF PAGES 
                   18 
                

 16.  PRICE CODE 
                         
 

17.  SECURITY CLASSIFICATION 
       OR REPORT  

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
       ON THIS PAGE  

UNCLASSIFIED 

19.  SECURITY  CLASSIFICATION 
       OF ABSTRACT  
                  UNCLASSIFIED 

20  LIMITATION OF     
      ABSTRACT  

                UL 



2007.5 ARO-43318MS 551067 Final  

 
 2 

 

REPORT DOCUMENTATION PAGE (SF298) 
___________________________________________________________________ 
 

(1) List of Publications 
 

Superlattice to Nanoelectronics, R. Tsu, (Elsevier, 2006, ISBN 0 08 044377 X) 
Nanostructured Materials, Ed. Carl Koch, (Noyes Publ, Norwich, NY. 1st edition 2002, 2nd  
          edition 2007) Nanostructured Electronics and Optoelectronic Materials, R. Tsu and Q. Zhang,  
          527-567 
171 Structure and Optoelectronic Properties of Si-O  
  Superlattice, K. Dovidenko, J.C. Lofgren, F.de Freitas, Y.J.Seo and R. Tsu, Physica E: Low- 
  dimensional System and  Nanostructures, (2003) 
 
173 Challenges in the Implementation of Nanoelectronics, R. Tsu,  
  Microelectronic Journal 34, 329 (2003) 
 
176 Quantum Device with Multipole-Electrode – Heterojunctions Hybride Structures, R. Tsu in Adv.   
  Semicond.  Heterostructures, Eds. M. Dutta and M. Stroscio, (World Sci. 2003, Singapore), p221 
 
177 Cooling by Inverse Nottingham Effect with Resonant Tunneling , Y. Yu, R.F. Greene, and R. Tsu,  
  in Adv. Semicond. Heterostructures, M. Dutta and M. Stroscio, (World Sci. 2003, Singapore) p.145 
 
179  T. Datta and R. Tsu, QWI_LANE2.19 Nov. 2003 http://Xiv.org/cond.-mat/0311479(2003) 
  
181 Size dependence saturation of PbS quantum dots , K. Kang, K. Daneshvar and R. Tsu  
       Microelectronic J. 35, 629 (2004) 
 
184 Electron emission through a multilayer planar nanostructured solid-state field-controlled  
   emitter, V. Semet, V.T. Binh, J.Zhang, J.Yang, M.A. Khan, and R. Tsu, APL. 84,1937 (2004) 
 
186  Stability Issues in Tunneling via Quantum systems, R. Tsu, Microelectronics J. 1-4, 2005 
 
187 Zhu, J., LaFave  Jr, T. & Tsu, R., Classical capacitance of few-electron dielectric spheres.  Microelectron.  
  J. 37 1293-1296 (2006). 
 

        (2)Scientific personnel supported by this project and degrees awarded  
 

UNCC: PI, Ray Tsu 
 

Students 
Degrees granted: 
Jinwen Zhu  PhD received     August 15, 2005       



2007.5 ARO-43318MS 551067 Final  

 
 3 

Yuan Yu             PhD received     December 16, 2005 
Tim LaFave                PhD.received      August  15, 2006     
Daniel Quinlan            MS          August  16, 2005 
   
(3)  Reports of Inventions: 
 

None at this time 
 

(4) Accomplishments: 
 
(A) Semiconductor-atomic-semiconductor superlattice 
 

In the previously ARO supported research: A new type of superlattice consisting of 
monolayers of adsorbed oxygen atoms periodically placed into Si forming a superlattice. A brief 
review of what is achieved and involved is given here. 
 

(1) After a monolayer of oxygen is introduced into Si epitaxially grown, it was shown that 
epitaxy is continued beyond the monolayer of oxygen, thereby creating a new type of 
superlattice, SAS, which stands for semiconductor-atomic-superlattice.  

(2) The defect density is quite low. The calculated strain is 6%.  
(3) The effective band gap is 2.35eV, resulting in green luminescence and 

electroluminescence. 
(4) Possible use is a n epitaxial insulating layer on Si for control gates presently consisting of 

a-SiO2. Another possible use is to form one transistor on top of another, forming a 3D 
structure. 

