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ABSTRACT 

This study is part of an ongoing research started in 2004 at the Naval Postgraduate 

School (NPS) investigating the development of a human-machine interface command-

and-control package for controlling robotic units in operational environments. An ear 

microphone is used to collect the voice-activated commands providing hands-free control 

instructions in noisy environments [Kurcan, 2006; Bulbuller, 2006]. 

This study presents the hardware implementation of a theoretical Isolated Word 

Recognition (IWR) system designed in an earlier study.  The recognizer uses a short-term 

energy and zero-crossing based detection scheme, and a discrete Hidden Markov model 

recognizer designed to recognize seven isolated words. Mel frequency cepstrum 

coefficients (MFCC) are used for discriminating features in the recognizer phase. The 

hardware system implemented uses commercial off-the-shelf (COTS) electronic 

components, in-ear microphone, is portable and costs under $50.00. 

The implemented speech capturing system uses the ear-microphone and the 

Si3000 Audio Codec to capture and sample speech clearly. The microprocessor processes 

the detected speech in real-time. The microprocessor’s I/O devices work effectively with 

the audio codec and computer for sampling and training, without communication 

problems or data loss. The current implementation uses 1.181 msec to process each 15 

msec data frame. Resulting recognition performances average around 73.72%.
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EXECUTIVE SUMMARY 

Automatic speech recognizers can be used to facilitate communication between 

humans and machines. Speech-based, human-machine interaction is demonstrated in 

several everyday applications, such as voice-mail systems in telephony, hands-free 

machine operations, communication interfaces for people with special abilities, dictation 

systems, and translation devices. ASR systems have been designed for different 

applications, in many areas, under a combination of restrictions, such as specific 

language and vocabulary, speaker dependency, noise-free environments and low talking 

rates, with excellent results. 

This study is part of an ongoing research started in 2004 at the Naval Postgraduate 

School (NPS) which investigates the development of a human-machine interface 

command and control package applicable for soldier tele-operation of semi-autonomous 

military robots.  The overall work is expected to be applied to an efficient, flexible, and 

robust human-machine interface system, capable of directing robotic units performing 

military missions, without debilitating, hampering, or interfering with a warfighter’s field 

operations. An ear microphone was previously considered to provide control instruction 

corresponding to specific initiating actions in noisy environments [Kurcan, 2006; 

Bulbuller, 2006]. 

The objective of this study is the implementation of a real-time isolated word 

recognition system (IWR) using an ear-microphone as a human-machine interface for 

robotic control applications.  Additional design specifications include the use of 

commercial off-the shelf (COTS) electronic components, portable small size and low 

cost.  

This study followed three main phases; the theoretical model of an IWR speech 

recognition system, the hardware design and implementation of a real-time IWR system 

using an ear-microphone, and the system’s software analysis, design and implementation. 

The theoretical model of the IWR speech recognition system described here 

followed the study by [Kurcan, 2006]. This earlier work developed a 7-word IWR system 
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based on a discrete Hidden Markov model (DHMM) implementation. Discriminating 

features used to recognize the words are the mel frequency cepstrum coefficients 

(MFCC) and were selected as they have been shown to be robust to distortions [Kurcan, 

2006]. The spoken words are cropped using end-points detection algorithms based on the 

short-tem energy (STE) and the zero-crossing measure (ZCR).  

The dsPICFJ128GP256 Microchip’s microprocessor is used in this study as the 

speech processing and recognition hardware solution. The selected ear microphone is the 

commercially available Ear Bone Microphone - XEM98D from IXCESSORY 

[IXCESSORY, 2007]. Finally our system’s hardware uses the Si3000 audio codec from 

Silicon Laboratories for speech capturing which includes a pre-amplifier, amplifier, filter, 

and 15bit A/D converter contained in a compact case.  

Software analysis, design and implementation are the basic steps required to 

transition the IWR theoretical processing model into a real-time microprocessor-based 

system. This study uses a combination of three different programming application 

platforms; MATLAB for training the DHMM model and testing the output of the 

microprocessor in different processing stages, DELPHI V5 for implementing the 

computer-microprocessor communication and for hexadecimal conversion of parameters 

resulted by MATLAB and hard-coded to microprocessor’s program memory, and finally 

assembly for the microprocessor programming. 

The study begun by examining the nature of speech signal and the methods used 

by the theoretical model for speech processing including the short-term Energy, the zero-

crossing measure, and the mel frequency cepstrum coefficients (MFCC). In addition, the 

DHMM classification method was explored. Furthermore, the transformation of these 

methods in real-time algorithms was investigated to determine the required hardware 

resources (data and program memory, microprocessor clock speed, and I/O ports) and the 

data flow synchronization and timing issues.  

In the real-time IWR system as implemented in this study, speech is constantly 

captured by the ear-microphone, amplified by 20 dB, passed through a low-pass filter (0 

to 3500 KHz), sampled with 8 KHz sampling frequency, and transformed in 16-bit digital 
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samples by the speech capturing system. The binary samples are transmitted in packets of 

four samples to the microprocessor via the Data Converter Interface communication port 

activating the DCI interrupt which is used as the first theoretical timer of the real-time 

IWR system. Every time the DCI interrupt is triggered the program stores the samples in 

the word’s buffer, update the word buffer pointer, and count the captured signal’s 

samples. Next, the spoken word’s start-point is detected. The theoretical model requires 

the ends-point detection routines to be executed in 80-sample speech frames overlapped 

by 50% or 40 samples. As a result, a second theoretical timer was introduced triggered by 

the DCI interrupt every 40 captured samples. Hence, every 40 samples the start-point 

detection routine is activating seeking for the beginning of the spoken word based on the 

STE and ZCR quantities. When a start-point is detected, the end-point detection, the 

feature extraction, the quantization, and the recognition routines are activated and ready 

to be executed in different times. The end-point detection algorithm is executed every 40 

samples seeking for the end of capturing speech signal based on the STE and ZCR 

quantities. The feature extraction, quantization and recognition algorithms are executed in 

256-sample overlap frames. The amount of overlap was chosen to be 53% or 136 

samples. Consequently, a new 256-sample frame is formed every 120 new samples have 

been captured. Thus, every 120 samples or every three 40-sample timer triggers and 

while an end-point is not detected, the feature extraction, the quantization, and the 

recognition routines are executed. All these routines (including the end-point detection 

one) must be completed before the next activation of the 40-sample timer to preserve the 

real-time nature of the system. Finally when an end-point is detected, the recognition 

result is computed and transferred as binary command to the robotic control routine. 

More than 80% of processing time is available for control and command tasks before the 

system begin to process the new spoken word. 

Three different approaches were used to evaluate the performance of the real-time 

IWR system; the off-line method, the real-time speaker-dependent method, and the real-

time speaker-independent method. The overall recognition rate is 73.72%. 



 xx

Furthermore, this study can be considered as the first step applying the previous 

research’s results to a real-time system. Results show that the implementation of such a 

system can be a reality, opening the path for more research in this area. 
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I. INTRODUCTION 

The objective of this study is the implementation of a real-time isolated word 

recognition system (IWR) using an ear-microphone as a human-machine interface for 

robotic control applications.  Additional design specifications include the use of 

commercial off-the shelf (COTS) electronic components, portable small size and low 

cost.  

This study is part of an ongoing research started in 2004 at the Naval Postgraduate 

School (NPS) which investigates the development of a human-machine interface 

command and control package applicable for soldier tele-operation of semi-autonomous 

military robots.  The overall work is expected to be applied to an efficient, flexible, and 

robust human-machine interface system, capable of directing robotic units performing 

military missions, without debilitating, hampering, or interfering with a warfighter’s field 

operations. An ear microphone was previously considered to provide control instruction 

corresponding to specific initiating actions in noisy environments [Kurcan, 2006; 

Bulbuller, 2006]. 

Our study can be considered as the first step applying these results to a real-time 

system. Results show that the implementation of such a system can be a reality, opening 

the path for more research in this area. 

A. MAIN RESEARCH PHASES 
This study followed three main phases; the theoretical model of an IWR speech 

recognition system, the hardware design and implementation of a real-time IWR system 

using an ear-microphone, and the system’s software analysis, design and implementation. 

The theoretical model of the IWR speech recognition system described here 

followed the study by [Kurcan, 2006]. This earlier work developed an IWR system based 

on a discrete-symbol Hidden Markov model implementation. Discriminating features 

used to recognize the words are the mel frequency cepstrum coefficients (MFCC) and 

were selected as they have been shown to be robust to distortions [Kurcan, 2006]. The 

spoken words are cropped using end-points detection algorithms based on the short-tem 

energy (STE) and the zero-crossing measure (ZCR). The overall recognition rate obtained 
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with Kurcan’s off-line implementation was 92.7% [Kurcan, 2006], which motivated us to 

use the same type of approach for the real-time IWR system implementation considered 

in this study. 

The dsPICFJ128GP256 Microchip’s microprocessor is used in this study as the 

speech processing and recognition hardware solution. The microprocessor combines a 

digital signal processing (DSP) core (in addition to its central processor unit (CPU)), 32 

Kbytes memory capacity, a large 256 Kbytes program memory, and different choices of 

I/O ports in the same small, low cost and easy to implement packet. It runs up to 40 

million instruction cycles per second. In addition, it can be programmed using a variety 

of commands in assembly or in C language. The selected ear microphone is the 

commercially available Ear Bone Microphone - XEM98D from IXCESSORY 

[IXCESSORY, 2007]. Finally our system’s hardware uses the Si3000 audio codec from 

Silicon Laboratories for speech capturing and includes a pre-amplifier, amplifier, filter, 

and 15bit A/D converter contained in a compact case.  

Software analysis, design and implementation are the basic steps required to 

transition the IWR theoretical processing model into a real-time microprocessor-based 

system. In real-time systems implementations analysis is the most critical step, because it 

is the step where all the theoretical and technical information of an Automatic Speech 

Recognition (ASR) system are combined to produce proper real-time processing 

algorithms. The result of this step is a complete analysis block diagram which describes 

the signal flow from the point of capturing a signal of interest to the delivery of final 

commands to the machine. Design is the step where every “black box” of the analysis 

block diagram is divided into its components, and software and hardware decisions are 

made for their implementation, such as programming language, memory buffer size, DSP 

core usage and I/O port requirements. Finally, in the implementation step, the design 

components are transformed into microprocessor programs and are loaded into memory. 

This step also incorporates all required tests for system evaluation. This study uses a 

combination of three different programming application platforms; MATLAB for 

training the discrete-symbol hidden Markov model (DHMM) and testing the output of the 

microprocessor in different processing stages, DELPHI V5 for implementing the 

computer-microprocessor communication an for hexadecimal conversion of parameters 
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resulted by MATLAB and hard-coded to microprocessor’s program memory, and finally 

assembly for the microprocessor programming. 

B. THESIS ORGANIZATION 
Chapter I introduces the main objective of this research related to previous studies 

conducted in this area. It also briefly describes the main phases followed during the 

development of the real-time IWR system.  

Chapter II presents the nature of speech signal and the methods commonly used 

nowadays for speech processing including the short-term Energy, the zero-crossing 

measure the linear prediction coefficients (LPC), the real cepstrum analysis (RC), and the 

mel frequency cepstrum coefficients (MFCC). Moreover, it provides an introduction to 

the automatic speech recognition (ASR) problem and briefly describes the hidden 

Markov Model approach used in ASR systems (training and recognition). The chapter 

ends by describing the main hardware and software challenges faced in the development 

of our real-time IWR system.   

Chapter III describes the hardware used in this study for the real-time 

implementation of the IWR system including the speech capturing system and the speech 

processing unit. 

Chapter IV presents the software real-time implementation of the IWR system 

describing in details the main program, responsible for the initialization and 

synchronization of the hardware to work as a real-time speech processing and recognizer. 

Furthermore, a simple solution for robotic control is proposed. Finally, the error 

identification routines are explained in details. 

Chapter V describes the real-time end-point detection routines as implemented in 

assembly language in this study. 

Chapter VI represents the real-time implementation of the speech feature 

extraction algorithms. Two different routines are used to obtain the MFCC parameters of 

the captured speech; the feature extraction activation procedure which is responsible for 

the synchronization in a frame base of the input signal with the processing routines, and 

the feature extraction procedure which consists of the actual assembly routines used for 

the MFCC parameters extraction. 
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Chapter VII describes the speech features vector quantization procedure. This step 

has two parts; first a MATLAB implementation to calculate the quantization codebook, 

and second the assembly implementation of the features vector quantization in the 

microprocessor. 

Chapter VIII presents the real-time isolated word recognition part of our system. 

First, the theoretical recognition model based on the DHMM approach is analyzed 

followed by the model’s training algorithm as implemented in MATLAB. Finally, we 

describe the assembly implementation of the real-time isolated word recognizer.       

Chapter IX includes the real-time IWR system operation and evaluation. In this 

chapter, the main operation instructions are given for the system’s user. In addition, the 

different evaluation methods are analyzed. Finally, the evaluation results for the system 

performance are presented. 

Finally, Chapter X presents conclusions and recommendations for future research. 
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II. SPEECH PROCESSING AND RECOGNITION 

Automatic speech recognition (ASR) systems consist of two major parts: the 

speech processing and the recognition. In this Section we briefly describe the main issues 

associated with these two ASR’s components. 

Speech is a non-stationary signal and processing and is usually conducted over 

short-time frames where stationarity can be assumed. For example, linear prediction 

approaches model the speech by a set of coefficients which represent the filter 

coefficients of an all-zero model of the human speech production system. Cepstrum 

analysis, on the other hand, uses homomorphic transformations to extract speech features 

and apply well known spectrum linear operations. “Psychoacoustic” properties were 

taken into account along with cepstrum analysis to derive the Mel Frequency Cepstral 

Coefficients (MFCC), which are widely used in speech recognition nowadays. 

This section introduces the basic idea behind Automatic Speech Recognition 

(ASR) in the context of isolated word and continuous speech recognition applications. 

The ASR implementation considered in this study also uses vector quantization to code 

speech features to reduce possible redundancies and is also one of the steps needed in the 

derivation of Discrete Hidden Markov Models (HMMs) commonly used nowadays in 

ASR. HMM is a “stochastic approach” which is used in this study to model the different 

words selected here. Finally, we discuss real-time, isolated-word recognizer 

implementation applications. 

A. FUNDAMENTALS OF SPEECH 

1.  Speech Definitions 

Speech is a basic way of communication between humans. As a human action, 

speech communication can be characterized as a sequence of the following events: 

- Speaker’s brain produces a “thought”, 

- Brain expresses the thought in a series of words according to specific 

linguistic rules, 

- Brain produces a series of commands to activate the speech production 

mechanism in a specific way to produce sounds that represent these words, 
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- Speech production mechanism organs move according to the brain commands 

and produce the desired sound pressure waves, 

- Sound waves travel in air, 

- Sound waves are captured by the listener’s auditory system and translated into 

neurological signals, 

- Listener’s brain translates the neurological signals into words according to the 

same linguistic rules used by the speaker to form the speech, 

- Listener brain uses these words to form a “thought.” This “thought” is likely 

to be the same as the initial speaker’s. 

 From an engineer’s perspective, a “speech waveform is an acoustic sound 

pressure wave that originates from voluntary movements of anatomical structures” 

[Deller, 1993]. Speech is a time-varying, and consequently, non-stationary signal. In 

addition, speech characteristics are also affected by other factors such as the speaker’s 

anatomy, age and current physical situation. To mitigate these problems, speech signal 

processing can be extended to include the study of the human speech production 

mechanism. Moreover, investigation of the human auditory system is necessary to 

understand the way humans perceive and process speech signals. A general description of 

the speech production mechanism and the main characteristics of speech follow. 

2. Human Speech Production System 
Figure 1 shows the anatomy of the human speech production mechanism. Two 

main regions can be distinguished in this figure, the subglottal system and the supra-

laryngeal vocal tract. 

- The subglottal system consists of: 

- The diaphragm, 

- The lungs, 

- The trachea, 

- The esophagus, 

- The larynx. 

- The supra-laryngeal vocal tract consists of three different cavities: 

- Pharyngeal cavity, 
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- Oral cavity, 

- Nasal cavity. 

 

 
Figure 1. Anatomy of human speech production mechanism [After Tummala, 2007] 

 

The subglottal system can be thought of as the speech excitation source which can 

be viewed as the input to a filter. The filter’s characteristic transfer function is affected by 

the three cavities and their components such as tongue, teeth, lips and velum. These 

components are called articulators. Their movements are responsible for the resulting 

shape of sound waves radiating from the speaker. 

3. General Speech Characteristics 
Voiced and unvoiced speech result from two different types of excitation. Voiced 

sounds are produced when air from the lungs passes through the larynx. The larynx 

oscillates the air in a specific way. Next, the air passes through the vocal tract area 

resulting in a speech sound known as voice or phonation. The fundamental period and 

frequency characterize the phonation and are related to the duration and the rate of vocal 

fold openings, respectively. The fundamental frequency is also called the pitch, and 
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differs among people due to the differences in their larynx’s anatomy. Men’s pitch range 

occurs commonly in the interval between 50 to 250 Hz while women’s lies between 120 

and 500 Hz [Deller, 1993]. 

Unvoiced speech sounds are produced by air passed directly through vocal tract 

formations. Unvoiced speech, contrary to voiced speech, does not exhibit periodicity, and 

is characterized by a noise-like signal. Usually, unvoiced speech sounds have higher 

frequencies and less energy than voiced ones [Fargues, 2005]. 

Phonemes represent the linguistic units of spoken language. Phonemes are 

combined to transform words, which describe a “thought,” into speech. Every language 

consists of a specific set of phonemes. The English language, for instance, consists of 42 

different ones. Each phoneme declares a specific combination of articulator gestures also 

including the excitation manner. Based on the articulator gestures and the excitation, 

different groups of phonemes exist such as fricative, vowel, stop, liquid, diphthong, glide 

and nasal. The actual sounds of phonemes are called phones [Deller, 1993]. 

 Phonemes are discrete units and their actual sound (phones) can be easily 

recognized when they are spelled independently. On the contrary, this task becomes 

much more difficult in continuous speech scenarios, as the speech producing organs 

cannot immediately transition from one gesture to another. This phenomenon is called 

coarticulation and it is one of the parameters which affect ASR performance. In addition, 

the speech signal bandwidth is mostly limited to 4-5 KHz due to restrictions of the 

articulators’ anatomy. 

 The vocabulary used in this thesis study consists of the words “left,” “right,” 

“up,” “down,” “move,” “pan,” and “kill.” The phonemes and phonetic properties of 

these words are represented in Table 1.1. 
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Word 
 

Phoneme Manner of 
articulation 

Voiced? 

Left l  Liquid Yes 
 є (eh)  Vowel Yes 
 f  Fricative No 
 t  Stop No 
    
Right r  Liquid Yes 
 αι (ay) diphthong Yes 
 T Stop No 
    
Up Λ (ah) Vowel Yes 
 P Stop No 
    
Down d  Stop Yes 
 αu (aw) diphthong Yes 
 W Glide Yes 
 N Nasal Yes 
    
Move M Nasal Yes 
 u (uw) Vowel Yes 
 V Fricative Yes 
    
Pan P Stop No 
 æ (ae) Vowel Yes 
 N Nasal Yes 
    
Kill K Stop No 
 i (iy) Vowel Yes 
 L Liquid Yes 

 
Table 1.1  English Phonemes and Characteristics for Vocabulary Words of Interest 

[After Kurcan, 2006] 

 

 In the next section, short-term speech digital signal processing methods are 

analyzed including the Linear Prediction (LP) and Real Cepstrum (RC) analysis. 

B. SPEECH PROCESSING 

1. Short-term Speech Digital Signal Processing 

As mentioned earlier, speech is a non-stationary signal. To overcome this 

problem, speech is partitioned into small time intervals where stationarity may be 

assumed. The speech intervals are called frames while the partitioning procedure is 

named short-term processing. The idea behind short-term processing is “to analyze the 
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frames of speech as those frames move through time and attempt to capture transient 

features of the signal” [Deller, 1993]. Speech frames are produced by windowing. The 

type of window and its length are important as they affect processing results. In this 

thesis study, a hamming window of length 256 speech samples (or 32 msec of speech at 8 

KHz sampling frequency) with 53% overlap between consecutive frames is employed. 

This thesis also uses short-term digital signal processing for end-point detection 

and for speech feature extraction. Specifically, the short-term methods used for the ASR 

implementation, includes short-term signal energy measure (STE), zero crossing measure 

(ZCM), Fast Fourier Transform (FFT), and discrete cosine transform (DCT). More 

information about these procedures is given in Chapters V and VI. 

2. Speech Linear Prediction Analysis 
 Speech linear prediction analysis (LP) is a digital signal processing technique for 

speech analysis. Currently, it is mainly used in speech compression schemes but was also 

widely used for automatic speech recognition in the past. Using knowledge of the human 

speech production system and its output (speech), mathematical models are developed to 

describe the speech signal. Linear prediction speech analysis is based on the inversion of 

the speech synthesis problem. The method is represented here for completeness and as an 

introduction to speech processing. 

