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Abstract. The seamless integration of commercial-off-the-shelf (COTS)
components offers many benefits associated with reuse. Even with suc-
cessful composite applications, unexpected interoperability conflicts can
arise when COTS products are upgraded, new components are needed,
and the application requirements change. Recent approaches to integra-
tion follow pattern-based design principles to construct integration ar-
chitecture for the composite application. This integration architecture
provides a design perspective for addressing the problematic interac-
tions among components within the application environment. However,
little attention has been paid to the evolvability of these architectures
and their embedded functionality. In this paper, we discuss the need
for design traceability based on the history of interoperability conflicts
and resolution decisions that comprise the integration architecture. Ad-
ditionally, we advocate that certain functional aspects of a pattern can
be pinpointed to resolve a conflict. Combining these two aspects of inte-
gration architecture design, we illustrate that often evolution is possible
with minimal changes to the integration solution.

1 Introduction

Integration of software components is a well-accepted approach to address the
various issues associated with in-house development of complex systems. How-
ever, it is not always a simple process. Both industry and academia are devel-
oping techniques, methodologies, and products to alleviate the problems sur-
rounding building composite applications. One central point to be considered is
how the inclusion of COTS products impacts interoperability. There is no doubt
that in most cases, COTS products offer well-tested, vendor-supported software
that would be burdensome to build in-house. Though such in-house development
is performed (often because a product won’t integrate properly), it can signifi-
cantly increase development cost, while at the same time decreasing reliability
and support.

There are many reasons why integration is difficult. Most have to do with
the behavioral expectations of the component and its application environment.
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Other reasons include a shortage of tools to aid professionals in an integra-
tion effort. They must often rely on instinct instead of a principled approach
to build composite applications. As in all software development, there may be
disagreement as to what requirements, components, or middleware choices are
malleable. Misjudgment of requirements can lead to unexpected behavior or the
use of unacceptable products.

Middleware products are being heavily marketed as complete solutions to all
integration needs. They can be a perfect fit, integrating components smoothly.
In other cases, however, vendor consultants are needed to train, assist, and/or
configure the solution. Overall, there is still a great deal of guesswork and com-
plexity in implementing middleware as it is usually considered after a failed
integration attempt. Basic principles of requirements engineering and software
design must be diligently followed to achieve seamless integration.

In general, patterns provide an implementation approach to problems in the
form of repeatable solutions. Architectural and design patterns have been de-
fined that underlie middleware frameworks. Some issues need to be addressed
within patterns to facilitate their use for general component integration. Many
viable patterns are not identified as integration patterns. Those that are often
do not detail the interoperability conflicts that they resolve. Patterns also do not
naturally identify closed box functionality, like COTS products, present in the
implementation. Thus, there is a lack of direction in pinpointing patterns that are
descriptive enough to assist in the implementation of a composite application.

Given that integration goes smoothly, evolution can generate additional com-
ponent integration issues, while, at the same time, making others obsolete. These
problems are magnified when a COTS product is part of an integrated applica-
tion. In fact, COTS products are especially susceptible to evolution, including
radical changes, due to the need to attain and keep a broad customer base.

Integration solutions should be altered minimally for the continued reuse
benefits. To do this, it is necessary to know how and why an existing integra-
tion solution is impacted by evolution in order to design it more robustly. This
requires an understanding of why a pattern is use, how it can change and its
effect on integration.

In this paper, we use the history of interoperability conflicts and resolution
decisions that comprise the integration architecture as a basis for understanding
the design. We advocate that certain aspects of a pattern can be pinpointed
to resolve a conflict. Combining these two aspects of integration architecture
design, we illustrate that often evolution is possible with minimal changes to the
integration solution.

2 Background

Maintaining a high-level of abstraction at which to relate a system design re-
mains the basis for describing an architecture for software. Through software
architecture a system’s computational elements, their interactions, and struc-
tural constraints can be expressed at a high, yet meaningful, level of abstraction
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[1]. Conceptual system issues can then be explained, discussed and modeled
without becoming entangled in implementation and deployment details. Char-
acteristics defined with respect to architectural styles include those that describe
the various types of components and connectors, data issues, control issues, and
control/data interaction issues [2,3,4].

Connectors have become increasingly important in software architecture
analysis, forming the basis for component connection [5,6,7,8]. Explicit descrip-
tions of connectors are desirable as these can allow for design choices among
and analysis of existing interaction schemes, along with the specification of new
connectors. This effort can allow designers the flexibility to choose the correct
interoperability schemes in an integrated application.

