

NPS-CS-07-006

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited.

 Prepared for: Center for National Software Studies

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943-5000

Proceedings of the

First IEEE International Workshop on Safety of Systems

By

James Bret Michael

John Hauraz

Zachary Pace

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari

President Provost

This report was prepared for the First IEEE International Workshop on Safety of

Systems.

Reproduction of all or part of this report is authorized.

This report was prepared by:

James Bret Michael

Professor of Computer Science and Electrical Engineering

Naval Postgraduate School

Reviewed by: Released by:

________________________ _______________________

Peter J. Denning, Chairman Dan C. Boger

Department of Computer Science Interim Associate Provost and

 Dean of Research

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including

the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and

completing and reviewing the collection of information. Send comments regarding this burden estimate or any

other aspect of this collection of information, including suggestions for reducing this burden, to Washington

headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite

1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project

(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
7/19/07

3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE:

 Proceedings of the First IEEE International Workshop on Safety of Systems
5. FUNDING NUMBERS

6. AUTHOR(S)
 James B. Michael, John Hauraz, Zachary Pace

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING

ORGANIZATION REPORT

NUMBER
NPS-CS-07-006

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, California 93943

10. SPONSORING / MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this technical report are those of the authors and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

In March 2007, the Technical Committee on System Safety (TCSS) under the IEEE System Council held its first

international workshop on issues relating to safety of systems of national and global significance. The workshop

provided an open working forum to contribute to the goal of obtaining a holistic view of system safety for a better

understanding of the system safety discipline. Much of the discussion that took place during the workshop

revolved around what are the relationships between safety and the other areas of dependability, such as security

and reliability, and how to leverage these relationships to build trustworthy systems. This report contains the

position papers along with presentation material delivered by the participants of the workshop, along with a

summary of the participants’ input from the discussion portion of the workshop.

14. SUBJECT TERMS
Software, Security, Safety

15. NUMBER OF

PAGES

 174

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE
Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT
Unclassified

20. LIMITATION

OF ABSTRACT

UU

 Standard Form 298 (Rev.2-89)

THIS PAGE IS INTENTIONALLY LEFT BLANK

Proceedings for the First IEEE International Workshop on

Safety of Systems.
Sponsored by the Technical Committee on System Safety of the

IEEE Systems Council
Naval Postgraduate School, Monterey, California, Mar. 15–16, 2007

ORGANIZING COMMITTEE
General Chair
Bret Michael, Naval Postgraduate School
Finance
John Harauz, Jonic Systems Engineering Inc.

Publications Chair

Zachary Pace

THIS PAGE IS INTENTIONALLY LEFT BLANK

Preface

In March 2007, the Technical Committee on System Safety (TCSS) under the IEEE
System Society held its first international workshop on issues relating to safety of
systems of national and global significance. The workshop provided an open working
forum to contribute to the goal of obtaining a holistic view of system safety for a better
understanding of the system safety discipline. Because technical societies contain
expertise in various slices of the discipline of system safety, obtaining both the big
picture and coordination among the separate initiatives is difficult to achieve in any one
specific society. We envision the workshop becoming a unique integrating forum for
researchers and practitioners to discuss the practical issues associated with safety of
systems.

The call for participation included the following list of topics:

 Safety engineering of systems-of-systems;
 Building a safety culture and management of safety;
 Education and teaching materials;
 Safety Standards;
 Ethics;
 Competency of safety practitioners;
 Human factors and ergonomics including psychological aspects of safety;
 Assessment of safety and development of safety cases;
 Development of the safety requirements to identify the safety functions to be

performed and identification of the safety integrity of the various safety functions;
 Hazard analysis and risk assessment techniques as a basis of the development of

the safety requirements specification;
 Design and implementation considerations;
 Modeling and formal methods of assurance including accident modeling;
 Effective and appropriate use of tools

The attendees provided input on the following questions:

What are some of the fundamental knowledge barriers for safety of systems today?

 How to measure safety, security, and other ilities for stovepipe and system of
systems

 How to make weightings explicit for tradeoff analysis, and are those the correct
weights

 Need for both concepts and definitions to be understood by safety, security, and
other communities

 We are unable to describe uncertainty in common terms
 Misunderstanding of what standards provide
 Practitioner competence
 Realistic expectations on practitioners
 Risk management, such as how to model security problems

vii

 Understanding the roles and responsibilities of each discipline, and how they fit
together

 What decisions are we trying to support from our analyses of systems

What are some of the fundamental limitations for safety of systems today?

 A mindset of evolving vice building dependable systems
 Influences of organizational culture and established work practices
 Problem-solving approaches resulting in unnecessarily complex systems
 Lack of integration among policy, guidance (how to do it), standards and

compliance enforcement
 Defining the system boundary
 Lack of codification within standards
 Unknowns: very large number of possible vulnerabilities, hazards, etc.
 Incentives are not congruent with the risks; identify what causes those factors to

be in the decision formula (not defined in the standards today)
 System integration is done poorly, partly due to the lack of tool support
 Turf issues, such as between IEEE technical committees, societies, and councils

What are the most important research challenges?

 There needs to be an as-is report of the safety and security domains
 Create the to-be report for both the safety and security domains, including the

mission and sustainment domain
 Perform the gap analysis
 Assurance cases
 Automation support for building and analysis of architectures on an ility-basis
 Composition of systems into system of systems, including across organizations
 How do you specify uncertainty for security?
 Establish a sub grand challenge on dependability

What are promising innovations and abstractions for building future high-confidence
safety systems?

 Assurance cases that are usable across domains
 Tools interoperability: tools that reuse existing data rather than rely on translating

data between tools, analyses, etc.
 Formalize system of systems engineering techniques, concepts, etc.
 Formalize the as-is availability and data trades between safety and security
 Formally codify precepts (programmatic, design, operations guidelines) for both

safety and security, and cross compare
 Encourage IEEE headquarters to foster cooperation across societies, councils,

technical committees to address system dependability
 Encourage the IEEE Computer Society, International System Safety Society, and

RAMS to re-establish joint conferences between safety and security; for
international coverage: SAFECOM, IEE Software Safety Symposium

viii

What are possible milestones for the next 5 years?
 Finalize the

o As-is report of the safety and security domains
o To-be report for both the safety and security domains, including the

mission and sustainment domain
o Gap analysis

 Standards on assurance that span safety, security and other aspects of
dependability, such as ISO/IEC 15026, and safety standards such as AOP 52 and
MIL-STD-882

 Have a outline (or roadmap) of the body of knowledge—provide help to the
engineering, program manager and others on how to and what to apply develop
dependable systems

 Making the accreditation more standard and visible
 Have a body of knowledge for assurance, in addition have a breakdown of skill

sets against roles
 Have cooperation with the IEEE Product Safety Engineering Society and other

societies to build a safety-security accreditation program

What are possible milestones for the next 5-to-10 years?

 Risk-decisions are made across all types of risk, risks throughout the lifecycle
 User high-quality software engineering methodologies
 Meet much higher expectations for dependability of systems (i.e., ultra-high

dependability)—raise the bar

What in the near term can IEEE do for the attendees of the workshop and members of
the technical meeting?

 Establish avenues for members of the community of interest (COI) on
dependability to share ideas and documents

 Establish a column editor for Security & Privacy, Software, or some other IEEE
magazine to address the role between security and safety, with articles being on
the order of 2000 words

In addition, the attendees of the workshop provided input to the TCSS roadmap.
Suggested themes for the next workshop included the following:

 Applying autonomic and biological computing (e.g., swarms) to address safety
and security

 Certification of systems and people
 Roadmap—address what was brought up during the first workshop
 Relate safety and security to one another in the system-dependability context
 Look into processes
 Facilitation of communication between security and safety practitioners

The attendees also recommended that the technical committee do the following:

 Identify interests of TC members
 Start a reading list

ix

 Encourage weekly posting of definitions and concepts for feedback—set up a

wiki for the TC

 Invite papers that address integration of safety and security

 Put together a panel: Can safety and security be hooked up: Is there any

relationship between the two

The next workshop will be held in conjunction with the Second Annual IEEE Systems

Conference, April 7-10, 2008 in Montreal, Quebec, Canada.

J. Bret Michael

Chair, IEEE Technical Committee on System Safety

General Chair, IWSS

John Hauraz

Founder, IEEE Technical Committee on System Safety

Finance Chair, IWSS

x

Summary of Position Papers

Selected Issues in Computer Systems Safety: Position Paper, Andrew J. Kornecki,

Janusz Zalewski

This paper addresses the role of software in system safety, where the application of

computers or programmable devices may put the users or public at risk.

To make significant progress inventing and innovating in the area of safety assessment

and assurance there will need to be a corresponding level of funding to similar to steps

taken a few years ago to sponsor security research.

The way the present authors see progress made possible in the next 5-10 years is via a

significant coordinated effort of respective government agencies and industrial sectors. It

should be made clear to the decision makers that if cost minimization will continue to be

an essential factor in safety-related industries, then we may soon experience the kind of

failures which were caused not so long ago by breaches in security.

Subject Introduction, Archibald McKinlay

This introduction is background for three papers which require a similar introduction:

 Hooking into Systems Engineering

 Systems Safety Engineering HR

 Systems Safety in new Architecture and Technologies

Unlike Systems Safety Engineering, little has been done to incorporate software

requirements and risk management into Systems Engineering. There needs to be a

holistic systems integration approach to the updating of Systems Engineering to re-

integrate Systems Safety Engineering, Systems Assurance and Security, and Software

Engineering. The DoD has efforts in-work to update the Systems Engineering Plan

(SEP) but it will be a year more before it is finished.

Each added discipline required a change in the typical engineer’s abilities, education and

experience. The advancing technologies must be viewed in the same model. When a

safe system is taken and simply attached to the Internet for monitoring the safety risk

changes, and changes in ways that are not obvious to the traditional Software Safety or

Systems Safety Engineer. The technologies are changing so fast that systems are being

built right now without the updated training, education, or toolkit being available because

neither the chip nor the interface existed at the project’s start.

Systems Engineering must return to the roots of risk management and use that to

maintain focus in prioritizing tasks in all schedules, meetings and budgets. Like Systems

Safety was made to absorb occupational and then environmental tasks, so also must

Systems Engineering reconnect to its many children. All children must coordinate

through and with Systems Engineering.

xi

Safety and Security in Software Engineering, Samuel T. Redwine, Jr.

Today, security is a concern for most systems as software has become central to the

functioning of organizations and physical systems with much of it directly or indirectly

exposed to the Internet or to insider attack as well as to subversion during development,

deployment, and updating. Though safety-oriented systems so exposed now must also

face the security problem, often traditional computing safety engineering does not

address maliciousness and its perverse effect on probabilistic analyses.

One can write requirements for safety and security that look quite similar in form. When

both safety and security are required, a number of areas are candidates for combining

safety and security engineering concerns including: goals or claims including sub-goals

or subclaims, constraints on system behavior, principles, solutions, activities and

processes, assurance cases, correctness and evaluations and certifications.

In recent years, the software safety community has been more advanced in its thinking

and has more examples of successful experience with producing high-confidence

software than does the software security community. The safety community’s experience

provides lessons for software security practitioners, but the traditional engineering safety

problem differs from the security one in a critical way—it presumes non-existence of

maliciousness.

Competency Software Safety Requirements for Navy Engineers, Brian Scannell, Paul

Dailey

The Navy currently has no formal certification for Safety Engineers concentrating in

software safety. NOSSA has led an effort to educate personnel regarding the

development and support of Naval Weapon Systems. The WISE training tool is a step in

the right direction, but further formal training is needed to support experience in software

safety. There is a need to evade the case of untrained software safety engineers that are

arbitrarily appointed tasks. This should not be based on education or experience alone but

rather a combination of experience, education, and certification. A documented

certification process will only improve systems required to be safe that depend on

software. There are several options to obtain a solid software and systems safety

background for Navy applications.

 Formal training is important, and provides a good foundation for software safety. In

addition, certified software safety engineers should also have a mentor assigned to them,

attend safety board presentations to gain experience, and also provide a report of training

experiences.

xii

Biologically-Inspired Concepts for Autonomic Self-Protection in Multiagent

Systems, Roy Sterritt, Mike Hinchey

Biologically-inspired autonomous and autonomic systems (AAS) are essentially

concerned with creating self-directed and self-managing systems based on metaphors

from nature and the human body, such as the autonomic nervous system. Agent

technologies have been identified as a key enabler for engineering autonomy and

autonomicity in systems, both in terms of retrofitting into legacy systems and in

designing new systems. Handing over responsibility to systems themselves raises

concerns for humans with regard to safety and security.

Autonomic agents have been gaining ground as a significant approach to facilitate the

creation of self-managing systems to deal with the ever increasing complexity and costs

inherent in today’s and tomorrow’s systems.

In terms of the Autonomic Systems initiative, agent technologies have the potential to

become an intrinsic approach within the initiative , not only as an enabler, but also in

terms of creating autonomic agent environments.

Toward a Unified Safety/Security Model, Gary Stoneburner

The worlds of safety and security have co-existed for some time, yet remain largely

separate domains with limited interactions. This is, to put it mildly, a problem. Each

domain has contributions for the other and more dependable systems being a significant

benefit of working together. Yet one element that has continued to separate these

domains is lack of a common language and taxonomy for discussing risks associated with

safety and with security.

Both safety and security have much to gain by working together. Security can piggy-back

on the work done within the safety community in developing definitions and terminology

to express hazard conditions and in establishing organizational awareness of the need to

trade function for other, important concerns. The safety community can take advantage

of the work done by security in dealing with intelligent maliciousness which is not well

addressed by the probabilistic assumptions that underlie safety processes and yet is now a

significant concern with regard to safety. A risk framework has been proposed to help

make the idea of working together more than just an idea, but a reality.

THIS PAGE IS INTENTIONALLY LEFT BLANK

Table of Contents

Selected Issues in Computer Systems Safety: Position Paper,

Andrew J. Kornecki and Janusz Zalewski 1

Selected Issues in Computer System Safety, Andrew J. Kornecki – Presentation 4

Subject Introduction, Archibald McKinlay 50

Transforming Systems Safety and Software Safety Today for
the Systems of Systems of Tomorrow, Archibald McKinlay – Presentation 54

A System of Systems Interface Hazard Analysis Technique,
Patrick Redmond and Bret Michael – Presentation 62

Safety and Security in Secure Software Engineering, Samuel T. Redwine, Jr. 78

Safety and Security, Samuel T. Redwine, Jr. – Presentation 81

Competency Software Safety Requirements for Navy Engineers,
Brian Scannel and Paul Dailey 93

Competency Software Safety Requirements for Navy Engineers,
Brian Scannel and Paul Dailey – Presentation 98

Biologically-Inspired Concepts for Autonomic Self-Protection in
Multiagent Systems, Roy Sterritt and Mike Hinchey 104

Toward a Unified Safety/Security Model, Gary Stoneburner 115

Toward a Unified Safety/Security Model, Gary Stoneburner – Presentation 121

Juggling With the Software Assurance Puzzle Pieces, Jeffrey Voas – Presentation 127

THIS PAGE IS INTENTIONALLY LEFT BLANK

Selected Issues in Computer Systems Safety:
Position Paper

Andrew J. Kornecki
Dept. of Computer & Software Engineering

Embry-Riddle Aeronautical University
Daytona Beach, FL 32114-3900, USA

kornecka@erau.edu

Janusz Zalewski
 Computer Science Department
Florida Gulf Coast University

Fort Myers, FL 33965-6565, USA
zalewski@fgcu.edu

Abstract

The position paper presents the authors’ views

on the critical issues in safety of computer systems
and software. It is based on selected results from
several studies the authors have done for various
government agencies, private companies and
professional societies. Main limitations and
challenges in designing computer systems for
safety are discussed.

1. Introduction

System safety is a very broad term and books
have been written on various aspects of safety
analysis and safety assurance [1,2]. In this position
paper, we are focusing in particular on various
aspects of computer safety, especially the role of
software in system safety, where the application of
computers or programmable devices may put the
users or public at risk. The authors’ experience
comes mostly from research related to aviation, air
transportation and space, but partially also from
research on medical, automotive and nuclear
devices and technologies. However they by no
means claim that the treatment of the subject is
complete and exhaustive.

In a broader sense, to evaluate safety of a
computer product, especially the software product
that is used in a safety critical system, one has to
take a closer look at a product itself, but also at the
way it has been developed, as well as at the way the
tools for developing this product have been created.
This logic is illustrated in Figure 1, and is very
different from the traditional approaches to system
safety, where the analysis is limited only to the
product and the related application environment.

The examples come from the recent study on
the assessment of software development tools for
safety-critical real-time systems conducted for the
Federal Aviation Administration (FAA) [3].
Modern commercial development tools are
typically complex suites combining multiple
functionalities. Considering tool complexity, the
quality of support materials is often marginal.

Unless developers become expertly proficient with
the tool, reliance on it may lead to ignorance of tool
functionality, complacency and thus compromise
the safety of developed system.

Fig. 1. Context for Evaluating Computer Products.

2. Limitations and Knowledge Barriers

What are the three fundamental limitations and
knowledge barriers for safety of systems today?

From the computer use and software standpoint,

there are several issues that obstruct progress in
dealing with safety. The most important among
them seem to be the following:

1) Limited understanding of computers and
software by safety engineers and, vice versa,
limited understanding of safety issues by
computer and software engineers.

2) Very confusing state of safety standards and
guidelines, and proliferation of sometimes
contradicting guidelines. This situation
results in the sheer number of documents the
safety critical system developers must be
aware of.

3) Lack of well-defined, measurable safety
metrics is another fundamental limitation to
progress in safety assurance.

Our studies based on the safety related software

guidelines in civil aviation DO-178B [4] indicated
that the criteria used in this and other safety related
standards do not include solid theoretical
underpinnings to be used as measures of metrics for
safety. This is a significant impediment in product
qualification and certification [5].

1

3. Research Challenges

What are the three most important research
challenges?

As it stands right now, even agreeing on the
state of the art and practice in computer and
software safety research would be difficult. One
important step forward would be to produce a
document defining the body of knowledge in
computer system safety, similar to the one
produced for security [6]. This would help
establish the common ground, from which further
steps could be possibly defined. The challenges
that researchers are facing in this respect, come
from at least the following:

1) Lack of specific data typically available
from industrial projects, since the industry
does not share this type of data due to the
competitive advantage.

2) Common-off-the-shelf components (COTS),
both hardware and software, are going to be
increasingly used in safety critical systems,
but very few studies have been done how to
approach their safety assessment.

3) New technologies will proliferate, both in
hardware, such as high speed databuses [7],
and software, such as automatic code
generation [8], for the analysis of which new
research methods and approaches will have
to be created.

From the perspective of our studies, a critical

issue for vendors and government agencies was the
necessity of certification based on solid
experimental data. However, the qualification data
collected from experiments constitute a component
of the certification package and are highly
proprietary. This situation puts researchers in a
very disadvantageous position. Some relevant
discussions how to address this and similar issues,
have recently taken place at the Tools Forum [8].

4. Promising Innovations

What are promising innovations and
abstractions for building future high-confidence
safety systems?

It is extremely difficult to determine, which

specific techniques or technologies are the most
innovative or make the best promise, mostly
because their suitability and usefulness have to be
proved over time and a range of applications.
However, a few essential directions in innovation
can be mentioned [9]:

1) Improvement of quality and trustworthiness
of products and tools via advances in
verification and validation, possibly via the
application of formal approaches, such as
model checking, has been already in a view

of researches for some two decades and is
still making a promise.

2) Design diversity as an essential technique in
improving computer and software safety has
been used successfully for years and will
remain to be used as one of the most
effective safety techniques thus far.

3) Several newer technologies emerged over
the recent years, of which we mention only
two: model based development and active
safety systems.

4) Present authors’ own research based on the
concepts of a safety shell [10] and Bayesian
belief networks [11] has also a potential to
improve safety in an array of applications.

It seems that a significant progress to develop

new innovative technologies for safety assessment
and assurance may not be possible without some
major concentrated effort towards funding
respective research. This should be an effort
similar to steps taken a few years ago to sponsor
security research. The scale of funding should be
such that development of innovative solutions
would be truly possible. For comparison, it is
worthwhile mentioning that the European
Commission has recently provided over Є3M of
funding for a joint university-industry project on
active system safety [12].

5. Possible Milestones and Conclusion

 What are possible milestones for the next 5-to-
10 years?

 The way the present authors see progress made
possible in the next 5-10 years is via a significant
coordinated effort of respective government
agencies and industrial sectors, driven by the
following three factors:

1) Setting priorities in research directions, for
example to define and verify measurable
safety metrics.

