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Cycling the Representer Algorithm for Variational Data Assimilation with the
Lorenz Attractor
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(Manuscript received 9 August 20(X5, in final form 14 February 2006)

ABSTRACT

Realistic dynamic systems are often strongly nonlinear, particularly those for the ocean and atmosphere.
Applying variational data assimilation to these systems requires a tangent linearization of the nonlinear
dynamics about a background state for the cost function minimization. The tangent linearization may be
accurate for limited time scales. Here it is proposed that linearized assimilation systems may be accurate if
the assimilation time period is less than the tangent linear accuracy time limit. In this paper, the cycling
representer method is used to test this assumption with the Lorenz attractor. The outer loops usually
required to accommodate the linear assimilation for a nonlinear problem may be dropped beyond the early
cycles once the solution (and forecast used as the background in the tangent linearization) is sufficiently
accurate. The combination of cycling the representer method and limiting the number of outer loops
significantly lowers the cost of the overall assimilation problem. In addition, this study shows that weak
constraint assimilation corrects tangent linear model inaccuracies and allows extension of the limited
assimilation period. Hence, the weak constraint outperforms the strong constraint method. Assimilated
solution accuracy at the first cycle end is computed as a function of the initial condition error, model
parameter perturbation magnitude, and outer loops. Results indicate that at least five outer loops are
needed to achieve solution accuracy in the first cycle for the selected error range. In addition, this study
clearly shows that one outer loop in the first cycle does not preclude accuracy convergence in future cycles.

1. Introduction however, need to be addressed prior to implementing
the representer method operationally.

The representer method (Bennett 1992) is a four-th ersnrmtodpraialyThersio ntlvari methonaldata (Benmilationet 19) al- The first issue that is addressed in this paper is the
dimensional variational data assimilation (4DVAR) al- saiiyadvldt ~tetnetIna oe TM

gorihm hatrelis o th adjintof he dnamcalstability and validity of the tangent linear mnodel (TLM)gorithm that relies on the adjoint of the dynamical and how it impacts the assimilation accuracy. When the

model and expresses the analyzed solution as a first- adhwi mat h siiainacrc.We h
modelganduexpress e plusafinithe lieantion as afirest- representer method is applied to a nonlinear model, the
guess plus a finite linear combination of representer model must be linearized, preferably using the first-
functions, one per datum. The explicit computation and oreapoxmtnofTyrsepnin.rdto-

stoageof ll he eprsenerfuntios (iret mtho),order approximation of Taylor's expansion. Tradition-
storage of all the representer functions (direct method), ally, the representer method has been implemented for
however, is not required since the method can be imp le- the assimilation of all observations in the time window
mented indirectly using the conjugate gradient method considered. As with every other variational data assimi-
(CGM, Amodei 1995; Egbert et al. 1994). A description lation method with nonlinear dynamics, the representer
of the representer methodology is provided in the ap- method necessitates that the TLM and its adjoint be
pendix. valid and/or stable over the entire assimilation time

The representer method has earned an established window. The validity of the TLM is difficult to maintain
reputation as an advanced data assimilation technique over a long time period for strong nonlinear models and
within the past decade, and has gained the attention of complex regions.
many potential operational users. Two primary issues. The second issue that is addressed in this paper is the

computational cost of the representer method. The in-
direct representer method requires the integration of

Corresponding author address: Hans Ngodock. Naval Research

Laboratory, Code 7320, Bldg. 1009, Stennis Space Center. MS the adjoint and TLM within a CGM that determines the
39529. representer coefficients for the minimization of the cost
E-mail: ngodock@nrlssc.navy.mil function (see the appendix). This set of representer co-
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efficients is then used to provide a correction to the ficed in previous cycles. An example of this occurrence

background. The number of iterations of the CGM could be a nonlinear ocean response (advection or mix-

(this is referred to as the inner loop) is typically a small ing) to a sudden, strong change in atmospheric forcing,

fraction of the total number of measurements. Outer especially in coastal areas with complex bathymetry.

loops are typically required for strongly nonlinear sys- Nevertheless, the need of additional outer loops is as-
tems. To initialize the outer loop, one would pick a first sessed by the discrepancy between the assimilated so-

background solution around which the model is linear- lution and the data.
ized. The best solution (corrected background) ob- The idea of cycling the representer method was in-

tained from this assimilation would become the back- vestigated by Xu and Daley (2t000) using a ID linear

ground for the next outer loop, and so forth until formal transport model with synthetic data. In that study, the

convergence is reached (Bennett et al. 1996; Ngodock error covariance of the analyzed solution was updated

et al. 2000; Bennett 2002: Chua and Bennett 2001; Muc- at the end of each cycle and used as the initial error
cino and Bennett 2002). This outer loop exacerbates covariance in the next cycle. Another application of the
the computational cost of the representer method. In cycling representer method was performed by Xu and
this study the background that serves for linearization is Daley (2002) using a 2D linear unstable barotropic

also taken as the first guess. model with no dynamical errors. In the 2002 study, the
These two issues have detracted many potential users covariance at the end of the cycle is not updated be-

of the representer method for operational purposes. It cause its computation is too costly to be practical. Up-
is possible however, to address these issues and imple- dating the covariance requires the evaluation and stor-

ment the representer method at a reasonable cost for age of the representer functions at the final time. These
operational applications. Given a time window in which two studies found that updating the covariance at the
one desires to assimilate observations, it is possible to end of each cycle produced significantly more accurate

apply the representer method over cycles of subinter- analyses. However, in these two applications of the cy-
vals. The name adopted for this approach is the cycling cling representer method, only linear models were used

representer method (Xu and Daley 2000), and its asso- and thus there were no need for a TLM. Most realistic
ciated solution is called the cycling solution. The solu- applications are nonlinear and their TLM may not be