 
 

Fig. 1 Strain pattern of multiple periods of oxygen sandwiched between Si-layers. 
             If the Si thickness is less than ~2nm, the strain pattern does not show up in TEM. 
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show up. For example, for two adsorbed oxygen layers separated by silicon of less than 2nm, the 
strain layers will merge so that no periodic pattern will appear. The above HRTEM used a period 
of >3.2nm shows the SL structure consisting of atomic oxygen incorporated into Silicon. 
 
 

 
 
Fig. 2  A typical I-V shows the Schottky junction at the forward direction, and almost no current 
at the reversed direction. At an applied voltage of -20 volts, typically the reversed current if more 
than 100X below similar Si wafer without the ASA SL structures, indicating that the current in 
the transverse direction should be drastically cut.  
 
 Now we discovered that the atomic layer can consist of a single layer of molecule such as 
SiO2, GeO2, CO2, in what we call Semiconductor-molecular Superlattice: 

       Si…Si-O-Si-O-Si…Si and Si…Si-O-Ge-O-Si…Si Systems 
 
We have generalized the Si…Si – O – Si … Si SL, superlattice, to include Si…Si – O-A-O – Si 
… Si SL system. In the notation O-A-O, A represents C, Si , Ge, Sn, or even Al and P for 
possible monolayer of metallic superlattice. It is envisioned that substitution of C, Ge, for 
example, into the Si lattice with two monolayers of oxygen on each side should result in 
lower strain, what in essence, a Si-M SL, where M stands for a molecule. We have developed 
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an improved model used previously for the strain in Si – O-Si-O SL and Si – O-Ge-O SL, by 
extending the minimization of the strain energy to several layers beyond the interface. The 
visualization in terms of ball and stick is shown below, where the left shows Si atoms (blue) in 
the middle of two planes of oxygen atoms (red), representing Si – O-Si-O SL,  and the right 
shows Ge atoms (green) in the middle of two planes of oxygen atoms (red), representing Si – O-
Ge-O SL. Naturally strain is lowered because the mismatch is allowed to be distributed over four 
layers on each side. The maximum strain is at the Si layers right above or below the oxygen 
atoms.  
 

 
 

Fig. 2 Silicon dioxide monolayer (left) and Carbon or germanium dioxide monolayer (right).  
          Bonding configuration is identical in both cases, but shown from two different angles. 
 

The above model is based on the experimental fact that the reconstructed 1x2 RHEED is 
recovered after oxygen adsorption, therefore it was assumed that the bulk silicon existed in its 
diamond form oriented in the same (100) above and below the oxygen adsorption process. Using 
the Keating constants for bond-bending and bond-stretching, we have computed the strain energy 
versus the vertical distance from the position of the Ge atom . Since the positions are 
symmetrical in the vertical distance above and below the Ge atom, Table 1 shows the lower half 
of the strains in the …Si – O - Ge - O – Si… quantum barrier.   
 
 By far the greatest strain reaching 404 is concentrated on the Si layer just below the 
oxygen monolayer. Note that the strain energy is distributed over a distance of three layers of Si 
atoms on each side of the GeO2 barrier. In short, the greatest strain is at the interface 
between the crystalline Si and the molecular layer.   

 
This type of superlattice may be constructed by letting oxygen be adsorbed while Ge is 
evaporated. For CO2 SL, either CO or CO2 gas may be used directly for adsorption.  
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Atomic index  x (a/4)   y (a/4)   z (a/4)   Strain energy (meV) 
Ge(134)       0.99      3.00      4.37       3.7 
Ge(314)       3.00      1.00      4.37       4.1 
O3(0)             0.68      0           3.61  6.8 
O3(4)       0.68      4           3.61             3.7 
O1                    1.35      2           3.61        7.8 
O2        2.68      2       3.61  6.5 
O4(0)       3.34       0       3.61  7.7 
O4(4)       3.34      4       3.61  5.4 
Si113       0.99      1.00      3.02             404 
Si333       3.00      3.00      3.02             406 
Si022      -0.03      1.90      1.97             51.4 
Si202       2.04      0.09      1.99    39.9 
Si422       4.04      2.10      1.97             49.6 
Si242       1.97      3.91      1.99             43.2 
Si311       3.02       1.03      1.00              7.7 
Si131       1.03      2.97      1.00              8.6 
Si400       4       0        0               0 
Si220       2       2        0                  0.1 
Si040       0       4            0                  0 
 
Table I   Positions and strain energy in lower half of GeO2 quantum barrier. 
 

