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ABSTRACT 

Control of access to information based on temporal attributes has many potential 

applications.  Examples include student user accounts set to expire upon graduation; files 

marked as time-sensitive so that their contents can be protected appropriately and the 

period of access to them controlled; and cryptographic keys configured to automatically 

expire and be unusable beyond a specific time.  This thesis implements a prototype of the 

Time Interval Access Control (TIAC) model in the context of a protected file system for 

the popular open-source Linux operating system. The Linux Security Module framework 

is used for the implementation, which includes temporal attributes associated both with 

the files and the users. 

The implementation includes modifications to the file system as well as low-level 

information access constructs. As part of the design process, testing and performance 

analysis were conducted. 

Since the temporal access control mechanism is built into the kernel rather than 

the application, bypassing the mechanism becomes more difficult.  Kernel level 

implementation also affords the same policy enforcement functionality to different 

applications, thus reducing human errors in their development. This thesis is relevant to 

the research on dynamic security services for information protection envisioned by the 

DoD Global Information Grid (GIG).   
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I.  INTRODUCTION 

A. MOTIVATION  
Controlling access to information based upon time constraints has potential 

applications in government, military, financial, and educational realms.  Temporal access 

control can permit access to information based upon a start time and revoke access based 

upon a stop time.  For example, in the government and military, access to cryptographic 

keys used to encrypt information can expire at a certain time to further protect the 

confidentiality of the information.  In the financial realm, organizations award individuals 

incentives in the form of stock options to motivate its employees.  Typically, these 

incentives are time sensitive, i.e. they cannot be redeemed until a certain time in the 

future.  Finally, in education, there is a constant flux of incoming and exiting students.  

Providing availability to access computer resources and controlling such access based 

upon the time during which the students are enrolled is a task simplified with temporal 

access control.   

The Global Information Grid envisions networks of computing systems that 

enable global sharing and proper control of information through dynamic security 

services.  Time-based access control systems can support dynamic security services by 

changing access permissions based upon time.  The capability of such a system to grant 

or revoke access at a future time as well limiting access to information to a specific time 

interval can provide a new control vector for information sharing not available in 

traditional access control systems. 

In a computer system, there is more than one component into which a time-based 

access control mechanism can be built.  Two such components are the application and the 

operating system.  If the mechanism resides in the operating system, it will be much 

harder for a malicious user to bypass the mechanism.  Since all applications depend on 

fundamental system services provided by the operating system, i.e. device read, write, 

etc, the operating system can be a focal point of control for many applications that need 

access to system resources.  This centralized access control minimizes the complexity of 

developing a complete set of applications attempting to enforce a time-based policy and 
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thus results in better security.  For example, consider the scenario where the access 

control mechanism is built into only one application, if the user can copy the information 

into another application where no such mechanism is in place, he will have successfully 

bypassed the access control mechanism.  Also, to a more sophisticated attacker, 

bypassing the access control mechanism at the application level could be as easy as 

creating his own application to access the information.  This thesis explores a prototype 

implementation of temporal access control in an operating system.              

B. PURPOSE 
Afinidad et al. described a Time Interval Access Control (TIAC) model in which 

time-based access control is formally modeled using interval algebra [1, 3].  Here, an 

implementation of this model is prototyped in the popular Linux operating system.  This 

work helps to answer the following questions:  

• What specific changes are necessary to the Linux kernel to implement 
TIAC model for file access? 

• What practical design implications are there for building such a system? 

Additionally, this prototype will serve as a baseline for performance evaluations of future 

implementations of time-based systems.  To establish this baseline, the performance 

overhead of this implementation will be compared with the performance of an 

unmodified Linux operating system.  Finally, this prototype may serve as a basis for 

exploring user acceptability of TIAC.   

C. ORGANIZATION OF THESIS 
This thesis is organized as follows: 

• This chapter (Chapter I) provided an introduction by describing the 
motivation and purpose of the thesis.  The TIAC model was briefly 
introduced and serves as a basis for this study. 

• Chapter II provides a more detailed description of the TIAC model.  It also 
introduces the Temporal Interval Memory Protection System (TIMPS) 
which was a study of an application of TIAC on memory at the hardware 
level.  The Linux operating system’s file management system is described 
next to provide background for the envisioned implementation of TIAC.    
Finally, Linux command line utilities and the Command Line Interface 
(CLI) used to interact with and test the system are described. The CLI 
described provides a basis for the envisioned implementation of the tool 
for interacting with the time-based access control system.   
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• Chapter III gives a high level description of the requirements and design 
for the Time Interval File Protection System (TIFPS) and associated CLI 
tool used for interacting with the time-based access control system.  This 
chapter also discusses implementation choices made during the research.  
Next, a description of the development environment is given.  Finally, 
selected implementation details for the system are provided. 

• Chapter IV describes the high level test plan and the analysis of the test 
results.  Testing plan is divided into three categories:  access control, 
performance, and concurrency testing. 

• Chapter V concludes with a thesis summary and suggestions for short term 
and long term future work. 

• The appendices follow with a listing of the TIFPS-related source code in 
Appendix A.  The installation and usage guide for TIFPS are located in 
Appendix B and C, respectively.  Appendix D captures the test 
procedures, scripts, and results based on the testing plan in Chapter IV.  
Finally, Appendix E provides configuration files used in the development 
environment. 

D.   SUMMARY 
In this introductory chapter, we motivated this research by describing potential 

applications of a temporal access control system and justified the benefit of kernel-level 

access control compared with application-level access control.  The organization of the 

thesis was then presented.  We continue with the background of this research in Chapter 

II. 
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II.  BACKGROUND 

This chapter provides background information that motivated and influenced the 

work performed in this research.  It starts with a description of the Time Interval Access 

Control (TIAC) model which is a formal model that describes the authorization of access 

to objects based upon the time attributes of the subject and the object [1,3].  From the 

TIAC model, a time-based, hardware level, memory protection scheme call Temporal 

Interval Memory Protection System (TIMPS) was devised [2].  A brief discussion on how 

TIMPS works and our consideration of its use for this research follows.  In this research, 

we will provide a design and implementation of the TIAC model applied to regular files 

and directories in a Linux operating system (kernel).  Thus, we will give a description of 

the Linux file management system.  Finally, Linux command line utilities that will be 

used or built to demonstrate time-based file and directory access control will be 

discussed. 

A. TIME INTERVAL ACCESS CONTROL (TIAC) MODEL 
To correctly implement a time based access control system, unambiguous 

semantics needs to be first developed to describe the desired security policies.  The TIAC 

model is a formal mathematical model developed using interval algebra.  This model 

associates time attributes with subject and object entities and describes access 

authorizations using the notion of access graphs.  Using formal semantics to describe 

access policy gives us the ability to precisely decide, at any given time, when a subject 

with a given set of time attributes, has permissions to access an object, which also has 

time attributes.  Since the model has only three time intervals, i.e. those associated with 

subject and object, and the time interval during which access is requested, access policies 

using this model can be checked for consistency using existing algorithms [1].  The 

details of the formal model are described in a recent paper by Afinidad et al. [1].  It is 

important to note that this model differs from previous models in that it supports policies 

based upon temporal attributes of subject and object rather than object alone. 

B.  TIME INTERVAL MEMORY PROTECTION SYSTEM (TIMPS) 

Based on the TIAC model, Afinidad et al. also presented the Time Interval 

Memory Protection Systems (TIMPS) where all access to memory is mediated according 
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to time-based access control policy [2].  To understand how TIMPS works, we must first 

understand how memory management works in modern operating systems.  To support 

multi-tasking, most modern operating systems (including Linux) use a memory 

management technique known as paging.  In paging, physical memory is divided into 

chunks of equal size called page frames.  Each running process in the operating system 

has its own virtual memory address space which consists of virtual memory chunks 

appropriately called pages.  These virtual pages are mapped to the physical page frames 

by a memory management unit (MMU).  The MMU keeps the address space of each 

process separate by mapping the virtual pages to different physical page frames.  

Therefore, when a process needs to access memory, a translation of the virtual page to the 

physical page frame must occur.  The access control mechanism in the TIMPS protection 

schemes lies in the translation of virtual memory addresses to the corresponding physical 

memory addresses in the paging mechanism. 

The work done on TIMPS previously was largely performance motivated and 

used hardware simulation to provide the necessary hardware support.  Afinidad et al. 

designed, compared, and contrasted different schemes using a combination of hardware 

and software to implement time-based access control to memory.  To help analyze the 

results, performance of the access control mechanism was divided into an initial 

authorization phase and an ongoing access phase.  The initial authorization phase 

describes the access mediation of a new request by a subject process to a memory object.  

In this phase, temporal logic used to calculate the expiration time resides in either 

hardware or software.  If access is allowed as a result of this calculation, the expiration 

time is set in appropriate hardware fields so that subsequent checks for ongoing access 

can occur by checking only the expiration time.  The ongoing access phase describes the 

access mediation that occurs after a subject has been granted initial access to an object.  

In this phase, temporal logic is implemented in hardware to check access of memory 

addresses by using the expiration time calculated in the initial authorization phase.  The 

results of the TIMPS study can be summarized as follows.  For systems that tend to spend 

more time in the ongoing access phase rather than initial authorization (i.e. personal 

desktop computers, PDAs, laptops), computations related to calculating the initial 

expiration time of a memory chunk can reside in software since the performance benefit 
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of implementing the logic in hardware is negligible.  For systems that spend a lot of time 

in the initial authorization phase (i.e. Servers), the study recommended that the temporal 

logic used to calculate the expiration time of allocated memory objects be implemented 

in hardware as an added module to the CPU rather than software. 

In this research, we considered implementing TIMPS completely in software for 

the purpose of file access using an existing operating system, Fedora Core 5 running the 

Linux 2.6.15.  The motivations for this software implementation are:  

1.   To provide a framework for future time-based access control systems in 
non-simulated environments. 

2.   To provide a baseline for future performance studies in true hardware 
environments. 

3.   To potentially provide a means to conduct user-acceptance studies of time-
based access control systems. 

However, upon a more detailed study of potential designs and implementation, we were 

hindered by a problem caused by the paging mechanism.  To understand the problem, 

note that the granularity of memory access control is in pages that are typically 4K in 

size.  Assume that we want to end access to the memory location where protected file 

content has been read.  If this memory location is not page aligned and we deny access to 

the entire page, we will also be denying access to variables that may be needed by the 

process in order to run correctly.  In this research, access control to files is the focus, 

therefore, file-level instead of memory-level granularity will be used for the design and 

implementation of the time-based access control system.  It is important to clarify the 

meaning of “files” in this implementation.  In Linux, almost everything is considered a 

“file”; directories, network sockets, devices, symbolic links, regular files in a mounted 

file system, etc.  In this implementation, when a “file” or “regular file” is mentioned, it 

refers to a regular file in a mounted file system.    

C. LINUX FILE MANAGEMENT 
The Linux kernel implements a software layer that handles all system calls related 

to a standard Unix-based file system.  This arrangement allows different file systems to 

coexist and interoperate on the Linux operating system and enables file operations on 

these different file systems independent of the file system type.  The software abstraction 

is called the Virtual File System (VFS) and consists of four structures/objects.  They are:   
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• The super block object, which describes information about the specific 
mounted file system and corresponds to the file system super-block or 
control block. 

• The inode object, which contains information needed to manipulate a file, 
directories, and other file system objects.  Access permissions, owner, 
group, and time information associated with the file are stored in this 
structure. 

• The dentry object, which represents a directory entry, a single component 
of a path.  For example, /bin/emacs consists of the following dentry 
objects: “/”, “bin”, and “emacs”.  It is important to note that directories are 
treated as files in Linux. 

• The file object, which represents an open file associated with a process 
that opened it. 

In addition to the objects described above for controlling access to files and 

directories, Linux has implemented Extended Attributes (EA) for most file systems 

starting with the 2.6 kernel.  EAs are name/value pairs associated and stored permanently 

with files that allow additional control over how files are accessed.  This feature enables a 

consistent means to extend file system capabilities and maintain file system 

independence.  Security Enhanced Linux (SELinux), a flexible access control mechanism 

recently added to Linux by the NSA largely known for enforcing mandatory access 

control policies, uses EAs for labeling files.  There are four predefined namespaces 

supported in the Linux 2.6.15 kernel.  They are:  security, system, trusted, and user.  The 

following is a description of each of these namespaces. 

Extended security attributes 

The security attribute namespace is used by kernel security modules, such as 

Security Enhanced Linux.  Read and write access permissions to security 

attributes depend on the policy implemented for each security attribute by the 

security module.  When no security module is loaded, all processes have read 

access to extended security attributes, and write access is limited to processes that 

have the CAP_SYS_ADMIN capability. 
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Extended system attributes 

Extended system attributes are used by the kernel to store system objects such as 

Access Control Lists and Capabilities.  Read and write access permissions to 

system attributes depend on the policy implemented for each system attribute 

implemented by file systems in the kernel. 

Trusted extended attributes 

Trusted extended attributes are visible and accessible only to processes that have 

the CAP_SYS_ADMIN capability (the super user usually has this capability).  

Attributes in this class are used to implement mechanisms in user space (i.e., 

outside the kernel) which keep information in extended attributes to which 

ordinary processes should not have access, i.e. md5 checksums. 

Extended user attributes 

Extended user attributes may be assigned to files and directories for storing 

arbitrary additional information such as the mime type, character set or encoding 

of a file. The access permissions for user attributes are defined by the file 

permission bits. 

In this research, extended security attributes will be used to label files and 

directories with temporal attributes.   

D. LINUX COMMAND LINE UTILITIES 
In this research, a temporal access control mechanism will be built into the Linux 

kernel for controlling file and directory access.  To demonstrate and test the new kernel 

prototype functionality, standard Linux command line utilities will be used.  It is also 

anticipated that new command line utilities will be built to interface with the time-based 

access control system.  These command line utilities are discussed in this section.   

Linux provides a set of standard system utilities for interacting with the system.  

These utilities are issued to the system via the Command Line Interface (CLI).  For 

example, to display the contents of a text file, the command cat can be used.  To display 

the contents of a directory, the command ls can be used.  Each of these system commands  
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includes various options settable by flags.  The usage instructions of the commands as 

well as the various flag options can be retrieved by using the man pages.  For example, to 

see all the options for cat, type: 

$  man cat  

In this time-based access control system, if based on its temporal attributes, access 

to a file or directory has expired, the kernel should return an access-denied signal to the 

process and the system utility should subsequently return the appropriate error to the user 

on the console and quit.  It is important to note that in this prototype, files and directories 

that do not have temporal attributes will have a default-permit access and be treated as if 

there is an infinite allowed time to access them.  Therefore, the administrator account, 

root, will need to explicitly set the time attributes of files or directories for which he 

wishes to control access.  

To interface with the time-based system, we will build a simple command line 

utility which will run in the CLI described above.  This utility will have different flag 

options so that users can view the time attributes and administrators can modify the time 

attributes of files or directories.    

E.  SUMMARY 
In this chapter, the concept of time-based access control as described by the TIAC 

model was described.  We also discussed previous work on a Time Interval Memory 

Protection System which is an implementation of the TIAC model for memory.  These 

topics provided background for the research into a time-based access control system for 

files and directories.  Since this research will attempt to build a prototype using the Linux 

kernel, an understanding of the Linux file management system is needed and therefore 

introduced.  Finally, for demonstration and testing the time-based system, standard Linux 

command line utilities will be used.  The same Command Line Interface in Linux used 

for running the standard system utilities will also be used for building custom tools for 

interacting with the time-based system. 
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III. DESIGN AND IMPLEMENTATION OF TIFPS 

Using the Time Interval Access Control (TIAC) model as a reference, a Time 

Interval File Protection System (TIFPS), capable of providing time based access control 

to files, was designed and implemented.  This chapter covers the requirements for such a 

system, a high level description of the design, choices made in the design, the details of 

the implementation, and a brief description of the development environment.   

A. REQUIREMENTS 
The following describes the requirements defined for the TIFPS kernel and the 

time attribute modification tool envisioned to be used for interacting with the TIFPS 

kernel. 

1. TIFPS Kernel Requirements 

• The kernel must protect and mediate all access to regular files and 
directories protected with time-of-allowed-access attributes.  Time-based 
access control will be demonstrated on all file and directory reads, writes 
and executions. 

• Modification of the time attributes associated with the file must be 
allowed only by the super user (administrator) account. 

• The precision of time in revoking access to expired files should not be 
more than one second. 

• The prototype will allow infinite access to files that have not been labeled 
with time attributes.   

• On copy operations, the destination files must take on the most restrictive 
time attributes of the files read by the copying process.  This will prevent 
information leakage. 

• The administrator shall be able to set time-of-allowed access for subjects, 
i.e. user accounts, and objects, i.e. regular files and directories. 

2.  Requirements for the Time Attribute Modification Tool 
In order to obtain, set, and modify the time attributes of the files in the system, a 

tool is required.  The following is a list of requirements for such a tool. 

• Though the system will enforce time-based policy based upon absolute 
time, i.e. on September 22, 2006 at 1700 hours revoke access to file.txt; 
time attributes shall be set by specifying them in either absolute time or 
relative time.  Relative time shall be referenced from current time.     
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• The administrator interface shall be easy to use.  For example, setting time 
attributes shall not require complicated calculations by the administrator. 

• The tool shall be able to take multiple arguments to change or display the 
time attributes of multiple files and directories at once. 

• Usage instructions shall be made readily available.  

• If mistakes are made while using the tool, useful error messages shall be 
displayed to the user.   

• The tool shall allow the user/admin to easily view the time attributes of 
files and directories. 

B.   HIGH LEVEL DESIGN 
This section describes the high level design of the TIFPS kernel and the tool that 

will be used to interface with the system. 

1.  TIFPS Kernel High Level Description 
Figure 3-1 shows the process flow diagram for a user accessing a file or directory 

in the TIFPS environment.   
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Figure 3-1. High level process flow for a user accessing a file or directory in TIFPS 
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directories that he wishes to control.  If the current time falls within the time interval 

specified for the file or directory, then the system grants access to the file or directory 

(note that the standard Linux read, write, execute permissions remain in effect in addition 

to the time-based access control).  Mathematically, an access is granted in TIFPS only if 

the following is true: 

Tstart  ≤  tcurr  <  Tend     Λ     Fstart   ≤  tcurr  < Fend 

To prevent a user from extending the time-of-allowed access to the information in 

a file, which could occur if the user created a new file and copied the information from 

the time-checked file to the new one, the following access policy regarding the creation 

of file shall be implemented in the system.  After a program reads in files with time 

interval attributes T1 and T2, any write operation to new or existing files will transfer the 

most restrictive time interval from all the files read to the files written.  See Figure 3-2 for 

a diagram of the policy.   

 
Figure 3-2. Diagram on TIFPS system read and write policy 
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Assume that the policy regarding creation of files above is not the case.  When a 

program reads a program that is expires five minutes from now and subsequently writes 

the contents of that file into a second file (an effective copy operation), after the first file 

expires, the user will be able to continue reading the new file created as well as make new 

copies of that file, thus extending the time-of-allowed access to the contents in the 

original file. 

2.   Time Attribute Modification Tool High Level Description 
Since the Linux 2.6 kernel series supports extended attributes for most Linux file 

systems, TIFPS will use extended attributes for specifying the time attributes.  Fedora 

Core 5 as well as other Linux operating systems running Linux 2.6 and up include a set of 

user-space programs for setting and getting extended attributes, setfattr() and getfattr() 

respectively.  The time attribute modification tool can be designed to utilize these 

existing tools.  A wrapper program that packages these existing tools can be designed to 

set and modify the time attributes, get the time attributes, and present the time attributes, 

in a human understandable format.  To meet the requirements described above, command 

line interfaces similar to standard Linux command line tools will be used to design the 

tool.  Different flags can be used at the command line to set, delete, or display the time 

attributes of a file or directory.  The “*” character can use used at the command line to 

specify multiple files.  If incorrect flags are used, usage instructions will be displayed and 

the tool will exit without having an effect.  A man page describing the usage of the tool 

will be available.      

C. IMPLEMENTATION CHOICES 
This section discusses the implementation choices made for the TIFPS kernel and 

the TIFPS tool and the rationale behind these decisions. 

1. TIFPS Kernel Implementation Choices 

Before starting the development effort on TIFPS, research into different security 

frameworks was done.  Implementing and creating custom security hooks in the Linux 

Kernel specifically for TIFPS was considered but quickly abandoned given that a security 

framework with needed security hooks already exists.  The Fedora Core 5 (FC5) 

distribution includes NSA’s Security Enhanced Linux (SELinux), an access control 

mechanism, which uses the Linux Security Module (LSM).  The LSM framework was 
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designed to be a modular security framework which provides security hooks called by the 

kernel in strategic locations in the kernel.  For example, Linux’s virtual file system calls 

vfs_read() and vfs_write() calls the LSM security hook security_file_permisson().  See 

Figures 3-3 and 3-4 for source code for vfs_read() and vfs_write(), respectively.  The 

security_file_permission() function, along with other security hook functions are defined 

in the linux/include/security.h header file.  These generic security hooks can be 

implemented to enforce different security policies and behaviors.   

 
ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos) 
{ 
 ssize_t ret; 
 
 if (!(file->f_mode & FMODE_READ)) 
  return -EBADF; 
 if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read)) 
  return -EINVAL; 
 if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) 
  return -EFAULT; 
 
 ret = rw_verify_area(READ, file, pos, count); 
 if (ret >= 0) { 
  count = ret; 
  ret = security_file_permission (file, MAY_READ); 
  if (!ret) { 
   if (file->f_op->read) 
    ret = file->f_op->read(file, buf, count, pos); 
   else 
    ret = do_sync_read(file, buf, count, pos); 
   if (ret > 0) { 
    fsnotify_access(file->f_dentry); 
    current->rchar += ret; 
   } 
   current->syscr++; 
  } 
 } 
 
 return ret; 
} 
EXPORT_SYMBOL(vfs_read); 

 
Figure 3-3. Source code for vfs_read() showing call to security_file_permission() 
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ssize_t vfs_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) 
{ 
ssize_t ret; 
 
if (!(file->f_mode & FMODE_WRITE)) 
 return -EBADF; 
if (!file->f_op || (!file->f_op->write && !file->f_op->aio_write)) 
 return -EINVAL; 
if (unlikely(!access_ok(VERIFY_READ, buf, count))) 
 return -EFAULT; 
 
ret = rw_verify_area(WRITE, file, pos, count); 
if (ret >= 0) { 
 count = ret; 
 ret = security_file_permission (file, MAY_WRITE); 
 if (!ret) { 
  if (file->f_op->write) 
   ret = file->f_op->write(file, buf, count, pos); 
  else 
   ret = do_sync_write(file, buf, count, pos); 
  if (ret > 0) { 
   fsnotify_modify(file->f_dentry); 
   current->wchar += ret; 
  } 
  current->syscw++; 
 } 
} 
return ret; 
} 
EXPORT_SYMBOL(vfs_write); 

 
Figure 3-4. Source code for vfs_write() showing call to security_file_permission() 

 

One other Linux security framework was found during early phase research, it is 

called Rule Set Based Access Control (RSBAC) [4].  The author/maintainer of this 

framework suggests some weaknesses in the LSM.  He mentions that LSM requires that 

the security hook functions be exported to user-space programs which make them 

vulnerable to root-kits.  He also suggests that the set of security hooks is not complete.  

He speculates that the LSM support may be removed from the Linux Kernel in the future.  

The RSBAC framework project also cites another project’s stance against using LSM, 

Grsecurity [5].  Grsecurity is a multi-layered, detection, prevention, and containment 

model for Linux security.  Some of its features include kernel stack randomization, kernel 

null pointer dereference protection, and Role-Based Access Control. 

Despite these arguments, it is still unclear whether LSM support will be removed 

from the Linux Kernel in the future and what its replacement might be.  For the purpose 

of prototyping TIFPS, LSM was chosen as the framework for development.  Since TIFPS  
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is only an access control system used for files and directories, only a subset of the 

security hooks provided by LSM will be sufficient to implement the system.  By using 

the LSM, rapid prototyping TIFPS could be quick and efficient. 

To use the Linux Security Module framework to build a loadable security module, 

the __init() and __exit() functions must be defined.  The security_operations struct, 

which is a struct of function pointers for all of the security hooks, is used to implement 

custom security functions for each of the security hooks.  For example, the 

security_file_permission() security hook is implemented by setting .file_permission() 

equal to tifps_file_permission() in the security_operations struct and by implementing the 

tifps_file_permission() function.  When the kernel calls the security_file_permission() 

hook, the tifps_file_permission() will be called.  It is sufficient to implement only the 

security hook functions necessary to achieve the desired system behavior.  Any security 

hooks not defined will default to a set of dummy security hook functions defined in 

linux/security/dummy.c. 

As suggested in the Chapter II, extended attributes for Linux files are provided in 

the 2.6 series Linux kernels.  TIFPS will assign temporal attributes to files and directories 

using extended attributes.  This means that a file system which supports extended 

attributes must be used.  “Ext3” is a popular journaling file system that is installed by 

default and supports extended attributes.  This prototype of TIFPS will assume the use of 

an “ext3” file systems.  However, to the extent possible, the prototype shall be kept 

sufficiently generic to support other file systems that use extended attributes.  For 

example, “ext2” and “xfs” are two other file systems that currently support extended 

attributes. 

2.   Time Attribute Modification Tool Implementation Choices         
As mentioned earlier, there exist a set of tools for setting and getting the extended 

attributes for files, respectively setfattr and getfattr.  Setfattr can only be run by the 

administrator account as described by the man pages, while getfattr can be run by any 

user to get the extended attributes of a file or directory.  Since bash scripts are useful in 

running other existing command line programs and have support for parsing command 

line flags, bash scripts were chosen over other high level programming languages such as 

C and C++ for simplicity for developing the time attribute modification tool. 
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D.   LOW LEVEL IMPLEMENTATION DETAILS 
Low level implementation details of TIFPS LSM and the TIFPS tool are 

discussed in this section. 

1.  TIFPS LSM Low Level Implementation Details 
TIFPS Security Data Structures 

In the Linux kernel, a task_struct struct represents processes and an inode struct 

represents files, directories, and other file system objects.  The Linux Security Module 

predefines in each of these data structures a security object pointer that points to a 

security struct custom defined by the specific LSM implementation.  In this TIFPS LSM 

implementation, the security struct defined for processes is named 

tifps_task_security_struct and has the following fields:  a 4-byte back pointer to the 

task_struct, a semaphore data structure used for synchornization, and two signed integers 

representing the start and end times of the time interval for allowed access by the process.  

The inode security struct is named tifps_inode_security_struct and has the following 

fields:  4-byte back pointer to the inode struct, a semaphore data structure, and two 

signed integers representing the start and end times of the time interval for allowed access 

to the file or directory object represented by the inode struct.  See Appendix A, Section 

A, for the header file tifps_sec_objects.h defining these security data structures.   

TIFPS Representation of Time 

The notion of time in Linux is represented by a 4-byte signed integer, which 

specifies the number of seconds since the Unix epoch (January 1st, 1970 at 00:00:00 

UTC).  A negative integer represents the number of seconds before the Unix epoch.  

Since there is no practical benefit of specifying an allowed access time starting or ending 

prior to 1970, for simplicity, the TIFPS attribute has the range of 0x00000000 to 

0x7FFFFFFF.   

TIFPS Extended Attributes and String Format 

The TIFPS security data structures described earlier are non-persistent 

representations of time attributes for processes, files, and directories in kernel memory.  

By non-persistent, it is meant that these data structures do not persist between hardware 

shutdowns.  Extended attributes are used for persistent storage of the TIFPS security time 
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attributes and are stored as strings.  The string representation of the name of the extended 

attribute for TIFPS is “security.tifps”.  The value of the extended attribute has the format 

“:0x00000000:0x7FFFFFFF\0”, where the first hexadecimal number represents the start 

time of allowed access and the second hexadecimal number represents the end time of 

allowed access.  Storing time attributes in this format using hexadecimal integer 

representation simplifies string parsing for manipulating these fields during access 

control operations.      

TIFPS Enforcement Logic 

The following is a description of how TIFPS enforces time-based access control 

policies.  On system initialization, with TIFPS LSM loaded, the kernel allocates a 

tifps_task_security_struct for the current running process, initializes the semaphore 

struct, and sets the TIFPS start and end times to 0x00000000 and 0x7FFFFFFF, 

respectively.  Subsequent tasks that are scheduled to run are also allocated a 

tifps_task_security_struct.  Figure 3-5 below is a flow chart for the low level time policy 

enforcement logic. 
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Figure 3-5. Flow chart for low level TIFPS enforcement logic 
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At every file/directory read and write access, the following checks take place.  

First check to determine whether the user represented by the process is root (i.e., has the 

CAP_SYS_ADMIN capability).  If is the user is root, then access is granted; otherwise, 

check that the current time falls within the time interval of the tifps_task_security struct.  

If not, access is denied, otherwise, check that the current time falls within the time 

interval of the tifps_inode_security_struct.  If not, access is denied, if so, access is 

granted.  To prevent unauthorized extension of access to information by copying, when 

read access to an object is requested in TIFPS, the process’s time attributes are updated to 

take on the intersection of the time attributes of the object being read and the process’s 

current time attributes.  When write or append access to an object has been granted by 

TIFPS, the object’s time attributes are updated to take on the intersection of time 

attributes of the requesting process and the object being written.   

The reasons for updating the security structs after read and write operations are 

two-fold.  The first reason is to prevent extension of access to information as described in 

Section B of this chapter.  A second reason for the policy requiring a task to inherit the 

most restrictive attributes of files read is the notion of subject access control.  The idea 

was presented in the TIAC model [1,3] where an administrator can grant and revoke 

time-based access to users in addition to controlling access to file and directory objects.  

In Linux, when a user logs in, the /etc/passwd file is read by the system to get the user’s 

home directory.  The user’s login shell then changes the directory to the home directory 

specified.  If an administrator sets the time attributes of the user’s home directory, the 

user’s time-of-allowed access to any files in the system besides his own home directory 

will be subject to the time attributes set for his home directory because of the task 

inheritance policy. 

Preserving Time Attributes Across Copy Operations 

The policy of continual restriction of the time interval for a process on object 

reads introduces a problem however.  Assume that a user reads a file that expires in 5 

minutes first after logging into the system.  After reading the file, the process’s time-of- 
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allowed access also expires in 5 minutes due to the inheritance.  Therefore, after 5 

minutes, the task will not be allowed to access any other files in the system, creating an 

undesirable condition for the user.   

A modification of the policy was considered as described below in an attempt to 

address this issue but was not implemented, as will be explained. Since the system is 

intended for use in preserving the time attributes of file objects on copy operations, the 

tifps_task_security_struct can be implemented to “keep track of” (as opposed to inherit) 

the most restricted time attributes of files that it has read.  Only during an attempt to write 

would the system enforce access control and transfer the time attribute with the most 

restrictive time interval to the file(s) being written.  This solution was not implemented 

because the file read operation implies a write operation to the kernel stack.  Also, an 

administrator’s ability to grant and revoke time-based access control to users would not 

work in such a scheme.   

Fortunately, the fork-and-exec paradigm of Unix-based operating systems solves 

the problematic condition.  When a user logs into a Unix system, that user’s login shell 

runs as a process.  Any programs that the user decides to run from this shell causes the 

login shell to fork into a parent and child processes.  It is the child process that executes 

the command, reads from, and writes to files.  Because the parent login shell does not 

read or write files in the program execution, its time attributes assigned at user logon are 

preserved. 

TIFPS LSM Security Hook Implementation Details   

The TIFPS policy described above and the permission check logic for TIFPS are 

implemented in the tifps_enforcer() function in the helper functions section of the 

tifps_hooks.c source code file.  The file is divided into two sections, one implementing 

the security hook functions called by the kernel as part of LSM and another implementing 

all the helper functions that the security hook functions call to provide the time based 

access control.  See Table 3-1 for a list and description of the security hook functions 

implemented for TIFPS and Table 3-2 for a list and description of the helper functions.  

The source code for TIFPS can be found in Appendix A, Section A. 
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Table 3-1. List of LSM security hook functions implemented in TIFPS 
 
Generic security hook TIFPS security hook 

implementation 
Description 

security_inode_alloc() tifps_inode_alloc_security() Allocate and attach a TIFPS security 
structure to inode->i_security.  The 
i_security field is initialized to NULL when 
the inode structure is allocated. 

security_inode_free() tifps_inode_free_security() Deallocate the TIFPS inode security 
structure and set inode->i_security to 
NULL 

security_inode_init() tifps_inode_init_security() Initializes inode->i_security structure with 
extended attributes of the file referenced by 
the inode.  Note:  as directed by the 
linux/include/security.h file, this hook 
function is expected to allocate memory for 
the name and value of the function 
parameters via kmalloc().  The caller is 
responsible for calling kfree() after using 
them. 

security_inode_permission() tifps_inode_permission() Called by the existing Linux permission() 
function to additional permission checking. 

security_inode_post_setxattr() tifps_inode_post_setxattr() Updates the inode security field after 
successful setxattr() operation. 

security_inode_setsecurity() tifps_inode_setsecurity() Similar to *_inode_post_setxattr(), it is 
called by vfs_setxattr() if the file system 
does not support the setxattr() function. 

security_file_permission() tifps_file_permission() Checks file permissions before accessing 
an open file on read and write operations. 

security_task_alloc() tifps_task_alloc_security() Allocate and attach a security structure to 
the process’s security field.  The security 
field is initialized to NULL when the task 
structure is allocated. 

security_task_free() tifps_task_free_security() Deallocate and clear the process’s security 
field. 
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Table 3-2. List of TIFPS helper functions 
 
TIFPS helper function Description 
tifps_time_to_xattr_value() Converts a set of TIFPS start and end time attributes into the 

TIFPS format string to be stored as extended attributes 
tifps_get_times() Given a TIFPS-formatted string, parse the string to get the 

TIFPS start and end times. 
tifps_helper_task_alloc_security() The tifps_task_alloc_security() hook calls this function.  It is 

defined as a helper function because it is also called by 
tifps_inode_permission() if a task does not have a security struct 
allocated yet. 

tifps_update_task_security() Updates the task TIFPS attributes with the intersection of the 
task and inode security structure time intervals. 

tifps_update_inode_security() Updates the TIFPS attributes for an inode with the intersection 
of the task and inode security structure time intervals. 

tifps_enforcer() The access control policy enforcer. 
tifps_inode_has perm() Checks with the enforcer as to whether access to an inode is 

allowed.  This function is called by the security hook 
tifps_inode_permission() during initial opening of files.  It is 
also called by tifps_file_has_perm() for ongoing file descriptor 
access. 

tifps_file_has_perm() Checks with the enforcer on whether ongoing access to a file is 
permitted. 

 

TIFPS LSM Configuration, Compilation, and Installation 

As the name Linux Security Module suggests, TIFPS was designed as a loadable 

module for the Linux Kernel.  However, the kernel configuration utilities have been 

modified to compile TIFPS as either a loadable module or as a module permanently built 

into the kernel.  See Appendix A, Section A for copies of the Kconfig and Makefiles 

edited for this purpose and Appendix B, Section A for screenshots of the kernel 

configuration menu for TIFPS LSM included as part of the installation procedures.  

Please note that since this project was a proof of concept prototype, compatibility with 

other security modules such as NSA’s SELinux or BSD’s Secure Level LSM has not 

been considered or tested.  BSD’s Secure Level LSM provides increasingly restrictive 

levels of security.  All testing of TIFPS functionality has been done without compiling 

SELinux or any other non-traditional Linux security modules support.     

2. Time Attribute Modification Tool Usage and Implementation Details 

The modtime command line tool is the time attribute modification tool written 

using a combination of the bash scripting language and perl.  It is used to convert a 

TIFPS string stored as extended attributes on a file to a date and time that is easily 

interpreted by a human user.  The tool is intended for use by administrators to set and 
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modify TIFPS attributes for files and directories.  Through the use of flags, the tool can 

also be used by users and administrators to view the TIFPS attributes in human readable 

format.  

When the program is executed, the number of arguments is checked, if no 

arguments are given, a usage instruction is given.  The usage format for the tool is given 

below: 

modtime <flags and corresponding flag arguments> <files and/or directories> 

Note that multiple files and directories can be given to the tool.   

The program uses the getopts built-in command tool for bash to parse flags given 

on the command line.  There are three modes of operation for the modtime tool: get time 

attributes, set time attributes using absolution time, and set time attributes using relative 

time (relative to current time).  As a user, the –g flag can be given at the command line to 

get time attribute information about file and directories.  As an administrator, modtime 

can be used to set time attributes.  The –a and –A flags are used to set the absolute start 

and end times, respectively.  The argument following the flag must be a string 

recognizable by the date command in Linux.  For example, the command: 

 # modtime –a now –A “9/22/06 17:00:00EST” myfile.txt 

sets the time attributes for myfile.txt to allow access starting now and to revoke access on 

9/22/06 17:00:00 Eastern Standard Time.  Note the Linux time system automatically 

accounts for time zones and converts the time zone specified to the time zone configured 

for the system.  Sample output: 

 Target:  myfile.txt 

 Grant access on:    Sun Aug 13 16:50:52  2006 

 Revoke access on:   Fri Sep 22 15:00:00 2006 

 To set the time attributes relative to current time, the following flags are used:  

-s, -S, -m, -M, -h, -H, -d, -D, -w, -W.  The lower case flags correspond to relative start 

times while the upper case flags correspond to relative end times for the target.  “sS” 

flags set the time seconds from now; “mM” flags set the time minutes from now; “hH” 
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flags set the time hours from now; “dD” flags set the time days from now; and “wW” 

flags set the time weeks from now.  Negative integer arguments following the relative 

time flags indicate an earlier time from the current time while positive integer arguments 

indicate later times relative to the current time.  For example, the following command: 

 # modtime –s -30 –m 5 –W5 /home/user 

sets the start time attribute for the directory /home/user to 4 minutes 30 seconds from 

now (5 minutes minus 30 seconds) and the end time attribute to five weeks from now.  

Table below shows a summary of the command line flags and their intended use.  

Appendix A, Section B contains the source code for the tool. 

 
Table 3-3. Summary of modtime command line flags and its usage 

 
Flags Description of Usage 
-g Displays the time attributes of the file or directory 
-x  Deletes the time attributes of the file or directory 
-a Sets the absolute time for allowing access to the file or directory 
-A Sets the absolute time for revoking access to the file or directory 
-s Sets the relative time to current time in seconds for granting access to the file or directory  
-S Sets the relative time to current time in seconds for revoking access to the file or directory 
-m Sets the relative time to current time in minutes for granting access to the file or directory 
-M Sets the relative time to current time in minutes for revoking access to the file or directory 
-h Sets the relative time to current time in hours for granting access to the file or directory 
-H Sets the relative time to current time in hours for revoking access to the file or directory 
-d Sets the relative time to current time in days for granting access to the file or directory 
-D Sets the relative time to current time in days for revoking access to the file or directory 
-w Sets the relative time to current time in weeks for granting access to the file or directory 
-W Sets the relative time to current time in weeks for revoking access to the file or directory 
 

E.    DEVELOPMENT ENVIRONMENT 

In addition to LSM, the following tools were used to facilitate development.   