Architectures and patterns that form middleware frameworks provide guid-
ance to “in-house” integration efforts. Common patterns considered as integra-
tion patterns are the Proxy [10] and Broker that afford clients and servers loca-
tion transparency, plug and play mobility, and portability [10,11]. Recent inte-
gration patterns, including the Wrapper-Façade, Component Configurator, and
the Interceptor, represent repeatable solutions to particular integration prob-
lems [12]. Enterprise Application Integration patterns, such as the Integration
Mediator [13] focus on integrating enterprise application components. These
patterns provide functionality such as interface unification/reusability, location
transparency/negotiation, and decoupling.

The most salient point to be made concerning integration patterns is their
lack of connection between the interoperability problems requiring the use of the
pattern and the reason the pattern resolves those problems. As more patterns are
defined and their complexity increases, at stake becomes the understandability of
the integration pattern and the history of decisions for its use. In short, in their
current state, patterns do not focus on issues of integration solution evolution.

The evolutionary properties of components can be captured using principles
of software architecture. One goal is to find an architecture to which other archi-
tectures can transition easily [1]. Though architecture migration is a plausible
solution, it is not always feasible for all systems, especially COTS products where
many properties are hidden. In a similar vein, researchers examine constraints
on reconfiguring architectures to assess their response to evolution [15]. This il-
lustrates that certain properties of components and connectors lessen the impact
of change [16]. Certain architecture description languages support architecture-
based evolution through the changes in topology [16], optionality [17], and vari-
ability [18].

Analysis methods exist to assess the evolvability and reusability of a compo-
nent architecture. One method employs a framework and a set of architectural
views [19]. The architectural views include information gathered during vari-
ous system lifecycles as well as stakeholder requirements. Our research relies on
static property analysis methods to evaluate characteristics of the architecture
in an effort to identify potential interoperability problems [20,21].
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3 Fundamentals for Understanding Integration Solution
Design

Collidescope is a prototype assessment tool to provide developers with a means
for evaluating integration solution design decisions [22]. The ultimate goal is to
provide the developer with a visible link between interoperability problems, their
causes, and their solutions. Collidescope currently implements the foundational
underpinnings needed to determine potential problematic architecture interac-
tions (PAIs). PAIs are defined as interoperability conflicts that are predicted
through the comparison of relevant architecture interaction characteristics and
require intervention via external services for their resolution [22]. Utilizing broad,
but descriptive, architectural characteristics of the component systems provides
dual benefits. They aid discovery of PAIs and the assessment of inevitable future
conflicts brought on by evolution [23]. In fact, Collidescope does not require all
component characteristics to have values. It can work with only a partial set.
This feature is very important because little information may be known about a
COTS product, especially one with which a developer has had little experience.
Of course, some potential PAIs may be missed.

Figure 1 depicts two linked components, Alpha and Beta, in a composite
application. Control structure, the structure that governs the execution in the
system, is identified for each of the components. Alpha has a concurrent con-
trol structure, while Beta’s is single-threaded. The application has values for
many of the same characteristics as the component with a different granularity.
For instance, the control structure of the application governs how the compo-
nents coordinate their execution. We will return to application characteristics
in Sect. 4.

Fig. 1. Architecture Characteristics with Values for Control Structure
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As a first pass analysis, Collidescope detects thirteen PAIs in one of three
categories. These categories represent distinct issues that arise in component
communication: expectations for data transfer, expectations for control transfer,
and how interaction between components is initialized.

Two types of static analysis are performed [20]. The first is component-
component analysis in which component characteristic values are compared.
For application-component analysis, the application characteristics are com-
pared with each component. Figure 2 displays the potential PAIs found by a
component-component analysis using Alpha and Beta. In addition, we intro-
duce an application, Omega, for application-component analysis. The name is
in bold. The characteristic is in italics followed by a value. The number (1-13)
is the conflict preceded by its category.

When comparing these characteristics it becomes apparent that communi-
cation between concurrent and single-threaded components will be difficult as
single threaded components expect directed control transfer and block upon ini-
tiation. Concurrent components, on the other hand, run despite the execution
state of other participating components.

