PRIVACY GRID: Supporting Anonymous Location Queries in Mobile Environments

Bhuvan Bamba Ling Liu
College of Computing College of Computing
Georgia Institute of Technology Georgia Institute of Technology
bhuvan@cc.gatech.edu lingliu@cc.gatech.edu
Abstract Location privacy is a particular type of information priyac

According to [10], location privacy is defined as the abitidy

We presenPRIVACY GRID — a framework for supporting  prevent other unauthorized parties from learning onesectr
anonymous location-based queries in mobile information de or past location. Location privacy threats refer to thegisiat
livery systems. Th@RIVACYGRID framework offers three an adversary can obtain unauthorized access to raw location
unique capabilities. First, we provide a location privacy data, derived or computed location information by locagng
preference profile model, called location P3P, which allows transmitting device, hijacking the location transmissiban-
mobile users to explicitly define their preferred locatia p  nel, and identifying the subject (person) using the devigg.[
vacy requirements in terms of both location hiding measuredn the United States, privacy risks related to locationiinfa-
(e.g., location k-anonymity and location I|-diversity) alod tion have been identified in the Location Privacy Protection
cation service quality measures (e.g., maximum spatial resAct of 2001 [3]. Many have recognized that without safe-
olution and maximum temporal resolution). Second, we de-guards, extensive deployment of LBSs may open doors for
velop three fast and effective location cloaking algorishm adversaries to jeopardize location privacy of mobile uaars
for providing locationk-anonymity and locatiori-diversity ~ to imperil LBSs to significant vulnerabilities for misusedan
in a mobile environment. The Quad Grid cloaking algorithm abuse [12, 16, 25]. For example, location information can be
is fast but has lower anonymization success rate. The dyused to spam users with unwanted advertisements or to learn
namic bottom-up or top-down grid cloaking algorithms pro- about users’ medical conditions, alternative lifestylesio-
vide much higher anonymization success rate and yet are effipopular political or religious views. Inferences can bendra
cient in terms of both time complexity and maintenance costfrom visits to clinics, doctors’ offices, entertainmentlzduor
Finally, we discuss a hybrid approach that combines the top-districts, or political events. Public location informati can
down and bottom-up search of location cloaking regions tolead to physical harm, such as stalking or domestic abuse.
further lower the average anonymization time. In addition,
we argue for incorporating temporal cloaking into the loca-  Several approaches have been proposed for protecting lo-
tion cloaking process to further increase the success réte ocation privacy of a user. Most of them try to prevent dis-
location anonymization. We also discuss BravACY GRID closure of unnecessary information by techniques that ex-
mechanisms for anonymous support of range queries. Ouplicitly or implicitly control what information is given to
experimental evaluation shows that tReivacy GRID ap- ~ Whom and when. We classify these techniques into three
proach can provide optimal location anonymity as defined bycategories: (1) Location protection through user-defined o
per user location P3P without introducing significant pesfo  System-supplied privacy policies; (2) Location protegtio
mance penalties. through anonymous usage of information; and (3) Location
protection through pseudonymity of user identities, which
. uses an internal pseudonym rather than the user’s actual ide
1 Introduction tity. As described in [10], some location-based servicas ca

With rapid advances in mobile communication technolo- operate completely anonymously, such ahén | pass a gas
gies and continued price reduction of location tracking de-station, alert me with the unit price of the dasOthers can
vices, location-based services (LBSs) are widely recaghiz not work without the user’s identity, such awltien | am in-
as an important feature of the future computing environ-side the office building, let my colleagues find out where’l am
ment [11]. Though LBSs hold the promise of better safety,Between these two extremes are those applications that can-
more convenience, wider range of entertainment and businot be accessed anonymously but do not require the uses’s tru
ness opportunities in catering to the growing market of mo-identity, such aswhen | walk past a computer screen, let me
bile users, the ability to locate mobile users and mobile ob-teleport my desktop td'itFor those LBSs that require our true
jects also presents new threatghe intrusion of location pri-  identity, strong security mechanisms, such as locationesnit
vacy [10, 16]. tication and authorization, have to be enforced in conjonct
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with their location privacy policy. In this paper we concen-
trate on the class of location-based applications thatpdcce
pseudonyms and present thel?acy GRID framework for
performing personalized anonymization of location infarm
tion through customizable locatidnanonymity and enabling
anonymous location based queries in mobile information de-
livery systems.

In the context of LBSs and mobile users, locatibn
anonymity refers td:-anonymous usage of location informa-
tion. A subject is considered locatidranonymous if and
only if the location information sent from a mobile user to a
LBS is indistinguishable from the location information df a
leastk — 1 other subjects. A largérindicates more difficulty
in linking a location to a particular user and thus higherrgua
antees for location privacy. This uncertainty will increagth
the increasing value of. However, the quality of the LBS
depends on the accuracy of location of mobile users, and at
the same time, the more accurate the location informatien di
closed, the higher the risk of location privacy being invcade
Perfect privacy is clearly impossible as long as communica-
tion takes place. An important question is how much privacy
protection is necessary. Moreover, users often have \@ryin
privacy needs in different contexts.

Location perturbation is an effective technique for imple-
menting locatiort-anonymity. One method is to perturb the
location information by reducing its location precisiorgo-
lution) in terms of time and space [10, 16]. By reducing the
spatial resolution, a spatial region that contains 1 other
subjects’ location information will be used to replace tha-s
tial position of the subject. By reducing the temporal rasol

cloaking algorithms for providing location k-anonymity
and location I-diversity while maintaining the utility of
LBSs. The Quad Grid cloaking algorithm is simple and
fast but has low success rate for location anonymiza-
tion. In contrast, the dynamic bottom-up grid cloaking
and the dynamic top-down grid cloaking provide high
anonymization success rate and yet are efficient in terms
of both time complexity and grid index maintenance cost.
All three algorithms can dynamically compose the lo-
cation cloaking regions and select the smallest one that
meets both the location anonymity requirements and the
location QoS requirements as specified in users’ location
P3P profiles.

Third, we describe a hybrid approach that combines the
top-down and bottom-up search of the minimal location
cloaking regions to further lower the average anonymiza-
tion time. In addition, we briefly describe the possible
increase of the anynimization success rate by a careful
combination of temporal cloaking with spatial cloaking.

We also describe the mechanisms for processing per-
turbed location range queries.

Finally, we conduct extensive experimental evaluation
of PRIVACYGRID approach, showing that therR
VACY GRID algorithms can provide optimal location
anonymity as defined by per user location P3P without
introducing significant performance penalties.

The rest of this paper is organized as follows. We give
an overview of the RIVACY GRID framework in Section 2.

tion, the message will be delayed for a certain period of tfime We present the three grid-based spatial cloaking algosthm

which may be long enough to include- 1 other subjects’ lo-  in Section 3 and discuss their efficiency and effectiveness
cation information. The fundamental challenge is how to-con through analysis and examples. We extend spatial cloaking
trol the spatial and temporal resolution reduction to tigati by introducing two possible enhancements in Section 4 and
amount that will allow LBSs to remain effective and valuable discuss the mechanisms for processing anonymized location
while enabling mobile users to preserve the desired level ofiueries at the LBS servers in Section 5. We report our exper-
location privacy. imental evaluation results in Section 6 and discuss theéala

In this paper, we presentRVACY GRID, a framework  Workin Section 7. Section 8 concludes the paper with a sum-

for supporting anonymous location based queries in mobilenary and brief discussion of future work.

information delivery systems. The goal of th&IRPACY- 2 PRIVACY GRID: An Overview

GRID design is to provide a unified and yet effective location
anonymization framework for all types of location queries s ~ We assume that the LBS system powered ByVRCY-

that mobile users can enjoy LBSs without revealing theicexa GRID consists of mobile users (clients), wireless network, lo-
location information. This paper makes three unique contri cation anonymization server, and LBS servers. Mobile users
butions. communicate with the LBS servers through one or mare P
VACY GRID location anonymization servers. Each mobile
e First, we provide a location privacy preference profile yser establishes communication with an anonymizatioreserv
model, called location P3P, which allows mobile usersthrough an authenticated and encrypted connection. Each lo
to explicitly define their preferred location privacy re- cation anonymization server connects to a number of base
quirements in terms of both location hiding measuresstations, tracks the location updates of the mobile users in
(i.e., location k-anonymity and location I-diversity) and the range of those base stations, and performs the location
location service quality measures (i.e., maximum spatialanonymization for both location queries and location ueslat
resolution and maximum temporal resolution). Our loca- from these mobile users.
tion P3P model supports personalized and continuously |n thjs section, we present an overview afiPACY GRID.
changing privacy needs of a diverse user base. We first describe the three tier system architecture f- P
e Second, we develop three fast and effective locationvAcy GRID and briefly discuss the set of location privacy re-
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Fig. 1. System Architecture

perceived QoS of the mobile user within an acceptable delay
based on the type of location services and the time when the
LBS is being requested.

