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Abstract

We presentPRIVACY GRID − a framework for supporting
anonymous location-based queries in mobile information de-
livery systems. ThePRIVACY GRID framework offers three
unique capabilities. First, we provide a location privacy
preference profile model, called location P3P, which allows
mobile users to explicitly define their preferred location pri-
vacy requirements in terms of both location hiding measures
(e.g., location k-anonymity and location l-diversity) andlo-
cation service quality measures (e.g., maximum spatial res-
olution and maximum temporal resolution). Second, we de-
velop three fast and effective location cloaking algorithms
for providing locationk-anonymity and locationl-diversity
in a mobile environment. The Quad Grid cloaking algorithm
is fast but has lower anonymization success rate. The dy-
namic bottom-up or top-down grid cloaking algorithms pro-
vide much higher anonymization success rate and yet are effi-
cient in terms of both time complexity and maintenance cost.
Finally, we discuss a hybrid approach that combines the top-
down and bottom-up search of location cloaking regions to
further lower the average anonymization time. In addition,
we argue for incorporating temporal cloaking into the loca-
tion cloaking process to further increase the success rate of
location anonymization. We also discuss thePRIVACY GRID

mechanisms for anonymous support of range queries. Our
experimental evaluation shows that thePRIVACY GRID ap-
proach can provide optimal location anonymity as defined by
per user location P3P without introducing significant perfor-
mance penalties.

1 Introduction
With rapid advances in mobile communication technolo-

gies and continued price reduction of location tracking de-
vices, location-based services (LBSs) are widely recognized
as an important feature of the future computing environ-
ment [11]. Though LBSs hold the promise of better safety,
more convenience, wider range of entertainment and busi-
ness opportunities in catering to the growing market of mo-
bile users, the ability to locate mobile users and mobile ob-
jects also presents new threats− the intrusion of location pri-
vacy [10, 16].

Location privacy is a particular type of information privacy.
According to [10], location privacy is defined as the abilityto
prevent other unauthorized parties from learning ones’ current
or past location. Location privacy threats refer to the risks that
an adversary can obtain unauthorized access to raw location
data, derived or computed location information by locatinga
transmitting device, hijacking the location transmissionchan-
nel, and identifying the subject (person) using the device [17].
In the United States, privacy risks related to location informa-
tion have been identified in the Location Privacy Protection
Act of 2001 [3]. Many have recognized that without safe-
guards, extensive deployment of LBSs may open doors for
adversaries to jeopardize location privacy of mobile usersand
to imperil LBSs to significant vulnerabilities for misuse and
abuse [12, 16, 25]. For example, location information can be
used to spam users with unwanted advertisements or to learn
about users’ medical conditions, alternative lifestyles or un-
popular political or religious views. Inferences can be drawn
from visits to clinics, doctors’ offices, entertainment clubs or
districts, or political events. Public location information can
lead to physical harm, such as stalking or domestic abuse.

Several approaches have been proposed for protecting lo-
cation privacy of a user. Most of them try to prevent dis-
closure of unnecessary information by techniques that ex-
plicitly or implicitly control what information is given to
whom and when. We classify these techniques into three
categories: (1) Location protection through user-defined or
system-supplied privacy policies; (2) Location protection
through anonymous usage of information; and (3) Location
protection through pseudonymity of user identities, which
uses an internal pseudonym rather than the user’s actual iden-
tity. As described in [10], some location-based services can
operate completely anonymously, such as “when I pass a gas
station, alert me with the unit price of the gas”. Others can
not work without the user’s identity, such as “when I am in-
side the office building, let my colleagues find out where I am”.
Between these two extremes are those applications that can-
not be accessed anonymously but do not require the user’s true
identity, such as “when I walk past a computer screen, let me
teleport my desktop to it”. For those LBSs that require our true
identity, strong security mechanisms, such as location authen-
tication and authorization, have to be enforced in conjunction
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with their location privacy policy. In this paper we concen-
trate on the class of location-based applications that accept
pseudonyms and present the PRIVACY GRID framework for
performing personalized anonymization of location informa-
tion through customizable locationk-anonymity and enabling
anonymous location based queries in mobile information de-
livery systems.

In the context of LBSs and mobile users, locationk-
anonymity refers tok-anonymous usage of location informa-
tion. A subject is considered locationk-anonymous if and
only if the location information sent from a mobile user to a
LBS is indistinguishable from the location information of at
leastk− 1 other subjects. A largerk indicates more difficulty
in linking a location to a particular user and thus higher guar-
antees for location privacy. This uncertainty will increase with
the increasing value ofk. However, the quality of the LBS
depends on the accuracy of location of mobile users, and at
the same time, the more accurate the location information dis-
closed, the higher the risk of location privacy being invaded.
Perfect privacy is clearly impossible as long as communica-
tion takes place. An important question is how much privacy
protection is necessary. Moreover, users often have varying
privacy needs in different contexts.

Location perturbation is an effective technique for imple-
menting locationk-anonymity. One method is to perturb the
location information by reducing its location precision (reso-
lution) in terms of time and space [10, 16]. By reducing the
spatial resolution, a spatial region that containsk − 1 other
subjects’ location information will be used to replace the spa-
tial position of the subject. By reducing the temporal resolu-
tion, the message will be delayed for a certain period of time,
which may be long enough to includek−1 other subjects’ lo-
cation information. The fundamental challenge is how to con-
trol the spatial and temporal resolution reduction to the right
amount that will allow LBSs to remain effective and valuable,
while enabling mobile users to preserve the desired level of
location privacy.

In this paper, we present PRIVACY GRID, a framework
for supporting anonymous location based queries in mobile
information delivery systems. The goal of the PRIVACY-
GRID design is to provide a unified and yet effective location
anonymization framework for all types of location queries so
that mobile users can enjoy LBSs without revealing their exact
location information. This paper makes three unique contri-
butions.

• First, we provide a location privacy preference profile
model, called location P3P, which allows mobile users
to explicitly define their preferred location privacy re-
quirements in terms of both location hiding measures
(i.e., location k-anonymity and location l-diversity) and
location service quality measures (i.e., maximum spatial
resolution and maximum temporal resolution). Our loca-
tion P3P model supports personalized and continuously
changing privacy needs of a diverse user base.

• Second, we develop three fast and effective location

cloaking algorithms for providing location k-anonymity
and location l-diversity while maintaining the utility of
LBSs. The Quad Grid cloaking algorithm is simple and
fast but has low success rate for location anonymiza-
tion. In contrast, the dynamic bottom-up grid cloaking
and the dynamic top-down grid cloaking provide high
anonymization success rate and yet are efficient in terms
of both time complexity and grid index maintenance cost.
All three algorithms can dynamically compose the lo-
cation cloaking regions and select the smallest one that
meets both the location anonymity requirements and the
location QoS requirements as specified in users’ location
P3P profiles.

• Third, we describe a hybrid approach that combines the
top-down and bottom-up search of the minimal location
cloaking regions to further lower the average anonymiza-
tion time. In addition, we briefly describe the possible
increase of the anynimization success rate by a careful
combination of temporal cloaking with spatial cloaking.

• We also describe the mechanisms for processing per-
turbed location range queries.

• Finally, we conduct extensive experimental evaluation
of PRIVACY GRID approach, showing that the PRI-
VACY GRID algorithms can provide optimal location
anonymity as defined by per user location P3P without
introducing significant performance penalties.

The rest of this paper is organized as follows. We give
an overview of the PRIVACY GRID framework in Section 2.
We present the three grid-based spatial cloaking algorithms
in Section 3 and discuss their efficiency and effectiveness
through analysis and examples. We extend spatial cloaking
by introducing two possible enhancements in Section 4 and
discuss the mechanisms for processing anonymized location
queries at the LBS servers in Section 5. We report our exper-
imental evaluation results in Section 6 and discuss the related
work in Section 7. Section 8 concludes the paper with a sum-
mary and brief discussion of future work.

2 PRIVACY GRID : An Overview
We assume that the LBS system powered by PRIVACY-

GRID consists of mobile users (clients), wireless network, lo-
cation anonymization server, and LBS servers. Mobile users
communicate with the LBS servers through one or more PRI-
VACY GRID location anonymization servers. Each mobile
user establishes communication with an anonymization server
through an authenticated and encrypted connection. Each lo-
cation anonymization server connects to a number of base
stations, tracks the location updates of the mobile users in
the range of those base stations, and performs the location
anonymization for both location queries and location updates
from these mobile users.

