

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A PROTOTYPE IMPLEMENTATION OF A TIME
INTERVAL FILE PROTECTION SYSTEM IN LINUX

by

Ken H. Chiang

September 2006

 Thesis Advisor: Cynthia E. Irvine
 Co-Advisor: Thuy D. Nguyen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: A Prototype Implementation of a Time Interval File
Protection System in Linux
6. AUTHOR(S) Ken H. Chiang

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Control of access to information based on temporal attributes has many potential applications. Examples include
student user accounts set to expire upon graduation; files marked as time-sensitive so that their contents can be protected
appropriately and the period of access to them controlled; and cryptographic keys configured to automatically expire and be
unusable beyond a specific time. This thesis implements a prototype of the Time Interval Access Control (TIAC) model in the
context of a protected file system for the popular open-source Linux operating system. The Linux Security Module framework
is used for the implementation, which includes temporal attributes associated both with the files and the users.

The implementation includes modifications to the file system as well as low-level information access constructs. As
part of the design process, testing and performance analysis were conducted.

Since the temporal access control mechanism is built into the kernel rather than the application, bypassing the
mechanism becomes more difficult. Kernel level implementation also affords the same policy enforcement functionality to
different applications, thus reducing human errors in their development. This thesis is relevant to the research on dynamic
security services for information protection envisioned by the DoD Global Information Grid (GIG).

15. NUMBER OF
PAGES

246

14. SUBJECT TERMS
Temporal Access Control, Linux Kernel, Linux Security Module, Dynamic Security Services, Global
Information Grid

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A PROTOTYPE IMPLEMENTATION OF A TIME INTERVAL FILE
PROTECTION SYSTEM IN LINUX

Ken H. Chiang

Civilian, Federal Cyber Corps
B.S., Georgia Institute of Technology, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2006

Author: Ken H. Chiang

Approved by: Cynthia E. Irvine, PhD

Thesis Advisor

 Thuy D. Nguyen

Co-Advisor

 Peter J. Denning, PhD
 Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Control of access to information based on temporal attributes has many potential

applications. Examples include student user accounts set to expire upon graduation; files

marked as time-sensitive so that their contents can be protected appropriately and the

period of access to them controlled; and cryptographic keys configured to automatically

expire and be unusable beyond a specific time. This thesis implements a prototype of the

Time Interval Access Control (TIAC) model in the context of a protected file system for

the popular open-source Linux operating system. The Linux Security Module framework

is used for the implementation, which includes temporal attributes associated both with

the files and the users.

The implementation includes modifications to the file system as well as low-level

information access constructs. As part of the design process, testing and performance

analysis were conducted.

Since the temporal access control mechanism is built into the kernel rather than

the application, bypassing the mechanism becomes more difficult. Kernel level

implementation also affords the same policy enforcement functionality to different

applications, thus reducing human errors in their development. This thesis is relevant to

the research on dynamic security services for information protection envisioned by the

DoD Global Information Grid (GIG).

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. PURPOSE...2
C. ORGANIZATION OF THESIS ...2
D. SUMMARY ..3

II. BACKGROUND ..5
A. TIME INTERVAL ACCESS CONTROL (TIAC) MODEL.......................5
B. TIME INTERVAL MEMORY PROTECTION SYSTEM (TIMPS).........5
C. LINUX FILE MANAGEMENT ...7
D. LINUX COMMAND LINE UTILITIES ...9
E. SUMMARY ..10

III. DESIGN AND IMPLEMENTATION OF TIFPS ..11
A. REQUIREMENTS...11

1. TIFPS Kernel Requirements ..11
2. Requirements for the Time Attribute Modification Tool11

B. HIGH LEVEL DESIGN..12
1. TIFPS Kernel High Level Description...12
2. Time Attribute Modification Tool High Level Description15

C. IMPLEMENTATION CHOICES..15
1. TIFPS Kernel Implementation Choices...15
2. Time Attribute Modification Tool Implementation Choices18

D. LOW LEVEL IMPLEMENTATION DETAILS19
1. TIFPS LSM Low Level Implementation Details.............................19
2. Time Attribute Modification Tool Usage and Implementation

Details..25
E. DEVELOPMENT ENVIRONMENT ..27

1. VMware Server 1.0.0 ...27
2. Subversion 1.3.0-4.2 ...28
3. Source Insight 3.5...28
4. Fedora Core 5 – Kernel 2.6.15 ..28
5. Emacs 21.4-14...28

F. SUMMARY ..29

IV. TESTING AND ANALYSIS...31
A. ACCESS CONTROL TESTS ...31

1. Access Control Test Plan...32
2. Results ...38
3. Analysis of Results ...40

B. PERFORMANCE TESTS ..44
1. Performance Test Plan ..44
2. Results and Analysis ..45

C. CONCURRENCY TESTS ..46

 viii

1. Concurrency Test Plan..47
2. Results and Analysis ..48

D. SUMMARY ..48

V. CONCLUSIONS ..49
A. SUMMARY ..49
B. FUTURE WORK...50

1. Prototype Related Work..50
2. Long Term Time-Based Access Control Research Questions50

C. CONCLUSIONS ..51

APPENDIX A. SOURCE CODE...53
A. TIFPS LSM SOURCE CODE ..53
B. MODTIME TOOL SOURCE CODE ..66

APPENDIX B. INSTALLATION GUIDE ...71
A. INSTALLING TIFPS MODULE ...71
B. INSTALLING THE MODTIME TOOL...75

APPENDIX C. USERS GUIDE...77
A. LOADING AND UNLOADING THE TIFPS LSM77
B. USING THE MODTIME TOOL ...77
C. CONTROLLING TIME ATTRIBUTES OF SUBJECTS.........................80
D. CONTROLLING TIME ATTRIBUTES OF OBJECTS...........................81

APPENDIX D. TEST PROCEDURES AND RESULTS ..83
A. ACCESS CONTROL TEST PROCEDURES...83
B. ACCESS CONTROL TEST SCRIPTS ...88
C. ACCESS CONTROL TEST RESULTS ..114
D. PERFORMANCE TEST PROCEDURES ..186
E. PERFORMANCE TEST SCRIPTS...187
F. PERFORMANCE TEST RESULTS ...191
G. CONCURRENCY TEST PROCEDURES..191
H. CONCURRENCY TEST SCRIPTS...194
I. CONCURRENCY TEST RESULTS ...197

APPENDIX E. DEVELOPMENT CONFIGURATION FILES203
A. KERNEL .CONFIG CONFIGURATION FILE203
B. EMACS .EMACS CONFIGURATION FILE ..222

LIST OF REFERENCES..223

BIBLIOGRAPHY..225

INITIAL DISTRIBUTION LIST ...227

 ix

LIST OF FIGURES

Figure 3-1. High level process flow for a user accessing a file or directory in TIFPS.......13
Figure 3-2. Diagram on TIFPS system read and write policy ..14
Figure 3-3. Source code for vfs_read() showing call to security_file_permission()16
Figure 3-4. Source code for vfs_write() showing call to security_file_permission()17
Figure 3-5. Flow chart for low level TIFPS enforcement logic ...21
Figure 4-1. File Copy Scenarios. ..35
Figure 4-2. Dynamic Test Progression Illustration...37
Figure 4-3. Using tee to copy files ...41
Figure B-1. Select “Security options” ...73
Figure B-2. Set “NPS TIFPS” as a module ...74
Figure B-3. Fedora Core 5 system start boot screen. ..75
Figure C-1. Screen shot of the command line interface for modtime78
Figure C-2. Screen shot of man page for modtime ..79
Figure C-3. Screen shot of the modtime tool used to set user time attributes....................80
Figure C-4. Screen shot of modtime used to control time-based access to /tmp81

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 3-1. List of LSM security hook functions implemented in TIFPS..........................24
Table 3-2. List of TIFPS helper functions...25
Table 3-3. Summary of modtime command line flags and its usage27
Table 4-1. Basic temporal interval relationships between a subject S and object O*.......34
Table 4-2. File and directory creation tests and expected results......................................35
Table 4-3. Time attribute Inheritance on File Copy Test Matrix36
Table 4-4. Sample table for information to be captured for the access revocation

during file write tests ...36
Table 4-5. Summary of expectations for dynamically changing subject and object

time ..38
Table 4-6. Results from static tests for file and directory read/write/execute...................38
Table 4-7. Summary of results for static tests for file copy operations.............................39
Table 4-8. Summary of results for access revocation during file writes...........................39
Table 4-9. Summary results for dynamically changing subject and object time

attributes...40
Table 4-10. Linux Commands and Tools used for Testing...45
Table 4-11. Summary of description for the performance evaluation45
Table 4-12. Summary of performance for the 3.0Ghz Dell Desktop PC VMware®

image*..46
Table 4-13. Summary of test scripts for concurrency testing..48
Table D-1. Summary of results expected for each test case *..84
Table D-2. File and directory creation tests and expected results......................................84
Table D-3. Summary of results file, admin script, and user script for copy test cases86
Table D-4. Expected results of the file copy tests and file/directory creation tests86
Table D-5. Sample table for information to be captured for the access revocation

during file write tests ...87
Table D-6. Summary of expectations for dynamically changing subject and object

time ..88
Table D-7. Summary of test scripts used for each performance evaluation condition187
Table D-8. Summary of test scripts for concurrency testing..194

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

 Success is rarely accomplished by individuals alone. My successful completion

of this thesis is no exception. This work is not complete without the acknowledgement of

the following:

 Dr. Cynthia Irvine and Professor Thuy Nguyen, thank you for providing me with

a guiding light throughout this journey and keeping me on track as my advisors.

 Mr. Phil Hopfner, thank you for providing the computing resources and support

necessary for completing my thesis.

Mr. Jean Khosalim, thank you for the many hours spent on test procedure

verification and for providing feedback for improvements.

Mr. John Clark, thank you for being my sounding board in discussion of issues

and ideas throughout this research.

Ms. Tanya Raven, thank you for being a friend and a believer in me. Without

your support and encouragement, I may not have applied to the Federal Cyber Corps

scholarship program at the Naval Postgraduate School and would have missed this great

opportunity.

Finally, Sherry Chiang, my beloved wife, thank you for being there for me

throughout my pursuit for higher education. Your understanding and support makes the

pursuit of my goals possible and your unwaivering love makes reaching these goals all

the more worthwhile.

This material is based upon work supported by the National Science Foundation

under grant No. DUE-0114018. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author and do not necessarily

reflect the views of the National Science Foundation.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. MOTIVATION
Controlling access to information based upon time constraints has potential

applications in government, military, financial, and educational realms. Temporal access

control can permit access to information based upon a start time and revoke access based

upon a stop time. For example, in the government and military, access to cryptographic

keys used to encrypt information can expire at a certain time to further protect the

confidentiality of the information. In the financial realm, organizations award individuals

incentives in the form of stock options to motivate its employees. Typically, these

incentives are time sensitive, i.e. they cannot be redeemed until a certain time in the

future. Finally, in education, there is a constant flux of incoming and exiting students.

Providing availability to access computer resources and controlling such access based

upon the time during which the students are enrolled is a task simplified with temporal

access control.

The Global Information Grid envisions networks of computing systems that

enable global sharing and proper control of information through dynamic security

services. Time-based access control systems can support dynamic security services by

changing access permissions based upon time. The capability of such a system to grant

or revoke access at a future time as well limiting access to information to a specific time

interval can provide a new control vector for information sharing not available in

traditional access control systems.

In a computer system, there is more than one component into which a time-based

access control mechanism can be built. Two such components are the application and the

operating system. If the mechanism resides in the operating system, it will be much

harder for a malicious user to bypass the mechanism. Since all applications depend on

fundamental system services provided by the operating system, i.e. device read, write,

etc, the operating system can be a focal point of control for many applications that need

access to system resources. This centralized access control minimizes the complexity of

developing a complete set of applications attempting to enforce a time-based policy and

2

thus results in better security. For example, consider the scenario where the access

control mechanism is built into only one application, if the user can copy the information

into another application where no such mechanism is in place, he will have successfully

bypassed the access control mechanism. Also, to a more sophisticated attacker,

bypassing the access control mechanism at the application level could be as easy as

creating his own application to access the information. This thesis explores a prototype

implementation of temporal access control in an operating system.

B. PURPOSE
Afinidad et al. described a Time Interval Access Control (TIAC) model in which

time-based access control is formally modeled using interval algebra [1, 3]. Here, an

implementation of this model is prototyped in the popular Linux operating system. This

work helps to answer the following questions:

• What specific changes are necessary to the Linux kernel to implement
TIAC model for file access?

• What practical design implications are there for building such a system?

Additionally, this prototype will serve as a baseline for performance evaluations of future

implementations of time-based systems. To establish this baseline, the performance

overhead of this implementation will be compared with the performance of an

unmodified Linux operating system. Finally, this prototype may serve as a basis for

exploring user acceptability of TIAC.

C. ORGANIZATION OF THESIS
This thesis is organized as follows:

• This chapter (Chapter I) provided an introduction by describing the
motivation and purpose of the thesis. The TIAC model was briefly
introduced and serves as a basis for this study.

• Chapter II provides a more detailed description of the TIAC model. It also
introduces the Temporal Interval Memory Protection System (TIMPS)
which was a study of an application of TIAC on memory at the hardware
level. The Linux operating system’s file management system is described
next to provide background for the envisioned implementation of TIAC.
Finally, Linux command line utilities and the Command Line Interface
(CLI) used to interact with and test the system are described. The CLI
described provides a basis for the envisioned implementation of the tool
for interacting with the time-based access control system.

3

• Chapter III gives a high level description of the requirements and design
for the Time Interval File Protection System (TIFPS) and associated CLI
tool used for interacting with the time-based access control system. This
chapter also discusses implementation choices made during the research.
Next, a description of the development environment is given. Finally,
selected implementation details for the system are provided.

• Chapter IV describes the high level test plan and the analysis of the test
results. Testing plan is divided into three categories: access control,
performance, and concurrency testing.

• Chapter V concludes with a thesis summary and suggestions for short term
and long term future work.

• The appendices follow with a listing of the TIFPS-related source code in
Appendix A. The installation and usage guide for TIFPS are located in
Appendix B and C, respectively. Appendix D captures the test
procedures, scripts, and results based on the testing plan in Chapter IV.
Finally, Appendix E provides configuration files used in the development
environment.

D. SUMMARY
In this introductory chapter, we motivated this research by describing potential

applications of a temporal access control system and justified the benefit of kernel-level

access control compared with application-level access control. The organization of the

thesis was then presented. We continue with the background of this research in Chapter

II.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BACKGROUND

This chapter provides background information that motivated and influenced the

work performed in this research. It starts with a description of the Time Interval Access

Control (TIAC) model which is a formal model that describes the authorization of access

to objects based upon the time attributes of the subject and the object [1,3]. From the

TIAC model, a time-based, hardware level, memory protection scheme call Temporal

Interval Memory Protection System (TIMPS) was devised [2]. A brief discussion on how

TIMPS works and our consideration of its use for this research follows. In this research,

we will provide a design and implementation of the TIAC model applied to regular files

and directories in a Linux operating system (kernel). Thus, we will give a description of

the Linux file management system. Finally, Linux command line utilities that will be

used or built to demonstrate time-based file and directory access control will be

discussed.

A. TIME INTERVAL ACCESS CONTROL (TIAC) MODEL
To correctly implement a time based access control system, unambiguous

semantics needs to be first developed to describe the desired security policies. The TIAC

model is a formal mathematical model developed using interval algebra. This model

associates time attributes with subject and object entities and describes access

authorizations using the notion of access graphs. Using formal semantics to describe

access policy gives us the ability to precisely decide, at any given time, when a subject

with a given set of time attributes, has permissions to access an object, which also has

time attributes. Since the model has only three time intervals, i.e. those associated with

subject and object, and the time interval during which access is requested, access policies

using this model can be checked for consistency using existing algorithms [1]. The

details of the formal model are described in a recent paper by Afinidad et al. [1]. It is

important to note that this model differs from previous models in that it supports policies

based upon temporal attributes of subject and object rather than object alone.

B. TIME INTERVAL MEMORY PROTECTION SYSTEM (TIMPS)

Based on the TIAC model, Afinidad et al. also presented the Time Interval

Memory Protection Systems (TIMPS) where all access to memory is mediated according

6

to time-based access control policy [2]. To understand how TIMPS works, we must first

understand how memory management works in modern operating systems. To support

multi-tasking, most modern operating systems (including Linux) use a memory

management technique known as paging. In paging, physical memory is divided into

chunks of equal size called page frames. Each running process in the operating system

has its own virtual memory address space which consists of virtual memory chunks

appropriately called pages. These virtual pages are mapped to the physical page frames

by a memory management unit (MMU). The MMU keeps the address space of each

process separate by mapping the virtual pages to different physical page frames.

Therefore, when a process needs to access memory, a translation of the virtual page to the

physical page frame must occur. The access control mechanism in the TIMPS protection

schemes lies in the translation of virtual memory addresses to the corresponding physical

memory addresses in the paging mechanism.

The work done on TIMPS previously was largely performance motivated and

used hardware simulation to provide the necessary hardware support. Afinidad et al.

designed, compared, and contrasted different schemes using a combination of hardware

and software to implement time-based access control to memory. To help analyze the

results, performance of the access control mechanism was divided into an initial

authorization phase and an ongoing access phase. The initial authorization phase

describes the access mediation of a new request by a subject process to a memory object.

In this phase, temporal logic used to calculate the expiration time resides in either

hardware or software. If access is allowed as a result of this calculation, the expiration

time is set in appropriate hardware fields so that subsequent checks for ongoing access

can occur by checking only the expiration time. The ongoing access phase describes the

access mediation that occurs after a subject has been granted initial access to an object.

In this phase, temporal logic is implemented in hardware to check access of memory

addresses by using the expiration time calculated in the initial authorization phase. The

results of the TIMPS study can be summarized as follows. For systems that tend to spend

more time in the ongoing access phase rather than initial authorization (i.e. personal

desktop computers, PDAs, laptops), computations related to calculating the initial

expiration time of a memory chunk can reside in software since the performance benefit

7

of implementing the logic in hardware is negligible. For systems that spend a lot of time

in the initial authorization phase (i.e. Servers), the study recommended that the temporal

logic used to calculate the expiration time of allocated memory objects be implemented

in hardware as an added module to the CPU rather than software.

In this research, we considered implementing TIMPS completely in software for

the purpose of file access using an existing operating system, Fedora Core 5 running the

Linux 2.6.15. The motivations for this software implementation are:

1. To provide a framework for future time-based access control systems in
non-simulated environments.

2. To provide a baseline for future performance studies in true hardware
environments.

3. To potentially provide a means to conduct user-acceptance studies of time-
based access control systems.

However, upon a more detailed study of potential designs and implementation, we were

hindered by a problem caused by the paging mechanism. To understand the problem,

note that the granularity of memory access control is in pages that are typically 4K in

size. Assume that we want to end access to the memory location where protected file

content has been read. If this memory location is not page aligned and we deny access to

the entire page, we will also be denying access to variables that may be needed by the

process in order to run correctly. In this research, access control to files is the focus,

therefore, file-level instead of memory-level granularity will be used for the design and

implementation of the time-based access control system. It is important to clarify the

meaning of “files” in this implementation. In Linux, almost everything is considered a

“file”; directories, network sockets, devices, symbolic links, regular files in a mounted

file system, etc. In this implementation, when a “file” or “regular file” is mentioned, it

refers to a regular file in a mounted file system.

C. LINUX FILE MANAGEMENT
The Linux kernel implements a software layer that handles all system calls related

to a standard Unix-based file system. This arrangement allows different file systems to

coexist and interoperate on the Linux operating system and enables file operations on

these different file systems independent of the file system type. The software abstraction

is called the Virtual File System (VFS) and consists of four structures/objects. They are:

8

• The super block object, which describes information about the specific
mounted file system and corresponds to the file system super-block or
control block.

• The inode object, which contains information needed to manipulate a file,
directories, and other file system objects. Access permissions, owner,
group, and time information associated with the file are stored in this
structure.

• The dentry object, which represents a directory entry, a single component
of a path. For example, /bin/emacs consists of the following dentry
objects: “/”, “bin”, and “emacs”. It is important to note that directories are
treated as files in Linux.

• The file object, which represents an open file associated with a process
that opened it.

In addition to the objects described above for controlling access to files and

directories, Linux has implemented Extended Attributes (EA) for most file systems

starting with the 2.6 kernel. EAs are name/value pairs associated and stored permanently

with files that allow additional control over how files are accessed. This feature enables a

consistent means to extend file system capabilities and maintain file system

independence. Security Enhanced Linux (SELinux), a flexible access control mechanism

recently added to Linux by the NSA largely known for enforcing mandatory access

control policies, uses EAs for labeling files. There are four predefined namespaces

supported in the Linux 2.6.15 kernel. They are: security, system, trusted, and user. The

following is a description of each of these namespaces.

Extended security attributes

The security attribute namespace is used by kernel security modules, such as

Security Enhanced Linux. Read and write access permissions to security

attributes depend on the policy implemented for each security attribute by the

security module. When no security module is loaded, all processes have read

access to extended security attributes, and write access is limited to processes that

have the CAP_SYS_ADMIN capability.

9

Extended system attributes

Extended system attributes are used by the kernel to store system objects such as

Access Control Lists and Capabilities. Read and write access permissions to

system attributes depend on the policy implemented for each system attribute

implemented by file systems in the kernel.

Trusted extended attributes

Trusted extended attributes are visible and accessible only to processes that have

the CAP_SYS_ADMIN capability (the super user usually has this capability).

Attributes in this class are used to implement mechanisms in user space (i.e.,

outside the kernel) which keep information in extended attributes to which

ordinary processes should not have access, i.e. md5 checksums.

Extended user attributes

Extended user attributes may be assigned to files and directories for storing

arbitrary additional information such as the mime type, character set or encoding

of a file. The access permissions for user attributes are defined by the file

permission bits.

In this research, extended security attributes will be used to label files and

directories with temporal attributes.

D. LINUX COMMAND LINE UTILITIES
In this research, a temporal access control mechanism will be built into the Linux

kernel for controlling file and directory access. To demonstrate and test the new kernel

prototype functionality, standard Linux command line utilities will be used. It is also

anticipated that new command line utilities will be built to interface with the time-based

access control system. These command line utilities are discussed in this section.

Linux provides a set of standard system utilities for interacting with the system.

These utilities are issued to the system via the Command Line Interface (CLI). For

example, to display the contents of a text file, the command cat can be used. To display

the contents of a directory, the command ls can be used. Each of these system commands

10

includes various options settable by flags. The usage instructions of the commands as

well as the various flag options can be retrieved by using the man pages. For example, to

see all the options for cat, type:

$ man cat

In this time-based access control system, if based on its temporal attributes, access

to a file or directory has expired, the kernel should return an access-denied signal to the

process and the system utility should subsequently return the appropriate error to the user

on the console and quit. It is important to note that in this prototype, files and directories

that do not have temporal attributes will have a default-permit access and be treated as if

there is an infinite allowed time to access them. Therefore, the administrator account,

root, will need to explicitly set the time attributes of files or directories for which he

wishes to control access.

To interface with the time-based system, we will build a simple command line

utility which will run in the CLI described above. This utility will have different flag

options so that users can view the time attributes and administrators can modify the time

attributes of files or directories.

E. SUMMARY
In this chapter, the concept of time-based access control as described by the TIAC

model was described. We also discussed previous work on a Time Interval Memory

Protection System which is an implementation of the TIAC model for memory. These

topics provided background for the research into a time-based access control system for

files and directories. Since this research will attempt to build a prototype using the Linux

kernel, an understanding of the Linux file management system is needed and therefore

introduced. Finally, for demonstration and testing the time-based system, standard Linux

command line utilities will be used. The same Command Line Interface in Linux used

for running the standard system utilities will also be used for building custom tools for

interacting with the time-based system.

11

III. DESIGN AND IMPLEMENTATION OF TIFPS

Using the Time Interval Access Control (TIAC) model as a reference, a Time

Interval File Protection System (TIFPS), capable of providing time based access control

to files, was designed and implemented. This chapter covers the requirements for such a

system, a high level description of the design, choices made in the design, the details of

the implementation, and a brief description of the development environment.

A. REQUIREMENTS
The following describes the requirements defined for the TIFPS kernel and the

time attribute modification tool envisioned to be used for interacting with the TIFPS

kernel.

1. TIFPS Kernel Requirements

• The kernel must protect and mediate all access to regular files and
directories protected with time-of-allowed-access attributes. Time-based
access control will be demonstrated on all file and directory reads, writes
and executions.

• Modification of the time attributes associated with the file must be
allowed only by the super user (administrator) account.

• The precision of time in revoking access to expired files should not be
more than one second.

• The prototype will allow infinite access to files that have not been labeled
with time attributes.

• On copy operations, the destination files must take on the most restrictive
time attributes of the files read by the copying process. This will prevent
information leakage.

• The administrator shall be able to set time-of-allowed access for subjects,
i.e. user accounts, and objects, i.e. regular files and directories.

2. Requirements for the Time Attribute Modification Tool
In order to obtain, set, and modify the time attributes of the files in the system, a

tool is required. The following is a list of requirements for such a tool.

• Though the system will enforce time-based policy based upon absolute
time, i.e. on September 22, 2006 at 1700 hours revoke access to file.txt;
time attributes shall be set by specifying them in either absolute time or
relative time. Relative time shall be referenced from current time.

12

• The administrator interface shall be easy to use. For example, setting time
attributes shall not require complicated calculations by the administrator.

• The tool shall be able to take multiple arguments to change or display the
time attributes of multiple files and directories at once.

• Usage instructions shall be made readily available.

• If mistakes are made while using the tool, useful error messages shall be
displayed to the user.

• The tool shall allow the user/admin to easily view the time attributes of
files and directories.

B. HIGH LEVEL DESIGN
This section describes the high level design of the TIFPS kernel and the tool that

will be used to interface with the system.

1. TIFPS Kernel High Level Description
Figure 3-1 shows the process flow diagram for a user accessing a file or directory

in the TIFPS environment.

13

Figure 3-1. High level process flow for a user accessing a file or directory in TIFPS

When a user logs into the system, his login shell inherits the time interval

attributes Tstart and Tend specified ahead of time by a system administrator. Tstart and Tend

define the time interval of allowed access for the login shell process running on behalf of

the user. Execution of programs within the shell will result in the program inheriting the

time attributes from the user shell. When the program attempts to access a file, the

system checks the current time tcurr against the time interval attributes Tstart and Tend of the

program inherited from the shell. If current time is within the time interval specified by

Tstart and Tend, then the file’s time attributes are checked. Fstart and Fend define the time

interval of allowed access for the file or directory. The system administrator also

specifies ahead of the time the time interval attributes Fstart and Fend for the files and

Yes No

Yes No

User logs into TIFPS system and
inherits time attributes Tstart,
Tend preset by administrator.

User request access to a file or directory
with time attributes Fstart and Fend.

Does user have
proper read,
write, or execute
permissions?

Get the current time
tcurr from hardware
clock

Hardware
Clock

Deny
access Grant

access

Tstart ≤ tcurr < Tend

Λ

Fstart ≤ tcurr < Fend ?

14

directories that he wishes to control. If the current time falls within the time interval

specified for the file or directory, then the system grants access to the file or directory

(note that the standard Linux read, write, execute permissions remain in effect in addition

to the time-based access control). Mathematically, an access is granted in TIFPS only if

the following is true:

Tstart ≤ tcurr < Tend Λ Fstart ≤ tcurr < Fend

To prevent a user from extending the time-of-allowed access to the information in

a file, which could occur if the user created a new file and copied the information from

the time-checked file to the new one, the following access policy regarding the creation

of file shall be implemented in the system. After a program reads in files with time

interval attributes T1 and T2, any write operation to new or existing files will transfer the

most restrictive time interval from all the files read to the files written. See Figure 3-2 for

a diagram of the policy.

Figure 3-2. Diagram on TIFPS system read and write policy

Subject S

File 1

File 2

 Destination File

S reads File 1

S reads File 2

S writes to Destination File

15

Assume that the policy regarding creation of files above is not the case. When a

program reads a program that is expires five minutes from now and subsequently writes

the contents of that file into a second file (an effective copy operation), after the first file

expires, the user will be able to continue reading the new file created as well as make new

copies of that file, thus extending the time-of-allowed access to the contents in the

original file.

2. Time Attribute Modification Tool High Level Description
Since the Linux 2.6 kernel series supports extended attributes for most Linux file

systems, TIFPS will use extended attributes for specifying the time attributes. Fedora

Core 5 as well as other Linux operating systems running Linux 2.6 and up include a set of

user-space programs for setting and getting extended attributes, setfattr() and getfattr()

respectively. The time attribute modification tool can be designed to utilize these

existing tools. A wrapper program that packages these existing tools can be designed to

set and modify the time attributes, get the time attributes, and present the time attributes,

in a human understandable format. To meet the requirements described above, command

line interfaces similar to standard Linux command line tools will be used to design the

tool. Different flags can be used at the command line to set, delete, or display the time

attributes of a file or directory. The “*” character can use used at the command line to

specify multiple files. If incorrect flags are used, usage instructions will be displayed and

the tool will exit without having an effect. A man page describing the usage of the tool

will be available.

C. IMPLEMENTATION CHOICES
This section discusses the implementation choices made for the TIFPS kernel and

the TIFPS tool and the rationale behind these decisions.

1. TIFPS Kernel Implementation Choices

Before starting the development effort on TIFPS, research into different security

frameworks was done. Implementing and creating custom security hooks in the Linux

Kernel specifically for TIFPS was considered but quickly abandoned given that a security

framework with needed security hooks already exists. The Fedora Core 5 (FC5)

distribution includes NSA’s Security Enhanced Linux (SELinux), an access control

mechanism, which uses the Linux Security Module (LSM). The LSM framework was

16

designed to be a modular security framework which provides security hooks called by the

kernel in strategic locations in the kernel. For example, Linux’s virtual file system calls

vfs_read() and vfs_write() calls the LSM security hook security_file_permisson(). See

Figures 3-3 and 3-4 for source code for vfs_read() and vfs_write(), respectively. The

security_file_permission() function, along with other security hook functions are defined

in the linux/include/security.h header file. These generic security hooks can be

implemented to enforce different security policies and behaviors.

ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
 ssize_t ret;

 if (!(file->f_mode & FMODE_READ))
 return -EBADF;
 if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read))
 return -EINVAL;
 if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))
 return -EFAULT;

 ret = rw_verify_area(READ, file, pos, count);
 if (ret >= 0) {
 count = ret;
 ret = security_file_permission (file, MAY_READ);
 if (!ret) {
 if (file->f_op->read)
 ret = file->f_op->read(file, buf, count, pos);
 else
 ret = do_sync_read(file, buf, count, pos);
 if (ret > 0) {
 fsnotify_access(file->f_dentry);
 current->rchar += ret;
 }
 current->syscr++;
 }
 }

 return ret;
}
EXPORT_SYMBOL(vfs_read);

Figure 3-3. Source code for vfs_read() showing call to security_file_permission()

17

ssize_t vfs_write(struct file *file, const char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;

if (!(file->f_mode & FMODE_WRITE))
 return -EBADF;
if (!file->f_op || (!file->f_op->write && !file->f_op->aio_write))
 return -EINVAL;
if (unlikely(!access_ok(VERIFY_READ, buf, count)))
 return -EFAULT;

ret = rw_verify_area(WRITE, file, pos, count);
if (ret >= 0) {
 count = ret;
 ret = security_file_permission (file, MAY_WRITE);
 if (!ret) {
 if (file->f_op->write)
 ret = file->f_op->write(file, buf, count, pos);
 else
 ret = do_sync_write(file, buf, count, pos);
 if (ret > 0) {
 fsnotify_modify(file->f_dentry);
 current->wchar += ret;
 }
 current->syscw++;
 }
}
return ret;
}
EXPORT_SYMBOL(vfs_write);

Figure 3-4. Source code for vfs_write() showing call to security_file_permission()

One other Linux security framework was found during early phase research, it is

called Rule Set Based Access Control (RSBAC) [4]. The author/maintainer of this

framework suggests some weaknesses in the LSM. He mentions that LSM requires that

the security hook functions be exported to user-space programs which make them

vulnerable to root-kits. He also suggests that the set of security hooks is not complete.

He speculates that the LSM support may be removed from the Linux Kernel in the future.

The RSBAC framework project also cites another project’s stance against using LSM,

Grsecurity [5]. Grsecurity is a multi-layered, detection, prevention, and containment

model for Linux security. Some of its features include kernel stack randomization, kernel

null pointer dereference protection, and Role-Based Access Control.

Despite these arguments, it is still unclear whether LSM support will be removed

from the Linux Kernel in the future and what its replacement might be. For the purpose

of prototyping TIFPS, LSM was chosen as the framework for development. Since TIFPS

18

is only an access control system used for files and directories, only a subset of the

security hooks provided by LSM will be sufficient to implement the system. By using

the LSM, rapid prototyping TIFPS could be quick and efficient.

To use the Linux Security Module framework to build a loadable security module,

the __init() and __exit() functions must be defined. The security_operations struct,

which is a struct of function pointers for all of the security hooks, is used to implement

custom security functions for each of the security hooks. For example, the

security_file_permission() security hook is implemented by setting .file_permission()

equal to tifps_file_permission() in the security_operations struct and by implementing the

tifps_file_permission() function. When the kernel calls the security_file_permission()

hook, the tifps_file_permission() will be called. It is sufficient to implement only the

security hook functions necessary to achieve the desired system behavior. Any security

hooks not defined will default to a set of dummy security hook functions defined in

linux/security/dummy.c.

As suggested in the Chapter II, extended attributes for Linux files are provided in

the 2.6 series Linux kernels. TIFPS will assign temporal attributes to files and directories

using extended attributes. This means that a file system which supports extended

attributes must be used. “Ext3” is a popular journaling file system that is installed by

default and supports extended attributes. This prototype of TIFPS will assume the use of

an “ext3” file systems. However, to the extent possible, the prototype shall be kept

sufficiently generic to support other file systems that use extended attributes. For

example, “ext2” and “xfs” are two other file systems that currently support extended

attributes.

2. Time Attribute Modification Tool Implementation Choices
As mentioned earlier, there exist a set of tools for setting and getting the extended

attributes for files, respectively setfattr and getfattr. Setfattr can only be run by the

administrator account as described by the man pages, while getfattr can be run by any

user to get the extended attributes of a file or directory. Since bash scripts are useful in

running other existing command line programs and have support for parsing command

line flags, bash scripts were chosen over other high level programming languages such as

C and C++ for simplicity for developing the time attribute modification tool.

19

D. LOW LEVEL IMPLEMENTATION DETAILS
Low level implementation details of TIFPS LSM and the TIFPS tool are

discussed in this section.

1. TIFPS LSM Low Level Implementation Details
TIFPS Security Data Structures

In the Linux kernel, a task_struct struct represents processes and an inode struct

represents files, directories, and other file system objects. The Linux Security Module

predefines in each of these data structures a security object pointer that points to a

security struct custom defined by the specific LSM implementation. In this TIFPS LSM

implementation, the security struct defined for processes is named

tifps_task_security_struct and has the following fields: a 4-byte back pointer to the

task_struct, a semaphore data structure used for synchornization, and two signed integers

representing the start and end times of the time interval for allowed access by the process.

The inode security struct is named tifps_inode_security_struct and has the following

fields: 4-byte back pointer to the inode struct, a semaphore data structure, and two

signed integers representing the start and end times of the time interval for allowed access

to the file or directory object represented by the inode struct. See Appendix A, Section

A, for the header file tifps_sec_objects.h defining these security data structures.

TIFPS Representation of Time

The notion of time in Linux is represented by a 4-byte signed integer, which

specifies the number of seconds since the Unix epoch (January 1st, 1970 at 00:00:00

UTC). A negative integer represents the number of seconds before the Unix epoch.

Since there is no practical benefit of specifying an allowed access time starting or ending

prior to 1970, for simplicity, the TIFPS attribute has the range of 0x00000000 to

0x7FFFFFFF.

TIFPS Extended Attributes and String Format

The TIFPS security data structures described earlier are non-persistent

representations of time attributes for processes, files, and directories in kernel memory.

By non-persistent, it is meant that these data structures do not persist between hardware

shutdowns. Extended attributes are used for persistent storage of the TIFPS security time

20

attributes and are stored as strings. The string representation of the name of the extended

attribute for TIFPS is “security.tifps”. The value of the extended attribute has the format

“:0x00000000:0x7FFFFFFF\0”, where the first hexadecimal number represents the start

time of allowed access and the second hexadecimal number represents the end time of

allowed access. Storing time attributes in this format using hexadecimal integer

representation simplifies string parsing for manipulating these fields during access

control operations.

TIFPS Enforcement Logic

The following is a description of how TIFPS enforces time-based access control

policies. On system initialization, with TIFPS LSM loaded, the kernel allocates a

tifps_task_security_struct for the current running process, initializes the semaphore

struct, and sets the TIFPS start and end times to 0x00000000 and 0x7FFFFFFF,

respectively. Subsequent tasks that are scheduled to run are also allocated a

tifps_task_security_struct. Figure 3-5 below is a flow chart for the low level time policy

enforcement logic.

21

Figure 3-5. Flow chart for low level TIFPS enforcement logic

Yes

Yes

Yes

No

No

No

No Yes

Subject requests file/directory read/write access

Is the
subject
root ?

Is this a
read
request?

Is this a
write
request?

Update the subject time attributes
with intersection of subject and
object time intervals

Update the object time attributes
with intersection of subject and
object time intervals

Get current
time

Hardware
Clock

Deny
access

Grant
access

Is current time
within subject’s
time attributes?

Is current time
within object’s
time attributes?

Yes No

22

At every file/directory read and write access, the following checks take place.

First check to determine whether the user represented by the process is root (i.e., has the

CAP_SYS_ADMIN capability). If is the user is root, then access is granted; otherwise,

check that the current time falls within the time interval of the tifps_task_security struct.

If not, access is denied, otherwise, check that the current time falls within the time

interval of the tifps_inode_security_struct. If not, access is denied, if so, access is

granted. To prevent unauthorized extension of access to information by copying, when

read access to an object is requested in TIFPS, the process’s time attributes are updated to

take on the intersection of the time attributes of the object being read and the process’s

current time attributes. When write or append access to an object has been granted by

TIFPS, the object’s time attributes are updated to take on the intersection of time

attributes of the requesting process and the object being written.

The reasons for updating the security structs after read and write operations are

two-fold. The first reason is to prevent extension of access to information as described in

Section B of this chapter. A second reason for the policy requiring a task to inherit the

most restrictive attributes of files read is the notion of subject access control. The idea

was presented in the TIAC model [1,3] where an administrator can grant and revoke

time-based access to users in addition to controlling access to file and directory objects.