1. VMware Server 1.0.0 

VMware Server is free virtualization software that virtualizes hardware for 

running different operating systems on the same hardware.  It was used for the 

development of TIFPS both to run a dedicated Subversion versioning server and the test 

kernel where the development and testing took place.  A 20 gigabyte VMware image was 

created for the Subversion server and 10 gigabyte VMware® images were created for 

development and testing purposes.  
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2.    Subversion 1.3.0-4.2  
Subversion is an open-source versioning software used to control versions of 

documents and source code being modified from different machines [6].  It allowed the 

flexibility of development from multiple workstations.  It also provided a critical backup 

of the entire development project.  Daily commits to the Subversion server guaranteed 

that there will always be two copies of the latest work in the event that an unforeseen 

disaster strikes.   

3.   Source Insight 3.5 
Source Insight is a source-code visualization software [7].  It creates function call 

graphs for quick visualization of the overall code structure.  It also provides convenient 

browsing of the code providing links to functions variables, macros, and structures.  

Going from one function to another was as easy as double clicking the function name in 

the source.  It was used to visualize and understand the existing source-code for kernel 

version 2.6.15.   

4.   Fedora Core 5 – Kernel 2.6.15  
The Fedora Core 5 Linux distribution [8] with kernel version 2.6.15 was used as 

the target operating system for development as well as running the Subversion server.  To 

minimize the time it took for a compile and test cycle, the minimum number of modules 

required to run the system was selected for kernel installation.  Also, only absolutely 

necessary kernel drivers were compiled into the kernel.  This also reduced build time.  

See Appendix E for a copy of the kernel configuration file. 

5.   Emacs 21.4-14 
For modifying kernel source code in the developmental VMware® images, the 

emacs editor was used.  Since the Linux kernel source code can be edited by any one and 

without coding standards, there is a significant potential for “messy” code.  The Linux 

kernel source contains a “CodingStyle” document in the linux/Documentation directory.  

It specifies the conventions that anyone developing the kernel should follow.  Specific 

guidance on indents, long lines, braces, naming, etc are given.  An emacs configuration 

file that conforms to the coding style recommendations for indentations can be found in 

Appendix E, Section B.   
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F. SUMMARY 
This chapter described the design and implementation details of the TIFPS LSM 

as well as of the modtime command line tool used for interacting with the system.  

Requirements for both the LSM and the tool were captured as part of the description.  

Implementation choices made during development were then discussed and rationale 

provided for these choices.  Finally, the development environment used was presented.  

In the next chapter, testing of the TIFPS LSM and the analysis of test results will be 

discussed in detail. 
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IV. TESTING AND ANALYSIS 

This chapter describes test plans and analyses for validating TIFPS for correct 

functionality, measuring its performance overhead, and gauging its robustness in multi-

user situations.  To test the TIFPS Linux Security Module (LSM), the following major 

steps were followed in the testing process:   

• Develop test plan 

• Conduct tests 

• Analyze results 

• Correct system behavior, as needed, and retest 

The results captured in this chapter reflect the final iteration of testing and include any 

modifications to the system during the iterative testing phase. 

The test plan is divided into three categories described below.  Functional tests of 

the access control mechanism test for proper enforcement of the time-based access 

policies.  Performance testing to quantify the overhead of the added time-based access 

control of TIFPS LSM compared with an unmodified kernel when reading, writing, and 

copying of files.  Finally, concurrency testing provides a gauge of the robustness of the 

TIFPS LSM in multi-user situations where attempts to access files and directories are 

concurrently made by different users. 

A. ACCESS CONTROL TESTS 
Access control tests were conducted to determine if the TIFPS LSM enforced the 

access control policies as expected.  As a result of this testing, four unexpected problems 

related to the preservation of time attributes were encountered and discussed in Section 

A.3, the Analysis of Results section.  Two of the four problems had simple solutions and 

were therefore fixed while only potential solutions are discussed for the remaining two. 

The test plan for access control enforcements are described in Section A.1.  Test 

results are reported in Section A.2.  As mentioned before, the results reported include any 

attempt to fix the problem encountered in Section A.3 and do not reflect the iterations of 

testing that occurred.  Section A.3 also discusses potential solutions for the expected  
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problem of access revocation during file writes.  Before we begin describing the access 

control test plan, the general TIFPS access control and inheritance policies can be 

informally stated as follows: 

• Access to an object shall be granted only if the current time is within the 
time interval defined by the intersection of the subject and object. 

• Time attributes of copied files must be inherited from the intersection of 
time attributes for the subject, source object, and destination object.    

1. Access Control Test Plan  
The access control test plan is divided into two categories:  static and dynamic 

tests.  The static tests category includes test cases where the subject and object time 

attributes are preset by the administrator and remain unchanged during the tests.  The set 

of static tests are further divided into the following sub-categories:   

• Enforcement of time-based policies for reading, writing, and executing 
files and directories (executing files refers to the execution of binary 
executables, executing directories refers to changing into the directory) 

• Inheritance of time attributes in file and directory creation operations and 
in file-copy operations 

• Behavior of TIFPS when access time expires and access is revoked during 
file write operations 

The third test sub-category from above is planned in anticipation for the potential 

problem of file corruption in the event file format information is incompletely written to a 

file due to access revocation.  Directory writes are not considered because directory 

writes are atomic with respect to access checks therefore the same problem is not 

anticipated.  

The dynamic tests category, on the other hand, covers the cases where the 

administrator changes the time attributes of subjects or objects while the user is logged 

into the system. 

Static tests – enforcement of file and directory read/write/execute 

The TIAC model [1,3] uses interval algebra to describe the temporal relationships 

between subjects and objects.  Table 4-1 shows all the possible relationships between a 

subject and an object and the expected access permission in TIFPS.  The first set of static 

tests was to determine if permission enforcement in TIFPS is consistent with the time-
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based access control policy for each of these relationships.  When a subject, S, attempts 

to access an object, O, access is only allowed during the period in which their time 

intervals of allowed access overlap.  For example, in scenario 1, S has a time interval of 

allowed access specified by t2.  The time interval of allowed access for O is specified by 

t4.  The other time intervals t1, t3, and t5 specify periods where neither access to S or O 

is allowed.  Given this scenario, access should be denied for all time intervals t1 through 

t5. 

The objective of this set of tests is to check for proper enforcement of time based 

access control on read, write, and execution of files and directories at all time intervals 

given a set of subject and object time attributes related as shown in Table 4-1.  In this 

portion of the static access control tests, each subject/object relationship in Table 4-1 was 

setup using bash scripts.  Read, write, and execute operations are then performed on 

specified files and directories within each of the identified time intervals and the system 

behavior was verified with expected result.     

 Since the system should grant permission only when the time intervals of subjects 

and objects overlap, it is inferred that if the subject and object in Table 4-1 were 

swapped, the same access permissions will be expected.  Rather than duplicating the 

entire test matrix of 42 (3 x 2 x 7) test cases for read, write, and execute operations on 

files and directories in each of the seven scenarios, which would be highly redundant, two 

test cases are to be selected semi-randomly and verified that the system grants proper 

permissions for all time intervals t1 through t5.  The semi-randomly selected test cases 

shall have expected behaviors of both grant and deny access. 
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Table 4-1. Basic temporal interval relationships between a subject S and object O* 
 

Test 
ID 

Scenario Relation 
 

Pictorial Meaning and Access Intervals 
 

Expected 
Access permission 

A1 1 S before O 
O after S 

                     < ----S------ >            < -----O----- >  
       t1                    t2               t3              t4              t5  
 

t1 to t5: deny 

A2 2 S equals O 
O equals S 

                      < ------------------S-------------------- > 
                      < ------------------O-------------------- > 
        t1                                        t2                                t3 
 

t1 and t3: deny 
t2 : allow 

A3 3 S meets O 
O met by S 

                   < -------S------- >< ------------O------- > 
        t1                    t2           t3                t4                    t5 
 

t1 to t5: deny 

A4 4 S overlaps O 
O overlapped 
by S 

           < ------------S----------- > 
                             <  --------------O--------------- > 
     t1          t2                    t3                 t4                    t5 
 

t1, t2, t4, t5: deny 
t3: allow 

A5 5 S during O 
O includes S 

                                < ----------S----------- > 
                < ----------------------O----------------------- > 
      t1              t2                          t3                    t4         t5 
 

t1, t2, t4, t5: deny 
t3: allow 

A6 6 S starts O 
O started by S 

              < ----------S--------- > 
              < ------------------O--------------- > 
      t1                     t2                     t3               t4 
 

t1, t3, t4: deny 
t2: allow 

A7 7 S finishes O 
O finished by 
S 

                                                      < --------S------- > 
                             < -----------------O---------------- > 
             t1                          t2                     t3                 t4 
 

t1, t2, t4: deny 
t3: allow 

*Note: the access permissions would be the same if S and O were swapped. 

Static tests- Inheritance in file/directory creation and file copy operations 

The objective of this set of tests is to check for proper preservation of time 

attributes during file and directory creation and file copy operations.  In this set of tests, 

time attributes of files and directories were displayed after creation by a user whose time 

attributes (represented by the subject time attributes) had been preset by the 

administrator.  Expected behavior is that the files and directories created will inherit the 

time attributes of the user.  Table 4-2 below summarizes the two test cases: one with a 

user creating a new file and another with a user creating a new directory. 
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Table 4-2. File and directory creation tests and expected results 
 

Test ID Test case Expected Result 
B1 User creates new file The new file should inherit the time 

attributes of the user. 
B2 User creates new directory The new directory should inherit the time 

attributes of the user. 
   

In the set of copy tests, three scenarios of a user subject copying content from a 

source file to a destination file were envisioned.  In the scenarios, the subject, source 

object, and destination object each have different time attribute relationships as depicted 

in the Figure 4-1 below.  It is expected that the destination object will inherit the time 

attributes of the intersection of the three entities involved. The expected inherited time 

interval for the created file is illustrated in the figure.  For each of the three scenarios, 

three ways to copy files in Linux are to be tested:  

• Using the cp command 

• Using redirection ‘>’ 

• Using pipes ‘|’ 
Scenario 1 
                         < ----------------------------Subject------------------------------------ > 
                                     < ------------------------Source----------------------- > 
                                                                                     < ---Destination-- > 
 
                                                                                     < ---Expected---- > 
 
Scenario 2 
                         < ---------------------------Subject--------------------------------------- > 
                                           < ----Source----- > 
                                          < -----------------------------Destination---------------- > 
 
                                           < ----Expected-- > 
 
Scenario 3 
                                                 < -------------Subject------------ > 
                          < ----------------------------------------------Source-------------------------- > 
                           < -------------------------------------Destination------------------------------ > 
 
                                                 < -------------Expected---------- > 
 

Figure 4-1. File Copy Scenarios. 
 

Each test case in the 3x3 matrix will be performed 10 times to check for 

consistent behavior, see Table 4-3. 
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Table 4-3. Time attribute Inheritance on File Copy Test Matrix 

 
Copy Method  

Test ID 
 

Scenario cp Redirection ‘>>’ Pipes ‘|’ 
C1 – C3 1 10 trials 10 trials 10 trials 
C4 – C6 2 10 trials 10 trials 10 trials 
C7 – C 9 3 10 trials 10 trials 10 trials 

 

Static tests– TIFPS behavior on time expiration during file-write operations 

The objective for this set of tests is to observe the behavior of the system when 

access to a file is revoked during a write operation.  It is speculated that file corruption 

will occur if access to a file expires while an application is writing state or format 

information to the file.  As such, the tests attempt to write a large amount of information 

(5M bytes) to files whose expiration time does not allow for the completion of the write 

operation.  For convenience, a bash script is setup to take the expiration time of the file 

to be written-to as an argument.  Immediately after setting the time, the script attempts to 

write 5 million bytes of information to the file.  Next, the script counts the number of 

characters written to the file successfully.  The script will be executed in multiple runs.  

For each run, the time-to-expiration (TTE) is increased.  The test is complete when a TTE 

allows all 5 million bytes of information to be written successfully (TTE-max).  It is 

expected that prior to reaching TTE-max, only part of the 5 million bytes of information 

will be successfully written to the file.  Error messages that occur during each run will be 

captured for discussion.  Table 4-4 shows the information to be captured for this test set. 

 
Table 4-4. Sample table for information to be captured for the access revocation 

during file write tests 
 

Test ID Time to 
expiration (TTE) 

Number of bytes written 
successfully out of 5 

million 

Error Message 

D1 Record expiration 
time used 

Record # of bytes written Record kernel error message here. 

Dynamic tests – Dynamically changing subject and object attributes 

The objective of these tests is to observe the behavior of the system when time 

attributes are dynamically changed by an administrator while a user is logged in.  A main 
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bash script was setup to initialize a pair of subject and object entities by setting their 

respective time attributes using an administrator account.  After the initialization, the 

main script sleeps long enough to allow a human tester to run a second script as the 

subject (user script).  The user script is setup to read the object before and after a time 

attribute change by the administrator.  Next, the main script wakes from sleep and 

changes the time attributes of the subject or object.  See Figure 4-2 for an illustration of 

the progression of these tests.  System behavior from the subject (user)’s perspective is 

recorded before and after the change by the administrator. 

 
 

Figure 4-2. Dynamic Test Progression Illustration 
 

There will be two test cases, one in which the administrator changes the time 

attributes of the subject and the other the temporal attributes of the object are modified.  

The expected results are summarized in Table 4-5 below. 

 

 

 

1.  Main script started by admin – sets the subject S and object O time attributes  
S 

O 

2.  User script started by subject S – S reads O at t1  
S 

O 

t1: S reads O 

3.  Main script: – admin changes S or O time attributes  

O 

S 

4.  User script: – S reads O at t2 

O 

t2: S reads O; access denied 

S 



38 

Table 4-5. Summary of expectations for dynamically changing subject and object 
time 

  
Test ID Test Case Expected Results 

E1 Change subject 
time 

Continued access should be allowed since time 
attributes are inherited at user login. 
 

E2 Change object 
time 

Access should be revoked according to the newly 
set time attributes. 
 

 
2. Results 
As mentioned earlier, the results shared here include all modifications to the 

system when it was necessary to address the unexpected problems discussed in Section 

A.3. These results do not reflect the iterations that occurred between modifications.  

Static tests results 

 Table 4-6 is a summary of the results from the static tests for file and directory 

read, write, and execute permission enforcement.  These tests resulted in expected 

behavior for all test scenarios.  The test scripts and screen captures for each individual 

test can be found in Appendix D. 

 

Table 4-6. Results from static tests for file and directory read/write/execute 
 

Files  Directories Test 
ID 

Scenario 
Read Write Exec  Read Write Exec 

1 1 Pass Pass Pass  Pass Pass Pass 
2 2 Pass Pass Pass  Pass Pass Pass 
3 3 Pass Pass Pass  Pass Pass Pass 
4 4 Pass Pass Pass  Pass Pass * Pass 
5 5 Pass Pass Pass  Pass Pass Pass 
6 6 Pass * Pass Pass  Pass Pass Pass 
7 7 Pass Pass Pass  Pass Pass Pass 

* Note: the asterisk indicate additional testing where subject and object were swapped for the test 
case and the results which were also found to be successful. 
 

The static tests for file and directory creation resulted in expected time attribute 

inheritance behavior, details can be found in Appendix D, Section C.   
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For copy inheritance, the test results were as expected except for the test set using 

pipes.  Table 4-7 summarizes these results.  Test scripts and results for each individual 

scenario can be found in Appendix D, Section B and Section C, respectively.  

 
Table 4-7. Summary of results for static tests for file copy operations 

 
Test ID Scenario ‘cp’ Redirection ‘>’ Pipe ‘|’ to ‘tee’ 
C1 – C3 1 10 out of 10 pass 10 out of 10 pass 10 out of 10 pass 
C4 – C6 2 10 out of 10 pass 10 out of 10 pass 9 out of 10 pass 
C7 – C9 3 10 out of 10 pass 10 out of 10 pass 10 out of 10 pass 

 

Table 4-8 summarizes the test results for access revocation during file write 

operations.  The results confirm our speculation that file corruption could occur if access 

is revoked while an application is writing state information to a file.  The resulting error 

messages when access permissions were revoked at different times during a write 

operation are also captured. 

 
Table 4-8. Summary of results for access revocation during file writes 

 
Test 
ID 

Time to 
expiration 

(TTE) 

Number of bytes written 
successfully out of 50 

million 

Error Message 

1 0 ERROR opening file 
2 49,152 ERROR writing to file: ERR -1 
3 2,002,944 ERROR writing to file: ERR -1 
4 3,338,240 ERROR writing to file: ERR -1 

 
 

D1 

5 5,000,000 None 
* Note:  The extra byte written to the file is a carriage return 
 

Dynamic test results 

As expected, dynamically changing the subject’s time attributes does not affect a 

user’s continued access to files and directories in this implementation of TIFPS.  This 

was expected because the user inherits time attributes at the time of login.  Since file and 

directory read and write operations are checked at every access request, dynamically 

changing the attributes of the objects in the system results in successful revocation of the 

object upon expiration of the object’s temporal access.  This test also produced the 

expected results.  See Table 4-9 below for a summary of results. 
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Table 4-9. Summary results for dynamically changing subject and object time 
attributes 

  
Test ID Test Case Results 

E1 Change subject 
time 

Continued access allowed. 
 

E2 Change object time Access revoked according to the new time 
attributes. 

 
3.  Analysis of Results 
During testing, four unexpected problems with the TIFPS implementation were 

encountered.  The first two discussed were fixed while the remaining two were analyzed 

for potential solutions.  The anticipated problem of access revocation during file write is 

also analyzed and discussed in this section.    

Directories inheriting task attributes restricting user access to files 

First, a user’s access to files in his or her home directories became increasingly 

restrictive as he copies files with more restrictive attributes.  Since directories were 

implemented to inherit time attributes just as regular files do, files with less restrictive 

time attributes in a modified directory will not be accessible to the user.  Also, as a user 

reads from directories, the task data structure associated with his login shell inherited the 

more restrictive attributes, preventing further access to other files in the system that he 

might otherwise be allowed to access.  This is even more problematic when a directory, 

i.e. /tmp is shared among different users because one user can prevent access of other 

users sharing the directory.  The problem was observed in the static tests for proper 

attribute inheritance in file copy operations. 

The fix to this problem was to simply ignore time attribute updates on all 

directory-related operations in the TIFPS implementation.  The results reported in the 

previous section include this change.   

Inconsistent inheritance of task attributes 

A problem of incorrect inheritance of time attributes for processes after reading 

files was observed.  This problematic behavior of TIFPS was caused by our incorrect 

assumption of when the LSM security hook, security_task_alloc() function is called.  It 

was assumed that securiy_task_alloc() is called after forking was complete.  Actually, 
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this security hook function is called from the copy_process() kernel function which 

clones the parent before the cloned process becomes the forked child when the user login 

shell forks.  For this reason, the forked child’s parent was actually the parent of the login 

shell, rather than the login shell itself.  In other words, the problematic implementation 

used the grandparent of the forked child rather than the parent to determine the time 

attributes of the forked child.  The solution was simply to use the process being copied to 

determine the child process’s time attributes.  The results reported in the previous section 

also include this fix.  This problem also occurred in the static tests for proper inheritance 

in file copy operations. 

The piping problem 

Next, in an effort to ensure that the system consistently enforced the inheritance 

policy for copying files, multiple ways of copying files in a Linux system were tested.  

The system behaved as expected except when pipes were used to copy files.  The 

program tee reads from input and splits the bytes read from input into two streams.  The 

first stream is written to standard out and the second stream written to a specified 

destination file.  It can be used to copy file as in the following command: 

$  cat source.txt |tee destination.txt 

Since tee is reading from the pipe and the pipe does not have time attributes, this 

command successfully copies the contents of source.txt into destination.txt without 

preserving the time attributes of the source.txt file.  Figure 4-3 below shows the 

relationship of the processes involved in the command above. 

 
 

Figure 4-3. Using tee to copy files 

Bash with temporal attribute forks and children inherit attributes 
 

bash 

cat  tee 

pipe 

source.txt destination.txt 

stdout stdin 
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An attempt was made to fix this by implementing time attribute inheritance for 

pipes.  The results reported in the previous section include this implementation.  In 

Linux, pipes are implemented with many of the properties of files and have inode data 

structures associated with them. Thus, they can be assigned time attributes just as regular 

files.  The copy command above can be separated into the following individual 

operations.  The actions in the parenthesis indicate envisioned TIFPS behavior for pipe 

attribute inheritance: 

1. cat reads from source.txt (cat inherits attributes from source.txt) 

2. cat writes to the pipe (pipe inherits attributes from cat) 

3. tee reads from the pipe (tee inherits attributes from pipe) 

4. tee writes to destination.txt (destination.txt inherits attributes from tee) 

It can be seen that the source.txt time attributes are inherited through the chain of 

read and write operations by the destination.txt file.  In theory, this suggests that 

implementing time attribute inheritance for pipes should fix the problem.  However, the 

results reported in the results section indicate that the destination file is not inheriting the 

source file time attributes on a consistent basis.  Upon closer inspection, the pipe copy 

command above does not necessarily occur in the order indicated in steps 1 through 4.  

The kernel scheduler was observed to schedule step 3 first for example, and the tee 

process will block until the cat process writes data to the pipe.  Since the LSM security 

hook is called when the tee process requests read permission to the pipe and not after it 

wakes from blocking when data is written to the pipe, the time attributes of the original 

file will not be correctly inherited.  

A potential solution is to change the security hooks for LSM in the kernel by 

enforcing a permission check after processes wake from blocks.  This potential solution is 

outside of the scope of this thesis and has not been implemented. 

Problem associated with assigning time attributes to executables in bash 

The bash shell has a convenient tab-completion feature that allows a user to list 

all executables available in his/her path.  When this feature is used, all the executables in 

a user’s path are read by the login shell bash.  Therefore, using this feature results in 
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bash inheriting the most restrictive time attributes of all executables in his/her path.  For 

example, if the /usr/bin/cal program has been assigned by the administrator to expire in 5 

minutes, any user logged in using the tab-completion feature will be effectively locked 

out of the system after 5 minutes.  The users can logout of the system and re-login to 

circumvent this problem.  This problem occurs only in login shells that have this auto-

completion feature.   Other shells, such as ksh, tclsh, and tcsh which do not have this 

feature do not exhibit this problem.   This problem has not been fixed in this 

implementation and will be left for future work.  It is recommended that in the meantime, 

time attributes only be set on non-executable files when using bash. 

Incomplete write operations in the revocation of access during file writes 

Finally, the TIFPS LSM does not provide transactional support for file writes.  It 

is anticipated that this will be a problem when access to a file expires during the write 

operation.  If important file state information has not been written to the file before the 

expiration, the file could potentially be left in an inconsistent state.  Table 4-8 in Section 

A.2 shows two distinct error messages depending on when the access to the file is 

revoked.  The error message “ERROR opening file” indicates that there was not enough 

time for the process to open the file for writing and therefore 0 bytes were successfully 

written.  The error message “ERROR writing to file: ERR -1” indicates that the file had 

been successfully opened for writing but access was revoked when the process requested 

write permission to the file.  Error number -1 is the number return by the kernel to 

indicate a permission-denied error.  From these results, we confirmed that file corruption 

could potentially occur on write operations.  One way to resolve this problem is to 

provide transactional support for the file system in the kernel.  By providing a way to 

roll-back changes to the file, the system can keep the files in consistent states even if 

write operations fail due to revocation.  The applications can also be designed to provide 

such support by keeping the state of the last successful write operation and reverting back 

to that state if new write operations fail.  The file system tested in this prototype is “ext3” 

which supports journaling for quick file system recovery in the event of power failures 

and hardware failures.  It is suggested that the journaling features of file systems such as 

“ext3” be investigated further as they may offer a potential solution to this problem.      
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B. PERFORMANCE TESTS 
The objective of performance testing is to measure the additional overhead for 

doing time-based access checks by the TIFPS LSM compared with an unmodified kernel.  

The following sections describe the test plan, results, and an analysis of the results of 

performance testing.  Overall, the added overhead for TIFPS access control is 

approximately 5% for read operations, approximately 20% for write operations, and 

approximately 9% for copy operations.   

1. Performance Test Plan 
A set of simple bash scripts were created to time the reading, writing, and copying 

of files on an unmodified 2.6.15 kernel and a kernel loaded with the TIFPS LSM.  

Comparisons between the two kernels were performed on a machine running virtualized 

VMware® server images of Fedora Core 5.  The hardware running the VMware® image 

has an Intel® Pentium® 4 processor running at 3.00 GHz.  The RAM allocated for the 

image is 256M.   

In each of the three categories of read, write, and copy operations, some 

additional variables that were speculated to affect performance were also studied.  First, 

the existence of time attributes on files may have an impact on the performance since 

TIFPS skips the logic for time-based access control check if an object does not have 

TIFPS attributes.  Secondly, performing an operation on a single file 1000 times versus 

on 1000 different files once could affect the performance because more security data 

structures need to be allocated and initialized for the case where different files are 

handled.  To study these two factors, four sets of tests were performed in each of the 

three categories.  These are listed below. 

• File operation (read/write/copy) on a single file 1000 times with existing 
TIFPS attributes. 

• File operation on a single file 1000 times without TIFPS attributes. 

• File operation on 1000 different files once; each file has existing TIFPS 
attributes. 

• File operation on 1000 different files once; none of the file have existing 
TIFPS attributes. 

Table 4-10 shows the general commands and tools used in bash scripts for each of 

the three categories (read, write, execute) in the performance test.  The time tool was 
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used to record the time to run each script.  Only system time is captured since access 

control occurs in the kernel.  Refer to Appendix D, Section E for the actual test scripts 

used for performance testing.  Table 4-11 is a summary of the descriptions of each test in 

the performance tests. 

   
Table 4-10. Linux Commands and Tools used for Testing. 

 
File Operation Linux Command 
Read cat file(s).txt >/dev/null 
Write python –c “print ‘G’*1000” > file(s).txt 
Copy Cp source-file(s).txt destination-file(s).txt 

 
Table 4-11. Summary of description for the performance evaluation 

 
Test ID Performance test variable descriptions 

F1 Read a single file with TIFPS attributes 1000 times  

F2 Read a single file without TIFPS attributes 1000 times 

F3 Read 1000 files with TIFPS attributes 1 time 

F4 Read 1000 files without TIFPS attributes 1 time 

F5 Write a single file with TIFPS attributes 1000 times 

F6 Write a single file without TIFPS attributes 1000 times 

F7 Write 1000 files with TIFPS attributes 1 time 

F8 Write 1000 files without TIFPS attributes 1 time 

F9 Copy 1 file with TIFPS attributes 1000 times to another existing file with 

TIFPS attributes 

F10 Copy 1 file without TIFPS attributes 1000 times to another non existent file 

F11 Copy 1000 different files, each with TIFPS attributes to another set of 1000 

files, with TIFPS attributes 

F12 Copy 1000 different files, without TIFPS attributes to a set of non existent 

files 

 
2. Results and Analysis 
A summary of the performance results is shown in Tables 4-12. 
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Table 4-12. Summary of performance for the 3.0Ghz Dell Desktop PC VMware® 
image* 

 
Read Write Copy 

Single-file Multi-file Single-file Multi-file Single-file Multi-file 
 
 
Kernel Attr None Attr None Attr None Attr None Attr None Attr None 
Normal -
avg 

4.41 4.39 4.47 4.4 26.77 26.56 27.58 27.05 6.5 6.42 6.71 6.85 

Normal –
stdev 

0.03 0.02 0.01 0.02 0.38 0.16 0.10 0.16 0.05 0.04 0.07 0.04 

TIFPS -
avg 

4.65 4.59 4.72 4.65 32.28 31.91 32.59 32.2 7.09 7.09 7.25 7.4 

TIFPS -
stdev 

0.03 0.03 0.03 0.02 0.41 0.22 0.52 0.28 0.07 0.02 0.10 0.03 

Difference 5.44% 4.55% 5.51% 5.68% 20.6% 20.1% 18.16% 19.06% 9.13% 10.44% 8.05% 7.98% 

  *Note:  Units are seconds unless otherwise noted 
 

The results suggest that the presence of TIFPS attributes did not significantly 

affect the performance contrary to hypothesis.  The reason for this result could be that 

most of the performance overhead of TIFPS occurs in the setup of the function calls to 

the TIFPS security hook implementations.  In the TIFPS security hook implementations, 

access control logic is skipped in the absence of TIFPS attributes.  It appears that 

skipping sections of code within a security hook function call did not significantly reduce 

performance overhead.   

Also, with regard to comparison between multiple reads and writes to a single file 

and single reads and writes to multiple files, the results suggest that performing single-

file operations does not have significant performance advantages over multi-file 

operations as speculated.  A similar explanation that most of the overhead associated with 

TIFPS occurs from setup of the function calls to the security hook implementation on file 

operations is speculated.  Allocating and initializing security data structures does not 

seem to contribute to the overhead of TIFPS as much as the setup for the security hook 

function calls.    

The detailed test results are captured in Appendix D, Section F. 

C. CONCURRENCY TESTS 
The objective of the set of concurrency tests is to provide a gauge for the 

robustness of the TIFPS LSM in handling situations where multiple users with different 

time attributes request access to the same files and directories.  To test concurrent access 

to files and directories, three user accounts (Sam, Jody, and Don) were created on the 
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system, each was assigned different time attributes by modifying the time attributes of 

their respective .bash_profile file in their home directories.  The test plan and results 

follow. 

1. Concurrency Test Plan 
It is expected that in multi-user environments, the system should continue to 

enforce the time-bases policies to revoke access from users at the appropriate time as well 

as to properly preserve the time attributes of files copied by each user.  The concurrency 

test plan consists of the following tests scenarios for three test users and is summarized in 

Table 4-13.   

Concurrent read access to a file 

• Three users, Sam, Jody, and Don each log into their respective accounts, 
where each account was modified to have different time attributes by the 
administrator.  Each user then attempts to continuously read the same text 
file using the command cat.  When read access is revoked, the revocation 
time is recorded for each user and compared with the expected revocation 
time.      

Concurrent write access to a file 

• Sam, Jody, and Don each log into their respective accounts, where each 
account has different time attributes preset by the administrator.  Each user 
then attempts to continuously write to the same text file, which is located 
in a shared directory, by using the command: 

• $   echo “user specific message”  >>shared-file.txt 

• When write access is revoked, the revocation time is recorded for each 
user and compared with the expected revocation time. 

Concurrent copy operation of a file 

• The three users log into their account, each account preset by the 
administrator with different time attributes.  Each user then attempts to 
continuously and concurrently read a shared file in order to make a copy 
of the shared file into their respective home directories.  After a period of 
predefined concurrent access, for example, the time it takes to make 1000 
copies of the same file, the time attributes of the copied files for each user 
is checked and compared with the expected time attributes. 

Concurrent write to a shared directory 

• The three users log into their respective accounts each of which is preset 
with different time attributes.  Each user then attempts to continuously and 
concurrently copy their private files into a shared directory.  After a period 
of predefined concurrent writes into the directory, i.e. the time it takes to 
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copy their private file 1000 times into the shared directory, the time 
attributes of the copies make by each individual user as well as the shared 
directory are recorded and compared with expected results. 

 
Table 4-13. Summary of test scripts for concurrency testing 

 
Test ID Description of concurrency test scenario 
G1 Concurrent read of a single file by 3 users with different time attributes 
G2 Concurrent write to a single file by 3 users with different time attributes 
G3 Concurrent copy of a single file by 3 users with different time attributes 
G4 Concurrent write to a shared directory by 3 users with different time attributes 

 
2. Results and Analysis 
In the concurrent read access scenario, TIFPS continued to enforce the policy 

correctly and revokes read access at the proper times from the users when their respective 

time attributes expired.  In the concurrent write access scenario, the file correctly 

inherited the TIFPS permissions of the user whose time attributes are the most restrictive.  

At file expiration, the write access was properly revoked for all users.  In the concurrent 

copy scenario, each of the three users’ copies of the file in their respective home 

directories inherited the proper time attributes, i.e. those associated with the individual 

user.  Finally, in the concurrent write to a shared directory scenario, each user’s 

respective file time attributes were preserved as expected.  The shared directory also kept 

its time attributes as expected.  See Appendix D, Section H and Section I for test scripts 

and resulting screenshots of these tests. 

D.  SUMMARY 
In this chapter, test plans and test results for the TIFPS LSM were presented.  

Access control, performance, and concurrency tests were all part of the test plan.  For the 

most part, the system performed as expected.  Problems encountered while performing 

the access control tests were analyzed and the behavior explained.  In some cases, 

solutions were found and implemented for the problems encountered.  For the remaining 

problems, potential solutions were discussed and are also suggested for future work.  It is 

important to note that the problems discussed were related to the TIFPS implementation 

as opposed to artifacts of testing.  Problems related to testing were resolved in the 

iterative phases of the testing process.   



49 

V. CONCLUSIONS  

A. SUMMARY 
Based on the TIAC model, TIFPS is a kernel implementation of time-based 

access control for files and directories in the popular open source Linux operating system.  

The implementation of access authorization and access control described by TIAC was 

achieved by utilizing the Linux Security Module framework and implementing the 

existing security hooks that already reside in the LSM.  However, for practical reasons, 

the system also needs to enforce proper inheritance of time attributes by subjects and 

objects for copy operations.  This requirement presents the challenge of balancing correct 

security behavior and ensuring availability of system services.   

To enforce proper inheritance in such a system, a policy similar to the High 

Watermark [9] must be implemented.  The High Watermark policy can be generally 

characterized as a policy where a subject’s level of access becomes increasingly 

restrictive as the subject accesses the objects in the system.  However, with such a policy, 

the potential for the system to become so restrictive that the user can not accomplish 

intended tasks is likely.  For example, as a user reads more and more files in the system, 

his ability to access other files and directories to do useful work in the current session 

decreases as his time attributes becomes increasingly restrictive.   

In Linux, the fork-and-exec paradigm shows potential for solving this dilemma as 

is evident in the implementation.  By forking the parent login shell to a child process and 

performing read and write operations using the child process, the parent process’s time 

attribute does not become increasingly restrictive.  However, the fork-and-exec paradigm 

introduces additional issues.  For example, inheritance of time attributes was not properly 

enforced in the copy operation performed using pipes to communicate information 

between sibling processes within the system.  Therefore, it is recommended that, for 

future implementations, the fork-and-exec functionality be examined more closely to 

ensure that object and subject time attributes are preserved. 
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B. FUTURE WORK 
The TIFPS prototype shows that implementing an access control system based on 

the TIAC model is feasible for files and directories in Linux.  However, by doing so, 

additional research questions are raised.  The following discusses immediate future work 

to continue the development of and to address the issues related to the prototype.  Longer 

term research related to the topic of time-based access control is also suggested. 

1. Prototype Related Work 

• As mentioned previously, the fork-and-exec functionality in Linux should 
be looked at more closely to ensure proper enforcement of the policy when 
attributes are inherited by new processes.  Related to this topic is the bash 
auto-completion for executables problem mentioned in Chapter IV. 

• The Unix time is represented by a 32-bit signed integer which allows time 
specification until 2038.  It is expected that Unix-based operating systems 
will switch to a 64-bit integer for time representation.  TIFPS should be 
modified to support such a change in Unix time.  

• TIFPS currently supports only “ext3” file systems. It should be easily 
modifiable to support other file systems so long as the file system supports 
extended attributes. 

• The modtime tool currently does not support recursion into directories for 
modification of or displaying the time attributes.  Adding such support 
will make the tool more useful for modification of time attributes for 
entire file trees. 

2. Long Term Time-Based Access Control Research Questions 

• TIFPS was prototyped to enforce access control locally within a host 
Linux system.  How would such a system be implemented in a networked 
environment? 

• The revocation of access during file modification has the potential to 
corrupt files as demonstrated in Chapter VI.  What is involved in building 
kernel level support for transactional write operation in Linux? 

• What APIs are needed to help applications deal with time based 
revocation for better usability? 

• The TIAC model [1,3] does not consider creation and modification of time 
attributes.  Such actions are necessary in copy operations.  For example, in 
this implementation, a subject copying a source object to a destination 
object transfers the time attributes from the source to the destination.  How 
can the TIAC model be extended to describe this inheritance policy and to 
formally check it for consistency? 
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C.  CONCLUSIONS 
Temporal access control provides another vector for the management of 

information.  There are many potential applications of such an access control mechanism 

in civilian and government environments.  This simple TIFPS prototype implementation 

in Linux provides a potential framework for how future time-based access control 

systems could be built.   
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APPENDIX A.  SOURCE CODE 

This appendix contains source code for the TIFPS LSM as well as the modtime 

tool. 