In this section, we present an overview of PRIVACY GRID.
We first describe the three tier system architecture of PRI-
VACY GRID and briefly discuss the set of location privacy re-
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Fig. 1: System Architecture

quirements. Then we define the basic concepts used through-
out the paper and outline the location anonymization process.

2.1 System Architecture

The PRIVACY GRID system promotes the three-tier archi-
tecture for supporting anonymous information delivery in a
mobile environment, as shown in Figure 1. The top tier is
the modeling of users’ personal location privacy requirements.
The middle tier is the location perturbation service typically
provided by a trusted third party location server, specialized
in location tracking and anonymization service. The third tier
is the processing of cloaked location queries at the individ-
ual LBS providers. A number of research and development
projects have used the trusted third party location anonymizer
infrastructure [16, 14, 21] for protecting location privacy of
mobile users.

We devise our location privacy preference profile model
to allow mobile users to specify what, when, how (and with
whom) their location information could be shared. In addition
to the standard P3P specification [4], we add four location pri-
vacy specific measures and refer to them as location P3P. The
first measure is thelocation k-anonymity, which allows the
mobile user to control her state of being not identifiable from
a set ofk − 1 other users. The second measure is theloca-
tion l-diversity, which allows the mobile user to control her
state of being not identifiable from a set ofl actual (physical)
locations (such as buildings or postal addresses). This mea-
sure can be seen as a companion measure of the locationk
anonymity, and is particularly useful in reducing the risksof
unwanted location inference when there arek or more distinct
users at a single physical location (such as a clinic office ora
political event gathering). The third measure is themaximum
spatial resolution, which allows the mobile user to control the
spatial resolution reduction within an acceptable level ofQoS.
It can be changed or adjusted according to the type of location
services and the time of day, month, or year when the LBS are
being offered. Similarly, the fourth measure is themaximum
temporal resolution, which controls the temporal resolution
reduction within the acceptable duration of time to keep the

perceived QoS of the mobile user within an acceptable delay
based on the type of location services and the time when the
LBS is being requested.

The middle tier is the location perturbation service typi-
cally offered by a third party location anonymization server.
The location anonymization server anonymizes the location
information from mobile users before it can be passed to the
actual LBS providers. In the first prototype of PRIVACY GRID,
we use the spatial and temporal location cloaking techniques
to perform location perturbation. The location information
of a mobile user (such as her position update or the position
where she poses a location query) will be mapped to a loca-
tion cloaking box based on the location P3P of the user. For
those mobile users that do not want to be tracked by others,
no perturbation will be performed on their location updates.
For those LBSs that offer location dependent information over
public data, such as restaurants, gas stations, offices, andso
forth, no location updates of mobile users will be passed from
the location anonymization servers to the LBS servers. Mo-
bile users who wish to allow their movements to be tracked by
certain LBSs or some group mobile users may use their loca-
tion P3P to specify how they want their location updates to be
cloaked and to which LBS servers their location updates can
be provided. Similarly, for location queries, there are a couple
of alternative ways for the location anonymizer service to pass
the location cloaking box to the corresponding LBS provider.
For example, one can choose to have the location anonymizer
as the middleman between mobile users and individual LBS
providers such that location queries are posted to the location
anonymizer and passed to the LBS provider and the result is
returned to the mobile user through the location anonymizer.
Alternatively, before contacting the LBS provider directly, a
mobile user can have her location informationfiltered by re-
ducing its precision/resolution in terms of time and space ac-
cording to her location P3P, ensuring that the location queries
sent to the LBS meet her desired locationk-anonymity and
location l-diversity requirements. In the subsequent sections
we present the PRIVACY GRID algorithms for efficient and ef-
fective location cloaking in Section 3.

It is important to note that location perturbation may result
in the fact that the LBS provider sends more than requested re-
sults back to the mobile user. Thus the mobile node needs to
perform further filtering before presenting the results to the
mobile user, leading to additional communication and pro-
cessing overhead on mobile nodes. Thus, the third tier of PRI-
VACY GRID is dedicated to the methods for efficient process-
ing of perturbed location queries at the individual LBS server.
In contrast to the existing literature on location query process-
ing that concentrates on spatial positions (points), we need to
extend some existing spatial query processing methods to spa-
tial region based techniques. For example, [21] described an
approach to process location cloaked kNN queries.

2.2 Location Privacy Requirements

In PRIVACY GRID the following requirements are consid-
ered essential for supporting anonymous location queries.



1. Personalized User Privacy Levels:We argue that lo-
cation privacy consists of two measures: locationk-
anonymity and locationl-diversity. The former allows
a mobile user to control a state of being not identifiable
from a set ofk − 1 other users. The latter allows a mo-
bile user to control a state of being not identifiable from
a set ofl actual (physical) locations (such as buildings
or postal addresses). These two measures are compli-
mentary and particularly useful in reducing the risks of
unwanted location inference when there are more than
k − 1 distinct users at a single physical location (such as
a clinic office or a church). The system must have the
capability to allow a mobile user to specify the desired
k value for locationk-anonymityand the desiredl value
for location l-diversity for each of her location updates
or location queries. The user may change her privacy
preference levels as often as required or even on a per
message basis.

2. QoS Guarantees:The PRIVACY GRID framework pro-
vides a mobile user with the capability of specifying two
QoS metrics: (1) the maximum spatial resolution, indi-
cating that the amount of spatial inaccuracy she can toler-
ate to maintain meaningful and acceptable service qual-
ity; and (2) the maximum temporal resolution, ensuring
that the delay introduced for location cloaking is accept-
able from QoS standpoint. By utilizing these two quality
metrics, PRIVACY GRID aims at devising location cloak-
ing algorithms that find the smallest possible cloaking re-
gion for each location cloaking request of a mobile user,
which satisfies her privacy requirements defined by loca-
tion k-anonymity and locationl-diversity.

3. Dynamic Tradeoff between privacy and quality:
PRIVACY GRID location perturbation algorithms should
be capable of dynamically making tradeoffs between lo-
cation privacy and location QoS. Unnecessarily large
cloaking boxes will lead to poor QoS in terms of larger
result set to transport and filter at the mobile client side,
inevitably leading to higher delays for obtaining useful
query results.

4. Efficiency and Scalability: In PRIVACY GRID a mobile
user can change her location P3P at any time. The cloak-
ing algorithms should be effective and scalable in the
presence of changing requirements on both the number
of mobile users and the content of location P3P. At the
same time, the cloaking algorithms must be fast, keeping
the perceived delays due to location anomymization as
low as possible.

5. Unified Framework: A single unified framework
should be devised to meet personalized and customizable
location anonymization demands and support a variety of
anonymous LBSs with respectable performance, privacy
guarantees and quality assurance.

2.3 Basic Concepts

In this section we only defines the basic concepts that are
required for the subsequent discussion of the PRIVACY GRID

framework.
Universe of Discourse (UoD):We refer to the geographical
area of interest as the universe of discourse (or map), whichis
defined byU = Rect(x, y, w, h), wherex is the x-coordinate
andy is the y-coordinate of the lower left corner of a rectangu-
lar region,w is the width andh is the height of the universe of
discourse. Basically, we consider maps which are rectangular
in shape.
Grid and Grid cells: In our framework, we map the universe
of discourseU = Rect(x, y, w, h) onto a gridG of cells.
Each grid cell is anα × β rectangular area, whereα, β are
system parameters that defines the cell size of the gridG. For-
mally, a grid corresponding to the universe of discourseU can
be defined asG(U,α, β) = {Ai,j : 1 ≤ i ≤ M, 1 ≤ j ≤ N ,
Ai,j = Rect(x + i× α, y + j × β, α, β),M = dw/αe, N =
dh/βe}. Ai,j is anα × β rectangular area representing the
grid cell that is located in theith column andjth row of the
grid G.
Position to Grid Cell Mapping: Let ~p = (px, py) be the
position of a moving object in the universe of discourse
U = Rect(x, y, w, h). Let Ai,j denote a cell in the grid
G(U,α, β). Pmap(~p) is a position to grid cell mapping, de-
fined asPmap(~p) = A

d px−x
α

e,d
py−y

β
e
.

