

AFRL-IF-RS-TR-2007-168
Final Technical Report
July 2007

EVOLUTIONARY COMPUTATION IN
POLYMORPHOUS COMPUTING
ARCHITECTURES: METAOPTIMIZATION OF
THE SCALE IN-LINING PRIORITY FUNCTION
FOR TRIPS

Rose-Hulman Institute of Technology

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Rome
Research Site Public Affairs Office and is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

AFRL-IF-RS-TR-2007-168 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

CHRISTOPHER FLYNN JAMES A. COLLINS, Deputy Chief
Work Unit Manager Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUL 2007
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Dec 04 – Jan 07
5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-05-1-0019

4. TITLE AND SUBTITLE

EVOLUTIONARY COMPUTATION IN POLYMORPHOUS COMPUTING
ARCHITECTURES: METAOPTIMIZATION OF THE SCALE IN-LINING
PRIORITY FUNCTION FOR TRIPS

5c. PROGRAM ELEMENT NUMBER
T54236

5d. PROJECT NUMBER
NBGQ

5e. TASK NUMBER
10

6. AUTHOR(S)

Lawrence D. Merkle

5f. WORK UNIT NUMBER
05

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rose-Hulman Institute of Technology
5500 Wabash Ave.
Terre Haute IN 47803-3999

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTC
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2007-168

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# AFRL-07-0052

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Leading polymorphous computing architecture (PCA) efforts include the Raw Architecture Workstation (RAW) and the Tera-op
Reliable and Intelligently Adaptive Processing System (TRIPS), both of which are tile-based. The Raw toolchain places
responsibility for program decomposition on the programmer, but the TRIPS toolchain automatically generates hyperblocks and
allocates them to processing elements. This report identifies evolutionary computation (EC) techniques that enable and that are
enabled by PCA technology, focusing on application of EC in enhancing the effectiveness of the TRIPS toolchain, including the
Scalable Compiler for Analytic Experiments (SCALE) compiler. In particular, computational experiments are described that
investigate the application of genetic programming to the meta-optimization of the priority function used to increase the number of
instructions per hyperblock in the in-lining optimization phase of SCALE. Results suggest continued experimentation with larger
population sizes and more generations.
15. SUBJECT TERMS
Evolutionary computation, polymorphous computing architectures, compilers

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Christopher Flynn

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

28
19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

i

Abstract
Leading polymorphous computing architecture (PCA) efforts include the Raw Architecture
Workstation (Raw) and the Tera-op Reliable and Intelligently Adaptive Processing System
(TRIPS), both of which are tile-based. The Raw toolchain places responsibility for program
decomposition on the programmer, but the TRIPS toolchain automatically generates hyperblocks
and allocates them to processing elements. This report identifies evolutionary computation (EC)
techniques that enable and that are enabled by PCA technology, focusing on application of EC in
enhancing the effectiveness of the TRIPS toolchain, including the Scalable Compiler for
Analytical Experiments (Scale) compiler. In particular, computational experiments are described
that investigate the application of genetic programming to the meta-optimization of the priority
function used to increase the number of instructions per hyperblock in the in-lining optimization
phase of Scale. Results suggest continued experimentation with larger population sizes and more
generations.

ii

Contents
Acknowledgments.. iv
Summary ... 1
1. Introduction... 2

1.1. Polymorphous Computing Architectures .. 3
1.1.1. Raw ... 3
1.1.2. TRIPS.. 4

1.2. Compilers ... 4
1.2.1. In-lining... 5
1.2.2. Scale.. 5

1.3. Evolutionary Computation .. 6
1.3.1. Genetic Programming ... 6
1.3.2. Parallel EAs .. 7

1.4. Finch .. 7
2. Methods, Assumptions, and Procedures ... 9

2.1. ISI’s Raw Workstation .. 9
2.2. RHIT’s TRIPS Workstation... 9
2.3. Classes of EC in Compilation Methods .. 10
2.4. Integration of Finch and TRIPS Toolchain ... 11
2.5. RHIT’s TRIPS Clusters .. 12
2.6. Metrics ... 13

3. Results and Discussion ... 14
4. Conclusions... 16
5. Recommendations... 18
6. References... 19
Bibliography ... 20
List of Abbreviations and Acronyms.. 21

iii

List of Figures

Figure 1. Scale Data Flow Diagram (http://www-ali.cs.umass.edu/Scale).................................... 6

Figure 2. Finch Flow of Execution .. 8

Figure 3. Scale Directory Structure (http://www-ali.cs.umass.edu/Scale) 11

Figure 4. In-lining effectiveness as function of allowable code bloat for the unmodified Scale
compiler and the GMTI benchmark.. 14

Figure 5. Representative results of Finch Meta-optimization of Scale in-lining......................... 15

http://www-ali.cs.umass.edu/Scale
http://www-ali.cs.umass.edu/Scale

iv

Acknowledgments
The Principal Investigator was assisted in this effort by Tyler Hicks-Wright, Matt Ellis, and Mike
McClurg. The team is indebted to several other individuals for their help in establishing the
infrastructure necessary to perform the work. Jinwoo Suh of Information Sciences Institute East
provided user accounts on ISI-East’s Raw workstation, as well as guidance and assistance in
installing and using the Raw toolchain and using the Raw handheld board. Doug Burger and
Steve Kecklin of University of Texas Austin provided access to the TRIPS toolchain and made
themselves available for discussions about the compiler’s optimization algorithms at several
meetings of the Polymorphous Computing Architectures Principal Investigators. Numerous
other individuals within both organizations answered questions and provided assistance at
various times during the effort.

