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1.0 Introduction

Over the past decade, research in programming systems to support scalable parallel computation

has sought ways to provide an efficient machine-independent programming model. Initial efforts

concentrated on automatic detection of parallelism using extensions to compiler technology

developed for automatic vectorization. Many advanced techniques, including interprocedural

compilation, were tried. However, after over a half-decade of research, most investigators were

ready to admit that fully automatic techniques would be insufficient by themselves to support gen-

eral parallel programming, even in the limited domain of scientific computation. In other words,

in an effective parallel programming system, the programmer would have to provide additional

information to help the system parallelize applications. This realization led the research commu-

nity to consider extensions to existing programming languages, such as Fortran and C, that could

be used to help specify parallelism.

An important strategy for exploiting scalable parallelism is the use ofdata parallelism, in which

the problem domain is subdivided into regions and each region is mapped onto a different proces-

sor. For example, if we wish to initialize the values in an array of 1000 elements on a parallel

machine with 10 processors, we might map a 100-element section of the array to each processor

and perform the initializations concurrently, speeding up the computation by a factor of 10. Data

parallelism isscalable because we can use an array of 100 processors to initialize an array of
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10,000 elements in approximately the same running time. In other words, we can increase the

number of processors and the amount of data proportionately and expect the running time to stay

roughly the same.

These factors have led to a widespread interest indata-parallel languages such as Fortran D,

High Performance Fortran (HPF), and DataParallel C as a means of writing portable parallel soft-

ware. In these languages, there is typically a mechanism for specifying the mapping of data ele-

ments to processors along with some way of specifying aggregate operations that can be

performed on the array of processors in parallel. The compiler technology required to support a

data-parallel language efficiently on a parallel machine is very sophisticated [15,16], so it is not

surprising that most of the research to date has been focused on high-performance compilers

[5,20,29,30,36].

Once a good compiler for a data-parallel language is available, another problem arises. Because

data-parallel compilers perform aggressive program transformations, including some that affect

more than one procedure, the relationship between the source program and the object program

may be difficult for programmers to understand. To help the programmer make good design deci-

sions, the programming system should include mechanisms that explain the behavior of object

code in terms of the source program from which it was compiled. For sequential programs, the

standardsymbolic debugger, supporting single-step execution of the program source rather than

the object program, provides such a facility. A more recent example is theinteractive vectorizer,

which provides the programmer with an indication of which statements in the program can be

executed on the vector unit, along with explanations of why some statements fail to vectorize.

Tools like these have proved essential for the use of conventional supercomputers and they have

set a minimum standard for all scientific programming systems.

Because data-parallel computation is more complex than simple vector computation, even more

sophisticated tools will be needed to help programmers understand the behavior of object pro-

grams compiled from data-parallel languages. The goal of this paper is to convey an understand-

ing of the tools and strategies that will be needed to adequately support efficient, machine-

independent data-parallel programming. To achieve our goal, we will examine the requirements

for such tools and describe promising implementation strategies for meeting these requirements.
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The remainder of this article is organized as follows.Section2.0 introduces data-parallel lan-

guages and further motivates the special support they need. Section3.0 gives a user-level view of

a data-parallel programming environment, while Sections4.0 through 7.0 describe several of its

components. Finally, Section8.0 gives our conclusions.

2.0 Data-Parallel Languages

Acceptance of current parallel machines has been hindered by their lack of software, a situation

that was exacerbated by the lack of a portable programming model. In the past, machines were

delivered with variants of Fortran and C extended to reflect the underlying hardware. For exam-

ple, distributed-memory machines required the use of machine-specific message-passing libraries,

while shared-memory machines required the use of parallel loops and dynamic tasks. Because

these languages reflected the underlying hardware so closely, they tended to reduce portability.

The current trend in language support is toward languages and compilers that supportmachine-

independent parallel programming—that, for a given algorithm, can produce code that performs

as well on each target machine as the best version of the same algorithm hand-coded in the tar-

get’s standard machine-dependent programming interface. In other words, the algorithm should

perform well if it is well-suited to the target architecture and should run as well as possible on an

architecture for which it is ill-suited.

Data-parallel languages are one currently popular approach to supporting machine-independent

programming for data-parallel problems, in which operations are applied to every element of a

data domain and parallelism is achieved by assigning each processor to a piece of the whole

domain. Fox [12] has reported that data parallelism is the most common form of parallelism in

scientific calculations because it permits larger problems to be solved by increasing the number of

processors. Moreover, several research projects [5,16,20,29,30,36] have shown how these pro-

grams can be efficiently compiled for a variety of parallel machines.

