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Abstract 
Leading polymorphous computing architecture (PCA) efforts include the Raw Architecture 
Workstation (Raw) and the Tera-op Reliable and Intelligently Adaptive Processing System 
(TRIPS), both of which are tile-based.  The Raw toolchain places responsibility for program 
decomposition on the programmer, but the TRIPS toolchain automatically generates hyperblocks 
and allocates them to processing elements.  This report identifies evolutionary computation (EC) 
techniques that enable and that are enabled by PCA technology, focusing on application of EC in 
enhancing the effectiveness of the TRIPS toolchain, including the Scalable Compiler for 
Analytical Experiments (Scale) compiler.  In particular, computational experiments are described 
that investigate the application of genetic programming to the meta-optimization of the priority 
function used to increase the number of instructions per hyperblock in the in-lining optimization 
phase of Scale.  Results suggest continued experimentation with larger population sizes and more 
generations. 
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Summary 
Polymorphous computing architectures (PCAs) seek to provide processing capabilities that are 
amenable to dynamic optimization and scalable with technology advances.  Leading efforts such 
as the Raw Architecture Workstation (Raw) and the Tera-op Reliable and Intelligently Adaptive 
Processing System (TRIPS) are tile-based architectures.  Considerable potential exists for even 
better performance through architecture-specific optimizations.  Evolutionary computation (EC) 
centers on the study of algorithms that are inspired by principles and theories of natural evolution 
This effort began the exploration of the use of EC techniques that enable and are enabled by 
PCA technology.   

At the outset, the primary goal was to enhance the scheduling of instructions for both the Raw 
and TRIPS architectures by combining EC techniques with the existing compiler algorithms.  
Early on, it became apparent that this goal was not feasible with respect to the Raw architecture 
because the burden of program decomposition and mapping currently rests on the programmer.  
Thus, the remainder of the effort focused on the TRIPS architecture.   

Four general techniques were identified for the application of EC in enhancing compiler 
effectiveness.  Tradeoff considerations include their impact on execution time, compilation time, 
compiler construction time, reproducibility of execution, reproducibility of compilation, and 
breadth of application space targeted.  Thus, various combinations are appropriate in specific 
situations.  For the example of PCA applications, considerable increases in compiler construction 
and compilation time are likely to be acceptable in exchange for reduced execution time.  
Furthermore, the training set can be chosen to consist of exactly the applications of interest.  As 
such, the compiler-algorithm time, compiler-parameterization time, and compile-time techniques 
should all be considered.  The schedule-time technique that motivated this effort also has 
potential applicability, but concerns remain regarding execution time predictability. 

The Finch Meta-optimization framework is an example of a compiler-algorithm-time technique.  
Computational experiments were performed to evaluate the effectiveness of Finch in evolving in-
lining priority functions for the TRIPS compiler.  The experiments were executed on the Rose-
Hulman Institute of Technology Beowulf cluster.  The primary metric used was the average 
number of instructions per generated hyperblock, based in part on observations by the TRIPS 
developers that maximizing this metric is essential to good performance.  The “Ground Moving 
Target Indicator” was chosen as the target application.  Using modest computation times, the 
software used in these experiments occasionally obtains values of the metric equal to that 
produced by the unmodified compiler, but not reliably.   

There is strong potential that using less conservative computation times will improve the 
effectiveness of the technique, and the technique is also applicable to other compiler 
optimization phases.  With modification of Finch to evolve more general functions, the technique 
would also be applicable to the translation between intermediate compiler representations that 
have the greatest impact on TRIPS execution time.  Finally, additional research is recommended 
for the schedule-time technique, which applies EC in the scheduling of instructions on 
processing elements. 
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1. Introduction 
Polymorphous computing architectures (PCAs) represent a revolutionary approach to computing 
systems that seeks to provide processing capabilities that are both amenable to dynamic 
optimization as the application load changes and scalable with technology advances.  Leading 
efforts achieve dynamic responsiveness and scalability through the use of tile-based architectures 
of some variety.  Two of those efforts have direct relevance to this effort:  the Raw Architecture 
Workstation (Raw) and the Tera-op Reliable and Intelligently Adaptive Processing System 
(TRIPS). 

There is considerable potential for even better performance through the development of 
architecture-specific optimizations.  Evolutionary computation (EC) is a maturing field which 
centers on the study of evolutionary algorithms (EAs) – algorithms that are inspired by principles 
and theories of natural evolution – of which genetic algorithms are the best publicized example.  
This effort began the exploration of the use of EC techniques that enable and are enabled by 
PCA technology.   