 
A. TIFPS LSM SOURCE CODE 

linux/security/tifps/tifps_hooks.c 
/*  
 *      Time Interal File Protection System (TIFPS)  
 *      Linux Security Module (LSM) 
 *       
 *      This file contains the TIFPS security hooks function implementations 
 *       as well as helper functions used by the LSM to enforce a time based  
 *       access control policy on regular files and directories.   
 *   
 *      It currently only supports ext3 file systems. 
 *     
 *      Author:  Ken Chiang <kchiang@nps.edu> 
 *               Naval Postgraduate School 
 *      
 *      Last Update:  9/6/06 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License as published by 
 * the Free Software Foundation; either version 2 of the License, or 
 * (at your option) any later version. 
 */ 
 
#include <linux/config.h> 
#include <linux/module.h> 
#include <linux/init.h> 
#include <linux/kernel.h> 
#include <linux/security.h> 
#include <linux/file.h> 
#include <linux/fs.h> 
#include <linux/mm.h> 
#include <linux/mman.h> 
#include <linux/mount.h> 
#include <linux/xattr.h> 
#include <linux/types.h> 
 
#include “tifps_sec_objects.h” 
 
#define XATTR_TIFPS_SUFFIX “tifps” 
#define XATTR_NAME_TIFPS XATTR_SECURITY_PREFIX XATTR_TIFPS_SUFFIX 
#define TIFPS_XATTR_LEN 23 //tifps format = “:0x00000001:x7FFFFFFF\0” 
#define TIFPS_MAX 0x7fffffff 
#define TIFPS_MIN 0x00000000 
 
 
/* -------------------------TIFPS helper functions--------------------------*/ 
 
/* tifps_time_to_xattr_value:  converts a set of tifps start and end time  
attributes into tifps format string specified by the char * pointer “value”. 
Returns 0 on success and appropriate error otherwise.  */ 
static int tifps_time_to_xattr_value(void **value, uint32_t value_len, 
         time_t start, time_t end) 
{ 
 char *tmp_string; 
 int num_char = 0; 
 int rc = 0; 
 
 tmp_string = kmalloc(value_len, GFP_KERNEL); 
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 if (!tmp_string  ) { 
  rc = -ENOMEM; 
  goto out_no_free; 
 } 
 
        if (start < TIFPS_MIN || end > TIFPS_MAX){ 
  rc = -EINVAL; 
                goto out; 
 } 
  
 /* change the format string to :0x%016x:0x%016x” for 8-byte 
  * time support in the future*/ 
 num_char = snprintf(tmp_string  , value_len,  
        “:0x%08x:0x%08x”, start, end);  
  
 if (num_char != value_len-1){ 
  rc = -EINVAL; 
  goto out; 
 } 
 
 tmp_string[value_len-1] = 0; 
 memcpy(*value, tmp_string, value_len); 
  
out: 
 kfree(tmp_string); 
out_no_free: 
 return rc; 
} 
 
/* tifps_get_times:  Given a tifps formated string “value”, parse the string  
 * for the tifps start and end times.   
 * Returns 0 on success and appropriate error otherwise. */ 
static int tifps_get_times(char *value, uint32_t value_len, 
      time_t *start, time_t *end) 
{ 
        char *tifps_string;    
        time_t tifps_start; 
        time_t tifps_end; 
        char *tifps_string_ptr, *p, *d; 
        int rc = -EINVAL; 
 
        /* copy the string so that we can modify the copy as we parse it. 
           The string should already be null terminated, but we append a 
           null suffix to the copy to avoid problems with the existing 
           attr package, which does not view the null terminator as part 
           of the attribute value. */ 
        tifps_string = kmalloc(value_len, GFP_KERNEL); 
        if (!tifps_string) { 
                rc = -ENOMEM; 
                goto out_no_free; 
        } 
        memcpy(tifps_string, value, value_len); 
        tifps_string[value_len] = 0; 
  
        tifps_string_ptr = (char *) tifps_string+1; /*skip the first “:”*/ 
 
        p = tifps_string_ptr; 
        while (*p && *p != ':') 
                p++; 
 
        if (*p == 0) 
                goto out; 
        *p++ = 0; 
 
        tifps_start = simple_strtoul(tifps_string_ptr, &d, 0); 
  
        if (tifps_start < TIFPS_MIN) 
                goto out; 
 
        *start = tifps_start; 
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        tifps_string_ptr = p; 
        while (*p) 
                p++; 
        *p++ = 0; 
 
        tifps_end = simple_strtoul(tifps_string_ptr, &d, 0); 
 
        if (tifps_end > TIFPS_MAX) 
                goto out; 
 
        *end = tifps_end; 
        rc = 0; 
out: 
 kfree(tifps_string); 
 
out_no_free: 
        return rc; 
} 
 
/* tifps_helper_task_alloc_security; the tifps_task_alloc_security hook 
 * calls this function.  It is defined as a helper function because  
 * inode_permission also calls it if a task does not have a security struct  
 * associated with it. 
 * Note, this security hook is normally called during the copy_process() 
 * function, where the process has not been started.  Therefore, we  
 * will inherit from the “current” task rather than the “parent” 
 * task.  In the case it is called from inode_permission, the security 
 * should be null and the max range for tifps attributes set for the task. 
 * Returns 0 if success and appropriate error otherwise.   
 */ 
static int tifps_helper_task_alloc_security (struct task_struct *task) 
{ 
 struct tifps_task_security_struct *tsec; 
 struct tifps_task_security_struct *parent_tsec; 
 
 tsec = kzalloc(sizeof(struct tifps_task_security_struct), GFP_KERNEL); 
 if (!tsec) 
  return -ENOMEM; 
 
 init_MUTEX(&tsec->sem); 
 tsec->task = task; 
  
 /* inherit time attributes from parent task, i.e. the current process 
  * that we are copying */ 
 parent_tsec = current->security; 
 if ( parent_tsec ){ 
  tsec->tifps_start = parent_tsec->tifps_start; 
  tsec->tifps_end = parent_tsec->tifps_end; 
 
 } 
 else{ 
  tsec->tifps_start = TIFPS_MIN; 
  tsec->tifps_end = TIFPS_MAX; 
 } 
 
 task->security = tsec; 
 
 return 0; 
} 
 
/* tifps_update_task_security: 
 * To prevent information from being copied to pass the TIFPS system,  
 * anytime a task reads a file, its tifps attributes must be updated 
 * to reflect the more restricted time interval. */ 
static void tifps_update_task_security(struct tifps_inode_security_struct *isec) 
{ 
 struct tifps_task_security_struct *tsec = current->security; 
 time_t old_start = tsec->tifps_start; 
 time_t old_end = tsec->tifps_end; 
 time_t new_start = isec->tifps_start; 
 time_t new_end = isec->tifps_end; 
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 if (new_start < TIFPS_MIN || new_end > TIFPS_MAX) 
  return; 
 else{ 
  if (new_start > old_start) 
   tsec->tifps_start = new_start; 
  if (new_end < old_end) 
   tsec->tifps_end = new_end; 
 } 
 
 return; 
} 
 
/* tifps_update_inode_security: 
 * This method updates the TIFPS attributes for an inode. 
 * It is used to enforce proper inheritance of time attributes 
 * of files in copy operations. 
 */ 
static void tifps_update_inode_security( 
 struct tifps_inode_security_struct *isec, struct dentry *dentry ) 
{ 
 struct tifps_task_security_struct *tsec = current->security; 
 time_t old_start = isec->tifps_start; 
 time_t old_end = isec->tifps_end; 
 time_t new_start = tsec->tifps_start; 
 time_t new_end = tsec->tifps_end; 
 struct inode_operations *i_ops = isec->inode->i_op; 
 char * tifps_string; 
 umode_t mode = isec->inode->i_mode; 
 
 if (new_start < TIFPS_MIN || new_end > TIFPS_MAX) 
  return; 
 else{ 
 
  if (new_start > old_start) 
   isec->tifps_start = new_start; 
  if (new_end < old_end) 
   isec->tifps_end = new_end; 
 
  /* if this inode describes a fifo pipe, do not set  
   *  extended attributes, because pipe file systems do  
   *  not support extended attributes */ 
  if ( S_ISFIFO(mode) ) 
   goto out; 
 
  tifps_string=kmalloc(TIFPS_XATTR_LEN, GFP_KERNEL); 
  tifps_time_to_xattr_value(&tifps_string, TIFPS_XATTR_LEN, 
       isec->tifps_start, isec->tifps_end); 
  i_ops->setxattr(dentry, XATTR_NAME_TIFPS,  
    tifps_string, TIFPS_XATTR_LEN, 0); 
  kfree(tifps_string); 
 } 
out: 
 return; 
} 
 
/* tifps_enforcer: 
 * The main access control policy enforcer return 0 if allowed, -EPERM 
 * otherwise.  Update tasks for every read operation to take on more  
 * restrictive TIFPS attributes and Updates inodes for every write 
 * operation to files. 
*/ 
static int tifps_enforcer (struct tifps_task_security_struct *tsec, 
      struct tifps_inode_security_struct *isec, 
      int mask, struct dentry *dentry) 
{ 
        struct timeval current_time; 
 umode_t mode; 
 int rc = 0; 
 
 /* if root user with CAP_SYS_ADMIN capability, allow */ 
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 if (capable(CAP_SYS_ADMIN)){ 
  rc = 0; 
  goto out; 
 } 
 
 /* update the task attributes if the access mode requested 
  * is read and the object is a regular file or fifo pipe.   
  * Linux fork and exec paradigm prevents a task from becoming  
  * overly restrictive as it read more files, avoiding a  
  * denial of service condition where a user's login shell  
  * becomes increasingly restrictive.  */ 
 mode = isec->inode->i_mode; 
  
 if ( (S_ISREG(mode)||S_ISFIFO(mode))  && mask & MAY_READ){ 
  down_interruptible(&tsec->sem); 
      tifps_update_task_security(isec); 
  up(&tsec->sem); 
 } 
 
        do_gettimeofday(&current_time); 
 
        if (current_time.tv_sec >= tsec->tifps_start &&  
     current_time.tv_sec < tsec->tifps_end) 
                rc = 0; 
        else{ 
                rc = -EPERM; 
  goto out; 
 } 
 
        if (current_time.tv_sec >= isec->tifps_start &&  
     current_time.tv_sec < isec->tifps_end) 
                rc = 0; 
        else{ 
  rc = -EPERM; 
  goto out; 
 } 
 
 /* Update time attribute only if the file is a regular file or  
  * fifo pipe (not directories), and the task is writing or  
  * appending to the object.  */ 
 if ( (S_ISREG(mode)||S_ISFIFO(mode)) &&  
      (mask & MAY_WRITE || mask & MAY_APPEND) ){ 
  down_interruptible(&isec->sem); 
  tifps_update_inode_security( isec, dentry); 
  up(&isec->sem); 
 } 
 
out: 
 return rc; 
} 
 
/* tifps_inode_has_perm: 
 * Checks with the enforcer whether access to an inode is allowed. 
 * This function is called by the security hook tifps_inode_permission 
 * during initial opening of files.  It is also called by tifps_file_has_perm 
 * for ongoing file descriptor access. */ 
static int tifps_inode_has_perm( struct inode *inode, int mask ) 
{ 
 struct tifps_task_security_struct *tsec = current->security; 
        struct tifps_inode_security_struct *isec = inode->i_security; 
 umode_t mode = inode->i_mode; 
 struct dentry *dentry; 
 struct list_head *head; 
 struct inode_operations *i_ops; 
 char *tifps_string; 
 time_t new_start =TIFPS_MIN; 
 time_t new_end =TIFPS_MAX; 
        int rc = 0; 
 
 /* We are only interested in controlling read, write, and execute of 
  * regular files and directories for this prototype. 
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  * We also include fifo pipes as they can be used to copy  
  * the contents of files. */ 
 if (!S_ISREG(mode) && !S_ISDIR(mode) && !S_ISFIFO(mode) ) 
  goto out_no_free; 
 
 if (!tsec){ 
  tifps_helper_task_alloc_security(current); 
 } 
 /* Is this needed? */ 
 tsec = current->security; 
 
 head = inode->i_dentry.next; 
 dentry = list_entry(head, struct dentry, d_alias); 
 
 /* If the operation is a pipe operation, no need to get  
  * extended attributes, just call tifps_enforcer 
  * to properly update the task and inode security  
  * data structures.  */ 
 if (S_ISFIFO(mode)){ 
  rc = tifps_enforcer ( tsec, isec, mask, dentry ); 
  goto out_no_free; 
 } 
 
 /* Our prototype only controls ext3 file systems at the moment, 
  * but it can easily support any file systems that support  
  * extended attributes. */ 
 if ( strncmp(dentry->d_sb->s_type->name, “ext3”, 4 ) ) { 
  goto out_no_free; 
 } 
 
 tifps_string = kzalloc(TIFPS_XATTR_LEN, GFP_KERNEL); 
 if (!tifps_string) { 
  return -ENOMEM; 
 } 
  
 i_ops = inode->i_op; 
 i_ops->getxattr(dentry, XATTR_NAME_TIFPS,  
        tifps_string, TIFPS_XATTR_LEN); 
  
 if (tifps_string[0] !=':'){ 
  rc = 0; 
  goto out; 
 } 
 
 rc = tifps_get_times(tifps_string, TIFPS_XATTR_LEN,  
        &new_start, &new_end);  
 if(rc){ 
  printk(“get_times error\n”); 
  rc = -EINVAL; 
  goto out; 
 } 
 isec->tifps_start = new_start; 
 isec->tifps_end = new_end; 
 
 rc = tifps_enforcer( tsec, isec, mask, dentry ); 
 
out: 
 kfree(tifps_string); 
out_no_free: 
        return rc; 
} 
 
 
/* tifps_file_has_perm: 
 * Checks with the enforce whether ongoing access to a file is permitted. 
 *  Calls tifps_inode_has_perm.  */ 
static int tifps_file_has_perm( struct file *file, int mask) 
{ 
 struct dentry * dentry = file->f_dentry; 
 struct inode * inode = dentry->d_inode; 
        int rc = 0;  
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 rc = tifps_inode_has_perm( inode, mask ); 
 
        return rc; 
} 
/* ------------ End of TIFPS helper functions------------------------------*/ 
 
 
 
 
/* ------------------------------TIFPS security hooks----------------------- 
 * The following security hook functions are provided for TIFPS access control. 
 * These defined functions plus others  are called by the kernel at strategic  
 * locations throughout the kernel as part of the the Linux Security Module.   
 * See include/linux/security.h for a list and description of the Linux  
 * Security Module hooks.  If a security hook function is not defined  
 * specifically, the result is a usually a nop defined in  
 * linux/security/dummy.c  
*/ 
 
int tifps_inode_alloc_security(struct inode *inode) 
{ 
 struct tifps_inode_security_struct *isec; 
 
 isec = kzalloc(sizeof(struct tifps_inode_security_struct), GFP_KERNEL); 
 if (!isec) 
  return -ENOMEM; 
 
 isec->inode = inode;  
 init_MUTEX(&isec->sem); 
 inode->i_security = isec; 
  
 isec->tifps_start = TIFPS_MIN; 
 isec->tifps_end = TIFPS_MAX; 
  
 return 0; 
} 
EXPORT_SYMBOL(tifps_inode_alloc_security); 
 
void tifps_inode_free_security(struct inode *inode) 
{ 
 
 struct tifps_inode_security_struct *isec = inode->i_security; 
  
 inode->i_security = NULL; 
 kfree (isec); 
} 
EXPORT_SYMBOL(tifps_inode_free_security); 
 
int tifps_inode_init_security(struct inode *inode, struct inode *dir,  
         char **name, void **value, size_t *len) 
{ 
 struct tifps_task_security_struct *tsec; 
 struct tifps_inode_security_struct *isec;   
 char * tifps_string; 
 
 /* default allow access by setting access time to min and max values */ 
 time_t new_start = TIFPS_MIN; 
 time_t new_end = TIFPS_MAX; 
 
 int rc = 0; 
 char *namep = NULL; 
 char *valuep; 
 
 tifps_string = kzalloc(TIFPS_XATTR_LEN, GFP_KERNEL); 
 if (!tifps_string){ 
  return -ENOMEM; 
 } 
 tsec = current->security; 
 
 isec = inode->i_security; 



60 

 if (!isec){ 
  rc= tifps_inode_alloc_security(inode); 
  isec = inode->i_security; 
 } 
 if (rc){ 
  return rc; 
 } 
 
 
 new_start = (time_t)tsec->tifps_start; 
 new_end = (time_t)tsec->tifps_end; 
     
 isec->tifps_start = new_start; 
 isec->tifps_end = new_end; 
 
 if (name) { 
  namep = kstrdup(XATTR_TIFPS_SUFFIX, GFP_KERNEL); 
  if (!namep){ 
   rc = -ENOMEM; 
   goto out; 
  } 
  *name = namep; 
 } 
  
 if (value) { 
  valuep = kmalloc(TIFPS_XATTR_LEN, GFP_KERNEL); 
  if (!valuep){ 
   rc = -ENOMEM; 
   kfree(namep); 
   goto out; 
  } 
  rc = tifps_time_to_xattr_value(&valuep, TIFPS_XATTR_LEN,  
       new_start, new_end); 
  if(rc){ 
   kfree(namep); 
   kfree(valuep); 
   goto out; 
  } 
  *value = valuep; 
 } 
 if (len) { 
  *len = TIFPS_XATTR_LEN; 
 }  
out: 
 kfree(tifps_string); 
 return rc; 
} 
EXPORT_SYMBOL(tifps_inode_init_security); 
 
int tifps_inode_permission (struct inode *inode, int mask,  
       struct nameidata *nd) 
{  
 struct tifps_inode_security_struct *isec = inode->i_security; 
 int rc = 0; 
 
 if (!mask) { 
  /* No permission to check.  Access allowed */ 
  return 0; 
 } 
 
 if (!isec) { 
  rc = tifps_inode_alloc_security(inode); 
  isec = inode->i_security; 
 } 
 
 if (rc){ 
  return rc; 
 } 
   
 rc = tifps_inode_has_perm( inode, mask ); 
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 return rc; 
} 
EXPORT_SYMBOL(tifps_inode_permission); 
 
void tifps_inode_post_setxattr(struct dentry *dentry, char *name,  
          void *value, size_t size, int flags) 
{ 
 struct inode *inode = dentry->d_inode; 
 struct tifps_inode_security_struct *isec; 
 time_t new_start; 
 time_t new_end; 
 int rc; 
  
 if (strcmp(name, XATTR_NAME_TIFPS)) { 
  /* Not a TIFPS attribute, do nothing. */ 
  return; 
 } 
  
 rc = tifps_get_times((char *)value, size, &new_start, &new_end); 
  
 if (rc) { 
  printk(KERN_WARNING “%s: error getting TIFPS attributes “ 
         “%s, rc= %d\n”, __FUNCTION__, (char*)value, -rc); 
  return; 
 } 
 
 isec = inode->i_security; 
 if (!isec){ 
  rc = tifps_inode_alloc_security(inode); 
  isec = inode->i_security; 
 } 
 if (rc){ 
  printk(KERN_WARNING “%s: error allocating security struct” 
         “%s, rc= %d\n”, __FUNCTION__, (char*)value, -rc); 
  return; 
 } 
 isec->tifps_start = new_start; 
 isec->tifps_end = new_end; 
 return;  
} 
EXPORT_SYMBOL(tifps_inode_post_setxattr); 
 
 
/* inode_setsecurity is very similar to inode_post_setxattr, it is called  
by vfs_setxattr in the event that the setxattr function is not define for  
an inode in a particular file system. */ 
int tifps_inode_setsecurity (struct inode *inode, const char *name, 
        const void *value, size_t size, int flags) 
{ 
 struct tifps_inode_security_struct *isec; 
 time_t new_start; 
 time_t new_end; 
 int rc = 0; 
 
 if (strcmp(name, XATTR_NAME_TIFPS)) { 
  /* Not a TIFPS attribute, do nothing. */ 
  return rc; 
 } 
  
 rc = tifps_get_times((char *) value, size, &new_start, &new_end); 
 if (rc) { 
  printk(KERN_WARNING “%s: error getting TIFPS attributes “ 
         “%s, rc= %d\n”, __FUNCTION__, (char*)value, -rc); 
  return -EINVAL; 
 } 
 
 isec = inode->i_security; 
 if (!isec){ 
  rc= tifps_inode_alloc_security(inode); 
  isec = inode->i_security; 
 } 
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 if (rc){ 
  return rc; 
 } 
  
 isec->tifps_start = new_start; 
 isec->tifps_end = new_end; 
 return rc; 
} 
 
int tifps_file_permission(struct file *file, int mask) 
{ 
 struct inode *inode = file->f_dentry->d_inode; 
 int rc = 0; 
 
 if (!mask) { 
  /* No permission to check. permission allowed */ 
  return 0; 
 } 
 
 if (!inode->i_security) { 
  rc = tifps_inode_alloc_security(inode); 
 } 
 
 if (rc){ 
  return rc; 
 } 
 
 return tifps_file_has_perm( file, mask); 
} 
EXPORT_SYMBOL(tifps_file_permission); 
 
 
int tifps_task_alloc_security (struct task_struct *task) 
{ 
 return tifps_helper_task_alloc_security(task); 
} 
EXPORT_SYMBOL(tifps_task_alloc_security); 
 
void tifps_task_free_security (struct task_struct *task) 
{ 
 struct tifps_task_security_struct *tsec = task->security; 
 
 task->security = NULL; 
 kfree (tsec); 
} 
EXPORT_SYMBOL(tifps_task_free_security); 
  
static struct security_operations tifps_security_ops = { 
 .inode_alloc_security =  tifps_inode_alloc_security, 
 .inode_free_security =   tifps_inode_free_security, 
 .inode_init_security =  tifps_inode_init_security, 
 .inode_permission =   tifps_inode_permission, 
 .inode_post_setxattr =   tifps_inode_post_setxattr, 
        .inode_setsecurity =   tifps_inode_setsecurity, 
  
 .file_permission =  tifps_file_permission, 
  
 .task_alloc_security =  tifps_task_alloc_security, 
 .task_free_security =   tifps_task_free_security,  
}; 
 
/* flag to keep track of how the tifps security module was registered */ 
static int secondary; 
 
static int __init tifps_init (void) 
{ 
        printk(KERN_ALERT”\nInitializing TIFPS Linux Security Module” 
        “ - created by Ken Chiang- Naval Postgraduate School\n”); 
 
 /* allocate a security struct for the initial task */ 
 if (tifps_task_alloc_security(current)) 
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  panic(“TIFPS: Failed to initialize the initial task.\n”); 
 
 /* register tifps with the security framework */ 
 if (register_security (&tifps_security_ops)) { 
  /* try to register with primary module */ 
  if (mod_reg_security(KBUILD_MODNAME, &tifps_security_ops)) { 
   printk (KERN_INFO “Registration of TIFPS with primary “ 
    “ security module failed\n”); 
   return -EINVAL; 
  } 
  secondary = 1; 
 } 
 
 printk (KERN_ALERT “\n...TIFPS LSM Initialized %s %s\n”,  
  secondary ? “ as secondary” : “as primary”,  
  “security module.”); 
 return 0; 
} 
 
static void __exit tifps_exit (void) 
{ 
 /* unregister and cleanup at module exit */ 
 printk(KERN_ALERT “\n*** TIFPS LSM removed ***\n”); 
 if (secondary) { 
  /* print kernel error message if unregistering from primary 
     module fails */ 
  if (mod_unreg_security (KBUILD_MODNAME, &tifps_security_ops)) 
   printk (KERN_INFO “Failure unregistering TIFPS “ 
    “with primary module.\n”); 
 } 
 
 if (unregister_security (&tifps_security_ops)) { 
  printk (KERN_INFO 
   “Failure unregistering Time Interval File” 
   “ Protection System with the kernel\n”); 
 } 
} 
 
security_initcall (tifps_init); 
module_exit (tifps_exit); 
 
MODULE_DESCRIPTION(“Experiemental Time Interval File Protection System LSM”); 
MODULE_LICENSE(“GPL”); 
MODULE_AUTHOR(“Ken Chiang - Naval Postgraduate School”); 

 
 
linux/security/tifps/include/tifps_sec_objects.h 
/*  Time Interval File Protection System (TIFPS) security module 
 *   
 *  This file contains definitions for the TIFPS security data structures for  
 *   kernel objects. 
 *  
 *  Author:  Ken Chiang, <kchiang@nps.edu> 
 *   
 *  Last update:  9/6/06 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2,  
 * as published by the Free Software Foundation. 
 */ 
 
#ifndef _TIFPS_SEC_OBJECTS_H_ 
#define _TIFPS_SEC_OBJECTS_H_ 
 
#include <linux/list.h> 
#include <linux/fs.h> 
#include <linux/sched.h> 
#include <linux/in.h> 
#include <linux/types.h> 
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#include <asm/semaphore.h> 
 
struct tifps_task_security_struct { 
 struct task_struct *task; /* back pointer to task object */ 
 struct semaphore sem; 
 time_t tifps_start; 
 time_t tifps_end; 
}; 
 
struct tifps_inode_security_struct { 
 struct inode *inode;     /* back pointer to inode object */ 
 struct semaphore sem;       
 time_t tifps_start; 
 time_t tifps_end; 
}; 
#endif /* _TIFPS_SEC_OBJECTS_H_*/ 
 
 

linux/security/Kconfig 
# 
# Security configuration 
# 
 
menu “Security options” 
 
config KEYS 
 bool “Enable access key retention support” 
 help 
   This option provides support for retaining authentication tokens and 
   access keys in the kernel. 
 
   It also includes provision of methods by which such keys might be 
   associated with a process so that network file systems, encryption 
   support and the like can find them. 
 
   Furthermore, a special type of key is available that acts as keyring: 
   a searchable sequence of keys. Each process is equipped with access 
   to five standard keyrings: UID-specific, GID-specific, session, 
   process and thread. 
 
   If you are unsure as to whether this is required, answer N. 
 
config KEYS_DEBUG_PROC_KEYS 
 bool “Enable the /proc/keys file by which all keys may be viewed” 
 depends on KEYS 
 help 
   This option turns on support for the /proc/keys file through which 
   all the keys on the system can be listed. 
 
   This option is a slight security risk in that it makes it possible 
   for anyone to see all the keys on the system. Normally the manager 
   pretends keys that are inaccessible to a process don't exist as far 
   as that process is concerned. 
 
config SECURITY 
 bool “Enable different security models” 
 depends on SYSFS 
 help 
   This allows you to choose different security modules to be 
   configured into your kernel. 
 
   If this option is not selected, the default Linux security 
   model will be used. 
 
   If you are unsure how to answer this question, answer N. 
 
config SECURITY_NETWORK 
 bool “Socket and Networking Security Hooks” 
 depends on SECURITY 
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 help 
   This enables the socket and networking security hooks. 
   If enabled, a security module can use these hooks to 
   implement socket and networking access controls. 
   If you are unsure how to answer this question, answer N. 
 
config SECURITY_NETWORK_XFRM 
 bool “XFRM (IPSec) Networking Security Hooks” 
 depends on XFRM && SECURITY_NETWORK 
 help 
   This enables the XFRM (IPSec) networking security hooks. 
   If enabled, a security module can use these hooks to 
   implement per-packet access controls based on labels 
   derived from IPSec policy.  Non-IPSec communications are 
   designated as unlabelled, and only sockets authorized 
   to communicate unlabelled data can send without using 
   IPSec. 
   If you are unsure how to answer this question, answer N. 
 
config SECURITY_CAPABILITIES 
 tristate “Default Linux Capabilities” 
 depends on SECURITY 
 help 
   This enables the “default” Linux capabilities functionality. 
   If you are unsure how to answer this question, answer Y. 
 
config SECURITY_ROOTPLUG 
 tristate “Root Plug Support” 
 depends on USB && SECURITY 
 help 
   This is a sample LSM module that should only be used as such. 
   It prevents any programs running with egid == 0 if a specific 
   USB device is not present in the system. 
 
   See <http://www.linuxjournal.com/article.php?sid=6279> for 
   more information about this module. 
    
   If you are unsure how to answer this question, answer N. 
 
config SECURITY_SECLVL 
 tristate “BSD Secure Levels” 
 depends on SECURITY 
 select CRYPTO 
 select CRYPTO_SHA1 
 help 
   Implements BSD Secure Levels as an LSM.  See 
   <file:Documentation/seclvl.txt> for instructions on how to use this 
   module. 
 
   If you are unsure how to answer this question, answer N. 
 
source security/selinux/Kconfig 
 
source security/tifps/Kconfig 
 
endmenu 

 

linux/security/Makefile 
# 
# Makefile for the kernel security code 
# 
 
obj-$(CONFIG_KEYS)   += keys/ 
subdir-$(CONFIG_SECURITY_SELINUX) += selinux 
 
# if we don't select a security model, use the default capabilities 
ifneq ($(CONFIG_SECURITY),y) 
obj-y  += commoncap.o 
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endif 
 
# Object file lists 
obj-$(CONFIG_SECURITY)   += security.o dummy.o inode.o 
# Must precede capability.o in order to stack properly. 
obj-$(CONFIG_SECURITY_SELINUX)  += selinux/built-in.o 
 
#Chiang-NPS-TIFPS 
obj-$(CONFIG_SECURITY_TIFPS)  += tifps/ 
 
obj-$(CONFIG_SECURITY_CAPABILITIES) += commoncap.o capability.o 
obj-$(CONFIG_SECURITY_ROOTPLUG)  += commoncap.o root_plug.o 
obj-$(CONFIG_SECURITY_SECLVL)  += seclvl.o 

 

linux/security/tifps/Kconfig 
config SECURITY_TIFPS 
 tristate “NPS TIFPS (Experimental)” 
 depends on SECURITY && EXPERIMENTAL &&!SECURITY_SELINUX &&!SECURITY_CAPABILITIES \ 
 && !SECURITY_ROOTPLUG && !SECURITY_SECLVL 
 default n 
 help 
   This selects the experimental Linux Security Module for time-based 
   access control to files.   
   Developed as a thesis project at the Naval Postgraduate School. 
   WARNING: This security module is highly experimental, only ext3 
   file systems are currently supported.  File corruption may  

  occur when a file expires during a write operation. 
    
   This security module does not work with other security modules,  
   do not build into the kernel other security modules if you want 
   to test TIFPS. 
 
   If you are unsure how to answer this question, answer N. 
 
 

linux/security/tifps/Makefile 
# Chiang-NPS-TIFPS 
# Makefile for building the TIFPS module as part of the kernel tree. 
# 
 
obj-$(CONFIG_SECURITY_TIFPS) := tifps.o 
 
tifps-objs := tifps_hooks.o 
 
EXTRA_CFLAGS += -Isecurity/tifps/include 
 
 
 

B. MODTIME TOOL SOURCE CODE 

modtime 
 
#!/bin/bash 
# Chiang-NPS 
#      Time Interval File Protection System (TIFPS) 
#      
#      This bash script is a front end to manipulating the time attributes 
#       associated with files and directory for access control with TIFPS. 
# 
#       Note:  The script requires the extended attributes tools 
#                “getfattr” and “setfattr” 
#                 and perl to run. 
# 
#      Author:  Ken Chiang <kchiang@nps.edu> 
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#               Naval Postgraduate School 
#  
# Last update:  9/6/06 
# 
 
MINTIME=0 
MAXTIME=2147483647 
 
ERROR=7 
SU_ERROR=8 
DISPLAYFLAG=0 
DELETEFLAG=0 
ABSOLUTE_START=0 
ABSOLUTE_END=0 
STARTMODIFIED=0 
ENDMODIFIED=0 
STARTMODS=0 
ENDMODS=0 
NOW=`date -d now +%s` 
 
# Function that tells users how to use the program when incorrectly used. 
function error 
{ 
    echo “Usage:” 
    echo “  Setting time attributes:” 
    echo “    By absolute time:” 
    echo “      modtime -a<start date-string> -A<end date-string> <file|directory>“ 
    echo “      Example:  modtime now '09/22/2006 12:00:00' TIMED-file.txt” 
    echo “    By relative time:” 
    echo “      modtime <relative time flags> <file|directory>“ 
    echo “       where relative time flags are summarized below.” 
    echo “         -w<weeks from now to allow>, -W<weeks from now to revoke>“ 
    echo “         -d<days from now to allow>, -D<days from now to revoke>“ 
    echo “         -h<hours from now to allow>, -H<hours from now to revoke>“ 
    echo “         -m<minutes from now to allow>, -M<minutes from now to revoke>“ 
    echo “         -s<seconds from now to allow>, -S<seconds from now to revoke>“ 
    echo “        Note: negative integers represent an earlier time from now.” 
    echo ““ 
    echo “  Deleteing time attributes:” 
    echo “      modtime -x <file|directory>“ 
    echo ““ 
    echo “  Getting time attributes:” 
    echo “      modtime -g <file|directory>“ 
    echo ““ 
    echo ““ 
    echo “  Note:  To change/set/delete the time security attributes, you must be “ 
    echo “         root or a user with CAP_SYS_ADMIN capability, see man (5)” 
    echo “         attr for more information in extended attributes.” 
    echo ““ 
    exit $ERROR   
} 
 
function super_user_error 
{ 
    echo “You must be root or a super user with CAP_SYS_ADMIN capability” 
    echo “ to set/modify/delete the time attributes of the target” 
    echo ““ 
    exit $SU_ERROR 
} 
 
 
function display_result  #Expects 1 argument; the target file name 
{ 
    TARGET=$1 
 
    if [ $NEW -gt 0 ];then 
       return 0; 
    fi 
 
    echo “Target:  $TARGET” 
    DISPLAYRESULT=`perl -e “print scalar localtime $TIFPS_START”` 
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    echo “Grant access on:  $DISPLAYRESULT” 
    DISPLAYRESULT=`perl -e “print scalar localtime $TIFPS_END”`    
    echo “Revoke access on: $DISPLAYRESULT” 
    echo 
} 
 
function do_it  #Expects 1 argument; the target file name. 
{ 
    NEW=0 
    TARGET=$1 
 
    if  ! [ -e $TARGET ];then 
 echo “file or directory: $TARGET does not exist” 
 error 
    fi 
 
    if [ $DELETEFLAG -gt 0 ]; then 
 if [ $EUID -gt 0 ]; then 
     super_user_error 
 else 
     setfattr -x security.tifps $TARGET 
     if [ $? -eq 0 ]; then 
  echo “$TARGET:  TIFPS attributes deleted.” 
     fi 
     return; 
 fi 
    fi 
 
    TIFPS_STRING=`getfattr -n security.tifps $TARGET|grep security.tifps` 
    if [ -z $TIFPS_STRING ];then 
 echo “$TARGET does not currently have accessible TIFPS attributes” 
 NEW=1 
    fi 
 
    TIFPS_ATTR=${TIFPS_STRING#*:} 
 
    if [ $ABSOLUTE_START -eq 0 ]; then 
 TIFPS_START_HEX=${TIFPS_ATTR%:*} 
 TIFPS_START=`printf “%d\n” $TIFPS_START_HEX` 
    fi 
    if [ $ABSOLUTE_END -eq 0 ]; then 
 TIFPS_ENDSTRING=${TIFPS_ATTR#*:} 
 TIFPS_END_HEX=${TIFPS_ENDSTRING%\\*} 
 TIFPS_END=`printf “%d\n” $TIFPS_END_HEX` 
    fi 
 
    if [ $DISPLAYFLAG -gt 0 ]; then 
 display_result $TARGET 
    else 
 
 if [ $EUID -gt 0 ]; then 
     super_user_error 
 fi 
 
 if [ $STARTMODIFIED -gt 0 ]; then 
     let “TIFPS_START=$STARTMODS+$NOW” 
 fi 
  
 if [ $ENDMODIFIED -gt 0 ]; then 
     let “TIFPS_END=$ENDMODS+$NOW” 
 fi 
  
 if [ $TIFPS_START -gt $MAXTIME ] || [ $TIFPS_START -lt $MINTIME ]; then 
     echo “start time out of range” 
     error 
 fi 
 if [ $TIFPS_END -lt $MINTIME ] || [ $TIFPS_END -gt $MAXTIME ];then 
     echo “end time out of range” 
     error 
 fi 
 if [ $TIFPS_START -gt $TIFPS_END ]; then 
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     echo “Invalid time range” 
     error 
 fi 
 
 TIFPS_START_HEX=`printf “0x%x\n” $TIFPS_START` 
 TIFPS_END_HEX=`printf “0x%x\n” $TIFPS_END` 
 `setfattr -n security.tifps -v “:$TIFPS_START_HEX:$TIFPS_END_HEX\000” $TARGET` 
 NEW=0 
 display_result $TARGET 
    fi 
} 
 
#check number of arguments 
NUMARGS=$#                #get number of arguments 
if [ $NUMARGS -lt 2  ];then 
    error 
fi 
 
# parse the option flags 
while getopts “:a:A:w:W:d:D:h:H:m:M:s:S:gx” Option 
  do 
  case $Option in 
      a) TIFPS_START=`date -d “$OPTARG” +%s` 
  if [ $? -gt 0 ]; then 
      error 
  fi 
   ABSOLUTE_START=1;; 
      g) DISPLAYFLAG=1 
   break;; 
      x) DELETEFLAG=1 
   break;; 
      w) let “STARTMODS+=$OPTARG*7*24*60*60” 
   STARTMODIFIED=1;; 
      d) let “STARTMODS+=$OPTARG*24*60*60” 
   STARTMODIFIED=1;; 
      h) let “STARTMODS+=$OPTARG*60*60” 
   STARTMODIFIED=1;; 
      m) let “STARTMODS+=$OPTARG*60” 
   STARTMODIFIED=1;; 
      s) let “STARTMODS+=$OPTARG” 
   STARTMODIFIED=1;; 
      A) TIFPS_END=`date -d “$OPTARG” +%s` 
   if [ $? -gt 0 ]; then 
       error 
   fi 
   ABSOLUTE_END=1;; 
      W) let “ENDMODS+=$OPTARG*7*24*60*60” 
   ENDMODIFIED=1;; 
      D) let “ENDMODS+=$OPTARG*24*60*60” 
   ENDMODIFIED=1;; 
      H) let “ENDMODS+=$OPTARG*60*60” 
   ENDMODIFIED=1;; 
      M) let “ENDMODS+=$OPTARG*60” 
   ENDMODIFIED=1;; 
      S) let “ENDMODS+=$OPTARG” 
   ENDMODIFIED=1;; 
      *) echo “Unimplemented option chosen.”;; 
  esac 
done 
 
# Decrements the argument pointer, so it points to next argument. 
shift $(($OPTIND - 1)) 
 
# check that target arguments for files/directories are given 
if [ “$1” = ““ ]; then 
    error 
fi 
 
#set or get attributes for all arguments 
for arg in $* 
do 
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  do_it $arg 
done           
 
exit 0 
 

modtime_install.sh 
#!/bin/bash 
 
# run this install script as root 
#   To install modtime: 
#      ./modtime_install.sh -i 
#   
#   To remove modtime: 
#      ./modtime_install.sh -u 
 
 
function check_dependency 
{ 
    echo “Checking for dependencies...” 
 
    which setfattr 
    if [ $? -gt 0 ]; then 
 echo “You need to install the setfattr and getfattr tools from the attr package 
first” 
 exit 
    fi 
     
    which getfattr 
    if [ $? -gt 0 ]; then 
 echo “You need to install the setfattr and getfattr tools from the attr package 
first” 
 exit 
    fi 
    which perl 
    if [ $? -gt 0 ]; then 
 echo “You need to install perl first” 
 exit 
    fi 
} 
 
 
while getopts “:iu” Option 
  do 
  case $Option in 
      u) rm -f /usr/bin/modtime 
  rm -f /usr/share/man/man1/modtime.1.gz 
  if [ $? -eq 0 ]; then 
      echo “Uninstall sucessful!!” 
  else 
      echo “Uninstall failed! You can manually remove the modtime from the” 
      echo “/usr/bin/ directory and the modtime.1.gz file from the “ 
      echo “/usr/share/man/man1/ directory.” 
  fi 
  exit;; 
       
      i) check_dependency 
  cp -f modtime /usr/bin/ 
  cp -f modtime.1.gz /usr/share/man/man1/ 
  if [ $? -eq 0 ]; then 
      echo “Install successful!!” 
  else 
      echo “Uninstall failed!  Copy the modtime to /usr/bin and “ 
      echo “modtime.1.gz to the /usr/share/man/man1/ directories.” 
  fi 
  exit;; 
      *) echo “This script only takes -u or -i as flags” 
 
  esac 
done  
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APPENDIX B.  INSTALLATION GUIDE 

This is a brief description of how to patch, compile, and install both the TIFPS 

Linux Security Module and the modtime tool.  The latter is used to get and set the time 

attributes for use with the TIFPS LSM. 