Data-parallel languages directly reflect the data-parallel paradigm. In this paper, we will use High

Performance Fortran as our principal example. HPF expresses data-parallel operations using For-

tran 90’s array operations, including element-wise arithmetic operations on arrays, elemental

intrinsic functions, and data reduction operations. The HPFFORALL statement extends array

assignments to allow new array shapes and somewhat more general expressions. Such a repertoire

of abstract parallel constructs is typical in data-parallel languages. Of course, HPF also includes
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the standard Fortran sequential statements such asDO loops; we believe that high-quality compil-

ers will detect parallelism in these constructs as well. Perhaps most importantly, HPF provides a

rich set of data alignment and distribution options allowing array dimensions to be mapped inde-

pendently in regular patterns. The compiler uses these annotations to partition data and computa-

tion among physical processors. The data mapping defined by the combination of alignment and

distribution can have a substantial impact on the performance of the program. For a more detailed

description of HPF, we refer the reader to Koelbel et al. [19]; we trust that the short examples in

this article will be self-explanatory.

Notably absent from the above description are the detailed, machine-dependent synchronization

operations such as message passing and semaphores common to task-parallel languages. An HPF

compiler must generate these low-level operations in the object code, just as a scalar compiler

must efficiently use registers. Moreover, it is extremely important that the compiler optimize the

low-level operations if the compiled program is to be efficient. We demonstrate this in Figure1

and Figure2. Other papers in this special issue describe the necessary compiler optimizations in

more detail.

Consider the simplified line relaxation program in Figure 1. The algorithm consists of two phases,

each of which performs an ordered sequence of vector operations. As the figure suggests, the

operations in one dimension are serialized, while operations in the other dimension are conceptu-

ally parallel. (Small squares represent array elements; dark squares are elements that receive new

values and must be updated in the order shown by arrows.) This suggests that any implementation

will suffer from some serialization. As Figure 2 shows, the compiled code can reduce this serial-

ization on a two-processor message-passing system by using pipelining in the second phase.

(Again, dark squares represent assignments to array elements; white squares are message-passing

FIGURE 1. Line Relaxation in HPF

REAL A(6,6)
!HPF$ DISTRIBUTE A(*,BLOCK)
DO I = 2, 5
A(I,:) = A(I-1,:) + A(I+1,:)

END DO
DO J = 2, 5
A(:,J) = A(:,J-1) + A(:,J+1)

END DO

Phase 1 (I) Phase 2 (J)
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operations.) In effect, the compiler breaks the vector operations into segments, allowing computa-

tion to start on the second processor before the first completes its task. This transformation allows

the phase to execute partially in parallel, at the cost of increased code complexity.

This example suggests several challenges for a data-parallel programming environment:

• Can programmers debug their programs when the actual order of execution is changed by the
compiler?

• Can programmers predict and tune the performance of their codes when a complex compiler
performs extensive transformations?

• Can the environment assist programmers in choosing good mappings for their data structures?

Addressing these concerns requires that the programming environment’s tools know about the

compiler’s actions and have access to all of its information. The next section describes a system

FIGURE 2. Translated Line Relaxation, pipelined execution

REAL A(6, 0:4)
DO I = 2, 5
DO K = 1, 3
A(I,K) = A(I-1,K)+ A(I+1,K)

END DO
END DO
IF (MY_NODE > 0) SEND A(1:6, 1)
IF (MY_NODE < 1) RECV A(1:6, 4)
LB_1 = Lower bound of J loop on MY_NODE
UB_1 = Upper bound of J loop on MY_NODE
DO K = 1, 6
IF (MY_NODE > 0) RECV A(K, 0)
DO J = LB_1, UB_1
A(K,J) = A(K,J-1)+ A(K,J+1)

END DO
IF (MY_NODE < 1) SEND A(K, 3)

END DO

Phase 1 (I) Phase 2 (J)

Proc 1

Proc 0

Time



April 22, 1994

Requirements for Data-Parallel Programming Environments 6 of 23

architecture to achieve this, while Sections 4.0 through 7.0 describe individual tools in more

detail.

3.0 A User ’s View of the Environment

Figure3 shows how a programmer might use a data-parallel programming environment to build a

correct and efficient HPF program through a converging series of edit-compile-test cycles. To

identify program errors, the programmer would compile the program and invoke the debugger.