tion that is obtained by assimilating all the observations stable over the time window considered. It is in this
at once in the original full time window will be called context that this study applies the cycling representer

the global solution. method.
By using the cycling representer method, the assimi- A good dynamical system candidate for testing as-

lation time window is constrained to a period over similation methods for strongly nonlinear models is the
which the TLM produces an accurate dynamical repre- acclaimed Lorenz attractor model (Lorenz 1963: Fig.
sentation of the Lorenz attractor. Doing this reduces I). It has been used in numerous to studies to examine

the need for outer loops. The outer loop is designed to the behavior of assimilation methods based on scquen-
solve the nonlinear Eulcr-Lagrange conditions associ- tial filtering and variational techniques. This is done
ated to the assimilation problem with the nonlinear with the intent that if an algorithm performs satisfac-

model, because the representer method solves a linear torily well with this model, then it can be applied to

assimilation problem. In the global solution problem, atmospheric and ocean models, which is a necessary but

the TLM may not be an accurate representation of the not a sufficient condition.
solution, and the adjoint would not be an accurate es- Gauthier (1992) implemented the strong constraint

timate of the derivative of the state with respect to the variational assimilation method using the adjoint of thc

control variables. If the TLM is an accurate represen- Lorenz equations and a rather sparse data network
tation of the solution, the need for outer loops is re- sampled every two time units, lie found that the cost
moved. In the initial cycles of this assimilation ap- function was well behaved when the model did not un-
proach, the first-guess or background solution may not dergo a transition. However, the solution was very sen-

be accurate and thus outer loops may be required. Once sitive to initial perturbations. This problem is closely

the system is spun up and the TLM is an accurate ap- related to the stability and validity of the TLM approxi-
proximation (thanks to improved background solu- mation during the different phases of the model.
tions), outer loops may no longer be necessary, thus Miller et al. (1994) also implemented the strong con-
lowering the computational cost of the assimilation. straint variational assimilation method with the l~orenz
There may be situations in real-world applications, attractor model and found that the behavior of the cost

however, where a few outer loops would be needed in function encountered by Gauthier (1992) was strongly

the current cycle, even though a single outer loop suf- dependent on the length of the assimilation window.
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Because of the chaotic behavior of realistic models, any
,0 linearization is subject to error growth therefore limit-

35 ing the application of the TLM approximation to a time
scale for which errors are lower than a prescribed

30 -threshold. Our approach is different from the studies
/ mentioned above in that we compute the gradient of

the cost function by means of the adjoint and imple-
ment the weak constraint variational assimilation using
the cycling representer method. In this paper, the glob-

,5 ,al and cycling solutions are compared and the ability to

10 ," remove the outer loops is examined. In these experi-
ments a significance test is not performed. This would

S,0 turn the assimilation problem into a search for suitable

prior assumptions about the data, initial condition, and
° -5 .. 0 5 , 5 10 ", dynamical errors, and hence cloud the issue at hand.

This study specifies prior error covariances similar to

Fi ;. 1. The Lorenz attractor solution computed for 20 time units those used in previous studies. The Lorenz model and

using the RK4 time-stepping scheme with a time step of dt = the variational assimilation problem are described in

1/600. This is the true solution from which observations are section 2, and the TLM stability and accuracy are dis-
sampled every 1/4 time unit. cussed in section 3. Section 4 deals with the assimilation

experiments. A discussion and concluding remarks fol-
However, contrary to Gauthier (1992), Miller et al. low in sections 5 and 6, respectively.
(1994) did not derive the adjoint equations for the mini-
mization of the cost function. They computed the gra- 2. The Lorenz model and the variational
dient of the cost function directly and invoked a con- assimilation problem
jugate gradient routine to minimize this cost function.
The assimilated solution computed by Miller et al. The Lorenz model is a coupled system of three non-
(1994), fitted the data (sampled every 0.25 time units) linear ordinary differential equations:
for 7 time units. The forecast following the assimilation I
was able to track the data up to three additional time - = o-(Y - x) + qI,

units before errors increased significantly. dt

Evensen and Fario (1997) implemented the weak dya

constraint variational assimilation method using the dt =pvy-xz +Pq", and

Lorenz attractor equations with the same configuration
as Miller et al. (1994). By including a dynamic error and dz
directly computing the gradient of the cost function dt= 3z+q, (1)
with respect to all state variables (in space and time), where x, y, and z are the dependent variables. The
they were able to use a gradient descent algorithm to c
accurately assimilate data (sampled every 0.25 time commonly used time invariant coefficients are (r = 28,

unit) for longer time periods (20 and 60 time units) with p = 10, and 03 = 8/3 and the model errors are repre-

no unexpected behavior of the cost function. However, sented by q', qY, and q, The initial conditions for Eq.

when the data density decreased, the same method pro- (1) are

duced only a local minimum of the cost function that x(0) = X(, + i,
resulted in three missed transitions within an interval of
2t) time units. This suggests that the good fit that Miller y(O) = y, + P. and

et al. (1994) obtained for seven time units in the strong z(() + i , (2)
constraint approach depends on the rather dense data
network. Note that in Evensen and Fario (1997), there where x, = 1.508 87, YO -1.531 271, and z1 = 25.460 91
is no need of the TLM or the adjoint. are the first guess of the initial conditions. These are