Current Grid Cell of a Moving Object: Current grid cell
of a moving object is the grid cell which contains the current
position of the moving object. Ifom is a moving object whose
current position, denoted as~p, is in the Universe of Discourse
U , then the current grid cell of the object is formally defined
by curr cell(om) = Pmap(~p).
User Privacy Preference Profile: In PRIVACY GRID

a personalized location privacy model is used. A user
registered with the anonymization server specifies her lo-
cation privacy requirements in terms of her desired user
anonymity levelk, desired location diversity levell, max-
imum spatial resolution{dx, dy}, and maximum tem-
poral resolution dt. Each location P3P record is of
the form 〈objectid, LBSinfo, requestid, k, l, {dx, dy, dt}〉,
whereobjectid identifies the user,LBSinfo is optional and
provides the type and the identifier of the LBS this P3P record
is applied to, andrequestid is optional and is used to uniquely
identify a service request posed by the user with the given
objectid. We usek = 1 andl = 1 as the default setting (nei-
ther anonymity nor diversity is required). Whenk = 1 and
l = 1, dx, dy, dt are set tonil.

2.4 Location Anonymization Server

In PRIVACY GRID, each incoming location service re-
questms received by the location anonymization server is of
the form〈objectid, requestid, {x, y, t}, F, k, l, {dx, dy, dt}〉.
Theobjectid andrequestid uniquely identify a message. The
coordinate(x, y) and the timestampt together form the three
dimensional spatio-temporal location point of the mobile user
who issued the messagems. F denotes the content filter of
the request, such as gas stations, french restaurants, or yel-
low taxi cabs. The parameters{k, l, dx, dy, dt} denote the
location P3P specified by the mobile user who issued this



request. The location anonymization server will transform
the original messagems to a location perturbed message
mt of the form 〈h(objectid||requestid), {X : [xs, xe], Y :
[ys, ye], I : [ts, te]}, F}〉, whereh is a secure hash function,
X : [xs, xe] andY : [ys, ye] denote the spatial cloaking box
of the message on x-axis and y-axis respectively, such that
xe − x, x− xs ≤ dx andye − y, y − ys ≤ dy; andI : [ts, te]
denotes the temporal cloaking interval such thatte − ts ≤ dt.
Furthermore, there are more thank − 1 other mobile users
and more thanl symbolic addresses located within the same
spatio-temporal cloaking box defined by〈X : [xs, xe], Y :
[ys, ye], I : [ts, te]〉. We call this process message perturba-
tion through spatio-temporal cloaking. We will describe the
three grid-based spatial cloaking algorithms for finding the
minimal spatial cloaking box− 〈X : [xs, xe], Y : [ys, ye]〉
and the minimal temporal cloaking periodI : [ts, te] that meet
the k-anonymity and l-diversity requirement in the subsequent
sections.

3 PRIVACY GRID Spatial Cloaking Algorithms
In this section we first describe the basicQuad Grid al-

gorithm for finding the minimal spatial cloaking box for the
given location of a mobile user. By minimal, we mean that
there exist no smaller spatial cloaking regions that satisfy both
locationk-anonymity and locationl-diversity as well as max-
imum spatio-temporal resolution constraints defined in the
users’ location P3P. We then present two dynamic grid-based
cloaking algorithms: bottom up spatial cloaking and top-down
spatial cloaking. Both provide much higher anonymization
success rate than the basic Quad Grid cloaking algorithm and
reduced grid maintenance cost while keeping the desired per-
formance.

We first give an overview of the basic data structures used
in PRIVACY GRID. Then we introduce the Quad Grid cloaking
approach and illustrate the algorithm by examples. Bottom-up
and Top-down spatial cloaking are introduced as two dynamic
grid cloaking algorithms that improve the cloaking effective-
ness of the Quad Grid approach.

3.1 Data Structures

In PRIVACY GRID, the entire map is divided into a grid of
cells of sizeα × β. α andβ are system-defined parameters.
Each mobile user is responsible for reporting its location to
the anonymization server either periodically or when it moves
outside its current grid cell [13]. Upon receiving a location
update, the location anonymization server maintains the fol-
lowing data structure: the mapping of a mobile user’s position
to its current grid cell, the CellObjectCountMap (to be defined
below), and the hierarchical grid index. When a mobile user
moves out of its current cellCi and entered a new cellCj , the
grid index needs to be updated for both cells on their CellOb-
jectCountMap. Figure 2 illustrates the hierarchical grid index
and the Cell Object Count Map by an example.
Cell Object Count Map: In addition to the grid cell to object
mapping maintained by the grid index, we also keep a count of
the number of mobile objects and the number of still objects
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Fig. 2: Grid Index Data Structures for PRIVACY GRID

(so-called symbolic addresses, such as gas stations, restau-
rants, offices, and so forth) located in each grid cell. This
allows for quick computation of the total number of mobile
users and the total number of still objects located in a given
spatial area using the grid cells and the grid index. For each
grid cell, the count of still objects remains unchanged mostof
the time. However, the count of mobile objects may change as
mobile users move from one grid cell to another. The mobile
users’ movement across its current grid cell requires the mo-
bile object count for the old cell to be reduced by one and the
corresponding count for the new cell to be increased by one.
Hierarchical Grid Index: The Hierarchical Grid Index
(HGI) is amulti-level[24] data structure which allows for fast
and efficient computation of object counts belonging to a par-
ticular region of the map. The construction of a HGI is shown
in Figure 2 and is performed by subsequent splitting of grid
cells into four smaller equal sized cells at the next lower level
of the index. The number of cells at the levell (≤ 0) of the
index is4l, wherel indicates the level of the index. At level
zero (l = 0) the index comprises of a single cell representing
the entire map. This cell is split into four equal sized cellsto
form level one of the index. We call the cell at leveli thepar-
ent cellof the fourchildren cellsat levelj wherej = i + 1.
Subsequently the cells at levelj may further be split into four
cells each to form the levelj + 1 of the index. Figure 2 dis-
plays an HGI structure of height three (l = 2) showing the
parent-child cell relationships for each level of the index. The
HGI maintains the object to cell mapping only for the lowest
level of the index. However, the cell object count map is also
maintained for the higher levels of the index in order to aid
fast calculation of cloaking areas (see Section 3.2 for detail).
Mobile object movement may lead to changes in the mobile
object count for cells at the lowest level and for the subsequent
parent cells too.

3.2 The Quad Grid Cloaking Algorithm

The Quad Grid Cloaking algorithm presents a basic and
straightforward way of utilizing the HGI data structure to
perform spatial cloaking. The algorithm takes as the input
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Fig. 3: Quad Grid Cloaking Example

the original messagems from a mobile user and produces
the perturbed messagemt by replacing the two dimensional
spatial location point(x, y) with the minimal spatial cloak-
ing box 〈X : [xs, xe], Y : [ys, ye]〉, which satisfies the mo-
bile users’ location privacy requirement{k, l}, and the lo-
cation service quality requirement{dx, dy, dt}. Algorithm 1
presents a sketch of the algorithmic detail. It first invokesthe
GridIndexSearchfunction to obtain the current cell identifier
(cid) of the mobile user using herobjectid and her current
spatial location point(x, y). Then the algorithm performs
the spatial cloaking recursively and each iteration proceeds
in three steps. It first locates the number of moving objects
(MN ) and the number of still objects (SN ) in the current cell
cid. Then it compares{MN,SN} with the location privacy
requirement{k, l} of the mobile user (objectid) and computes
the minimal spatial cloaking box. If the current cell does not
meet the anonymity requirements, then the parent cell ofcid
will be used to start the next iteration.

Concretely, the algorithm first uses the current cell identi-
fier for the mobile user to obtain the number of moving objects
(MN ) and the number of still objects (SN ) within this partic-
ular cell by searching theCell Object Count Mapdata struc-
ture. Then it performsk-anonymity andl-diversity check on
this grid cell. IfMN ≥ k andSN ≥ l, then this single cell
can potentially form the spatial cloaking box for this request
and may be returned as the answer after verifying that it does
not violate the maximum spatial resolution constraints (lines
2–5). Otherwise, the algorithm attempts to extend the search
for cloaking box in vertical or horizontal direction of the cur-
rent cell. We define thevertical neighbor (cidv) of cell cid
as the cell located above or belowcid with the same parent
cell in the HGI. Thehorizontal neighbor (cidh) is identified
as the cell located on either side ofcid with the same parent
cell in the HGI. The algorithm will then calculate the object
countsMN andSN of cid andcidv as well ascid andcidh

as shown in line 8 of the algorithm. If only one of these two
cell combinations satisfies thek-anonymity andl-diversity re-
quirement (lines 9–17), the algorithm attempts to choose that
combination to continue the verification of whether it meets

Algorithm 1 Quad Grid Cloaking

Input: {objectid, requestid, x, y, t}, {dx, dy, dt}, {k, l}
Output: MinimalSpatialCloakingBox

1: cid←− GridIndexSearch(objectid, x, y)
2: FUNCTION QUAD GRID CLOAKING(k, l, {x, y},
3: {dx, dy}, cid)
4: (MN,SN)←− CellObjectCountMapSearch(cid)
5: if (cid.MN ≥ k) && (cid.SN ≥ l) then
6: CheckCloakingBoxV alidity(x, y, dx, dy)
7: return cid;
8: end if
9: cidv ←− Vertical neighbor cell of cid.