Speech synthesis occurs in a human speech production system and can be 

described by the “terminal-analog model” [Deller, 1993] shown in Figure 2. The term 

“terminal-analog” means that the model and the system that it represents are analogous 

only at their outputs’ product (speech waveforms), and the intermediate stages cannot be 

considered analogous. In this model, the speech synthesis system is a filter with different 

types of excitation as input and speech waveforms as output. The system transfer function 

( )H z  for each speech frame (where stationarity can be considered) is given in Equation 

(2.2.1) as 
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Figure 2. Discrete-time “terminal-analogous” Speech Production Model 

 

The input of this system (the excitation source) is the sequence ( )v n  given in 

equation (2.2.2) below   

 ( ) ( ),                       voiced case

white noise Normal(0,1),      unvoiced cases,
k

n kP
v n

δ
∞

=−∞

⎧ −⎪= ⎨
⎪⎩

∑  (2.2.2) 

where P is the order of the filter and n is the signal index. 

In LP synthesis, the zero-pole transfer function H(z) is replaced by an all-pole 

transfer function, with the same spectrum  magnitude, but not necessarily the same 

spectrum phase. Defining the synthesis filter as a pure AutoRegressive (AR) filter allows 

to define the speech analysis filter as simple FIR filter. In addition, the resulting synthesis 

filter can be made stable by moving all poles inside the unit circle. This last result is 

based on the fact that any zero outside the unit circle can be replaced by a corresponding 

reciprocal conjugate zero located inside the unit circle. Next, all zeros are cancelled by 

adding a pole in their position. Finally, the resulting transfer function of order M has M-

poles inside the unit circle and M-zeros at the origin. The transfer function ( )Ĥ z  of the 
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analysis model shown in Figure 3 is given by Equation (2.2.3), where we note that the 

filter coefficients ( )â i  in (2.2.3) are different from ( )a i  in Equation (2.2.1). 

 ( )
( )

0

1

1ˆ ˆ .
ˆ1

M
i

i

H z H
a i z−

=

=
−∑

 (2.2.3) 

The all-pole speech synthesis estimation model is valid based on the fact that the 

human auditory system is “phase deaf” [Milner, 1970]. Note that this does not mean that 

humans cannot detect phase differences in speech signals, as the phase difference 

information is used to estimate the speech source locations. In this context “phase deaf” 

means that speech perception is mainly dependent on magnitude quantities. For instance, 

humans who are deaf in one ear are able to perceive speech, but are not capable of 

determining the location of the speech source. 

The all-pole transfer function ( )Ĥ z  defined in Equation (2.2.3) is an 

approximation of the zero-pole transfer function ( )H z  shown in Equation (2.2.1). The 

filter coefficients ( )â i  are computed as follows. Assume that y[n] is a wide-sense 

stationary random process. The linear prediction problem is defined as the estimation of 

the nth value of y (y[n]) using the previous P values of y (y[n-1], y[n-2], …, y[n-P]), 

where P is the order of the system [Therrien, 2004].  It is expressed by 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1

ˆ ˆ ˆ ˆ1 1 2 2 ...

ˆ ˆ .
P

i

y n a y n a y n a P y n P

y n a i y n i

∗ ∗ ∗

∗

=

= − − − − + − −

= − −∑
 (2.2.4) 

Evaluating the performance of the linear predictor  can be measured by the error 

e(n) defined as the difference between the actual value y[n] and its predicted value ŷ[n] 

and is written as 

 ( ) ( ) ( )ˆ ,e n y n y n= −  (2.2.5) 

or 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ1 1 2 2 ... .e n y n a y n a y n a P y n P∗ ∗ ∗= + − + − + + −  (2.2.6) 
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The parameters ( )â i  are obtained by minimizing the average squared error which 

leads to solving the Normal Equations defined as: 

 ˆ ,yR a b=%  (2.2.7) 

where 
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 (2.2.8) 

Several methods may be applied to solve the normal equations. The basic method 

to calculate the inverse of the matrix R%  is computationally expensive, especially for 

higher order filters. Thus, recursive methods have been developed to reduce the 

computational effort such as the Levinson–Durbin Recursion method and others 

[Therrien, 2004]. 

Linear prediction coefficients are also widely used in speech processing to 

estimate characteristics such as the pitch and the formants of a speech signal. For 

example, the Simple Inverse Filter Tracking (SIFT) is a pitch estimation method [Markel, 

1972] which uses linear prediction to pre-whiten speech frames. It is also used to solve 

the voiced–unvoiced characterization of speech. Other simpler techniques apply the Fast 

Fourier Transform to the LP coefficients and use the spectrum magnitude peaks to 

estimate formants [Hanauer, 1971], [Markel, 1972], [Kang and Coulter, 1976], etc… 

Two main issues are associated with LP methods used for speech parameters 

estimation. First is determining the filter order P and, second selecting the actual speech 

signal excitation. LP analysis was developed as a method to estimate the parameters of 

the all-pole filter H(z). The order of this filter is unknown, as it describes a terminal 

analogue model where only the output signal speech is given. Theoretically, the LP 

model works ideally as P goes to infinity and/or as pitch frequency goes to zero. In real 

situations, LP analysis demonstrates good results for low-pitch, voiced speech such as 

“male” phonation, but exhibits poorer performance for high-pitch, voiced speech, i.e., 

female or child phonation. Different techniques have been developed for the choice of 
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order P such as the Markel and Gray method expressed in Equation (2.2.9) [Markel and 

Gray, 1976]. Finally, Figure 3 shows a block diagram of the LP analysis method. The 

resulting filter coefficients produced by error minimization are used to characterize the 

desired speech. 

 

( )
[ ]
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,                          unvoiced
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s

s

s

floor F
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floor F
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=
 (2.2.9) 

 

 
Figure 3. Linear Prediction Analysis block diagram 

 

3. Real Cepstrum Analysis 
Real Cepstrum (RC) analysis is used in this thesis as a short-term processing 

method for speech feature extraction. Basically, cepstrum analysis transforms signals in 

such a way that non-linearly combined signals may be separated. Speech, as modeled in 

Section II.B.2 and as shown in Figure 2, is expressed as the convolution of the excitation 

signal v(n) with the vocal tract’s filter transfer function h(n): 

 ( ) ( ) ( ).y n v n h n= ∗  (2.2.10) 

Classic spectrum analysis cannot deal with problems such as the separation of 

( )v n  and ( )h n , as the convolution is a non-linear operation and ( )v n  and ( )h n  are 

unknown. Cepstrum analysis uses a “homomorphic” transformation to form a linear 

relationship between these two signals in such a way that the resulting signals become 

separable. 
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 There are two types of Cepstrum transformations: Real Cepstrum (RC) and 

Complex Cepstrum (CC). Their main difference is in the transformation operation they 

use. The RC uses the logarithm of the component signals’ spectrum magnitude while the 

CC uses the logarithm of the complex spectrum. The logarithm of a complex number (or 

complex logarithm) is given by the following equation: 

 ( ) ( ) { }log log arg ,    where  is a complex expression.z z j z z= +  (2.2.11) 

As a result, CC can be considered a “homomorphic” transformation fulfilling the demand 

of reversibility, while the RC cannot, due to the loss of the phase information during the 

logarithm operation. However, the RC is easier to implement than the CC and widely 

used in cases where the recovery of the original non-linear signal is not critical, such as in 

speech recognition. This is the case in this study. 

Real Cepstrum analysis can be described by three steps. First, the fast Fourier 

Transform (FFT) is calculated for each speech frame. As a result, the time-domain 

convolution shown in Equation (2.2.10) becomes a multiplication in the frequency 

domain as follows: 

 ( ) ( ) ( ).Y z V z H z= ⋅  (2.2.12) 

Second, the logarithm of the right and left components of Equation (2.2.12) are calculated 

as follows: 

 ( ) ( ) ( )( ) ( ) ( ) ( )log log log log log ,Y V H Y V Hω ω ω ω ω ω= ⋅ ⇒ = +  (2.2.13) 

or ( ) ( ) ( ).y v hC C Cω ω ω= +  (2.2.14) 

At this point, the transformation has been completed and the speech components are 

linearly combined. Thus, in the third step, the well-known linear operations of spectrum 

analysis such as the inverse FFT are applied, resulting in the following equation: 

 ( ) ( ) ( ).y v hc n c n c n= +  (2.2.15) 

It is interesting to note the indices change from frequency (ω) in Equation (2.2.14) to 

time (n) in Equation (2.2.15). The components of Equation (2.2.15) are in what is 

referred to as the “quefrency” domain, to be distinguished from the time domain. 
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Many well-known signal processing techniques such as filtering or “liftering,” as 

it is called in Cepstrum analysis, can be applied to the linearly-combined signal cy(n) in 

the “quefrency” domain. The idea is to apply a filter (“lifter” in the cepstrum vocabulary) 

to eliminate well-separated components of the signal. This procedure is presented in 

Figure 4, where a “lifter is applied to the cepstral coefficients cy(n) to obtain ch(n). 

Furthermore, the “quefrency” domain can be used for pitch [Noll, 1967] and formant 

estimation [Schafer & Rabiner, 1970], as shown in Figure 5, where the cepstrum peaks 

are used for pitch period estimation of the voiced phoneme “ae” in the word “pan.” In 

this case, the difference between the peaks is 40 samples or 5 msec. In addition, Figure 6 

shows that information is mainly contained in the first cepstrum coefficients, indicating 

that only a few of them may be sufficient to characterize the “i” phoneme of the word 

“kill.” 

 

 
Figure 4. Low-time Liftering of Cy(ω) to Obtain the Component “Signal” Ch(ω). 

 

Even though, the LP coefficients are able to describe the speech signal, as was 

described earlier, they also have limitations due to speaker- and excitation -type 

dependency. Real cepstrum analysis is preferred to extract speech parameters (features) 

which can be classified and applied to a speech recognizer. Thus, real cepstrum 

approaches are used to overcome LP analysis problems, and lead to new parameters, such 

as Mel-Cepstrum parameters, and Delta or Differenced Cepstrum parameters. This study 

uses the Mel-Cepstrum parameters as inputs to an ASR implementation because they 

were shown in an earlier study to lead to better recognition performances in the selected 

Discrete Hidden Markov Model recognizer than the other two types of features 

considered for the data investigated [Kurcan, 2006]. 
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Figure 5. Real Cepstrum of word “pan” 

 

 
Figure 6. First twenty Real Cepstrum coefficients of phoneme “i” in word “kill.” 
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4.  Mel-Cepstrum Analysis 

The Mel-Cepstrum parameters calculation is based on “psychoacoustics,” which 

takes into account how speech is perceived by the human auditory system. Research 

studies have shown that a human’s ear does not linearly perceive audio frequencies and 

that a frequency of high magnitude can hide a neighboring frequency with lower 

magnitude. Mel Scale Mapping and Filter Bank approaches are results of these 

observations. The unit of the Mel Scale (called mel) mimics the human perceived 

frequency, and slightly different mapping equations have been proposed over the years to 

relate mel units and actual signal frequencies. The mapping equation used in this thesis 

[O’Shaughnessy, 1987; Picone, 1993] is given by 

 ( )
102595 log 1 .

700
actual

Mel

f Hz
F

⎛ ⎞
= ⋅ +⎜ ⎟

⎝ ⎠
 (2.2.16) 

Figures 7 and 8 show a plot of the mel scale between 0 and 5KHz, and a zoomed in 

version between 0 and 1 KHz, respectively. Note that the mapping is fairly linear 

between 1 and 1000Hz and exhibits logarithmic behavior at higher frequencies. 

 
Figure 7. The mel Scale Corresponding to Equation 1.2.16. 
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Figure 8. The Linear Part of the mel Scale from 1 to 1000 Hz 

 

Critical band filter banks are based on the “psychoacoustics” experimental 

observation of the domination of neighboring frequencies [Picone, 1993]. According to 

this property, human speech perception can be described by a group of simple band-pass 

FIR filters with a specific bandwidth. Many types of filter banks schemes exist and differ 

mainly in the choice of central frequencies and filter type. The Mel critical band filter 

bank used in this study consists of a set of 24 overlapped triangular FIR band-pass filters 

with central frequencies derived from the mel scale, as proposed in [Davis, 1980]. The 

central frequencies and the corresponding bandwidth of this implementation are listed in 

Table 1.2. The frequency domain representation (FFT) of the triangular filters is shown in 

Figure 9. 

The Mel Filters Cepstrum Coefficients (MFCC) are captured as follows: 

- Apply the FFT to the speech frame, 
- Filter the resultant speech bins in the frequency domain using the 24 mel filter 

banks, 
- Calculate the weighted average magnitude of the resultant bins for every filter 

bank. This can be considered a calculation of the weighted average energy of 
the speech signal into the bandwidth which is defined by each filter bank, 
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- Take the logarithm of the energy of the pass-band signal, 
- Calculate the MFCC parameters using the IFFT or the discrete cosine 

transform (DCT). Note that the IFFT can be replaced by the DCT as it is 
applied to symmetric and real variables [Deller, 1993], resulting in highly 
uncorrelated parameters [Jayant, 1984; Deng 2003]. 

This procedure is shown in Figure 10 and is mathematically described by: 

20

1

1cos ,   for 0,1,2,...,   and  1, 2,...
2n k

k

MFCC X n k n M k L
L
π

=

⎡ ⎤⎛ ⎞= − = =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  (2.2.17), 

where M is the total number of MFCC parameters, L is the total number of mel filter 

banks and Xk is the logarithm of the weighted average of the speech energy in the 

bandwidth defined by the kth mel filter bank. 

 

 
Figure 9. Mel Scale Triangular FIR Band-pass Filter Banks [Kurcan, 2006]. 
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Figure 10. MFCC Feature Extraction Block Diagram 

 

Mel Filter Bank 
index 

Center 
Frequency (Hz)

BW   
(Hz)

1 100 100 
2 200 100 
3 300 100 
4 400 100 
5 500 100 
6 600 100 
7 700 100 
8 800 100 
9 900 100 
10 1000 124 
11 1149 160 
12 1320 184 
13 1516 211 
14 1741 242 
15 2000 278 
16 2297 320 
17 2639 367 
18 3031 422 
19 3482 484 
20 4000 556 
21 4595 639 
22 5278 734 
23 6063 843 
24 6964 969 

 
Table 1.2  Critical Band Filter Banks Based on Mel Scale [After Picone, 1993]. 

 

Mel filter cepstrum coefficients have been shown to be speaker independent and 

can be considered the most reliable features for use in speech recognition applications 
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[Davis, 1980], [Picone, 1993], [Kurcan, 2006]. However, Mel filter cepstrum coefficients 

are believed to be sensitive to noisy environments [Deller, 1993]. Thus, different 

techniques have been developed such as “high resolution spectral estimators or 

parametric fits of the cepstrum” to overcome noise related problems [Picone, 1993]. This 

thesis study uses an in-ear microphone which dramatically reduces environmental noise. 

C. AUTOMATIC SPEECH RECOGNITION (ASR) 

1. Automatic Speech Recognition 

Automatic speech recognizers can be used to facilitate communication between 

humans and machines. Speech-based, human-machine interaction is demonstrated in 

several everyday applications, such as voice-mail systems in telephony, hands-free 

machine operations, communication interfaces for people with special abilities, dictation 

systems, and translation devices. ASR systems have been designed for different 

applications, in many areas, under a combination of restrictions, such as specific 

language and vocabulary, speaker dependency, noise-free environments and low talking 

rates, with excellent results. These existing systems are divided into three general 

categories [Deller, 1993]: 

- Small vocabularies (10 to 100 words), 
- Word-isolated ASR systems -- relatively small vocabularies (less than 10000), 
- Continuous-speech ASR systems -- implemented in specific “areas” (from 

1000 to 5000 words). The term “areas” refers to environments where the 
human-machine communication is restricted by its vocabulary, commands or 
subjects. 

2. ASR - Problem Dimensions 
ASR system design and performance is affected by several factors. Thus, the 

design of a reliable ASR system starts by examining the existence of these factors in the 

implementation “area.” A general categorization of the factors that affect the design and 

performance of an ASR system follows [Deller, 1993]: 

- Speaker dependency, 
- Vocabulary size, 
- Isolated words versus continuous speech, 
- End-point detection problem, 
- Vocabulary ambiguity and confusability, 
- Noise characteristics of the environment, 
- Linguistic constraints and knowledge. 
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Next, a brief description of the factors that affect the design and performance of 

an ASR system follows: 

a. Speaker Dependency 

Speech signal characteristics are dependent on the anatomy of a speaker’s 

articulators. ASR systems usually use speakers for training and recognition performance 

evaluation. Two categories of ASR systems are widely used: Speech-dependent ASR 

systems, where the system is trained by one speaker and is used by this speaker only, and 

speaker-independent ASR systems, where a group of speakers is used for training, and 

the same group or a different group uses the system. Obviously, the former category is 

easier to implement than the latter, with better associated recognition results. This study 

considers a speaker-independent ASR system. In this effort, several speakers with 

different speech characteristics were used during the training process, to produce a robust 

system. 

b. Vocabulary Size 

The vocabulary size is an important parameter in the design and 

performance evaluation of an ASR system. The larger the vocabulary used, the more 

difficult it is to design the ASR system. Furthermore, as the size of the vocabulary 

increases, ASR performances typically decrease, mainly due to the effects of other 

factors, such as the acoustic confusability and ambiguity, and linguistic constraints. In 

addition, a large vocabulary requires a large amount of computational resources for real-

time implementations. An ASR system’s vocabulary is categorized as small (1 to 99 

words), medium (100 to 999 words) or large (more than 1000 words). The boundaries of 

this categorization tend to change as systems of larger sizes (200,000 words) are 

introduced. This study uses a small vocabulary consisting of seven words which represent 

a minimum set of commands required for a machine control application. 

c. Isolated Words versus Continuous Speech 
Another consideration in the design and performance evaluation of an 

ASR system is the way utterances (commonly words or phonemes) are used during 

recognizer training and operation. The existence of “silence” between words 

characterizes Isolated-Word Recognition (IWR) systems. Silence, in this context, is the 

time interval between two consecutive words when the recognizer assumes that no speech 
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is present. Typically, an interval of 200 msec is the minimum requirement. Training of 

IWR systems involves multiple recordings of each isolated word from one or more 

speakers (depending on the degree of the ASR system’s speaker-dependency). The 

recognition phase in IWR systems demands clear separation of words from one another 

by a “silence” interval. IWR systems are the simplest form of recognizer, usually 

achieving high performance, which is mainly dependent on an end-point detection 

scheme. This specific task is discussed further in Chapter V. 

Continuous-speech recognition does not require a “silence” period 

between utterances, and the recognizer must be able to perceive speech at a natural 

human rate, with a minimum of constraints. This specification implies that such systems 

must work efficiently with coarticulation and other speech characteristics, such as intra- 

and inter-word articulation. Advanced end-point detection algorithms are used in CSR to 

account for variable boundaries issues. Furthermore, in some cases, a smaller utterance 

unit is used, such as a phone or a diphthong, instead of a separate word. In these cases, 

the training phase is more complicated and is focused on the inclusion of as many 

different utterances as possible. Moreover, linguistic restrictions help these systems 

perceive speech even when all utterances of a given sentence are not recognized, by using 

advanced cognition algorithms. CSR systems are obviously more complicated than IWR 

systems and usually demonstrate lower performance. However, CSR systems are widely 

used due to the fact that they seem to be a more “natural” speech communication 

interface for users. 

d. End-point Detection Problem 
End-point detection schemes play a critical role, especially in IWR 

systems. They are used by recognizers to find word boundaries and distinguish them from 

noise and “silence”. Recognizer performance is degraded when such algorithms work 

inefficiently. Different approaches have been implemented for end-point detection, 

mostly based on zero-crossing and energy related measures. However, this is a 

challenging problem, particularly due to low energy phonemes, like fricatives, found at 

word beginnings or ends. To overcome this problem, various methods have been 

developed and are discussed in Chapter V. 
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e. Vocabulary Acoustic Ambiguity and Confusability 

Acoustically ambiguous words are those with similar or homophonic 

spellings, such as “know” or “no,” and “two” “to” or “too” [Deller, 1993], and are 

difficult to distinguish acoustically by their features during speech processing. 

Confusability describes the phenomenon where, given two words, one word might be 

incorrectly perceived as the other by a recognizer, mainly because they include the same 

phonemes. For instance, the alphabet letters “B,” “C,” “D,” “E,” “G,” “P,” “T,” and “V.” 

as pronounced, consist of a weak different consonant and the same voiced vowel. Their 

recognition depends only on the recognizer’s ability to distinguish these weak consonant 

phonemes, a task which is not always easy, especially when noise is present. Generally, 

these two problems are present in continuous-speech ASR systems with large 

vocabularies. Neither problem is inherent in the words used for this study. 

f. Noise Characteristics of the Environment 
Different types of noise, such as measurement noise, processing noise and 

environmental noise, can affect an ASR system’s operation. Measurement and processing 

noise are produced by the ASR’s electronic components responsible for speech capturing 

and processing, such as the microphone, the microphone preamplifier, the analog to 

digital converter and the power supply. A special effort must be made during the design 

of this part of an ASR system to eliminate such types of noise. Additive environmental 

noise, a complicated type of noise, is defined as the sum of the noise signals captured by 

a microphone concatenated in the speech signal. This type of noise signals can be 

originated from other speakers in the room, by office or road noise, by the noise existing 

in the operation fields or by the speaker himself, with lip smacks, breath noises, pops, 

clicks, coughs or sneezes [Deller, 1993]. To overcome this type of noise, ASR systems 

use speech enhancement techniques that are based on the fact that in most cases, the noise 

is uncorrelated with the actual speech signal. Short-term spectral subtraction, Wiener 

filtering and adaptive noise canceling are among the most popular techniques in 

mitigating this type of disturbance. 
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A different approach to suppressing additive noise is to use microphones 

which are able to minimize the noise impact from the collected speech signal, as is the 

case for throat and ear microphones. The latter is used in this study and its characteristics 

are presented in Chapter III. 

g. Linguistic Constraints and Knowledge 
Linguistic constraints are the language rules which define the possible 

ways in which basic language units can be combined to form meaningful speech. 