The debugger would use both the executable code and records of the compiler transformations to

interpret machine-level operations in terms of the data-parallel source program. After correcting

the program, the programmer would attempt to tune it using performance information collected

statically at compile time and dynamically at run time. Tuning might require changing the algo-

rithm to a more parallel one, which would then probably require further debugging. Alternatively,

performance information might indicate the programmer’s choice of data mappings to be inappro-

priate, in which case the data mapping assistant could be invoked to suggest improvements. The

code would be considered ready for production use only when the programmer was satisfied with

its correctness and efficiency.

FIGURE 3. Developing a parallel program

Data-Parallel
Algorithm

Improve
Data

Mapping

Data-Parallel
Compile

Executable
Code

Analysis
Results

Debug

Performance
Tune

Parallel
Program

Language
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Figure4 presents a schematic of a data-parallel programming environment designed to support

debugging, performance analysis and visualization, and data mapping selection in terms of

source-level programming language concepts. The focus of the environment is a program analysis

infrastructure that computes and stores analysis results, applies and logs program transformations,

and generates parallel code. Other data-parallel tools will rely on this infrastructure. A standard

user interface will provide intuitive access to the entire tool set.

The design of the D System, a suite of integrated tools under construction at Rice University,

closely resembles the figure. As Fortran D is a predecessor of HPF, we believe that most, if not

all, of the features of the D System will carry over to environments for HPF and other data-paral-

lel languages.

The program analysis infrastructure of the D System acts as a demand-driven Fortran D compiler

and as a repository for information computed by other tools in the environment. Any tool that

requires access to information about a program, such as the bidirectional mapping information

between high-level source code and low-level executable code, will “ask” the infrastructure for

the information. Tools will also store information they collect in the infrastructure for access by

other tools.

The D System data-parallel debugger (described in Section4.0) will provide the functionality of a

sequential source-level debugger at the level of the data-parallel source program. Since compiler

transformations change the order of operations in the program, the debugger will make use of

FIGURE 4. High-level environment overview

User Interface

Debugger
Static

Analyzer

Data
Mapping
Assistant

Program Analysis Infrastructure

Performance
Dynamic

Analyzer
Performance
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transformation records provided by the program analysis infrastructure to describe program state

and to explain program behavior. Performance analysis tools (described in Section5.0 and

Section6.0) will help identify bottlenecks in the program, and may suggest solutions in some

cases. Information provided by the program analysis infrastructure will be used to explain why

particular transformations were (or were not) performed. A data mapping assistant (described in

Section7.0) will suggest data mappings for a program. The data mapping assistant may be

thought of as high-level performance tuning tool, or as a tool to convert older codes to data-paral-

lel form. In either case, rational suggestions can only be made using program analysis information

placed in the infrastructure, gathered either statically by the compiler or dynamically by the per-

formance tool.

The primary user interface to tools in the D System is the D Editor, a structured editor for Fortran.

The D Editor is able to display information generated by the program analysis infrastructure or

gathered by system tools. This information is displayed as either textual or graphical annotations

associated with the data-parallel source code. Some examples of these annotations are discussed

in Section5.0. For some tools, the editor interface is optional; in those cases, we also provide

stand-alone programs that can be invoked from the command line.

4.0 Debugging

A major advantage of the data-parallel programming paradigm is that details of communication

and synchronization are handled by the compiler rather than the programmer. For example, the

semantics of an HPF array assignment are specified by the language definition; compilers for dif-

ferent target machines must ensure that this definition is faithfully implemented regardless of the

machine model or data mapping in effect. Most research to date on debugging parallel programs

has focused on developing strategies to replay executions of parallel programs [4,21] and to pin-

point causes of non-deterministic behavior caused by improper use of synchronization primitives

[8,23,26,31]. While these classes of problems are largely avoided by using a data-parallel lan-

guage, there are still significant challenges for debugging data-parallel programs. These include

verifying the correctness of programs on large data sets, exploring the intermediate execution

states of radically-transformed programs, and verifying programmer assertions exploited by a

data-parallel compiler.
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A challenging problem facing developers of data-parallel programs is identifying when computed

values in large data sets are incorrect and pinpointing the computational errors that caused them.

Visualization techniques can be invaluable for discovering errors in large data sets. For example,

Thinking Machines’ Prism debugger [32] provides a rich set of facilities for supporting data visu-

alization. Once a programmer has identified an incorrect data value in a program execution, a

debugger must permit the programmer to isolate the fault in the program, typically by supporting

the traversal and inspection (at the source level) of intermediate states in the program’s execution.