The middle tier is the location perturbation service typi-
cally offered by a third party location anonymization serve
The location anonymization server anonymizes the location
information from mobile users before it can be passed to the
actual LBS providers. In the first prototype ocRRACY GRID,
we use the spatial and temporal location cloaking techsique
to perform location perturbation. The location informatio
of a mobile user (such as her position update or the position
where she poses a location query) will be mapped to a loca-
tion cloaking box based on the location P3P of the user. For
those mobile users that do not want to be tracked by others,
no perturbation will be performed on their location updates
For those LBSs that offer location dependent informaticgrov

quirements. Then we define the basic concepts used througiublic data, such as restaurants, gas stations, officessand
out the paper and outline the location anonymization pmces forth, no location updates of mobile users will be passeahfro

2.1 System Architecture

the location anonymization servers to the LBS servers. Mo-
bile users who wish to allow their movements to be tracked by
certain LBSs or some group mobile users may use their loca-

The FRIVACY GRID system promotes the three-tier archi- tjon p3p to specify how they want their location updates to be
tecture for supporting anonymous information delivery in a cjoaked and to which LBS servers their location updates can
mobile environment, as shown in Figure 1. The top tier ispg provided. Similarly, for location queries, there are apte

the modeling of users’ personal location privacy requiretse
The middle tier is the location perturbation service typiica
provided by a trusted third party location server, spengdli
in location tracking and anonymization service. The thied t

of alternative ways for the location anonymizer serviceasy

the location cloaking box to the corresponding LBS provider
For example, one can choose to have the location anonymizer
as the middleman between mobile users and individual LBS

is the processing of cloaked location queries at the individ providers such that location queries are posted to theitotat
ual LBS providers. A number of research and developmentynonymizer and passed to the LBS provider and the result is

projects have used the trusted third party location anopgmi

infrastructure [16, 14, 21] for protecting location priyacf
mobile users.

returned to the mobile user through the location anonymizer
Alternatively, before contacting the LBS provider dirgcth
mobile user can have her location informatidtered by re-

We devise our location privacy preference profile modelducing its precision/resolution in terms of time and space a
to allow mobile users to specify what, when, how (and with cording to her location P3P, ensuring that the locationigser

whom) their location information could be shared. In aduiti

sent to the LBS meet her desired locatiranonymity and

to the standard P3P specification [4], we add four locatién pr location-diversity requirements. In the subsequent sections
vacy specific measures and refer to them as location P3P. Thee present the RvAcY GRID algorithms for efficient and ef-

first measure is théocation k-anonymitywhich allows the

mobile user to control her state of being not identifiablerfro

a set ofk — 1 other users. The second measure isltia-

fective location cloaking in Section 3.
It is important to note that location perturbation may resul
in the fact that the LBS provider sends more than requested re

tion I-diversity, which allows the mobile user to control her sults back to the mobile user. Thus the mobile node needs to

state of being not identifiable from a seticdctual (physical)

perform further filtering before presenting the resultste t

locations (such as buildings or postal addresses). This meanobile user, leading to additional communication and pro-
sure can be seen as a companion measure of the lodation cessing overhead on mobile nodes. Thus, the third tierof P

anonymity, and is particularly useful in reducing the risits
unwanted location inference when there @ more distinct

VACY GRID is dedicated to the methods for efficient process-
ing of perturbed location queries at the individual LBS serv

users at a single physical location (such as a clinic offica or |n contrast to the existing literature on location querygess-

political event gathering). The third measure is thaximum

ing that concentrates on spatial positions (points), wel hee

spatial resolutionwhich allows the mobile user to control the extend some existing spatial query processing methodsto sp

spatial resolution reduction within an acceptable levedoS.

tial region based techniques. For example, [21] descrilped a

It can be changed or adjusted according to the type of latatio approach to process location cloaked kNN queries.

services and the time of day, month, or year when the LBS ar

being offered. Similarly, the fourth measure is theaximum

temporal resolutionwhich controls the temporal resolution

9.2 Location Privacy Requirements

In PRIVACY GRID the following requirements are consid-

reduction within the acceptable duration of time to keep theered essential for supporting anonymous location queries.



1. Personalized User Privacy Levels:We argue that lo- framework.
cation privacy consists of two measures: location  Universe of Discourse (UoD)We refer to the geographical
anonymity and locatiori-diversity. The former allows area of interest as the universe of discourse (or map), which
a mobile user to control a state of being not identifiable defined byU = Rect(z,y,w, h), wherez is the x-coordinate
from a set ofk — 1 other users. The latter allows a mo- andy is the y-coordinate of the lower left corner of a rectangu-
bile user to control a state of being not identifiable from lar region,w is the width and: is the height of the universe of
a set ofl actual (physical) locations (such as buildings discourse. Basically, we consider maps which are rectangul
or postal addresses). These two measures are complin shape.
mentary and particularly useful in reducing the risks of Grid and Grid cells: In our framework, we map the universe
unwanted location inference when there are more tharof discourseU = Rect(x,y,w,h) onto a gridG of cells.

k — 1 distinct users at a single physical location (such asEach grid cell is arv x [ rectangular area, where 3 are

a clinic office or a church). The system must have thesystem parameters that defines the cell size of the(grigor-
capability to allow a mobile user to specify the desired mally, a grid corresponding to the universe of discoufsean

k value for locatiork-anonymityand the desired value be defined a&/(U, o, 3) = {A;; : 1 <i < M,1<j <N,

for location|-diversity for each of her location updates A; ; = Rect(z +i x a,y +j x 3, ,03), M = [w/a], N =

or location queries. The user may change her privacy[h/3]}. A, ; is ana x [ rectangular area representing the
preference levels as often as required or even on a pegrid cell that is located in thé&h column andjth row of the
message basis. grid G.

2. QoS Guarantees: The RRIVACY GRID framework pro-  Position to Grid Cell Mapping: Letp’ = (p,py,) be the
vides a mobile user with the capability of specifying two position of a moving object in the universe of discourse
QoS metrics: (1) the maximum spatial resolution, indi- U = Rect(x,y,w,h). Let A;; denote a cell in the grid
cating that the amount of spatial inaccuracy she can tolerG (U, o, ). Pmap(p) is a position to grid cell mapping, de-
ate to maintain meaningful and acceptable service qualfined asPmap(p) = Arww,r”%—‘ﬁ'
ity; and (2) the maximum temporal resolution, ensuring cyrent Grid Cell of a Moving Object: Current grid cell
that the delay introduced for location cloaking is accept- of a moving object is the grid cell which contains the current
able from QoS standpoint. By utilizing these two quality position of the moving object. I, is a moving object whose
metrics, FRIVACY GRID aims at devising location cloak-  cyrrent position, denoted @sis in the Universe of Discourse

ing algorithms that find the smallest possible cloaking re-; then the current grid cell of the object is formally defined
gion for each location cloaking request of a mobile user, curr_cell(op,) = Pmap(p).

which satisfies her privacy requirements defined by loca-yser Privacy Preference Profile: In PRIVACY GRID
tion k-anonymity and locatiofdiversity. _ a personalized location privacy model is used. A user
3. Dynamic Tradeoff between privacy and quality: registered with the anonymization server specifies her lo-

PRIVACY GRID location perturbation algorithms should cation privacy requirements in terms of her desired user
be capable of dynamically making tradeoffs between 10-anonymity levelk, desired location diversity leveél max-
cation privacy and location QoS. Unnecessarily largejmuym spatial resolution{d,,d,}, and maximum tem-
cloaking boxes will lead to poor QoS in terms of larger poral resolutiond;.  Each location P3P record is of
result set to transport and filter at the mobile client side,the form (objectiq, LBSin jo, requestia, k, 1, {dq, dy, di}),
inevitably leading to higher delays for obtaining useful whereobject,, identifies the user. BS;, , is optional and
query results. provides the type and the identifier of the LBS this P3P record
4. Efficiency and SC&'ablllty In PRIVACY GRID a mobile is applied to, an@tequest;  is optional and is used to uniquely
user can change her location P3P at any time. The cloakidentify a service request posed by the user with the given
ing algorithms should be effective and scalable in theobjectid. We usek = 1 andl = 1 as the default setting (nei-

presence of changing requirements on both the numbefher anonymity nor diversity is required). Whén= 1 and
of mobile users and the content of location P3P. Atthe; — 1 ¢, d,,d, are set toni | .

same time, the cloaking algorithms must be fast, keeping2
the perceived delays due to location anomymization as *
low as possible. In PRIVACYGRID, each incoming location service re-
5. Unified Framework: A single unified framework questm received by the location anonymization server is of
should be devised to meet personalized and customizablée form (object;q, requestia, {z,y,t}, F\ k, 1, {d, dy, di}).
location anonymization demands and support a variety offheobject;q andrequest;q uniquely identify a message. The
anonymous LBSs with respectable performance, privacycoordinate(x, y) and the timestamptogether form the three
guarantees and quality assurance. dimensional spatio-temporal location point of the mob#emu
who issued the message,. I’ denotes the content filter of
the request, such as gas stations, french restaurants|-or ye
In this section we only defines the basic concepts that aréow taxi cabs. The parametefs:, !, d,,d,,d;} denote the
required for the subsequent discussion of tkeVvRCY GRID location P3P specified by the mobile user who issued this