Phonemes are considered the basic units of spoken language. In English, 42 phonemes 

are combined to form words according to lexical constraints, while words are combined 

according to syntactic rules to form sentences. Lexical and syntactic rules are parts of the 

language grammar. Moreover, specific rules guiding the combination of words and 

sentences in a meaningful and understandable way constitute another set of possible 

constraints. All constraints must be programmed in an ASR system (especially CSR 

systems) to increase performance. The basic idea is that the system can recognize a word 

even though it is not able to recognize the associated phonemes. Additionally, these 

systems can recognize a sentence from its context relative to neighboring sentences by 

applying linguistic constraints and rejecting all impossible combinations. Linguistic 

constraints are usually not used in small vocabulary IWR systems due to their additional 

complexity. 

Next we briefly describe the speech features quantization process which is 

an intermediate step in ASR processing, usually applied before speech in a recognizer 

either for training or recognition. 

3. Speech Features Quantization 

Automatic speech recognition is generally a classification problem dealing with 

the classification of a sequence of speech features such as MFCC parameters, derived 

from speech processing procedures. Vector quantization schemes translate continuous-

amplitude features vectors into discrete symbols (codes), removing all possible 

redundancy. These discrete codes correspond to different clusters in regions near a center 

(centroid). 
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Quantization introduces distortion which is the measurement of the distance 

between the feature vector and its quantized representation. Distortion decreases as the 

number of code vectors available increases. Unfortunately, as the number of code vectors 

increases, complexity and the computational demand of the system increases. This study 

uses 12 speech features and a 128-cluster codebook. 

The K-means algorithm is used to obtain the codebooks in this study. It is a 

widely used method in speech recognition resulting in low distortion [Deller, 2000]. The 

K-means algorithm, where “K” refers to the number of associated clusters, is based on 

distortion minimization. Beginning from an arbitrary set of code vectors, the algorithm is 

fed iteratively with speech features vectors from the training samples. The algorithm 

applies the “nearest neighbor condition” and the centroid condition iteratively, until a 

termination criterion is satisfied” [Theodoridis, 2003]. The MATLAB implementation of 

this algorithm used in this study is taken from [Kurcan, 2006]. 

The resultant codebook is translated into hexadecimal format and hard-coded in 

the microprocessor’s program memory. The classification procedure is done every time a 

new speech features vector is obtained from the microprocessor by calculating the 

Euclidean distance between this vector and each of the codebook vectors. The cluster 

with the minimum distance is chosen as the discrete symbol representation of the feature 

vector. 

Next we briefly describe the Discrete Hidden Markov Model approach which is 

used as the speech recognizer. 

4. Discrete Hidden Markov Model 
Methods used to address the speech recognition problem can be distinguished into 

two categories: dynamic time warping (DTW) and stochastic (or structural) methods. 

The DTW method is a deterministic approach based on template matching. Speech 

feature warping (stretch or compression) in time, accomplished by “dynamic 

programming,” is used to form a speech observation features sequence in such a way that 

it is comparable to a set of reference speech features sequences. Comparisons are made 

and results are evaluated to find a best match, concluding in a recognition result. Time 

warping is necessary due to the variability of speech utterances. DTW is a 
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straightforward method that has been implemented in VLSI circuit chips offering a 

solution particularly well-suited for real-time ASR systems. 

The challenges associated with DTW method are the amount of memory needed 

to store utterance references (words in most cases), and the increasing computational 

effort needed for comparisons as the number of references increases. Furthermore, speech 

variability due to coarticulation, speaker variability, and noise, reduce the DTW 

algorithm recognition performance, limiting its implementation to specific systems 

(speaker-dependent, relatively small vocabulary) [Deller, 1993; Bahl et al., 1984]. 

Stochastic methods were introduced in speech recognition applications to 

overcome the speech variability problem. The most researched method in this category is 

the Hidden Markov Model (HMM) approach. To define HMMs we first define a general 

Markov Model as “a finite-state automaton with stochastic transitions (that is, for which 

each transition has an associated probability) in which the sequence of state is a Markov 

chain” [Gold, 2000]. Figure 11 shows a two-state Markov model with stochastic 

transition matrix A and initial probabilities P(q) given as follows: 

 ( )
0.5 0.7 0.3

,               .
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 The probability of any observation sequence Q = (q1, q2,…, qL) is given by the 

equation: 
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Applying the first-order Markov chain assumption, where the probability of being 

in a particular state depends only on the previous state, Equation (2.3.2) becomes: 
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Figure 11. Two-State Markov Model 

 

From Equation (2.3.3) we conclude that the probability of any sequence Q 

occurring can be found by multiplying the initial probability of the first state in the 

sequence by the transition probabilities to move along the sequence’s states. In the 

example of Figure 11 with the matrix transition and initial probabilities of Equation 

(2.3.1), the probability of the observation sequence Q = (a, a, b, a) is equal to: 
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Thus, a Markov Model based on a first-order Markov chain can be completely 

described (meaning that we can find the probability of any observation sequence in the 

model) by the initial probabilities P(qi) and the transition probabilities P(qi|qi-1). Note that 

even if intermediate states are unknown in an observation sequence, a probability can be 

obtained as the summation of the probabilities of all the possible sequence combinations. 

For instance, the probability of the observation sequence Q=(axb) in the model of Figure 

11 is equal to: 
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A Hidden Markov model (HMM) is a type of Markov model whose output is a 

probabilistic density function. This means that the produced state sequence of a HMM is 

hidden for any observed output sequence. This type of model can be used to represent a 
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speech utterance such as word, sub-word or phoneme.  Each of these utterances is 

modeled by a different HMM. The observations can correspond to speech feature vectors. 

In addition, a discrete hidden Markov model (DHMM) is produced when these feature 

vectors are represented by discrete codes (by applying vector quantization). Figure 12 

shows a typical 5-state DHMM. 

 

 
Figure 12. Typical 5-state DHMM 

 

A DHMM can be fully described by the compact notation λ=(A,B,λ) with: 

[Kurcan, 2006]: 

• S, number of hidden states in the model, 

• K, number of distinct observation symbols, 

• The state transition probability distribution, ( ){ }|A a i j= , where  

( ) ( )1| |i ia i j P q i q j−= = =  and 1 , ,i j S≤ ≤  

• The observation symbol probability distribution, ( ){ }|B b k i= , where 

( ) ( )| | ,   1 ,  1 ,t tb k i P o k q i i S k K= = = ≤ ≤ ≤ ≤ where ot is the observation at 
time t, 

• The initial state distribution, ( ){ }1P q iπ = = , where 1 .i S≤ ≤  

5. DHMM Training and Recognition 

Training and recognition are two basic problems addressed by a DHMM. The 

training problem seeks to determine how the HMM may model each speech utterance. 

From a mathematical point of view, the training problem comes down to estimating the 

model’s transition matrix A, the observation probability matrix B, and the initial state 

 1 2 3 4 5
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distribution vector π. The recognition problem focuses on estimating the likelihood of a 

speech utterance observation, produced by the model. 

a. Baum-Welch DHMM Training Algorithm 

Two methods are widely used to solve the training problem: the Viterbi 

algorithm and the Baum-Welch (B-W) algorithm, also known as the Forward-Backward 

algorithm [Baum, 1966; Baum 1970]. The later is used in this study, as implemented by 

Kurcan in its scaling version for multiple observations, due to its superior recognition 

performance [Rabiner, 1993; Deller, 2000; Kurcan, 2006]. With this algorithm, given a 

DHMM model ( ), ,A Bλ π , forward and backward iterative computations are used to 

optimize the parameters of an estimated model ( ), ,A Bλ π
)

 so that the likelihood of an 

observation O (speech utterance) occurrence can be maximized. Specific details about the 

implementation of the scaling multiple observations version of the B-W algorithm may 

be found in [Kurcan, 2006, Chapter IV.C.]. 

b. The Recognition Problem 

The recognition problem, using a trained DHMM (meaning that 

parameters A, B, and π are known for all the models), is a scoring problem among the 

available models for each speech utterance. The quantized observation sequence is loaded 

into each model, from which a likelihood output is produced. The model with the greatest 

likelihood indicates the recognized speech utterance. The real-time implementation of 

this procedure is detailed in Chapter VIII. 

An ASR system performance using DHMM mostly depends on the 

following two items: the specific speech utterance to be modeled and the number of 

hidden states required in the DHMM. Two different approaches have been used in the 

ASR literature to address the former question. First, words are used as speech utterances 

to be modeled by the DHMM. This approach is appropriate for small-vocabulary IWR 

systems, and thus implemented in this study. Second, sub-words such as phonemes and 

diphthongs are used as speech utterances to be modeled. This approach is used mainly in 

large vocabulary ASR and CSR systems where modeling with words would be inefficient 

with respect to memory allocation requirements (to store models) and computational 

effort. 
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The number of hidden states is the other crucial decision that must be 

made during the design of an ASR system. The larger the number of hidden states used in 

a DHMM, the greater the speech variability that can be modeled and the greater the 

computational effort required to calculate likelihoods. Unfortunately, there is no rule to 

assist in this decision. Generally, experimental results are used to suggest the number of 

hidden states in a DHMM [Deller, 2000]. In this study we use Kurcan’s research and 8-

state DHMM implementation [Kurcan, 2006]. 

D. REAL-TIME ASR SYSTEM CONSIDERATIONS 
This study deals with the hardware implementation of a theoretical ASR model 

developed by Kurcan [Kurcan, 2006]. This implementation uses a microprocessor for a 

complete ASR system for the human-machine control and command interface. Such real-

time systems differ from theoretical off-line models, even when the circuitry used to 

capture speech is the same. As a result, issues dealing with timing, processing resources 

and arithmetic precision must be considered. 

1. Timing 
Timing is the most important consideration for a real-time ASR system 

implementation. As mentioned previously, speech is captured and divided into 

overlapping frames prior to any processing. Then, short-term processing techniques are 

applied in each frame for end-point detection and feature extraction. The real-time system 

must have the computational power to complete these steps before the next frame is 

captured. Thus, compromises must be made between the maximum duration of a speech 

frame, invoking stationarity considerations and the time required for the system to 

complete frame processing. 

Furthermore, the time needed to obtain recognition results may introduce delays 

between spoken words. Large delays demand a speaker to be silent for large periods of 

time, making the system inefficient. Thus, we designed our IWR system in such a way so 

that vector quantization and recognition procedures are conducted on a per-frame basis. 

The recognition result is available immediately after the current word’s last frame 

processing is finished and before the first frame of the next word is captured. 
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2. Hardware Resources 

Another critical issue is the availability of system resources such as memory, 

digital signal processing cores (DSP cores) and input/output (I/O) ports. Achieving the 

“right” timing specified for a real-time ASR system is not only dependent on the 

microprocessor’s clock rate. Temporal (random access memory RAM) and static (Read 

only memory (ROM), electrical Erasable Programmable ROM (EEPROM), FLASH 

memory) memory devices are needed to store the temporal results of speech-frame 

processing and related coefficients. All these issues must be examined relative to system 

size and cost, and are dependent on the ASR application. 

The complexity of digital signal processing algorithms, such as the Fast Fourier 

Transforms (FFT), requires a large number of computations and would result in large 

delays if these tasks were accomplished directly by the central processor unit (CPU). 

However, this problem is solved by the use of a digital signal processing core which is 

able to perform complicated mathematical operations, independent of the CPU, and 

usually in just one instruction cycle. A digital signal processing core is found in advanced 

microprocessor systems dedicated to signal processing applications. This type of 

microprocessors was chosen for our real-time ASR system implementation. 

The type and number of available system I/O ports can affect the ASR system 

design. As a human-machine interface, the ASR system must first receive a signal of 

interest in a proper way, and second, send the associated commands to a machine. In 

addition, such a system must be programmable, and, especially for the HMM 

implementation, trainable. Thus the minimum requirements for I/O ports are one analog 

input for the analog to digital converter (if the conversion occurs inside the 

microprocessor), and up to three digital bidirectional ports for communication with the 

machine, the external device programming and the speech capturing device. 

3. Software Analysis, Design and Implementation 
Software analysis, design and implementation are the basic steps required to 

transition the ASR theoretical processing model into a microprocessor-based system. 

Analysis is the most critical of the three, because it is the step where the theoretical and 

technical information of the ASR system are combined to produce proper processing 

algorithms. The result of this step is a complete analysis block diagram which describes 
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the signal flow from the point of capturing a signal of interest to the delivery of final 

commands to the machine. Design is the step where every “black box” of the analysis 

block diagram is divided into its components, and software and hardware decisions are 

made for their implementation, such as programming language, memory buffer size, DSP 

core usage and I/O port requirements. Finally, in the implementation step, the design 

components are transformed into microprocessor programs and are loaded into memory. 

This step also incorporates all the required tests for system evaluation. 

Next, we present the characteristics of the hardware used for the IWR system 

implementation. 
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III. IWR SYSTEM HARDWARE 

A Real-time IWR system may be divided into functional areas such as the speech 

capturing system, and the speech DSP processing unit. The former may consist of the 

microphone, the pre-amplifier, the filter, and the analog to digital (A/D) converter. Figure 

13 shows the block diagram of such a system and the signal flow among its components. 

 

 
Figure 13. Block Diagram of a Real-time IWR Human-machine Interface for Robotic 

Control 

 

The objective of this study is to examine the real-time implementation of a 7-

word IWR system as a human-machine interface for robotic control. This implementation 

is based on inexpensive commercial COTS components. First, we selected an ear 

microphone readily found in the commercial sector; the Ear Bone Microphone - 

XEM98D from IXCESSORY [IXCESSORY, 2007]. Second, we selected an audio codec 

that includes a pre-amplifier, amplifier, filter, and 15bit A/D converter contained in a 

compact case. The model is the Si3000 audio codec from Silicon Laboratories. Finally, 
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the dsPIC33FJ256GP710 microprocessor from Microchip is used as the DSP processor 

unit. Next we describe the specifications and the architecture of our system’s 

components. 

A. SPEECH CAPTURING SYSTEM 
The speech capturing system is responsible for transforming speech from air 

pressure into an electrical signal. Usually an open-air microphone placed in front of a 

subject’s mouth is used and results in good recognition performance in a noise-free 

environment.  However these systems yield poor performance in noisy environments. 

Different methods have been developed and implemented in ASR systems to minimize 

the noise problem.  These include placing the microphone in a different location; for 

example, the microphone  may be placed at the throat level instead of in front of the 

mouth, or active and passive microphones may be combined [Zhang, 2004; Graciarena, 

2003]. Westerlund et al. proposed an Active Noise Control (ANC) headset equipped with 

an in-ear microphone and ear muffs. Commercial applications of this principle can be 

found in the Quiet Pro Headset [Westerlund, 2003; Nacre, 2007]. 

 Vaidyanathan et al. investigated an in-ear noise shield air pressure sensor, 

capable of capturing tongue movements [Vaidyanathan, 2004]. Later, based on this study, 

Kurcan designed and evaluated a 7-words off-line IWR system using a noise shield in-ear 

microphone to capture the speech signal [Kurcan, 2006]. Motivated by the latter two 

studies, we extended this research by attempting to implement a real-time 7-words IWR 

system using an in-ear microphone. 

Figure 14 shows the commercially available ear microphone used in this study.  

This microphone differs from that used by Kurcan, but has comparable signal capturing 

and noise shielding characteristics. 

We used the compact Si3000 audio codec by Silicon Laboratories for microphone 

signal amplification, filtering, and sampling. This system includes a microphone pre-

amplifier, a FIR digital low-pass filter, and an A/D converter. The SI3000 audio codec 

device is programmable, allowing changes in the systems amplifier gain and A/D 

sampling frequency. A block diagram of the Si3000 audio codec is presented in Figure 15 

[After Si3000 Data sheet, 2000]. 
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Figure 14. Ear-microphone Used in this Study 

 

 
Figure 15. Si3000 Audio Codec Block Diagram [After Si3000 Data sheet, 2000] 
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The Si3000’s microphone pre-amplifier can be programmed for four different 

gains: 0dB, 10dB 20dB and 30 dB. A 20dB gain was selected for the study empirically as 

speech captured by the ear-microphone is weaker than that captured by a microphone 

placed in front of the mouth. 

The Si3000 contains two types of low-pass filters: a finite impulse response (FIR) 

and an infinite impulse response (IIR) filter. The pass-band for these two filters is 0-3600 

Hz. Note that speech captured by the in-ear microphone is already been low-pass filtered 

by the face bones and cheeks, and most of its energy is found in frequencies below 2500 

Hz [Kurcan, 2006]. Thus, the codec’s low-pass filter is adequate for the spectrum 

characteristics of the ear-microphone’s captured speech signal. The FIR filter 

characteristics, as taken from the Si3000 datasheet, are shown in Figure 16. 

 

 
Figure 16. Audio Codec FIR Filter Pass-band Ripple and Frequency Response 

 

The codec’s A/D converter was used instead of the microcontroller’s due to its 

better quantization performance. The codec’s A/D uses 32,768 quantization levels (215), 

while the microprocessor’s A/D uses 1,024 (210) quantization levels. Moreover, the 

compact structure of the codec introduces less processing noise in the signal path from 

the microphone to the A/D converter. The sampling frequency Fs is 8 KHz, since the 

speech signal does not exceed 3600 Hz (less than Fs/2). 
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The Si3000 codec’s operation is controlled by nine programmable registers. The 

meaning of each register and associated values (as programmed in this study) are given in 

Appendix B. Briefly, the Si3000 is programmed for a microphone input with a 20 db pre-

amplifier gain, an 8 KHz A/D sampling frequency, a low-pass FIR filter and assigned as 

slave in its communication with the microprocessor’s DCI device. Figure 17 shows the 

complete capturing system implemented in this study. 

 

 
Figure 17. Capturing System 

 

Next we briefly describe the dsPIC33FJ256GP710 Microchip’s microprocessor 

used as digital signal processing unit. 

B. DSP PROCESSING UNIT 
The choice of the DSP processing unit is critical to a real-time IWR system 

implementation. Speech digital signal processing includes complex and computationally 

demanding mathematical operations such as FFT and matrix multiplications. 

Furthermore, real-time DSP requires these operations to be executed within the time 

allocated to the capture of the next speech frame. In addition, as a human-machine 

robotic control interface, our system must be implemented in a small and portable fashion 

with low power consumption. This study is implemented using the Microchip’s 

dsPIC33FJ256GP710 microcontroller which meets the majority of our system demands. 
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It is a low cost and power efficient microprocessor which requires few external 

components for its operation (power supply, external oscillator) leading to a very robust, 

yet small system. 

The dsPIC33FJ256GP710 microprocessor contains a 16-bit “Harvard” 

architecture Central Processing Unit (CPU) and a DSP core running at a maximum clock 

rate of 40 mpics (million processor instruction cycles per second). It includes 16 general 

purpose registers, a data memory of up to 32 Kbytes and a program flash memory of up 

to 256 Kbytes. In addition, a variety of I/O modules are included such as a Data 

Converter Interface (DCI), Inter-integrated Circuit (I2C), and Universal Asynchronous 

Receiver Transmitter (UART). The DSP core employs one 40-bit Arithmetic Logic Unit 

(ALU), two 40-bit saturating accumulators, one high speed 17 bit multiplier and one 40-

bit bidirectional barrel shifter. 

The dsPIC33FJ256GP710 microcontroller uses assembly language. Special 

commands for DSP operations are available, making the processor more powerful and 

time efficient for complex and demanding computations. Commands such as “mac” 

execute multiplication and addition, and fetch the next operands in one processor cycle. 

All operations can be conducted in two different arithmetic formats: 16-bit integer and 

1.15 fractional, as described in Appendix F. Furthermore, 32 bit integer and 1.31 

fractional operations can be programmed. The block diagram of the 

dsPIC33FJ256GP710’s CPU and DSP core are shown in Figure 18. The 

microcontroller’s specifications are given in Appendix A. 
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Figure 18. Microchip dsPIC33FJ256GP710’s CPU and DSP Core Block Diagram 

[Microchip, 2006] 

 

Next we present the demo-board used in this study for the complete 

implementation of the system. 

C. SYSTEM HARDWARE COMPLETE IMPLEMENTATION 
 The development demo-board Explorer 16 of Microchip was chosen for the 

complete implementation of our system. The demo-board supports the 

dsPIC33FJ256GP710 microprocessor providing power supply, serial com port, LCD 
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display, four buttons, eight LEDs, and an area for developing custom applications. 

Furthermore, the board, in combination with the Microchip’s ICD2 programmer, can be 

used for microprocessor’s programming and real-time debugging. Figure 19 shows the 

Explorer 16 development demo-board. 

