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[i] A high-resolution numerical model of the Adriatic Sea [3] For Lagrangian based observations, however, model
is used to predict Lagrangian coherent structure boundaries, prediction is a challenging problem for two main reasons.
quantified by finite-size Lyapunov exponents (FSLE), for First, model Lagrangian trajectories depend intimately on
flow features in the region of the Gargano Peninsula during details of the Eulerian velocity field which inevitably
the course of the Dynamics of the Adriatic in Real Time contains a number of error sources. Forcing due to wind
(DART) observational program. FSLE fields computed stress, heat flux, precipitation, evaporation, river input, and
from two-day model forecasts of the surface velocity open boundary conditions introduce errors due to the
indicate distinct regions of high relative drifter dispersion. sparseness in space and time of the observational data sets.
Model predictions of such regions located on available ship- Coastal models contain errors due to missing or parameter-
tracks were used to direct the launching of pairs of surface ized processes, such as non-hydrostatic dynamics, details of
drifters on three days during March 2006, with the goal of air-sea interaction, and surface mixed-layer physics. The
maximize coverage of the sampling area. For two of the high Reynolds number of coastal flows implies that not all
three, launches, the observed trajectories separated at scales of motion and domain geometry are resolved. While
locations and along directions closely approximated by observed drifter trajectories integrate the dynamics of the
those predicted from the model FSLE fields. The third case complete spectrum of spatial and temporal scales in the
acted as an inadvertent control experiment. Model ocean, synthetic model trajectories contain errors associated
predictions at release-time showed minimal FSLE with the effect of sub-grid scales on the resolved motion.
structure at the launch locations and the observed drifter These errors propagate from the Eulerian field forecast to
pair advected in a coherent fashion for two days. While the Lagrangian transport prediction and accumulate in time.
there are considerable differences between individual drifter Second, even the simplest time-dependent Eulerian velocity
observations and trajectory envelopes computed from fields are non-linear in the spatial variables leading to
ensembles of synthetic drifters, the experiment confirms Lagrangian Chaos in the particle trajectories with rapid
the model's ability to approximate the location and shape of error growth due to sensitivity to initial conditions and
energetic flow features controlling the near-time fate of details of the Eulerian flow field [Aref, 1984]. co,quasi-Lagrangian particles. Overall, the combined use of [4] Nevertheless, significant progress has been made in
FSLEs with realistic coastal circulation models appears to Lagrangian prediction during the last decade. A number of
be a promising avenue to aid real-time-directed drifter new analysis methods based on dynamical systems theory
launches in observational programs. Citation: Haza, A. C., et have been put forth to identify so-called Lagrangian 0
a]. (2007), Model-based directed drifter launches in the Adriatic coherent structures, namely Lagrangian boundaries separat-
Sea: Results from the DART experiment, Geophys. Res. Lett., 34, ing the domain into sets of initial conditions with different 0
L10605, doi:l0.1029/2007GL029634. advective dynamics. Methods for identifying such structures,

defined either directly in terms of distinguished flow invar- -I
iants [Hailer and Poje, 1998] or by ridges in spatial distri-

1. Lagranglan Predicton Problem butions of finite-time or finite-size Lyapunov exponents C
[2] The combination of increased computational power, [Shadden etal., 2005] have been tested ina number of realistic

improved data assimilation techniques and both the quantity ocean models [Kuznetsov et al, 2002; d'Ovidio et al, 2004].
and quality of available observations has resulted in marked The use of Lagrangian structure information in the context of t\I
improvements in the ability to model ocean dynamics on directed drifter launch strategies has been studied in ideal-
regional scales. The increased realism of coastal and sub- ized model situations by Hernandez et al [1995], Poje et al.
basin scale models has naturally led to interest in using the [2002], and Molcard et at. [2005] with promising results.
latest predictive models to inform the design of observa- [5] In this paper, we report the results from an effort to
tional programs. address the following questions: (1) Are current high-
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Figure 1. (right) The location of the experimental domain within the Adriatic Sea and (left) the forecasted surface NCOM
velocity field on March 15, 2006, in the DART region. Superimposed are the 2-day model based FSLE field (in hour- 1, 6b =
0.45 km, r = 15), the ship track (regular line) and the location of a hyperbolic point determined by the intersection of in-
flowing/stable (blue) and out-flowing/unstable (red) FSLE branches (green circle).

resolution coastal ocean models able to capture and predict Cape. A suite of different measurements were used in
the main patterns of transport related to the Lagrangian conjunction with a real-time modeling effort. As part of
structure of ocean flows, or does this remain a challenge for DART06A, a total of 12 surface drifters (CODE and SVP
the future? (2) Can Lagrangian methods applied to the latest types described by Ursella et al. [2006]) were successfully
predictive coastal ocean models be used to direct real-time launched between March 11 and 23. During this period the
drifter launches in an observational program? weather was quite variable as shown by the time series of