In Linux, when a user logs in, the /etc/passwd file is read by the system to get the user’s

home directory. The user’s login shell then changes the directory to the home directory

specified. If an administrator sets the time attributes of the user’s home directory, the

user’s time-of-allowed access to any files in the system besides his own home directory

will be subject to the time attributes set for his home directory because of the task

inheritance policy.

Preserving Time Attributes Across Copy Operations

The policy of continual restriction of the time interval for a process on object

reads introduces a problem however. Assume that a user reads a file that expires in 5

minutes first after logging into the system. After reading the file, the process’s time-of-

23

allowed access also expires in 5 minutes due to the inheritance. Therefore, after 5

minutes, the task will not be allowed to access any other files in the system, creating an

undesirable condition for the user.

A modification of the policy was considered as described below in an attempt to

address this issue but was not implemented, as will be explained. Since the system is

intended for use in preserving the time attributes of file objects on copy operations, the

tifps_task_security_struct can be implemented to “keep track of” (as opposed to inherit)

the most restricted time attributes of files that it has read. Only during an attempt to write

would the system enforce access control and transfer the time attribute with the most

restrictive time interval to the file(s) being written. This solution was not implemented

because the file read operation implies a write operation to the kernel stack. Also, an

administrator’s ability to grant and revoke time-based access control to users would not

work in such a scheme.

Fortunately, the fork-and-exec paradigm of Unix-based operating systems solves

the problematic condition. When a user logs into a Unix system, that user’s login shell

runs as a process. Any programs that the user decides to run from this shell causes the

login shell to fork into a parent and child processes. It is the child process that executes

the command, reads from, and writes to files. Because the parent login shell does not

read or write files in the program execution, its time attributes assigned at user logon are

preserved.

TIFPS LSM Security Hook Implementation Details

The TIFPS policy described above and the permission check logic for TIFPS are

implemented in the tifps_enforcer() function in the helper functions section of the

tifps_hooks.c source code file. The file is divided into two sections, one implementing

the security hook functions called by the kernel as part of LSM and another implementing

all the helper functions that the security hook functions call to provide the time based

access control. See Table 3-1 for a list and description of the security hook functions

implemented for TIFPS and Table 3-2 for a list and description of the helper functions.

The source code for TIFPS can be found in Appendix A, Section A.

24

Table 3-1. List of LSM security hook functions implemented in TIFPS

Generic security hook TIFPS security hook

implementation
Description

security_inode_alloc() tifps_inode_alloc_security() Allocate and attach a TIFPS security
structure to inode->i_security. The
i_security field is initialized to NULL when
the inode structure is allocated.

security_inode_free() tifps_inode_free_security() Deallocate the TIFPS inode security
structure and set inode->i_security to
NULL

security_inode_init() tifps_inode_init_security() Initializes inode->i_security structure with
extended attributes of the file referenced by
the inode. Note: as directed by the
linux/include/security.h file, this hook
function is expected to allocate memory for
the name and value of the function
parameters via kmalloc(). The caller is
responsible for calling kfree() after using
them.

security_inode_permission() tifps_inode_permission() Called by the existing Linux permission()
function to additional permission checking.

security_inode_post_setxattr() tifps_inode_post_setxattr() Updates the inode security field after
successful setxattr() operation.

security_inode_setsecurity() tifps_inode_setsecurity() Similar to *_inode_post_setxattr(), it is
called by vfs_setxattr() if the file system
does not support the setxattr() function.

security_file_permission() tifps_file_permission() Checks file permissions before accessing
an open file on read and write operations.

security_task_alloc() tifps_task_alloc_security() Allocate and attach a security structure to
the process’s security field. The security
field is initialized to NULL when the task
structure is allocated.

security_task_free() tifps_task_free_security() Deallocate and clear the process’s security
field.

25

Table 3-2. List of TIFPS helper functions

TIFPS helper function Description
tifps_time_to_xattr_value() Converts a set of TIFPS start and end time attributes into the

TIFPS format string to be stored as extended attributes
tifps_get_times() Given a TIFPS-formatted string, parse the string to get the

TIFPS start and end times.
tifps_helper_task_alloc_security() The tifps_task_alloc_security() hook calls this function. It is

defined as a helper function because it is also called by
tifps_inode_permission() if a task does not have a security struct
allocated yet.

tifps_update_task_security() Updates the task TIFPS attributes with the intersection of the
task and inode security structure time intervals.

tifps_update_inode_security() Updates the TIFPS attributes for an inode with the intersection
of the task and inode security structure time intervals.

tifps_enforcer() The access control policy enforcer.
tifps_inode_has perm() Checks with the enforcer as to whether access to an inode is

allowed. This function is called by the security hook
tifps_inode_permission() during initial opening of files. It is
also called by tifps_file_has_perm() for ongoing file descriptor
access.

tifps_file_has_perm() Checks with the enforcer on whether ongoing access to a file is
permitted.

TIFPS LSM Configuration, Compilation, and Installation

As the name Linux Security Module suggests, TIFPS was designed as a loadable

module for the Linux Kernel. However, the kernel configuration utilities have been

modified to compile TIFPS as either a loadable module or as a module permanently built

into the kernel. See Appendix A, Section A for copies of the Kconfig and Makefiles

edited for this purpose and Appendix B, Section A for screenshots of the kernel

configuration menu for TIFPS LSM included as part of the installation procedures.

Please note that since this project was a proof of concept prototype, compatibility with

other security modules such as NSA’s SELinux or BSD’s Secure Level LSM has not

been considered or tested. BSD’s Secure Level LSM provides increasingly restrictive

levels of security. All testing of TIFPS functionality has been done without compiling

SELinux or any other non-traditional Linux security modules support.

2. Time Attribute Modification Tool Usage and Implementation Details

The modtime command line tool is the time attribute modification tool written

using a combination of the bash scripting language and perl. It is used to convert a

TIFPS string stored as extended attributes on a file to a date and time that is easily

interpreted by a human user. The tool is intended for use by administrators to set and

26

modify TIFPS attributes for files and directories. Through the use of flags, the tool can

also be used by users and administrators to view the TIFPS attributes in human readable

format.

When the program is executed, the number of arguments is checked, if no

arguments are given, a usage instruction is given. The usage format for the tool is given

below:

modtime <flags and corresponding flag arguments> <files and/or directories>

Note that multiple files and directories can be given to the tool.

The program uses the getopts built-in command tool for bash to parse flags given

on the command line. There are three modes of operation for the modtime tool: get time

attributes, set time attributes using absolution time, and set time attributes using relative

time (relative to current time). As a user, the –g flag can be given at the command line to

get time attribute information about file and directories. As an administrator, modtime

can be used to set time attributes. The –a and –A flags are used to set the absolute start

and end times, respectively. The argument following the flag must be a string

recognizable by the date command in Linux. For example, the command:

 # modtime –a now –A “9/22/06 17:00:00EST” myfile.txt

sets the time attributes for myfile.txt to allow access starting now and to revoke access on

9/22/06 17:00:00 Eastern Standard Time. Note the Linux time system automatically

accounts for time zones and converts the time zone specified to the time zone configured

for the system. Sample output:

 Target: myfile.txt

 Grant access on: Sun Aug 13 16:50:52 2006

 Revoke access on: Fri Sep 22 15:00:00 2006

 To set the time attributes relative to current time, the following flags are used:

-s, -S, -m, -M, -h, -H, -d, -D, -w, -W. The lower case flags correspond to relative start

times while the upper case flags correspond to relative end times for the target. “sS”

flags set the time seconds from now; “mM” flags set the time minutes from now; “hH”

27

flags set the time hours from now; “dD” flags set the time days from now; and “wW”

flags set the time weeks from now. Negative integer arguments following the relative

time flags indicate an earlier time from the current time while positive integer arguments

indicate later times relative to the current time. For example, the following command:

 # modtime –s -30 –m 5 –W5 /home/user

sets the start time attribute for the directory /home/user to 4 minutes 30 seconds from

now (5 minutes minus 30 seconds) and the end time attribute to five weeks from now.

Table below shows a summary of the command line flags and their intended use.

Appendix A, Section B contains the source code for the tool.

Table 3-3. Summary of modtime command line flags and its usage

Flags Description of Usage
-g Displays the time attributes of the file or directory
-x Deletes the time attributes of the file or directory
-a Sets the absolute time for allowing access to the file or directory
-A Sets the absolute time for revoking access to the file or directory
-s Sets the relative time to current time in seconds for granting access to the file or directory
-S Sets the relative time to current time in seconds for revoking access to the file or directory
-m Sets the relative time to current time in minutes for granting access to the file or directory
-M Sets the relative time to current time in minutes for revoking access to the file or directory
-h Sets the relative time to current time in hours for granting access to the file or directory
-H Sets the relative time to current time in hours for revoking access to the file or directory
-d Sets the relative time to current time in days for granting access to the file or directory
-D Sets the relative time to current time in days for revoking access to the file or directory
-w Sets the relative time to current time in weeks for granting access to the file or directory
-W Sets the relative time to current time in weeks for revoking access to the file or directory

E. DEVELOPMENT ENVIRONMENT

In addition to LSM, the following tools were used to facilitate development.

1. VMware Server 1.0.0

VMware Server is free virtualization software that virtualizes hardware for

running different operating systems on the same hardware. It was used for the

development of TIFPS both to run a dedicated Subversion versioning server and the test

kernel where the development and testing took place. A 20 gigabyte VMware image was

created for the Subversion server and 10 gigabyte VMware® images were created for

development and testing purposes.

28

2. Subversion 1.3.0-4.2
Subversion is an open-source versioning software used to control versions of

documents and source code being modified from different machines [6]. It allowed the

flexibility of development from multiple workstations. It also provided a critical backup

of the entire development project. Daily commits to the Subversion server guaranteed

that there will always be two copies of the latest work in the event that an unforeseen

disaster strikes.

3. Source Insight 3.5
Source Insight is a source-code visualization software [7]. It creates function call

graphs for quick visualization of the overall code structure. It also provides convenient

browsing of the code providing links to functions variables, macros, and structures.

Going from one function to another was as easy as double clicking the function name in

the source. It was used to visualize and understand the existing source-code for kernel

version 2.6.15.

4. Fedora Core 5 – Kernel 2.6.15
The Fedora Core 5 Linux distribution [8] with kernel version 2.6.15 was used as

the target operating system for development as well as running the Subversion server. To

minimize the time it took for a compile and test cycle, the minimum number of modules

required to run the system was selected for kernel installation. Also, only absolutely

necessary kernel drivers were compiled into the kernel. This also reduced build time.

See Appendix E for a copy of the kernel configuration file.

5. Emacs 21.4-14
For modifying kernel source code in the developmental VMware® images, the

emacs editor was used. Since the Linux kernel source code can be edited by any one and

without coding standards, there is a significant potential for “messy” code. The Linux

kernel source contains a “CodingStyle” document in the linux/Documentation directory.

It specifies the conventions that anyone developing the kernel should follow. Specific

guidance on indents, long lines, braces, naming, etc are given. An emacs configuration

file that conforms to the coding style recommendations for indentations can be found in

Appendix E, Section B.

29

F. SUMMARY
This chapter described the design and implementation details of the TIFPS LSM

as well as of the modtime command line tool used for interacting with the system.

Requirements for both the LSM and the tool were captured as part of the description.

Implementation choices made during development were then discussed and rationale

provided for these choices. Finally, the development environment used was presented.

In the next chapter, testing of the TIFPS LSM and the analysis of test results will be

discussed in detail.

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

IV. TESTING AND ANALYSIS

This chapter describes test plans and analyses for validating TIFPS for correct

functionality, measuring its performance overhead, and gauging its robustness in multi-

user situations. To test the TIFPS Linux Security Module (LSM), the following major

steps were followed in the testing process:

• Develop test plan

• Conduct tests

• Analyze results

• Correct system behavior, as needed, and retest

The results captured in this chapter reflect the final iteration of testing and include any

modifications to the system during the iterative testing phase.

The test plan is divided into three categories described below. Functional tests of

the access control mechanism test for proper enforcement of the time-based access

policies. Performance testing to quantify the overhead of the added time-based access

control of TIFPS LSM compared with an unmodified kernel when reading, writing, and

copying of files. Finally, concurrency testing provides a gauge of the robustness of the

TIFPS LSM in multi-user situations where attempts to access files and directories are

concurrently made by different users.

A. ACCESS CONTROL TESTS
Access control tests were conducted to determine if the TIFPS LSM enforced the

access control policies as expected. As a result of this testing, four unexpected problems

related to the preservation of time attributes were encountered and discussed in Section

A.3, the Analysis of Results section. Two of the four problems had simple solutions and

were therefore fixed while only potential solutions are discussed for the remaining two.

The test plan for access control enforcements are described in Section A.1. Test

results are reported in Section A.2. As mentioned before, the results reported include any

attempt to fix the problem encountered in Section A.3 and do not reflect the iterations of

testing that occurred. Section A.3 also discusses potential solutions for the expected

32

problem of access revocation during file writes. Before we begin describing the access

control test plan, the general TIFPS access control and inheritance policies can be

informally stated as follows:

• Access to an object shall be granted only if the current time is within the
time interval defined by the intersection of the subject and object.

• Time attributes of copied files must be inherited from the intersection of
time attributes for the subject, source object, and destination object.

1. Access Control Test Plan
The access control test plan is divided into two categories: static and dynamic

tests. The static tests category includes test cases where the subject and object time

attributes are preset by the administrator and remain unchanged during the tests. The set

of static tests are further divided into the following sub-categories:

• Enforcement of time-based policies for reading, writing, and executing
files and directories (executing files refers to the execution of binary
executables, executing directories refers to changing into the directory)

• Inheritance of time attributes in file and directory creation operations and
in file-copy operations

• Behavior of TIFPS when access time expires and access is revoked during
file write operations

The third test sub-category from above is planned in anticipation for the potential

problem of file corruption in the event file format information is incompletely written to a

file due to access revocation. Directory writes are not considered because directory

writes are atomic with respect to access checks therefore the same problem is not

anticipated.

The dynamic tests category, on the other hand, covers the cases where the

administrator changes the time attributes of subjects or objects while the user is logged

into the system.

Static tests – enforcement of file and directory read/write/execute

The TIAC model [1,3] uses interval algebra to describe the temporal relationships

between subjects and objects. Table 4-1 shows all the possible relationships between a

subject and an object and the expected access permission in TIFPS. The first set of static

tests was to determine if permission enforcement in TIFPS is consistent with the time-

33

based access control policy for each of these relationships. When a subject, S, attempts

to access an object, O, access is only allowed during the period in which their time

intervals of allowed access overlap. For example, in scenario 1, S has a time interval of

allowed access specified by t2. The time interval of allowed access for O is specified by

t4. The other time intervals t1, t3, and t5 specify periods where neither access to S or O

is allowed. Given this scenario, access should be denied for all time intervals t1 through

t5.

The objective of this set of tests is to check for proper enforcement of time based

access control on read, write, and execution of files and directories at all time intervals

given a set of subject and object time attributes related as shown in Table 4-1. In this

portion of the static access control tests, each subject/object relationship in Table 4-1 was

setup using bash scripts. Read, write, and execute operations are then performed on

specified files and directories within each of the identified time intervals and the system

behavior was verified with expected result.

 Since the system should grant permission only when the time intervals of subjects

and objects overlap, it is inferred that if the subject and object in Table 4-1 were

swapped, the same access permissions will be expected. Rather than duplicating the

entire test matrix of 42 (3 x 2 x 7) test cases for read, write, and execute operations on

files and directories in each of the seven scenarios, which would be highly redundant, two

test cases are to be selected semi-randomly and verified that the system grants proper

permissions for all time intervals t1 through t5. The semi-randomly selected test cases

shall have expected behaviors of both grant and deny access.

34

Table 4-1. Basic temporal interval relationships between a subject S and object O*

Test
ID

Scenario Relation

Pictorial Meaning and Access Intervals

Expected
Access permission

A1 1 S before O
O after S

 < ----S------ > < -----O----- >
 t1 t2 t3 t4 t5

t1 to t5: deny

A2 2 S equals O
O equals S

 < ------------------S-------------------- >
 < ------------------O-------------------- >
 t1 t2 t3

t1 and t3: deny
t2 : allow

A3 3 S meets O
O met by S

 < -------S------- >< ------------O------- >
 t1 t2 t3 t4 t5

t1 to t5: deny

A4 4 S overlaps O
O overlapped
by S

 < ------------S----------- >
 < --------------O--------------- >
 t1 t2 t3 t4 t5

t1, t2, t4, t5: deny
t3: allow

A5 5 S during O
O includes S

 < ----------S----------- >
 < ----------------------O----------------------- >
 t1 t2 t3 t4 t5

t1, t2, t4, t5: deny
t3: allow

A6 6 S starts O
O started by S

 < ----------S--------- >
 < ------------------O--------------- >
 t1 t2 t3 t4

t1, t3, t4: deny
t2: allow

A7 7 S finishes O
O finished by
S

 < --------S------- >
 < -----------------O---------------- >
 t1 t2 t3 t4

t1, t2, t4: deny
t3: allow

*Note: the access permissions would be the same if S and O were swapped.

Static tests- Inheritance in file/directory creation and file copy operations

The objective of this set of tests is to check for proper preservation of time

attributes during file and directory creation and file copy operations. In this set of tests,

time attributes of files and directories were displayed after creation by a user whose time

attributes (represented by the subject time attributes) had been preset by the

administrator. Expected behavior is that the files and directories created will inherit the

time attributes of the user. Table 4-2 below summarizes the two test cases: one with a

user creating a new file and another with a user creating a new directory.

35

Table 4-2. File and directory creation tests and expected results

Test ID Test case Expected Result
B1 User creates new file The new file should inherit the time

attributes of the user.
B2 User creates new directory The new directory should inherit the time

attributes of the user.

In the set of copy tests, three scenarios of a user subject copying content from a

source file to a destination file were envisioned. In the scenarios, the subject, source

object, and destination object each have different time attribute relationships as depicted

in the Figure 4-1 below. It is expected that the destination object will inherit the time

attributes of the intersection of the three entities involved. The expected inherited time

interval for the created file is illustrated in the figure. For each of the three scenarios,

three ways to copy files in Linux are to be tested:

• Using the cp command

• Using redirection ‘>’

• Using pipes ‘|’
Scenario 1
 < ----------------------------Subject------------------------------------ >
 < ------------------------Source----------------------- >
 < ---Destination-- >

 < ---Expected---- >

Scenario 2
 < ---------------------------Subject--------------------------------------- >
 < ----Source----- >
 < -----------------------------Destination---------------- >

 < ----Expected-- >

Scenario 3
 < -------------Subject------------ >
 < --Source-------------------------- >
 < -------------------------------------Destination------------------------------ >

 < -------------Expected---------- >

Figure 4-1. File Copy Scenarios.

Each test case in the 3x3 matrix will be performed 10 times to check for

consistent behavior, see Table 4-3.

36

Table 4-3. Time attribute Inheritance on File Copy Test Matrix

Copy Method

Test ID

Scenario cp Redirection ‘>>’ Pipes ‘|’
C1 – C3 1 10 trials 10 trials 10 trials
C4 – C6 2 10 trials 10 trials 10 trials
C7 – C 9 3 10 trials 10 trials 10 trials

Static tests– TIFPS behavior on time expiration during file-write operations

The objective for this set of tests is to observe the behavior of the system when

access to a file is revoked during a write operation. It is speculated that file corruption

will occur if access to a file expires while an application is writing state or format

information to the file. As such, the tests attempt to write a large amount of information

(5M bytes) to files whose expiration time does not allow for the completion of the write

operation. For convenience, a bash script is setup to take the expiration time of the file

to be written-to as an argument. Immediately after setting the time, the script attempts to

write 5 million bytes of information to the file. Next, the script counts the number of

characters written to the file successfully. The script will be executed in multiple runs.

For each run, the time-to-expiration (TTE) is increased. The test is complete when a TTE

allows all 5 million bytes of information to be written successfully (TTE-max). It is

expected that prior to reaching TTE-max, only part of the 5 million bytes of information

will be successfully written to the file. Error messages that occur during each run will be

captured for discussion. Table 4-4 shows the information to be captured for this test set.

Table 4-4. Sample table for information to be captured for the access revocation

during file write tests

Test ID Time to
expiration (TTE)

Number of bytes written
successfully out of 5

million

Error Message

D1 Record expiration
time used

Record # of bytes written Record kernel error message here.

Dynamic tests – Dynamically changing subject and object attributes

The objective of these tests is to observe the behavior of the system when time

attributes are dynamically changed by an administrator while a user is logged in. A main

37

bash script was setup to initialize a pair of subject and object entities by setting their

respective time attributes using an administrator account. After the initialization, the

main script sleeps long enough to allow a human tester to run a second script as the

subject (user script). The user script is setup to read the object before and after a time

attribute change by the administrator. Next, the main script wakes from sleep and

changes the time attributes of the subject or object. See Figure 4-2 for an illustration of

the progression of these tests. System behavior from the subject (user)’s perspective is

recorded before and after the change by the administrator.

Figure 4-2. Dynamic Test Progression Illustration

There will be two test cases, one in which the administrator changes the time

attributes of the subject and the other the temporal attributes of the object are modified.

The expected results are summarized in Table 4-5 below.

1. Main script started by admin – sets the subject S and object O time attributes
S

O

2. User script started by subject S – S reads O at t1
S

O

t1: S reads O

3. Main script: – admin changes S or O time attributes

O

S

4. User script: – S reads O at t2

O

t2: S reads O; access denied

S

38

Table 4-5. Summary of expectations for dynamically changing subject and object
time

Test ID Test Case Expected Results

E1 Change subject
time

Continued access should be allowed since time
attributes are inherited at user login.

E2 Change object
time

Access should be revoked according to the newly
set time attributes.

2. Results
As mentioned earlier, the results shared here include all modifications to the

system when it was necessary to address the unexpected problems discussed in Section

A.3. These results do not reflect the iterations that occurred between modifications.

Static tests results

 Table 4-6 is a summary of the results from the static tests for file and directory

read, write, and execute permission enforcement. These tests resulted in expected

behavior for all test scenarios. The test scripts and screen captures for each individual

test can be found in Appendix D.

Table 4-6. Results from static tests for file and directory read/write/execute

Files Directories Test
ID

Scenario
Read Write Exec Read Write Exec

1 1 Pass Pass Pass Pass Pass Pass
2 2 Pass Pass Pass Pass Pass Pass
3 3 Pass Pass Pass Pass Pass Pass
4 4 Pass Pass Pass Pass Pass * Pass
5 5 Pass Pass Pass Pass Pass Pass
6 6 Pass * Pass Pass Pass Pass Pass
7 7 Pass Pass Pass Pass Pass Pass

* Note: the asterisk indicate additional testing where subject and object were swapped for the test
case and the results which were also found to be successful.

The static tests for file and directory creation resulted in expected time attribute

inheritance behavior, details can be found in Appendix D, Section C.

39

For copy inheritance, the test results were as expected except for the test set using

pipes. Table 4-7 summarizes these results. Test scripts and results for each individual

scenario can be found in Appendix D, Section B and Section C, respectively.

Table 4-7. Summary of results for static tests for file copy operations

Test ID Scenario ‘cp’ Redirection ‘>’ Pipe ‘|’ to ‘tee’
C1 – C3 1 10 out of 10 pass 10 out of 10 pass 10 out of 10 pass
C4 – C6 2 10 out of 10 pass 10 out of 10 pass 9 out of 10 pass
C7 – C9 3 10 out of 10 pass 10 out of 10 pass 10 out of 10 pass

Table 4-8 summarizes the test results for access revocation during file write

operations. The results confirm our speculation that file corruption could occur if access

is revoked while an application is writing state information to a file. The resulting error

messages when access permissions were revoked at different times during a write

operation are also captured.

Table 4-8. Summary of results for access revocation during file writes

Test
ID

Time to
expiration

(TTE)

Number of bytes written
successfully out of 50

million

Error Message

1 0 ERROR opening file
2 49,152 ERROR writing to file: ERR -1
3 2,002,944 ERROR writing to file: ERR -1
4 3,338,240 ERROR writing to file: ERR -1

D1

5 5,000,000 None
* Note: The extra byte written to the file is a carriage return

Dynamic test results

As expected, dynamically changing the subject’s time attributes does not affect a

user’s continued access to files and directories in this implementation of TIFPS. This

was expected because the user inherits time attributes at the time of login. Since file and

directory read and write operations are checked at every access request, dynamically

changing the attributes of the objects in the system results in successful revocation of the

object upon expiration of the object’s temporal access. This test also produced the

expected results. See Table 4-9 below for a summary of results.

40

Table 4-9. Summary results for dynamically changing subject and object time
attributes

Test ID Test Case Results

E1 Change subject
time

Continued access allowed.

E2 Change object time Access revoked according to the new time
attributes.

3. Analysis of Results
During testing, four unexpected problems with the TIFPS implementation were

encountered. The first two discussed were fixed while the remaining two were analyzed

for potential solutions. The anticipated problem of access revocation during file write is

also analyzed and discussed in this section.

Directories inheriting task attributes restricting user access to files

First, a user’s access to files in his or her home directories became increasingly

restrictive as he copies files with more restrictive attributes. Since directories were

implemented to inherit time attributes just as regular files do, files with less restrictive

time attributes in a modified directory will not be accessible to the user. Also, as a user

reads from directories, the task data structure associated with his login shell inherited the

more restrictive attributes, preventing further access to other files in the system that he

might otherwise be allowed to access. This is even more problematic when a directory,

i.e. /tmp is shared among different users because one user can prevent access of other

users sharing the directory. The problem was observed in the static tests for proper

attribute inheritance in file copy operations.

The fix to this problem was to simply ignore time attribute updates on all

directory-related operations in the TIFPS implementation. The results reported in the

previous section include this change.

Inconsistent inheritance of task attributes

A problem of incorrect inheritance of time attributes for processes after reading

files was observed. This problematic behavior of TIFPS was caused by our incorrect

assumption of when the LSM security hook, security_task_alloc() function is called. It

was assumed that securiy_task_alloc() is called after forking was complete. Actually,

41

this security hook function is called from the copy_process() kernel function which

clones the parent before the cloned process becomes the forked child when the user login

shell forks. For this reason, the forked child’s parent was actually the parent of the login

shell, rather than the login shell itself. In other words, the problematic implementation

used the grandparent of the forked child rather than the parent to determine the time

attributes of the forked child. The solution was simply to use the process being copied to

determine the child process’s time attributes. The results reported in the previous section

also include this fix. This problem also occurred in the static tests for proper inheritance

in file copy operations.

The piping problem

Next, in an effort to ensure that the system consistently enforced the inheritance

policy for copying files, multiple ways of copying files in a Linux system were tested.

The system behaved as expected except when pipes were used to copy files. The

program tee reads from input and splits the bytes read from input into two streams. The

first stream is written to standard out and the second stream written to a specified

destination file. It can be used to copy file as in the following command:

$ cat source.txt |tee destination.txt

Since tee is reading from the pipe and the pipe does not have time attributes, this

command successfully copies the contents of source.txt into destination.txt without

preserving the time attributes of the source.txt file. Figure 4-3 below shows the

relationship of the processes involved in the command above.

Figure 4-3. Using tee to copy files

Bash with temporal attribute forks and children inherit attributes

bash

cat tee

pipe

source.txt destination.txt

stdout stdin

42

An attempt was made to fix this by implementing time attribute inheritance for

pipes. The results reported in the previous section include this implementation. In

Linux, pipes are implemented with many of the properties of files and have inode data

structures associated with them. Thus, they can be assigned time attributes just as regular

files. The copy command above can be separated into the following individual

operations. The actions in the parenthesis indicate envisioned TIFPS behavior for pipe

attribute inheritance:

1. cat reads from source.txt (cat inherits attributes from source.txt)

2. cat writes to the pipe (pipe inherits attributes from cat)

3. tee reads from the pipe (tee inherits attributes from pipe)

4. tee writes to destination.txt (destination.txt inherits attributes from tee)

It can be seen that the source.txt time attributes are inherited through the chain of

read and write operations by the destination.txt file. In theory, this suggests that

implementing time attribute inheritance for pipes should fix the problem. However, the

results reported in the results section indicate that the destination file is not inheriting the

source file time attributes on a consistent basis. Upon closer inspection, the pipe copy

command above does not necessarily occur in the order indicated in steps 1 through 4.

The kernel scheduler was observed to schedule step 3 first for example, and the tee

process will block until the cat process writes data to the pipe. Since the LSM security

hook is called when the tee process requests read permission to the pipe and not after it

wakes from blocking when data is written to the pipe, the time attributes of the original

file will not be correctly inherited.

A potential solution is to change the security hooks for LSM in the kernel by

enforcing a permission check after processes wake from blocks. This potential solution is

outside of the scope of this thesis and has not been implemented.

Problem associated with assigning time attributes to executables in bash

The bash shell has a convenient tab-completion feature that allows a user to list

all executables available in his/her path. When this feature is used, all the executables in

a user’s path are read by the login shell bash. Therefore, using this feature results in

43

bash inheriting the most restrictive time attributes of all executables in his/her path. For

example, if the /usr/bin/cal program has been assigned by the administrator to expire in 5

minutes, any user logged in using the tab-completion feature will be effectively locked

out of the system after 5 minutes. The users can logout of the system and re-login to

circumvent this problem. This problem occurs only in login shells that have this auto-

completion feature. Other shells, such as ksh, tclsh, and tcsh which do not have this

feature do not exhibit this problem. This problem has not been fixed in this

implementation and will be left for future work. It is recommended that in the meantime,

time attributes only be set on non-executable files when using bash.

Incomplete write operations in the revocation of access during file writes

Finally, the TIFPS LSM does not provide transactional support for file writes. It

is anticipated that this will be a problem when access to a file expires during the write

operation. If important file state information has not been written to the file before the

expiration, the file could potentially be left in an inconsistent state. Table 4-8 in Section

A.2 shows two distinct error messages depending on when the access to the file is

revoked. The error message “ERROR opening file” indicates that there was not enough

time for the process to open the file for writing and therefore 0 bytes were successfully

written. The error message “ERROR writing to file: ERR -1” indicates that the file had

been successfully opened for writing but access was revoked when the process requested

write permission to the file. Error number -1 is the number return by the kernel to

indicate a permission-denied error. From these results, we confirmed that file corruption

could potentially occur on write operations. One way to resolve this problem is to

provide transactional support for the file system in the kernel. By providing a way to

roll-back changes to the file, the system can keep the files in consistent states even if

write operations fail due to revocation. The applications can also be designed to provide

such support by keeping the state of the last successful write operation and reverting back

to that state if new write operations fail. The file system tested in this prototype is “ext3”

which supports journaling for quick file system recovery in the event of power failures

and hardware failures. It is suggested that the journaling features of file systems such as

“ext3” be investigated further as they may offer a potential solution to this problem.

44

B. PERFORMANCE TESTS
The objective of performance testing is to measure the additional overhead for

doing time-based access checks by the TIFPS LSM compared with an unmodified kernel.

The following sections describe the test plan, results, and an analysis of the results of

performance testing. Overall, the added overhead for TIFPS access control is

approximately 5% for read operations, approximately 20% for write operations, and

approximately 9% for copy operations.

1. Performance Test Plan
A set of simple bash scripts were created to time the reading, writing, and copying

of files on an unmodified 2.6.15 kernel and a kernel loaded with the TIFPS LSM.

Comparisons between the two kernels were performed on a machine running virtualized

VMware® server images of Fedora Core 5. The hardware running the VMware® image

has an Intel® Pentium® 4 processor running at 3.00 GHz. The RAM allocated for the

image is 256M.

In each of the three categories of read, write, and copy operations, some

additional variables that were speculated to affect performance were also studied. First,

the existence of time attributes on files may have an impact on the performance since

TIFPS skips the logic for time-based access control check if an object does not have

TIFPS attributes. Secondly, performing an operation on a single file 1000 times versus

on 1000 different files once could affect the performance because more security data

structures need to be allocated and initialized for the case where different files are

handled. To study these two factors, four sets of tests were performed in each of the

three categories. These are listed below.

• File operation (read/write/copy) on a single file 1000 times with existing
TIFPS attributes.

• File operation on a single file 1000 times without TIFPS attributes.

• File operation on 1000 different files once; each file has existing TIFPS
attributes.

• File operation on 1000 different files once; none of the file have existing
TIFPS attributes.

Table 4-10 shows the general commands and tools used in bash scripts for each of

the three categories (read, write, execute) in the performance test. The time tool was

45

used to record the time to run each script. Only system time is captured since access

control occurs in the kernel. Refer to Appendix D, Section E for the actual test scripts

used for performance testing. Table 4-11 is a summary of the descriptions of each test in

the performance tests.

Table 4-10. Linux Commands and Tools used for Testing.

File Operation Linux Command
Read cat file(s).txt >/dev/null
Write python –c “print ‘G’*1000” > file(s).txt
Copy Cp source-file(s).txt destination-file(s).txt

Table 4-11. Summary of description for the performance evaluation

Test ID Performance test variable descriptions

F1 Read a single file with TIFPS attributes 1000 times

F2 Read a single file without TIFPS attributes 1000 times

F3 Read 1000 files with TIFPS attributes 1 time

F4 Read 1000 files without TIFPS attributes 1 time

F5 Write a single file with TIFPS attributes 1000 times

F6 Write a single file without TIFPS attributes 1000 times

F7 Write 1000 files with TIFPS attributes 1 time

F8 Write 1000 files without TIFPS attributes 1 time

F9 Copy 1 file with TIFPS attributes 1000 times to another existing file with

TIFPS attributes

F10 Copy 1 file without TIFPS attributes 1000 times to another non existent file

F11 Copy 1000 different files, each with TIFPS attributes to another set of 1000

files, with TIFPS attributes

F12 Copy 1000 different files, without TIFPS attributes to a set of non existent

files

2. Results and Analysis
A summary of the performance results is shown in Tables 4-12.

46

Table 4-12. Summary of performance for the 3.0Ghz Dell Desktop PC VMware®
image*

Read Write Copy

Single-file Multi-file Single-file Multi-file Single-file Multi-file

Kernel Attr None Attr None Attr None Attr None Attr None Attr None
Normal -
avg

4.41 4.39 4.47 4.4 26.77 26.56 27.58 27.05 6.5 6.42 6.71 6.85

Normal –
stdev

0.03 0.02 0.01 0.02 0.38 0.16 0.10 0.16 0.05 0.04 0.07 0.04

TIFPS -
avg

4.65 4.59 4.72 4.65 32.28 31.91 32.59 32.2 7.09 7.09 7.25 7.4

TIFPS -
stdev

0.03 0.03 0.03 0.02 0.41 0.22 0.52 0.28 0.07 0.02 0.10 0.03

Difference 5.44% 4.55% 5.51% 5.68% 20.6% 20.1% 18.16% 19.06% 9.13% 10.44% 8.05% 7.98%

 *Note: Units are seconds unless otherwise noted

The results suggest that the presence of TIFPS attributes did not significantly

affect the performance contrary to hypothesis. The reason for this result could be that

most of the performance overhead of TIFPS occurs in the setup of the function calls to

the TIFPS security hook implementations. In the TIFPS security hook implementations,

access control logic is skipped in the absence of TIFPS attributes. It appears that

skipping sections of code within a security hook function call did not significantly reduce

performance overhead.

Also, with regard to comparison between multiple reads and writes to a single file

and single reads and writes to multiple files, the results suggest that performing single-

file operations does not have significant performance advantages over multi-file

operations as speculated. A similar explanation that most of the overhead associated with

TIFPS occurs from setup of the function calls to the security hook implementation on file

operations is speculated. Allocating and initializing security data structures does not

seem to contribute to the overhead of TIFPS as much as the setup for the security hook

function calls.

The detailed test results are captured in Appendix D, Section F.

C. CONCURRENCY TESTS
The objective of the set of concurrency tests is to provide a gauge for the

robustness of the TIFPS LSM in handling situations where multiple users with different

time attributes request access to the same files and directories. To test concurrent access

to files and directories, three user accounts (Sam, Jody, and Don) were created on the

47

system, each was assigned different time attributes by modifying the time attributes of

their respective .bash_profile file in their home directories. The test plan and results

follow.

1. Concurrency Test Plan
It is expected that in multi-user environments, the system should continue to

enforce the time-bases policies to revoke access from users at the appropriate time as well

as to properly preserve the time attributes of files copied by each user. The concurrency

test plan consists of the following tests scenarios for three test users and is summarized in

Table 4-13.

Concurrent read access to a file

• Three users, Sam, Jody, and Don each log into their respective accounts,
where each account was modified to have different time attributes by the
administrator. Each user then attempts to continuously read the same text
file using the command cat. When read access is revoked, the revocation
time is recorded for each user and compared with the expected revocation
time.

Concurrent write access to a file

• Sam, Jody, and Don each log into their respective accounts, where each
account has different time attributes preset by the administrator. Each user
then attempts to continuously write to the same text file, which is located
in a shared directory, by using the command:

• $ echo “user specific message” >>shared-file.txt

• When write access is revoked, the revocation time is recorded for each
user and compared with the expected revocation time.

Concurrent copy operation of a file

• The three users log into their account, each account preset by the
administrator with different time attributes. Each user then attempts to
continuously and concurrently read a shared file in order to make a copy
of the shared file into their respective home directories. After a period of
predefined concurrent access, for example, the time it takes to make 1000
copies of the same file, the time attributes of the copied files for each user
is checked and compared with the expected time attributes.

Concurrent write to a shared directory

• The three users log into their respective accounts each of which is preset
with different time attributes. Each user then attempts to continuously and
concurrently copy their private files into a shared directory. After a period
of predefined concurrent writes into the directory, i.e. the time it takes to

48

copy their private file 1000 times into the shared directory, the time
attributes of the copies make by each individual user as well as the shared
directory are recorded and compared with expected results.

Table 4-13. Summary of test scripts for concurrency testing

Test ID Description of concurrency test scenario
G1 Concurrent read of a single file by 3 users with different time attributes
G2 Concurrent write to a single file by 3 users with different time attributes
G3 Concurrent copy of a single file by 3 users with different time attributes
G4 Concurrent write to a shared directory by 3 users with different time attributes

2. Results and Analysis
In the concurrent read access scenario, TIFPS continued to enforce the policy

correctly and revokes read access at the proper times from the users when their respective

time attributes expired. In the concurrent write access scenario, the file correctly

inherited the TIFPS permissions of the user whose time attributes are the most restrictive.