Because of their population-based nature, EC techniques are amenable to a rich variety of 
implementations on parallel and distributed architectures and scale very well with processor 
count.  Much of the research in this area carries over directly to their implementation on tile-
based PCAs.  As such, EC techniques could be distributed spatially across a tile-based 
architecture to provide dynamic performance optimization.  As a preliminary step towards this 
goal, island model and farming model parallel EA implementations for both the Raw and TRIPS 
architectures were designed and implemented.   

The primary goal of the effort was to develop versions of both the Raw and TRIPS compilers 
that combine EC techniques for robust global search of the schedule space with the compilers’ 
existing algorithms for efficient local search.  However, in the process of developing the Raw 
implementations of the parallel EAs, it was determined that the Raw toolchain essentially treats 
each tile independently, thereby requiring the programmer to decompose the application and map 
the components to the tiles.  Creating an automatic decomposition tool from scratch was not 
possible within the timeframe of this project, so subsequent effort was focused on the TRIPS 
architecture.   

The most important technical accomplishments under this effort are as follows: 

• Gained familiarity with Raw and TRIPS toolchains 

• Implemented simple EAs for the Raw and TRIPS architectures, and evaluated the 
implementations using a Raw handheld board installed on a Linux workstation and 
TRIPS architecture simulator software 

• Identified several classes of methods for the application of EC in enhancing the 
effectiveness of the Raw and TRIPS toolchains; selected general method for use in 
enhancing TRIPS toolchain 

• Installed the Finch Meta-Optimization Framework, which uses “machine learning 
techniques to automatically search for effective compiler heuristics.” 
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• Obtained preliminary results in application of Finch to optimization of in-lining priority 
heuristic used by the TRIPS compiler (8% reduction in static ratio of hyberblocks to 
instructions per hyberblock) 

• Verified through a single processor computational experiment on a nontrivial test case 
that parallel computation will be required in order to obtain meaningful data about the 
effectiveness of EA-based optimization of TRIPS compiler heuristics 

• Determined that the Ground Moving Target Indicator (GMTI) benchmark provides a 
suitable test case for EA-based optimization of TRIPS compiler heuristics, in that the 
effectiveness of function in-lining varies gradually with the code bloat size parameter for 
this benchmark 

• Implemented a parallel version of Finch on a Beowulf cluster using the Message Passing 
Interface (MPI) 

• Completed a 17-processor computational experiment applying Finch to the optimization 
of the TRIPS in-lining priority heuristic using the GMTI benchmark as the test case. 

The remainder of this section provides background information on the most relevant aspects of 
polymorphous computing architectures, compilers, and evolutionary computation.  Section 2 
describes the methods used in this effort, and the results of the research are presented and 
discussed in Section 3.  The remaining sections present conclusions (Section 4), 
recommendations (Section 5) and references (Section 6). 

1.1. Polymorphous Computing Architectures 
Current computing systems are designed to support fixed, idealized application loads, and their 
performance inevitably suffers when the actual load doesn’t match the idealized load for which 
they were designed.  Also, as manufacturing processes for integrated circuits advance and we 
approach the fundamental limitations of silicon technology, wire delays are becoming more 
significant relative to gate delays.  PCAs represent a revolutionary approach to computing 
systems that seeks to provide processing capabilities that are both amenable to dynamic 
optimization as the application load changes and scalable with technology advances.  Leading 
efforts in PCA research include the Raw microprocessor under development at the Massachusetts 
Institute of Technology and the TRIPS architecture project at the University of Texas at Austin.  
Both of these efforts achieve dynamic responsiveness and scalability through the use of tile-
based architectures of some variety.   

1.1.1. Raw 
MIT researchers argue that we must reconsider our idea of machine instructions to include signal 
routing information along with the usual functional unit control information (Agarwal, 1999).  
The Raw microprocessor makes this possible, and has been demonstrated to provide two orders 
of magnitude better performance than traditional processors on certain applications.  However, 
optimization of the routing information places an additional burden on the compiler.  Compiler 
enhancements implemented just prior to the initiation of this research resulted in code with speed 
and tile usage that typically come close to hand-customized code (Rabbah, Agarwal, & 
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Amarasinghe, 2004), but independent evaluations resulted in only two thirds of the theoretically 
possible efficiency, suggesting that further optimization is possible (Lebak, 2004). 