10: cidh ←− Horizontal neighbor cell of cid.
11: MNv = cid.MN + cidv.MN ;MNh = cid.MN +

cidh.MN ;
12: SNv = cid.SN +cidv.SN ;SNh = cid.SN +cidh.SN ;
13: if (((MNv ≥ k) && (SNv ≥ l)) ‖ ((MNh ≥ k) &&

(SNh ≥ l))) then
14: if ((MNv ≥ k && MNh ≥ k && MNh > MNv) ‖

MNv < k) then
15: CheckCloakingBoxV alidity(x, y, dx, dy)
16: returncid, cidh;
17: else
18: if (MNh == MNv) then
19: if (SNh ≥ SNv) then
20: CheckCloakingBoxV alidity(x, y, dx, dy)
21: returncid, cidh;
22: else
23: CheckCloakingBoxV alidity(x, y, dx, dy)
24: returncid, cidv;
25: end if
26: end if
27: else
28: CheckCloakingBoxV alidity(x, y, dx, dy)
29: returncid, cidv;
30: end if
31: else
32: QUAD GRID CLOAKING(k, l, {x, y}, {dx, dy},

PARENT(cid));
33: end if

the maximum spatial resolution constraint. If both cell com-
binations satisfy thek-anonymity andl-diversity requirement,
the algorithm picks the combination which provides a higher
k anonymity level (or higherl-diversity level when both com-
binations have the samek value). Upon passing the privacy
check, the algorithm will validate whether the selected cell
combination meets the maximum spatial resolution constraint
of this request, and if so, it is returned as the minimal spatial
cloaking box (line 11 and line 14). However, if this selected
cloaking box is does not meet the maximum spatial resolu-
tion requirement (i.e., bigger than the range defined by the
maximum spatial resolution), the algorithm has to drop this
message (unless temporal cloaking is turned on). In case that
neither of the two combinations satisfy thek-anonymity and
l-divrsity requirements, the algorithm starts the next iteration
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Fig. 4: Quad Grid Cloaking Weakness

with the parent cell of the current cid.
We illustrate the working of Algorithm 1 by example. Fig-

ure 3(a) displays a HGI structure of height two. For simplicity
we only display the mobile object count for each cell at a par-
ticular time instant within each cell since the still objectcount
is relatively stable. We observe that the mobile object count
for each cell at level one is the sum of the object counts for
its children cells at level two. Figure 3(b) illustrates thework-
ing of the Quad Grid Cloaking algorithm for a given location
anonymization request issued by a mobile object within the
shaded cell (the cell with object count of 6). Suppose that
this anonymization request has thek-anonymity level set to
k = 20. NeitherMNv = 12 nor MNh = 10 satisfy this k-
anonymity requirement of 20, so the algorithm selects the par-
ent cell at level one of HGI. However, this parent cell has the
mobile object count of 18, thus it is still insufficient to meet
the desiredk-anonymity level of 20. The algorithm needs to
further expand the candidate cloaking box in either vertical
or horizontal direction. If the expansion proceeds in vertical
direction, the candidate cloaking box provides k-anonymity
level of k’= 30, otherwise we obtain k’=33 by expanding the
box in the horizontal direction. Given that the cloaking area
will be the same irrespective of whether the expansion is along
the vertical or horizontal direction, the algorithm selects the
candidate cell combination that provides a higher anonymity
level. In this example, the horizontal expansion is chosen as
the final cloaking box as displayed in the shaded area at the
bottom left part of Figure 3(b).

3.3 Problems with Quad Grid Cloaking

The Quad Grid cloaking algorithm is extremely fast as it
uses the HGI data structure that maintains the object counts
at different levels of the Grid index. However, the algorithm
is restricted by the static nature of the Quad Grid data struc-
ture when performing the cell-based expansion for finding
the minimal spatial cloaking box that meets both privacy and
quality constraints of the mobile user. We illustrate the per-
formance penalty of this problem by example in this section
and provide experimental evaluation to validate our analysis
in section 6.

Again for simplicity we only deal with the mobile object
counts in this example as the still object counts are insensi-
tive to the movement of mobile users. Figure 4(a) displays the
cloaking area constructed by the Quad Grid algorithm (at the
lowest level of HGI) for the example given in Figure 3. We ob-
serve that the minimal cloaking area chosen is unnecessarily

larger than required even though the achieved anonymity level
(k’=33) is well above the required anonymity level of k=20.
Figure 4(b) displays a couple of scenarios where the cloaking
area can be constructed using fewer number of base level cells
while still meeting the required anonymity level. There area
number of weaknesses that prevent the Quad Grid approach
from finding the smallest possible cloaking area within the
user specified privacy and quality requirements.

1. Rapid and constrained area expansion:At each itera-
tion, the Quad Grid algorithm expands the cloaking area
to twice its current size by selecting a horizontal or ver-
tical neighboring cell. In case that the iteration involves
moving to a higher level of the HGI (line 18 in algo-
rithm 1), the area expands to four times of its size at the
beginning of the iteration. At the higher levels of a HGI,
this leads to a rapid expansion in the candidate cloak-
ing area, restricting the ability of the algorithm to find
the minimal cloaking box that meets the location P3P re-
quirements.

2. Unnecessarily Highk-Anonymity: From the above ex-
ample we observe that the Quad Grid cloaking algorithm
achieves much higher anonymity levels than the desired
levels. Unnecessarily large anonymity levels have an as-
sociated cost of a larger cloaking area which hurts the
QoS provided to the user.

3. Anonymization Success Rate:An important goal of the
location cloaking algorithm is to anonymize messages at
a higher success rate while meeting the user specified pri-
vacy preference profile. The Quad Grid algorithm, due
to rapid expansion of the cloaked areas, often overshoots
the maximum spatial resolution, thus resulting in higher
percentage of messages being dropped due to its inability
to find a satisfactory perturbation (see Section 6 for ex-
perimental results). This severely hurts the performance
of the algorithm.

4. Pre-defined Cloaking Path: The Quad Grid algorithm
utilizes a fixed hierarchy of the HGI data structure to
perform cell expansion in searching for minimal spatial
cloaking box, thus limiting its ability to explore all op-
tions for cell-based expansion. As a result, the algorithm
can only select the cloaking areas through a pre-defined
quad grid cell composition structure along the hierarchy
of HGI.

To overcome the problems with Quad Grid cloaking, we need
to relax the rigid hierarchical quad grid cell expansion process
implied by the construction structure of HGI. This motivates
us to look into the dynamic cell expansion approach. In the
rest of the paper we focus on the bottom-up and the top-down
grid cloaking algorithms. Unlike the Quad Grid cloaking ap-
proach, the dynamic grid cloaking approach is able to pro-
duce close to optimal cloaking areas. The algorithm accepts
the same input arguments as the Quad Grid approach (recall
Section 3.2).



3.4 Dynamic Bottom-Up Grid Cloaking

The Bottom-Upapproach to dynamic cloaking starts with
the base cell containing the object from which the cloaking
request has originated. A sketch of the algorithm is given in
Algorithm 2. The algorithm first determines if the current cell
(cid) has sufficient mobile object count and still object count
to satisfy the privacy requirements and verifies the validity of
the cloaking box in terms of the user specified maximum spa-
tial resolution levels (lines 2–6).
Algorithm 2 Bottom-Up Dynamic Grid Cloaking

Input: {objectid, requestid, x, y, t}, {dx, dy, dt}, {k, l}
Output: MinimalSpatialCloakingBox

1: cid←− GridIndexSearch(objectid, x, y)
2: FUNCTION BOTTOM UP GRID CLOAKING(k, l,
3: (x, y), (dx, dy), cid)
4: if (cid.MN≥ k) && (cid.SN ≥ l) then
5: CheckCloakingBoxV alidity(x, y, dx, dy)
6: return cid;
7: end if
8: while (selectedCells.MN< k ‖ selectedCells.SN< l) do
9: RowN ←− Row above uppermost selected row.