4 Location Anonymization Server

2.3 Basic Concepts



request. The location anonymization server will transfori
the original messagen, to a location perturbed message
my of the form (h(object;q||request;q),{X : [xs,2.],Y :
[ys, vel, I : [ts,te]}, F'}), whereh is a secure hash function,
X : [xs, 2] andY : [ys, y.] denote the spatial cloaking box
of the message on x-axis and y-axis respectively, such ti
Te— 2, — 25 < dy andye —y,y —ys < dyy; andl : [tg, t.]
denotes the temporal cloaking interval such that ¢, < d,.
Furthermore, there are more than- 1 other mobile users
and more thar symbolic addresses located within the sam
spatio-temporal cloaking box defined ¥ : [z4,z.],Y :
[ys,vel, I : [ts,te]). We call this process message perturbz
tion through spatio-temporal cloaking. We will describe th
three grid-based spatial cloaking algorithms for finding th
minimal spatial cloaking box- (X : [zs, 2], Y : [ys, Yel)
and the minimal temporal cloaking peridd [t, t.] that meet
the k-anonymity and I-diversity requirement in the subssqu
sections.

3 PRrivacY GRID Spatial Cloaking Algorithms

In this section we first describe the baf)uad Grid al-
gorithm for finding the minimal spatial cloaking box for the

OBJECT ID | POSITION | CELL ID
Levelo / /. 1 X1, Y1l
,,,,, 2 X2, Y2
{3 X3,Y3
<
[3)
E Level 1 9999
2 10000 .
(D .
= Grid Index
8
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= Level 2 ID OBJECT OBJECT
5 COUNT COUNT
T 1 5 1
: 2 3 1
i 3 0 0
Level 3 i v AR L
7 .

Cell Object Count Map

Fig. 2: Grid Index Data Structures foRVACY GRID

(so-called symbolic addresses, such as gas stationsu+esta
rants, offices, and so forth) located in each grid cell. This
allows for quick computation of the total number of mobile

users and the total number of still objects located in a given
spatial area using the grid cells and the grid index. For each

given location of a mobile user. By minimal, we mean that grid cell, the count of still objects remains unchanged nobst

there exist no smaller spatial cloaking regions that sakisth
locationk-anonymity and locatiofdiversity as well as max-

the time. However, the count of mobile objects may change as
mobile users move from one grid cell to another. The mobile

imum spatio-temporal resolution constraints defined in theusers’ movement across its current grid cell requires the mo
users’ location P3P. We then present two dynamic grid-basedile object count for the old cell to be reduced by one and the

cloaking algorithms: bottom up spatial cloaking and topvdo

spatial cloaking. Both provide much higher anonymization Hierarchical Grid Index:

corresponding count for the new cell to be increased by one.
The Hierarchical Grid Index

success rate than the basic Quad Grid cloaking algorithm an¢HGI) is amulti-level[24] data structure which allows for fast
reduced grid maintenance cost while keeping the desired pernd efficient computation of object counts belonging to a par

formance.

ticular region of the map. The construction of a HGI is shown

We first give an overview of the basic data structures usedn Figure 2 and is performed by subsequent splitting of grid

in PRIVACY GRID. Then we introduce the Quad Grid cloaking
approach and illustrate the algorithm by examples. Bottpm-

cells into four smaller equal sized cells at the next loweele
of the index. The number of cells at the levdl< 0) of the

and Top-down spatial cloaking are introduced as two dynamidndex is4!, wherel indicates the level of the index. At level

grid cloaking algorithms that improve the cloaking effeeti
ness of the Quad Grid approach.

3.1 Data Structures

In PRIVACY GRID, the entire map is divided into a grid of
cells of sizea x 5. « and 3 are system-defined parameters.
Each mobile user is responsible for reporting its location t
the anonymization server either periodically or when it sov
outside its current grid cell [13]. Upon receiving a locatio
update, the location anonymization server maintains the fo
lowing data structure: the mapping of a mobile user’s positi
to its current grid cell, the CellObjectCountMap (to be dedin

zero ( = 0) the index comprises of a single cell representing
the entire map. This cell is split into four equal sized c#ils
form level one of the index. We call the cell at levehe par-

ent cellof the fourchildren cellsat level j wherej = i + 1.
Subsequently the cells at levetay further be split into four
cells each to form the level + 1 of the index. Figure 2 dis-
plays an HGI structure of height threk £ 2) showing the
parent-child cell relationships for each level of the indéke
HGI maintains the object to cell mapping only for the lowest
level of the index. However, the cell object count map is also
maintained for the higher levels of the index in order to aid
fast calculation of cloaking areas (see Section 3.2 forijleta

below), and the hierarchical grid index. When a mobile userpobile object movement may lead to changes in the mobile

moves out of its current cefl; and entered a new cell;, the

object count for cells at the lowest level and for the subsatu

grid index needs to be updated for both cells on their CellOb-parent cells too.

jectCountMap. Figure 2 illustrates the hierarchical gndex
and the Cell Object Count Map by an example.
Cell Object Count Map: In addition to the grid cell to object

3.2 The Quad Grid Cloaking Algorithm
The Quad Grid Cloaking algorithm presents a basic and

mapping maintained by the grid index, we also keep a count oftraightforward way of utilizing the HGI data structure to
the number of mobile objects and the number of still objectsperform spatial cloaking. The algorithm takes as the input
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Fig. 3: Quad Grid Cloaking Example

the original messager; from a mobile user and produces
the perturbed message, by replacing the two dimensional
spatial location poin{z,y) with the minimal spatial cloak-
ing box (X : [zs, 2], Y : [ys,ye]), wWhich satisfies the mo-
bile users’ location privacy requiremeft:;, [}, and the lo-
cation service quality requiremefd,, d,, d;}. Algorithm 1
presents a sketch of the algorithmic detail. It first involtes
GridIndexSearcHunction to obtain the current cell identifier
(cid) of the mobile user using hemject;; and her current
spatial location poin{x,y). Then the algorithm performs
the spatial cloaking recursively and each iteration prdsee

in three steps. It first locates the number of moving objects 5

(M N) and the number of still object$'(V) in the current cell
cid. Then it compare$ M N, SN} with the location privacy
requiremen{k, [} of the mobile userdpject;;) and computes
the minimal spatial cloaking box. If the current cell doe$ no
meet the anonymity requirements, then the parent cell®f
will be used to start the next iteration.

Concretely, the algorithm first uses the current cell identi

Algorithm 1 Quad Grid Cloaking
Input: {object;q, requestiq, z,y,t},{ds, dy,d}, {k, 1}
Output: MinimalSpatialCloakingBox

1: cid «— GridIndexSearch(object;q, x,y)

2: FUNCTION QUAD_GRID_CLOAKING(k, I, {x,y},
3: {dy,dy}, cid)

4: (M N,SN) «— CellObjectCountMapSearch(cid)
5. 0f (cid. MN > k) && (cid.SN > 1) then

6:  CheckCloakingBoxValidity(x,y, dy, dy)

7:  return cid;

8: end if

9:

cid,, «—— Vertical neighbor cell of cid.

cidy, «+— Horizontal neighbor cell of cid.

: MN, = cid MN + cidy, MN; M Ny, = cid MN +
cidp . MN;

: SN, = cid.SN +cid,.SN; SN}, = cid.SN +cidy.SN,

Hif ((MN, > k) && (SN, > 1)) || (M N, > k) &&
(SN, > 1)) then

14 if (MN, > k&& MN;, > k && MNy > MN,) ||

MN, < k)then
15: CheckCloakingBoxV alidity(x,y, dy, dy)
16: returncid, cidy,;

=
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=
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17:  else

18: if (M N, == M N,) then

19: if (SN, > SN,) then

20: CheckCloakingBoxV alidity(x,y, dy, dy)
21: returncid, cidy,;

22: else
CheckCloakingBoxV alidity(x,y, dy, dy)

4 returncid, cid,;

5 end if
26: end if

7. else

8 CheckCloakingBoxValidity(x,y, dy, dy)
29: returncid, cid,;
30: endif

fier for the mobile user to obtain the number of moving objects 31: else

(M N) and the number of still object$'(V) within this partic-
ular cell by searching th€ell Object Count Maplata struc-
ture. Then it performg&-anonymity and-diversity check on
this grid cell. IfM N > k andSN > [, then this single cell
can potentially form the spatial cloaking box for this resjue
and may be returned as the answer after verifying that it doe
not violate the maximum spatial resolution constraintse@i
2-5). Otherwise, the algorithm attempts to extend the bearc
for cloaking box in vertical or horizontal direction of thare
rent cell. We define theertical neighbor ¢id,,) of cell cid

as the cell located above or belai/ with the same parent
cell in the HGI. Thehorizontal neighbor id},) is identified

as the cell located on either side @fl with the same parent
cell in the HGI. The algorithm will then calculate the object
countsM N and SN of cid andcid, as well ascid andcidy,

as shown in line 8 of the algorithm. If only one of these two
cell combinations satisfies ttkeanonymity and-diversity re-
quirement (lines 9-17), the algorithm attempts to chooae th
combination to continue the verification of whether it meets