Realistic applications, however, will not always have the same values that are used in the data assimilation
the luxury of an exact hand-computed gradient of the studies by Miller et al. (1994), Evensen (1997), Evensen
cost function. The computation of the gradient typically and Fario (1997), Miller et al. (1999), and Evensen and
relies on the adjoint, which in turn relies on the TLM. Van Leeuwen (2000). The initial condition errors are
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represented by i', i-, and V. By setting the model and the model dynamics. The observations may be writtcn
initial condition errors in Eqs. (1) and (2) to zero, the in a similar notation:
solution to the Lorenz attractor is computed for the
time interval [0. 201 using the fourth-order Runge-
Kutta (RK4) discretization scheme with a time step of In real-world problems, the observation operator H
dit = 1/600 (Fig. 1). This solution is labeled as the true may be nonlinear for some types of measurements (e.g.,
solution, since using time steps smaller than dit = 1/600 radiances in the atmosphere, acoustic tomography in
does not significantly alter the solution within the speci- the ocean) therefore requiring a tangent linear approxi-
fied time period. Thus, the numerical representation mation so that the representer method may be used.
has converged. The Euler-Lagrange (EL) conditions for a local extre-

In the time interval [0, 201 there is a set of M obser- mum of the cost function are derived by setting the first
vations d E Nim such that variation of Eq. (4) to zero. These conditions are

d = H (x, Y, z) +t F, (3 dA = [ jA - H"w(d -Hi)

where H is a linear measurement functional (M x 3
matrix) and - . 91M is the vector of measurement er- A(T) = 0 (7)
rors. The data used for all assimilation experiments are and
sampled from the true solution (Fig. 1) with a frequency
of 0.25 time units. Since there are three position vari- di
ables, there are a total of M = 237 measurements. Pur- d- q•
posefully, data is not sampled at 7' = 0 or T = 20 in
order to demonstrate the capability of the assimilation *(0) = x( + C,;A(0). (8)
method to propagate the information from future In the above equations, i is the optimal solution and A
(past) observations to correct the initial (final) condi- is the weighted residual or adjoint variable defined as
tions. The measurement error is assumed to be e =
0.002, and its covariance matrix is assumed to be diago-
nalI. A(t) = j WPM, ti)q(t) dit,

In general. the errors in Eqs. (1), (2), and (3) are not 0
known. Therefore solving Eq. (1) directly is an ill-posed
problem. By using generalized inversion, a solution to
Eq. (1) is obtained that minimizes the errors in Eqs. (C,q. A)(t)= C=,,1(t, t,)A(t,) (It. (9)
(1)-(3) in a weighted least squares sense using a cost
function:

The initial condition error that is used to perturb Eq.
p r (2) is specified to be 10% of the standard deviation of

J(x, vYz) = f q(ti)W~,,(t. t)q(t2) ti ti + i"W/i each state variable of the true solution (i' = 0.784, i" =
"f f 0.897, and iz = 0.870). The initial condition error co-
0 0 variance (Ci) is simply a 3 X 3 diagonal matrix with

+ vIrwF. (4) values equal to the square of the RMS of these initial
condition errors.

The weights (Wqq, Wit, and w) in Eq. (4) are defined as The model errors used to perturb Eq. (1) have
the inverses of the respective error covariance matrices unique values for each dependent variable at each time
C,1,1, Cii, and C, for the model, initial condition, and step of the model integration. The statistics of these
measurement errors, respectively, model errors are estimated by first computing a de-

For the sake of clarity, Eqs. (1)-(2) are rewritten graded solution using a time step of dti = 1/60. The
here in vector notation: difference between this degraded solution and the truth

is examined up to the point where the solutions diverge
= F(x) + q significantly (5.4 time units). The RMS of the differ-

tit ences between the true and degraded solutions prior to

x(0) = X, + i, (5) this time is divided by the number of time steps during
this time period (5.4 time units) to obtain an estimate

where x is the state vector consisting of the three inde- for the standard deviation (STD) of the model error
pendent variables (x.v., z) at each time step and F(x) is ISTD(q) = 3.69 X 10 3]. By examining the temporal
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correlation of these differences, a decorrelation time (a)
scale of T = 0.25 time units is estimated for the model 6

error. Therefore, the model errors are created by first
generating three time series of Gaussian distributed ?E
random numbers (one for each dependent variable). A = ..
temporal convolution of these random errors is then 2 3..

conducted with the prescribed exponential function 2 "
exp[-[(t - t')/1-]2. This array of correlated errors is l.

finally scaled to have the estimated STD (3.69 x 10 3). o
The spatial covariance of these dynamic errors (i.e., the 0 01 02 03 04 05 06 07 08 09

stationary part of C,,,,) is (b)

[1.36 x 10 5 5.99 x 10 7 -1.56 X 10 1-6
qq = 5.99 1 10 1 10 - -2.07 x 1() j. .

Cq,~ 1.3691 X .3.Je

(10) ~3

T0 0,001 0002 003 0004 0005 0006 0007 0008 0009 001
RMS of Dnlnamc Error

The dynamical model in Eq. (5) is tangent linearized

around a first-guess trajectory x1 (t) using the first-order Fi(;. 2. Stability of the TLM relative to the RMS of the (a) initial
condition and (b) model error. For each RMS error, the TLM wasapproximation of Taylor's expansion: computed IM(X) times, each time perturbed by a new sct of ran-

SdF(xf domly generated numbers scaled by the specified RMS error. The
x '+ (x) -x) qsolid line is the mean of these realizations and the dotted lines arc

dt Ax -+I STD. The gray asterisk depicts the errors that are used in the
experiments presented in this paper.

x(0) x(- + 8x, + i. (11)

In the remainder of this paper, x1 is referred to as the tion window, especially when we are dealing with
background solution. The assimilation problem is then strongly nonlinear dynamical models. This is because
solved with the linearized model [Eq. (11)] using the the accuracy/validity of the TLM is limited by the
representer method. The representer expansion can be growth of errors. Finally, the outer loop amplifies the
written for the linear EL system as follows (also see cost of the assimilation associated with a linearized
appendix): model, and renders the cost of the representer method

expensive for operational purposes.
The accuracy of the TLM depends on the initial con-