1

Summary
Polymorphous computing architectures (PCAs) seek to provide processing capabilities that are
amenable to dynamic optimization and scalable with technology advances. Leading efforts such
as the Raw Architecture Workstation (Raw) and the Tera-op Reliable and Intelligently Adaptive
Processing System (TRIPS) are tile-based architectures. Considerable potential exists for even
better performance through architecture-specific optimizations. Evolutionary computation (EC)
centers on the study of algorithms that are inspired by principles and theories of natural evolution
This effort began the exploration of the use of EC techniques that enable and are enabled by
PCA technology.

At the outset, the primary goal was to enhance the scheduling of instructions for both the Raw
and TRIPS architectures by combining EC techniques with the existing compiler algorithms.
Early on, it became apparent that this goal was not feasible with respect to the Raw architecture
because the burden of program decomposition and mapping currently rests on the programmer.
Thus, the remainder of the effort focused on the TRIPS architecture.

Four general techniques were identified for the application of EC in enhancing compiler
effectiveness. Tradeoff considerations include their impact on execution time, compilation time,
compiler construction time, reproducibility of execution, reproducibility of compilation, and
breadth of application space targeted. Thus, various combinations are appropriate in specific
situations. For the example of PCA applications, considerable increases in compiler construction
and compilation time are likely to be acceptable in exchange for reduced execution time.
Furthermore, the training set can be chosen to consist of exactly the applications of interest. As
such, the compiler-algorithm time, compiler-parameterization time, and compile-time techniques
should all be considered. The schedule-time technique that motivated this effort also has
potential applicability, but concerns remain regarding execution time predictability.

The Finch Meta-optimization framework is an example of a compiler-algorithm-time technique.
Computational experiments were performed to evaluate the effectiveness of Finch in evolving in-
lining priority functions for the TRIPS compiler. The experiments were executed on the Rose-
Hulman Institute of Technology Beowulf cluster. The primary metric used was the average
number of instructions per generated hyperblock, based in part on observations by the TRIPS
developers that maximizing this metric is essential to good performance. The “Ground Moving
Target Indicator” was chosen as the target application. Using modest computation times, the
software used in these experiments occasionally obtains values of the metric equal to that
produced by the unmodified compiler, but not reliably.

There is strong potential that using less conservative computation times will improve the
effectiveness of the technique, and the technique is also applicable to other compiler
optimization phases. With modification of Finch to evolve more general functions, the technique
would also be applicable to the translation between intermediate compiler representations that
have the greatest impact on TRIPS execution time. Finally, additional research is recommended
for the schedule-time technique, which applies EC in the scheduling of instructions on
processing elements.

2

1. Introduction
Polymorphous computing architectures (PCAs) represent a revolutionary approach to computing
systems that seeks to provide processing capabilities that are both amenable to dynamic
optimization as the application load changes and scalable with technology advances. Leading
efforts achieve dynamic responsiveness and scalability through the use of tile-based architectures
of some variety. Two of those efforts have direct relevance to this effort: the Raw Architecture
Workstation (Raw) and the Tera-op Reliable and Intelligently Adaptive Processing System
(TRIPS).

There is considerable potential for even better performance through the development of
architecture-specific optimizations. Evolutionary computation (EC) is a maturing field which
centers on the study of evolutionary algorithms (EAs) – algorithms that are inspired by principles
and theories of natural evolution – of which genetic algorithms are the best publicized example.
This effort began the exploration of the use of EC techniques that enable and are enabled by
PCA technology.

Because of their population-based nature, EC techniques are amenable to a rich variety of
implementations on parallel and distributed architectures and scale very well with processor
count. Much of the research in this area carries over directly to their implementation on tile-
based PCAs. As such, EC techniques could be distributed spatially across a tile-based
architecture to provide dynamic performance optimization. As a preliminary step towards this
goal, island model and farming model parallel EA implementations for both the Raw and TRIPS
architectures were designed and implemented.

The primary goal of the effort was to develop versions of both the Raw and TRIPS compilers
that combine EC techniques for robust global search of the schedule space with the compilers’
existing algorithms for efficient local search. However, in the process of developing the Raw
implementations of the parallel EAs, it was determined that the Raw toolchain essentially treats
each tile independently, thereby requiring the programmer to decompose the application and map
the components to the tiles. Creating an automatic decomposition tool from scratch was not
possible within the timeframe of this project, so subsequent effort was focused on the TRIPS
architecture.

The most important technical accomplishments under this effort are as follows:

• Gained familiarity with Raw and TRIPS toolchains

• Implemented simple EAs for the Raw and TRIPS architectures, and evaluated the
implementations using a Raw handheld board installed on a Linux workstation and
TRIPS architecture simulator software

• Identified several classes of methods for the application of EC in enhancing the
effectiveness of the Raw and TRIPS toolchains; selected general method for use in
enhancing TRIPS toolchain

• Installed the Finch Meta-Optimization Framework, which uses “machine learning
techniques to automatically search for effective compiler heuristics.”

