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Stochastic Mapping for Chemical Plume Source Localization

with Application to Autonomous Hydrothermal Vent

Discovery

by

Michael V. Jakuba

Submitted to the Joint Program in Oceanography/Applied Ocean Science &
Engineering on January 9, 2007,

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Abstract

This thesis presents a stochastic mapping framework for autonomous robotic chemical plume source
localization in environments with multiple sources. Potential applications for robotic chemical plume
source localization include pollution and environmental monitoring, chemical plant safety, search
and rescue, anti-terrorism, narcotics control, explosive ordinance removal, and hydrothermal vent
prospecting. Turbulent flows make the spatial relationship between the detectable manifestation of
a chemical plume source, the plume itself, and the location of its source inherently uncertain. Search
domains with multiple sources compound this uncertainty because the number of sources as well as
their locations is unknown a priori.

Our framework for stochastic mapping is an adaptation of occupancy grid mapping where the
binary state of map nodes is redefined to denote either the presence (occupancy) or absence of
an active plume source. A key characteristic of the chemical plume source localization problem
is that only a few sources are expected in the search domain. The occupancy grid framework
allows for both plume detections and non-detections to inform the estimated state of grid nodes
in the map, thereby explicitly representing explored but empty portions of the domain as well as
probable source locations. However, sparsity in the expected number of occupied grid nodes strongly
violates a critical conditional independence assumption required by the standard Bayesian recursive
map update rule. While that assumption makes for a computationally attractive algorithm, in our
application it results in occupancy grid maps that are grossly inconsistent with the assumption of
a small number of occupied cells. To overcome this limitation, several alternative occupancy grid
update algorithms are presented, including an exact solution that is computationally tractable for
small numbers of detections and an approximate recursive algorithm with improved performance
relative to the standard algorithm but equivalent computational cost.

Application to hydrothermal plume data collected by the autonomous underwater vehicle ABE
during vent prospecting operations in both the Pacific and Atlantic oceans verifies the utility of
the approach. The resulting maps enable nested surveys for homing-in on seafloor vent sites to be
carried out autonomously. This eliminates inter-dive processing, recharging of batteries, and time
spent deploying and recovering the vehicle that would otherwise be necessary with survey design
directed by human operators.

Thesis Supervisor: Dana R. Yoerger
Title: Associate Scientist, WHOI
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Chapter 1

Introduction

Hydrothermal vents are deep ocean phenomena that likely play important roles in the

global heat budget and various global chemical budgets, support unique ecosystems,

and offer clues about the geological processes that regulate the formation of oceanic

crust [40,49]. Since the first discovery of a vent field in 1979 [19], enormous scientific

attention has been directed toward their study. Nevertheless, Baker and German [5]

conclude in a recent study that only 20% of the Earth's 50,000 kmto 60,000 km

of mid-ocean spreading axes has at most cursorily been surveyed for the presence

of hydrothermal venting, and only 10% studied thoroughly enough to identify the

locations of individual vent fields on the seafloor.

Seafloor hydrothermal vents emit vast plumes of effluent that can be detected

kilometers away from the source vent field itself. While these plumes are interesting in

their own right, they also enable what would otherwise be an impossibly small target

to be located, though the process is far from trivial. Inferring vent field location from

hydrothermal plume data is known as hydrothermal vent prospecting [4]. The value

of employing an autonomous underwater vehicle (AUV) as a complementary tool

within the arsenal of existing sensors and methods for hydrothermal vent prospecting

has now been demonstrated on several successful expeditions in both the Pacific and

Atlantic Oceans [39,65]. However, one aspect of AUVs that was not wholly capitalized

upon during these expeditions is their capacity for autonomous decision-making.

The original goal of this work was to enhance the scientific yield from AUV-based

hydrothermal vent localization and characterization missions by transferring much of

the onus of data processing and survey design onto the vehicle itself. In this respect,
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I claim some success. Though hydrothermal vent prospecting remains the primary

motivator behind this work, I have striven to abstract the results and methodologies

developed as much as possible from that specific application. By focusing on the

development of generic frameworks and tools, the methods developed herein have

broader application to robotic chemical plume source localization1 in general, and

contain insights into the probabilistic robotic mapping algorithm known as occu-

pancy grid (OG) mapping as well as a novel application for this probabilistic robotics

workhorse.