1.1.2. TRIPS 
Researchers at the University of Texas Austin also suggest a new paradigm for machine 
instructions, illustrated by their TRIPS architecture (Burger, et al., 2004).  They advocate the 
adoption of Explicit Data Graph Execution (EDGE) architectures, in which “the hardware 
delivers a producer instruction’s output directly as an input to a consumer instruction,” thereby 
eliminating most of the expensive logic that has found its way into architecture design over the 
past two decades.  In addition to the usual requirements, such as identifying blocks of 
instructions containing no branches, a compiler targeting such an architecture must be able to 
map each such block to a tile for execution, and then map each operation in the block to a 
processing element.  These spatial scheduling mappings affect both concurrency and 
communications delays, and thus result in a difficult multicriteria optimization problem.  The 
greedy approximation algorithm employed by the TRIPS compiler prior to the initiation of this 
research results in code that is highly un-optimized and bloated, which suggests an opportunity 
to improve performance via a variety of optimization techniques (Burger D. , et al., 2004).   

1.2. Compilers 
In theoretical terms, the role of a compiler is to automatically translate sentences from one 
language into sentences in another language. By far the most familiar use of compilers, and the 
one usually connoted by the use of that term, is in translating source code (sentences in high-
level programming languages) into object code (sentences written in machine language, 
annotated to support linking and relocation).  Although it is usually hidden from the user, it is 
common for the compiler to emit assembly language code and then invoke an assembler to make 
the final translation to object code. 

Often the compilation process occurs on a computing system based on the targeted architecture, 
but that is not always the case. Cross compilers execute on one architecture and generate 
executable programs for a different architecture, and are usually the only option when targeting 
new architectures.  

Implementations vary widely, but the translation process may be conceived of as performing a 
sequence of operations including lexical analysis, preprocessing, parsing, semantic analysis, 
optimization1, and code emission.  The first four of these result implicitly or explicitly in an 
intermediate representation that is independent of the target architecture, and as such are referred 
to as the front end.  The back end generates the object code, usually after performing 
architecture-specific optimizations.  Many compilers also perform architecture-independent 

                                                 
1 As stated in the classic compiler textbook by Aho, Sethi, and Ullman, “the term ‘optimization’ is a misnomer 
because there is rarely a guarantee that the resulting code is the best possible.”  In a nutshell, this is the precise 
reason to consider the application of evolutionary algorithms as optimum-seeking techniques in the compilation 
process.  
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optimizations, which can be thought of as occurring late in the front end, early in the back end, in 
a separate middle end, or in some combination thereof.   

1.2.1. In-lining 
This research is primarily concerned with the optimization aspects of compilation, regardless of 
the end in which they occur and whether or not they are architecture-specific.  Computational 
experiments so far have focused on in-lining, which is the substitution of the body of a function 
for a function invocation.  In-lining can improve the efficiency of the resulting executable by 
eliminating the overhead of the function invocation.  Furthermore, because it simplifies control 
flow, it results in larger basic blocks, which is a major consideration in generating efficient 
executables for the TRIPS architecture.   

The advantages of in-lining must be traded off against the resulting bloat in the executable code.  
One approach for managing this tradeoff is to constrain the code bloat to a user-specifiable 
fraction of the code size in the absence of in-lining.  This approach assigns the compiler the 
responsibility of choosing a subset of functions to in-line.  The underlying subset selection 
problem is NP-complete, calling for an approximation algorithm or heuristic solution.  The 
standard solution is to rank the available functions on the basis of a heuristic priority function, 
and then in-line as many of the most highly ranked functions as possible without exceeding the 
code bloat constraint. 

1.2.2. Scale 
The TRIPS project uses the Scalable Compiler for Analytical Experiments (Scale) compilation 
system, which is intended as a research and instructional tool to support the development of more 
powerful, flexible, and reusable compilers (Scale Compiler Group).  Conversely, the Scale 
project currently focuses on the generation of high performance code for the TRIPS architecture, 
which it does through the use of advanced in-lining and predicated loop unrolling techniques.   

Scale considers each routine invocation for in-lining independently, as opposed to considering all 
invocations of a given routine together.  The priority function used is the ratio of the execution 
frequency of the basic block containing the invocation to the size of the routine.  The execution 
frequency of the block is estimated using its nesting level. 

Features currently implemented by the Scale system include “parsers for C, Fortran, and Java 
byte-codes, alias analyses, static single assignment form (SSA), a collection of scalar 
optimizations, (Partial Redundancy Elimination (PRE), value numbering, copy propagation, dead 
code elimination, and constant propagation).”   

