
 Page 1 of 11

High-Fidelity Modeling of Computer Network Worms
Kalyan S. Perumalla

Srikanth Sundaragopalan
{kalyan,srikanth}@cc.gatech.edu

Technical Report GIT-CERCS-04-23

Center for Experimental Research in Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332-0280
June 22, 2004

Abstract
Abstract modeling, such as using epidemic models, has been the general method of choice for understanding and analyzing the
high-level effects of worms. However, high-fidelity models, such as packet-level models, are indispensable for moving beyond
aggregate effects, to capture finer nuances and complexities associated with known and future worms in realistic network
environments. Here, we first identify the spectrum of available alternatives for worm modeling, and classify them according to
their scalability and fidelity. Among them, we focus on three high-fidelity methods for modeling of worms, and study their
effectiveness with respect to scalability. Employing these methods, we are then able to, respectively, achieve some of the largest
packet-level simulations of worm models to date; implant and attack actual worm monitoring/defense installations inside large
simulated networks; and identify a workaround for real-time requirement that fundamentally constrains worm modeling at the
highest fidelity levels.

1. Introduction
Abstract models such as epidemic models have so far

been the general means of choice for modeling worm
propagation. However, such models are limited with
respect to generality due to their many simplifying
assumptions. They are useful for certain studies, such as
post mortem analysis, but otherwise poor in versatility.
This is especially true in their inability to accommodate
complex scenarios, such as sophisticated worms, elaborate
defense mechanisms, rich network topologies and variety in
background traffic.

An effective alternative is packet-level modeling, which is
capable of capturing many fine details and scenario variants.
However, packet-level simulations have so far been
considered prohibitively expensive computationally. Few
packet-level models have been employed for large-scale
simulation studies of worms. A reason behind the limited
use of packet-level models is that, until recently, it has been
constrained by sequential execution. Lately, with the advent
of effective parallel/distributed processing techniques,
packet-level network simulations are enabling the execution
of very large-scale network models (a few millions of nodes)
at packet-level. These parallel systems support large-scale
configurations of detailed software models of routers and
links of the network, loaded by synthetic traffic introduced
at end-host models. By utilizing such scalable packet-level
simulation environments, it is now possible to effectively
simulate and analyze the propagation (and other) behaviors
associated with worms, under realistic large-scale
phenomena such as network congestion, feedback and rich

topological layouts. Moreover, these packet-level
environments can be incrementally augmented on demand,
with additional models, such as of defense/quarantining
mechanisms at end-hosts and/or gateway/core routers.

By exercising this new level of packet-level fidelity
enabled by the state-of-the-art parallel network simulators,
here we undertake worm modeling at a large-scale, and
explore the current (quantitative) limits of those
environments. The issues, challenges and results in the
development of these large-scale, packet-level worm models
constitute the first component in our contributions.

In our second component, we explore the possibility of
further increasing the fidelity afforded by the packet-level
models, by focusing on substituting parts of the large-scale
network with real operational systems. In particular, we
look at the issue of incorporating live monitoring/defense
systems into a large simulated network. A honeypot system
is immersed in the virtual network, yet it is made oblivious
to the fact that it is operating within a virtual world. We
describe issues and challenges in enabling such a capability,
which we call constructive emulation. As will be described in
greater detail later, this differs from traditional network
emulation systems in a significant way.

Finally, in our third component, we present a novel
architecture, namely, full system virtualization, which is
designed to resolve the scalability problems inherent in
methods in which virtual models interact with real systems.
While almost all high-fidelity systems are limited at one scale
or another by real time execution constraint, this fully
virtualized system is free from the constraint (hence
arbitrarily scalable in theory), albeit at some cost of

mailto:srikanth@cc.gatech.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
22 JUN 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
High-Fidelity Modeling of Computer Network Worms

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Institute of Technology,Center for Experimental Research in
Computer Science,Atlanta,GA,30332-0280

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Abstract modeling, such as using epidemic models, has been the general method of choice for
understanding and analyzing the high-level effects of worms. However, high-fidelity models, such as
packet-level models, are indispensable for moving beyond aggregate effects, to capture finer nuances and
complexities associated with known and future worms in realistic network environments. Here, we first
identify the spectrum of available alternatives for worm modeling, and classify them according to their
scalability and fidelity. Among them, we focus on three high-fidelity methods for modeling of worms, and
study their effectiveness with respect to scalability. Employing these methods, we are then able to,
respectively, achieve some of the largest packet-level simulations of worm models to date; implant and
attack actual worm monitoring/defense installations inside large simulated networks; and identify a
workaround for real-time requirement that fundamentally constrains worm modeling at the highest
fidelity levels.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 Page 2 of 11

degraded computational efficiency.
The rest of the document is organized as follows.

Section 2 presents the spectrum of worm modeling
alternatives and motivates the need for high-fidelity worm
modeling. Issues, challenges and results from large-scale
packet-level worm modeling are described in Section 3.
Constructive emulation and its application to honeypot
emulation are presented in Section 4. The full system
virtualization approach is outlined in Section 5. Finally,
conclusions and future work are presented in Section 6.

2. Modeling Alternatives

Figure 1: Range of alternatives for computer worm modeling.
Scalability data ranges are based on current day capabilities

of testbeds and tools reported in the literature.

Figure 1
The spectrum of alternatives for worm modeling is

shown in . These alternatives roughly mimic the
alternatives for network modeling in general. For example,
hardware testbeds developed for broad network research
can be applied for studying worms as well, since worms
only represent a special case of network applications.

Scalability of a method is defined as a limit on the
number of network nodes modeled by that method.
Network nodes include end-hosts and routers. Fidelity is in
general harder to define, but it is possible to compare two
methods with respect to their relative fidelity. Fidelity could
be the based on the amount of detail accounted for in the
network (e.g., routing, network congestion, etc.), or in end-
hosts (e.g., stack processing, operating system overheads,
application processing artifacts, etc.).

Hardware testbeds have improved in scale with recent
advancements, with network testbeds scaling to hundreds or
more nodes (e.g., EmuLab[1, 2]). However, hardware
testbeds cannot by themselves sustain fidelity with
increasing scale. In fact, hardware testbeds resort to some

form of network simulation underneath to improve fidelity
when virtual configurations exceed physical resources in
size (e.g., to emulate link delays or losses).

The next level of scalability is achieved via network
emulation. Emulation systems for network security analysis
also have scaled in size, with recent emulators capable of
sustaining a few thousand nodes (e.g., NetLab[2] and
ModelNet[3]), and are being used in major network security
studies (e.g., the DETER project[4]). Both hardware
testbeds as well as emulation systems are by definition
executed in real-time.