1.1 Background

The spatial relationship between the detectable manifestation of a chemical plume

source, the plume itself, and the location of its source is inherently uncertain:

"* turbulent processes result in the random motion of plume effluent and spreading
of the plume;

"* background currents advect the plume and cannot be measured exactly;

"* plume structure may depend on processes occupying a wide range of spatial and
temporal scales;

"* plumes from several sources may interact;

"* there may be uncertainty in whether a chemical plume has in fact been detected;

"* measured concentration may be only weakly dependent on measurement loca-
tion.

Of course, plume spread due to turbulence and background advection are responsible

for making plumes useful for localizing sources in the first place by producing a

relatively large spatial signature compared to the size of the source itself. The relative

importance of these factors and the others listed above depends on the nature of

'The more common term in the literature is chemical plume tracing (CPT); however, I will use
the term "chemical plume source localization" preferentially to CPT throughout most of this work
because not all methods for finding the sources of plumes actually require following (tracing) the
plume itself.
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the source, its environment, and the characteristics of the effluent composing the

plume itself. Many biologically important plumes, for instance the pheromone plume

emitted by a female moth seeking a mate, occupy short time scales and contain a

specific, passive tracer. Geophysical plumes, for instance the deep-sea hydrothermal

plumes that are the principal application area of this work, often occupy much larger

temporal and spatial scales, may include buoyancy effects, and usually contain a

variety of tracers rather than one specific chemical.

Potential robotic applications for chemical plume tracing are many and varied.

They include pollution and environmental monitoring, chemical plant safety, search

and rescue, anti-terrorism, narcotics control, and explosive ordinance removal includ-

ing demining, and hydrothermal vent prospecting as explored in this thesis. Potential

algorithmic solutions to the chemical plume tracing problem range from gradient as-

cent, to biologically inspired algorithms, to strategies that rely on building maps

to estimate source location, with some recent work also exploring multi-agent co-

operative approaches. In all cases, successful search requires an algorithm designed

to capitalize on the scales present in plume structure that carry information about

source location.

1.1.1 Examples from the Natural World: Moths, Starfish,

Lobsters and Crabs

Examples of olfactory-based localization of odor sources abound in the natural world.

Lobsters, crabs and moths in particular all have extensive literatures devoted to

describing the aspects of their behavior that result in the robust and efficient tracking

of odor sources that these animals routinely execute (for recent overviews, see [122,

126]).

Even in environments with comparatively high Reynolds numbers, dominated by

turbulent flow, sufficiently long time scales combined with a means to sense instan-

taneous gradient may make classical (mean-gradient) chemotaxis a viable strategy.

Given enough time, the average concentration of a turbulent plume does provide gra-

dient information as to the location of its source. This strategy may be the method by

which starfish find the plumes of altered water emitted by their bivalve prey [21,24].

The pheromone tracking ability of male moths of various species is well known (for
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an extremely condensed historical overview of the literature, see Ludlow [75]). The

environmental conditions in which male moths seek out females emitting pheromone

are characterized by wind-driven turbulent advection that produces a plume both

spatially and temporally variable on timescales relevant to those imposed by the

moth's flight. In this case, behavior tuned to advective timescales makes sense because

wind direction provides the most direct clue about source location relative to the

searcher.

The principal complication in tracking odor plumes at these scales is the in-

termittency of the pheromone signal caused by small-scale turbulence in the mean

flow [69,91,122,124]. Meso-scale eddies on the order of meters result in meandering

plumes [90] such that maintaining intermittent contact with the plume becomes a

critical component of the tracking strategies employed by moths [54]. Though there

is some debate as to the underlying mechanism, a plume-tracking moth's behavior

can be segmented generally into surging and casting [54]. In essence, male moths
"surge" upwind at some angle to the wind upon encountering pheromone above some

threshold concentration, but switch to cross-wind lateral excursions ("casting") af-

ter sufficient time without further stimulus. The result is a zigzagging pattern that

gradually progresses upwind toward the source. Both simulations and experiment

convincingly point to the utility of zigzagging across an odor plume as a strategy well

suited to maintaining intermittent contact with the plume [9,69,122]. This strategy is

known as odor-gated anemotaxis, since it relies on sensing wind direction, but seems

to require only binary chemical detection.