 
Reference: Superlattice to Nanoelectronics, R. Tsu, Elsevier 2005, ISBN-0-08-044377-x 
 
Lacking an epitaxially grown system of barriers and well such as with III-V, silicon has not 
joined GaAs in quantum devices. One may argue that GexSi1-x as a barrier to Ge should be 
extensively developed for quantum devices. The fact remains that it did not happen. This was the 
reason why I started to look for alternative means to form an epitaxial barrier on Si. The Si-O SL 
and Si-Molecular SL are possible in principle. Due to the complexity in fabricating only a 
handful of layers, apart from the fact that the overall strain is still too high to prevent defect free 
growth, this work has not taken off after I started it more than ten years ago. I am grateful but 
sorry that in spite of the support given to me by Dr. John Prater for this effort, a silicon 
quantum structure has not materialized into wide usage in electronics. As it seems that 
rare-earth oxides are making ways to join the epitaxial system on Si, first as high K 
dielectric, then, who can predict the ramification of new discovery of new types of rare-
earth oxides on silicon, with low strain. One may ask why we want to bother in the first 
place. The answer is always the dream of silicon based 3D-ICs!  
 
(B) Quantum wave Conductance of Electrons 
 
It has been for sometime, almost as long ago as I first tackled the problem of resonant tunneling 
via a finite superlattice, I noticed that the conductance consist of discrete components depending 
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on the number of longitudinal modes, and transverse degree of freedom. In the Tsu-Esaki 
expression for the resonant tunneling, integration was performed over the transverse degree of 
freedom first, noting that the 2D-DOS for unbounded case is simply m*/ 2hπ . Let us instead 
integrate over the longitudinal direction first, ldk  or ldE . Defining the function 

]/)(exp1[2)( TkEEEF Bt
t

++≡ ∑ , Mitin V.V., Kochelap V.A., Stroscio M.A., then the net 

tunneling current between two contacts becomes,   
 

 I = )}()({12
FF EEFEeVEF

dk
dE

L
e

t k
−−−+∑∑

l

l

l
h

.   (1) 

And with 0→T , and 0→V , )()( FF EEFEeVEF −−−+ →  )( EEeV F −∂ , then the 
conductance VIG ∂∂= / , from (11.1.1) becomes the Landauer’s conductance formula ( known to 
many but popularized by Landauer) 
 
 ),(||2 2

0 tF EETGG
t
∑= ,       (2) 

where the sum over transverse degree of freedom without confinement should have an extra 
factor of m*/ 2hπ , as in Tsu-Esaki 1993, in which the conductance per spin, heG /2

0 =  = 
38.6 Sμ , with its inverse 0Z = 25.9 Ωk .  
 
Stratton, referring to Schelkunoff 1938, stated: “Impedance offered by a given medium to a wave 
is closely related to energy flow”, introduced 
 
 η =  | E | / |H | = | E |2 / 2 | S |,       (3) 
 
with S being the Poynting vector.  
 
 The electromagnetic wave impedance in an unbounded region is given by εμη /0 = . In 
free space with 0μμ =  and 0εε = , 0η = 377 Ω . And the characteristic impedance in free space 

0Z = 0η . It is not true for a waveguide. The wave impedances for TE, transverse electric, and TM, 
transverse magnetic, are TEη and TMη , having the specific forms TEη = 0η / κ , and TMη  = 

0η κ , with 2
0

2 /1 kkc−=κ , in which  the cutoff wave vector 222 )/()/( bnamkc ππ += , 
and 00 /2 λπ=k , where 0λ  is the free space wavelength.    
 
 Next, let us take the electron wave guide, the propagating wave-vector kz including the 
potential energy eV is given by  
 

 2
2

2 )(
2

nmt
e

z keVE
m

k −+=
h

.       (4) 
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The transverse momentum vector  kt mn  of  the mode ( nm, ) is given by  
 

 222 )()(
b

n
a

mk nmt
ππ +=  ≡ 2

ck ,      (5) 

and mntE , = mkc 2/)( 22h , we see that the transverse energy is nothing but the energy at the cutoff 
propagation vector, ck  in usual waveguide case.  The density of states, DOS for a cross-sectional 
area A is   
 

 ∑∫=
mn

M
z

zk
dk

A
DOS

,
0

1   ,       (6) 

 
where kzM is the maximum value for a given set ( nm, ), E and eV . At T = 0, FEE =  for 
 