At file expiration, the write access was properly revoked for all users. In the concurrent

copy scenario, each of the three users’ copies of the file in their respective home

directories inherited the proper time attributes, i.e. those associated with the individual

user. Finally, in the concurrent write to a shared directory scenario, each user’s

respective file time attributes were preserved as expected. The shared directory also kept

its time attributes as expected. See Appendix D, Section H and Section I for test scripts

and resulting screenshots of these tests.

D. SUMMARY
In this chapter, test plans and test results for the TIFPS LSM were presented.

Access control, performance, and concurrency tests were all part of the test plan. For the

most part, the system performed as expected. Problems encountered while performing

the access control tests were analyzed and the behavior explained. In some cases,

solutions were found and implemented for the problems encountered. For the remaining

problems, potential solutions were discussed and are also suggested for future work. It is

important to note that the problems discussed were related to the TIFPS implementation

as opposed to artifacts of testing. Problems related to testing were resolved in the

iterative phases of the testing process.

49

V. CONCLUSIONS

A. SUMMARY
Based on the TIAC model, TIFPS is a kernel implementation of time-based

access control for files and directories in the popular open source Linux operating system.

The implementation of access authorization and access control described by TIAC was

achieved by utilizing the Linux Security Module framework and implementing the

existing security hooks that already reside in the LSM. However, for practical reasons,

the system also needs to enforce proper inheritance of time attributes by subjects and

objects for copy operations. This requirement presents the challenge of balancing correct

security behavior and ensuring availability of system services.

To enforce proper inheritance in such a system, a policy similar to the High

Watermark [9] must be implemented. The High Watermark policy can be generally

characterized as a policy where a subject’s level of access becomes increasingly

restrictive as the subject accesses the objects in the system. However, with such a policy,

the potential for the system to become so restrictive that the user can not accomplish

intended tasks is likely. For example, as a user reads more and more files in the system,

his ability to access other files and directories to do useful work in the current session

decreases as his time attributes becomes increasingly restrictive.

In Linux, the fork-and-exec paradigm shows potential for solving this dilemma as

is evident in the implementation. By forking the parent login shell to a child process and

performing read and write operations using the child process, the parent process’s time

attribute does not become increasingly restrictive. However, the fork-and-exec paradigm

introduces additional issues. For example, inheritance of time attributes was not properly

enforced in the copy operation performed using pipes to communicate information

between sibling processes within the system. Therefore, it is recommended that, for

future implementations, the fork-and-exec functionality be examined more closely to

ensure that object and subject time attributes are preserved.

50

B. FUTURE WORK
The TIFPS prototype shows that implementing an access control system based on

the TIAC model is feasible for files and directories in Linux. However, by doing so,

additional research questions are raised. The following discusses immediate future work

to continue the development of and to address the issues related to the prototype. Longer

term research related to the topic of time-based access control is also suggested.

1. Prototype Related Work

• As mentioned previously, the fork-and-exec functionality in Linux should
be looked at more closely to ensure proper enforcement of the policy when
attributes are inherited by new processes. Related to this topic is the bash
auto-completion for executables problem mentioned in Chapter IV.

• The Unix time is represented by a 32-bit signed integer which allows time
specification until 2038. It is expected that Unix-based operating systems
will switch to a 64-bit integer for time representation. TIFPS should be
modified to support such a change in Unix time.

• TIFPS currently supports only “ext3” file systems. It should be easily
modifiable to support other file systems so long as the file system supports
extended attributes.

• The modtime tool currently does not support recursion into directories for
modification of or displaying the time attributes. Adding such support
will make the tool more useful for modification of time attributes for
entire file trees.

2. Long Term Time-Based Access Control Research Questions

• TIFPS was prototyped to enforce access control locally within a host
Linux system. How would such a system be implemented in a networked
environment?

• The revocation of access during file modification has the potential to
corrupt files as demonstrated in Chapter VI. What is involved in building
kernel level support for transactional write operation in Linux?

• What APIs are needed to help applications deal with time based
revocation for better usability?

• The TIAC model [1,3] does not consider creation and modification of time
attributes. Such actions are necessary in copy operations. For example, in
this implementation, a subject copying a source object to a destination
object transfers the time attributes from the source to the destination. How
can the TIAC model be extended to describe this inheritance policy and to
formally check it for consistency?

51

C. CONCLUSIONS
Temporal access control provides another vector for the management of

information. There are many potential applications of such an access control mechanism

in civilian and government environments. This simple TIFPS prototype implementation

in Linux provides a potential framework for how future time-based access control

systems could be built.

52

THIS PAGE INTENTIONALLY LEFT BLANK

53

APPENDIX A. SOURCE CODE

This appendix contains source code for the TIFPS LSM as well as the modtime

tool.

A. TIFPS LSM SOURCE CODE

linux/security/tifps/tifps_hooks.c
/*
 * Time Interal File Protection System (TIFPS)
 * Linux Security Module (LSM)
 *
 * This file contains the TIFPS security hooks function implementations
 * as well as helper functions used by the LSM to enforce a time based
 * access control policy on regular files and directories.
 *
 * It currently only supports ext3 file systems.
 *
 * Author: Ken Chiang <kchiang@nps.edu>
 * Naval Postgraduate School
 *
 * Last Update: 9/6/06
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/config.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/security.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/mount.h>
#include <linux/xattr.h>
#include <linux/types.h>

#include “tifps_sec_objects.h”

#define XATTR_TIFPS_SUFFIX “tifps”
#define XATTR_NAME_TIFPS XATTR_SECURITY_PREFIX XATTR_TIFPS_SUFFIX
#define TIFPS_XATTR_LEN 23 //tifps format = “:0x00000001:x7FFFFFFF\0”
#define TIFPS_MAX 0x7fffffff
#define TIFPS_MIN 0x00000000

/* -------------------------TIFPS helper functions--------------------------*/

/* tifps_time_to_xattr_value: converts a set of tifps start and end time
attributes into tifps format string specified by the char * pointer “value”.
Returns 0 on success and appropriate error otherwise. */
static int tifps_time_to_xattr_value(void **value, uint32_t value_len,
 time_t start, time_t end)
{
 char *tmp_string;
 int num_char = 0;
 int rc = 0;

 tmp_string = kmalloc(value_len, GFP_KERNEL);

54

 if (!tmp_string) {
 rc = -ENOMEM;
 goto out_no_free;
 }

 if (start < TIFPS_MIN || end > TIFPS_MAX){
 rc = -EINVAL;
 goto out;
 }

 /* change the format string to :0x%016x:0x%016x” for 8-byte
 * time support in the future*/
 num_char = snprintf(tmp_string , value_len,
 “:0x%08x:0x%08x”, start, end);

 if (num_char != value_len-1){
 rc = -EINVAL;
 goto out;
 }

 tmp_string[value_len-1] = 0;
 memcpy(*value, tmp_string, value_len);

out:
 kfree(tmp_string);
out_no_free:
 return rc;
}

/* tifps_get_times: Given a tifps formated string “value”, parse the string
 * for the tifps start and end times.
 * Returns 0 on success and appropriate error otherwise. */
static int tifps_get_times(char *value, uint32_t value_len,
 time_t *start, time_t *end)
{
 char *tifps_string;
 time_t tifps_start;
 time_t tifps_end;
 char *tifps_string_ptr, *p, *d;
 int rc = -EINVAL;

 /* copy the string so that we can modify the copy as we parse it.
 The string should already be null terminated, but we append a
 null suffix to the copy to avoid problems with the existing
 attr package, which does not view the null terminator as part
 of the attribute value. */
 tifps_string = kmalloc(value_len, GFP_KERNEL);
 if (!tifps_string) {
 rc = -ENOMEM;
 goto out_no_free;
 }
 memcpy(tifps_string, value, value_len);
 tifps_string[value_len] = 0;

 tifps_string_ptr = (char *) tifps_string+1; /*skip the first “:”*/

 p = tifps_string_ptr;
 while (*p && *p != ':')
 p++;

 if (*p == 0)
 goto out;
 *p++ = 0;

 tifps_start = simple_strtoul(tifps_string_ptr, &d, 0);

 if (tifps_start < TIFPS_MIN)
 goto out;

 *start = tifps_start;

55

 tifps_string_ptr = p;
 while (*p)
 p++;
 *p++ = 0;

 tifps_end = simple_strtoul(tifps_string_ptr, &d, 0);

 if (tifps_end > TIFPS_MAX)
 goto out;

 *end = tifps_end;
 rc = 0;
out:
 kfree(tifps_string);

out_no_free:
 return rc;
}

/* tifps_helper_task_alloc_security; the tifps_task_alloc_security hook
 * calls this function. It is defined as a helper function because
 * inode_permission also calls it if a task does not have a security struct
 * associated with it.
 * Note, this security hook is normally called during the copy_process()
 * function, where the process has not been started. Therefore, we
 * will inherit from the “current” task rather than the “parent”
 * task. In the case it is called from inode_permission, the security
 * should be null and the max range for tifps attributes set for the task.
 * Returns 0 if success and appropriate error otherwise.
 */
static int tifps_helper_task_alloc_security (struct task_struct *task)
{
 struct tifps_task_security_struct *tsec;
 struct tifps_task_security_struct *parent_tsec;

 tsec = kzalloc(sizeof(struct tifps_task_security_struct), GFP_KERNEL);
 if (!tsec)
 return -ENOMEM;

 init_MUTEX(&tsec->sem);
 tsec->task = task;

 /* inherit time attributes from parent task, i.e. the current process
 * that we are copying */
 parent_tsec = current->security;
 if (parent_tsec){
 tsec->tifps_start = parent_tsec->tifps_start;
 tsec->tifps_end = parent_tsec->tifps_end;

 }
 else{
 tsec->tifps_start = TIFPS_MIN;
 tsec->tifps_end = TIFPS_MAX;
 }

 task->security = tsec;

 return 0;
}

/* tifps_update_task_security:
 * To prevent information from being copied to pass the TIFPS system,
 * anytime a task reads a file, its tifps attributes must be updated
 * to reflect the more restricted time interval. */
static void tifps_update_task_security(struct tifps_inode_security_struct *isec)
{
 struct tifps_task_security_struct *tsec = current->security;
 time_t old_start = tsec->tifps_start;
 time_t old_end = tsec->tifps_end;
 time_t new_start = isec->tifps_start;
 time_t new_end = isec->tifps_end;

56

 if (new_start < TIFPS_MIN || new_end > TIFPS_MAX)
 return;
 else{
 if (new_start > old_start)
 tsec->tifps_start = new_start;
 if (new_end < old_end)
 tsec->tifps_end = new_end;
 }

 return;
}

/* tifps_update_inode_security:
 * This method updates the TIFPS attributes for an inode.
 * It is used to enforce proper inheritance of time attributes
 * of files in copy operations.
 */
static void tifps_update_inode_security(
 struct tifps_inode_security_struct *isec, struct dentry *dentry)
{
 struct tifps_task_security_struct *tsec = current->security;
 time_t old_start = isec->tifps_start;
 time_t old_end = isec->tifps_end;
 time_t new_start = tsec->tifps_start;
 time_t new_end = tsec->tifps_end;
 struct inode_operations *i_ops = isec->inode->i_op;
 char * tifps_string;
 umode_t mode = isec->inode->i_mode;

 if (new_start < TIFPS_MIN || new_end > TIFPS_MAX)
 return;
 else{

 if (new_start > old_start)
 isec->tifps_start = new_start;
 if (new_end < old_end)
 isec->tifps_end = new_end;

 /* if this inode describes a fifo pipe, do not set
 * extended attributes, because pipe file systems do
 * not support extended attributes */
 if (S_ISFIFO(mode))
 goto out;

 tifps_string=kmalloc(TIFPS_XATTR_LEN, GFP_KERNEL);
 tifps_time_to_xattr_value(&tifps_string, TIFPS_XATTR_LEN,
 isec->tifps_start, isec->tifps_end);
 i_ops->setxattr(dentry, XATTR_NAME_TIFPS,
 tifps_string, TIFPS_XATTR_LEN, 0);
 kfree(tifps_string);
 }
out:
 return;
}

/* tifps_enforcer:
 * The main access control policy enforcer return 0 if allowed, -EPERM
 * otherwise. Update tasks for every read operation to take on more
 * restrictive TIFPS attributes and Updates inodes for every write
 * operation to files.
*/
static int tifps_enforcer (struct tifps_task_security_struct *tsec,
 struct tifps_inode_security_struct *isec,
 int mask, struct dentry *dentry)
{
 struct timeval current_time;
 umode_t mode;
 int rc = 0;

 /* if root user with CAP_SYS_ADMIN capability, allow */

57

 if (capable(CAP_SYS_ADMIN)){
 rc = 0;
 goto out;
 }

 /* update the task attributes if the access mode requested
 * is read and the object is a regular file or fifo pipe.
 * Linux fork and exec paradigm prevents a task from becoming
 * overly restrictive as it read more files, avoiding a
 * denial of service condition where a user's login shell
 * becomes increasingly restrictive. */
 mode = isec->inode->i_mode;

 if ((S_ISREG(mode)||S_ISFIFO(mode)) && mask & MAY_READ){
 down_interruptible(&tsec->sem);
 tifps_update_task_security(isec);
 up(&tsec->sem);
 }

 do_gettimeofday(¤t_time);

 if (current_time.tv_sec >= tsec->tifps_start &&
 current_time.tv_sec < tsec->tifps_end)
 rc = 0;
 else{
 rc = -EPERM;
 goto out;
 }

 if (current_time.tv_sec >= isec->tifps_start &&
 current_time.tv_sec < isec->tifps_end)
 rc = 0;
 else{
 rc = -EPERM;
 goto out;
 }

 /* Update time attribute only if the file is a regular file or
 * fifo pipe (not directories), and the task is writing or
 * appending to the object. */
 if ((S_ISREG(mode)||S_ISFIFO(mode)) &&
 (mask & MAY_WRITE || mask & MAY_APPEND)){
 down_interruptible(&isec->sem);
 tifps_update_inode_security(isec, dentry);
 up(&isec->sem);
 }

out:
 return rc;
}

/* tifps_inode_has_perm:
 * Checks with the enforcer whether access to an inode is allowed.
 * This function is called by the security hook tifps_inode_permission
 * during initial opening of files. It is also called by tifps_file_has_perm
 * for ongoing file descriptor access. */
static int tifps_inode_has_perm(struct inode *inode, int mask)
{
 struct tifps_task_security_struct *tsec = current->security;
 struct tifps_inode_security_struct *isec = inode->i_security;
 umode_t mode = inode->i_mode;
 struct dentry *dentry;
 struct list_head *head;
 struct inode_operations *i_ops;
 char *tifps_string;
 time_t new_start =TIFPS_MIN;
 time_t new_end =TIFPS_MAX;
 int rc = 0;

 /* We are only interested in controlling read, write, and execute of
 * regular files and directories for this prototype.

58

 * We also include fifo pipes as they can be used to copy
 * the contents of files. */
 if (!S_ISREG(mode) && !S_ISDIR(mode) && !S_ISFIFO(mode))
 goto out_no_free;

 if (!tsec){
 tifps_helper_task_alloc_security(current);
 }
 /* Is this needed? */
 tsec = current->security;

 head = inode->i_dentry.next;
 dentry = list_entry(head, struct dentry, d_alias);

 /* If the operation is a pipe operation, no need to get
 * extended attributes, just call tifps_enforcer
 * to properly update the task and inode security
 * data structures. */
 if (S_ISFIFO(mode)){
 rc = tifps_enforcer (tsec, isec, mask, dentry);
 goto out_no_free;
 }

 /* Our prototype only controls ext3 file systems at the moment,
 * but it can easily support any file systems that support
 * extended attributes. */
 if (strncmp(dentry->d_sb->s_type->name, “ext3”, 4)) {
 goto out_no_free;
 }

 tifps_string = kzalloc(TIFPS_XATTR_LEN, GFP_KERNEL);
 if (!tifps_string) {
 return -ENOMEM;
 }

 i_ops = inode->i_op;
 i_ops->getxattr(dentry, XATTR_NAME_TIFPS,
 tifps_string, TIFPS_XATTR_LEN);

 if (tifps_string[0] !=':'){
 rc = 0;
 goto out;
 }

 rc = tifps_get_times(tifps_string, TIFPS_XATTR_LEN,
 &new_start, &new_end);
 if(rc){
 printk(“get_times error\n”);
 rc = -EINVAL;
 goto out;
 }
 isec->tifps_start = new_start;
 isec->tifps_end = new_end;

 rc = tifps_enforcer(tsec, isec, mask, dentry);

out:
 kfree(tifps_string);
out_no_free:
 return rc;
}

/* tifps_file_has_perm:
 * Checks with the enforce whether ongoing access to a file is permitted.
 * Calls tifps_inode_has_perm. */
static int tifps_file_has_perm(struct file *file, int mask)
{
 struct dentry * dentry = file->f_dentry;
 struct inode * inode = dentry->d_inode;
 int rc = 0;

59

 rc = tifps_inode_has_perm(inode, mask);

 return rc;
}
/* ------------ End of TIFPS helper functions------------------------------*/

/* ------------------------------TIFPS security hooks-----------------------
 * The following security hook functions are provided for TIFPS access control.
 * These defined functions plus others are called by the kernel at strategic
 * locations throughout the kernel as part of the the Linux Security Module.
 * See include/linux/security.h for a list and description of the Linux
 * Security Module hooks. If a security hook function is not defined
 * specifically, the result is a usually a nop defined in
 * linux/security/dummy.c
*/

int tifps_inode_alloc_security(struct inode *inode)
{
 struct tifps_inode_security_struct *isec;

 isec = kzalloc(sizeof(struct tifps_inode_security_struct), GFP_KERNEL);
 if (!isec)
 return -ENOMEM;

 isec->inode = inode;
 init_MUTEX(&isec->sem);
 inode->i_security = isec;

 isec->tifps_start = TIFPS_MIN;
 isec->tifps_end = TIFPS_MAX;

 return 0;
}
EXPORT_SYMBOL(tifps_inode_alloc_security);

void tifps_inode_free_security(struct inode *inode)
{

 struct tifps_inode_security_struct *isec = inode->i_security;

 inode->i_security = NULL;
 kfree (isec);
}
EXPORT_SYMBOL(tifps_inode_free_security);

int tifps_inode_init_security(struct inode *inode, struct inode *dir,
 char **name, void **value, size_t *len)
{
 struct tifps_task_security_struct *tsec;
 struct tifps_inode_security_struct *isec;
 char * tifps_string;

 /* default allow access by setting access time to min and max values */
 time_t new_start = TIFPS_MIN;
 time_t new_end = TIFPS_MAX;

 int rc = 0;
 char *namep = NULL;
 char *valuep;

 tifps_string = kzalloc(TIFPS_XATTR_LEN, GFP_KERNEL);
 if (!tifps_string){
 return -ENOMEM;
 }
 tsec = current->security;

 isec = inode->i_security;

60

 if (!isec){
 rc= tifps_inode_alloc_security(inode);
 isec = inode->i_security;
 }
 if (rc){
 return rc;
 }

 new_start = (time_t)tsec->tifps_start;
 new_end = (time_t)tsec->tifps_end;

 isec->tifps_start = new_start;
 isec->tifps_end = new_end;

 if (name) {
 namep = kstrdup(XATTR_TIFPS_SUFFIX, GFP_KERNEL);
 if (!namep){
 rc = -ENOMEM;
 goto out;
 }
 *name = namep;
 }

 if (value) {
 valuep = kmalloc(TIFPS_XATTR_LEN, GFP_KERNEL);
 if (!valuep){
 rc = -ENOMEM;
 kfree(namep);
 goto out;
 }
 rc = tifps_time_to_xattr_value(&valuep, TIFPS_XATTR_LEN,
 new_start, new_end);
 if(rc){
 kfree(namep);
 kfree(valuep);
 goto out;
 }
 *value = valuep;
 }
 if (len) {
 *len = TIFPS_XATTR_LEN;
 }
out:
 kfree(tifps_string);
 return rc;
}
EXPORT_SYMBOL(tifps_inode_init_security);

int tifps_inode_permission (struct inode *inode, int mask,
 struct nameidata *nd)
{
 struct tifps_inode_security_struct *isec = inode->i_security;
 int rc = 0;

 if (!mask) {
 /* No permission to check. Access allowed */
 return 0;
 }

 if (!isec) {
 rc = tifps_inode_alloc_security(inode);
 isec = inode->i_security;
 }

 if (rc){
 return rc;
 }

 rc = tifps_inode_has_perm(inode, mask);

61

 return rc;
}
EXPORT_SYMBOL(tifps_inode_permission);

void tifps_inode_post_setxattr(struct dentry *dentry, char *name,
 void *value, size_t size, int flags)
{
 struct inode *inode = dentry->d_inode;
 struct tifps_inode_security_struct *isec;
 time_t new_start;
 time_t new_end;
 int rc;

 if (strcmp(name, XATTR_NAME_TIFPS)) {
 /* Not a TIFPS attribute, do nothing. */
 return;
 }

 rc = tifps_get_times((char *)value, size, &new_start, &new_end);

 if (rc) {
 printk(KERN_WARNING “%s: error getting TIFPS attributes “
 “%s, rc= %d\n”, __FUNCTION__, (char*)value, -rc);
 return;
 }

 isec = inode->i_security;
 if (!isec){
 rc = tifps_inode_alloc_security(inode);
 isec = inode->i_security;
 }
 if (rc){
 printk(KERN_WARNING “%s: error allocating security struct”
 “%s, rc= %d\n”, __FUNCTION__, (char*)value, -rc);
 return;
 }
 isec->tifps_start = new_start;
 isec->tifps_end = new_end;
 return;
}
EXPORT_SYMBOL(tifps_inode_post_setxattr);

/* inode_setsecurity is very similar to inode_post_setxattr, it is called
by vfs_setxattr in the event that the setxattr function is not define for
an inode in a particular file system. */
int tifps_inode_setsecurity (struct inode *inode, const char *name,
 const void *value, size_t size, int flags)
{
 struct tifps_inode_security_struct *isec;
 time_t new_start;
 time_t new_end;
 int rc = 0;

 if (strcmp(name, XATTR_NAME_TIFPS)) {
 /* Not a TIFPS attribute, do nothing. */
 return rc;
 }

 rc = tifps_get_times((char *) value, size, &new_start, &new_end);
 if (rc) {
 printk(KERN_WARNING “%s: error getting TIFPS attributes “
 “%s, rc= %d\n”, __FUNCTION__, (char*)value, -rc);
 return -EINVAL;
 }

 isec = inode->i_security;
 if (!isec){
 rc= tifps_inode_alloc_security(inode);
 isec = inode->i_security;
 }

62

 if (rc){
 return rc;
 }

 isec->tifps_start = new_start;
 isec->tifps_end = new_end;
 return rc;
}

int tifps_file_permission(struct file *file, int mask)
{
 struct inode *inode = file->f_dentry->d_inode;
 int rc = 0;

 if (!mask) {
 /* No permission to check. permission allowed */
 return 0;
 }

 if (!inode->i_security) {
 rc = tifps_inode_alloc_security(inode);
 }

 if (rc){
 return rc;
 }

 return tifps_file_has_perm(file, mask);
}
EXPORT_SYMBOL(tifps_file_permission);

int tifps_task_alloc_security (struct task_struct *task)
{
 return tifps_helper_task_alloc_security(task);
}
EXPORT_SYMBOL(tifps_task_alloc_security);

void tifps_task_free_security (struct task_struct *task)
{
 struct tifps_task_security_struct *tsec = task->security;

 task->security = NULL;
 kfree (tsec);
}
EXPORT_SYMBOL(tifps_task_free_security);

static struct security_operations tifps_security_ops = {
 .inode_alloc_security = tifps_inode_alloc_security,
 .inode_free_security = tifps_inode_free_security,
 .inode_init_security = tifps_inode_init_security,
 .inode_permission = tifps_inode_permission,
 .inode_post_setxattr = tifps_inode_post_setxattr,
 .inode_setsecurity = tifps_inode_setsecurity,

 .file_permission = tifps_file_permission,

 .task_alloc_security = tifps_task_alloc_security,
 .task_free_security = tifps_task_free_security,
};

/* flag to keep track of how the tifps security module was registered */
static int secondary;

static int __init tifps_init (void)
{
 printk(KERN_ALERT”\nInitializing TIFPS Linux Security Module”
 “ - created by Ken Chiang- Naval Postgraduate School\n”);

 /* allocate a security struct for the initial task */
 if (tifps_task_alloc_security(current))

63

 panic(“TIFPS: Failed to initialize the initial task.\n”);

 /* register tifps with the security framework */
 if (register_security (&tifps_security_ops)) {
 /* try to register with primary module */
 if (mod_reg_security(KBUILD_MODNAME, &tifps_security_ops)) {
 printk (KERN_INFO “Registration of TIFPS with primary “
 “ security module failed\n”);
 return -EINVAL;
 }
 secondary = 1;
 }

 printk (KERN_ALERT “\n...TIFPS LSM Initialized %s %s\n”,
 secondary ? “ as secondary” : “as primary”,
 “security module.”);
 return 0;
}

static void __exit tifps_exit (void)
{
 /* unregister and cleanup at module exit */
 printk(KERN_ALERT “\n*** TIFPS LSM removed ***\n”);
 if (secondary) {
 /* print kernel error message if unregistering from primary
 module fails */
 if (mod_unreg_security (KBUILD_MODNAME, &tifps_security_ops))
 printk (KERN_INFO “Failure unregistering TIFPS “
 “with primary module.\n”);
 }

 if (unregister_security (&tifps_security_ops)) {
 printk (KERN_INFO
 “Failure unregistering Time Interval File”
 “ Protection System with the kernel\n”);
 }
}

security_initcall (tifps_init);
module_exit (tifps_exit);

MODULE_DESCRIPTION(“Experiemental Time Interval File Protection System LSM”);
MODULE_LICENSE(“GPL”);
MODULE_AUTHOR(“Ken Chiang - Naval Postgraduate School”);

linux/security/tifps/include/tifps_sec_objects.h
/* Time Interval File Protection System (TIFPS) security module
 *
 * This file contains definitions for the TIFPS security data structures for
 * kernel objects.
 *
 * Author: Ken Chiang, <kchiang@nps.edu>
 *
 * Last update: 9/6/06
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2,
 * as published by the Free Software Foundation.
 */

#ifndef _TIFPS_SEC_OBJECTS_H_
#define _TIFPS_SEC_OBJECTS_H_

#include <linux/list.h>
#include <linux/fs.h>
#include <linux/sched.h>
#include <linux/in.h>
#include <linux/types.h>

64

#include <asm/semaphore.h>

struct tifps_task_security_struct {
 struct task_struct *task; /* back pointer to task object */
 struct semaphore sem;
 time_t tifps_start;
 time_t tifps_end;
};

struct tifps_inode_security_struct {
 struct inode *inode; /* back pointer to inode object */
 struct semaphore sem;
 time_t tifps_start;
 time_t tifps_end;
};
#endif /* _TIFPS_SEC_OBJECTS_H_*/

linux/security/Kconfig

Security configuration

menu “Security options”

config KEYS
 bool “Enable access key retention support”
 help
 This option provides support for retaining authentication tokens and
 access keys in the kernel.

 It also includes provision of methods by which such keys might be
 associated with a process so that network file systems, encryption
 support and the like can find them.

 Furthermore, a special type of key is available that acts as keyring:
 a searchable sequence of keys. Each process is equipped with access
 to five standard keyrings: UID-specific, GID-specific, session,
 process and thread.

 If you are unsure as to whether this is required, answer N.

config KEYS_DEBUG_PROC_KEYS
 bool “Enable the /proc/keys file by which all keys may be viewed”
 depends on KEYS
 help
 This option turns on support for the /proc/keys file through which
 all the keys on the system can be listed.

 This option is a slight security risk in that it makes it possible
 for anyone to see all the keys on the system. Normally the manager
 pretends keys that are inaccessible to a process don't exist as far
 as that process is concerned.

config SECURITY
 bool “Enable different security models”
 depends on SYSFS
 help
 This allows you to choose different security modules to be
 configured into your kernel.

 If this option is not selected, the default Linux security
 model will be used.

 If you are unsure how to answer this question, answer N.

config SECURITY_NETWORK
 bool “Socket and Networking Security Hooks”
 depends on SECURITY

65

 help
 This enables the socket and networking security hooks.
 If enabled, a security module can use these hooks to
 implement socket and networking access controls.
 If you are unsure how to answer this question, answer N.

config SECURITY_NETWORK_XFRM
 bool “XFRM (IPSec) Networking Security Hooks”
 depends on XFRM && SECURITY_NETWORK
 help
 This enables the XFRM (IPSec) networking security hooks.
 If enabled, a security module can use these hooks to
 implement per-packet access controls based on labels
 derived from IPSec policy. Non-IPSec communications are
 designated as unlabelled, and only sockets authorized
 to communicate unlabelled data can send without using
 IPSec.
 If you are unsure how to answer this question, answer N.

config SECURITY_CAPABILITIES
 tristate “Default Linux Capabilities”
 depends on SECURITY
 help
 This enables the “default” Linux capabilities functionality.
 If you are unsure how to answer this question, answer Y.

config SECURITY_ROOTPLUG
 tristate “Root Plug Support”
 depends on USB && SECURITY
 help
 This is a sample LSM module that should only be used as such.
 It prevents any programs running with egid == 0 if a specific
 USB device is not present in the system.

 See <http://www.linuxjournal.com/article.php?sid=6279> for
 more information about this module.

 If you are unsure how to answer this question, answer N.

config SECURITY_SECLVL
 tristate “BSD Secure Levels”
 depends on SECURITY
 select CRYPTO
 select CRYPTO_SHA1
 help
 Implements BSD Secure Levels as an LSM. See
 <file:Documentation/seclvl.txt> for instructions on how to use this
 module.

 If you are unsure how to answer this question, answer N.

source security/selinux/Kconfig

source security/tifps/Kconfig

endmenu

linux/security/Makefile

Makefile for the kernel security code

obj-$(CONFIG_KEYS) += keys/
subdir-$(CONFIG_SECURITY_SELINUX) += selinux

if we don't select a security model, use the default capabilities
ifneq ($(CONFIG_SECURITY),y)
obj-y += commoncap.o

66

endif

Object file lists
obj-$(CONFIG_SECURITY) += security.o dummy.o inode.o
Must precede capability.o in order to stack properly.
obj-$(CONFIG_SECURITY_SELINUX) += selinux/built-in.o

#Chiang-NPS-TIFPS
obj-$(CONFIG_SECURITY_TIFPS) += tifps/

obj-$(CONFIG_SECURITY_CAPABILITIES) += commoncap.o capability.o
obj-$(CONFIG_SECURITY_ROOTPLUG) += commoncap.o root_plug.o
obj-$(CONFIG_SECURITY_SECLVL) += seclvl.o

linux/security/tifps/Kconfig
config SECURITY_TIFPS
 tristate “NPS TIFPS (Experimental)”
 depends on SECURITY && EXPERIMENTAL &&!SECURITY_SELINUX &&!SECURITY_CAPABILITIES \
 && !SECURITY_ROOTPLUG && !SECURITY_SECLVL
 default n
 help
 This selects the experimental Linux Security Module for time-based
 access control to files.
 Developed as a thesis project at the Naval Postgraduate School.
 WARNING: This security module is highly experimental, only ext3
 file systems are currently supported. File corruption may

 occur when a file expires during a write operation.

 This security module does not work with other security modules,
 do not build into the kernel other security modules if you want
 to test TIFPS.

 If you are unsure how to answer this question, answer N.

linux/security/tifps/Makefile
Chiang-NPS-TIFPS
Makefile for building the TIFPS module as part of the kernel tree.

obj-$(CONFIG_SECURITY_TIFPS) := tifps.o

tifps-objs := tifps_hooks.o

EXTRA_CFLAGS += -Isecurity/tifps/include

B. MODTIME TOOL SOURCE CODE

modtime

#!/bin/bash
Chiang-NPS
Time Interval File Protection System (TIFPS)

This bash script is a front end to manipulating the time attributes
associated with files and directory for access control with TIFPS.

Note: The script requires the extended attributes tools
“getfattr” and “setfattr”
and perl to run.

Author: Ken Chiang <kchiang@nps.edu>

67

Naval Postgraduate School

Last update: 9/6/06

MINTIME=0
MAXTIME=2147483647

ERROR=7
SU_ERROR=8
DISPLAYFLAG=0
DELETEFLAG=0
ABSOLUTE_START=0
ABSOLUTE_END=0
STARTMODIFIED=0
ENDMODIFIED=0
STARTMODS=0
ENDMODS=0
NOW=`date -d now +%s`

Function that tells users how to use the program when incorrectly used.
function error
{
 echo “Usage:”
 echo “ Setting time attributes:”
 echo “ By absolute time:”
 echo “ modtime -a<start date-string> -A<end date-string> <file|directory>“
 echo “ Example: modtime now '09/22/2006 12:00:00' TIMED-file.txt”
 echo “ By relative time:”
 echo “ modtime <relative time flags> <file|directory>“
 echo “ where relative time flags are summarized below.”
 echo “ -w<weeks from now to allow>, -W<weeks from now to revoke>“
 echo “ -d<days from now to allow>, -D<days from now to revoke>“
 echo “ -h<hours from now to allow>, -H<hours from now to revoke>“
 echo “ -m<minutes from now to allow>, -M<minutes from now to revoke>“
 echo “ -s<seconds from now to allow>, -S<seconds from now to revoke>“
 echo “ Note: negative integers represent an earlier time from now.”
 echo ““
 echo “ Deleteing time attributes:”
 echo “ modtime -x <file|directory>“
 echo ““
 echo “ Getting time attributes:”
 echo “ modtime -g <file|directory>“
 echo ““
 echo ““
 echo “ Note: To change/set/delete the time security attributes, you must be “
 echo “ root or a user with CAP_SYS_ADMIN capability, see man (5)”
 echo “ attr for more information in extended attributes.”
 echo ““
 exit $ERROR
}

function super_user_error
{
 echo “You must be root or a super user with CAP_SYS_ADMIN capability”
 echo “ to set/modify/delete the time attributes of the target”
 echo ““
 exit $SU_ERROR
}

function display_result #Expects 1 argument; the target file name
{
 TARGET=$1

 if [$NEW -gt 0];then
 return 0;
 fi

 echo “Target: $TARGET”
 DISPLAYRESULT=`perl -e “print scalar localtime $TIFPS_START”`

68

 echo “Grant access on: $DISPLAYRESULT”
 DISPLAYRESULT=`perl -e “print scalar localtime $TIFPS_END”`
 echo “Revoke access on: $DISPLAYRESULT”
 echo
}

function do_it #Expects 1 argument; the target file name.
{
 NEW=0
 TARGET=$1

 if ! [-e $TARGET];then
 echo “file or directory: $TARGET does not exist”
 error
 fi

 if [$DELETEFLAG -gt 0]; then
 if [$EUID -gt 0]; then
 super_user_error
 else
 setfattr -x security.tifps $TARGET
 if [$? -eq 0]; then
 echo “$TARGET: TIFPS attributes deleted.”
 fi
 return;
 fi
 fi

 TIFPS_STRING=`getfattr -n security.tifps $TARGET|grep security.tifps`
 if [-z $TIFPS_STRING];then
 echo “$TARGET does not currently have accessible TIFPS attributes”
 NEW=1
 fi

 TIFPS_ATTR=${TIFPS_STRING#*:}

 if [$ABSOLUTE_START -eq 0]; then
 TIFPS_START_HEX=${TIFPS_ATTR%:*}
 TIFPS_START=`printf “%d\n” $TIFPS_START_HEX`
 fi
 if [$ABSOLUTE_END -eq 0]; then
 TIFPS_ENDSTRING=${TIFPS_ATTR#*:}
 TIFPS_END_HEX=${TIFPS_ENDSTRING%*}
 TIFPS_END=`printf “%d\n” $TIFPS_END_HEX`
 fi

 if [$DISPLAYFLAG -gt 0]; then
 display_result $TARGET
 else

 if [$EUID -gt 0]; then
 super_user_error
 fi

 if [$STARTMODIFIED -gt 0]; then
 let “TIFPS_START=$STARTMODS+$NOW”
 fi

 if [$ENDMODIFIED -gt 0]; then
 let “TIFPS_END=$ENDMODS+$NOW”
 fi

 if [$TIFPS_START -gt $MAXTIME] || [$TIFPS_START -lt $MINTIME]; then
 echo “start time out of range”
 error
 fi
 if [$TIFPS_END -lt $MINTIME] || [$TIFPS_END -gt $MAXTIME];then
 echo “end time out of range”
 error
 fi
 if [$TIFPS_START -gt $TIFPS_END]; then

69

 echo “Invalid time range”
 error
 fi

 TIFPS_START_HEX=`printf “0x%x\n” $TIFPS_START`
 TIFPS_END_HEX=`printf “0x%x\n” $TIFPS_END`
 `setfattr -n security.tifps -v “:$TIFPS_START_HEX:$TIFPS_END_HEX\000” $TARGET`
 NEW=0
 display_result $TARGET
 fi
}

#check number of arguments
NUMARGS=$# #get number of arguments
if [$NUMARGS -lt 2];then
 error
fi

parse the option flags
while getopts “:a:A:w:W:d:D:h:H:m:M:s:S:gx” Option
 do
 case $Option in
 a) TIFPS_START=`date -d “$OPTARG” +%s`
 if [$? -gt 0]; then
 error
 fi
 ABSOLUTE_START=1;;
 g) DISPLAYFLAG=1
 break;;
 x) DELETEFLAG=1
 break;;
 w) let “STARTMODS+=$OPTARG*7*24*60*60”
 STARTMODIFIED=1;;
 d) let “STARTMODS+=$OPTARG*24*60*60”
 STARTMODIFIED=1;;
 h) let “STARTMODS+=$OPTARG*60*60”
 STARTMODIFIED=1;;
 m) let “STARTMODS+=$OPTARG*60”
 STARTMODIFIED=1;;
 s) let “STARTMODS+=$OPTARG”
 STARTMODIFIED=1;;
 A) TIFPS_END=`date -d “$OPTARG” +%s`
 if [$? -gt 0]; then
 error
 fi
 ABSOLUTE_END=1;;
 W) let “ENDMODS+=$OPTARG*7*24*60*60”
 ENDMODIFIED=1;;
 D) let “ENDMODS+=$OPTARG*24*60*60”
 ENDMODIFIED=1;;
 H) let “ENDMODS+=$OPTARG*60*60”
 ENDMODIFIED=1;;
 M) let “ENDMODS+=$OPTARG*60”
 ENDMODIFIED=1;;
 S) let “ENDMODS+=$OPTARG”
 ENDMODIFIED=1;;
 *) echo “Unimplemented option chosen.”;;
 esac
done

Decrements the argument pointer, so it points to next argument.
shift $(($OPTIND - 1))

check that target arguments for files/directories are given
if [“$1” = ““]; then
 error
fi

#set or get attributes for all arguments
for arg in $*
do

70

 do_it $arg
done

exit 0

modtime_install.sh
#!/bin/bash

run this install script as root
To install modtime:
./modtime_install.sh -i

To remove modtime:
./modtime_install.sh -u

function check_dependency
{
 echo “Checking for dependencies...”

 which setfattr
 if [$? -gt 0]; then
 echo “You need to install the setfattr and getfattr tools from the attr package
first”
 exit
 fi

 which getfattr
 if [$? -gt 0]; then
 echo “You need to install the setfattr and getfattr tools from the attr package
first”
 exit
 fi
 which perl
 if [$? -gt 0]; then
 echo “You need to install perl first”
 exit
 fi
}

while getopts “:iu” Option
 do
 case $Option in
 u) rm -f /usr/bin/modtime
 rm -f /usr/share/man/man1/modtime.1.gz
 if [$? -eq 0]; then
 echo “Uninstall sucessful!!”
 else
 echo “Uninstall failed! You can manually remove the modtime from the”
 echo “/usr/bin/ directory and the modtime.1.gz file from the “
 echo “/usr/share/man/man1/ directory.”
 fi
 exit;;

 i) check_dependency
 cp -f modtime /usr/bin/
 cp -f modtime.1.gz /usr/share/man/man1/
 if [$? -eq 0]; then
 echo “Install successful!!”
 else
 echo “Uninstall failed! Copy the modtime to /usr/bin and “
 echo “modtime.1.gz to the /usr/share/man/man1/ directories.”
 fi
 exit;;
 *) echo “This script only takes -u or -i as flags”

 esac
done

71

APPENDIX B. INSTALLATION GUIDE

This is a brief description of how to patch, compile, and install both the TIFPS

Linux Security Module and the modtime tool. The latter is used to get and set the time

attributes for use with the TIFPS LSM.