Debuggers for data-parallel languages should strive to maximize source-level transparency —

where possible, programmers should be unaware that the execution order of their programs may

differ substantially from the execution order specified by their data-parallel source. For debug-

ging optimized sequential code, there is a considerable body of work that addresses the issue of

transparently supporting queries about variable values in the presence of optimizations such as

common sub-expression elimination and register allocation [7,14]. In the presence of optimizing

transformations, full transparency can be achieved by keeping multiple copies of each array data

element [27]. For programs with large data sets, the space required for this approach will be com-

pletely unacceptable.

When a loop nest in a data-parallel program is partitioned for parallel execution, full transparency

is feasible only in a limited set of circumstances. If each processor traverses its portion of the data

domain in an order consistent with the order in the original program, then full transparency is pos-

sible without additional copies of data elements. If the actual computations respect the original

program order within a loop nest, then the debugger can arrange to halt the computation at any

intermediate state in the original loop nest computation through judicious setting of conditional

breakpoints in the transformed code for each of the processors. In other cases, full transparency

without copies is impossible. The traditional approach of not performing transformations that

inhibit transparency may remove most or all of the parallelism from a program, which could make

the debugging process painfully slow.

However, programmers may be willing to trade some loss of debugging transparency in return for

the high performance that parallel execution of an aggressively restructured program can offer.

For example, the Convex CXdb debugger pursues an approach in which the debugger interface

helps programmers understand the effects of program transformations instead of striving for

transparency [4]. The challenge for debugger design is to find an acceptable balance that offers
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transparency when possible, but provides programmers with enough information to understand

the execution state of the transformed program when transparency is impossible. For example,

although it may not be possible to provide full transparency everywhere, clean points in the exe-

cution may exist between loop nests where full transparency is possible.

In the D System debugger, we intend to provide programmers with mechanisms to advance an

execution in terms of abstract events that will facilitate navigation of clean points. Another inter-

esting idea that we will investigate is to try to wean programmers from expecting iterations in a

loop nest to be executed in the standard sequential order. Suppose that, instead of setting uncondi-

tional breakpoints in the code and stepping through them the proper number of times until an iter-

ation of interest is reached, programmers specify a set of data breakpoints that halt execution

when particular variables are read or written or a set of conditional breakpoints that halt execution

in particular loop iterations. Then programmers should be much less sensitive to changes in itera-

tion execution order.

We are also considering providing the notion of a data-parallel array step as a primitive for the D

Debugger. If we view the underlying machine as a multidimensional SIMD processor, then an

array step is the computation that will be done in a single step on such a machine. This directly

reflects such HPF statements as array assignments andFORALL loops. In compilers that detect

implicit parallelism, however, the implications may not be as intuitive; for example, a singleDO

loop may correspond to many array operations. One possibility is to highlight loops involved in

array steps; another is to display equivalent Fortran 90 code with explicit array steps. However

the array step is displayed to the programmer, a second level of interpretation will also be neces-

sary to translate low-level operations in terms of array steps. This could be quite complex. For

instance, consider the example in Figure2, where pipelining optimizations were applied to divide

array assignments into smaller operations to improve performance. Presenting debugging infor-

mation transparently to the programmer is nontrivial.

Another challenge for data-parallel debuggers is assertion checking. In previous compilers, asser-

tions (known as compiler directives) demanded that the compiler perform certain actions, such as

executing a loop in parallel. HPF introduces theINDEPENDENT directive which asserts that itera-

tions of a particular loop do not interfere with each other. Although this information implies the

loop can be run in parallel, it also means that the loop can be executed in vector mode or in sev-

eral other ways; the compiler is free to use this information as it sees fit. Because the information
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may be used indirectly, a false assertion can cause unexpected and unexplained behavior, includ-

ing non-determinacy or incorrect results. Such false statements are illegal in HPF, but program-

mers may accidentally make them. HPF debuggers will need to provide means to check such

assertions. Checking assertions can be as simple as testing the value of a scalar or as complex as

checking for data races that can occur in a loop parallelized on the basis of a falseINDEPENDENT

assertion.

It is clear that many issues remain unresolved for developing effective source-level debugging

tools to work with restructuring compilers for data-parallel languages. Coordinating debuggers

and data-parallel compilers to support efficient assertion checking, and exploring strategies for

providing useful source-level debugging capabilities in the absence of full transparency will

require considerable research and experimentation.