322 QUAD_GRID_CLOAKING(k, I, {z,y},{ds, dy},
PARENTid));
33: end if

the maximum spatial resolution constraint. If both cell eom
%inations satisfy th&-anonymity and-diversity requirement,

e algorithm picks the combination which provides a higher
k anonymity level (or highet-diversity level when both com-
binations have the sanievalue). Upon passing the privacy
check, the algorithm will validate whether the selected cel
combination meets the maximum spatial resolution condtrai
of this request, and if so, it is returned as the minimal gpati
cloaking box (line 11 and line 14). However, if this selected
cloaking box is does not meet the maximum spatial resolu-
tion requirement (i.e., bigger than the range defined by the
maximum spatial resolution), the algorithm has to drop this
message (unless temporal cloaking is turned on). In case tha
neither of the two combinations satisfy theanonymity and
[-divrsity requirements, the algorithm starts the nexiaitien



) larger than required even though the achieved anonymigf lev
6 4 2 2 6 4 2 2 6 4 2 . N .

N N N (k'=33) is well above the required anonymity level of k=20.
dlelsldl g | 2[0S |45 |[4168FS]%) 5  Figure 4(b) displays a couple of scenarios where the clgakin
314|543 314|543 3l1|4|5|3 area can be constructed using fewer number of base level cell
3|5 |7|5 3|5 |7]|5 3|5 |7]|5 while still meeting the required anonymity level. There are

number of weaknesses that prevent the Quad Grid approach
=3k from finding the smallest possible cloaking area within the
() (b) user specified privacy and quality requirements.

Fig. 4: Quad Grid Cloaking Weakness

with the parent cell of the current cid.

We illustrate the working of Algorithm 1 by example. Fig-
ure 3(a) displays a HGI structure of height two. For simpyici
we only display the mobile object count for each cell at a par-
ticular time instant within each cell since the still objeount
is relatively stable. We observe that the mobile object toun
for each cell at level one is the sum of the object counts for
its children cells at level two. Figure 3(b) illustrates therk-
ing of the Quad Grid Cloaking algorithm for a given location
anonymization request issued by a mobile object within the
shaded cell (the cell with object count of 6). Suppose that
this anonymization request has theanonymity level set to
k = 20. NeitherM N,, = 12 nor M N;, = 10 satisfy this k-
anonymity requirement of 20, so the algorithm selects the pa
ent cell at level one of HGI. However, this parent cell has the
mobile object count of 18, thus it is still insufficient to ntee
the desired:-anonymity level of 20. The algorithm needs to
further expand the candidate cloaking box in either velrtica
or horizontal direction. If the expansion proceeds in aiti
direction, the candidate cloaking box provides k-anonymit
level of k'= 30, otherwise we obtain k'=33 by expanding the
box in the horizontal direction. Given that the cloakingaare
will be the same irrespective of whether the expansion isglo
the vertical or horizontal direction, the algorithm setetite
candidate cell combination that provides a higher anonymit
level. In this example, the horizontal expansion is chosen a
the final cloaking box as displayed in the shaded area at the
bottom left part of Figure 3(b).

3.3 Problems with Quad Grid Cloaking

The Quad Grid cloaking algorithm is extremely fast as it
uses the HGI data structure that maintains the object counts
at different levels of the Grid index. However, the algamith
is restricted by the static nature of the Quad Grid data struc
ture when performing the cell-based expansion for finding
the minimal spatial cloaking box that meets both privacy and

4.

1. Rapid and constrained area expansionAt each itera-
tion, the Quad Grid algorithm expands the cloaking area
to twice its current size by selecting a horizontal or ver-
tical neighboring cell. In case that the iteration involves
moving to a higher level of the HGI (line 18 in algo-
rithm 1), the area expands to four times of its size at the
beginning of the iteration. At the higher levels of a HGI,
this leads to a rapid expansion in the candidate cloak-
ing area, restricting the ability of the algorithm to find
the minimal cloaking box that meets the location P3P re-
quirements.

. Unnecessarily Highk-Anonymity: From the above ex-
ample we observe that the Quad Grid cloaking algorithm
achieves much higher anonymity levels than the desired
levels. Unnecessarily large anonymity levels have an as-
sociated cost of a larger cloaking area which hurts the
QoS provided to the user.

. Anonymization Success RateAn important goal of the
location cloaking algorithm is to anonymize messages at
a higher success rate while meeting the user specified pri-
vacy preference profile. The Quad Grid algorithm, due
to rapid expansion of the cloaked areas, often overshoots
the maximum spatial resolution, thus resulting in higher
percentage of messages being dropped due to its inability
to find a satisfactory perturbation (see Section 6 for ex-
perimental results). This severely hurts the performance
of the algorithm.

Pre-defined Cloaking Path: The Quad Grid algorithm
utilizes a fixed hierarchy of the HGI data structure to
perform cell expansion in searching for minimal spatial
cloaking box, thus limiting its ability to explore all op-
tions for cell-based expansion. As a result, the algorithm
can only select the cloaking areas through a pre-defined
quad grid cell composition structure along the hierarchy
of HGI.

quality constraints of the mobile user. We illustrate the-pe To overcome the problems with Quad Grid cloaking, we need
formance penalty of this problem by example in this sectionto relax the rigid hierarchical quad grid cell expansiongess
and provide experimental evaluation to validate our amglys implied by the construction structure of HGI. This motivate

in section 6. us to look into the dynamic cell expansion approach. In the

Again for simplicity we only deal with the mobile object rest of the paper we focus on the bottom-up and the top-down
counts in this example as the still object counts are insensigrid cloaking algorithms. Unlike the Quad Grid cloaking ap-
tive to the movement of mobile users. Figure 4(a) displags th proach, the dynamic grid cloaking approach is able to pro-
cloaking area constructed by the Quad Grid algorithm (at theduce close to optimal cloaking areas. The algorithm accepts
lowest level of HGI) for the example given in Figure 3. We ob- the same input arguments as the Quad Grid approach (recall
serve that the minimal cloaking area chosen is unnecegsarilSection 3.2).



3.4 Dynamic Bottom-Up Grid Cloaking

The Bottom-Upapproach to dynamic cloaking starts witt
the base cell containing the object from which the cloakir
request has originated. A sketch of the algorithm is given
Algorithm 2. The algorithm first determines if the currenll ce
(cid) has sufficient mobile object count and still object cour
to satisfy the privacy requirements and verifies the validft
the cloaking box in terms of the user specified maximum sg
tial resolution levels (lines 2—6).

Algorithm 2 Bottom-Up Dynamic Grid Cloaking
Input: {object;q, requestiq, x,y,t}, {dy, dy, di }, {k, 1}
Output: MinimalSpatialCloaking Box

1: cid «— GridIndexSearch(object;q, z,y)

2: FUNCTION BOTTOM.UP_GRID_CLOAKING(k, (,
 (@,y), (do, dy), cid)
. if (cid.MN > k) && (cid.SN > [) then

CheckCloakingBoxV alidity(x,y, dy, dy)

return cid;
end if
: while (selectedCells.MN< & || selectedCells.SN [) do
Rowpy «—— Row above uppermost selected row.

10:  Rowg «— Row below lowermost selected row.

©e N O R W

11:  Colg «— Right column of rightmost selected column.

12:  Coly < Left column of leftmost selected column.
13:  CheckRowSpatialValidity(z, d,, Rowy);

14:  CheckRowSpatialValidity(z, d,, Rows);

15:  CheckColSpatialValidity(y,d,, Colg);

16:  CheckColSpatialV alidity(y, d,, Colw );

172 M Ny = selectedCells. M N + Rown.MN;

18: SNy = selectedCells.SN + Rowpn.SN,

19: MNg = selectedCells. M N + Rowg.M N,

20.  SNg = selectedCells.SN + Rows.SN;

21:  MNg = selectedCells. M N + Colg.MN;

22:.  SNg = selectedCells.SN + Colg.SN;,

23: M Ny = selectedCells. M N + Coly .M N,

24: SNy = selectedCells.SN + Coly .SN,

25:  odd iteration:

26: selectRowOrColumnToAdd( Ny, M Ng, M Ng,
27: MNw,SNN,SNs,SNE,SNw);

28: even iteration:

29: if (addedRowInPreviouslteratiottyen

30: selectColumntoAdd{/ N, M Ny, SNg, SNw);
31 else

32: selectRowtoAdd{/ N, M Ng, SNy, SNg);