 2
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2
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m
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h

 ,        (7) 

 
kz is purely imaginary, propagation is not possible. Counting only the propagating modes, 
including two spins, the current density is 
 

 ∑∫ ∂
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  ,  

 
with FEE = , the current,  
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,
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At m = n = 0, I 00 = 2 )( eVE
h
e

F + , and for eV00 +EF > 0, G00 = 0

2
00 22 G

h
e

V
I

≡=
∂
∂

; and at m = 1, n 

= 0, I 10 = 2 10,)( tF EeVE
h
e −+ , and for eV10 +EF > Et,10, G10 = 0

2
10 22 G

h
e

V
I

≡=
∂
∂

; etc. resulting in 

G = G00 + G10, continuing to the general case of (m , n), 
V
IG

∂
∂=  is 

 
 ∑ −+=

mn
tnmF mkeVEGG

,

22
0 )2/(2 hθ ,     (9)  
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in which θ is the unit step function, having a series of steps depending on how many modes, (m, 
n) are included. With a negative sign for e, +eV becomes –eV in (9). The factor of 2 in front of 
G0 is for the two spins. Thus for spin polarized case, there should be G0 (+1/2) and G0 (-1/2) 
without the factor 2. It is important to recognize that for single mode operations, only one step in 
G appears, depending on the condition given by (7). The origin of these extra modes is due to the 
inclusion of modes (m, n) coming from the incident electrons having transverse energy. In free 
space, we simply take a = b = ∞ , then )(0 eVEGG F −= θ , which ensures that the potential of 
the waveguide is below that of FE . Otherwise no transmission is possible from the source of 
electrons at the energy range of 0=E to FE . It is important to recognize that an incident electron 
with transverse energy can enter the waveguide, without transverse-longitudinal scattering, only 
the longitudinal energy contributes to conductance. What is this conductance? From the 
derivation, clearly it is an input conductance, what Datta 1995 referred to as contact 
conductance. What happens to the output impedance? The setup of the problem implicitly 
assumes the output end is terminated in its own characteristic impedance. What happens to the 
sending end? Since all transverse modes forming the allowed modes entering the EQW are 
assumed to be uncoupled, reflection coefficient of each mode is zero for the planar boundary 
conditions.  
  
 From Heisenberg’s uncertainty principle, the manifestation of the wave nature of electron 
forG is simply starting from teI Δ= / , with h≥ΔΔ Et , with EΔ = eV , h/2VeI =  giving rise to 
G = h/2e , which is a factor of 2π greater than 0G  per spin. Nevertheless, experimental results 
clearly gives 0G ~ 40 Sμ per spin, confirming 0G = he /2 , rather than 0G = h/2e . I think the 
difference of the two expressions is due to the fact that Heisenberg’s relation, h≥ΔΔ Et , in most 
quantum mechanics books, refers to a minimum packet.  
 
Wave Impedance in Solid with Plane wave in one direction 
 
Following Datta-Tsu 2003, using the ratio of energy to a current for a plane wave normalize in a 
volume AL, with A transverse to the direction z , and length L sufficiently large for 
normalization. In solids, L must be less than the mean free path, otherwise waves have no 
meaning. Then 
 

 E = ψψ Hdxdydz
abL

*
000
∫∫∫  = 

m
k

2

2
0

2h
,                (10) 

and 

 )**(
20 0

zz

b a

mi
dxdyeI ψψψψ −= ∫ ∫

h = 
mL
k

e zh ,               (11)   

where H is the kinetic energy operator. To get an expression for impedance in units of ohm, we 
need to divide the numerator E  by charge to have units of potential .V  The impedance Z = 

IV / , so that 
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 Z =  
zk
Lk

e

2
0

22
h   =  

2
0

2

0
2 /12 kk

Lk
e

c−

h  ,     (12) 

 

where 222 )()(
b

n
a

mkc
ππ +≡ , which looks similar to but not quite the same as the waveguide case 

for photons. Further more applying a periodic boundary conditions, πl2=Lkz , with l being any 
integer. Then (12) becomes  
  
 Z = 0Z l 12

0
2 ]/1[ −− kkc ,        (14) 

where  
 2

0 2/ ehZ = .          (15) 
 