5.0 Static Performance Analysis

Many aspects of a data-parallel program’s performance are implicit. For example, the quantity

and frequency of interprocessor communication are implied by the data mappings, the program’s

data access patterns, and the compilation strategy. Therefore, it is important that the programming

environment provide bothqualitative andquantitative performance information to the program-

mer. Qualitative information might include indications that certain data references cause interpro-

cessor communication, whereas quantitative information might include estimates of the amount

of data transferred or the total time required for data movement. This information can naturally be

provided as program annotations to the source program, viewed through a graphical user interface

or a listing file such as those generated by vectorizing compilers. For example, the D System uses

the D Editor to interactively provide qualitative annotations about data mapping, parallelism, and

communication. Eventually, static performance estimates will be presented using the same inter-

face. In this section, we discuss the types of static performance information that can be provided

to the programmer, using the D Editor and the Vienna Fortran Parameter-based Performance Pre-

diction Tool (PPPT) [10] to illustrate the main points. In the next section, we will discuss dynamic

performance analysis.

Compile-time analysis can provide qualitative information about the three major factors affecting

program performance on distributed-memory machines: data mapping, parallelism, and commu-

nication. In each case, the information can be provided at one or more levels: individual variable
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references, statements, loops, procedures, and the entire program. The system design of Figure4

makes this information available to the static performance tool via the shared infrastructure.

Information about data mapping is fundamental to understanding the parallelism and communica-

tion characteristics of a program because the mapping typically determines the strategy for parti-

tioning the computation (for example, using the “owner computes” rule), as well as the set of

references that are non-local and thus require communication. The important features of data

mapping, all of which can be derived directly from the results of compiler analysis, include the

decomposition of each distributed array, the relative alignments of different arrays, and the set of

variables that are replicated across the processors. For example, the D Editor uses static analysis

to present data mapping information for all the arrays accessed in the currently selected loop.

The second important class of information is parallelism. By using compile-time analysis to cal-

culate cross-processor data dependences and thus determine when synchronization is necessary,

the tool can label individual portions of the computation (typically, individual loops) as sequen-

tial, pipelined, or fully parallel. In the first two cases, the tool can also extract and display infor-

mation about the specific data dependences that inhibit full parallelism. Together, these

annotations tell the programmer how much parallelism can be expected in individual phases of

the program, and provide the compiler’s reasoning. For example, the D Editor requests the neces-

sary information via the compiler interface and “labels” the code by coloring sequential sections

red, pipelined sections yellow, and fully parallel sections green. A separate dependence pane dis-

plays the data dependences carried on the selected loop. Cross-processor dependences identify

values that are defined and used on different processors; they are also marked red, yellow, or

green depending on their effect on parallelism. Dependences selected in the dependence pane are

displayed as colored arrows in the source pane.

Finally, the tool can provide qualitative information on the communication that will be generated

by the compiler. For a selected code section, the compiler interface can be used to obtain the type,

size, and location of the inter-processor data movement in the program. Furthermore, in lan-

guages where all communication is inserted by the compiler, all this information can be presented

in terms of high-level communication patterns such as array shifts, pipelines, broadcasts, reduc-

tions, etc., rather than in terms of the individual messages that implement these communication

patterns. Although communication is not explicit in the programming model of such a language,

the need for non-local data accesses is implied by the program’s data mapping information and
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data access patterns. We believe that feedback at the level of these communication patterns is the

appropriate mechanism for exposing the performance impact of these non-local data access. Thus,

information about communication obtained via the compiler interface is presented in just this

manner by the D Editor.

In addition to qualitative program annotations, compiler analysis could also be exploited to pro-

vide quantitative performance feedback. In general, static performance prediction assumes

parameters such as loop iteration counts and branch frequencies are known or can be approxi-

mated, and provides static performance metrics specific to the input data set corresponding to

these parameters. Some important metrics such as communication volume and frequency can then

be computed accurately. Other metrics that can be estimated using approximate models of pro-

gram and system behavior include the parallelism achievable in various code sections, the extent

of load-imbalance, communication latency and overhead for specific communication operations.

These metrics can be computed and presented selectively for individual code sections, as well as

the entire program. By combining these detailed measures appropriately, overall execution time,

speedup and efficiency of the program can be presented as well. Vienna Fortran’s PPPT computes

and presents a comprehensive set of such metrics to the programmer and also makes these metrics

available to the compiler for automatic selection of optimization strategies.

The chief difficulty in deriving static performance estimates lies in obtaining key profiling param-

eters such as loop iteration counts, branch frequencies, and cache miss rates for the parallelized

program. To compensate for this difficulty, PPPT relies on a single sequential profiling run to

measure the necessary profiling parameters, but estimates cache miss rates from a simplified data

access model. Because of the manner in which these miss rates are derived, they can only be used

to rank kernels with respect to cache performance [10]. An alternative approach for static perfor-

mance prediction taken by Balasundaram et al. [2] is to usetraining sets to estimate both the over-

all computation time of code sections as well as the communication costs of specific

communication patterns.