2) Establishing educational preferences to
design and implement changes in the
computing curricula as well as by offering
respective training for safety engineers.

3) Enforcing qualification and certification
processes, so that industry would become
better aware how their respective products
and activities will undergo thorough but
transparent assessment.

Certainly, all this requires a significant increase

in the level of funding, which may not be possible
without decisive legislative actions. It should be
made clear to the decision makers that if cost
minimization will continue to be an essential factor
in safety related industries, then we may soon
experience the kind of failures which were caused
not so long ago by breaches in security.

2

Acknowledgments

 This project was supported in part by the
Aviation Airworthiness Center of Excellence
(AACE) under contract DTFA-0301C00048
sponsored by the Federal Aviation Administration
(FAA). Findings contained herein are not
necessarily those of the FAA. J. Zalewski
acknowledges additional support from the Florida
Space Grant Consortium under Grant No. UCF01-
E000029751

References

[1] Redmill F. (Ed.), Dependability of Critical

Computer Systems, Vol. 1 & 2, Elsevier
Applied Science, London, 1988/89

[2] Leveson N.G., Safeware – System Safety and
Computers, Addison-Wesley, Reading, Mass.,
1995

[3] Kornecki A.J., J. Zalewski, Experimental
Evaluation of Software Development Tools for
Safety-Critical Real-Time Systems,
Innovations in Systems and Software
Engineering – A NASA Journal, Vol. 1, pp.
176-188, 2005

[4] RTCA, Software Considerations in Airborne
Systems and Equipment Certification, Report
RTCA/DO-178B, Washington, DC, 1992

[5] Kornecki A., J. Zalewski, The Qualification of
Software Development Tools from the DO-
178B Certification Perspective, CrossTalk –
The Journal of Defense Software Engineering,
Vol. 19, No. 4, pp. 19-22, April 2006

[6] Redwine, Jr., S.T (Ed.), Secure Software
Assurance: A Guide to the Common Body of
Knowledge to Produce, Acquire, and Sustain
Secure Software, Draft Version 0.9. U.S.
Departments of Homeland Security and
Defense, January 2006

[7] Kornecki A., J. Zalewski, J. Sosnowski, D.
Trawczynski, A Study on Avionics and
Automotive Databus Safety Evaluation, The
Archives of Transport, Vo. 17, No. 3-4, pp.
107-132, 2005

[8] Software Tools Forum, Embry-Riddle
Aeronautical University, Daytona Beach, FL,
May 18-19, 2004, URL: http://www.erau.edu/

 db/campus/softwaretoolsforum.html
[9] Zalewski J., W. Ehrenberger, F. Saglietti, J.

Gorski, A. Kornecki, Safety of Computer
Control Systems: Challenges and Results in
Software Development, Annual Reviews in
Control, Vol. 27, pp. 23-37, 2003

[10] Sahraoui A.E.K., E. Anderson, J. van Katwijk,

J. Zalewski, Formal Specification of a Safety
Shell in Real-Time Control Practice, Proc.
25th IFAC/IFIP Workshop on Real-Time
Programming, Mallorca, Spain, May 15-19,
2000, pp. 117-123

[11] Zalewski J., A.J. Kornecki, H. Pfister,
Numerical Assessment of Software
Development Tools in Safety-Critical Systems
Using Bayesian Belief Networks, Proc. Int’l
Multiconference on Computer Science and
Information Technology, Wisła, Poland,
November 6-10, 2006, pp. 433-442.

[12] ONBASS – An Onboard Active Safety
System, URL: http://www.onbass.org and
http://ec.europa.eu/research/aeronautics/project
s/article_3704_en.html

Authors’ Bios

Dr. Andrew J. Kornecki is a Professor at the Dept.
of Computer and Software Engineering, Embry
Riddle Aeronautical University. He has over
twenty years of research and teaching experience in
areas of real-time computer systems. He
contributed to research on intelligent simulation
training systems, safety-critical software systems,
and served as a visiting researcher with the FAA.
He has been conducting industrial training on real-
time safety-critical software in medical and
aviation industries and for the FAA Certification
Services. Recently he has been engaged in work on
certification issues and assessment of development
tools for real-time safety-critical systems. He is
currently, with Dr. Zalewski, conducting a study on
tool qualification for complex electronic hardware,
sponsored by the FAA.

Dr. Janusz Zalewski is a Professor of Computer
Science and Engineering at Florida Gulf Coast
University. Before taking a university position, he
worked for various nuclear research labs, including
the Data Acquisition Group of Superconducting
Super Collider and Computer Safety and Reliability
Center of Lawrence Livermore National
Laboratory. He also worked on projects and
consulted for a number of private companies,
including Lockheed Martin, Harris, and Boeing. He
served as a Chairman of IFIP Working Group 5.4
on Industrial Software Quality and of an IFAC TC
on Safety of Computer Control Systems. His major
research interests include safety-related real-time
computer systems. He currently works with Dr.
Kornecki on a study for the FAA on tool
qualification for complex electronic hardware.

3

Page 1© 2005 by Andrew Kornecki and Janusz Zalewski

Selected Issues in
Computer System Safety

Andrew J. Kornecki
Embry Riddle Aeronautical University

Daytona Beach, FL 32114, USA
kornecka@erau.edu

http://faculty.erau.edu/korn/

Janusz Zalewski
Florida Gulf Coast University
Fort Myers, FL 33965, USA

zalewski@fgcu.edu
http://www.fgcu.edu/zalewski/

Page 2© 2005 by Andrew Kornecki and Janusz Zalewski

Lecture Outline

1) Fundamental Concepts
2) Design Principles &

Architectures
3) System Safety
4) Real-Time Programming
5) Databus Safety
6) Case Studies & Summary

4

Page 3© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Dependability
•Dependability is the property of the system that
justifies reliance on its services
{more on the topic: “Dependability: Basic Concepts and Terminology”,
Edited by Laprie, J.-C., Springer Verlag, 1992, ISBN: 3-211-82296-8}

•Dependability is encapsulation of the following
properties/abilities {adapted from Laprie}:

– Reliability - probability to function correctly over a
given period of time

– Security - ability to prevent unauthorized access and
system damage

– Safety - ability of not harming people and not cause
property damage

Page 4© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Dependability

Dependability involves:
•Attributes - the metrics for evaluation of system
services (safety, reliability, security, availability,
integrity, maintainability, confidentiality, etc.)

• Impairments - causes or results of lack of
dependability (error, fault, failure)

•Means - the methods used to deliver dependable
services (fault prevention, removal, detection,
tolerance)

5

Page 5© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Dependability

Relationships among Reliability,
Safety and Security Attributes

Page 6© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Dependability
Reliability – failure does not lead to severe
consequences (high risk) to the environment or
computer system, nevertheless improving the
failure rate is of principal concern

Safety – failure leads to severe consequences
(high risk) to the environment (and possibly to
computer)

Security – failure leads to severe consequences
to the computer system (and possibly to the
environment)

6

Page 7© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Dependability

Example of dependability issues in
a car embedded control software:

Reliability – ignition control, cruise
control, fuel gauge, odometer, etc.

Safety – air bag, seat belts control,
anti-lock brakes, etc.

Security – door locks, alarms, etc.

Page 8© 2005 by Andrew Kornecki and Janusz Zalewski

SAFETY RELIABILITY

fail-safe state defined
(reliability is secondary)

no safety analysis
(reliability assessment only)

 Reliability involves bottom-up activities focusing
on system failures

 Safety involves top-down approach
concentrating on system hazards

System Safety: Dependability

7

Page 9© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

•Safety is a characteristic of a system ensuring that it
will not endanger human life, property or environment

•Safety-critical software system is a software
intensive system involved in assuring that safety of
equipment or plant it is interfacing with is not
compromised

•Software Safety is achieved by implementing features
and procedures ensuring that a product performs
predictably under normal and abnormal conditions so
the likelihood of unplanned events is minimized and
their consequences are controlled and contained

Page 10© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

•Hazard is the capability of the system to harm the
people, destroy the property or environment

•Nature of the hazard defines the way how it works
and how it can be controlled (radiation, electric
shock, mechanical break)

•The hazard is a potential danger to do harm during
the system operation

•The actual occurrences of hazards are incidents
and accidents

8

Page 11© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

•The role of safety features and procedures is to
ensure safety preventing incidents and accidents

• Incident is an occurrence of a situation that could
result in a severe consequences (in terms of loss of
life or property) but it was prevented or the situation
was kept under control

•Accident is an unplanned event or series of events
that results in death, injury, environmental or
material damage

•Both incidents and accidents are exemplifying
safety violation

Page 12© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

•Severity of hazard describes consequences of
potential accident (in terms of the human lives
or monetary value)

•Likelihood of a hazard defines how often can
we expect the hazard to occur (in terms of how
many times per time unit)

•Risk is the combined measure of severity and
likelihood of a hazard – likelihood of hazard
leading to an accident (combined with hazard
severity)

9

Page 13© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

•Mistakes are made by people (specification, design,
coding, manufacturing, etc.)

•Fault is an internal defect within hardware or software
caused by a mistake, component imperfection, or
external disturbance (or inability of a function to
perform a required action)

•Failure is an external view of the system, showing its
inability to perform required functions

•Error is the difference between computer (observed,
measured) value and the true (specified or theoretically
correct) value (it’s a manifestation of a failure)

Page 14© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

Fault propagation cycle

10

Page 15© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

Recursive nature
of software faults

Page 16© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms
•Mistakes made by people (“errare humanum est”)
are the primary reasons that “something went wrong”

•Failure is when the system fails to perform its
required function in the operational phase

•Failure can be caused by:
–user makes how-to-use mistake
–fault (or defect) within the hardware
–fault (or bug) within the software

NOTE: Keep in mind that safety may be compromised
when no failure occurs.

11

Page 17© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: What went wrong?
•How-to-use mistake is more likely to happen
because:

– of user mistake during analysis or training
– the product is imperfect (too complex, difficult to use,

poor diagnostics)
– there is a fault within the software

•Software bug (or imperfect product) is due to the
developer’s mistake

•Hardware defect is due to:
– designer’s mistake
– manufacturer’s mistake

Page 18© 2005 by Andrew Kornecki and Janusz Zalewski

•Environmental and operating conditions (disabling
interrupts may lead to failing an interrupt driven safety
critical function)

•Logic control by Real Time Executive (order of
processing may impact the failure conditions)

•System function calls (detailed understanding their
operations and side-effects is critical)

•System resources (implicit use of memory in stack ops)
•Timing (deadlines, jitter, or drift may prove dangerous)
•Software architecture (choice of representation may
impact safety)

System Safety: What went wrong?

12

Page 19© 2005 by Andrew Kornecki and Janusz Zalewski

•Most of development methods do not provide
guarantee that timing constraints be met, thus
verification of timing requirements is carried out after
writing the code

•Such approach can be costly because of late fault
detection and need to re-write the code for speed

•Defining timing requirements can be ambiguous,
thus notations allowing formally analyze or animate
the system model are recommended

•Safety requirements must be traceable through the
progression of the product artifacts (requirements =>
design => code => operation)

System Safety: What went wrong?

Page 20© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Techniques

Safety Techniques basically
fall into two broad categories:
Design Techniques
(to improve the product)
Process Techniques
(to improve the process)

13

Page 21© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Design Techniques

Major architectural safety techniques:
–redundancy - using multiple components
to carry the same task

–diversity - two components (channels,
systems) to carry the same task are
based on different technologies

Page 22© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Design Techniques

Controll
er

Operator System

Commands

Responses

Virtual System

G
U
A
R
D

Controll
er

Operator System

Commands

Responses

Virtual
Controller

G
U
A
R
D

Principle of a Safety Shell

14

Page 23© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Design Techniques

Primary ControlTiming Guard Exception
Handler

State Guard

Protected I/O

Physical Environment

Safety Shell

Timing
Violation

Response Commands

Response Output
Changes

Other Safety
Violations

Guards Incorporated into a Safety Shell

Page 24© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Process Techniques

Safety Lifecycle according to IEC 61508:
• IEC 61508 is a standard for the life-cycle
management of Instrumented Protection Systems –
it formalizes a risk-based approach to establishing
target Safety Integrity Levels (SIL) and assessing
if systems meet these targets

• IEC 61508: “The necessary activities involving
safety-related systems, occurring during a
period of time that starts at the concept phase
of a project and finishes when any safety-
related systems are no longer available for use”

15

Page 25© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Process Techniques

IEC 61508
Safety Lifecycle

Page 26© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Process Techniques

 Hazard Operability Analysis (HAZOP)
 Failure Mode and Effect Analysis (FMEA)
 Failure Mode and Effect Criticality Analysis

(FMECA)
 Fault Tree Analysis (FTA)
 Event Tree Analysis (ETA)
 Common Mode Failure Analysis (CMF)
 Cause Consequence Diagrams (CCD)
 Petri Nets

16

Page 27© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming

Basic Concepts
•Concurrency and basic program properties
•Programming language features
•Real-Time kernel features
•Timing issues in real-time programs
•Practical aspects of real-time scheduling
•Board Support Packages & Device Drivers

Page 28© 2005 by Andrew Kornecki and Janusz Zalewski

• TASK - a unit of concurrency executing sequentially
itself, designed to fulfill a specific system function,
typically defined by:
• event - environmental or internal stimulus occurring at
a time point requiring response
• activity - a set of operations responding to the event
requiring time

• Task can be implemented as:
• PROCESS - a virtual computing environment set up to
run as an application program (contains its own data,
code, context, & resources)
• THREAD - a sequence of instructions executed within
the context of a process

Real-Time Programming: Concurrency

17

Page 29© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

States of Concurrent Tasks

Page 30© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

Concurrency Terms
 Synchronization
 Critical Section
 Mutual Exclusion
 Reentrancy
 Deadlock
 Pre-emption
 Safety and Liveness
 Scheduling

18

Page 31© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

10-task example of concurrent execution

Page 32© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

19

Page 33© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

Page 34© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

20

Page 35© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

Page 36© 2005 by Andrew Kornecki and Janusz Zalewski

• An informal scan of the real-time (embedded,
dedicated, safety-critical) market reveals:
– 30% assembly and legacy languages
– 30% Ada
– 30% C/C++
– 10% other (100+ other languages)

• C and Ada are the most commonly used languages
in civil aviation today

• C++ is gaining popularity, but its usage is still limited

Real-Time Programming: Languages

21

Page 37© 2005 by Andrew Kornecki and Janusz Zalewski

FEATURE Ada C/C++ Java

Memory
Management

automatic manual garbage
collected

Run-Time
Efficiency

high high medium

Run-Time
Predictability

high* OS
dependent

low

Concurrency
Control

language
features

OS
specific

language
library

Real-Time Programming: Languages

Page 38© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Language Safety Features:
• Formally defined syntax; Block structure
• Strong typing; Wild (unstructured) jumps
• Memory overwrites; Memory exhaustion
• Dangling pointers; Variable initialization
• Model of floating-point arithmetic
• Exception handling; Reentrancy
• Separate compilation with cross-checking
• Temporal predictability of loops
Efforts include: SPARK, MISRA-C, PEARL.

22

Page 39© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Strong Typing – strict application od data
type checking rules to prfevent misuse of
variables and data

int a:
float x; // and x are of different types
a = x; // formally, this is incorrect,

// but C/C++ may allow it
a = (int)x; // mode appropriate coding

Fortran allows implicit declarations
C/C++ and Java allow implicit type casting
Ada requires explicit type casting

Page 40© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Exception – an unexpected situation that may
cause a program to crash.

Examples: division by 0, overflow, reference to
nonexisting object (memory, device), I/O error,
etc.

Exception handling – to provide facilities within
a language to neutralize consequences of
exceptions.

23

Page 41© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Usual sequence of actions in exception handling:
1. Exception handler included in a program.
2. Exception raised during program execution.
3. Control is transferred to exception handler.
4. Handler executes and exits to the surrounding

block.
x := a/b; -- What if b=0?
…
exception

when CONSTRAINT_ERROR => x=MaxInt;
end;

Page 42© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Unstructured jump (wild jump) – a program jump
which is not controlled by the programmer.

Unstructured jumps are most likely to occur in
case statement or their equivalents.
Examples include:
- incomplete coverage of cases (missing
default/others)
- erroneous exit from cases (missing break)
- incomplete if/else pairs.

24

Page 43© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

C/C++ pair setjpm() and longjmp():

int setjump(jmp_buf env)

// Saves state info in env for use by longjmp

void longjmp(jmp_buf env, int v)

// Restores the state saved by setjmp

Page 44© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Memory overwrite – an uncontrolled access to
arbitrary memory locaations.

May be cause by: erroneous pointers, out-of-
bounds array indexes, dynamic allocation.

The programmer must remember that a pointer
is not just an address; it is an address of a data
item of a certain type.

25

Page 45© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

// Check memory space available

int * arr , j=0;

for (; ;) {

j++;

arr = (int *)malloc(TEN_K);

printf(“%d “, j);

}

Page 46© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Reentrancy – subprogram property that allows
it to be executed by multiple callers at the
same time.

Need for reentrancy is typical in multithreaded
programs. Therefore library routines are
usually indicated MT-safe or not.

26

Page 47© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Other language aspects:

- variable initialization

- order of evaluation vs. operator precedence

- spawning processes via fork

- killing concurrent units.

Page 48© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

// Both should be avoided
x = i++ + a[i];
x = (i++) + a[i];

// What is the result, and why?
int i = 0;
i = i+++i;

27

Page 49© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

// When if has both branches
// executed simultaneously!
if (fork()) {

… // some code
}
else {

… // other code
}

Page 50© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Beware of problems with
destroying concurrent units:
- Ada tasks via abort
- Aunix processes via kill()
- threads vi acancellation.

28

Page 51© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Proc

Meas

Ctrl DBase

Timer GUI

Comm

Observation: Why Java, as the first programming
language in common use, included GUI and
Networking as part of the language? Do LabVIEW
and MATLAB show similar trend?

Page 52© 2005 by Andrew Kornecki and Janusz Zalewski

Concept of RTOS/Kernel Operation:
• Strong distinction between internal system

operations and the user tasks
• RTOS kernel does not participate in the priority

scheme - it operates in the hardware context
• Peripheral interrupts handled by extensions to

the kernel (device drivers) which also function
outside normal application task prioritization

Real-Time Programming: RT Kernel

29

Page 53© 2005 by Andrew Kornecki and Janusz Zalewski

Concept of RTOS/Kernel Operation:
• User tasks communicate with the kernel and

perform most I/O through entry points or calls
into the drivers - I/O is processed outside the
user application context

• Modern RTOS uses threaded micro-kernel
with fast response and options for handling
interrupts at the system priority level

Real-Time Programming: RT Kernel

Page 54© 2005 by Andrew Kornecki and Janusz Zalewski

Basic Terminology
•EVENT – a result of an externally or internally
generated occurrence handled by the processor

•LATENCY - time required to recognize and start
responding to an event

•RESPONSE TIME - time interval between presentation
of an input (stimulus) and the appearance of the
associated output (response)

•DEADLINE - a time point before which a specific event
must occur (e.g. the task must complete the execution)

Real-Time Programming: RT Kernel

30

Page 55© 2005 by Andrew Kornecki and Janusz Zalewski

Basic Terminology
• INTERRUPT LATENCY – the time interval between
the occurrence of an external event and the start of
the first instruction of the interrupt service routine

• INTERRUPT LATENCY INVOLVES: hardware logic
processing, interrupt disable time, handling higher
hardware priority interrupts, switching to handler
code (saves, etc.)

Real-Time Programming: RT Kernel

Page 56© 2005 by Andrew Kornecki and Janusz Zalewski

Basic Terminology
•DISPATCH LATENCY – the time interval between
the end of interrupt handler code and the first
instruction of the process activated (made runnable)
by this interrupt.

•DISPATCH LATENCY INVOLVES: OS decision
time to reschedule (non-preemptive kernel state),
context switch time, return from system call.