3

• Obtained preliminary results in application of Finch to optimization of in-lining priority
heuristic used by the TRIPS compiler (8% reduction in static ratio of hyberblocks to
instructions per hyberblock)

• Verified through a single processor computational experiment on a nontrivial test case
that parallel computation will be required in order to obtain meaningful data about the
effectiveness of EA-based optimization of TRIPS compiler heuristics

• Determined that the Ground Moving Target Indicator (GMTI) benchmark provides a
suitable test case for EA-based optimization of TRIPS compiler heuristics, in that the
effectiveness of function in-lining varies gradually with the code bloat size parameter for
this benchmark

• Implemented a parallel version of Finch on a Beowulf cluster using the Message Passing
Interface (MPI)

• Completed a 17-processor computational experiment applying Finch to the optimization
of the TRIPS in-lining priority heuristic using the GMTI benchmark as the test case.

The remainder of this section provides background information on the most relevant aspects of
polymorphous computing architectures, compilers, and evolutionary computation. Section 2
describes the methods used in this effort, and the results of the research are presented and
discussed in Section 3. The remaining sections present conclusions (Section 4),
recommendations (Section 5) and references (Section 6).

1.1. Polymorphous Computing Architectures
Current computing systems are designed to support fixed, idealized application loads, and their
performance inevitably suffers when the actual load doesn’t match the idealized load for which
they were designed. Also, as manufacturing processes for integrated circuits advance and we
approach the fundamental limitations of silicon technology, wire delays are becoming more
significant relative to gate delays. PCAs represent a revolutionary approach to computing
systems that seeks to provide processing capabilities that are both amenable to dynamic
optimization as the application load changes and scalable with technology advances. Leading
efforts in PCA research include the Raw microprocessor under development at the Massachusetts
Institute of Technology and the TRIPS architecture project at the University of Texas at Austin.
Both of these efforts achieve dynamic responsiveness and scalability through the use of tile-
based architectures of some variety.

1.1.1. Raw
MIT researchers argue that we must reconsider our idea of machine instructions to include signal
routing information along with the usual functional unit control information (Agarwal, 1999).
The Raw microprocessor makes this possible, and has been demonstrated to provide two orders
of magnitude better performance than traditional processors on certain applications. However,
optimization of the routing information places an additional burden on the compiler. Compiler
enhancements implemented just prior to the initiation of this research resulted in code with speed
and tile usage that typically come close to hand-customized code (Rabbah, Agarwal, &

4

Amarasinghe, 2004), but independent evaluations resulted in only two thirds of the theoretically
possible efficiency, suggesting that further optimization is possible (Lebak, 2004).

1.1.2. TRIPS
Researchers at the University of Texas Austin also suggest a new paradigm for machine
instructions, illustrated by their TRIPS architecture (Burger, et al., 2004). They advocate the
adoption of Explicit Data Graph Execution (EDGE) architectures, in which “the hardware
delivers a producer instruction’s output directly as an input to a consumer instruction,” thereby
eliminating most of the expensive logic that has found its way into architecture design over the
past two decades. In addition to the usual requirements, such as identifying blocks of
instructions containing no branches, a compiler targeting such an architecture must be able to
map each such block to a tile for execution, and then map each operation in the block to a
processing element. These spatial scheduling mappings affect both concurrency and
communications delays, and thus result in a difficult multicriteria optimization problem. The
greedy approximation algorithm employed by the TRIPS compiler prior to the initiation of this
research results in code that is highly un-optimized and bloated, which suggests an opportunity
to improve performance via a variety of optimization techniques (Burger D. , et al., 2004).

1.2. Compilers
In theoretical terms, the role of a compiler is to automatically translate sentences from one
language into sentences in another language. By far the most familiar use of compilers, and the
one usually connoted by the use of that term, is in translating source code (sentences in high-
level programming languages) into object code (sentences written in machine language,
annotated to support linking and relocation). Although it is usually hidden from the user, it is
common for the compiler to emit assembly language code and then invoke an assembler to make
the final translation to object code.

Often the compilation process occurs on a computing system based on the targeted architecture,
but that is not always the case. Cross compilers execute on one architecture and generate
executable programs for a different architecture, and are usually the only option when targeting
new architectures.

Implementations vary widely, but the translation process may be conceived of as performing a
sequence of operations including lexical analysis, preprocessing, parsing, semantic analysis,
optimization1, and code emission. The first four of these result implicitly or explicitly in an
intermediate representation that is independent of the target architecture, and as such are referred
to as the front end. The back end generates the object code, usually after performing
architecture-specific optimizations. Many compilers also perform architecture-independent

1 As stated in the classic compiler textbook by Aho, Sethi, and Ullman, “the term ‘optimization’ is a misnomer
because there is rarely a guarantee that the resulting code is the best possible.” In a nutshell, this is the precise
reason to consider the application of evolutionary algorithms as optimum-seeking techniques in the compilation
process.

5

optimizations, which can be thought of as occurring late in the front end, early in the back end, in
a separate middle end, or in some combination thereof.

1.2.1. In-lining
This research is primarily concerned with the optimization aspects of compilation, regardless of
the end in which they occur and whether or not they are architecture-specific. Computational
experiments so far have focused on in-lining, which is the substitution of the body of a function
for a function invocation. In-lining can improve the efficiency of the resulting executable by
eliminating the overhead of the function invocation. Furthermore, because it simplifies control
flow, it results in larger basic blocks, which is a major consideration in generating efficient
executables for the TRIPS architecture.