A.  INSTALLING TIFPS MODULE 
1. Download and install the Fedora Core 5 (FC5) Linux operating system.  The 

TIFPS Linux Security Module (LSM) should work for any distribution of Linux 

that supports the LSM framework.  Specifically, this implementation was 

developed with kernel version 2.6.15 using the Fedora Core 5 distribution.  It was 

compiled and tested on an i686 machine. 

2. During operating system (OS) installation, make sure to also install the perl and 

attr packages.  These are required for the modtime tool to work.  Note: In FC5, 

both should be installed by default. 

3. After the OS install, download and install the kernel source code.  For FC5: 

a. First, make a note of the kernel version installed by typing: 

$  uname -r 

b. Then, download the kernel source package (kernel-<version>.src.rpm) 

from: 

http://download.fedora.redhat.com/pub/fedora/linux/core/5/source/SRPMS/ 

c. As root, install the source rpm by: 

#  rpm -Uvh kernel-<version>.src.rpm 

d. Build the kernel source: 

#  cd /usr/src/redhat/SPECS 

#  rpmbuild -bp --target $(uname –m) kernel-2.6.spec 
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e. The source should now be installed in /usr/src/redhat/BUILD/kernel-

<version>/linux-2.6.15.<arch>/ directory, create a symlink to this source 

directory: 

#  ln –s /usr/src/redhat/BUILD/kernel-<version>/linux-2.6.15.<arch> \  

/usr/src/linux 

4. Patch the kernel with TIFPS with the following steps: 

a. As root, change into the kernel source directory: 

#  cd /usr/src/linux 

b. Patch the kernel source with the tifps_patch by: 

#  cp <path to tifps_patch_kernel-2.6.15_090606 on CD1> /usr/src/linux 

#  patch -p1 –i /usr/src/linux/ tifps_patch_kernel-2.6.15_090606 

c. To revert back to original kernel, type: 

#  patch -p1 -R -i /usr/src/linux/tifps_patch_kernel-2.6.15_090606 

5. Configure the new kernel with tifps selected as a module: 

a. As root, change into kernel source directory and run the following 

command to keep the existing kernel configuration: 

#  make oldconfig 

b. Answer ‘N’ for any new kernel options available. 

c. Next, run: 

#  make menuconfig 

d. Select the kernel options required to support the hardware associated with 

the system upon which it will execute.  The default should work. 

e. Go to the “Security options” option using arrow keys and using the space 

bar to select options  (See Figure B-1): 
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Figure B-1. Select “Security options” 

 

f. Unselect NSA SELinux Support. 

g. Unselect all other security models or select them as modules: 

i. Default Linux Capabilities 

ii. BSD Secure Levels 

iii. Root Plug Support (will appear only if USB support is selected) 

h. Select “NPS TIFPS (Experimental)” as a module.  See Figure B-2 below. 
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Figure B-2. Set “NPS TIFPS” as a module 

 

i. Exit the kernel configuration utility and save the configuration when 

prompted. 

6. If desired, edit the EXTRAVERSION field in main Makefile in the /usr/src/linux 

source code directory to custom name the new kernel. 

7. Compile the kernel by running: 

# make all && make modules_install && make install 

8. Edit the /boot/grub/grub.conf file to boot the newly configured kernel by default 

by changing the default field to 0.   

9. Edit /etc/inittab file to default to runlevel 3 (multi-user mode without X-

windows): 

id:3:initdefault: 

10. Reboot the system: 

 #  reboot 
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11. Assuming all went as planned, a kernel should be now running a kernel that 

supports time-based access control for regular files and directories.  If the kernel 

does not boot properly, it is always possible to reboot the system to the previous 

working kernel by hitting any key at system startup to get to the grub boot menu 

as shown in Figure B-3 below: 

 

 
Figure B-3. Fedora Core 5 system start boot screen. 

 

B. INSTALLING THE MODTIME TOOL 
1. Install the modtime tool and man page for modtime by logging in as root and 

changing into the tifps_tool/ directory on CD1 of archive  and running the install script: 

#  cd <path to CD1 TIFPS archive/tifps_tool_modtime/ 

#  ./modtime_install.sh -i 

NOTE:  to uninstall the tool, run: 

#  ./modtime_install.sh -u 
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APPENDIX C.  USERS GUIDE 

This appendix describe how to use the TIFPS LSM to control subject and object 

time permissions as well as the modtime tool for interfacing with the time-based access 

control system. 

A.   LOADING AND UNLOADING THE TIFPS LSM 
Though the TIFPS LSM can be compiled directly into the kernel, it is 

recommended that it be compiled as a module so that it can be loaded and unloaded 

dynamically into the kernel by root.  After a successful compile and a subsequent reboot 

into the new kernel, load the TIFPS LSM by running the following command as root: 

#  modprobe tifps 

To unload the TIFPS LSM run the following command as root: 

 #  rmmod tifps 

It is possible to check whether the TIFPS LSM is loaded into the kernel by listing all the 

loaded modules.  Run the following command as root: 

 #  lsmod 

B.   USING THE MODTIME TOOL 
The modtime tool can be used by the root user to set the persistent time attributes 

of regular files and directories.  It can also be used by user to display the time attribute.  It 

has a simple command line interface similar to other Linux command line tools such as 

chmod, chown, ls, etc…  Figure C-1 shows a screen shot for modtime tool in use.  To 

get simple usage instructions simply give the command: 

#  modtime 

 



78 

 
Figure C-1. Screen shot of the command line interface for modtime 

 

The modtime tool uses flag options and can set time attributes using absolute 

time or relative time via these flags.  It also has flag options for deleting or displaying 

time attributes.  Figure C-2 below shows a screen shot of the man page for modtime.  To 

see the complete man page, type: 

 
 #  man modtime 
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Figure C-2. Screen shot of man page for modtime 
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C. CONTROLLING TIME ATTRIBUTES OF SUBJECTS 
To control a user’s time interval for allowed access, the super user (root) can set 

the time attributes of either the .bash_profile or .bashrc files which reside in the user’s 

home directory.  These files are read by bash every time a user logs in, therefore, they 

can be used to set the time attributes of the bash shell for the user.  For example, to set 

the time attribute for user sam to expire on September 22, 2006 at 1700 hrs, run the 

following: 

#  modtime –A ‘9/22/06 17:00:00’ /home/sam/.bash_profile 

 

 
Figure C-3. Screen shot of the modtime tool used to set user time attributes. 

 

Since the two bash files mentioned above are owned by the user, they can be 

deleted or moved by the user, effectively bypassing the access control set by root.  To 

prevent this, the root user must also set the file immutable by running the command: 

# chattr +i /home/sam/.bash_profile 

To remove time attributes on the sam account, run: 

#  chattr –i /home/sam/.bash_profile 

#  modtime –x /home/sam/.bash*  

Note: it is important to use the –x flag to remove time attributes for all the .bash* 

files because these files will inherit the attributes set by the administrator during use.  For 

example, the .bash_history file is appended each time a user issues a new command in 

the bash shell. 
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D.   CONTROLLING TIME ATTRIBUTES OF OBJECTS 
To control access to regular file and directory objects, the modtime tool is also 

used exactly as it was used to set the user attributes above.  The following command sets 

the time interval of allowed access from 30 seconds before current time to September 22, 

2006 at 0000 hrs for the /tmp directory: 

 #  modtime –s -30 –A 9/22/06 /tmp 
 

 
Figure C-4. Screen shot of modtime used to control time-based access to /tmp 

 



82 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK  



83 

APPENDIX D.  TEST PROCEDURES AND RESULTS 

This appendix documents the detailed test procedures and results for the test plan 

described in Chapter IV.  Before beginning any testing, ensure that the following 

preconditions are met: 

• The TIFPS LSM is compiled and installed per installation instruction in 
Appendix B and loaded per usage instructions in Appendix C. 

• The modtime tool is installed per instructions in Appendix B. 

• The individual conducting the tests is logged in as root. 

• The following user accounts exist: jody, sam, and don. 

• Users can be added with the command: 

#  useradd – m <username> 

• Set the password by: 

#  passwd <username> 

• Make a copy of the testscript/ directory from archive CD 1 to a directory 
of choice, for example: 

#  cp <path to testscript/ directory on CD1>  /root 

A. ACCESS CONTROL TEST PROCEDURES 
Static tests – enforcement of file and directory read/write/execute 

1. Navigate to the directory where the TIFPS test scripts are located. 

#  cd <path to TIFPS testscripts directory>/accesscontrol 

2. Run each of the scripts listed in Table D-1 using the following example format: 

 #  ./s-read-file-1.sh |tee s-read-file-1-results.txt 

3. Compare the results for time intervals t1 to t5 in the resulting text file from each 

run to Table D-1. 
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Table D-1. Summary of results expected for each test case * 
 

Expected Results Test ID Scripts Scenario 
1 2 3 4 5 

A1 1 D D D D D 
A2 2 D A D -- -- 
A3 3 D D D D D 
A4 4 D D A D D 
A5 5 D D A D D 
A6 6 D A D D -- 
A7 

s-read-file-1.sh to s-read-file-7.sh 
s-read-dir-1.sh to s-read-dir-7.sh 
s-write-file-1.sh to s-write-file-7.sh 
s-write-dir-1.sh to s-write-dir-7.sh 
s-exec-file-1.sh to s-exec-file-7.sh 
s-exec-dir-1.sh to s-exec-dir-7.sh 
s-read-file-6-swap.sh  
s-write-dir-4-swap.sh 

7 D D A D -- 

* D = Deny; A = Allow 

Static tests- Inheritance in file/directory creation  and file copy operations 

Inheritance in file and directory creation 

1. Run the following commands as root: 

#  cd <path to TIFPS directory>/testscripts/accesscontrol/ 

#  ./s-create-file.sh |tee s-create-file-results.txt 

#  ./s-create-dir.sh |tee s-create-dir-results.txt 

2. Compare results captured in the results file to expected results summarized in 

Table D-2. 

 
Table D-2. File and directory creation tests and expected results 

 
Test ID Test script Expected Result 
B1 s-create-file.sh Time attributes of the newly created file matches that of the subject. 
B2 s-create-dir.sh Time attributes of the newly created directory matches that of the 

subject. 
 

Inheritance in file copy 

1. Create a login session as root  and clear the time attributes for user jody. 

#  modtime –x /home/jody/.bash* 

2. Using the root session, change to the testscript directory and copy the user scripts 

to jody’s home directory and make them accessible to the user: 

#  cd <path to TIFPS directory>/testscripts/accesscontrol/ 

#  cp s-copy-file-*-user.sh /home/jody/ 
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#  chmod 755 /home/jody/s-copy-file-*-user.sh 

3. Create a file to capture the results: 

#  touch /tmp/s-copy-file-1a-results.txt 

#  chmod 766 /tmp/s-copy-file-1a-results.txt 

4. Using the root login session, setup the test case and capture output in the results 

file: 

#  ./s-copy-file-1-admin.sh >> /tmp/s-copy-file-1a-results.txt 

5. Create another login session as user jody, run the test case and capture the output 

in the results file: 

$  ./s-copy-file-1a-user.sh >> /tmp/s-copy-file-1a-results.txt 

6. Using the root login session, cleanup the time attributes for jody: 

#  modtime –x /home/jody/.bash* 

7. Repeat steps 4 -6 nine more times for a total of 10 trials.  Note: you should logout 

of the jody session after each trial and relogin to reinherit the time attributes for 

jody.  This is especially important for the tests in scenario three.  After completing 

the 10 trials, view the resulting file and ensure that for each trial, the destination 

file properly inherited the attributes.  It should take on the time attributes of the 

smallest time interval of the three test entities: subject, source object, destination 

object (See Table D-4 for summary of expected results).  Record the number of 

unsuccessful trials.   

8. Repeat steps 3 - 6 using results file, admin script, and user script summarized in 

Table D-3 below (Test ID C1 is already completed by above): 
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Table D-3. Summary of results file, admin script, and user script for copy test cases 
 

Test ID Test Case Results file Admin script User script 
C1 Scenario 1, cp s-copy-file-1a-results.txt s-copy-file-1-admin.sh s-copy-file-1a-user.sh 
C2 Scenario 1, redirection s-copy-file-1b-results.txt s-copy-file-1-admin.sh s-copy-file-1b-user.sh 
C3 Scenario1 , pipes s-copy-file-1c-results.txt s-copy-file-1-admin.sh s-copy-file-1c-user.sh 
C4 Scenario 2, cp s-copy-file-2a-results.txt s-copy-file-2-admin.sh s-copy-file-2a-user.sh 
C5 Scenario 2, redirection s-copy-file-2b-results.txt s-copy-file-2-admin.sh s-copy-file-2b-user.sh 
C6 Scenario 2, pipes s-copy-file-2c-results.txt s-copy-file-2-admin.sh s-copy-file-2c-user.sh 
C7 Scenario 3, cp s-copy-file-3a-results.txt s-copy-file-3-admin.sh s-copy-file-3a-user.sh* 
C8 Scenario 3, redirection s-copy-file-3b-results.txt s-copy-file-3-admin.sh s-copy-file-3b-user.sh* 
C9 Scenario 3, pipes s-copy-file-3c-results.txt s-copy-file-3-admin.sh s-copy-file-3c-user.sh* 

* Note: before running these scripts, you must relogin as user jody to reinherit proper time attributes. 
 

Table D-4. Expected results of the file copy tests and file/directory creation tests 
 

Test ID Script Expected time attributes of the destination file 
C1 – C3 s-copy-file-1(abc)-results.sh Time attributes of /tmp/dest.txt matches that of destination object  
C4 – C6 s-copy-file-2(abc)-results.sh Time attributes of /tmp/dest.txt matches that of the source object 
C7 – C9 s-copy-file-3(abc)-results.sh Time attributes of /tmp/dest.txt matches that of the subject 

 

Static tests – TIFPS behavior on time expiration during file write operations 

This set of tests captures the TIFPS system behavior when access to objects is 

revoked during a write operation.  The scripts attempt to write 5 million ‘G’s to a file that 

expires within seconds.  Test cases for 1, 2, 3, 4, and 5 seconds are suggested, however, 

actual number of seconds is dependent on the speed of the hardware running the TIFPS 

LSM.   

1. As root, navigate to the testscript/accesscontrol/ directory. 

#  cd <path to TIFPS directory>/testscripts/accesscontrol/ 

2. Compile the helper C program used to generate and write 5 million ‘G’s to the 

test file. 

#  gcc fileprint5M.c   –o  fileprint5M 

3. Run the following script using arguments 1, 2, 3, 4, and 5 or until all ‘G’s are 

successfully written to the file /tmp/write-expired.txt.  The number of characters written 

successfully to the file will be printed to the screen.  See Table D-5 for a sample table 

used for capturing the information for this test. 

#  ./ s-write-expire.sh <number of seconds before access revocation> 
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Table D-5. Sample table for information to be captured for the access revocation 
during file write tests 

 
Test 
ID 

Script usage Number of bytes written 
successfully out of 5 
million 

Error Message, if any 

s-write-expire.sh 1 Record # of bytes written Record error message here. 
s-write-expire.sh 2 Record # of bytes written Record error message here. 
s-write-expire.sh 3 Record # of bytes written Record error message here. 
s-write-expire.sh 4 Record # of bytes written Record error message here. 

 
 
D1 

s-write-expire.sh 5 Record # of bytes written Record error message here. 
 

4. Record the number of characters written successfully and the error message from 

the system for each test case.  Increment the number of seconds until all 5 million 

‘G’s are successfully written to the file and no error message occurs.   

Dynamic tests – Dynamically changing subject and object attributes 

This set of tests capture system behavior when an administrator changes the time 

attributes of subjects or objects dynamically while a user is logged into the system.  For 

dynamically changing the subject time attributes case: 

1. Create two separate login sessions, one as root and the other as user jody.  

2. In the root login session, change to the testscripts/accesscontrol directory and 

copy the user scripts to the /home/jody/ directory and make them accessible to 

the user: 

#  cd <path to TIFPS testscript directory>/accesscontrol/ 

#  cp d-change-*-user.sh   /home/jody/ 

#  chmod 755 /home/jody/d-change-*-user.sh 

3. In the root login session, run: 

#  ./d-change-subj-admin.sh 

4. Immediately (within 10 seconds), run the following script in the jody login 

session: 

$  ./d-change-subj-user.sh 
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5. The expected behavior is continued user access to /tmp/longfile.txt because 

subject time attributes are inherited at user login. 

6. For dynamic object changes, repeat steps 3 and 4 as follows: 

a. In the root login session, run: 

#  ./d-change-obj-admin.sh 

b. In the jody login session, run:  

$  ./d-change-obj-user.sh 

7. The expected behavior is revocation of access because object access is checked at 

every file or directory read/write/execute operation. 

 
Table D-6. Summary of expectations for dynamically changing subject and object 

time 
  

Test ID Test scripts Expected Results 
E1 d-change-subj-admin.sh 

d-change-subj-user.sh 
Continued access should be allowed since time attributes 
are inherited at user login. 
 

E2 d-change-obj-admin.sh 
d-change-obj-user.sh 

Access should be revoked according to the newly set time 
attributes. 
 

 
B.  ACCESS CONTROL TEST SCRIPTS 

This section contains the scripts for the tests described in Section A. 

 

Static tests – enforcement of file and directory read/write/execute 

s-read-file-1.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
# Also, make sure the user jody exists or create one. 
 
echo “Static, read file test, scenario 1 of 7” 
echo “setup subject time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
echo ““ 
echo “setup object time attributes...” 
echo “this message will self destruct in 10 seconds...” >/tmp/message.txt 
modtime -s30 -S40 /tmp/message.txt 
 
sleep 2s 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
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    su - jody -c “cat /tmp/message.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done static read file test scenario 1 of 7...” 
echo ““ 
 

s-read-file-2.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read file test, scenario 2 of 7” 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile /tmp/message.txt 
echo ““ 
 
i=1 
 
while [ $i -le 3 ]; do 
    date 
    su - jody -c “cat /tmp/message.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “Done with read file test, scenario 2 of 7” 
echo ““ 
 

s-read-file-3.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read file test, scenario 3 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
modtime -s20 -S30 /tmp/message.txt 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “cat /tmp/message.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done static read file test, scenario 3 of 7” 
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echo ““ 
 

s-read-file-4.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read file test, scenario 4 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S30 /home/jody/.bash_profile 
modtime -s20 -S40 /tmp/message.txt 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “cat /tmp/message.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done static read file test, scenario 4 of 7.” 
echo ““ 
 

s-read-file-5.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read file test, scenario 5 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s20 -S30 /home/jody/.bash_profile 
modtime -s10 -S40 /tmp/message.txt 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “cat /tmp/message.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
 
echo “done static read file test, scenario 5 of 7...” 
echo ““ 
 

s-read-file-6.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read file test, scenario 6 of 7” 
echo ““ 
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echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
modtime -s10 -S30 /tmp/message.txt 
 
i=1 
 
while [ $i -le 4 ]; do 
    date 
    su - jody -c “cat /tmp/message.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done read file test, scenario 6 of 7 ...” 
echo ““ 
 
 

s-read-file-7.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read file test, scenario 7 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s20 -S30 /home/jody/.bash_profile 
modtime -s10 -S30 /tmp/message.txt 
 
i=1 
 
while [ $i -le 4 ]; do 
    date 
    su - jody -c “cat /tmp/message.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done static read file test, scenario 7 of 7...” 
echo ““ 
 

s-read-dir-1.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read directory test, scenario 1 of 7” 
echo “setup subject time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
echo ““ 
echo “setup object time attributes...” 
modtime -s30 -S40 /tmp 
 
sleep 2s 
 
i=1 
 
while [ $i -le 5 ]; do 
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    date 
    su - jody -c “ls /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi     
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done static read directory test, scenario 1 of 7” 
echo ““ 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-read-dir-2.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read directory test, scenario 2 of 7” 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile /tmp 
echo ““ 
 
sleep 2s 
 
i=1 
 
while [ $i -le 3 ]; do 
    date 
    su - jody -c “ls /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done static read directory test, scenario 2 of 7.” 
echo ““ 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 
 

s-read-dir-3.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read directory test, scenario 3 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
modtime -s20 -S30 /tmp 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “ls /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
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 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done static read directory test, scenario 3 of 7” 
echo ““ 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-read-dir-4.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read directory test, scenario 4 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S30 /home/jody/.bash_profile 
modtime -s20 -S40 /tmp 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “ls /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done static read directory test, scenario 4 of 7.” 
echo ““ 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-read-dir-5.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read directory test, scenario 5 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s20 -S30 /home/jody/.bash_profile 
modtime -s10 -S40 /tmp 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “ls /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
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echo “ done static read directory test, scenario 5 of 7.” 
 
echo ““ 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-read-dir-6.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read directory test, scenario 6 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
modtime -s10 -S30 /tmp 
 
i=1 
 
while [ $i -le 4 ]; do 
    date 
    su - jody -c “ls /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done static read directory test, scenario 6 of 7” 
echo ““ 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-read-dir-7.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read directory test, scenario 7 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s20 -S30 /home/jody/.bash_profile 
modtime -s10 -S30 /tmp 
 
i=1 
 
while [ $i -le 4 ]; do 
    date 
    su - jody -c “ls /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done static read directory test, scenario 7 of 7” 
echo ““ 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
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s-write-file-1.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, file write test, scenario 1 of 7” 
echo “setup subject time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
echo ““ 
echo “create new object and setup its time attributes...” 
echo ““ > /tmp/written.txt 
chmod 666 /tmp/written.txt 
modtime -s30 -S40 /tmp/written.txt 
 
sleep 2s 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “echo 'overwritten' >>/tmp/written.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp/written.txt...” 
cat /tmp/written.txt 
 

s-write-file-2.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, file write test, scenario 2 of 7” 
echo “setup subject and object time attributes...” 
echo ““ >/tmp/written.txt 
chmod 666 /tmp/written.txt 
modtime -s10 -S20 /home/jody/.bash_profile /tmp/written.txt 
echo ““ 
 
i=1 
 
while [ $i -le 3 ]; do 
    date 
    su - jody -c “echo 'overwritten `date`' >/tmp/written.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp/written.txt...” 
cat /tmp/written.txt 
 

s-write-file-3.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
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echo “Static, file write test, scenario 3 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
echo ““ >/tmp/written.txt 
chmod 666 /tmp/written.txt 
modtime -s10 -S20 /home/jody/.bash_profile 
modtime -s20 -S30 /tmp/written.txt 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “echo 'overwritten `date`' >>/tmp/written.txt” 
 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi     
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp/written.txt ...” 
cat /tmp/written.txt 
 

s-write-file-4.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, file write test, scenario 4 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
echo ““>/tmp/written.txt 
chmod 666 /tmp/written.txt 
modtime -s10 -S30 /home/jody/.bash_profile 
modtime -s20 -S40 /tmp/written.txt 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “echo 'overwritten `date`'>>/tmp/written.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp/written.txt...” 
cat /tmp/written.txt 
 

s-write-file-5.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, file write test, scenario 5 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
echo ““ >/tmp/written.txt 
chmod 666 /tmp/written.txt 
modtime -s20 -S30 /home/jody/.bash_profile 
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modtime -s10 -S40 /tmp/written.txt 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “echo 'overwritten `date`'>>/tmp/written.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp/written.txt...” 
cat /tmp/written.txt 
 

s-write-file-6.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, file write test, scenario 6 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
echo ““ >/tmp/written.txt 
chmod 666 /tmp/written.txt 
modtime -s10 -S20 /home/jody/.bash_profile 
modtime -s10 -S30 /tmp/written.txt 
 
i=1 
 
while [ $i -le 4 ]; do 
    date 
    su - jody -c “echo 'overwritten `date`'>>/tmp/written.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp/written.txt...” 
cat /tmp/written.txt 
 

s-write-file-7.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, file write test, scenario 7 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
echo ““>/tmp/written.txt 
chmod 666 /tmp/written.txt 
modtime -s20 -S30 /home/jody/.bash_profile 
modtime -s10 -S30 /tmp/written.txt 
 
i=1 
 
while [ $i -le 4 ]; do 
    date 
    su - jody -c “echo 'overwritten `date`'>>/tmp/written.txt” 
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    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp/written.txt...” 
cat /tmp/written.txt 
 

s-write-dir-1.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, directory write test, scenario 1 of 7” 
echo “setup subject time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
echo ““ 
echo ““ 
echo “setup object time attributes...” 
modtime -s30 -S40 /tmp 
 
sleep 2s 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “touch /tmp/`date +%T`-$i.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp directory” 
ls /tmp 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-write-dir-2.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, direcotry write test, scenario 2 of 7” 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile /tmp 
echo ““ 
 
i=1 
 
while [ $i -le 3 ]; do 
    date 
    su - jody -c “touch /tmp/`date +%T`-$i.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
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    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp diretory” 
ls /tmp 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-write-dir-3.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, directory write test, scenario 3 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
modtime -s20 -S30 /tmp 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “touch /tmp`date +%T`-$i.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp directory” 
ls /tmp 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-write-dir-4.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, directory write test, scenario 4 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S30 /home/jody/.bash_profile 
modtime -s20 -S40 /tmp 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “touch /tmp/`date +%T`-$i.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp directory” 
ls /tmp 
#cleanup 
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modtime –x /home/jody/.bash* /tmp 
 

s-write-dir-5.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, directory write test, scenario 5 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s20 -S30 /home/jody/.bash_profile 
modtime -s10 -S40 /tmp 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “touch /tmp/`date +%T`-$i.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp directory” 
ls /tmp 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-write-dir-6.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, directory write test, scenario 6 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
modtime -s10 -S30 /tmp 
 
i=1 
 
while [ $i -le 4 ]; do 
    date 
    su - jody -c “touch /tmp/`date +%T`-$i.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp directory” 
ls /tmp 
#cleanup  
modtime –x /home/jody/.bash* /tmp 
 

s-write-dir-7.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
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echo “Static, directory write test, scenario 7 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s20 -S30 /home/jody/.bash_profile 
modtime -s10 -S30 /tmp 
 
i=1 
 
while [ $i -le 4 ]; do 
    date 
    su - jody -c “touch /tmp/`date +%T`-$i.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp directory” 
ls /tmp 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-exec-file-1.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, file execute test, scenario 1 of 7” 
echo “setup subject time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
echo ““ 
echo “setup object time attributes...” 
modtime -s30 -S40 /usr/bin/cal 
 
sleep 2s 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “cal” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
#cleanup 
modtime –x /home/jody/.bash* /usr/bin/cal 
 

s-exec-file-2.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, file execute test, scenario 2 of 7” 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile /usr/bin/cal 
 
i=1 
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while [ $i -le 3 ]; do 
    date 
    su - jody -c “cal” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
#cleanup 
modtime –x /home/jody/.bash* /usr/bin/cal 
 

s-exec-file-3.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, file execute test, scenario 3 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
modtime -s20 -S30 /usr/bin/cal 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “cal” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
#cleanup 
modtime –x /home/jody/.bash* /usr/bin/cal 

s-exec-file-4.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, file execute test, scenario 4 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S30 /home/jody/.bash_profile 
modtime -s20 -S40 /usr/bin/cal 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “cal” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
echo “done static exec file test, scenario 4 of 7.” 
echo ““ 
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#cleanup 
modtime –x /home/jody/.bash* /usr/bin/cal 
 

s-exec-file-5.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, file write test, scenario 5 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s20 -S30 /home/jody/.bash_profile 
modtime -s10 -S40 /usr/bin/cal 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “cal” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done static exec file test, scenario 5 of 7.” 
echo ““ 
#cleanup 
modtime –x /home/jody/.bash* /usr/bin/cal 
 

s-exec-file-6.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, file write test, scenario 6 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
modtime -s10 -S30 /usr/bin/cal 
 
i=1 
 
while [ $i -le 4 ]; do 
    date 
    su - jody -c “cal” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
echo “done exec file test, scenario 6 of 7” 
echo ““ 
#cleanup 
modtime –x /home/jody/.bash* /usr/bin/cal 
 

s-exec-file-7.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
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echo “Static, file execute test, scenario 7 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s20 -S30 /home/jody/.bash_profile 
modtime -s10 -S30 /usr/bin/cal 
 
i=1 
 
while [ $i -le 4 ]; do 
    date 
    su - jody -c “cal” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi     
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done static exec file test, scenario 7 of 7.” 
echo ““ 
#cleanup 
modtime –x /home/jody/.bash* /usr/bin/cal 
 

s-exec-dir-1.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, directory execute test, scenario 1 of 7” 
echo “setup subject time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
echo ““ 
echo “setup object time attributes...” 
modtime -s30 -S40 /tmp 
 
sleep 2s 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “cd /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-exec-dir-2.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, directory execute test, scenario 2 of 7” 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile /tmp 
 
sleep 2s 
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i=1 
 
while [ $i -le 3 ]; do 
    date 
    su - jody -c “cd /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-exec-dir-3.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, directory execute test, scenario 3 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
modtime -s20 -S30 /tmp 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “cd /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-exec-dir-4.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, directory execute test, scenario 4 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S30 /home/jody/.bash_profile 
modtime -s20 -S40 /tmp 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “cd /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
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done 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-exec-dir-5.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, directory execute test, scenario 5 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s20 -S30 /home/jody/.bash_profile 
modtime -s10 -S40 /tmp 
 
i=1 
 
while [ $i -le 5 ]; do 
    date 
    su - jody -c “cd /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-exec-dir-6.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, directory execute test, scenario 6 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
modtime -s10 -S20 /home/jody/.bash_profile 
modtime -s10 -S30 /tmp 
 
i=1 
 
while [ $i -le 4 ]; do 
    date 
    su - jody -c “cd /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-exec-dir-7.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, directory execute test, scenario 7 of 7” 
echo ““ 
echo “setup subject and object time attributes...” 
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modtime -s20 -S30 /home/jody/.bash_profile 
modtime -s10 -S30 /tmp 
 
i=1 
 
while [ $i -le 4 ]; do 
    date 
    su - jody -c “cd /tmp” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

s-read-file-6-swap.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, read file test, scenario 6 of 7(subject and object time swapped” 
echo ““ 
echo “setup subject and object time attributes...” 
#modtime -s10 -S20 /home/jody/.bash_profile 
#modtime -s10 -S30 /tmp/message.txt 
modtime -s10 –S30 /home/jody/.bash_profile 
modtime -s10 –S20 /tmp/message.txt 
 
i=1 
 
while [ $i -le 4 ]; do 
    date 
    su - jody -c “cat /tmp/message.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “done read file test, scenario 6 of 7 ...” 
echo ““ 

 

s-write-dir-4-swap.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, directory write test, scenario 4 of 7 (subject and object swapped)” 
echo ““ 
echo “setup subject and object time attributes...” 
#modtime -s10 -S30 /home/jody/.bash_profile 
#modtime -s20 -S40 /tmp 
modtime –s20 –S40 /home/jody/.bash_profile 
modtime –s10 –S30 /tmp 
 
i=1 
 
while [ $i -le 5 ]; do 
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    date 
    su - jody -c “touch /tmp/`date +%T`-$i.txt” 
    if [ $? -gt 0 ]; then 
 echo “t$i: Access Denied” 
    else 
 echo “t$i: Access Granted” 
    fi 
    echo ““ 
    sleep 10s 
    let “i=$i+1” 
done 
 
echo “contents of /tmp directory” 
ls /tmp 
#cleanup 
modtime –x /home/jody/.bash* /tmp 
 

Static tests- Inheritance in file/directory creation and file copy operations 

s-create-file.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, create file test” 
echo ““ 
echo ““ 
echo “setup subject time attributes...” 
modtime -w-2 -W2 /home/jody/.bash_profile 
echo ““ 
echo ““ 
 
echo “current time is:” 
date 
echo ““ 
 
echo “creating a new file...........” 
su - jody -c “echo 'new file from jody' > jodynew.txt” 
echo ““ 
 
echo “The time attribute for the newly created file is ...” 
modtime -g /home/jody/jodynew.txt 
rm -f /home/jody/jodynew.txt 
 

s-create-dir.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
 
echo “Static, create directory test” 
echo ““ 
echo ““ 
echo “setup subject time attributes...” 
modtime -w-2 -W2 /home/jody/.bash_profile 
echo ““ 
echo ““ 
 
echo “current time is:” 
date 
echo ““ 
 
echo “creating a new directory...........” 
su - jody -c “mkdir jodyNewDirectory” 
echo ““ 
 
echo “The time attribute for the newly created directory is ...” 
modtime -g /home/jody/jodyNewDirectory 
rm -rf /home/jody/jodyNewDirectory 
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s-copy-file-1-admin.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
echo “setup subject time attributes...” 
cd /home/jody/ 
modtime –x /home/jody/.bash* 
modtime -w-2 -W2 /home/jody/.bash_profile 
echo “setup source object time attributes...” 
cd /tmp 
echo “This is the source file.” >/tmp/source.txt 
modtime -d-1 -D1 source.txt 
echo “setup destination object time attributes...(smallest)” 
echo “This is the destination file.” >/tmp/dest.txt 
chmod 777 /tmp/dest.txt /tmp/source.txt 
modtime -h-1 -H1 dest.txt 
 

s-copy-file-1a-user.sh 
#!/bin/bash 
# setup the test by running the s-copy-file-1-admin.sh script as root first. 
echo “Static, copy file test (using cp), scenario 1 of 3 - smallest dest object” 
echo ““ 
echo “current time is:” 
date 
cd /tmp 
cp source.txt dest.txt 
echo “The resulting time attribute for the destination file is ...” 
modtime -g dest.txt 
cd 
 

s-copy-file-1b-user.sh 
#!/bin/bash 
# setup the test by running the s-copy-file-1-admin.sh script as root first. 
echo “Static, copy file test (using redirection), scenario 1 of 3 - smallest dest object” 
echo ““ 
echo “current time is:” 
date 
cd /tmp 
cat source.txt > dest.txt 
echo “The resulting time attribute for the destination file is ...” 
modtime -g dest.txt 
cd 
 

s-copy-file-1c-user.sh 
#!/bin/bash 
# setup the test by running the s-copy-file-1-admin.sh script as root first. 
echo “Static, copy file test (using pipes), scenario 1 of 3 - smallest dest obj” 
echo ““ 
echo “current time is:” 
date 
cd /tmp 
cat source.txt |tee dest.txt 
echo “The resulting time attribute for the destination file is ...” 
modtime -g dest.txt 
cd 
 

s-copy-file-2-admin.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
echo “setup subject time attributes...” 
cd /home/jody/ 
modtime –x /home/jody/.bash* 
modtime -w-2 -W2 /home/jody/.bash_profile 
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echo “setup source object time attributes... (smallest)” 
cd /tmp 
echo “This is the source file.” >/tmp/source.txt 
modtime -h-1 -H1 source.txt 
echo “setup destination object time attributes...” 
echo “This is the destination file.” >/tmp/dest.txt 
chmod 777 /tmp/dest.txt /tmp/source.txt 
modtime -d-1 -D1 dest.txt 
 

s-copy-file-2a-user.sh 
#!/bin/bash 
# setup the test by running the s-copy-file-2-admin.sh script as root first. 
echo “Static, copy file test (using cp), scenario 2 of 3 - smallest src object” 
echo ““ 
echo “current time is:” 
date 
cd /tmp 
cp source.txt dest.txt 
echo “The resulting time attribute for the destination file is ...” 
modtime -g dest.txt 
cd 
 

s-copy-file-2b-user.sh 
#!/bin/bash 
# setup the test by running the s-copy-file-2-admin.sh script as root first. 
echo “Static, copy file test (using redirection), scenario 2 of 3 - smallest src object” 
echo ““ 
echo “current time is:” 
date 
cd /tmp 
cat source.txt > dest.txt 
echo “The resulting time attribute for the destination file is ...” 
modtime -g dest.txt 
cd 
 

s-copy-file-2c-user.sh 
#!/bin/bash 
# setup the test by running the s-copy-file-2-admin.sh script as root first. 
echo “Static, copy file test (using pipes), scenario 2 of 3 - smallest src object” 
echo ““ 
echo “current time is:” 
date 
cd /tmp 
cat source.txt |tee dest.txt 
echo “The resulting time attribute for the destination file is ...” 
modtime -g dest.txt 
cd 
 

s-copy-file-3-admin.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
echo “setup subject time attributes...(smallest)” 
cd /home/jody/ 
modtime –x /home/jody/.bash* 
modtime -h-1 -H1 /home/jody/.bash_profile 
echo “setup source object time attributes...” 
cd /tmp 
echo “This is the source file.” >/tmp/source.txt 
modtime -d-1 -D1 source.txt 
echo “setup destination object time attributes...” 
echo “This is the destination file.” >/tmp/dest.txt 
chmod 777 /tmp/dest.txt /tmp/source.txt 
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modtime -d-1 -D1 dest.txt 
 

s-copy-file-3a-user.sh 
#!/bin/bash 
# setup the test by running the s-copy-file-3-admin.sh script as root first. 
echo “Static, copy file test (using cp), scenario 3 of 3 - smallest subject” 
echo ““ 
echo “current time is:” 
date 
cd /tmp 
cp source.txt dest.txt 
echo “The resulting time attribute for the destination file is ...” 
modtime -g dest.txt 
cd 
 

s-copy-file-3b-user.sh 
#!/bin/bash 
# setup the test by running the s-copy-file-3-admin.sh script as root first. 
echo “Static, copy file test (using redirection), scenario 3 of 3 - smallest subject” 
echo ““ 
echo “current time is:” 
date 
cd /tmp 
cat source.txt > dest.txt 
echo “The resulting time attribute for the destination file is ...” 
modtime -g dest.txt 
cd 
 

s-copy-file-3c-user.sh 
#!/bin/bash 
# setup the test by running the s-copy-file-3-admin.sh script as root first. 
echo “Static, copy file test (using pipes), scenario 3 of 3 - smallest subject” 
echo ““ 
echo “current time is:” 
date 
cd /tmp 
cat source.txt |tee dest.txt 
echo “The resulting time attribute for the destination file is ...” 
modtime -g dest.txt 
cd 
 

 

Static tests – TIFPS behavior on time expiration during file write operations 

fileprint5M.c 
#include <stdio.h> 
 
int main(){ 
 FILE *fp; 
 fp = fopen(“/tmp/write-expired.txt”, “r+”); 
 
 if (fp ==NULL){ 
  printf(“ERROR opening file:  goodbye!\n”); 
  return 0; 
 } 
 
 int i=0; 
 int err; 
 for (i=0; i<5000000; i++){ 
  err=fprintf(fp, “G”); 
  if (err < 0){ 
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   printf(“ERROR writing to file: ERR %d\n”, err); 
   return 0; 
  } 
 } 
 err = fclose(fp); 
 if (err){ 
  printf(“ERROR closing file:  ERR %d\n”, err); 
  return 0; 
 } 
 printf(“File write successfully completed!\n”); 
 return 0; 
} 
 

s-write-expire.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
# give the number of seconds to revoke access as the first argument 
 
if [ $EUID -gt 0 ];then 
    echo “this script must be run as root” 
    exit; 
fi 
 
if [ $# -lt 1 ]; then 
    echo “Give the number of seconds before access revocation as a first argument” 
    exit; 
fi 
 
echo “Static test: File expiration during write operation” 
echo ““ 
echo “setup subject and object time attributes...” 
echo “file will expire in $1 second(s)” 
modtime -W 1 /home/jody/.bash_profile 
rm -f /tmp/write-expired.txt 
touch /tmp/write-expired.txt 
chmod 777 /tmp/write-expired.txt 
modtime -S $1 /tmp/write-expired.txt 
 
echo “write operation started:  “ 
date 
 
echo ““ 
echo “User jody tries to append 5 million G's to /tmp/write-expired.txt file ..” 
su jody -c “./fileprint5M” 
echo ““ 
echo “write operation ended:” 
date 
 
echo “Number of characters written to the file successfully:” 
wc -c /tmp/write-expired.txt 
echo ““ 
 

Dynamic tests – Dynamically changing subject and object attributes 

d-change-subj-admin.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
# Run this script as root; while the script sleeps, login as jody and run the  
# d-change-subj-user.sh script.  
echo “Dynamic test, change subject attributes while user is logged in and reading a file” 
echo ““ 
echo ““ 
echo “Initialize subject time attributes...” 
modtime -w-2 -W2 /home/jody/.bash_profile 
echo ““ 
echo ““ 
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echo “setup object and its time attributes...” 
rm /tmp/longfile.txt 
i=1 
while [ $i -le 20 ]; do 
    echo “line $i: This is a long file” >> /tmp/longfile.txt 
    let “i=$i+1” 
done 
modtime -w-1 -W1 /tmp/longfile.txt 
 
echo “current time is:” 
date 
echo ““ 
 
echo “going to sleep for 10s...” 
sleep 10s 
echo “...” 
echo “...” 
echo ““ 
 
echo “current time is: “ 
date 
echo ““ 
echo “changing subject time attributes...” 
modtime -S-1 /home/jody/.bash_profile 
 

d-change-subj-user.sh 
#!/bin/bash 
# This script is a companion to the d-change-subj-admin.sh script;  
# Run this script as user jody as soon as the main script sleeps 
 
echo “current time is:” 
date 
echo ““ 
 
cat /tmp/longfile.txt 
 
echo “sleeping for 10s....” 
sleep 10s 
echo “..............................” 
echo ““ 
echo “current time is:” 
date 
echo ““ 
cat /tmp/longfile.txt 
 

d-change-obj-admin.sh 
#!/bin/bash 
# must be run as root, be sure tifps LSM is loaded before running script 
# Run this script as root; while the script sleeps, login as jody and run the  
# d-change-obj-user.sh script.  
echo “Dynamic test, change object attributes while user is logged in and reading the 
object” 
echo ““ 
echo ““ 
echo “Initialize subject time attributes...” 
modtime -w-2 -W2 /home/jody/.bash_profile 
echo ““ 
echo ““ 
echo “setup object and its time attributes...” 
rm /tmp/longfile.txt 
i=1 
while [ $i -le 20 ]; do 
    echo “line $i: This is a long file” >> /tmp/longfile.txt 
    let “i=$i+1” 
done 
modtime -w-1 -W1 /tmp/longfile.txt 
 



114 

echo “current time is:” 
date 
echo ““ 
 
echo “going to sleep for 10s...” 
sleep 10s 
echo “...” 
echo “...” 
echo ““ 
 
echo “current time is: “ 
date 
echo ““ 
echo “changing object time attributes...” 
modtime -S-1 /tmp/longfile.txt 
 

d-change-obj-user.sh 
#!/bin/bash 
# This script is a companion to the d-change-obj-admin.sh script;  
# Run this script as user jody as soon as the main script sleeps 
 
echo “current time is:” 
date 
echo ““ 
 
cat /tmp/longfile.txt 
 
echo “sleeping for 10s....” 
sleep 10s 
echo “..............................” 
echo ““ 
echo “current time is:” 
date 
echo ““ 
cat /tmp/longfile.txt 

 
C.   ACCESS CONTROL TEST RESULTS 

This section contains the raw test results for the tests described in Section A.  The 

dates, times, and contents of directories displayed here will be slightly different compared 

to new test results obtained by the tester. 