The next logical alternative is packet-level simulation.
Historically, network simulation experiments have always
been done on small scale and the results of such
experiments have been extrapolated to derive conclusion on
large scale simulations. However, results on small scale are
hard to extrapolate to larger configurations and hence can
be misleading. Large scale network simulations are thus
required for detailed and realistic simulations, where
individual network parameters might produce significant
difference in the behavior of experiments. One of the main
problems in running large scale simulations is the scalability
of the network simulators. Packet-level simulation has seen
great advances, especially due to parallel/distributed
execution capabilities of network simulators (e.g., PDNS
and GTNetS[5]). Scales of up to a few million nodes have
been reported for simulation of large TCP/IP networks[6,
7].

Slower-than
Real-Time

Fully Virtualized

System Hardware
Testbed

F
id

el
it

y

Hybrid simulations, using a combination of fluid and
packet level models have been used scale network
simulations by at least another order of magnitude[8, 9], but
they have been largely constrained in generality (e.g., limited
accounting for feedback effects). Further, they are
restricted to core network (backbone links and routers), and
difficult to extend to worm application traffic at end-hosts.

Use of simplified epidemic models, such as the SIR
model, is quite widespread in the literature (e.g., see [10]).
They are the most scalable as they simply use a system of
(differential) equations, but also exhibit the least fidelity due
to their simplifying assumptions about network and traffic
dynamics. Mixed abstraction simulations have also been
designed that aim to combine the fidelity of packet-level
worm models (in subnets of interest), with the scalability of
aggregate epidemic models[11, 12] (in other uninteresting
portions of the network).

As can be seen, packet-level simulation exhibits the best
tradeoff between scalability and fidelity, and holds potential
to sustain Internet-scale experiments without great loss of
flexibility or accuracy. Complex worms can be easily
modeled in terms of their TCP/IP packet exchange
behavior, and the simulation can be enhanced as needed
if/when new defense mechanisms or new worm types are
explored (e.g., worms based on header spoofing, or
defenses based on packet header analysis[13]). For these

Real-Time
or Faster

Emulation
System

Packet-level Simulation

Mixed Abstraction

Simulation

Epidemic Models

102 103 104 105 106 107 108

Scalability

 Page 3 of 11

reasons, we focus on packet-level models as surrogates for
large-scale networks in worm modeling, as described in
Section 3.

We also explore ways to immerse actual defense
installations into surrogate virtual networks to test such
installations under controlled, repeatable attack scenarios, as
described in Section 4. High-fidelity modeling enables
constructive emulation, which in turn can obviate the
development of models for operational defense/monitoring
installations such as honeypots[14] or other early warning
apparatus[14].

At sufficiently large levels of scale (e.g., hundreds of
thousands of nodes or larger), most high-fidelity systems
break down, because of their inability to keep up with real-
time for their “real-system” components. For such large
scales, we propose a fully virtualized system to overcome their
inherent real-time constraint, without sacrificing fidelity.
The fully virtualized system has the potential for achieving
the highest fidelity among all approaches, even higher than
that of a general hardware testbed. Theoretically it is not
limited in scalability, but it is only limited practically by the
amount of computation power available. This approach is
described in greater detail in Section 5.

3. Packet-level Modeling & Execution

3.1. Simulators
To develop packet-level worm models, we chose two

parallel network simulators that represent the state-of-the-
art: PDNS and GTNetS. The Parallel and Distributed
Network Simulator (PDNS) is an extension of the popular
ns-2 simulator. The Georgia Tech Network Simulator
(GTNetS) is a C++-based simulator developed at Georgia
Tech. Both these packages were downloaded from their
publicly available websites[15, 16]. We chose these
packages due to our familiarity with them, although one
could choose another similar parallel simulator such as
DaSSF[17].

The simulators allow an arbitrary subject network
configuration to be specified (topology, normal user traffic,
etc.) and initialized accordingly. Normal user traffic can be
realized as end-applications with either customized packet-
level behavior or aggregate statistical traffic. Malware
(worms) can be injected, activated, and/or initialized into
this network. Complex scripts of attack/detection/defense
scenarios can then be enacted. Several different types of
outputs can be obtained from the simulated scenarios,
including the obvious ones such as the number of infected
hosts at any given instant. Since the test-bed is a time-
controlled software-based simulation, certain network
measurements and statistics can be obtained from the
scenario execution, which are difficult or impossible to
obtain in a hardware test-bed (e.g., sub-millisecond
granularity of network event statistics, or an accurate global

snapshot of entire network). Both simulators boast
demonstrated scalability, simulating several million TCP/IP
packet transfers in a single wall-clock second.

We have developed worm models in both PDNS and
GTNetS. Both implementations realize the generalized
worm model framework described next.

3.2. Models
As a generalization of several worm types, we chose the

model depicted in . This model contains the
following components:

Figure 2

Figure 2: Models of vulnerable worm nodes, agents and their
interaction sequence.

• Worm Node: This represents an end-host in the
network which can potentially act as a node spreading the
worm.

• Vulnerable Server: This is an application class which
represents the flawed network service that is penetrated
by the worms to infect the host machine.

• Shooting Agents: Once a worm node is compromised,
Shooting Agents take over the task of propagating the
worm from the current host to other vulnerable hosts.

• Backdoor Agents: These agents model the backdoor
entry which is opened by the initial infection on a
vulnerable host. The backdoor is used to transfer larger
worm payload, if any.
We start the simulation by marking one node as the

infected node. A shooting agent is instantiated and its starts
generating random scans for spreading the infection.

Infected Node Worm Node
 Vulnerable

Server
Shooting
Agent

1

23

5 4Backdoor
Agent

Shooting
Agent

 As illustrated in Figure 2, the following steps are
involved during the worm propagation.
1. The shooting agent finds a random host and makes a

connection to that host. A vulnerable server on the
worm node responds to this connection request and the
shooting agent transfers a payload to it. This typically
models a worm’s initial step (e.g., malicious URL sent by
a worm to a web server).

2. The infection triggers a backdoor port to be opened on
the worm node.

 Page 4 of 11

3. The worm payload is (attempted to be) transferred to
the worm node by initiating a connection to the opened
backdoor port.

4. Once the worm payload is transferred the worm
application instantiates a shooting agent on the worm
node. This node is now infected and follows the
preceding steps to propagate itself.

5. The original worm is finished with this infection
attempt, and hence goes back to repeating the preceding
steps all over again. An adjustable delay is modeled
between infections at this step.

Model Parameters

Almost every aspect of the preceding model is
customizable via a corresponding parameter. The following
are examples of such parameters:

• Scan Rate: The scan rate in worm propagation could
affect the overall pattern of the infection. This parameter
is configurable in our system. Multi-threaded worms are
modeled by instantiating on one shooting agent per
thread on each node.