33: endif

34: end while

35: MinimalCloakingBox «—— CloakingArea(selectedRows,
selectedColumns)
36: return MinimalCloakingBox;

selectedRows: 2 selectedRows: 1, 2 selectedRows: 1, 2
selectedCols : 2 selectedCols : 2 selectedCols : 2,3
2 6 4 2 2 6 4 2 2 6 4 2
4 6 5 4 | 4 6 5 4 | 4 6 5 4
3 1 4 5 3 1 4 5 3 1 4 5
3 5 7 5 3 5 7 5 3 5 7 5

Fig. 5: Bottom-Up Dynamic Hierarchical Grid Cloaking Example

same parent in HGI. The decision on which of the four cells
to choose first is based on the highest object count in the can-
didate cells. The cells composing the cloaking box are ident
fied by their rows and columns in the grid index. Tdedected
rows and selected columnare maintained by the algorithm
(in an incremental order) and can be used to infer the selecte
cells for forming the final cloaking area. The current candi-
date cloaking box may be expanded further in any direction
(North, South, East or Wedby adding the row above the up-
permost selected row (or below the lowermost selected row)
or the column to the right of the rightmost selected colunin (o
to the left of the leftmost selected column), thus dynanhycal
building the cell-based cloaking box by adding suitablegow
or columns. The rows denoted Bow, Rows or columns
denoted byColg, Coly, (lines 9-12) are used to calculate
the cell count after addition (lines 17-24). The validity of
the rows or columns to meet the maximum spatial resolution
requirements is checked before proceeding with the aaditio
(lines 11-14). The algorithm selects the row or column which
leads to the maximum object count after addition. For every
odd iteration, the algorithm determines whether to add a row
or column as the cloaking area may be expanded in any of
the four directions (lines 25-27). For even iterations, dhe
gorithm expands the cloaking area, depending on whether a
row or column was added in the previous iteration, in order
to ensure that no skew is introduced in any direction (lines
28-33). For example, if the algorithm added a row during the
previous iteration, the current iteration would involveldithn

of either the columrColg or Coly,. The steps (lines 8-34)
are recursively repeated as long as the total object couait of
cells in the selected rows and columns is less than the estjuir
k-anonymityandi-diversity requirements. Upon meeting the
privacy and quality requirements, the algorithm uses the se
lected rows and columns to determine the selected cells and
composes the minimal cloaking area in terms of the selected
cells. It returns the final minimal spatial cloaking area and
terminates.

The working of theBottom-Updynamic approach is ex-
plained through an example in Figure 5. For simplicity we
only use the mobile object count in this example. The cloak-

In case that the current cell does not meet the user’s priing request originates from the shaded cell with an object

vacy requirements, the algorithm expands the currenticel] (

count of six. As this is insufficient to meet tlkeanonymity

the candidate cloaking box) to any of the four neighboring requirement, the algorithm starts expanding the selectéd c
cells. This is in contrast to the Guad Grid approach that re-Note that the algorithm works with a flat grid index (or the
strict the expansion to only those neighboring cells with th lowest level of the HGI data structure). Thus no additional i



formation related to higher levels of the HGI hierarchy reeed Algorithm 3 Top-Down Dynamic Grid Cloaking

to be maintained. The current cell is located at the secondnput: {objectiq, request;q, x,y, t}, {ds, d,, di }, {k,1}
row and the second column in the grid, which are marked autput: M inimal SpatialCloakingBox
selectedRowandselectedColdy the algorithm respectively. 1. cid «— GridIndexzSearch(object;q, x,y)

All neighboring cells of the shaded cell are considered and 2. FUNCTION TOPDOWN_GRID_CLOAKING(k, ,

the first row to the north which increments the object count 3. (z, ), (e, dy), cid)

to 12 is chosen as the first cell to expand and added into the 4. selectedCells AaxCloakingArea{z,y, dy, dy};
selectedRowsAs the total object count of 12 in this candidate 5. if (selectedCells.MN< k) || (selectedCells.SN I) then
cloaking box does not meet the k-anonymity requirement of .  preak;

k = 20, the algorithm starts the next iteration. Inthis iteration 7. end if

we first consider the column to the leff'¢/y), which is not 8: while (selectedCells.MN> k && selectedCells.SN- 1)
sufficient to meet the privacy requirements. Then we comside (o

the addition of the right column (third column in the grid) 9.  Row, «— Uppermost selected row.

which provides a cloaking area with the object count of k'=21 1¢:

which is sufficient to meet the anonymity requirement. Thus 11:
the algorithm terminates and retursidected Rows = {1,2} 12:
and selectedCols = {2,3}. We can see the area provided 13
by the dynamic bottom-up grid cloaking approach is much 14
smaller than the one provided by the Quad Grid approach (inys.
Figure 3), even though both meet the privacy requirements. 1g:

17:

18:
Dynamic cloaking may also proceed by starting with the ;g.

largest possible cloaking area as permitted by the maximun.
spatial resolution. We call this approach thep-Downdy- 21
namic gird cloaking and Algorithm 3 gives the algorithmic
sketch. First, the top-down algorithm calculates the cells
needed to compose the largest cell-based candidate apakiny,.
box, which meets the maximum spatial tolerance requirements.
(line 4). The cloaking area is expressed as a sedetdct- 24
edRowsand selectedColsas in the bottom-up approach. If s
the largest possible candidate cloaking box fails to meet th ,¢.
required privacy requirements, the message cannot bestdoak ,-.
using the user-defined privacy and quality metrics and the al ,g.
gorithm terminates (lines 5-7). The algorithm proceeds be-,q.
yond this step only if it is possible to cloak the message- Oth 5.
erwise, the top-down approach repeatedly removes appropriz;.
ate rows or columns from th@aximum cloaking aregener-  5,.
ated in line 4. Each odd iteration selects the outermost oows  a3.

3.5 Dynamic Top-Down Grid Cloaking

Rowg «—— Lowermost selected row.
Colg < Rightmost selected column.
Coly «—— Leftmost selected column.
M Ny = selectedCells. MN — Rowpn.MN;
SNy = selectedCells.SN — Rowy.SN;
MNg = selectedCells. MN — Rows.M N,
SNg = selectedCells.SN — Rowg.SN;,
MNpg = selectedCells. M N — Colg.MN;
SNg = selectedCells.SN — Colg.SN;,
M Ny, = selectedCells. M N — Coly, .MN;
SNw = selectedCells.SN — Colyy .SN;
if (MNy > k&& SNy > 1) || (MNg > k &&
SNs > 1) | (MNg > k&& SNg > 1) | (MNw > k
&& SNy > 1)) then
odd iteration:
selectRowOrColumnToRemove(Ny, M Ng,
MNg, ]\/[Nw, SNN, SNs, SNE, SNw),
even iteration:
if (removedRowInPreviouslteratioth)en
selectColtoRemové( Ng, M Ny, SNg, SNw);
else
selectRowtoRemove({ Ny, M Ng, SNy, SNg);
endif
else
break;
end if

columns (lines 9-12) with minimum object counts, so that the 34. end while
selected cloaking area (after removing a row or column) hasgs: MinimalCloaking Box<— CloakingArea(selectedRows,

the maximum possible object count (lines 13—-33). If any of
the calculated values are higher than the k-anonymity requi
ment, rows or columns may be removed appropriately, pro
vided that the row or column containing the object which ini- Ples. The shaded area in the leftmost figure displays the ini-
tiated the cloaking request is not removed (line 21—-24).nEve tial maximum possible cloaking area. The end result with the
iterations may remove rows or columns dependent on the steg@P-down approach is similar to the result obtained usirg th
performed by the previous iteration (lines 25-30). The algo Pottom-up approach in this example.
rithm terminates if none of the object counts are higher than
the user specifiel value and value (lines 31-33). It returns
the final cloaked spatial area defined by sieéectedRowand
selectedCols The top-down approach speeds up the cloak-
ing in certain scenarios when compared to the bottom-up ap- In this section we discuss two enhancements for the P
proach. VACY GRID spatial cloaking algorithm: thaybrid cloaking
The example in Figure 6 illustrates the Top-Down approachapproach and the incorporationtefnporal tolerancénto the
with the same starting conditions as in the previous exam-spatial cloaking algorithms.

selectedColumns)
36: return MinimalCloaking Box;

4 Possible Enhancements



selectedRows: 1,2,3 selectedRows: 1,2 selectedRows: 1, 2 add onlyr — 1 rows and- — 1 columns where is as defined in
| Is :1,2 | Is :1,2 | Is : 2 . .
SEEies oL SEeE o Les SEEEUE S0 equation 1 above. The top down approach starts withws
216 |42 2l 6 lal2 2lelalo2 andb columns and it is expected to remave- (r — 1) rows
@ andb — (r — 1) columns on an average. Hence the expected
4 5 4 4 6 5 4 4 6 5 4 . . .
> > number of iterations performed by the bottom-up approach is
3 1 4 5 3 1 4 5 3 1 4 5
k
7 .
3|5 5 3|5 |75 35|75 Zbu:2x{/g_1} (4)
k=20 k=21

Similarly for the top down approach the expected number of
Fig. 6: Top-Down Dynamic Hierarchical Grid Cloaking Example jterations is,

4.1 Hybrid Cloaking

. k k
The hybrid cloaking algorithm combines the bottom-up ia=a—{f - —1p+b—{y/ - —1} ®)

gnd to.pjdown approache; toimprove thg performance of fmd:l’he iterations performed by the top-down approach, on aver-
ing minimal cloaking region for a location service request.