The advantages of in-lining must be traded off against the resulting bloat in the executable code.
One approach for managing this tradeoff is to constrain the code bloat to a user-specifiable
fraction of the code size in the absence of in-lining. This approach assigns the compiler the
responsibility of choosing a subset of functions to in-line. The underlying subset selection
problem is NP-complete, calling for an approximation algorithm or heuristic solution. The
standard solution is to rank the available functions on the basis of a heuristic priority function,
and then in-line as many of the most highly ranked functions as possible without exceeding the
code bloat constraint.

1.2.2. Scale
The TRIPS project uses the Scalable Compiler for Analytical Experiments (Scale) compilation
system, which is intended as a research and instructional tool to support the development of more
powerful, flexible, and reusable compilers (Scale Compiler Group). Conversely, the Scale
project currently focuses on the generation of high performance code for the TRIPS architecture,
which it does through the use of advanced in-lining and predicated loop unrolling techniques.

Scale considers each routine invocation for in-lining independently, as opposed to considering all
invocations of a given routine together. The priority function used is the ratio of the execution
frequency of the basic block containing the invocation to the size of the routine. The execution
frequency of the block is estimated using its nesting level.

Features currently implemented by the Scale system include “parsers for C, Fortran, and Java
byte-codes, alias analyses, static single assignment form (SSA), a collection of scalar
optimizations, (Partial Redundancy Elimination (PRE), value numbering, copy propagation, dead
code elimination, and constant propagation).”

The high-level data flow aspects of the Scale compilation system are shown in Figure 1. The
parser generates an Abstract Syntax Tree (AST) expressed in Clef (Weaver, Cahoon, Moss,
McKinley, Wright, & Burrill, 1997), which is then converted to a Control Flow Graph (CFG).
Certain optimizations, including in-lining, are applied to this representation. The CFG is then
converted to Static Single Assignment (SSA) form before additional optimizations are applied,
including loop unrolling.

6

Figure 1. Scale Data Flow Diagram (http://www-ali.cs.umass.edu/Scale)

1.3. Evolutionary Computation
EC is a maturing field which centers on the study of algorithms that are inspired by principles
and theories of natural evolution. Exploiting the analogy to the principle of “survival of the
fittest,” EAs have been used in a wide variety of both static and dynamic optimization problems.
In this role, they have been observed to be more scalable with respect to problem size than other
global optimization techniques. More generally, in analogy to the processes by which whole
species adapt to changing environments, EAs enable software to adapt to dynamic changes in the
execution environment.

1.3.1. Genetic Programming
Genetic programming (GP) is a form of evolutionary computation in which the individuals
evolved are algorithms. The standard representation is Lisp-like (Koza, 1992). Specifically,
algorithms are represented as trees, with each internal node representing an operator and each
leaf representing an operand. This allows efficient evaluation of each candidate algorithm while
still facilitating effective search of the space of algorithms.

http://www-ali.cs.umass.edu/Scale

7

The standard recombination operator randomly selects a node within each individual and
exchanges the subtrees rooted at those nodes. Various forms of mutation are possible, including
replacing a randomly selected subtree with a new randomly generated one.

1.3.2. Parallel EAs
Because EAs are population-based, there are a number of reasonable models for the
implementation of EAs on parallel architectures (Cantú-Paz, 1998). Of these models, the two
that are relevant to this effort are the island model and the farming model. Under the island
model, the population is decomposed into subpopulations, each of which is allocated to a
processing element. The subpopulations evolve independently, except that individuals
occasionally migrate between populations. In a farming model EA, evolution takes place on a
single processor, except that fitness evaluations are performed by the remaining processors in the
system.

1.4. Finch
As described above in the context of in-lining, compiler optimizations often involve underlying
NP-complete problems calling for approximation algorithms or heuristic solutions. The
development of heuristics that are effective across a set of applications requires considerable
effort. Historically, heuristics have been tuned carefully for the architectures in use at the time a
compiler is initially developed and then left unmodified as the target architectures evolve and
become more complex, resulting in decreased effectiveness.

In order to address this problem, researchers at MIT have developed GP-based Meta-
optimization software (a.k.a. Finch) to automatically search the space of compiler heuristics
(Stephenson, Martin, O'Reilly, & Amarasinghe, 2003). The system specifically targets those
heuristics that are based on priority functions such as the one described above in the context of
in-lining.

The flow of execution in an application of Finch to the optimization of a compiler as it pertains
to this effort is illustrated in Figure 2. At a high level of abstraction, Finch executes a standard
evolutionary algorithm consisting of the steps labeled GP Initialization, Fitness Evaluation,
Evolution (application of evolutionary operators), and GP Finalization. The individuals being
evolved are heuristic functions, and their evaluation is performed by invoking a modified version
of the compiler.

During its own Compiler Initialization and Compiler Finalization steps, the compiler performs
calls back to Finch to initialize and finalize its evaluation of the specific heuristic function under
consideration (Heuristic Initialization and Heuristic Finalization, respectively). The primary
purpose of the Heuristic Initialization step is to create a configuration file that specifies the
signature (number and type of parameters) of the heuristic function. This information is required
during the Heuristic Execution step.

Most importantly from a conceptual perspective, the compiler invokes Finch to execute the
heuristic function. These steps are labeled Compilation and Heuristic Execution in the figure.
Finally, Finch invokes an application-specific fitness evaluation to evaluate the result of the
compilation (not shown).