Real-Time Programming: RT Kernel

31

Page 57© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: RT Kernel

Page 58© 2005 by Andrew Kornecki and Janusz Zalewski

external event application starts executing

interrupt
dispatch
time

interrupt
handler

other
interrupts

pre-emption
latency

scheduling

context
switch return

from
system
call

Contributions to Interrupt Task Response Time

Real-Time Programming: RT Kernel

32

Page 59© 2005 by Andrew Kornecki and Janusz Zalewski

Kernel Responsiveness Involves:
• INTERRUPT LATENCY
• TASK DISPATCH LATENCY
• (WORST CASE) INTERRUPT RESPONSE TIME

(Interrupt Latency + Worst case Execution of
the Interrupt Handler + Interrupt Exit Overhead)

• INTERRUPT TASK RESPONSE TIME
(Interrupt Response Time + Dispatch Latency)

Real-Time Programming: RT Kernel

Page 60© 2005 by Andrew Kornecki and Janusz Zalewski

Schedulability and Determinism
•SCHEDULABILITY - a property of a set of
tasks ensuring that all tasks will meet their
respective deadlines

•PREDICTABILITY - the property of meeting
the temporal determinism criteria

•TEMPORAL DETERMINISM - the situation in
which timing properties of the system are
known (or bounded) for each set of inputs

Real-Time Programming: RT Kernel

33

Page 61© 2005 by Andrew Kornecki and Janusz Zalewski

Topics important but not covered here:
• Real-Time Scheduling

„What Every Engineer Needs to Know about Rate-
Monotonic Scheduling”
IN: Advanced Multimicroprocessor Bus Architectures,
IEEE Computer Society Press, 1995, pp. 321-335,
and Real-Time Magazine, Issue 1/95, pp. 6-24

• Device Drivers
„Teaching Device Drivers Technology in a Real-Time
Systems Curriculum”
IN: Real-Time Systems Education III, IEEE Computer
Society Press, 1999, pp. 42-48
and at http://www.wrs.com/univ/html/featurevol4.html

Real-Time Programming: RT Kernel

Page 62© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety
Databus Characteristics
 Mechanical properties concern bus wiring,

connectors, their pinout, and module design and
dimensions

 Electrical (or optical) properties are related to
signal levels and their dynamics to carry
information, including electromagnetic
characteristics

 Logical properties concern the protocol of
exchanging information over a bus

34

Page 63© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Example of mechanical properties
of the connector for FireWire bus.

Page 64© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Example of electrical properties of the PCI bus input
signals (T_su – setup time, 7-12 ns; T_h – hold time).

35

Page 65© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Electrical interface between two FireWire nodes.

Page 66© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Example of electrical properties and low-level
bus protocol for the PCI bus Read Transaction.

36

Page 67© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Example of logical properties of the bus for
FireWire Asynchronous READ Transaction.

Page 68© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Specifics of the Bus Protocol:
• Bus arbitration

competing for bus access
• Data transfer

how devices exchange data once
they obtain bus access

• Fault handling
dealing with bus errors

37

Page 69© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

An Example of Modern Vehicle Network (Leen 2002)

Page 70© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Steer-by-Wire System (Waern 2003)

38

Page 71© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Distributed Flight Control System for Boeing 777 Aircraft

Page 72© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Distributed Flight Control System for JAS
39 Gripen Aircraft (Johansson 2003)

39

Page 73© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Databus Type Architecture Medium Rate Encoding
Arinc 429 serial unidir. single master 2 wires 100kb/s RTZ bipolar

MIL1553 serial bi-dir. single master twist pairs 1 Mb/s biphase Manch.

Arinc 629 serial bi-dir. multi master twist pairs 2 Mb/s Manchester II

Arinc 659 serial bi-dir. quad redund twist pairs 30MHz biphase Manch.

FlexRay serial bi-dir. fault-tolerant optic/wire 10Mb/s undefined

CAN serial bi-dir. multi-master twist pairs 1 Mb/s NRZ + bit stuff

TTP/C serial bi-dir. dbl redund twist pairs 25Mb/s MFM
IEEE1394 serial d-chain/tree twist pairs 400Mb/s LVDS

Safe-Wire serial bi-dir. master-slave twist pairs 200 kb/s 3-level

SpaceWire serial bi-dir. master-slave 2 wires > 2Mb/s undefined

Page 74© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Risk Assessment Process
1) Multicriteria-based Safety

Assessment
2) Hazard Analysis
3) Failure Mode Analysis

40

Page 75© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety
Criterion Selected Evaluation Factors

Safety Availability and reliability; Partitioning; Failure detection;
Common cause/mode failures; Bus expansion strategy;
Reconfigurability; Redundancy management

Data Integrity Maximum error rate; Error recovery; Load analysis;
Bus capacity; Security

Performance Operating speed; Schedulability of messages; System
interoperability; Bus length and max. load; Retry capability;
Bandwidth; Data latency; Transmission overheads

EMC Switching speed; Pulse rise and fall times; Wiring;
Shielding effectiveness; Lightning/radiation immunity

Design Assur. Compliance with standards (such as DO-254/DO-178B)
V&V Examples: functionality testing, system testing, failure

management, degraded mode operation
Configuration
Management

Examples: change control, compliance with standards,
documentation, interface control, system analysis, etc.

Continued
Airworthiness

Lifetime issues, such as physical degradation, in-service
modifications and repairs, impact analysis. (Rierson/Lewis, 2003)

Page 76© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Failure Mode Description
Invalid Messages Messages sent across the bus

Contain invalid data
Non-Responsive An anticipated response to

a message does not occur or
return in time

Babbling Communication among nodes
Is blocked or interrupted by
uncontrolled data Stream

Conflict of Node Adrs More than one node has the same
identification (Debouk et al. , 2003)

41

Page 77© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety
Potential Hazard Possible Mitigation

Loss of Power Dual power system (including battery,
wires and connectors)

Loss of Communicat’n Dual communication system

Loss of Steering Backup system; Reduced functionality
Redundant system; Steer by braking
active safety system

Loss of Braking Backup system; Reduced functionality
redundant System; Brake by steering
active safety system

Loss of Electronic
Throttle

Backup system; Reduced functionality
redundant system

Loss of Actuators Backup actuators; Red. performance actuator

Loss of Sensors
(recording driver cmds)

Backup sensors; Red. performance sensor
(Chau et al. , 2003)

Page 78© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Bus Experiments
• Plain simulation for well developed

databus networked configurations
VME/Raceway

• Actual data transfer experiments with
a modern bus FireWire

• Simulation and real experiments for
routing in Bluetooth

• Improving Real-Time Characteristic
of the Ethernet

42

Page 79© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety
Bus Parameters
• Bus response – access delay

vs. bus load
• Bus throughput - data transfer

rate vs. packet size
• Interconnect formation and

routing
• Predictability of packet

transmission time

Page 80© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Access delay vs. bus load:
When bus load increases,

how does it impact access delay?

43

Page 81© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Server Access Delay for 64B Packets

Page 82© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Bus throughput:
When packet size increases,

how does it impact transfer rate?

44

Page 83© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

IEEE 1394 Throughput over a Raw Driver
for Asynchronous and Isochronous Modes

Page 84© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Interconnect formation and routing:
When nodes are being added,

how does it impact access delay
and data transfer rate?

45

Page 85© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Bluetooth TCP Delay for Increasing Number of Nodes

Page 86© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Deterministic Ethernet:
Can Ethernet be made predictable
without modification of its CSMA/CD
protocol?

Each node is assigned a priority and two flags:
- collision status flag, c_stat_flag
(collision resolution in progress)

- collision involved flag, c_inv_flag
(node was involved in the collision)

46

Page 87© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Principle of a deterministic Ethernet protocol.

Page 88© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Behavior of a regular CSMA/CD node.

47

Page 89© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Handling messages block of the protocol.

Page 90© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Comparison of packet transmission times for the
classic CSMA/CD and the extended protocol.

48

Page 91© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Databus Safety
• New area with ongoing research
• Risk assessment methods

essential as a starting point
• Definition of critical parameters
• Experimentation needed

Page 92© 2005 by Andrew Kornecki and Janusz Zalewski

OK! Let’s go for a beer!!!

49

Subject Introduction
Archibald McKinlay

Naval Ordnance Safety and Security Activity
Indian Head, MD

I. Introduction – Transforming Systems Safety Performance

This introduction is for three related papers which require a similar background
introduction. It is intended that the reader review this introduction before any of the
attached papers:

 Hooking into Systems Engineering
 Systems Safety Engineering HR
 Systems Safety in new Architecture and Technologies

Likewise, the reader is spared the redundancy of re-reading the introduction in each paper
by reading this header paper.

II. Gap Analyses
Nothing can be fixed without first investigating what is broken.
The first issue at hand in any Gap Analysis is to determine exactly what focal point will
be used to center the context. “Begin with the end in mind”, Steven Covey in his 7
Habits book, demands we consider what we want out of this gap analysis.
We need first to find the definition of Systems Safety that we are trying to “save”.
Systems Safety Engineering has had noble roots in Systems Engineering. Over time,
partly because of its success and partly because others could not defend their discipline
nor find an established parent, Systems Safety Engineering has both endured law and
regulation, de-standardization, and the various Lean 6 sigma and other process
improvements. Along the way, even inherited at least two disciplines.

a. First gap is which Systems Safety?
A review of MIL-STD-882D, DoD Standard Practice for Systems Safety, of 10FEB2000,
reveals there are actually three parts: systems safety, occupational safety, and
environmental safety.

i. Three Safety Disciplines
1. Systems Safety Engineering

System Safety Engineering is an engineering science, derived from Systems Engineering,
which is throughout the entire lifecycle of a program. The practice involves risk
assessments (better known as hazard assessments) from initial conceptual design, through
implementation, test, release, and sustainment. There are few college level engineering
courses covering this expertise that extend beyond a few weeks in class. For a while it
was possible to have experienced Systems Safety Engineers teach engineering new hires
that discipline on-the-job, but with the need to increase billability per employee and
cutbacks on resources combined with agile resourcing this is no longer possible.

a. Software Systems Safety Engineering
Software Systems Safety Engineering was added when the software was recognized to
present a safety risk. Rather than re-apply the existing Systems Safety Engineer to

50

comprehend and assess the increasing complexity and size, industry and government
created this subset discipline. An augmentation set of courses extended Systems Safety
first. Now technology is changing both Systems Safety and Software Safety. An
attached paper addresses this problem. For a while it was possible to hire software and
digital electronics engineers and have experienced Systems Safety Engineers teach them
that discipline on-the-job, but with the need to increase billability per employee and
cutbacks on resources combined with agile resourcing this is no longer possible.

2. Occupational Health and Safety
The safety of workers, military, and other humans was already covered by the Systems
Safety approach but was not visible to management and did not appear complete to
external reviewers. It was also found that educational requirements were very different
than the engineering-basis usually required for Systems safety, that is, they were more
behavioral versus physics or software. This led to a compromise, rather than re-train all
the System Safety Engineers, a compliance-based approach was borrowed from
successful OSHA programs and levied through the same MIL-STD-882 document. The
strength was the simplistic process. The weakness that remained was that the military
environment, or any site-specific environment for that matter, requires in-depth
experiential knowledge that is difficult to train in the short timeframe (less than five to
ten years). Therefore occupational safety was easier taught to ex-military than the other
way around. Long term accomplishment was on-the-job training for new employees with
experienced employees providing guidance and mentoring, but with the need to increase
billability per employee and cutbacks on resources combined with agile resourcing this is
no longer possible.

3. Environmental Engineering and Safety
The Environmental Safety requirement was added in manner similar to the OSHA-style
in that it became necessary to make environmental compliance more visible. Again MIL-
STD-882 was seen as an easy compromise document in which to add the requirement.
Likewise again the education required was different and still again the experiential
knowledge was so site-specific that even today the practitioners find it easier to take
someone who has already worked in that area (flight-line, ship, sub, explosive ordnance
disposal, rocket fuel plant) and then send them to the compliance-based classes rather
than the other way around. Indeed it is safer for the practitioner to have the field
knowledge first (knows when to duck so to speak). This is still an area where the
Systems Safety Engineer is usually teamed with an Environmental Engineer or specialist
rather than doing it alone.

b. Second gap is getting connected (to Systems Engineering)
Unlike Systems Safety Engineering, taking MIL-STD-882 as measurable response to a
forcing function on that discipline, little has been done to incorporate software
requirements and risk management into Systems Engineering. There needs to be a
holistic systems integration approach to the updating of Systems Engineering to re-
integrate Systems Safety Engineering, Systems Assurance and Security and, of course,
Software Engineering. Currently Programs move smartly through a Systems Hardware
Critical Design Review (CDR) and yet software risks from the previous Preliminary

51

Design Reviews of hardware and software are not integrated into a meaningful combined
or somehow dependent risk. Several Program hardware systems have been found to
ignore software altogether until System Integration or Test phase. There are currently
efforts such as IEEE 15288, but it already lacks requirements and interface management
sections as it goes to its latest revision. The DoD has efforts in-work to update the
Systems Engineering Plan (SEP) but it will be a year more before it is finished.

c. Third gap is too connected (architecture) and too new (FPGA and
technologies)

As is pointed out in previous “upgrades” to MIL-STD-882 each added discipline required
a change in the typical engineer’s abilities, education and experience. The advancing
technologies must be viewed in the same model. When a (so-far) safe system is taken
and simply attached to the internet for monitoring the safety risk changes, and changes in
ways that are not obvious to the traditional Software Safety or Systems Safety Engineer.
Just as Moore’s Law predicts the increase in microprocessor throughput, so also do the
training and education requirements increase.
Technology makes this time really different however. This time the change is at both
ends of size: both big and very small architecture. At the big end, the global internet
increases potential causes astronomically and simultaneously allows the safety critical
functions to be physically spread throughout the system. While at the small end an
FPGA or ASIC now changes the ability to see or represent an electrical schematic and
simultaneously allows the safety critical functions to be physically spread throughout the
system. These technologies are breaking the toolkit of most Systems safety and Software
Safety Engineers. Very few architectural-level and FPGA-level failure analyses are
done, let alone available or understandable in a general engineering way. Often the
technology is proprietary. The technologies are changing so fast that systems are being
built right now without the updated training, education, or toolkit being available because
neither the chip nor the interface existed at the project’s start.

III. Change Evangelism
Change is simple on paper but takes a dedicated evangelist in real life. The evangelist
must range wide and far and out-spoken everywhere.

a. Systems Engineering
i. Risk Management

Systems Engineering must return to the roots of risk management and use that to
maintain focus in prioritizing tasks in all schedules, meetings and budgets.

ii. More Systems Stuff
Like Systems Safety was made to absorb occupational and then environmental tasks, so
also must Systems Engineering reconnect to its many children. All children must
coordinate through and with Systems Engineering. This can be done with the Systems
Engineering Plan (SEP) and the Integrated Master Schedule (IMS) first.

b. System Assurance
i. Systems, Software, Information and Security

52

The architecture of the internet and changing world politics has coupled with technology
to present new, diverse and complex problems for Security. There was an IT discipline
which attempts to make systems secure. Information Systems Security Engineering
(ISSE) is the art and science of discovering users' information protection needs and then
designing and making information systems to safely resist the forces to which they may
be subjected (their definition, and it includes “art”). The dilemma is that most of the
methods and techniques were applied before and after, and modifications are made at
great cost. The front-end bit is simplified to determining threats and defenses. The
center bit, called Engineering-in-Depth (Eid), is actually already performed by Systems
Engineers, Software Engineers, Systems Safety and Software Safety Engineers. The end
bit, certification and accreditation, looks for “patterns” (similar to your virus detector)
and dead code.
The shortfalls in the IT and ISSE world are manifold: they are equally burdened by
technology advancement, their best techniques are still manual, and they have few
education and training opportunities or courseware that is specific to their domain or
application. IT is also not real-time and is often not safety-critical whereas a weapons
system is both. The natural progression then is to leverage the integration into Systems
Engineering and to also leverage the Systems Safety and Software Safety requirements,
analyses, and tests.

c. End Game; initial state - get in front end
i. Focus on Systems Safety Engineering (not occupational nor

environmental) and strengthen the discipline
ii. Follow Software Engineering integration with Systems

Engineering efforts;
iii. Courses in architecture and new technology failure analyses

d. End Game; final state
i. Guidebook for Engineers

ii. S/W acquisition management Best Practices in Contract Language
for integrated Systems/Software Engineering, Software
Development Plan (SDP), Architectural views, new technology
“locations” and functions

iii. DAU and University courseware and degree programs
iv. end to end across life-cycle, including sustainment and Intellectual

Property (IP) rights.

53

11

Transforming Systems Safety and Transforming Systems Safety and
Software Safety TodaySoftware Safety Today

for the Systems of Systemsfor the Systems of Systems
of Tomorrowof Tomorrow

Archibald “arch” McKinlay

Naval Ordnance Safety and Security Activity (NOSSA)

N32, Systems Software Safety Engineering

Indian Head, MD 20640-5151

Providing Ordnance Safety for our Warfighters

Ordnance Safety & Security Activity

22

First, what do I know?First, what do I know?

Programs are getting Programs are getting ““largerlarger””
 Software size and complexitySoftware size and complexity
 Number of people assignedNumber of people assigned
Systems Engineering is disconnected from Systems Engineering is disconnected from
Software EngineeringSoftware Engineering
Processes not standard nor Processes not standard nor metricmetric’’eded
Subject Matter Experts (Subject Matter Experts (SMEsSMEs) at) at ““middlemiddle””
level are few, number and quality varies level are few, number and quality varies
with domainwith domain

54

33

SOFTWARE
SYSTEMS SAFETY

ENGINEERING

What in the What in the SwSw Systems Safety Systems Safety
Tree am I Talking About?Tree am I Talking About?

Systems Systems SwSw Safety Engineering is not OSHA and not Safety Engineering is not OSHA and not
Environmental but Supports their Risk MitigationEnvironmental but Supports their Risk Mitigation

SYSTEMS SAFETY
ENGINEERING

OSHA
EPA/RCRA

ENVIRONMENTAL

USC Title 29 & 42

USC Title 10

USC Title 40 & 42

SYSTEMS
ENGINEERING

SAFETY
COMPLIANCE

ENGINEER
ENVIRONMENTAL

COMPLIANCE
ENGINEER

MIL-STD-882

MISHAPS

44

Why is achieving Minimum Safety Risk Why is achieving Minimum Safety Risk
so hard and take so long?so hard and take so long?

Data bo
ol

ea
n

Time bo
ol

ea
n

R
eq

ui
re

m
en

ts

R
es

po
ns

ib
ilt

y

RIGHT 1 RIGHT 1 Sys Eng

RIGHT 1 WRONG 0 Safety

WRONG 0 RIGHT 1 Safety

WRONG 0 WRONG 0 Safety

System Safety System Safety
Engineering Engineering
requires more time requires more time
and resources and resources
because of the because of the
additional contexts additional contexts
to be considered.to be considered.

Systems Engr. wants RIGHT Outcome at RIGHT time, but the
RIGHT Outcome at the WRONG time can kill

(ComAir into trees example: RIGHT mode WRONG time)

55

5

How can we improve Systems and
Software Engineering Partnerships?
– Defense Safety

Oversight Council
– Joint Systems Safety

and Software Safety
• Urgent Needs
• S&T
• DDG1000
• LCS (both)
• Unmanned Systems
• JCIDS

OBSTACLES
• Primarily Focused on

OSHA-type Safety (for
example, auto accidents)

• Excuse to Bypass Processes
• Cost vs. Expertise
• Technology ahead of Analyses
• (same)
• (same)
• Contracting negotiates out

PM/PFS Team!
Tailoring.
{Education,
Experience,
Research}
{Adequate Funds
& Direction}

PARTNERS NEEDS

• Expand to
Mitigation
thru Design

66

DSB “Defense
Software”

2000

Plenty of Direction closing Plenty of Direction closing
in on Software Safety in on Software Safety

Defense Science Board 2000 Defense Science Board 2000
Report on Defense SoftwareReport on Defense Software
 Need to improve processesNeed to improve processes

DoD Hon. Mr. RumsfeldDoD Hon. Mr. Rumsfeld’’s s
declaration Memo of Warfighter declaration Memo of Warfighter
Safety, Accidents and MishapsSafety, Accidents and Mishaps
 Reduce mishaps>thru Design!Reduce mishaps>thru Design!

ASN(RDA) Software Process ASN(RDA) Software Process
ImprovementImprovement
 focusing on CMMI equivalencyfocusing on CMMI equivalency
 No mention of Software SafetyNo mention of Software Safety

OSD(AT&L) Software & Systems OSD(AT&L) Software & Systems
Engineering InitiativeEngineering Initiative
 No mention of Software SafetyNo mention of Software Safety

USD(AT&L) Memo solidifying USD(AT&L) Memo solidifying
changes to JCIDS, 5000.2, 6055.7changes to JCIDS, 5000.2, 6055.7

Rumsfeld
“reduce

preventable
accidents”
19MAY03

USD (AT&L)
“Def Acq.