The high-level data flow aspects of the Scale compilation system are shown in Figure 1.  The 
parser generates an Abstract Syntax Tree (AST) expressed in Clef (Weaver, Cahoon, Moss, 
McKinley, Wright, & Burrill, 1997), which is then converted to a Control Flow Graph (CFG).  
Certain optimizations, including in-lining, are applied to this representation.  The CFG is then 
converted to Static Single Assignment (SSA) form before additional optimizations are applied, 
including loop unrolling. 
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Figure 1.  Scale Data Flow Diagram (http://www-ali.cs.umass.edu/Scale) 

1.3. Evolutionary Computation 
EC is a maturing field which centers on the study of algorithms that are inspired by principles 
and theories of natural evolution.  Exploiting the analogy to the principle of “survival of the 
fittest,” EAs have been used in a wide variety of both static and dynamic optimization problems.  
In this role, they have been observed to be more scalable with respect to problem size than other 
global optimization techniques.  More generally, in analogy to the processes by which whole 
species adapt to changing environments, EAs enable software to adapt to dynamic changes in the 
execution environment.    

1.3.1. Genetic Programming 
Genetic programming (GP) is a form of evolutionary computation in which the individuals 
evolved are algorithms. The standard representation is Lisp-like (Koza, 1992).  Specifically, 
algorithms are represented as trees, with each internal node representing an operator and each 
leaf representing an operand.  This allows efficient evaluation of each candidate algorithm while 
still facilitating effective search of the space of algorithms.  

http://www-ali.cs.umass.edu/Scale
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The standard recombination operator randomly selects a node within each individual and 
exchanges the subtrees rooted at those nodes. Various forms of mutation are possible, including 
replacing a randomly selected subtree with a new randomly generated one. 

1.3.2. Parallel EAs 
Because EAs are population-based, there are a number of reasonable models for the 
implementation of EAs on parallel architectures (Cantú-Paz, 1998).  Of these models, the two 
that are relevant to this effort are the island model and the farming model.  Under the island 
model, the population is decomposed into subpopulations, each of which is allocated to a 
processing element.   The subpopulations evolve independently, except that individuals 
occasionally migrate between populations.  In a farming model EA, evolution takes place on a 
single processor, except that fitness evaluations are performed by the remaining processors in the 
system.  

1.4. Finch 
As described above in the context of in-lining, compiler optimizations often involve underlying 
NP-complete problems calling for approximation algorithms or heuristic solutions.  The 
development of heuristics that are effective across a set of applications requires considerable 
effort.  Historically, heuristics have been tuned carefully for the architectures in use at the time a 
compiler is initially developed and then left unmodified as the target architectures evolve and 
become more complex, resulting in decreased effectiveness. 

In order to address this problem, researchers at MIT have developed GP-based Meta-
optimization software (a.k.a. Finch) to automatically search the space of compiler heuristics 
(Stephenson, Martin, O'Reilly, & Amarasinghe, 2003). The system specifically targets those 
heuristics that are based on priority functions such as the one described above in the context of 
in-lining. 

The flow of execution in an application of Finch to the optimization of a compiler as it pertains 
to this effort is illustrated in Figure 2.  At a high level of abstraction, Finch executes a standard 
evolutionary algorithm consisting of the steps labeled GP Initialization, Fitness Evaluation, 
Evolution (application of evolutionary operators), and GP Finalization.  The individuals being 
evolved are heuristic functions, and their evaluation is performed by invoking a modified version 
of the compiler.   

During its own Compiler Initialization and Compiler Finalization steps, the compiler performs 
calls back to Finch to initialize and finalize its evaluation of the specific heuristic function under 
consideration (Heuristic Initialization and Heuristic Finalization, respectively).  The primary 
purpose of the Heuristic Initialization step is to create a configuration file that specifies the 
signature (number and type of parameters) of the heuristic function.  This information is required 
during the Heuristic Execution step.   