A. INSTALLING TIFPS MODULE
1. Download and install the Fedora Core 5 (FC5) Linux operating system. The

TIFPS Linux Security Module (LSM) should work for any distribution of Linux

that supports the LSM framework. Specifically, this implementation was

developed with kernel version 2.6.15 using the Fedora Core 5 distribution. It was

compiled and tested on an i686 machine.

2. During operating system (OS) installation, make sure to also install the perl and

attr packages. These are required for the modtime tool to work. Note: In FC5,

both should be installed by default.

3. After the OS install, download and install the kernel source code. For FC5:

a. First, make a note of the kernel version installed by typing:

$ uname -r

b. Then, download the kernel source package (kernel-<version>.src.rpm)

from:

http://download.fedora.redhat.com/pub/fedora/linux/core/5/source/SRPMS/

c. As root, install the source rpm by:

rpm -Uvh kernel-<version>.src.rpm

d. Build the kernel source:

cd /usr/src/redhat/SPECS

rpmbuild -bp --target $(uname –m) kernel-2.6.spec

72

e. The source should now be installed in /usr/src/redhat/BUILD/kernel-

<version>/linux-2.6.15.<arch>/ directory, create a symlink to this source

directory:

ln –s /usr/src/redhat/BUILD/kernel-<version>/linux-2.6.15.<arch> \

/usr/src/linux

4. Patch the kernel with TIFPS with the following steps:

a. As root, change into the kernel source directory:

cd /usr/src/linux

b. Patch the kernel source with the tifps_patch by:

cp <path to tifps_patch_kernel-2.6.15_090606 on CD1> /usr/src/linux

patch -p1 –i /usr/src/linux/ tifps_patch_kernel-2.6.15_090606

c. To revert back to original kernel, type:

patch -p1 -R -i /usr/src/linux/tifps_patch_kernel-2.6.15_090606

5. Configure the new kernel with tifps selected as a module:

a. As root, change into kernel source directory and run the following

command to keep the existing kernel configuration:

make oldconfig

b. Answer ‘N’ for any new kernel options available.

c. Next, run:

make menuconfig

d. Select the kernel options required to support the hardware associated with

the system upon which it will execute. The default should work.

e. Go to the “Security options” option using arrow keys and using the space

bar to select options (See Figure B-1):

73

Figure B-1. Select “Security options”

f. Unselect NSA SELinux Support.

g. Unselect all other security models or select them as modules:

i. Default Linux Capabilities

ii. BSD Secure Levels

iii. Root Plug Support (will appear only if USB support is selected)

h. Select “NPS TIFPS (Experimental)” as a module. See Figure B-2 below.

74

Figure B-2. Set “NPS TIFPS” as a module

i. Exit the kernel configuration utility and save the configuration when

prompted.

6. If desired, edit the EXTRAVERSION field in main Makefile in the /usr/src/linux

source code directory to custom name the new kernel.

7. Compile the kernel by running:

make all && make modules_install && make install

8. Edit the /boot/grub/grub.conf file to boot the newly configured kernel by default

by changing the default field to 0.

9. Edit /etc/inittab file to default to runlevel 3 (multi-user mode without X-

windows):

id:3:initdefault:

10. Reboot the system:

 # reboot

75

11. Assuming all went as planned, a kernel should be now running a kernel that

supports time-based access control for regular files and directories. If the kernel

does not boot properly, it is always possible to reboot the system to the previous

working kernel by hitting any key at system startup to get to the grub boot menu

as shown in Figure B-3 below:

Figure B-3. Fedora Core 5 system start boot screen.

B. INSTALLING THE MODTIME TOOL
1. Install the modtime tool and man page for modtime by logging in as root and

changing into the tifps_tool/ directory on CD1 of archive and running the install script:

cd <path to CD1 TIFPS archive/tifps_tool_modtime/

./modtime_install.sh -i

NOTE: to uninstall the tool, run:

./modtime_install.sh -u

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

APPENDIX C. USERS GUIDE

This appendix describe how to use the TIFPS LSM to control subject and object

time permissions as well as the modtime tool for interfacing with the time-based access

control system.

A. LOADING AND UNLOADING THE TIFPS LSM
Though the TIFPS LSM can be compiled directly into the kernel, it is

recommended that it be compiled as a module so that it can be loaded and unloaded

dynamically into the kernel by root. After a successful compile and a subsequent reboot

into the new kernel, load the TIFPS LSM by running the following command as root:

modprobe tifps

To unload the TIFPS LSM run the following command as root:

 # rmmod tifps

It is possible to check whether the TIFPS LSM is loaded into the kernel by listing all the

loaded modules. Run the following command as root:

 # lsmod

B. USING THE MODTIME TOOL
The modtime tool can be used by the root user to set the persistent time attributes

of regular files and directories. It can also be used by user to display the time attribute. It

has a simple command line interface similar to other Linux command line tools such as

chmod, chown, ls, etc… Figure C-1 shows a screen shot for modtime tool in use. To

get simple usage instructions simply give the command:

modtime

78

Figure C-1. Screen shot of the command line interface for modtime

The modtime tool uses flag options and can set time attributes using absolute

time or relative time via these flags. It also has flag options for deleting or displaying

time attributes. Figure C-2 below shows a screen shot of the man page for modtime. To

see the complete man page, type:

 # man modtime

79

Figure C-2. Screen shot of man page for modtime

80

C. CONTROLLING TIME ATTRIBUTES OF SUBJECTS
To control a user’s time interval for allowed access, the super user (root) can set

the time attributes of either the .bash_profile or .bashrc files which reside in the user’s

home directory. These files are read by bash every time a user logs in, therefore, they

can be used to set the time attributes of the bash shell for the user. For example, to set

the time attribute for user sam to expire on September 22, 2006 at 1700 hrs, run the

following:

modtime –A ‘9/22/06 17:00:00’ /home/sam/.bash_profile

Figure C-3. Screen shot of the modtime tool used to set user time attributes.

Since the two bash files mentioned above are owned by the user, they can be

deleted or moved by the user, effectively bypassing the access control set by root. To

prevent this, the root user must also set the file immutable by running the command:

chattr +i /home/sam/.bash_profile

To remove time attributes on the sam account, run:

chattr –i /home/sam/.bash_profile

modtime –x /home/sam/.bash*

Note: it is important to use the –x flag to remove time attributes for all the .bash*

files because these files will inherit the attributes set by the administrator during use. For

example, the .bash_history file is appended each time a user issues a new command in

the bash shell.

81

D. CONTROLLING TIME ATTRIBUTES OF OBJECTS
To control access to regular file and directory objects, the modtime tool is also

used exactly as it was used to set the user attributes above. The following command sets

the time interval of allowed access from 30 seconds before current time to September 22,

2006 at 0000 hrs for the /tmp directory:

 # modtime –s -30 –A 9/22/06 /tmp

Figure C-4. Screen shot of modtime used to control time-based access to /tmp

82

THIS PAGE INTENTIONALLY LEFT BLANK

83

APPENDIX D. TEST PROCEDURES AND RESULTS

This appendix documents the detailed test procedures and results for the test plan

described in Chapter IV. Before beginning any testing, ensure that the following

preconditions are met:

• The TIFPS LSM is compiled and installed per installation instruction in
Appendix B and loaded per usage instructions in Appendix C.

• The modtime tool is installed per instructions in Appendix B.

• The individual conducting the tests is logged in as root.

• The following user accounts exist: jody, sam, and don.

• Users can be added with the command:

useradd – m <username>

• Set the password by:

passwd <username>

• Make a copy of the testscript/ directory from archive CD 1 to a directory
of choice, for example:

cp <path to testscript/ directory on CD1> /root

A. ACCESS CONTROL TEST PROCEDURES
Static tests – enforcement of file and directory read/write/execute

1. Navigate to the directory where the TIFPS test scripts are located.

cd <path to TIFPS testscripts directory>/accesscontrol

2. Run each of the scripts listed in Table D-1 using the following example format:

 # ./s-read-file-1.sh |tee s-read-file-1-results.txt

3. Compare the results for time intervals t1 to t5 in the resulting text file from each

run to Table D-1.

84

Table D-1. Summary of results expected for each test case *

Expected Results Test ID Scripts Scenario
1 2 3 4 5

A1 1 D D D D D
A2 2 D A D -- --
A3 3 D D D D D
A4 4 D D A D D
A5 5 D D A D D
A6 6 D A D D --
A7

s-read-file-1.sh to s-read-file-7.sh
s-read-dir-1.sh to s-read-dir-7.sh
s-write-file-1.sh to s-write-file-7.sh
s-write-dir-1.sh to s-write-dir-7.sh
s-exec-file-1.sh to s-exec-file-7.sh
s-exec-dir-1.sh to s-exec-dir-7.sh
s-read-file-6-swap.sh
s-write-dir-4-swap.sh

7 D D A D --

* D = Deny; A = Allow

Static tests- Inheritance in file/directory creation and file copy operations

Inheritance in file and directory creation

1. Run the following commands as root:

cd <path to TIFPS directory>/testscripts/accesscontrol/

./s-create-file.sh |tee s-create-file-results.txt

./s-create-dir.sh |tee s-create-dir-results.txt

2. Compare results captured in the results file to expected results summarized in

Table D-2.

Table D-2. File and directory creation tests and expected results

Test ID Test script Expected Result
B1 s-create-file.sh Time attributes of the newly created file matches that of the subject.
B2 s-create-dir.sh Time attributes of the newly created directory matches that of the

subject.

Inheritance in file copy

1. Create a login session as root and clear the time attributes for user jody.

modtime –x /home/jody/.bash*

2. Using the root session, change to the testscript directory and copy the user scripts

to jody’s home directory and make them accessible to the user:

cd <path to TIFPS directory>/testscripts/accesscontrol/

cp s-copy-file-*-user.sh /home/jody/

85

chmod 755 /home/jody/s-copy-file-*-user.sh

3. Create a file to capture the results:

touch /tmp/s-copy-file-1a-results.txt

chmod 766 /tmp/s-copy-file-1a-results.txt

4. Using the root login session, setup the test case and capture output in the results

file:

./s-copy-file-1-admin.sh >> /tmp/s-copy-file-1a-results.txt

5. Create another login session as user jody, run the test case and capture the output

in the results file:

$./s-copy-file-1a-user.sh >> /tmp/s-copy-file-1a-results.txt

6. Using the root login session, cleanup the time attributes for jody:

modtime –x /home/jody/.bash*

7. Repeat steps 4 -6 nine more times for a total of 10 trials. Note: you should logout

of the jody session after each trial and relogin to reinherit the time attributes for

jody. This is especially important for the tests in scenario three. After completing

the 10 trials, view the resulting file and ensure that for each trial, the destination

file properly inherited the attributes. It should take on the time attributes of the

smallest time interval of the three test entities: subject, source object, destination

object (See Table D-4 for summary of expected results). Record the number of

unsuccessful trials.

8. Repeat steps 3 - 6 using results file, admin script, and user script summarized in

Table D-3 below (Test ID C1 is already completed by above):

86

Table D-3. Summary of results file, admin script, and user script for copy test cases

Test ID Test Case Results file Admin script User script
C1 Scenario 1, cp s-copy-file-1a-results.txt s-copy-file-1-admin.sh s-copy-file-1a-user.sh
C2 Scenario 1, redirection s-copy-file-1b-results.txt s-copy-file-1-admin.sh s-copy-file-1b-user.sh
C3 Scenario1 , pipes s-copy-file-1c-results.txt s-copy-file-1-admin.sh s-copy-file-1c-user.sh
C4 Scenario 2, cp s-copy-file-2a-results.txt s-copy-file-2-admin.sh s-copy-file-2a-user.sh
C5 Scenario 2, redirection s-copy-file-2b-results.txt s-copy-file-2-admin.sh s-copy-file-2b-user.sh
C6 Scenario 2, pipes s-copy-file-2c-results.txt s-copy-file-2-admin.sh s-copy-file-2c-user.sh
C7 Scenario 3, cp s-copy-file-3a-results.txt s-copy-file-3-admin.sh s-copy-file-3a-user.sh*
C8 Scenario 3, redirection s-copy-file-3b-results.txt s-copy-file-3-admin.sh s-copy-file-3b-user.sh*
C9 Scenario 3, pipes s-copy-file-3c-results.txt s-copy-file-3-admin.sh s-copy-file-3c-user.sh*

* Note: before running these scripts, you must relogin as user jody to reinherit proper time attributes.

Table D-4. Expected results of the file copy tests and file/directory creation tests

Test ID Script Expected time attributes of the destination file
C1 – C3 s-copy-file-1(abc)-results.sh Time attributes of /tmp/dest.txt matches that of destination object
C4 – C6 s-copy-file-2(abc)-results.sh Time attributes of /tmp/dest.txt matches that of the source object
C7 – C9 s-copy-file-3(abc)-results.sh Time attributes of /tmp/dest.txt matches that of the subject

Static tests – TIFPS behavior on time expiration during file write operations

This set of tests captures the TIFPS system behavior when access to objects is

revoked during a write operation. The scripts attempt to write 5 million ‘G’s to a file that

expires within seconds. Test cases for 1, 2, 3, 4, and 5 seconds are suggested, however,

actual number of seconds is dependent on the speed of the hardware running the TIFPS

LSM.

1. As root, navigate to the testscript/accesscontrol/ directory.

cd <path to TIFPS directory>/testscripts/accesscontrol/

2. Compile the helper C program used to generate and write 5 million ‘G’s to the

test file.

gcc fileprint5M.c –o fileprint5M

3. Run the following script using arguments 1, 2, 3, 4, and 5 or until all ‘G’s are

successfully written to the file /tmp/write-expired.txt. The number of characters written

successfully to the file will be printed to the screen. See Table D-5 for a sample table

used for capturing the information for this test.

./ s-write-expire.sh <number of seconds before access revocation>

87

Table D-5. Sample table for information to be captured for the access revocation
during file write tests

Test
ID

Script usage Number of bytes written
successfully out of 5
million

Error Message, if any

s-write-expire.sh 1 Record # of bytes written Record error message here.
s-write-expire.sh 2 Record # of bytes written Record error message here.
s-write-expire.sh 3 Record # of bytes written Record error message here.
s-write-expire.sh 4 Record # of bytes written Record error message here.

D1

s-write-expire.sh 5 Record # of bytes written Record error message here.

4. Record the number of characters written successfully and the error message from

the system for each test case. Increment the number of seconds until all 5 million

‘G’s are successfully written to the file and no error message occurs.

Dynamic tests – Dynamically changing subject and object attributes

This set of tests capture system behavior when an administrator changes the time

attributes of subjects or objects dynamically while a user is logged into the system. For

dynamically changing the subject time attributes case:

1. Create two separate login sessions, one as root and the other as user jody.

2. In the root login session, change to the testscripts/accesscontrol directory and

copy the user scripts to the /home/jody/ directory and make them accessible to

the user:

cd <path to TIFPS testscript directory>/accesscontrol/

cp d-change-*-user.sh /home/jody/

chmod 755 /home/jody/d-change-*-user.sh

3. In the root login session, run:

./d-change-subj-admin.sh

4. Immediately (within 10 seconds), run the following script in the jody login

session:

$./d-change-subj-user.sh

88

5. The expected behavior is continued user access to /tmp/longfile.txt because

subject time attributes are inherited at user login.

6. For dynamic object changes, repeat steps 3 and 4 as follows:

a. In the root login session, run:

./d-change-obj-admin.sh

b. In the jody login session, run:

$./d-change-obj-user.sh

7. The expected behavior is revocation of access because object access is checked at

every file or directory read/write/execute operation.

Table D-6. Summary of expectations for dynamically changing subject and object

time

Test ID Test scripts Expected Results
E1 d-change-subj-admin.sh

d-change-subj-user.sh
Continued access should be allowed since time attributes
are inherited at user login.

E2 d-change-obj-admin.sh
d-change-obj-user.sh

Access should be revoked according to the newly set time
attributes.

B. ACCESS CONTROL TEST SCRIPTS

This section contains the scripts for the tests described in Section A.

Static tests – enforcement of file and directory read/write/execute

s-read-file-1.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script
Also, make sure the user jody exists or create one.

echo “Static, read file test, scenario 1 of 7”
echo “setup subject time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
echo ““
echo “setup object time attributes...”
echo “this message will self destruct in 10 seconds...” >/tmp/message.txt
modtime -s30 -S40 /tmp/message.txt

sleep 2s

i=1

while [$i -le 5]; do
 date

89

 su - jody -c “cat /tmp/message.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done static read file test scenario 1 of 7...”
echo ““

s-read-file-2.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read file test, scenario 2 of 7”
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile /tmp/message.txt
echo ““

i=1

while [$i -le 3]; do
 date
 su - jody -c “cat /tmp/message.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “Done with read file test, scenario 2 of 7”
echo ““

s-read-file-3.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read file test, scenario 3 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
modtime -s20 -S30 /tmp/message.txt

i=1

while [$i -le 5]; do
 date
 su - jody -c “cat /tmp/message.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done static read file test, scenario 3 of 7”

90

echo ““

s-read-file-4.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read file test, scenario 4 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S30 /home/jody/.bash_profile
modtime -s20 -S40 /tmp/message.txt

i=1

while [$i -le 5]; do
 date
 su - jody -c “cat /tmp/message.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done static read file test, scenario 4 of 7.”
echo ““

s-read-file-5.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read file test, scenario 5 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s20 -S30 /home/jody/.bash_profile
modtime -s10 -S40 /tmp/message.txt

i=1

while [$i -le 5]; do
 date
 su - jody -c “cat /tmp/message.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done static read file test, scenario 5 of 7...”
echo ““

s-read-file-6.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read file test, scenario 6 of 7”
echo ““

91

echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
modtime -s10 -S30 /tmp/message.txt

i=1

while [$i -le 4]; do
 date
 su - jody -c “cat /tmp/message.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done read file test, scenario 6 of 7 ...”
echo ““

s-read-file-7.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read file test, scenario 7 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s20 -S30 /home/jody/.bash_profile
modtime -s10 -S30 /tmp/message.txt

i=1

while [$i -le 4]; do
 date
 su - jody -c “cat /tmp/message.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done static read file test, scenario 7 of 7...”
echo ““

s-read-dir-1.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read directory test, scenario 1 of 7”
echo “setup subject time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
echo ““
echo “setup object time attributes...”
modtime -s30 -S40 /tmp

sleep 2s

i=1

while [$i -le 5]; do

92

 date
 su - jody -c “ls /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done static read directory test, scenario 1 of 7”
echo ““
#cleanup
modtime –x /home/jody/.bash* /tmp

s-read-dir-2.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read directory test, scenario 2 of 7”
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile /tmp
echo ““

sleep 2s

i=1

while [$i -le 3]; do
 date
 su - jody -c “ls /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done static read directory test, scenario 2 of 7.”
echo ““
#cleanup
modtime –x /home/jody/.bash* /tmp

s-read-dir-3.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read directory test, scenario 3 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
modtime -s20 -S30 /tmp

i=1

while [$i -le 5]; do
 date
 su - jody -c “ls /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else

93

 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done static read directory test, scenario 3 of 7”
echo ““
#cleanup
modtime –x /home/jody/.bash* /tmp

s-read-dir-4.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read directory test, scenario 4 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S30 /home/jody/.bash_profile
modtime -s20 -S40 /tmp

i=1

while [$i -le 5]; do
 date
 su - jody -c “ls /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done static read directory test, scenario 4 of 7.”
echo ““
#cleanup
modtime –x /home/jody/.bash* /tmp

s-read-dir-5.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read directory test, scenario 5 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s20 -S30 /home/jody/.bash_profile
modtime -s10 -S40 /tmp

i=1

while [$i -le 5]; do
 date
 su - jody -c “ls /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

94

echo “ done static read directory test, scenario 5 of 7.”

echo ““
#cleanup
modtime –x /home/jody/.bash* /tmp

s-read-dir-6.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read directory test, scenario 6 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
modtime -s10 -S30 /tmp

i=1

while [$i -le 4]; do
 date
 su - jody -c “ls /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done static read directory test, scenario 6 of 7”
echo ““
#cleanup
modtime –x /home/jody/.bash* /tmp

s-read-dir-7.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read directory test, scenario 7 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s20 -S30 /home/jody/.bash_profile
modtime -s10 -S30 /tmp

i=1

while [$i -le 4]; do
 date
 su - jody -c “ls /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done static read directory test, scenario 7 of 7”
echo ““
#cleanup
modtime –x /home/jody/.bash* /tmp

95

s-write-file-1.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, file write test, scenario 1 of 7”
echo “setup subject time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
echo ““
echo “create new object and setup its time attributes...”
echo ““ > /tmp/written.txt
chmod 666 /tmp/written.txt
modtime -s30 -S40 /tmp/written.txt

sleep 2s

i=1

while [$i -le 5]; do
 date
 su - jody -c “echo 'overwritten' >>/tmp/written.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp/written.txt...”
cat /tmp/written.txt

s-write-file-2.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, file write test, scenario 2 of 7”
echo “setup subject and object time attributes...”
echo ““ >/tmp/written.txt
chmod 666 /tmp/written.txt
modtime -s10 -S20 /home/jody/.bash_profile /tmp/written.txt
echo ““

i=1

while [$i -le 3]; do
 date
 su - jody -c “echo 'overwritten `date`' >/tmp/written.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp/written.txt...”
cat /tmp/written.txt

s-write-file-3.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

96

echo “Static, file write test, scenario 3 of 7”
echo ““
echo “setup subject and object time attributes...”
echo ““ >/tmp/written.txt
chmod 666 /tmp/written.txt
modtime -s10 -S20 /home/jody/.bash_profile
modtime -s20 -S30 /tmp/written.txt

i=1

while [$i -le 5]; do
 date
 su - jody -c “echo 'overwritten `date`' >>/tmp/written.txt”

 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp/written.txt ...”
cat /tmp/written.txt

s-write-file-4.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, file write test, scenario 4 of 7”
echo ““
echo “setup subject and object time attributes...”
echo ““>/tmp/written.txt
chmod 666 /tmp/written.txt
modtime -s10 -S30 /home/jody/.bash_profile
modtime -s20 -S40 /tmp/written.txt

i=1

while [$i -le 5]; do
 date
 su - jody -c “echo 'overwritten `date`'>>/tmp/written.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp/written.txt...”
cat /tmp/written.txt

s-write-file-5.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, file write test, scenario 5 of 7”
echo ““
echo “setup subject and object time attributes...”
echo ““ >/tmp/written.txt
chmod 666 /tmp/written.txt
modtime -s20 -S30 /home/jody/.bash_profile

97

modtime -s10 -S40 /tmp/written.txt

i=1

while [$i -le 5]; do
 date
 su - jody -c “echo 'overwritten `date`'>>/tmp/written.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp/written.txt...”
cat /tmp/written.txt

s-write-file-6.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, file write test, scenario 6 of 7”
echo ““
echo “setup subject and object time attributes...”
echo ““ >/tmp/written.txt
chmod 666 /tmp/written.txt
modtime -s10 -S20 /home/jody/.bash_profile
modtime -s10 -S30 /tmp/written.txt

i=1

while [$i -le 4]; do
 date
 su - jody -c “echo 'overwritten `date`'>>/tmp/written.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp/written.txt...”
cat /tmp/written.txt

s-write-file-7.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, file write test, scenario 7 of 7”
echo ““
echo “setup subject and object time attributes...”
echo ““>/tmp/written.txt
chmod 666 /tmp/written.txt
modtime -s20 -S30 /home/jody/.bash_profile
modtime -s10 -S30 /tmp/written.txt

i=1

while [$i -le 4]; do
 date
 su - jody -c “echo 'overwritten `date`'>>/tmp/written.txt”

98

 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp/written.txt...”
cat /tmp/written.txt

s-write-dir-1.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, directory write test, scenario 1 of 7”
echo “setup subject time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
echo ““
echo ““
echo “setup object time attributes...”
modtime -s30 -S40 /tmp

sleep 2s

i=1

while [$i -le 5]; do
 date
 su - jody -c “touch /tmp/`date +%T`-$i.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp directory”
ls /tmp
#cleanup
modtime –x /home/jody/.bash* /tmp

s-write-dir-2.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, direcotry write test, scenario 2 of 7”
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile /tmp
echo ““

i=1

while [$i -le 3]; do
 date
 su - jody -c “touch /tmp/`date +%T`-$i.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““

99

 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp diretory”
ls /tmp
#cleanup
modtime –x /home/jody/.bash* /tmp

s-write-dir-3.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, directory write test, scenario 3 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
modtime -s20 -S30 /tmp

i=1

while [$i -le 5]; do
 date
 su - jody -c “touch /tmp`date +%T`-$i.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp directory”
ls /tmp
#cleanup
modtime –x /home/jody/.bash* /tmp

s-write-dir-4.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, directory write test, scenario 4 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S30 /home/jody/.bash_profile
modtime -s20 -S40 /tmp

i=1

while [$i -le 5]; do
 date
 su - jody -c “touch /tmp/`date +%T`-$i.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp directory”
ls /tmp
#cleanup

100

modtime –x /home/jody/.bash* /tmp

s-write-dir-5.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, directory write test, scenario 5 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s20 -S30 /home/jody/.bash_profile
modtime -s10 -S40 /tmp

i=1

while [$i -le 5]; do
 date
 su - jody -c “touch /tmp/`date +%T`-$i.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp directory”
ls /tmp
#cleanup
modtime –x /home/jody/.bash* /tmp

s-write-dir-6.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, directory write test, scenario 6 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
modtime -s10 -S30 /tmp

i=1

while [$i -le 4]; do
 date
 su - jody -c “touch /tmp/`date +%T`-$i.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp directory”
ls /tmp
#cleanup
modtime –x /home/jody/.bash* /tmp

s-write-dir-7.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

101

echo “Static, directory write test, scenario 7 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s20 -S30 /home/jody/.bash_profile
modtime -s10 -S30 /tmp

i=1

while [$i -le 4]; do
 date
 su - jody -c “touch /tmp/`date +%T`-$i.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp directory”
ls /tmp
#cleanup
modtime –x /home/jody/.bash* /tmp

s-exec-file-1.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, file execute test, scenario 1 of 7”
echo “setup subject time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
echo ““
echo “setup object time attributes...”
modtime -s30 -S40 /usr/bin/cal

sleep 2s

i=1

while [$i -le 5]; do
 date
 su - jody -c “cal”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done
#cleanup
modtime –x /home/jody/.bash* /usr/bin/cal

s-exec-file-2.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, file execute test, scenario 2 of 7”
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile /usr/bin/cal

i=1

102

while [$i -le 3]; do
 date
 su - jody -c “cal”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done
#cleanup
modtime –x /home/jody/.bash* /usr/bin/cal

s-exec-file-3.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, file execute test, scenario 3 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
modtime -s20 -S30 /usr/bin/cal

i=1

while [$i -le 5]; do
 date
 su - jody -c “cal”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done
#cleanup
modtime –x /home/jody/.bash* /usr/bin/cal

s-exec-file-4.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, file execute test, scenario 4 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S30 /home/jody/.bash_profile
modtime -s20 -S40 /usr/bin/cal

i=1

while [$i -le 5]; do
 date
 su - jody -c “cal”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done
echo “done static exec file test, scenario 4 of 7.”
echo ““

103

#cleanup
modtime –x /home/jody/.bash* /usr/bin/cal

s-exec-file-5.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, file write test, scenario 5 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s20 -S30 /home/jody/.bash_profile
modtime -s10 -S40 /usr/bin/cal

i=1

while [$i -le 5]; do
 date
 su - jody -c “cal”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done static exec file test, scenario 5 of 7.”
echo ““
#cleanup
modtime –x /home/jody/.bash* /usr/bin/cal

s-exec-file-6.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, file write test, scenario 6 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
modtime -s10 -S30 /usr/bin/cal

i=1

while [$i -le 4]; do
 date
 su - jody -c “cal”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done
echo “done exec file test, scenario 6 of 7”
echo ““
#cleanup
modtime –x /home/jody/.bash* /usr/bin/cal

s-exec-file-7.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

104

echo “Static, file execute test, scenario 7 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s20 -S30 /home/jody/.bash_profile
modtime -s10 -S30 /usr/bin/cal

i=1

while [$i -le 4]; do
 date
 su - jody -c “cal”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done static exec file test, scenario 7 of 7.”
echo ““
#cleanup
modtime –x /home/jody/.bash* /usr/bin/cal

s-exec-dir-1.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, directory execute test, scenario 1 of 7”
echo “setup subject time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
echo ““
echo “setup object time attributes...”
modtime -s30 -S40 /tmp

sleep 2s

i=1

while [$i -le 5]; do
 date
 su - jody -c “cd /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done
#cleanup
modtime –x /home/jody/.bash* /tmp

s-exec-dir-2.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, directory execute test, scenario 2 of 7”
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile /tmp

sleep 2s

105

i=1

while [$i -le 3]; do
 date
 su - jody -c “cd /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done
#cleanup
modtime –x /home/jody/.bash* /tmp

s-exec-dir-3.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, directory execute test, scenario 3 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
modtime -s20 -S30 /tmp

i=1

while [$i -le 5]; do
 date
 su - jody -c “cd /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done
#cleanup
modtime –x /home/jody/.bash* /tmp

s-exec-dir-4.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, directory execute test, scenario 4 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S30 /home/jody/.bash_profile
modtime -s20 -S40 /tmp

i=1

while [$i -le 5]; do
 date
 su - jody -c “cd /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”

106

done
#cleanup
modtime –x /home/jody/.bash* /tmp

s-exec-dir-5.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, directory execute test, scenario 5 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s20 -S30 /home/jody/.bash_profile
modtime -s10 -S40 /tmp

i=1

while [$i -le 5]; do
 date
 su - jody -c “cd /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done
#cleanup
modtime –x /home/jody/.bash* /tmp

s-exec-dir-6.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, directory execute test, scenario 6 of 7”
echo ““
echo “setup subject and object time attributes...”
modtime -s10 -S20 /home/jody/.bash_profile
modtime -s10 -S30 /tmp

i=1

while [$i -le 4]; do
 date
 su - jody -c “cd /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done
#cleanup
modtime –x /home/jody/.bash* /tmp

s-exec-dir-7.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, directory execute test, scenario 7 of 7”
echo ““
echo “setup subject and object time attributes...”

107

modtime -s20 -S30 /home/jody/.bash_profile
modtime -s10 -S30 /tmp

i=1

while [$i -le 4]; do
 date
 su - jody -c “cd /tmp”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done
#cleanup
modtime –x /home/jody/.bash* /tmp

s-read-file-6-swap.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, read file test, scenario 6 of 7(subject and object time swapped”
echo ““
echo “setup subject and object time attributes...”
#modtime -s10 -S20 /home/jody/.bash_profile
#modtime -s10 -S30 /tmp/message.txt
modtime -s10 –S30 /home/jody/.bash_profile
modtime -s10 –S20 /tmp/message.txt

i=1

while [$i -le 4]; do
 date
 su - jody -c “cat /tmp/message.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “done read file test, scenario 6 of 7 ...”
echo ““

s-write-dir-4-swap.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, directory write test, scenario 4 of 7 (subject and object swapped)”
echo ““
echo “setup subject and object time attributes...”
#modtime -s10 -S30 /home/jody/.bash_profile
#modtime -s20 -S40 /tmp
modtime –s20 –S40 /home/jody/.bash_profile
modtime –s10 –S30 /tmp

i=1

while [$i -le 5]; do

108

 date
 su - jody -c “touch /tmp/`date +%T`-$i.txt”
 if [$? -gt 0]; then
 echo “t$i: Access Denied”
 else
 echo “t$i: Access Granted”
 fi
 echo ““
 sleep 10s
 let “i=$i+1”
done

echo “contents of /tmp directory”
ls /tmp
#cleanup
modtime –x /home/jody/.bash* /tmp

Static tests- Inheritance in file/directory creation and file copy operations

s-create-file.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, create file test”
echo ““
echo ““
echo “setup subject time attributes...”
modtime -w-2 -W2 /home/jody/.bash_profile
echo ““
echo ““

echo “current time is:”
date
echo ““

echo “creating a new file...........”
su - jody -c “echo 'new file from jody' > jodynew.txt”
echo ““

echo “The time attribute for the newly created file is ...”
modtime -g /home/jody/jodynew.txt
rm -f /home/jody/jodynew.txt

s-create-dir.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script

echo “Static, create directory test”
echo ““
echo ““
echo “setup subject time attributes...”
modtime -w-2 -W2 /home/jody/.bash_profile
echo ““
echo ““

echo “current time is:”
date
echo ““

echo “creating a new directory...........”
su - jody -c “mkdir jodyNewDirectory”
echo ““

echo “The time attribute for the newly created directory is ...”
modtime -g /home/jody/jodyNewDirectory
rm -rf /home/jody/jodyNewDirectory

109

s-copy-file-1-admin.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script
echo “setup subject time attributes...”
cd /home/jody/
modtime –x /home/jody/.bash*
modtime -w-2 -W2 /home/jody/.bash_profile
echo “setup source object time attributes...”
cd /tmp
echo “This is the source file.” >/tmp/source.txt
modtime -d-1 -D1 source.txt
echo “setup destination object time attributes...(smallest)”
echo “This is the destination file.” >/tmp/dest.txt
chmod 777 /tmp/dest.txt /tmp/source.txt
modtime -h-1 -H1 dest.txt

s-copy-file-1a-user.sh
#!/bin/bash
setup the test by running the s-copy-file-1-admin.sh script as root first.
echo “Static, copy file test (using cp), scenario 1 of 3 - smallest dest object”
echo ““
echo “current time is:”
date
cd /tmp
cp source.txt dest.txt
echo “The resulting time attribute for the destination file is ...”
modtime -g dest.txt
cd

s-copy-file-1b-user.sh
#!/bin/bash
setup the test by running the s-copy-file-1-admin.sh script as root first.
echo “Static, copy file test (using redirection), scenario 1 of 3 - smallest dest object”
echo ““
echo “current time is:”
date
cd /tmp
cat source.txt > dest.txt
echo “The resulting time attribute for the destination file is ...”
modtime -g dest.txt
cd

s-copy-file-1c-user.sh
#!/bin/bash
setup the test by running the s-copy-file-1-admin.sh script as root first.
echo “Static, copy file test (using pipes), scenario 1 of 3 - smallest dest obj”
echo ““
echo “current time is:”
date
cd /tmp
cat source.txt |tee dest.txt
echo “The resulting time attribute for the destination file is ...”
modtime -g dest.txt
cd

s-copy-file-2-admin.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script
echo “setup subject time attributes...”
cd /home/jody/
modtime –x /home/jody/.bash*
modtime -w-2 -W2 /home/jody/.bash_profile

110

echo “setup source object time attributes... (smallest)”
cd /tmp
echo “This is the source file.” >/tmp/source.txt
modtime -h-1 -H1 source.txt
echo “setup destination object time attributes...”
echo “This is the destination file.” >/tmp/dest.txt
chmod 777 /tmp/dest.txt /tmp/source.txt
modtime -d-1 -D1 dest.txt

s-copy-file-2a-user.sh
#!/bin/bash
setup the test by running the s-copy-file-2-admin.sh script as root first.
echo “Static, copy file test (using cp), scenario 2 of 3 - smallest src object”
echo ““
echo “current time is:”
date
cd /tmp
cp source.txt dest.txt
echo “The resulting time attribute for the destination file is ...”
modtime -g dest.txt
cd

s-copy-file-2b-user.sh
#!/bin/bash
setup the test by running the s-copy-file-2-admin.sh script as root first.
echo “Static, copy file test (using redirection), scenario 2 of 3 - smallest src object”
echo ““
echo “current time is:”
date
cd /tmp
cat source.txt > dest.txt
echo “The resulting time attribute for the destination file is ...”
modtime -g dest.txt
cd

s-copy-file-2c-user.sh
#!/bin/bash
setup the test by running the s-copy-file-2-admin.sh script as root first.
echo “Static, copy file test (using pipes), scenario 2 of 3 - smallest src object”
echo ““
echo “current time is:”
date
cd /tmp
cat source.txt |tee dest.txt
echo “The resulting time attribute for the destination file is ...”
modtime -g dest.txt
cd

s-copy-file-3-admin.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script
echo “setup subject time attributes...(smallest)”
cd /home/jody/
modtime –x /home/jody/.bash*
modtime -h-1 -H1 /home/jody/.bash_profile
echo “setup source object time attributes...”
cd /tmp
echo “This is the source file.” >/tmp/source.txt
modtime -d-1 -D1 source.txt
echo “setup destination object time attributes...”
echo “This is the destination file.” >/tmp/dest.txt
chmod 777 /tmp/dest.txt /tmp/source.txt

111

modtime -d-1 -D1 dest.txt

s-copy-file-3a-user.sh
#!/bin/bash
setup the test by running the s-copy-file-3-admin.sh script as root first.
echo “Static, copy file test (using cp), scenario 3 of 3 - smallest subject”
echo ““
echo “current time is:”
date
cd /tmp
cp source.txt dest.txt
echo “The resulting time attribute for the destination file is ...”
modtime -g dest.txt
cd

s-copy-file-3b-user.sh
#!/bin/bash
setup the test by running the s-copy-file-3-admin.sh script as root first.
echo “Static, copy file test (using redirection), scenario 3 of 3 - smallest subject”
echo ““
echo “current time is:”
date
cd /tmp
cat source.txt > dest.txt
echo “The resulting time attribute for the destination file is ...”
modtime -g dest.txt
cd

s-copy-file-3c-user.sh
#!/bin/bash
setup the test by running the s-copy-file-3-admin.sh script as root first.
echo “Static, copy file test (using pipes), scenario 3 of 3 - smallest subject”
echo ““
echo “current time is:”
date
cd /tmp
cat source.txt |tee dest.txt
echo “The resulting time attribute for the destination file is ...”
modtime -g dest.txt
cd

Static tests – TIFPS behavior on time expiration during file write operations

fileprint5M.c
#include <stdio.h>

int main(){
 FILE *fp;
 fp = fopen(“/tmp/write-expired.txt”, “r+”);

 if (fp ==NULL){
 printf(“ERROR opening file: goodbye!\n”);
 return 0;
 }

 int i=0;
 int err;
 for (i=0; i<5000000; i++){
 err=fprintf(fp, “G”);
 if (err < 0){

112

 printf(“ERROR writing to file: ERR %d\n”, err);
 return 0;
 }
 }
 err = fclose(fp);
 if (err){
 printf(“ERROR closing file: ERR %d\n”, err);
 return 0;
 }
 printf(“File write successfully completed!\n”);
 return 0;
}

s-write-expire.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script
give the number of seconds to revoke access as the first argument

if [$EUID -gt 0];then
 echo “this script must be run as root”
 exit;
fi

if [$# -lt 1]; then
 echo “Give the number of seconds before access revocation as a first argument”
 exit;
fi

echo “Static test: File expiration during write operation”
echo ““
echo “setup subject and object time attributes...”
echo “file will expire in $1 second(s)”
modtime -W 1 /home/jody/.bash_profile
rm -f /tmp/write-expired.txt
touch /tmp/write-expired.txt
chmod 777 /tmp/write-expired.txt
modtime -S $1 /tmp/write-expired.txt

echo “write operation started: “
date

echo ““
echo “User jody tries to append 5 million G's to /tmp/write-expired.txt file ..”
su jody -c “./fileprint5M”
echo ““
echo “write operation ended:”
date

echo “Number of characters written to the file successfully:”
wc -c /tmp/write-expired.txt
echo ““

Dynamic tests – Dynamically changing subject and object attributes

d-change-subj-admin.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script
Run this script as root; while the script sleeps, login as jody and run the
d-change-subj-user.sh script.
echo “Dynamic test, change subject attributes while user is logged in and reading a file”
echo ““
echo ““
echo “Initialize subject time attributes...”
modtime -w-2 -W2 /home/jody/.bash_profile
echo ““
echo ““

113

echo “setup object and its time attributes...”
rm /tmp/longfile.txt
i=1
while [$i -le 20]; do
 echo “line $i: This is a long file” >> /tmp/longfile.txt
 let “i=$i+1”
done
modtime -w-1 -W1 /tmp/longfile.txt

echo “current time is:”
date
echo ““

echo “going to sleep for 10s...”
sleep 10s
echo “...”
echo “...”
echo ““

echo “current time is: “
date
echo ““
echo “changing subject time attributes...”
modtime -S-1 /home/jody/.bash_profile

d-change-subj-user.sh
#!/bin/bash
This script is a companion to the d-change-subj-admin.sh script;
Run this script as user jody as soon as the main script sleeps

echo “current time is:”
date
echo ““

cat /tmp/longfile.txt

echo “sleeping for 10s....”
sleep 10s
echo “..............................”
echo ““
echo “current time is:”
date
echo ““
cat /tmp/longfile.txt

d-change-obj-admin.sh
#!/bin/bash
must be run as root, be sure tifps LSM is loaded before running script
Run this script as root; while the script sleeps, login as jody and run the
d-change-obj-user.sh script.
echo “Dynamic test, change object attributes while user is logged in and reading the
object”
echo ““
echo ““
echo “Initialize subject time attributes...”
modtime -w-2 -W2 /home/jody/.bash_profile
echo ““
echo ““
echo “setup object and its time attributes...”
rm /tmp/longfile.txt
i=1
while [$i -le 20]; do
 echo “line $i: This is a long file” >> /tmp/longfile.txt
 let “i=$i+1”
done
modtime -w-1 -W1 /tmp/longfile.txt

114

echo “current time is:”
date
echo ““

echo “going to sleep for 10s...”
sleep 10s
echo “...”
echo “...”
echo ““

echo “current time is: “
date
echo ““
echo “changing object time attributes...”
modtime -S-1 /tmp/longfile.txt

d-change-obj-user.sh
#!/bin/bash
This script is a companion to the d-change-obj-admin.sh script;
Run this script as user jody as soon as the main script sleeps

echo “current time is:”
date
echo ““

cat /tmp/longfile.txt

echo “sleeping for 10s....”
sleep 10s
echo “..............................”
echo ““
echo “current time is:”
date
echo ““
cat /tmp/longfile.txt

C. ACCESS CONTROL TEST RESULTS

This section contains the raw test results for the tests described in Section A. The

dates, times, and contents of directories displayed here will be slightly different compared

to new test results obtained by the tester.