8

GP
Initializaton

Fitness
Evaluation

Evolution

GP
Finalization

Heuristic
Initialization

Heuristic
Execution

Heuristic
Finalization

Compiler
Initialization

Compiler
Finalization

Compilation

invokes

invokes

invokes

invokes

Finch

Figure 2. Finch Flow of Execution

9

2. Methods, Assumptions, and Procedures
The first phase of the program consisted of completing literature reviews related to the Raw and
TRIPS architectures, obtaining existing copies of the compilers and simulators, and verifying
their correct operation. The second phase consisted of developing parallel EC implementations
for both architectures. This directly satisfied one of the objectives of the project. More
importantly, it facilitated deeper understanding of the architectures, as well as the use of the
compilers and the simulators. Given that understanding, the next phase consisted of more
completely identifying and understanding the opportunities for optimization, the algorithms used
by the existing compilers, and their implementations. In the fourth phase, we integrated an
evolutionary algorithm with the in-lining optimization algorithm used by the existing TRIPS
compiler. The final phase consisted of empirically evaluating programs generated using the
enhanced compiler.

2.1. ISI’s Raw Workstation
Information Science Institute East (ISI-East) maintains the Raw toolchain (e.g. compiler,
simulator) and a Raw handheld board on a LINUX workstation (crudo.east.isi.edu). With
assistance from Jinwoo Suh of ISI-East, the Raw toolchain was installed under the researcher’s
user accounts on crudo, and the correct installation was verified by the completion of the
tutorials included with the Raw starsearch distribution, as well as the installation, compilation,
and simulation of a suite of benchmarks provide by the Raw group.

Finally, several programs were developed from scratch that use various features of the Raw
architecture, including an island model parallel EA. Collectively, these programs used both the
static and dynamic communication features of the devices. These programs were simulated
successfully using the Raw simulator and executed on the Raw board connected to crudo.

In the process of implementing these programs it was determined that the Raw toolchain places
the parallel decomposition and mapping responsibilities on the programmer. As explained
above, this limitation of the toolchain necessitated the focus of subsequent effort entirely on the
TRIPS architecture.

2.2. RHIT’s TRIPS Workstation
The a02 release of the TRIPS toolchain was installed on a Rose-Hulman Institute of Technology
(RHIT) Linux workstation (clive.cs.rose-hulman.edu). A series of steps was taken to develop
familiarity with the TRIPS toolchain, intermediate language, and assembly language:

• Correct installation of the software was verified by compiling and simulating the torture
tests that ship with the TRIPS installer.

• The ability to perform edit-compile-simulation cycles was verified by compiling and
simulating minor variations on the torture tests.

• The ability to develop TRIPS software from scratch was verified. Specifically, two
different versions of a simple evolutionary algorithm were compiled and simulated. The

10

researchers were pleasantly surprised by the level of compatibility between the TRIPS
compiler and gcc.

• The ability to develop and simulate both TRIPS Intermediate Language (TIL) and TRIPS
Assembly Language (TASL) programs from scratch was verified, progressing from
simple programs to programs that included branching, function calls, and text output.

• Comparisons were made between hand coded and compiler generated TRIPS assembly
language (TASL), along with the TRIPS Intermediate Language (TIL) resulting in both
cases. The comparison was performed using a pseudorandom number generator based on
a 32-bit linear feedback shift register. The program was first handcoded in TASL, and
then an equivalent program was implemented using C. The TASL and TIL generated by
the TRIPS toolchain (using various optimizations) was compared to the handcoded
versions.

• The ability to generate modified versions of the executables in the TRIPS toolchain was
verified.

2.3. Classes of EC in Compilation Methods
Several classes of methods for the application of EC in enhancing compiler effectiveness have
been identified. These methods are complementary, rather than mutually exclusive. They
include:

• Compiler-algorithm-time. In this method, some variation of EC is used to evolve
algorithms used within the compiler. This is the approach used by the Finch Meta
Optimization tool. Rice University’s technique of evolving the order of application of
compiler optimizations also fits in this category (Cooper, et al., 2004). This method has
the advantage that the EA executes off-line (in the sense that it does not execute during
the development of an application). Thus, compilation time will not necessarily increase.
Also, the same source code will always be compiled to the same executable, which will
always be scheduled in the same way. However, this method must be trained on some set
of applications, and may result in a compiler that is less effective on applications outside
of the training set.

• Compiler-parameterization-time. In this method, one or more EAs are used to evolve
parameters of algorithms used within the existing compiler. An example of this approach
is the Acovea tool, in which compiler optimization flags are chosen by an EA (Ladd,
1996). This method shares the advantages and disadvantages of the compiler-algorithm-
time method. Relative to that method, this one has the advantage that the search spaces
on which the EAs operate are more structured. The disadvantage is that the optimal
parameterizations of existing algorithms may be less effective than yet-to-be identified
algorithms.

• Compile-time. In this method, one or more EAs are included in the compiler. An
advantage of this approach is that all of the details of the application are available to the
EA, so there is some probability of finding the optimal machine instruction sequence and
the optimal execution schedule. However, the same source code will produce different

11

executables each time it is compiled, which would be a major disadvantage in a
production environment.

• Schedule-time. This idea provided the original motivation for this effort. In this method,
an EA is included in the scheduler. An advantage of this approach is that the execution
time of candidate schedules can be modeled exactly, so the quality of the schedule is
determined entirely by the effectiveness of the EA. However, the EA has no influence on
the effectiveness of the compilation process. Perhaps more importantly, the same
executable is scheduled differently each time it is executed, which may be a major
disadvantage in an application development environment.

