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Using CAP resources we have been able to uncover lattice geometry effects in
the entropic lattice Boltzmann algorithm that had not been expected from lower grid
resolution runs. In the entropic formulation, one is working with a generalized BGK
collision operator that has within it the germs of detailed balance. Thus, the
unconditionally stable algorithm is achieved with a variable transport coefficient, not
unlike Large Eddy Simulations (LES) in CFD. Indeed, we have explored this connection
in some detail but will report those findings elsewhere due to space limitations here.
Another unexpected result unearthed by the CAP runs was the dependence of the ELB on
the Mach number. A low Mach number expansion has to be performed to analytically
evaluate the Lagrange multipliers arising in the extremization of the H-function subject to
local collisional constraints. We have found that the Qi 5-bit model is less sensitive to the
flow Mach number than the Q27-bit model. Another somewhat unexpected finding was
the importance of maintaining the distribution function correlations in the mesoscopic
description. To perform the long-time 1 600- grid runs we needed to perform
continuation runs. In the early stages of CAP we tried to minimize the amount of i/o read-
out/read-in and to reconstruct the relaxation distribution function from its moments rather
than keeping the full correlation information. While this did not affect the energy decay,
there were significant discontinuities introduced into the enstrophy and higher energy
spectral moments.

The parallelization strength of ELB arises from the modeling of the
macroscopic nonlinear derivatives by local moments. Chapman-Enskog asymptotics will
then, on projecting back into physical space, yield these nonlinear derivatives. Indeed,
this will allow ideally parallelized Smagorinsky type LES to be modeled by LB methods
and in LB-MHD algorithms enforce automatically V B = 0 without the recourse to
expensive divergence cleaning algorithms.

The interconnection between quantum algorithms that can run on quantum (and
classical) computers and ELB (that can only run on classical computers) has been
outlined as well as a new morphology of free shear turbulence and the onset of laminar-
to-turbulence transition. The analogy between

Order-disorder phase transition (Lattice) Ising Model
laminar-turbulence fluid transition Entropic Lattice Boltzmaim Model will be

being strongly pursued in future proposals.
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algorithms for the solution of nonlinear physics problems. Because of the extreme
scalability of the algorithms that we have been developing, we were chosen for CAP-
Phase I for the new IBM-P5+ supercomputer (Babbage) at NAVO MSRC. Using the full
2912 processors available, we achieved 6.3 TFlops/s sustained performance - an
excellent performance seeing that the maximum sustained Flop-rate is just over 20
TFlops/s. The scaling achieved by our entropic codes is near perfect for these algorithms
- as seen by the Figure below.
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As a result, we were chosen to participate in CAP-Phase II and presented these results at
the DoD-UGC 2007 meeting in Pittsburgh.

What is very interesting is the analogy between the detailed balance quantum
lattice algorithms and entropic lattice Boltzmann algorithms.

At each space-time grid point (x, t) in lattice algorithms, the excited state of a qubit q)

encodes the probability f of the existence of a mesoparticle moving with discrete lattice

velocity cq = AXq / At. AXq are the lattice vector links, with q = 1,2, .... Q, where Q is

the number of qubits at each spatial node. The particle momentum is determined from a
suitably chosen qubit-qubit interaction Hamiltonian H" while the spatial location arises
from the free-streaming Hamiltonian -ihX eq V. All the particle-particle interactions

q

generated by H' (from 2-body up to Q-body interactions) can be mapped onto a local

collision operator •q (f.... fo) at x. In particular, for type-II quantum algorithms, the



quantum entanglement is localized to those Q-qubits at (x,t) and then this entanglement

is spread throughout the lattice by unitary streaming 3'4:

fq'(Xlt)= fq(Xt) +'q(A .... fQ) , fq(x+Axq,t+At)=fq'(Xt) (1)

Here f is the incoming probability and fq' the outgoing probability. In the classical

limit, there exists a fundamental discrete entropy function" 2'5

H(f,...f,) f hl(If / we) (2)
q=l

where the normalized weights ( Wq = Il are determined self-consistently. The

collision operator i
2

q in Eq. (1) is determined so that one remains on a constant entropy

surface

H(f,'.....f') =H(f,...f) (3)

Eqs. (1)-(3) constitute the basics of the detailed-balance lattice algorithms for fluid
turbulence that are ideal for parallel (both classical and quantum) supercomputers.