 

 
Figure 19. Explorer 16, Development Demo-board by Microchip  

 

Next we discuss the real-time implementation’s software design of the IWR 

system developed in this study. 
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IV. REAL-TIME IMPLEMENTATION 

A. REAL-TIME IWR SYSTEM SETUP 
Real-time digital signal processing systems are usually implemented in embedded 

microprocessor systems dedicated to a specific application. Several different processor 

platforms can be found commercially. In this thesis, the Microchip’s 

dsPIC33FJ256GP710 microprocessor was chosen mainly due to its capabilities relative to 

its cost and development simplicity. All procedures were developed in the 

microprocessor’s assembly language using Microchip’s MPLAB V5 integrated data 

environment (IDE) and the ICD2 Microchip’s programmer. In addition, the Explorer 16 

Microchip’s Development Demo Board was used for hardware and software evaluation. 

The microprocessor’s I/O parts used in this study are the Data Converter Interface (DCI) 

and the Universal Asynchronous Receiver Transmitter (UART). The microprocessor’s 

main features are listed in Appendix A.1, and Appendix A.2 provides a block diagram of 

the microprocessor, including its CPU, DSP Core, memory, and I/O devices. The only 

external components required for system operation is a 3.3V power supply, an oscillator 

circuit, an RS232 integrated interface, and the speech capturing system described earlier 

in Chapter III. Figure 20 shows the overall IWR system setup which has a total cost 

under $50 (including the microphone, when implemented separately of the demo-board 

Explorer 16). 

Timing issues and hardware resources constraints are the two techniques 

challenges discussed earlier in Section II.D, which were faced and resolved in this study. 

 Timing issues, previously mentioned in Section II.D.1, were the result of the 

IWR system real-time implementation considered here. Specifically, end-point detection, 

frame feature extraction, frame feature vector quantization, and recognition operations 

needed to be executed by the microprocessor within a time period less than or equal to 

the time required for a speech frame to be captured. This constraint introduced timing 

issues which could have resulted in the loss of speech data without specific consideration.  

Next, hardware resources constraints, discussed earlier in Section II.D.2, were due 

to the finite microprocessor’s data memory capacity. For illustration purposes note that a 
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5-second long captured signal (including speech and silence period) with an A/D 

conversion of 8 KHz sampling frequency and 16 bits sample’s binary representation, 

needs 78.125 Kbytes of data memory (RAM). This amount of memory can be found in 

expensive microprocessors. However, the low cost microprocessor used in this study has 

only 32 Kbytes of data memory. 

 

 
Figure 20. Real-time IWR System Setup 

 

We addressed the first challenge by using three different programming 

approaches. First, we decreased the microprocessor Instruction Cycle Period to 0.3398 

nsec (29.5 MHz). Second, we optimized the algorithm’s assembly routines to include as 

few instruction cycles as possible. Finally, we used semaphores, flags and buffer pointers 

to control the program flow and avoid procedures to compete for processor’s resources 

such as data memory. 

The second challenge was resolved by storing only the part of the captured signal 

where speech is detected. Therefore, the required data buffer memory length for storing 

the spoken word was reduced to the maximum expected word’s length, which was 

experimentally observed to be 5,520 samples or 690 msec (for 8 KHz sampling 

frequency). The A/D converter uses 16 bits to represent each sample (15 bits used for the 
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quantization level and the least significant bit is “don’t care”). Therefore, a data memory 

buffer of length 11,040 bytes (2x5,520 bytes) was the minimum requirement. In addition, 

we extended the buffer’s length by 960 additional bytes (480 samples or 60 msec) to 

insure that detected words would be completely stored into the buffer. Thus, the final data 

memory buffer’s length used in this study to record speech is 12,000 bytes. Note that the 

microprocessor’s data memory is aligned in data words using the “little indian” format 

meaning that each data word consists of two bytes (one byte is eight bits) where the least 

significant byte’s memory address is even. 

In addition to the data memory buffer used to store the spoken word, other data 

buffers are used for storing the results of intermediate processing routines. The required 

length in bytes of these buffers was determined by two factors; the choice of the frame 

length, and the expected length in bytes of the results. A 256-sample frame was chosen in 

this study to implement the short-term speech processing for the end points detection 

task, feature extraction, and recognition. Figure 21 describes the framing process 

followed. Each frame is overlapped with the previous one by 53% or 136 samples. The 

following frame is captured after an additional 120 (256-136) new samples are recorded. 

The maximum number of 256-sample overlapping frames for each word is equal to 48 

((6,000-240)/120+1, where 6,000 is the total length of the spoken word’s data buffer, 

while the length of the first frame is equal to 240 samples, as explained in Chapter VI, 

and 120 is the number of additional samples to the 136 samples already recorded in the 

previous frame). The exact length of each data memory buffer used in this study is 

separately presented in combination with the routine that is used at that point. The total 

amount of data memory used in this study is 16,320 bytes, corresponding to 53% of the 

microprocessor’s total available data memory. 
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Figure 21. Framing Process of Capturing Speech Samples 

 

Next we present the main program and the interrupts used in this study. 

B. MAIN PROGRAM 
 The main program is the basic assembly routine used in the real-time 

implementation to control the execution of the whole program. It consists of four 

different parts: Microprocessor Initialization, Data Converter Interface Interrupt, Speech 

Processing-Recognition, and Robotic Control. Figure 22 depicts a block diagram of the 

main program. 
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Figure 22. Block Diagram of the Real-time IWR system’s Main Program Routine 

 

1. Initialization Routine 
 The I/O devices (DCI, UART, I/O ports), the microprocessor’s clock, the audio 

codec, and the semaphores, flags, and global variables used by the program are setup 

during the Microprocessor Initialization Routine. The DCI is initialized to produce an 

interrupt only when its 4-word receiver buffer is full. The DCI is programmed as the 

master, providing a clock signal to the audio codec. DCI and audio codec initialization 

parameters are listed in Appendix B. Ports D6 to D7 and ports A5 to A10 are initialized 

as input and outputs, respectively. Port D6 and D7 are associated with push buttons and 

ports A5-A10 are associated with six LEDs (light emitting diodes). The UART is set for 

115,200 bps with 8-bit data, no parity bit and no flow control. The initial values for all 

flags, semaphores and global variables are listed in Appendix D. After initialization, the 

main program is set to a repeat loop, awaiting user activation of the DCI interrupt and the 

speech-processing and recognition steps by depressing button no. “1” in the 

microprocessor board [Section IX.A]. 

2. Data Converter Interface Interrupt 
The Data Converter Interface Interrupt is used as the main synchronization source 

in data flow control, since the DCI controls the Audio Codec and consequently the 

speech samples. The DCI interrupt occurs when four samples have been captured from 

the codec and transmitted to the microprocessor. Thus, this interrupt occurs every 0.5 
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Robotic Control
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msec or 14,750 pics (processor’s instruction cycles per second) with a 8 KHz sampling 

frequency. The following two different theoretical timers based on this DCI interrupt are 

used: 

• Four samples timer or 14,750 pics (0.5 msec) 

• Forty samples timer or 147,500 pics (5 msec) 

The first timer is used to read the samples from the DCI buffer, to save the 

samples to the word buffer, to update the word buffer pointer, and to count the captured 

signal’s samples. When 40 samples have been captured the “Frame40CompleteFlag” flag 

is set, triggering the second theoretical timer. The second timer is used for the activation 

of every other routine in the program. 

3. Speech Processing-Recognition Program Part 
The Speech Processing-Recognition part is represented by the “main_loop” 

routine. It includes five different flag-checkpoints which direct the program flow in four 

routines, as shown in Figure 23. These checkpoints and their effect on program flow are 

presented in their order of appearance in the “main_loop” routine: 

• “EndofBufferFlag” checkpoint: the word buffer is full; the main program terminates 
and starts again from initialization when this flag is set. Else, the program continues 
its execution. The flag is controlled by the DCI interrupt which compares the number 
of captured samples with the total length of the spoken word’s data buffer. 

•  “Frame40CompleteFlag” checkpoint: the program goes to the last checkpoint 
ignoring all the intermediate ones when this flag is cleared. Else, the program clears 
the “Frame40CompleteFlag” flag and goes to the next checkpoint. The flag can be set 
only by the DCI interrupt, when 40 speech samples have been captured. 

• “InitialThresholdFlag” checkpoint: the program first starts threshold calculations as 
long this flag is not set, and all other routines are non active.  The flag is set when the 
thresholds have been calculated and remains set until a new system initialization 
occurs. When this flag is set, the program is directed to the rest of the operations 
(normal_procedure) [Section V.A.3]. 

• “FinalStartpointFlag” checkpoint: the program redirects to the next checkpoint as the 
final start-point has been detected when this flag is set. Else, the program goes to the 
last checkpoint ignoring the intermediate one. The flag is cleared at the beginning of 
the main loop and is set by the start-point detection routine. It remains set until a new 
word is ready to be processed. 

• “EndPointDetHasRunFlag” checkpoint: the program redirects to the feature 
extraction activation routine when this flag is set. Else, the program goes to the next 
checkpoint. The flag is set any time the end-point detection routine has run. It is used 
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as a synchronization flag for feature extraction described in Chapter VII. The flag is 
cleared immediately after the checkpoint. 

• “DCIDataAvailableFlag” checkpoint: This is the last flag checkpoint of the 
main_loop routine. A valid recognition result is available and the program redirects to 
the robotic control part when the flag is set. Else, the program restarts the main_loop 
procedure. 
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Figure 23. Block Diagram of “Main_loop” Routine 
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4. Robotic Control Program 

The robotic control program part is responsible for the translation of the 

recognized word into a control machine command. We use four bits (24=16 

combinations) for the binary representation of the commands corresponding to the 7-

word vocabulary. In addition, two more binary numbers “0111” and “1111” are used to 

indicate that a recognition result is not available and that an error has occurred, 

respectively. Table 3.1 lists the binary control machine commands associated with the 

recognized words and indicators. 

 

Command and Indication Binary Representation 

“up” 0001 

“down” 0010 

“left” 0011 

“right” 0100 

“kill” 0101 

“pan” 0110 

“move” 0111 

No recognition 1001 

Error 1111 

 
Table 3.1 Binary Control Machine Commands in Respect with the Recognized 

Words and Indications 

 

The UART port is used to communicate with the robot. The UART_init procedure 

initializes the UART port for transmission/reception at 115,200 bps, with eight data bit, 

no parity, and no flow control. After a command is sent, the program waits for a timeout 

and for the robot to acknowledge the command reception. The program repeats the 

transmission-reception section until an acknowledgment received or until a new 40-
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sample frame is captured. In any case the program redirects to the main_loop start point 

continuing the reception-recognition part. The LED labeled no. “6” on the 

microprocessor board indicates a successful command reception by switching to an ‘ON’ 

state, and remains in an “OFF’ state otherwise, as described in Section IX.A.1. 

5. Error Identification Program Part 
The main program also includes the error identification part which consists of 

four error traps: 

• Oscillator Fail Error trap routine, 

• Address Error trap routine, 

• Math (Arithmetic) Error trap routine, 

• Stack Error routine. 

These routines trap the microprocessor every time the corresponding error occurs 

and is shown by illuminating a specific LED, described in Section IX.A. Note that the 

only way to exit an error trap is by resetting the microprocessor. 

Next, we discuss the procedures used to solve the end points detection problem. 
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V. END-POINT DETECTION 

A. END-POINT DETECTION ALGORITHM 

1. Introduction 
The end-point detection algorithm is based on the Short-Term Energy (STE) and 

the Zero-Crossing (ZCR) measure calculations of a given signal. The idea behind these 

approaches is based on the differences in energy and frequency between speech and 

silence’s period (no speech). The captured signal consists of a silence period, a spoken 

word, and a silence period. Plotting the STE of the captured signal we observe that the 

energy where speech is present is larger than that found during silence periods. Thus, the 

spoken word’s bounds can be determined as the points where the energy of the captured 

signal is greater than a threshold. The threshold is calculated as the possible maximum 

STE of the silence period. Furthermore, the ZCR measure is used to extend the bounds of 

the spoken word, in case where low energy but high frequency phonemes occur at the 

beginning or at the end of the spoken word. 

Absolute “silence” cannot be achieved because the capturing device (microphone) 

introduces a level of processing noise even when no speech is present. Thus, we use an 

energy threshold to define “silence” periods. A signal is considered to be speech if its 

energy is above this threshold, and noise or “silence” when its energy falls under it. The 

STE for a frame f of length N of a speech signal s(n) is given by: 
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where w(n) is a window required for the validity of short-term signal processing [Section 

II.B.1]. A rectangular window is used in this process for simplicity. 

The problem with the STE algorithm is that many words begin or end with weak 

unvoiced or voiced phonemes such as fricatives, whose energy is lower than the 

calculated thresholds. In these cases, the utterances are considered as “silence” and are 

ignored by the algorithm, introducing problems during subsequent steps of the 

recognition procedure. The Zero-Crossing (ZCR) measure was added to overcome this 

problem. 
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The Zero-Crossing measure is used by the end-point detection algorithm for 

refinement of the word’s bounds as computed by the STE algorithm. The ZCR is a 

frequency measurement, representing the number of times a zero-mean signal changes 

sign during a frame. A high-frequency signal implies a high ZCR. The weak utterances at 

many word’s ends are commonly of high frequency such as ”t” at the end of the word 

“left.” The initially calculated “silence’s” ZCR (mean and variance) defines the ZCR 

threshold. Frames near the word’s bounds as detected by the STE method with ZCR 

greater than this threshold are considered speech. The frame ZCR is given by the 

following formula: 
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In this thesis, the STE and ZCR measure algorithms introduced by Rabiner and 

Sambur [Rabiner, 1975] and modified by Kurcan [Kurcan, 2006] are used. Further 

modifications have been applied to the algorithm for real-time microprocessor 

processing. 

2. Threshold Calculations Procedure 
The threshold calculations procedure is an algorithm which is run initially to 

obtain the noise level of the input speech line and to define the “silence” levels. It sets up 

the short-term energy minimum and maximum thresholds and the ZCR threshold used by 

the end points detection algorithm. The procedure is applied to the first 500 msec of the 

input signal, where only noise is assumed. The first 400 msec are ignored, while the last 

100 msec are divided in frames of ten msec, overlapped by 50%. Thus, 19 overlapped 

frames are examined. The short-term energy and the zero-crossing measure are computed 

for each frame. These values are stored in a buffer and are used by the algorithm to 

compute the mean and standard deviation of the short-term energy and zero-crossing 

measure. The thresholds values are obtained by multiplying the results by a factor which 

is dependent on the operational environment. A flow chart of this procedure presented in 

Figure 24. 
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The short-term energy calculation for a frame f of length N of speech signal s(n) is 

given by Equation (5.1.1). The mean is given by Equation (5.1.3) while the standard 

deviation is given by Equation (5.1.4). 
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Figure 24. Block Diagram of the Threshold Calculations Procedure 

 

The upper and lower STE thresholds are calculated by multiplying the sum of the 

mean and the variance by 12 and 3, respectively, as given by Equation (5.1.5), where 
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these multiplicating factors were derived empirically after trial and error. Finally, an 

intermediate threshold is calculated between the two thresholds given by Equation 

(5.1.6). 
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In previous studies [Kurcan, 2006], an experimental parameter was introduced to 

Equation (5.1.5) for threshold calculation, to adapt the algorithm to different noise 

environments. Specifically, instead of using the sum of mSTE and stdSTE the minimum 

value between this parameter and the summation was used. After conducting a series of 

experiments on the real-time implementation proposed in this study, we concluded that 

no such parameter was required as the capturing system selected in our study appeared to 

be more noise robust than that used by [Kurcan, 2006]. 

The zero-crossing measure (ZCR) calculation is given by Equation (5.1.2).  The 

ZCR mean is given by Equation (5.1.7) and its standard deviation is given by Equation 

(5.1.8). One threshold calculated for the ZCR quantity, given by Equation (5.1.9), is the 

minimum value of the summation of mean and standard deviation and the experimental 

parameter of 20. This parameter is based on experiments on a frame of 80 samples, which 

demonstrated that 20 zero-crossings may occur just due to noise. 
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The following assembly routines were built to implement the threshold 

calculations in the microprocessor: 

• Threshold_procedure, 
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• Frame_STE_Calculations, 

• Frame_ZCR_Calculations, 

• Frame_Threshold_Calculations, 

• _Int_SQRT_Calc. 

The “Threshold_procedure” routine is the general controller of the threshold 

calculations procedure. It runs every 40 captured samples when and only if the 

“InitialThresholdFlag” semaphore is cleared, meaning that thresholds have not yet been 

calculated. The routine starts counting the captured speech frames of length equal to 40 

samples. When 100 40-sample frames or 4000 samples (500 msec) have been captured, 

the routine discards all prior samples, keeping only the last 40 samples. From this point 

and after every additional 40 samples, STE and ZCR values are calculated based on 80-

sample frames with overlapping of 50%. STE and ZCR calculations stop after 760 

samples or 100 msec and this time is defined as the “silence” period. Next, the routine 

recalls the “Frame_Threshold_Calculations” routine to compute the thresholds. Finally, 

it sets the “InitialThresholdFlag” flag to inform the main program that the thresholds 

have been calculated and the system is ready for speech processing and recognition, and 

discards all the samples except the last 40, realigning all the buffers in data memory to 

their starting points. 

“Frame_STE_Calculations” and “Frame_ZCR_Calculations” routines are 

implementations of Equations (5.1.1) and (5.1.2) in assembly language. The total amount 

of time required to run each for a given frame is 660 and 900 pics, respectively. The 

extracted frame’s STE and ZCR values are stored in two different buffers (“FrSTEBuf” 

and  “FrZCRBuf”) of length 19 words (corresponding to 19 frames) or 36 bytes each, in 

data memory. 

The “Frame_Threshold_Calculations” routine is the implementation of Equations 

(5.1.3) – (5.1.6) and (5.1.7) – (5.1.9) in assembly language. It takes the STE and ZCR 

values of the corresponding buffers and the constants parameters (3, 12, and 20) from 

program memory and computes the thresholds. Finally, it saves the results as global 

variables in data memory (STE_UT, STE_LT, STE_IT, ZCR_T). This routine runs only 

once when the “silence” period has been captured and lasts a maximum of 510 pics. 
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The “_Int_SQRT_Calc” routine is an implementation of the integer square root 

function in assembly language. The algorithm is based on the “Babylonian 

Approximation” given by Equation (5.1.10). We first use Equation (5.1.10) to obtain the 

“Babylonian Approximation” of the square root of x. Usually the resultant number is 

greater than the actual square root of x. Thus, the resultant number is reduced by one, 

squared and compared to x. The algorithm stops when the first number whose square is 

less than x is found, resulting in the computation of  the floor integer of the square root of 

x. For example, assume that the square root of the integer x = 3,839 or (0EFF)H  or (0000 

1110 1111 1111)b is required to be calculated. Note that the first ‘1’ present in x from left 

in the binary representation is in the 12th position, so the approximation given by (5.1.10) 

is equal to 64. Reducing 64 by one and squaring the result gives 3,969, which is greater 

than x. The process is continued by repeating the subtraction, squaring the result and 

comparing it to x. In this case, the procedure is stopped at 61, whose square is equal to 

3,721 which is less than x. This is the final result. The routine runs at a maximum of 65 

pics. 
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3. Normal Procedure 

The “Normal_proc” procedure executes once the threshold calculations procedure 

has terminated and while the flag “InitialThresholdFlag” is set. This routine calculates 

the 80-sample frame’s STE and ZCR values and controls the start- and end-point 

detection procedures. Five flags are used for this purpose: 

• “FoundTmpStPointFlag”: Set means that a possible start-point has been 
detected and the start-point refinement procedure is ready to run, 

• “FinalStartpointFlag”: Set means that the start-point refinement procedure has 
finished and a start-point has been detected, 

• “FoundTmpEndpointFlag”: Set means a possible end-point has been detected 
and the end-point refinement procedure is activated, 

• “FoundFinalEndPointFlag”: Set means that the end-point refinement 
procedure has run, the captured speech signal’s duration is checked and found 
greater than a low limit and the recognition procedure is ready to yield results, 
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• “EndPointDetHasRunFlag”: Set means that the end-point detection routine 
has run. This flag is used for the synchronization of the end-point detection 
and feature extraction routines. This flag is required because the end-point 
detection routine runs every 40 samples while the feature extraction routine 
runs every 120 samples. 

The normal procedures can be divided into two parts: the start-point detection, 

including the start-point refinement, and the end-point detection, including the end-point 

refinement. 

a. Start-point Detection Algorithm 

The start-point detection algorithm implementation is based on the 

algorithm described by Kurcan [Kurcan, 2006] and is described by the following steps: 

1: Calculate the STE and ZCR for all the frames of the captured signal, 
 
2: Compare the calculated STE values with the Upper STE threshold, 

beginning at the first frame. At the first occurrence where the STE is 
greater than the Upper STE threshold, go backward and compare the 
previous STE values with the intermediate STE threshold. At the first 
occurrence where the STE value is lower than the intermediate STE 
threshold, a possible start point has been detected, 

 
3: Go backward seven frames comparing the calculated ZCRs to the ZCR 

threshold. The frame where the ZCR is found to be greater for third 
time than the ZCR threshold represents the final start-point. If this 
point is not found, the start-point is defined as the possible start point 
detected above. 

The main problem with this algorithm is that it cannot be implemented in 

a real-time fashion. The algorithm requires the entire signal to be captured prior to 

starting the calculations. This process is not effective in a real-time system for two 

reasons. First, the captured signal cannot be recorded continuously due to the limited 

microprocessor’s memory capacity. Second, we do not know when the word is spoken. 

Therefore we do not know when to start recording the captured signal. 