Static tests – enforcement of file and directory read/write/execute 

s-read-file-*-results.txt 
Static, read file test, scenario 1 of 7 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 20:33:43 2006 
Revoke access on: Mon Sep  4 20:33:53 2006 
 
 
setup object time attributes... 
Target:  /tmp/message.txt 
Grant access on:  Mon Sep  4 20:34:03 2006 
Revoke access on: Mon Sep  4 20:34:13 2006 
 
Mon Sep  4 20:33:36 PDT 2006 
t1: Access Denied 
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Mon Sep  4 20:33:47 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 20:33:59 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 20:34:10 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 20:34:21 PDT 2006 
t5: Access Denied 
 
done static read file test scenario 1 of 7... 
 
Static, read file test, scenario 2 of 7 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 20:42:17 2006 
Revoke access on: Mon Sep  4 20:42:27 2006 
 
Target:  /tmp/message.txt 
Grant access on:  Mon Sep  4 20:42:17 2006 
Revoke access on: Mon Sep  4 20:42:27 2006 
 
 
Mon Sep  4 20:42:10 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 20:42:21 PDT 2006 
this message will self destruct in 10 seconds... 
t2: Access Granted 
 
Mon Sep  4 20:42:33 PDT 2006 
t3: Access Denied 
 
Done with read file test, scenario 2 of 7 
 
Static, read file test, scenario 3 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:27:38 2006 
Revoke access on: Mon Sep  4 21:27:48 2006 
 
Target:  /tmp/message.txt 
Grant access on:  Mon Sep  4 21:27:48 2006 
Revoke access on: Mon Sep  4 21:27:58 2006 
 
Mon Sep  4 21:27:29 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:27:40 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 21:27:52 PDT 2006 
t3: Access Denied 
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Mon Sep  4 21:28:03 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 21:28:14 PDT 2006 
t5: Access Denied 
 
done static read file test, scenario 3 of 7 
 
Static, read file test, scenario 4 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Tue Sep  5 19:27:16 2006 
Revoke access on: Tue Sep  5 19:27:36 2006 
 
/tmp/message.txt does not currently have accessible TIFPS attributes 
Target:  /tmp/message.txt 
Grant access on:  Tue Sep  5 19:27:26 2006 
Revoke access on: Tue Sep  5 19:27:46 2006 
 
Tue Sep  5 19:27:06 PDT 2006 
t1: Access Denied 
 
Tue Sep  5 19:27:17 PDT 2006 
t2: Access Denied 
 
Tue Sep  5 19:27:27 PDT 2006 
this message will self destruct in 10 seconds... 
t3: Access Granted 
 
Tue Sep  5 19:27:38 PDT 2006 
t4: Access Denied 
 
Tue Sep  5 19:27:49 PDT 2006 
t5: Access Denied 
 
done static read file test, scenario 4 of 7. 
 
 
setup subject and object time attributes... 
Static, read file test, scenario 5 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 20:56:50 2006 
Revoke access on: Mon Sep  4 20:57:00 2006 
 
Target:  /tmp/message.txt 
Grant access on:  Mon Sep  4 20:56:41 2006 
Revoke access on: Mon Sep  4 20:57:11 2006 
 
Mon Sep  4 20:56:31 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 20:56:42 PDT 2006 
t2: Access Denied 
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Mon Sep  4 20:56:53 PDT 2006 
this message will self destruct in 10 seconds... 
t3: Access Granted 
 
Mon Sep  4 20:57:04 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 20:57:15 PDT 2006 
t5: Access Denied 
 
done static read file test, scenario 5 of 7... 
 
Static, read file test, scenario 6 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 20:59:52 2006 
Revoke access on: Mon Sep  4 21:00:02 2006 
 
Target:  /tmp/message.txt 
Grant access on:  Mon Sep  4 20:59:52 2006 
Revoke access on: Mon Sep  4 21:00:12 2006 
 
Mon Sep  4 20:59:43 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 20:59:54 PDT 2006 
this message will self destruct in 10 seconds... 
t2: Access Granted 
 
Mon Sep  4 21:00:05 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 21:00:16 PDT 2006 
t4: Access Denied 
 
done read file test, scenario 6 of 7 ... 
 
 
Static, read file test, scenario 7 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:01:47 2006 
Revoke access on: Mon Sep  4 21:01:57 2006 
 
Target:  /tmp/message.txt 
Grant access on:  Mon Sep  4 21:01:37 2006 
Revoke access on: Mon Sep  4 21:01:57 2006 
 
Mon Sep  4 21:01:27 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:01:38 PDT 2006 
t2: Access Denied 
 



118 

Mon Sep  4 21:01:49 PDT 2006 
this message will self destruct in 10 seconds... 
t3: Access Granted 
 
Mon Sep  4 21:02:01 PDT 2006 
t4: Access Denied 
 
done static read file test, scenario 7 of 7... 

s-read-dir-*-results.txt 
Static, read directory test, scenario 1 of 7 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:24:12 2006 
Revoke access on: Mon Sep  4 22:24:22 2006 
 
 
setup object time attributes... 
/tmp does not currently have accessible TIFPS attributes 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:24:32 2006 
Revoke access on: Mon Sep  4 22:24:42 2006 
 
Mon Sep  4 22:24:05 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:24:17 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 22:24:29 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 22:24:40 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 22:24:51 PDT 2006 
t5: Access Denied 
 
done static read directory test, scenario 1 of 7 
 
Static, read directory test, scenario 2 of 7 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:25:21 2006 
Revoke access on: Mon Sep  4 22:25:31 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:25:21 2006 
Revoke access on: Mon Sep  4 22:25:31 2006 
 
 
Mon Sep  4 22:25:14 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:25:25 PDT 2006 
06:26:03-2.txt 
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17:28:34-1.txt 
17:29:15-2.txt 
17:32:57-5.txt 
17:33:46-3.txt 
17:36:24-2.txt 
17:37:01-1.txt 
mapping-kchiang 
mapping-root 
message.txt 
s-read-file-2-results.txt 
written.txt 
t2: Access Granted 
 
Mon Sep  4 22:25:36 PDT 2006 
t3: Access Denied 
 
done static read directory test, scenario 2 of 7. 
 
Static, read directory test, scenario 3 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:26:47 2006 
Revoke access on: Mon Sep  4 22:26:57 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:26:57 2006 
Revoke access on: Mon Sep  4 22:27:07 2006 
 
Mon Sep  4 22:26:37 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:26:49 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 22:27:00 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 22:27:11 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 22:27:22 PDT 2006 
t5: Access Denied 
 
done static read directory test, scenario 3 of 7 
 
Static, read directory test, scenario 4 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:28:30 2006 
Revoke access on: Mon Sep  4 22:28:50 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:28:40 2006 
Revoke access on: Mon Sep  4 22:29:00 2006 
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Mon Sep  4 22:28:20 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:28:31 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 22:28:43 PDT 2006 
06:26:03-2.txt 
17:28:34-1.txt 
17:29:15-2.txt 
17:32:57-5.txt 
17:33:46-3.txt 
17:36:24-2.txt 
17:37:01-1.txt 
mapping-kchiang 
mapping-root 
message.txt 
s-read-file-2-results.txt 
written.txt 
t3: Access Granted 
 
Mon Sep  4 22:28:54 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 22:29:05 PDT 2006 
t5: Access Denied 
 
done static read directory test, scenario 4 of 7. 
 
Static, read directory test, scenario 5 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:29:57 2006 
Revoke access on: Mon Sep  4 22:30:07 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:29:47 2006 
Revoke access on: Mon Sep  4 22:30:17 2006 
 
Mon Sep  4 22:29:38 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:29:49 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 22:30:00 PDT 2006 
06:26:03-2.txt 
17:28:34-1.txt 
17:29:15-2.txt 
17:32:57-5.txt 
17:33:46-3.txt 
17:36:24-2.txt 
17:37:01-1.txt 
mapping-kchiang 
mapping-root 
message.txt 
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s-read-file-2-results.txt 
written.txt 
t3: Access Granted 
 
Mon Sep  4 22:30:12 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 22:30:23 PDT 2006 
t5: Access Denied 
 
 done static read directory test, scenario 5 of 7. 
 
 
Static, read directory test, scenario 6 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:30:59 2006 
Revoke access on: Mon Sep  4 22:31:09 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:31:00 2006 
Revoke access on: Mon Sep  4 22:31:20 2006 
 
Mon Sep  4 22:30:50 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:31:01 PDT 2006 
06:26:03-2.txt 
17:28:34-1.txt 
17:29:15-2.txt 
17:32:57-5.txt 
17:33:46-3.txt 
17:36:24-2.txt 
17:37:01-1.txt 
mapping-kchiang 
mapping-root 
message.txt 
s-read-file-2-results.txt 
written.txt 
t2: Access Granted 
 
Mon Sep  4 22:31:13 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 22:31:24 PDT 2006 
t4: Access Denied 
 
done static read directory test, scenario 6 of 7 
 
Static, read directory test, scenario 7 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:33:34 2006 
Revoke access on: Mon Sep  4 22:33:44 2006 
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Target:  /tmp 
Grant access on:  Mon Sep  4 22:33:24 2006 
Revoke access on: Mon Sep  4 22:33:44 2006 
 
Mon Sep  4 22:33:14 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:33:26 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 22:33:37 PDT 2006 
06:26:03-2.txt 
17:28:34-1.txt 
17:29:15-2.txt 
17:32:57-5.txt 
17:33:46-3.txt 
17:36:24-2.txt 
17:37:01-1.txt 
mapping-kchiang 
mapping-root 
message.txt 
s-read-file-2-results.txt 
written.txt 
t3: Access Granted 
 
Mon Sep  4 22:33:49 PDT 2006 
t4: Access Denied 
 
done static read directory test, scenario 7 of 7 
 

s-write-file-*-results.txt 
Static, file write test, scenario 1 of 7 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:14:37 2006 
Revoke access on: Mon Sep  4 21:14:47 2006 
 
 
create new object and setup its time attributes... 
Target:  /tmp/written.txt 
Grant access on:  Mon Sep  4 21:14:58 2006 
Revoke access on: Mon Sep  4 21:15:08 2006 
 
Mon Sep  4 21:14:30 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:14:41 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 21:14:52 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 21:15:04 PDT 2006 
t4: Access Denied 
 



123 

Mon Sep  4 21:15:15 PDT 2006 
t5: Access Denied 
 
contents of /tmp/written.txt... 
 
Static, file write test, scenario 2 of 7 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:16:51 2006 
Revoke access on: Mon Sep  4 21:17:01 2006 
 
Target:  /tmp/written.txt 
Grant access on:  Mon Sep  4 21:16:51 2006 
Revoke access on: Mon Sep  4 21:17:01 2006 
 
 
Mon Sep  4 21:16:41 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:16:52 PDT 2006 
t2: Access Granted 
 
Mon Sep  4 21:17:05 PDT 2006 
t3: Access Denied 
 
contents of /tmp/written.txt... 
overwritten Mon Sep  4 21:16:52 PDT 2006 
Static, file write test, scenario 3 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:21:45 2006 
Revoke access on: Mon Sep  4 21:21:55 2006 
 
Target:  /tmp/written.txt 
Grant access on:  Mon Sep  4 21:21:55 2006 
Revoke access on: Mon Sep  4 21:22:05 2006 
 
Mon Sep  4 21:21:35 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:21:46 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 21:21:58 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 21:22:09 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 21:22:20 PDT 2006 
t5: Access Denied 
 
contents of /tmp/written.txt ... 
 
Static, file write test, scenario 4 of 7 
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setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:23:06 2006 
Revoke access on: Mon Sep  4 21:23:26 2006 
 
Target:  /tmp/written.txt 
Grant access on:  Mon Sep  4 21:23:16 2006 
Revoke access on: Mon Sep  4 21:23:36 2006 
 
Mon Sep  4 21:22:56 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:23:08 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 21:23:20 PDT 2006 
t3: Access Granted 
 
Mon Sep  4 21:23:33 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 21:23:46 PDT 2006 
t5: Access Denied 
 
contents of /tmp/written.txt... 
 
overwritten Mon Sep  4 21:23:20 PDT 2006 
Static, file write test, scenario 5 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:30:39 2006 
Revoke access on: Mon Sep  4 21:30:49 2006 
 
Target:  /tmp/written.txt 
Grant access on:  Mon Sep  4 21:30:30 2006 
Revoke access on: Mon Sep  4 21:31:00 2006 
 
Mon Sep  4 21:30:20 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:30:32 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 21:30:43 PDT 2006 
t3: Access Granted 
 
Mon Sep  4 21:30:56 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 21:31:08 PDT 2006 
t5: Access Denied 
 
contents of /tmp/written.txt... 
 
overwritten Mon Sep  4 21:30:44 PDT 2006 
Static, file write test, scenario 6 of 7 
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setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:32:48 2006 
Revoke access on: Mon Sep  4 21:32:58 2006 
 
Target:  /tmp/written.txt 
Grant access on:  Mon Sep  4 21:32:48 2006 
Revoke access on: Mon Sep  4 21:33:08 2006 
 
Mon Sep  4 21:32:39 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:32:50 PDT 2006 
t2: Access Granted 
 
Mon Sep  4 21:33:02 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 21:33:14 PDT 2006 
t4: Access Denied 
 
contents of /tmp/written.txt... 
 
overwritten Mon Sep  4 21:32:50 PDT 2006 
 
 
Static, file write test, scenario 7 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:34:26 2006 
Revoke access on: Mon Sep  4 21:34:36 2006 
 
Target:  /tmp/written.txt 
Grant access on:  Mon Sep  4 21:34:16 2006 
Revoke access on: Mon Sep  4 21:34:36 2006 
 
Mon Sep  4 21:34:07 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:34:18 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 21:34:29 PDT 2006 
t3: Access Granted 
 
Mon Sep  4 21:34:41 PDT 2006 
t4: Access Denied 
 
contents of /tmp/written.txt... 
 
overwritten Mon Sep  4 21:34:29 PDT 2006 
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s-write-dir-*-results.txt 
Static, directory write test, scenario 1 of 7 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:35:48 2006 
Revoke access on: Mon Sep  4 22:35:58 2006 
 
 
setup object time attributes... 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:36:08 2006 
Revoke access on: Mon Sep  4 22:36:18 2006 
 
Mon Sep  4 22:35:40 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:35:51 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 22:36:03 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 22:36:15 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 22:36:26 PDT 2006 
t5: Access Denied 
 
contents of /tmp directory 
06:26:03-2.txt 
17:28:34-1.txt 
17:29:15-2.txt 
17:32:57-5.txt 
17:33:46-3.txt 
17:36:24-2.txt 
17:37:01-1.txt 
mapping-kchiang 
mapping-root 
message.txt 
s-read-file-2-results.txt 
written.txt 
 
 
Static, direcotry write test, scenario 2 of 7 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:38:18 2006 
Revoke access on: Mon Sep  4 22:38:28 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:38:18 2006 
Revoke access on: Mon Sep  4 22:38:28 2006 
 
 
Mon Sep  4 22:38:08 PDT 2006 
t1: Access Denied 



127 

 
Mon Sep  4 22:38:20 PDT 2006 
t2: Access Granted 
 
Mon Sep  4 22:38:33 PDT 2006 
t3: Access Denied 
 
contents of /tmp diretory 
06:26:03-2.txt 
17:28:34-1.txt 
17:29:15-2.txt 
17:32:57-5.txt 
17:33:46-3.txt 
17:36:24-2.txt 
17:37:01-1.txt 
22:38:20-2.txt 
mapping-kchiang 
mapping-root 
message.txt 
s-read-file-2-results.txt 
written.txt 
 
 
Static, directory write test, scenario 3 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:39:21 2006 
Revoke access on: Mon Sep  4 22:39:31 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:39:31 2006 
Revoke access on: Mon Sep  4 22:39:41 2006 
 
Mon Sep  4 22:39:12 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:39:24 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 22:39:36 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 22:39:47 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 22:39:58 PDT 2006 
t5: Access Denied 
 
contents of /tmp directory 
06:26:03-2.txt 
17:28:34-1.txt 
17:29:15-2.txt 
17:32:57-5.txt 
17:33:46-3.txt 
17:36:24-2.txt 
17:37:01-1.txt 
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22:38:20-2.txt 
mapping-kchiang 
mapping-root 
message.txt 
s-read-file-2-results.txt 
written.txt 
 
 
Static, directory write test, scenario 4 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:42:08 2006 
Revoke access on: Mon Sep  4 22:42:28 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:42:18 2006 
Revoke access on: Mon Sep  4 22:42:38 2006 
 
Mon Sep  4 22:41:59 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:42:10 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 22:42:21 PDT 2006 
t3: Access Granted 
 
Mon Sep  4 22:42:32 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 22:42:43 PDT 2006 
t5: Access Denied 
 
contents of /tmp directory 
06:26:03-2.txt 
17:28:34-1.txt 
17:29:15-2.txt 
17:32:57-5.txt 
17:33:46-3.txt 
17:36:24-2.txt 
17:37:01-1.txt 
22:38:20-2.txt 
22:42:21-3.txt 
mapping-kchiang 
mapping-root 
message.txt 
s-read-file-2-results.txt 
written.txt 
 
 
 
Static, directory write test, scenario 5 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:44:03 2006 
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Revoke access on: Mon Sep  4 22:44:13 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:43:53 2006 
Revoke access on: Mon Sep  4 22:44:23 2006 
 
Mon Sep  4 22:43:44 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:43:55 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 22:44:06 PDT 2006 
t3: Access Granted 
 
Mon Sep  4 22:44:18 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 22:44:29 PDT 2006 
t5: Access Denied 
 
contents of /tmp directory 
06:26:03-2.txt 
17:28:34-1.txt 
17:29:15-2.txt 
17:32:57-5.txt 
17:33:46-3.txt 
17:36:24-2.txt 
17:37:01-1.txt 
22:38:20-2.txt 
22:42:21-3.txt 
22:44:06-3.txt 
mapping-kchiang 
mapping-root 
message.txt 
s-read-file-2-results.txt 
written.txt 
 
Static, directory write test, scenario 6 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:45:38 2006 
Revoke access on: Mon Sep  4 22:45:48 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:45:38 2006 
Revoke access on: Mon Sep  4 22:45:58 2006 
 
Mon Sep  4 22:45:29 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:45:40 PDT 2006 
t2: Access Granted 
 
Mon Sep  4 22:45:52 PDT 2006 
t3: Access Denied 
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Mon Sep  4 22:46:03 PDT 2006 
t4: Access Denied 
 
contents of /tmp directory 
06:26:03-2.txt 
17:28:34-1.txt 
17:29:15-2.txt 
17:32:57-5.txt 
17:33:46-3.txt 
17:36:24-2.txt 
17:37:01-1.txt 
22:38:20-2.txt 
22:42:21-3.txt 
22:44:06-3.txt 
22:45:40-2.txt 
mapping-kchiang 
mapping-root 
message.txt 
s-read-file-2-results.txt 
written.txt 
 
Static, directory write test, scenario 7 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:47:44 2006 
Revoke access on: Mon Sep  4 22:47:54 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:47:34 2006 
Revoke access on: Mon Sep  4 22:47:54 2006 
 
Mon Sep  4 22:47:24 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:47:36 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 22:47:47 PDT 2006 
t3: Access Granted 
 
Mon Sep  4 22:47:58 PDT 2006 
t4: Access Denied 
 
contents of /tmp directory 
06:26:03-2.txt 
17:28:34-1.txt 
17:29:15-2.txt 
17:32:57-5.txt 
17:33:46-3.txt 
17:36:24-2.txt 
17:37:01-1.txt 
22:38:20-2.txt 
22:42:21-3.txt 
22:44:06-3.txt 
22:45:40-2.txt 
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22:47:47-3.txt 
mapping-kchiang 
mapping-root 
message.txt 
s-read-file-2-results.txt 
written.txt 

 

s-exec-file-*-results.txt 
Static, file execute test, scenario 1 of 7 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:36:16 2006 
Revoke access on: Mon Sep  4 21:36:26 2006 
 
 
setup object time attributes... 
Target:  /usr/bin/cal 
Grant access on:  Mon Sep  4 21:36:36 2006 
Revoke access on: Mon Sep  4 21:36:46 2006 
 
Mon Sep  4 21:36:09 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:36:20 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 21:36:32 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 21:36:43 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 21:36:54 PDT 2006 
t5: Access Denied 
 
Static, file execute test, scenario 2 of 7 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:38:00 2006 
Revoke access on: Mon Sep  4 21:38:10 2006 
 
Target:  /usr/bin/cal 
Grant access on:  Mon Sep  4 21:38:00 2006 
Revoke access on: Mon Sep  4 21:38:10 2006 
 
Mon Sep  4 21:37:50 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:38:02 PDT 2006 
   September 2006    
Su Mo Tu We Th Fr Sa 
                1  2 
 3  4  5  6  7  8  9 
10 11 12 13 14 15 16 
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17 18 19 20 21 22 23 
24 25 26 27 28 29 30 
 
t2: Access Granted 
 
Mon Sep  4 21:38:14 PDT 2006 
t3: Access Denied 
 
Static, file execute test, scenario 3 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:39:29 2006 
Revoke access on: Mon Sep  4 21:39:39 2006 
 
Target:  /usr/bin/cal 
Grant access on:  Mon Sep  4 21:39:39 2006 
Revoke access on: Mon Sep  4 21:39:49 2006 
 
Mon Sep  4 21:39:20 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:39:31 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 21:39:43 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 21:39:54 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 21:40:05 PDT 2006 
t5: Access Denied 
 
Static, file execute test, scenario 4 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:40:45 2006 
Revoke access on: Mon Sep  4 21:41:05 2006 
 
Target:  /usr/bin/cal 
Grant access on:  Mon Sep  4 21:40:55 2006 
Revoke access on: Mon Sep  4 21:41:15 2006 
 
Mon Sep  4 21:40:35 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:40:46 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 21:40:58 PDT 2006 
   September 2006    
Su Mo Tu We Th Fr Sa 
                1  2 
 3  4  5  6  7  8  9 
10 11 12 13 14 15 16 
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17 18 19 20 21 22 23 
24 25 26 27 28 29 30 
 
t3: Access Granted 
 
Mon Sep  4 21:41:09 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 21:41:21 PDT 2006 
t5: Access Denied 
 
done static exec file test, scenario 4 of 7. 
 
Static, file write test, scenario 5 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 21:43:13 2006 
Revoke access on: Mon Sep  4 21:43:23 2006 
 
Target:  /usr/bin/cal 
Grant access on:  Mon Sep  4 21:43:03 2006 
Revoke access on: Mon Sep  4 21:43:33 2006 
 
Mon Sep  4 21:42:54 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 21:43:06 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 21:43:18 PDT 2006 
   September 2006    
Su Mo Tu We Th Fr Sa 
                1  2 
 3  4  5  6  7  8  9 
10 11 12 13 14 15 16 
17 18 19 20 21 22 23 
24 25 26 27 28 29 30 
 
t3: Access Granted 
 
Mon Sep  4 21:43:29 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 21:43:40 PDT 2006 
t5: Access Denied 
 
done static exec file test, scenario 5 of 7. 
 
Static, file write test, scenario 6 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:21:50 2006 
Revoke access on: Mon Sep  4 22:22:00 2006 
 
Target:  /usr/bin/cal 
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Grant access on:  Mon Sep  4 22:21:50 2006 
Revoke access on: Mon Sep  4 22:22:10 2006 
 
Mon Sep  4 22:21:40 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:21:51 PDT 2006 
   September 2006    
Su Mo Tu We Th Fr Sa 
                1  2 
 3  4  5  6  7  8  9 
10 11 12 13 14 15 16 
17 18 19 20 21 22 23 
24 25 26 27 28 29 30 
 
t2: Access Granted 
 
Mon Sep  4 22:22:03 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 22:22:14 PDT 2006 
t4: Access Denied 
 
done exec file test, scenario 6 of 7 
 
Static, file execute test, scenario 7 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:22:59 2006 
Revoke access on: Mon Sep  4 22:23:09 2006 
 
Target:  /usr/bin/cal 
Grant access on:  Mon Sep  4 22:22:49 2006 
Revoke access on: Mon Sep  4 22:23:09 2006 
 
Mon Sep  4 22:22:40 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:22:51 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 22:23:03 PDT 2006 
   September 2006    
Su Mo Tu We Th Fr Sa 
                1  2 
 3  4  5  6  7  8  9 
10 11 12 13 14 15 16 
17 18 19 20 21 22 23 
24 25 26 27 28 29 30 
 
t3: Access Granted 
 
Mon Sep  4 22:23:16 PDT 2006 
t4: Access Denied 
 
done static exec file test, scenario 7 of 7. 
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s-exec-dir-*-results.txt 
Static, directory execute test, scenario 1 of 7 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 22:48:40 2006 
Revoke access on: Mon Sep  4 22:48:50 2006 
 
 
setup object time attributes... 
Target:  /tmp 
Grant access on:  Mon Sep  4 22:49:01 2006 
Revoke access on: Mon Sep  4 22:49:11 2006 
 
Mon Sep  4 22:48:33 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 22:48:44 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 22:48:55 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 22:49:06 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 22:49:18 PDT 2006 
t5: Access Denied 
 
Static, directory execute test, scenario 2 of 7 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 23:23:08 2006 
Revoke access on: Mon Sep  4 23:23:18 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 23:23:08 2006 
Revoke access on: Mon Sep  4 23:23:18 2006 
 
Mon Sep  4 23:23:01 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 23:23:13 PDT 2006 
t2: Access Granted 
 
Mon Sep  4 23:23:24 PDT 2006 
t3: Access Denied 
 
Static, directory execute test, scenario 3 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 23:26:44 2006 
Revoke access on: Mon Sep  4 23:26:54 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 23:26:54 2006 
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Revoke access on: Mon Sep  4 23:27:04 2006 
 
Mon Sep  4 23:26:35 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 23:26:47 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 23:26:59 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 23:27:11 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 23:27:23 PDT 2006 
t5: Access Denied 
 
Static, directory execute test, scenario 4 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 23:29:13 2006 
Revoke access on: Mon Sep  4 23:29:33 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 23:29:24 2006 
Revoke access on: Mon Sep  4 23:29:44 2006 
 
Mon Sep  4 23:29:04 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 23:29:16 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 23:29:29 PDT 2006 
t3: Access Granted 
 
Mon Sep  4 23:29:41 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 23:29:53 PDT 2006 
t5: Access Denied 
 
Static, directory execute test, scenario 5 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 23:30:34 2006 
Revoke access on: Mon Sep  4 23:30:44 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 23:30:25 2006 
Revoke access on: Mon Sep  4 23:30:55 2006 
 
Mon Sep  4 23:30:15 PDT 2006 
t1: Access Denied 
 



137 

Mon Sep  4 23:30:26 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 23:30:38 PDT 2006 
t3: Access Granted 
 
Mon Sep  4 23:30:49 PDT 2006 
t4: Access Denied 
 
Mon Sep  4 23:31:00 PDT 2006 
t5: Access Denied 
 
Static, directory execute test, scenario 6 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 23:32:17 2006 
Revoke access on: Mon Sep  4 23:32:27 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 23:32:17 2006 
Revoke access on: Mon Sep  4 23:32:37 2006 
 
Mon Sep  4 23:32:07 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 23:32:19 PDT 2006 
t2: Access Granted 
 
Mon Sep  4 23:32:31 PDT 2006 
t3: Access Denied 
 
Mon Sep  4 23:32:43 PDT 2006 
t4: Access Denied 
 
Static, directory execute test, scenario 7 of 7 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Mon Sep  4 23:37:53 2006 
Revoke access on: Mon Sep  4 23:38:03 2006 
 
Target:  /tmp 
Grant access on:  Mon Sep  4 23:37:43 2006 
Revoke access on: Mon Sep  4 23:38:03 2006 
 
Mon Sep  4 23:37:33 PDT 2006 
t1: Access Denied 
 
Mon Sep  4 23:37:45 PDT 2006 
t2: Access Denied 
 
Mon Sep  4 23:37:57 PDT 2006 
t3: Access Granted 
 
Mon Sep  4 23:38:08 PDT 2006 
t4: Access Denied 
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s-read-file-6-swap-results.txt 
Static, read file test, scenario 6 of 7(subject and objects time 
swapped) 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 00:04:25 2006 
Revoke access on: Thu Sep  7 00:04:45 2006 
 
Target:  /tmp/message.txt 
Grant access on:  Thu Sep  7 00:04:25 2006 
Revoke access on: Thu Sep  7 00:04:35 2006 
 
Thu Sep  7 00:04:16 PDT 2006 
t1: Access Denied 
 
Thu Sep  7 00:04:27 PDT 2006 
this message will self destruct in 10 seconds... 
t2: Access Granted 
 
Thu Sep  7 00:04:37 PDT 2006 
t3: Access Denied 
 
Thu Sep  7 00:04:47 PDT 2006 
t4: Access Denied 
 
done read file test, scenario 6 of 7 ... 