1(t) - xt) + ola,,r,,(t). (12) dition and model errors. The estimation of these errors
is described in section 2. For completeness, the TLM

By choosing x1 for both the background (for lineariza- accuracy limit for a range of error levels in both the
tion) and the first guess (for assimilation), one can for- initial conditions and model are separately examined.
mulate the assimilation problem as a search for the The experiments for each type of error contain 100
optimal correction to x1' (Uboldi and Kamachi 2000, different values for the RMS error ranging from 0 to I
Jacobs and Ngodock 2003), that is, the second term in (initial condition error) and 0 to 0.01 (model error). For
the right-hand side of Eq. (12). The solution i from the each RMS error, the TLM was computed IO) timcs
assimilation is taken as the new trajectory around which (for statistical significance), and in each run a different
the model is linearized (i.e., i replaces x' in the next random realization of the errors was used. The accu-
iteration of the outer loop), racy criterion for the TLM is based on the 100) member

There are three problems that are associated with ensembles and is chosen as the time when the differ-
this approach. First, the convergence of the linear it- ence between the TLM and the background exceeds
erations (outer loops) depends on the background, and the standard deviation of the background. In Fig. 2 the
the background may not always be sufficiently accu- mean and _ I STD of the 10(X-member TLM accuracy
rate. Second, the TLM around the background may not time is shown along with the accuracy time obtained
always be valid and accurate over the entire assimila- with our choice of errors in section 2 (gray asterisks).
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This realization (gray asterisks) is the only one used for 80 f ... , ... ... . .......
60 i

the experiments throughout the remainder of this pa- 40

per. Assimilations using significantly large ensembles 20' ,, .

would be prohibitive and the results difficult to display. -20[ ' - ,

In section 2, the RMS of the initial condition error is 0 2 4 6 8 10 1 14 16 18 20

estimated to be 0.852. Using one realization of this ran- ,-
dom initial condition error, the TLM accuracy is 0.4 ,'

time unit, which is less than the mean accuracy time of , "

the 1000 member ensemble. This rather short accuracy -20 , r,

time given by the initial condition error indicates po- 0 2 4 6 8 10 12 14 16 18 20

tential difficulties for the assimilation in the first cycle. to ,, , I ! 1 1 o : 1
In the previous section, the RMS of the model error is 4
estimated to be 0.003 69 and using one realization of 3 .20 ,..

this model error, the TLM accuracy is 4.077 time units, 10

which is very close to the mean of the 1000 member 0 2 4 6 10 1ý2 14 16 18 20

ensemble. This implies that for the choice of our one 3nr on
realization of initial and model errors, once the initial FeL. 3. Comparison between the background solution (bc(g ) atilethe TILM Iinearized about this background. TIhe backgrounid is the
condition errors have been corrected in the first cycle, Lorenz attractor computed using the RK4 time-stepping scheme

the TLM will have a longer time of validity in subse- with a time step of lt - 1/60, and the coefficients and initial

quent cycles, allowing for a possible extension of the conditions stated in the text. The TLM initial conditions and dV-

cycle length. namics are perturbed from the background by the initial condition

The initial and model errors selected for this paper and model error specified in the text and represented by the gray
eapplied to the TLM [Eq. (11)1, asterisks in Fig. 2. The result shows that the TILM diverges fromare herethe ack-the background solution after about (0.4 time units.

ground x 1 is the nonlinear solution obtained with the

initial conditions (x0, yn. zo) using the RK4 time step-
ping with dt = 1/60. The time series of the background rors that force the TLM are needed for testing pur-

and TLM trajectories are shown in Fig. 3. The TLM poses. Thus, an unperturbed nonlinear solution was
strays from the background in less than half a time unit. used as the background. For the assimilation expcri-

This deviation of the TLM is caused by the magnitude ments discussed in this section, the background also
of errors and their growth, as well as the early transition serves as the field to be corrected. In this case, the
that the background undergoes around t = 0.5. The background is obtained by solving the nonlinear model
TLM follows this transition with a slight delay and and adding the selected errors as perturbations in order
wrong amplitude. After this transition, the errors con- to simulate a solution that is significantly different from
tinue to grow unbounded and the TLM solution does the data. An additional experiment will introduce a

not recover. model error through the perturbation of the dynamical
model parameters.

4. The experiments a. The inaccuracy of the global solution

The previous section demonstrates how the TLM ac- Figure 4 compares the global solution to the back-
curacy is limited in time given the expected initial con- ground and true solutions (note that the data are
dition and model errors. For the choice of errors in sampled from the true solution every 0.25 time units
section 2, the TLM is accurate for only 0.4 time units. It except at t = 0 and t = 20). The global solution attempts
is clear that under these conditions, we cannot expect a to correct the perturbed background by assimilating all

satisfactory assimilation solution for the entire assimi- data over the entire time frame [0, 201 using the direct

lation window [0, 20]. The background trajectory used representer method with one outer loop. Even though
to compute the global solution is obtained by integrat- the time frame of assimilation is far greater than the

ing the nonlinear model, and adding the initial condi- stability of the TLM, the solution is able to track the
tion and model errors described in section 2. Note that data somewhat for about seven time units. One should
although the role of the background for linearization notice that whenever the discrepancy between the
purposes is the same in the assimilation problem and in background and the data increases, the global solution

the TLM, the background need not be the same in both. follows the background due to the relatively small co-
In the TLM, the background and the perturbation er- variance of the model error. It can be seen from Fig. 5
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Fi(i. 4. The assimilated Solution (solid black line) computed Fio. 5. RMS misfits between the data and the background (solid
using the direct representer method over the entire time period line) and assimilated (dotted line) solutions for the first 7 time
(20 time units) goes unstable after about 7 time units. The data are units in Fig. 4. This plot reveals that even though the TLM is only
sampled from the true solution (gray line) every /4 time unit and reliable for about 0.4 time units (see Fig. 3), the assimilated so-
are assimilated in an attempt to correct the wrong background lution is stable for about seven time units and is correcting the
(dotted line). The background is computed in the same fashion as background toward the data during this time period.
in Fig. 3. except instead of the TLM being perturbed, the back-
ground is perturbed by the specified initial condition and model
error.