Relatively large and slow-moving aquatic creatures such as blue crabs and lobsters

likely use a combination of chemical cues and up-current motion (rheotaxis) to locate

odor sources emitted by carrion, prey, or other individuals [122,124]. Blue crabs and

lobsters forage in a turbulent boundary layer over the coastal and estuarine sea floor.

Chemical plumes in these habitats are thus turbulent themselves and, like atmospheric

odor plumes, consist of discrete propagating packets or filaments separated by non-

odor-laden fluid [34]. Due to the greater density of water, however, the relevant scales

of turbulence are about an order of magnitude smaller than in air [2]. Though lobsters

and crabs move more slowly than moths, mean flow velocities encountered in their

habitats are typically lower than in air, and they too must react to chemical stimulus

on the time scales associated with the small scale eddies that cause the intermittent
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nature of the chemical signal [41,122,124,138]. The influence of larger eddies, at scales

sufficient to cause the plume to meander, is relatively unexplored due to the limited

sizes of laboratory flumes [138], though it is likely that search behaviors exhibited by

crabs and lobsters must also be robust to occasional loss of intermittent contact with

the plume [124]. The relatively large size of these arthropods is important because it is

comparable to the typical near field widths of odor plumes found in their environment.

These animals are likely to have evolved to exploit the additional spatial information

available in the plume to improve the efficiency of their search [2,3,122], for instance

to remain closer to the centerline of the plume [125].

1.1.2 Robotic Plume Source Localization

Robotic approaches to chemical plume source localization can be classified into two

broad categories: (1) biomimetic strategies that seek to emulate the remarkable feats

of plume tracing in the animal and microbial worlds; (2) model-based strategies that

rely on analytical models for plume evolution to invert records of concentration and

flow measurements for source location. Multi-agent methods suited to either of these

strategies have also been proposed.

Biomimetic Approaches

Grasso [43] states, "Biomimetics operates on the premise that animal behavior serves

as an existence proof of a solution." Numerous authors have attempted to implement

on robots biomimetic solutions to the problem of tracing a chemical plume to its

source [18,32,43,52,62,92]. While many of these attempts proved successful in the

sense that the robot was able, at least some of the time, to locate the odor source,

the results have generally failed to match the performance of the creatures whose

behaviors researchers were seeking to emulate [41]. This is not altogether surprising

considering that the biological algorithms remain incompletely characterized (see the

preceding section), and that current olfactory sensor technology still does not rival

its natural counterpart [52].

Farrell et al. [29] report a successful plume tracing algorithm inspired by moths and

implemented on a REMUS AUV [1]. Their Chemical Plume Tracing (CPT) algorithm

consisted of six behaviors switched by chemical detection events and timeouts. The
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several versions of the RoboLobster [18,42,431 are an attempt to emulate the behavior

of chemical plume tracking lobsters, specifically to investigate the role that spatial

information available in the plume plays in the algorithm. As of 2002, live lobsters

easily outperformed the RoboLobster, but the work showed conclusively that spatial

information can improve the efficiency of biomimetic CPT.

Within the terrestrial robotics community, Kuwana et al. [60-63] and Nagasawa et

al. [92,93] circumvented the technological limitations imposed by the sensitivity and

response time of artificial olfactory sensors by attaching live antennae from a silkworm

moth Bombyx mori to a series of silkworm moth mimics called PheGMots (Pheromone

Guided Mobile Robots). Two European groups at the University of Tiibingen in

Germany [70-72,123] and Orebro University in Sweden [23,28] are working to design

robots ("electronic watchmen" [72]) capable of localizing chemical sources in indoor

environments without strong and persistent mean flows. Although not explicitly

biomimetic, the algorithms employed are either strictly reactive or driven by trained

neural networks.