There ar eral w that on n combine the top-d Wﬁge, require more computation when compared with the iter-
ere are several ways fhat one can comoine the top-dowRy;, o performed by the bottom-up approach as the top-down
and bottom up approach. For example, making a choice upo

o ) . ) Rerations are acting on a much larger number of rows and
receiving a location anonymization request. In this case, t

in chall is how t iatelv decide whether t columns. Let the average cost of iterations performed by the
main chaflenge 1S how to appropriately decide wnether 1o pro top-down approach be times the average cost of iterations

ceed in a bottom-up or a top-down manner upon rece'\"ngigerformed by the bottom-up approach. From the above equa-
[

a message cloaking request. When a request has lower ions we can determine the cost of proceeding in a bottom-up

anonymity level and higher maximum spatial resolution galu manner as,

the hybrid algorithm proceeds in a bottom-up manner. How-
ever, for the request with a higher k-anonymity value and a k
low maximum spatial resolution value, the top-down applnoac Tou =2 x {\/; — 1} x Costyy
is chosen as it works faster in finding the minimal cloaking
box. We provide a brief analysis on the factors for making
such decision when we assume a relatively stable statelsf cel
being considered and a uniform object distribution.

Consider the map with a grid comprising of cells of size k k
o x (3 superimposed on top of it. We assume that each cell hastd = {a—{ n_ 1+b—{ n_ 1}} x 7y x Costyy (7)
n objects on average as this analysis assumes a uniform objeEt ati ¢ the hvbrid cloaki larit
distribution. Our dynamic approaches advocate addition (o or any anonymization request, the hiybrd cloaking ‘Tigm!'
removal) of rows and columns alternately. We assume that th& roceeds in a top-down mannerify < Tpu, otherwise, it
final cloaking area is constructed by adding an equal numbeProceedS in a bottom-up manner.
of rows and columns. Given an anonymization request with4.2 Integrating Spatial Cloaking with Tem-

(6)

where Costy,, is the average cost of a single bottom-up it-
eration. Similarly, if the cost of one top-down iteration is
COSttd =79X C(OStbur

anonymity levelk, we conclude that, poral Cloaking
All cloaking algorithms we have discussed so far start com-
r— k (1) posing the minimal spatial cloaking box that meets both pri-
n vacy and QoS requirements immediately upon the arrival of

a new request message, regardless whether the top-down or
tbottom-up cell composition is used. Recall that some mes-
ages may have to be dropped during spatial cloaking due to
he fact that the algorithm cannot find the cloaking area that
eets both privacy requirement and the maximum spatial res-
lution requirement specified by the mobile user. Instead of
dropping the message, we can improve the situation by invok-
ing the temporal cloaking to introduce some delay in terms of

wherer? is the average number of cells estimated to mee
our anonymity requirements, consequently we need toradd
rows and an equal number of columns to form the require
cloaking area. We assume that the maximum cloaking area

defined by the maximum spatial resoluton values consists o
a rows andb columns which can be approximately quantified

as below.

dy when to start the spatial cloaking process within the maximu
a=2X LﬁJ +1 ) temporal resolution constraint. For example, if we delay th

d. start of spatial cloaking fofy time units 0 < v < d;), more
b=2x LELLJ +1 ) mobile users may issue requests over the same area, and lead

to higher probability for more messages to be perturbed, pro
The bottom-up approach starts with a singe cell and may exviding higher anonymization success rate. The critical-cha
pand to include: x b cells, requiring addition ofi — 1 rows lenge is how to set the appropriat@alue. Ify = 0 the spatio-
andb — 1 columns. However, on an average it is expected totemporal cloaking is reduced to immediate spatial cloakihg



Cloaked Query Q ily large cloaking regions will lead to larger result setsisl
important to note that no other optimizations of any kind-dur
AN ing query processing can guarantee all relevant result®evil

[ e included in the returned candidate result set.

Theorem 1. The MBR (as evaluated in Figure 7(b)) for the
— cloaked query®; includes all relevant results for the actual
el queryQ.

I o Proof Skipped.

Ao
[*]

e e 6 Experimental Evaluation

We divide the experimental evaluation oRIRACY GRID
into two components: the effectiveness of our cloaking algo
Fig. 7: Anonymous Query Processing rithms in terms of privacy and quality requirements, andrthe
~ = d;, the cloaking will be performed right before the expira- performance in terms of time complexity and scalability- Be
tion of the message (i.e., after a maximum allowed delay of fore reporting our experimental results, we first describe o
time units. However this extreme setting will result in hégh  evaluation metrics and the experimental setup, includireg t
latency which in many cases are unnecessary. Given a requestad-network based mobile object simulator used in the ex-
message and its current celll, let C,,,... be the neighboring  periments.
cell of cid with the highest object count. InRPvACY GRID,
we determine the timing for starting the deferred cloakirgy p i ) ) ]
cess based on a number of parameters. Concretely, we per- We deflng t.he following metrics to e\{aluate thg effective-
form the spatial cloaking for a new message if the total abjec N€SS and efficiency of/vacy GRID location cloaking algo-

count of the current celtid and the neighboring celll,,,, ~ "thms. o
is larger than or equal to a system defined fractior oay Anonymization Success Rate:The anonymization success

0, namely M N (cid) + MN(Cpaz) > 0 x k. 0 < 1is a rate is also referred to as the anonymization hit rate. The
system parameter that adjusts the amount of anonymizatio§UCcess rate of a cloaking algorithm measures its ability
messages to be deferred. Smallevalues push more mes- © cloak messages according to .th.e. privacy requirements
sages to be processed immediately upon arrival. We can séf€ k-anonymity value and thé-divisity value — and the

0 at initialization time based on experimental studies orehay Q0S requirement- the maximum spatial resolutionalue

it adaptively tuned during runtime by observing the rate of2nd themaximum temporal resolutiomalue. \We define
successful anonymizations with differehvalues. A similar the anonymization success rate by measuring the fraction of
threshold value may be maintained for theiversity specifi- ~ Mmessages cloaked successfully by an algorithm among all

(a) Actual Query (b) Anonymized Query

6.1 Evaluation Metrics

cations t00. anonymization requests. This is the most important measure
_ _ _ for evaluating the performance of the cloaking algorithis.
5 Processing Perturbed Location Queries primary goal of the cloaking algorithm is to maximize the

We briefly describe the anonymous query processingn'“!mber of messages perturbed successfully_accordingito the
mechanisms required at the LBS server in order to aid proprlvacy and QoS requirements. Hence, the higher success rat

cessing of queries associated with cloaked spatial regmns a Ioce_ltlon C'Oak'”g algorithm has, the more effe_ctn_/e Itis.
stead of spatial points. Figure 7 displays an objgctvhich Relative Anonymity .Level (RAL): .Th|s metric is used
requests for all static objects (e.g. gas stations) withéndis- to measure the achieved anonymny Ieyel for succgssfully
tancer from its curent position. Figure 7(a) displays the Min- cloaked messages by the cloaking algorithm, normalized by
imum Bounding Rectangle (MBR) which forms the result set the specn_‘led I_evel of anopymltyf(valye) and, the sp_ecn‘let_j

to be explored for the actual query. The cloaked query regiode\’el of diversity ( vqlue) in the mobile user's location pri-
identified by the location anonymization server is as shown’acy Preference profile.

in Figure 7(b). The actual objeet which makes the query oy

request may be present anywhere within the cloaked query re- RAL = Z X 7(141’ >k, 0'>1) (8)
gion, even at the any of the corner points of the region. Thus

the query processor needs to explore the region at a maximurm PRIVACY GRID, the location cloaking algorithms aim at ob-
distancer from each corner point to ensure that the proba-taining higher anonymity for the same cloaking area. How-
bility of relevant results being excluded from the evaloati  ever, excessive anonymity achieved at the cost of cloakiag t
is zero. The shaded area in the figure displays the query rdocation to a larger region hurts QoS during query process-
sult evaluated using the cloaked query region. As is clearlying. Hence, the lower the relative anonymity level (RAL) th
evident from the figure, the query result will include alleel  better the performance of the algorithm.

vant results for the original quexy,. This clearly illustrates  Relative Spatial Resolution (RSR):This metric measures
the need for finding smaller cloaking regions as unnecessaithe ability of the spatial cloaking algorithm to provide the



| Road type | Expressway| Arterial | Collector |
D | Mean of car speeds| 90 60 50
(km/h)
e s Std. dev. of car speeds 20 15 10
(km/h)
Traffic volume data | 2916.6 916.6 250
(cars/h)