4 Control Transfer Sequencing multiple control transfers

Single Thread Concurrent

Omega Alpha

Control Structure Control Structure

4 Control Transfer Sequencing multiple control transfers

Hierarchical Concurrent

Omega Alpha

Control StructureControl Topology

1 Control Transfer Restricted points of control transfer

Hierarchical Concurrent

Omega Alpha

Control StructureData Topology

5 Data Transfer Restricted points of data transfer

10 Data Transfer Sequencing multiple data transfers

Concurrent Single Thread

Alpha Beta

Control StructureControl Structure

Fig. 2. Problematic Architecture Interactions

The next step in the assessment is the identification of integration elements
that resolve the PAIs. This completes the design path from an identified problem
to the fundamental solution. We model the basic functionality needed for inte-
gration as three integration elements: translator, controller, and extender [24,25].
These integration elements supplement the traditional architecture connectors.

A translator has some basic properties. It should communicate with other
components independent of their identities. Input must have a uniform structure
that is known by the translator’s domain. Third, conversions must be represented
by a total mathematical relation or composition of relations that maps the input
to the output. Translators are particularly necessary in heterogeneous, COTS-
based integrations, as consistently formatted data is never expected between
vendors.
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Fig. 3. The InfoTrade System Architecture

A controller integration element coordinates and mediates the movement
of information between components using predefined decision-making processes.
The decisions include determining what data to pass, from which component to
accept data, and to which component data should be sent. Multiple decisions can
be made within a single controller. Decisions can be based upon input data, input
components, output components, or a combination of data and components.

An extender integration element adds those features and functionality to an
integration solution to further adapt it to the application environment, embody-
ing those behaviors not performed by a translator or controller (e.g., buffering,
adding call-backs, opening files, and performing security checks). Because of the
diverse behavior of extenders, each distinct action is modeled independently.

The above integration elements may be combined with each other and with
simple connectors (e.g., a UNIX pipe) to form integration architectures as needed
to resolve specific conflicts. An integration architecture, then, is defined to be
the software architecture description of a solution to interoperability problems
between at least two interacting component systems [11,26]. An integration ar-
chitecture forms the foundation of design patterns and off-the-shelf (OTS) mid-
dleware.

The use of static, relevant architectural characteristics, standardized con-
flicts, and simple integration functions to resolve conflicts provides the history
of design decisions. Therefore, when evidence changes, it points directly to the
resulting functionality that is affected.

4 An Evolving Application

In this section, we study the requirements of a composite application called
InfoTrade, a system for automated trading of commodities, like oil and gas.
The drive to develop such an application comes at a time when automated
stock trading is in full swing. Yet, commodities trading is just beginning to
be automated. Many of the needed independent software components (some
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of which are COTS) are in place but only partial automated trading is being
done. Much of the information before and after a trade is entered manually.
Furthermore, because automated trading is limited, there is a mix of old and
new styles of information and flow that must be blended.

The InfoTrade system architecture is shown in Fig. 3. The participating com-
ponents include External Market, Risk, Logistics, and Financial. The External
Market is comprised of a national commodities market information module, a
database to house all of the bid/ask requests put to the market, and a SMTP
for dynamic messaging. Risk uses a history of Bid/Ask requests to assess the
financial exposure of the corporation. Logistics is a database of transportation
(car, boat, plane, etc.) information, including specifications and statistics associ-
ated with transporting commodities. Financial is a database of customer billing
information, as well as, corporate-wide financial information.

InfoTrade integrates COTS components essential to the execution of a com-
modities trade using the Transaction Mediator (Fig. 3) – an implementation
of the Integration Mediator architecture [13]. This solution accommodates the
different component data formats and communication methods. Within the in-
tegrated application, the Transaction Mediator is stateless, needing only the
current Bid/Ask request to perform its mediation. Thus, to make a trade in this
system, the user places a bid, which is routed through the Transaction Mediator.
The Intelligent Router coordinates the direction of the Bid/Ask message. Con-
tent Transformers intercept the message and transform it to a format for their
respective components. Risk analysis is performed only on a weekly basis when
the market is closed and no bids are being placed. The Intelligent Router calls
the External Market to request the current store of Bid/Ask requests, sequenc-
ing any concurrent communications such as a SMTP packet being sent. It then
routes these records to Risk for financial exposure analysis. During communi-
cations to Risk and External Market, a unique Content Transformer translates
incoming/outgoing requests to ensure the request data formats are correct.

With the expansion of e-commerce opportunities for service-oriented corpo-
rations, more companies desire an automated commodities facility with real-time
risk analysis. This institutes a new composite application requirement causing
the application architecture characteristics to evolve.