2.4. Integration of Finch and TRIPS Toolchain
With this groundwork laid, effort was then focused on the application of the Finch
metaoptimization tool to the TRIPS toolchain, and specifically to the Scale compiler targeting
the TRIPS architecture. Integration of Finch into any tool requires the integration of three library
calls into the tool, corresponding to the three call backs illustrated in Figure 2. The directory
structure of Scale is shown in Figure 3. In order to integrate Finch with Scale, the following
library calls were implemented:

Figure 3. Scale Directory Structure (http://www-ali.cs.umass.edu/Scale)

http://www-ali.cs.umass.edu/Scale

12

• Immediately after parsing the command line arguments, the compile() method of
test/Scale.java invokes Finch.initializeLib(). This call initializes
Finch’s evaluation of specific heuristic functions under consideration.

• The getPriority() method of score/trans/Inlining.java invokes
Finch.evaluateReal(doubleArgs, boolArgs). This call causes Finch to
evaluate candidate heuristic functions.

• Immediately before terminating the execution of Scale, the compile() method invokes
Finch.finalizeLib(). This call finalizes Finch’s evaluation of candidate heuristic
functions.

The arguments passed to Finch.evaluateReal() are

• the largest allowable size of the executable

• the current size of the executable

• the level of purity2 of the routine

• the size of the routine

• the number of AST children of this node (which is always 1)

• the number of function pointers in the body of the routine

• the number of routines that call this routine

An attempt was made to experimentally evaluate the effectiveness of Finch for optimizing the in-
lining priority function in the TRIPS compiler, using an extremely small population size and
generation count, and a modestly sized program as input to the compiler. However, this
experiment did not complete given six CPU-days of execution time. It was thus concluded that
multiprocessor environments would be required to obtain meaningful experimental results.

2.5. RHIT’s TRIPS Clusters
The Finch metaoptimization tool was installed on a cluster of Windows 2000 workstations (in
the Rose-Hulman Institute of Technology Department of Computer Science and Software
Engineering OS/Security laboratory). This cluster was chosen because it provided the Network
File System (NFS) and Portable Batch System (PBS) services, both of which are required by the
downloadable version of Finch. Correct installation of Finch was verified using the provided test
cases, after which the TRIPS toolchain was installed on the cluster and integrated with Finch as
described above. A single computational experiment using this cluster produced an in-lining
priority function that resulted in an 8% reduction in the static ratio of hyberblocks to instructions
per hyberblock over the set of test programs employed.

2 Scale has seven levels of “purity” associated with various combinations of the following characteristics: side
effects, global variable references, and modification of memory locations referenced by arguments.

13

The workstations that made up the OS/Security laboratory cluster are intended for student use
and are re-imaged periodically as different courses make use of the laboratory. Therefore, it was
necessary to port both the TRIPS toolchain and Finch to the Rose-Hulman Institute of
Technology “Beowulf” Linux cluster (brain.rose-hulman.edu). However, the Beowulf cluster
does not provide NFS and PBS, so it was also necessary to modify Finch’s interprocessor
communication to make use of the Message Passing Interface (MPI) standard, which is
supported on the cluster.

2.6. Metrics
Hardware execution of TRIPS applications was not an option in this effort, so the effectiveness
of the techniques developed in this effort is evaluated on the basis of proxies for execution time
of selected applications. Individual applications developed in the process of installing and
verifying the TRIPS toolchain were evaluated on the basis of both detailed processor timing
simulation (tsim_proc) and architectural simulation (tsim_arch). The former is cycle-
accurate, while the latter reports the count of hyperblocks executed (as well as other statistics).
Because the TRIPS architecture executes hyperblocks atomically, total execution time is closely
related to the number of hyperblocks executed.

Neither the detailed processor timing simulation nor the architectural simulation is
computationally efficient enough for repeated use as part of an EA’s fitness evaluation function.
As such, further approximations to execution time were made based on static evaluations of the
executables produced by the EA. One approximation used was the count of hyperblocks in the
executable, which is roughly proportional to the hyperblock execution count for the benchmarks
used in this effort. Another was the average number of instructions per hyperblock, which is
inversely related to hyperblock count for fixed instruction counts. This was chosen as the
primary metric for this effort, based on observations by the TRIPS developers that the key to
good performance is maximizing the number of instructions per hyperblock.

14

3. Results and Discussion
Several established benchmarks were considered, each of which contains multiple functions of
varying size and invocation frequency. Each of the candidate benchmarks was compiled to
TRIPS Intermediate Language (TIL) using a range of values for the allowable code bloat, and the
fitness of the resulting TIL evaluated. Finch seeks to minimize the provided fitness function.
Thus, for these experiments and the others discussed in this section, fitness was computed by
subtracting the average number of instructions per hyperblock from the number of possible
instructions per hyperblock (128).

One of the candidate benchmarks, the “Ground Moving Target Indicator (GMTI),” yielded a
fitness that varied gradually with allowable code bloat (see Figure 4), and thus represents a test
case against which candidate in-lining priority functions can be ranked. None of the
SPEC_CPU2000v1.3 benchmarks exhibited this property.

Figure 4. In-lining effectiveness as function of allowable code bloat for the unmodified Scale compiler and the

GMTI benchmark.

A series of computational experiments applying Finch in the generation of in-lining heuristic
functions for the Scale compiler and using the GMTI benchmark as a test case was executed on
the RHIT Beowulf cluster using 17 processors. Experiments performed during the development
of the software yielded fitness values equal to that produced by the unmodified compiler, which
is assumed to be globally optimal. However, none of the experiments performed on the final
version of the software did.