(the solution of the nonlinear model propagated from
the final state) is a better background for the next cycle

that the global solution is able to reduce the prior mis- than the corresponding portion of the background used
fits significantly (even beyond the time range of accu- in the global solution. The same random error is added

racy of the TLM) before losing track of the data. Be- to the dynamics of the nonlinear forecast of each cycle

yond seven time units, the misfit between assimilated as was added to the corresponding portion of the back-

solutions and data grows rapidly and can be attributed ground used in the global assimilation. Except for the

to the increasing errors in the TLM approximation. first cycle, the initial condition of each forecast is per-

One can therefore conjecture that the error growth in turbed by the model error instead of the initial condi-

the TLM can be limited by reducing the length of the tion error. The chaotic behavior of the model and the

assimilation window. This provides the incentive for random error will cause a divergence (that grows with

reducing the assimilation window and using the cycling the cycle length) between the observations and the

representer method. background. All experiments that follow use the same
model error specifications as used in the global assimi-
lation, and unless noted otherwise, the direct repre-

h. The advwtage of the cyclng representer senter method is applied with a single outer loop, which
approach is exactly what was done for the global solution.

In this section, the cycling representer method is The first cycling representer experiment uses 2 cycles
implemented for the same assimilation problem by sub- of 10 time units each. The results in Fig. 6 show that the
dividing the assimilation window into cycles of equal solution is drastically improved compared to the global
length. This is motivated by the reduced range of accu- solution in Fig. 4. The first thing one observes is the
racy of the TLM and the ability of the assimilation disappearance of the large values of the global solution
method to adjust to the data beyond that range. There in the last 2/3 of the assimilation window. The analyzed
are three clear advantages that one can foresee in this solution in both cycles clearly benefits from a shorter
approach: (i) a shorter assimilation window will limit assimilation window limiting error growth in the TLM,
the growth of errors in the TLM, (ii) the background and the second cycle has the extra advantage of using a
for the next cycle will be improved, and (iii) the overall better estimate of the background. The misfits to the
computational cost is reduced. It is assumed that the data are decreased, although they still exceed the ob-
assimilation in the current cycle will improve the esti- servation standard deviation in many portions of the
mate of the state at the final time. The ensuing forecast trajectory.
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40 . Thie ments within the cycle. For well-conditioned systems.
20 Se A~ssn, the first stopping criterion is typically reached first

therefore requiring less computation time compared to
-20 the direct method.0° 2 4- 6 0 10 12 1:4 16 16 20 The first remark in this experiment is that the rcprc-
20 senter matrix for the first cycle assimilation is ill con-

-0 ditioned (condition number = 2.3 x 10") due to the

-20 rather high variance of the initial condition errors. As a
consequence, the CGM converges very slowly and does0 2 4 6 8 -0 1 4 1 8 2 not reach the first stopping criterion. Since proper con-

40 vergence is scarcely reached within the first cycle, outer40 '

3O0 loops are required in order to achieve an acceptable
20 solution. In this experiment, four outer loops are ap-
10
,I0 plied to each cycle (Fig. 8b). This assimilated solution0 2 4 6 8 10 12 14 16 18 20me 1 tracks the data well and compares fairly well with the

Fi(i. 6. Same as in Fig. 4 except that here the assimilation is direct approach (Fig. 8a), albeit for a higher computa-
separated into two cycles, where the final assimilated solution of tional cost. Since the indirect method seems to only
the first cycle (at t = 10 time units) is used as the initial conditions have difficulties in the first cycle, an experiment is per-
for the computation of the background ill the second cycle. The formed where four outer loops are only applied in thc
background for the first cycle is perturbed vw ith both initial con-
dition and model error. whereas for the second cycle the back- first cycle, and a single outer loop is applied in subse-
ground is only perturbed with model error. By performing two quent cycles (Fig. 8c). This solution is less expensive
cycles of the direct representer method instead of one (Fig. 4), the than the previous and its accuracy and cost is conmpa-
assimilated solution is now stable for the entire time period. rable to the direct method. The reason that this ap-

proach performs well is because it is important to per-
The results in Fig. 7 show the RMS error between the form an accurate assimilation in the first cycle in order

truth and the assimilated solution with respect to time to obtain a good fit to the data and correct the back-
for cycle lengths of 1,2, 5, and 10 time units. It is shown ground containing the initial condition error. This ira-
that the RMS error increases with the cycle length. This proved state estimate provides a good initial condition
is to be expected since longer cycles violate the TLM and thus background for the next cycle and so forth. It
accuracy criterion. In other words, the steady decrease should be emphasized here that the proposed method
of RMS error with respect to the cycle length indicate does not require or rely on the ability to obtain a good
that as the latter approaches the TLM stability time for analysis in the first cycle, although it is a desirable out-
the range of perturbations given by the adjoint model, come. The additional outer loops in the first cycle were
the assimilation algorithm is bettcr able to fit the data. used in the context of the indirect representer ap-

proach, in order to overcome the slow convergence of
c. The cycling indirect representer alpp)roach the conjugate gradient method due to the pool condi-