System Safety
23SEP04

DODDir
4715.1E
ESOH

19MAR05
ASN(RDA)
Sw Process
Improvement

15MAY06Rumsfeld
“progress on

reducing
preventable
accidents?”
22JUN06

OSD(AT&L)
Sw & Systems

Process
Initiative

<DATE?>Direction: “We can no longer consider safety as “nice to have””
Follow-on Themes: No Emphasis on Software Safety

Krieg “reducing
preventable
accidents”

JCIDS, DODI
5000.2, &

DODI 6055.7;
21NOV06

56

77

The Path weThe Path we’’re set uponre set upon
Mr. Mr. KriegKrieg directing changes to DODI 5000.2, DODI 5600.72, and JCIDS directing changes to DODI 5000.2, DODI 5600.72, and JCIDS
Process (not strongly linked to contracts)Process (not strongly linked to contracts)
Mr. Schaeffer directing changes to make Joint reviews out of SerMr. Schaeffer directing changes to make Joint reviews out of Service vice
reviews (sphere of influence)reviews (sphere of influence)
Dr Dr EtterEtter’’ss 5 Software Productivity Improvement Initiatives:5 Software Productivity Improvement Initiatives:
 System Software EngineeringSystem Software Engineering

New curriculum, USC, UMDNew curriculum, USC, UMD
 Business ImpactsBusiness Impacts

No or limited new resourcesNo or limited new resources
Limited training dollars availableLimited training dollars available
Cannot hire/fire needed/finished skillCannot hire/fire needed/finished skill

 Human ResourcesHuman Resources
RoleRole--based/Rightbased/Right--fitfit

 Software Acquisition ManagementSoftware Acquisition Management
IEEE 12207 as baselineIEEE 12207 as baseline

 No requirements managementNo requirements management
 No endurance testNo endurance test
 No systems integrationNo systems integration

 Software Development TechniquesSoftware Development Techniques

88

Gap Analysis of the Gap Analysis of the ““AsAs--IsIs””

Inconsistent compliance enforcementInconsistent compliance enforcement
Inconsistent software measurements and metricsInconsistent software measurements and metrics
Independent Reviews are weak and unfocusedIndependent Reviews are weak and unfocused
PEO/PM software process improvementPEO/PM software process improvement……not not
happeninghappening
Contracting methods often counterContracting methods often counter--improvementimprovement
Lack of Lack of ““benchbench”” in systems software talentin systems software talent
““BenchBench”” not layered for bigger programsnot layered for bigger programs

Providing Ordnance Safety for our Warfighters

Ordnance Safety & Security Activity

57

99

Filling the GapsFilling the Gaps
Long goal:Long goal:Immediate fix:Immediate fix:Need:Need:

Career pathsCareer pathsAssignmentsAssignmentsExperienceExperience
Degrees (architect)Degrees (architect)Short coursesShort coursesTrainingTraining
SE<>SW<>SSPSE<>SW<>SSPSDP requiredSDP requiredContractingContracting

Mutually Mutually
supportivesupportiveIntegrate into SEIntegrate into SESW Process SW Process

ImprovementImprovement

Working groupsWorking groupsMajor, technicalMajor, technicalReviewsReviews
safety safety ––centriccentricCoreCoreMetricsMetrics

Reviews, Reviews,
Milestones, metricsMilestones, metricsAT&L memosAT&L memosComplianceCompliance

1010

Gap Filling doesnGap Filling doesn’’t reach the t reach the
EngineerEngineer’’s daily life!s daily life!

The Short and Long term goals are too high a The Short and Long term goals are too high a
level for the working groupslevel for the working groups
Need to view gaps at the work flow levelNeed to view gaps at the work flow level
Like other Architectures, more views and detail Like other Architectures, more views and detail
are requiredare required
Stakeholders are: PEO, PM, Chief Systems Stakeholders are: PEO, PM, Chief Systems
Engineer, Systems Safety Manager, Systems Engineer, Systems Safety Manager, Systems
and Software Safety Engineers and Analystsand Software Safety Engineers and Analysts
Each has different: Ability, Training, ExperienceEach has different: Ability, Training, Experience

58

1111

SoSSoS CompetencyCompetency

Support: SystemSupport: System--level assurance achieved level assurance achieved
firstfirst
Ability: Ability: ““Really big pictureReally big picture”” but somehow but somehow
with details always in mindwith details always in mind
Training: Managing interfaces, many big Training: Managing interfaces, many big
and many small but with variable and many small but with variable
importance to the mission/safetyimportance to the mission/safety
Experience: systems, systems integration, Experience: systems, systems integration,
large numbers of complex interfaceslarge numbers of complex interfaces

1212

SoSSoS Unique IssuesUnique Issues
Agile work and workforceAgile work and workforce
 ““live to worklive to work”” alongside alongside ““work to livework to live””

Multiple interfaces and description documents, some Multiple interfaces and description documents, some
internal data flows toointernal data flows too
 Some obvious and some buried details, but different amounts on Some obvious and some buried details, but different amounts on

every system in the every system in the SoSSoS (tool to (tool to ““seesee””, or experience?), or experience?)
Multiple time domainsMultiple time domains
 Fourth dimensional complexity (course in timing variable?)Fourth dimensional complexity (course in timing variable?)

Multiple States & ModesMultiple States & Modes
 Too many together (need Too many together (need tooltool or vision from or vision from trainingtraining))
 Fifth dimensionFifth dimension

Travel and online collaboration drives team composition Travel and online collaboration drives team composition
to: communicator, admin, techto: communicator, admin, tech
 Need HR to screen or Need HR to screen or ““binbin”” abilities for selectionabilities for selection

59

14 March 2007 13

Assurance Integration

SEP

SDP

A
SN

 (C
H

EN
G

),
O

SD
OSD, N

II

?

SW Safety Handbook
NOSSA

MIL-STD-882

Systems Safety Processes

SWHW

m
et

ric
s

Systems Engineering

PM – cost, schedule, risk management
Systems Safety Engineering

System Configuration Management
System Quality Assurance

System Assurance (w/Anti-Tamper, etc.)

Software Engineering

PM – cost, schedule, risk management
Software Systems Safety Engineering

Software Configuration Management
Software Quality Assurance (SQA)

Info Assurance & Program Protection

SSPP

Sequence
metrics

System
Assurance
Guidebook

SW
Assurance
Guidebook

PPP

C
O

TS

Critical Program Information (CPI)

Red lines/arrows are
required but not yet

determined

Trusted Foundry

Center

for Assured

SW
Contracting
For Systems
Engineering
Guidebook

Engineering-in-Depth (EiD)

Cert.
&

Accred.

14

SoS/FoS

Plan

Guidebook

SEP

Planning

Guide

SEP

SDP

ASN(RDA),
ASN(CHENG)

M
IL

-S
TD

-8
82

&

 D
O

D
 5

00
0.

2

AS
N

(C
HE

NG
),

O
SD

OSD, N
II

?

SSPP

SW Safety Handbook
NOSSA

MIL-STD-882

OSD-DAU
Module for SAM

(PM level)

A
SN

(C
H

EN
G

)

Systems Safety Processes

SW
HW

m
et

ric
s

USC
Continuing Ed.

(Engr Level) O
SD

(A
T&

L)

O
SD

(A
T&

L)

OSD
SW

Safety
Guide

Systems Engineering

PM – cost, schedule, risk management
Systems Safety Engineering

System Configuration Management
System Quality Assurance

System Assurance (w/Anti-Tamper, etc.)

Software Engineering

PM – cost, schedule, risk management
Software Systems Safety Engineering

Software Configuration Management
Software Quality Assurance (SQA)

Info Assurance & Program Protection

SETR

Sequence
metrics

WISE
update

(Engr Level)

Red lines/arrows are
required but not yet

determined

August2007

Sept2007

May2007

Nov2007

Oct 2007?

Oct 2007?

To be included:

WSESRB, IA/CPI, IA/PPP

Systems Integration

60

15

Information Assurance
JCIDS

Analysis

SwA System
Prioritization and

HPP check

Existing
Horizontal Protection Plans

and CPI lists

SwA

START

Military
Critical Technology

Program (MCTP) (5.2.7)

Military Critical
Technology Lists

(5.2.7)

Critical?
(direct/indirect)

(J8)

CI Analytic CentersDoD Component CI orgs

Horizontal Protection
Database (ASDB)

Procedures to
enter CPI

AT&L USD(I) Programs of
Record (POR)

Foreign S&T
Assessements

(DIA)

FMS
Disclosures
(USD(P))

Criteria and
Guidance
For CPI

Identification
(USD(AT&L),

USD(I))

Initial Threat
Assessment

CPI &
Threat Valid?

POR
Without CPI;

MDA states positively
NOT (CPI/A-T)

>>Abbrev. PPP?

POR
With CPI

CPI, Threats,
PPP and HPP RequirementYESNO

A

A

SW EiD

Identify
Critical

Components
(CC)

Identify
Critical

Suppliers

Determine
Criticality

Level

ISSE mitigation
Guidance for CPI

(5.2.11, 5.4.3)

Multi-Displinary
PLUS Critical

Threat
Assessment by

DoD, CIFA
Vertical/horizontal

(5.6.12)

PPP for CPI
(7 topics)

(5.1.9)

To JCIDS Processes

Horizontal
Protection, Plans,

CPI Data
(5.9.6, 5.9.2)

Threats & Tech IMPLIED by Mitigation

Systems Engineer
and Risk Mgt Plan MDA PSR; SETR

16

Systems SW Engineer

SW Engr, Sys Arch. or equiv.

Master’s or 15yr

Bachelor+ (BSc)
or 12+ yr

Bachelor or
8+ yr

Assoc. Deg (Sci.) or
5+ Safety Exp PFS Level I

PFS Level 2

PFS Level 3

WISE

DAU, DAWIA 1

SoS
PFSHW PM SW PM

NPS, USC, MIT, SEI
Sys + SW Architecture,

ultra-large systems

DAU, SW ACQ MGT

Continuing Education Up to
Graduate/Certificated

Continuing Education

DAU, DAWIA 2

DAU, DAWIA 3

. .

Principal-for-Safety (PFS) Certification Track

61

1

A System of Systems Interface Hazard
Analysis Technique

FLTLT Patrick Redmond
Prof Bret Michael

March 2007

2

Overview

• Systems of Systems Hazards
– Definition
– Types

• System of Systems Interface Hazard Analysis
– System Architecture
– System Model
– Interface Analysis
– Mishap Risk

• Concept Demonstrator

62

3

Systems of Systems Hazards

System of Systems Hazard Space

S
ystem

 H
azard S

pace

S
ystem

 H
azard S

pace

S
ystem

 H
azard S

pace

Covered by SHANot Covered by SHA

S
ystem

 H
azard S

pace

S
ystem

 H
azard S

pace

S
ystem

 H
azard S

pace

4

Systems of Systems Hazards

• Systems of Systems Mishaps:
{SoS Mishaps} = Sum of {System Mishaps}

That is, the arrangement of systems into a SoS
does not introduce any new mishaps.

63

5

Systems of Systems Hazards

• Systems of Systems Hazards:
{SoS Hazards} ≠ Sum of {System Hazards}

That is, the arrangement of systems into a SoS
introduces new hazards.

Summary: The same mishaps exist, but there
are new causes for them.

6

Systems of Systems Hazard
Topology

64

7

Systems of Systems Hazards

An emergent hazard is any hazard that may
occur within a system of systems that is not
attributable to a single system.

A single system hazard is any hazard that
may occur within a system of systems that is
attributable to a single system and may occur
whether or not that system is operating within
the system of systems context.

8

Systems of Systems Hazards

An interface hazard is a hazard in which one
system causes a mishap in another system
by transferring a failure or partial performance
over a defined interface, possibly through
another system.

65

9

Systems of Systems Hazards

A proximity hazard is a hazard in one system
that is caused by the operation, failure or
partial performance of another system that is
transferred to the victim system by a means
other than a defined interface.

10

Systems of Systems Hazards

A resource hazard is a hazard that results from
insufficient shared resources or resource
conflicts

66

11

Systems of Systems Hazards

A reconfiguration hazard is a hazard that
results from the transfer of a system of
systems from one state to another.

12

Systems of Systems Hazards

An interoperability hazard is a hazard that
occurs when the command, response or data
of one system is interpreted by a second
system in a manner that is inconsistent with
the intent of the first system.

67

13

Systems of Systems Hazard
Topology

14

System Safety Process

• Documentation of the System Safety Process
• Identification of Hazards
• Assessment of Mishap Risk
• Identification of Mishap Risk Mitigation Measures
• Reduction of Mishap Risk to an Acceptable Level
• Verification of Mishap Risk Reduction
• Acceptance of Residual Mishap Risk
• Tracking of Hazards and Residual Mishap Risk

Systems of Systems cause problems for steps in red.

68

15

Interface Hazard Analysis Technique

16

Establish System List

• List all systems that may be part of the SoS,
including:
– Systems that are always present,
– Systems that may be present, and
– Systems that are present sporadically.

Question: What systems may be present in
the SoS?

69

17

SoS Architecture

Question: How does System A interface with
System B?
a) 1 to 1
b) 1 to n
c) n to 1
d) m to n

18

System Model Development

• Steps for Developing a System Model:
– Identify System Mishaps
– Identify System Input failures that can lead to a

system mishap or a system output failure
– Identify System Outputs that can fail as a result of

an internal system failure

70

19

Mishap Identification

Question: What mishaps can occur within a
given system?

Hint: System Mishaps should have been identified
within individual system hazard analyses

20

Input Analysis

Question: What is the effect on the system if an
input fails in a certain manner?

Use guidewords (corrupt, incomplete, absent, etc) to assess the
impact of an input failure (i.e. does it cause a mishap? Does it
cause an output to fail?)

Input + guideword = Input Failure > Mishap or Output

Are there combinations of failures that will lead to mishaps or
output failures?

Do not consider whether another system could actually cause the
input failure.

71

21

Output Analysis

Question: What output failures can occur
without the influence of another system?

Use guidewords to determine how the outputs
can fail.

22

System Model Summary

• A system model is:
– A list of outputs that can fail and how they can fail
– A list of links from specific failed inputs to a

mishap
– A list of links from specific failed inputs to a type of

failed output

72

23

Finding Interface Hazards

Question: How can systems be combined to cause a mishap?

24

Interface Hazard Trees

73

25

Interface Hazard Trees

26

Interface Hazard Priority

• Function of Probability and Consequence:
– Consequence is the consequence of the mishap,

which can be obtained from the relevant SHA
– Probability is the combination of the probabilities

of the hazard events (i.e. output failures, links from
inputs to outputs and links from inputs to mishaps)

Each one has a probability of occurrence

Input Failure causing a MishapInput Failure causing
an Output Failure

System Failure causing
an Output Failure

74

27

Probability Combinations

ImprobableImprobableImprobableImprobableImprobableImprobable

ImprobableImprobableRemoteRemoteRemoteRemote

ImprobableRemoteRemoteRemoteOccasionalOccasional

ImprobableRemoteRemoteOccasionalProbableProbable

ImprobableRemoteOccasionalProbableFrequentFrequent

ImprobableRemoteOccasionalProbableFrequent

ImprobableImprobableImprobableImprobableImprobableImprobable

ImprobableImprobableImprobableImprobableImprobableRemote

ImprobableImprobableImprobableRemoteRemoteOccasional

ImprobableImprobableRemoteRemoteRemoteProbable

ImprobableImprobableRemoteRemoteOccasionalFrequent

ImprobableRemoteOccasionalProbableFrequent

ImprobableImprobableImprobableImprobableImprobableImprobable

ImprobableImprobableImprobableImprobableRemoteRemote

ImprobableImprobableRemoteRemoteRemoteOccasional

ImprobableImprobableRemoteRemoteOccasionalProbable

ImprobableRemoteRemoteOccasionalProbableFrequent

ImprobableRemoteOccasionalProbableFrequent

Worst Case Scenario

Best Case Scenario

Average

28

Residual Risk

• SoS are complex, how to assess how
much risk remains?

• Function of:
– Known Hazards
– Hazards within system models but not identified

by search
– Hazards left out of system models

75

29

Residual Risk - Example

• For example, using the average probability
combination:
– Highest Probability with three elements:

• Frequent x Frequent x Frequent = Occasional
– Highest Probability with four elements:

• Frequent x Frequent x Frequent x Frequent = Remote

• If residual risk needs to have all hazard probabilities
at remote or below, then all combinations of three
elements must be assessed.

• The maximum allowable hazard probability will
depend upon the acceptable priority threshold, the
method for combining probabilities and
consequences, and the highest consequence.

30

Accommodate New Systems

• SoS will have new systems added over time
• The interface hazard analysis technique must easily

accommodate this
• Process above can do this because:

– It is automated, hazards can be generated quickly once data
is known. Combinations are not explored by hand.

– System models are independent of the surrounding systems
(i.e. failed inputs are linked to mishaps whether or not that
failure can occur, it might not be possible currently, but may
be in the future).

76

31

Concept Demonstrator

• Allows the user to enter system model data
• Searches the model data for SoS hazards
• Is not meant to be used, just to demonstrate

that the process can be easily implemented.
• Not complete:

– Network analysis algorithm is simplified
– Does not accommodate common mode failures

• So far:
– Successfully identifies some hazards

32

Questions?

77

Safety and Security in Secure Software Engineering

Samuel T. Redwine, Jr.
James Madison University

701 Carrier Drive
Harrisonburg, VA 22807

Abstract- In recent years, the software safety
community has more examples of successful
experience with producing high-confidence
software than does the software security
community. The safety community’s experience
provides lessons for software security
practitioners, but as usually approached the
engineering safety problem differs from the
security one in a critical way – it presumes non-
existence of maliciousness and thereby the
appropriateness of probabilistic analysis. The
existence of maliciousness and security
weaknesses could lead to the similar adverse
consequences as those usually addressed in safety
engineering meaning “safety” cannot be provided
unless security is addressed.

I. SAFETY AND SECURITY
Today, security is a concern for most systems as

software has become central to the functioning of
organizations and physical systems with much of it
is directly or indirectly exposed to the Internet or to
insider attack as well as to subversion during
development, deployment, and updating. Though
safety-oriented systems so exposed now must also
face the security problem, often traditional
computing safety engineering does not address
maliciousness and its perverse effect on
probabilistic analyses.1 [9]

This engineering analysis technique issue may
be operationally more significant than whether
something is labeled a safety or a security concern
as, in practice, what is labeled what (including
neither) is not strictly a function of maliciousness,
type or size of adverse consequence, illegitimacy, or
even the existence of a criminal penalty.

1 However, physical and operational safety have recognized
closely related security concerns, for example the time needed
to break into a nuclear plant.

II. PROBABILITY VERSUS POSSIBILITY

The patterns of occurrences of “natural” events
relevant to safety are described probabilistically for
engineering purposes. The probability of a natural
event contrasts with the need for concern for the
possibility of an intelligent, malicious action. For
example, a standard tactic in conflicts is to attack
where and when the opponent least expects it – that
is where the defender has assigned the lowest
probability or risk. This distinction is central to the
difference between facing safety hazards versus
security threats (threatening entities, conditions,
events, and consequences). [9]

III. COMBINING SAFETY AND SECURITY

One can write requirements for safety and
security that look quite similar in form.[1] Here is a
highly abstract and condensed example that shows
elements of this commonality.
• The system shall have

– limited adverse consequences
– limited related uncertainty

• The combined effect of these shall provide basis
for an engineering conclusion that system will
meet, is adequately progressing toward meeting,
or has met its requirements or claims regarding
risk and consequences criteria and objectives

• These claims and the valid arguments with
supporting evidence, which justify them, shall
be documented and reviewed in a well-
organized, defensible, and auditable “Assurance
Case.”

• This Assurance Case shall provide adequate
grounds for stakeholders’ acceptable
confidence and rationally justified decisions

• The assurance case shall
– Identify system’s environments and

conditions throughout its lifespan; and
capabilities, acts, events, and conditions

78

within the system and its environments
that may threaten or damage the system
or the interests of relevant stakeholders.

– Be planned, developed, and managed
concurrently and integrally with the
system, and maintained throughout the
lifespan of the system.

– Make verifiable claims supported by
thorough, robust arguments and valid
evidence of adequate quality and known
relevance and meaningfulness and
include any contraindicating arguments
and evidence.

– Be planned, developed, and maintained
using suitable, integrated
system/software processes, resources
and means, environment, management,
and time of quantity and quality shown
to be sufficient for achieving claims and
ensure validity

When both safety and security are required, a
number of areas are candidates for partially
combining safety and security engineering concerns
including:

• Goals or claims including sub-goals or sub-
claims,

• Constraints on system behavior,
• Principles,
• Solutions,
• Activities and processes,
• Assurance case:

o Goals/claims,
o Assurance arguments,
o Evidence,

• Correctness
• Evaluations and certifications.
Many people have pointed out commonalities.

[2] [7] [8] The SafSec effort provides guidance on
one way to do this at least for assurance cases [5]
[6].