For each generation of each experiment, the average number of instructions per hyperblock
resulting from the use of each candidate priority function was calculated. The maximum, mean,
and minimum of this value in a representative experiment are shown as a function of generation
number in Figure 5.

15

Figure 5. Representative results of Finch Meta-optimization of Scale in-lining, using the GMTI benchmark, a

maximum allowable code bloat of 10%, a population size of 64, a maximum expression height of 4, and a
mortality rate of 99%.

Several small improvements in the best heuristic function occur over the course of execution,
resulting in an overall increase in average instructions per hyperblock of approximately 0.5%.
The positive trend in the mean of the average instructions per hyperblock is easier to see,
indicating that recombining features of good candidate priority functions tends to result in the
construction of better candidate priority functions.

16

4. Conclusions
At the outset of this effort, the primary goal was to enhance the scheduling of instructions for
both the Raw and TRIPS architectures by modifying their compilers to combine evolutionary
computation (EC) techniques with the existing algorithms. Early on, it became apparent that this
goal was not feasible with respect to the Raw architecture because the burden of program
decomposition and mapping currently rests on the programmer. Thus, the remainder of the effort
focused on the TRIPS architecture.

Four general techniques were identified for the application of EC in enhancing compiler
effectiveness. The Finch Meta-optimization Framework implementation of the compiler-
algorithm-time technique was adopted for this effort. Other techniques include compiler-
parameterization-time, compile-time, and schedule-time. Tradeoff considerations among these
techniques include their impact on execution time, compilation time, compiler construction time,
reproducibility of execution, reproducibility of compilation, and breadth of application space
targeted.

Given the advantages and disadvantages of each of the techniques, various combinations are
appropriate in specific situations. One of the motivations for PCAs is to achieve near-optimal
performance on each mission-critical application in a dynamic workload. For such an
application, it is reasonable to assume that it is worthwhile to invest considerable offline
computational effort in order to obtain improvements in online performance. As such, the
compiler-algorithm time, compiler-parameterization time, and compile-time techniques should
all be considered. Furthermore, assuming that the set of critical applications in the workload is
small, the compiler-algorithm time and compiler-parameterization time techniques are especially
applicable, since their application tailors the compiler to the applications in the training set,
which can be chosen to consist of exactly the applications of interest. The schedule-time
technique also has potential applicability in the context of PCAs, but execution time
predictability must be addressed before it is practical for use in operational environments.

In order to integrate the Finch Metaoptimization Framework with the Scale compiler used in the
TRIPS toolchain, several modifications to the compiler were implemented. Immediately after
parsing its command line arguments, the modified version of Scale invokes a Finch method that
prepares for the evaluation of a candidate priority function generated by the evolutionary
algorithm. Also, the method that is normally used to compute the priority function that is built
into Scale was modified to instead invoke a second Finch method that evaluates the candidate
priority function. Finally, immediately before terminating, the modified version of Scale invokes
a third Finch method to finalize the evaluation of the candidate priority function.

Computational experiments were performed to evaluate the effectiveness of Finch in evolving in-
lining priority functions for Scale. The experiments were executed on the Rose-Hulman Institute
of Technology Beowulf cluster. This required porting both the TRIPS toolchain and Finch to the
cluster, as well as modifying Finch’s interprocessor communication to make use of the Message
Passing Interface (MPI) standard. The average number of instructions per generated hyperblock
was used as the primary metric for these experiments, based in part on observations by the
TRIPS developers that maximizing this metric is essential to achieving good performance. A

17

number of applications were considered as possible inputs to Scale for the experiments. The
“Ground Moving Target Indicator (GMTI),” was chosen because for the unmodified version of
Scale the chosen metric varies gradually with the allowable code bloat parameter. Using small
population sizes and small generation counts, the software occasionally obtains values of the
metric equal to that produced by the unmodified compiler, but not reliably. Each experiment
requires between three and four hours of wall clock time using 17 processors.

18

5. Recommendations
The limited success of the computational experiments described in this report should be
interpreted in light of the fact that by genetic programming standards, the population size and
generation count for these experiments are both extremely small. It is likely that larger values of
either parameter would result in the identification of more effective in-lining priority functions.
Furthermore, each experiment required less than four hours to execute, so using larger
population sizes and generation counts would not result in prohibitive execution times.

This effort has laid the groundwork for the development of hybrid evolutionary algorithms that
exploit both the global search properties of evolutionary computation and the effectiveness of the
existing compiler optimization algorithms. Future research is needed in a number of areas:

• Perform additional computational experiments related to TRIPS in-lining, as well as
similar experiments for other compiler optimizations involving priority functions (e.g.
loop unrolling). These experiments can be completed without further modification of
Finch. The advantage of those kinds of optimizations is that they have relatively direct
impact on the formation of hyperblocks (which is where the greatest impact on
performance can be made). The limitation is that they explore relatively small parts of
the space of assembly language programs.

• Explore larger areas of the space of TRIPS assembly language programs by modifying
Scale so that a Finch-optimized priority function controls the building of hyperblocks.
This could be done in a few different ways. The most promising of these is modifying the
control flow graph (CFG) creation function so that it consults the finch-optimized priority
function. This would allow Finch to change the CFG so that it will make “better”
hyperblocks, since the fitness function uses a heuristic that only takes into account the
average number of instructions per hyperblock.