Model-based Approaches

A different approach to robotic plume source localization pursued by some authors re-

quires estimating or assuming the parameters of some model of plume formation while

concurrently inverting that model for source location. Unlike biomimetic methods,

navigation with bounded uncertainty is requisite because some spatial representation

of acquired data must be maintained. Ultimately, the results are subject to how well

the model represents the environment. To my knowledge, all previously reported

results apply only to single source scenarios.

Ishida et al. [51] developed a terrestrial system that estimates the parameters

(including source location) of a time-averaged model of plume dispersal in a uniform

advective field. Their robot was able to successfully locate an ethanol source a few

meters away from its starting location in several minutes. The slow convergence time

and limited range are a consequence of the time required for average concentrations

in the actual plume to converge to those predicted by the model. Christopoulos

and Roumeliotis [15] describe an algorithm for optimally adapting robot trajectory

to estimate the parameters of an advection/diffusion model of plume evolution and

present simulation results.
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Farrell et al. [32] developed a plume mapping and source localization approach

based on hidden Markov methods to concurrently estimate the likelihood of odor

detection versus position, the likelihood of source location versus position, the most

likely path taken by the odor to a given location, and the path between two points

most likely to result in odor detection. This approach is suited to strongly advective

environments when the width of the plume is small relative to the search area.

Pang [101,102] has developed a Bayesian method for updating the probability that

discrete cells on a grid contain the source of a chemical plume. His algorithm relates to

the approach pursued here and is discussed in more detail in Ch. 2. Advances reported

in this work include: applicability to multiple-source domains, and applicability to a

class of sensor model rather than to a specific type of chemical plume.

Multi-Agent Approaches

Several authors have developed multi-agent plume source localization algorithms. The

basic idea is that search times can be reduced by sharing information across a dis-

tributed group of robots. "Biologically-inspired" methods [33,44] rely on each robot

to execute its own plume search algorithm with communication between agents used

to direct the swarm toward robots having the greatest success. Alternate methods

use robots as nodes in a distributed sensing network to estimate the parameters of a

plume model (including source location) [16] or to instantaneously compute spatial

gradients toward source location [136].

1.1.3 Hydrothermal Vent Prospecting

Although the plumes of altered water emitted by hydrothermal vents are often read-

ily detectable with standard in situ sensors to within kilometers of seafloor vent

sites [5-7], the physical characteristics of hydrothermal plumes make pinpointing

vent sites on the seafloor time-consuming and challenging. Ship-based conductivity;

temperature; depth (CTD) vertically oscillating tows or "tow-yos" are the primary

means of determining the presence of hydrothermal venting [6] with towed arrays of

temperature and optical backscatter probes also now widely employed [7]. One pass

along the axis of a mid-ocean ridge is generally sufficient to detect the presence of

large-scale (100 + MW) venting and localize its source to within a few kilometers,
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perhaps less if high resolution bathymetry of the search area is available. Following

initial detection, further CTD tows may be conducted to map the plume and infer

the source location. This process is made challenging by the fact that the plume is

changing significantly on scales of a few hours due to tidal currents, and concurrently

represents the integrated output of several tidal cycles worth of discharge (Fig. 4-2).

At some point, near-bottom assets must be deployed. The degree to which the area is

constrained, over which near-bottom assets requiring surface supervision must search

before locating the vent field, significantly impacts the scientific return of the cruise.

This is particularly true when the assets available require dedicated use of the

ship from which they are deployed. Towed, tethered, and occupied assets all require

the attention of a dedicated ship; however, towed assets remain indispensable for

establishing initial contact with a hydrothermal plume, and tethered or occupied

vehicles remain the only option for tasks involving sampling, detailed inspection, and

manipulation of objects or instruments on the seafloor. The intermediate task, that of

localizing and initial characterization of a hydrothermal source once within the plume,

is one to which AUVs are uniquely suited and for which we have had considerable

success [39,65]. This portion of the localization process is essentially one of mapping

the plume, with multiple sensing modalities each offering their own insight into a

plume's probable source.