0.07265507444722734
90.0kmih
20.0kmih

Table 1: Motion Parameters

CLASS_
0.037277323279907276

e uses a map from Chamblee region of Georgia (Figure 8) to
generate the trace used in this paper, which covers a region
of approximately 168&m?2. Most of our experiments use the

[ e trace with a duration of two hours. We simulate the movement

of a set of 10,000 cars on the road network for Chamblee. Ta-
ble 1 lists mean speeds, standard derivation and traffierelu
values for each road type. Each car generates a set of mes-
sages during the simulation. By default, each message spec-
ifies an anonymity levek from the range of1, 150] using
smallest cloaking area sufficient to meet the anonymity re-5 zipf parameter of 0.6 with highér being the most popu-
quirements. We calculate the relative spatial resolutign b |a;. The maximum spatial and temporal resolution values of
using the minimum spatial cloaking area, as calculated 8y th the message are selected independently using normat distri
cloaking algorithm, normalized by the maximum allowed spa- pytions with600m as the default mean spatial resolution and
tial cloaking area defined by the specified maximum spatialy,,,2 a5 the variance in maximum spatial resolution. The de-

Fig. 8: Simulator for Experimental Setup

resolution{d, d,, }. fault mean temporal resolution is set to be 15s with? vari-
ance in temporal resolution. Though all parameters take the
RSE — \/ 2 X dy x2xd, ©) default values if not stated otherwise, the settings of npy
Area(selectedCells) rameters will be changed in different experiments to shaw th

impact of these parameters on the effectiveness and efficien

The relative spatial resolution has to be greater than one if the algorithms.
all cases for successfully anonymized messages. Higheer rel
tive spatial resolution measure implies that the cloakedialp
region is smaller and the cloaking algorithm is more effexti Our experimental evaluation of theRR/ACY GRID algo-
Message Anonymization Time: This metric measures the rithms consists of three parts. First, we evaluate the gffec
run-time performance of the cloaking algorithm in terms of ness of the location anonymization algorithms by measuring
time complexity. Efficient cloaking implies that the cloagi  anonymization hit rate (success rate), relative anonylentsl
algorithm spends less time but perturbs more messages.  oObtained, average cloaking time and relative spatial tesol
tion and observe how these parameters behave when we vary
the settings of a number of parameters, such as grid cell size

We extend the simulator from [14] to evaluate the effec- the user-specified anonymity levk] and the user-specified
tiveness and performance oRRACYGRID cloaking algo-  maximum spatial resolutiofid,, d,}. Then we evaluate the
rithms. The simulator generates a trace of cars moving orscalability of the algorithms in terms of cloaking time and
roads, and generates requests based on the position irformgpdate cost by varying the number of mobile users. Finally
tion from the trace. The trace generated by the simulator simye evaluate the effectiveness of combining temporal clugki
ulates a real-world road network obtained from maps avail-with Spatiaj C|Oaking by measuring the anonymization suc-
able at the National Mapping Division of the USGS [7] in cess rate (fraction of messages anonymized) when varying
Spatial Data Transfer Format (SDTS) [6]. A transport layfer 0 poth the maximum temporal resolution values and the max-
1:24K Digital Line Graphs (DLGs) is used to extract the road- jimum spatial resolution values. Our results show that the
based network. The data is converted to the Scalable Vectoprvacy GIRD dynamic grid cloaking algorithms are fast, ef-
Graphic (SVG) [5] format using the GlobalMapper tool [2]. fective, scalable and outperform all existing locatioresing
The simulator extracts the road network based on three typegpproaches in terms of both anonymization success rate and

of roads —expresswa,yarterial and collector roads. Traffic C|oaking time in the presence of |arger rang@@hhjes_
volume data in [16] is used to estimate the number of cars for

different road classes. Cars are randomly placed on the roaﬁ'g"1 Varying Size of Grid Cells

network according to the traffic densities and are moving onThis set of experiments aims at measuring cloaking time,
the roads. At intersections, they move in one direction er th anonymization hit rate (success rate), relative anonytentyl
other. The simulator attempts to keep the number of cars ommnd relative spatial resolution obtained by using difféset-
each type of roads constant with time. Our experimentatiortings of grid cell size. Figure 9 shows the results measured

6.3 Experimental Results

6.2 Experimental Setup



Bolom-Up T——J

Top-Down —=
Hybrid s

Quad’Grid

Botlom-Up —/——
‘op-Down ==—=

Hybrid

Quad’Grid

5
Bottom-Up ——

Bottom-Up ——
Down

Top-Down
ybrid m—
Quad’Grid m—

F
n

Hybrid m—
Quad Grid m—

54
%

©w
w s

o
2N
N
n

S
=
Cloaking Time (ms)

S
o
Relative Anonymity Level
Relative Spatial Resolution
c—NwEULO®OD

Anonymization Hit rate

e =
o=

ol

[2-10] [10-50]  [50-100] [100-150]
k-anonymity values

(c) Message Anonymization Time (d) Relative Spatial Resolution

[2-10] [10-50]  [50-100] [100-150]

k-anonymity values

(@) Anonymization Hit Rate

[2-10]

[10-50]  [50-100] [100-150]
k-anonymity values

(b) Relative Anonymity Level

[2-10] [10-50]  [50-100]

k-anonymity values

[100-150]

Fig. 10: Results with Varying Anonymity Levels

might be cloaking requests to unnecessarily larger spatial
gions. This is confirmed by the relative spatial resolution
(RSR) measurement, which is about 40% higher for the dy-
namic cloaking approaches when compared to the Quad Grid
cloaking approach.
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6.3.2 Varying User-defined Anonymity Levelk

12X 14

This set of experiments measures anonymization hit rate (su
cess rate), relative anonymity level, cloaking time, ataltiee
spatial resolution when varying the user-defined anonymity
level, from various ranges: [2-10], [10-50], [50-100] and
[100-150]. Spatial tolerance values for the anonymity esng
are 400m, 800m, 1200m and 1600m (mean values with 5%
standarad deviation) respectively and are chosen to be larg
enough to theoretically allow cloaking of a large fractidn o
the messages. The results are as displayed in

Figure 10 shows that the Quad Grid approach is able to
cloak only around 60% of the messages with anonymity level
k set in the range of [2—-10] and the success rate falls further
to 45-50% with increasing values. In contrast, the dynamic
approaches cloak 90-99% of the messages within user-defined

Figure 9(a) shows that the quad grid cloaking algorithm maximum spatial resolution values (Figure 10(a)).
is fast in terms of cloaking time and the cloaking time does  From Figure 10(b), we see that the Quad Grid cloaking in-
not increase significantly with the decrease in the sizeidf gr cyrs higher relative anonymity level but all dynamic cloaki
cells. However, both the bottom-up and top-down dynamicapproaches have low relative anonymity levels (close t9,one
grid cloaking algorithms will incur relatively higher clemg  indicating that the anonymity levels obtained in all peea
time (ms) with the decreasing sizes of grid cells. This is be-messagegy( values) are very close to the user-defirted
cause more rows (or columns) need to be added (or removed) Figure 10(c) shows the impact of varying the user-defined
to obtain the optimal cloaking regions. Interesting to riste anonymity level ¢ values) on the cloaking time of all algo-
that the actual' cloaking time of all dynamic approachesilis st iihms. The quad grid cloaking algorithm is the fastest and
below 2.5 ms in all cases, and such low delays are hardly pefys cloaking time does not increase much with the increase in
ceivable. the user-defined values. Though all dynamic cloaking algo-

From Figure 9(b) we observe two interesting results. rithms will incur relatively higher cloaking time (ms) withe
First, the anonymization hit rate, the relative anonymityel  increasingk values, the amount of increase in cloaking time
(RAL), and the relative spatial resolution (RSR) do not @den for bottom-up and hybrid is much slower when compared to
much as we vary the size of grid cells. Second, given a fixedhe top-down approach. It is important to note that the cloak
grid cell size, say24m x 28m], we see sharp differences when ing time for the worst case (where the top down approach is
comparing the Quad Grid cloaking approach with the dynamicused) is still around 4.5 ms fdr values in [100-150] (with
grid cloaking approaches such as bottom-up, top-down andhigherk being more popular), which is hardly perceivable by
hybrid. The Quad Grid cloaking, though faster (recall Fig- most users.
ure 9(a)), has only 43% of the messages being anonymized Figure 10(d)) displays the impact of changihgalues on
successfully, while all the dynamic approaches have similarelative spatial resolution (RSR) obtained for the perdrb

(b) Other Metrics
Fig. 9: Results with Varying Size of Grid Cells

for four different settings of grid cell size[96m x 112m),
[48m x 56m], [24m x 28m], and[12m x 14m]. Recall that

a HGI of heightl implies a lowest level grid comprising of
2! X 2! cells. Thus the four different grid cell sizes are equiva-
lent to four different settings of the lowest level grid siz@ng-

ing from 128 x 128 cells t01024 x 1024 cells. The user-defined
anonymity levels £ value) for this set of experiments are cho-
sen in the range [10 — 50] with a Zipf distribution using pa-
rameter 0.6, indicating that messages with higher anoymit
levels are more popular.

but much higher rate of success 01%). All the dynamic
grid cloaking approaches give low relative anonymity leyel

messages. Clearly, the dynamic grid cloaking algorithme ha
considerably higher RSR (28-43%) than the Quad Grid ap-

which are close to one, whereas the Quad Grid approach hgzroach for allk values, though RSR values decrease as:the

about 15% higher relative anonymity level, indicating that

values become larger.