Moreover, the use of the upper STE threshold as a trigger for the start-

point detection routine is not efficient as it requires processing past frames to estimate the 

speech start point. The maximum number of frames between the intermediate and upper 

STE levels was found experimentally to be around 24 40-sample frames or 1000 samples 

especially for “left” words. These 1000 samples correspond to seven 256-sample 

overlapping frames. Therefore, the feature extraction and recognition routines must run 
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seven times before the next 40-sample frame is captured. The time (in pics) required to 

execute the feature extraction and recognition routines seven times is 206,500 (7 x 29,500 

pics per execution, as described in Chapters VI, VIII, and VIII). The available time for 

their execution is 147,500 pics (the time required for 40 samples to be captured, as 

described in Section IV.B.2). Thus, the program needs to be able to complete the feature 

extraction and recognition routines before the next 40-sample frame of speech is 

captured.  

This problem was resolved by designing a new start-point detection 

algorithm which is described as follows: 

1. Calculate STE and ZCR values for each new captured frame, 
 
2. Compare the resultant current frame STE value with the intermediate 

STE threshold, 
 
3. Set as temporary start-point the current frame, if its STE value is 

greater than the intermediate STE threshold, and go to step 5, 
 
4. Discard the first 40 samples in the word buffer, realign the frame 

indices and continue with the next frame (step 1) if step 3 did not give 
any result for the first seven frames. Hence we store a maximum of 
seven frames (320 samples), which are needed for the start-point 
refinement procedure, 

 
5. Continue with step 1 if the current frame’s STE is less than the 

intermediate STE threshold and the number of captured frames is less 
than 7,  

 
6. Go backward to the stored frames (frame by frame for a maximum of 

seven frames) comparing the frame ZCR value to the ZCR threshold,  
 
7. Count the number of occurrences where the frame ZCR value is 

greater than the ZCR threshold, 
 
8. Set as the final start-point the frame where the frame ZCR is found to 

be greater than the ZCR threshold value for the third time, 
 
9. Set as the final start-point the frame where the temporary start-point 

was initially determined if step 8 did not give any result. 

An accurate detection of the start-point was achieved in real time by 

implementing this algorithm. The maximum number of possible captured samples stored 
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in the word’s memory data buffer until a start-point is detected is 320 samples. Thus, a 

maximum of two 256-sample overlap frames may be available (240 for the first frame 

and 120 more for the second frame, as described in Chapter VI). The time (in pics) 

required to execute the feature extraction and recognition routines for these two frames is 

59,000 (2 x 29,500) pics per execution, as described in Chapter VI). The available time 

for their execution is 147,500 pics (the time required for 40 samples to be captured, as 

described in Section IV.B.2). Thus, the program will be able to complete the feature 

extraction and recognition routines before the next 40-sample frame of speech is 

captured. 

In addition, the routine controls the two flags “FoundTmpStPointFlag” 

and “FinalStartpointFlag” used to declare the current status of the algorithm to the 

normal procedure, as previously described in Section V.A.3. 

b. End-point Detection Algorithm 
The end-point detection algorithm implementation is based on the 

algorithm described by Kurcan [Kurcan, 2006] and is described as follows: 

1. Calculate the current frame STE and compare it to the Intermediate 
STE threshold, 

 
2. Set as possible end-point the current frame, if its STE value is lower 

than the intermediate STE threshold, 
 
3. Continue with step 1 if step 2 did not give any result, 
 
4. Continue to capture frames, calculating the current frame’s ZCR, 
 
5. Compare the current frames’s ZCR to the ZCR threshold (seeking for 

the former to be greater than the latter), 
 

6. Set as final end-point the frame where for the third time the ZCR is 
found to be greater than the ZCR threshold, and continue with step 8, 

 
7. Set as final end-point the frame where the possible end-point was 

determined if the step five did not give any result for seven 
consecutive frames after step 2, 

 
8. Calculate the duration of the captured word as the total number of the 

stored word’s samples, 
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9. Compare the word’s duration (calculated in step 8) with the minimum 
acceptable number of samples that may contain a captured word (in 
this study the number is 1000 samples), 

 
10. Continue with the word recognition routine if the captured word’s 

duration is greater than 1000 samples, 
 
11. Delete all captured samples in the word buffer (except the last 40), 

realign buffers and indices, clear all flags associated with the end-point 
detection routines. Start again from the start-point detection routine, if 
the duration is less than 1000 samples, as in this case noise or “spikes” 
have been captured instead of speech. 

By implementing this algorithm, an accurate detection of the end-point is 

achieved in real time. In addition, the final recognition routine can be run immediately 

after the end-point detection, providing recognition results before the next 40-sample 

frame is captured, as described in Chapter IIX. Samples collected after the end-point are 

ignored. Furthermore, the algorithm controls the two flags used from the normal 

procedure “FoundTmpEndpointFlag” and “FoundFinalEndPointFlag”, declaring the 

current status of the algorithm.  

c. End-point Detection Algorithm Results 
Figure 25 shows a portion of speech, in the time domain, containing the 

word “left.” It is captured by the audio codec and processed by the microprocessor. 

Figure 26 shows the STE plot of the same signal for each 80-sample, 50% overlapped 

frame, and the STE thresholds calculated by the thresholds calculation routine. Note that 

the STE value in the “silence” period is below the low STE threshold, before and after 

the word. In this example, the application of the end-point detection algorithm results in 

two end-points denoted by lines N1 and N2, depicted in Figure 26. These points represent 

the temporary start and end point of the word “left.” In this same plot, the lines at N1’ 

and N2’ correspond to the final start and end points of the word “left” resulting from the 

refinement routine used in conjunction with the ZCR measure. The ZCR measure helps 

the end-point detection algorithm detect the weak fricative “t” at the end of the word 

“left” and the “1” before the high energy vowel “e” at the beginning of the word. As 

shown in Figure 27, these points are obtained by the ZCR measure and are identified 

where the frame ZCR is greater than the ZCR threshold for more than three times in 7-

frames regions outside the word’s STE limits. 
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Figure 25 also shows the final bounds of the word “left.” Note that the 

algorithm does not capture the whole word, demonstrating that it is not always capable of 

finding the exact bounds of a given word, even using the ZCR measure refinement. 

Finally, Figure 28 shows the cropped word “left” which is used for features extraction 

and recognition. 

 

 
Figure 25. Captured Speech Signal Containing the Word “left” 
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Figure 26. Short-term Energy Plot of Captured Signal Containing the Word “left” 

 
Figure 27. Zero-crossing Rate Plot of Captured Signal Containing the Word “left” 
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Figure 28. Final Cropped Speech Signal of Word “left” 

 

The detected end-points of the spoken word are used as trigger for the 

activation and termination of the feature extraction algorithm. Next, we discuss the 

feature extraction algorithm implemented in this study to achieve a real-time speech 

processing and recognition system. 
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VI. SPEECH FEATURE EXTRACTION 

A. INTRODUCTION 
Speech recognition has better performance when the recognizer is fed with 

compact feature vectors. As discussed in Chapter II, Mel-Frequency Cepstral Coefficients 

(MFCCs) are widely accepted and used to represent speech signals, preserving the speech 

characteristics, while reducing the effects of speech variability [Deller 2000]. 

Furthermore, Davis et al. concluded that MFCC features outperform other types of 

speech signal representation, especially when used for monosyllabic word recognition 

[Davis, 1980]. Moreover, Kurcan showed that MFCC features yielded better results than 

other parameters considered and were effective in the isolated word recognition case 

[Kurcan, 2006], which is the focus of this study. The same approach is implemented in 

this thesis for ear-microphone speech signal feature representation. 

Figure 29 shows a block diagram of a theoretical MFCC feature extraction 

process and is described as follows [Kurcan, 2006]: 

• Framing: Speech data are framed in 256-sample frames corresponding to 32 
msec, overlapped by 53%, to better capture temporal changes from frame to 
frame. 

• Windowing: Speech frames are windowed by applying a Hamming window 
w(n), given as 

 ( )
2 ( 1)0.54 0.46cos , 1,..., 256

0, otherwise.

n n N
w n N

π⎧ −⎛ ⎞− = =⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪⎩

 (6.1.1) 

• Fast Fourier Transform (FFT): In each frame, a complex 256-Fast Fourier 
Transform is applied to transform the signal from the time to the frequency 
domain. 

• Mel-frequency Warping: The frequency information obtained in each speech 
frame is passed through the Mel filter-bank described earlier, resulting in 24 
frequency coefficients per frame. 

• Log Energy Computation: A logarithm transformation is applied to the 
magnitude of each mel frequency coefficients, discarding the phase 
information, dynamically compressing the features, and making feature 
extraction less sensitive to speaker-dependent variations [Becchetti, 1999]. 
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Mel-frequency Cepstrum Computation: Finally, the mel-frequency cepstral 

coefficients are computed by applying the inverse DFT to the logarithm of the magnitude 

of the filter-bank outputs. Note that the inverse DFT reduces to a Discrete Cosine 

Transform (DCT) operation as the log magnitude spectra of the coefficients are real and 

symmetric [Becchetti, 1999]. Moreover, the DCT has the advantage of producing highly 

uncorrelated features [Jayant, 1984; Deng 2003]. The resulting Mel-frequency cepstral 

coefficients c(k) are given by 

 ( ) ( ) ( )( ) ( )( )
1

2 1 1
log cos , 1,..., ,

2

M

k
n

n k
c k w k x n k L
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 (6.1.3) 

( )kx k  are the 24 frequency coefficients resulting from the mel filter-banks, M=24, and 

L=14 equal to the number of MFCC coefficients selected per speech frame. 

 

 
Figure 29. Theoretical MFCC Feature Extraction Block Diagram 

 

Next, we describe the real-time implementation of the feature extraction 

algorithm. 

B. FEATURE EXTRACTION REAL-TIME IMPLEMENTATION 

1. Feature Extraction Procedure General Description 
The feature extraction algorithm described in Section II.B.3, includes a series of 

computational steps, such as the FFT, DCT, and mel filter-banks calculation, which 

demand a great number of calculations. In addition, a real-time ASR system must 
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perform all these operations on a frame by frame basis, in an amount of time less than 

that required to capture a frame’s speech samples. Furthermore, the feature extraction 

algorithm in a real time implementation must run in parallel with the end-point detection 

algorithm because the first routine stops when the second one detects a final end-point. 

Synchronization and timing problems may occur due to the different execution rate of 

these two algorithms. Specifically, a 256-sample overlap frame, or 120 additional 

captured samples after those associated to the last frame, must be available for the 

activation of the feature extraction algorithm (as described in the next paragraph) while 

the end-point detection algorithm is activated every 40 new captured samples (as 

described in Section V.A.3.b) Thus, a mechanism is required to synchronize these two 

algorithms. As a result, the feature extraction algorithm previously described was 

redesigned to meet the system requirements necessary for the real-time implementation 

considered in this thesis. 

The redesign of the feature extraction algorithm was based on two factors; first 

the choice of the amount of the overlap in the 256-sample frame, second the solution of 

the synchronization and timing problems previous described. 

The overlap amount of the 256-sample frame was chosen based mainly on the 

number of the new samples required to form the next frame. Note that the number of new 

samples must be a multiple of the theoretical timer of 40-sample frames. Thus, an overlap 

of 53% was chosen as the 256-sample frame is formed by the last 136 samples of the 

previous frame and 120 additional new captured samples. Consequently, the 256-sample 

frame will be available when every new three 40-sample frames (120 samples) are 

captured. Therefore, the algorithm will be synchronized with the 40-sample theoretical 

timer, as described in Section IV.B.2. 

The algorithm must start immediately after a final start-point has been detected 

and must stop immediately after a final end-point has been detected. Due to the 

difference in the activation timer of the end-point routines and the feature extraction 

routine (every 40 samples for the former while every 120 samples for the later) the end-

point may be detected before or after the end of the 256-sample frame. Thus, the 
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redesigned algorithm must include a mechanism to synchronize the actual detected end-

points with the first and the last 256-sample frames used for feature extraction. 

Taking into account the previous described factors we redesigned the algorithm 

by separating it in two procedures: 

• Feature extraction activation procedure (Feature_extraction_activation):  
Responsible for synchronization of end-points routines with the feature 
extraction procedure, 

• Feature extraction procedure (Feature_extraction_proc): Responsible for 
activating the routines (computational steps) required to calculate the MFCC 
parameters. 

Furthermore, two extra word buffer’s pointers, and two flags needed to be 

introduced in the main program: 

• FrameSpInputSignalBufPtr: Points to the 256-sample frame’s end-address in 
the word’s buffer, 

• FEPFrameStartPoint: Points to the previous 256-sample frame’s end-address 
in the word’s buffer, 

• FirstTimeFEPFlag: Indicates that the feature extraction algorithm is going to 
run for the first time, 

• EndPointDetHasRunFlag: Indicates that the end-point detection has been 
executed. 

The exact role of each pointer and flag in the program is described in the 

following two sections. 

2. Feature Extraction Activation Procedure 
The feature extraction activation procedure (FEAP) controls the real-time 

execution of the feature extraction algorithm on a 256-sample frame basis. The procedure 

is activated immediately after a start-point has been finally detected. Then, the possible 

word’s data buffer’s length values are multiples of 40 with a maximum of 320 and a 

minimum of 80 samples. Note that two problems were introduced at this point because 

the number of samples needed to form the first frame (ready for feature extraction) is 

equal to 256; first 256 is not divisible by 40, and second the number of captured samples 

may be above or below 256 (because the start-point detection procedure may finally 

detect the start-point between the first and the 7th 40-sample frame, as described in 

Section V.A.3.a). 
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 The first problem is a synchronization problem. Every routine in the program 

must be synchronized with the theoretical timer of 40 samples, as described in Section 

IV.B.2. On the other hand, the first frame uses 256 samples (no overlap). If these 256 

samples were used to form the first frame then the next 256-sample overlap frame will be 

completed after an additional 120 samples are collected, i.e., 376 samples. Note this 

number is also not divisible by 40. Thus, the program (running based on the 40 samples 

theoretical timer) is not able to synchronize the frame completion with all other routines 

running in the same amount of time (end-point detection, DCI interrupt). This problem 

was solved by forming the first frame using the first 240 captured samples (this number is 

the closest to 256 which is divisible by 40), and padding 16 zeros at the beginning of the 

frame. Consequently, the next 256-sample overlap frame will be available after an 

additional 120 samples are collected or 360 total samples, which is also divisible by 40. 

Thus, the program now is able to synchronize the completion of the 256-sample frame 

with the theoretical timer of 40 samples. 

The second problem was solved by using the 240 samples previously described, 

as criterion for program data flow. When a start-point is finally detected, the start-point 

procedure deletes all the samples in the word’s data buffer until that point. Therefore, 40 

to 320 samples may exist in the buffer, depended on where the start-point was detected 

(Section V.A.3a). The total number of samples remaining in the buffer is compared with 

240. If this number is below 240 (i.e., 80, 120, 160, or 200) the feature extraction 

procedure (FEAP) is not able to form the first frame (240 sample). Thus, it continues to 

capture samples until they reach 240. Then the FEAP forms the first frame by padding 16 

zeros at the beginning of the frame and activates the feature extraction procedure. The 

next frame (second one) will be ready after 120 additional samples are captured. Then, 

and after every 120 new samples are collected, the FEAP forms the 256-sample frame 

using the last 256 samples in the word’s data buffer (136 samples from the previous 

frame and 120 new captured samples). On the other hand, if the number of samples in the 

word’s data buffer is greater than 240 (280, or 320) when the start-point is detected, the 

FEAP uses again the first 240 to form the first frame (padding again with 16 zeros at the 

beginning) and activates the feature extraction procedure. The next frame (second one) 

will be ready after 80 or 40 new samples have been captured, because 40 (280-240) or 80 
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(320-240) samples of the second frame are already stored in the word’s data buffer. Then, 

after every 120 new samples are collected the FEAP forms the 256-sample frame using 

the last 256 samples in the word’s data buffer. 

The FEAP stops to activate the feature extraction procedure when a final end-

point is detected. A data conflict may be introduced at this point mainly due to the 

different activation timing of the end-point detection routine and the feature extraction 

procedure (every 40 samples for the former while every 120 samples for the later). 

According to the end-point detection routine (including the end-point refinement routine) 

described in Section V.A.3b, first a possible end-point is detected. Next, the program 

continues to capture samples for seven more 40-sample frames (corresponding to 320 

samples; 7x40=280 plus 40 of the first frame due to the overlap). The end-point 

refinement routine seeks the final end-point between these frames comparing the ZCR 

quantity. Thus, two different cases are possible, as described in Section V.A.3b; the end-

point is finally detected between the 3rd and the 7th 40-samples frame, or the end-point is 

finally the possible end-point previously detected. In the first case, all captured samples 

until the final end-point (3rd, 4th, 5th, 6th or 7th 40-sample frame after the possible end-

point) are stored in the word’s data buffer.  In the second case, all captured samples until 

the 7th (after the possible end-point) 40-sample frame are stored in the word’s data buffer 

because the refinement routine has run the seven frames without finding a final end-point. 

Moreover, the features may have been extracted for all or for a part of these samples, 

because the FEAP stops to activate the feature extraction procedure only when an end-

point is finally determined. Thus, we had to design a mechanism which synchronizes the 

final end-point with the end of the 256-sample overlap frame used for feature extraction 

to avoid potential data conflicts. This mechanism is based on two pointers introduced in 

Section V.A.3; the FEPFrameStartPoint pointer which is used here to indicate the 

address of the end of the last 256-sample frame used for feature extraction, in the word’s 

data buffer, and the SpInputSignalBufPtr pointer which is used here to indicate the 

address of the end of the 40-sample frame where the end-point was detected. FEAP 

checks the difference between these two pointers (SpInputSignalBufPtr – 

FEPFrameStartPoint) resulting in six different cases: 
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1. Equal to 0: This means that the features are available for all captured samples 
and FEAP ends, 

 
2. Equal to 40: This means that the features for the last 40 samples have not been 

calculated. FEAP forms the last 256-sample frame by padding the frame end 
with 80 zeros, and activates the feature extraction procedure for the last time. 
After this the FEAP ends, 

 
3. Equal to 80: This means that the features for the last 80 samples have not been 

calculated. FEAP forms the last 256-sample frame by padding at the end 40 
zeros, and activates the feature extraction procedure for the last time. After 
this the FEAP ends, 

 
4. Equal to -200: This means that features have been calculated for 200 samples 

after the end-point. Then the FEAP deletes the last two sets of features 
corresponding to the last 240 samples (as FEAP activates the feature 
extraction process every 120 samples). The end-point is moved backward 40 
samples to be synchronized with the features (200-240=-40). After this the 
FEAP ends, 

 
5. Equal to -240: This means that the features have been calculated for 240 

samples after the end-point. Then the FEAP deletes the last two sets of 
features corresponding to the last 240 samples (as FEAP activates the feature 
extraction every 120 samples). The end-point is not affected because it is 
synchronized with the features (240-240=0). After this the FEAP ends, 

 
6. Equal to -280: This means that the features have been calculated for 280 

samples after the end-point. Then the FEAP deletes the last two sets of 
features corresponding to the last 240 samples (as FEAP activates feature 
extraction every 120 samples). The end-point is moving forward for 40 
samples to be synchronized with the features (280-240=40). After this the 
FEAP ends. 

Cases 1 to 3 above refer to the event where the final end-point is detected between 

the 3rd and 7th (last frame) 40-sample frame past the temporary end-point. Cases 4 to 6 

refer to the event where the final end-point is detected at the temporary end-point 

meaning that the refinement procedure has run for more than seven 40-sample frames 

without a result. 

Figures 30 and 31 show two different examples of the FEAP frame 

synchronization approaches described above. In Figure 30, the final end-point is detected 

six frames after the temporary end-point location. The difference between the 

SpInputSignalBufPtr and FEPFrameStartPoint pointers is 80 samples. Thus, FEAP 
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forms the last 256-sample overlap frame padding 80 zeros at the end, and activates the 

feature extraction procedure for one more time. 

 

 
Figure 30. Feature Extraction Activation Procedure, Example 1 
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In Figure 31, the final end-point is detected at the temporary end-point. The 

difference between the SpInputSignalBufPtr and FEPFrameStartPoint pointers is -200 

samples. Thus, the final end-point is moved 40 samples backward and the last two sets of 

calculated features are deleted. 

 

 
Figure 31. Feature Extraction Activation Procedure, Example 2 
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current frame’s end-address in the word’s buffer. Thus, the frame’s boundaries are kept 

constant until the next 40-sample frame is captured. Then the pointer is updated by the 

DCI interrupt. Experimentally we showed that the feature extraction step (including the 

end-point detection) is completed after two DCI interrupts or eight new samples, 

consuming approximately 22,400 pics. 

The actual feature extraction routines, activated by the FEAP, are included in the 

Feature Extraction Procedure described next. 

3. Feature Extraction Procedure 
The feature extraction procedure (FEP) is one of the most resource-consuming 

routines in this system. For each 256-sample overlap frame, a hamming window, a 

complex FFT, magnitude and logarithm calculations, mel Filter-Bank filtering, and 

finally a discrete cosine transformation are executed. FEP is responsible for initializing 

the indices, the buffers and their pointers and to recall, one by one, all the routines 

corresponding to the above calculations. 