Several approaches to chemical source localization specific to hydrothermal plumes

have been proposed. Veirs et al. [121] propose a method whereby CTD-based detec-

tions of density inversions are back-propagated to their probable sources using records

of current velocity between the time of detection and a time in the past based on the

theoretical maximum equilibration time of hydrothermal plumes. This method suc-

cessfully identified the locations of several known vent fields and suggested locations

that might contain undiscovered sites. Lavelle et al. [67] describe an inverse calcu-

lation whereby temperature and current velocity records from a stationary mooring

were inverted for source locations and associated buoyancy flux on a discrete grid. A

so-called "puff" model of plume dispersal, along with a four day record of currents

and temperature were sufficient to resolve locations for all known sources in the re-

gion. Finally, Burian et al. [11] describe several gradient ascent methods specifically

intended for implementation on an AUV and robust to local concentration maxima.
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1.2 Approach

This thesis develops tools to enable chemical plume source localization via the au-

tonomous execution of nested surveys. The essential characteristics of a nested survey

are that each successive stage be smaller in extent and provide higher resolution in-

formation about the feature of interest than the previous stage, thereby enabling the

surveying vehicle to "home-in" on the target(s). Nested surveys are a conceptually

intuitive methodology for locating small features in a large environment when those

features have manifestations in the environment larger than themselves (e.g. the

plume emitted by a chemical source). Figure 1-1 summarizes the components of ap-

proach and Figure 4-4 shows an example of a set of nested AUV surveys employed to

localize the source vent field of a hydrothermal plume. Higher resolution data associ-

ated with source location was attained on each successive survey by both descending

in the water column toward the seafloor and by tightening trackline spacing.

A strategy based on nested surveys is just one of many search methods poten-

tially applicable to the chemical plume source localization problem. Figure 1-2 places

the nested survey approach in context with the alternate strategies discussed in the

preceding section. All fall into one of two broad groups differentiated by the strength

of the coupling between vehicle trajectory and sensory input. Strategies with weak

coupling (map-based) rely on abstracted representations of sensor data in terms of

probable source location to adapt vehicle trajectory, and often only after long periods

of no adaptation. Strategies with strong coupling (behavior-based or reactive) modu-

late vehicle motion directly in response to sensor input, usually over short timescales.

Among the map-based strategies, nested surveys are intermediate between completely

preplanned surveys with no data-driven component and fully adaptive trajectory gen-

eration wherein trajectory is continuously modulated.

1.2.1 Nested Surveys for Chemical Plume Source Localiza-

tion

I chose to pursue automation of a nested survey approach to chemical plume source

localization in this work for the following reasons:

* applicability to multi-source domains;
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Figure 1-1: The nested survey approach to chemical plume source localization.
Sources release plumes into the environment which are mapped through a surveying
vehicle's sensors and its trajectory onto a timeseries of measured concentration. Pro-
cessing yields a map of the plumes themselves which should emphasize scales that
contain information about source location. Further processing yields a map of probable
source locations and of locations unlikely to contain sources. This information drives
the design of the subsequent survey stage and the process repeats. With the comple-
tion of each successive high-resolution survey, uncertainty in source locations should
diminish, culminating in groundtruthed source locations.
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* guaranteed coverage of the prescribed survey area;

* robustness to low-value targets and false alarms;

* compatibility with existing AUV operating paradigms;

9 the demonstrated success of nested surveys for AUV-based hydrothernial vent
prospecting when directed by humans [39, 64, 65].

The first three bullets above are related. When multiple chemical sources might b,

present in the survey domain, it is often important to find them all. For example. a

navy may wish to be confident a harbor is completely free of mines. Tight coupling

of vehicle trajectory generation to sensory input provides little guidamce on how to

proceed once a single miine has been foind. It is difficult in such contexts to ascertain

what portion of the environment has in fact been searched.