• Topology: The worm model we have developed is
completely independent of the underlying network
topology. One could deploy our model in any kind of
network topology by just instantiating the vulnerable
nodes and attaching the corresponding agents to those
nodes.

• Background traffic: During the worm propagation we
inject normal traffic going through the network. The
amount and pattern of background traffic could affect
the propagation of a worm. In our model, one could
introduce background traffic in addition to the normal
worm traffic.

3.3. Unused IP Addresses
In the Internet, not all IP addresses allocated to an

organization are used. “Holes” are typically present in the
address space covered by each organization. Packets
destined to these unused addresses usually travel all the way
to the closest router of the unused address and then get
dropped at that router. Such packet drops corresponding to
unused IP addresses become the common case during
worm propagation, and hence become especially important
to model accurately.

When worm models generate random IP addresses
during their scans, packets destined to unused IP addresses
should not be dropped at the source, because doing so will
not correctly model congestion effects that would otherwise
be created by such packets further down in the network.

Unfortunately, most network simulators drop the
packets at the source if their destination is not present in the
simulated network topology (some simulators are even
worse in that they terminate with a runtime error). We were

faced with this challenge, namely, to find a way to model
this correctly.

Maximal Prefix Match Scheme

One way to deal with this is to modify the simulator to
route the packet as far as it can, similar to the Internet’s
operation. While an entirely accurate approach would be to
model the Border Gateway Protocol (BGP), modeling BGP
in fully glory is an extremely complex endeavor. A
compromise is to perform “maximal prefix match” on
addresses – route a packet towards the address that
maximally matches the prefix of the packet’s destination
address[18]. A drawback of this approach is that it requires
complex overhaul of the simulator. Another disadvantage is
that the prefix match operation potentially needs to be
performed at every hop along the packet path, incurring
substantial runtime overhead.

Blackhole Scheme

We developed a novel approach that is an efficient
alternative to the preceding approach and avoids both
aforementioned drawbacks. At every intermediate router, a
“blackhole” end-host is instantiated and attached to that
router. The blackhole is assigned a unique unused IP
address that is reachable via that router. A table is
maintained that maps the subnets reachable via a router to
its corresponding blackhole router. Instantiated (used) IP
addresses simply map to themselves. When a source
generates a packet, it first checks the table to determine the
mapped address for the destination address. For used IP
addresses, the destination remains unchanged since they
map to themselves in the mapping table. For unused IP
addresses, the destination is replaced by the blackhole
address whose subnet maximally matches the original
destination address. The blackhole end-hosts are
configured to simply drop all packets destined to them.

This scheme ensures three things: (1) it forwards packets
to the blackhole closest to the unused IP address (2)
performs the maximal prefix mapping exactly once per
packet (3) the lookup into the mapping table is optimized to
reduce the table size by eliminating the identity mapping for
used IP addresses if the addresses happen to be contiguous.
While this scheme pushes the modeling burden to the user,
this was not a major problem for us, since the random IP
address generation is quite isolated and easy to modify in
our worm models.

3.4. Other Issues

Pre-allocation

One of the first things which could be done to improve
runtime performance is to minimize dynamic memory
allocation. To this effect one could pre-allocate buffers
during initialization and reuse them at runtime. Pre-
allocation was done at all possible place to reduce runtime
overhead. This includes pre-allocation of sufficient number

 Page 5 of 11

3.5. Performance Study of TCP agents for modeling incoming and outgoing
connections made by the worms. Without pre-allocation,
this overhead could dominate the simulation runtime,
because worm models make heavy use of such agents for
their infections.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50
Seconds

N
o.

 o
f i

nf
ec

te
d

no
de

s

Connection Modeling Overhead

Based on our past experience with PDNS and GTNetS,
we chose PDNS as our initial modeling platform. Generally
speaking, PDNS exhibits higher simulation speed than
GTNetS (as measured by net TCP/IP packet transmissions
simulated per wall-clock second), and hence we chose
PDNS to develop our worm models. However, for
simulating TCP connections, it turns out that the per-
connection overhead is quite high in PDNS. The overhead
is so high that the net number of worm infections simulated
per wall-clock second is no where close to its benchmarked
packet transmission rate. PDNS uses OTcl and C++ and
switches between the two during execution. This switching
introduces significant overhead in large-scale simulations.
For instance, we found that simulation of a new TCP
connection establishment can take at least a millisecond.

Figure 3: Initial propagation phases of a Code Red II-like
worm in a 1,280,000-node network. Interestingly, exponential

increase in infections is observed to start in as early as 35
seconds since initial infection. Experiment uses GTNetS at

packet-level on a 128-CPU Linux cluster.
The summary of our finding with respect to TCP

connection simulation is that while PDNS is fast for
“elephant” connections (long-lived/high-throughput),
GTNetS fared better for “mice” connections (short-lived).
Since the payload associated with worms typically tends to
be small, GTNetS delivered better performance in
simulating the worm models.

TCP Worm Models

Using TCP-based worm models mimicking the Code
Red II worm, we ran experiments to test the feasibility of
large-scale high-fidelity worm modeling. For our TCP
worm experiments, we simulated a clique network of core
routers, mapped one per CPU. A two-level tree hangs off
each core router, with parameterized fan-out at each level.
A 128,000 node network is instantiated on 128 CPUs, with
a tree of 10x100 on each CPU. Similarly, a 64,000 node
network uses 64 CPUs, with 10x100 nodes mapped per
CPU. The 1.28 million node network contains a 100x100-
node tree per CPU. Figure 3 plots the propagation of the
TCP-based worm. This execution is among the largest TCP
worm models simulated to date at packet-level.

TCP vs. UDP Worm Models

We have modeled both TCP and UDP versions of the
worms and have found a significant difference
implementation complexity between the two. TCP worms
are more complex to model, due to bookkeeping
complexities in connection establishment, and the need for
creating a new TCP agent object for every new random
connection. Such complexity is absent in UDP models, as it
is sufficient to simply send a packet with the worm payload
and easily mark the destination node as infected when the
packet is received (e.g., for modeling SQL Slammer).

0

20

40

60

80

0 10 20 30 40 50 60 70
ThousandsNo. of infected nodes

Se
co

nd
s

128,000 nodes 64,000 nodes

Figure 4: Propagation of a Code Red II-like worm in
relatively smaller networks, modeled at packet-level in

GTNetS.

 Page 6 of 11

Figure 4 plots the propagation of the same TCP-based
worm on networks of 64,000 and 128,000 nodes.