Most importantly from a conceptual perspective, the compiler invokes Finch to execute the 
heuristic function.  These steps are labeled Compilation and Heuristic Execution in the figure.  
Finally, Finch invokes an application-specific fitness evaluation to evaluate the result of the 
compilation (not shown). 
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2. Methods, Assumptions, and Procedures 
The first phase of the program consisted of completing literature reviews related to the Raw and 
TRIPS architectures, obtaining existing copies of the compilers and simulators, and verifying 
their correct operation.  The second phase consisted of developing parallel EC implementations 
for both architectures.  This directly satisfied one of the objectives of the project.  More 
importantly, it facilitated deeper understanding of the architectures, as well as the use of the 
compilers and the simulators.  Given that understanding, the next phase consisted of more 
completely identifying and understanding the opportunities for optimization, the algorithms used 
by the existing compilers, and their implementations.  In the fourth phase, we integrated an 
evolutionary algorithm with the in-lining optimization algorithm used by the existing TRIPS 
compiler.  The final phase consisted of empirically evaluating programs generated using the 
enhanced compiler. 

2.1. ISI’s Raw Workstation 
Information Science Institute East (ISI-East) maintains the Raw toolchain (e.g. compiler, 
simulator) and a Raw handheld board on a LINUX workstation (crudo.east.isi.edu).  With 
assistance from Jinwoo Suh of ISI-East, the Raw toolchain was installed under the researcher’s 
user accounts on crudo, and the correct installation was verified by the completion of the 
tutorials included with the Raw starsearch distribution, as well as the installation, compilation, 
and simulation of a suite of benchmarks provide by the Raw group.   

Finally, several programs were developed from scratch that use various features of the Raw 
architecture, including an island model parallel EA.  Collectively, these programs used both the 
static and dynamic communication features of the devices.  These programs were simulated 
successfully using the Raw simulator and executed on the Raw board connected to crudo.   

In the process of implementing these programs it was determined that the Raw toolchain places 
the parallel decomposition and mapping responsibilities on the programmer.  As explained 
above, this limitation of the toolchain necessitated the focus of subsequent effort entirely on the 
TRIPS architecture.   

2.2. RHIT’s TRIPS Workstation 
The a02 release of the TRIPS toolchain was installed on a Rose-Hulman Institute of Technology 
(RHIT) Linux workstation (clive.cs.rose-hulman.edu).  A series of steps was taken to develop 
familiarity with the TRIPS toolchain, intermediate language, and assembly language: 

• Correct installation of the software was verified by compiling and simulating the torture 
tests that ship with the TRIPS installer. 

• The ability to perform edit-compile-simulation cycles was verified by compiling and 
simulating minor variations on the torture tests. 

• The ability to develop TRIPS software from scratch was verified.  Specifically, two 
different versions of a simple evolutionary algorithm were compiled and simulated. The 
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researchers were pleasantly surprised by the level of compatibility between the TRIPS 
compiler and gcc. 

• The ability to develop and simulate both TRIPS Intermediate Language (TIL) and TRIPS 
Assembly Language (TASL) programs from scratch was verified, progressing from 
simple programs to programs that included branching, function calls, and text output.    

• Comparisons were made between hand coded and compiler generated TRIPS assembly 
language (TASL), along with the TRIPS Intermediate Language (TIL) resulting in both 
cases.  The comparison was performed using a pseudorandom number generator based on 
a 32-bit linear feedback shift register.  The program was first handcoded in TASL, and 
then an equivalent program was implemented using C.  The TASL and TIL generated by 
the TRIPS toolchain (using various optimizations) was compared to the handcoded 
versions.  

• The ability to generate modified versions of the executables in the TRIPS toolchain was 
verified. 

2.3. Classes of EC in Compilation Methods 
Several classes of methods for the application of EC in enhancing compiler effectiveness have 
been identified.  These methods are complementary, rather than mutually exclusive.  They 
include: 

• Compiler-algorithm-time.  In this method, some variation of EC is used to evolve 
algorithms used within the compiler.  This is the approach used by the Finch Meta 
Optimization tool.  Rice University’s technique of evolving the order of application of 
compiler optimizations also fits in this category (Cooper, et al., 2004).  This method has 
the advantage that the EA executes off-line (in the sense that it does not execute during 
the development of an application).  Thus, compilation time will not necessarily increase.  
Also, the same source code will always be compiled to the same executable, which will 
always be scheduled in the same way.  However, this method must be trained on some set 
of applications, and may result in a compiler that is less effective on applications outside 
of the training set. 

• Compiler-parameterization-time.  In this method, one or more EAs are used to evolve 
parameters of algorithms used within the existing compiler.  An example of this approach 
is the Acovea tool, in which compiler optimization flags are chosen by an EA (Ladd, 
1996).  This method shares the advantages and disadvantages of the compiler-algorithm-
time method.  Relative to that method, this one has the advantage that the search spaces 
on which the EAs operate are more structured.  The disadvantage is that the optimal 
parameterizations of existing algorithms may be less effective than yet-to-be identified 
algorithms.   