The factor 12

0
2 ]/1[ −− kkc , leads to a different expression for G for the EQW. However, in deriving 

the conductance of EQW, we allow electrons with transverse energy to enter the waveguide, 
although only the longitudinal energy contributes to the conductance. Since our formulation does 
not allow the transverse energy to be channel into the z-direction, for comparison with the 
derivation for EQW, we should not have included the transverse energy in the present derivation, 
then kz = k0, and 2

0 2/ ehZ = , and Z0
-1 = 2G0, which is a factor of 2 larger than the derivation for 

EQW. Equations (2) or (9) apply to contact conductance, as elaborated by Datta 1995, while Z0
-1 

= 2G0 applies to the wave conductance of the electrons. This is because in the derivation of G0, a 
contact represented by a tunneling barrier is present, which is quite different from wave 
impedance without even an applied potential. There is really no reason the two expressions 
should be the same, because whenever contacts are present, we are talking about a closed system, 
while without contacts, an open system, with G being a factor of 2 larger. 
 
 There is one other point needs clarification. As we discussed that this conductance  G0 as 
a sum of unit step functions is because the incident electrons from a Fermi sphere has transverse 
degree of freedom, i.e. the excitation consists of transverse modes in parallel, leading to adding 
the contributions in forming a ladder for G0. For the derivation of wave impedance, apart from 
the factor of 2 which we have attributed to an open system, the wave impedance with 
propagation along the z-axis only is Z = Z0 l , thus there is still this factor l  needs further 
consideration. The question lies in the length we take for the normalization along the direction of 
propagation for the wave. The length L must be less than the coherence length Λ, otherwise 
wave picture loses its meaning. In a solid, we can set 0naL = , with 0a being the size of the unit 
cell, then 000 /2/2 apnak ππ == l . If we take a0 for the normalization, then Z = Z0 p. At high 
energy, high k0, the impedance Z goes up as p. There is this intrinsic difference between electron 
wave and photons, where Z is a constant. Why then is the basis for comparing Z with G? The 
lowest allowed Z and G appears to be of the same origin, which is the basis for my statement that 
the contact conductance is nothing but the excitation of the quantum structure consistent with the 
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wave conductance of electron, of each transverse degree of freedom perfectly matched to the 
wave conductance of electron of a quantum structure, whether a QD or a Qwire.  
  
 To summarize, uniqueness is established by taking p = 1, for  the lowest allowed state 
thereby fixing the length L  for normalization. The wave impedance is the current due to wave 
propagation for a given kinetic energy. ‘Contact conductance’, (Since I have explained in detail 
the so-called contact conductance is really an INPUT WAVE CONDUCTANCE in a closed 
system, however, for historical reasons, I shall continue to use the term contact conductance or 
universal conductance.) due to transverse degree of freedom and / or other longitudinal states as 
in resonant tunneling, increases in steps. But in wave impedance, adding inverse impedances, the 
conductance increase is not in equal steps.  
 
 What happens for very small energy, very small 0k  such that the length for normalization 
exceeds the mean free path Λ ? The concept of Z is only definable for energy greater than this 
minimum k fixed by L as the greatest length allowed for the definition of Z. Only the ground 
state has a wave impedance of Z0. Suppose another solid with an electron coherence length twice 
that of the other, then the lowest ground state having Z0, but the energy of this lowest state is 
four times lower. What happens for very small energy with very small k such that the length for 
normalization exceeds the mean free path, or coherence length Λ? The wave impedance loses its 
meaning altogether. In fact even for contact conductance to be meaningful, the de Broglie 
wavelength must be shorter than Λ . We see that the wave impedance 22/ ekLZ h≈ before we put 
in the periodic boundary condition for k. In photon, energy momentum is a linear relationship, 
but for electron, energy momentum is square relationship, resulting in Z ∝ k .The consequence 
is that as energy increases, Z also increases.  
 
 Lack of uniqueness for Z is more troublesome. What we need to do is to pick a lowest 
energy, so that k0 is fixed by this energy. This in turn defines L  for l  = 1. In other 
words L  = 2π / k0. For this lowest energy, Z = Z0. All energies > than this lowest energy, Z is 
increased given by l  = 2, 3, etc. This procedure of normalizing Z = Z0 for the lowest energy 
requires further thought. In reality, because of Coulomb interaction for electrons, electron wave 
has a finite coherent length, therefore, limiting L is same as limiting this lowest energy.  
   