In the Q-dimensional velocity space, the relaxation distribution function fqeq is

determined analytically by extremizing the H-function subject to the local collisional

constraints of conservation of probability and probability flux. eqq, considered as a

vector, is the bisector of the difference between the incoming and outgoing kinetic
vectors in the inviscid limit lima / 2r = 2:

f eq _
2 r 01 2,r Ql...E> (4)fq = fqq--2 aO q I fq' = f~qe+ l--a ) q(4

a q

Eliminating -2q and fq'from Eqs. (4) and (1) one obtains the lattice Boltzmann (LB)

equation

fq(X-X+ AXq t+ At) fq(X,t) + -- [•f;q(x,t) - fq(x,t) , q= I... Q (5)

This is basically the entropic LB1"2 with the BGK collisional relaxation parameters

a (x,t) /2z and feq determined from Eqs. (2) and (3). In the Chapman-Enksog limit,

(Ax -- 0, At -- 0) -- and identifying the density and momentum moments Ifq = P
q

XCqfq = p u -- one recovers the quasi-incompressible Navier-Stokes equation with
q

1 4z
effective viscosity: p(x,t) = I (1T -)

molecular viscosity: u0 = 1(2Tr- 1) , > 0.5 (6)molecul6



To avoid discrete lattice geometry effects polluting the turbulence simulations, one is
restricted to certain Q's on a cubic lattice. In particular it can be shown that on a unit
cubic lattice, the lowest order kinetic velocity models are

Q15: rest velocity, speed 1 (6 velocities), speed [3 (8 velocities) - i.e., Q = 15

Q19: rest velocity, speed 1 (6 velocities), speed N§ (12 velocities) - i.e., Q = 19

Q27: rest velocity, speed 1 (6), speed vr (12), and speed V[3 (8) - i.e., Q = 27 (7)
Because detailed balance is in-built into the entropic LB algorithm [see Eq. (3)], the
scheme is unconditionally stable for arbitrary large Reynolds numbers, Re = UoL / 2rJyL0 .

In Table below we show the wallclock time and average performance of the various ELB
models for the full 2912 PEs available for 2000 LB time steps. The Q27 model, based on
the 27 kinetic streaming vectors, is the most memory intensive (about 1 KB/grid point)
and requires a wallclock time which is over 1.5 times that required by the Q15 model
(which requires just 0.5 KB/grid point).

#PEs GRID MODEL WALLCLOCK (s) GFlops/s per PE
2912 ca19503  ELB-Q27 7554.7 2.17
2912 ca19503  ELB-Q19 5 602.7 2.24
2912 ca1950" ELB-Q15 4798.4 2.05

Table 1 : GFIops/s per CPUfor 2912 CPUs for 2000 time steps for the 3 ELB-codes.

For CAP-Phase II we wished to investigate the role of the underlying kinetic lattice
symmetry on Navier-Stokes turbulence, since all three ELB-algorithms recover the
Navier-Stokes equations to leading order in the Chapman-Enskog expansion. This is
particularly important since on small grids (e.g., 5123) and low molecular viscosities

(go = 2 x 10-4) we4 had found very minor differences in the simulation results from the

Q27, Q19 and Q15 models. With 2048 PEs available for 24 hour shifts, the maximal
spatial grid for the Q27 algorithm was 16003. All 3 models were run with the same base

parameters : uo = 0.035, ,0 = 5 x 10-4 on the 16003-grid (i.e., with a base

Re = uoL / 21r,40 = 18,000 and computational resolution/grid spacing Re3/ 4/ L = 1) for a

Kida initial velocity profile6 with delta-function energy spectra.

In Fig. 2 we plot the normalized kinetic energy < u(x,t)[ >/< I u(x,0) 2 >, the

normalized enstrophy < o(x,t)12 > /< <(x,0)1 >, the palinstrophy 2 P(t) =

<fIV x(012 >, where the vorticity co = V x u, and < .. > represent volume average over

the periodic domain. The ELB-dissipation rate E(t) is defined by e(t) = 2iyeff (t) (SoS,.),
where S.. is the usual rate of strain tensor and the effective relaxation rate (to make an

analogy with standard LB algorithms)
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for the initial Kida velocity profile 6 with initial delta function spectra

E,,,,g(kxO) = Eo6(k- 2) ,and Er,,,a(kx,O) = E 1[3(k- 2) + 8(k - 4)] (9)

While the terabytes of data from the early stages (t < 28 K) of the Q27-run are being
retrieved and analyzed, some of the data from the t _> 28 K has been analyzed. The energy

spectra approximately obey a k-51 3 Kolmogorov law, with a slight upturn at the very large
k in Eiog, indicating that the run is slightly unresolved at these scales
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Fig. 3(a) The longitudinal energy spectrum, (b) the transverse energy spectrum for t > 28 K.