 

s-write-dir-4-swap-results.txt 
Static, directory write test, scenario 4of7(subject and object time 
swapped) 
 
setup subject and object time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 00:08:46 2006 
Revoke access on: Thu Sep  7 00:09:06 2006 
 
/tmp does not currently have accessible TIFPS attributes 
Target:  /tmp 
Grant access on:  Thu Sep  7 00:08:37 2006 
Revoke access on: Thu Sep  7 00:08:57 2006 
 
Thu Sep  7 00:08:27 PDT 2006 
t1: Access Denied 
 
Thu Sep  7 00:08:38 PDT 2006 
t2: Access Denied 
 
Thu Sep  7 00:08:48 PDT 2006 
t3: Access Granted 
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Thu Sep  7 00:08:59 PDT 2006 
t4: Access Denied 
 
Thu Sep  7 00:09:09 PDT 2006 
t5: Access Denied 
 
contents of /tmp directory 
00:00:27-3.txt 
00:08:48-3.txt 
06:26:03-2.txt 
17:28:34-1.txt 
17:29:15-2.txt 
17:32:57-5.txt 
17:33:46-3.txt 
17:36:24-2.txt 
17:37:01-1.txt 
22:38:20-2.txt 
22:42:21-3.txt 
22:44:06-3.txt 
22:45:40-2.txt 
22:47:47-3.txt 
23:56:00-3.txt 
23:59:10-3.txt 
dest.txt 
longfile.txt 
mapping-kchiang 
mapping-root 
message.txt 
source.txt 
s-read-file-2-results.txt 
write-expired.txt 
written.txt 

Static tests- Inheritance in file/directory creation and file copy operations 

s-copy-file-1a-results.txt 
Trial 1: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:11:25 2006 
Revoke access on: Thu Sep 21 09:11:25 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:11:26 2006 
Revoke access on: Fri Sep  8 09:11:26 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:11:26 2006 
Revoke access on: Thu Sep  7 10:11:26 2006 
 
Static, copy file test (using cp), scenario 1 of 3 - smallest dest 
object 
 
current time is: 
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Thu Sep  7 09:11:48 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:11:26 2006 
Revoke access on: Thu Sep  7 10:11:26 2006 
 
Trial 2:  
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:11:54 2006 
Revoke access on: Thu Sep 21 09:11:54 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:11:54 2006 
Revoke access on: Fri Sep  8 09:11:54 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:11:55 2006 
Revoke access on: Thu Sep  7 10:11:55 2006 
 
Static, copy file test (using cp), scenario 1 of 3 - smallest dest 
object 
 
current time is: 
Thu Sep  7 09:11:57 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:11:55 2006 
Revoke access on: Thu Sep  7 10:11:55 2006 
 
Trial 3: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:12:00 2006 
Revoke access on: Thu Sep 21 09:12:00 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:12:00 2006 
Revoke access on: Fri Sep  8 09:12:00 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:01 2006 
Revoke access on: Thu Sep  7 10:12:01 2006 
 
Static, copy file test (using cp), scenario 1 of 3 - smallest dest 
object 
 
current time is: 
Thu Sep  7 09:12:03 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:01 2006 
Revoke access on: Thu Sep  7 10:12:01 2006 
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Trial 4: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:12:05 2006 
Revoke access on: Thu Sep 21 09:12:05 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:12:06 2006 
Revoke access on: Fri Sep  8 09:12:06 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:06 2006 
Revoke access on: Thu Sep  7 10:12:06 2006 
 
Static, copy file test (using cp), scenario 1 of 3 - smallest dest 
object 
 
current time is: 
Thu Sep  7 09:12:09 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:06 2006 
Revoke access on: Thu Sep  7 10:12:06 2006 
 
Trial 5: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:12:12 2006 
Revoke access on: Thu Sep 21 09:12:12 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:12:12 2006 
Revoke access on: Fri Sep  8 09:12:12 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:12 2006 
Revoke access on: Thu Sep  7 10:12:12 2006 
 
Static, copy file test (using cp), scenario 1 of 3 - smallest dest 
object 
 
current time is: 
Thu Sep  7 09:12:14 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:12 2006 
Revoke access on: Thu Sep  7 10:12:12 2006 
 
Trial 6: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
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Grant access on:  Thu Aug 24 09:12:16 2006 
Revoke access on: Thu Sep 21 09:12:16 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:12:16 2006 
Revoke access on: Fri Sep  8 09:12:16 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:17 2006 
Revoke access on: Thu Sep  7 10:12:17 2006 
 
Static, copy file test (using cp), scenario 1 of 3 - smallest dest 
object 
 
current time is: 
Thu Sep  7 09:12:18 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:17 2006 
Revoke access on: Thu Sep  7 10:12:17 2006 
 
Trial 7: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:12:20 2006 
Revoke access on: Thu Sep 21 09:12:20 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:12:21 2006 
Revoke access on: Fri Sep  8 09:12:21 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:21 2006 
Revoke access on: Thu Sep  7 10:12:21 2006 
 
Static, copy file test (using cp), scenario 1 of 3 - smallest dest 
object 
 
current time is: 
Thu Sep  7 09:12:22 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:21 2006 
Revoke access on: Thu Sep  7 10:12:21 2006 
 
Trial 8: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:12:24 2006 
Revoke access on: Thu Sep 21 09:12:24 2006 
 
setup source object time attributes... 
Target:  source.txt 
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Grant access on:  Wed Sep  6 09:12:25 2006 
Revoke access on: Fri Sep  8 09:12:25 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:25 2006 
Revoke access on: Thu Sep  7 10:12:25 2006 
 
Static, copy file test (using cp), scenario 1 of 3 - smallest dest 
object 
 
current time is: 
Thu Sep  7 09:12:26 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:25 2006 
Revoke access on: Thu Sep  7 10:12:25 2006 
 
Trial 9: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:12:28 2006 
Revoke access on: Thu Sep 21 09:12:28 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:12:29 2006 
Revoke access on: Fri Sep  8 09:12:29 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:29 2006 
Revoke access on: Thu Sep  7 10:12:29 2006 
 
Static, copy file test (using cp), scenario 1 of 3 - smallest dest 
object 
 
current time is: 
Thu Sep  7 09:12:30 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:29 2006 
Revoke access on: Thu Sep  7 10:12:29 2006 
 
Trial 10: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:12:32 2006 
Revoke access on: Thu Sep 21 09:12:32 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:12:32 2006 
Revoke access on: Fri Sep  8 09:12:32 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
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Grant access on:  Thu Sep  7 08:12:33 2006 
Revoke access on: Thu Sep  7 10:12:33 2006 
 
Static, copy file test (using cp), scenario 1 of 3 - smallest dest 
object 
 
current time is: 
Thu Sep  7 09:12:34 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:12:33 2006 
Revoke access on: Thu Sep  7 10:12:33 2006 
 

s-copy-file-1b-results.txt 
Trial 1: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:16:43 2006 
Revoke access on: Thu Sep 21 09:16:43 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:16:43 2006 
Revoke access on: Fri Sep  8 09:16:43 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:16:43 2006 
Revoke access on: Thu Sep  7 10:16:43 2006 
 
Static, copy file test (using redirection), scenario 1 of 3 - smallest 
dest object 
 
current time is: 
Thu Sep  7 09:17:00 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:16:43 2006 
Revoke access on: Thu Sep  7 10:16:43 2006 
 
Trial 2: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:17:04 2006 
Revoke access on: Thu Sep 21 09:17:04 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:17:04 2006 
Revoke access on: Fri Sep  8 09:17:04 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:04 2006 
Revoke access on: Thu Sep  7 10:17:04 2006 
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Static, copy file test (using redirection), scenario 1 of 3 - smallest 
dest object 
 
current time is: 
Thu Sep  7 09:17:06 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:04 2006 
Revoke access on: Thu Sep  7 10:17:04 2006 
 
Trial 3: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:17:08 2006 
Revoke access on: Thu Sep 21 09:17:08 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:17:09 2006 
Revoke access on: Fri Sep  8 09:17:09 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:09 2006 
Revoke access on: Thu Sep  7 10:17:09 2006 
 
Static, copy file test (using redirection), scenario 1 of 3 - smallest 
dest object 
 
current time is: 
Thu Sep  7 09:17:10 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:09 2006 
Revoke access on: Thu Sep  7 10:17:09 2006 
 
Trial 4: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:17:14 2006 
Revoke access on: Thu Sep 21 09:17:14 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:17:15 2006 
Revoke access on: Fri Sep  8 09:17:15 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:15 2006 
Revoke access on: Thu Sep  7 10:17:15 2006 
 
Static, copy file test (using redirection), scenario 1 of 3 - smallest 
dest object 
 
current time is: 
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Thu Sep  7 09:17:17 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:15 2006 
Revoke access on: Thu Sep  7 10:17:15 2006 
 
Trial 5: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:17:19 2006 
Revoke access on: Thu Sep 21 09:17:19 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:17:19 2006 
Revoke access on: Fri Sep  8 09:17:19 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:20 2006 
Revoke access on: Thu Sep  7 10:17:20 2006 
 
Static, copy file test (using redirection), scenario 1 of 3 - smallest 
dest object 
 
current time is: 
Thu Sep  7 09:17:21 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:20 2006 
Revoke access on: Thu Sep  7 10:17:20 2006 
 
Trial 6: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:17:23 2006 
Revoke access on: Thu Sep 21 09:17:23 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:17:23 2006 
Revoke access on: Fri Sep  8 09:17:23 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:24 2006 
Revoke access on: Thu Sep  7 10:17:24 2006 
 
Static, copy file test (using redirection), scenario 1 of 3 - smallest 
dest object 
 
current time is: 
Thu Sep  7 09:17:25 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:24 2006 
Revoke access on: Thu Sep  7 10:17:24 2006 
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Trial 7: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:17:28 2006 
Revoke access on: Thu Sep 21 09:17:28 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:17:28 2006 
Revoke access on: Fri Sep  8 09:17:28 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:28 2006 
Revoke access on: Thu Sep  7 10:17:28 2006 
 
Static, copy file test (using redirection), scenario 1 of 3 - smallest 
dest object 
 
current time is: 
Thu Sep  7 09:17:30 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:28 2006 
Revoke access on: Thu Sep  7 10:17:28 2006 
 
Trial 8: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:17:32 2006 
Revoke access on: Thu Sep 21 09:17:32 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:17:32 2006 
Revoke access on: Fri Sep  8 09:17:32 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:33 2006 
Revoke access on: Thu Sep  7 10:17:33 2006 
 
Static, copy file test (using redirection), scenario 1 of 3 - smallest 
dest object 
 
current time is: 
Thu Sep  7 09:17:34 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:33 2006 
Revoke access on: Thu Sep  7 10:17:33 2006 
 
Trial 9: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
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Grant access on:  Thu Aug 24 09:17:36 2006 
Revoke access on: Thu Sep 21 09:17:36 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:17:36 2006 
Revoke access on: Fri Sep  8 09:17:36 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:36 2006 
Revoke access on: Thu Sep  7 10:17:36 2006 
 
Static, copy file test (using redirection), scenario 1 of 3 - smallest 
dest object 
 
current time is: 
Thu Sep  7 09:17:38 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:36 2006 
Revoke access on: Thu Sep  7 10:17:36 2006 
 
Trial 10: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:17:40 2006 
Revoke access on: Thu Sep 21 09:17:40 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:17:40 2006 
Revoke access on: Fri Sep  8 09:17:40 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:40 2006 
Revoke access on: Thu Sep  7 10:17:40 2006 
 
Static, copy file test (using redirection), scenario 1 of 3 - smallest 
dest object 
 
current time is: 
Thu Sep  7 09:17:42 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:17:40 2006 
Revoke access on: Thu Sep  7 10:17:40 2006 
 

s-copy-file-1c-results.txt 
Trial 1: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:18:59 2006 
Revoke access on: Thu Sep 21 09:18:59 2006 
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setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:18:59 2006 
Revoke access on: Fri Sep  8 09:18:59 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:19:00 2006 
Revoke access on: Thu Sep  7 10:19:00 2006 
 
Static, copy file test (using pipes), scenario 1 of 3 - smallest dest 
obj 
 
current time is: 
Thu Sep  7 09:19:19 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:19:00 2006 
Revoke access on: Thu Sep  7 10:19:00 2006 
 
Trial 2: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:19:24 2006 
Revoke access on: Thu Sep 21 09:19:24 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:19:24 2006 
Revoke access on: Fri Sep  8 09:19:24 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:19:24 2006 
Revoke access on: Thu Sep  7 10:19:24 2006 
 
Static, copy file test (using pipes), scenario 1 of 3 - smallest dest 
obj 
 
current time is: 
Thu Sep  7 09:19:27 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:19:24 2006 
Revoke access on: Thu Sep  7 10:19:24 2006 
 
 
Trial 3: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:19:29 2006 
Revoke access on: Thu Sep 21 09:19:29 2006 
 
setup source object time attributes... 
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Target:  source.txt 
Grant access on:  Wed Sep  6 09:19:30 2006 
Revoke access on: Fri Sep  8 09:19:30 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:19:30 2006 
Revoke access on: Thu Sep  7 10:19:30 2006 
 
Static, copy file test (using pipes), scenario 1 of 3 - smallest dest 
obj 
 
current time is: 
Thu Sep  7 09:19:31 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:19:30 2006 
Revoke access on: Thu Sep  7 10:19:30 2006 
 
Trial 4: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:19:34 2006 
Revoke access on: Thu Sep 21 09:19:34 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:19:34 2006 
Revoke access on: Fri Sep  8 09:19:34 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:19:34 2006 
Revoke access on: Thu Sep  7 10:19:34 2006 
 
Static, copy file test (using pipes), scenario 1 of 3 - smallest dest 
obj 
 
current time is: 
Thu Sep  7 09:19:36 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:19:34 2006 
Revoke access on: Thu Sep  7 10:19:34 2006 
 
Trial 5: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:19:41 2006 
Revoke access on: Thu Sep 21 09:19:41 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:19:41 2006 
Revoke access on: Fri Sep  8 09:19:41 2006 
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setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:19:41 2006 
Revoke access on: Thu Sep  7 10:19:41 2006 
 
Static, copy file test (using pipes), scenario 1 of 3 - smallest dest 
obj 
 
current time is: 
Thu Sep  7 09:19:43 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:19:41 2006 
Revoke access on: Thu Sep  7 10:19:41 2006 
 
Trial 6: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:19:46 2006 
Revoke access on: Thu Sep 21 09:19:46 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:19:46 2006 
Revoke access on: Fri Sep  8 09:19:46 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:19:47 2006 
Revoke access on: Thu Sep  7 10:19:47 2006 
 
Static, copy file test (using pipes), scenario 1 of 3 - smallest dest 
obj 
 
current time is: 
Thu Sep  7 09:19:50 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:19:47 2006 
Revoke access on: Thu Sep  7 10:19:47 2006 
 
Trial 7: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:20:07 2006 
Revoke access on: Thu Sep 21 09:20:07 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:20:07 2006 
Revoke access on: Fri Sep  8 09:20:07 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
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Grant access on:  Thu Sep  7 08:20:08 2006 
Revoke access on: Thu Sep  7 10:20:08 2006 
 
Static, copy file test (using pipes), scenario 1 of 3 - smallest dest 
obj 
 
current time is: 
Thu Sep  7 09:20:09 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:20:08 2006 
Revoke access on: Thu Sep  7 10:20:08 2006 
 
Trial 8: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:20:12 2006 
Revoke access on: Thu Sep 21 09:20:12 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:20:12 2006 
Revoke access on: Fri Sep  8 09:20:12 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:20:13 2006 
Revoke access on: Thu Sep  7 10:20:13 2006 
 
Static, copy file test (using pipes), scenario 1 of 3 - smallest dest 
obj 
 
current time is: 
Thu Sep  7 09:20:14 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:20:13 2006 
Revoke access on: Thu Sep  7 10:20:13 2006 
 
Trial 9: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:20:16 2006 
Revoke access on: Thu Sep 21 09:20:16 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:20:16 2006 
Revoke access on: Fri Sep  8 09:20:16 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:20:17 2006 
Revoke access on: Thu Sep  7 10:20:17 2006 
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Static, copy file test (using pipes), scenario 1 of 3 - smallest dest 
obj 
 
current time is: 
Thu Sep  7 09:20:19 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:20:17 2006 
Revoke access on: Thu Sep  7 10:20:17 2006 
 
Trial 10: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:20:22 2006 
Revoke access on: Thu Sep 21 09:20:22 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:20:22 2006 
Revoke access on: Fri Sep  8 09:20:22 2006 
 
setup destination object time attributes...(smallest) 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:20:22 2006 
Revoke access on: Thu Sep  7 10:20:22 2006 
 
Static, copy file test (using pipes), scenario 1 of 3 - smallest dest 
obj 
 
current time is: 
Thu Sep  7 09:20:24 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:20:22 2006 
Revoke access on: Thu Sep  7 10:20:22 2006 
 

s-copy-file-2a-results.txt 
Trial 1: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:28:17 2006 
Revoke access on: Thu Sep 21 09:28:17 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:28:17 2006 
Revoke access on: Thu Sep  7 10:28:17 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:28:17 2006 
Revoke access on: Fri Sep  8 09:28:17 2006 
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Static, copy file test (using cp), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 09:28:30 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:28:17 2006 
Revoke access on: Thu Sep  7 10:28:17 2006 
 
Trial 2: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:28:34 2006 
Revoke access on: Thu Sep 21 09:28:34 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:28:34 2006 
Revoke access on: Thu Sep  7 10:28:34 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:28:34 2006 
Revoke access on: Fri Sep  8 09:28:34 2006 
 
Static, copy file test (using cp), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 09:28:36 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:28:34 2006 
Revoke access on: Thu Sep  7 10:28:34 2006 
 
Trial 3: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:28:38 2006 
Revoke access on: Thu Sep 21 09:28:38 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:28:39 2006 
Revoke access on: Thu Sep  7 10:28:39 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:28:39 2006 
Revoke access on: Fri Sep  8 09:28:39 2006 
 
Static, copy file test (using cp), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 09:28:40 PDT 2006 
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The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:28:39 2006 
Revoke access on: Thu Sep  7 10:28:39 2006 
 
Trial 4: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:28:42 2006 
Revoke access on: Thu Sep 21 09:28:42 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:28:42 2006 
Revoke access on: Thu Sep  7 10:28:42 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:28:43 2006 
Revoke access on: Fri Sep  8 09:28:43 2006 
 
Static, copy file test (using cp), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 09:28:44 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:28:42 2006 
Revoke access on: Thu Sep  7 10:28:42 2006 
 
Trial 5: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:28:45 2006 
Revoke access on: Thu Sep 21 09:28:45 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:28:46 2006 
Revoke access on: Thu Sep  7 10:28:46 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:28:46 2006 
Revoke access on: Fri Sep  8 09:28:46 2006 
 
Static, copy file test (using cp), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 09:28:57 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:28:46 2006 
Revoke access on: Thu Sep  7 10:28:46 2006 
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Trial 6: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:28:58 2006 
Revoke access on: Thu Sep 21 09:28:58 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:28:59 2006 
Revoke access on: Thu Sep  7 10:28:59 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:28:59 2006 
Revoke access on: Fri Sep  8 09:28:59 2006 
 
Static, copy file test (using cp), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 09:29:00 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:28:59 2006 
Revoke access on: Thu Sep  7 10:28:59 2006 
 
Trial 7: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:29:02 2006 
Revoke access on: Thu Sep 21 09:29:02 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:29:02 2006 
Revoke access on: Thu Sep  7 10:29:02 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:29:02 2006 
Revoke access on: Fri Sep  8 09:29:02 2006 
 
Static, copy file test (using cp), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 09:29:03 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:29:02 2006 
Revoke access on: Thu Sep  7 10:29:02 2006 
 
Trial 8: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:29:05 2006 
Revoke access on: Thu Sep 21 09:29:05 2006 
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setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:29:05 2006 
Revoke access on: Thu Sep  7 10:29:05 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:29:05 2006 
Revoke access on: Fri Sep  8 09:29:05 2006 
 
Static, copy file test (using cp), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 09:29:06 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:29:05 2006 
Revoke access on: Thu Sep  7 10:29:05 2006 
 
Trial 9: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:29:08 2006 
Revoke access on: Thu Sep 21 09:29:08 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:29:08 2006 
Revoke access on: Thu Sep  7 10:29:08 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:29:08 2006 
Revoke access on: Fri Sep  8 09:29:08 2006 
 
Static, copy file test (using cp), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 09:29:09 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:29:08 2006 
Revoke access on: Thu Sep  7 10:29:08 2006 
 
Trial 10: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:29:11 2006 
Revoke access on: Thu Sep 21 09:29:11 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:29:11 2006 
Revoke access on: Thu Sep  7 10:29:11 2006 
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setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:29:11 2006 
Revoke access on: Fri Sep  8 09:29:11 2006 
 
Static, copy file test (using cp), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 09:29:13 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:29:11 2006 
Revoke access on: Thu Sep  7 10:29:11 2006 
 

s-copy-file-2b-results.txt 
Trial 1: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:26:04 2006 
Revoke access on: Thu Sep 21 09:26:04 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:26:04 2006 
Revoke access on: Thu Sep  7 10:26:04 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:26:04 2006 
Revoke access on: Fri Sep  8 09:26:04 2006 
 
Static, copy file test (using redirection), scenario 2 of 3 - smallest 
src object 
 
current time is: 
Thu Sep  7 09:26:14 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:26:04 2006 
Revoke access on: Thu Sep  7 10:26:04 2006 
 
Trial 2: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:26:16 2006 
Revoke access on: Thu Sep 21 09:26:16 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:26:16 2006 
Revoke access on: Thu Sep  7 10:26:16 2006 
 
setup destination object time attributes... 
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Target:  dest.txt 
Grant access on:  Wed Sep  6 09:26:16 2006 
Revoke access on: Fri Sep  8 09:26:16 2006 
 
Static, copy file test (using redirection), scenario 2 of 3 - smallest 
src object 
 
current time is: 
Thu Sep  7 09:26:18 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:26:16 2006 
Revoke access on: Thu Sep  7 10:26:16 2006 
 
Trial 3: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:26:20 2006 
Revoke access on: Thu Sep 21 09:26:20 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:26:20 2006 
Revoke access on: Thu Sep  7 10:26:20 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:26:21 2006 
Revoke access on: Fri Sep  8 09:26:21 2006 
 
Static, copy file test (using redirection), scenario 2 of 3 - smallest 
src object 
 
current time is: 
Thu Sep  7 09:26:22 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:26:20 2006 
Revoke access on: Thu Sep  7 10:26:20 2006 
 
Trial 4: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:26:24 2006 
Revoke access on: Thu Sep 21 09:26:24 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:26:24 2006 
Revoke access on: Thu Sep  7 10:26:24 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:26:25 2006 
Revoke access on: Fri Sep  8 09:26:25 2006 
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Static, copy file test (using redirection), scenario 2 of 3 - smallest 
src object 
 
current time is: 
Thu Sep  7 09:26:26 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:26:24 2006 
Revoke access on: Thu Sep  7 10:26:24 2006 
 
Trial 5: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:26:27 2006 
Revoke access on: Thu Sep 21 09:26:27 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:26:27 2006 
Revoke access on: Thu Sep  7 10:26:27 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:26:28 2006 
Revoke access on: Fri Sep  8 09:26:28 2006 
 
Static, copy file test (using redirection), scenario 2 of 3 - smallest 
src object 
 
current time is: 
Thu Sep  7 09:26:29 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:26:27 2006 
Revoke access on: Thu Sep  7 10:26:27 2006 
 
Trial 6: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:26:30 2006 
Revoke access on: Thu Sep 21 09:26:30 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:26:31 2006 
Revoke access on: Thu Sep  7 10:26:31 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:26:31 2006 
Revoke access on: Fri Sep  8 09:26:31 2006 
 
Static, copy file test (using redirection), scenario 2 of 3 - smallest 
src object 
 
current time is: 
Thu Sep  7 09:26:32 PDT 2006 
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The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:26:31 2006 
Revoke access on: Thu Sep  7 10:26:31 2006 
 
Trial 7: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:26:35 2006 
Revoke access on: Thu Sep 21 09:26:35 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:26:35 2006 
Revoke access on: Thu Sep  7 10:26:35 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:26:35 2006 
Revoke access on: Fri Sep  8 09:26:35 2006 
 
Static, copy file test (using redirection), scenario 2 of 3 - smallest 
src object 
 
current time is: 
Thu Sep  7 09:26:37 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:26:35 2006 
Revoke access on: Thu Sep  7 10:26:35 2006 
 
Trial 8: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:26:39 2006 
Revoke access on: Thu Sep 21 09:26:39 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:26:40 2006 
Revoke access on: Thu Sep  7 10:26:40 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:26:40 2006 
Revoke access on: Fri Sep  8 09:26:40 2006 
 
Static, copy file test (using redirection), scenario 2 of 3 - smallest 
src object 
 
current time is: 
Thu Sep  7 09:26:42 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:26:40 2006 
Revoke access on: Thu Sep  7 10:26:40 2006 
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Trial 9: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:26:47 2006 
Revoke access on: Thu Sep 21 09:26:47 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:26:47 2006 
Revoke access on: Thu Sep  7 10:26:47 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:26:47 2006 
Revoke access on: Fri Sep  8 09:26:47 2006 
 
Static, copy file test (using redirection), scenario 2 of 3 - smallest 
src object 
 
current time is: 
Thu Sep  7 09:26:49 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:26:47 2006 
Revoke access on: Thu Sep  7 10:26:47 2006 
 
Trial 10: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 09:26:51 2006 
Revoke access on: Thu Sep 21 09:26:51 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 08:26:51 2006 
Revoke access on: Thu Sep  7 10:26:51 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:26:51 2006 
Revoke access on: Fri Sep  8 09:26:51 2006 
 
Static, copy file test (using redirection), scenario 2 of 3 - smallest 
src object 
 
current time is: 
Thu Sep  7 09:26:53 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:26:51 2006 
Revoke access on: Thu Sep  7 10:26:51 2006 
 

s-copy-file-2c-results.txt 
Trial 1: 
setup subject time attributes... 



163 

Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 13:15:46 2006 
Revoke access on: Thu Sep 21 13:15:46 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 12:15:46 2006 
Revoke access on: Thu Sep  7 14:15:46 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 13:15:47 2006 
Revoke access on: Fri Sep  8 13:15:47 2006 
 
Static, copy file test (using pipes), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 13:16:17 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 12:15:46 2006 
Revoke access on: Thu Sep  7 14:15:46 2006 
 
Trial 2: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 13:55:44 2006 
Revoke access on: Thu Sep 21 13:55:44 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 12:55:45 2006 
Revoke access on: Thu Sep  7 14:55:45 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 13:55:45 2006 
Revoke access on: Fri Sep  8 13:55:45 2006 
 
Static, copy file test (using pipes), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 13:55:54 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 12:55:45 2006 
Revoke access on: Thu Sep  7 14:55:45 2006 
 
Trial 3: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 13:55:58 2006 
Revoke access on: Thu Sep 21 13:55:58 2006 
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setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 12:55:59 2006 
Revoke access on: Thu Sep  7 14:55:59 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 13:55:59 2006 
Revoke access on: Fri Sep  8 13:55:59 2006 
 
Static, copy file test (using pipes), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 13:56:03 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 12:55:59 2006 
Revoke access on: Thu Sep  7 14:55:59 2006 
 
Trial 4: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 13:56:13 2006 
Revoke access on: Thu Sep 21 13:56:13 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 12:56:13 2006 
Revoke access on: Thu Sep  7 14:56:13 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 13:56:13 2006 
Revoke access on: Fri Sep  8 13:56:13 2006 
 
Static, copy file test (using pipes), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 13:56:19 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 12:56:13 2006 
Revoke access on: Thu Sep  7 14:56:13 2006 
 
Trial 5: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 13:56:33 2006 
Revoke access on: Thu Sep 21 13:56:33 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
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Grant access on:  Thu Sep  7 12:56:33 2006 
Revoke access on: Thu Sep  7 14:56:33 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 13:56:33 2006 
Revoke access on: Fri Sep  8 13:56:33 2006 
 
Static, copy file test (using pipes), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 13:56:37 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 13:56:33 2006 
Revoke access on: Fri Sep  8 13:56:33 2006 
 
Trial 6: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 13:59:57 2006 
Revoke access on: Thu Sep 21 13:59:57 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 12:59:58 2006 
Revoke access on: Thu Sep  7 14:59:58 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 13:59:58 2006 
Revoke access on: Fri Sep  8 13:59:58 2006 
 
Static, copy file test (using pipes), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 14:00:03 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 12:59:58 2006 
Revoke access on: Thu Sep  7 14:59:58 2006 
 
Trial 7: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 14:00:09 2006 
Revoke access on: Thu Sep 21 14:00:09 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 13:00:09 2006 
Revoke access on: Thu Sep  7 15:00:09 2006 
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setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 14:00:09 2006 
Revoke access on: Fri Sep  8 14:00:09 2006 
 
Static, copy file test (using pipes), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 14:00:14 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 13:00:09 2006 
Revoke access on: Thu Sep  7 15:00:09 2006 
 
Trial 8: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 14:00:18 2006 
Revoke access on: Thu Sep 21 14:00:18 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 13:00:19 2006 
Revoke access on: Thu Sep  7 15:00:19 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 14:00:19 2006 
Revoke access on: Fri Sep  8 14:00:19 2006 
 
Static, copy file test (using pipes), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 14:00:23 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 13:00:19 2006 
Revoke access on: Thu Sep  7 15:00:19 2006 
 
Trial 9: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 14:00:36 2006 
Revoke access on: Thu Sep 21 14:00:36 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 13:00:36 2006 
Revoke access on: Thu Sep  7 15:00:36 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 14:00:36 2006 
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Revoke access on: Fri Sep  8 14:00:36 2006 
 
Static, copy file test (using pipes), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 14:00:40 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 13:00:36 2006 
Revoke access on: Thu Sep  7 15:00:36 2006 
 
Trial 10: 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Aug 24 14:00:45 2006 
Revoke access on: Thu Sep 21 14:00:45 2006 
 
setup source object time attributes... (smallest) 
Target:  source.txt 
Grant access on:  Thu Sep  7 13:00:46 2006 
Revoke access on: Thu Sep  7 15:00:46 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 14:00:46 2006 
Revoke access on: Fri Sep  8 14:00:46 2006 
 
Static, copy file test (using pipes), scenario 2 of 3 - smallest src 
object 
 
current time is: 
Thu Sep  7 14:00:49 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 13:00:46 2006 
Revoke access on: Thu Sep  7 15:00:46 2006 
 

s-copy-file-3a-results.txt 
Trial 1: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:33:52 2006 
Revoke access on: Thu Sep  7 10:33:52 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:33:52 2006 
Revoke access on: Fri Sep  8 09:33:52 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:33:52 2006 
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Revoke access on: Fri Sep  8 09:33:52 2006 
 
Static, copy file test (using cp), scenario 3 of 3 - smallest subject 
 
current time is: 
Thu Sep  7 09:34:08 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:33:52 2006 
Revoke access on: Thu Sep  7 10:33:52 2006 
 
Trial 2: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:34:37 2006 
Revoke access on: Thu Sep  7 10:34:37 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:34:37 2006 
Revoke access on: Fri Sep  8 09:34:37 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:34:37 2006 
Revoke access on: Fri Sep  8 09:34:37 2006 
 
Static, copy file test (using cp), scenario 3 of 3 - smallest subject 
 
current time is: 
Thu Sep  7 09:34:47 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:34:37 2006 
Revoke access on: Thu Sep  7 10:34:37 2006 
 
Trial 3: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:34:52 2006 
Revoke access on: Thu Sep  7 10:34:52 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:34:52 2006 
Revoke access on: Fri Sep  8 09:34:52 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:34:52 2006 
Revoke access on: Fri Sep  8 09:34:52 2006 
 
Static, copy file test (using cp), scenario 3 of 3 - smallest subject 
 
current time is: 
Thu Sep  7 09:35:00 PDT 2006 
The resulting time attribute for the destination file is ... 
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Target:  dest.txt 
Grant access on:  Thu Sep  7 08:34:52 2006 
Revoke access on: Thu Sep  7 10:34:52 2006 
 
Trial 4: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:35:04 2006 
Revoke access on: Thu Sep  7 10:35:04 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:35:05 2006 
Revoke access on: Fri Sep  8 09:35:05 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:35:05 2006 
Revoke access on: Fri Sep  8 09:35:05 2006 
 
Static, copy file test (using cp), scenario 3 of 3 - smallest subject 
 
current time is: 
Thu Sep  7 09:35:10 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:35:04 2006 
Revoke access on: Thu Sep  7 10:35:04 2006 
 
Trial 5: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:42:19 2006 
Revoke access on: Thu Sep  7 10:42:19 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:42:20 2006 
Revoke access on: Fri Sep  8 09:42:20 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:42:20 2006 
Revoke access on: Fri Sep  8 09:42:20 2006 
 
Static, copy file test (using cp), scenario 3 of 3 - smallest subject 
 
current time is: 
Thu Sep  7 09:42:30 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:42:19 2006 
Revoke access on: Thu Sep  7 10:42:19 2006 
 
Trial 6: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
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Grant access on:  Thu Sep  7 08:42:40 2006 
Revoke access on: Thu Sep  7 10:42:40 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:42:40 2006 
Revoke access on: Fri Sep  8 09:42:40 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:42:41 2006 
Revoke access on: Fri Sep  8 09:42:41 2006 
 
Static, copy file test (using cp), scenario 3 of 3 - smallest subject 
 
current time is: 
Thu Sep  7 09:42:45 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:42:40 2006 
Revoke access on: Thu Sep  7 10:42:40 2006 
 
Trial 7: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:42:49 2006 
Revoke access on: Thu Sep  7 10:42:49 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:42:49 2006 
Revoke access on: Fri Sep  8 09:42:49 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:42:50 2006 
Revoke access on: Fri Sep  8 09:42:50 2006 
 
Static, copy file test (using cp), scenario 3 of 3 - smallest subject 
 
current time is: 
Thu Sep  7 09:42:55 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:42:49 2006 
Revoke access on: Thu Sep  7 10:42:49 2006 
 
Trial 8: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:43:00 2006 
Revoke access on: Thu Sep  7 10:43:00 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:43:00 2006 
Revoke access on: Fri Sep  8 09:43:00 2006 
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setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:43:01 2006 
Revoke access on: Fri Sep  8 09:43:01 2006 
 
Static, copy file test (using cp), scenario 3 of 3 - smallest subject 
 
current time is: 
Thu Sep  7 09:43:08 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:43:00 2006 
Revoke access on: Thu Sep  7 10:43:00 2006 
 
Trial 9: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:43:17 2006 
Revoke access on: Thu Sep  7 10:43:17 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:43:18 2006 
Revoke access on: Fri Sep  8 09:43:18 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:43:18 2006 
Revoke access on: Fri Sep  8 09:43:18 2006 
 
Static, copy file test (using cp), scenario 3 of 3 - smallest subject 
 
current time is: 
Thu Sep  7 09:43:23 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:43:17 2006 
Revoke access on: Thu Sep  7 10:43:17 2006 
 
Trial 10: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:43:28 2006 
Revoke access on: Thu Sep  7 10:43:28 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:43:28 2006 
Revoke access on: Fri Sep  8 09:43:28 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:43:29 2006 
Revoke access on: Fri Sep  8 09:43:29 2006 
 
Static, copy file test (using cp), scenario 3 of 3 - smallest subject 
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current time is: 
Thu Sep  7 09:43:35 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:43:28 2006 
Revoke access on: Thu Sep  7 10:43:28 2006 
 

s-copy-file-3b-results.txt 
Trial 1: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:44:52 2006 
Revoke access on: Thu Sep  7 10:44:52 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:44:53 2006 
Revoke access on: Fri Sep  8 09:44:53 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:44:53 2006 
Revoke access on: Fri Sep  8 09:44:53 2006 
 
Static, copy file test (using redirection), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:45:06 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:44:52 2006 
Revoke access on: Thu Sep  7 10:44:52 2006 
 
Trial 2: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:45:13 2006 
Revoke access on: Thu Sep  7 10:45:13 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:45:13 2006 
Revoke access on: Fri Sep  8 09:45:13 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:45:14 2006 
Revoke access on: Fri Sep  8 09:45:14 2006 
 
Static, copy file test (using redirection), scenario 3 of 3 - smallest 
subject 
 
current time is: 
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Thu Sep  7 09:45:19 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:45:13 2006 
Revoke access on: Thu Sep  7 10:45:13 2006 
 
Trial 3: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:45:24 2006 
Revoke access on: Thu Sep  7 10:45:24 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:45:25 2006 
Revoke access on: Fri Sep  8 09:45:25 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:45:25 2006 
Revoke access on: Fri Sep  8 09:45:25 2006 
 
Static, copy file test (using redirection), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:45:31 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:45:24 2006 
Revoke access on: Thu Sep  7 10:45:24 2006 
 
Trial 4: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:45:38 2006 
Revoke access on: Thu Sep  7 10:45:38 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:45:39 2006 
Revoke access on: Fri Sep  8 09:45:39 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:45:39 2006 
Revoke access on: Fri Sep  8 09:45:39 2006 
 
Static, copy file test (using redirection), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:45:43 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:45:38 2006 
Revoke access on: Thu Sep  7 10:45:38 2006 
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Trial 5: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:45:52 2006 
Revoke access on: Thu Sep  7 10:45:52 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:45:52 2006 
Revoke access on: Fri Sep  8 09:45:52 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:45:53 2006 
Revoke access on: Fri Sep  8 09:45:53 2006 
 
Static, copy file test (using redirection), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:45:57 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:45:52 2006 
Revoke access on: Thu Sep  7 10:45:52 2006 
 
Trial 6: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:46:01 2006 
Revoke access on: Thu Sep  7 10:46:01 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:46:02 2006 
Revoke access on: Fri Sep  8 09:46:02 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:46:02 2006 
Revoke access on: Fri Sep  8 09:46:02 2006 
 
Static, copy file test (using redirection), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:46:06 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:46:01 2006 
Revoke access on: Thu Sep  7 10:46:01 2006 
 
Trial 7: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:46:10 2006 
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Revoke access on: Thu Sep  7 10:46:10 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:46:11 2006 
Revoke access on: Fri Sep  8 09:46:11 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:46:11 2006 
Revoke access on: Fri Sep  8 09:46:11 2006 
 
Static, copy file test (using redirection), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:46:18 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:46:10 2006 
Revoke access on: Thu Sep  7 10:46:10 2006 
 
Trial 8: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:46:26 2006 
Revoke access on: Thu Sep  7 10:46:26 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:46:26 2006 
Revoke access on: Fri Sep  8 09:46:26 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:46:26 2006 
Revoke access on: Fri Sep  8 09:46:26 2006 
 
Static, copy file test (using redirection), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:46:33 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:46:26 2006 
Revoke access on: Thu Sep  7 10:46:26 2006 
 
Trial 9: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:46:41 2006 
Revoke access on: Thu Sep  7 10:46:41 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:46:41 2006 
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Revoke access on: Fri Sep  8 09:46:41 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:46:42 2006 
Revoke access on: Fri Sep  8 09:46:42 2006 
 
Static, copy file test (using redirection), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:47:29 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:46:41 2006 
Revoke access on: Thu Sep  7 10:46:41 2006 
 
Trial 10: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:47:34 2006 
Revoke access on: Thu Sep  7 10:47:34 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:47:35 2006 
Revoke access on: Fri Sep  8 09:47:35 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:47:35 2006 
Revoke access on: Fri Sep  8 09:47:35 2006 
 
Static, copy file test (using redirection), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:47:39 PDT 2006 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:47:34 2006 
Revoke access on: Thu Sep  7 10:47:34 2006 
 

s-copy-file-3c-results.txt 
Trial 1: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:49:17 2006 
Revoke access on: Thu Sep  7 10:49:17 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:49:17 2006 
Revoke access on: Fri Sep  8 09:49:17 2006 
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setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:49:17 2006 
Revoke access on: Fri Sep  8 09:49:17 2006 
 
Static, copy file test (using pipes), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:49:31 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:49:17 2006 
Revoke access on: Thu Sep  7 10:49:17 2006 
 
Trial 2: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:49:38 2006 
Revoke access on: Thu Sep  7 10:49:38 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:49:39 2006 
Revoke access on: Fri Sep  8 09:49:39 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:49:39 2006 
Revoke access on: Fri Sep  8 09:49:39 2006 
 
Static, copy file test (using pipes), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:49:44 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:49:38 2006 
Revoke access on: Thu Sep  7 10:49:38 2006 
 
Trial 3: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:49:49 2006 
Revoke access on: Thu Sep  7 10:49:49 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:49:49 2006 
Revoke access on: Fri Sep  8 09:49:49 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:49:50 2006 



178 

Revoke access on: Fri Sep  8 09:49:50 2006 
 
Static, copy file test (using pipes), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:49:53 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:49:49 2006 
Revoke access on: Thu Sep  7 10:49:49 2006 
 
Trial 4:  
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:49:57 2006 
Revoke access on: Thu Sep  7 10:49:57 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:49:58 2006 
Revoke access on: Fri Sep  8 09:49:58 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:49:58 2006 
Revoke access on: Fri Sep  8 09:49:58 2006 
 
Static, copy file test (using pipes), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:50:02 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:49:57 2006 
Revoke access on: Thu Sep  7 10:49:57 2006 
 
Trial 5: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:50:05 2006 
Revoke access on: Thu Sep  7 10:50:05 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:50:06 2006 
Revoke access on: Fri Sep  8 09:50:06 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:50:06 2006 
Revoke access on: Fri Sep  8 09:50:06 2006 
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Static, copy file test (using pipes), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:50:11 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:50:05 2006 
Revoke access on: Thu Sep  7 10:50:05 2006 
 
Trial 6: 
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:50:15 2006 
Revoke access on: Thu Sep  7 10:50:15 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:50:16 2006 
Revoke access on: Fri Sep  8 09:50:16 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:50:16 2006 
Revoke access on: Fri Sep  8 09:50:16 2006 
 
Static, copy file test (using pipes), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:50:22 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:50:15 2006 
Revoke access on: Thu Sep  7 10:50:15 2006 
 
Trial 7:  
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:50:34 2006 
Revoke access on: Thu Sep  7 10:50:34 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:50:34 2006 
Revoke access on: Fri Sep  8 09:50:34 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:50:34 2006 
Revoke access on: Fri Sep  8 09:50:34 2006 
 
Static, copy file test (using pipes), scenario 3 of 3 - smallest 
subject 
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current time is: 
Thu Sep  7 09:50:38 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:50:34 2006 
Revoke access on: Thu Sep  7 10:50:34 2006 
 
Trial 8:  
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:50:43 2006 
Revoke access on: Thu Sep  7 10:50:43 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:50:43 2006 
Revoke access on: Fri Sep  8 09:50:43 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:50:43 2006 
Revoke access on: Fri Sep  8 09:50:43 2006 
 
Static, copy file test (using pipes), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:50:47 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:50:43 2006 
Revoke access on: Thu Sep  7 10:50:43 2006 
 
Trial 9:  
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:50:50 2006 
Revoke access on: Thu Sep  7 10:50:50 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:50:50 2006 
Revoke access on: Fri Sep  8 09:50:50 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:50:50 2006 
Revoke access on: Fri Sep  8 09:50:50 2006 
 
Static, copy file test (using pipes), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:50:56 PDT 2006 
This is the source file. 
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The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:50:50 2006 
Revoke access on: Thu Sep  7 10:50:50 2006 
 
Trial 10:  
setup subject time attributes...(smallest) 
Target:  /home/jody/.bash_profile 
Grant access on:  Thu Sep  7 08:50:59 2006 
Revoke access on: Thu Sep  7 10:50:59 2006 
 
setup source object time attributes... 
Target:  source.txt 
Grant access on:  Wed Sep  6 09:50:59 2006 
Revoke access on: Fri Sep  8 09:50:59 2006 
 
setup destination object time attributes... 
Target:  dest.txt 
Grant access on:  Wed Sep  6 09:51:00 2006 
Revoke access on: Fri Sep  8 09:51:00 2006 
 
Static, copy file test (using pipes), scenario 3 of 3 - smallest 
subject 
 
current time is: 
Thu Sep  7 09:51:05 PDT 2006 
This is the source file. 
The resulting time attribute for the destination file is ... 
Target:  dest.txt 
Grant access on:  Thu Sep  7 08:50:59 2006 
Revoke access on: Thu Sep  7 10:50:59 2006 

s-create-file-results.txt 
Static, create file test 
 
 
setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Tue Aug 22 00:14:50 2006 
Revoke access on: Tue Sep 19 00:14:50 2006 
 
 
current time is: 
Tue Sep  5 00:14:51 PDT 2006 
 
creating a new file........... 
 