• Compile-time.  In this method, one or more EAs are included in the compiler.  An 
advantage of this approach is that all of the details of the application are available to the 
EA, so there is some probability of finding the optimal machine instruction sequence and 
the optimal execution schedule.  However, the same source code will produce different 
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executables each time it is compiled, which would be a major disadvantage in a 
production environment.   

• Schedule-time.  This idea provided the original motivation for this effort. In this method, 
an EA is included in the scheduler.  An advantage of this approach is that the execution 
time of candidate schedules can be modeled exactly, so the quality of the schedule is 
determined entirely by the effectiveness of the EA.  However, the EA has no influence on 
the effectiveness of the compilation process.    Perhaps more importantly, the same 
executable is scheduled differently each time it is executed, which may be a major 
disadvantage in an application development environment.   

2.4. Integration of Finch and TRIPS Toolchain 
With this groundwork laid, effort was then focused on the application of the Finch 
metaoptimization tool to the TRIPS toolchain, and specifically to the Scale compiler targeting 
the TRIPS architecture.  Integration of Finch into any tool requires the integration of three library 
calls into the tool, corresponding to the three call backs illustrated in Figure 2.  The directory 
structure of Scale is shown in Figure 3. In order to integrate Finch with Scale, the following 
library calls were implemented:   

 

 
Figure 3.  Scale Directory Structure (http://www-ali.cs.umass.edu/Scale) 

http://www-ali.cs.umass.edu/Scale
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• Immediately after parsing the command line arguments, the compile() method of 
test/Scale.java invokes Finch.initializeLib().  This call initializes 
Finch’s evaluation of specific heuristic functions under consideration.   

• The getPriority() method of score/trans/Inlining.java invokes 
Finch.evaluateReal(doubleArgs, boolArgs).  This call causes Finch to 
evaluate candidate heuristic functions. 

• Immediately before terminating the execution of Scale, the compile() method invokes 
Finch.finalizeLib().  This call finalizes Finch’s evaluation of candidate heuristic 
functions. 

The arguments passed to Finch.evaluateReal() are 

• the largest allowable size of the executable 

• the current size of the executable 

• the level of purity2 of the routine 

• the size of the routine 

• the number of AST children of this node (which is always 1) 

• the number of function pointers in the body of the routine 

• the number of routines that call this routine 

An attempt was made to experimentally evaluate the effectiveness of Finch for optimizing the in-
lining priority function in the TRIPS compiler, using an extremely small population size and 
generation count, and a modestly sized program as input to the compiler.  However, this 
experiment did not complete given six CPU-days of execution time.  It was thus concluded that 
multiprocessor environments would be required to obtain meaningful experimental results. 

2.5. RHIT’s TRIPS Clusters 
The Finch metaoptimization tool was installed on a cluster of Windows 2000 workstations (in 
the Rose-Hulman Institute of Technology Department of Computer Science and Software 
Engineering OS/Security laboratory).  This cluster was chosen because it provided the Network 
File System (NFS) and Portable Batch System (PBS) services, both of which are required by the 
downloadable version of Finch.  Correct installation of Finch was verified using the provided test 
cases, after which the TRIPS toolchain was installed on the cluster and integrated with Finch as 
described above.  A single computational experiment using this cluster produced an in-lining 
priority function that resulted in an 8% reduction in the static ratio of hyberblocks to instructions 
per hyberblock over the set of test programs employed. 

                                                 
2 Scale has seven levels of “purity” associated with various combinations of the following characteristics:  side 
effects, global variable references, and modification of memory locations referenced by arguments.   
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The workstations that made up the OS/Security laboratory cluster are intended for student use 
and are re-imaged periodically as different courses make use of the laboratory.  Therefore, it was 
necessary to port both the TRIPS toolchain and Finch to the Rose-Hulman Institute of 
Technology “Beowulf” Linux cluster (brain.rose-hulman.edu).  However, the Beowulf cluster 
does not provide NFS and PBS, so it was also necessary to modify Finch’s interprocessor 
communication to make use of the Message Passing Interface (MPI) standard, which is 
supported on the cluster.   

2.6. Metrics 
Hardware execution of TRIPS applications was not an option in this effort, so the effectiveness 
of the techniques developed in this effort is evaluated on the basis of proxies for execution time 
of selected applications.  Individual applications developed in the process of installing and 
verifying the TRIPS toolchain were evaluated on the basis of both detailed processor timing 
simulation (tsim_proc) and architectural simulation (tsim_arch).  The former is cycle-
accurate, while the latter reports the count of hyperblocks executed (as well as other statistics).  
Because the TRIPS architecture executes hyperblocks atomically, total execution time is closely 
related to the number of hyperblocks executed. 