Static tests – enforcement of file and directory read/write/execute

s-read-file-*-results.txt
Static, read file test, scenario 1 of 7
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 20:33:43 2006
Revoke access on: Mon Sep 4 20:33:53 2006

setup object time attributes...
Target: /tmp/message.txt
Grant access on: Mon Sep 4 20:34:03 2006
Revoke access on: Mon Sep 4 20:34:13 2006

Mon Sep 4 20:33:36 PDT 2006
t1: Access Denied

115

Mon Sep 4 20:33:47 PDT 2006
t2: Access Denied

Mon Sep 4 20:33:59 PDT 2006
t3: Access Denied

Mon Sep 4 20:34:10 PDT 2006
t4: Access Denied

Mon Sep 4 20:34:21 PDT 2006
t5: Access Denied

done static read file test scenario 1 of 7...

Static, read file test, scenario 2 of 7
setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 20:42:17 2006
Revoke access on: Mon Sep 4 20:42:27 2006

Target: /tmp/message.txt
Grant access on: Mon Sep 4 20:42:17 2006
Revoke access on: Mon Sep 4 20:42:27 2006

Mon Sep 4 20:42:10 PDT 2006
t1: Access Denied

Mon Sep 4 20:42:21 PDT 2006
this message will self destruct in 10 seconds...
t2: Access Granted

Mon Sep 4 20:42:33 PDT 2006
t3: Access Denied

Done with read file test, scenario 2 of 7

Static, read file test, scenario 3 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:27:38 2006
Revoke access on: Mon Sep 4 21:27:48 2006

Target: /tmp/message.txt
Grant access on: Mon Sep 4 21:27:48 2006
Revoke access on: Mon Sep 4 21:27:58 2006

Mon Sep 4 21:27:29 PDT 2006
t1: Access Denied

Mon Sep 4 21:27:40 PDT 2006
t2: Access Denied

Mon Sep 4 21:27:52 PDT 2006
t3: Access Denied

116

Mon Sep 4 21:28:03 PDT 2006
t4: Access Denied

Mon Sep 4 21:28:14 PDT 2006
t5: Access Denied

done static read file test, scenario 3 of 7

Static, read file test, scenario 4 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Tue Sep 5 19:27:16 2006
Revoke access on: Tue Sep 5 19:27:36 2006

/tmp/message.txt does not currently have accessible TIFPS attributes
Target: /tmp/message.txt
Grant access on: Tue Sep 5 19:27:26 2006
Revoke access on: Tue Sep 5 19:27:46 2006

Tue Sep 5 19:27:06 PDT 2006
t1: Access Denied

Tue Sep 5 19:27:17 PDT 2006
t2: Access Denied

Tue Sep 5 19:27:27 PDT 2006
this message will self destruct in 10 seconds...
t3: Access Granted

Tue Sep 5 19:27:38 PDT 2006
t4: Access Denied

Tue Sep 5 19:27:49 PDT 2006
t5: Access Denied

done static read file test, scenario 4 of 7.

setup subject and object time attributes...
Static, read file test, scenario 5 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 20:56:50 2006
Revoke access on: Mon Sep 4 20:57:00 2006

Target: /tmp/message.txt
Grant access on: Mon Sep 4 20:56:41 2006
Revoke access on: Mon Sep 4 20:57:11 2006

Mon Sep 4 20:56:31 PDT 2006
t1: Access Denied

Mon Sep 4 20:56:42 PDT 2006
t2: Access Denied

117

Mon Sep 4 20:56:53 PDT 2006
this message will self destruct in 10 seconds...
t3: Access Granted

Mon Sep 4 20:57:04 PDT 2006
t4: Access Denied

Mon Sep 4 20:57:15 PDT 2006
t5: Access Denied

done static read file test, scenario 5 of 7...

Static, read file test, scenario 6 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 20:59:52 2006
Revoke access on: Mon Sep 4 21:00:02 2006

Target: /tmp/message.txt
Grant access on: Mon Sep 4 20:59:52 2006
Revoke access on: Mon Sep 4 21:00:12 2006

Mon Sep 4 20:59:43 PDT 2006
t1: Access Denied

Mon Sep 4 20:59:54 PDT 2006
this message will self destruct in 10 seconds...
t2: Access Granted

Mon Sep 4 21:00:05 PDT 2006
t3: Access Denied

Mon Sep 4 21:00:16 PDT 2006
t4: Access Denied

done read file test, scenario 6 of 7 ...

Static, read file test, scenario 7 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:01:47 2006
Revoke access on: Mon Sep 4 21:01:57 2006

Target: /tmp/message.txt
Grant access on: Mon Sep 4 21:01:37 2006
Revoke access on: Mon Sep 4 21:01:57 2006

Mon Sep 4 21:01:27 PDT 2006
t1: Access Denied

Mon Sep 4 21:01:38 PDT 2006
t2: Access Denied

118

Mon Sep 4 21:01:49 PDT 2006
this message will self destruct in 10 seconds...
t3: Access Granted

Mon Sep 4 21:02:01 PDT 2006
t4: Access Denied

done static read file test, scenario 7 of 7...

s-read-dir-*-results.txt
Static, read directory test, scenario 1 of 7
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:24:12 2006
Revoke access on: Mon Sep 4 22:24:22 2006

setup object time attributes...
/tmp does not currently have accessible TIFPS attributes
Target: /tmp
Grant access on: Mon Sep 4 22:24:32 2006
Revoke access on: Mon Sep 4 22:24:42 2006

Mon Sep 4 22:24:05 PDT 2006
t1: Access Denied

Mon Sep 4 22:24:17 PDT 2006
t2: Access Denied

Mon Sep 4 22:24:29 PDT 2006
t3: Access Denied

Mon Sep 4 22:24:40 PDT 2006
t4: Access Denied

Mon Sep 4 22:24:51 PDT 2006
t5: Access Denied

done static read directory test, scenario 1 of 7

Static, read directory test, scenario 2 of 7
setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:25:21 2006
Revoke access on: Mon Sep 4 22:25:31 2006

Target: /tmp
Grant access on: Mon Sep 4 22:25:21 2006
Revoke access on: Mon Sep 4 22:25:31 2006

Mon Sep 4 22:25:14 PDT 2006
t1: Access Denied

Mon Sep 4 22:25:25 PDT 2006
06:26:03-2.txt

119

17:28:34-1.txt
17:29:15-2.txt
17:32:57-5.txt
17:33:46-3.txt
17:36:24-2.txt
17:37:01-1.txt
mapping-kchiang
mapping-root
message.txt
s-read-file-2-results.txt
written.txt
t2: Access Granted

Mon Sep 4 22:25:36 PDT 2006
t3: Access Denied

done static read directory test, scenario 2 of 7.

Static, read directory test, scenario 3 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:26:47 2006
Revoke access on: Mon Sep 4 22:26:57 2006

Target: /tmp
Grant access on: Mon Sep 4 22:26:57 2006
Revoke access on: Mon Sep 4 22:27:07 2006

Mon Sep 4 22:26:37 PDT 2006
t1: Access Denied

Mon Sep 4 22:26:49 PDT 2006
t2: Access Denied

Mon Sep 4 22:27:00 PDT 2006
t3: Access Denied

Mon Sep 4 22:27:11 PDT 2006
t4: Access Denied

Mon Sep 4 22:27:22 PDT 2006
t5: Access Denied

done static read directory test, scenario 3 of 7

Static, read directory test, scenario 4 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:28:30 2006
Revoke access on: Mon Sep 4 22:28:50 2006

Target: /tmp
Grant access on: Mon Sep 4 22:28:40 2006
Revoke access on: Mon Sep 4 22:29:00 2006

120

Mon Sep 4 22:28:20 PDT 2006
t1: Access Denied

Mon Sep 4 22:28:31 PDT 2006
t2: Access Denied

Mon Sep 4 22:28:43 PDT 2006
06:26:03-2.txt
17:28:34-1.txt
17:29:15-2.txt
17:32:57-5.txt
17:33:46-3.txt
17:36:24-2.txt
17:37:01-1.txt
mapping-kchiang
mapping-root
message.txt
s-read-file-2-results.txt
written.txt
t3: Access Granted

Mon Sep 4 22:28:54 PDT 2006
t4: Access Denied

Mon Sep 4 22:29:05 PDT 2006
t5: Access Denied

done static read directory test, scenario 4 of 7.

Static, read directory test, scenario 5 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:29:57 2006
Revoke access on: Mon Sep 4 22:30:07 2006

Target: /tmp
Grant access on: Mon Sep 4 22:29:47 2006
Revoke access on: Mon Sep 4 22:30:17 2006

Mon Sep 4 22:29:38 PDT 2006
t1: Access Denied

Mon Sep 4 22:29:49 PDT 2006
t2: Access Denied

Mon Sep 4 22:30:00 PDT 2006
06:26:03-2.txt
17:28:34-1.txt
17:29:15-2.txt
17:32:57-5.txt
17:33:46-3.txt
17:36:24-2.txt
17:37:01-1.txt
mapping-kchiang
mapping-root
message.txt

121

s-read-file-2-results.txt
written.txt
t3: Access Granted

Mon Sep 4 22:30:12 PDT 2006
t4: Access Denied

Mon Sep 4 22:30:23 PDT 2006
t5: Access Denied

 done static read directory test, scenario 5 of 7.

Static, read directory test, scenario 6 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:30:59 2006
Revoke access on: Mon Sep 4 22:31:09 2006

Target: /tmp
Grant access on: Mon Sep 4 22:31:00 2006
Revoke access on: Mon Sep 4 22:31:20 2006

Mon Sep 4 22:30:50 PDT 2006
t1: Access Denied

Mon Sep 4 22:31:01 PDT 2006
06:26:03-2.txt
17:28:34-1.txt
17:29:15-2.txt
17:32:57-5.txt
17:33:46-3.txt
17:36:24-2.txt
17:37:01-1.txt
mapping-kchiang
mapping-root
message.txt
s-read-file-2-results.txt
written.txt
t2: Access Granted

Mon Sep 4 22:31:13 PDT 2006
t3: Access Denied

Mon Sep 4 22:31:24 PDT 2006
t4: Access Denied

done static read directory test, scenario 6 of 7

Static, read directory test, scenario 7 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:33:34 2006
Revoke access on: Mon Sep 4 22:33:44 2006

122

Target: /tmp
Grant access on: Mon Sep 4 22:33:24 2006
Revoke access on: Mon Sep 4 22:33:44 2006

Mon Sep 4 22:33:14 PDT 2006
t1: Access Denied

Mon Sep 4 22:33:26 PDT 2006
t2: Access Denied

Mon Sep 4 22:33:37 PDT 2006
06:26:03-2.txt
17:28:34-1.txt
17:29:15-2.txt
17:32:57-5.txt
17:33:46-3.txt
17:36:24-2.txt
17:37:01-1.txt
mapping-kchiang
mapping-root
message.txt
s-read-file-2-results.txt
written.txt
t3: Access Granted

Mon Sep 4 22:33:49 PDT 2006
t4: Access Denied

done static read directory test, scenario 7 of 7

s-write-file-*-results.txt
Static, file write test, scenario 1 of 7
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:14:37 2006
Revoke access on: Mon Sep 4 21:14:47 2006

create new object and setup its time attributes...
Target: /tmp/written.txt
Grant access on: Mon Sep 4 21:14:58 2006
Revoke access on: Mon Sep 4 21:15:08 2006

Mon Sep 4 21:14:30 PDT 2006
t1: Access Denied

Mon Sep 4 21:14:41 PDT 2006
t2: Access Denied

Mon Sep 4 21:14:52 PDT 2006
t3: Access Denied

Mon Sep 4 21:15:04 PDT 2006
t4: Access Denied

123

Mon Sep 4 21:15:15 PDT 2006
t5: Access Denied

contents of /tmp/written.txt...

Static, file write test, scenario 2 of 7
setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:16:51 2006
Revoke access on: Mon Sep 4 21:17:01 2006

Target: /tmp/written.txt
Grant access on: Mon Sep 4 21:16:51 2006
Revoke access on: Mon Sep 4 21:17:01 2006

Mon Sep 4 21:16:41 PDT 2006
t1: Access Denied

Mon Sep 4 21:16:52 PDT 2006
t2: Access Granted

Mon Sep 4 21:17:05 PDT 2006
t3: Access Denied

contents of /tmp/written.txt...
overwritten Mon Sep 4 21:16:52 PDT 2006
Static, file write test, scenario 3 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:21:45 2006
Revoke access on: Mon Sep 4 21:21:55 2006

Target: /tmp/written.txt
Grant access on: Mon Sep 4 21:21:55 2006
Revoke access on: Mon Sep 4 21:22:05 2006

Mon Sep 4 21:21:35 PDT 2006
t1: Access Denied

Mon Sep 4 21:21:46 PDT 2006
t2: Access Denied

Mon Sep 4 21:21:58 PDT 2006
t3: Access Denied

Mon Sep 4 21:22:09 PDT 2006
t4: Access Denied

Mon Sep 4 21:22:20 PDT 2006
t5: Access Denied

contents of /tmp/written.txt ...

Static, file write test, scenario 4 of 7

124

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:23:06 2006
Revoke access on: Mon Sep 4 21:23:26 2006

Target: /tmp/written.txt
Grant access on: Mon Sep 4 21:23:16 2006
Revoke access on: Mon Sep 4 21:23:36 2006

Mon Sep 4 21:22:56 PDT 2006
t1: Access Denied

Mon Sep 4 21:23:08 PDT 2006
t2: Access Denied

Mon Sep 4 21:23:20 PDT 2006
t3: Access Granted

Mon Sep 4 21:23:33 PDT 2006
t4: Access Denied

Mon Sep 4 21:23:46 PDT 2006
t5: Access Denied

contents of /tmp/written.txt...

overwritten Mon Sep 4 21:23:20 PDT 2006
Static, file write test, scenario 5 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:30:39 2006
Revoke access on: Mon Sep 4 21:30:49 2006

Target: /tmp/written.txt
Grant access on: Mon Sep 4 21:30:30 2006
Revoke access on: Mon Sep 4 21:31:00 2006

Mon Sep 4 21:30:20 PDT 2006
t1: Access Denied

Mon Sep 4 21:30:32 PDT 2006
t2: Access Denied

Mon Sep 4 21:30:43 PDT 2006
t3: Access Granted

Mon Sep 4 21:30:56 PDT 2006
t4: Access Denied

Mon Sep 4 21:31:08 PDT 2006
t5: Access Denied

contents of /tmp/written.txt...

overwritten Mon Sep 4 21:30:44 PDT 2006
Static, file write test, scenario 6 of 7

125

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:32:48 2006
Revoke access on: Mon Sep 4 21:32:58 2006

Target: /tmp/written.txt
Grant access on: Mon Sep 4 21:32:48 2006
Revoke access on: Mon Sep 4 21:33:08 2006

Mon Sep 4 21:32:39 PDT 2006
t1: Access Denied

Mon Sep 4 21:32:50 PDT 2006
t2: Access Granted

Mon Sep 4 21:33:02 PDT 2006
t3: Access Denied

Mon Sep 4 21:33:14 PDT 2006
t4: Access Denied

contents of /tmp/written.txt...

overwritten Mon Sep 4 21:32:50 PDT 2006

Static, file write test, scenario 7 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:34:26 2006
Revoke access on: Mon Sep 4 21:34:36 2006

Target: /tmp/written.txt
Grant access on: Mon Sep 4 21:34:16 2006
Revoke access on: Mon Sep 4 21:34:36 2006

Mon Sep 4 21:34:07 PDT 2006
t1: Access Denied

Mon Sep 4 21:34:18 PDT 2006
t2: Access Denied

Mon Sep 4 21:34:29 PDT 2006
t3: Access Granted

Mon Sep 4 21:34:41 PDT 2006
t4: Access Denied

contents of /tmp/written.txt...

overwritten Mon Sep 4 21:34:29 PDT 2006

126

s-write-dir-*-results.txt
Static, directory write test, scenario 1 of 7
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:35:48 2006
Revoke access on: Mon Sep 4 22:35:58 2006

setup object time attributes...
Target: /tmp
Grant access on: Mon Sep 4 22:36:08 2006
Revoke access on: Mon Sep 4 22:36:18 2006

Mon Sep 4 22:35:40 PDT 2006
t1: Access Denied

Mon Sep 4 22:35:51 PDT 2006
t2: Access Denied

Mon Sep 4 22:36:03 PDT 2006
t3: Access Denied

Mon Sep 4 22:36:15 PDT 2006
t4: Access Denied

Mon Sep 4 22:36:26 PDT 2006
t5: Access Denied

contents of /tmp directory
06:26:03-2.txt
17:28:34-1.txt
17:29:15-2.txt
17:32:57-5.txt
17:33:46-3.txt
17:36:24-2.txt
17:37:01-1.txt
mapping-kchiang
mapping-root
message.txt
s-read-file-2-results.txt
written.txt

Static, direcotry write test, scenario 2 of 7
setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:38:18 2006
Revoke access on: Mon Sep 4 22:38:28 2006

Target: /tmp
Grant access on: Mon Sep 4 22:38:18 2006
Revoke access on: Mon Sep 4 22:38:28 2006

Mon Sep 4 22:38:08 PDT 2006
t1: Access Denied

127

Mon Sep 4 22:38:20 PDT 2006
t2: Access Granted

Mon Sep 4 22:38:33 PDT 2006
t3: Access Denied

contents of /tmp diretory
06:26:03-2.txt
17:28:34-1.txt
17:29:15-2.txt
17:32:57-5.txt
17:33:46-3.txt
17:36:24-2.txt
17:37:01-1.txt
22:38:20-2.txt
mapping-kchiang
mapping-root
message.txt
s-read-file-2-results.txt
written.txt

Static, directory write test, scenario 3 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:39:21 2006
Revoke access on: Mon Sep 4 22:39:31 2006

Target: /tmp
Grant access on: Mon Sep 4 22:39:31 2006
Revoke access on: Mon Sep 4 22:39:41 2006

Mon Sep 4 22:39:12 PDT 2006
t1: Access Denied

Mon Sep 4 22:39:24 PDT 2006
t2: Access Denied

Mon Sep 4 22:39:36 PDT 2006
t3: Access Denied

Mon Sep 4 22:39:47 PDT 2006
t4: Access Denied

Mon Sep 4 22:39:58 PDT 2006
t5: Access Denied

contents of /tmp directory
06:26:03-2.txt
17:28:34-1.txt
17:29:15-2.txt
17:32:57-5.txt
17:33:46-3.txt
17:36:24-2.txt
17:37:01-1.txt

128

22:38:20-2.txt
mapping-kchiang
mapping-root
message.txt
s-read-file-2-results.txt
written.txt

Static, directory write test, scenario 4 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:42:08 2006
Revoke access on: Mon Sep 4 22:42:28 2006

Target: /tmp
Grant access on: Mon Sep 4 22:42:18 2006
Revoke access on: Mon Sep 4 22:42:38 2006

Mon Sep 4 22:41:59 PDT 2006
t1: Access Denied

Mon Sep 4 22:42:10 PDT 2006
t2: Access Denied

Mon Sep 4 22:42:21 PDT 2006
t3: Access Granted

Mon Sep 4 22:42:32 PDT 2006
t4: Access Denied

Mon Sep 4 22:42:43 PDT 2006
t5: Access Denied

contents of /tmp directory
06:26:03-2.txt
17:28:34-1.txt
17:29:15-2.txt
17:32:57-5.txt
17:33:46-3.txt
17:36:24-2.txt
17:37:01-1.txt
22:38:20-2.txt
22:42:21-3.txt
mapping-kchiang
mapping-root
message.txt
s-read-file-2-results.txt
written.txt

Static, directory write test, scenario 5 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:44:03 2006

129

Revoke access on: Mon Sep 4 22:44:13 2006

Target: /tmp
Grant access on: Mon Sep 4 22:43:53 2006
Revoke access on: Mon Sep 4 22:44:23 2006

Mon Sep 4 22:43:44 PDT 2006
t1: Access Denied

Mon Sep 4 22:43:55 PDT 2006
t2: Access Denied

Mon Sep 4 22:44:06 PDT 2006
t3: Access Granted

Mon Sep 4 22:44:18 PDT 2006
t4: Access Denied

Mon Sep 4 22:44:29 PDT 2006
t5: Access Denied

contents of /tmp directory
06:26:03-2.txt
17:28:34-1.txt
17:29:15-2.txt
17:32:57-5.txt
17:33:46-3.txt
17:36:24-2.txt
17:37:01-1.txt
22:38:20-2.txt
22:42:21-3.txt
22:44:06-3.txt
mapping-kchiang
mapping-root
message.txt
s-read-file-2-results.txt
written.txt

Static, directory write test, scenario 6 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:45:38 2006
Revoke access on: Mon Sep 4 22:45:48 2006

Target: /tmp
Grant access on: Mon Sep 4 22:45:38 2006
Revoke access on: Mon Sep 4 22:45:58 2006

Mon Sep 4 22:45:29 PDT 2006
t1: Access Denied

Mon Sep 4 22:45:40 PDT 2006
t2: Access Granted

Mon Sep 4 22:45:52 PDT 2006
t3: Access Denied

130

Mon Sep 4 22:46:03 PDT 2006
t4: Access Denied

contents of /tmp directory
06:26:03-2.txt
17:28:34-1.txt
17:29:15-2.txt
17:32:57-5.txt
17:33:46-3.txt
17:36:24-2.txt
17:37:01-1.txt
22:38:20-2.txt
22:42:21-3.txt
22:44:06-3.txt
22:45:40-2.txt
mapping-kchiang
mapping-root
message.txt
s-read-file-2-results.txt
written.txt

Static, directory write test, scenario 7 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:47:44 2006
Revoke access on: Mon Sep 4 22:47:54 2006

Target: /tmp
Grant access on: Mon Sep 4 22:47:34 2006
Revoke access on: Mon Sep 4 22:47:54 2006

Mon Sep 4 22:47:24 PDT 2006
t1: Access Denied

Mon Sep 4 22:47:36 PDT 2006
t2: Access Denied

Mon Sep 4 22:47:47 PDT 2006
t3: Access Granted

Mon Sep 4 22:47:58 PDT 2006
t4: Access Denied

contents of /tmp directory
06:26:03-2.txt
17:28:34-1.txt
17:29:15-2.txt
17:32:57-5.txt
17:33:46-3.txt
17:36:24-2.txt
17:37:01-1.txt
22:38:20-2.txt
22:42:21-3.txt
22:44:06-3.txt
22:45:40-2.txt

131

22:47:47-3.txt
mapping-kchiang
mapping-root
message.txt
s-read-file-2-results.txt
written.txt

s-exec-file-*-results.txt
Static, file execute test, scenario 1 of 7
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:36:16 2006
Revoke access on: Mon Sep 4 21:36:26 2006

setup object time attributes...
Target: /usr/bin/cal
Grant access on: Mon Sep 4 21:36:36 2006
Revoke access on: Mon Sep 4 21:36:46 2006

Mon Sep 4 21:36:09 PDT 2006
t1: Access Denied

Mon Sep 4 21:36:20 PDT 2006
t2: Access Denied

Mon Sep 4 21:36:32 PDT 2006
t3: Access Denied

Mon Sep 4 21:36:43 PDT 2006
t4: Access Denied

Mon Sep 4 21:36:54 PDT 2006
t5: Access Denied

Static, file execute test, scenario 2 of 7
setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:38:00 2006
Revoke access on: Mon Sep 4 21:38:10 2006

Target: /usr/bin/cal
Grant access on: Mon Sep 4 21:38:00 2006
Revoke access on: Mon Sep 4 21:38:10 2006

Mon Sep 4 21:37:50 PDT 2006
t1: Access Denied

Mon Sep 4 21:38:02 PDT 2006
 September 2006
Su Mo Tu We Th Fr Sa
 1 2
 3 4 5 6 7 8 9
10 11 12 13 14 15 16

132

17 18 19 20 21 22 23
24 25 26 27 28 29 30

t2: Access Granted

Mon Sep 4 21:38:14 PDT 2006
t3: Access Denied

Static, file execute test, scenario 3 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:39:29 2006
Revoke access on: Mon Sep 4 21:39:39 2006

Target: /usr/bin/cal
Grant access on: Mon Sep 4 21:39:39 2006
Revoke access on: Mon Sep 4 21:39:49 2006

Mon Sep 4 21:39:20 PDT 2006
t1: Access Denied

Mon Sep 4 21:39:31 PDT 2006
t2: Access Denied

Mon Sep 4 21:39:43 PDT 2006
t3: Access Denied

Mon Sep 4 21:39:54 PDT 2006
t4: Access Denied

Mon Sep 4 21:40:05 PDT 2006
t5: Access Denied

Static, file execute test, scenario 4 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:40:45 2006
Revoke access on: Mon Sep 4 21:41:05 2006

Target: /usr/bin/cal
Grant access on: Mon Sep 4 21:40:55 2006
Revoke access on: Mon Sep 4 21:41:15 2006

Mon Sep 4 21:40:35 PDT 2006
t1: Access Denied

Mon Sep 4 21:40:46 PDT 2006
t2: Access Denied

Mon Sep 4 21:40:58 PDT 2006
 September 2006
Su Mo Tu We Th Fr Sa
 1 2
 3 4 5 6 7 8 9
10 11 12 13 14 15 16

133

17 18 19 20 21 22 23
24 25 26 27 28 29 30

t3: Access Granted

Mon Sep 4 21:41:09 PDT 2006
t4: Access Denied

Mon Sep 4 21:41:21 PDT 2006
t5: Access Denied

done static exec file test, scenario 4 of 7.

Static, file write test, scenario 5 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 21:43:13 2006
Revoke access on: Mon Sep 4 21:43:23 2006

Target: /usr/bin/cal
Grant access on: Mon Sep 4 21:43:03 2006
Revoke access on: Mon Sep 4 21:43:33 2006

Mon Sep 4 21:42:54 PDT 2006
t1: Access Denied

Mon Sep 4 21:43:06 PDT 2006
t2: Access Denied

Mon Sep 4 21:43:18 PDT 2006
 September 2006
Su Mo Tu We Th Fr Sa
 1 2
 3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

t3: Access Granted

Mon Sep 4 21:43:29 PDT 2006
t4: Access Denied

Mon Sep 4 21:43:40 PDT 2006
t5: Access Denied

done static exec file test, scenario 5 of 7.

Static, file write test, scenario 6 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:21:50 2006
Revoke access on: Mon Sep 4 22:22:00 2006

Target: /usr/bin/cal

134

Grant access on: Mon Sep 4 22:21:50 2006
Revoke access on: Mon Sep 4 22:22:10 2006

Mon Sep 4 22:21:40 PDT 2006
t1: Access Denied

Mon Sep 4 22:21:51 PDT 2006
 September 2006
Su Mo Tu We Th Fr Sa
 1 2
 3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

t2: Access Granted

Mon Sep 4 22:22:03 PDT 2006
t3: Access Denied

Mon Sep 4 22:22:14 PDT 2006
t4: Access Denied

done exec file test, scenario 6 of 7

Static, file execute test, scenario 7 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:22:59 2006
Revoke access on: Mon Sep 4 22:23:09 2006

Target: /usr/bin/cal
Grant access on: Mon Sep 4 22:22:49 2006
Revoke access on: Mon Sep 4 22:23:09 2006

Mon Sep 4 22:22:40 PDT 2006
t1: Access Denied

Mon Sep 4 22:22:51 PDT 2006
t2: Access Denied

Mon Sep 4 22:23:03 PDT 2006
 September 2006
Su Mo Tu We Th Fr Sa
 1 2
 3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

t3: Access Granted

Mon Sep 4 22:23:16 PDT 2006
t4: Access Denied

done static exec file test, scenario 7 of 7.