10: RowS ←− Row below lowermost selected row.
11: ColE ←− Right column of rightmost selected column.
12: ColW ←− Left column of leftmost selected column.
13: CheckRowSpatialV alidity(x, dx, RowN );
14: CheckRowSpatialV alidity(x, dx, RowS);
15: CheckColSpatialV alidity(y, dy, ColE);
16: CheckColSpatialV alidity(y, dy, ColW );
17: MNN = selectedCells.MN + RowN .MN ;
18: SNN = selectedCells.SN + RowN .SN ;
19: MNS = selectedCells.MN + RowS .MN ;
20: SNS = selectedCells.SN + RowS .SN ;
21: MNE = selectedCells.MN + ColE .MN ;
22: SNE = selectedCells.SN + ColE .SN ;
23: MNW = selectedCells.MN + ColW .MN ;
24: SNW = selectedCells.SN + ColW .SN ;
25: odd iteration:
26: selectRowOrColumnToAdd(MNN ,MNS ,MNE ,
27: MNW , SNN , SNS , SNE , SNW );
28: even iteration:
29: if (addedRowInPreviousIteration)then
30: selectColumntoAdd(MNE ,MNW , SNE , SNW );
31: else
32: selectRowtoAdd(MNN ,MNS , SNN , SNS);
33: endif
34: end while
35: MinimalCloakingBox←− CloakingArea(selectedRows,

selectedColumns)
36: return MinimalCloakingBox;

In case that the current cell does not meet the user’s pri-
vacy requirements, the algorithm expands the current cell (i.e.,
the candidate cloaking box) to any of the four neighboring
cells. This is in contrast to the Guad Grid approach that re-
strict the expansion to only those neighboring cells with the
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Fig. 5: Bottom-Up Dynamic Hierarchical Grid Cloaking Example

same parent in HGI. The decision on which of the four cells
to choose first is based on the highest object count in the can-
didate cells. The cells composing the cloaking box are identi-
fied by their rows and columns in the grid index. Theselected
rows and selected columnsare maintained by the algorithm
(in an incremental order) and can be used to infer the selected
cells for forming the final cloaking area. The current candi-
date cloaking box may be expanded further in any direction
(North, South, East or West) by adding the row above the up-
permost selected row (or below the lowermost selected row)
or the column to the right of the rightmost selected column (or
to the left of the leftmost selected column), thus dynamically
building the cell-based cloaking box by adding suitable rows
or columns. The rows denoted byRowN , RowS or columns
denoted byColE , ColW (lines 9–12) are used to calculate
the cell count after addition (lines 17–24). The validity of
the rows or columns to meet the maximum spatial resolution
requirements is checked before proceeding with the addition
(lines 11–14). The algorithm selects the row or column which
leads to the maximum object count after addition. For every
odd iteration, the algorithm determines whether to add a row
or column as the cloaking area may be expanded in any of
the four directions (lines 25–27). For even iterations, theal-
gorithm expands the cloaking area, depending on whether a
row or column was added in the previous iteration, in order
to ensure that no skew is introduced in any direction (lines
28–33). For example, if the algorithm added a row during the
previous iteration, the current iteration would involve addition
of either the columnColE or ColW . The steps (lines 8–34)
are recursively repeated as long as the total object count ofall
cells in the selected rows and columns is less than the required
k-anonymityandl-diversity requirements. Upon meeting the
privacy and quality requirements, the algorithm uses the se-
lected rows and columns to determine the selected cells and
composes the minimal cloaking area in terms of the selected
cells. It returns the final minimal spatial cloaking area and
terminates.

The working of theBottom-Updynamic approach is ex-
plained through an example in Figure 5. For simplicity we
only use the mobile object count in this example. The cloak-
ing request originates from the shaded cell with an object
count of six. As this is insufficient to meet thek-anonymity
requirement, the algorithm starts expanding the selected cell.
Note that the algorithm works with a flat grid index (or the
lowest level of the HGI data structure). Thus no additional in-



formation related to higher levels of the HGI hierarchy needs
to be maintained. The current cell is located at the second
row and the second column in the grid, which are marked as
selectedRowsandselectedColsby the algorithm respectively.
All neighboring cells of the shaded cell are considered and
the first row to the north which increments the object count
to 12 is chosen as the first cell to expand and added into the
selectedRows. As the total object count of 12 in this candidate
cloaking box does not meet the k-anonymity requirement of
k = 20, the algorithm starts the next iteration. In this iteration,
we first consider the column to the left (ColW ), which is not
sufficient to meet the privacy requirements. Then we consider
the addition of the right column (third column in the grid)
which provides a cloaking area with the object count of k’=21,
which is sufficient to meet the anonymity requirement. Thus
the algorithm terminates and returnsselectedRows = {1, 2}
andselectedCols = {2, 3}. We can see the area provided
by the dynamic bottom-up grid cloaking approach is much
smaller than the one provided by the Quad Grid approach (in
Figure 3), even though both meet the privacy requirements.

3.5 Dynamic Top-Down Grid Cloaking

Dynamic cloaking may also proceed by starting with the
largest possible cloaking area as permitted by the maximum
spatial resolution. We call this approach theTop-Downdy-
namic gird cloaking and Algorithm 3 gives the algorithmic
sketch. First, the top-down algorithm calculates the cells
needed to compose the largest cell-based candidate cloaking
box, which meets the maximum spatial tolerance requirement
(line 4). The cloaking area is expressed as a set ofselect-
edRowsandselectedCols, as in the bottom-up approach. If
the largest possible candidate cloaking box fails to meet the
required privacy requirements, the message cannot be cloaked
using the user-defined privacy and quality metrics and the al-
gorithm terminates (lines 5–7). The algorithm proceeds be-
yond this step only if it is possible to cloak the message. Oth-
erwise, the top-down approach repeatedly removes appropri-
ate rows or columns from themaximum cloaking areagener-
ated in line 4. Each odd iteration selects the outermost rowsor
columns (lines 9–12) with minimum object counts, so that the
selected cloaking area (after removing a row or column) has
the maximum possible object count (lines 13–33). If any of
the calculated values are higher than the k-anonymity require-
ment, rows or columns may be removed appropriately, pro-
vided that the row or column containing the object which ini-
tiated the cloaking request is not removed (line 21–24). Even
iterations may remove rows or columns dependent on the steps
performed by the previous iteration (lines 25–30). The algo-
rithm terminates if none of the object counts are higher than
the user specifiedk value andl value (lines 31–33). It returns
the final cloaked spatial area defined by theselectedRowsand
selectedCols. The top-down approach speeds up the cloak-
ing in certain scenarios when compared to the bottom-up ap-
proach.

The example in Figure 6 illustrates the Top-Down approach
with the same starting conditions as in the previous exam-

Algorithm 3 Top-Down Dynamic Grid Cloaking

Input: {objectid, requestid, x, y, t}, {dx, dy, dt}, {k, l}
Output: MinimalSpatialCloakingBox

1: cid←− GridIndexSearch(objectid, x, y)
2: FUNCTION TOPDOWN GRID CLOAKING(k, l,
3: (x, y), (dx, dy), cid)
4: selectedCells =MaxCloakingArea{x, y, dx, dy};
5: if (selectedCells.MN< k) ‖ (selectedCells.SN< l) then
6: break;
7: end if
8: while (selectedCells.MN> k && selectedCells.SN> l)

do
9: RowN ←− Uppermost selected row.

10: RowS ←− Lowermost selected row.
11: ColE ←− Rightmost selected column.
12: ColW ←− Leftmost selected column.
13: MNN = selectedCells.MN −RowN .MN ;
14: SNN = selectedCells.SN −RowN .SN ;
15: MNS = selectedCells.MN −RowS .MN ;
16: SNS = selectedCells.SN −RowS .SN ;
17: MNE = selectedCells.MN − ColE .MN ;
18: SNE = selectedCells.SN − ColE .SN ;
19: MNW = selectedCells.MN − ColW .MN ;
20: SNW = selectedCells.SN − ColW .SN ;
21: if ((MNN ≥ k && SNN ≥ l) ‖ (MNS ≥ k &&

SNS ≥ l) ‖ (MNE ≥ k && SNE ≥ l) ‖ (MNW ≥ k
&& SNW ≥ l)) then

22: odd iteration:
23: selectRowOrColumnToRemove(MNN ,MNS ,
24: MNE ,MNW , SNN , SNS , SNE , SNW );
25: even iteration:
26: if (removedRowInPreviousIteration)then
27: selectColtoRemove(MNE ,MNW , SNE , SNW );
28: else
29: selectRowtoRemove(MNN ,MNS , SNN , SNS);
30: endif
31: else
32: break;
33: end if
34: end while
35: MinimalCloaking Box←− CloakingArea(selectedRows,

selectedColumns)
36: return MinimalCloaking Box;

ples. The shaded area in the leftmost figure displays the ini-
tial maximum possible cloaking area. The end result with the
top-down approach is similar to the result obtained using the
bottom-up approach in this example.