In contrast, complete, pre-specified surveys guarantee a certain degree of coverage

that can be computed ahead of time. When multiple sources might be present.

the map produced from a completed survey enables the probable munber of sources

present to be assessed and will guide selection of the portions of the search domain
that are likely to contain the highest value targets. This approach permits the vehicle

to focus on the most interesting aspects of time data, rather than relying on careful

design of a threshold to trigger pursuit of all potentially interesting features as they are

encountered [12]. For the problemn of detecting and locating persistent hydrothermal

vents on the seafloor, nested surveys may require the vehicle to cover imore ground

than a triggered approach would. However, the vehicle is less likely to spend time

exploring false alarms or low-value targets.

Time last bullet refers to the fact that typical AUV operations involve flying regular

tracklines in a grid pattern so as to uniformly sample a prescribed area. While regular

tracklines may not be necessary for plume survey in general, they are necessary. for

instance, when collecting acoustic bathymetry or optical immagery for t)hotolmosaicking.

Nested surveys do not require alteration of vehicle trajectory, meaning these other

aspects of a survey can continue unimpeded, perhaps dictating soime aspect of the

nested surveys themiselves.
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Successful execution of a nested survey strategy relies on the creation of maps

at each stage of the survey to guide the design of the follow-on stage. The key

survey design elements that must be drawn from each map are good choices for the

location and extent of the subsequent survey stage. Survey resolution might also be

guided by the map or alternately fixed by the known characteristics of the feature of

interest or by constraints imposed by other sensing modalities. A rudimentary map

might simply comprise the locations at which the plume was detected, and perhaps

the concentrations of those detections (which may or may not contain significant

information about source location depending on the nature of the plume). Of more

direct utility are maps that encapsulate the likely locations of the sources themselves.

That requires processing raw sensor data through a model of plume evolution, that

is, inversion of the plume for source location.

As the relationship between plume location and concentration is inherently uncer-

tain, I conjecture that constructing maps of source locations that include an assess-

ment of the uncertainty in these locations will facilitate autonomous survey design.

Such an approach falls within the rubric of probabilistic robotics, the central goal of

which is to represent information in the form of probability densities [115,1181. Maps

that are suitable for autonomous interpretation in terms of follow-on stage design

must offer clear indications of high-value regions and the survey extent required to

cover them. The probabilistic map-making methodology pursued in this thesis is

known in the robotics literature as occupancy grid (OG) mapping.

1.2.2 Occupancy Grid Mapping and its Application to Chem-

ical Plume Source Localization

OG maps discretize the environment into a collection of cells arranged in a regular

pattern wherein each cell has a binary state, either occupied or empty. OG mapping

algorithms then generate estimates of the posterior probabilities of occupancy and

emptiness of each grid cell. Most occupancy grid update rules recursively incorporate

new measurements thereby enabling real time operation. A recursive update rule is

not strictly necessary for a survey strategy that calls for completion of predetermined

survey patterns prior to map analysis. Nevertheless, this property remains attractive

because it broadens applicability to hybrid strategies that might not require comple-
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tion of a full survey stage before adapting vehicle trajectory.

OG mapping was originally developed at the Carnegie-Mellon University Mobile

Robot Laboratory as a means of incorporating imprecise information about the range

from a mobile robot to nearby obstacles acquired from low-cost wide-angle sonar range

finders into a detailed map of empty and occupied space [25,85,87].2 The same repre-

sentation is adaptable to chemical plume source localization by redefining occupancy
to indicate a cell contains an active chemical plume source rather than indicating the

presence of an obstacle in the cell. Occupancy grid mapping has traditionally been

restricted to the mapping of static environments, though recent extensions [130,131]

are alleviating this restriction. Though chemical plumes are dynamic phenomena,

a static OG representation suffices if the static locations of immobile sources are
sought, rather than the variable locations of their emitted plumes. Scalar observa-

tions of plume presence and absence take the place of range measurements in the
typical application, with absence providing constraints on where sources are unlikely

to lie.

There are two aspects of the OG representation that make it particularly suited

to chemical plume source localization. First, because an occupancy grid map ex-

plicitly represents empty space with a degree of confidence, the map can be used to

assess not only probable source locations but also whether a survey area has been

adequately searched, thereby providing guidance on the extent of follow-on survey

stages. Second, since occupancy grid maps are not maps of feature locations, they

do not require the additional overhead of reliably identifying recognizable features

and then differentiating between individual features. This property is important for

multiple source scenarios, where the number of sources cannot be known a priori.