135

s-exec-dir-*-results.txt
Static, directory execute test, scenario 1 of 7
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 22:48:40 2006
Revoke access on: Mon Sep 4 22:48:50 2006

setup object time attributes...
Target: /tmp
Grant access on: Mon Sep 4 22:49:01 2006
Revoke access on: Mon Sep 4 22:49:11 2006

Mon Sep 4 22:48:33 PDT 2006
t1: Access Denied

Mon Sep 4 22:48:44 PDT 2006
t2: Access Denied

Mon Sep 4 22:48:55 PDT 2006
t3: Access Denied

Mon Sep 4 22:49:06 PDT 2006
t4: Access Denied

Mon Sep 4 22:49:18 PDT 2006
t5: Access Denied

Static, directory execute test, scenario 2 of 7
setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 23:23:08 2006
Revoke access on: Mon Sep 4 23:23:18 2006

Target: /tmp
Grant access on: Mon Sep 4 23:23:08 2006
Revoke access on: Mon Sep 4 23:23:18 2006

Mon Sep 4 23:23:01 PDT 2006
t1: Access Denied

Mon Sep 4 23:23:13 PDT 2006
t2: Access Granted

Mon Sep 4 23:23:24 PDT 2006
t3: Access Denied

Static, directory execute test, scenario 3 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 23:26:44 2006
Revoke access on: Mon Sep 4 23:26:54 2006

Target: /tmp
Grant access on: Mon Sep 4 23:26:54 2006

136

Revoke access on: Mon Sep 4 23:27:04 2006

Mon Sep 4 23:26:35 PDT 2006
t1: Access Denied

Mon Sep 4 23:26:47 PDT 2006
t2: Access Denied

Mon Sep 4 23:26:59 PDT 2006
t3: Access Denied

Mon Sep 4 23:27:11 PDT 2006
t4: Access Denied

Mon Sep 4 23:27:23 PDT 2006
t5: Access Denied

Static, directory execute test, scenario 4 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 23:29:13 2006
Revoke access on: Mon Sep 4 23:29:33 2006

Target: /tmp
Grant access on: Mon Sep 4 23:29:24 2006
Revoke access on: Mon Sep 4 23:29:44 2006

Mon Sep 4 23:29:04 PDT 2006
t1: Access Denied

Mon Sep 4 23:29:16 PDT 2006
t2: Access Denied

Mon Sep 4 23:29:29 PDT 2006
t3: Access Granted

Mon Sep 4 23:29:41 PDT 2006
t4: Access Denied

Mon Sep 4 23:29:53 PDT 2006
t5: Access Denied

Static, directory execute test, scenario 5 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 23:30:34 2006
Revoke access on: Mon Sep 4 23:30:44 2006

Target: /tmp
Grant access on: Mon Sep 4 23:30:25 2006
Revoke access on: Mon Sep 4 23:30:55 2006

Mon Sep 4 23:30:15 PDT 2006
t1: Access Denied

137

Mon Sep 4 23:30:26 PDT 2006
t2: Access Denied

Mon Sep 4 23:30:38 PDT 2006
t3: Access Granted

Mon Sep 4 23:30:49 PDT 2006
t4: Access Denied

Mon Sep 4 23:31:00 PDT 2006
t5: Access Denied

Static, directory execute test, scenario 6 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 23:32:17 2006
Revoke access on: Mon Sep 4 23:32:27 2006

Target: /tmp
Grant access on: Mon Sep 4 23:32:17 2006
Revoke access on: Mon Sep 4 23:32:37 2006

Mon Sep 4 23:32:07 PDT 2006
t1: Access Denied

Mon Sep 4 23:32:19 PDT 2006
t2: Access Granted

Mon Sep 4 23:32:31 PDT 2006
t3: Access Denied

Mon Sep 4 23:32:43 PDT 2006
t4: Access Denied

Static, directory execute test, scenario 7 of 7

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Mon Sep 4 23:37:53 2006
Revoke access on: Mon Sep 4 23:38:03 2006

Target: /tmp
Grant access on: Mon Sep 4 23:37:43 2006
Revoke access on: Mon Sep 4 23:38:03 2006

Mon Sep 4 23:37:33 PDT 2006
t1: Access Denied

Mon Sep 4 23:37:45 PDT 2006
t2: Access Denied

Mon Sep 4 23:37:57 PDT 2006
t3: Access Granted

Mon Sep 4 23:38:08 PDT 2006
t4: Access Denied

138

s-read-file-6-swap-results.txt
Static, read file test, scenario 6 of 7(subject and objects time
swapped)

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 00:04:25 2006
Revoke access on: Thu Sep 7 00:04:45 2006

Target: /tmp/message.txt
Grant access on: Thu Sep 7 00:04:25 2006
Revoke access on: Thu Sep 7 00:04:35 2006

Thu Sep 7 00:04:16 PDT 2006
t1: Access Denied

Thu Sep 7 00:04:27 PDT 2006
this message will self destruct in 10 seconds...
t2: Access Granted

Thu Sep 7 00:04:37 PDT 2006
t3: Access Denied

Thu Sep 7 00:04:47 PDT 2006
t4: Access Denied

done read file test, scenario 6 of 7 ...

s-write-dir-4-swap-results.txt
Static, directory write test, scenario 4of7(subject and object time
swapped)

setup subject and object time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 00:08:46 2006
Revoke access on: Thu Sep 7 00:09:06 2006

/tmp does not currently have accessible TIFPS attributes
Target: /tmp
Grant access on: Thu Sep 7 00:08:37 2006
Revoke access on: Thu Sep 7 00:08:57 2006

Thu Sep 7 00:08:27 PDT 2006
t1: Access Denied

Thu Sep 7 00:08:38 PDT 2006
t2: Access Denied

Thu Sep 7 00:08:48 PDT 2006
t3: Access Granted

139

Thu Sep 7 00:08:59 PDT 2006
t4: Access Denied

Thu Sep 7 00:09:09 PDT 2006
t5: Access Denied

contents of /tmp directory
00:00:27-3.txt
00:08:48-3.txt
06:26:03-2.txt
17:28:34-1.txt
17:29:15-2.txt
17:32:57-5.txt
17:33:46-3.txt
17:36:24-2.txt
17:37:01-1.txt
22:38:20-2.txt
22:42:21-3.txt
22:44:06-3.txt
22:45:40-2.txt
22:47:47-3.txt
23:56:00-3.txt
23:59:10-3.txt
dest.txt
longfile.txt
mapping-kchiang
mapping-root
message.txt
source.txt
s-read-file-2-results.txt
write-expired.txt
written.txt

Static tests- Inheritance in file/directory creation and file copy operations

s-copy-file-1a-results.txt
Trial 1:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:11:25 2006
Revoke access on: Thu Sep 21 09:11:25 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:11:26 2006
Revoke access on: Fri Sep 8 09:11:26 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:11:26 2006
Revoke access on: Thu Sep 7 10:11:26 2006

Static, copy file test (using cp), scenario 1 of 3 - smallest dest
object

current time is:

140

Thu Sep 7 09:11:48 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:11:26 2006
Revoke access on: Thu Sep 7 10:11:26 2006

Trial 2:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:11:54 2006
Revoke access on: Thu Sep 21 09:11:54 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:11:54 2006
Revoke access on: Fri Sep 8 09:11:54 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:11:55 2006
Revoke access on: Thu Sep 7 10:11:55 2006

Static, copy file test (using cp), scenario 1 of 3 - smallest dest
object

current time is:
Thu Sep 7 09:11:57 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:11:55 2006
Revoke access on: Thu Sep 7 10:11:55 2006

Trial 3:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:12:00 2006
Revoke access on: Thu Sep 21 09:12:00 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:12:00 2006
Revoke access on: Fri Sep 8 09:12:00 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:12:01 2006
Revoke access on: Thu Sep 7 10:12:01 2006

Static, copy file test (using cp), scenario 1 of 3 - smallest dest
object

current time is:
Thu Sep 7 09:12:03 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:12:01 2006
Revoke access on: Thu Sep 7 10:12:01 2006

141

Trial 4:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:12:05 2006
Revoke access on: Thu Sep 21 09:12:05 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:12:06 2006
Revoke access on: Fri Sep 8 09:12:06 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:12:06 2006
Revoke access on: Thu Sep 7 10:12:06 2006

Static, copy file test (using cp), scenario 1 of 3 - smallest dest
object

current time is:
Thu Sep 7 09:12:09 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:12:06 2006
Revoke access on: Thu Sep 7 10:12:06 2006

Trial 5:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:12:12 2006
Revoke access on: Thu Sep 21 09:12:12 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:12:12 2006
Revoke access on: Fri Sep 8 09:12:12 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:12:12 2006
Revoke access on: Thu Sep 7 10:12:12 2006

Static, copy file test (using cp), scenario 1 of 3 - smallest dest
object

current time is:
Thu Sep 7 09:12:14 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:12:12 2006
Revoke access on: Thu Sep 7 10:12:12 2006

Trial 6:
setup subject time attributes...
Target: /home/jody/.bash_profile

142

Grant access on: Thu Aug 24 09:12:16 2006
Revoke access on: Thu Sep 21 09:12:16 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:12:16 2006
Revoke access on: Fri Sep 8 09:12:16 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:12:17 2006
Revoke access on: Thu Sep 7 10:12:17 2006

Static, copy file test (using cp), scenario 1 of 3 - smallest dest
object

current time is:
Thu Sep 7 09:12:18 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:12:17 2006
Revoke access on: Thu Sep 7 10:12:17 2006

Trial 7:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:12:20 2006
Revoke access on: Thu Sep 21 09:12:20 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:12:21 2006
Revoke access on: Fri Sep 8 09:12:21 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:12:21 2006
Revoke access on: Thu Sep 7 10:12:21 2006

Static, copy file test (using cp), scenario 1 of 3 - smallest dest
object

current time is:
Thu Sep 7 09:12:22 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:12:21 2006
Revoke access on: Thu Sep 7 10:12:21 2006

Trial 8:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:12:24 2006
Revoke access on: Thu Sep 21 09:12:24 2006

setup source object time attributes...
Target: source.txt

143

Grant access on: Wed Sep 6 09:12:25 2006
Revoke access on: Fri Sep 8 09:12:25 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:12:25 2006
Revoke access on: Thu Sep 7 10:12:25 2006

Static, copy file test (using cp), scenario 1 of 3 - smallest dest
object

current time is:
Thu Sep 7 09:12:26 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:12:25 2006
Revoke access on: Thu Sep 7 10:12:25 2006

Trial 9:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:12:28 2006
Revoke access on: Thu Sep 21 09:12:28 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:12:29 2006
Revoke access on: Fri Sep 8 09:12:29 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:12:29 2006
Revoke access on: Thu Sep 7 10:12:29 2006

Static, copy file test (using cp), scenario 1 of 3 - smallest dest
object

current time is:
Thu Sep 7 09:12:30 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:12:29 2006
Revoke access on: Thu Sep 7 10:12:29 2006

Trial 10:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:12:32 2006
Revoke access on: Thu Sep 21 09:12:32 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:12:32 2006
Revoke access on: Fri Sep 8 09:12:32 2006

setup destination object time attributes...(smallest)
Target: dest.txt

144

Grant access on: Thu Sep 7 08:12:33 2006
Revoke access on: Thu Sep 7 10:12:33 2006

Static, copy file test (using cp), scenario 1 of 3 - smallest dest
object

current time is:
Thu Sep 7 09:12:34 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:12:33 2006
Revoke access on: Thu Sep 7 10:12:33 2006

s-copy-file-1b-results.txt
Trial 1:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:16:43 2006
Revoke access on: Thu Sep 21 09:16:43 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:16:43 2006
Revoke access on: Fri Sep 8 09:16:43 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:16:43 2006
Revoke access on: Thu Sep 7 10:16:43 2006

Static, copy file test (using redirection), scenario 1 of 3 - smallest
dest object

current time is:
Thu Sep 7 09:17:00 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:16:43 2006
Revoke access on: Thu Sep 7 10:16:43 2006

Trial 2:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:17:04 2006
Revoke access on: Thu Sep 21 09:17:04 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:17:04 2006
Revoke access on: Fri Sep 8 09:17:04 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:17:04 2006
Revoke access on: Thu Sep 7 10:17:04 2006

145

Static, copy file test (using redirection), scenario 1 of 3 - smallest
dest object

current time is:
Thu Sep 7 09:17:06 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:17:04 2006
Revoke access on: Thu Sep 7 10:17:04 2006

Trial 3:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:17:08 2006
Revoke access on: Thu Sep 21 09:17:08 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:17:09 2006
Revoke access on: Fri Sep 8 09:17:09 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:17:09 2006
Revoke access on: Thu Sep 7 10:17:09 2006

Static, copy file test (using redirection), scenario 1 of 3 - smallest
dest object

current time is:
Thu Sep 7 09:17:10 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:17:09 2006
Revoke access on: Thu Sep 7 10:17:09 2006

Trial 4:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:17:14 2006
Revoke access on: Thu Sep 21 09:17:14 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:17:15 2006
Revoke access on: Fri Sep 8 09:17:15 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:17:15 2006
Revoke access on: Thu Sep 7 10:17:15 2006

Static, copy file test (using redirection), scenario 1 of 3 - smallest
dest object

current time is:

146

Thu Sep 7 09:17:17 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:17:15 2006
Revoke access on: Thu Sep 7 10:17:15 2006

Trial 5:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:17:19 2006
Revoke access on: Thu Sep 21 09:17:19 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:17:19 2006
Revoke access on: Fri Sep 8 09:17:19 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:17:20 2006
Revoke access on: Thu Sep 7 10:17:20 2006

Static, copy file test (using redirection), scenario 1 of 3 - smallest
dest object

current time is:
Thu Sep 7 09:17:21 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:17:20 2006
Revoke access on: Thu Sep 7 10:17:20 2006

Trial 6:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:17:23 2006
Revoke access on: Thu Sep 21 09:17:23 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:17:23 2006
Revoke access on: Fri Sep 8 09:17:23 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:17:24 2006
Revoke access on: Thu Sep 7 10:17:24 2006

Static, copy file test (using redirection), scenario 1 of 3 - smallest
dest object

current time is:
Thu Sep 7 09:17:25 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:17:24 2006
Revoke access on: Thu Sep 7 10:17:24 2006

147

Trial 7:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:17:28 2006
Revoke access on: Thu Sep 21 09:17:28 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:17:28 2006
Revoke access on: Fri Sep 8 09:17:28 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:17:28 2006
Revoke access on: Thu Sep 7 10:17:28 2006

Static, copy file test (using redirection), scenario 1 of 3 - smallest
dest object

current time is:
Thu Sep 7 09:17:30 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:17:28 2006
Revoke access on: Thu Sep 7 10:17:28 2006

Trial 8:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:17:32 2006
Revoke access on: Thu Sep 21 09:17:32 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:17:32 2006
Revoke access on: Fri Sep 8 09:17:32 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:17:33 2006
Revoke access on: Thu Sep 7 10:17:33 2006

Static, copy file test (using redirection), scenario 1 of 3 - smallest
dest object

current time is:
Thu Sep 7 09:17:34 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:17:33 2006
Revoke access on: Thu Sep 7 10:17:33 2006

Trial 9:
setup subject time attributes...
Target: /home/jody/.bash_profile

148

Grant access on: Thu Aug 24 09:17:36 2006
Revoke access on: Thu Sep 21 09:17:36 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:17:36 2006
Revoke access on: Fri Sep 8 09:17:36 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:17:36 2006
Revoke access on: Thu Sep 7 10:17:36 2006

Static, copy file test (using redirection), scenario 1 of 3 - smallest
dest object

current time is:
Thu Sep 7 09:17:38 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:17:36 2006
Revoke access on: Thu Sep 7 10:17:36 2006

Trial 10:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:17:40 2006
Revoke access on: Thu Sep 21 09:17:40 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:17:40 2006
Revoke access on: Fri Sep 8 09:17:40 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:17:40 2006
Revoke access on: Thu Sep 7 10:17:40 2006

Static, copy file test (using redirection), scenario 1 of 3 - smallest
dest object

current time is:
Thu Sep 7 09:17:42 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:17:40 2006
Revoke access on: Thu Sep 7 10:17:40 2006

s-copy-file-1c-results.txt
Trial 1:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:18:59 2006
Revoke access on: Thu Sep 21 09:18:59 2006

149

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:18:59 2006
Revoke access on: Fri Sep 8 09:18:59 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:19:00 2006
Revoke access on: Thu Sep 7 10:19:00 2006

Static, copy file test (using pipes), scenario 1 of 3 - smallest dest
obj

current time is:
Thu Sep 7 09:19:19 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:19:00 2006
Revoke access on: Thu Sep 7 10:19:00 2006

Trial 2:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:19:24 2006
Revoke access on: Thu Sep 21 09:19:24 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:19:24 2006
Revoke access on: Fri Sep 8 09:19:24 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:19:24 2006
Revoke access on: Thu Sep 7 10:19:24 2006

Static, copy file test (using pipes), scenario 1 of 3 - smallest dest
obj

current time is:
Thu Sep 7 09:19:27 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:19:24 2006
Revoke access on: Thu Sep 7 10:19:24 2006

Trial 3:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:19:29 2006
Revoke access on: Thu Sep 21 09:19:29 2006

setup source object time attributes...

150

Target: source.txt
Grant access on: Wed Sep 6 09:19:30 2006
Revoke access on: Fri Sep 8 09:19:30 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:19:30 2006
Revoke access on: Thu Sep 7 10:19:30 2006

Static, copy file test (using pipes), scenario 1 of 3 - smallest dest
obj

current time is:
Thu Sep 7 09:19:31 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:19:30 2006
Revoke access on: Thu Sep 7 10:19:30 2006

Trial 4:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:19:34 2006
Revoke access on: Thu Sep 21 09:19:34 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:19:34 2006
Revoke access on: Fri Sep 8 09:19:34 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:19:34 2006
Revoke access on: Thu Sep 7 10:19:34 2006

Static, copy file test (using pipes), scenario 1 of 3 - smallest dest
obj

current time is:
Thu Sep 7 09:19:36 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:19:34 2006
Revoke access on: Thu Sep 7 10:19:34 2006

Trial 5:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:19:41 2006
Revoke access on: Thu Sep 21 09:19:41 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:19:41 2006
Revoke access on: Fri Sep 8 09:19:41 2006

151

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:19:41 2006
Revoke access on: Thu Sep 7 10:19:41 2006

Static, copy file test (using pipes), scenario 1 of 3 - smallest dest
obj

current time is:
Thu Sep 7 09:19:43 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:19:41 2006
Revoke access on: Thu Sep 7 10:19:41 2006

Trial 6:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:19:46 2006
Revoke access on: Thu Sep 21 09:19:46 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:19:46 2006
Revoke access on: Fri Sep 8 09:19:46 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:19:47 2006
Revoke access on: Thu Sep 7 10:19:47 2006

Static, copy file test (using pipes), scenario 1 of 3 - smallest dest
obj

current time is:
Thu Sep 7 09:19:50 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:19:47 2006
Revoke access on: Thu Sep 7 10:19:47 2006

Trial 7:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:20:07 2006
Revoke access on: Thu Sep 21 09:20:07 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:20:07 2006
Revoke access on: Fri Sep 8 09:20:07 2006

setup destination object time attributes...(smallest)
Target: dest.txt

152

Grant access on: Thu Sep 7 08:20:08 2006
Revoke access on: Thu Sep 7 10:20:08 2006

Static, copy file test (using pipes), scenario 1 of 3 - smallest dest
obj

current time is:
Thu Sep 7 09:20:09 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:20:08 2006
Revoke access on: Thu Sep 7 10:20:08 2006

Trial 8:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:20:12 2006
Revoke access on: Thu Sep 21 09:20:12 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:20:12 2006
Revoke access on: Fri Sep 8 09:20:12 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:20:13 2006
Revoke access on: Thu Sep 7 10:20:13 2006

Static, copy file test (using pipes), scenario 1 of 3 - smallest dest
obj

current time is:
Thu Sep 7 09:20:14 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:20:13 2006
Revoke access on: Thu Sep 7 10:20:13 2006

Trial 9:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:20:16 2006
Revoke access on: Thu Sep 21 09:20:16 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:20:16 2006
Revoke access on: Fri Sep 8 09:20:16 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:20:17 2006
Revoke access on: Thu Sep 7 10:20:17 2006

153

Static, copy file test (using pipes), scenario 1 of 3 - smallest dest
obj

current time is:
Thu Sep 7 09:20:19 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:20:17 2006
Revoke access on: Thu Sep 7 10:20:17 2006

Trial 10:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:20:22 2006
Revoke access on: Thu Sep 21 09:20:22 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:20:22 2006
Revoke access on: Fri Sep 8 09:20:22 2006

setup destination object time attributes...(smallest)
Target: dest.txt
Grant access on: Thu Sep 7 08:20:22 2006
Revoke access on: Thu Sep 7 10:20:22 2006

Static, copy file test (using pipes), scenario 1 of 3 - smallest dest
obj

current time is:
Thu Sep 7 09:20:24 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:20:22 2006
Revoke access on: Thu Sep 7 10:20:22 2006

s-copy-file-2a-results.txt
Trial 1:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:28:17 2006
Revoke access on: Thu Sep 21 09:28:17 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:28:17 2006
Revoke access on: Thu Sep 7 10:28:17 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:28:17 2006
Revoke access on: Fri Sep 8 09:28:17 2006

154

Static, copy file test (using cp), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 09:28:30 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:28:17 2006
Revoke access on: Thu Sep 7 10:28:17 2006

Trial 2:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:28:34 2006
Revoke access on: Thu Sep 21 09:28:34 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:28:34 2006
Revoke access on: Thu Sep 7 10:28:34 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:28:34 2006
Revoke access on: Fri Sep 8 09:28:34 2006

Static, copy file test (using cp), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 09:28:36 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:28:34 2006
Revoke access on: Thu Sep 7 10:28:34 2006

Trial 3:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:28:38 2006
Revoke access on: Thu Sep 21 09:28:38 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:28:39 2006
Revoke access on: Thu Sep 7 10:28:39 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:28:39 2006
Revoke access on: Fri Sep 8 09:28:39 2006

Static, copy file test (using cp), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 09:28:40 PDT 2006

155

The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:28:39 2006
Revoke access on: Thu Sep 7 10:28:39 2006

Trial 4:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:28:42 2006
Revoke access on: Thu Sep 21 09:28:42 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:28:42 2006
Revoke access on: Thu Sep 7 10:28:42 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:28:43 2006
Revoke access on: Fri Sep 8 09:28:43 2006

Static, copy file test (using cp), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 09:28:44 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:28:42 2006
Revoke access on: Thu Sep 7 10:28:42 2006

Trial 5:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:28:45 2006
Revoke access on: Thu Sep 21 09:28:45 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:28:46 2006
Revoke access on: Thu Sep 7 10:28:46 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:28:46 2006
Revoke access on: Fri Sep 8 09:28:46 2006

Static, copy file test (using cp), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 09:28:57 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:28:46 2006
Revoke access on: Thu Sep 7 10:28:46 2006

156

Trial 6:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:28:58 2006
Revoke access on: Thu Sep 21 09:28:58 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:28:59 2006
Revoke access on: Thu Sep 7 10:28:59 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:28:59 2006
Revoke access on: Fri Sep 8 09:28:59 2006

Static, copy file test (using cp), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 09:29:00 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:28:59 2006
Revoke access on: Thu Sep 7 10:28:59 2006

Trial 7:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:29:02 2006
Revoke access on: Thu Sep 21 09:29:02 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:29:02 2006
Revoke access on: Thu Sep 7 10:29:02 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:29:02 2006
Revoke access on: Fri Sep 8 09:29:02 2006

Static, copy file test (using cp), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 09:29:03 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:29:02 2006
Revoke access on: Thu Sep 7 10:29:02 2006

Trial 8:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:29:05 2006
Revoke access on: Thu Sep 21 09:29:05 2006

157

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:29:05 2006
Revoke access on: Thu Sep 7 10:29:05 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:29:05 2006
Revoke access on: Fri Sep 8 09:29:05 2006

Static, copy file test (using cp), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 09:29:06 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:29:05 2006
Revoke access on: Thu Sep 7 10:29:05 2006

Trial 9:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:29:08 2006
Revoke access on: Thu Sep 21 09:29:08 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:29:08 2006
Revoke access on: Thu Sep 7 10:29:08 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:29:08 2006
Revoke access on: Fri Sep 8 09:29:08 2006

Static, copy file test (using cp), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 09:29:09 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:29:08 2006
Revoke access on: Thu Sep 7 10:29:08 2006

Trial 10:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:29:11 2006
Revoke access on: Thu Sep 21 09:29:11 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:29:11 2006
Revoke access on: Thu Sep 7 10:29:11 2006

158

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:29:11 2006
Revoke access on: Fri Sep 8 09:29:11 2006

Static, copy file test (using cp), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 09:29:13 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:29:11 2006
Revoke access on: Thu Sep 7 10:29:11 2006

s-copy-file-2b-results.txt
Trial 1:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:26:04 2006
Revoke access on: Thu Sep 21 09:26:04 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:26:04 2006
Revoke access on: Thu Sep 7 10:26:04 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:26:04 2006
Revoke access on: Fri Sep 8 09:26:04 2006

Static, copy file test (using redirection), scenario 2 of 3 - smallest
src object

current time is:
Thu Sep 7 09:26:14 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:26:04 2006
Revoke access on: Thu Sep 7 10:26:04 2006

Trial 2:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:26:16 2006
Revoke access on: Thu Sep 21 09:26:16 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:26:16 2006
Revoke access on: Thu Sep 7 10:26:16 2006

setup destination object time attributes...

159

Target: dest.txt
Grant access on: Wed Sep 6 09:26:16 2006
Revoke access on: Fri Sep 8 09:26:16 2006

Static, copy file test (using redirection), scenario 2 of 3 - smallest
src object

current time is:
Thu Sep 7 09:26:18 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:26:16 2006
Revoke access on: Thu Sep 7 10:26:16 2006

Trial 3:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:26:20 2006
Revoke access on: Thu Sep 21 09:26:20 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:26:20 2006
Revoke access on: Thu Sep 7 10:26:20 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:26:21 2006
Revoke access on: Fri Sep 8 09:26:21 2006

Static, copy file test (using redirection), scenario 2 of 3 - smallest
src object

current time is:
Thu Sep 7 09:26:22 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:26:20 2006
Revoke access on: Thu Sep 7 10:26:20 2006

Trial 4:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:26:24 2006
Revoke access on: Thu Sep 21 09:26:24 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:26:24 2006
Revoke access on: Thu Sep 7 10:26:24 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:26:25 2006
Revoke access on: Fri Sep 8 09:26:25 2006

160

Static, copy file test (using redirection), scenario 2 of 3 - smallest
src object

current time is:
Thu Sep 7 09:26:26 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:26:24 2006
Revoke access on: Thu Sep 7 10:26:24 2006

Trial 5:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:26:27 2006
Revoke access on: Thu Sep 21 09:26:27 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:26:27 2006
Revoke access on: Thu Sep 7 10:26:27 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:26:28 2006
Revoke access on: Fri Sep 8 09:26:28 2006

Static, copy file test (using redirection), scenario 2 of 3 - smallest
src object

current time is:
Thu Sep 7 09:26:29 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:26:27 2006
Revoke access on: Thu Sep 7 10:26:27 2006

Trial 6:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:26:30 2006
Revoke access on: Thu Sep 21 09:26:30 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:26:31 2006
Revoke access on: Thu Sep 7 10:26:31 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:26:31 2006
Revoke access on: Fri Sep 8 09:26:31 2006

Static, copy file test (using redirection), scenario 2 of 3 - smallest
src object

current time is:
Thu Sep 7 09:26:32 PDT 2006

161

The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:26:31 2006
Revoke access on: Thu Sep 7 10:26:31 2006

Trial 7:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:26:35 2006
Revoke access on: Thu Sep 21 09:26:35 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:26:35 2006
Revoke access on: Thu Sep 7 10:26:35 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:26:35 2006
Revoke access on: Fri Sep 8 09:26:35 2006

Static, copy file test (using redirection), scenario 2 of 3 - smallest
src object

current time is:
Thu Sep 7 09:26:37 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:26:35 2006
Revoke access on: Thu Sep 7 10:26:35 2006

Trial 8:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:26:39 2006
Revoke access on: Thu Sep 21 09:26:39 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:26:40 2006
Revoke access on: Thu Sep 7 10:26:40 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:26:40 2006
Revoke access on: Fri Sep 8 09:26:40 2006

Static, copy file test (using redirection), scenario 2 of 3 - smallest
src object

current time is:
Thu Sep 7 09:26:42 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:26:40 2006
Revoke access on: Thu Sep 7 10:26:40 2006

162

Trial 9:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:26:47 2006
Revoke access on: Thu Sep 21 09:26:47 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:26:47 2006
Revoke access on: Thu Sep 7 10:26:47 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:26:47 2006
Revoke access on: Fri Sep 8 09:26:47 2006

Static, copy file test (using redirection), scenario 2 of 3 - smallest
src object

current time is:
Thu Sep 7 09:26:49 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:26:47 2006
Revoke access on: Thu Sep 7 10:26:47 2006

Trial 10:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 09:26:51 2006
Revoke access on: Thu Sep 21 09:26:51 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 08:26:51 2006
Revoke access on: Thu Sep 7 10:26:51 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:26:51 2006
Revoke access on: Fri Sep 8 09:26:51 2006

Static, copy file test (using redirection), scenario 2 of 3 - smallest
src object

current time is:
Thu Sep 7 09:26:53 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:26:51 2006
Revoke access on: Thu Sep 7 10:26:51 2006

s-copy-file-2c-results.txt
Trial 1:
setup subject time attributes...

163

Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 13:15:46 2006
Revoke access on: Thu Sep 21 13:15:46 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 12:15:46 2006
Revoke access on: Thu Sep 7 14:15:46 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 13:15:47 2006
Revoke access on: Fri Sep 8 13:15:47 2006

Static, copy file test (using pipes), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 13:16:17 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 12:15:46 2006
Revoke access on: Thu Sep 7 14:15:46 2006

Trial 2:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 13:55:44 2006
Revoke access on: Thu Sep 21 13:55:44 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 12:55:45 2006
Revoke access on: Thu Sep 7 14:55:45 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 13:55:45 2006
Revoke access on: Fri Sep 8 13:55:45 2006

Static, copy file test (using pipes), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 13:55:54 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 12:55:45 2006
Revoke access on: Thu Sep 7 14:55:45 2006

Trial 3:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 13:55:58 2006
Revoke access on: Thu Sep 21 13:55:58 2006

164

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 12:55:59 2006
Revoke access on: Thu Sep 7 14:55:59 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 13:55:59 2006
Revoke access on: Fri Sep 8 13:55:59 2006

Static, copy file test (using pipes), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 13:56:03 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 12:55:59 2006
Revoke access on: Thu Sep 7 14:55:59 2006

Trial 4:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 13:56:13 2006
Revoke access on: Thu Sep 21 13:56:13 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 12:56:13 2006
Revoke access on: Thu Sep 7 14:56:13 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 13:56:13 2006
Revoke access on: Fri Sep 8 13:56:13 2006

Static, copy file test (using pipes), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 13:56:19 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 12:56:13 2006
Revoke access on: Thu Sep 7 14:56:13 2006

Trial 5:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 13:56:33 2006
Revoke access on: Thu Sep 21 13:56:33 2006

setup source object time attributes... (smallest)
Target: source.txt

165

Grant access on: Thu Sep 7 12:56:33 2006
Revoke access on: Thu Sep 7 14:56:33 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 13:56:33 2006
Revoke access on: Fri Sep 8 13:56:33 2006

Static, copy file test (using pipes), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 13:56:37 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Wed Sep 6 13:56:33 2006
Revoke access on: Fri Sep 8 13:56:33 2006

Trial 6:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 13:59:57 2006
Revoke access on: Thu Sep 21 13:59:57 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 12:59:58 2006
Revoke access on: Thu Sep 7 14:59:58 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 13:59:58 2006
Revoke access on: Fri Sep 8 13:59:58 2006

Static, copy file test (using pipes), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 14:00:03 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 12:59:58 2006
Revoke access on: Thu Sep 7 14:59:58 2006

Trial 7:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 14:00:09 2006
Revoke access on: Thu Sep 21 14:00:09 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 13:00:09 2006
Revoke access on: Thu Sep 7 15:00:09 2006

166

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 14:00:09 2006
Revoke access on: Fri Sep 8 14:00:09 2006

Static, copy file test (using pipes), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 14:00:14 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 13:00:09 2006
Revoke access on: Thu Sep 7 15:00:09 2006

Trial 8:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 14:00:18 2006
Revoke access on: Thu Sep 21 14:00:18 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 13:00:19 2006
Revoke access on: Thu Sep 7 15:00:19 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 14:00:19 2006
Revoke access on: Fri Sep 8 14:00:19 2006

Static, copy file test (using pipes), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 14:00:23 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 13:00:19 2006
Revoke access on: Thu Sep 7 15:00:19 2006

Trial 9:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 14:00:36 2006
Revoke access on: Thu Sep 21 14:00:36 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 13:00:36 2006
Revoke access on: Thu Sep 7 15:00:36 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 14:00:36 2006

167

Revoke access on: Fri Sep 8 14:00:36 2006

Static, copy file test (using pipes), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 14:00:40 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 13:00:36 2006
Revoke access on: Thu Sep 7 15:00:36 2006

Trial 10:
setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Thu Aug 24 14:00:45 2006
Revoke access on: Thu Sep 21 14:00:45 2006

setup source object time attributes... (smallest)
Target: source.txt
Grant access on: Thu Sep 7 13:00:46 2006
Revoke access on: Thu Sep 7 15:00:46 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 14:00:46 2006
Revoke access on: Fri Sep 8 14:00:46 2006

Static, copy file test (using pipes), scenario 2 of 3 - smallest src
object

current time is:
Thu Sep 7 14:00:49 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 13:00:46 2006
Revoke access on: Thu Sep 7 15:00:46 2006

s-copy-file-3a-results.txt
Trial 1:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:33:52 2006
Revoke access on: Thu Sep 7 10:33:52 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:33:52 2006
Revoke access on: Fri Sep 8 09:33:52 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:33:52 2006

168

Revoke access on: Fri Sep 8 09:33:52 2006

Static, copy file test (using cp), scenario 3 of 3 - smallest subject

current time is:
Thu Sep 7 09:34:08 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:33:52 2006
Revoke access on: Thu Sep 7 10:33:52 2006

Trial 2:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:34:37 2006
Revoke access on: Thu Sep 7 10:34:37 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:34:37 2006
Revoke access on: Fri Sep 8 09:34:37 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:34:37 2006
Revoke access on: Fri Sep 8 09:34:37 2006

Static, copy file test (using cp), scenario 3 of 3 - smallest subject

current time is:
Thu Sep 7 09:34:47 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:34:37 2006
Revoke access on: Thu Sep 7 10:34:37 2006

Trial 3:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:34:52 2006
Revoke access on: Thu Sep 7 10:34:52 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:34:52 2006
Revoke access on: Fri Sep 8 09:34:52 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:34:52 2006
Revoke access on: Fri Sep 8 09:34:52 2006

Static, copy file test (using cp), scenario 3 of 3 - smallest subject

current time is:
Thu Sep 7 09:35:00 PDT 2006
The resulting time attribute for the destination file is ...

169

Target: dest.txt
Grant access on: Thu Sep 7 08:34:52 2006
Revoke access on: Thu Sep 7 10:34:52 2006

Trial 4:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:35:04 2006
Revoke access on: Thu Sep 7 10:35:04 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:35:05 2006
Revoke access on: Fri Sep 8 09:35:05 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:35:05 2006
Revoke access on: Fri Sep 8 09:35:05 2006

Static, copy file test (using cp), scenario 3 of 3 - smallest subject

current time is:
Thu Sep 7 09:35:10 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:35:04 2006
Revoke access on: Thu Sep 7 10:35:04 2006

Trial 5:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:42:19 2006
Revoke access on: Thu Sep 7 10:42:19 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:42:20 2006
Revoke access on: Fri Sep 8 09:42:20 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:42:20 2006
Revoke access on: Fri Sep 8 09:42:20 2006

Static, copy file test (using cp), scenario 3 of 3 - smallest subject

current time is:
Thu Sep 7 09:42:30 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:42:19 2006
Revoke access on: Thu Sep 7 10:42:19 2006

Trial 6:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile

170

Grant access on: Thu Sep 7 08:42:40 2006
Revoke access on: Thu Sep 7 10:42:40 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:42:40 2006
Revoke access on: Fri Sep 8 09:42:40 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:42:41 2006
Revoke access on: Fri Sep 8 09:42:41 2006

Static, copy file test (using cp), scenario 3 of 3 - smallest subject

current time is:
Thu Sep 7 09:42:45 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:42:40 2006
Revoke access on: Thu Sep 7 10:42:40 2006

Trial 7:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:42:49 2006
Revoke access on: Thu Sep 7 10:42:49 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:42:49 2006
Revoke access on: Fri Sep 8 09:42:49 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:42:50 2006
Revoke access on: Fri Sep 8 09:42:50 2006

Static, copy file test (using cp), scenario 3 of 3 - smallest subject

current time is:
Thu Sep 7 09:42:55 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:42:49 2006
Revoke access on: Thu Sep 7 10:42:49 2006

Trial 8:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:43:00 2006
Revoke access on: Thu Sep 7 10:43:00 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:43:00 2006
Revoke access on: Fri Sep 8 09:43:00 2006

171

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:43:01 2006
Revoke access on: Fri Sep 8 09:43:01 2006

Static, copy file test (using cp), scenario 3 of 3 - smallest subject

current time is:
Thu Sep 7 09:43:08 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:43:00 2006
Revoke access on: Thu Sep 7 10:43:00 2006

Trial 9:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:43:17 2006
Revoke access on: Thu Sep 7 10:43:17 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:43:18 2006
Revoke access on: Fri Sep 8 09:43:18 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:43:18 2006
Revoke access on: Fri Sep 8 09:43:18 2006

Static, copy file test (using cp), scenario 3 of 3 - smallest subject

current time is:
Thu Sep 7 09:43:23 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:43:17 2006
Revoke access on: Thu Sep 7 10:43:17 2006

Trial 10:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:43:28 2006
Revoke access on: Thu Sep 7 10:43:28 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:43:28 2006
Revoke access on: Fri Sep 8 09:43:28 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:43:29 2006
Revoke access on: Fri Sep 8 09:43:29 2006

Static, copy file test (using cp), scenario 3 of 3 - smallest subject

172

current time is:
Thu Sep 7 09:43:35 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:43:28 2006
Revoke access on: Thu Sep 7 10:43:28 2006

s-copy-file-3b-results.txt
Trial 1:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:44:52 2006
Revoke access on: Thu Sep 7 10:44:52 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:44:53 2006
Revoke access on: Fri Sep 8 09:44:53 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:44:53 2006
Revoke access on: Fri Sep 8 09:44:53 2006

Static, copy file test (using redirection), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:45:06 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:44:52 2006
Revoke access on: Thu Sep 7 10:44:52 2006

Trial 2:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:45:13 2006
Revoke access on: Thu Sep 7 10:45:13 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:45:13 2006
Revoke access on: Fri Sep 8 09:45:13 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:45:14 2006
Revoke access on: Fri Sep 8 09:45:14 2006

Static, copy file test (using redirection), scenario 3 of 3 - smallest
subject

current time is:

173

Thu Sep 7 09:45:19 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:45:13 2006
Revoke access on: Thu Sep 7 10:45:13 2006

Trial 3:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:45:24 2006
Revoke access on: Thu Sep 7 10:45:24 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:45:25 2006
Revoke access on: Fri Sep 8 09:45:25 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:45:25 2006
Revoke access on: Fri Sep 8 09:45:25 2006

Static, copy file test (using redirection), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:45:31 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:45:24 2006
Revoke access on: Thu Sep 7 10:45:24 2006

Trial 4:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:45:38 2006
Revoke access on: Thu Sep 7 10:45:38 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:45:39 2006
Revoke access on: Fri Sep 8 09:45:39 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:45:39 2006
Revoke access on: Fri Sep 8 09:45:39 2006

Static, copy file test (using redirection), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:45:43 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:45:38 2006
Revoke access on: Thu Sep 7 10:45:38 2006

174

Trial 5:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:45:52 2006
Revoke access on: Thu Sep 7 10:45:52 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:45:52 2006
Revoke access on: Fri Sep 8 09:45:52 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:45:53 2006
Revoke access on: Fri Sep 8 09:45:53 2006

Static, copy file test (using redirection), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:45:57 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:45:52 2006
Revoke access on: Thu Sep 7 10:45:52 2006

Trial 6:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:46:01 2006
Revoke access on: Thu Sep 7 10:46:01 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:46:02 2006
Revoke access on: Fri Sep 8 09:46:02 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:46:02 2006
Revoke access on: Fri Sep 8 09:46:02 2006

Static, copy file test (using redirection), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:46:06 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:46:01 2006
Revoke access on: Thu Sep 7 10:46:01 2006

Trial 7:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:46:10 2006

175

Revoke access on: Thu Sep 7 10:46:10 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:46:11 2006
Revoke access on: Fri Sep 8 09:46:11 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:46:11 2006
Revoke access on: Fri Sep 8 09:46:11 2006

Static, copy file test (using redirection), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:46:18 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:46:10 2006
Revoke access on: Thu Sep 7 10:46:10 2006

Trial 8:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:46:26 2006
Revoke access on: Thu Sep 7 10:46:26 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:46:26 2006
Revoke access on: Fri Sep 8 09:46:26 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:46:26 2006
Revoke access on: Fri Sep 8 09:46:26 2006

Static, copy file test (using redirection), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:46:33 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:46:26 2006
Revoke access on: Thu Sep 7 10:46:26 2006

Trial 9:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:46:41 2006
Revoke access on: Thu Sep 7 10:46:41 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:46:41 2006

176

Revoke access on: Fri Sep 8 09:46:41 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:46:42 2006
Revoke access on: Fri Sep 8 09:46:42 2006

Static, copy file test (using redirection), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:47:29 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:46:41 2006
Revoke access on: Thu Sep 7 10:46:41 2006

Trial 10:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:47:34 2006
Revoke access on: Thu Sep 7 10:47:34 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:47:35 2006
Revoke access on: Fri Sep 8 09:47:35 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:47:35 2006
Revoke access on: Fri Sep 8 09:47:35 2006

Static, copy file test (using redirection), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:47:39 PDT 2006
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:47:34 2006
Revoke access on: Thu Sep 7 10:47:34 2006

s-copy-file-3c-results.txt
Trial 1:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:49:17 2006
Revoke access on: Thu Sep 7 10:49:17 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:49:17 2006
Revoke access on: Fri Sep 8 09:49:17 2006

177

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:49:17 2006
Revoke access on: Fri Sep 8 09:49:17 2006

Static, copy file test (using pipes), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:49:31 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:49:17 2006
Revoke access on: Thu Sep 7 10:49:17 2006

Trial 2:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:49:38 2006
Revoke access on: Thu Sep 7 10:49:38 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:49:39 2006
Revoke access on: Fri Sep 8 09:49:39 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:49:39 2006
Revoke access on: Fri Sep 8 09:49:39 2006

Static, copy file test (using pipes), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:49:44 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:49:38 2006
Revoke access on: Thu Sep 7 10:49:38 2006

Trial 3:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:49:49 2006
Revoke access on: Thu Sep 7 10:49:49 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:49:49 2006
Revoke access on: Fri Sep 8 09:49:49 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:49:50 2006

178

Revoke access on: Fri Sep 8 09:49:50 2006

Static, copy file test (using pipes), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:49:53 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:49:49 2006
Revoke access on: Thu Sep 7 10:49:49 2006

Trial 4:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:49:57 2006
Revoke access on: Thu Sep 7 10:49:57 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:49:58 2006
Revoke access on: Fri Sep 8 09:49:58 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:49:58 2006
Revoke access on: Fri Sep 8 09:49:58 2006

Static, copy file test (using pipes), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:50:02 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:49:57 2006
Revoke access on: Thu Sep 7 10:49:57 2006

Trial 5:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:50:05 2006
Revoke access on: Thu Sep 7 10:50:05 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:50:06 2006
Revoke access on: Fri Sep 8 09:50:06 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:50:06 2006
Revoke access on: Fri Sep 8 09:50:06 2006

179

Static, copy file test (using pipes), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:50:11 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:50:05 2006
Revoke access on: Thu Sep 7 10:50:05 2006

Trial 6:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:50:15 2006
Revoke access on: Thu Sep 7 10:50:15 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:50:16 2006
Revoke access on: Fri Sep 8 09:50:16 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:50:16 2006
Revoke access on: Fri Sep 8 09:50:16 2006

Static, copy file test (using pipes), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:50:22 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:50:15 2006
Revoke access on: Thu Sep 7 10:50:15 2006

Trial 7:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:50:34 2006
Revoke access on: Thu Sep 7 10:50:34 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:50:34 2006
Revoke access on: Fri Sep 8 09:50:34 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:50:34 2006
Revoke access on: Fri Sep 8 09:50:34 2006

Static, copy file test (using pipes), scenario 3 of 3 - smallest
subject

180

current time is:
Thu Sep 7 09:50:38 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:50:34 2006
Revoke access on: Thu Sep 7 10:50:34 2006

Trial 8:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:50:43 2006
Revoke access on: Thu Sep 7 10:50:43 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:50:43 2006
Revoke access on: Fri Sep 8 09:50:43 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:50:43 2006
Revoke access on: Fri Sep 8 09:50:43 2006

Static, copy file test (using pipes), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:50:47 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:50:43 2006
Revoke access on: Thu Sep 7 10:50:43 2006

Trial 9:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:50:50 2006
Revoke access on: Thu Sep 7 10:50:50 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:50:50 2006
Revoke access on: Fri Sep 8 09:50:50 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:50:50 2006
Revoke access on: Fri Sep 8 09:50:50 2006

Static, copy file test (using pipes), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:50:56 PDT 2006
This is the source file.