Neither the detailed processor timing simulation nor the architectural simulation is 
computationally efficient enough for repeated use as part of an EA’s fitness evaluation function.  
As such, further approximations to execution time were made based on static evaluations of the 
executables produced by the EA.  One approximation used was the count of hyperblocks in the 
executable, which is roughly proportional to the hyperblock execution count for the benchmarks 
used in this effort.  Another was the average number of instructions per hyperblock, which is 
inversely related to hyperblock count for fixed instruction counts.  This was chosen as the 
primary metric for this effort, based on observations by the TRIPS developers that the key to 
good performance is maximizing the number of instructions per hyperblock. 
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3. Results and Discussion 
Several established benchmarks were considered, each of which contains multiple functions of 
varying size and invocation frequency.  Each of the candidate benchmarks was compiled to 
TRIPS Intermediate Language (TIL) using a range of values for the allowable code bloat, and the 
fitness of the resulting TIL evaluated.  Finch seeks to minimize the provided fitness function.  
Thus, for these experiments and the others discussed in this section, fitness was computed by 
subtracting the average number of instructions per hyperblock from the number of possible 
instructions per hyperblock (128). 

One of the candidate benchmarks, the “Ground Moving Target Indicator (GMTI),” yielded a 
fitness that varied gradually with allowable code bloat (see Figure 4), and thus represents a test 
case against which candidate in-lining priority functions can be ranked.  None of the 
SPEC_CPU2000v1.3 benchmarks exhibited this property. 

 
Figure 4.  In-lining effectiveness as function of allowable code bloat for the unmodified Scale compiler and the 

GMTI benchmark. 

A series of computational experiments applying Finch in the generation of in-lining heuristic 
functions for the Scale compiler and using the GMTI benchmark as a test case was executed on 
the RHIT Beowulf cluster using 17 processors.  Experiments performed during the development 
of the software yielded fitness values equal to that produced by the unmodified compiler, which 
is assumed to be globally optimal.  However, none of the experiments performed on the final 
version of the software did.   

For each generation of each experiment, the average number of instructions per hyperblock 
resulting from the use of each candidate priority function was calculated.  The maximum, mean, 
and minimum of this value in a representative experiment are shown as a function of generation 
number in Figure 5.   
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Figure 5.  Representative results of Finch Meta-optimization of Scale in-lining, using the GMTI benchmark, a 

maximum allowable code bloat of 10%, a population size of 64, a maximum expression height of 4, and a 
mortality rate of 99%. 

Several small improvements in the best heuristic function occur over the course of execution, 
resulting in an overall increase in average instructions per hyperblock of approximately 0.5%.  
The positive trend in the mean of the average instructions per hyperblock is easier to see, 
indicating that recombining features of good candidate priority functions tends to result in the 
construction of better candidate priority functions.   
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4. Conclusions 
At the outset of this effort, the primary goal was to enhance the scheduling of instructions for 
both the Raw and TRIPS architectures by modifying their compilers to combine evolutionary 
computation (EC) techniques with the existing algorithms.  Early on, it became apparent that this 
goal was not feasible with respect to the Raw architecture because the burden of program 
decomposition and mapping currently rests on the programmer.  Thus, the remainder of the effort 
focused on the TRIPS architecture.   

Four general techniques were identified for the application of EC in enhancing compiler 
effectiveness.  The Finch Meta-optimization Framework implementation of the compiler-
algorithm-time technique was adopted for this effort.  Other techniques include compiler-
parameterization-time, compile-time, and schedule-time.  Tradeoff considerations among these 
techniques include their impact on execution time, compilation time, compiler construction time, 
reproducibility of execution, reproducibility of compilation, and breadth of application space 
targeted.   

Given the advantages and disadvantages of each of the techniques, various combinations are 
appropriate in specific situations.  One of the motivations for PCAs is to achieve near-optimal 
performance on each mission-critical application in a dynamic workload.  For such an 
application, it is reasonable to assume that it is worthwhile to invest considerable offline 
computational effort in order to obtain improvements in online performance.  As such, the 
compiler-algorithm time, compiler-parameterization time, and compile-time techniques should 
all be considered.  Furthermore, assuming that the set of critical applications in the workload is 
small, the compiler-algorithm time and compiler-parameterization time techniques are especially 
applicable, since their application tailors the compiler to the applications in the training set, 
which can be chosen to consist of exactly the applications of interest.  The schedule-time 
technique also has potential applicability in the context of PCAs, but execution time 
predictability must be addressed before it is practical for use in operational environments. 