UDP Worm Models

Figure 5: Propagation of Slammer-like UDP worm through
307,200 nodes of a complex network topology. Entire

simulation is performed at packet-level in PDNS on a 128-
CPU Linux cluster.

Using packet-level models of a UDP worm similar to the
SQL Slammer, we have simulated the worm propagation on
a large-scale network containing over 300,000 end-hosts.
Results from a sample worm propagation experiment on the
300,000 node network are shown in Figure 5. The network
topology consists of several “university campus-like”
subnets connected via a network of gateway routers. Each
campus subnet consists of roughly 30 routers and 508 end-
hosts.

mmer, we have simulated the worm propagation on
a large-scale network containing over 300,000 end-hosts.
Results from a sample worm propagation experiment on the
300,000 node network are shown in Figure 5. The network
topology consists of several “university campus-like”
subnets connected via a network of gateway routers. Each
campus subnet consists of roughly 30 routers and 508 end-
hosts.

This experiment represents results from among the
largest packet-level worm simulations to date that we are
aware of. It is presented to illustrate the scale at which all
packet-level models can be simulated using current day’s
computation platforms and simulation tools. It captures all
network details, such as queuing and congestion at routers,
etc. The worm is seen to follow the expected well-behaved
trajectory of an epidemic model, more importantly.
However, more importantly, the additional power of
packet-level model lies in its ability to easily accommodate
complex variations to the worm behavior (e.g., intelligent hit
list scanning), and dynamics of network topologies,
background traffic intensities, etc.

This experiment represents results from among the
largest packet-level worm simulations to date that we are
aware of. It is presented to illustrate the scale at which all
packet-level models can be simulated using current day’s
computation platforms and simulation tools. It captures all
network details, such as queuing and congestion at routers,
etc. The worm is seen to follow the expected well-behaved
trajectory of an epidemic model, more importantly.
However, more importantly, the additional power of
packet-level model lies in its ability to easily accommodate
complex variations to the worm behavior (e.g., intelligent hit
list scanning), and dynamics of network topologies,
background traffic intensities, etc.

4. Constructive Emulation 4. Constructive Emulation
Armed with the ability to perform high-fidelity

simulation of worm models, we were ready to face our next
challenge. In our projects related to modeling and
simulation of military networks, we were tasked to explore
exercising actual network security installations against
simulated scenarios of large-scale worm attacks. Testing the
security systems against simulated attacks provides the
benefits of flexible, controllable and repeatable experiments,
in contrast to using live testbeds. The initial candidate

installation to be tested was that of a honeypot system.
While at first it appeared to be a straightforward application
of traditional network emulation techniques, closer analysis
revealed that such a scenario represented a higher-fidelity
experiment that requires a new emulation capability, as
described next.

Armed with the ability to perform high-fidelity
simulation of worm models, we were ready to face our next
challenge. In our projects related to modeling and
simulation of military networks, we were tasked to explore
exercising actual network security installations against
simulated scenarios of large-scale worm attacks. Testing the
security systems against simulated attacks provides the
benefits of flexible, controllable and repeatable experiments,
in contrast to using live testbeds. The initial candidate

installation to be tested was that of a honeypot system.
While at first it appeared to be a straightforward application
of traditional network emulation techniques, closer analysis
revealed that such a scenario represented a higher-fidelity
experiment that requires a new emulation capability, as
described next.

4.1. Emulation Architectures 4.1. Emulation Architectures

Virtual Real Real

E.g. Honeypot Router/link models End-hosts
 installation in PDNS (worms)

Figure 6: Traditional emulation architecture.

Figure 6

Figure 6: Traditional emulation architecture.

Figure 6

Virtual Real Virtual

E.g. Honeypot Router/link models End-host models
 installation in PDNS (worms) in PDNS

Figure 7: Constructive emulation architecture. Figure 7: Constructive emulation architecture.

A drawback of existing emulation systems is that they
require end-hosts to be realized as real end-host systems.
The traditional emulation architecture is shown in .
For example, worm infections will need to originate and
terminate in real hosts. However, this makes it difficult to
experiment with very large number of vulnerable end-hosts
in worm propagation experiments.

A drawback of existing emulation systems is that they
require end-hosts to be realized as real end-host systems.
The traditional emulation architecture is shown in .
For example, worm infections will need to originate and
terminate in real hosts. However, this makes it difficult to
experiment with very large number of vulnerable end-hosts
in worm propagation experiments.

A majority of existing emulation systems, including the
most scalable ones, such as Netbed[2] of University of Utah
and MAYA[19] of UCLA, allow the simulated portion of
the emulation to only act as a transport plane, without
network endpoints. The LARIAT[3] system of MIT
supports virtual end-host applications, but is limited by very
low-fidelity network models. In our worm emulation
scenarios (e.g., honeypot emulation, as described next),
however, we need simulated vulnerable/infected nodes to
interact directly as endpoints of worm infections with actual
honeypot installations. The virtual portion of the emulation
system is thus required to maintain all the state associated
with every interaction endpoint (actual or potential) that can
interact with real endpoint system. For example, full TCP
state machine needs to be modeled and maintained at each
simulated end point. Traditional emulation systems are
neither equipped to maintain such state, nor possess the
necessary translation mechanisms to bridge the
semantic/representational gap between modeled endpoints
and real systems. In traditional emulation systems, this
would require thousands of real hosts to be configured and
integrated into the emulation setup, to be able to
experiment with large-scale worm propagation at high-
fidelity. Instead, it is desirable to have only a small subset of
end-hosts realized as real hosts, while the rest of the end-
hosts is instantiated virtually inside simulation, as depicted
in Figure 7. For example, it is sufficient to realize the

A majority of existing emulation systems, including the
most scalable ones, such as Netbed[2] of University of Utah
and MAYA[19] of UCLA, allow the simulated portion of
the emulation to only act as a transport plane, without
network endpoints. The LARIAT[3] system of MIT
supports virtual end-host applications, but is limited by very
low-fidelity network models. In our worm emulation
scenarios (e.g., honeypot emulation, as described next),
however, we need simulated vulnerable/infected nodes to
interact directly as endpoints of worm infections with actual
honeypot installations. The virtual portion of the emulation
system is thus required to maintain all the state associated
with every interaction endpoint (actual or potential) that can
interact with real endpoint system. For example, full TCP
state machine needs to be modeled and maintained at each
simulated end point. Traditional emulation systems are
neither equipped to maintain such state, nor possess the
necessary translation mechanisms to bridge the
semantic/representational gap between modeled endpoints
and real systems. In traditional emulation systems, this
would require thousands of real hosts to be configured and
integrated into the emulation setup, to be able to
experiment with large-scale worm propagation at high-
fidelity. Instead, it is desirable to have only a small subset of
end-hosts realized as real hosts, while the rest of the end-
hosts is instantiated virtually inside simulation, as depicted
in Figure 7. For example, it is sufficient to realize the

 Page 7 of 11

honeypot installation(s) on real hosts (say, configured and
run on Linux), while the worms themselves originate from
end-hosts simulated inside the network simulator. This
makes it possible to achieve scalable execution of worm
propagation (inside the simulator), while still retaining the
ability to test honeypot installations against large-scale worm
attacks.