[6] We show results from launches of surface drifters the wind stress vector (Figure 2a). A strong Bora (north-
during the DART experiment in the Adriatic Sea, a sub- easterly wind) event occurred in the first few days of the
basin of the Mediterranean Sea (Figure 1). DART involved experiment, followed by a period of relative calm from
two trials, namely DART06A in March 2006 and March 14 to March 20 and then by a Sirocco (southeasterly
DART06B in August 2006. We focus on observations wind) event around March 20. During the calm periods, the
during DART06A here, concentrating on a set of surface surface circulation displays a state described by Veneziani et
drifters launched during a high resolution hydrographic ship al. [2007] based on the analysis of historical drifter data.
survey. Drifter launches were specifically directed based on [8] The mean flow is characterized by a well-established,
maxima of finite-size Lyapunov exponents calculated from stable WAC and both northern and southern cyclonic gyres
the Navy Coastal Ocean Model (NCOM) configured in the which separate roughly at the Palagruza Sill extending
Adriatic Sea to provide two-day hind and forecasts. The offshore from the Gargano Cape. The inter-gyre region is
specific goal was to choose positions that would maximize populated by time dependent eddies and intense mesoscale
the particle spreading and therefore the spatial coverage of variability. As shown in the snapshot of the model velocity
sampling. To the knowledge of the authors, this is the first in the circled region of Figure 1, the structure of pairs of
time that drifter launches during an observational program liked-signed circulations often produces strong saddle-type
have been guided in near real time based on modem coastal stagnation points in the frozen-time flow field. Persistent
model output and Lagrangian techniques. saddle-type stagnation points may lead to hyperbolic tra-

jectories in the Lagrangian frame. Such trajectories, which
2. DART Program and Launch Protocol attract (repel) nearby trajectories along identifiable in-

flowing (out-flowing) directions, are known to organize
[7] A main objective of the multi-institutional DART the Lagrangian transport.

experiment in the coastal area of the western central [9] The main sampling goal for the drifters was to
Adriatic (Figure 1) is to study mesoscale instabilities arising achieve good coverage of the DART area. To this end,
in the Western Adriatic Current (WAC) near the Gargano launches were planned in the two dynamically distinct areas
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Figure 2. (a) Time-evolution of spatially-averaged ALADIN wind stress vector (in Pa). (b) Observed drifter trajectories
(36 hour low-pass filtered). Circles indicate the launch positions.

namely in the WAC and along the inter-gyre boundary [1994], except for the Po river for which daily observed
offshore from the Gargano Cape. The exact launch locations discharge values were used (courtesy of ARPA-SIM Emilia
and times were constrained by logistical considerations Romagna).
including weather conditions and the pre-planned ship [ii] Given the Eulerian model output, synthetic drifter
track. The launch locations in the WAC were determined trajectories were computed using standard particle advec-
a-priori based on historical information and required no tion techniques. A practical method to identify high-
real-time, model-based direction effort. Three directed dispersion regions and mixing boundaries upon which to
launches were made targeting the region off-shore from base drifter launch strategies is the computation of the
the Cape. The launch locations and trajectories of all drifters Lagrangian spatial structures produced by the local, finite-
are shown in Figure 2b for the period March 11-30. The size Lyapunov exponent (FSLE) [Artale et al., 1997). The
drifters provide good coverage of the region, satisfying the FSLE is a measure of the time required for a pair of
general goal of the sampling strategy. This is in part due to particles to separate a finite distance. The FSLE, A, is
directing drifter launches along the out-flowing branch of given by A(x, t, 61, r) = r-1log r, where 7- is the time
identifiable Lagrangian boundaries. As shown by Molcard required for a particle pair centered at x with an initial
et al. (2005], this strategy optimizes the relative dispersion distance 6, at time t to separate a distance 6f = r bi.
of drifters, the overall data coverage, and the sampling of [12] Model FSLE fields were calculated from sets of
high kinetic energy features in the flow field. A prerequisite 5 synthetic trajectories centered at every grid point in
for implementing this strategy is a methodical identification the NCOM model. The FSLE map of the DART region
of the Lagrangian features, at a particular day is obtained by advecting a total of

114,250 particles both forward in time from the 2 day-
3. Identification of Lagranglan Features forecast velocities, and backward in time from the 2 day-

hind-cast velocities.
[io] The Eulerian velocity field in the study region was [13] As explained by d'Ovidio et at [2004] and Molcard