The feature extraction calculations are implemented based on the 

dsPIC33FJ256GP710 microprocessor’s Digital Signal Processing (DSP) core commands 

and architecture described in Chapter IV. Further, the data memory is split into two 

different regions “x” and “y” to achieve less computation cycles. Five data buffers are 

used, placed either in “x” or “y” regions of data memory as follows: 

•  ANxInputSignalBuf: A buffer in “x” data memory of 512 words length. Used 
to store the 256-sample frame at the beginning of the FEP procedure. Also 
used as input and output buffer in the hamming window routine and the FFT 
routine and as input to the magnitude routine, 

• MagnitudeBuf: A buffer in “x” data memory of 256 words length. Used to 
store the magnitude of the 256 frequency bins resulting from the FFT routine. 
Used as output by the magnitude routine and as input to the mel filter-bank 
filtering routine, 

• TempMelBuf: A buffer in “x” data memory of 24 words length. Used to 
temporarily store the 24 frequency bins resulting from the mel filter-bank 
filtering routine. Also used as an input and output to the logarithm calculation 
routine and, consequently, the DCT routine, 

• TmpDCTBuf: A buffer in “y” data memory of 14 words length. Used to 
temporarily store the 14 MFCC parameters extracted by the DCT routine. 
Also used as an input to the codebook routine described in Chapter VII, 
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• y_twid: A buffer in “y” data memory of 256 words length. Used to store the 
FFT coefficients required for the fast Fourier transformation. 

The following assembly routines were built for the feature extraction procedure 

microprocessor implementation: 

• _hamming_proc, 

• _fft_proc, 

• _magnitude_proc, 

• _melbank_proc, 

• _log2magn_proc, 

• _dct_proc. 

The “_hamming_proc” routine is an assembly language implementation of 

Equation (5.1.1). The 256-sample frame stored in “ANxInputSignalBuf” is multiplied in 

the time domain with hamming window coefficients that are pre-calculated and hard-

coded in program memory. The results are stored in the same buffer. The total amount of 

time necessary to run for each frame is 792 pics. 

The “_fft_proc” routine is an implementation of the fast Fourier transformation 

using the radix-2 “butterfly” technique [Cristi, 2004]. For a data frame of length N=2L, 

the radix-2 FFT’s complexity increases as order O{ }log 2N N . In contrast, the discrete 

Fourier transformation’s (DFT) complexity increases much faster, as O{ }2N . In addition, 

using the microprocessor’s DSP commands (where an addition and a multiplication can 

be executed in one cycle and in the same cycle the next samples can be loaded) the FFT 

transformation can be completed in less than 7,000 pics. Note that the real samples are 

converted into complex format by padding zeroes appropriately in the FFT buffer 

“ANxInputSignalBuf” prior to the complex FFT implementation. Furthermore, the input 

samples are reordered in a binary reversed order as required by the “butterfly” calculation 

scheme [Cristi, 2004]. The 256 2-word complex numbers (frequencies) are stored in the 

same buffer in normal order. The 256 pre-calculated FFT coefficients are loaded in “y” 

data memory. Figure 32 shows the “butterfly” operation scheme, while Figure 33 shows 

an example of a 4-point DFT, implemented using the radix-2 FFT. 
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Figure 32. Butterfly Operator 

 

 
Figure 33. 4-point DFT Implementation Using Radix-2 FFT 
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The “_melbank_proc” routine is an assembly language implementation of the mel 

bank-filters filtering algorithm. The filtering operation is accomplished in the frequency 

domain, resulting in a series of multiplications between the 128 frame’s frequency bins 

and the filter-bank filters’ coefficients. The coefficients of 24 triangular overlapped filters 

are calculated, converted in hexadecimal (1.15) format, and hard-coded in program 

memory during the microprocessor initialization. Normally, 425,900 multiplications and 

16,384 additions are required to pass 128 frequency bins through 24 different overlapped 

filters, which exceed the microprocessor’s specifications for a real-time system. Thus, the 

algorithm was designed based on the fact that most of the filters’ coefficients are equal to 

zero. The idea is to take each filter separately and multiply its non-zero coefficients with 

the corresponding frame’s frequency bins. From each filter, we finally obtain one 

frequency bin (the magnitude only). This is calculated for each of the 24 filters by the 

summation of the filters’ multiplication’s results above. Finally, 24 mel frequency bins 

are calculated and stored in “TempMelBuf” in data memory. Using this algorithm mel 

bank-filter filtering is accomplished in 7,300 pics. 

The “_log2magn_proc” routine is an assembly language implementation of the 

calculation of the logarithm of the mel filter-bank frequency magnitudes. A base-2 

logarithm calculation is used, based on the following formula [Parhami, 2000]: 

 ( ) ( ) ( )2 2 2log log 2 log ,     where 1 2.qx s q s s= = + ≤ <  (6.3.2) 

Magnitudes are assumed to be integers and a binary representation is used. Thus, the 

number q is the floor of the log2(x) given by the following form: 

 ( )2 16-binary

16    , 0,
log

0          , 0,
q n n

floor x
q n
= − >⎧⎡ ⎤ = ⎨⎣ ⎦ = =⎩

 (6.3.3) 

where n is the position of the first “1” from the left of the number x expressed in a binary 

format. 

The value s is given in Equation (6.3.4) and belongs to the interval [1,2). The 

logarithm y in base two of s is given by a lookup table. We implemented a DELPHI 

program to calculate the lookup table and converted it in hexadecimal 1.15 fractional 

format. The range of s numbers starts from 1.0005 and stops at 1.9995 in 0.0005 
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increasing step. The logarithms y belong to the interval (0, 1) and a total of 1,999 

numbers are computed. The resultant logarithm’s table is hard-coded in the 

microprocessor’s program memory requiring 3,998 bytes. 

 
2q

xs =  (6.3.4) 

Using the above equations the logarithm calculation of an integer number x can be 

summarized by the following steps: 

1. Find q using Equation (6.3.3), 

2. Calculate s using Equation (6.3.4). The fractional part of the result plus one is 
equal to the number s, 

3. Find in the lookup table the corresponding logarithm y to the number s, 

4. Logical shift q left by 11 positions, 

5. Logical shift right the logarithm of s by four positions, 

6. Add the two binary numbers. 

 Up to step 3, q is a binary representation of an integer number while y is a binary 

representation in 1.15 format of a fractional number. In addition the final result of the 

logarithm of x must be in 1.15 fractional format. Next, we divide both numbers q and y 

by 16 so that they can be preserved into the final result. The division by 16 of q leads to a 

fractional number in the interval [0.0625, 0.9375] (from Equation (5.3.3) q is an integer 

less than 16 and greater than 0). This division in binary arithmetic can be done by shifting 

q left by 11 positions (step 4). The division by 16 of y (which is already in 1.15 format) 

can be done in binary arithmetic by shifting y to the right by four positions (step 5). Now 

we can add q and y to take the final approximation of the logarithm of x divided by 16. 

The total amount of time to run for each frame is 3,300 pics. 

The “_dct_proc” routine is an assembly language implementation of Equation 

(5.1.2). The 24 logarithms stored in the “TempMelBuf” buffer are transformed into 14 

cepstral coefficients using a discrete cosine transformation. The results are stored in the 

“DCTTempBuf”. The calculations are performed in 1.15 fractional format. Note that DCT 

coefficients are pre-calculated and hard-coded into program memory during the 

microprocessor’s programming. The total amount of time required to run for each frame 

is 1,100 pics. 
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4. Feature Extraction Results 

This thesis designed a real-time feature extraction procedure, synchronized with 

the end-point detection routine, using up to 20% of the available processor’s time before 

the next 40-sample frame is presented. The performance is achieved by optimizing the 

calculations and taking advantage of the microprocessor’s DSP core architecture and 

commands. Fourteen MFCC coefficients are extracted for each 256-sample frame.  

Figure 34 and 35 shows the FFT frequency bins of the first frame of the words 

“left” and “down”, respectively. The energy, as expected due to the ear microphone, is 

concentrated at the low frequencies. Figure 36 and 37 show the extracted MFFC 

parameters of words “left” and “down” respectively. 

 

 
Figure 34. Fast Fourier Transform of the First 256-sample Frame of Word “left”  
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Figure 35. Fast Fourier Transform of the First 256-sample Frame of Word “down” 

 

 
Figure 36. MFCC Parameters of Word “left” 
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Figure 37. MFCC Parameters of Word “down”  

 

Twelve of the fourteen (2nd to 13th coefficient) MFFC parameters extracted for the 

current 256-sample frame are used in the recognition task. The next step is to represent 

these 12 parameters by a discrete code number. Thus, the features are quantized by a 

12x128 vector quantizer. Next, we analytically describe the implementation of the MFCC 

parameters’ coding using a 12x128 vector quantizer. 
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VII. SPEECH FEATURE QUANTIZATION 

A. INTRODUCTION 
Vector quantization schemes convert the continuous amplitude MFCC parameters 

into discrete symbols (codes), removing any possible redundancy. These vector codes 

correspond to different clusters in regions near a center (centroid). A code associated with 

each cluster is used to represent a frame’s features vector in the DHMM recognizer.  

The K-means iterative algorithm implemented for in-ear speech recognition 

[Kurcan, 2006] with a number of clusters K equal to 128 is used to obtain a 12 x 128 

codebook. The feature vectors extracted during the sampling phase by the microprocessor 

(corresponding to the captured spoken word’s samples) are used as input to the algorithm 

iterative calculations. A MATLAB implementation of the K-mean algorithm is used in 

this thesis, taken from [Kurcan, 2006]. The resultant codebook is converted into the 1.15 

fractional format and hard-coded into the microprocessor’s program memory. 

The feature vector quantization procedure is executed in 256-sample frame base 

immediately after the feature extraction procedure. It is based on the calculation of the 

minimum Euclidean distance between a feature vector (ft(i)) and any of the 128 quantizer 

vectors (cb(k,i)), as given by Equation (7.1.1). The feature vector ft includes the second to 

the thirteen MFCC parameters previously extracted by the feature extraction procedure. 

Special microprocessor DSP commands are used to reduce the time required for 

quantization. All operations are performed in the 1.15 fractional format. The resultant 

code, representing a feature vector, is stored in a specific buffer. The algorithm is 

implemented in the “_code_book_proc” procedure. 

 ( ) ( )( )
12 2

1:128 1
 min , .

k i
code index of cb k i ft i

= =

⎡ ⎤⎧ ⎫= −⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦
∑  (7.1.1) 

Next an analytical discussion of the quantization procedure implemented in the 

real-time system is presented. 

B. QUANTIZATION PROCEDURE 
The quantization procedure (QP) is an implementation of Equation (6.1.1) into 

assembly language. The QP is characterized as a highly computational and demanding 
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routine in terms of floating point operations. It requires as many as 1536 subtraction, 

addition, and multiplication operations and 128 comparisons. To minimize the number of 

operations required for the QP the Euclidean distance between the vector components is 

calculated using the microprocessor’s DSP error detection and correction (EDAC) core 

command. This command has the ability to execute a subtraction and a multiplication in 

one cycle and accumulate the result in the same cycle. Furthermore, the EDAC pre-

fetches the values for the next operation. The QP algorithm was designed as follows: 

1. Set i=1, minimum = (7FFF)H, and minimum_position = 0, 

2. Take the ft vector and the cb(i,:) vector of the codebook, 

3.a. Subtract, the corresponding components of the two vectors, 

  b. Square and accumulate the result, 

4. Compare the final accumulator context with the minimum, 

5. Set the minimum equal to the final accumulator context if the latter is less than 
the former and set minimum_position equal to i, 

6. Set i = i + 1, 

7.  Go to step two if i < 128, 

8.  Terminate the algorithm. 

Steps 3.a and 3.b are executed in one cycle by using EDAC commands. The 

quantity minimum represents the minimum Euclidean distance while the quantity 

minimum_position corresponds to the index of the codebook code vector which had the 

minimum distance from the feature vector ft.  The minimum_position is the discrete code 

that will represent the features vector ft in the recognition task. 

The algorithm is implemented in assembly language as the “_code_book_proc” 

routine. The routine is activated by the feature extraction routine. The resultant code is an 

integer from one to 128 and is stored temporarily as a global variable, referred to as 

“FrameFeatCode,” for use by the recognition routine. The algorithm takes a maximum of 

4,000 pics to run. 

Next, the real-time recognition procedure implementation is presented. 
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VIII. REAL-TIME ISOLATED WORD RECOGNITION 

A.  INTRODUCTION 
As analyzed in Section II.C.4, a left-to-right, discrete-symbol, hidden Markov 

model (DHMM) with eight hidden states is the solution that best fits the real-time seven-

word IWR system presented in this thesis. Figure 38 shows a typical eight-state, left to 

right, DHMM. Words are chosen as the speech utterances to be modeled. Thus, seven 

different DHMMs are implemented corresponding to the seven words of the system’s 

vocabulary. The multiple observations scaling version of the Baum-Welch (B-W) training 

algorithm was applied to estimate the parameters A(λ), B(λ), π(λ) of each word model λ, as 

described in Section II.C.5.a. The parameters are converted into the 1.15 fractional 

format and are hard-coded into program memory in a specified order. Then, the 

recognition routine, with an input from a frame’s feature vector code from the 

quantization step, calculates the log-likelihood for each model. The likelihood results are 

computed recursively from frame to frame by adding to the previous frame’s likelihood 

estimates. Finally, the total log-likelihood of the observation (spoken word) occurrence 

for each model is calculated by the time the last frame is processed. The recognition 

result is the word which is represented by the model with the biggest log-likelihood. 

Figure 39 shows the block diagram of the seven-word IWR system. 

 

 
Figure 38. Left to Right 8-states Discrete Hidden Markov Model 
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Figure 39. Block Diagram of the 7-word DHMM IWR Recognizer [After Kurcan, 2006]. 

 

Recall that the models’ log-likelihood computations are executed on a frame by 

frame basis. As a result, the recognition decision is produced immediately after the 

word’s end-point is detected and before the next 40-samples frame is captured. 

Consequently, the IWR system does not require any additional “silence” intervals 

between spoken words. The frame log-likelihood calculation (given by Equation 8.1.2) is 

based on the scale factor l
tc  given by Equation (8.1.1). It results from the Forward-

Backward recursion algorithm, where t is a time index, here representing the current 

frame, and l is the model index, and ( )t iα is the forward variable defined as the 
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probability of occurrence a partial observation {o1, o2, …, ot} given the state i in time t. 

Specific details regarding the algorithm may be found in [Kurcan, 2006]. 

 
( )

( ) ( )1 2

1

1 ,   where   , ,..., | , .l
t t t tS

l
t

j

c i P o o o q i
j

α λ
α

=

= = =

∑
 (8.1.1) 

 ( )
1

log | log .
T

l l
t

t

P O cλ
=

⎡ ⎤ =⎣ ⎦ ∑  (8.1.2) 

B. REAL-TIME IWR SYSTEM TRAINING 
Training the real-time IWR system involves calculating the parameters A(λ), B(λ), 

π(λ) for each of the seven word’s DHMM model λ(l). In this study, the B-W re-estimation 

algorithm for multiple observations is used, as discussed in Section II.C.4. A MATLAB 

implementation of this algorithm is used and is taken from [Kurcan, 2006]. Some 

changes in the program were required to adapt to the sampling procedure used in the real-

time system. Specifically, the number of feature vectors (observations) per speech sample 

required to train the models was obtained by an off-line procedure in Kurcan’s 

implementation, while in our study, the training algorithm is fed with feature vectors 

obtained by the capturing system and processed by the microprocessor’s features 

extraction routines. The resultant parameters are of the following form: 

• A(λ): seven arrays of size 8x8 of double precision numbers, 

• B(λ): seven arrays of size 8x128 of double precision numbers, 

• π(λ): seven arrays of size 1x8 of double precision numbers. 

An executable program written in DELPHI V5 was developed to transform these 

parameters into 1.15 fractional binary numbers. The program output lists these binary 

numbers in hexadecimal form, a proper form for the microprocessor assembly compiler. 

Additionally, the arrays were reshaped into a one-dimensional matrix, as shown in Figure 

40.  This transformation was necessary, before the parameters are hard-coded in the 

microprocessor’s program memory which requires one-dimensional structures. All 

algorithms were designed based on this parameter ordering scheme. Figure 40 illustrates 

an example of a parameter re-ordering, conversion, and storage into program memory. 

The operation instructions for the DELPHI program are given in Appendix C. 
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Figure 40. Example of A Parameter Re-ordering, Conversion, and Storage into Program 

Memory 

 

C. REAL-TIME IWR SYSTEM SAMPLING 
As described above, the model’s training procedure requires multiple observations 

(samples). Ten persons of different ages, nine male and one female, contributed to the 

sampling procedure, speaking each word 50 times. A total of 500 samples for each word 

were used for the DHMM models training. The sampling procedure lasted 30 minutes for 

each person for each of the seven words. 

The use of this study’s capturing system and microprocessor for sampling was 

obviously a compulsory choice. Therefore, the parameters used for the IWR system must 

be obtained using the same methods and algorithms as those used during real-time 

recognition. Thus, a “sampling” option, which is activated by depressing button no. “2” 
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in the microprocessor board, was added to the program, as described in section IX.A. By 

choosing this option the system works identically as the basic program up to the features 

extraction step. Then, instead of directing the feature vectors to the quantization 

procedure (as described in Section VII.B) the program stores them in a buffer and 

continues capturing the next frame. In addition, the program stops to capture new 

samples when an end-point has been detected, and sends the stored features and the 

stored cropped spoken word’s samples to a PC using the UART port (set as described in 

Section III.B). The features and the samples are captured by another application that was 

built in DELPHI V5. This application was responsible for receiving data from the UART, 

converting it from hexadecimal to double precision numbers and storing it in 

corresponding files named in accordance with a specific format. Three files are stored, 

one containing the features (“.ftr” extension), one containing the word’s samples (“.txt” 

extension) and one containing the samples concatenated with the features in the original 

hexadecimal form that was received by the microprocessor (“.hex” extension). The name 

of each file is formatted taking four parameters into account: 

• Word’s name: Indicates the spoken word that corresponds to the sample. 

• Person Identity Number: Indicates the person from whom the sample was 
taken and corresponds to thesis’s human research database. 

• Sample’s number: Indicates the number of the sample. 

• Date: Indicates the date the sample was taken. 
Additionally, the DELPHI program is responsible for the creation of a directory 

tree into the “C:/Thesis/” directory. The tree consists of three directories “/samples”, 

“/features” and “/Hex.” In each of these directories, the program automatically creates 

directories for each person named by its identity number “/x”. In these person’s identity 

number directories, the program automatically creates new directories where the spoken 

samples are stored for each of the seven words (“/left”). The files were arranged in this 

fashion to achieve better control and execution speed during the MATLAB training 

procedure. An example of the sampling directory tree is shown in Figure 41. 
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Figure 41. An Instance of the Sampling Directory Tree 

 

Next we describe the recognition task as implemented in this study real-time IWR 

implementation. 

D.  REAL-TIME IWR IMPLEMENTATION 
The IWR implementation is based on the Forward-Backward scoring algorithm 

for the calculation of the total probability P that an observation sequence O is produced 

by a DHMM λ(P(O | λ)). The algorithm is divided in two parts: the forward recursion and 

the backward recursion. The resultant P from the forward recursion is used for scoring 

and recognition, while the backward recursion is mainly useful for the training of the 

model [Kurcan, 2006]. To describe the three steps of the forward recursive algorithm, we 

introduce the forward variable ( )t iα  as the joint probability of the partial observation 

sequence up to instant t, at the state i at the instant t, for a given model λ 

 ( ) ( )1 2, ,..., | , .t t ti P o o o q iα λ= =  (8.4.1) 

 Next we obtain the scaled version ( )t iα of the forward variable as: 

C:/Thesis

/Samples /Features /HEX 

/Down 

Move_3_1_23_05_07.txt
Move_3_2_23_05_07.txt
Move_3_3_23_05_07.txt
. . . . . . . . . . . . . . . . . . . . .

/1 /2 /… /3 /1 /2 /…/3 /1 /2 /…/3

/Left /Right /Up /Move /Kill /Pan
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 is the scaling factor, and S 

represents the number of DHMM hidden states. The forward recursion is used to solve 

for ( )t iα , given a DHMM λ with S number of hidden states, as follows [Kurcan, 2006]: 

•  Step 1: Initialization: for  1 ,i S≤ ≤   

 ( ) ( ) ( )1 1 1 1 1, 1| | ,i P o q b o qια λ π= = =  (8.4.3) 
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• Step 2: Recursion: for   1, 2,..., 1  and  1 ,t T j S= − ≤ ≤   
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From Eqs (8.4.7) and (8.4.9)  
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• Step 3: Termination: for  1 ,i S≤ ≤  

 ( ) ( )
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|
S

i

P O iλ αΤ
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=∑  (8.4.11) 

From the definition of tc  (Eqs (8.4.4) and (8.4.5)) it follows that: 
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Furthermore, taking the logarithm of the two sides yields the following log-

likelihood expression [Deller, 2000; Kurcan, 2006]: 

 ( )
1

log | log .
T

t
t

P O cλ
=

= −⎡ ⎤⎣ ⎦ ∑  (8.4.13) 

Equation (8.4.13) gives the log-likelihood produced by the DHMM λ for a 

specific observation sequence O. This quantity is used to extract the final recognition 

result. The final result is obtained by comparing the log-likelihoods of all seven models 

for an observation, finding the maximum and declaring that the associated model 

corresponds to the spoken word. 