Our constructive emulation approach solves precisely this
problem, by its ability to interface real operational systems
directly with simulated end-host applications. The objective
of this approach is a setup which essentially bridges
simulated network and real network in a “peer-to-peer”
fashion. This setup can then be used to plug-in real
network applications into simulated networks to measure
effectiveness and other metrics. To demonstrate the
capability of our emulation interface, we have integrated
honeyd, which is a popular real honeypot implementation,
with our worm simulation models. Honeyd[20, 21] is a low-
interaction, but highly scalable, honeypot framework.
Other equivalent systems are also well-documented in the
network security literature (e.g., see the Honeynet
project[22]).

4.2. Example: Honeypot Emulation
Honeypots are introduced into the simulation using the

following scheme. The entire network of interest is
configured with end-hosts and routers, as usual, in the
simulator. However, at the end-hosts where honeypots
need to be inserted, those end-hosts are marked as
“emulated nodes”. In these nodes, special “Emulated TCP”
agents are used instead of the usual simulation models of
TCP. The emulated TCP agents do not have any TCP end-
point behavior by themselves, but simply act as conduits to
the TCP stacks inside the actual honeypots. For example,
when a SYN packet event is received at an emulated node,
the emulated TCP agent performs some simple conversions
to format it into a bonafide network packet, and forwards it
to the honeypot (via a proxy server, as will be described
later). The emulated TCP agent maintains minimal state
required to translate from simulation events to network
packets and vice versa (e.g., translating sequence numbers).
Each virtual IP address hosted by the honeypot is
represented and associated with a corresponding emulated
node in the simulator.

Since we use parallel/distributed execution for
simulating the network, the network is partitioned among
multiple processors. We need to distinguish among the
processors based on whether they hold any emulated nodes
or not. If a processor does not house any emulated nodes,
it executes normally in an as-fast-as-possible (AFAP) mode
as though only simulation is performed (i.e., oblivious to
emulation). Processors that house emulated nodes need to
perform special initialization, to set up conduits to the
honeypot installation. This is done via simple socket-based
communication between the emulator processor and its

honeypot endpoints. Additionally, the simulation loop is
modified to accept incoming packets and emit outgoing
packets, and to pace the simulation execution with real-time.

PDNS- AFAP
Packet capture
with iptables Worm

Node
Models

n n

n n

n n

PDNS- Real TCP
sockets

Proxy

Emulator
Emulated
Nodes honeyd

PDNS- Real

Emulator Network
Interface-2

Network
Interface-1

Emulated
Nodes

PDNS- AFAP

Worm
Node
Models

n n

Real
installation

n n
Traffic
Conversion n n

Public Network Private Network

Figure 8: Constructive emulation setup of the Honeyd
honeypot with parallel simulation of worm models in PDNS.

Figure 8

The entire honeypot emulation setup essentially
comprises of a public network in which the network
simulator runs, and a private network which represents the
protected sub-domain of the honeypot (see). An
emulator “proxy server” bridges these networks.

In our PDNS execution, two types of PDNS instances
run in the public network: AFAP and Real. The PDNS-Real
instances instantiate an emulator object which registers itself
with the proxy server. During registration, the emulator
object sends the instance ID and the IP address range it
covers. Using this information the proxy maintains a
connection table to route traffic to/from simulated from/to
the honeypot. When instantiating the emulator object, the
user specifies the range of IP addresses this PDNS instance
will cover in the entire network. This information is used
by the emulator to register itself with the proxy server. A
TCP connection is established between the emulator and
the proxy during the registration process and is held open
throughout the simulation to exchange packets with the
proxy server.

Experimental Hardware Setup

Figure 9: Hardware hosting platform for constructive
emulation: user installation (honeyd) is connected over a
wide area connection to a compute cluster that executes
worm models in PDNS. The user installation of network

defense could be a single end-host or an entire subnet.

Figure 9 shows the hardware setup for honeypot
emulation. The machine running the proxy server is

 Page 8 of 11

equipped with two network interface card to bridge the
public and the private network. A DHCP daemon is started
on one of the network cards, which will act as a gateway for
honeyd running on the private network. Since honeyd
simulates virtual IP addresses, a route entry is added to
forward packets destined to the virtual IP addresses on to
this network card. To avoid the runtime overhead of an
ARP lookup at the proxy server for honeyd’s virtual IP
addresses, we hardcode the mapping of the virtual IP
addresses to honeyd’s MAC address in the proxy’s ARP table.

The proxy server listens for packets from both sides of
the

4.3. Emulation Issues
ting a constructive

em

Traffic Conversion

nce numbers for TCP connections
alw

hecksums are not modeled
in

 such conversions need to be performed on a
pe

Real-time pacing

r, packet events are processed by
de

emulation shares this real time aspect with

tra

gain related to parallel execution.
A

 of these schemes here, in interest of
sp

4.4. Sample Execution
 laptops (an IBM

Pe

Figure 10: Tracking infections with honeypot emulation.

a
sam

nce numbers for TCP connections
alw

hecksums are not modeled
in

 such conversions need to be performed on a
pe

Real-time pacing

r, packet events are processed by
de

emulation shares this real time aspect with

tra

gain related to parallel execution.
A

 of these schemes here, in interest of
sp

4.4. Sample Execution
 laptops (an IBM

Pe

Figure 10: Tracking infections with honeypot emulation.

a
sam

ditional emulation. However, a nuance to be considered
is related to the fact that the simulator is a
parallel/distributed simulator. To maximize runtime
performance, we implemented a scheme by which the
AFAP instances are never constrained by real-time, but only
the instances containing emulated nodes are paced with
real-time. This helps one to intelligently balance the
simulation load across processors, so that most of the
simulated network is simulated in AFAP mode, while only
the few processors containing emulated nodes are
constrained by real-time.

Another sticky issue is a

ditional emulation. However, a nuance to be considered
is related to the fact that the simulator is a
parallel/distributed simulator. To maximize runtime
performance, we implemented a scheme by which the
AFAP instances are never constrained by real-time, but only
the instances containing emulated nodes are paced with
real-time. This helps one to intelligently balance the
simulation load across processors, so that most of the
simulated network is simulated in AFAP mode, while only
the few processors containing emulated nodes are
constrained by real-time.