In recent years, the software safety community
has been more advanced in its thinking, for example
[3] [4], and has more examples of successful
experience with producing high-confidence
software than does the software security
community. The safety community’s experience
provides lessons for software security practitioners,

but the traditional engineering safety problem
differs from the security one in a critical way – it
presumes non-existence of maliciousness.

IV. REFERENCE

[1] Firesmith, D. “Common Concepts Underlying
Safety, Security, and Survivability Engineering.”
Technical Note CMU/SEI-2003-TN-033. 2003

[2] Lautieri, S., Cooper, D., and Jackson, D.
“SafSec: Commonalities Between Safety and
Security Assurance.” Proceedings of the Thirteenth
Safety Critical Systems Symposium - Southampton,
2005.

[3] Leveson, Nancy. “A Systems-Theoretic
Approach to Safety in Software-Intensive Systems,”
IEEE Transactions on Dependable and Secure
Computing 1, 1 (January-March 2004): 66-86,
2004.

[4] Ministry of Defence. Interim Defence Standard
00-56, Safety Management Requirements for
Defence Systems Part 1: Requirements, 17
December 2004.

[5] “SafSec Methodology: Guidance Material”,
SafSec: Integration of Safety and Security.
Available at: http://www.praxis-
his.com/safsec/safSecStandards.asp.

[6] “SafSec Methodology: Standard:.” SafSec:
Integration of Safety and Security. Available at:
http://www.praxis-
his.com/safsec/safSecStandards.asp.

[7] Stavridou, V. and Dutertre, B. “From Security to
Safety and Back.” Computer Security,
Dependability and Assurance: From Needs to
Soultions, 1998, Proceeding. 1998

[8] Stoneburner, Gary. “Toward a Unified
Security/Safety Model.” Computer. Volume 39,
Issue 8. Pages 96-97. August 2006

[9] Redwine, S. (Editor). Secure Software
Assurance: A Guide to the Common Body of
Knowledge to Produce, Acquire, and Sustain Secure

79

Software Version 1.1 US Department of Homeland
Security, September 2006.

V. ABOUT THE AUTHOR

Samuel T. Redwine, Jr.
James Madison University
redwinst@cs.jmu.edu
540-568-6305
Samuel Redwine has had an extensive career of
practice, scholarship, and research in the fields of
software engineering and more recently software
security. With a history of numerous publications
and presentations, he has serviced as General Chair
of the International Symposium on Secure Software
Engineering and workshops as well as on numerous
program committees. He is involved in a number of
related efforts including ones associated with the
Object Management Group, National Defense
Industry Association, National Security Agency,
and the Department of Homeland Security.
In addition, he has helped spread education in
secure software including helping found JMU’s
Secure Software Engineering masters program.

80

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 1

Safety and Security

Samuel T. Redwine, Jr.
James Madison University

IWSS07
March 15, 2007

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 2

Topics

Some Commonalities regarding Danger
Traditional Security and Safety
Using Probability?
Combining Safety and Security

Shared Abstract Requirement
Shared Concerns

81

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 3

Some Commonalities
regarding Danger

Concern for Danger and
Damage make Safety and

Security Bedfellows

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 4

Desirable Characteristics of
a Software or System Solution

Better
Functionality
Performance

Capacity, throughput, and speed
Efficiency – Benefits and Costs
(Less) Danger
Opportunity
Pleasingness
Certainty

Compliance
Contracts, laws and regulations, and policy

82

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 5

Duality of Events and Conditions

Bad EventsBad Events to eliminate,
limit, reduce, or manage

Bad “Real-World” Events
Bad System-Environment
Interactions
Bad Computing Asset-
related Events

Bad System Actions

Actions needed to
prevent, avoid, …
respond to bad actions
and events

Good conditionsGood conditions to be
established and preserved

“Real-World” conditions
Flow constraints

Asset properties (e.g.
Confidentiality,
Integrity, Availability)
System states that are
not preconditions for
act
Ability to establish and
maintain capability

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 6

Examples
Bad Event Good Condition

Always True
Real World Reactor Meltdown Reactor Temperature within limits

System-
Environment
Interactions

Dangerous human
instruction

All human operators properly trained
All commands allowed to go to reactor are
predicted to be benign

Computing
Assets

Table of limits or
History data corrupted

Table of limits changed only by authorized
entities and history data never changes

Software
System

Operation involving
outside or asset is not
logged

Every operation involving an asset has
proper authorization and is logged

Enabling
Functionality

Identification
management lacking

Required functionality is available, correct,
and tamper proof (and also needs to be not
bypassable)

6Copyright 2005-2007 Samuel T. Redwine, Jr.

83

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 7

Requirements Frames+

Engineering
Representation

Computing
System

Computing System-
Environment Interaction

Consequences

Software
and
Hardware

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 8

Specifications

Behavior (e.g. Functionality)
Constraints on behavior of functionality

Security properties;
Safety properties;
emergent system

properties

For example, constraints in forms of:
Allow only authorized authorities to order reactor startup
Never allow anyone but good guys to change sensitive data
Security functionality is not bypassable

84

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 9

Attacks, Mistakes, and
Failures Possible in All
Activities and Environments

RequirementsRequirements

DesignDesign

CodingCoding

MaintenanceMaintenance

TestingTesting

RetirementRetirement
OperationOperation

DeploymentDeployment

Change of ControlChange of Control

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 10

Summary

Safety and security share much in common
Ultimately about adverse consequences and
their uncertainty
Duality of avoiding bad events and preserving
good conditions

Bad events cause, allow, facilitate, or contribute to
adverse consequence
Avoid preconditions for bad events

System in danger all its life

85

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 11

Traditional Security and Safety

Security
Adverse consequences
Non-maliciousness
Illegitimacy
Maliciousness

Safety
Adverse consequences
Non-maliciousness

Behavior can be result of outside entity or inherent
behavior of system or software.

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 12

Security Properties – CIA+

Confidentiality: preventing unauthorized
disclosure
Integrity: preventing unauthorized alteration
Availability: preventing unauthorized destruction
or denial of access or service
Accountability: knowing what entity did what when

Non-repudiation: ensuring the inability to deny the
ownership of prior actions

Identification: known identities needed for entities as much of Identification: known identities needed for entities as much of security is security is
about who can do what when about who can do what when

Authentication: verifying identity ensuring entity identified coAuthentication: verifying identity ensuring entity identified correctlyrrectly

86

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 13

Maliciousness

Existence of maliciousness does not make non-
malicious problems go away
Performing to specification

Not probabilistic reliability and availability
Adversaries often attack where least expected
Anything could happen

Adversary wants best thing for her/himself – may
include wanting to make the worst possible thing
happen to you at the worst time

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 14

Using Probability

Can malicious behavior be validly modeled
probabilistically?

Reasonably frequent similar malicious behavior
generally can be modeled probabilistically. E.g.
car theft, household burglaries, script kiddies
However, serious adversaries tend to, “Attack
where, when, and how their opponent least
expects”

That is, where probability is judged to be low
Result of Murphy’s law happens not evidently but deliberately 

87

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 15

Kinds of Reasoning Systems

“Quantitative”
Deterministic

E.g. formal proofs
Non-deterministic formal systems for reasoning

Probabilistic
Game theoretic

– E.g. minimax
Other uncertainty-based formal systems of reasoning

– E.g. worst case, fuzzy sets, others used in AI

Qualitative
E.g. staff skill and experience, compliance with
standard, qualitative statements of event causality

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 16

Summary

Security (of bits) includes
Confidentiality,
Integrity,
Availability, and
Accountability,
But ultimately it is about adverse consequences and
their uncertainty

A common way to think about security-related
software behavior is with constraints
Probability-based analysis may not work for
maliciousness

88

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 17

Shared Abstract Requirement - 1

The system shall have
limited adverse consequences
limited related uncertainty

Together these shall provide a basis for an
engineering conclusion that system meets its
requirements or claims regarding criteria and
objectives related to risk and consequences

meets = will meet, is adequately progressing toward
meeting, or has met – depending on time

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 18

Shared Abstract Requirement - 2

These claims and the valid arguments with supporting
evidence, which justify them, shall be documented and
reviewed in a well-organized, defensible, and auditable
“Assurance Case.”
This Assurance Case shall provide adequate grounds for
stakeholders’ acceptable confidence and rationally
justified decisions
System (including assurance case) shall be planned,
developed, and maintained in a manner sufficient for
achieving claims and ensuring adequacy and validity of
assurance case

using suitable, integrated system/software processes, resources and
means, environment, management, and time shown to be sufficient

89

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 19

Shared Abstract Requirement

The assurance case shall
Identify what may threaten or damage the system or
the interests of relevant stakeholders

within system’s environments and conditions throughout its
lifespan; and for all capabilities, acts, events, and modes

Be planned, developed, and managed concurrently
and integrally with the system, and maintained
throughout the lifespan of the system.
Make verifiable claims supported by

thorough, robust arguments
valid evidence of adequate quality and known relevance and
meaningfulness

– include any contraindicating arguments and evidence, and
– having limited assumptions (non-critical, weak)

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 20

Candidates Concerns for Partially
Combining Safety and Security

Goals or claims including sub-goals or sub-claims
Constraints on system behavior
Principles
Solutions

E.g. Fault tolerance
Activities and processes
Assurance case

Goals/claims
Assurance arguments
Evidence
Assumptions

Predictability
Correctness
Evaluations and certifications

90

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 21

In Closing

Abstractly and in practice safety and
security have similarities
Maliciousness is hard to totally discount
anywhere and can make probabilities
unknowable/unsuitable
An important question in engineering
practice is when a probabilistic approach is
appropriate

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 22

Questions and Discussion
AnalogizeAnalogize
AnalyzeAnalyze
ApplyApply
AgreeAgree
ArgueArgue
AssertAssert
CalculateCalculate
CautionCaution
ClaimClaim
ClarifyClarify
ConceiveConceive

ConceptualizeConceptualize
ConjectureConjecture
DiscoverDiscover
DiscriminateDiscriminate
EstimateEstimate
EvidenceEvidence
ExamineExamine
ExplainExplain
ExtrapolateExtrapolate
ForeseeForesee
GeneralizeGeneralize

HypothesizeHypothesize
InferInfer
ImagineImagine
IntegrateIntegrate
InventInvent
JudgeJudge
LinkLink
MeasureMeasure
ObserveObserve
OpineOpine
OrganizeOrganize

PonderPonder
ProposePropose
QuestionQuestion
ReasonReason
RecountRecount
SpecializeSpecialize
SolveSolve
SupposeSuppose
TheorizeTheorize
ValidateValidate
VerifyVerify

91

7/20/2007 Copyright 2005-2007 Samuel T. Redwine, Jr. 23

Some Terms for Bad Things

Specification fault
Violations of specification

Violation coming from outside
Mistake, accident, mishap,
act of nature, subversion,
penetration, or attack

Violation in static
representation of system

Fault, vulnerability (or more
casually “defect”)

Violation of constraints on
dynamic system state

Error
Violation from inside crossing
system boundary – visible
outside

Failure

Result – inside or outside
system

Adverse consequence, cost,
loss
Disclosure, corruption,
denial, repudiation,
compromise

Preconditions for violation or
adverse consequence

Improper authorization,
hazard, contributing factor,
bypassable, subvertable
(Unsecured, unsafe)

Propensity toward Bad Things
Weakness, bad practice,
error prone, failure prone

92

Competency Software Safety Requirements for Navy Engineers
14 March 2007

Brian Scannell

BS Engineering Science, University of Louisville, 1990
MENG Computer Engineering, University of Louisville, 1995

MBA, University of Louisville, 2004

Paul Dailey
BS Electrical and Computer Engineering, University of Louisville, 2004

MS Systems Engineering, Naval Postgraduate School 2006

ABSTRACT

The Navy currently has no formal certification for Safety Engineers concentrating in software safety.
NOSSA has led an effort to educate personnel regarding the development and support of Naval Weapon
Systems. The WISE training tool is a step in the right direction, but further formal training is needed to
support experience in software safety. There is a need to evade the case of untrained software safety
engineers that are arbitrarily appointed tasks. This should not be based on education or experience alone but
rather a combination of experience, education, and certification. A documented certification process will
only improve systems required to be safe that depend on software. This document provides several options
to obtain a solid software and systems safety background for Navy applications.

Naval Ordnance Safety and Security Activity

The Naval Ordnance Safety and Security Activity (NOSSA) is a field activity of the Naval Sea Systems
Command (NAVSEA). NOSSA manages all aspects of the Department of the Navy (DoN) Explosives
Safety Program. As the NAVSEA technical authority for Explosives Safety, NOSSA is responsible for
providing technical policies, procedures and design criteria associated with weapons systems safety,
including software safety across the warfare disciplines. NOSSA manages all programmatic policy
requirements for the five major DoN Explosives Safety Program component programs; Ordnance Safety
and Security, Weapons and Combat System Safety, Ordnance Environmental Support Office, Insensitive
Munitions Office, and Weapons and Ordnance Quality Evaluation.1

NOSSA Certification and Training

The NOSSA objective for certification and training is to establish a reasonable and recognizable assurance
of the system safety competencies necessary in managing today’s complex systems and Research,
Development, Test & Evaluation (RDT&E) efforts. The ultimate goals of NOSSA’s certification process
are to promote those qualitative characteristics required of Naval and support contractor personnel engaged
in system safety practices, and to enhance the system safety engineering processes within existing and
future Navy acquisition programs. In complying with current requirements, it is critical that a process is
established by which personnel qualifications and training can be measured and confirmed.

WISE Online Training

The Weapon System Explosives Safety Review Board (WSESRB) Interactive Safety Environment (WISE)
training program provides the medium for achieving Principal for Safety (PFS) certification. Through a
series of testable modules, a potential candidate can gain access to the body of knowledge required to
perform as an effective PFS for DoN Programs.2

1 http://www.nossa.navsea.navy.mil/

2 NOSSA secure website

93

Software Safety Handbook

In 1999, the Joint Software System Safety (SSS) Committee developed a handbook to provide management
and engineering guidelines to achieve a reasonable level of assurance that the software will execute within
the system context with an acceptable level of safety risk. The handbook is both a reference document and
management tool for aiding managers and engineers at all levels, in any government or industrial
organization. It demonstrates “how to” in the development and implementation of an effective SSS process.
This process minimizes the likelihood or severity of system hazards caused by poorly specified, designed,
developed, or operation of software in safety-critical applications.3

GRADUATE LEVEL PROGRAMS

There are a number of graduate level courses and programs offered in system safety. These include the
University of Southern California (USC), Embry Riddle University, the University of York, Texas A&M,
and Massachusetts Institute of Technology (MIT). MIT has a program that concentrates on software
engineering (SERL, or Software Engineering Research Laboratories).

University of Southern California

The USC Viterbi School of Engineering provides a four day course in software safety in addition to a two
week course in systems engineering. These courses support certification in USC Aviation Safety and
Security.4

The Software Safety course presents philosophies and methods of developing and analyzing software and
highlights managing a software safety program. Software design principles are taught to create programs
that are fault tolerant and acceptably safe. Several software hazard analyses methods are evaluated,
including Fault Tree/Soft Tree, Software Sneak Analysis and Petri Nets. The course objective is to provide
an understanding of the nature of software hazards, root causes, and the methods by which these hazards
may be prevented or discovered. The course also provides instruction using administrative methods and
documentation needed to establish and manage a software safety program. Providing evidence for a safety
case or proof is also covered. This course is designed for systems managers and engineers, systems safety
engineers and software engineers who are involved with developing systems that possess major software
components and are responsible for the safety. Recommendations for preparation for this course include
attending the System Safety Engineering course and some understanding of software.5

Embry Riddle University

Embry Riddle University doesn’t offer a specific software safety course, but it does have a Bachelor of
Science and Master of Science degree in Safety Science. The Bachelor of Science degree is taught at the
Daytona Beach campus.6 The Master of Science degree is taught at the Prescott, AZ campus.7 Both the
Bachelor and Master degree concentrate on the aeronautical field.

The University of York

3 Software System Safety Handbook, A Technical & Managerial Team Approach, Joint Services Computer
Resources Management Group, U.S. Navy, U.S. Army, and the U.S. Air Force

4 http://viterbi.usc.edu/aviation/aviation_cert_program.htm

5 http://viterbi.usc.edu/aviation/sft.htm

6 http://www.erau.edu/db/degrees/b-safetyscience.html

7 http://www.erau.edu/omni/pr/academicorgs/prssd/

94

The University of York provides a Systems Safety Engineering (SSE) Certificate two year course. The Two
year course has six modules. Each module is taught full time in York for one week. Its associated assessed
exercise, which may be completed on or off site, takes approximately 35 hours in addition. All assessed
exercises are open, comprising a report, case study, or documented piece of software.8

NPS Monterey – Weapons System Software Safety

Naval Postgraduate School in Monterey offers a weapons system software safety course, a requirement for
a master’s degree in Systems Engineering. SW45829 provides the foundation for Software Systems Safety.
The course focuses heavily on the Software Engineering aspects of the discipline; the content injects
enough Systems Safety Engineering principles to ensure that the graduates fully understand their
responsibility in the overall system development process.

University of Washington

The University of Washington College of Engineering periodically offers software systems safety courses,
in addition to system safety management and reliability analysis. The software systems safety course is a
five day course that provides the knowledge needed to implement a practical software safety effort for
maximum impact on design and test activities. 10

SYMPOSIUMS AND CONFERENCES

The International System Safety Conference (ISSC) is held annually during the summer. The Joint
Weapon System Safety Conference (JWSSC) is held in conjunction with the ISSC. The 2007
ISSC/JWSSC is scheduled August 13-17 in Baltimore, MD.11

The newly created Technical Committee on System Safety under the IEEE System Society is holding a
series of annual international workshops on issues relating to safety of systems of national and global
significance. The first event is being held in March 2007 at the Naval Postgraduate School.12

The IEEE International Symposium on Dependable Autonomic and Secure Computing (DASC) is held
annually. The 2007 Symposium is scheduled for Sept 25-27, 2007 at Loyola College Graduate Center,
Columbia, MD.

The International Conference on Computer Safety, Reliability, and Security, or SAFECOMP, is an annual
event covering the state-of-the-art, experience and new trends in the areas of computer safety, reliability
and security regarding dependable application of computer systems. SAFECOMP provides ample
opportunity to exchange insights and experience on emerging methods and practical application across the
borders of different disciplines. The 2007 SAFECOM is scheduled for Sept 18-21, 2007 in Nuremburg,
Germany.13

Safeware© System Safety for Software-Intensive Systems

8 http://www.cs.york.ac.uk/gsp/sse_cert.php

9 http://www.nps.edu/DL/NPSO/courses/course_descriptions.html#SW4582

10 http://www.engr.washington.edu/epp/safety/sss.html

11 http://www.system-safety.org/~am_2007/

12 http://www.ieeesystemscouncil.org/conferences.html#iwss

13 http://www.safecomp.org/

95

Safeware Corporation offers a one week class covering fundamental concepts and techniques in building
and ensuring safety, with particular emphasis on those aspects of complex systems not handled well by
traditional system safety approaches, such as software and human-computer interaction. 14

DAU Online Training

Defense Acquisition University (DAU) offers the Systems Safety for Systems Engineers course (CLE009).
This is an online 3.5 hour course module which shows how the MIL-STD-882D methodology is integrated
into the Department of Defense systems engineering process for eliminating environment, safety, and
occupational health hazards or minimizing the associated risk. It uses the systems engineering V-model to
identify the key system safety activities that are conducted during each phase of the system's life cycle.

CERTIFICATION

Several options for safety certification are available. These include Certified Safety Professional
Certification, PFS certification by NOSSA, and Certified Functional Safety Expert (CFSE) certification.

Certified Safety Professional

The Board of Certified Safety Professionals (BCSP) provides certification in safety which combines
education, experience and a certified exam.15

PFS Certification and Designation by NOSSA

A PFS is recognized as certified to perform associated system safety managerial duties only upon
successful completion of the certification process outlined in NOSSAINST 12410.5. A PFS certification
provides a quantified and recognizable assurance of system safety competencies to program management.
While PFS Certification is a professional mark of distinction, it is not, and shall not be used as, an
employment designation.

Certification as a PFS should not be confused with designation as a PFS. The designation as an Acquisition
Programs PFS is a formally delegated authority, as required by OPNAVINST 5100.24A, given in writing
by the acquisition program’s management. The Acquisition Program PFS is both the technical authority
regarding matters of system safety, and the professional conduit into the system safety body of knowledge,
the system safety community, and the acquisitions lifecycle.

NOSSA has defined a certification path for PFS at three levels. The three PFS Certification categories
available are PFS High, Medium, and Low Certification.