The real-time requirement places new demands on the Transaction Mediator,
as it must retain the current Bid/Ask request to arbitrate the concurrently exe-
cuting trade and the financial exposure calculation. The question becomes how
can the integration solution now meet this new requirement? One alternative
is to scrap the existing implementation, choosing more dynamic integration ar-
chitectures such as a Broker. Another alternative is to re-write the Transaction
Mediator, perhaps transitioning from its combined Java and JMS implementa-
tion to one utilizing real-time CORBA. Both of these choices go against the
reuse ideals that led to the original integration.

The design decisions supported by our methodology (Sect. 3) provides a
direct link from the application requirements to the integration elements that
make up the integration solution. This fosters evolution by providing the devel-
oper with insight into which parts of the integration solution should be modified
or replaced, as well as insight into where additional pieces of functionality are
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needed. The assessment method does not discount any of the alternatives, but
helps to determine which – a new design, re-implementation, or evolution – is
the best choice

There are many factors that contribute to the formation and, subsequent,
evolution of the InfoTrade integrated application. First, it is important to look
at the components in the current application. As these are COTS systems, lit-
tle is known of their internal functionality. Besides their obviously dissimilar
data formats, only the component-level characteristic control structure can be
discerned. Refer to Alpha and Beta in Fig. 1 as the External Market and Risk
components, respectively.

For InfoTrade to accommodate real-time risk analysis, the application itself
must be characterized differently. Table 1 shows how this change affects how the
application will be newly described. The component values remain the same.

Table 1. Evolving Application Characteristics

Characteristic Original Value Evolved Value

Control Structure Single -Thread Concurrent
Control Topology Hierarchical Arbitrary
Data Topology Hierarchical Arbitrary
Synchronization Synchronous Asynchronous

The way in which changing application characteristics shape the current in-
tegration can be seen in a comparison of these new values to the current control
structure values of the components. Collidescope detects the new PAIs shown in
Fig. 4.

4 Control Transfer Sequencing multiple control transfers

Arbitrary Single Thread

Gamma Beta

Control StructureData Topology

3 Control Transfer Inhibited rendezvous

5 Data Transfer Restricted points of data transfer

Arbitrary Single Thread

Gamma Beta

Control Topology Control Structure

1 Control Transfer Restricted points of control transfer

3 Control Transfer Inhibited rendezvous

Concurrent Concurrent

Gamma Alpha

Control Structure Control Structure

4 Control Transfer Sequencing multiple control transfers

Concurrent Single Thread

Gam m a Beta

Control StructureControl Structure

Fig. 4. The PAIs Resulting from the Evolved Application Characteristics
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The stateless Transaction Mediator (depicted in Fig. 3) as initially imple-
mented only embodies translation and control. In the new application, both are
still needed. However, the Transaction Mediator now must also buffer the data
being processed by Risk and External Market in order to calculate financial ex-
posure while placing a bid. Otherwise, refusal of a trade by Risk will result in an
inhibited rendezvous as that refusal cannot be correlated with the actual correct
request to circumvent the acceptance of the trade by External Market. The PAIs
in Fig. 4 reflect this problem as well as additional conflicts that the Transaction
Mediator currently handles. Figure 5 shows the evolved architecture.

By using this style of analysis, a developer is more likely to ascertain the
distinctive problems that are caused by changing characteristics. Moreover, a
direct and minimal resolution may be achieved.

Real-Time Transaction Mediator

Application Server

Client

Trader

Risk

External MarketBid/Ask

Buffer

LogisticsFinancial

Transaction

Mediator

Fig. 5. The New Architecture of InfoTrade

5 Conclusions

Little attention has been paid to the evolvability of these architectures and
their embedded functionality. In this paper, we show how design choices rely on
the history of interoperability conflicts and resolution decisions that comprise
the integration architecture. Additionally, we advocate that certain functional
aspects of a pattern can be pinpointed to resolve a conflict. Combining these
two facets of integration architecture design, we illustrate that often evolution
is possible with minimal changes to the integration solution.

The approach we advocate has both advantages and limitations. The assess-
ment, though a first-pass, is at a high-level of abstraction, and forms a reliable
history of design information. In turn, the history is easily maintainable. Given
the high-level of abstraction present in the assessment, evolutionary impacts are
relatively easy to determine. However, the abstraction level restricts the depth of
the assessment, as exact implementation details are not provided. Furthermore,
we have not yet proven the analysis is scalable to either applications comprised of
a large number of components or applications with diverse middleware products
in use. We reserve these findings for future work.
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