Another sticky issue is a network (PDNS and honeyd). It uses a set of iptables[23]
rules to capture packets from honeyd and encapsulate them
to insert into PDNS, and uses raw sockets to emit
forwarded packets onto the honeyd side.

factor called lookahead [24] is crucial for efficient parallel
execution of the simulators. We expand this notion by
introducing an additional type of lookahead. The two kinds
of lookahead are: simulation lookahead and emulation
lookahead. The former is the lookahead we need to
perform parallel network simulation. The latter is the
lookahead between the real network and the processors
with emulated nodes.

We omit the details

factor called lookahead [24] is crucial for efficient parallel
execution of the simulators. We expand this notion by
introducing an additional type of lookahead. The two kinds
of lookahead are: simulation lookahead and emulation
lookahead. The former is the lookahead we need to
perform parallel network simulation. The latter is the
lookahead between the real network and the processors
with emulated nodes.

We omit the details

Several issues arose in implemen
ulation architecture. Some of these issues are discussed

next.

ace. Both schemes are essential to ensuring maximal
parallelism in the entire system.

ace. Both schemes are essential to ensuring maximal
parallelism in the entire system. In PDNS, seque, seque

ays start at a fixed value (zero). But, in real TCP
implementations, such as used in the honeypot, TCP
packets start at randomly generated sequence numbers. The
sequence numbers need to be dynamically translated to
match the receiver’s view, to prevent incorrect packet drops
or packet buffering. We have solved this problem by
bridging the gap with a conversion module inside the
emulated TCP agents in PDNS.

Similarly, both TCP and IP c

ays start at a fixed value (zero). But, in real TCP
implementations, such as used in the honeypot, TCP
packets start at randomly generated sequence numbers. The
sequence numbers need to be dynamically translated to
match the receiver’s view, to prevent incorrect packet drops
or packet buffering. We have solved this problem by
bridging the gap with a conversion module inside the
emulated TCP agents in PDNS.

Similarly, both TCP and IP c

In an experimental setup, we used twoIn an experimental setup, we used two
ntium-4 ThinkPad, and an IBM Pentium-III ThinkPad),

running the proxy server and honeyd respectively. The Code
Red II worm model previously described was used to attack
a network in which honeyd was implanted into a 2-CPU
PDNS execution. As expected, honeyd received and logged
incoming TCP malicious connections. As we did not have
any other traffic destined to the honeypot, every incoming
TCP connection at honeyd constituted a worm
scan/infection attempt. We used honeyd’s virtual subsystem
feature to add our own application to log the number of
infections. The total number of infections in the rest of the
(simulated) network was also logged in the PDNS simulator.

ntium-4 ThinkPad, and an IBM Pentium-III ThinkPad),
running the proxy server and honeyd respectively. The Code
Red II worm model previously described was used to attack
a network in which honeyd was implanted into a 2-CPU
PDNS execution. As expected, honeyd received and logged
incoming TCP malicious connections. As we did not have
any other traffic destined to the honeypot, every incoming
TCP connection at honeyd constituted a worm
scan/infection attempt. We used honeyd’s virtual subsystem
feature to add our own application to log the number of
infections. The total number of infections in the rest of the
(simulated) network was also logged in the PDNS simulator.

PDNS, but are required for real packets. Again, we
resolved this by generating (stripping) checksums just
before (after) packet emission (reception) in the emulated
TCP agent.

Note that

PDNS, but are required for real packets. Again, we
resolved this by generating (stripping) checksums just
before (after) packet emission (reception) in the emulated
TCP agent.

Note that
r-connection basis, and hence state needs to be

maintained for each connection (e.g., starting sequence
numbers). The emulated TCP agents are natural holding
points for such state.

r-connection basis, and hence state needs to be
maintained for each connection (e.g., starting sequence
numbers). The emulated TCP agents are natural holding
points for such state.

 a. Infections in honeypot b. Infections in entire network

In a network simulatoIn a network simulato
queueing the next earliest event and advancing to its

timestamp. Thus, the simulator finishes processing all
events in an as-fast-as-possible fashion. But when
interfaced with a real network, packet arrivals are dynamic.
Packets can arrive at unpredictable times from the real
network. This prevents the simulator from running as fast
as possible, and instead mandates real time pacing. Real
time pacing was hence added into the main event processing
loop of PDNS.

Constructive

queueing the next earliest event and advancing to its
timestamp. Thus, the simulator finishes processing all
events in an as-fast-as-possible fashion. But when
interfaced with a real network, packet arrivals are dynamic.
Packets can arrive at unpredictable times from the real
network. This prevents the simulator from running as fast
as possible, and instead mandates real time pacing. Real
time pacing was hence added into the main event processing
loop of PDNS.

Constructive

Figure 10 a & b show the propagation of the worm in
ple 200-n

Figure 10 a & b show the propagation of the worm in
ple 200-node network (simulated on 2 CPUs) and the

number of infection attempts logged by honeyd. As can be
expected, the number of infections in the honeypot roughly
tracks the total infections in the entire network, accurately
reflecting the fact that uniformly random addresses are

ode network (simulated on 2 CPUs) and the
number of infection attempts logged by honeyd. As can be
expected, the number of infections in the honeypot roughly
tracks the total infections in the entire network, accurately
reflecting the fact that uniformly random addresses are

 Page 9 of 11

generated by our worm model. In larger experiments, we
are able to run the honeypot with networks containing tens
of thousands of nodes (by running the simulation on a
suitably larger number of CPUs).

We note that while honeypot-based tracking is not novel,
the

5. Full System Virtualization
ccounting for

ma

 generally do not
mo

5.1. Virtualization Technology
ing a software

sys

5.2. High-Fidelity Models & Virtualization

vir

leaves two issues to resolve:
co

5.3. Related Work
ts are in fact moving in the

dir

 ability to plug-in actual honeypot installations into large
virtual network has not been realized before.

Packet-level modeling goes a long way in a
ny network dynamics and application characteristics that

are hard to accommodate in aggregate methods like
epidemic modeling. Emulations (traditional and
constructive) help enhance the fidelity of packet-level
models to even higher levels by incorporating actual systems
into portions of simulated scenarios. However, packet-level
simulations are limited in fidelity by the amount of detail
incorporated into their models. Emulations are limited in
scalability due to the imperative for real-time execution to
keep up with their real-system components. For scenarios
demanding even higher levels of fidelity at large scale,
alternative methods need to be adopted.