The time attribute for the newly created file is ... 
Target:  /home/jody/jodynew.txt 
Grant access on:  Tue Aug 22 00:14:50 2006 
Revoke access on: Tue Sep 19 00:14:50 2006 
 

s-create-dir-results.txt 
Static, create directory test 
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setup subject time attributes... 
Target:  /home/jody/.bash_profile 
Grant access on:  Tue Aug 22 00:15:47 2006 
Revoke access on: Tue Sep 19 00:15:47 2006 
 
current time is: 
Tue Sep  5 00:15:47 PDT 2006 
 
creating a new directory........... 
 
The time attribute for the newly created directory is ... 
Target:  /home/jody/jodyNewDirectory 
Grant access on:  Tue Aug 22 00:15:47 2006 
Revoke access on: Tue Sep 19 00:15:47 2006 
 
 



183 

Static tests – TIFPS behavior on time expiration during file write operations 
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Dynamic tests – Dynamically changing subject and object attributes 
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D. PERFORMANCE TEST PROCEDURES 
 This section contains detailed test procedures for performance test evaluation of 

the TIFPS LSM. 

1. The performance tests consist of six test scripts and twelve setup scripts.  Prior to 

conducting the tests, ensure the following preconditions are met: 

a. Start two separate login sessions, one as root and the other as user sam. 

b. In the root session, copy the scripts in the testscripts/performance/ 

directory to /home/sam/: 

#  cp –r <path to testscripts directory>/performance   /home/sam/ 

c. Change both login sessions to the /home/sam/performance/ directory. 

d. In the root session, change the permission of the testscripts/performance/ 

directory: 

#  chmod –R 777 /home/sam/performance 

e. Unload the TIFPS LSM from the kernel using the root session: 

#  rmmod tifps 

2. In the root login session, run the setup script: 

#  ./test1setup.sh 

3. In the sam login session, run the following command three times and record the 

resulting sys time for each trial (this will be the baseline performance for a kernel 

without TIFPS): 

$  time –p ./test1and2.sh 

4. In the root login session, load the TIFPS LSM by running: 

#  modprobe tifps 

5. In the sam login session, run the same command as in step 3 three times and 

record the resulting sys time for each trial (this will be the performance for a 

kernel with TIFPS) 
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$  time –p ./test1and2.sh 

6. Repeat steps 1 through 5 for subsequent tests 3, 5, 7, 9, and 11. 

7. For tests 2, 4, 6, 10, and 12, repeat steps 1 through 5 with one change – run the 

test*setup.sh after every trial in steps 3 and 5. 

8. For test 8, this test does not have a setup script, to run these test 8, edit the 

test7and8.sh script by un-commenting the last line in the script. 

9. Test scripts for each performance test condition are summarized in Table D-7. 

Table D-7. Summary of test scripts used for each performance evaluation condition 
 
TestID Test Scripts Performance test variable descriptions 
F1 test1setup.sh 

test1and2.sh 
Read single file with TIFPS attributes 1000 times  

F2 test2setup.sh 
test1and2.sh 

Read single file without TIFPS attributes 1000 times 

F3 test3setup.sh 
test3and4.sh 

Read 1000 files with TIFPS attributes 1 time 

F4 test4setup.sh 
test3and4.sh 

Read 1000 files without TIFPS attributes 1 time 

F5 test5setup.sh 
test5and6.sh 

Write single file with TIFPS attributes 1000 times 

F6 test6setup.sh 
test5and6.sh 

Write single file without TIFPS attributes 1000 times 

F7 test7setup.sh 
test7and8.sh 

Write 1000 files with TIFPS attributes 1 time 

F8 test7and8.sh Write 1000 files without TIFPS attributes 1 time 
F9 test9setup.sh 

test9and10.sh 
Copy 1 file with TIFPS attributes 1000 times to another existing file with 
TIFPS attributes 

F10 test10setup.sh 
test9and10.sh 

Copy 1 file without TIFPS attributes 1000 times to another non existent file 

F11 test11setup.sh 
test11and12.sh 

Copy 1000 different files, each with TIFPS attributes to another set of 1000 
files, with TIFPS attributes 

F12 test12setup.sh 
test11and12.sh 

Copy 1000 different files, without TIFPS attributes to a set of non existent 
files 

 

E. PERFORMANCE TEST SCRIPTS 
This section contains scripts that correspond to the tests described in Section D. 

test1and2.sh 
#!/bin/bash 
# For test 1, run test1setup.sh once as root to create the file to be read and  
# set the time attributes 
# For test 2, run test2setup.sh for every trial as root before running 
# test1and2.sh 
 
i=1 
while [ $i -lt 1000 ];do 
    cat test1message.txt >/dev/null 
    let i++ 
done 
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test3and4.sh 
#!/bin/bash 
# For test 3, run test3setup.sh once as root to create 1000 files  
#  for this script 
# For test 4, run test4setup.sh between every trial as root before running 
# this script. 
i=1 
while [ $i -lt 1000 ]; do 
    cat test3-file$i.txt >/dev/null 
    let i++ 
done 
 

test5and6.sh 
#!/bin/bash 
# For test 5, run the test5setup.sh script as root once before running this. 
# For test 6, run the test6setup.sh script as root between every trial before 
#  running this script. 
i=1 
while [ $i -lt 1000 ];do 
    python -c “print 'G'*1000”> writefile.txt 
    let i++ 
done 
 

test7and8.sh 
#!/bin/bash 
 
# For test 7, run the test7setup.sh script first to setup the test. 
# For test 8, uncomment the last line for test 8 before running this test. 
 
i=1 
while [ $i -lt 1000 ];do 
    python -c “print 'G'*1000” > “test7-8-file$i.txt” 
    let i++ 
done 
 
#uncomment following for test 8 
#rm -rf test7-8-file*  #test 8 only 
 

test9and10.sh 
#!/bin/bash 
# For test 9, run the test9setup.sh script first as root. 
# For test 10, run the test10setup.sh script between every trial. 
i=1 
while [ $i -lt 1000 ];do 
    cp copy1.txt copy2.txt 
    let i++ 
done 
 

test11and12.sh 
#!/bin/bash 
# For test 11, create 1000 files first by running the test11setup.sh script  
# For test 12, run the test12setup script as root between every trial. 
i=1 
while [ $i -lt 1000 ];do 
    cp test11-file$i.txt test11-file-copy$i.txt 
    let i++ 
done 
 

test1setup.sh 
#!/bin/bash 
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# Run this script as root to create the file to be read for test 1 
 
echo “creating test 1 file...” 
python -c “print 'G'*1000” >test1message.txt 
 
 
echo “setting time attributes for test11 files...” 
modtime -W 1 test1message.txt 
chmod 777 test1message.txt 
echo “done!” 

test2setup.sh 
#!/bin/bash 
# Run this script as root between trials for test 2 
 
echo “removing tifps attributes from test file...” 
modtime -x test1message.txt 
echo “done!” 

test3setup.sh 
#!/bin/bash 
# Creates 1000 files for test 3, run this script as root 
echo “creating 1000 test 3 files...” 
i=1 
while [ $i -lt 1000 ];do 
    python -c “print 'G'*1000” >test3-file$i.txt 
    let i++ 
done 
 
echo “setting time attributes for test 3 files...” 
modtime -W 1 test3-file* >/dev/null 
chmod 777 test3-file* 
echo “done!” 

test4setup.sh 
#!/bin/bash 
# sets up files for test 4, run this script as root between trials 
 
echo “removing time attributes for test 4 files...” 
modtime -x test3-file* >/dev/null 
echo “done!” 

test5setup.sh 
#!/bin/bash 
# sets up the file for test 5, run this script as root 
 
echo “Creating writefile.txt for test 5” 
touch writefile.txt 
chmod 777 writefile.txt 
modtime -W 1 writefile.txt 
echo “done!” 

test6setup.sh 
#!/bin/bash 
# sets up the file for test 6, run this script as root between trials 
 
echo “Removing tifps attributes for test 6” 
modtime -x writefile.txt 
echo “done!” 
 

test7setup.sh 
#!/bin/bash 
# sets up the files for test 7, run this script as root 
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echo “Creating files for test 7” 
i=1 
while [ $i -lt 1000 ]; do 
    touch test7-8-file$i.txt 
    let i++ 
done 
 
echo “setting tifps attributes” 
chmod 777 test7-8-file* 
modtime -W 1 test7-8-file* >/dev/null 
echo “done!” 
 

test9setup.sh 
#!/bin/bash 
# sets up the file for test 9, run this script as root 
 
echo “Creating file for test 9” 
python -c “print 'G'*1000”>copy1.txt 
 
echo “setting tifps attributes on file” 
chmod 777 copy1.txt 
modtime -W 1 copy1.txt >/dev/null 
echo “done!” 
 
 

test10setup.sh 
#!/bin/bash 
# sets up the file for test 10, run this script as root for 
# every trial run 
 
echo “Removing time attributes for test 10” 
modtime -x copy1.txt copy2.txt 
echo “done!” 
 
 

test11setup.sh 
#!/bin/bash 
# Creates 1000 files for test 11, run this script as root 
 
echo “creating test 11 files...” 
i=1 
while [ $i -lt 1000 ];do 
    python -c “print 'G'*1000” >test11-file$i.txt 
    cp test11-file$i.txt test11-file-copy$i.txt 
    let i++ 
done 
 
echo “setting time attributes for test11 files...” 
modtime -W 1 test11-file* >/dev/null 
chmod 777 test11-file* 
echo “done!” 
 

test12setup.sh 
#!/bin/bash 
# setup file for test 12, run this script as root between trials 
 
echo “deleting copies from test 11, if they exist...” 
rm -f test11-file-copy* 
 
echo “removing time attributes for test12 files...” 
modtime -x test11-file* >/dev/null 
chmod 777 test11-file* 
echo “done!” 
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F. PERFORMANCE TEST RESULTS 
This section contains the raw results of the tests described in Section D. 

 

TIFPS Performance Tests     Last modified 09/05/06   

Test Environment:   
Dell Desktop 3.0 GHz, 256M Ram, Vmware server 1.0.0 image running 
FC5    

  Kernel revision #65 tested        
 Tests 
Kernel: 1 2 3 4 5 6 7 8 9 10 11 12 
Normal 4.39 4.38 4.47 4.38 26.44 26.61 27.55 26.84 6.47 6.46 6.72 6.8 
 4.4 4.42 4.47 4.42 26.67 26.69 27.5 27.17 6.55 6.38 6.77 6.87 
 4.44 4.38 4.48 4.4 27.19 26.38 27.7 27.01 6.47 6.41 6.64 6.88 
        27.17     

Avg 4.41 4.39 4.47 4.40 26.77 26.56 27.58 27.05 6.50 6.42 6.71 6.85 
Std 0.03 0.02 0.01 0.02 0.38 0.16 0.10 0.16 0.05 0.04 0.07 0.04 

             
TIFPS LSM 4.62 4.62 4.76 4.64 32.32 31.85 32.64 31.95 7.01 7.11 7.22 7.42 
 4.68 4.56 4.7 4.64 32.67 31.72 32.05 32.5 7.15 7.08 7.17 7.4 
 4.65 4.6 4.7 4.67 31.85 32.15 33.09 32.16 7.11 7.07 7.36 7.37 

Avg 4.65 4.59 4.72 4.65 32.28 31.91 32.59 32.20 7.09 7.09 7.25 7.40 
Std 0.03 0.03 0.03 0.02 0.41 0.22 0.52 0.28 0.07 0.02 0.10 0.03 

Difference 5.4% 4.6% 5.5% 5.7% 20.6% 20.1% 18.2% 19.1% 9.1% 10.4% 8.0% 8.0% 
             
Note: only sys time captured because it is time spent in the kernel; that's where the access control happens. 
Tests:             
1.  Read 1 file with tifps attributes 1000 times; pipe output to /dev/null       
2.  Same as 1, but file does not have tifps attributes.        
3.  Read 1000 different files, each with tifps attributes        
4.  Same as 3, but files do not have tifps attributes.        
5. Write to 1 file with tifps attribute 1000 times; “python -c “print 'G'*1000”>writefile.txt.    
6.  Same as 5, but file does not have tifps attributes.        
7.  Write to 1000 different existing files with tifps attributes       
8.  same as 7, except we remove all files created for each run (no tifps attributes)    
9.  Copy 1 file with tifps attributes 1000 times to another file also with tifps attributes (cp copy1.txt copy2.txt) 
10.  Same as 9, but source and dest files do not have tifps attibutes      
11.  Copy 1000 different files with tifps attributes to another 1000 set of files, also with tifps attributes.  
12.  Same as 11, but no source files have tifps attributes       
             

Note:  All units in are seconds unless otherwise noted. 

G. CONCURRENCY TEST PROCEDURES 
To test the robustness of the TIFPS LSM in multi-user concurrent access 

environments, the following test procedures were developed.  To setup the concurrency 

tests: 
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Start a root login sessions, change to the testscripts/concurrency/ directory and 

copy the *-user.sh (3users-read-user.sh, 3users-write-user.sh, 3users-writedir-

user.sh, 3users-copy-user.sh) scripts to the /bin directoriy.  

#  cp 3users-*-user.sh /bin/ 

Concurrent read from and write to the same file 

1. Start three additional login sessions; login to each session as root.. 

2. In the first root login session that is in the testscripts/concurrency/ directory, 

run: 

#  ./3users-read.sh 

3. Within one minute, use the other three login sessions to login as sam, don, and 

jody  to run their respective test scripts: 

#  su - <user> 

$  3users-read-user.sh 

4. Record the results of the 4 login sessions from the screen and compare with the 

expected results listed below. 

5. Clean up the test environment by running in the root session: 

#  modtime –x /home/sam/.bash*   /home/jody/.bash*   /home/don/.bash*  /tmp 

6. Repeat steps 2 through 5 for the 3users-write.sh and 3users-write-user.sh 

scripts. 

7. Expected results: 

a. Concurrent read from same file:  The system should revoke access from 

the user when his/her time attribute expires. 

b. Concurrent write to same file:  The system should do two things 

i. Transfer the time attributes of the most restrictive user to the 

shared file 
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ii. Revoke access for all users based on the the inherited time 

attributes. 

Concurrent write to same directory and copy from same file 

1. Exit the three user login sessions: 

$  exit 

#  exit 

2. In the remaining root login session, run: 

#  modtime –x /home/jody/.bash*  /home/don/.bash*  /home/sam/.bash*   /tmp 

#  ./3users-writedir.sh 

3. Record the results and compare the values on the screen with the expected results 

listed below. 

4. Repeat step 2 with the commands: 

#  modtime –x /home/jody/.bash*  /home/don/.bash*  /home/sam/.bash*  /tmp 

#  ./3users-copy.sh 

5. Expected results: 

a. Concurrent write to same directory:   

i. Each copy written by the users should inherit the proper 

permissions from the users. 

ii. The time attributes of the directory should not change. 

b. Concurrent copy from the same file:   

i. Each copy of the file made by the user should take on the more 

restrictive of his user attributes or the the original file attributes. 

ii. The original file’s time attributes should not change. 
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Table D-8. Summary of test scripts for concurrency testing 
 

Test 
ID 

Test Scripts Description of concurrency test 
scenario 

Expected results 

G1 3users-read.sh 
3users-read-user.sh 

Concurrent read of a single file by 3 
users with different time attributes 

In each user’s sessions, read access should 
be revoked at the time preset by root. 

G2 3users-write.sh 
3users-write-user.sh 

Concurrent write to a single file by 
3 users with different time attributes 

1.  The file being written to should inherit 
the time attributes of the user with the 
most restrictive time attributes. 
2.  Each user’s write access to that file 
should be revoked based upon the 
inherited time. 

G3 3users-copy.sh 
3users-copy-user.sh 

Concurrent copy of a single file by 
3 users with different time attributes 

1.  Each copy made by each user should 
inherit the user’s time attributes 
2.  The directory’s time attributes should 
not change. 

G4 3users-writedir.sh 
3users-writedir-user.sh 

Concurrent write to a shared 
directory by 3 users with different 
time attributes 

1.  Each copy made by each user should 
inherit the more restrictive time attributes 
of either the user or the original file. 
2.  The destination directory’s time 
attributes should not change. 

 
H.  CONCURRENCY TEST SCRIPTS 

The scripts in this section correspond to tests described in Section G. 

3users-read.sh 
#!/bin/bash 
# Run this script as root to set things up, then login as sam, don, and jody. 
# As each of these users, run the “3user-read-user.sh” for each user within 1 minute. 
 
echo “Concurrent read access test - multiple users” 
echo ““ 
 
echo “Setting up sam, don, and jody's time attributes...” 
modtime -M 1 -S15 /home/sam/.bash_profile 
modtime -M 1 -S20 /home/don/.bash_profile 
modtime -M 1 -S30 /home/jody/.bash_profile 
 
echo “Setting up the object file to be read...” 
echo “this message will self destruct in 10s” > /tmp/message.txt 
modtime -W 1 /tmp/message.txt 
 
echo ““ 
echo ““ 
echo “login as sam, don, and jody and run the 3user-read-user.sh script for each” 
echo “ within the next 1 Minute” 
 

3users-read-user.sh 
#!/bin/bash 
# Run the 3user-read.sh script first as root, then  
# within 60s, login with sam, don, and jody's accounts 
# and run this script with each of these accounts. 
 
echo “reading the /tmp/message.txt file continuously...” 
echo ““ 
cat /tmp/message.txt 
 
while [ 1 ]; do 
    cat /tmp/message.txt >/dev/null 
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    if [ $? -gt 0 ]; then 
 echo “Read access to /tmp/message.txt revoked, time:” 
 date 
 echo ““ 
 exit 
    fi 
done 
 

3users-write.sh 
#!/bin/bash 
# Run this script as root to set things up, then login as sam, don, and jody. 
# As each of these users, run the “3user-write-user.sh” for each user within 1 minute. 
 
echo “Concurrent write access test by multiple users” 
echo ““ 
 
echo “Setting up sam, don, and jody's time attributes...” 
modtime -M 1 -S15 /home/sam/.bash_profile 
modtime -M 1 -S20 /home/don/.bash_profile 
modtime -M 1 -S30 /home/jody/.bash_profile 
 
echo “Setting up the object file to be written to...” 
echo “overwrite me” > /tmp/shared-write.txt 
chmod 777 /tmp/shared-write.txt 
modtime -W 1 /tmp/shared-write.txt 
 
echo ““ 
echo ““ 
echo “login as sam, don, and jody and run the 3user-write-user.sh script within the next 
minute” 
 

3users-write-user.sh 
#!/bin/bash 
# Run the 3user-write.sh script first as root, then  
# within 60s, login with sam, don, and jody's accounts 
# and run this script with each of these accounts. 
 
echo “attempting to write to /tmp/shared-write.txt file continuously...” 
echo ““ 
 
while [ 1 ]; do 
    echo “`date +%T`: $USER” >>/tmp/shared-write.txt 
    if [ $? -gt 0 ]; then 
 echo “write to /tmp/shared-write.txt failed, time:” 
 date 

echo ““ 
 exit 
    fi 
done 
 

3users-writedir.sh 
#!/bin/bash 
# Run this script as root; the 3users-writedir-user.sh script must be  
# in the execute path for each of the 3 users sam, don, and jody. 
 
echo “Test concurrent copying into same directory by multiple users” 
echo ““ 
 
echo “Setting up sam, don, and jody's time attributes...” 
modtime -M 1 -S15 /home/sam/.bash_profile 
modtime -M 1 -S20 /home/don/.bash_profile 
modtime -M 1 -S30 /home/jody/.bash_profile 
 
echo “Setting up the object directory to be written...” 
modtime -W 1 /tmp 
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echo ““ 
echo ““ 
rm -f /tmp/sam-copy.txt /tmp/don-copy.txt /tmp/jody-copy.txt 
rm -f /home/sam/sam-copy.txt /home/don/don-copy.txt /home/jody/jody-copy.txt 
 
su - sam -c “3users-writedir-user.sh” & 
su - don -c “3users-writedir-user.sh” & 
su - jody -c “3users-writedir-user.sh” & 
 
 
sleep 10s 
echo “The time attributes of the resulting copies made by each user are:” 
modtime -g /tmp/sam-copy.txt 
modtime -g /tmp/don-copy.txt 
modtime -g /tmp/jody-copy.txt 
 
echo “The time attribute of the original directory written:” 
modtime -g /tmp 
 

3users-writedir-user.sh 
#!/bin/bash 
# This script is run from the 3user-writedir.sh script by root 
 
echo “$USER copying his/her respective private file”  
echo “ continuously 1000 times to the /tmp directory” 
echo ““ 
 
echo “$USER was here...” >$USER-copy.txt 
 
i=0 
while [ $i -lt 1000 ]; do 
    cp $USER-copy.txt /tmp/ 
    let “i=$i+1” 
done 
 

3users-copy.sh 
#!/bin/bash 
# Run this script as root; the 3user-copy-user.sh script must be  
# in the execute path for each of the 3 users sam, don, and jody. 
 
echo “Concurrent file copy test by multiple users” 
echo ““ 
 
echo “Setting up sam, don, and jody's time attributes...” 
modtime -M 1 -S15 /home/sam/.bash_profile 
modtime -M 1 -S20 /home/don/.bash_profile 
modtime -M 1 -S30 /home/jody/.bash_profile 
 
echo “Setting up the object file to be copied...” 
echo “this message will self destruct in 10s” > /tmp/message.txt 
modtime -W 1 /tmp/message.txt 
 
echo ““ 
echo ““ 
rm -f /home/sam/sam-copy.txt 
rm -f /home/don/don-copy.txt 
rm -f /home/jody/jody-copy.txt 
su - sam -c “3users-copy-user.sh” & 
su - don -c “3users-copy-user.sh” & 
su - jody -c “3users-copy-user.sh” & 
 
 
sleep 10s 
echo “The time attributes of the resulting copies made by each user are:” 
modtime -g /home/sam/sam-message-copy.txt 
modtime -g /home/don/don-message-copy.txt 
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modtime -g /home/jody/jody-message-copy.txt 
 
echo “The time attribute of the original file copied:” 
modtime -g /tmp/message.txt 
 

3users-copy-user.sh 
#!/bin/bash 
# This script is run by the 3users-copy.sh script by root. 
 
echo “$USER copying the /tmp/message.txt file continuously 1000 times” 
echo ““ 
 
i=0 
while [ $i -lt 1000 ]; do 
    cp /tmp/message.txt $USER-message-copy.txt 
    let “i=$i+1” 
done 
 
I. CONCURRENCY TEST RESULTS 

This section contains results from the tests described in Section G. 

Concurrent read from the same file 
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Concurrent write to same file 
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Concurrent write to same directory 
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Concurrent copy from the same file 
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APPENDIX E.  DEVELOPMENT CONFIGURATION FILES 

This appendix contains configuration files used during the development and 

testing of the TIFPS LSM.  The kernel configuration file .config and the emacs editor 

configuration file .emacs are provided. 

A.  KERNEL .CONFIG CONFIGURATION FILE 
# 
# Automatically generated make config: don't edit 
# Linux kernel version: 2.6.15-tifps-082406-module 
# Wed Aug 30 00:27:05 2006 
# 
CONFIG_X86_32=y 
CONFIG_SEMAPHORE_SLEEPERS=y 
CONFIG_X86=y 
CONFIG_MMU=y 
CONFIG_GENERIC_ISA_DMA=y 
CONFIG_GENERIC_IOMAP=y 
CONFIG_ARCH_MAY_HAVE_PC_FDC=y 
CONFIG_DMI=y 
 
# 
# Code maturity level options 
# 
CONFIG_EXPERIMENTAL=y 
CONFIG_LOCK_KERNEL=y 
CONFIG_INIT_ENV_ARG_LIMIT=32 
 
# 
# General setup 
# 
CONFIG_LOCALVERSION=““ 
# CONFIG_LOCALVERSION_AUTO is not set 
CONFIG_SWAP=y 
CONFIG_SYSVIPC=y 
CONFIG_POSIX_MQUEUE=y 
CONFIG_BSD_PROCESS_ACCT=y 
# CONFIG_BSD_PROCESS_ACCT_V3 is not set 
CONFIG_SYSCTL=y 
CONFIG_AUDIT=y 
CONFIG_AUDITSYSCALL=y 
# CONFIG_IKCONFIG is not set 
CONFIG_CPUSETS=y 
CONFIG_INITRAMFS_SOURCE=““ 
CONFIG_UID16=y 
CONFIG_VM86=y 
CONFIG_CC_OPTIMIZE_FOR_SIZE=y 
# CONFIG_EMBEDDED is not set 
CONFIG_KALLSYMS=y 
# CONFIG_KALLSYMS_ALL is not set 
CONFIG_KALLSYMS_EXTRA_PASS=y 
CONFIG_HOTPLUG=y 
CONFIG_PRINTK=y 
CONFIG_BUG=y 
CONFIG_ELF_CORE=y 
CONFIG_BASE_FULL=y 
CONFIG_FUTEX=y 
CONFIG_EPOLL=y 
CONFIG_SHMEM=y 
CONFIG_CC_ALIGN_FUNCTIONS=0 
CONFIG_CC_ALIGN_LABELS=0 
CONFIG_CC_ALIGN_LOOPS=0 
CONFIG_CC_ALIGN_JUMPS=0 
CONFIG_SLAB=y 
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# CONFIG_TINY_SHMEM is not set 
CONFIG_BASE_SMALL=0 
# CONFIG_SLOB is not set 
 
# 
# Loadable module support 
# 
CONFIG_MODULES=y 
CONFIG_MODULE_UNLOAD=y 
# CONFIG_MODULE_FORCE_UNLOAD is not set 
CONFIG_OBSOLETE_MODPARM=y 
CONFIG_MODVERSIONS=y 
CONFIG_MODULE_SRCVERSION_ALL=y 
CONFIG_MODULE_SIG=y 
# CONFIG_MODULE_SIG_FORCE is not set 
CONFIG_KMOD=y 
CONFIG_STOP_MACHINE=y 
 
# 
# Block layer 
# 
CONFIG_LBD=y 
 
# 
# IO Schedulers 
# 
CONFIG_IOSCHED_NOOP=y 
CONFIG_IOSCHED_AS=y 
CONFIG_IOSCHED_DEADLINE=y 
CONFIG_IOSCHED_CFQ=y 
# CONFIG_DEFAULT_AS is not set 
# CONFIG_DEFAULT_DEADLINE is not set 
CONFIG_DEFAULT_CFQ=y 
# CONFIG_DEFAULT_NOOP is not set 
CONFIG_DEFAULT_IOSCHED=“cfq” 
 
# 
# Processor type and features 
# 
CONFIG_X86_PC=y 
# CONFIG_X86_XEN is not set 
# CONFIG_X86_ELAN is not set 
# CONFIG_X86_VOYAGER is not set 
# CONFIG_X86_NUMAQ is not set 
# CONFIG_X86_SUMMIT is not set 
# CONFIG_X86_BIGSMP is not set 
# CONFIG_X86_VISWS is not set 
# CONFIG_X86_GENERICARCH is not set 
# CONFIG_X86_ES7000 is not set 
# CONFIG_M386 is not set 
# CONFIG_M486 is not set 
# CONFIG_M586 is not set 
# CONFIG_M586TSC is not set 
# CONFIG_M586MMX is not set 
CONFIG_M686=y 
# CONFIG_MPENTIUMII is not set 
# CONFIG_MPENTIUMIII is not set 
# CONFIG_MPENTIUMM is not set 
# CONFIG_MPENTIUM4 is not set 
# CONFIG_MK6 is not set 
# CONFIG_MK7 is not set 
# CONFIG_MK8 is not set 
# CONFIG_MCRUSOE is not set 
# CONFIG_MEFFICEON is not set 
# CONFIG_MWINCHIPC6 is not set 
# CONFIG_MWINCHIP2 is not set 
# CONFIG_MWINCHIP3D is not set 
# CONFIG_MGEODEGX1 is not set 
# CONFIG_MGEODE_LX is not set 
# CONFIG_MCYRIXIII is not set 
# CONFIG_MVIAC3_2 is not set 
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# CONFIG_X86_GENERIC is not set 
CONFIG_X86_CMPXCHG=y 
CONFIG_X86_XADD=y 
CONFIG_X86_L1_CACHE_SHIFT=5 
CONFIG_RWSEM_XCHGADD_ALGORITHM=y 
CONFIG_GENERIC_CALIBRATE_DELAY=y 
CONFIG_X86_PPRO_FENCE=y 
CONFIG_X86_WP_WORKS_OK=y 
CONFIG_X86_INVLPG=y 
CONFIG_X86_BSWAP=y 
CONFIG_X86_POPAD_OK=y 
CONFIG_X86_CMPXCHG64=y 
CONFIG_X86_GOOD_APIC=y 
CONFIG_X86_USE_PPRO_CHECKSUM=y 
CONFIG_X86_TSC=y 
CONFIG_HPET_TIMER=y 
CONFIG_HPET_EMULATE_RTC=y 
CONFIG_SMP=y 
# CONFIG_SMP_ALTERNATIVES is not set 
CONFIG_NR_CPUS=255 
CONFIG_SCHED_SMT=y 
# CONFIG_PREEMPT_NONE is not set 
CONFIG_PREEMPT_VOLUNTARY=y 
# CONFIG_PREEMPT is not set 
CONFIG_PREEMPT_BKL=y 
CONFIG_X86_LOCAL_APIC=y 
CONFIG_X86_IO_APIC=y 
CONFIG_X86_MCE=y 
# CONFIG_X86_MCE_NONFATAL is not set 
# CONFIG_X86_MCE_P4THERMAL is not set 
# CONFIG_TOSHIBA is not set 
# CONFIG_I8K is not set 
# CONFIG_X86_REBOOTFIXUPS is not set 
CONFIG_MICROCODE=m 
CONFIG_X86_MSR=y 
CONFIG_X86_CPUID=y 
# CONFIG_SWIOTLB is not set 
 
# 
# Firmware Drivers 
# 
CONFIG_EDD=m 
CONFIG_DELL_RBU=m 
CONFIG_DCDBAS=m 
CONFIG_NOHIGHMEM=y 
# CONFIG_HIGHMEM4G is not set 
# CONFIG_HIGHMEM64G is not set 
CONFIG_VMSPLIT_3G=y 
# CONFIG_VMSPLIT_3G_OPT is not set 
# CONFIG_VMSPLIT_2G is not set 
# CONFIG_VMSPLIT_1G is not set 
CONFIG_PAGE_OFFSET=0xC0000000 
CONFIG_ARCH_FLATMEM_ENABLE=y 
CONFIG_ARCH_SPARSEMEM_ENABLE=y 
CONFIG_ARCH_SELECT_MEMORY_MODEL=y 
CONFIG_SELECT_MEMORY_MODEL=y 
CONFIG_FLATMEM_MANUAL=y 
# CONFIG_DISCONTIGMEM_MANUAL is not set 
# CONFIG_SPARSEMEM_MANUAL is not set 
CONFIG_FLATMEM=y 
CONFIG_FLAT_NODE_MEM_MAP=y 
CONFIG_SPARSEMEM_STATIC=y 
CONFIG_SPLIT_PTLOCK_CPUS=4 
# CONFIG_MATH_EMULATION is not set 
CONFIG_MTRR=y 
# CONFIG_EFI is not set 
CONFIG_IRQBALANCE=y 
# CONFIG_REGPARM is not set 
# CONFIG_SECCOMP is not set 
# CONFIG_HZ_100 is not set 
CONFIG_HZ_250=y 



206 

# CONFIG_HZ_1000 is not set 
CONFIG_HZ=250 
CONFIG_KEXEC=y 
CONFIG_PHYSICAL_START=0x100000 
# CONFIG_HOTPLUG_CPU is not set 
CONFIG_DOUBLEFAULT=y 
 
# 
# Power management options (ACPI, APM) 
# 
CONFIG_PM=y 
# CONFIG_PM_LEGACY is not set 
# CONFIG_PM_DEBUG is not set 
 
# 
# ACPI (Advanced Configuration and Power Interface) Support 
# 
CONFIG_ACPI=y 
CONFIG_ACPI_AC=m 
CONFIG_ACPI_BATTERY=m 
CONFIG_ACPI_BUTTON=m 
CONFIG_ACPI_VIDEO=m 
# CONFIG_ACPI_HOTKEY is not set 
CONFIG_ACPI_FAN=y 
CONFIG_ACPI_PROCESSOR=y 
CONFIG_ACPI_THERMAL=y 
# CONFIG_ACPI_ASUS is not set 
# CONFIG_ACPI_IBM is not set 
# CONFIG_ACPI_TOSHIBA is not set 
CONFIG_ACPI_BLACKLIST_YEAR=0 
# CONFIG_ACPI_DEBUG is not set 
CONFIG_ACPI_EC=y 
CONFIG_ACPI_POWER=y 
CONFIG_ACPI_SYSTEM=y 
CONFIG_X86_PM_TIMER=y 
CONFIG_ACPI_CONTAINER=y 
 
# 
# APM (Advanced Power Management) BIOS Support 
# 
 
# 
# CPU Frequency scaling 
# 
# CONFIG_CPU_FREQ is not set 
 
# 
# Bus options (PCI, PCMCIA, EISA, MCA, ISA) 
# 
CONFIG_PCI=y 
# CONFIG_PCI_GOBIOS is not set 
# CONFIG_PCI_GOMMCONFIG is not set 
# CONFIG_PCI_GODIRECT is not set 
# CONFIG_PCI_GOXEN_FE is not set 
CONFIG_PCI_GOANY=y 
CONFIG_PCI_BIOS=y 
CONFIG_PCI_DIRECT=y 
CONFIG_PCI_MMCONFIG=y 
CONFIG_PCIEPORTBUS=y 
# CONFIG_PCI_MSI is not set 
CONFIG_PCI_LEGACY_PROC=y 
# CONFIG_PCI_DEBUG is not set 
CONFIG_ISA_DMA_API=y 
# CONFIG_ISA is not set 
# CONFIG_MCA is not set 
# CONFIG_SCx200 is not set 
 
# 
# PCCARD (PCMCIA/CardBus) support 
# 
CONFIG_PCCARD=y 
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# CONFIG_PCMCIA_DEBUG is not set 
CONFIG_PCMCIA=y 
CONFIG_PCMCIA_LOAD_CIS=y 
CONFIG_PCMCIA_IOCTL=y 
CONFIG_CARDBUS=y 
 
# 
# PC-card bridges 
# 
# CONFIG_YENTA is not set 
# CONFIG_PD6729 is not set 
# CONFIG_I82092 is not set 
 
# 
# PCI Hotplug Support 
# 
# CONFIG_HOTPLUG_PCI is not set 
 
# 
# Executable file formats 
# 
CONFIG_BINFMT_ELF=y 
# CONFIG_BINFMT_AOUT is not set 
CONFIG_BINFMT_MISC=y 
 
# 
# Networking 
# 
CONFIG_NET=y 
 
# 
# Networking options 
# 
# CONFIG_NETDEBUG is not set 
CONFIG_PACKET=y 
CONFIG_PACKET_MMAP=y 
CONFIG_UNIX=y 
CONFIG_XFRM=y 
CONFIG_XFRM_USER=y 
CONFIG_NET_KEY=y 
CONFIG_INET=y 
CONFIG_IP_MULTICAST=y 
CONFIG_IP_ADVANCED_ROUTER=y 
CONFIG_ASK_IP_FIB_HASH=y 
# CONFIG_IP_FIB_TRIE is not set 
CONFIG_IP_FIB_HASH=y 
CONFIG_IP_MULTIPLE_TABLES=y 
CONFIG_IP_ROUTE_MULTIPATH=y 
# CONFIG_IP_ROUTE_MULTIPATH_CACHED is not set 
CONFIG_IP_ROUTE_VERBOSE=y 
# CONFIG_IP_PNP is not set 
# CONFIG_NET_IPIP is not set 
# CONFIG_NET_IPGRE is not set 
CONFIG_IP_MROUTE=y 
CONFIG_IP_PIMSM_V1=y 
CONFIG_IP_PIMSM_V2=y 
# CONFIG_ARPD is not set 
CONFIG_SYN_COOKIES=y 
# CONFIG_INET_AH is not set 
# CONFIG_INET_ESP is not set 
# CONFIG_INET_IPCOMP is not set 
# CONFIG_INET_TUNNEL is not set 
# CONFIG_INET_DIAG is not set 
# CONFIG_TCP_CONG_ADVANCED is not set 
CONFIG_TCP_CONG_BIC=y 
# CONFIG_IPV6 is not set 
# CONFIG_NETFILTER is not set 
 
# 
# DCCP Configuration (EXPERIMENTAL) 
# 
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# CONFIG_IP_DCCP is not set 
 
# 
# SCTP Configuration (EXPERIMENTAL) 
# 
# CONFIG_IP_SCTP is not set 
 
# 
# TIPC Configuration (EXPERIMENTAL) 
# 
# CONFIG_TIPC is not set 
# CONFIG_ATM is not set 
# CONFIG_BRIDGE is not set 
# CONFIG_VLAN_8021Q is not set 
# CONFIG_DECNET is not set 
# CONFIG_LLC2 is not set 
# CONFIG_IPX is not set 
# CONFIG_ATALK is not set 
# CONFIG_X25 is not set 
# CONFIG_LAPB is not set 
# CONFIG_NET_DIVERT is not set 
# CONFIG_ECONET is not set 
# CONFIG_WAN_ROUTER is not set 
 
# 
# QoS and/or fair queueing 
# 
# CONFIG_NET_SCHED is not set 
 
# 
# Network testing 
# 
# CONFIG_NET_PKTGEN is not set 
# CONFIG_HAMRADIO is not set 
# CONFIG_IRDA is not set 
# CONFIG_BT is not set 
# CONFIG_IEEE80211 is not set 
# CONFIG_TUX is not set 
 
# 
# Device Drivers 
# 
 
# 
# Generic Driver Options 
# 
CONFIG_STANDALONE=y 
CONFIG_PREVENT_FIRMWARE_BUILD=y 
CONFIG_FW_LOADER=y 
# CONFIG_DEBUG_DRIVER is not set 
 
# 
# Connector - unified userspace <-> kernelspace linker 
# 
CONFIG_CONNECTOR=m 
 
# 
# Memory Technology Devices (MTD) 
# 
# CONFIG_MTD is not set 
 
# 
# Parallel port support 
# 
# CONFIG_PARPORT is not set 
 
# 
# Plug and Play support 
# 
CONFIG_PNP=y 
# CONFIG_PNP_DEBUG is not set 
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# 
# Protocols 
# 
CONFIG_PNPACPI=y 
 