Certified Functional Safety Expert Governance Board

The CFSE governance board was formed to improve the skills and formally establish the competency of
those engaged in the practice of safety system application in process and manufacturing industries. The
CFSE board offers exams which provide two levels of certification, a CFSE and CFSP. Prospective
members can select a specialization, which includes Process Industry Safety, Machinery Safety, Safety
Hardware Development, and Safety Software Development. In order to qualify to take the tests, candidates
must have at least ten years experience in safety, but are given years credit for level of education. 16

14 http://www.safeware-eng.com/services/training.htm

15 http://www.bscp.com
16 http://www.cfse.org

96

CONCLUSIONS/RECOMMENDATIONS

This position paper was written to identify the options available to obtain system safety training,
specifically in the Software Safety field. Formalized training is important, which provides a good
foundation for software safety. In addition to training, certified software safety engineers should also have
a mentor assigned, attend a safety board presentations to gain experience, and also provide a report of
training experiences. Listed are recommendations to create better software safety engineers:

1. The WISE training tool must be required for software safety engineers. This system would

document the Navy specific training.
2. The DAU system safety modules may be duplicate information, but software safety engineers

should also be required to take all available safety courses offered. These applications are offered
at the Department of Defense level. It is the hope that the DAU online and site coursework will be
expanded in the safety field.

3. At least six hours of accredited course work from a post graduate program should be required.
4. A mentor assignment should be required for software safety engineers. It is important to obtain a

mentor within the systems safety community to share experiences, knowledge and wisdom about
safety, and to guide and assist less experienced safety personnel. The mentor can also provide
training opportunities, in addition to sharing experiences that would specifically benefit a person
desiring to broaden their knowledge in systems and software safety. A mentor/student
relationship is instrumental in developing effective safety engineers.

5. Periodic attendance to safety related symposiums and conferences should be required. This gives
the software safety engineer the opportunity to keep current with safety issues and solutions
available.

6. Participation on SSSTRP and WSESRB should be required. Before software certification is
granted, it is invaluable experience to participate or attend as a guest of the SSSTRP and
WSESRB. The participation should include a related and non related system, to give the software
safety engineer broader experience to systems outside his experience.

7. A safety engineer should be required to perform, or assist in preparing a software safety analysis
to gain hands on experience.

8. The safety engineer should be required to provide an informal exit presentation or report of his
training experiences. This will be valuable feedback to provide better future training experiences.

97

Competency Software Safety
Requirements for Navy

Engineers
Brian Scannell / Paul Dailey

NSWC PHD Louisville
March 2007

Overview
• US Navy currently has no formal engineering

Software Safety certification process
• Software Safety engineers are often appointed

based on either availability, experience, or
education alone

• Certifications, training tools, courses, and
workshops are available from various sources

• A documented quantitative certification process
for DoN engineers will only improve safety for
software intensive systems

98

NOSSA Background

• Naval Ordinance Safety and Security
Activity is a field activity for NAVSEA

• NOSSA manages all aspects of the Navy’s
Explosives Safety Program
– Ordinance Safety and Security
– Weapons and Combat System Safety
– Ordinance Environmental Support Office
– Insensitive Munitions Office
– Weapons and Ordinance Quality Evaluation

NOSSA Certification

• Promotes qualitative characteristics
required by Safety personnel

• Enhances System Safety within the
Systems Engineering Process for Navy
acquisition programs

• In complying with these requirements, it is
critical that a quantitative process is
established

99

PFS and PFS Certification

• Principal for Safety (PFS) Certification is
obtained via the Weapons System
Explosives Safety Review Board
(WSESRB) Interactive Safety Environment
(WISE) online training and is not used as
an employment designation

• A PFS is appointed for each DoN
acquisition program by program
management

Other Certifications

• The Board of Certified Safety
Professionals (BCSP) provides
certification combining education
experience and examinations

• The Certified Functional Safety Expert
Governance Board provides certification
based on tests
– Minimum of 10 years of experience in safety

is required to take certification exam but years
of credit can be given for level of education

100

Graduate Level Programs

• University of Southern California – 4 day
course in Software Safety

• Naval Postgraduate School – 3 credit hour
Weapon System Software Safety course

• Massachusetts Institute of Technology –
Software Engineering Research
Laboratories program

• Texas A&M – Systems Safety Program

Symposiums & Conferences

• International System Safety Conference (ISSC) /
Joint Weapons Systems Safety Conference
(JWSSC) are held annually
– 07 session is August 13-17 in Baltimore, MD

• IEEE International Workshop on System Safety
• IEEE International Symposium on Dependable

Automatic and Secure Computing (DASC) is
held annually
– 07 session is September 25-27 in Columbia, MD

101

Other Training

• Safeware® System Safety for Software
Intensive Systems – 1 week class

• Defense Acquisition University (DAU)
online training for Systems Safety for
Systems Engineering

Recommendations for DoN Safety
Engineers

• Require the WISE training tool for Navy
specific training

• DAU system safety modules should be
taken along with any other available safety
courses

• Minimum of 6 hours of accredited
coursework for Software Safety

• Periodic attendance to Safety related
symposiums and conferences

102

Recommendations for DoN Safety
Engineers (cont)

• A mentor assignment should be required for new
safety engineers to share experience, provide
guidance and promote training opportunities

• Participation on Software System Safety
Technical Review Panel (SSSTRP) and
WSESRB should be required

• Participation in a software safety analysis for
hands-on experience

• Engineer should provide an informal exit
presentation or report of training experiences to
provide feedback needed to continuously
improve process

103

Biologically-Inspired Concepts for Autonomic
Self-Protection in Multiagent Systems

Roy Sterritt and Mike Hinchey

University of Ulster
School of Computing and Mathematics,

Jordanstown Campus, BT37 0QB
Northern Ireland

r.sterritt@ulster.ac.uk

NASA Goddard Space Flight Center
Software Engineering Laboratory

Greenbelt, MD 20771
USA

michael.g.hinchey@nasa.gov

Abstract. Biologically-inspired autonomous and autonomic systems (AAS) are essentially
concerned with creating self-directed and self-managing systems based on metaphors from
nature and the human body, such as the autonomic nervous system. Agent technologies have
been identified as a key enabler for engineering autonomy and autonomicity in systems, both
in terms of retrofitting into legacy systems and in designing new systems. Handing over
responsibility to systems themselves raises concerns for humans with regard to safety and
security. This paper reports on the continued investigation into a strand of research on how to
engineer self-protection mechanisms into systems to assist in encouraging confidence
regarding security when utilizing autonomy and autonomicity. This includes utilizing the
apoptosis and quiescence metaphors to potentially provide a self-destruct or self-sleep signal
between autonomic agents when needed, and an ALice signal to facilitate self-identification
and self-certification between anonymous autonomous agents and systems.

1. Introduction

The field of Biology changed dramatically in 1953, with the determination by
Francis Crick and James Dewey Watson of the double helix structure of DNA.
This discovery changed Biology for ever, allowing the sequencing of the human
genome, and the emergence of a “new Biology” focused on DNA, genes, proteins,
data, and search. Computational Biology and Bioinformatics heavily rely on
computing to facilitate research into life and development.

Simultaneously, an understanding of the biology of living organisms indicates a
parallel with computing systems: molecules in living cells interact, grow, and
transform according to the “program” dictated by DNA.

Moreover, paradigms of Computing are emerging based on modeling and
developing computer-based systems exploiting ideas that are observed in nature.
This includes building self-management and self-governance mechanisms that are
inspired by the human body’s autonomic nervous system into computer systems,
modeling evolutionary systems analogous to colonies of ants or other insects, and
developing highly-efficient and highly-complex distributed systems from large
numbers of (often quite simple) largely homogeneous components to reflect the
behaviour of flocks of birds, swarms of bees, herds of animals, or schools of fish.

This new field of “Biologically-Inspired Computing”, often known in other
incarnations by other names, such as: Autonomic Computing, Pervasive Computing,
Organic Computing, Biomimetics, and Artificial Life, amongst others, is poised at
the intersection of Computer Science, Engineering, Mathematics, and the Life
Sciences. Successes have been reported in the fields of drug discovery, data
communications, computer animation, control and command, exploration systems
for space, undersea, and harsh environments, to name but a few, and augur much
promise for future progress.

104

2. Safety and Security in Biologically-Inspired Systems

It is often joked that researchers in the security domain view safety as being a
subset of security, while researchers in the safety domain see security as being a
special case of safety. In fact, there is a certain degree of truth in both views, and
valid cases can be made to support either position.

It is certainly true that various techniques from reliability engineering, safety
engineering, and related areas, can be adapted to address issues in security.
Similarly, protocols, analysis mechanisms, and other techniques from the security
domain have been demonstrated to have useful application in safety-critical systems.

The classes of system that we’re concerned with in this paper have their own
particular issues vis-à-vis security and safety, however. Such systems are evolving,
and adapting to the circumstances in their environment. More importantly, these
systems are self-directed — we cannot necessarily tell a priori what situations they
will be expected to address, nor necessarily what actions they will take to address
them.

The FAST (Formal Approaches to Swarm Technologies) project looked at
deriving a formal development method for swarm-based systems, a particular class
of biologically-inspired system where (usually) a large number of components
(whether software or physical devices) collaborate to achieve a common goal [22,
23]. As its example “test-bed”, FAST used the ANTS (Autonomous Nano-
Technology Swarm) concept mission, described in more detail in Section 4.

The project found (unsurprisingly) that no single formal development notation
was sufficient to address all of the issues (in the case of ANTS, these were primarily
safety-related issues, although security is not entirely discounted and likely to be a
more important issue in actual operation). Moreover, it found that a realistic formal
approach would require the use of a notation that made some allowance for the
expression of probabilities and frequencies of operations. To this end, the FAST
project proposed the combination of several formal notations, one of which is a
probabilistic variant of a popular process algebra. The interested reader is directed
to [26] for further details.

Further investigation, however, highlighted the fact that most of these
probabilities and frequencies would be little more than guesswork, with a lot of the
probabilities being so tiny (unlikely) that their combination would result in so many
combinations of operations for which the probably was so close to zero that they
couldn’t be distinguished. We believe that this is likely to be the case with other
types of biologically-inspired systems also. We simply do not have the experience
to realistically estimate probabilities, nor are we ever likely to, since such systems
are expected to “learn” and improve their operation over time.

As a result, any approach to the development of such systems (whether formal or
otherwise) will be limited. That is not to say that there are not benefits from the use
of formal approaches. In fact, FAST demonstrates that properties (safety properties,
security properties, and others) may be proposed and proven to hold (or otherwise),
giving certain degrees of assurance as to how the system will operate under certain
conditions. Such an approach also allows for a significant amount of “what-if”
analysis, where conditions can be formulated and in many cases it can be
demonstrated that the system will be able to avoid, or if necessary, recover from,
these conditions.

The reality, however, is that we cannot possibly foresee all such conditions and
eventualities, and biologically-inspired systems must, as a consequence, have a
greater number of prevention mechanisms built in, in order to ensure correct, safe,
and secure operation.

105

3. Biologically-Inspired Computing Concepts

Figure 1 Autonomic and Autonomous Computing Environment

3.1 Autonomic Computing and Agents

Autonomic Computing is dependent on many disciplines for its success; not least of
these is research in agent technologies. At this stage, there are no assumptions that
agents have to be used in an autonomic architecture, but as in complex systems there
are arguments for designing the system with agents [1], as well as providing inbuilt
redundancy and greater robustness [2], through to retrofitting legacy systems with
autonomic capabilities that may benefit from an agent approach [3] to research
depicting the autonomic manager as an agent itself, for instance, a self-managing cell
(SMC) [4], containing functionality for measurement and event correlation and
support for policy-based control.

Figure 1 represents a view of an architecture for self-managing systems, where an
autonomic element consists of the component required to be managed, and the
autonomic manager [10]. It is assumed that an autonomic manager (AM) is
responsible for a managed component (MC) within a self-contained autonomic
element (AE). This autonomic manager may be designed as part of the component or
provided externally to the component, as an agent, for instance. Interaction will
occur with remote autonomic managers (cf. the autonomic communications channel
shown in Figure 1) through virtual, peer-to-peer, client-server or grid configurations.
The figure depicts self-* event messages as well as mobile agents, which assist with
self-managing activity, traveling along this channel.

Essentially, the aim of autonomic computing is to create robust dependable self-
managing systems [5]. To facilitate this aim, fault-tolerant mechanisms such as a
heart-beat monitor (‘I am alive’ signals) and pulse monitor (urgency/reflex signals)
may be included within the autonomic element [6, 7]. The notion behind the pulse
monitor (PBM) is to provide an early warning of an undesirable condition so that
preparations can be made to handle the processing load of diagnosis and planning a
response, including diversion of load. Together with other forms of communications

106

it creates dynamics of autonomic responses [8] – the introduction of multiple loops
of control, some slow and precise, others fast and possibly imprecise, fitting with the
biological metaphors of reflex and healing [6].

3.2 Biological Apoptosis

The biological analogy of autonomic systems has been well discussed in the
literature. While reading this, the reader is not consciously concerned with their
breathing rate or how fast their heart is beating. Achieving the development of a
computer system that can self-manage without the conscious effort of the user is the
overarching vision of the Autonomic Computing initiative [9]. Another typical
biological example is that the touching of a sharp knife results in a reflex reaction to
reconfigure the area in danger to a state that is no longer in danger (self-protection,
self-configuration, and, if damage has occurred, self-healing) [10].

If you cut yourself and it starts bleeding, you will treat it and carry on with your
tasks without any further conscious thought. Yet, often, the cut will have caused
skin cells to be displaced down into muscle tissue [11]. If they survive and divide,
they have the potential to grow into a tumor. The body’s solution to dealing with
this situation is cell self-destruction. There is mounting evidence that some forms of
cancer are the result of cells not dying fast enough, rather than multiplying out of
control.

It is believed that a cell knows when to commit suicide because cells are
programmed to do so – self-destruct (sD) is an intrinsic property. This self-
destruction is delayed due to the continuous receipt of biochemical reprieves. This
process is referred to as apoptosis [12], meaning “drop out”, and was used by the
Greeks to refer to the Autumn dropping of leaves from trees; i.e., loss of cells that
ought to die in the midst of the living structure. The process has also been
nicknamed “death by default” [13], where cells are prevented from putting an end to
themselves due to constant receipt of biochemical “stay alive” signals.

Further investigations into the apoptosis process [14] have uncovered more details
about this self-destruct predisposition. Whenever a cell divides, it simultaneously
receives orders to kill itself. Without a reprieve signal, the cell does indeed self-
destruct. It is believed that the reason for this is self-protection, as the most
dangerous time for the body is when a cell divides, since if just one of the billions of
cells locks into division the result is a tumor. However, simultaneously a cell must
divide in order to build and maintain the body, and there is a constant conflict.

The suicide and reprieve controls have been compared to the dual-key on a
nuclear missile [11]. The key (chemical signal) turns on cell growth but at the same
time switches on a sequence that leads to self-destruction. The second key overrides
the self-destruct [11].

3.3 The Role of Apoptosis within Autonomic Agents

Agent destruction has been proposed for mobile agents to facilitate security measures
[15]. Greenberg et al. highlighted the situation simply by recalling the situation
where the server omega.univ.edu was decommissioned, its work moving to other
machines. When a few years later a new computer was assigned the old name, to the
surprise of everyone, email arrived, much of it 3 years old [16]. The mail had
survived “pending” on Internet relays waiting for omega.univ.edu to come back up.

 Greenberg encourages consideration of the same situation for mobile agents;
these would not be rogue mobile agents – they would be carrying proper
authenticated credentials. This work would be done totally out-of-context due to

107

neither abnormal procedure nor system failure. In this circumstance the mobile
agent could cause substantial damage, e.g., deliver an archaic upgrade to part of the
network operating system resulting in bringing down the entire network.

Misuse involving mobile agents comes in the form of: misuse of hosts by agents,
misuse of agents by hosts, and misuse of agents by other agents.

From an agent perspective, the first is through accidental or unintentional
situations caused by that agent (race conditions and unexpected emergent behavior),
the latter two through deliberate or accidental situations caused by external bodies
acting upon the agent. The range of these situations and attacks have been
categorized as: damage, denial-of-service, breach-of-privacy, harassment, social
engineering, event-triggered attacks, and compound attacks.

In the situation where portions of an agent’s binary image (e.g., monetary
certificates, keys, information, etc.) are vulnerable to being copied when visiting a
host, this can be prevented by encryption. Yet there has to be decryption in order to
execute, which provides a window of vulnerability [16]. This situation has similar
overtones to our previous discussion on biological apoptosis, where the body is at its
most vulnerable during cell division.

The principles of a Hearth-Beat Monitor (HBM) and Pulse(-Beat) Monitor (PBM)
have been established. Heart-Beat Monitor (I am alive) is a fault-tolerant mechanism
which may be used to safeguard the autonomic manager, and to ensure that it is still
functioning by periodically sending ‘I am alive’ signals. The Pulse Monitor (I am
healthy) extends the HBM to incorporate reflex/urgency/health indicators from the
autonomic manager, representing its view of the current self-management state. The
analogy is with measuring the pulse rate to determine how healthy the patient is
instead of merely detecting its existence (and the fact that the patient is alive).

Apoptosis (Stay alive) is a proposed additional construct used to safeguard both
the system and agent; a signal indicates that the agent is still operating within the
correct context and behavior, and should not self-destruct.

Is there a role for the apoptosis metaphor in the development of autonomic
agents? [17, 18]

With many security issues, the lack of an agreed standard approach to agent-based
systems prohibits, for now, further practical development of the use of apoptosis for
agent security in a generic fashion within autonomic systems. Later, in a subsequent
section, we propose a certification means between agents and hosts to work around
this.

3.4 Autonomic Reflex Signal – Lub-Dub Pulse Emission

The autonomic environment requires that autonomic elements and, in particular,
autonomic managers communicate with one another concerning self-* activities, in
order to ensure the robustness of the environment. Figure 1 illustrates that the
autonomic manager communications (AM�AM) also includes a reflex signal. This
may be facilitated through the additional concept of a pulse monitor—PBM (an
extension of the embedded system’s heart-beat monitor, or HBM, which safeguards
vital processes through the emission of a regular ‘I am alive’ signal to another
process, as previously described) with the capability to encode health and urgency
signals as a pulse [10]. Together with the standard event messages on the autonomic
communications channel, this provides dynamics within autonomic responses and
multiple loops of control, such as reflex reactions among the autonomic managers
[20].

This reflex component may be used to safeguard the autonomic element by
communicating its health to another AE [20]. The component may also be utilized
to communicate environmental health information [10]. For instance, in the situation
where each PC in a LAN is equipped with an autonomic manager, rather than each

108

of the individual PCs monitoring the same environment, a few PCs (likely the least
busy machines) may take on this role and alert the others through a change in pulse
rate to indicate changing circumstances.

An important aspect concerning the reflex reaction and the pulse monitor is the
minimization of data sent – essentially only a “signal” is transmitted. Strictly
speaking, this is not mandatory; more information may be sent, yet the additional
information must not compromise the reflex reaction. For instance, in the absence
of bandwidth concerns, information that can be acted upon quickly and not incur
processing delays could be sent. The important aspect is that the information must
be in a form that can be acted upon immediately and not involve processing delays
(such as is the case of event correlation).

Just as the beat of the heart has a double beat (lub-dub) the autonomic element’s
(Figure 1) pulse monitor may have a double beat encoded – as described above, a
self health/urgency measure and an environment health/urgency measure. These
match directly with the two control loops within the AE, and the self-awareness and
environment awareness properties.

3.5 The ALice Signal

An aspect to this research is that Anonymous Autonomous/Autonomic Agents need
to work within the Autonomic System to facilitate self-management; as such the
agents and their hosts need to be able to identify each other’s credentials through
such means as an ALice (Autonomic License) signal [19]. This would allow a set of
communications to ensure the visiting mobile agent has valid and justified reasons
for being there as well as providing security to the visiting agent in interaction with
other agents and host. An unsatisfactory ALice exchange may lead to self-
destruction for self-protection.

3.6 Biological Quiescence

Figure 2 Biological Cell Cycle - including Quiescent Cell

109

The biological cell cycle is often described as a circle of cell life and division. A cell
divides into two “daughter cells” and both of these cells live, “eat”, grow, copy their
genetic material and divide again producing two more daughter cells. Since each
daughter cell has a copy of the same genes in its nucleus, daughter cells are “clones”
of each other. This “twinning” goes on and on with each cell cycle. This is a natural
process.

Very fast cell cycles occur during development causing a single cell to make
many copies of itself as it grows and differentiates into an embryo. Some very fast
cell cycles also occur in adult animals. Hair, skin and gut cells have very fast cell
cycles to replace cells that die naturally. While, as was highlighted earlier, some
forms of cancer may be caused by cells cycling out of control (as well as not dying
quickly enough).