For example, packet-level simulations
del operating system effects such as process scheduling

delays. Other details in worm behavior, such as root
exploits, are extremely hard to model at fine level of detail.
Nevertheless, researchers would greatly benefit from the
possibility of capturing full system effects at large-scale.
Execution at that combination of fidelity and scale cannot
be met by existing packet-level or emulation methods. Also,
modeling at that level of detail entails prohibitively
expensive model development efforts, which can approach
the effort of building the real systems themselves. In fact, it
is precisely this observation (of the models having to
asymptotically approach the real systems themselves) which
leads to our next modeling alternative, namely, fully
virtualized system.

Virtualization is an approach to enabl
tem designed for one platform to execute on a different

platform. For example, while the Linux operating system is
originally designed to execute directly on native hardware,
virtualization technology can enable the same operating
system to execute on top of another “host” operating
system. The host system provides a virtual platform layer to
make the hosted system oblivious to the changed
environment. Virtualization technology is recently gaining
significant attention, with many systems being virtualized.
For example, it is now possible to boot up multiple
Windows operating systems as mere processes hosted by
another Windows operating system instance. Similar
capabilities exist for Linux and other systems as well. With
optimizations, virtualized systems are achieving acceptable

performance.

In the context of high-fidelity computer worm modeling,
tualization technology can be applied to circumvent the

traditional conflict between scalability and fidelity. Imagine
an internet that entirely executes not by real-time clocks, but
on virtual (simulation) clocks. Such a network not only
retains the highest fidelity level, but is delinked from real-
time completely. This can be achieved as follows. Network
links and routers are modeled using traditional packet-level
(parallel/distributed) network simulators. End-hosts are
modeled as real systems themselves, with full blown
operating system, file systems, etc. However, unlike
emulation systems that have end-hosts running on real
hardware, the end-hosts are executed in virtualized
environments. Since the end-hosts are now under the
control of a host, they are not free-running anymore, and
hence can be controlled at will. Since the network is
executed as a (packet-level) simulation, its execution is also
already controllable.

This approach
mmunication and timing. The first, namely, network

communication, is easily patched between the network
simulator and the virtualized end-hosts by converting packet
exchanges into simulation time-stamped events. Events
encapsulate actual network packets. The second issue,
namely timing, is more complex. To be able to fully
virtualize the entire set of network-and-endhosts, it is
necessary to synchronize their execution according to
simulation time. Without proper synchronization, we are
faced again with the original real-time execution constraint
of emulation systems. Instead, time advances are carefully
controlled by simulation clock. When a virtual operating
system instance queries for hardware clock value, the host
operating system is made to supply it the simulation clock
value, rather than real-time clock value. Elapsed time is
estimated using similar techniques (e.g., Direct
Execution[25]). The simulation clock is synchronized
across parallel network simulator and virtual system hosts
using standard parallel/distributed discrete event simulation
techniques. The net effect of these arrangements is that all
components of the entire system are lifted away from real-
time and placed on a controllable virtual timeline.

Recent emulation effor
ection of virtualization. Netbed/EmuLab[2] has recently

added some support for virtual nodes[26] to multiplex more
than one end-host or router on the same physical resource.
Our work differs from virtual nodes of Netbed in that we
are interested in virtualizing the entire system, including the
end-hosts and routers. This involves re-mapping real-time
of the end-hosts (virtualized end-hosts) to simulation time

 Page 10 of 11

that is synchronized with the network (routers). In existing
emulation/live methods, end-hosts are paced by real-time,
whether they are multiplexed or not. Due to this
requirement and other reasons, existing methods are
typically difficult to scale to more than a few hundreds of
end-hosts.

5.4. Implementation Systems
of virtualization

alt

n incur significant
me

6. Conclusions and Future Work
 done at

eit

em

hose
em

Acknowledgements
orted in part by DARPA

co

References
ocum, K. Walsh, P. Mahadevan, D. Kostic, J.

[2] uruprasad, M.
d

[3]

[4] "Cyber Defense Technology Experimental

As indicated earlier, there is a range
ernatives that are becoming available for production use,

and once can now choose the level of virtualization
(processor, operating system, sandbox/jail, etc.). User
Mode Linux is a popular virtual system for hosting multiple
Linux instances as processes. Revirt is an optimized Linux
virtualization system with very low overhead. SIMICS is a
full system simulator that provides virtual processors over
which unmodified operating systems can be booted.
VMWare provides virtualization for multiple operating
systems. Any of these platforms could be employed to
achieve full system virtualization. When they are integrated
with parallel packet-level simulators, they enable
unprecedented levels of fidelity combined with arbitrary
scalability for computer worm modeling.

It is true that the virtualized systems ca
mory and runtime overheads relative to native systems.

However, when absolute scalability and high-fidelity are
essential, such a fully virtualized system represents the only
choice available.

Current worm & network security modeling are
her low fidelity or a low scale. Few are capable of

simulating the effects of worms on networks of complex
topologies at sufficient detail to capture effects such as
congestion. Recent advances in packet-level network
simulations have enabled the possibility of modeling worms
at increased fidelity. We have demonstrated this aspect by
developing packet-level worm models, and performing
some of the largest packet-level simulations of worm
propagation to date. Using these models, we are
investigating the validation of results from epidemic models,
especially for pathological Malware such as Warhol worms.

We have also created a unique ability, using constructive
ulation, to interface simulated nodes with real nodes, to

integrate actual defense installations into large-scale parallel
network simulations. As an application of this approach,
we are able to efficiently integrate and test actual honeypot
installations into large-scale packet-level simulation of worm
propagation. We are exploring using this system to test
defenses such as automated patching of infected hosts.

For the highest levels of modeling fidelity, such as t
ploying full-fledged OS functionality on end-hosts, we

propose an approach using a fully virtualized system. In
this direction, we are exploring the integration of User

Mode Linux to run entire Linux operating systems in large-
scale worm experiments.

This work has been supp
ntract N66001-00-1-8934. We would like to thank Dr.

Richard Fujimoto for supporting this work, and to Ram
Kumar Gandhapuneni for initiating the million-node TCP
scenario execution.

[1] A. Vahdat, K. Y
Chase, and D. Becker, "Scalability and Accuracy in a Large-
Scale Network Emulator," presented at Operating System
Design and Implementation (OSDI), 2002.
B. White, J. Lepreau, L. Stoller, R. Ricci, S. G
Newbold, M. Hibler, C. Barb, and A. Joglekar, "An Integrate
Experimental Environment for Distributed Systems and
Networks," presented at Fifth Symposium on Operating
Systems Design and Implementation, Boston, MA, 2002.
R. Durst, T. Champion, B. Witten, E. Miller, and L.
Spagnuolo, "Testing and evaluating computer intrusion
detection systems," in Communications of the ACM, vol. 42,
1999, pp. 53-61.
DETER-Project,
Research (DETER) Network", Last accessed 2004/05/31,
http://www.isi.edu/deter/.