# 
# Block devices 
# 
# CONFIG_BLK_DEV_FD is not set 
# CONFIG_BLK_CPQ_DA is not set 
# CONFIG_BLK_CPQ_CISS_DA is not set 
# CONFIG_BLK_DEV_DAC960 is not set 
# CONFIG_BLK_DEV_UMEM is not set 
# CONFIG_BLK_DEV_COW_COMMON is not set 
CONFIG_BLK_DEV_LOOP=m 
CONFIG_BLK_DEV_CRYPTOLOOP=m 
CONFIG_BLK_DEV_NBD=m 
# CONFIG_BLK_DEV_SX8 is not set 
CONFIG_BLK_DEV_RAM=y 
CONFIG_BLK_DEV_RAM_COUNT=16 
CONFIG_BLK_DEV_RAM_SIZE=16384 
CONFIG_BLK_DEV_INITRD=y 
CONFIG_CDROM_PKTCDVD=m 
CONFIG_CDROM_PKTCDVD_BUFFERS=8 
# CONFIG_CDROM_PKTCDVD_WCACHE is not set 
CONFIG_DISKDUMP=m 
CONFIG_ATA_OVER_ETH=m 
 
# 
# ATA/ATAPI/MFM/RLL support 
# 
CONFIG_IDE=y 
CONFIG_BLK_DEV_IDE=y 
 
# 
# Please see Documentation/ide.txt for help/info on IDE drives 
# 
# CONFIG_BLK_DEV_IDE_SATA is not set 
# CONFIG_BLK_DEV_HD_IDE is not set 
CONFIG_BLK_DEV_IDEDISK=y 
CONFIG_IDEDISK_MULTI_MODE=y 
CONFIG_BLK_DEV_IDECS=m 
CONFIG_BLK_DEV_IDECD=y 
# CONFIG_BLK_DEV_IDETAPE is not set 
CONFIG_BLK_DEV_IDEFLOPPY=y 
CONFIG_BLK_DEV_IDESCSI=m 
CONFIG_IDE_TASK_IOCTL=y 
 
# 
# IDE chipset support/bugfixes 
# 
CONFIG_IDE_GENERIC=y 
CONFIG_BLK_DEV_CMD640=y 
CONFIG_BLK_DEV_CMD640_ENHANCED=y 
CONFIG_BLK_DEV_IDEPNP=y 
CONFIG_BLK_DEV_IDEPCI=y 
CONFIG_IDEPCI_SHARE_IRQ=y 
# CONFIG_BLK_DEV_OFFBOARD is not set 
CONFIG_BLK_DEV_GENERIC=y 
# CONFIG_BLK_DEV_OPTI621 is not set 
CONFIG_BLK_DEV_RZ1000=y 
CONFIG_BLK_DEV_IDEDMA_PCI=y 
# CONFIG_BLK_DEV_IDEDMA_FORCED is not set 
CONFIG_IDEDMA_PCI_AUTO=y 
# CONFIG_IDEDMA_ONLYDISK is not set 
CONFIG_BLK_DEV_AEC62XX=y 
CONFIG_BLK_DEV_ALI15X3=y 
# CONFIG_WDC_ALI15X3 is not set 
CONFIG_BLK_DEV_AMD74XX=y 
CONFIG_BLK_DEV_ATIIXP=y 
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CONFIG_BLK_DEV_CMD64X=y 
CONFIG_BLK_DEV_TRIFLEX=y 
CONFIG_BLK_DEV_CY82C693=y 
CONFIG_BLK_DEV_CS5520=y 
CONFIG_BLK_DEV_CS5530=y 
# CONFIG_BLK_DEV_CS5535 is not set 
CONFIG_BLK_DEV_HPT34X=y 
# CONFIG_HPT34X_AUTODMA is not set 
CONFIG_BLK_DEV_HPT366=y 
# CONFIG_BLK_DEV_SC1200 is not set 
CONFIG_BLK_DEV_PIIX=y 
CONFIG_BLK_DEV_IT821X=y 
# CONFIG_BLK_DEV_NS87415 is not set 
CONFIG_BLK_DEV_PDC202XX_OLD=y 
# CONFIG_PDC202XX_BURST is not set 
CONFIG_BLK_DEV_PDC202XX_NEW=y 
CONFIG_BLK_DEV_SVWKS=y 
CONFIG_BLK_DEV_SIIMAGE=y 
CONFIG_BLK_DEV_SIS5513=y 
CONFIG_BLK_DEV_SLC90E66=y 
# CONFIG_BLK_DEV_TRM290 is not set 
CONFIG_BLK_DEV_VIA82CXXX=y 
# CONFIG_IDE_ARM is not set 
CONFIG_BLK_DEV_IDEDMA=y 
# CONFIG_IDEDMA_IVB is not set 
CONFIG_IDEDMA_AUTO=y 
# CONFIG_BLK_DEV_HD is not set 
 
# 
# SCSI device support 
# 
CONFIG_RAID_ATTRS=m 
CONFIG_SCSI=m 
CONFIG_SCSI_PROC_FS=y 
 
# 
# SCSI support type (disk, tape, CD-ROM) 
# 
CONFIG_BLK_DEV_SD=m 
# CONFIG_CHR_DEV_ST is not set 
# CONFIG_CHR_DEV_OSST is not set 
CONFIG_BLK_DEV_SR=m 
CONFIG_BLK_DEV_SR_VENDOR=y 
CONFIG_CHR_DEV_SG=m 
CONFIG_CHR_DEV_SCH=m 
 
# 
# Some SCSI devices (e.g. CD jukebox) support multiple LUNs 
# 
CONFIG_SCSI_MULTI_LUN=y 
# CONFIG_SCSI_CONSTANTS is not set 
CONFIG_SCSI_LOGGING=y 
 
# 
# SCSI Transport Attributes 
# 
CONFIG_SCSI_SPI_ATTRS=m 
CONFIG_SCSI_FC_ATTRS=m 
CONFIG_SCSI_ISCSI_ATTRS=m 
CONFIG_SCSI_SAS_ATTRS=m 
 
# 
# SCSI low-level drivers 
# 
CONFIG_ISCSI_TCP=m 
CONFIG_BLK_DEV_3W_XXXX_RAID=m 
CONFIG_SCSI_3W_9XXX=m 
CONFIG_SCSI_ACARD=m 
CONFIG_SCSI_AACRAID=m 
CONFIG_SCSI_AIC7XXX=m 
CONFIG_AIC7XXX_CMDS_PER_DEVICE=4 
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CONFIG_AIC7XXX_RESET_DELAY_MS=15000 
# CONFIG_AIC7XXX_DEBUG_ENABLE is not set 
CONFIG_AIC7XXX_DEBUG_MASK=0 
# CONFIG_AIC7XXX_REG_PRETTY_PRINT is not set 
# CONFIG_SCSI_AIC7XXX_OLD is not set 
# CONFIG_SCSI_AIC79XX is not set 
# CONFIG_SCSI_DPT_I2O is not set 
# CONFIG_SCSI_ADVANSYS is not set 
CONFIG_MEGARAID_NEWGEN=y 
CONFIG_MEGARAID_MM=m 
CONFIG_MEGARAID_MAILBOX=m 
# CONFIG_MEGARAID_LEGACY is not set 
# CONFIG_MEGARAID_SAS is not set 
# CONFIG_SCSI_SATA is not set 
CONFIG_SCSI_BUSLOGIC=m 
# CONFIG_SCSI_OMIT_FLASHPOINT is not set 
# CONFIG_SCSI_DMX3191D is not set 
# CONFIG_SCSI_EATA is not set 
# CONFIG_SCSI_FUTURE_DOMAIN is not set 
CONFIG_SCSI_GDTH=m 
CONFIG_SCSI_IPS=m 
CONFIG_SCSI_INITIO=m 
CONFIG_SCSI_INIA100=m 
CONFIG_SCSI_SYM53C8XX_2=m 
CONFIG_SCSI_SYM53C8XX_DMA_ADDRESSING_MODE=1 
CONFIG_SCSI_SYM53C8XX_DEFAULT_TAGS=16 
CONFIG_SCSI_SYM53C8XX_MAX_TAGS=64 
# CONFIG_SCSI_SYM53C8XX_IOMAPPED is not set 
# CONFIG_SCSI_IPR is not set 
# CONFIG_SCSI_QLOGIC_FC is not set 
# CONFIG_SCSI_QLOGIC_1280 is not set 
# CONFIG_SCSI_QLA_FC is not set 
# CONFIG_SCSI_LPFC is not set 
# CONFIG_SCSI_DC395x is not set 
# CONFIG_SCSI_DC390T is not set 
# CONFIG_SCSI_NSP32 is not set 
# CONFIG_SCSI_DEBUG is not set 
 
# 
# PCMCIA SCSI adapter support 
# 
# CONFIG_PCMCIA_AHA152X is not set 
# CONFIG_PCMCIA_FDOMAIN is not set 
# CONFIG_PCMCIA_NINJA_SCSI is not set 
CONFIG_PCMCIA_QLOGIC=m 
CONFIG_PCMCIA_SYM53C500=m 
 
# 
# Multi-device support (RAID and LVM) 
# 
CONFIG_MD=y 
CONFIG_BLK_DEV_MD=y 
CONFIG_MD_LINEAR=m 
CONFIG_MD_RAID0=m 
CONFIG_MD_RAID1=m 
CONFIG_MD_RAID10=m 
CONFIG_MD_RAID5=m 
CONFIG_MD_RAID6=m 
CONFIG_MD_MULTIPATH=m 
CONFIG_MD_FAULTY=m 
CONFIG_BLK_DEV_DM=m 
CONFIG_DM_CRYPT=m 
CONFIG_DM_SNAPSHOT=m 
CONFIG_DM_MIRROR=m 
CONFIG_DM_ZERO=m 
CONFIG_DM_MULTIPATH=m 
CONFIG_DM_MULTIPATH_EMC=m 
 
# 
# Fusion MPT device support 
# 
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CONFIG_FUSION=y 
CONFIG_FUSION_SPI=m 
CONFIG_FUSION_FC=m 
CONFIG_FUSION_SAS=m 
CONFIG_FUSION_MAX_SGE=40 
CONFIG_FUSION_CTL=m 
 
# 
# IEEE 1394 (FireWire) support 
# 
# CONFIG_IEEE1394 is not set 
 
# 
# I2O device support 
# 
# CONFIG_I2O is not set 
 
# 
# Network device support 
# 
CONFIG_NETDEVICES=y 
CONFIG_DUMMY=m 
CONFIG_BONDING=m 
CONFIG_EQUALIZER=m 
CONFIG_TUN=m 
CONFIG_NET_SB1000=m 
 
# 
# ARCnet devices 
# 
# CONFIG_ARCNET is not set 
 
# 
# PHY device support 
# 
CONFIG_PHYLIB=m 
 
# 
# MII PHY device drivers 
# 
CONFIG_MARVELL_PHY=m 
CONFIG_DAVICOM_PHY=m 
CONFIG_QSEMI_PHY=m 
CONFIG_LXT_PHY=m 
CONFIG_CICADA_PHY=m 
 
# 
# Ethernet (10 or 100Mbit) 
# 
CONFIG_NET_ETHERNET=y 
CONFIG_MII=y 
# CONFIG_HAPPYMEAL is not set 
# CONFIG_SUNGEM is not set 
# CONFIG_CASSINI is not set 
# CONFIG_NET_VENDOR_3COM is not set 
 
# 
# Tulip family network device support 
# 
# CONFIG_NET_TULIP is not set 
# CONFIG_HP100 is not set 
CONFIG_NET_PCI=y 
CONFIG_PCNET32=m 
# CONFIG_AMD8111_ETH is not set 
# CONFIG_ADAPTEC_STARFIRE is not set 
# CONFIG_B44 is not set 
# CONFIG_FORCEDETH is not set 
# CONFIG_DGRS is not set 
# CONFIG_EEPRO100 is not set 
# CONFIG_E100 is not set 
# CONFIG_FEALNX is not set 
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# CONFIG_NATSEMI is not set 
# CONFIG_NE2K_PCI is not set 
# CONFIG_8139CP is not set 
# CONFIG_8139TOO is not set 
# CONFIG_SIS900 is not set 
# CONFIG_EPIC100 is not set 
# CONFIG_SUNDANCE is not set 
# CONFIG_TLAN is not set 
# CONFIG_VIA_RHINE is not set 
 
# 
# Ethernet (1000 Mbit) 
# 
# CONFIG_ACENIC is not set 
# CONFIG_DL2K is not set 
# CONFIG_E1000 is not set 
# CONFIG_NS83820 is not set 
# CONFIG_HAMACHI is not set 
# CONFIG_YELLOWFIN is not set 
# CONFIG_R8169 is not set 
# CONFIG_SIS190 is not set 
# CONFIG_SKGE is not set 
# CONFIG_SKY2 is not set 
# CONFIG_SK98LIN is not set 
# CONFIG_VIA_VELOCITY is not set 
# CONFIG_TIGON3 is not set 
# CONFIG_BNX2 is not set 
 
# 
# Ethernet (10000 Mbit) 
# 
# CONFIG_CHELSIO_T1 is not set 
# CONFIG_IXGB is not set 
# CONFIG_S2IO is not set 
 
# 
# Token Ring devices 
# 
# CONFIG_TR is not set 
 
# 
# Wireless LAN (non-hamradio) 
# 
# CONFIG_NET_RADIO is not set 
 
# 
# PCMCIA network device support 
# 
# CONFIG_NET_PCMCIA is not set 
 
# 
# Wan interfaces 
# 
# CONFIG_WAN is not set 
# CONFIG_FDDI is not set 
# CONFIG_HIPPI is not set 
# CONFIG_PPP is not set 
# CONFIG_SLIP is not set 
# CONFIG_NET_FC is not set 
# CONFIG_SHAPER is not set 
# CONFIG_NETCONSOLE is not set 
# CONFIG_NETPOLL is not set 
# CONFIG_NET_POLL_CONTROLLER is not set 
 
# 
# ISDN subsystem 
# 
# CONFIG_ISDN is not set 
 
# 
# Telephony Support 
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# 
# CONFIG_PHONE is not set 
 
# 
# Input device support 
# 
CONFIG_INPUT=y 
 
# 
# Userland interfaces 
# 
CONFIG_INPUT_MOUSEDEV=y 
# CONFIG_INPUT_MOUSEDEV_PSAUX is not set 
CONFIG_INPUT_MOUSEDEV_SCREEN_X=1024 
CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768 
# CONFIG_INPUT_JOYDEV is not set 
# CONFIG_INPUT_TSDEV is not set 
CONFIG_INPUT_EVDEV=y 
# CONFIG_INPUT_EVBUG is not set 
 
# 
# Input Device Drivers 
# 
CONFIG_INPUT_KEYBOARD=y 
CONFIG_KEYBOARD_ATKBD=y 
# CONFIG_KEYBOARD_SUNKBD is not set 
# CONFIG_KEYBOARD_LKKBD is not set 
# CONFIG_KEYBOARD_XTKBD is not set 
# CONFIG_KEYBOARD_NEWTON is not set 
CONFIG_INPUT_MOUSE=y 
CONFIG_MOUSE_PS2=y 
CONFIG_MOUSE_SERIAL=m 
CONFIG_MOUSE_VSXXXAA=m 
# CONFIG_INPUT_JOYSTICK is not set 
# CONFIG_INPUT_TOUCHSCREEN is not set 
# CONFIG_INPUT_MISC is not set 
 
# 
# Hardware I/O ports 
# 
CONFIG_SERIO=y 
CONFIG_SERIO_I8042=y 
CONFIG_SERIO_SERPORT=y 
# CONFIG_SERIO_CT82C710 is not set 
# CONFIG_SERIO_PCIPS2 is not set 
CONFIG_SERIO_LIBPS2=y 
# CONFIG_SERIO_RAW is not set 
CONFIG_GAMEPORT=y 
CONFIG_GAMEPORT_NS558=m 
CONFIG_GAMEPORT_L4=m 
CONFIG_GAMEPORT_EMU10K1=m 
CONFIG_GAMEPORT_FM801=m 
 
# 
# Character devices 
# 
CONFIG_VT=y 
CONFIG_VT_CONSOLE=y 
CONFIG_HW_CONSOLE=y 
# CONFIG_SERIAL_NONSTANDARD is not set 
 
# 
# Serial drivers 
# 
CONFIG_SERIAL_8250=y 
CONFIG_SERIAL_8250_CONSOLE=y 
CONFIG_SERIAL_8250_CS=m 
# CONFIG_SERIAL_8250_ACPI is not set 
CONFIG_SERIAL_8250_NR_UARTS=32 
CONFIG_SERIAL_8250_RUNTIME_UARTS=4 
CONFIG_SERIAL_8250_EXTENDED=y 
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CONFIG_SERIAL_8250_MANY_PORTS=y 
CONFIG_SERIAL_8250_SHARE_IRQ=y 
CONFIG_SERIAL_8250_DETECT_IRQ=y 
CONFIG_SERIAL_8250_RSA=y 
 
# 
# Non-8250 serial port support 
# 
CONFIG_SERIAL_CORE=y 
CONFIG_SERIAL_CORE_CONSOLE=y 
# CONFIG_SERIAL_JSM is not set 
CONFIG_UNIX98_PTYS=y 
# CONFIG_LEGACY_PTYS is not set 
CONFIG_CRASH=m 
 
# 
# IPMI 
# 
CONFIG_IPMI_HANDLER=m 
# CONFIG_IPMI_PANIC_EVENT is not set 
CONFIG_IPMI_DEVICE_INTERFACE=m 
CONFIG_IPMI_SI=m 
CONFIG_IPMI_WATCHDOG=m 
CONFIG_IPMI_POWEROFF=m 
 
# 
# Watchdog Cards 
# 
# CONFIG_WATCHDOG is not set 
CONFIG_HW_RANDOM=m 
CONFIG_NVRAM=m 
CONFIG_RTC=y 
CONFIG_DTLK=m 
CONFIG_R3964=m 
# CONFIG_APPLICOM is not set 
# CONFIG_SONYPI is not set 
 
# 
# Ftape, the floppy tape device driver 
# 
CONFIG_AGP=y 
# CONFIG_AGP_ALI is not set 
# CONFIG_AGP_ATI is not set 
# CONFIG_AGP_AMD is not set 
CONFIG_AGP_AMD64=y 
CONFIG_AGP_INTEL=y 
# CONFIG_AGP_NVIDIA is not set 
# CONFIG_AGP_SIS is not set 
# CONFIG_AGP_SWORKS is not set 
# CONFIG_AGP_VIA is not set 
# CONFIG_AGP_EFFICEON is not set 
# CONFIG_DRM is not set 
 
# 
# PCMCIA character devices 
# 
# CONFIG_SYNCLINK_CS is not set 
CONFIG_CARDMAN_4000=m 
CONFIG_CARDMAN_4040=m 
# CONFIG_MWAVE is not set 
# CONFIG_CS5535_GPIO is not set 
# CONFIG_RAW_DRIVER is not set 
CONFIG_HPET=y 
# CONFIG_HPET_RTC_IRQ is not set 
# CONFIG_HPET_MMAP is not set 
CONFIG_HANGCHECK_TIMER=m 
 
# 
# TPM devices 
# 
# CONFIG_TCG_TPM is not set 
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# CONFIG_TELCLOCK is not set 
 
# 
# I2C support 
# 
# CONFIG_I2C is not set 
 
# 
# SPI support 
# 
# CONFIG_SPI is not set 
# CONFIG_SPI_MASTER is not set 
 
# 
# Dallas's 1-wire bus 
# 
# CONFIG_W1 is not set 
 
# 
# Hardware Monitoring support 
# 
# CONFIG_HWMON is not set 
# CONFIG_HWMON_VID is not set 
 
# 
# Misc devices 
# 
# CONFIG_IBM_ASM is not set 
 
# 
# Multimedia Capabilities Port drivers 
# 
 
# 
# Multimedia devices 
# 
# CONFIG_VIDEO_DEV is not set 
 
# 
# Digital Video Broadcasting Devices 
# 
# CONFIG_DVB is not set 
 
# 
# Graphics support 
# 
CONFIG_FB=y 
CONFIG_FB_CFB_FILLRECT=y 
CONFIG_FB_CFB_COPYAREA=y 
CONFIG_FB_CFB_IMAGEBLIT=y 
# CONFIG_FB_MACMODES is not set 
CONFIG_FB_MODE_HELPERS=y 
CONFIG_FB_TILEBLITTING=y 
CONFIG_FB_CIRRUS=m 
# CONFIG_FB_PM2 is not set 
# CONFIG_FB_CYBER2000 is not set 
# CONFIG_FB_ARC is not set 
# CONFIG_FB_ASILIANT is not set 
# CONFIG_FB_IMSTT is not set 
CONFIG_FB_VGA16=m 
CONFIG_FB_VESA=y 
CONFIG_VIDEO_SELECT=y 
# CONFIG_FB_HGA is not set 
# CONFIG_FB_S1D13XXX is not set 
# CONFIG_FB_NVIDIA is not set 
# CONFIG_FB_RIVA is not set 
# CONFIG_FB_I810 is not set 
# CONFIG_FB_INTEL is not set 
# CONFIG_FB_MATROX is not set 
# CONFIG_FB_RADEON_OLD is not set 
# CONFIG_FB_RADEON is not set 
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# CONFIG_FB_ATY128 is not set 
# CONFIG_FB_ATY is not set 
# CONFIG_FB_SAVAGE is not set 
# CONFIG_FB_SIS is not set 
# CONFIG_FB_NEOMAGIC is not set 
# CONFIG_FB_KYRO is not set 
# CONFIG_FB_3DFX is not set 
# CONFIG_FB_VOODOO1 is not set 
# CONFIG_FB_CYBLA is not set 
# CONFIG_FB_TRIDENT is not set 
# CONFIG_FB_GEODE is not set 
# CONFIG_FB_VIRTUAL is not set 
 
# 
# Console display driver support 
# 
CONFIG_VGA_CONSOLE=y 
CONFIG_DUMMY_CONSOLE=y 
CONFIG_FRAMEBUFFER_CONSOLE=y 
CONFIG_FRAMEBUFFER_CONSOLE_ROTATION=y 
# CONFIG_FONTS is not set 
CONFIG_FONT_8x8=y 
CONFIG_FONT_8x16=y 
 
# 
# Logo configuration 
# 
CONFIG_LOGO=y 
# CONFIG_LOGO_LINUX_MONO is not set 
# CONFIG_LOGO_LINUX_VGA16 is not set 
CONFIG_LOGO_LINUX_CLUT224=y 
# CONFIG_BACKLIGHT_LCD_SUPPORT is not set 
 
# 
# Sound 
# 
# CONFIG_SOUND is not set 
 
# 
# USB support 
# 
CONFIG_USB_ARCH_HAS_HCD=y 
CONFIG_USB_ARCH_HAS_OHCI=y 
# CONFIG_USB is not set 
 
# 
# NOTE: USB_STORAGE enables SCSI, and 'SCSI disk support' 
# 
 
# 
# USB Gadget Support 
# 
# CONFIG_USB_GADGET is not set 
 
# 
# MMC/SD Card support 
# 
# CONFIG_MMC is not set 
 
# 
# InfiniBand support 
# 
# CONFIG_INFINIBAND is not set 
 
# 
# EDAC - error detection and reporting (RAS) (EXPERIMENTAL) 
# 
CONFIG_EDAC=y 
 
# 
# Reporting subsystems 
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# 
# CONFIG_EDAC_DEBUG is not set 
CONFIG_EDAC_MM_EDAC=m 
# CONFIG_EDAC_AMD76X is not set 
CONFIG_EDAC_E7XXX=m 
CONFIG_EDAC_E752X=m 
CONFIG_EDAC_I82875P=m 
CONFIG_EDAC_I82860=m 
CONFIG_EDAC_R82600=m 
CONFIG_EDAC_POLL=y 
 
# 
# File systems 
# 
CONFIG_EXT2_FS=y 
CONFIG_EXT2_FS_XATTR=y 
CONFIG_EXT2_FS_POSIX_ACL=y 
CONFIG_EXT2_FS_SECURITY=y 
# CONFIG_EXT2_FS_XIP is not set 
CONFIG_EXT3_FS=m 
CONFIG_EXT3_FS_XATTR=y 
CONFIG_EXT3_FS_POSIX_ACL=y 
CONFIG_EXT3_FS_SECURITY=y 
CONFIG_JBD=m 
# CONFIG_JBD_DEBUG is not set 
CONFIG_FS_MBCACHE=y 
CONFIG_REISERFS_FS=m 
# CONFIG_REISERFS_CHECK is not set 
CONFIG_REISERFS_PROC_INFO=y 
CONFIG_REISERFS_FS_XATTR=y 
CONFIG_REISERFS_FS_POSIX_ACL=y 
CONFIG_REISERFS_FS_SECURITY=y 
CONFIG_JFS_FS=m 
CONFIG_JFS_POSIX_ACL=y 
CONFIG_JFS_SECURITY=y 
# CONFIG_JFS_DEBUG is not set 
# CONFIG_JFS_STATISTICS is not set 
CONFIG_FS_POSIX_ACL=y 
CONFIG_XFS_FS=m 
CONFIG_XFS_EXPORT=y 
CONFIG_XFS_QUOTA=y 
CONFIG_XFS_SECURITY=y 
CONFIG_XFS_POSIX_ACL=y 
# CONFIG_XFS_RT is not set 
CONFIG_OCFS2_FS=m 
CONFIG_MINIX_FS=m 
CONFIG_ROMFS_FS=m 
CONFIG_INOTIFY=y 
CONFIG_QUOTA=y 
# CONFIG_QFMT_V1 is not set 
CONFIG_QFMT_V2=y 
CONFIG_QUOTACTL=y 
CONFIG_DNOTIFY=y 
CONFIG_AUTOFS_FS=m 
CONFIG_AUTOFS4_FS=m 
CONFIG_FUSE_FS=m 
 
# 
# CD-ROM/DVD Filesystems 
# 
CONFIG_ISO9660_FS=y 
CONFIG_JOLIET=y 
CONFIG_ZISOFS=y 
CONFIG_ZISOFS_FS=y 
CONFIG_UDF_FS=m 
CONFIG_UDF_NLS=y 
 
# 
# DOS/FAT/NT Filesystems 
# 
CONFIG_FAT_FS=m 
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CONFIG_MSDOS_FS=m 
CONFIG_VFAT_FS=m 
CONFIG_FAT_DEFAULT_CODEPAGE=437 
CONFIG_FAT_DEFAULT_IOCHARSET=“ascii” 
# CONFIG_NTFS_FS is not set 
 
# 
# Pseudo filesystems 
# 
CONFIG_PROC_FS=y 
CONFIG_PROC_KCORE=y 
CONFIG_SYSFS=y 
CONFIG_TMPFS=y 
CONFIG_HUGETLBFS=y 
CONFIG_HUGETLB_PAGE=y 
CONFIG_RAMFS=y 
CONFIG_RELAYFS_FS=m 
CONFIG_CONFIGFS_FS=m 
 
# 
# Miscellaneous filesystems 
# 
# CONFIG_ADFS_FS is not set 
CONFIG_AFFS_FS=m 
CONFIG_HFS_FS=m 
CONFIG_HFSPLUS_FS=m 
CONFIG_BEFS_FS=m 
# CONFIG_BEFS_DEBUG is not set 
CONFIG_BFS_FS=m 
CONFIG_EFS_FS=m 
CONFIG_CRAMFS=m 
CONFIG_SQUASHFS=m 
# CONFIG_SQUASHFS_EMBEDDED is not set 
CONFIG_SQUASHFS_FRAGMENT_CACHE_SIZE=3 
# CONFIG_SQUASHFS_VMALLOC is not set 
CONFIG_VXFS_FS=m 
# CONFIG_HPFS_FS is not set 
CONFIG_QNX4FS_FS=m 
CONFIG_SYSV_FS=m 
CONFIG_UFS_FS=m 
 
# 
# Network File Systems 
# 
CONFIG_NFS_FS=m 
CONFIG_NFS_V3=y 
CONFIG_NFS_V3_ACL=y 
CONFIG_NFS_V4=y 
CONFIG_NFS_DIRECTIO=y 
CONFIG_NFSD=m 
CONFIG_NFSD_V2_ACL=y 
CONFIG_NFSD_V3=y 
CONFIG_NFSD_V3_ACL=y 
CONFIG_NFSD_V4=y 
CONFIG_NFSD_TCP=y 
CONFIG_LOCKD=m 
CONFIG_LOCKD_V4=y 
CONFIG_EXPORTFS=m 
CONFIG_NFS_ACL_SUPPORT=m 
CONFIG_NFS_COMMON=y 
CONFIG_SUNRPC=m 
CONFIG_SUNRPC_GSS=m 
CONFIG_RPCSEC_GSS_KRB5=m 
CONFIG_RPCSEC_GSS_SPKM3=m 
# CONFIG_SMB_FS is not set 
CONFIG_CIFS=m 
# CONFIG_CIFS_STATS is not set 
CONFIG_CIFS_XATTR=y 
CONFIG_CIFS_POSIX=y 
# CONFIG_CIFS_EXPERIMENTAL is not set 
CONFIG_NCP_FS=m 
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CONFIG_NCPFS_PACKET_SIGNING=y 
CONFIG_NCPFS_IOCTL_LOCKING=y 
CONFIG_NCPFS_STRONG=y 
CONFIG_NCPFS_NFS_NS=y 
CONFIG_NCPFS_OS2_NS=y 
CONFIG_NCPFS_SMALLDOS=y 
CONFIG_NCPFS_NLS=y 
CONFIG_NCPFS_EXTRAS=y 
CONFIG_CODA_FS=m 
# CONFIG_CODA_FS_OLD_API is not set 
# CONFIG_AFS_FS is not set 
CONFIG_9P_FS=m 
 
# 
# Partition Types 
# 
CONFIG_PARTITION_ADVANCED=y 
# CONFIG_ACORN_PARTITION is not set 
CONFIG_OSF_PARTITION=y 
CONFIG_AMIGA_PARTITION=y 
# CONFIG_ATARI_PARTITION is not set 
CONFIG_MAC_PARTITION=y 
CONFIG_MSDOS_PARTITION=y 
CONFIG_BSD_DISKLABEL=y 
CONFIG_MINIX_SUBPARTITION=y 
CONFIG_SOLARIS_X86_PARTITION=y 
CONFIG_UNIXWARE_DISKLABEL=y 
# CONFIG_LDM_PARTITION is not set 
CONFIG_SGI_PARTITION=y 
# CONFIG_ULTRIX_PARTITION is not set 
CONFIG_SUN_PARTITION=y 
CONFIG_KARMA_PARTITION=y 
CONFIG_EFI_PARTITION=y 
 
# 
# Native Language Support 
# 
CONFIG_NLS=y 
CONFIG_NLS_DEFAULT=“utf8” 
CONFIG_NLS_CODEPAGE_437=y 
# CONFIG_NLS_CODEPAGE_737 is not set 
# CONFIG_NLS_CODEPAGE_775 is not set 
# CONFIG_NLS_CODEPAGE_850 is not set 
# CONFIG_NLS_CODEPAGE_852 is not set 
# CONFIG_NLS_CODEPAGE_855 is not set 
# CONFIG_NLS_CODEPAGE_857 is not set 
# CONFIG_NLS_CODEPAGE_860 is not set 
# CONFIG_NLS_CODEPAGE_861 is not set 
# CONFIG_NLS_CODEPAGE_862 is not set 
# CONFIG_NLS_CODEPAGE_863 is not set 
# CONFIG_NLS_CODEPAGE_864 is not set 
# CONFIG_NLS_CODEPAGE_865 is not set 
# CONFIG_NLS_CODEPAGE_866 is not set 
# CONFIG_NLS_CODEPAGE_869 is not set 
# CONFIG_NLS_CODEPAGE_936 is not set 
# CONFIG_NLS_CODEPAGE_950 is not set 
# CONFIG_NLS_CODEPAGE_932 is not set 
# CONFIG_NLS_CODEPAGE_949 is not set 
# CONFIG_NLS_CODEPAGE_874 is not set 
# CONFIG_NLS_ISO8859_8 is not set 
# CONFIG_NLS_CODEPAGE_1250 is not set 
# CONFIG_NLS_CODEPAGE_1251 is not set 
CONFIG_NLS_ASCII=y 
CONFIG_NLS_ISO8859_1=m 
# CONFIG_NLS_ISO8859_2 is not set 
# CONFIG_NLS_ISO8859_3 is not set 
# CONFIG_NLS_ISO8859_4 is not set 
# CONFIG_NLS_ISO8859_5 is not set 
# CONFIG_NLS_ISO8859_6 is not set 
# CONFIG_NLS_ISO8859_7 is not set 
# CONFIG_NLS_ISO8859_9 is not set 
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# CONFIG_NLS_ISO8859_13 is not set 
# CONFIG_NLS_ISO8859_14 is not set 
# CONFIG_NLS_ISO8859_15 is not set 
# CONFIG_NLS_KOI8_R is not set 
# CONFIG_NLS_KOI8_U is not set 
CONFIG_NLS_UTF8=m 
 
# 
# Instrumentation Support 
# 
# CONFIG_PROFILING is not set 
# CONFIG_KPROBES is not set 
 
# 
# Kernel hacking 
# 
# CONFIG_PRINTK_TIME is not set 
CONFIG_MAGIC_SYSRQ=y 
CONFIG_DEBUG_KERNEL=y 
CONFIG_LOG_BUF_SHIFT=17 
CONFIG_DETECT_SOFTLOCKUP=y 
CONFIG_SCHEDSTATS=y 
CONFIG_DEBUG_SLAB=y 
# CONFIG_DEBUG_SLAB_LEAK is not set 
CONFIG_DEBUG_MUTEXES=y 
CONFIG_DEBUG_SPINLOCK=y 
CONFIG_DEBUG_SPINLOCK_SLEEP=y 
# CONFIG_DEBUG_KOBJECT is not set 
CONFIG_DEBUG_BUGVERBOSE=y 
CONFIG_DEBUG_INFO=y 
CONFIG_DEBUG_FS=y 
# CONFIG_DEBUG_VM is not set 
# CONFIG_FRAME_POINTER is not set 
# CONFIG_FORCED_INLINING is not set 
CONFIG_BOOT_DELAY=y 
# CONFIG_RCU_TORTURE_TEST is not set 
CONFIG_EARLY_PRINTK=y 
# CONFIG_DEBUG_STACKOVERFLOW is not set 
# CONFIG_DEBUG_STACK_USAGE is not set 
# CONFIG_DEBUG_PAGEALLOC is not set 
CONFIG_DEBUG_RODATA=y 
# CONFIG_4KSTACKS is not set 
CONFIG_X86_FIND_SMP_CONFIG=y 
CONFIG_X86_MPPARSE=y 
 
# 
# Security options 
# 
CONFIG_KEYS=y 
CONFIG_KEYS_DEBUG_PROC_KEYS=y 
CONFIG_SECURITY=y 
CONFIG_SECURITY_NETWORK=y 
CONFIG_SECURITY_NETWORK_XFRM=y 
CONFIG_SECURITY_CAPABILITIES=m 
CONFIG_SECURITY_SECLVL=m 
# CONFIG_SECURITY_SELINUX is not set 
CONFIG_SECURITY_TIFPS=m 
 
# 
# Cryptographic options 
# 
CONFIG_CRYPTO=y 
CONFIG_CRYPTO_HMAC=y 
CONFIG_CRYPTO_NULL=m 
CONFIG_CRYPTO_MD4=m 
CONFIG_CRYPTO_MD5=y 
CONFIG_CRYPTO_SHA1=y 
CONFIG_CRYPTO_SHA256=m 
CONFIG_CRYPTO_SHA512=m 
CONFIG_CRYPTO_WP512=m 
CONFIG_CRYPTO_TGR192=m 
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CONFIG_CRYPTO_DES=m 
CONFIG_CRYPTO_BLOWFISH=m 
CONFIG_CRYPTO_TWOFISH=m 
CONFIG_CRYPTO_SERPENT=m 
CONFIG_CRYPTO_AES=m 
# CONFIG_CRYPTO_AES_586 is not set 
CONFIG_CRYPTO_CAST5=m 
CONFIG_CRYPTO_CAST6=m 
CONFIG_CRYPTO_TEA=m 
CONFIG_CRYPTO_ARC4=m 
CONFIG_CRYPTO_KHAZAD=m 
CONFIG_CRYPTO_ANUBIS=m 
CONFIG_CRYPTO_DEFLATE=m 
CONFIG_CRYPTO_MICHAEL_MIC=m 
CONFIG_CRYPTO_CRC32C=m 
# CONFIG_CRYPTO_TEST is not set 
CONFIG_CRYPTO_SIGNATURE=y 
CONFIG_CRYPTO_SIGNATURE_DSA=y 
CONFIG_CRYPTO_MPILIB=y 
 
# 
# Hardware crypto devices 
# 
# CONFIG_CRYPTO_DEV_PADLOCK is not set 
 
# 
# Library routines 
# 
CONFIG_CRC_CCITT=m 
CONFIG_CRC16=m 
CONFIG_CRC32=y 
CONFIG_LIBCRC32C=m 
CONFIG_ZLIB_INFLATE=y 
CONFIG_ZLIB_DEFLATE=m 
CONFIG_GENERIC_HARDIRQS=y 
CONFIG_GENERIC_IRQ_PROBE=y 
CONFIG_GENERIC_PENDING_IRQ=y 
CONFIG_X86_SMP=y 
CONFIG_X86_HT=y 
CONFIG_X86_BIOS_REBOOT=y 
CONFIG_X86_TRAMPOLINE=y 
CONFIG_X86_SYSENTER=y 
CONFIG_KTIME_SCALAR=y 

B. EMACS .EMACS CONFIGURATION FILE 
(custom-set-variables 
  ;; custom-set-variables was added by Custom -- don't edit or cut/paste it! 
  ;; Your init file should contain only one such instance. 
 '(auto-compression-mode t nil (jka-compr)) 
 '(case-fold-search t) 
 '(current-language-environment “UTF-8”) 
 '(default-input-method “rfc1345”) 
 '(global-font-lock-mode t nil (font-lock)) 
 '(show-paren-mode t nil (paren))) 
(custom-set-faces 
  ;; custom-set-faces was added by Custom -- don't edit or cut/paste it! 
  ;; Your init file should contain only one such instance. 
 ) 
 
(defun linux-c-mode () 
  “C mode with adjusted defaults for use with the Linux kernel.” 
  (interactive) 
  (c-mode) 
  (c-set-style “K&R”) 
  (setq tab-width 8) 
  (setq indent-tabs-mode t) 
  (setq c-basic-offset 8)) 
 
(setq auto-mode-alist (cons '(“.*\\.[ch]$” . linux-c-mode) 
       auto-mode-alist)) 
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