In realistic atmospheric and occan models it is not tioning of the representer matrix. If the first cycle fails
possible to compute all the representer functions and to give a good analysis, it still will minimize to some
implement the direct representer algorithm. In this sec- extent the discrepancy between the background and the
tion the indirect representer algorithm is implemented data at the final time, which will yield a better back-
(Amodei 1995: Egbert et al. 1994: Chua and Bennett ground for the next cycle. As this process is repeated,
2001; also see the appendix). In the first attempt to the system will fit the data, as illustrated in Figs. 7 and
apply the indirect approach a cycle length of one time 8. The lesson learned here is that in cycling the indirect
unit is used. Unlike the direct representer approach representer method, only the first few cycles may ne-
where an exact matrix inversion is used to compute the cessitate outer loops.
representer coefficients, the indirect approach uses an It should also be mentioned that when the length of
iterative solver (i.e., the CGM). The CGM does not the cycle is reduced to 0.5 time units, which is roughly
require the entire matrix to be inverted: rather it iter- the stability time for the TLM in the first cycle, the
ates through search directions in data space. The stop- CGM converges rather well and there is no need for
ping criterion of the CGM is either (i) when the relative multiple outer loops. This result is shown in Fig. 9 and
norm of the residual is less than 10 3, or (ii) when the implies that the indirect method works satisfactorily
number of iterations equals the number of measure- well without outer loops when the cycle length is at
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Fi(i. 7. RMS of the misfit between assimilated and true solutions using different numbers of cycles: (a) 20, (b)
10. (c) 5, and (d) 2 cycles. The cycle boundaries are depicted by dashed lines. By increasing the number of cycles
from 2 (Fig. 7d is the misfit of Fig. 6) to 20 (Fig. 7a). a significant improvement in the assimilated solution is
achieved.

about the TLM accuracy range. Of course, this conclu- mind, as well as the time decorrelation scale of the
sion would have to be tested with realistic models. model errors, in choosing the appropriate cycle length.

The cost reduction in the indirect method is less ob-
d. The cost vious. However. for well-conditioned representer ma-

One major reason why the representer method is not trices, the indirect method typically converges in a

widely implemented is the perceived computational number of iterations that is a fraction of the total num-

cost. The biggest reduction in cost is achieved by lim- ber of measurements. That is, the cost of the indirect

iting the outer loops to one, as was mentioned above, method is a fraction of the cost of the direct method.
Therefore, since cvclingadaointhouelopFurther gains in computational cost are obtained by g and avoiding the outer loops

cycling the representer method. Assume that the matrix reduce the cost of the representer method in the direct

inversion in the direct method is performed with a cost method, they will further reduce the cost in the indirect

of O(Mlog M) for computing M representer coeffi- method. Given the difficulties encountered by the indi-

cients, where M is the number of measurements. The rect method in the first cycle of one time unit, longer

cycling approach total cost will be N,, x O(Mcylog cycles were not implemented. The computational cost

M,,), where N, is the number of cycles and M, is the of the 20-cycle experiment with the conjugate gradient

number of measurements within each cycle (assuming using 4 outer loops in the first cycle and I outer loop in

that the measurements are uniformly distributed in the the subsequent cycles is 1.27 s, just slightly higher than

assimilation interval). Although Ny X M, = M, log the cost of the direct method, the excess cost being
My gets exponentially smaller with increastng y attributed to the outer loops in the first cycle.

thus, decreasing the computational cost as illustrated in
Table 1. However, there is a drawback to reducing the e. Strong constraint cycling versus veak constraint

cycle length. The data influence is extended beyond the cycling

cycle interval only through an improved initial condi- The assimilation problem can be solved using the
tion for the next cycle. Future data contained in subse- strong constraint representer approach. Here the
quent cycles will not contribute to the assimilation in strong and weak constraint solutions are compared
the current and past cycles. One should keep this in within the same setting. From the known sensitivity of



382 MONTHLY WEATHER REVIEW V[i 13i 135

1. TABLF I. Computational cost of the global and cyclirg solutionsil~l Direct

1 ,ousing the direct method with a single Outer loop.

5 Cost =.14 sý 2 4 5 10 20

Global cycles cycles cycles cycles cycles
04 6 8 4o 2 14 16 18 .0

Time (s) 21.37 9.33 4.49 3.59 1))90 1.0)

CG (4 outer iterations on all sequences)

Cost = s1 strong constraint is almost confined to the TLM validity
___ time, and needs quite a few cycles to start matching the

0 . . .4  .. ...0aion 1iu I's 18 data. In the experiment with cycles of two time units,1... the weak constraint accurately fits the data after three
C•• G (4 outer iteratons on justfirt seq uence) cyls u h to gc ntaint never does. When the

cycle length is decreased to one time unit, the weak
=• ICost = 1.2 s] constraint fits the data in the second cycle and after-

o0 2 4 . . . 0. .. .. . 1 ward, while the strong constraint starts fitting the data
T-me only in the 15th cycle. The computations here show the

Firo. 8. RMS of the misfit between assimilated and true solutions superior performance of the weak constraint approach.
using 20 cycles. Assimilated solutions are computed using (a) the
direct representer method (same as in Fig. 7a), (b) the indirect The weak constraint approach, however, comes with a

conjugate gradient method using four outer loops for each cycle, higher computation cost. For these experiments, the
and (c) the indirect conjugate gradient method using four outer computational cost of the strong constraint is about half
loops only for the first cycle. Also displayed in this figure are the of that for the weak constraint. The reason for this large
times required for each computation. The indirect approach (Fig. difference in cost is that the number of operations to
8c) is a more applicable method and has about the same cost as
the direct method (Fig. 8a). The indirect approach, however, takes propagate the Lorenz attractor is relatively small and is

about twice as long for the assimilated solution to reach an accu- about equal to the number of operations required to
rate level. convolve the model errors in space and time. For larger

operational models, this computational cost difference

the Lorenz model to initial conditions, the question one would be significantly smaller. Both approaches Could

tries to address by the strong constraint approach is perform well in operational settings if they are given
sufficient spinup cycles, less for the weak constraint.