The microprocessor implementation of the algorithm is the 

“_log_likelihood_proc” routine. The algorithm’s three-step calculation is done on a frame 

by frame basis whenever a new quantized feature vector is available. Moreover, 

calculations are performed for all seven models. A new flag, “IsFirstFrameFlg”, is 

introduced to distinguish the first frame (t=1) from the other frames (step one from step 

two). In each frame, the logarithm is calculated, in base two, of the resultant scale factor 

tc′  and it is added to the logarithm of the one produced by the previous frame. Therefore, 

we have log-likelihood estimates for each of the seven models immediately after the 
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calculations for the last frame. A final comparison determines the maximum among them 

and the model identity is forward to the robotic control part of the program. 

Simultaneously, the “DCIDataAvailableFlag” flag is set to declare that the recognition is 

finished. 

The forward recursive algorithm equations above include a matrix with vector 

multiplication ([8x8]*[8x1]). Hence, we design a general matrix multiplication routine to 

ensure that all computations are performed in a 40-samples frame period. This routine is 

called “_matrix_mult_8x8_8x1_proc.” Furthermore, three new buffers are introduced, as 

follows: 

• “aaBuf”: Used for the storage of the forward variables ( ) ( )l
t iα , where l is the 

model index. Its length is equal to 56 words (7 models x 8 words/model = 56 
words). The buffer is updated in a frame base. 

• “ATempBuf”: Used to store a copy of the A(λ) parameters array of the current 
model from the program memory to data memory. Its length is 64 words (8x8 
words). It is updated based on the current model. 

• “PmTempBuf”: Used to store a copy of the π(λ) parameters array of the current 
model from the program memory to data memory. Its length is eight words 
(1x8 words). It is updated based on the current model. 

The recognition routine runs up to 8,400 pics per frame. The total processing time 

needed for each 256-sample overlap frame, including end-point detection, features 

extraction, and recognition routines, is approximately 34,850 pics. 

Next, we present the end-to-end system operation and evaluation of the human-

machine robotic control interface based on the ear-microphone IWR. 
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IX. REAL-TIME IWR SYSTEM OPERATION - EVALUATION 

This chapter presents the real-time IWR system operation from the user’s 

perspective. Furthermore, we describe the sampling and evaluation methods that are used 

to determine system performances, and present performance results. 

A. REAL-TIME IWR SYSTEM OPERATION 
Two different operation modes are available in a real-time IWR system. The first 

is the “main” operation mode in which the system is setup and operates in a real-time 

IWR mode in human-machine interface for robotic control or other. The second is the 

“sampling” operation mode that is used to obtain the spoken word samples necessary for 

the training of the DHMM word models used in this study. These two different operation 

modes are described thoroughly in the following sections. 

1. Real-time IWR System “Main” Operation Mode  
The “main” operation mode refers to the use of the system as a real-time IWR 

system, using an ear-microphone as a human-machine interface for robotic control. The 

implementation of this mode, in this study, requires that a set of actions be performed by 

the user (speaker) to operate the real-time IWR system. These steps can be divided into 

two phases; the initialization phase and the normal operation phase. The system 

initialization phase includes the following actions by the user: 

1. Placement of the ear-microphone on the speaker, 

2. Connection of the microphone connector into the audio codec device, 

3. Connection of the audio codec device with the microprocessor board, 

4. Connection of the microprocessor control output ports with the machine 
controller, 

5. Setting of the microprocessor power supply to the ‘ON’ position. 

Two LEDs (as depicted in Figure 42) are used to indicate that initialization has 

been successfully completed: the LED no. “1” located on the microprocessor board and 

the audio codec LED. The former must be ‘ON’ while the later illuminates periodically. 

Any other configuration of LED illumination indicates a malfunction of the system. In 

this case the user must reset the system by turning the power supply ‘OFF’ and ‘ON.’ 
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After initialization, the system is ready to operate as a real-time IWR system. The 

user depresses the button no. “1” on the microprocessor board (Figure 42). The LED “1” 

on the microprocessor board goes ‘OFF’ once and remains ‘ON’ indicating that the 

threshold calculations have been completed. Then, the user can speak commands. After a 

command is spoken, the system immediately captures the speech signal via the ear-

microphone and produces the recognition results to the user. LEDs “2,” “3,” “4,” and “5” 

(Figure 42) are used to interpret the binary code for each of the recognized command 

described in Table 3.1. The LEDs indicate the recognized spoken word and change only 

when a new command is recognized (the LEDs transition to ‘OFF’ just before the 

indication of a new recognized word). 

 

 
Figure 42. Real-time IWR System Operation Buttons and LED 

 

At this time, the real-time IWR system does not distinguish between regular 

speech and an actual robot command (e.g. a user speaking one of the 7 words in 

conversation as opposed to direct a robot). Thus, a push-to-talk (PTT) button was added 

to the microphone. Using the PTT button, the user is able to control when his spoken 

words are intended as commands for the IWR system. 

In addition to the normal recognition event, two more events can occur during the 

operation of the real-time IWR system; a no-recognition event and a general error event. 

LED “1” 

Button “1” Button “2” 

LED “2”, “3“, 
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Audio Codec 
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The first event occurs when the system is unable to recognize the spoken word. This 

event is indicated to the user by LED code “1001”, and does not affect system operation. 

In this case, the system continues to capture speech and the user must repeat the 

command. The second event occurs when an address error, an arithmetic error, an 

oscillator error, or a stack error is encountered by the microprocessor. This type of event 

is fatal for the system. It is indicated by LED code “1111”. In this case, the user must 

reset the system by powering it ‘OFF.’ It should be noted that this event rarely occurs. 

Multiple instances of this event indicate a serious problem with the microprocessor, 

requiring the user to reprogram the microprocessor or replace it. 

2. Real-time IWR System “Sampling” Operation 
The “sampling” operation mode refers to the use of the system to obtain the 

spoken word samples necessary to train the DHMM word models used in this study. The 

samples are obtained using the real-time IWR system, running on the microprocessor, in 

conjunction with another application, running on a computer, as described in Section 

VIII.C. Thus, a set of actions in both applications (IWR in microprocessor and DELPHI 

application in the computer) must be performed by the user (speaker) to obtain these 

samples. These steps may be divided in two phases; the initialization phase and the 

normal operation phase. The system initialization phase includes the following actions by 

the user: 

1. Placement of the ear-microphone on the speaker, 

2. Connection of the microphone connector into the audio codec device, 

3. Connection of the audio codec device with the microprocessor board, 

4. Connection of the microprocessor’s serial port with the computer serial port, 

5. Setting of the microprocessor power supply to the ‘ON’ position, 

6. Execution of the “IWR_Sampling_Appl.exe” on the computer, 

7. Selection of the word to be sampled, and identification of the number of the 
speaker using the dialog box of Figure 43.  

After this last step, the computer application is ready to receive samples as 

depicted in Figure 44. Simultaneously, two LEDs are used to indicate that the 

microprocessor’s initialization has been successfully completed: the LED “1” on the 

microprocessor board and the audio codec LED, as previously depicted in Figure 42. The 

former must be ‘ON’ while the later illuminates periodically. Any other configuration of 
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LED illumination indicates a malfunction of the system. In this case the user must reset 

the system by turning the power supply ‘OFF’ and ‘ON’. 

 

 
Figure 43. Dialog Box for Choosing the Word and the Speaker Identity Number of the 

current Spoken Word’s Sample 

 

 
Figure 44. “IWR_Sampling_Appl.exe” Application’s Main Window. The application has 

been initialized and is ready to record the data received from the microprocessor 
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After initialization, the system is ready to capture speech samples or to operate as 

a real-time IWR system. To activate the “sampling” mode of the system, the user 

depresses button no. “2” on the microprocessor board (Figure 42). LED “1” on the 

microprocessor board goes ‘OFF’ once and remains ‘ON’, indicating that the threshold 

calculations have been completed and the user can begin sampling. Every time a spoken 

word is captured the computer application acknowledges the data reception to the 

microprocessor.  In addition, the application shows in two different plots the captured 

spoken word sample and its features as obtained by the microprocessor (Figure 45), and 

activates a dialog box (Figure 45) requesting the user to choose among the following 

options: 

1. “Next Repetition;” Save the captured sample in the proper directory and file 
format as described in Section VIII.C, update the sample’s trial number and 
wait for the next sample, 

2. “Cancel Previous Repetition;” Discard the received data and wait for a new 
trial of the same sample to be captured, 

3. “Change Word or Person;” Save the captured sample in the proper directory 
and file format as described in Section VIII.C, show the dialog box for 
choosing the sampling word and speaker’s identity number, as shown n Figure 
43. Set the trial number to one and keep the new chosen word and speaker 
identity values when the user finally confirms a choice, 

4. “Stop;” Save the last captured sample in the proper directory and file format 
as described in Section VIII.C, and terminate the application. 

Furthermore, labels are included in the computer application to show the current 

status of the sampling procedure such as the current sampled word and speaker’s 

identification number, the full path of the file name that the sample word is stored, the 

current spoken word’s 256-sample overlap frames, and the number of repetitions up to 

this point, as depicted in Figure 45. The time required for sampling 50 samples of a 

spoken word is less than five minutes. 
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Figure 45. “IWR_Sampling_Appl.exe” Application’s window after receiving the spoken 

word’s samples from the microprocessor. A dialog box is open waiting for user 
Choice. Previously captured samples and features have been plotted. The labels 

have been updated indicating the current situation of the application. 

 

Next we discuss the evaluation methods used in this study to obtain the real-time 

IWR system performance results. 

B. REAL-TIME IWR SYSTEM EVALUATION 
Three different approaches were used to evaluate the performance of the real-time 

IWR system; the off-line method, the real-time speaker-dependent method, and the real-

time speaker-independent method. The first method is performed by taking arbitrary 

training samples, feeding them into the real-time IWR system via the UART port, and 

computing the recognition results of the system. The second is performed in real-time by 

using the speakers employed in the training phase, to speak each of the seven commands 

and then computing the system recognition results. The third method is similar to the 

second one but with speakers that did not participate in the training phase used in the 

testing phase. 

Dialog Box 

Labels 

Plot of the 
captured samples

of word “kill” 

Plot of the features 
obtained for the 

word “kill” 
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1. Off-line IWR System Evaluation 

Five different experiments were performed using this method. The overall 

classification rate is 75.28%. Table 8.1 depicts the confusion matrix of the average 

recognition results, while Figure 46 shows the average recognition results per word. Each 

experiment was set up by choosing arbitrary half of the available samples to train the 

DHMM recognizer and the rest to evaluate the real-time IWR system performance.  

 

 AVERAGE RECOGNITION RATES FOR THE 

OFF-LINE IWR EVALUATION METHOD (%) 

WORD Up Down Left Right Kill Pan Move 

Up 80 1 0 0.5 0 0 0 

Down 10 74 3 7 1 5 6 

Left 5.5 2.5 71.5 2.5 7.5 1 3.5 

Right 3.5 7 7 66 5 3 10.5 

Kill 0 0.5 2.5 5.5 70.5 1.5 1.5 

Pan 0 13.5 6 1.5 3 87 0.5 

Move 1 1.5 10 17 13 2.5 78 

Average Recognition Rate: 75.28 % 

 

Table 9.1 Average Recognition Rate Confusion Matrix; Off-line Evaluation Method 
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Figure 46. Average Recognition Results per Word; five Experiments Using the Off-line 
Evaluation Method 

 

2. Speaker-dependent Real-time Evaluation Method 

Five different experiments were also conducted using this method, with two 

different speakers. The resulting overall classification rate is 75.08%. Table 8.2 depicts 

the confusion matrix obtained for average recognition results, while Figure 47 shows the 

average recognition results per word. Each experiment was set up by choosing 25 

arbitrary samples out of 50 per word and per speaker to train the DHMM recognizer. 

Then, two different speakers spoke the seven-word commands for 20 repetitions each. 

The speakers used in these experiments participated in the training phase. The real-time 

IWR system LED indicators were used to record the recognition results. 
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 AVERAGE RECOGNITION RATES FOR THE REAL-TIME 

SPEAKER-DEPENDENT EVALUATION METHOD (%) 

WORD Up Down Left Right Kill Pan Move 

Up 82.8 1.2 0 0.4 0 0 0 

Down 8.4 75.2 2.8 9.6 1.2 6 7.2 

Left 4.4 2.8 70 2.8 6.4 2.8 4 

Right 2.8 6 7.6 64 4.4 2.4 9.6 

Kill 0 1.2 4.8 6.8 72.8 2 1.2 

Pan 0 12 5.6 1.2 3.2 84 1.2 

Move 1.6 1.6 9.2 15.2 12 2.8 76.8 

Average Recognition Rate:  75.08 % 

 

Table 9.2 Average Recognition Results Confusion Matrix; Real-time Speaker-
dependent Evaluation Method 
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Figure 47. Average Recognition Results per Word; five Experiments Using the Real-time 
Speaker-dependent Evaluation Method 

 

3. Speaker-independent Real-time Evaluation Method 

Five different experiments using this method were also conducted, using two 

different speakers. The resulting overall classification rate is 70.82%. Table 8.3 depicts 

the confusion matrix of the average recognition results, while Figure 48 shows the 

average recognition results per word. Each experiment was setup by choosing 25 

arbitrary samples out of 50 per word and per speaker to train the system’s DHMM. Then 

two new speakers not previously used in the training phase spoke the seven-word 

commands for 20 repetitions each. The real-time IWR system LED indicators were used 

to compute the recognition results. 
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 AVERAGE RECOGNITION RATES FOR THE REAL-TIME 

SPEAKER-DEPENDENT EVALUATION METHOD (%) 

WORD Up Down Left Right Kill Pan Move 

Up 78.4 2.2 1.2 0.4 0.2 1 0 

Down 9.2 70.6 3.4 12.2 1.8 5.4 5.2 

Left 6 2.4 64 3 8.4 3.6 7 

Right 2.4 4.8 8.4 62.4 4 2 12.4 

Kill 1 2.4 4.2 4.2 69.2 3.2 2.6 

Pan 1.2 15 4.6 1.6 3.8 80 1.6 

Move 1.8 2.6 14.2 16.2 12.6 4.8 71.2 

Average Recognition Rate: 70.82 % 

 
Table 9.3 Average Recognition Results Confusion Matrix; Real-time Speaker-

independent Evaluation Method 
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Figure 48. Average Recognition Results per Word; Five Experiments Using the Real-

time Speaker-independent Evaluation Method 
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The resulting overall average recognition rate for the system is 73.72%.  In the 

next chapter, the results obtained from the evaluation experiments are used to evaluate 

the total performance of this study’s real-time IWR system implementation. Furthermore, 

we discuss the challenges that were overcome during this research. Finally, we present 

recommendations for improvements and extensions to this research. 
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X. CONCLUSIONS 

This study implemented a portable COST low cost real-time isolated word 

recognition system (IWR) based on an ear-microphone as a human-machine interface for 

robotic control applications.  The main advantage of this system is that it enables hands-

free control increasing a user’s operational capabilities, while the ear microphone is well 

suited to noisy environments as the ear canal shields the collected speech from 

environmental noises. 

A.  SIGNIFICANT RESULTS AND CONCLUSIONS 

This study showed that a real-time implementation of an IWR system based on an 

ear-microphone is feasible. The following comments can be made regarding the hardware 

and software implementations: 

• Hardware 

• The speech capturing system, as implemented using the ear-microphone 
XEM98D and the Si3000 Audio Codec, captures, amplifies, filters, and 
samples speech clearly, without adding any significant amount of 
processing noise. In addition, the ear-microphone can shield the speaker 
voice from environmental noise. 

• The Microchip dsPIC33FJ256GP710 microprocessor used for 
implementation of the real-time IWR executes the processing routines in 
real-time without stalls or errors. The microprocessor’s I/O devices (DCI, 
UART) work effectively with the audio codec and computer used for 
sampling and training, without communication problems or data loss. Its 
data and program memory capacity is more than adequate for this study’s 
implementation. Finally, the microprocessor’s DSP core’s operation and 
available commands make the execution of complex routines faster and 
more accurate achieving good recognition performance and leaving 
available time for command and control tasks. 

• The Microchip Explorer 16 demo-board offered a platform that is 
adequate for the programming and evaluation of the IWR system. 
Furthermore, it offers the necessary hardware for implementing a 
command and control interface. 

• Software 

• The whole program executes in real-time as was designed without errors. 
Specifically, the program never crashed, even after many hours of 
operation. 
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• The end-point detection routines, as implemented in this study cropp the 
spoken words accurately and in real-time. 

• The feature extraction routines, as implemented in this study, process 
captured spoken word samples in real-time without loosing any significant 
amount of information. 

• The recognition routines, as implemented in this study, recognize spoken 
word in real-time with sufficient performance.  This feature is particularly 
notable considering that this implementation is the first step in 
transforming an “off-line” theoretical model into an actual real-time 
model. 

• The robotic control routine, as implemented in this study, is capable of 
controlling a machine in real-time. 

• The current amount time allocated for each frame capture is equal to 
147,500 pics resulting from the end-point detection procedure, as 
described in Chapter IV. The total processing time for the seven-word 
vocabulary considered in this study (including end-point detection, feature 
extraction, and recognition routines) is approximately equal to 34,850 
pics, leaving an additional 112,650 pics for control and command tasks 
(147,500 – 34,850 = 112,650). 

B. RECOMMENDATIONS FOR FUTURE WORK 
The real-time IWR system based on an ear-microphone implemented in this study 

is the first step towards transforming a theoretical model into a real-world device. 

However, it was not possible to examine all issues that may affect performances due to 

the multiples aspects covered in the study (hardware design and construction, software 

analysis, design and implementation, sampling, training, evaluation, thesis writing) in the 

allotted amount of time for completion Thus, the following issues remain open for 

consideration: 

• Hardware 

• The microprocessor used in our study has 16-bit arithmetic. The use of a 
32-bit arithmetic logic microprocessor would increase the recognition 
results as it would give more accurate arithmetic results during feature 
extraction and recognition routines. 

• Software 

• The routine used for calculation of the logarithm of an integer number can 
be improved to give more accurate results. The logarithm procedure is 
critical in the accuracy of the feature extraction and likelihood calculations 
affecting the system recognition performance. Simulations showed the 
recognition rate obtained using features derived from the same sampled 
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data using floating-point precision to be around 97% as compared to 
75.28% for the off-line implementation reported in Section IX.C.1 (Table 
9.1), which indicates the negative impact the arithmetic precision had on 
the system performances. 

•  The current implementation does not make use of the entire time available 
for command-and-control tasks, as mentioned in Section III.B.4. Thus the 
recognition scheme could be further enhanced to improve resulting 
recognition rates. A more complex routine could be developed for specific 
robotic applications, such as the control of Unmanned Air Vehicles 
(UAVs) for example. 