1.3 Contributions

This dissertation contains contributions on three fronts: (1) occupancy grid mapping;
(2) general chemical plume source localization; and (3) hydrothermal vent prospect-

ing. The following lists the specific contributions in each category.
2These references predate use of the term "occupancy grid" in the published literature. Instead,

these earlier references refer variously to "occupancy maps," and "certainty grids." The latter reflects
the realization that other types of information besides just occupancy can be represented [79]. The
term "Occupancy Grid" appears to have been coined by Elfes [26] in the title of his doctoral thesis.
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Occupancy Grid Mapping

"* The application of occupancy grid mapping to a novel arena-multi-source chem-

ical plume source mapping.

"* An articulation of the problems associated with the application of standard

Bayesian occupancy grid mapping to environments with few expected occupied

cells (low prior probability of occupancy) and stemming from a key indepen-

dence assumption required by the standard algorithm.

"* An exact solution for the state of an occupancy grid when measurements con-

sist of binary detections and non-detections generated by a particular form of

forward sensor model.

"* A family of novel approximate algorithms applicable to low prior environments

based on this exact formulation.

Chemical Plume Source Localization

"* An abstracted forward model for binary chemical plume detection that encapsu-

lates the role of multiple sources without reference to the physics of a particular

type of plume.

"* A plume source location mapping method suitable for use in multi-source envi-

ronments.

Hydrothermal Vent Prospecting

* A procedure for automatic classification of hydrographic data into the back-

ground water and the two main components of a hydrothermal plume-the buoy-

ant and non-buoyant plume-and its application to field data.
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"* An algorithm for the generation of occupancy grid maps of the seafloor showing

locations likely to contain hydrothermal vents and also regions unlikely to con-

tain vents. These maps are shown to be suitable for the automation of nested

surveys in support of autonomous hydrothermal vent prospecting.

"* A simple model for buoyant hydrothermal plume evolution suitable for use with

occupancy grid mapping methods.

"* An evaluation of the utility of measuring crossflow velocity on a surveying AUV

for constraining the source locations of encountered buoyant plumes.

1.4 Document Structure

This dissertation is divided into two parts intended to separate the more broadly ap-

plicable theoretical contributions of this thesis from the specific application of those

methods to AUV-based hydrothermal vent prospecting. This chapter provided an

introduction to the problem of chemical plume tracing and specifically its applica-

tion to hydrothermal vent prospecting. Chapter 6 ties the specific contributions of

this thesis back into this wider context and suggests productive avenues for further

research. The following provides an overview of the intervening chapters.

Readers interested only in the application of AUVs to hydrothermal vent prospect-

ing can begin at Part II, but should familiarize themselves with occupancy grid map-

ping (Ch. 2, § 2.1) before reading Ch. 5.

Part I: Bayesian Occupancy Grid Mapping with Binary Measurements in

Environments with Few Occupied Cells

Chapter 2: Exact Occupancy Grid Mapping for Binary Measurements

This chapter explores the application of occupancy grid mapping to the chemical

plume source localization problem, and more generally to environments with few

expected occupied cells (low prior probabilities of occupancy). I begin by develop-

ing a generic forward model for binary detection of chemical effluent from multiple
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sources. Initially I had expected to be able to then apply standard occupancy grid

mapping methods without modification. This chapter reveals why a key indepen-

dence assumption required by the standard algorithm fails to produce accurate maps

in this application. However, special properties inherent in the forward model allow

for existence of an exact solution computable under certain conditions. In particu-

lar, it is shown that non-detections can be incorporated into an occupancy grid map

recursively, and without approximation.

Chapter 3: Approximate Algorithms for Low Prior Environments The

exact occupancy grid mapping algorithm introduced in Ch. 2 incurs linear cost in map

size, the penalty for which is exponential cost in the number of detections registered

by the sensor. This exponential scaling renders the exact formulation impracticable.

Its utility derives instead from providing the foundation for several novel approximate

algorithms introduced in this chapter. Two families of algorithms are developed and

their performance studied in simulation relative to the exact algorithm and to other

metrics of performance.