whether it is possible to accurately fit the data within
the cycle by correcting/controlling only the initial con- f Assimil
dition. How short does a cycle need to be to achieve an ating o1ly the x tuarle
accurate solution'? The strong constraint solution is ob- It is unlikely that in realistic applications all compo-
tained by the same procedure as the weak, except that nents of a dynamical model can be observed or
the model error covariance is set to zero. In comparison sampled. For example, the majority of mcasuremcnlts
to Fig. 7, results in Fig. 10 reveal that the weak con- taken in the ocean are from the surface. To mimic this
straint solution is not only more accurate, but can also scenario, an experiment is carried out where only the x
afford longer cycles than the strong constraint. The component of the Lorenz model is sampled at the same

frequency of the 0.25 time unit. The cycling representer

15 - algorithm with cycles of one time unit and one outer
loop is used to assimilate these data. Results in Fig. II
show that the method is able to fit the data satisfacto-

10 - rily, albeit for a longer adjustment or spinup time. Com-
S...pared to Fig. 7a, it takes five additional cycles for the

2 assimilation to start matching the data. Thcrefore, a
-" . decrease in the total number of assimilated observa-

f . .tions and the fact that only one state variable is sampled
are not limiting factors for the proposed algorithm.

00 5 10 15 20 g. Firrst cycle accuracy as a fiaction of initial

Flo. 9. RMS of the misfit between assimilated and true solutions condition error varian(ce( and outer loops
using 40 equal-length cycles. The assimilated solution is computed
using the indirect conjugate gradient method with a single outer As mentioned above, the proposed algorithm does
loop applied to all cycles. not solely rely on the ability to obtain a good analysis in
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Fi(;. 10. Same as in Fig. 7, except that the strong constraint representer method is used instead of the weak
constraint. Comparison of this figure with Fig. 7 shows the benefit of using weak constraint to assimilate data with
strongly nonlinear dynamic systems.

the first cycle. Since the Lorenz model is extremely errors with one outer loop (Fig. 7a) produced an accu-
sensitive to initial perturbations, a significantly large rate assimilated solution after two cycles. Therefore,
error was prescribed to the initial condition to test the one must determine if it is worth the computational cost
robustness of the algorithm. It was shown in Figs. 8b,c to perform additional outer loops to improve the accu-
that comparable accuracy can be obtained using either racy of the first cycle, knowing that it may not signifi-
outer loops in every cycle or just in the first cycle. An cantly influence the accuracy of subsequent cycles.
experiment is presented here that displays the accuracy
of the assimilation after one time unit as a function of
the magnitude of the initial perturbations and the num-
ber of outer loops. The results in Fig. 12 show that the
accuracy of the assimilated solution at the end of the
first cycle decreases as the RMS of the initial condition
error increases, which is to be expected, and that the same 10
accuracy increases with the number of outer loops used. g

For initial condition RMS errors below 20%, one
outer loop is sufficient to achieve an accurate solution 2

at the end of the first cycle (i.e., the data misfit is less
than the data error). When the initial condition RMS -

error is between 20% and 40%, two outer loops are
necessary. Three outer loops are needed when the
RMS is between 40% and 45%, and beyond 45°/, at
least five outer loops are needed. The initial condition
errors selected in section 2 and used in the assimilation 0 2 4 6 8 10 12 14 16 is 20

Time

experiments (Fig. 2a) have an RMS error of 85%, FiR;. 11. RMS of the misfit between assimilated and true solu-

which according to Fig. 12, would require at least five tions using only the x observations sampled every 0.25 time unit

outer loops to obtain an accurate solution at the end of and the direct cycling representer algorithm with 20 cycles and

the first cycle. However, using these initial condition one outer loop.
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Fi(i. 12. RMS of posterior mnisfit at the end of the first cycle as Fi(;. 13. RMS of posterior rnisfit at tile end ofl he fi st cychl as
a function of outer loops and the initial condition RMS error, a function of the parameter error (in ternms of percelntage of true

value) and outer loops.

h. Model error through perturbed parameters

The model error described in section 2 consists of Therefore, for a fluid depth of 500I m and a conductivity

perturbations of the right-hand side of the model while of 25 x 10 3 a time unit in the Lorenz model eoe-

keeping the same dynamics that generated the obser- sponds to 7.818 days. The TLM stability range depends
vations. Another possible method is to generate the on the resolved processes and scales, the model resolu-

model error by perturbing the parameters in the dy- tion, and of course, the nonlinear interactions within
namical model, y to the model dynamics. For example, the TLM of a gen-Contary the revousexpeimetseral circulation ocean model forced by climatological or
perturbing the parameters in the model ensures that the

dynamics used in the assimilation are different from the monthly means atmospheric fluxes and designed to re-

dynamics that generated the data. The perturbation of solve seasonal to interannual variability in the tropical

the model parameters is similar to that of the initial Pacific will be stable for months (Ngodock ct al. 2000),
conditions described in section 2. First the RMS of pa- whereas the TLM of a fine resolution coastal circula-
rameters is computed, ais a tion ocean model forced with synoptic atmospheric

and te peturbaion er- luxes with complex bottom topography may not be
centage of that RMS multiplied by a normally distrib-

stable beyond a week or two. In thle latter case any
uted random number. For each selection of the pertur- st experimen ui the.representer me for

bation magnitude, 1000 realizations of the random
number are used in separate assimilation experiments, time ranges longer than a month will benefit from the

generating a 1000-member ensemble of assimilated so- algorithm proposed in this study. Additionally, the
outer loops may not be restricted to the first cycle as islutions. In Fig. 13, the mean of this ensemble of poste-

rior misfits at the end of the first cycle is shown as a the case here with the Lorenz model. They can he
function of the perturbation magnitude and the outer turned on as needed. In real-world applications, even

loops. As the parameter perturbation magnitude varies though the assimilation system has been spun up over
from 0.1% to 10%, there is only a slight increase in the several cycles and only one outer loop sufficed for the
posterior misfits at the end of the first cycle in the first previous cycle, there may arise a situation where non-

outer loop. Figure 13 indicates that the misfits decrease linearities become stronger than usual. causing tie
as more outer loops are used, with the biggest decrease background in the current cycle (i.e.. the forecast from

in the second and third outer loops. However, at least the previous cycle) to deviate significantly far from the
data.