Collectively, static quantitative and qualitative information allow the programmer to make appro-

priate algorithmic choices during code development. Static qualitative information can augment

programmers’ intuition about the performance impact of source program constructs. It can also

help the programmer understand quantitative performance information either from static esti-
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mates or dynamic measurements. Static quantitative performance estimates can also be used to

perform some tuning before executing the program, and can be used by other automatic tools.

6.0 Dynamic Performance Analysis

Because the major motivation for using parallel machines is to obtain fast execution times, sup-

port for extensive performance tuning must be a high priority in data-parallel programming envi-

ronments. In the case of a data-parallel language supported by an optimizing compiler, deep

analysis and transformation of the program present significant challenges as well as valuable

opportunities for performance tuning. A dynamic performance analyzer for a data-parallel lan-

guage should present information about parallelism and communication in the context of the

source program, without requiring the programmer to understand the transformations or the

details of the executable code.

We envision solving this problem in two steps: first, by presenting a high-level model of program

performance to the programmer for use in tuning, and second, by translating static and dynamic

performance information to this model. Detailed compiler information can be used to support

these steps in a variety of ways. In addition to supporting static performance prediction as

described in the previous section, compiler information can be used to improve the efficiency of

runtime performance measurements, and to translate low-level dynamic information about other

performance characteristics to the source-level model.

The task of presenting performance information about a data-parallel program to the programmer

is challenging for a number of reasons:

1. The parallelism of a source-level construct may not be obvious in quantitative terms. This is
particularly true when the compiler detects implicit parallelism, but also when the compiler
replicates some computation (more generally, relaxes the so-calledowner-computes rule to
reduce communication) or introduces pipelining to obtain higher parallelism at the cost of
more frequent communication.

2. The communication resulting from a construct and its quantitative impact on performance are
often not obvious. This is a particular problem for data-parallel languages like HPF, in which
all communication is inserted by the compiler.



April 22, 1994

Requirements for Data-Parallel Programming Environments 15 of 23

3. Both of the above are exacerbated when a compiler optimization can be parameterized. For
example, in coarse-grain pipelining [16], the compiler chooses a block size for data transfers
to balance parallelism with communication overhead.

4. When reasoning about program parallelism and communication, characteristics of the com-
piler and the target architecture must be taken into account. For example, a simpler compiler
might not perform pipelining. Similarly, on a machine with a fast data transpose operation
redistributing arrays may be more efficient than pipelining the computation.

To insulate the programmer from these complexities as much as possible, the performance model

and the performance tuning environment must meet five requirements. First, the model must

quantify program performance characteristics using metrics whose meaning is independent of the

underlying compiler and machine architecture. For example, such metrics for parallel overhead

include communication volume and frequency, and the proportion of time spent in various activi-

ties such as waiting for remote data.

Second, the environment must provide system-independent visualization of these metrics relating

them to the constructs in the data-parallel program. For example, in the D System, we plan to use

a hierarchical visualization scheme that presents performance metrics at multiple levels of granu-

larity, including information for an entire program, for individual arrays, and for individual loop-

nests. We also plan to tailor visualizations for specific communication patterns such as shifts,

pipelines, and broadcasts.

Third, the environment should minimize the need for a programmer’s involvement in tuning

parameterized constructs introduced by the compiler. For example, the programmer should not

have to choose the block size for coarse-grain pipelining. The compiler itself should tune such

constructs using static and dynamic performance information. In practice, however, programmers

may desire greater control and predictability over program behavior, or their involvement may be

required if the compiler’s knowledge about program and system behavior proves insufficient.

Fourth, the environment should provide programmers with some understanding of the capabilities

of the compiler. This allows the programmer to understand their program’s performance charac-

teristics and to optimize the data-parallel code to increase the effectiveness of the compiler. The

challenge is to provide such an understanding without requiring deep knowledge of compilation

techniques and without sacrificing the key advantages of the data-parallel programming model.
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Finally, it is desirable for the compiler and the underlying parallel machine to ensure that the per-

formance characteristics of the program are predictable. For example, system artifacts such as

interrupts or contention for communication resources should not radically change a program’s

behavior. Unfortunately, such artifacts are often beyond the control of the performance tuning

tools. However, careful use of system resources by the compiler and runtime system can some-

times minimize these effects. We believe that ensuring predictability is particularly important in

the context of HPF and similar languages, where the connection between the original source and

the actual executable is very indirect.