N

B Bottom-Up —%— Bottom-Up —%— 5 Botom-Up —%— < O MBotomUp —%—
< Top-Down —&— k) Top-Down —&— ‘op-Down —8— 5 Top-Down —&—
S Hybrid —6— 2 Hybrid —— . Hybrid —6— £s Hybrid ——
S 1 rQuadGnd —a— 8 1.16 } Quad'Grid —&— @ 2 [Quad'Grid —a— 2 Quad’Grid —&—
% z a——h— 4 % 84
2 075 E L2} g 1s x
@ € = L3
g 2 > g
= 05 < 1.08 F £ 1 (%
s 2 E 2
2 S g
c =1 ° =
S 025 B 104 | O 05 21
=3 O D
5] & ﬁ ©
i) [
w 0 1 0 0
500 600 700 800 500 600 700 800 500 600 700 800 500 600 700 800
Spatial Tolerance (m) Spatial Tolerance (m) Spatial Tolerance (m) Spatial Tolerance (m)

(@) Anonymization Hit Rate (b) Relative Anonymity Level (c) Message Anonymization Time (d) Relative Spatial Resolution
Fig. 11: Results with Varying Spatial Tolerance

6.3.3 Varying Spatial Tolerance anonymized more easily, but the update costs for the grid-

This set of experiments examines the performance of the algobased structures will increase. We use a similar setup tantha

rithms by varying the maximum spatial resolution settingg a Sgction 6.3.3 with the mean spatial resolution fixed at 800m
measures the anonymization hit rate (success rate),velati }N'th i‘g’KStangzj dzwal;tlon. V\r/]e v?fry the r;1uml|)erk9f USers
anonymity level, cloaking time, and relative spatial resioin. rom to and observe the effect on the cloaking time

Messages are generated with anonymity lévebm the range and update cost. Figure 12 shows the mgasurement results.
[10-50] with Zipf distribution using parameter 0.6, favui From Figure 12(a) we observe a number of interesting results

messages with highérvalues. We vary the maximum spatial F|r§t, the amount of @fferenc_es n cI_oakmg time among thea
resolution value from 500m to 800m (mean values) with 5%gor|thms changes slightly with the increase in the number of

standard deviation and examine the effect of differentragt mobile users. Second, the cloaking time for the Quad Grid ap-
of maximum spatial resolution on the effectiveness of bothProach is less sensitive to the increase in the number o user

the Quad Grid and the Dynamic Grid cloaking approaches:rhird' the top-down approach shows a slow increase in cloak-

Figure 11 displays the results. The dynamic approaches ard'd time Wit.h t_he increase in the number of ”.‘Ob"e USErs in the
able to cloak all messages which can be theoretically cbake system. This is becgus? ths prroach”requwes_ rlnore _messauo
for each maximum spatial resolution value, whereas the Qua S messages can be cloaked to smaller spatial regions now.

Grid approach fails to cloak a large number of messages (409 OhowTveIE_ the_bottgm-up approachh displféys afreversg trend
less as shown in Figure 11(a)). Figure 11(b) shows that thdhe cloaking time decreases as the number of users increases

relative anonymity levels for all cloaking algorithms dotno This is because higher density of mobile users per grid cell

change much when the user-defined maximum spatial resold’-‘”” enable the bottom up cloaking to find the minimal cloak-

tions change significantly. Figure 11(c) shows that only the'N9 box faster. Fmglly, we observe that the hybrid approaph
top-down cloaking algorithm increases the cloaking time as""_da_ptS well to the increase in the number of USETS, offering
the maximum spatial resolution values increase, Whilerothes'm'lafr pe_rformance as the bottom-up approach in terms of

cloaking algorithms are not very insensitive to the changes cloa_klng time.

the maximum spatial resolution values. Finally, Figured}1( Figure 12(b) measures the total number of updates per sec-
shows that with the increase in the maximum spatial resolu©"d required to update the grid-based data structures as the
tion values, the relative spatial resolution (RSR) valgesafi ~ number of mobile users increases. For this experiment, the
cloaking algorithms will increase proportionally with mse ~ 9rd index is maintained as a main memory data structure.

to constant gap between the Quad Grid approach and the dﬁach car provides a location update to the system after govin
namic grid algorithms. a distance of 20m. We observe that the Quad Grid approach

- uses the HGI data structure and requires a large number of up-
6.3.4  Scalability dates as the number of users increases. The HGI used in this
Finally we report the set of experiments designed to studly th €xperiment is a nine level grid index, requiring an averafge o
scalability of the RIVACY GRID system with respect to the 10-11 updates per location update request. In contrastythe
changing number of mobile users. Obviously, as the num-hamic cloaking approaches use the simple grid index, requir
ber of users in the system increases, we can expect the cloak?g only 1.8-1.9 updates per location update request, which

ing time for all algorithms to decrease as messages will besignificantly lower than the Quad Grid approach in terms of
update cost.

3 o = oo [Ty ==
P “Hybrid —e— T 700000 f Py ‘,’J‘,’.g(‘} = . )
g 1.§ e T e 8 qnoogo QO —— 6.3.5 Effects of Maximum Temporal Resolution
o 1 2
E 14 g 500000 - - . - -

22 g oo This set of experiments is dedicated to study the effectsi-of u
£l £ 200000 lizing maximum temporal resolution values to delay the mes-
0.4 =3 . . . . . .

02 k—a > i sage anonymization process within an acceptable timegherio
o 10K 20K 30K 100K Again we use the same experimental setup as in Section 6.3.3.
umber of Users Number of Users R R
() Message Anonymization Time (b) Update Costs We measure the success rate by varying both maximum tem-

] ) _ poral resolutiond, from 15 seconds to 60 seconds (mean val-
Fig. 12: Results with Varying Number of Users ues with 5% standard deviation) and varying the maximum
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spatial resolutions from 500m to 800m. Figure 13(a) display 8 Conclusion and Future Work

the results for the dynamic grid cloaking approaches and Fig We have describedrVACY GRID — a framework for sup-
ure 13(b) shows the results for the Quad Grid approach. We,,ing anonymous location-based queries in mobile inésrm
observe that the use of maximum temporal resolution helpgjq, systems. This paper has made three unique contritsution
increase the fraction of messages be|.ng cloaked for both th%irst, we propose to use location k-anonymity and location |
dynamic approaches and the Quad Grid approach by 10_20(y8ﬁversity as the two location hiding measures and maximum

spatial resolution and maximum temporal resolution as the
7 Related Work two location service quality measures. Second, we develop
the Quad Grid approach and three dynamic grid based spa-

The k-anonymityapproach to privacy protection was first tial cloaking algorithms for providing locatioh-anonymity
developed for protecting published medical data [23, 22]. k and location-diversity in a mobile environment. The Quad
anonymity guarantees the inability to distinguish an ifttv Grid cloaking algorithm is fast but has lower anonymization
ual record from atleast — 1 other records. [9, 18] attempt Success rate. The dynamic grid cloaking algorithms provide
to provide solutions fooptimal k-anonymization. Person- high anonymization success rate and yet are efficient insterm
alization of privacy requirements has attracted attentsn  Of both time complexity and update cost. Third but not the
cently [14, 26]. Other related work includes anonymization least, we incorporate the maximum temporal resolution into
of high dimensional relations [8] and extending the conceptthe location cloaking process, which leads to further iasee

of k-anonymization vid-diversity [20], t-closenes§19] and N the success rate of location anonymization by introdyicin
m-invariance[27]. controlled delay in terms of when to start location anonyaniz

tion. We also described therRR/ACY GRID mechanisms for
processing perturbed range queries. Our experimental-eval
ation shows that theM®vAcY GRID approach is efficient and
effective for performing personalized location anonyrtiaa,
while providing optimal location anonymity as defined by per
user location privacy preference profiles.

The concept of location k-anonymity was introduced
in [16] wherek is set to be uniform for all users. The con-
cept of personalized location k-anonymity with customigab
QoS specifications, first introduced in [14], is adopted hy se
eral others [21, 15]. Most solutions for location privacyptl
the trusted third party model which has been successfully de
ployed in other areas such as Web browsing [1]. Two rep-ACkno""ledgeme]flt
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tion are theCliqueCloakalgorithm introduced in [14] and the berTrust, NSF SGER, NSF CSR, AFOSR, IBM SUR grant,
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ing, which is expensive and shows poor performance when
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quickly locate cloaking boxes. However, due to the coarsere [2] Global Mapper Software LLC. http
olution of the pyramid structure and the lack of QoS support, //www.globalmappecom.
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