181

The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:50:50 2006
Revoke access on: Thu Sep 7 10:50:50 2006

Trial 10:
setup subject time attributes...(smallest)
Target: /home/jody/.bash_profile
Grant access on: Thu Sep 7 08:50:59 2006
Revoke access on: Thu Sep 7 10:50:59 2006

setup source object time attributes...
Target: source.txt
Grant access on: Wed Sep 6 09:50:59 2006
Revoke access on: Fri Sep 8 09:50:59 2006

setup destination object time attributes...
Target: dest.txt
Grant access on: Wed Sep 6 09:51:00 2006
Revoke access on: Fri Sep 8 09:51:00 2006

Static, copy file test (using pipes), scenario 3 of 3 - smallest
subject

current time is:
Thu Sep 7 09:51:05 PDT 2006
This is the source file.
The resulting time attribute for the destination file is ...
Target: dest.txt
Grant access on: Thu Sep 7 08:50:59 2006
Revoke access on: Thu Sep 7 10:50:59 2006

s-create-file-results.txt
Static, create file test

setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Tue Aug 22 00:14:50 2006
Revoke access on: Tue Sep 19 00:14:50 2006

current time is:
Tue Sep 5 00:14:51 PDT 2006

creating a new file...........

The time attribute for the newly created file is ...
Target: /home/jody/jodynew.txt
Grant access on: Tue Aug 22 00:14:50 2006
Revoke access on: Tue Sep 19 00:14:50 2006

s-create-dir-results.txt
Static, create directory test

182

setup subject time attributes...
Target: /home/jody/.bash_profile
Grant access on: Tue Aug 22 00:15:47 2006
Revoke access on: Tue Sep 19 00:15:47 2006

current time is:
Tue Sep 5 00:15:47 PDT 2006

creating a new directory...........

The time attribute for the newly created directory is ...
Target: /home/jody/jodyNewDirectory
Grant access on: Tue Aug 22 00:15:47 2006
Revoke access on: Tue Sep 19 00:15:47 2006

183

Static tests – TIFPS behavior on time expiration during file write operations

184

185

Dynamic tests – Dynamically changing subject and object attributes

186

D. PERFORMANCE TEST PROCEDURES
 This section contains detailed test procedures for performance test evaluation of

the TIFPS LSM.

1. The performance tests consist of six test scripts and twelve setup scripts. Prior to

conducting the tests, ensure the following preconditions are met:

a. Start two separate login sessions, one as root and the other as user sam.

b. In the root session, copy the scripts in the testscripts/performance/

directory to /home/sam/:

cp –r <path to testscripts directory>/performance /home/sam/

c. Change both login sessions to the /home/sam/performance/ directory.

d. In the root session, change the permission of the testscripts/performance/

directory:

chmod –R 777 /home/sam/performance

e. Unload the TIFPS LSM from the kernel using the root session:

rmmod tifps

2. In the root login session, run the setup script:

./test1setup.sh

3. In the sam login session, run the following command three times and record the

resulting sys time for each trial (this will be the baseline performance for a kernel

without TIFPS):

$ time –p ./test1and2.sh

4. In the root login session, load the TIFPS LSM by running:

modprobe tifps

5. In the sam login session, run the same command as in step 3 three times and

record the resulting sys time for each trial (this will be the performance for a

kernel with TIFPS)

187

$ time –p ./test1and2.sh

6. Repeat steps 1 through 5 for subsequent tests 3, 5, 7, 9, and 11.

7. For tests 2, 4, 6, 10, and 12, repeat steps 1 through 5 with one change – run the

test*setup.sh after every trial in steps 3 and 5.

8. For test 8, this test does not have a setup script, to run these test 8, edit the

test7and8.sh script by un-commenting the last line in the script.

9. Test scripts for each performance test condition are summarized in Table D-7.

Table D-7. Summary of test scripts used for each performance evaluation condition

TestID Test Scripts Performance test variable descriptions
F1 test1setup.sh

test1and2.sh
Read single file with TIFPS attributes 1000 times

F2 test2setup.sh
test1and2.sh

Read single file without TIFPS attributes 1000 times

F3 test3setup.sh
test3and4.sh

Read 1000 files with TIFPS attributes 1 time

F4 test4setup.sh
test3and4.sh

Read 1000 files without TIFPS attributes 1 time

F5 test5setup.sh
test5and6.sh

Write single file with TIFPS attributes 1000 times

F6 test6setup.sh
test5and6.sh

Write single file without TIFPS attributes 1000 times

F7 test7setup.sh
test7and8.sh

Write 1000 files with TIFPS attributes 1 time

F8 test7and8.sh Write 1000 files without TIFPS attributes 1 time
F9 test9setup.sh

test9and10.sh
Copy 1 file with TIFPS attributes 1000 times to another existing file with
TIFPS attributes

F10 test10setup.sh
test9and10.sh

Copy 1 file without TIFPS attributes 1000 times to another non existent file

F11 test11setup.sh
test11and12.sh

Copy 1000 different files, each with TIFPS attributes to another set of 1000
files, with TIFPS attributes

F12 test12setup.sh
test11and12.sh

Copy 1000 different files, without TIFPS attributes to a set of non existent
files

E. PERFORMANCE TEST SCRIPTS
This section contains scripts that correspond to the tests described in Section D.

test1and2.sh
#!/bin/bash
For test 1, run test1setup.sh once as root to create the file to be read and
set the time attributes
For test 2, run test2setup.sh for every trial as root before running
test1and2.sh

i=1
while [$i -lt 1000];do
 cat test1message.txt >/dev/null
 let i++
done

188

test3and4.sh
#!/bin/bash
For test 3, run test3setup.sh once as root to create 1000 files
for this script
For test 4, run test4setup.sh between every trial as root before running
this script.
i=1
while [$i -lt 1000]; do
 cat test3-file$i.txt >/dev/null
 let i++
done

test5and6.sh
#!/bin/bash
For test 5, run the test5setup.sh script as root once before running this.
For test 6, run the test6setup.sh script as root between every trial before
running this script.
i=1
while [$i -lt 1000];do
 python -c “print 'G'*1000”> writefile.txt
 let i++
done

test7and8.sh
#!/bin/bash

For test 7, run the test7setup.sh script first to setup the test.
For test 8, uncomment the last line for test 8 before running this test.

i=1
while [$i -lt 1000];do
 python -c “print 'G'*1000” > “test7-8-file$i.txt”
 let i++
done

#uncomment following for test 8
#rm -rf test7-8-file* #test 8 only

test9and10.sh
#!/bin/bash
For test 9, run the test9setup.sh script first as root.
For test 10, run the test10setup.sh script between every trial.
i=1
while [$i -lt 1000];do
 cp copy1.txt copy2.txt
 let i++
done

test11and12.sh
#!/bin/bash
For test 11, create 1000 files first by running the test11setup.sh script
For test 12, run the test12setup script as root between every trial.
i=1
while [$i -lt 1000];do
 cp test11-file$i.txt test11-file-copy$i.txt
 let i++
done

test1setup.sh
#!/bin/bash

189

Run this script as root to create the file to be read for test 1

echo “creating test 1 file...”
python -c “print 'G'*1000” >test1message.txt

echo “setting time attributes for test11 files...”
modtime -W 1 test1message.txt
chmod 777 test1message.txt
echo “done!”

test2setup.sh
#!/bin/bash
Run this script as root between trials for test 2

echo “removing tifps attributes from test file...”
modtime -x test1message.txt
echo “done!”

test3setup.sh
#!/bin/bash
Creates 1000 files for test 3, run this script as root
echo “creating 1000 test 3 files...”
i=1
while [$i -lt 1000];do
 python -c “print 'G'*1000” >test3-file$i.txt
 let i++
done

echo “setting time attributes for test 3 files...”
modtime -W 1 test3-file* >/dev/null
chmod 777 test3-file*
echo “done!”

test4setup.sh
#!/bin/bash
sets up files for test 4, run this script as root between trials

echo “removing time attributes for test 4 files...”
modtime -x test3-file* >/dev/null
echo “done!”

test5setup.sh
#!/bin/bash
sets up the file for test 5, run this script as root

echo “Creating writefile.txt for test 5”
touch writefile.txt
chmod 777 writefile.txt
modtime -W 1 writefile.txt
echo “done!”

test6setup.sh
#!/bin/bash
sets up the file for test 6, run this script as root between trials

echo “Removing tifps attributes for test 6”
modtime -x writefile.txt
echo “done!”

test7setup.sh
#!/bin/bash
sets up the files for test 7, run this script as root

190

echo “Creating files for test 7”
i=1
while [$i -lt 1000]; do
 touch test7-8-file$i.txt
 let i++
done

echo “setting tifps attributes”
chmod 777 test7-8-file*
modtime -W 1 test7-8-file* >/dev/null
echo “done!”

test9setup.sh
#!/bin/bash
sets up the file for test 9, run this script as root

echo “Creating file for test 9”
python -c “print 'G'*1000”>copy1.txt

echo “setting tifps attributes on file”
chmod 777 copy1.txt
modtime -W 1 copy1.txt >/dev/null
echo “done!”

test10setup.sh
#!/bin/bash
sets up the file for test 10, run this script as root for
every trial run

echo “Removing time attributes for test 10”
modtime -x copy1.txt copy2.txt
echo “done!”

test11setup.sh
#!/bin/bash
Creates 1000 files for test 11, run this script as root

echo “creating test 11 files...”
i=1
while [$i -lt 1000];do
 python -c “print 'G'*1000” >test11-file$i.txt
 cp test11-file$i.txt test11-file-copy$i.txt
 let i++
done

echo “setting time attributes for test11 files...”
modtime -W 1 test11-file* >/dev/null
chmod 777 test11-file*
echo “done!”

test12setup.sh
#!/bin/bash
setup file for test 12, run this script as root between trials

echo “deleting copies from test 11, if they exist...”
rm -f test11-file-copy*

echo “removing time attributes for test12 files...”
modtime -x test11-file* >/dev/null
chmod 777 test11-file*
echo “done!”

191

F. PERFORMANCE TEST RESULTS
This section contains the raw results of the tests described in Section D.

TIFPS Performance Tests Last modified 09/05/06

Test Environment:
Dell Desktop 3.0 GHz, 256M Ram, Vmware server 1.0.0 image running
FC5

 Kernel revision #65 tested
 Tests
Kernel: 1 2 3 4 5 6 7 8 9 10 11 12
Normal 4.39 4.38 4.47 4.38 26.44 26.61 27.55 26.84 6.47 6.46 6.72 6.8
 4.4 4.42 4.47 4.42 26.67 26.69 27.5 27.17 6.55 6.38 6.77 6.87
 4.44 4.38 4.48 4.4 27.19 26.38 27.7 27.01 6.47 6.41 6.64 6.88
 27.17

Avg 4.41 4.39 4.47 4.40 26.77 26.56 27.58 27.05 6.50 6.42 6.71 6.85
Std 0.03 0.02 0.01 0.02 0.38 0.16 0.10 0.16 0.05 0.04 0.07 0.04

TIFPS LSM 4.62 4.62 4.76 4.64 32.32 31.85 32.64 31.95 7.01 7.11 7.22 7.42
 4.68 4.56 4.7 4.64 32.67 31.72 32.05 32.5 7.15 7.08 7.17 7.4
 4.65 4.6 4.7 4.67 31.85 32.15 33.09 32.16 7.11 7.07 7.36 7.37

Avg 4.65 4.59 4.72 4.65 32.28 31.91 32.59 32.20 7.09 7.09 7.25 7.40
Std 0.03 0.03 0.03 0.02 0.41 0.22 0.52 0.28 0.07 0.02 0.10 0.03

Difference 5.4% 4.6% 5.5% 5.7% 20.6% 20.1% 18.2% 19.1% 9.1% 10.4% 8.0% 8.0%

Note: only sys time captured because it is time spent in the kernel; that's where the access control happens.
Tests:
1. Read 1 file with tifps attributes 1000 times; pipe output to /dev/null
2. Same as 1, but file does not have tifps attributes.
3. Read 1000 different files, each with tifps attributes
4. Same as 3, but files do not have tifps attributes.
5. Write to 1 file with tifps attribute 1000 times; “python -c “print 'G'*1000”>writefile.txt.
6. Same as 5, but file does not have tifps attributes.
7. Write to 1000 different existing files with tifps attributes
8. same as 7, except we remove all files created for each run (no tifps attributes)
9. Copy 1 file with tifps attributes 1000 times to another file also with tifps attributes (cp copy1.txt copy2.txt)
10. Same as 9, but source and dest files do not have tifps attibutes
11. Copy 1000 different files with tifps attributes to another 1000 set of files, also with tifps attributes.
12. Same as 11, but no source files have tifps attributes

Note: All units in are seconds unless otherwise noted.

G. CONCURRENCY TEST PROCEDURES
To test the robustness of the TIFPS LSM in multi-user concurrent access

environments, the following test procedures were developed. To setup the concurrency

tests:

192

Start a root login sessions, change to the testscripts/concurrency/ directory and

copy the *-user.sh (3users-read-user.sh, 3users-write-user.sh, 3users-writedir-

user.sh, 3users-copy-user.sh) scripts to the /bin directoriy.

cp 3users-*-user.sh /bin/

Concurrent read from and write to the same file

1. Start three additional login sessions; login to each session as root..

2. In the first root login session that is in the testscripts/concurrency/ directory,

run:

./3users-read.sh

3. Within one minute, use the other three login sessions to login as sam, don, and

jody to run their respective test scripts:

su - <user>

$ 3users-read-user.sh

4. Record the results of the 4 login sessions from the screen and compare with the

expected results listed below.

5. Clean up the test environment by running in the root session:

modtime –x /home/sam/.bash* /home/jody/.bash* /home/don/.bash* /tmp

6. Repeat steps 2 through 5 for the 3users-write.sh and 3users-write-user.sh

scripts.

7. Expected results:

a. Concurrent read from same file: The system should revoke access from

the user when his/her time attribute expires.

b. Concurrent write to same file: The system should do two things

i. Transfer the time attributes of the most restrictive user to the

shared file

193

ii. Revoke access for all users based on the the inherited time

attributes.

Concurrent write to same directory and copy from same file

1. Exit the three user login sessions:

$ exit

exit

2. In the remaining root login session, run:

modtime –x /home/jody/.bash* /home/don/.bash* /home/sam/.bash* /tmp

./3users-writedir.sh

3. Record the results and compare the values on the screen with the expected results

listed below.

4. Repeat step 2 with the commands:

modtime –x /home/jody/.bash* /home/don/.bash* /home/sam/.bash* /tmp

./3users-copy.sh

5. Expected results:

a. Concurrent write to same directory:

i. Each copy written by the users should inherit the proper

permissions from the users.

ii. The time attributes of the directory should not change.

b. Concurrent copy from the same file:

i. Each copy of the file made by the user should take on the more

restrictive of his user attributes or the the original file attributes.

ii. The original file’s time attributes should not change.

194

Table D-8. Summary of test scripts for concurrency testing

Test
ID

Test Scripts Description of concurrency test
scenario

Expected results

G1 3users-read.sh
3users-read-user.sh

Concurrent read of a single file by 3
users with different time attributes

In each user’s sessions, read access should
be revoked at the time preset by root.

G2 3users-write.sh
3users-write-user.sh

Concurrent write to a single file by
3 users with different time attributes

1. The file being written to should inherit
the time attributes of the user with the
most restrictive time attributes.
2. Each user’s write access to that file
should be revoked based upon the
inherited time.

G3 3users-copy.sh
3users-copy-user.sh

Concurrent copy of a single file by
3 users with different time attributes

1. Each copy made by each user should
inherit the user’s time attributes
2. The directory’s time attributes should
not change.

G4 3users-writedir.sh
3users-writedir-user.sh

Concurrent write to a shared
directory by 3 users with different
time attributes

1. Each copy made by each user should
inherit the more restrictive time attributes
of either the user or the original file.
2. The destination directory’s time
attributes should not change.

H. CONCURRENCY TEST SCRIPTS

The scripts in this section correspond to tests described in Section G.

3users-read.sh
#!/bin/bash
Run this script as root to set things up, then login as sam, don, and jody.
As each of these users, run the “3user-read-user.sh” for each user within 1 minute.

echo “Concurrent read access test - multiple users”
echo ““

echo “Setting up sam, don, and jody's time attributes...”
modtime -M 1 -S15 /home/sam/.bash_profile
modtime -M 1 -S20 /home/don/.bash_profile
modtime -M 1 -S30 /home/jody/.bash_profile

echo “Setting up the object file to be read...”
echo “this message will self destruct in 10s” > /tmp/message.txt
modtime -W 1 /tmp/message.txt

echo ““
echo ““
echo “login as sam, don, and jody and run the 3user-read-user.sh script for each”
echo “ within the next 1 Minute”

3users-read-user.sh
#!/bin/bash
Run the 3user-read.sh script first as root, then
within 60s, login with sam, don, and jody's accounts
and run this script with each of these accounts.

echo “reading the /tmp/message.txt file continuously...”
echo ““
cat /tmp/message.txt

while [1]; do
 cat /tmp/message.txt >/dev/null

195

 if [$? -gt 0]; then
 echo “Read access to /tmp/message.txt revoked, time:”
 date
 echo ““
 exit
 fi
done

3users-write.sh
#!/bin/bash
Run this script as root to set things up, then login as sam, don, and jody.
As each of these users, run the “3user-write-user.sh” for each user within 1 minute.

echo “Concurrent write access test by multiple users”
echo ““

echo “Setting up sam, don, and jody's time attributes...”
modtime -M 1 -S15 /home/sam/.bash_profile
modtime -M 1 -S20 /home/don/.bash_profile
modtime -M 1 -S30 /home/jody/.bash_profile

echo “Setting up the object file to be written to...”
echo “overwrite me” > /tmp/shared-write.txt
chmod 777 /tmp/shared-write.txt
modtime -W 1 /tmp/shared-write.txt

echo ““
echo ““
echo “login as sam, don, and jody and run the 3user-write-user.sh script within the next
minute”

3users-write-user.sh
#!/bin/bash
Run the 3user-write.sh script first as root, then
within 60s, login with sam, don, and jody's accounts
and run this script with each of these accounts.

echo “attempting to write to /tmp/shared-write.txt file continuously...”
echo ““

while [1]; do
 echo “`date +%T`: $USER” >>/tmp/shared-write.txt
 if [$? -gt 0]; then
 echo “write to /tmp/shared-write.txt failed, time:”
 date

echo ““
 exit
 fi
done

3users-writedir.sh
#!/bin/bash
Run this script as root; the 3users-writedir-user.sh script must be
in the execute path for each of the 3 users sam, don, and jody.

echo “Test concurrent copying into same directory by multiple users”
echo ““

echo “Setting up sam, don, and jody's time attributes...”
modtime -M 1 -S15 /home/sam/.bash_profile
modtime -M 1 -S20 /home/don/.bash_profile
modtime -M 1 -S30 /home/jody/.bash_profile

echo “Setting up the object directory to be written...”
modtime -W 1 /tmp

196

echo ““
echo ““
rm -f /tmp/sam-copy.txt /tmp/don-copy.txt /tmp/jody-copy.txt
rm -f /home/sam/sam-copy.txt /home/don/don-copy.txt /home/jody/jody-copy.txt

su - sam -c “3users-writedir-user.sh” &
su - don -c “3users-writedir-user.sh” &
su - jody -c “3users-writedir-user.sh” &

sleep 10s
echo “The time attributes of the resulting copies made by each user are:”
modtime -g /tmp/sam-copy.txt
modtime -g /tmp/don-copy.txt
modtime -g /tmp/jody-copy.txt

echo “The time attribute of the original directory written:”
modtime -g /tmp

3users-writedir-user.sh
#!/bin/bash
This script is run from the 3user-writedir.sh script by root

echo “$USER copying his/her respective private file”
echo “ continuously 1000 times to the /tmp directory”
echo ““

echo “$USER was here...” >$USER-copy.txt

i=0
while [$i -lt 1000]; do
 cp $USER-copy.txt /tmp/
 let “i=$i+1”
done

3users-copy.sh
#!/bin/bash
Run this script as root; the 3user-copy-user.sh script must be
in the execute path for each of the 3 users sam, don, and jody.

echo “Concurrent file copy test by multiple users”
echo ““

echo “Setting up sam, don, and jody's time attributes...”
modtime -M 1 -S15 /home/sam/.bash_profile
modtime -M 1 -S20 /home/don/.bash_profile
modtime -M 1 -S30 /home/jody/.bash_profile

echo “Setting up the object file to be copied...”
echo “this message will self destruct in 10s” > /tmp/message.txt
modtime -W 1 /tmp/message.txt

echo ““
echo ““
rm -f /home/sam/sam-copy.txt
rm -f /home/don/don-copy.txt
rm -f /home/jody/jody-copy.txt
su - sam -c “3users-copy-user.sh” &
su - don -c “3users-copy-user.sh” &
su - jody -c “3users-copy-user.sh” &

sleep 10s
echo “The time attributes of the resulting copies made by each user are:”
modtime -g /home/sam/sam-message-copy.txt
modtime -g /home/don/don-message-copy.txt

197

modtime -g /home/jody/jody-message-copy.txt

echo “The time attribute of the original file copied:”
modtime -g /tmp/message.txt

3users-copy-user.sh
#!/bin/bash
This script is run by the 3users-copy.sh script by root.

echo “$USER copying the /tmp/message.txt file continuously 1000 times”
echo ““

i=0
while [$i -lt 1000]; do
 cp /tmp/message.txt $USER-message-copy.txt
 let “i=$i+1”
done

I. CONCURRENCY TEST RESULTS

This section contains results from the tests described in Section G.

Concurrent read from the same file

198

199

Concurrent write to same file

200

Concurrent write to same directory

201

Concurrent copy from the same file

202

THIS PAGE INTENTIONALLY LEFT BLANK

203

APPENDIX E. DEVELOPMENT CONFIGURATION FILES

This appendix contains configuration files used during the development and

testing of the TIFPS LSM. The kernel configuration file .config and the emacs editor

configuration file .emacs are provided.

A. KERNEL .CONFIG CONFIGURATION FILE

Automatically generated make config: don't edit
Linux kernel version: 2.6.15-tifps-082406-module
Wed Aug 30 00:27:05 2006

CONFIG_X86_32=y
CONFIG_SEMAPHORE_SLEEPERS=y
CONFIG_X86=y
CONFIG_MMU=y
CONFIG_GENERIC_ISA_DMA=y
CONFIG_GENERIC_IOMAP=y
CONFIG_ARCH_MAY_HAVE_PC_FDC=y
CONFIG_DMI=y

Code maturity level options

CONFIG_EXPERIMENTAL=y
CONFIG_LOCK_KERNEL=y
CONFIG_INIT_ENV_ARG_LIMIT=32

General setup

CONFIG_LOCALVERSION=““
CONFIG_LOCALVERSION_AUTO is not set
CONFIG_SWAP=y
CONFIG_SYSVIPC=y
CONFIG_POSIX_MQUEUE=y
CONFIG_BSD_PROCESS_ACCT=y
CONFIG_BSD_PROCESS_ACCT_V3 is not set
CONFIG_SYSCTL=y
CONFIG_AUDIT=y
CONFIG_AUDITSYSCALL=y
CONFIG_IKCONFIG is not set
CONFIG_CPUSETS=y
CONFIG_INITRAMFS_SOURCE=““
CONFIG_UID16=y
CONFIG_VM86=y
CONFIG_CC_OPTIMIZE_FOR_SIZE=y
CONFIG_EMBEDDED is not set
CONFIG_KALLSYMS=y
CONFIG_KALLSYMS_ALL is not set
CONFIG_KALLSYMS_EXTRA_PASS=y
CONFIG_HOTPLUG=y
CONFIG_PRINTK=y
CONFIG_BUG=y
CONFIG_ELF_CORE=y
CONFIG_BASE_FULL=y
CONFIG_FUTEX=y
CONFIG_EPOLL=y
CONFIG_SHMEM=y
CONFIG_CC_ALIGN_FUNCTIONS=0
CONFIG_CC_ALIGN_LABELS=0
CONFIG_CC_ALIGN_LOOPS=0
CONFIG_CC_ALIGN_JUMPS=0
CONFIG_SLAB=y

204

CONFIG_TINY_SHMEM is not set
CONFIG_BASE_SMALL=0
CONFIG_SLOB is not set

Loadable module support

CONFIG_MODULES=y
CONFIG_MODULE_UNLOAD=y
CONFIG_MODULE_FORCE_UNLOAD is not set
CONFIG_OBSOLETE_MODPARM=y
CONFIG_MODVERSIONS=y
CONFIG_MODULE_SRCVERSION_ALL=y
CONFIG_MODULE_SIG=y
CONFIG_MODULE_SIG_FORCE is not set
CONFIG_KMOD=y
CONFIG_STOP_MACHINE=y

Block layer

CONFIG_LBD=y

IO Schedulers

CONFIG_IOSCHED_NOOP=y
CONFIG_IOSCHED_AS=y
CONFIG_IOSCHED_DEADLINE=y
CONFIG_IOSCHED_CFQ=y
CONFIG_DEFAULT_AS is not set
CONFIG_DEFAULT_DEADLINE is not set
CONFIG_DEFAULT_CFQ=y
CONFIG_DEFAULT_NOOP is not set
CONFIG_DEFAULT_IOSCHED=“cfq”

Processor type and features

CONFIG_X86_PC=y
CONFIG_X86_XEN is not set
CONFIG_X86_ELAN is not set
CONFIG_X86_VOYAGER is not set
CONFIG_X86_NUMAQ is not set
CONFIG_X86_SUMMIT is not set
CONFIG_X86_BIGSMP is not set
CONFIG_X86_VISWS is not set
CONFIG_X86_GENERICARCH is not set
CONFIG_X86_ES7000 is not set
CONFIG_M386 is not set
CONFIG_M486 is not set
CONFIG_M586 is not set
CONFIG_M586TSC is not set
CONFIG_M586MMX is not set
CONFIG_M686=y
CONFIG_MPENTIUMII is not set
CONFIG_MPENTIUMIII is not set
CONFIG_MPENTIUMM is not set
CONFIG_MPENTIUM4 is not set
CONFIG_MK6 is not set
CONFIG_MK7 is not set
CONFIG_MK8 is not set
CONFIG_MCRUSOE is not set
CONFIG_MEFFICEON is not set
CONFIG_MWINCHIPC6 is not set
CONFIG_MWINCHIP2 is not set
CONFIG_MWINCHIP3D is not set
CONFIG_MGEODEGX1 is not set
CONFIG_MGEODE_LX is not set
CONFIG_MCYRIXIII is not set
CONFIG_MVIAC3_2 is not set

205

CONFIG_X86_GENERIC is not set
CONFIG_X86_CMPXCHG=y
CONFIG_X86_XADD=y
CONFIG_X86_L1_CACHE_SHIFT=5
CONFIG_RWSEM_XCHGADD_ALGORITHM=y
CONFIG_GENERIC_CALIBRATE_DELAY=y
CONFIG_X86_PPRO_FENCE=y
CONFIG_X86_WP_WORKS_OK=y
CONFIG_X86_INVLPG=y
CONFIG_X86_BSWAP=y
CONFIG_X86_POPAD_OK=y
CONFIG_X86_CMPXCHG64=y
CONFIG_X86_GOOD_APIC=y
CONFIG_X86_USE_PPRO_CHECKSUM=y
CONFIG_X86_TSC=y
CONFIG_HPET_TIMER=y
CONFIG_HPET_EMULATE_RTC=y
CONFIG_SMP=y
CONFIG_SMP_ALTERNATIVES is not set
CONFIG_NR_CPUS=255
CONFIG_SCHED_SMT=y
CONFIG_PREEMPT_NONE is not set
CONFIG_PREEMPT_VOLUNTARY=y
CONFIG_PREEMPT is not set
CONFIG_PREEMPT_BKL=y
CONFIG_X86_LOCAL_APIC=y
CONFIG_X86_IO_APIC=y
CONFIG_X86_MCE=y
CONFIG_X86_MCE_NONFATAL is not set
CONFIG_X86_MCE_P4THERMAL is not set
CONFIG_TOSHIBA is not set
CONFIG_I8K is not set
CONFIG_X86_REBOOTFIXUPS is not set
CONFIG_MICROCODE=m
CONFIG_X86_MSR=y
CONFIG_X86_CPUID=y
CONFIG_SWIOTLB is not set

Firmware Drivers

CONFIG_EDD=m
CONFIG_DELL_RBU=m
CONFIG_DCDBAS=m
CONFIG_NOHIGHMEM=y
CONFIG_HIGHMEM4G is not set
CONFIG_HIGHMEM64G is not set
CONFIG_VMSPLIT_3G=y
CONFIG_VMSPLIT_3G_OPT is not set
CONFIG_VMSPLIT_2G is not set
CONFIG_VMSPLIT_1G is not set
CONFIG_PAGE_OFFSET=0xC0000000
CONFIG_ARCH_FLATMEM_ENABLE=y
CONFIG_ARCH_SPARSEMEM_ENABLE=y
CONFIG_ARCH_SELECT_MEMORY_MODEL=y
CONFIG_SELECT_MEMORY_MODEL=y
CONFIG_FLATMEM_MANUAL=y
CONFIG_DISCONTIGMEM_MANUAL is not set
CONFIG_SPARSEMEM_MANUAL is not set
CONFIG_FLATMEM=y
CONFIG_FLAT_NODE_MEM_MAP=y
CONFIG_SPARSEMEM_STATIC=y
CONFIG_SPLIT_PTLOCK_CPUS=4
CONFIG_MATH_EMULATION is not set
CONFIG_MTRR=y
CONFIG_EFI is not set
CONFIG_IRQBALANCE=y
CONFIG_REGPARM is not set
CONFIG_SECCOMP is not set
CONFIG_HZ_100 is not set
CONFIG_HZ_250=y

206

CONFIG_HZ_1000 is not set
CONFIG_HZ=250
CONFIG_KEXEC=y
CONFIG_PHYSICAL_START=0x100000
CONFIG_HOTPLUG_CPU is not set
CONFIG_DOUBLEFAULT=y

Power management options (ACPI, APM)

CONFIG_PM=y
CONFIG_PM_LEGACY is not set
CONFIG_PM_DEBUG is not set

ACPI (Advanced Configuration and Power Interface) Support

CONFIG_ACPI=y
CONFIG_ACPI_AC=m
CONFIG_ACPI_BATTERY=m
CONFIG_ACPI_BUTTON=m
CONFIG_ACPI_VIDEO=m
CONFIG_ACPI_HOTKEY is not set
CONFIG_ACPI_FAN=y
CONFIG_ACPI_PROCESSOR=y
CONFIG_ACPI_THERMAL=y
CONFIG_ACPI_ASUS is not set
CONFIG_ACPI_IBM is not set
CONFIG_ACPI_TOSHIBA is not set
CONFIG_ACPI_BLACKLIST_YEAR=0
CONFIG_ACPI_DEBUG is not set
CONFIG_ACPI_EC=y
CONFIG_ACPI_POWER=y
CONFIG_ACPI_SYSTEM=y
CONFIG_X86_PM_TIMER=y
CONFIG_ACPI_CONTAINER=y

APM (Advanced Power Management) BIOS Support

CPU Frequency scaling

CONFIG_CPU_FREQ is not set

Bus options (PCI, PCMCIA, EISA, MCA, ISA)

CONFIG_PCI=y
CONFIG_PCI_GOBIOS is not set
CONFIG_PCI_GOMMCONFIG is not set
CONFIG_PCI_GODIRECT is not set
CONFIG_PCI_GOXEN_FE is not set
CONFIG_PCI_GOANY=y
CONFIG_PCI_BIOS=y
CONFIG_PCI_DIRECT=y
CONFIG_PCI_MMCONFIG=y
CONFIG_PCIEPORTBUS=y
CONFIG_PCI_MSI is not set
CONFIG_PCI_LEGACY_PROC=y
CONFIG_PCI_DEBUG is not set
CONFIG_ISA_DMA_API=y
CONFIG_ISA is not set
CONFIG_MCA is not set
CONFIG_SCx200 is not set

PCCARD (PCMCIA/CardBus) support

CONFIG_PCCARD=y

207

CONFIG_PCMCIA_DEBUG is not set
CONFIG_PCMCIA=y
CONFIG_PCMCIA_LOAD_CIS=y
CONFIG_PCMCIA_IOCTL=y
CONFIG_CARDBUS=y

PC-card bridges

CONFIG_YENTA is not set
CONFIG_PD6729 is not set
CONFIG_I82092 is not set

PCI Hotplug Support

CONFIG_HOTPLUG_PCI is not set

Executable file formats

CONFIG_BINFMT_ELF=y
CONFIG_BINFMT_AOUT is not set
CONFIG_BINFMT_MISC=y

Networking

CONFIG_NET=y

Networking options

CONFIG_NETDEBUG is not set
CONFIG_PACKET=y
CONFIG_PACKET_MMAP=y
CONFIG_UNIX=y
CONFIG_XFRM=y
CONFIG_XFRM_USER=y
CONFIG_NET_KEY=y
CONFIG_INET=y
CONFIG_IP_MULTICAST=y
CONFIG_IP_ADVANCED_ROUTER=y
CONFIG_ASK_IP_FIB_HASH=y
CONFIG_IP_FIB_TRIE is not set
CONFIG_IP_FIB_HASH=y
CONFIG_IP_MULTIPLE_TABLES=y
CONFIG_IP_ROUTE_MULTIPATH=y
CONFIG_IP_ROUTE_MULTIPATH_CACHED is not set
CONFIG_IP_ROUTE_VERBOSE=y
CONFIG_IP_PNP is not set
CONFIG_NET_IPIP is not set
CONFIG_NET_IPGRE is not set
CONFIG_IP_MROUTE=y
CONFIG_IP_PIMSM_V1=y
CONFIG_IP_PIMSM_V2=y
CONFIG_ARPD is not set
CONFIG_SYN_COOKIES=y
CONFIG_INET_AH is not set
CONFIG_INET_ESP is not set
CONFIG_INET_IPCOMP is not set
CONFIG_INET_TUNNEL is not set
CONFIG_INET_DIAG is not set
CONFIG_TCP_CONG_ADVANCED is not set
CONFIG_TCP_CONG_BIC=y
CONFIG_IPV6 is not set
CONFIG_NETFILTER is not set

DCCP Configuration (EXPERIMENTAL)

208

CONFIG_IP_DCCP is not set

SCTP Configuration (EXPERIMENTAL)

CONFIG_IP_SCTP is not set

TIPC Configuration (EXPERIMENTAL)

CONFIG_TIPC is not set
CONFIG_ATM is not set
CONFIG_BRIDGE is not set
CONFIG_VLAN_8021Q is not set
CONFIG_DECNET is not set
CONFIG_LLC2 is not set
CONFIG_IPX is not set
CONFIG_ATALK is not set
CONFIG_X25 is not set
CONFIG_LAPB is not set
CONFIG_NET_DIVERT is not set
CONFIG_ECONET is not set
CONFIG_WAN_ROUTER is not set

QoS and/or fair queueing

CONFIG_NET_SCHED is not set

Network testing

CONFIG_NET_PKTGEN is not set
CONFIG_HAMRADIO is not set
CONFIG_IRDA is not set
CONFIG_BT is not set
CONFIG_IEEE80211 is not set
CONFIG_TUX is not set

Device Drivers

Generic Driver Options

CONFIG_STANDALONE=y
CONFIG_PREVENT_FIRMWARE_BUILD=y
CONFIG_FW_LOADER=y
CONFIG_DEBUG_DRIVER is not set

Connector - unified userspace <-> kernelspace linker

CONFIG_CONNECTOR=m

Memory Technology Devices (MTD)

CONFIG_MTD is not set

Parallel port support

CONFIG_PARPORT is not set

Plug and Play support

CONFIG_PNP=y
CONFIG_PNP_DEBUG is not set

209

Protocols

CONFIG_PNPACPI=y

Block devices

CONFIG_BLK_DEV_FD is not set
CONFIG_BLK_CPQ_DA is not set
CONFIG_BLK_CPQ_CISS_DA is not set
CONFIG_BLK_DEV_DAC960 is not set
CONFIG_BLK_DEV_UMEM is not set
CONFIG_BLK_DEV_COW_COMMON is not set
CONFIG_BLK_DEV_LOOP=m
CONFIG_BLK_DEV_CRYPTOLOOP=m
CONFIG_BLK_DEV_NBD=m
CONFIG_BLK_DEV_SX8 is not set
CONFIG_BLK_DEV_RAM=y
CONFIG_BLK_DEV_RAM_COUNT=16
CONFIG_BLK_DEV_RAM_SIZE=16384
CONFIG_BLK_DEV_INITRD=y
CONFIG_CDROM_PKTCDVD=m
CONFIG_CDROM_PKTCDVD_BUFFERS=8
CONFIG_CDROM_PKTCDVD_WCACHE is not set
CONFIG_DISKDUMP=m
CONFIG_ATA_OVER_ETH=m