4 Possible Enhancements

In this section we discuss two enhancements for the PRI-
VACY GRID spatial cloaking algorithm: thehybrid cloaking
approach and the incorporation oftemporal toleranceinto the
spatial cloaking algorithms.
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Fig. 6: Top-Down Dynamic Hierarchical Grid Cloaking Example

4.1 Hybrid Cloaking

The hybrid cloaking algorithm combines the bottom-up
and top-down approaches to improve the performance of find-
ing minimal cloaking region for a location service request.
There are several ways that one can combine the top-down
and bottom up approach. For example, making a choice upon
receiving a location anonymization request. In this case, the
main challenge is how to appropriately decide whether to pro-
ceed in a bottom-up or a top-down manner upon receiving
a message cloaking request. When a request has lower k-
anonymity level and higher maximum spatial resolution value,
the hybrid algorithm proceeds in a bottom-up manner. How-
ever, for the request with a higher k-anonymity value and a
low maximum spatial resolution value, the top-down approach
is chosen as it works faster in finding the minimal cloaking
box. We provide a brief analysis on the factors for making
such decision when we assume a relatively stable state of cells
being considered and a uniform object distribution.

Consider the map with a grid comprising of cells of size
α×β superimposed on top of it. We assume that each cell has
n objects on average as this analysis assumes a uniform object
distribution. Our dynamic approaches advocate addition (or
removal) of rows and columns alternately. We assume that the
final cloaking area is constructed by adding an equal number
of rows and columns. Given an anonymization request with
anonymity levelk, we conclude that,

r =

√

k

n
(1)

wherer2 is the average number of cells estimated to meet
our anonymity requirements, consequently we need to addr
rows and an equal number of columns to form the required
cloaking area. We assume that the maximum cloaking area as
defined by the maximum spatial resoluton values consists of
a rows andb columns which can be approximately quantified
as below.

a = 2× b
dy

β
c+ 1 (2)

b = 2× b
dx

α
c+ 1 (3)

The bottom-up approach starts with a singe cell and may ex-
pand to includea × b cells, requiring addition ofa − 1 rows
andb − 1 columns. However, on an average it is expected to

add onlyr−1 rows andr−1 columns wherer is as defined in
equation 1 above. The top down approach starts witha rows
andb columns and it is expected to removea − (r − 1) rows
andb − (r − 1) columns on an average. Hence the expected
number of iterations performed by the bottom-up approach is,

ibu = 2× {

√

k

n
− 1} (4)

Similarly for the top down approach the expected number of
iterations is,

itd = a− {

√

k

n
− 1}+ b− {

√

k

n
− 1} (5)

The iterations performed by the top-down approach, on aver-
age, require more computation when compared with the iter-
ations performed by the bottom-up approach as the top-down
iterations are acting on a much larger number of rows and
columns. Let the average cost of iterations performed by the
top-down approach beγ times the average cost of iterations
performed by the bottom-up approach. From the above equa-
tions we can determine the cost of proceeding in a bottom-up
manner as,

Tbu = 2× {

√

k

n
− 1} × Costbu (6)

whereCostbu is the average cost of a single bottom-up it-
eration. Similarly, if the cost of one top-down iteration is
Costtd = γ × Costbu,

Ttd = {a−{

√

k

n
− 1}+ b−{

√

k

n
− 1}}×γ×Costbu (7)

For any anonymization request, the hybrid cloaking algorithm
proceeds in a top-down manner ifTtd < Tbu, otherwise, it
proceeds in a bottom-up manner.

4.2 Integrating Spatial Cloaking with Tem-
poral Cloaking

All cloaking algorithms we have discussed so far start com-
posing the minimal spatial cloaking box that meets both pri-
vacy and QoS requirements immediately upon the arrival of
a new request message, regardless whether the top-down or
bottom-up cell composition is used. Recall that some mes-
sages may have to be dropped during spatial cloaking due to
the fact that the algorithm cannot find the cloaking area that
meets both privacy requirement and the maximum spatial res-
olution requirement specified by the mobile user. Instead of
dropping the message, we can improve the situation by invok-
ing the temporal cloaking to introduce some delay in terms of
when to start the spatial cloaking process within the maximum
temporal resolution constraint. For example, if we delay the
start of spatial cloaking forγ time units (0 ≤ γ ≤ dt), more
mobile users may issue requests over the same area, and lead
to higher probability for more messages to be perturbed, pro-
viding higher anonymization success rate. The critical chal-
lenge is how to set the appropriateγ value. Ifγ = 0 the spatio-
temporal cloaking is reduced to immediate spatial cloaking. If
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γ = dt, the cloaking will be performed right before the expira-
tion of the message (i.e., after a maximum allowed delay ofdt

time units. However this extreme setting will result in higher
latency which in many cases are unnecessary. Given a request
message and its current cellcid, let Cmax be the neighboring
cell of cid with the highest object count. In PRIVACY GRID,
we determine the timing for starting the deferred cloaking pro-
cess based on a number of parameters. Concretely, we per-
form the spatial cloaking for a new message if the total object
count of the current cellcid and the neighboring cellCmax

is larger than or equal to a system defined fraction ofk, say
θ, namelyMN(cid) + MN(Cmax) ≥ θ × k. θ < 1 is a
system parameter that adjusts the amount of anonymization
messages to be deferred. Smallerθ values push more mes-
sages to be processed immediately upon arrival. We can set
θ at initialization time based on experimental studies or have
it adaptively tuned during runtime by observing the rate of
successful anonymizations with differentθ values. A similar
threshold value may be maintained for thel-diversity specifi-
cations too.

5 Processing Perturbed Location Queries
We briefly describe the anonymous query processing

mechanisms required at the LBS server in order to aid pro-
cessing of queries associated with cloaked spatial regionsin-
stead of spatial points. Figure 7 displays an objecto1 which
requests for all static objects (e.g. gas stations) within the dis-
tancer from its curent position. Figure 7(a) displays the Min-
imum Bounding Rectangle (MBR) which forms the result set
to be explored for the actual query. The cloaked query region
identified by the location anonymization server is as shown
in Figure 7(b). The actual objecto1 which makes the query
request may be present anywhere within the cloaked query re-
gion, even at the any of the corner points of the region. Thus
the query processor needs to explore the region at a maximum
distancer from each corner point to ensure that the proba-
bility of relevant results being excluded from the evaluation
is zero. The shaded area in the figure displays the query re-
sult evaluated using the cloaked query region. As is clearly
evident from the figure, the query result will include all rele-
vant results for the original queryQ1. This clearly illustrates
the need for finding smaller cloaking regions as unnecessar-

ily large cloaking regions will lead to larger result sets. It is
important to note that no other optimizations of any kind dur-
ing query processing can guarantee all relevant results will be
included in the returned candidate result set.

Theorem 1. The MBR (as evaluated in Figure 7(b)) for the
cloaked queryQ1 includes all relevant results for the actual
queryQ1.
Proof Skipped.

6 Experimental Evaluation
We divide the experimental evaluation of PRIVACY GRID

into two components: the effectiveness of our cloaking algo-
rithms in terms of privacy and quality requirements, and their
performance in terms of time complexity and scalability. Be-
fore reporting our experimental results, we first describe our
evaluation metrics and the experimental setup, including the
road-network based mobile object simulator used in the ex-
periments.