    
Wave impedance in unbounded space  
 
In arbitrary direction of propagation, and using periodic boundary conditions for all three 
directions, the wave impedance in an unbounded free space is given by 
 
 nmZ ,,l = 0Z nm,,lΞ ,                 (16) 

 
where 
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 nm,,lΞ  =  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++

++

222

2

2

2

2

2

2

b
n

a
m

L

b
n

a
m

L
l

l

.                (17) 

 
Even with baL == ,the function nm,,lΞ  listed below consists of fractions except in one 

dimensional case, reminding the fractional quantum numbers in the fractional Hall effects.  
Note that there are degenracies in 3D case. Suppose there is only one electron traversing the 
space, one can always pick, in this case, one of the axes of the cube to align with the direction 
of propagation, then the wave impedance will be given by the fourth column marked 1-D. 
Now, a second electron is propagating in a direction not collinear with the first. Since we 
cannot align the coordinates with both, the complicated impedances will appear at the detector. 
Therefore in principle; these fractional terms will play a role. Moreover, our derivation is for 
non-interacting electrons. If there are more than one and interacting, see discussions in the next 
section. 
 
Table 2   Quantum number dependence of  nm,,lΞ in 1,2 & 3 dimensions 

   __________________________________ 
 l  m  n  1D 2D  3D 
 ==================== 
 1 1 1 1  1   1 
 2 1 1 - 5/3 3/2 
 2 2 1 -  - 9/5 
 2 2 2 2  2   2 
 3 1 1 - 5/2      11/5 
 3 2 1 -  -  7/3 
 3 2 2 -         13/5      17/7 
 3 3 1 -  -         19/7 
 3 3 2 -  -         11/4 
 3 3 3 3  3   3 
 4 1 1 -         17/5   3 
 4 2 1 -  -   3 
 4 2 2 -         10/3   3 
 4 3 1 -  -         13/4 
 4 3 2 -  -         29/9 
 4 3 3 -         25/7      17/5 
 4 4 1 -  -         11/3 
 4 4 2 -  -         18/5 
 4 4 3 -  -         41/11 
 4 4 4 4  4   4 
            ==================== 
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In electromagnetic case, the wave nature leads to a wave impedance of free space which is 
purely real. The wave impedance of waveguides is different, having dependence on the 
propagation constants. And the characteristic impedance of a waveguide contains further 
geometrical factors. These three are all different, yet sharing the same origin, the wave nature 
of photons. We have derived the wave impedances for electron in free space, quantum wire or 
EQW, for both open and closed systems. The pre-factor for the conductance per spin G0 = 
e2/h for a closed system and is double this value, 2G0 for an open system. Similar to 
electromagnetic waves, the wave impedance, or wave conductance for various cases are 
different in details, although all of them share the same origin, the wave nature of electron. We 
have clearly identified the so-called universal conductance as the input conductance from a 
contact to a structure, whether a section of a Qwire, a QW, or a QD. What led to Landauer 
1970, to assume that the contact is reflectionless? Generally contacts are not reflectionless, but 
the effects of reflection, as in the case for resonant tunneling, are accounted for by the 
transmission term in addition to the ‘pre-factor’ G0. If the transmission is very small, reflection 
is very large, so that the input impedance will be very large and the conductance will be very 
small. It all fits into the description of input impedance. However, the question is why 
experimental data gives unity for the transmission. At low temperatures, different modes from 
different transverse degree of freedoms are truly independent. As soon as mixing of the 
longitudinal and transverse modes is present, longitudinal and transverse momenta are mixed, 
these equal steps of conductance are smeared. But why in the case of Si-QD that Nicollian and 
I worked on conductance jumps are clearly in units of G0 even at room temperatures? I think 
the answer lies in the fact that, for size ~ few nm, the quantized energies are so far apart, 
being almost unaffected by phonons, a primary contributer for mixing of modes.  
 