The dynamic performance data obtained from runtime measurements necessarily provides only

low-level performance information about the explicitly parallel executing code. This information

must be presented to the programmer in terms of the more abstract data-parallel model, if possible

using a graphical performance visualization tool. Traditional symbol table information is insuffi-

cient if we wish to relate performance information to source-level constructs since a single low-

level feature may correspond to several high-level operations and vice-versa. Instead, the com-

piler can record annotations describing the various optimizations and code transformations in the

shared infrastructure; performance tools can read these annotations to translate low-level perfor-

mance information to constructs in the data-parallel source. For example, the Fortran D compiler

will create a file of annotations in the same data format as that used for dynamic traces in the

Pablo performance analysis environment [28]. The Pablo visualization tool will use this file to

interpret dynamic trace information and present it to the programmer in terms of the Fortran D

source.

The process of measuring program performance at runtime can also be made more efficient by

exploiting compiler information about program communication and parallelism. First, runtime

measurements can be minimized by replacing dynamic tracing with static information wherever

possible. Typically, only actual timings and symbolic values that cannot be resolved at compile-

time need to be recorded in the dynamic trace. Second, in some cases summary statistics may suf-

fice instead of detailed measurements. For example, in a pipelined loop, all pipeline stages on

each processor except the first stage may have fairly uniform computation and communication

behavior. The compiler can peel off the iterations of the first stage with little perturbation to the

program, and collect only statistical summaries describing computation and communication in

subsequent stages. This approach would provide almost complete information for subsequent iter-
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ations while reducing trace sizes by orders of magnitude. In the D System we plan to explore this

technique and extend it to other situations.

A sophisticated parallelizing compiler can provide extensive support for performance tuning.

This support can be used to make program instrumentation more efficient, and to present perfor-

mance data to the programmer in intelligent ways that are more closely tied to the constructs in

the source program.

7.0 Data Mapping Assistant

Choosing the data mapping is a key decision in data-parallel programming, as the data mapping

often determines the performance of the entire data-parallel program. While performance analysis

tools provide information about performance bottlenecks with a given data mapping, they provide

little support for comparing alternative data mappings. The choice of a good data mapping

depends on many factors, including the target machine architecture, the compilation system, the

problem size and the number of processors available. The possibility of dynamically remapping

arrays makes this choice even harder. Thus, a tool that can automatically and quantitatively com-

pare a variety of data mappings and explain their performance impact would be invaluable.

The problem of finding an efficient data mapping for a distributed-memory multiprocessor has

been recognized and addressed by many researchers [1,6,13,18,22,34]. The presented solutions

differ significantly in the assumptions that are made about the input language, the possible set of

data mappings, the compilation system, and the target distributed-memory machine. Most of the

previously published work performs automatic data mapping as an optimization phase inside the

compiler. Typically, these systems perform data mapping optimization in two steps, namely align-

ment analysis followed by distribution analysis.

We do not believe that an efficient data mapping can be determined fully automatically in all

cases. Therefore, the programmer should be involved in the process of choosing an efficient data

mapping. A data mapping assistant should allow the programmer to partially specify a data map-

ping. The tool should then extend the partial specification into an efficient total data mapping. To

accomplish this task, the tool has to perform interprocedural analysis. A partial specification of a

data mapping may consist of mapping information for only a subset of the program’s data objects

or mapping information restricted to particular regions of the program. Note that one possible par-



April 22, 1994

Requirements for Data-Parallel Programming Environments 18 of 23

tial data mapping specification is no data mapping specification at all. For example, passing a

pure Fortran 90 or FORTRAN 77 code to the data mapping assistant would convert the program

to HPF.

An automatic data mapping assistant should support the programmer’s data mapping selection at

different points in the program’s tuning process. Given a sequential program, the tool could be

used to generate a first approximation to an efficient data mapping. Using the performance analy-

sis tools described in Section5.0 and Section6.0, the programmer could select more efficient

mappings for program regions that dominate the program’s overall execution time, thereby over-

riding the data mapping assistant’s suggestions. The programmer could then invoke the data map-

ping assistant again to generate good data mappings for program regions that have not been hand

tuned. Instead of generating a total data mapping specification, the data mapping assistant should

also provide information that will give the programmer insights into the tool’s trade-off decisions.

Such information will improve the programmer’s understanding of the performance characteris-

tics of the selected data mapping and the key alternatives.