But there is a kind of “parking spot” in the cell cycle, called “quiescence”. A
quiescent cell has left the cell cycle, it has stopped dividing. Quiescent cells may re-
enter the cell cycle at some later time, or they may not; it depends on the type of cell.
Most nerve cells stay quiescent forever. On the other hand, some quiescent cells may
later re-enter the cell cycle in order to create more cells (for example, during
pubescent development) [21].

3.7 The Role of Quiescence within Autonomic Agents

The agent self-destruction proposed earlier (Autonomic Apoptosis) to facilitate
security measures may be considered an extreme or ultimate self-protection measure
– for cases when the agent’s security has been breached or the agent is endangering
the system (for instance demonstrating undesirable emergent behavior) [17, 18].
Yet, not all cases may require this extreme reaction. Self-sleep (Quiescent state)
instead of self-destruct (Apoptosis) may be all that is required for certain
circumstances. As the situation emerges and is clarified, the agent may resume its
activity or be put into an apoptotic state.

In the case of Greenberg’s authenticated mobile agent carrying an archaic
upgrade, as described in Section 3.3, since this is a about to perform an activity that
poses a security risk, its intrinsic nature could be such that it enters a quiescent state
until its behavior is confirmed and before it proceeds with its activity. As was
highlighted earlier, these situations have similar overtones to where the body is at its
most vulnerable during cell division. High-risk security self-managing activity can
be protected by apoptosis and quiescence used to act as intrinsic mechanisms for
self-destruct or self-sleep.

4. Biologically-Inspired Concepts and Autonomicity for future
NASA Missions

These concepts may assist in the new radical paradigms for spacecraft design to
facilitate adaptive operations and the move towards almost total onboard autonomy
in certain classes of mission operations [22, 23].

A concept mission, ANTS, Autonomous Nano-Technology Swarm, planned for
sometime between 2020 and 2030 is viewed as a prototype for how many future
unmanned missions will be developed and how future space exploration will exploit
autonomous and autonomic behavior.

The mission will involve the launch of 1000 pico-class spacecraft swarm from a
stationary factory ship, on which the spacecraft will be assembled. The spacecraft
will explore the asteroid belt from close-up, something that cannot be done with
conventionally-sized spacecraft.

110

As much as 60% to 70% of the spacecraft will be lost on first launch as they enter
the asteroid belt. The surviving craft will work as a swarm, forming smaller
groupings of worker craft (each containing a unique instrument for data gathering), a
coordinating ruler, that will use the data it receives from workers to determine which
asteroids are of interest and to issue instructions to the workers and act as a
coordinator, and messenger craft which will coordinate communications between the
swarm and between the swarm and ground control. Communications with earth will
be limited to the download of science data and status information, and requests for
additional craft to be launched from earth as necessary.

Section 2 clearly highlights the general problem of agent security, whether from
the agent’s or host’s perspective. In terms of generic contribution to autonomic
agent development, with many security issues the lack of an agreed standard
approach to agent-based systems prohibits immediate further practical development
of apoptosis and quiescent states for generic autonomic systems.

Of course, within NASA missions, such as ANTS, we are not considering the
generic situation. Mission control and operations is a trusted private environment.
This eliminates many of the wide range of agent security issues discussed earlier,
just leaving the particular concerns: is the agent operating in the correct context and
showing emergent behavior within acceptable parameters, where upon apoptosis and
quiescence can make a contribution?

For instance, in ANTS, suppose one of the worker agents was indicating incorrect
operation, or when co-existing with other workers was the cause of undesirable
emergent behavior, and was failing to self-heal correctly. That emergent behavior
(depending on what it was) may put the scientific mission in danger. The agent may
be put to sleep or ultimately the stay alive signal from the ruler agent would be
withdrawn.

If a worker, or its instrument, were damaged, either by collision with another
worker, or (more likely) with an asteroid, or during a solar storm, a ruler could
withdraw the stay alive signal and request a replacement worker (from Earth, if
necessary). If a ruler or messenger were similarly damaged, its stay alive signal
would also be withdrawn, and a worker would be promoted to play its role. During a
solar storm the workers could be put into a quiescent state to protect themselves from
damage.

All of the spacecraft are to be powered by batteries that are recharged by the sun
using solar sails [22, 23]. Although battery technology has greatly advanced, there
is still a “memory loss” situation, whereby batteries that are continuously recharged
eventually lose some of their power and cannot be recharged to full power. After
several months of continual operation, each of the ANTS will no longer be able to
recharge sufficiently, at which point their ‘stay alive’ signals will be withdrawn, and
new craft will need to be assembled or launched from Earth.

5. Related Work

Forrest et al. [27] in their classic work described the problem of protecting computer
systems as a general problem of learning to distinguish self (legitimate users,
corrupted data, etc.) from other (unauthorized users, viruses, etc.); their solution was
a method for change detection inspired by the generation of T cells in the immune
system [28].

In relation to the Autonomic Initiative, the autonomic manager may take on this
function of self-/non-self discrimination as part of its self-awareness in order to
facilitate self-protection. Yet to achieve the envisaged Autonomic Initiative long-
term vision of system-level self-direction and self-management requires a high level
of interaction among AMs; and since AMs at the local level will view their world as
self, activity from the external environment may be perceived from a local AM view

111

as others/non-selfs. (In the greater scheme of things, all these legitimate self-
management activities will actually be self as opposed to other/non-self but the sheer
vastness of systems of systems could result in a local AM perception/classification
that these legitimate activities are of other/non-self). As such, the work described in
this paper is complementary to Forrest et al’s research. In our approach, the ALice
concept is used to identify and distinguish agents from the external environment,
indeed part of the greater self as opposed to other/non-self. Additionally,
complementary biological inspiration is derived from apoptosis and quiescence for
intrinsic mechanisms to facilitate correct operation by self (for instance avoiding
undesirable emergent behavior) and not just to distinguish self from non-self/other.

6. Conclusions

Autonomic agents have been gaining ground as a significant approach to facilitate
the creation of self-managing systems to deal with the ever increasing complexity
and costs inherent in today’s and tomorrow’s systems.

In terms of the Autonomic Systems initiative, agent technologies have the
potential to become an intrinsic approach within the initiative [24], not only as an
enabler (e.g., ABLE agent toolkit [25]), but also in terms of creating autonomic agent
environments.

Apoptosis was introduced and previously discussed in [17]. We have extended
this here with Autonomic Quiescence—self-sleep, a less drastic form of self-
protection.

We have briefly described research into biologically-inspired concepts to be used
together as intrinsic mechanisms within agents to provide inherent safety and
security both at the agent and system level. We briefly discussed this in terms of the
NASA concept mission, ANTS. More detailed accounts of the ANTS mission are
given in [23] and [26]. We continue to seek inspiration for modeling and developing
computer-based systems from ideas that are observed in nature.

Acknowledgements

This research is partly supported at University of Ulster by the Computer Science
Research Institute and the Centre for Software Process Technologies (CSPT) which
is funded by Invest NI through the Centres of Excellence Programme, under the EU
Peace II initiative.

Part of this work has been supported by the NASA Office of Systems and Mission
Assurance (OSMA) through its Software Assurance Research Program (SARP)
project, Formal Approaches to Swarm Technologies (FAST), and by NASA
Goddard Space Flight Center, Software Engineering Laboratory (Code 581).

Some of the technologies described in this article are patent pending and assigned
to the United States government.

References

1. N.R. Jennings and M. Wooldridge, “Agent-oriented Software Engineering,” in J.
Bradshaw (ed.), Handbook of Agent Technology, AAAI/MIT Press, 2000.

2. M..N. Huhns, V.T. Holderfield and R.L.Z. Gutierrez, “Robust software via agent-
based redundancy,” In Proc. Second International Joint Conference on Autonomous
Agents & Multiagent Systems, AAMAS 2003, 14-18 July 2003, Melbourne, Victoria,
Australia, pp. 1018-1019.

112

3. G. Kaiser, J. Parekh, P. Gross, G. Valetto, “Kinesthetics eXtreme: An External
Infrastructure for Monitoring Distributed Legacy Systems,” In Proc. Autonomic
Computing Workshop – IEEE Fifth Annual International Active Middleware
Workshop, Seattle, WA, USA, June 2003.

4. E. Lupu et al., EPSRC AMUSE: Autonomic Management of Ubiquitous Systems
for e-Health, 2003.

5. R. Sterritt, D.W. Bustard, “Autonomic Computing: a Means of Achieving
Dependability?” In Proceedings of IEEE International Conference on the
Engineering of Computer Based Systems (ECBS'03), Huntsville, AL, USA, 7-11
April 2003, pp. 247-251.

6. R. Sterritt, “Pulse Monitoring: Extending the Health-check for the Autonomic
GRID,” In Proceedings of IEEE Workshop on Autonomic Computing Principles
and Architectures (AUCOPA 2003) at INDIN 2003, Banff, AB, Canada, 22-23
August 2003, pp. 433-440.

7. R. Sterritt, “Towards Autonomic Computing: Effective Event Management,” In
Proceedings of 27th Annual IEEE/NASA Software Engineering Workshop (SEW),
Maryland, USA, 3-5 December 2002, IEEE Computer Society Press, pp. 40-47.

8. R. Sterritt, D.F. Bantz, “PAC-MEN: Personal Autonomic Computing Monitoring
Environments,” In Proceedings of IEEE DEXA 2004 Workshops - 2nd International
Workshop on Self-Adaptive and Autonomic Computing Systems (SAACS 04),
Zaragoza, Spain, 30 August – 3 September, 2003.

9. J. O. Kephart and D. M. Chess. “The vision of autonomic computing”. Computer,
36(1):41–52, 2003.

10. R. Sterritt, D.W. Bustard, “Towards an Autonomic Computing Environment,” In
Proceedings of IEEE DEXA 2003 Workshops - 1st International Workshop on
Autonomic Computing Systems, Prague, Czech Republic, September 1-5, 2003, pp.
694-698.

11. J. Newell, “Dying to live: why our cells self-destruct,” Focus, Dec. 1994.
12. R. Lockshin, Z. Zakeri, “Programmed cell death and apoptosis: origins of the

theory,” Nature Reviews Molecular Cell Biology, 2:542-550, 2001.
13. Y. Ishizaki, L. Cheng, A.W. Mudge, M.C. Raff, “Programmed cell death by default

in embryonic cells, fibroblasts, and cancer cells,” Mol. Biol. Cell, 6(11):1443-1458,
1995.

14. J. Klefstrom, E.W. Verschuren, G.I. Evan, “c-Myc Augments the Apoptotic Activity
of Cytosolic Death Receptor Signaling Proteins by Engaging the Mitochondrial
Apoptotic Pathway,” J Biol Chem,. 277:43224-43232, 2002.

15. J.D. Hartline, Mobile Agents: A Survey of Fault Tolerance and Security, University
of Washington, 1998.

16. M.S. Greenberg, J.C. Byington, T. Holding, D.G. Harper, “Mobile Agents and
Security,” IEEE Communications, July 1998.

17. R. Sterritt and M.G. Hinchey, “Apoptosis and Self-Destruct: A Contribution to
Autonomic Agents?” In Proceedings FAABS-III, 3rd NASA/IEEE Workshop on
Formal Approaches to Agent-Based Systems, 26-27 April 2004, Greenbelt, MD,
Springer Verlag LNCS 3228, 2005.

18. R. Sterritt and M.G. Hinchey, “Engineering Ultimate Self-Protection in Autonomic
Agents for Space Exploration Missions,” In Proceedings of IEEE Workshop on the
Engineering of Autonomic Systems (EASe 2005) at 12th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems (ECBS
2005), Greenbelt, MD, USA, 3-8 April 2005, IEEE Computer Society Press, pp.
506-511.

19. R. Sterritt and M.G. Hinchey, “Biological Inspired Concepts for Self-Managing
Ubiquitous and Pervasive Computing Environments” In Proceedings WRAC-II, 2nd
NASA/IEEE Workshop on Radical Agent Concepts, Sept. 2005, Greenbelt, MD,
Springer Verlag LNCS, 2006.

20. R. Sterritt, D. Gunning, A. Meban, and P. Henning, Exploring Autonomic Options
in a Unified Fault Management Architecture through Reflex Reactions via Pulse
Monitoring. Proceedings of IEEE Workshop on the Engineering of Autonomic
Systems (EASe 2004) at the 11th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS 2004), Brno,
Czech Republic, 24–27 May, pp 449–455

21. J. Love, Science Explained, 1999.

113

http://www.infc.ulst.ac.uk/staff/r.sterritt@ulster.ac.uk
http://www.infc.ulst.ac.uk/staff/dw.bustard@ulster.ac.uk

22. M.G. Hinchey, J.L. Rash, W.F. Truszkowski, C.A. Rouff and R. Sterritt,
“Challenges of Developing New Classes of NASA Self-Managing Missions,” In
Proceedings of Workshop on Reliability and Autonomic Management in Parallel
and Distributed Systems (RAMPDS-05) at ICPADS-2005, Fukuoka, Japan, 20-22
July 2005, pp. 463-467.

23. M.G. Hinchey, J.L. Rash, W.F. Truszkowski, C.A. Rouff and R. Sterritt,
“Autonomous and Autonomic Swarms,” In Proceedings of Autonomic &
Autonomous Space Exploration Systems (A&A-SES-1) at 2005 International
Conference on Software Engineering Research and Practice (SERP'05), Las Vegas,
NV, 27-30 June 2005, CREA Press, pp. 36-42.

24. J. McCann and M. Huebscher, “Evaluation issues in Autonomic Computing,” In H.
Jin, Y. Pan, N. Xiao, and J. Sun (Eds.): GCC 2004 Workshops, LNCS 3252, pp.
597–608, 2004.

25. J.P. Bigus et.al., “ABLE: a toolkit for building multiagent autonomic systems,” IBM
Systems J., 41(3):350-371, 2002.

26. C.A. Rouff, M.G. Hinchey, W.F Truszkowski, and J.L. Rash, “Experiences
Applying Formal Approaches in the Development of Swarm-Based Space
Exploration Missions,” International Journal of Software Tools for Technology
Transfer, 2006, to appear.

27. S. Forrest, A.S. Perelson, L. Allen, R. Cherukuri, “Self-nonself discrimination in a
computer,” In Proc. IEEE Symposium on Research in Security and Privacy 1994,
16-18 May 1994, pp. 202-212.

28. P. D'haeseleer, S. Forrest, P. Helman, “An immunological approach to change
detection: algorithms, analysis and implications,” In Proc. IEEE Symposium on
Security and Privacy, 1996, 6-8 May 1996, pp. 110-119.

114

Article submission for IEEE Computer, Standard’s Column, August 2006
(Article, with technical editing by IEEE did appear in the Aug 2006 issue)

Toward a Unified Safety/Security Model

The worlds of safety and security have
co-existed for some time, yet remain
largely separate domains with limited
interactions. This is, to put it mildly, a
problem. Each domain has contributions
for the other and more dependable
systems being a significant benefit of
working together. Yet one element that
has continued to separate these domains
is lack of a common language and
taxonomy for discussing risks associated
with safety and with security. This
articles proposes a common risk
taxonomy framework that bridges the
existing security and safety risk
frameworks; producing one common
expression readily applicable in either
domain.

Cooperation between safety and security
communities enable mutual support
toward the common goal of achieving
systems that are dependable in a real
world where they are exposed to events
that can result in harm. This includes
harm to:
 Individuals, be it health and life

(safety) or loss of privacy, monetary
loss, or harm to image or reputation
(security issues),

 Assets (generally a security issue yet
also a safety issue), and

 Organizations; for example, an
organization’s mission, function,
image, or reputation (security
issues).

Safety and security share common
concerns within the list of potential
harmful events above. Specifically, the
security events that can result in loss of
life or health are clearly also safety

concerns. Moreover, the processes in
place for addressing safety presume a
probabilistic distribution for failures that
could lead to safety. This is a
fundamental, underlying assumption for
all safety processes that does not hold
for intelligent attacks. Hence
cooperation between the domains of
safety and security is essential for safety
to be achieved in the real world of high
dependence on information systems
subject to attack by malicious, capable
adversaries.

The domain of security can benefit at
least as much from cooperation. In
many instances organizations have
inculcated a culture of safety-
consciousness that truly impacts the
decisions being made. That cannot be
said as often for security, where the
functional gains to be achieved by
automation frequently overwhelm
concerns about risks to individuals, the
organization, and its assets. Too often
the question of ‘how much security is
enough?’ is answered by how much
effort has been expended with seemingly
little regard for the remaining risks
arising from the automation of
mission/business processes. Wherever a
safety culture already exists, bringing
common expression to the safety and
security risks can be expected to enhance
understanding of the security issues and
facilitate security/function tradeoffs
being done in a manner consistent with
that already being implement for safety
issues.

A generally accepted risk taxonomy for
security can be found in the U.S. Federal

115

guidance on risk management in
National Institute of Standards and
Technology (NIST) Special Publication
800-30, Risk Management Guide for
Information Technology Systems, July
2002
(http://csrc.nist.gov/publications/nistpub
s/800-30/sp800-30.pdf). The security
taxonomy captured in this document is
depicted in Figure 1.

A common risk taxonomy for the safety
community is found in Federal Aviation
Administration Order 8040.4, Appendix
G, Safety Risk Management, June 1998
(http://www.faa.gov/library/manuals/avi
ation/risk_management/ss_handbook/me
dia/app_g_1200.PDF). This taxonomy
is shown in Figure 2.

While the two taxonomies are enough
different to reinforce the separation
between the two domains, there is a
significant amount of potential overlap,
requiring no significant change to the
safety terminology other than providing
for an extension to what types of events
constitute hazards. A common
taxonomy can be achieved simply by
enlarging the safety term ‘hazard’ and
adopting a unified definition for the term
‘mishap’.

The current safety definition for ‘hazard’
is: “Condition, event, or circumstance
that could lead to or contribute to an
unplanned or undesired event.” [FAA
Order 8040.4]. This definition can be
broad enough to also incorporate the
security incidents classed as ‘threats’ in
NIST SP 800-30; as these certainly are
part of the ‘condition, event, or
circumstance’ that leads to an ‘undesired
event’.

With regard to a ‘mishap’, the current
definitions for mishap and threat are:

Mishap: Unplanned event, or series of
events, that results in death, injury,
occupational illness, or damage to or
loss of equipment or property. [FAA
Order 8040.4]

Threat: The potential for a threat-
source to exercise (accidentally trigger
or intentionally exploit) a specific
vulnerability. [NIST SP 800-30]

A suggested unified definition for the
term ‘mishap’ is:

Mishap: Unified safety/security
definition: Unplanned event, or series
of events, that results in death, injury,
occupational illness, or other harm to
individuals well-being (to include
privacy, finances, image, and
reputation); damage to or loss of
equipment or property; or harm to an
organization (mission, function, image,
or reputation). These events include
system/equipment/component failures,
requirement/design/implementation
flaws, user errors, and intentional
attacks.

With this unified definition for “mishap”
and the incorporation of security
incidents into the term ‘hazard’, a
unified security/safety taxonomy is
readily obtained as shown in Figure 3.

A common taxonomy for addressing
risks is an important practical element of
bringing the domains of safety and
security together into an effective,
mutually-supporting relationship. The
proposed unified, risk taxonomy
provides this common expression and

116

does so with limited change to existing
taxonomies.

Both safety and security have much to
gain by working together. Security can
piggy-backing on the work done within
the safety community in developing
definitions and terminology to express
hazard conditions and in establishing
organizational awareness of need to
trade function for other, important

concerns. The safety community can
take advantage of the work done by
security in dealing with intelligent
maliciousness which is not well
addressed by the probabilistic
assumptions that underlie safety
processes and yet is now a significant
concern with regard to safety. A risk
framework has been proposed to help
make the idea of working together more
than just an idea, but a reality.

Figure 1: Security Risk Framework (NIST SP 800-30)

Security Model
(NIST SP 800-30, 2002)

Flaw

Vulnerability

Weakness, error, or unexpected
interaction arising in policy,
requirements, development,
implementation, or operation

Flaw that can be exercised (intentionally
exploited or unintentionally triggered), leading
to harm to individuals, organization, or assets

Threat-Source

Human or event with capability to
exercise a vulnerability; achieving
harm to person, organization, or

assets

+
Potential for

harmful
security event

Threat

Risk

Risk = Net impact = impact * likelihood

117

Figure 2: Safety Risk Framework (FAA ORDER 8040.4, Appendix G)

Safety Model
(FAA ORDER 8040.4, Appendix G, 1998)

Hazard

Mishap

The occurrence of a specific hazard
event with likelihood and resulting

impact

Risk

Risk = Net impact = impact * likelihood

Condition, event, or circumstance
that could lead to or contribute to an

unplanned or undesired event.