Some fundamental issues with quantum systems 
 
Because photons are Bosons, lasers and microwave source such as the magnetron involve 
excited states with many photons occupying the same state or nearly the same state. For 
Fermions, such as electrons, each state can only be occupied by one with a particular set of 
quantum numbers. Simply put one electron per state. Then how do we make an amplifier? The 
usual explanation is that e-e interactions split the state into a band. The totality of responses by 
all the electrons in a band constitutes amplification. Then the spectrum must be sufficiently 
broad. It has been on my mind for many years that a many electron system wipes out the 
coherent effects of wave behaving almost classical. Semiconductor oscillators such as Gunn 
and Avalanche diodes certainly fall into this category. Resonant tunneling diodes like Esaki 
Tunnel diodes are NDC devices belong to a class where the transmitted electrons maintain 
their phase relationship with the incident electrons. However, the transmitted electrons lose 
their phase coherence after cascading down to the Fermi level of the collector, as in the 
emitter, retaining no phase coherency. In short, the signal from thousands of, even millions of 
electrons, behaves classically. In this respect, the situation is quite similar to my example of 
the policeman detecting the speeder and recording the traffic violation, during detection, phase 
sensitive scheme is involved, not unlike the tunneling process involving constructive and 
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destructive interference, during the tunneling phase, and forgetting all during the collecting 
phase. In QD devices, things are quite different. First of all, unlike RTD with all the 
transverse degree of freedom, a given longitudinal discrete state can accommodate very large 
number of electrons with different transverse energy. It is the transverse energy together with 
their longitudinal energy ‘reassembling’ to the nearly spherical Fermi energy surface in the 
collector! Without the planar interface, the transverse and longitudinal energies are not 
separately satisfying the boundary conditions. Let us be reminded in RTDs, the longitudinal 
energy and the transverse momentum are conserved. However, in tunneling through a quantum 
dot, the total energy and momentum are conserved separately.  Therefore, in a small QD, 
strictly speaking only one electron per state is allowed. Suppose there are 10 electrons, they 
are coupled by a number of processes: via their induced charges due to the differences in 
dielectric constants from the matrix; direct Coulomb and exchange interactions; as well as via 
phonons, vibronic states and even defect states; above all, coupling via geometrical shapes, 
because geometrical boundaries  do mix up the state functions as for example, the eigenstates 
of spherical harmonics will form new linear combinations on the surface of a cube! In other 
words, there are plenty of strong couplings of the 10 electrons resulting in a band, practically 
identical to the cases described for RTDs. The end results are similar, but the dynamics 
leading to the collector is quite different in details. For example, with a handful of electrons, 
how do we assign occupation and how do we apply the equilibrium distribution for few 
electrons? If we do, we are assuming, for example, strong interaction with phonons justifies 
the use of equilibrium distribution function. In fact this is not a bad assumption because as 
mentioned previously that a QD may be isolated in terms of potential energy barriers, but 
hardly isolated in terms of phonons. Simply because elastic constants are not all that different 
between the QD and matrix, unless we are talking about solgel as a matrix, then of course we 
cannot talk about conduction, although we can talk about the optical properties of the QD. 
Although I stated that I have not championed magnetic devices, yet, magnetic QD with a 
handful of atoms much smaller in extend than the magnetic domain is indeed very interesting 
subject. In this regard, quantum Hall effects, Arharonov Bohm effects and magnetic 
superlattices indeed represent good physics, however, I still have doubts any of these would 
ever become mainstream devices. On the other hand, I can see devices such as CCD, charge 
couple devices, certainly would acquire new dimension with QDs. We can state with certainty 
that the overall knowledge and techniques to analyze needed to engineer QD devices is 
becoming increasingly complex, which reminded me something attributed to Wigner that each 
generation needs to rediscover the accumulated knowledge and acquiring working skills. 
Datta T. and Tsu R. QWI_LANE2. 19. Nov.2003, <http://arXiv.org/cond-mat/0311479> 
(2003) 
Datta S., Electronic Transport in Mesoscopic Systems, (Cambridge Univ. Press, 1995) 
Landauer R., IBM J. Res. Devlop. 1, 223 (1957). 
Mitin V.V., Kochelap V.A., Stroscio M.A., Quantum Heterostructures, (Cambridge  
     University Press, Cambridge, 1999). 
Schelkunoff, BSTJ 17, 17 (1938). 
Tsu R., and Esaki L., Appl. Phys.Lett. 22, 562 (1973). 
Tsu R., Advanced Semiconductor Heterostructures, Eds. M. Dutta & M. Stroscio (World    
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     Sci. Singapore, 2003) p.221 
Van Wees B.J., et al., Phys. Rev. Lett. 60, 848 (1988). 
 