five outer loops are needed to obtain an accurate solu-

tion at the end of the first cycle. After the first outer The proposed algorithm will therefore be suitable
both for reanalysis computations and cycles of analysisloop the misfits are fand predictions (e.g., in coastal ocean monitoring).

between 2% and 10% in each subsequent outer loop.

5. Discussion 6. Conclusions

The implications of the proposed algorithm to the The impact of TLM accuracy in a cycling representer
real world of oceanography and meteorology are im- implementation is examined using the Lorenz attractor.
mediate. The dimensionless time (T) in the Lorenz Errors in the initial conditions and dynamics of the
model is related to a simplified one-layer atmospheric Lorenz attractor are assumed and added to the back-
model time (t) by Ti- 7 r2'ft 2(1 + a

2
)K, where a = 0.5, ground. The error estimates used here indicate that the

H is the depth of the fluid, and K is the conductivity. TLM about this background is accurate LIp to 0.4 time
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units. For the Lorenz equations, weak constraint as- straint variational assimilation, in addition to the reduc-
similation globally over a 20 time unit period is not tion obtained by cycling.
possible because of the inaccuracy and instability of the The robustness of the proposed algorithm is demon-
TLM over such a long time period. Experiments using strated by its ability to recover the true solution after
successively shorter time intervals indicate that a weak few spinup cycles in a series of separate experiments:
constraint cycling representer assimilation is able to the number of measurements was decreased and only
provide an accurate solution with cycle intervals of two the x component of the Lorenz model was sampled. the
time units or less. initial condition error magnitude was varied, and finally

For the problems examined here, it is found that once the model error was introduced by perturbing the pa-
a sufficiently accurate initial condition is provided for a rameters in the dynamical model. In these settings ad-
cycle, the TLM is sufficiently accurate in subsequent ditional outer loops were necessary to achieve an accu-
cycles therefore neglecting the need for outer loops to rate solution at the end of the first cycle. However, this
perform the nonlinear minimization. For the Lorenz study clearly shows that dropping the outer loops was
attractor system, outer loops are required for the first not detrimental to the algorithm, even with the rather

cycle and not for subsequent cycles, pessimistic choice of initial condition and model errors.
The representer method is used for the 4DVAR
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direct approach for both global and cycling assimila- Naval Research Laboratory as part of the project

tions. and the indirect approach for the cycling. The "Slope to Shelf Energetics and Exchange Dynamics"

first guess is taken as the nonlinear background solu- (NRL/JAi7320-05-5286). The authors are thankful to

tion that serves for the linearization in the TLM. The two anonymous reviewers whose comments helped to

cycling approach is motivated by the limited stability of improve the quality of this paper.

the TLM and the potential operational applications.
For the selected set of initial and model errors, the APPENDIX
global assimilation solution could track the data for
about seven time units. After this time, the solution Solving the Linear EL System Using the
rapidly diverges from the data owing to unbounded er- Representer Method
ror growth in the TLM. The cycling solution is more apt Given a background field x'. the linear EL to be
to fit the data, especially with small cycle lengths, be- solved is
cause the error growth in the TLM is limited. The iter-
ated indirect representer method was then imple- dA _ [dF(xr) TA I

mented via the CGM. A slow convergence of the CGM - dt -= IHi)
was observed in the first cycle, due to the poor condi-

tioning of the representer matrix. By applying four A(T) 0 (At)
outer loops to this first cycle, a sufficiently accurate
assimilation was achieved. When the cycle length was and
reduced to 0.5 time units, which is about the time range
of the TLM accuracy, the indirect approach converged d- dF=x) ++
rather well without outer loops. In addition, these weak dx

constraint assimilation experiments were shown to sig- X(0) = + CiA(0). (A2)
nificantly outperform their strong constraint counter-
parts. The representer expansion for uncoupling Eqs. (Al)-

* This paper shows that cycling the representer method (A2) is
for strongly nonlinear problems is a valuable assimila-
tion tool. The cycle length could be slightly longer than M

the time range of accuracy of the TLM. The indirect i(t) = xI(t) + a ,,,r..(t). (A3)

representer algorithm may or may not require outer
loops in the early cycles depending on the length of the Here the background (i.e., the trajectory around which
cycle. Once the assimilated solution becomes suffi- the model is linearized) is also taken as the first guess
ciently accurate in the estimation of the final state for (the solution that the assimilation will correct). The
the early cycles, the need of outer loops is removed. representer functions r,,,. n = 1, ... M are computed
This significantly reduces the cost of the weak con- from
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dA,,, [dF(xr) r - and the adjoint of the Lorenz model is given by
d - [-- dx I At,,,- HT6(t - t,,) ddt dA' T '+1, ZI % f\

A(7 =0 (A4) dt

and t- rA' - A' + xIAZ

dr,,, dF(x'r) dA,

d = dx (r,,,) + C,,,, A,,, dt - -x'A' - f3A:. (A8)

r,,,(0) = CiA,,,(0). (A5) REFERENCES
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