[5] . Fujimoto, A. Park, K. S.
buted

[6] . F. Riley,

[7] Wu, M. Ammar,

2003.
[8]

ted

[9] Stepped Hybrid

[10] er, "How to Own the
y

[11] nd D. Nicol, "A

S),

[12] ol, M. Liljenstam, and J. Liu, "Multiscale Modeling and

on
e

G. F. Riley, M. Ammar, R. M
Perumalla, and D. Xu, "A Federated Approach to Distri
Network Simulation," ACM Transactions on Modeling and
Computer Simulation, vol. 14, pp. 116-148, 2004.
K. S. Perumalla, A. Park, R. M. Fujimoto, and G
"Scalable RTI-based Parallel Simulation of Networks,"
presented at Workshop on Parallel and Distributed
Simulation, San Diego, 2003.
R. M. Fujimoto, K. S. Perumalla, A. Park, H.
and G. F. Riley, "Large-Scale Network Simulation -- How
Big? How Fast?," presented at IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of
Computer Telecommunication Systems (MASCOTS),
C. Kiddle, R. Simmonds, C. Williamson, and B. Unger,
"Hybrid Packet/Fluid Flow Network Simulation," presen
at IEEE/ACM Workshop on Parallel and Distributed
Simulation (PADS), San Diego, CA, 2003.
Y. Guo, W. Gong, and D. Towsley, "Time-
Simulation for Large Scale Networks," presented at
INFOCOM, Tel Aviv, Israel, 2000.
S. Staniford, V. Paxson, and N. Weav
Internet in Your Spare Time," presented at USENIX Securit
Symposium, San Francisco, CA, 2002.
M. Liljenstam, Y. Yuan, B. J. Premore, a
Mixed Abstraction Level Simulation Model of Large-scale
Internet Worm Infestations," presented at International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOT
2002.
D. Nic
Simulation of Worm Effects on the Internet Routing
Infrastructure," presented at International Conference
Modeling Techniques and Tools for Computer Performanc

http://www.isi.edu/deter/

 Page 11 of 11

[13]
esented

[14] ing

[15] etwork Simulator

s/MANIACS/GTN

Evaluation (Performance TOOLS), Urbana, IL, 2003.
A. Hussain, J. Heidemann, and C. Papadopoulos, "A
framework for classifying denial of service attacks," pr
at Applications, technologies, architectures, and protocols for
computer communications, Karlsruhe, Germany, 2003.
C. C. Zou, L. Gao, W. Gong, and D. Towsley, "Monitor
and Early Warning for Internet Worms," presented at ACM
Conference on Computer and Communication Security
(CCS), Washington, DC, 2003.
G. F. Riley, "The Georgia Tech N
(GTNetS)", Last accessed 2004/05/31,
http://www.ece.gatech.edu/research/lab
etS/.
G. F[16] y, "PDNS - Parallel/Distributed NS", Last accessed

c.gatech.edu/computing/compass/pdns/

. Rile
2004/05/31,
http://www.c .

[17]

ssf/

D. Nicol and J. Liu, "Dartmouth Scalable Simulation
Framework (DaSSF)", Last accessed 2004/05/31,
http://www.cs.dartmouth.edu/~jasonliu/projects/ .

[18]

[19] R. Bagrodia, "MAYA:
 world,"

[20] al Honeypot Framework," presented at

[21]

Monirul Islam and George F. Riley, Personal
Communication.
J. Zhou, Z. Ji, M. Takai, and
Integrating hybrid network modeling to the physical
ACM Transactions on Modeling and Computer Simulation, vol. 14,
pp. 149-169, 2004.
N. Provos, "A Virtu
USENIX Security Symposium, San Diego, CA, 2004.
N. Provos, "Developments of the Honeyd Virtual
Honeypot", Last accessed 2004/05/31,
http://www.honeyd.org.

[22] ts, Intrusion Detection, Incident Honeypots.Net, "Honeypo
Response", Last accessed 2004/05/31,
http://www.honeypots.net.

[23] ling, NAT and Packet-Mangling R. Russell, "Netfilter: Firewal
for Linux 2.4", Last accessed 2002/09/20, www.netfilter.org.
R. M. Fujimoto, "Parallel Discrete Event S[24]

[25] lelized

[26] Hibler, and J. Lepreau, "Scaling

imulation,"
Communications of the ACM, vol. 33, pp. 30-53, 1990.
P. Dickens, P. Heidelberger, and D. M. Nicol, "Paral
Direct Execution Simulation of Message-Passing Programs,"
IEEE Transactions on Parallel and Distributed Systems, vol. 7, pp.
1090-1105, 1996.
S. Guruprasad, L. Stoller, M.
Network Emulation with Multiplexed Virtual Resources,"
presented at SIGCOMM 2003 (Poster Abstracts), 2003.

http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/
http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/
http://www.cc.gatech.edu/computing/compass/pdns/
http://www.cs.dartmouth.edu/~jasonliu/projects/ssf/
http://www.honeyd.org/
http://www.honeypots.net/
http://www.netfilter.org/

	Abstract
	Introduction
	Modeling Alternatives
	Packet-level Modeling & Execution
	Simulators
	Models
	Model Parameters

	Unused IP Addresses
	Maximal Prefix Match Scheme
	Blackhole Scheme

	Other Issues
	Pre-allocation
	Connection Modeling Overhead
	TCP vs. UDP Worm Models

	Performance Study
	TCP Worm Models
	UDP Worm Models
	�

	Constructive Emulation
	Emulation Architectures
	Example: Honeypot Emulation
	Experimental Hardware Setup

	Emulation Issues
	Traffic Conversion
	Real-time pacing

	Sample Execution

	Full System Virtualization
	Virtualization Technology
	High-Fidelity Models & Virtualization
	Related Work
	Implementation Systems

	Conclusions and Future Work
	Acknowledgements
	References
	Abstract
	Introduction
	Modeling Alternatives
	Packet-level Modeling & Execution
	Simulators
	Models
	Model Parameters

	Unused IP Addresses
	Maximal Prefix Match Scheme
	Blackhole Scheme

	Other Issues
	Pre-allocation
	Connection Modeling Overhead
	TCP vs. UDP Worm Models

	Performance Study
	TCP Worm Models
	UDP Worm Models
	�

	Constructive Emulation
	Emulation Architectures
	Example: Honeypot Emulation
	Experimental Hardware Setup

	Emulation Issues
	Traffic Conversion
	Real-time pacing

	Sample Execution

	Full System Virtualization
	Virtualization Technology
	High-Fidelity Models & Virtualization
	Related Work
	Implementation Systems

	Conclusions and Future Work
	Acknowledgements
	References