(C) Capacitance of N-electron system 
 

Capacitance is a measure of the ability to store electrons and is conventionally considered 
to be a constant dependent upon the shape of metal contacts and the dimensions of the system. In 
general, however, equal-potentials of dielectric systems without metal contacts take the shape of 
very complex three-dimensional surfaces resulting from the spatial distribution of discrete 
electrons. The fundamental definition of capacitance, C = C / V , in which V is the potential 
within which electrons are confined, requires that the total capacitance take into account local 
capacitances of every electron and all cross-capacitances. To circumvent this complexity the 
average total electrostatic potential experienced by each electron is utilized to obtain a 
capacitance expression generally appropriate to dielectric systems consisting of few excess 
electrons without metallic contacts. The capacitance may then be expressed as an exact function 
of the total electrostatic potential energy of the system. The integrity of this expression is 
demonstrated using a representative system of N excess electrons confined to a dielectric sphere. 
The capacitance expression is shown to be consistent with the conventional capacitance for a 
single electron dielectric sphere and with 04 'C aπε ε=  for metallic spheres. A relatively large 
sphere size is chosen such that the magnetic moment interaction energy is negligibly small. The 
capacitance exhibits a non-uniform relationship with respect to N coincident with shell-filling 
patterns of the natural atomic system. This classical electrostatic interactions approach is 
particularly appealing to the practical development of nanoscale materials and devices as it 
circumvents immediate recourse to often unintuitive and complicated quantum mechanical 
descriptions. 

 
Our previous work on the capacitance of Quantum Dots (Ground State Energies of One-

and Two-Electron Silicon Dots, D. Babic, R. Tsu and R. F. Greene, Phys. Rev. B 45, 14150 
(1992)) involved only two electrons. To extend it to N electron, we decided to use the Poisson 
equation instead of the Schrödinger equation. As before, we compute the total interaction energy 
between the N-electrons which includes Coulomb energies, polarization energy between each 
electron and its induced at the dielectric discontinuity, as well as the self polarization, i.e. a given 
electron interacts with its own induced at the dielectric interface. To keep it simple, spherical 
geometry is used. The total interacting energy of N-electron system is to be minimized with 
respect to where N electrons are located. A simplifying scheme, the so-called Thomson Sphere 
model is adopted – N electrons are assumed located at the constant radius. Naturally a single 
electrons lies at the center, but two electrons with one near the north-pole and the second one 
near the south-pole. For εin  > εo   the induced charge has the same sign resulting in pushing the 
electron away from the circumference, establishing a stable configuration. That process applies 
up to three. We found that from four, the minimized configuration is a tetrahedron. And from 
four onwards, the minimized electron configuration does not allow plane or lines, rather, 3D 
structures. There are several very important points: 

 



2007.5 ARO-43318MS 551067 Final  

 
 16 

1. Each configuration is distinct, therefore representing a phase. Pauli’s principle is 
satisfied without additional conditions imposed. 

2. Since capacitance is defined as charge per volt, the total energy per electron 
divided by the electronic charge represents an average potential for defining 
capacitance.  

3. Since the interaction energy depends on the size of the sphere, we determine the 
minimization of the interaction energy with the size taken from the quantum 
mechanically obtained atomic radii. Using this radii, we plot the 

( 1,1 ) ( )W E N e E N+ = − − , a measure of the change of symmetry, because we added a 
charge to the center so that the quantity is due to the change of symmetry rather 
than the number of charges.  

 

 
 

Intraphasic energy ( 1,1 ) ( )W E N e E N+ = − −  due to symmetric loss of an electron. Note non-
uniformities coincident with electron shell changes in the natural atomic structure with quantum 
mechanical radii and 0ε ε=  
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Ionization energies of neutral atoms, from measurements. 
 

Our results may be understood from the following: 
1. The configuration is determined by the potential energy. 
2. We need the radii which require quantum mechanical operator, therefore, the magnitude 

is adjusted by the use of the radii from the periodic table.  
3. Resulting fit is striking, indicating that as far as the configuration is concern, Poisson 

equation is more than adequate. This is consistent with the fact that Pauli’s principle is 
not needed for the monophasic capacitance.  Below is pdf of the published version: 

 
Classical capacitance of few-electron dielectric spheres, J.W. Zhu, T.J. LaFave, and R. Tsu, 
Microelectronic J. 37, 1293 (2006) 
 

                 
ZLT_2006-1.pdf

    
ZLT_2006-2.pdf

     
ZLT_2006-3.pdf

     
ZLT_2006-4.pdf
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