• Theoretical Model 

• Different aspects of the theoretical model can be evaluated using this 
study’s real-time IWR software and hardware platform. First, investigating 
how the recognition performances are affected by changing the number of 
hidden states used in the DHMM could be conducted. Second, the 
dynamic Delta-MFCC parameters could be added to introduce time-
varying information in the word models [Gold, 2000; Kurcan, 2006]. 
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APPENDIX A. MICROCHIP DSPIC33FJ256GP710 
MICROPROCESSOR GENERAL SPECIFICATIONS [MICROCHIP, 

2006] 

1. SPECIFICATION 

• Operating Range: 

• DC – 40 MIPS (40 MIPS @ 3.0-3.6V, -40°C to +85°C) 

• Industrial temperature range (-40°C to +85°C) 

• High-Performance DSC CPU: 

• Modified Harvard architecture 

• C compiler optimized instruction set 

• 16-bit wide data path 

• 24-bit wide instructions 

• Linear program memory addressing up to 4M instruction words 

• Linear data memory addressing up to 64 Kbytes 

• 83 base instructions: mostly 1 word/1 cycle 

• Sixteen 16-bit General Purpose Registers 

• Two 40-bit accumulators: 

• With rounding and saturation options 
• Flexible and powerful addressing modes: 

• Indirect, Modulo and Bit-Reversed 
• Software stack 

• 16 x 16 fractional/integer multiply operations 

• 32/16 and 16/16 divide operations 

• Single-cycle multiply and accumulate: 

• Accumulator write back for DSP operations 
• Dual data fetch 

• Up to ±16-bit shifts for up to 40-bit data 

• Direct Memory Access (DMA): 

• 8-channel hardware DMA: 

• 2 Kbytes dual ported DMA buffer area (DMA RAM) to store data 
transferred via DMA: 
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• Allows data transfer between RAM and a peripheral while CPU is 
executing code (no cycle stealing) 

• Most peripherals support DMA 

• Interrupt Controller: 

• 5-cycle latency 

• 118 interrupt vectors 

• Up to 67 available interrupt sources 

• Up to 5 external interrupts 

• 7 programmable priority levels 

• 5 processor exceptions 

• Digital I/O: 

• Up to 85 programmable digital I/O pins 

• Wake-up/Interrupt-on-Change on up to 24 pins 

• Output pins can drive from 3.0V to 3.6V 

• All digital input pins are 5V tolerant 

• 4 mA sink on all I/O pins 

• On-Chip Flash and SRAM: 

• Flash program memory 256 Kbytes 

• Data SRAM, up to 30 Kbytes (includes 2 Kbytes of DMA RAM) 

• System Management: 

• Flexible clock options: 

• External, crystal, resonator, internal RC 
• Fully integrated PLL 
• Extremely low jitter PLL 

• Power-up Timer 

• Oscillator Start-up Timer/Stabilizer 

• Watchdog Timer with its own RC oscillator 

• Fail-Safe Clock Monitor 

• Reset by multiple sources 

• Power Management: 

• On-chip 2.5V voltage regulator 

• Switch between clock sources in real time 
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• Idle, Sleep and Doze modes with fast wake-up 

• Timers/Capture/Compare/PWM: 

• Timer/Counters, up to nine 16-bit timers: 

• Can pair up to make four 32-bit timers 
• 1 timer runs as Real-Time Clock with external 32.768 kHz oscillator 
• Programmable prescaler 

• Input Capture (up to 8 channels): 

• Capture on up, down or both edges 
• 16-bit capture input functions 
• 4-deep FIFO on each capture 

• Output Compare (up to 8 channels): 

• Single or Dual 16-Bit Compare mode 
• 16-bit Glitchless PWM mode 

• Communication Modules: 

• 3-wire SPI (up to 2 modules): 

• Framing supports I/O interface to simple codecs 
• Supports 8-bit and 16-bit data 
• Supports all serial clock formats and sampling modes 

• I2C™ (up to 2 modules): 

• Full Multi-Master Slave mode support 
• 7-bit and 10-bit addressing 
• Bus collision detection and arbitration 
• Integrated signal conditioning 
• Slave address masking 

• UART (up to 2 modules): 

• Interrupt on address bit detect 
• Interrupt on UART error 
• Wake-up on Start bit from Sleep mode 
• 4-character TX and RX FIFO buffers 
• LIN bus support 
• IrDA® encoding and decoding in hardware 
• High-Speed Baud mode 
• Hardware Flow Control with CTS and RTS 

• Data Converter Interface (DCI) module: 

• Codec interface 
• Supports I2S and AC’97 protocols 
• Up to 16-bit data words, up to 16 words per frame 
• 4-word deep TX and RX buffers 

• Enhanced CAN (ECAN™ module) 2.0B active (up to 2 modules): 
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• Up to 8 transmit and up to 32 receive buffers 
• 16 receive filters and 3 masks 
• Loopback, Listen Only and Listen All Messages modes for diagnostics 

and bus monitoring 
• Wake-up on CAN message 
• Automatic processing of Remote Transmission Requests 
• FIFO mode using DMA 
• DeviceNet™ addressing support 

• Motor Control Peripherals: 

• Motor Control PWM (up to 8 channels): 

• 4 duty cycle generators 
• Independent or Complementary mode 
• Programmable dead time and output polarity 
• Edge or center-aligned 
• Manual output override control 
• Up to 2 Fault inputs 
• Trigger for ADC conversions 
• PWM frequency for 16-bit resolution (@ 40 MIPS) = 1220 Hz for 

Edge-Aligned mode, 610 Hz for Center-Aligned mode 
• PWM frequency for 11-bit resolution (@ 40 MIPS) = 39.1 kHz for 

Edge-Aligned mode, 19.55 kHz for Center-Aligned mode 
• Quadrature Encoder Interface module: 

• Phase A, Phase B and index pulse input 
• 16-bit up/down position counter 
• Count direction status 
• Position Measurement (x2 and x4) mode 
• Programmable digital noise filters on inputs 
• Alternate 16-bit Timer/Counter mode 
• Interrupt on position counter rollover/underflow 

• Analog-to-Digital Converters (ADCs): 

• Up to two ADC modules in a device 

• 10-bit, 1.1 Msps or 12-bit, 500 Ksps conversion: 

• 2, 4 or 8 simultaneous samples 
• Up to 32 input channels with auto-scanning 
• Conversion start can be manual or synchronized with 1 of 4 trigger 

sources 
• Conversion possible in Sleep mode 
• ±2 LSb max integral nonlinearity 
• ±1 LSb max differential nonlinearity 

• CMOS Flash Technology: 

• Low-power, high-speed Flash technology 
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• Fully static design 

• 3.3V (±10%) operating voltage 

• Industrial temperature 

• Low-power consumption 

• Packaging: 

• 100-pin TQFP (14x14x1 mm and 12x12x1 mm) 

• 80-pin TQFP (12x12x1 mm) 

• 64-pin TQFP (10x10x1 mm) 
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2. GENERAL BLOCK DIAGRAM [MICROCHIP, 2006] 

 

 
Figure 49. Microchip dsPIC33FJ256GP710 General Block Diagram [Microchip, 2006] 
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APPENDIX B. AUDIO CODEC SI3000 REGISTER SETUP 

The Si3000 Audio Codec by Silicon Laboratories uses nine 8-bit registers to 

control its operation. The setup of these registers used in this study follows: 

 

Register Value Si3000 Operation 

Control Register 1 [0001 0000] 
Normal operation using the microphone input 

and the speakers output. 

Control Register 2 [0000 0000] 
The digital filtering is enabled and the PLL 

divider is set to 5. 

PLL 1 Divide N1 

Register 
[0000 0000] 

N1 Phase locked loop (PLL) divider is set to 1 

(0+1). 

PLL 1 Multiply M1 

Register 
[0001 0011] 

M1 Phase locked loop (PLL) multiplier is set 

to 20 (19 +1). 

Rx Gain Control 

Register 
[0111 0010] 

Line in and Handset inputs are muted, the 

Microphone pre-amplifier Gain is 20 dB, and 

an FIR digital filter is active. 

ADC Volume 

Control Register 
[0101 0000] 

A/D converter volume is -4.5 dB. Line Out and 

Headset outputs are muted. 

DAC Volume 

Control Register 
[0111 1111] 

12 dB gain for the speaker output. Left and 

right speaker outputs are active. 

Analog Attenuation 

Register 
[0101 1100] 0 dB analog attenuation in speakers output 

Status Report 

Register 
 Is Read-only register. 

 
Table B.1 Setup of Si3000 Audio Codec Registers 
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APPENDIX C. PARAMETERS NUMERICAL CONVERSION 
APPLICATION  

The “Param_Conv_1_15_Fract_App.exe” application converts the parameters 

used in this study to the 1.15 fractional format, ready to be copied and hard coded in the 

microprocessor’s program memory. Eight different sets of parameters are used in this 

study. Thus, the application has eight different choices represented by the eight buttons at 

the end of the application’s main window, as depicted in Figure 50. The program 

operation is simple; The user chooses a parameter to be converted by activating one of 

the eight buttons, waits for the program to show the parameters in their original 

arithmetic format in the left box, activates the button “Translate,” waits for the program 

to do the conversion, depict the parameters in hexadecimal format in the right box, and 

copy and paste the converted parameters to the microprocessor’s program memory.  

Note the DCT coefficients, the logarithms, the mel filter-bank filter’s coefficients, 

and the hamming window weights are calculated internally by the application. In 

contrast, the code book quantization vectors, A, B and π HMM parameters are fetched by 

text files stored by the MATLAB application used for training the DHM models used in 

this study. These text files are stored in the “C:/Thesis” directory as: 

• “codebook12x128.txt” for the codebook quantization vectors, 

• “HMM_Am.txt” for the A parameters of the seven DHMM, 

• “HMM_Bm.txt” for the B parameters of the seven DHMM, 

• “HMM_Pm.txt” for the π parameters of the seven DHMM 
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Figure 50. The “Param_Conv_1_15_Fract_App.exe” Application’s Main Window 



123 

APPENDIX D. DEFINITION OF SEMAPHORES, FLAGS, AND 
GLOBAL VARIABLES USED IN THE REAL-TIME IWR SYSTEM 

PROGRAM IMPLEMENTATION 

1. FLAGS 
 

Name Type Initial 
Value Description 

Frame40CompleteFlag Flag Cleared Section IV.B.2-3 
FoundTmpStPointFlag Flag Cleared Section V.A.3 

FinalStartpointFlag Flag Cleared Section IV.B.3 
Section V.A.3 

FoundTmpEndpointFlag Flag Cleared Section V.A.3 
FoundFinalEndPointFlag Flag Cleared Section V.A.3 

InitialThresholdFlag Flag Cleared Section IV.B.3 
Section V.A.2-3 

FirstTimeFEPFlag Flag Set Section VI.B.2 

ReceivedDataFlag Flag Cleared

It is used internally by the UART2 
Receiver interrupt service routine to 
detect the  acknowledgement sent by the 
computer for the completion of PC and 
microprocessor communication  

DCIDataAvailableFlag Flag Cleared Section IV.B.3 
Section VIII.D 

EndPointDetHasRunFlag Flag Cleared
Section IV.B.3 
Section V.A.3 
Section VI.B.1-2 

EndofBufferFlag Flag Cleared Section IV.B.3 

DCISemaphore Semaphore Cleared

It is used by the DCI interrupt service 
routine and the “KeepLast40Samples” 
and “DeleteFirst_nx40_Samples” 
routines to avoid data loss. The latter 
two routines delete data from the word’s 
data buffer while the DCI interrupt 
saves data in this buffer. Thus it is 
critical for the two routines to run after 
the DCI interrupt is completed.    

 
Table D.1 Flag and Semaphore Definitions 
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2. GLOBAL VARIABLES 

 

Name Values Range Initial 
Value Definition 

FEPFrameStartPoint 
The word’s 

buffer available 
addresses 

0 Section VI.B.1-2 

FrameStartPoint 
The word’s 

buffer available 
addresses 

0 Indicates the current frame’s start point 
position in the word’s buffer 

Curr80FrameIndex 1 to 48 0 Indicates the current 80-sample 50% 
overlap speech captured frame 

FrZCRCurValue Any 0 Value of current frame’s ZCR 

ZCR_mean Any 0 Mean value of frames ZCR 
(Section V.A.2) 

ZCR_std Any 0 Standard Deviation of frames ZCR 
(Section V.A.2) 

ZCR_T Any 0 ZCR Threshold (Section V.A) 
FrSTECurValue Any 0 Value of  current frame’s STE 

STE_mean Any 0 Mean value of frames STE 
(Section V.A.2) 

STE_std Any 0 Standard Deviation of frames STE 
(Section V.A.2) 

STE_UT Any 0 Upper-STE threshold (Section V.A) 
STE_LT Any 0 Lower-STE threshold (Section V.A) 

STE_IT Any 0 Intermediate-STE threshold 
(Section V.A) 

ThresholdFrameIndex 1-99 0 
Indicates the total number of the 80 
samples 50% overlap frames, captured 
for the threshold calculations 

DCISamplesCount 
The word’s 

buffer available 
addresses 

0 
Indicates the current total number of the 
captured speech samples by the DCI 
interrupt service routine 

BufferEnd 
The word’s 
buffer last 

element address
0 

Indicates the word’s buffer last element 
address. Used for detection of the end of 
the word’s buffer 

SamplesCounter 1-40 0 

Indicates the number of captured 
samples after the last 40 samples have 
been captured. It is cleared every time 
40 samples have been captured. 

 
Table D.2 Global Variable Definitions 
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3. BUFFERS AND POINTERS 

 

Name Buffer’s Pointers Length
(bytes) Definition 

 12,000 Used to store the spoken word’s 
captured samples 

SpInputSignalBufPtr  Used to indicate the current word’s 
data buffer end address SpInputSignalBuf

 
Frame 

SpInputSignalBufPtr  
Used to indicate the current word’s 
data buffer end address before the 
FEAP was activated. 

Buffer 50 Used to store the calculated values of 
frame’s STE FrSTEBuf 

 FrSTEBufPtr  Used to indicate the current frame’s 
STE buffer end address 

FrZCRBuf 
 Buffer 50 Used to store the calculated values of 

frame’s ZCR 

 FrZCRBufPtr  Used to indicate the current frame’s 
ZCR buffer end address 

FilteredOutput Buffer 1024 
Used as temporary buffer to store the 
calculated FFT complex numbers of 
the current 256-frame 

ANxInputSignal Buffer 1024 
Used as temporary buffer to store the 
complex numbers of the current 256-
frame before the FFT 

Magnitude Buffer 512 

Used as temporary buffer to store the 
magnitude of the frequency bins 
calculated by the FFT for the current 
256-frame 

TempMelBuf Buffer 48 

Used as temporary buffer to store the 
results of passing the 256 frequency 
bins thru the mel filter-bank filters for 
each 256-frame 

TmpDCTBuff Buffer 28 

Used as temporary buffer to store the 
results of the DCT during the feature 
extraction procedure for the current 
256-frame 

Buffer 1344 

Used to store the MFCC parameters 
for all the 256-frames of the spoken 
word during the sampling operation 
mode of the program. MFCCFeatBuf 

MFCCFeatBufPtr  Used to indicate the current 
MFCCFeatBuf buffer end address 

ATempBuf Buffer 128 8x8 x 2 
C_buf Buffer 16 1x8 x2 
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PmTempBuf Buffer 16 1x8 x 2 
aaBuf Buffer 16 1x8 x 2 

ScaleBuf Buffer 16 1x8 x 2 
LogScaleBuf Buffer 14 1x 7 x2 

 
Table D.3 Buffer and Pointer Definitions 

 

4. PROGRAM MEMORY BUFFERS USED FOR PARAMETERS 
PROGRAMMING 

 

Name Program Memory 
Section 

Length
(bytes) Stored Parameters  

cb_12x128DoubleCoeff CodeBook_coeff 3072 
128 Codebook 

quantization vectors 
(128x12)  

dct_cos14_26coeff dct_cos_coeff 672 DCT Coefficients (24x14)

hamming_256coeff hamming_coeff 512 Hamming window weights 
(256) 

HMM_Am8x8_x7mod_coef HMM_Am_coeff 896 A parameters of seven 
DHMM ((8x8) x 7) 

HMM_Bm128x8_x7mod_coef HMM_Bm_coeff 14336 B parameters of seven 
DHMM ((128x8) x 7) 

HMM_Pm8x1_x7mod_coef HMM_Pm_coeff 112 π parameters of seven 
DHMM ((8x1) x 7) 

global log2_coeff_1_1999 log2_coeff_section 3998 Logarithm lookup table of 
1999 numbers in (1,2)  

global mel_bank24_indexes 48 
Indices of the non zero 
coefficients of the mel 

filter-bank filters 
global mel_bank24_coeff 

 

MELBank_coeff 

486 The actual mel filter-bank 
filter coefficients (243) 

 
Table D.4 Program Memory Buffer Definitions 
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APPENDIX E. REAL-TIME IWR SYSTEM ASSEMBLY 
ROUTINES 

The real-time IWR system software was implemented in a modular form. All the 

tasks have been programmed in separate routines for easy debugging and future updates. 

All routines that compose the system are listed in Table E.1, which includes the routine’s 

calling name, assembly file name, time (in pics) needed to be executed, and a brief 

description of the task.    

 

Calling Name Assembly File Name 
(.s) pics Definition  

_clear_initial_flags Clear_Initial_Flags 34 Set the flags, semaphores, and 
global values to their initial value. 

_clock_change Clock8000 20 Initializes the microprocessor’s 
clock rate 

_clock_change_UART Clock8000 20 
Initializes the microprocessor’s 
clock rate properly for UART 
transmission  

_code_book_proc CodeBook_Proc.s 4,000
Finds the code in the codebook that 
will represent the current feature 
vector using the Euclidean distance

_Curr_80_frame_Index Curr80frameIndex_ 
Calculation 35 

Calculates the current total number 
of the captured 80-sample 50% 
overlap frames 

_dct_proc dct_proc 1,100 Calculates the DCT of the 24 mel 
frequency bins 

_delete_first_nx40_ 
samples 

DeleteFirst_nx40_ 
Samples 

max 
1,000

Realigns the buffers and indices 
when a start-point has not been 
detected for seven 40-sample 
frames   

_end_point_refinement Endpoint_ 
refinement_proc 880 

Seeks the end-point based on the 
ZCR after a temporary end-point 
has been detected 

EP_Frame_STE_Calc EP_Frame_STE_ 
Calculations 900 

Calculates the STE of the current 
80-sample 50% overlap frame. It is 
deactivated after a final start-point 
has been detected 

EP_Frame_ZCR_Calc EP_Frame_ZCR_ 
Calculations 900 

Calculates the ZCR of the current 
80-sample 50% overlap frame. It is 
deactivated after a final start-point 
has been detected 
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_Feature_extraction_ 
activation 

Feature_Extr_ 
Activation 980 Controls the activation of the 

feature extraction routine  
_Feature_extraction_ 

proc 
FeatureExtraction_ 

proc 1,070 Feature extraction routine. It is 
controlled by the FEAP 

_Frame_STE_Calc Frame_STE_ 
Calculations 660 

Calculates the STE of the current 
80-sample 50% overlap frame. It is 
activated only during the threshold 
calculation procedure 

_Frame_ZCR_Calc Frame_ZCR_ 
Calculations 900 

Calculates the ZCR of the current 
80-sample 50% overlap frame. It is 
activated only during the threshold 
calculation procedure 

_Frame_Threshold_ 
Calcs 

Frame_Threshold_ 
Calculations 510 Calculates the thresholds 

_hamming_proc Hamming_proc 792 Windows the 256-sample frame 

_init_codec_slave Init_Codec_Slave min. 
515 

Initializes the Audio Codec – DCI 
communication protocol 

_init_dci_master Init_DCI_Master 30 Initializes the Audio Codec – DCI 
communication protocol 

_init_port Init_Port 20 Initializes the microprocessor’s 
ports as input or output 

_init_uart2 Init_Uart2 10 Initializes the microprocessor’s 
UART 2 I/O 

__DCIInterrupt Isr_DCI 50 DCI interrupt service routine 

__U2RXInterrupt Isr_UART2_RX 20 UART2 Receiver interrupt service 
routine 

_keep_last40_ 
samples 

_KeepLast40 
Samples 80 

Realign the buffers and indices 
when the start-point detection 
routine has to delete the first 40 
captured samples   

_log2magn Log2Magnitude 10 
Calculates the logarithm of the 24 
mel frequency bins for each 256-
sample framef 

_log2_proc Logarithm_proc 3,340 Calculates the logarithm of an 
integer 

_log_likelihood_ 
proc 

LogLikelihood_ 
proc 1200 

Calculates the log-likelihood of the 
current 256-sample frame’s 
features vector code for each of the 
7 DHMM models 

_magnitude Magnitude_Proc 780 
Calculates the magnitude of the 
FFT bins of the current 256-sample 
frame  

_main Main 200 Main Program 
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__reset Main 5 Initializes the Stack Pointer 

__OscillatorFail Main 4 Oscillator Fail trap routine 

__AddressError Main 4 Address Error trap routine 

__StackError Main 4 Stack Error trap routine 

__MathError Main 4 Declare Math Error trap routine 

_matrix_mult_8x8_ 
8x1_proc 

Matrix_Multiplic_ 
Proc 330 

Matrix multiplication Routine. The 
execution time refers to 
(8x8)*(8x1) matrix multiplication 

_melbank_proc Melbank_proc 7,300

Passes the 128 frequency 
magnitudes of each 256-sample 
frame thru the mel filter-bank 
filters 

_normal_proc Normal_procedure 65 

Controls and activates all the 
routines of the real-time IWR 
program. Runs after the 
initialization procedure and after 
the thresholds have been calculated

_refStartPoint_Proc RefStartPoint_ 
Procedure 

max 
880 

Seeks for the start-point based on 
the ZCR after a temporary start-
point has been detected 

_Int_SQRT_Calc SQRT_Algorithm 68 Calculates the Square root of an 
integer 

_sub_fft Sub_FFT 7,000 Calculates the 256 FFT bins of the 
current 256-sample frame 

_threshold_Proc Threshold_ 
Procedure 44 

Controls and activates the routines 
for the thresholds calculation. Runs 
after the initialization procedure 
and only until the thresholds 
calculation have been completed. 

 
Table E.1 Real-time IWR System Assembly Global Routines 
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APPENDIX F. FRACTIONAL 1.15 ARITHMETIC FORMAT 

The 1.15 fractional arithmetic format was used in this study to represent numbers 

in binary format. Fractional data is represented as a two’s complement fraction where the 

most significant bit (MSbit) is defined as a sign bit and the radix point is positioned just 

after the sign bit (Q.X format). The range of a 16-bit two’s complement fraction with this 

implied radix point is from -1.0 to (1-21-16) or -1.0 to 0.999969482 [Microchip, 2006]. 

Figure 51 shows examples of numbers expressed in 1.15 format fractional format, as 

interpreted by the microprocessor’s arithmetic logic using the 1.15 factional format. 

In addition, 16-bit signed two’s complement binary arithmetic was used to 

represent integer numbers. Integer numbers that can be represented in this fashion range 

between -2N-1 to 2N-1-1. Figure 52 shows examples of integer representation in 16-bit 

signed two’s complement binary numbers. 

 

 
Figure 51. Fractional 1.15 Format 

 

 

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1

(2801)H = 2-2+2-4+2-15 = 0.25+0.0625+0.00003051757813= 0.312530517 

2 8 0 1 

1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0

(D040)H = -1+2-1+2-3+2-9 = -1+ 0.5+0.125+0.001953125= -0.373046875 

D 0 4 0 

Sign bit 
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Figure 52. 16-bit Signed Two’s Complement Integer Format 

1

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1

(2801)H = 213+211 +20= 8,192+2,048+1=10,241 

2 8 0 1 

1 0 1 0 0 0 0 0 1 0 0 0 0 0 0

(D040)H = -215+214+212+26 = -32,768+16,384+4,096+64= -12,224 

D 0 4 0 

Sign bit 
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