The probability distribution functions (pdfs) for the velocity and vorticity components are shown in
Fig. 4. The velocity field is basically Gaussian - but with tails that are substantially higher than a
Guassian. These tails die out with time as seen by the plot of P[vx ] at t = 29K (Fig. 4a) and at t =

41K (Fig. 4b). The pdfs for the other velocity components have very similar behavior. On the
other hand, the vorticity pdf is well fitted by an exponential pdf. This is indicative of intermittency
in the turbulence:
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Fig. 4 The pdffor the velocity component vx at (a) t = 29K, and (b) t = 41K, fitted to Gaussian pdfs. The
pdffor the vorticity component (0x at t = 40K is shown in (c), fitted to an exponential pdf



Turbulence Morphology for Free Shear Turbulence
We have started to examine a somewhat new turbulence morphology of free shear turbulence

and the correlation between the onset of turbulence in a laminar-to-turbulence transition and the
order-disorder phase transition in ferromagnetism. Just as Ising lattice models are fundamental to
understanding critical phenomena, kinetic lattice gas models that we are pursuing could have a
similar impact. We now give some preliminary results on the turbulence morphology from 5123

grid runs. The morphology can be broken down into 3 main stages, Fig. 5. Stage 1 occurs in the

initial time interval 0 < t < 3.2K with the enstrophy Q2(t) increases exponentially, independent of

the viscosity. The enstrophy curve is plotted in Fig. 5 with the integer dots '1'. '2' ... '7' - and
these integers correspond to the isosurfaces of constant vorticity at t = 1 K, t = 2K ... t = 7K in
Fig. 5. The color coding is based on the value of -. Co : grey corresponds to ii -C = -, blue for

.-i = + 1 and red for f. -( = -1. In this initial stage, the isosurfaces of vorticity are stretched

with a sharp rise in dK2 / dt (the sharply rising curve above the enstrophy curve in Stage 1). In
Stage 2, for time 3.2K < t < 9K, shown shaded in Fig. 5, there is large scale anisotropic
turbulence with intermittency. In this shaded region dA / dt becomes jagged and predominantly
is decreasing in large spurts with intermediate avalanches occurring at t = 5.1K, and 6.75K
(vertical red lines in Stage 2 of Fig. 5). Stage 3, for 9K < t < 14K, is the inertial subrange with

eventual exponential decay of the enstrophy (see curve fitted red line that fits Q(t) well for t >

10K). In this Stage 3, we see the onset of homogeneous isotropic small scale turbulence with

energy cascading to small scales leading to the Kolmogorov k-5'3 energy spectrum. The
velocity pdf is Gaussian while the vorticity pdf is exponential (see the inset plots in Fig. 5).
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Concluding Remarks
Using CAP resources we have been able to uncover lattice geometry effects in

the entropic lattice Boltzmann algorithm that had not been expected from lower grid
resolution runs. In the entropic formulation, one is working with a generalized BGK
collision operator that has within it the germs of detailed balance. Thus, the
unconditionally stable algorithm is achieved with a variable transport coefficient, not
unlike Large Eddy Simulations (LES) in CFD. Indeed, we have explored this connection
in some detail but will report those findings elsewhere due to space limitations here.
Another unexpected result unearthed by the CAP runs was the dependence of the ELB on
the Mach number. A low Mach number expansion has to be performed to analytically
evaluate the Lagrange multipliers arising in the extremization of the H-function subject to
local collisional constraints. We have found that the Q 15-bit model is less sensitive to
the flow Mach number than the Q27-bit model. Another somewhat unexpected finding
was the importance of maintaining the distribution function correlations in the
mesoscopic description. To perform the long-time 16003 grid runs we needed to perform
continuation runs. In the early stages of CAP we tried to minimize the amount of i/o
read-out/read-in and to reconstruct the relaxation distribution function from its moments
rather than keeping the full correlation information. While this did not affect the energy
decay, there were significant discontinuities introduced into the enstrophy and higher
energy spectral moments.

The parallelization strength of ELB arises from the modeling of the
macroscopic nonlinear derivatives by local moments. Chapman-Enskog asymptotics will
then, on projecting back into physical space, yield these nonlinear derivatives. Indeed,
this will allow ideally parallelized Smagorinsky type LES to be modeled by LB methods
and in LB-MHD algorithms enforce automatically V . B = 0 without the recourse to
expensive divergence cleaning algorithms.

The interconnection between quantum algorithms that can run on quantum (and
classical) computers and ELB (that can only run on classical computers) has been
outlined as well as a new morphology of free shear turbulence and the onset of laminar-
to-turbulence transition. The analogy between

Order-disorder phase transition <-> (Lattice) Ising Model
laminar-turbulence fluid transition <=* Entropic Lattice Boltzmann Model

will be being strongly pursued in future proposals.
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