The programmer may tune the data mapping until a good one has been found and the overall per-

formance of the program is satisfactory. For real applications, we do not expect many iterations of

the tuning process. Because the data mapping assistant is not embedded in the compiler and will

be run only a few times during tuning, it can use techniques that would be considered too compu-

tationally expensive for inclusion in compilers. However, the tool must be knowledgeable about

the transformations and optimizations performed by that compiler.

The data mapping assistant that is being implemented as part of the D System will determine the

data mapping for a program in several steps. In the initial step, the program will be partitioned

into non-overlapping segments called “phases.” Data mapping search spaces will then be con-

structed for each phase, based on alignment and distribution analyses. From each data mapping

search space, a single candidate mapping will be selected to minimize the combined cost of the

selected mappings, including the cost for necessary remappings. This selection process will be

based on performance estimates of the candidate data mappings and the cost of remapping [2].

Some steps in the data mapping selection process may require the solution of NP-complete prob-

lems. Our current approach is to formulate these problems as 0-1 integer programming problems

and solve them using a general-purpose integer programming tool; preliminary results indicate

that the computational cost is reasonable. The design of the data mapping assistant and some pre-
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liminary experimental results are discussed in detail elsewhere [3]. We envision that the program-

mer will interact with the tool by inspecting and manipulating the candidate mapping search

spaces of each program phase. The programmer will be able to insert or eliminate data mappings.

For example, to force a particular data mapping for a phase, the programmer can specify the map-

ping as the only element in the mapping search space of the phase.

8.0 Summary and Conclusions

In this paper, we have presented our vision for the functionality and organization of a data-parallel

programming environment. We believe the primary goal of, as well as the primary challenge for,

such an environment is to support the development of efficient data-parallel programs while insu-

lating the programmer from the intricacies of the explicitly parallel code. Such support is essential

because a data-parallel program will be extensively transformed during compilation into an opti-

mized, explicitly parallel program. Understanding these transformations along with the architec-

ture-specific details of parallelism is an unnecessarily onerous requirement on the programmer.

The central purpose of portable, data-parallel languages like HPF is to eliminate this burden.

In order to achieve this goal, the environment must allow a programmer to debug and tune a data-

parallel program in the presence of sophisticated code optimizations by the compiler. To do this,

the environment must present information about program behavior at a level as close to the

abstract programming model of the language as possible. We have identified the key components

of such an environment and the functionality they must provide. These include:

• A source-level debugger that provides support for understanding execution behavior in the
presence of large volumes of data, and also provides as much of the functionality of a sequen-
tial debugger as possible. The principal challenge in the latter case is to provide sufficient sup-
port for transparent breakpoints so that the programmer can explore intermediate states of
execution.

• A static performance analysis tool that provides the feedback necessary for the programmer to
make appropriate algorithmic choices during code development. Qualitative feedback (for
example, annotations that describe the extent of parallelism and communication in a program)
is particularly important because many critical aspects of performance are only available
implicitly.

• A dynamic performance analysis tool that can support extensive performance tuning based on
dynamic performance information. The tool must be able to manage the potentially huge vol-
ume of data generated by runtime measurements and present it to the programmer in terms of
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the constructs in the source program. As we have discussed, this process can be simplified in
important ways by exploiting the program analysis infrastructure in the compiler.

• A data mapping assistant that provides guidance in choosing an efficient mapping of arrays to
processors. The choice of data mapping is a fundamental determinant of performance. A tool
that can quantitatively evaluate the large number of mapping choices should prove invaluable.

• Finally, acommon interface that provides uniform access to these tools and presents informa-
tion from these tools to the programmer.

While individual tools currently exist that can perform some subset of these tasks, none meet all

these goals. To do so, the tools must have access to the program analysis infrastructure that per-

forms the compile-time analysis and transformations of the source program. This shared infra-

structure must allow the tools to view, create and modify data-parallel code, and to relate the

behavior of the compiled code back to the original data-parallel source program. Maintaining

such a representation requires that the compiler record analysis results as well as the code trans-

formations, thus distinguishing it from traditional compilers. While such integration with the

environment adds overhead to the compilation process, such annotations are vital for meeting the

needs of programmers.

The D System, which is under development in the Center for Research on Parallel Computation,

will serve as a testbed for the ideas presented here. Clearly, constructing a programming environ-

ment and compiler infrastructure that meets the above criteria is difficult, and will require

addressing many challenging research problems. If successful, the system will demonstrate the

feasibility of providing the extensive support that will be necessary for the success of portable

data-parallel languages such as Fortran D and HPF.
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