• The spatial distribution of an EA across a tile-based architecture to provide dynamic
performance optimization still merits investigation.

19

6. References
Agarwal, A. (1999, August). Raw Computation. Scientific American .

Burger, D., Keckler, S., McKinley, K., Dahlin, M., John, L., Lin, C., et al. (2004, July). Scaling
to the End of Silicon with EDGE Architectures. IEEE Computer , pp. 44-55.

Burger, D., Keckler, S., McKinley, K., Lin, C., Dahlin, M., Nowka, K., et al. (2004). TRIPS:
Tera-op Reliable Intelligently adaptive Processing System. Monterey, CA: DARPA
Polymorphous Computing Architectures Program PI Meeting.

Cantú-Paz, E. (1998). A Survey of Parallel Genetic Algorithms.
http://citeseer.ist.psu.edu/155991.html.

Cooper, K., Grosul, A., Harvey, T., Reeves, S., Subramanian, D., Torczon, L., et al. (2004).
Exploring the Structure of the Space of Compilation Sequences Using Randominzed Search
Algorithms. 2004 LACSI Symposium. Santa Fe, NM.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press.

Ladd, S. R. (1996). Acovea Overview. Retrieved May 14, 2007, from Coyote Gulch Productions:
http://www.coyotegulch.com/products/acovea/

Lebak, J. (2004). Application Analysis, Kernel Benchmarks, and PCA Testbed Update.
Monterey, CA: DARPA Polymorphous Computing Architectures Program PI Meeting.

Rabbah, R. M., Agarwal, A., & Amarasinghe, S. (2004). Update on Raw and StreamIt.
Monterey, CA: DARPA Polymorphous Computing Architectures Program PI Meeting.

Scale Compiler Group. (n.d.). Retrieved May 14, 2007, from Scale Home Page: http://www-
ali.cs.umass.edu/Scale

Stephenson, M., Martin, M., O'Reilly, U., & Amarasinghe, S. (2003). Meta Optimization:
Improving Compiler Heuristics with Machine Learning. Proceedings of the SIGPLAN '03
Conference on Programming Language Design and Implementation. San Diego, CA.

Weaver, G. E., Cahoon, B. D., Moss, J. E., McKinley, K. S., Wright, E. J., & Burrill, J. H.
(1997). The Common Language Encoding Form (CLEF) Design Document. Amherst, MA:
University of Massachusetts at Amherst.

http://citeseer.ist.psu.edu/155991.html
http://www.coyotegulch.com/products/acovea
http://www-ali.cs.umass.edu/Scale
http://www-ali.cs.umass.edu/Scale
http://www-ali.cs.umass.edu/Scale

20

Bibliography
Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman: Compilers: Princiles, Techniques, and Tools.
Addison-Wesley 1986.

Andrew W. Appel: Modern Compiler Implementation in Java, 2nd edition. Cambridge
University Press 2002.

Goldberg, D. The Design of Innovation. Kluwer Academic Publishers, Boston, 2002.

L. D. Merkle, M. G. Ellis, T. G. Hicks-Wright, and M. C. McClurg. Evolutionary Computation
in Polymorphous Computing Architectures. Poster presented at the DARPA Polymorphous
Computing Architectures Principal Investigators’ Meeting, March 2005.

L. D. Merkle, M. G. Ellis, and M. C. McClurg. Evolutionary Computation in Polymorphous
Computing Architectures. Poster presented at the DARPA Polymorphous Computing
Architectures Principal Investigators’ Meeting, August 2005.

L. D. Merkle, M. G. Ellis, and M. C. McClurg. Evolutionary Computation in Polymorphous
Computing Architectures. Poster presented at the DARPA Polymorphous Computing
Architectures Principal Investigators’ Meeting, March 2006.

L. D. Merkle, M. C. McClurg, M. G. Ellis, and T. G. Hicks-Wright. EA-Based Generation of
Compiler Heuristics for Polymorphous Computing Architectures. Presented at the Military and
Security Applications of Evolutionary Computation Workshop held at the 2006 Genetic and
Evolutionary Computation Conference, July 2006.

Muchnick, Steven S. Advanced Compiler Design and Implementation. San Francisco, Calif:
Morgan Kaufmann Publishers, 1997.

Taylor, M., J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffmann, P. Johnson,
J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen M. Frank, S.
Amarasinghe and A. Agarwal. The Raw Microprocessor: A Computational Fabric for Software
Circuits and General Purpose Programs. IEEE Micro, Mar/Apr 2002.

21

List of Abbreviations and Acronyms
AST – Abstract Syntax Tree

CFG – Control Flow Graph

CPU – Central Processing Unit

EA – Evolutionary Algorithm

EC – Evolutionary Computation

EDGE – Explicit Data Graph Execution

GMTI – Ground Moving Target Indicator

GP – Genetic Programming

ISI – Information Science Institute

MPI – Message Passing Interface

NFS – Network File System

OS – Operating System

PBS – Portable Batch System

PCA – Polymorphous Computing Architecture

Raw – Raw Architecture Workstation

RHIT – Rose-Hulman Institute of Technology

Scale – Scalable Compiler for Analytical Experiments

SSA – Static Single Assignment

TASL – TRIPS assembly language

TIL – TRIPS Intermediate Language

TRIPS – Tera-op Reliable and Intelligently Adaptive Processing System