6.1 Evaluation Metrics

We define the following metrics to evaluate the effective-
ness and efficiency of PRIVACY GRID location cloaking algo-
rithms.
Anonymization Success Rate:The anonymization success
rate is also referred to as the anonymization hit rate. The
success rate of a cloaking algorithm measures its ability
to cloak messages according to the privacy requirements−
the k-anonymity value and thel-divisity value − and the
QoS requirement− the maximum spatial resolutionvalue
and themaximum temporal resolutionvalue. We define
the anonymization success rate by measuring the fraction of
messages cloaked successfully by an algorithm among all
anonymization requests. This is the most important measure
for evaluating the performance of the cloaking algorithms.A
primary goal of the cloaking algorithm is to maximize the
number of messages perturbed successfully according to their
privacy and QoS requirements. Hence, the higher success rate
a location cloaking algorithm has, the more effective it is.
Relative Anonymity Level (RAL): This metric is used
to measure the achieved anonymity level for successfully
cloaked messages by the cloaking algorithm, normalized by
the specified level of anonymity (k value) and the specified
level of diversity (l value) in the mobile user’s location pri-
vacy preference profile.

RAL =
k′

k
×

l′

l
(k′ ≥ k, l′ ≥ l) (8)

In PRIVACY GRID, the location cloaking algorithms aim at ob-
taining higher anonymity for the same cloaking area. How-
ever, excessive anonymity achieved at the cost of cloaking the
location to a larger region hurts QoS during query process-
ing. Hence, the lower the relative anonymity level (RAL), the
better the performance of the algorithm.
Relative Spatial Resolution (RSR):This metric measures
the ability of the spatial cloaking algorithm to provide the



Fig. 8: Simulator for Experimental Setup

smallest cloaking area sufficient to meet the anonymity re-
quirements. We calculate the relative spatial resolution by
using the minimum spatial cloaking area, as calculated by the
cloaking algorithm, normalized by the maximum allowed spa-
tial cloaking area defined by the specified maximum spatial
resolution{dx, dy}.

RSR =

√

2× dx × 2× dy

Area(selectedCells)
(9)

The relative spatial resolution has to be greater than one in
all cases for successfully anonymized messages. Higher rela-
tive spatial resolution measure implies that the cloaked spatial
region is smaller and the cloaking algorithm is more effective.
Message Anonymization Time: This metric measures the
run-time performance of the cloaking algorithm in terms of
time complexity. Efficient cloaking implies that the cloaking
algorithm spends less time but perturbs more messages.

6.2 Experimental Setup

We extend the simulator from [14] to evaluate the effec-
tiveness and performance of PRIVACY GRID cloaking algo-
rithms. The simulator generates a trace of cars moving on
roads, and generates requests based on the position informa-
tion from the trace. The trace generated by the simulator sim-
ulates a real-world road network obtained from maps avail-
able at the National Mapping Division of the USGS [7] in
Spatial Data Transfer Format (SDTS) [6]. A transport layer of
1:24K Digital Line Graphs (DLGs) is used to extract the road-
based network. The data is converted to the Scalable Vector
Graphic (SVG) [5] format using the GlobalMapper tool [2].
The simulator extracts the road network based on three types
of roads –expressway, arterial andcollector roads. Traffic
volume data in [16] is used to estimate the number of cars for
different road classes. Cars are randomly placed on the road
network according to the traffic densities and are moving on
the roads. At intersections, they move in one direction or the
other. The simulator attempts to keep the number of cars on
each type of roads constant with time. Our experimentation

Road type Expressway Arterial Collector

Mean of car speeds
(km/h)

90 60 50

Std. dev. of car speeds
(km/h)

20 15 10

Traffic volume data
(cars/h)

2916.6 916.6 250

Table 1: Motion Parameters

uses a map from Chamblee region of Georgia (Figure 8) to
generate the trace used in this paper, which covers a region
of approximately 168km2. Most of our experiments use the
trace with a duration of two hours. We simulate the movement
of a set of 10,000 cars on the road network for Chamblee. Ta-
ble 1 lists mean speeds, standard derivation and traffic volume
values for each road type. Each car generates a set of mes-
sages during the simulation. By default, each message spec-
ifies an anonymity levelk from the range of[1, 150] using
a zipf parameter of 0.6 with higherk being the most popu-
lar. The maximum spatial and temporal resolution values of
the message are selected independently using normal distri-
butions with600m as the default mean spatial resolution and
30m2 as the variance in maximum spatial resolution. The de-
fault mean temporal resolution is set to be 15s with12s2 vari-
ance in temporal resolution. Though all parameters take their
default values if not stated otherwise, the settings of manypa-
rameters will be changed in different experiments to show the
impact of these parameters on the effectiveness and efficiency
of the algorithms.

6.3 Experimental Results

Our experimental evaluation of the PRIVACY GRID algo-
rithms consists of three parts. First, we evaluate the effective-
ness of the location anonymization algorithms by measuring
anonymization hit rate (success rate), relative anonymitylevel
obtained, average cloaking time and relative spatial resolu-
tion and observe how these parameters behave when we vary
the settings of a number of parameters, such as grid cell size,
the user-specified anonymity levelk, and the user-specified
maximum spatial resolution{dx, dy}. Then we evaluate the
scalability of the algorithms in terms of cloaking time and
update cost by varying the number of mobile users. Finally
we evaluate the effectiveness of combining temporal cloaking
with spatial cloaking by measuring the anonymization suc-
cess rate (fraction of messages anonymized) when varying
both the maximum temporal resolution values and the max-
imum spatial resolution values. Our results show that the
PRIVACY GIRD dynamic grid cloaking algorithms are fast, ef-
fective, scalable and outperform all existing location cloaking
approaches in terms of both anonymization success rate and
cloaking time in the presence of larger range ofk values.

6.3.1 Varying Size of Grid Cells

This set of experiments aims at measuring cloaking time,
anonymization hit rate (success rate), relative anonymitylevel
and relative spatial resolution obtained by using different set-
tings of grid cell size. Figure 9 shows the results measured
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Fig. 10: Results with Varying Anonymity Levels
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Fig. 9: Results with Varying Size of Grid Cells

for four different settings of grid cell size:[96m × 112m],
[48m × 56m], [24m × 28m], and[12m × 14m]. Recall that
a HGI of heightl implies a lowest level grid comprising of
2lX2l cells. Thus the four different grid cell sizes are equiva-
lent to four different settings of the lowest level grid size, rang-
ing from128×128 cells to1024×1024 cells. The user-defined
anonymity levels (k value) for this set of experiments are cho-
sen in the range [10 – 50] with a Zipf distribution using pa-
rameter 0.6, indicating that messages with higher anonymity
levels are more popular.

Figure 9(a) shows that the quad grid cloaking algorithm
is fast in terms of cloaking time and the cloaking time does
not increase significantly with the decrease in the size of grid
cells. However, both the bottom-up and top-down dynamic
grid cloaking algorithms will incur relatively higher cloaking
time (ms) with the decreasing sizes of grid cells. This is be-
cause more rows (or columns) need to be added (or removed)
to obtain the optimal cloaking regions. Interesting to noteis
that the actual cloaking time of all dynamic approaches is still
below 2.5 ms in all cases, and such low delays are hardly per-
ceivable.

From Figure 9(b) we observe two interesting results.
First, the anonymization hit rate, the relative anonymity level
(RAL), and the relative spatial resolution (RSR) do not change
much as we vary the size of grid cells. Second, given a fixed
grid cell size, say[24m×28m], we see sharp differences when
comparing the Quad Grid cloaking approach with the dynamic
grid cloaking approaches such as bottom-up, top-down and
hybrid. The Quad Grid cloaking, though faster (recall Fig-
ure 9(a)), has only 43% of the messages being anonymized
successfully, while all the dynamic approaches have similar
but much higher rate of success (> 91%). All the dynamic
grid cloaking approaches give low relative anonymity levels,
which are close to one, whereas the Quad Grid approach has
about 15% higher relative anonymity level, indicating thatit

might be cloaking requests to unnecessarily larger spatialre-
gions. This is confirmed by the relative spatial resolution
(RSR) measurement, which is about 40% higher for the dy-
namic cloaking approaches when compared to the Quad Grid
cloaking approach.

6.3.2 Varying User-defined Anonymity Levelk

This set of experiments measures anonymization hit rate (suc-
cess rate), relative anonymity level, cloaking time, and relative
spatial resolution when varyingk, the user-defined anonymity
level, from various ranges: [2–10], [10–50], [50–100] and
[100–150]. Spatial tolerance values for the anonymity ranges
are 400m, 800m, 1200m and 1600m (mean values with 5%
standarad deviation) respectively and are chosen to be large
enough to theoretically allow cloaking of a large fraction of
the messages. The results are as displayed in

Figure 10 shows that the Quad Grid approach is able to
cloak only around 60% of the messages with anonymity level
k set in the range of [2–10] and the success rate falls further
to 45-50% with increasingk values. In contrast, the dynamic
approaches cloak 90-99% of the messages within user-defined
maximum spatial resolution values (Figure 10(a)).