ATA/ATAPI/MFM/RLL support

CONFIG_IDE=y
CONFIG_BLK_DEV_IDE=y

Please see Documentation/ide.txt for help/info on IDE drives

CONFIG_BLK_DEV_IDE_SATA is not set
CONFIG_BLK_DEV_HD_IDE is not set
CONFIG_BLK_DEV_IDEDISK=y
CONFIG_IDEDISK_MULTI_MODE=y
CONFIG_BLK_DEV_IDECS=m
CONFIG_BLK_DEV_IDECD=y
CONFIG_BLK_DEV_IDETAPE is not set
CONFIG_BLK_DEV_IDEFLOPPY=y
CONFIG_BLK_DEV_IDESCSI=m
CONFIG_IDE_TASK_IOCTL=y

IDE chipset support/bugfixes

CONFIG_IDE_GENERIC=y
CONFIG_BLK_DEV_CMD640=y
CONFIG_BLK_DEV_CMD640_ENHANCED=y
CONFIG_BLK_DEV_IDEPNP=y
CONFIG_BLK_DEV_IDEPCI=y
CONFIG_IDEPCI_SHARE_IRQ=y
CONFIG_BLK_DEV_OFFBOARD is not set
CONFIG_BLK_DEV_GENERIC=y
CONFIG_BLK_DEV_OPTI621 is not set
CONFIG_BLK_DEV_RZ1000=y
CONFIG_BLK_DEV_IDEDMA_PCI=y
CONFIG_BLK_DEV_IDEDMA_FORCED is not set
CONFIG_IDEDMA_PCI_AUTO=y
CONFIG_IDEDMA_ONLYDISK is not set
CONFIG_BLK_DEV_AEC62XX=y
CONFIG_BLK_DEV_ALI15X3=y
CONFIG_WDC_ALI15X3 is not set
CONFIG_BLK_DEV_AMD74XX=y
CONFIG_BLK_DEV_ATIIXP=y

210

CONFIG_BLK_DEV_CMD64X=y
CONFIG_BLK_DEV_TRIFLEX=y
CONFIG_BLK_DEV_CY82C693=y
CONFIG_BLK_DEV_CS5520=y
CONFIG_BLK_DEV_CS5530=y
CONFIG_BLK_DEV_CS5535 is not set
CONFIG_BLK_DEV_HPT34X=y
CONFIG_HPT34X_AUTODMA is not set
CONFIG_BLK_DEV_HPT366=y
CONFIG_BLK_DEV_SC1200 is not set
CONFIG_BLK_DEV_PIIX=y
CONFIG_BLK_DEV_IT821X=y
CONFIG_BLK_DEV_NS87415 is not set
CONFIG_BLK_DEV_PDC202XX_OLD=y
CONFIG_PDC202XX_BURST is not set
CONFIG_BLK_DEV_PDC202XX_NEW=y
CONFIG_BLK_DEV_SVWKS=y
CONFIG_BLK_DEV_SIIMAGE=y
CONFIG_BLK_DEV_SIS5513=y
CONFIG_BLK_DEV_SLC90E66=y
CONFIG_BLK_DEV_TRM290 is not set
CONFIG_BLK_DEV_VIA82CXXX=y
CONFIG_IDE_ARM is not set
CONFIG_BLK_DEV_IDEDMA=y
CONFIG_IDEDMA_IVB is not set
CONFIG_IDEDMA_AUTO=y
CONFIG_BLK_DEV_HD is not set

SCSI device support

CONFIG_RAID_ATTRS=m
CONFIG_SCSI=m
CONFIG_SCSI_PROC_FS=y

SCSI support type (disk, tape, CD-ROM)

CONFIG_BLK_DEV_SD=m
CONFIG_CHR_DEV_ST is not set
CONFIG_CHR_DEV_OSST is not set
CONFIG_BLK_DEV_SR=m
CONFIG_BLK_DEV_SR_VENDOR=y
CONFIG_CHR_DEV_SG=m
CONFIG_CHR_DEV_SCH=m

Some SCSI devices (e.g. CD jukebox) support multiple LUNs

CONFIG_SCSI_MULTI_LUN=y
CONFIG_SCSI_CONSTANTS is not set
CONFIG_SCSI_LOGGING=y

SCSI Transport Attributes

CONFIG_SCSI_SPI_ATTRS=m
CONFIG_SCSI_FC_ATTRS=m
CONFIG_SCSI_ISCSI_ATTRS=m
CONFIG_SCSI_SAS_ATTRS=m

SCSI low-level drivers

CONFIG_ISCSI_TCP=m
CONFIG_BLK_DEV_3W_XXXX_RAID=m
CONFIG_SCSI_3W_9XXX=m
CONFIG_SCSI_ACARD=m
CONFIG_SCSI_AACRAID=m
CONFIG_SCSI_AIC7XXX=m
CONFIG_AIC7XXX_CMDS_PER_DEVICE=4

211

CONFIG_AIC7XXX_RESET_DELAY_MS=15000
CONFIG_AIC7XXX_DEBUG_ENABLE is not set
CONFIG_AIC7XXX_DEBUG_MASK=0
CONFIG_AIC7XXX_REG_PRETTY_PRINT is not set
CONFIG_SCSI_AIC7XXX_OLD is not set
CONFIG_SCSI_AIC79XX is not set
CONFIG_SCSI_DPT_I2O is not set
CONFIG_SCSI_ADVANSYS is not set
CONFIG_MEGARAID_NEWGEN=y
CONFIG_MEGARAID_MM=m
CONFIG_MEGARAID_MAILBOX=m
CONFIG_MEGARAID_LEGACY is not set
CONFIG_MEGARAID_SAS is not set
CONFIG_SCSI_SATA is not set
CONFIG_SCSI_BUSLOGIC=m
CONFIG_SCSI_OMIT_FLASHPOINT is not set
CONFIG_SCSI_DMX3191D is not set
CONFIG_SCSI_EATA is not set
CONFIG_SCSI_FUTURE_DOMAIN is not set
CONFIG_SCSI_GDTH=m
CONFIG_SCSI_IPS=m
CONFIG_SCSI_INITIO=m
CONFIG_SCSI_INIA100=m
CONFIG_SCSI_SYM53C8XX_2=m
CONFIG_SCSI_SYM53C8XX_DMA_ADDRESSING_MODE=1
CONFIG_SCSI_SYM53C8XX_DEFAULT_TAGS=16
CONFIG_SCSI_SYM53C8XX_MAX_TAGS=64
CONFIG_SCSI_SYM53C8XX_IOMAPPED is not set
CONFIG_SCSI_IPR is not set
CONFIG_SCSI_QLOGIC_FC is not set
CONFIG_SCSI_QLOGIC_1280 is not set
CONFIG_SCSI_QLA_FC is not set
CONFIG_SCSI_LPFC is not set
CONFIG_SCSI_DC395x is not set
CONFIG_SCSI_DC390T is not set
CONFIG_SCSI_NSP32 is not set
CONFIG_SCSI_DEBUG is not set

PCMCIA SCSI adapter support

CONFIG_PCMCIA_AHA152X is not set
CONFIG_PCMCIA_FDOMAIN is not set
CONFIG_PCMCIA_NINJA_SCSI is not set
CONFIG_PCMCIA_QLOGIC=m
CONFIG_PCMCIA_SYM53C500=m

Multi-device support (RAID and LVM)

CONFIG_MD=y
CONFIG_BLK_DEV_MD=y
CONFIG_MD_LINEAR=m
CONFIG_MD_RAID0=m
CONFIG_MD_RAID1=m
CONFIG_MD_RAID10=m
CONFIG_MD_RAID5=m
CONFIG_MD_RAID6=m
CONFIG_MD_MULTIPATH=m
CONFIG_MD_FAULTY=m
CONFIG_BLK_DEV_DM=m
CONFIG_DM_CRYPT=m
CONFIG_DM_SNAPSHOT=m
CONFIG_DM_MIRROR=m
CONFIG_DM_ZERO=m
CONFIG_DM_MULTIPATH=m
CONFIG_DM_MULTIPATH_EMC=m

Fusion MPT device support

212

CONFIG_FUSION=y
CONFIG_FUSION_SPI=m
CONFIG_FUSION_FC=m
CONFIG_FUSION_SAS=m
CONFIG_FUSION_MAX_SGE=40
CONFIG_FUSION_CTL=m

IEEE 1394 (FireWire) support

CONFIG_IEEE1394 is not set

I2O device support

CONFIG_I2O is not set

Network device support

CONFIG_NETDEVICES=y
CONFIG_DUMMY=m
CONFIG_BONDING=m
CONFIG_EQUALIZER=m
CONFIG_TUN=m
CONFIG_NET_SB1000=m

ARCnet devices

CONFIG_ARCNET is not set

PHY device support

CONFIG_PHYLIB=m

MII PHY device drivers

CONFIG_MARVELL_PHY=m
CONFIG_DAVICOM_PHY=m
CONFIG_QSEMI_PHY=m
CONFIG_LXT_PHY=m
CONFIG_CICADA_PHY=m

Ethernet (10 or 100Mbit)

CONFIG_NET_ETHERNET=y
CONFIG_MII=y
CONFIG_HAPPYMEAL is not set
CONFIG_SUNGEM is not set
CONFIG_CASSINI is not set
CONFIG_NET_VENDOR_3COM is not set

Tulip family network device support

CONFIG_NET_TULIP is not set
CONFIG_HP100 is not set
CONFIG_NET_PCI=y
CONFIG_PCNET32=m
CONFIG_AMD8111_ETH is not set
CONFIG_ADAPTEC_STARFIRE is not set
CONFIG_B44 is not set
CONFIG_FORCEDETH is not set
CONFIG_DGRS is not set
CONFIG_EEPRO100 is not set
CONFIG_E100 is not set
CONFIG_FEALNX is not set

213

CONFIG_NATSEMI is not set
CONFIG_NE2K_PCI is not set
CONFIG_8139CP is not set
CONFIG_8139TOO is not set
CONFIG_SIS900 is not set
CONFIG_EPIC100 is not set
CONFIG_SUNDANCE is not set
CONFIG_TLAN is not set
CONFIG_VIA_RHINE is not set

Ethernet (1000 Mbit)

CONFIG_ACENIC is not set
CONFIG_DL2K is not set
CONFIG_E1000 is not set
CONFIG_NS83820 is not set
CONFIG_HAMACHI is not set
CONFIG_YELLOWFIN is not set
CONFIG_R8169 is not set
CONFIG_SIS190 is not set
CONFIG_SKGE is not set
CONFIG_SKY2 is not set
CONFIG_SK98LIN is not set
CONFIG_VIA_VELOCITY is not set
CONFIG_TIGON3 is not set
CONFIG_BNX2 is not set

Ethernet (10000 Mbit)

CONFIG_CHELSIO_T1 is not set
CONFIG_IXGB is not set
CONFIG_S2IO is not set

Token Ring devices

CONFIG_TR is not set

Wireless LAN (non-hamradio)

CONFIG_NET_RADIO is not set

PCMCIA network device support

CONFIG_NET_PCMCIA is not set

Wan interfaces

CONFIG_WAN is not set
CONFIG_FDDI is not set
CONFIG_HIPPI is not set
CONFIG_PPP is not set
CONFIG_SLIP is not set
CONFIG_NET_FC is not set
CONFIG_SHAPER is not set
CONFIG_NETCONSOLE is not set
CONFIG_NETPOLL is not set
CONFIG_NET_POLL_CONTROLLER is not set

ISDN subsystem

CONFIG_ISDN is not set

Telephony Support

214

CONFIG_PHONE is not set

Input device support

CONFIG_INPUT=y

Userland interfaces

CONFIG_INPUT_MOUSEDEV=y
CONFIG_INPUT_MOUSEDEV_PSAUX is not set
CONFIG_INPUT_MOUSEDEV_SCREEN_X=1024
CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768
CONFIG_INPUT_JOYDEV is not set
CONFIG_INPUT_TSDEV is not set
CONFIG_INPUT_EVDEV=y
CONFIG_INPUT_EVBUG is not set

Input Device Drivers

CONFIG_INPUT_KEYBOARD=y
CONFIG_KEYBOARD_ATKBD=y
CONFIG_KEYBOARD_SUNKBD is not set
CONFIG_KEYBOARD_LKKBD is not set
CONFIG_KEYBOARD_XTKBD is not set
CONFIG_KEYBOARD_NEWTON is not set
CONFIG_INPUT_MOUSE=y
CONFIG_MOUSE_PS2=y
CONFIG_MOUSE_SERIAL=m
CONFIG_MOUSE_VSXXXAA=m
CONFIG_INPUT_JOYSTICK is not set
CONFIG_INPUT_TOUCHSCREEN is not set
CONFIG_INPUT_MISC is not set

Hardware I/O ports

CONFIG_SERIO=y
CONFIG_SERIO_I8042=y
CONFIG_SERIO_SERPORT=y
CONFIG_SERIO_CT82C710 is not set
CONFIG_SERIO_PCIPS2 is not set
CONFIG_SERIO_LIBPS2=y
CONFIG_SERIO_RAW is not set
CONFIG_GAMEPORT=y
CONFIG_GAMEPORT_NS558=m
CONFIG_GAMEPORT_L4=m
CONFIG_GAMEPORT_EMU10K1=m
CONFIG_GAMEPORT_FM801=m

Character devices

CONFIG_VT=y
CONFIG_VT_CONSOLE=y
CONFIG_HW_CONSOLE=y
CONFIG_SERIAL_NONSTANDARD is not set

Serial drivers

CONFIG_SERIAL_8250=y
CONFIG_SERIAL_8250_CONSOLE=y
CONFIG_SERIAL_8250_CS=m
CONFIG_SERIAL_8250_ACPI is not set
CONFIG_SERIAL_8250_NR_UARTS=32
CONFIG_SERIAL_8250_RUNTIME_UARTS=4
CONFIG_SERIAL_8250_EXTENDED=y

215

CONFIG_SERIAL_8250_MANY_PORTS=y
CONFIG_SERIAL_8250_SHARE_IRQ=y
CONFIG_SERIAL_8250_DETECT_IRQ=y
CONFIG_SERIAL_8250_RSA=y

Non-8250 serial port support

CONFIG_SERIAL_CORE=y
CONFIG_SERIAL_CORE_CONSOLE=y
CONFIG_SERIAL_JSM is not set
CONFIG_UNIX98_PTYS=y
CONFIG_LEGACY_PTYS is not set
CONFIG_CRASH=m

IPMI

CONFIG_IPMI_HANDLER=m
CONFIG_IPMI_PANIC_EVENT is not set
CONFIG_IPMI_DEVICE_INTERFACE=m
CONFIG_IPMI_SI=m
CONFIG_IPMI_WATCHDOG=m
CONFIG_IPMI_POWEROFF=m

Watchdog Cards

CONFIG_WATCHDOG is not set
CONFIG_HW_RANDOM=m
CONFIG_NVRAM=m
CONFIG_RTC=y
CONFIG_DTLK=m
CONFIG_R3964=m
CONFIG_APPLICOM is not set
CONFIG_SONYPI is not set

Ftape, the floppy tape device driver

CONFIG_AGP=y
CONFIG_AGP_ALI is not set
CONFIG_AGP_ATI is not set
CONFIG_AGP_AMD is not set
CONFIG_AGP_AMD64=y
CONFIG_AGP_INTEL=y
CONFIG_AGP_NVIDIA is not set
CONFIG_AGP_SIS is not set
CONFIG_AGP_SWORKS is not set
CONFIG_AGP_VIA is not set
CONFIG_AGP_EFFICEON is not set
CONFIG_DRM is not set

PCMCIA character devices

CONFIG_SYNCLINK_CS is not set
CONFIG_CARDMAN_4000=m
CONFIG_CARDMAN_4040=m
CONFIG_MWAVE is not set
CONFIG_CS5535_GPIO is not set
CONFIG_RAW_DRIVER is not set
CONFIG_HPET=y
CONFIG_HPET_RTC_IRQ is not set
CONFIG_HPET_MMAP is not set
CONFIG_HANGCHECK_TIMER=m

TPM devices

CONFIG_TCG_TPM is not set

216

CONFIG_TELCLOCK is not set

I2C support

CONFIG_I2C is not set

SPI support

CONFIG_SPI is not set
CONFIG_SPI_MASTER is not set

Dallas's 1-wire bus

CONFIG_W1 is not set

Hardware Monitoring support

CONFIG_HWMON is not set
CONFIG_HWMON_VID is not set

Misc devices

CONFIG_IBM_ASM is not set

Multimedia Capabilities Port drivers

Multimedia devices

CONFIG_VIDEO_DEV is not set

Digital Video Broadcasting Devices

CONFIG_DVB is not set

Graphics support

CONFIG_FB=y
CONFIG_FB_CFB_FILLRECT=y
CONFIG_FB_CFB_COPYAREA=y
CONFIG_FB_CFB_IMAGEBLIT=y
CONFIG_FB_MACMODES is not set
CONFIG_FB_MODE_HELPERS=y
CONFIG_FB_TILEBLITTING=y
CONFIG_FB_CIRRUS=m
CONFIG_FB_PM2 is not set
CONFIG_FB_CYBER2000 is not set
CONFIG_FB_ARC is not set
CONFIG_FB_ASILIANT is not set
CONFIG_FB_IMSTT is not set
CONFIG_FB_VGA16=m
CONFIG_FB_VESA=y
CONFIG_VIDEO_SELECT=y
CONFIG_FB_HGA is not set
CONFIG_FB_S1D13XXX is not set
CONFIG_FB_NVIDIA is not set
CONFIG_FB_RIVA is not set
CONFIG_FB_I810 is not set
CONFIG_FB_INTEL is not set
CONFIG_FB_MATROX is not set
CONFIG_FB_RADEON_OLD is not set
CONFIG_FB_RADEON is not set

217

CONFIG_FB_ATY128 is not set
CONFIG_FB_ATY is not set
CONFIG_FB_SAVAGE is not set
CONFIG_FB_SIS is not set
CONFIG_FB_NEOMAGIC is not set
CONFIG_FB_KYRO is not set
CONFIG_FB_3DFX is not set
CONFIG_FB_VOODOO1 is not set
CONFIG_FB_CYBLA is not set
CONFIG_FB_TRIDENT is not set
CONFIG_FB_GEODE is not set
CONFIG_FB_VIRTUAL is not set

Console display driver support

CONFIG_VGA_CONSOLE=y
CONFIG_DUMMY_CONSOLE=y
CONFIG_FRAMEBUFFER_CONSOLE=y
CONFIG_FRAMEBUFFER_CONSOLE_ROTATION=y
CONFIG_FONTS is not set
CONFIG_FONT_8x8=y
CONFIG_FONT_8x16=y

Logo configuration

CONFIG_LOGO=y
CONFIG_LOGO_LINUX_MONO is not set
CONFIG_LOGO_LINUX_VGA16 is not set
CONFIG_LOGO_LINUX_CLUT224=y
CONFIG_BACKLIGHT_LCD_SUPPORT is not set

Sound

CONFIG_SOUND is not set

USB support

CONFIG_USB_ARCH_HAS_HCD=y
CONFIG_USB_ARCH_HAS_OHCI=y
CONFIG_USB is not set

NOTE: USB_STORAGE enables SCSI, and 'SCSI disk support'

USB Gadget Support

CONFIG_USB_GADGET is not set

MMC/SD Card support

CONFIG_MMC is not set

InfiniBand support

CONFIG_INFINIBAND is not set

EDAC - error detection and reporting (RAS) (EXPERIMENTAL)

CONFIG_EDAC=y

Reporting subsystems

218

CONFIG_EDAC_DEBUG is not set
CONFIG_EDAC_MM_EDAC=m
CONFIG_EDAC_AMD76X is not set
CONFIG_EDAC_E7XXX=m
CONFIG_EDAC_E752X=m
CONFIG_EDAC_I82875P=m
CONFIG_EDAC_I82860=m
CONFIG_EDAC_R82600=m
CONFIG_EDAC_POLL=y

File systems

CONFIG_EXT2_FS=y
CONFIG_EXT2_FS_XATTR=y
CONFIG_EXT2_FS_POSIX_ACL=y
CONFIG_EXT2_FS_SECURITY=y
CONFIG_EXT2_FS_XIP is not set
CONFIG_EXT3_FS=m
CONFIG_EXT3_FS_XATTR=y
CONFIG_EXT3_FS_POSIX_ACL=y
CONFIG_EXT3_FS_SECURITY=y
CONFIG_JBD=m
CONFIG_JBD_DEBUG is not set
CONFIG_FS_MBCACHE=y
CONFIG_REISERFS_FS=m
CONFIG_REISERFS_CHECK is not set
CONFIG_REISERFS_PROC_INFO=y
CONFIG_REISERFS_FS_XATTR=y
CONFIG_REISERFS_FS_POSIX_ACL=y
CONFIG_REISERFS_FS_SECURITY=y
CONFIG_JFS_FS=m
CONFIG_JFS_POSIX_ACL=y
CONFIG_JFS_SECURITY=y
CONFIG_JFS_DEBUG is not set
CONFIG_JFS_STATISTICS is not set
CONFIG_FS_POSIX_ACL=y
CONFIG_XFS_FS=m
CONFIG_XFS_EXPORT=y
CONFIG_XFS_QUOTA=y
CONFIG_XFS_SECURITY=y
CONFIG_XFS_POSIX_ACL=y
CONFIG_XFS_RT is not set
CONFIG_OCFS2_FS=m
CONFIG_MINIX_FS=m
CONFIG_ROMFS_FS=m
CONFIG_INOTIFY=y
CONFIG_QUOTA=y
CONFIG_QFMT_V1 is not set
CONFIG_QFMT_V2=y
CONFIG_QUOTACTL=y
CONFIG_DNOTIFY=y
CONFIG_AUTOFS_FS=m
CONFIG_AUTOFS4_FS=m
CONFIG_FUSE_FS=m

CD-ROM/DVD Filesystems

CONFIG_ISO9660_FS=y
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_ZISOFS_FS=y
CONFIG_UDF_FS=m
CONFIG_UDF_NLS=y

DOS/FAT/NT Filesystems

CONFIG_FAT_FS=m

219

CONFIG_MSDOS_FS=m
CONFIG_VFAT_FS=m
CONFIG_FAT_DEFAULT_CODEPAGE=437
CONFIG_FAT_DEFAULT_IOCHARSET=“ascii”
CONFIG_NTFS_FS is not set

Pseudo filesystems

CONFIG_PROC_FS=y
CONFIG_PROC_KCORE=y
CONFIG_SYSFS=y
CONFIG_TMPFS=y
CONFIG_HUGETLBFS=y
CONFIG_HUGETLB_PAGE=y
CONFIG_RAMFS=y
CONFIG_RELAYFS_FS=m
CONFIG_CONFIGFS_FS=m

Miscellaneous filesystems

CONFIG_ADFS_FS is not set
CONFIG_AFFS_FS=m
CONFIG_HFS_FS=m
CONFIG_HFSPLUS_FS=m
CONFIG_BEFS_FS=m
CONFIG_BEFS_DEBUG is not set
CONFIG_BFS_FS=m
CONFIG_EFS_FS=m
CONFIG_CRAMFS=m
CONFIG_SQUASHFS=m
CONFIG_SQUASHFS_EMBEDDED is not set
CONFIG_SQUASHFS_FRAGMENT_CACHE_SIZE=3
CONFIG_SQUASHFS_VMALLOC is not set
CONFIG_VXFS_FS=m
CONFIG_HPFS_FS is not set
CONFIG_QNX4FS_FS=m
CONFIG_SYSV_FS=m
CONFIG_UFS_FS=m

Network File Systems

CONFIG_NFS_FS=m
CONFIG_NFS_V3=y
CONFIG_NFS_V3_ACL=y
CONFIG_NFS_V4=y
CONFIG_NFS_DIRECTIO=y
CONFIG_NFSD=m
CONFIG_NFSD_V2_ACL=y
CONFIG_NFSD_V3=y
CONFIG_NFSD_V3_ACL=y
CONFIG_NFSD_V4=y
CONFIG_NFSD_TCP=y
CONFIG_LOCKD=m
CONFIG_LOCKD_V4=y
CONFIG_EXPORTFS=m
CONFIG_NFS_ACL_SUPPORT=m
CONFIG_NFS_COMMON=y
CONFIG_SUNRPC=m
CONFIG_SUNRPC_GSS=m
CONFIG_RPCSEC_GSS_KRB5=m
CONFIG_RPCSEC_GSS_SPKM3=m
CONFIG_SMB_FS is not set
CONFIG_CIFS=m
CONFIG_CIFS_STATS is not set
CONFIG_CIFS_XATTR=y
CONFIG_CIFS_POSIX=y
CONFIG_CIFS_EXPERIMENTAL is not set
CONFIG_NCP_FS=m

220

CONFIG_NCPFS_PACKET_SIGNING=y
CONFIG_NCPFS_IOCTL_LOCKING=y
CONFIG_NCPFS_STRONG=y
CONFIG_NCPFS_NFS_NS=y
CONFIG_NCPFS_OS2_NS=y
CONFIG_NCPFS_SMALLDOS=y
CONFIG_NCPFS_NLS=y
CONFIG_NCPFS_EXTRAS=y
CONFIG_CODA_FS=m
CONFIG_CODA_FS_OLD_API is not set
CONFIG_AFS_FS is not set
CONFIG_9P_FS=m

Partition Types

CONFIG_PARTITION_ADVANCED=y
CONFIG_ACORN_PARTITION is not set
CONFIG_OSF_PARTITION=y
CONFIG_AMIGA_PARTITION=y
CONFIG_ATARI_PARTITION is not set
CONFIG_MAC_PARTITION=y
CONFIG_MSDOS_PARTITION=y
CONFIG_BSD_DISKLABEL=y
CONFIG_MINIX_SUBPARTITION=y
CONFIG_SOLARIS_X86_PARTITION=y
CONFIG_UNIXWARE_DISKLABEL=y
CONFIG_LDM_PARTITION is not set
CONFIG_SGI_PARTITION=y
CONFIG_ULTRIX_PARTITION is not set
CONFIG_SUN_PARTITION=y
CONFIG_KARMA_PARTITION=y
CONFIG_EFI_PARTITION=y

Native Language Support

CONFIG_NLS=y
CONFIG_NLS_DEFAULT=“utf8”
CONFIG_NLS_CODEPAGE_437=y
CONFIG_NLS_CODEPAGE_737 is not set
CONFIG_NLS_CODEPAGE_775 is not set
CONFIG_NLS_CODEPAGE_850 is not set
CONFIG_NLS_CODEPAGE_852 is not set
CONFIG_NLS_CODEPAGE_855 is not set
CONFIG_NLS_CODEPAGE_857 is not set
CONFIG_NLS_CODEPAGE_860 is not set
CONFIG_NLS_CODEPAGE_861 is not set
CONFIG_NLS_CODEPAGE_862 is not set
CONFIG_NLS_CODEPAGE_863 is not set
CONFIG_NLS_CODEPAGE_864 is not set
CONFIG_NLS_CODEPAGE_865 is not set
CONFIG_NLS_CODEPAGE_866 is not set
CONFIG_NLS_CODEPAGE_869 is not set
CONFIG_NLS_CODEPAGE_936 is not set
CONFIG_NLS_CODEPAGE_950 is not set
CONFIG_NLS_CODEPAGE_932 is not set
CONFIG_NLS_CODEPAGE_949 is not set
CONFIG_NLS_CODEPAGE_874 is not set
CONFIG_NLS_ISO8859_8 is not set
CONFIG_NLS_CODEPAGE_1250 is not set
CONFIG_NLS_CODEPAGE_1251 is not set
CONFIG_NLS_ASCII=y
CONFIG_NLS_ISO8859_1=m
CONFIG_NLS_ISO8859_2 is not set
CONFIG_NLS_ISO8859_3 is not set
CONFIG_NLS_ISO8859_4 is not set
CONFIG_NLS_ISO8859_5 is not set
CONFIG_NLS_ISO8859_6 is not set
CONFIG_NLS_ISO8859_7 is not set
CONFIG_NLS_ISO8859_9 is not set

221

CONFIG_NLS_ISO8859_13 is not set
CONFIG_NLS_ISO8859_14 is not set
CONFIG_NLS_ISO8859_15 is not set
CONFIG_NLS_KOI8_R is not set
CONFIG_NLS_KOI8_U is not set
CONFIG_NLS_UTF8=m

Instrumentation Support

CONFIG_PROFILING is not set
CONFIG_KPROBES is not set

Kernel hacking

CONFIG_PRINTK_TIME is not set
CONFIG_MAGIC_SYSRQ=y
CONFIG_DEBUG_KERNEL=y
CONFIG_LOG_BUF_SHIFT=17
CONFIG_DETECT_SOFTLOCKUP=y
CONFIG_SCHEDSTATS=y
CONFIG_DEBUG_SLAB=y
CONFIG_DEBUG_SLAB_LEAK is not set
CONFIG_DEBUG_MUTEXES=y
CONFIG_DEBUG_SPINLOCK=y
CONFIG_DEBUG_SPINLOCK_SLEEP=y
CONFIG_DEBUG_KOBJECT is not set
CONFIG_DEBUG_BUGVERBOSE=y
CONFIG_DEBUG_INFO=y
CONFIG_DEBUG_FS=y
CONFIG_DEBUG_VM is not set
CONFIG_FRAME_POINTER is not set
CONFIG_FORCED_INLINING is not set
CONFIG_BOOT_DELAY=y
CONFIG_RCU_TORTURE_TEST is not set
CONFIG_EARLY_PRINTK=y
CONFIG_DEBUG_STACKOVERFLOW is not set
CONFIG_DEBUG_STACK_USAGE is not set
CONFIG_DEBUG_PAGEALLOC is not set
CONFIG_DEBUG_RODATA=y
CONFIG_4KSTACKS is not set
CONFIG_X86_FIND_SMP_CONFIG=y
CONFIG_X86_MPPARSE=y

Security options

CONFIG_KEYS=y
CONFIG_KEYS_DEBUG_PROC_KEYS=y
CONFIG_SECURITY=y
CONFIG_SECURITY_NETWORK=y
CONFIG_SECURITY_NETWORK_XFRM=y
CONFIG_SECURITY_CAPABILITIES=m
CONFIG_SECURITY_SECLVL=m
CONFIG_SECURITY_SELINUX is not set
CONFIG_SECURITY_TIFPS=m

Cryptographic options

CONFIG_CRYPTO=y
CONFIG_CRYPTO_HMAC=y
CONFIG_CRYPTO_NULL=m
CONFIG_CRYPTO_MD4=m
CONFIG_CRYPTO_MD5=y
CONFIG_CRYPTO_SHA1=y
CONFIG_CRYPTO_SHA256=m
CONFIG_CRYPTO_SHA512=m
CONFIG_CRYPTO_WP512=m
CONFIG_CRYPTO_TGR192=m

222

CONFIG_CRYPTO_DES=m
CONFIG_CRYPTO_BLOWFISH=m
CONFIG_CRYPTO_TWOFISH=m
CONFIG_CRYPTO_SERPENT=m
CONFIG_CRYPTO_AES=m
CONFIG_CRYPTO_AES_586 is not set
CONFIG_CRYPTO_CAST5=m
CONFIG_CRYPTO_CAST6=m
CONFIG_CRYPTO_TEA=m
CONFIG_CRYPTO_ARC4=m
CONFIG_CRYPTO_KHAZAD=m
CONFIG_CRYPTO_ANUBIS=m
CONFIG_CRYPTO_DEFLATE=m
CONFIG_CRYPTO_MICHAEL_MIC=m
CONFIG_CRYPTO_CRC32C=m
CONFIG_CRYPTO_TEST is not set
CONFIG_CRYPTO_SIGNATURE=y
CONFIG_CRYPTO_SIGNATURE_DSA=y
CONFIG_CRYPTO_MPILIB=y

Hardware crypto devices

CONFIG_CRYPTO_DEV_PADLOCK is not set

Library routines

CONFIG_CRC_CCITT=m
CONFIG_CRC16=m
CONFIG_CRC32=y
CONFIG_LIBCRC32C=m
CONFIG_ZLIB_INFLATE=y
CONFIG_ZLIB_DEFLATE=m
CONFIG_GENERIC_HARDIRQS=y
CONFIG_GENERIC_IRQ_PROBE=y
CONFIG_GENERIC_PENDING_IRQ=y
CONFIG_X86_SMP=y
CONFIG_X86_HT=y
CONFIG_X86_BIOS_REBOOT=y
CONFIG_X86_TRAMPOLINE=y
CONFIG_X86_SYSENTER=y
CONFIG_KTIME_SCALAR=y

B. EMACS .EMACS CONFIGURATION FILE
(custom-set-variables
 ;; custom-set-variables was added by Custom -- don't edit or cut/paste it!
 ;; Your init file should contain only one such instance.
 '(auto-compression-mode t nil (jka-compr))
 '(case-fold-search t)
 '(current-language-environment “UTF-8”)
 '(default-input-method “rfc1345”)
 '(global-font-lock-mode t nil (font-lock))
 '(show-paren-mode t nil (paren)))
(custom-set-faces
 ;; custom-set-faces was added by Custom -- don't edit or cut/paste it!
 ;; Your init file should contain only one such instance.
)

(defun linux-c-mode ()
 “C mode with adjusted defaults for use with the Linux kernel.”
 (interactive)
 (c-mode)
 (c-set-style “K&R”)
 (setq tab-width 8)
 (setq indent-tabs-mode t)
 (setq c-basic-offset 8))

(setq auto-mode-alist (cons '(“.*\\.[ch]$” . linux-c-mode)
 auto-mode-alist))

223

LIST OF REFERENCES

1. Afinidad, F. B., Levin, T. E., Irvine, C. E., Nguyen, T. D., “A Model for
Temporal Interval Authorizations,” Hawaii International Conference on System
Sciences, Software Technology Track, Information Security Education and
Foundational Research, Kauai, Hawaii, January 2006.

2. Afinidad, F. B., Levin, T. E., Irvine, C. E., Nguyen, T. D., “A Time Interval
Memory Protection System,” Secure Core Technical Report, 2006.

3. Afinidad, F. B., An Interval Algebra-Based Temporal Access Control Protection
Architecture, Ph.D. Dissertation, Naval Postgraduate School, Monterey,
California, June 2005.

4. Rule Set Based Access Control,
http://www.rsbac.org/documentation/why_rsbac_does_not_use_lsm, July 2006.

5. Grsecurity, http://grsecurity.net/lsm.php, July 2006.

6. Subversion, http://subversion.tigris.org, September 2006.

7. Source Insight Program Editor and Analyzer, http://www.sourceinsight.com,
September 2006.

8. Fedora Core 5 Linux Distribution, http://fedora.redhat.com, September 2006.

9. Weissman, C., Security Controls in the ADEPT-50 Time-Sharing System.
Proceedings of the Fall Joint Computer Conference, November 18-20 (1969)
119-133.

224

THIS PAGE INTENTIONALLY LEFT BLANK

225

BIBLIOGRAPHY

Gorman, M. “Understanding the Linux Virtual Memory Manager,” Bruce Peren’s Open
Source Series, Prentice Hall, 2004.

Bovet, D. P., Cesati, M., Understanding the Linux Kernel, 2nd ed., O’Reilly, Sebastopol,
2003.

Love, R., Linux Kernel Development, 2nd ed., Novell Press, Indianapolis, 2005.

Morris, J., “Filesystem Labeling in SELinux,” Linux Journal, November 2004,
http://www.linuxjournal.com/article/7689, September 2006.

Source Code for Linux, http://lxr.linux.no/source/, August 2006.

226

THIS PAGE INTENTIONALLY LEFT BLANK

227

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Hugo A. Badillo
NSA
Fort Meade, Maryland

4. George Bieber
OSD
Washington, DC

5. JohnCampbell
NSA
Fort Meade, Maryalnd

6. Deborah Cooper
DC Associates, LLC
Roslyn, Virginia

7. CDR Daniel L. Currie
PMW 161
San Diego, California

8. Louise Davidson
National Geospatial Agency
Bethesda, Maryland

9. Steve Davis
NRO
Chantilly, Virginia

10. Vincent J. DiMaria

National Security Agency
Fort Meade, Maryland

11. CDR James Downey
NAVSEA
Washington, DC

228

12. Dr. Diana Gant
National Science Foundation
Arlington, Virginia

13. Jennifer Guild
SPAWAR
Charleston, South Carolina

14. Richard Hale

DISA
Falls Church, Virginia

15. CDR Scott D. Heller
SPAWAR
San Diego, California

16. Wiley Jones
OSD
Washington, DC

17. Russell Jones
N641
Arlington, Virginia

18. David Ladd
Microsoft Corporation
Redmond, Washington

19. Dr. Carl Landwehr
DTO
Fort George T. Meade, Maryland

20. Steve LaFountain
NSA
Fort Meade, Maryland

21. Dr. Greg Larson
IDA
Alexandria, Virginia

22. Dr. Karl Levitt
NSF
Arlington, Virginia

229

23. Dr. Vic Maconachy
NSA
Fort Meade, Maryland

24. Doug Maughan
Department of Homeland Security
Washington, DC

25. Dr. John Monastra
Aerospace Corporation
Chantilly, Virginia

26. John Mildner
SPAWAR
Charleston, South Carolina

27. Mark T. Powell
Federal Aviation Administration
Washington, DC

28. Jim Roberts
Central Intelligence Agency
Reston, Virginia

29. Jon Rolf
NSA
Fort Meade, Maryland

30. Ed Schneider

IDA
Alexandria, Virginia

31. Keith Schwalm
Good Harbor Consulting, LLC
Washington, DC

32. Charles Sherupski
Sherassoc
Round Hill, Virginia

33. Ken Shotting
NSA
Fort Meade, Maryland

230

34. CDR Wayne Slocum
SPAWAR
San Diego, California

35. Dr. Ralph Wachter
ONR
Arlington, Virginia

36. David Wirth
N641
Arlington, Virginia

37. CAPT Robert Zellmann
CNO Staff N614
Arlington, Virginia

38. Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, California

39. Thuy D. Nguyen
Naval Postgraduate School
Monterey, California

40. Ken Chiang
 Affiliation (SFS students: Civilian, Naval Postgraduate School)

Monterey, California