In order to integrate the Finch Metaoptimization Framework with the Scale compiler used in the 
TRIPS toolchain, several modifications to the compiler were implemented.  Immediately after 
parsing its command line arguments, the modified version of Scale invokes a Finch method that 
prepares for the evaluation of a candidate priority function generated by the evolutionary 
algorithm.  Also, the method that is normally used to compute the priority function that is built 
into Scale was modified to instead invoke a second Finch method that evaluates the candidate 
priority function.  Finally, immediately before terminating, the modified version of Scale invokes 
a third Finch method to finalize the evaluation of the candidate priority function. 

Computational experiments were performed to evaluate the effectiveness of Finch in evolving in-
lining priority functions for Scale.  The experiments were executed on the Rose-Hulman Institute 
of Technology Beowulf cluster.  This required porting both the TRIPS toolchain and Finch to the 
cluster, as well as modifying Finch’s interprocessor communication to make use of the Message 
Passing Interface (MPI) standard.  The average number of instructions per generated hyperblock 
was used as the primary metric for these experiments, based in part on observations by the 
TRIPS developers that maximizing this metric is essential to achieving good performance.  A 
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number of applications were considered as possible inputs to Scale for the experiments.  The 
“Ground Moving Target Indicator (GMTI),” was chosen because for the unmodified version of 
Scale the chosen metric varies gradually with the allowable code bloat parameter.  Using small 
population sizes and small generation counts, the software occasionally obtains values of the 
metric equal to that produced by the unmodified compiler, but not reliably.  Each experiment 
requires between three and four hours of wall clock time using 17 processors. 
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5. Recommendations 
The limited success of the computational experiments described in this report should be 
interpreted in light of the fact that by genetic programming standards, the population size and 
generation count for these experiments are both extremely small.  It is likely that larger values of 
either parameter would result in the identification of more effective in-lining priority functions.  
Furthermore, each experiment required less than four hours to execute, so using larger 
population sizes and generation counts would not result in prohibitive execution times. 

This effort has laid the groundwork for the development of hybrid evolutionary algorithms that 
exploit both the global search properties of evolutionary computation and the effectiveness of the 
existing compiler optimization algorithms.  Future research is needed in a number of areas: 

• Perform additional computational experiments related to TRIPS in-lining, as well as 
similar experiments for other compiler optimizations involving priority functions (e.g. 
loop unrolling).  These experiments can be completed without further modification of 
Finch.  The advantage of those kinds of optimizations is that they have relatively direct 
impact on the formation of hyperblocks (which is where the greatest impact on 
performance can be made).  The limitation is that they explore relatively small parts of 
the space of assembly language programs.   

• Explore larger areas of the space of TRIPS assembly language programs by modifying 
Scale so that a Finch-optimized priority function controls the building of hyperblocks. 
This could be done in a few different ways. The most promising of these is modifying the 
control flow graph (CFG) creation function so that it consults the finch-optimized priority 
function. This would allow Finch to change the CFG so that it will make “better” 
hyperblocks, since the fitness function uses a heuristic that only takes into account the 
average number of instructions per hyperblock. 

• The spatial distribution of an EA across a tile-based architecture to provide dynamic 
performance optimization still merits investigation.   
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List of Abbreviations and Acronyms 
AST – Abstract Syntax Tree 

CFG – Control Flow Graph 

CPU – Central Processing Unit 

EA – Evolutionary Algorithm 

EC – Evolutionary Computation 

EDGE – Explicit Data Graph Execution 

GMTI – Ground Moving Target Indicator 

GP – Genetic Programming 

ISI – Information Science Institute 

MPI – Message Passing Interface 

NFS – Network File System 

OS – Operating System 

PBS – Portable Batch System 

PCA – Polymorphous Computing Architecture 

Raw – Raw Architecture Workstation 

RHIT – Rose-Hulman Institute of Technology 

Scale – Scalable Compiler for Analytical Experiments 

SSA – Static Single Assignment 

TASL – TRIPS assembly language 

TIL – TRIPS Intermediate Language 

TRIPS – Tera-op Reliable and Intelligently Adaptive Processing System 

 
 