From Figure 10(b), we see that the Quad Grid cloaking in-
curs higher relative anonymity level but all dynamic cloaking
approaches have low relative anonymity levels (close to one),
indicating that the anonymity levels obtained in all perturbed
messages (k′ values) are very close to the user-definedk.

Figure 10(c) shows the impact of varying the user-defined
anonymity level (k values) on the cloaking time of all algo-
rithms. The quad grid cloaking algorithm is the fastest and
its cloaking time does not increase much with the increase in
the user-definedk values. Though all dynamic cloaking algo-
rithms will incur relatively higher cloaking time (ms) withthe
increasingk values, the amount of increase in cloaking time
for bottom-up and hybrid is much slower when compared to
the top-down approach. It is important to note that the cloak-
ing time for the worst case (where the top down approach is
used) is still around 4.5 ms fork values in [100–150] (with
higherk being more popular), which is hardly perceivable by
most users.

Figure 10(d)) displays the impact of changingk values on
relative spatial resolution (RSR) obtained for the perturbed
messages. Clearly, the dynamic grid cloaking algorithms have
considerably higher RSR (28-43%) than the Quad Grid ap-
proach for allk values, though RSR values decrease as thek
values become larger.
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Fig. 11: Results with Varying Spatial Tolerance

6.3.3 Varying Spatial Tolerance

This set of experiments examines the performance of the algo-
rithms by varying the maximum spatial resolution settings and
measures the anonymization hit rate (success rate), relative
anonymity level, cloaking time, and relative spatial resolution.
Messages are generated with anonymity levelk from the range
[10–50] with Zipf distribution using parameter 0.6, favoring
messages with higherk values. We vary the maximum spatial
resolution value from 500m to 800m (mean values) with 5%
standard deviation and examine the effect of different settings
of maximum spatial resolution on the effectiveness of both
the Quad Grid and the Dynamic Grid cloaking approaches.
Figure 11 displays the results. The dynamic approaches are
able to cloak all messages which can be theoretically cloaked
for each maximum spatial resolution value, whereas the Quad
Grid approach fails to cloak a large number of messages (40%
less as shown in Figure 11(a)). Figure 11(b) shows that the
relative anonymity levels for all cloaking algorithms do not
change much when the user-defined maximum spatial resolu-
tions change significantly. Figure 11(c) shows that only the
top-down cloaking algorithm increases the cloaking time as
the maximum spatial resolution values increase, while other
cloaking algorithms are not very insensitive to the changesin
the maximum spatial resolution values. Finally, Figure 11(d)
shows that with the increase in the maximum spatial resolu-
tion values, the relative spatial resolution (RSR) values for all
cloaking algorithms will increase proportionally with a close
to constant gap between the Quad Grid approach and the dy-
namic grid algorithms.

6.3.4 Scalability

Finally we report the set of experiments designed to study the
scalability of the PRIVACY GRID system with respect to the
changing number of mobile users. Obviously, as the num-
ber of users in the system increases, we can expect the cloak-
ing time for all algorithms to decrease as messages will be
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Fig. 12: Results with Varying Number of Users

anonymized more easily, but the update costs for the grid-
based structures will increase. We use a similar setup to that in
Section 6.3.3 with the mean spatial resolution fixed at 800m
with 5% standard deviation. We vary the number of users
from 10K to 100K and observe the effect on the cloaking time
and update cost. Figure 12 shows the measurement results.
From Figure 12(a) we observe a number of interesting results.
First, the amount of differences in cloaking time among the al-
gorithms changes slightly with the increase in the number of
mobile users. Second, the cloaking time for the Quad Grid ap-
proach is less sensitive to the increase in the number of users.
Third, the top-down approach shows a slow increase in cloak-
ing time with the increase in the number of mobile users in the
system. This is because the approach requires more iterations
as messages can be cloaked to smaller spatial regions now.
However, the bottom-up approach displays a reverse trend−
the cloaking time decreases as the number of users increases.
This is because higher density of mobile users per grid cell
will enable the bottom up cloaking to find the minimal cloak-
ing box faster. Finally, we observe that the hybrid approach
adapts well to the increase in the number of users, offering
similar performance as the bottom-up approach in terms of
cloaking time.

Figure 12(b) measures the total number of updates per sec-
ond required to update the grid-based data structures as the
number of mobile users increases. For this experiment, the
grid index is maintained as a main memory data structure.
Each car provides a location update to the system after moving
a distance of 20m. We observe that the Quad Grid approach
uses the HGI data structure and requires a large number of up-
dates as the number of users increases. The HGI used in this
experiment is a nine level grid index, requiring an average of
10–11 updates per location update request. In contrast, thedy-
namic cloaking approaches use the simple grid index, requir-
ing only 1.8–1.9 updates per location update request, whichis
significantly lower than the Quad Grid approach in terms of
update cost.

6.3.5 Effects of Maximum Temporal Resolution

This set of experiments is dedicated to study the effects of uti-
lizing maximum temporal resolution values to delay the mes-
sage anonymization process within an acceptable time period.
Again we use the same experimental setup as in Section 6.3.3.
We measure the success rate by varying both maximum tem-
poral resolutiondt from 15 seconds to 60 seconds (mean val-
ues with 5% standard deviation) and varying the maximum
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Fig. 13: Effects of Temporal Tolerance

spatial resolutions from 500m to 800m. Figure 13(a) displays
the results for the dynamic grid cloaking approaches and Fig-
ure 13(b) shows the results for the Quad Grid approach. We
observe that the use of maximum temporal resolution helps
increase the fraction of messages being cloaked for both the
dynamic approaches and the Quad Grid approach by 10–20%.

7 Related Work

The k-anonymityapproach to privacy protection was first
developed for protecting published medical data [23, 22]. k-
anonymity guarantees the inability to distinguish an individ-
ual record from atleastk − 1 other records. [9, 18] attempt
to provide solutions foroptimal k-anonymization. Person-
alization of privacy requirements has attracted attentionre-
cently [14, 26]. Other related work includes anonymization
of high dimensional relations [8] and extending the concept
of k-anonymization vial-diversity [20], t-closeness[19] and
m-invariance[27].

The concept of location k-anonymity was introduced
in [16] wherek is set to be uniform for all users. The con-
cept of personalized location k-anonymity with customizable
QoS specifications, first introduced in [14], is adopted by sev-
eral others [21, 15]. Most solutions for location privacy adopt
the trusted third party model which has been successfully de-
ployed in other areas such as Web browsing [1]. Two rep-
resentative approaches to personalized location anonymiza-
tion are theCliqueCloakalgorithm introduced in [14] and the
Capser system [21]. TheCliqueCloakalgorithm relies on the
ability to locate a clique in a graph to perform location cloak-
ing, which is expensive and shows poor performance whenk
is large. The Casper approach addresses location anonymiza-
tion using thepyramiddata structure and allows the system to
quickly locate cloaking boxes. However, due to the coarse res-
olution of the pyramid structure and the lack of QoS support,
the cloaking areas in Casper are much larger than necessary,
leading to poor QoS perceived by the user.

8 Conclusion and Future Work
We have described PRIVACY GRID − a framework for sup-

porting anonymous location-based queries in mobile informa-
tion systems. This paper has made three unique contributions.
First, we propose to use location k-anonymity and location l-
diversity as the two location hiding measures and maximum
spatial resolution and maximum temporal resolution as the
two location service quality measures. Second, we develop
the Quad Grid approach and three dynamic grid based spa-
tial cloaking algorithms for providing locationk-anonymity
and locationl-diversity in a mobile environment. The Quad
Grid cloaking algorithm is fast but has lower anonymization
success rate. The dynamic grid cloaking algorithms provide
high anonymization success rate and yet are efficient in terms
of both time complexity and update cost. Third but not the
least, we incorporate the maximum temporal resolution into
the location cloaking process, which leads to further increase
in the success rate of location anonymization by introducing
controlled delay in terms of when to start location anonymiza-
tion. We also described the PRIVACY GRID mechanisms for
processing perturbed range queries. Our experimental evalu-
ation shows that the PRIVACY GRID approach is efficient and
effective for performing personalized location anonymization,
while providing optimal location anonymity as defined by per
user location privacy preference profiles.
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