118

Figure 2: Unified Safety/Security Risk Framework

Unified Safety/Security Model

Existing Safety Model

From Existing Security Model

Flaw

Vulnerability

Weakness, error, or
unexpected interaction

arising in policy,
requirements,
development,

implementation, or
operation

Flaw that can be
exercised (intentionally

exploited or
unintentionally triggered),

leading to harm to
individuals, organization,

or assets

Threat-Source

Human or event with
capability to exercise a
vulnerability; achieving

harm to person,
organization, or assets

+ Hazard

Potential
for harmful

security
event

The occurrence of a specific
hazard event with likelihood

and resulting impact

Safety condition, event, or
circumstance that could lead

to or contribute to an
unplanned or undesired

event.

Mishap

Risk

Risk = Net impact =
impact * likelihood

119

Author:
Gary Stoneburner
Johns Hopkins University/Applied Physics Laboratory (JHU/APL)
Gary.Stoneburner@jhuapl.edu
240-228-2628

Author Bio:
Gary Stoneburner is an electronic engineer with Master of Science in Electrical
Engineering from the University of Texas (1974) and a Bachelor of Engineering Science
from Johns Hopkins University (1972). He is a member of the senior professional staff at
the Johns Hopkins University/Applied Physics Laboratory (JHU/APL) where he provides
information system security engineering for DoD and civil federal agencies. He was
previous with the National Institute of Standards and Technology (NIST) where he
served as the technical advisor to the NIST FISMA Implementation project. Prior to
coming to NIST he served as the security architect for The Boeing Company. Gary
retired from the US Army Reserve in 2004 where his last assignment was with the Army
Network Operations and Security Center (ANOCS). Previous reserve assignments
include the Army’s Information Operations Red Team; the Army Computer Emergency
Response Team (ACERT); and Deputy Chief, Information Assurance Division, J6,
USSOUTHCOM. He is the author or co-author for several NIST publications including:
NISTIR 6462 CSPP - Guidance for COTS Security Protection Profiles, NISTIR 6985
COTS Security Protection Profile - Operating Systems (CSPP-OS), SP 800-27
Engineering Principles for IT Security (EP-ITS), SP 800-30 Risk Management Guideline,
SP 800-33 Underlying Technical Models for IT Security, SP 800-37 Certification and
Accreditation of Federal IS, SP 800-53 Rev 1 Recommended Security Controls for
Federal Systems.

120

Toward a Unified
Safety/Security Model

IWSS-07
March 15, 2007

Gary.Stoneburner@jhuapl.edu
240-228-2628

Heritage Style Viewgraphs2

Safety – Security Coexisting/Independent

 The worlds of safety and security have co-existed for some
time

 Common goal of achieving systems that are dependable in a
real world where they are exposed to events that can result
in harm

 Yet remain largely separate domains with limited
interactions.

This is, to put it mildly, a problemThis is, to put it mildly, a problem

121

Heritage Style Viewgraphs3

Proposal to help

 A common risk taxonomy framework

 Bridge the existing security and safety risk frameworks

 Common expression readily applicable in either domain.

Heritage Style Viewgraphs4

Value of a seeking a common taxonomy
 One element that has continued to separate safety and security domains is

lack of a common language and taxonomy for discussing risks

 Facilitate mutual support toward the common goal of achieving systems that
are dependable in a real world where they are exposed to events that can
result in harm

 Each domain has contributions for the other and more dependable systems
being a significant benefit of working together.

 Safety benefits from security: Fundamental, underlying assumptions for
safety processes do not hold for purposeful attacks – security addresses
purposeful maliciousness

 Security benefits from safety: Some organizations have inculcated a culture
of safety-consciousness that truly impacts the decisions being made –
willingness to tradeoff function for system ‘ility’

122

Heritage Style Viewgraphs5

Existing Security Taxonomy
NIST SP 800-30, 2002

Flaw

Vulnerability

Weakness, error, or unexpected interaction
arising in policy, requirements, development,

implementation, or operation

Flaw that can be exercised (intentionally
exploited or unintentionally triggered), leading to

harm to individuals, organization, or assets

Threat-Source

Human or event with capability to exercise
a vulnerability; achieving harm to person,

organization, or assets

+
Potential for harmful

security event

Threat

Risk

Risk = Net impact = impact * likelihoodFYI: SP 800-30 Rev 1 (draft)
moving toward attack path instead

of individual vulnerabilities

FYI: SP 800-30 Rev 1 (draft)
moving toward attack path instead

of individual vulnerabilities

Heritage Style Viewgraphs6

Existing Safety Taxonomy
FAA ORDER 8040.4, Appendix G, 1998

Hazard

Mishap

The occurrence of a specific hazard event
with likelihood and resulting impact

Risk

Risk = Net impact = impact * likelihood

Condition, event, or circumstance
that could lead to or contribute to
an unplanned or undesired event.

123

Heritage Style Viewgraphs7

Terminology Suggestions

 Hazard: No change to text of existing safety definition, just
incorporate into current understanding of safety ‘undesired events’
the events classed as ‘threats’ in NIST SP 800-30. [Rationale:
These ‘security’ events certainly are part of the ‘condition, event, or
circumstance’ that leads to an ‘undesired’ safety event.]

 Mishap: Unified safety/security definition: Unplanned event, or
series of events, that results in (a) death, injury, occupational
illness, or other harm to individuals well-being (to include privacy,
finances, image, and reputation); (b) damage to or loss of
equipment or property; or (c) harm to an organization (mission,
function, image, or reputation). These events include failures,
flaws, user errors, and intentional attacks.

Heritage Style Viewgraphs8

Resulting Merged Taxonomy
Existing Safety Model

Hazard

The occurrence of a specific hazard
event with likelihood and resulting impact

Safety condition, event, or circumstance
that could lead to or contribute to an

unplanned or undesired event.

Mishap

Risk

Risk = Net impact = impact * likelihood

From Existing Security Model

Flaw

Vulnerability

Weakness, error, or
unexpected interaction

arising in policy,
requirements, development,
implementation, or operation

Flaw that can be exercised
(intentionally exploited or

unintentionally triggered), leading
to harm to individuals,
organization, or assets

Threat-Source

Human or event with
capability to exercise a
vulnerability; achieving

harm to person,
organization, or assets

Potential for
harmful

security event
+

124

Juggling With the Software Assurance Puzzle Pieces

Jeffrey Voas

An Employee-Owned Company
®

Opinions expressed here are those solely of Jeffrey Voas, and not necessarily those of SAIC.

Talk Outline

 I. Basic Principles Framing Software Assurance

 II. The Role of Standards and Certification in Software
Assurance Puzzle

 III. The Technical and Financial Trade-off Issues of the
Attribute “ilities”

 IV. A little slide presentation

125

Dispel the Myths That Say…

 1.Software Assurance is Secure software

 2. Software Assurance is Computer security

 3. Software Assurance is Information assurance

 4. Software Assurance is guaranteed using Standards

 5. Software Assurance is Well-defined, Framed, and Bounded

Stress the Idea That …

1. Software assurance is always a function of time,

2. Software today is less and less viewed as a product, it is more viewed
as a service, and therefore service assurance and resilience are vital
to contemplate,

3. Software assurance is a non-boundable problem, except in rare cases,
such as embedded systems.

126

Well-defined, framed, and bounded?

Software
1

A Different Way Forward to
Frame/Bound/Define

127

Software System
1 2

Environment Software System
1 23

128

Threat Space

Environment Software System
1 23

4

Threat Space

Environment Software System
1 23

4

“attributes”
5

129

Threat Space

Environment Software System
1 23

4

“attributes”
5

Policies 6

t0 t∞

Threat Space

Environment Software System
1 23

4

7Time

“attributes”
5

Policies 6

130

t0 t∞

Threat Space

Environment
Software

System

Time

“attributes”

Policies

Δ

A2
A1

P2

P1

S1

E2
E1

T1

S2
V1.1

V1.2

Bullseye

Δ
!

131

Simply lines in the sand from which a certificate
of compliance or non-compliance can occur.

Point 1: Standards and Certification are logically
inseparable.

Point 2: If you cannot certify against a standard,
why have a standard? Question: For hand
waving?

Point 3: C&A

Simply lines in the sand from which a certificate
of compliance or non-compliance can occur.

Point 1: Standards and Certification are logically
inseparable.

Point 2: If you cannot certify against a standard,
why have a standard? Question: For hand
waving?

Point 3: C&A

Software Engineering Standards for Assurance

Three Key Messages That Certification
Against A Standard Can Convey

 Compliance with development process standards vs.

 Fitness for purpose vs.

 Compliance with the requirements

132

Premise for Software Engineering Standards

Acquired software should be tagged Acquired software should be tagged
with some guarantee (or with some guarantee (or at leastat least a a ““warm fuzzywarm fuzzy””) as to how) as to how
““goodgood”” the software is.the software is.

Problem: Software Of Unknown Pedigree (SOUP)Problem: Software Of Unknown Pedigree (SOUP)

Goal of Software Engineering Standards: SOKPGoal of Software Engineering Standards: SOKP

Problem: How good is Problem: How good is ““good enoughgood enough””??

“A consumer [patient] may not be able to assess accurately
whether a particular drug is safe, but [they] can be reasonably
confident that drugs obtained from approved sources have the
endorsement of the U.S. Food and Drug Administration (FDA)
which confers important safety information. Computer system

trustworthiness has nothing comparable to the FDA. The
problem is both the absence of standard metrics and a

generally accepted organization that could conduct
such assessments. There is no Consumer Reports for

Trustworthiness.”

[Source: “Trust in Cyberspace,” National Academy of Sciences report, National Academy Press, 1998.]

State-of-the-Practice/Art

133

Regardless, There are Many!
 Hundreds of software engineering and software quality standards are

in existence, but relatable? Good luck.
 Terminology: Methodologies, Taxonomies, Ontologies,
 Software standards are generally tied to: (1) risk management, (2)

project management, (3) systems engineering, (4) software
engineering, (5) languages, and (6) life-cycle phases and artifacts

 References:
 Software Safety and ReliabilitySoftware Safety and Reliability, Debra S. Herrmann, IEEE , Debra S. Herrmann, IEEE

Computer Society Press, 1999.Computer Society Press, 1999.
 Software Engineering StandardsSoftware Engineering Standards, James W. Moore, IEEE , James W. Moore, IEEE

Computer Society Press, 1998.Computer Society Press, 1998.
 Guide to Software Engineering Standards and SpecificationsGuide to Software Engineering Standards and Specifications, ,

Stan Magee and Leonard L. Tripp, Artech House, 1997.Stan Magee and Leonard L. Tripp, Artech House, 1997.

Question 1:

Are Prescriptive Standards worth the costs?,i.e., Do
They Offer Return on Investment?

Never discount the lowest common denominator
problem.

134

Pros

Any bar or hurdle is better than
no bar or hurdle

Cons

Possibly the developers would have done more
to improve quality but now feel they have a

license to do less.

Many organizations use them simply for “CYA”
purposes

135

Question 2:

What Data Do You Have to Support Certifying
Against a Standard

Information to support the creation of certificates should be
based on a claims-evidence-arguments framework (Adelard,
U.K.), much as is done in courts of law.

Goal Structuring Notation (U. of York, U.K.)

Arguments and Evidence and Claims

 Supporting Evidence: Results from
observing, analyzing, testing, simulating and
estimating the properties of a system that
provide the fundamental information from
which a claim (i.e., certificate) can be made

 High Level Argument: Explanation of how
the available evidence can be reasonably
interpreted as indicating acceptability for use
(Fitness for Purpose), usually be
demonstrating Compliance with
Requirements

 Argument without Evidence is unfounded
 Evidence without Argument is unexplained

136

Basic Argument Structure

Claim: what we want to show
Argument: why we believe the claim is met, based on
Evidence: test results, other analysis results

Evidence

Evidence

Evidence Claim
Arguments

Inference Rules

Goal Structuring Notation
 Purpose of a goal structure: To show how goals are broken

down into sub-goals, and eventually supported by evidence,
while making clear the strategies adopted, the rationale for the
approach (assumptions, justifications), and the context in
which the goals are stated.

 Similar to a process flow chart

 Excellent for defining all processes that must be performed
during development prior to contract award; thus useful for
certification as well as acquisition.

137

Standards Are Not Perfect
 Vague: Develop software that only does "good" things

 Common sense "dos" and "don'ts" - Very watered done by
voting time

 Disclaimers by publishing organizations
 Profitable to organization that publishes them

 Used only if mandated
 Return-on-investment is often un-quantified
 Thwart intellectual creativity

 "Protectionist" legislation
 Paperwork

 2167A: ~400 English words per Ada code statement
 "Old news" before being ratified (5-10 actual years)
 Relating one to another is very hard

 Hundreds in existence

Standards are Not Perfect (cont)
 Different interpretations
 Process certifications are just documentation checks unless

personnel remain on site during the assessment
 Re-certification

 Client: over 300 modifications to a safety-critical medical
device that never requested re-certification for any of those
mods.

 Cannot be easily tested for compliance
 Mis-certifications are common

 Lack of fairness during certification judgment
 FDA Center for Devices and Radiological Health (CDRH)

 So much legacy functionality exists that complies with no
standards yet still gets integrated, making it’s impact to the
system unknown.
 WAAS

138

All certification
approaches
incorporate
one or more
of these
perspectives

All certification
approaches
incorporate
one or more
of these
perspectives

Three Schools of Thought

(1)Processes

(3)Products

(2)People

1. Process: Clean Pipes, Dirty Water?

Certifying that you
know how to do

things correctly does
not mean that you do

them correctly!

Certifying that you Certifying that you
know how to do know how to do

things correctly does things correctly does
not mean that you do not mean that you do

them correctly!them correctly!

139

A Fool with a Tool is Still a Fool!A Fool with a Tool is Still a Fool!

2. People

3. Product: The Software Itself

Spectrum of possibilities as to what a certificate proclaiming that some
“quantified” level of quality has been built in could state --- it could say
anything in the range between “Nothing” (e.g., “here is a piece of software”,
etc.) to “This software will always work perfectly under all conditions” (i.e., a
100% guarantee of perfection).

0% 0%
confidenceconfidence

100% 100%
confidenceconfidence

140

And So How Should a Standard Be Selected?And So How Should a Standard Be Selected?

Four Principles
1. People, Process, Product view? With respect to an

Environment?

2. Which Attribute(s) is of interest?

3. When in the Life-Cycle will the standard be applied, and to
which artifacts?

4. System/Enterprise Policies that need to be enforced.

141

QoS Attributes

Reliable/
Accurate

Secure/
private

Timeliness

QoS Interoperability

QoS Attributes

142

QoS Attributes

Reliable/
Accurate

Secure/
private

Timeliness

QoS Interoperability

reliability security performanceavailabilityprivacy

fault tolerance fault tolerance

confidentiality

intrusion tolerancetestability

QoS attributes (“ilities”)

Position Statement

Software’s QoS interoperability is some
combination of:
(1) the degree to which the functional
requirements are met, as well as, (2) the
degree to which the non-functional
requirements are met.

143

Attributes Need to Be Pre-Defined
 Requirements should prescribe at some level of granularity as

to what the weights are for various “ilities”, as well as how
much of each “ility” is desired.

 But HOW?

 Ignoring the attributes is not an option for achieving high
assurance and trustworthy systems!

Weighting Is Important

w1R w2P w3F w4Sa
w5Se w6A w7T w8M

in order to not over-design any attribute into the system.

For example, for an web-based transaction processing
application, w4 would probably equal 0.0 and w7 would also
be less than something like w2

144

Tradeoffs

How much will you spend for increased reliability
knowing that doing so will take needed, financial
resources away from security or performance or …?

 Security vs. Performance

 Fault tolerance vs. Testability

 Fault tolerance vs. Performance

 etc.

145

Counterintuitive Realities
 100% safety and 0% reliability

 100% reliability and 0% safety

 0% functionality/reliability and 100% security

 100% availability and 0% reliability

 100% availability and 0% performance

 0% performance and 100% safety

Common Sense Rules
 Consider what you want demonstrated before selecting an existing standard

 Know which “ilities” or assurances you are most concerned about

 Then, perform a risk/consequence analysis up front defining what failures modes are
intolerable

 Consider the ROI of various standards

 There are hundreds of standards, and more are published/revised each year

 Do not assume good people = good code

 Do not assume good process = good code

 Work with qualified certification authorities or acquisition agents

 Recognize that documentation can be faked to fool a certifier

 No standard is perfect – blending is good

146

Conclusions

•• The 7 key components of the assurance problem wellThe 7 key components of the assurance problem well--bound the bound the
space.space.

•• Software engineering standards are Software engineering standards are necessary but insufficientnecessary but insufficient..

•• The The ““ilitiesilities”” are a huge piece of the puzzleare a huge piece of the puzzle

Contact Information

Jeffrey Voas, PhD
Director, Systems Assurance Technologies
SAIC
Crystal Gateway #4, 200 12th Street South, Suite 1500
Arlington, VA 22202
Phone: 703-414-3842
Fax: 703-414-8250
Email: jeffrey.m.voas@saic.com

147

QUALITY
ASSURANCE
AND THE
SINKING OF
THE LARGEST
OFFSHORE
OIL
PLATFORM

March 2001

For those of you who may
be involved in project cost
control (at whatever level),

148

please read this quote from a
Petrobras executive,

extolling the benefits of
cutting quality assurance
and inspection costs,

149

on the project that
was deployed in the
Atlantic Ocean off the
coast of Brazil in
March 2001.

"Petrobras has established new global benchmarks
for the generation of exceptional shareholder wealth

150

through an aggressive and innovative program of
cost cutting on its P36 production facility.

Conventional constraints have been successfully challenged

151

and replaced with new paradigms appropriate to the
globalized corporate market place.

Through an integrated network of
facilitated workshops,

152

the project successfully rejected: (1) the established constricting
and negative influences of prescriptive engineering,

(2) onerous quality requirements,
and (3) outdated concepts of
inspection and client control.

153

Elimination of these unnecessary straitjackets has empowered the
project's suppliers and contractors to propose highly economical
solutions,

with the win-win bonus of enhanced
profitability margins for themselves.

154

The P36 platform shows the shape of things to come

in the unregulated global market economy of the 21st Century.”

155

And now you have seen the final result of
this proud achievement by Petrobras.

QUIZ:

1. How many lives were lost to this cost saving effort and how did
this impact the environment, needlessly?

2. Did the person giving this speech or anyone in upper
management connected with this decision lose their job/bonus?

3. How much did Petrobras really save?

4. Does your company feel the same way about QA? If so, you’d
better know how to swim.

156

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Major General Alan B. Salisbury, USA (Ret)
Center for National Software Studies

4. Mr. John Harauz
 Jonic Systems Engineering, Inc.
 Willowdale, Ont., Canada

5. Dr. Sam Redwine
 James Madison University
 Harrisonburg, VA

6. Dr. Janusz Zalewski
 Florida Gulf Coast University
 Ft. Meyers, FL

7. Mr. Arch McKinlay
 Naval Ordnance Safety and Security Activity
 Indian Head, MD

8. Dr. Jeffrey Voas
 SAIC Inc.
 Arlington, VA

9. Mr. Brian Scannell
 Naval Surface Warfare Center
 Louisville, KY

10. Mr. Paul Dailey
 Naval Surface Warfare Center
 Louisville, KY

11. Dr. Gary Stoneburner
 Johns Hopkins University Applied Physics Laboratory
 Laurel, MD

12. Dr. Sylvain Dahan
 Japan

157

13. Dr. Man-Tak Shing

 Naval Postgraduate School

 Monterey, CA

14. Dr. Mikhail Auguston

 Naval Postgraduate School

 Monterey, CA

15. Major Bradley Warren

Naval Postgraduate School

Monterey, CA

16. Flight Lieutenant Patrick Redmond

 Royal Australian Air Force

17. LTC Thomas Cook

 Naval Postgraduate School

Monterey, CA

18. Mr. Michael Brown

 EG&G Technical Services

 Fresno, CA

19. Dr. Butch Caffall

 NASA IV&V Facility

 Fairmont, WV

20. Dr. Michael Hinchey

 NASA Goddard Space Flight Center

 Greenbelt, MD

21. Dr. Bret Michael
 Naval Postgraduate School

 Monterey, CA

158

	1_Cover_Intro_Summeries_TOC
	Numbered_Pages_V2_F
	2
	3_Selected Issues_AK
	4
	5_mckinlay
	6_redmond
	7
	8_redwine
	9
	10
	11
	12_stoneburner
	13_voas
	14_Distribution_List