obtained from NCOM. NCOM and its setup for the Adriatic et at. [2005], ridges in the FSLE field indicate potential
are described by Martin et at [2006]. The domain consists transport barriers in the Lagrangian flow. The forward-in-
of the entire Adriatic Sea and includes the Strait of Otranto time calculations approximate dynamically significant in-
and a small part of the northern Ionian Sea. The horizontal flowing Lagrangian structures while the backward-in-time
grid resolution is 1020 m. The vertical grid consists of calculations indicate the location of out-flowing structures.
32 total layers, with 22 sigma layers used from the surface Hyperbolic regions of strong (near exponential) relative
down to a depth of 291 m and level coordinates used below particle dispersion are evidenced by those locations where
291 m. Daily boundary conditions were taken from hind- the in-flowing and out-flowing ridges intersect. Isolated
casts and forecasts of a global model [Barron et al., 2004]. intersections of FSLE maxima indicate the time-dependent
Tidal forcing was provided for eight constituents using tidal location of hyperbolic trajectories in the flow. We refer to
elevation and depth-averaged normal and tangential veloc- the coordinates of identifiable, isolated intersections of
ities at the open boundaries from the Oregon State Univer- forward-backward FSLE maxima as hyperbolic points
sity tidal data bases. Tidal potential forcing was used in the (HP) in instantaneous time-slices of the fields.
interior. Atmospheric forcing was obtained from the Aire [14] The FSLE maps are used in conjunction with
Limitee Adaptation Dynamique development InterNational the daily velocity fields to locate persistent and isolated
(ALADIN) atmospheric model run by the Croatian Meteo- hyperbolic structures within the survey region. As seen in
rological and Hydrological Service. The NCOM sea surface Figure 1, the high shear edge of the WAC is a region of
temperature (SST) was relaxed towards a satellite SST intense foliation of Lagrangian structures shown by over-
analysis. River and runoff inflows for the Adriatic were lapping FSLE maxima. These mark the complicated path-
taken from the monthly climatological data base of Raicich ways by which Lagrangian parcels are entrained and
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Figure 3. The initial 2-day trajectories for real (gray in top panels, green and purple in bottom panels) drifters launched on
March 16, March 19, and March 23 (launch position indicated by circles). Superimposed are (a, b, c) the FSLE (6, = 0.45 km
and r = 40) computed at launch time, and (d, e, f) synthetic drifters released in regular arrays. Red (blue) dots indicate initial
(final) positions of the synthetic drifters.

detrained from the boundary current. In this sense, the 4. Results of Directed Launches
tangle of FSLE curves marks the spatial extent of the 4.1. Launch Set 1: March 16, Buoys 14715 and 44924
fluctuations in the WAC during the prescribed time interval. [17] Due in part to the low-intensity winds (Figure 2a), the
In contrast to the edge of the WAC, the FSLE calculations HP is particularly visible from the FSLE map (Figure 3a).
indicate a pair of semi-isolated intersections to the east in Two locations are selected along the track corresponding to
the interior region between the 2 cyclonic gyres. For the the out-flowing Lagrangian branches from the HP, based on
purposes of directing drifter launches, we concentrate on the the FSLE extrema. As a result, the drifters diverged imme-
area near the southern intersection, marked by a green circle and propagated in directions. The success
in Figure 1, which lies along the predetermined ship track. of this launch is due in part to the nearly-stationary position

[is] Once the location of a strongly hyperbolic region of the HP over the following two days, and effectively real
was determined from isolated intersections of the FSLE time implementation of the suggested launch locations. The
fields from two-day NCOM forecasts and hind-casts, a synthetic trajectories also confirm the polarized nature of
subset of 10-20 synthetic drifters were launched in this the Lagrangian dispersion in the vicinity of the launch, as all
selected area and advected by the 2-day-forecast fields as a synthetic particles are transported along only two out-
preliminary test. Finally, 2-3 drifter launch locations were synt parcles are t d ay
chosen to straddle the in-flowing structure and to lie as close flowing branches (Figure 3d).
to the out-flowing pathway as the ship-track would allow. 4.2. Launch Set 2: March 19, Buoys 44925 and 44927
These locations were then communicated to the ship on a [is] Launch locations were initially chosen based on the
real-time basis. model-forecasted FSLE fields for March 17, to straddle an

[16] Despite best efforts, practical constraints (weather, in-flowing branch of an identified Lagrangian structure
other observational priorities, etc.) affected the time boundary near a HP with the expectations of rapid diver-
between the launch prediction analysis and the actual time gence of the drifter pair. But, logistical problems delayed
of drifter deployment. Also, model predictions of the the actual drifter launch until March 19. As shown in
location of strong FSLE maxima often occurred beyond Figure 3b, the model accurately predicts the rapid reaction
the eastern boundary of the ship's predetermined track of the flow to the changing wind conditions and the
(Figure 1), further limiting number and duration of desirable movement of strong intersections of FSLE maxima away
spatial and temporal launch coordinates, from the previously determined launch locations. As such,

the actual drifter launch occurred in a region predicted by
the model to have minimal relative dispersion.
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[19] The observed drifter trajectories shown in Figure 3b diagnostics to be used in real-time-directed drifter launches
confirm the model predictions, showing little relative dis- in observational programs.
persion during the first 24 hours and reacting to the onset of
the south-easterly wind stress by moving, coherently, to the [23] Acknowledgments. We are grateful to ONR via grants N00014-
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launched at the same time show a similar tendency to retreat (Martin, Book), N00014-03-1-0291 (Poulain), N00014-00-0019 (Poje), and
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