Part II: Automated Nested Survey for Hydrothermal Vent Localization

Chapter 4: Hydrothermal Plume Survey by Autonomous Underwater Ve-

hicle This chapter introduces hydrothermal plumes as perceived by a surveying

AUV. I explore the hydrographic data obtained by the ABE AUV during several re-

cent hydrothermal plume prospecting expeditions in order to develop methods for the

automated detection of hydrothermal effluent, and to develop constraints on seafloor

vent location from the locations of those detections above the seafloor along with

measurements of ambient crossflows. The modeling efforts in this chapter form the

foundation for the application of occupancy grid methods to the same data in Ch. 5.

Chapter 5: Buoyant Hydrothermal Plume Source Localization via Nested

Survey This chapter shows how the occupancy grid mapping methods developed in

Part I can be applied to mapping the probable locations of hydrothermal vents on the

seafloor. These maps are readily machine-interpretable in terms of the parameters

of each survey stage within a nested survey. These automatically generated survey
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trajectories are found to compare favorably to the actual human-generated surveys

planned in the field.
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Bayesian Occupancy Grid Mapping

with Binary Measurements in

Environments with Few Occupied

Cells
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Chapter 2

Exact Occupancy Grid Mapping

for Binary Measurements

This chapter presents the derivation of an exact occupancy grid mapping algorithm

under the dual restrictions that

e the mapping sensor report only binary detections and non-detections,

e and that the sensor can be modeled with a particular invertible form of forward

model to be introduced.

Nominally the computational cost of exactly computing the marginal posteriors would

scale exponentially with map size and is consequently unfeasible [118]. This chapter

reports an exact algorithm with linear cost in map size, the penalty for which is

exponential cost in the number of detections registered by the sensor. While the

number of detections expected in an environment with few occupied cells may be

quite modest, this exponential scaling renders the algorithm ultimately impracticable.

Its utility derives instead from the insights it offers into the nature of occupancy grid

mapping in a low-prior environment and by providing the foundation for the several

novel approximate algorithms that form the subject of the next chapter.

Though the application pursued in this thesis is underwater chemical plume trac-

ing, the insights offered into OG mapping are more general, having broader relevance

particularly in sparsely occupied environments. If observations are limited to scalar

measurements of a chemical tracer, atmospheric plume tracing is an obvious appli-

cation arena; however, the methodology developed in this and the next chapter is
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more broadly applicable to any static mapping problem wherein measurements can

be distilled to binary detections and non-detections. The archetypal application of

indoor mapping with sonar range-finders can be formulated in these terms; though

additional work remains to determine whether the methods developed herein offer any

advantages over traditional methods. Robotic mapping efforts in sparsely occupied

environments should benefit directly. Such environments are usually the purview of

feature-based methodologies; however, a map of feature locations includes no intrinsic

mechanism to represent confidently unoccupied space, meaning OG methods could

play a complementary role in combined mapping/exploration missions.

This chapter begins with a presentation of the classical Bayesian formulation of

the OG mapping algorithm [85], the formulation studied and extended in this and

the next chapter. The key assumptions required are described along with a review of
the literature devoted to exploring the consequences of these assumptions and their

circumvention. The validity of these assumptions is then assessed in the context of

the localization of chemical plume sources. This analysis provides the motivations for

the extensions to the standard Bayesian approach developed next. For the sake of

readability, only key results appear in the main text. Detailed derivations have been

relegated to App. B.

2.1 Background: Occupancy Grids

Probabilistic mapping algorithms strive to estimate the posterior probability dis-

tribution over the space of all maps m given the set of all measurements Z t =
{zt, t-,.... ,Z1 } made of the environment: p (m I Zt ) [117]. Since the real world

is continuous, the space of all maps is infinite dimensional and this problem is in

general intractable. OG mapping algorithms rely on a discretization of the world

into a regular grid of cells, each of which is represented by a binary random variable

pc E {0, 1} indicating respectively emptiness or occupancy of that cell. The space of

all maps is now finite with a dimensionality of 2C, where C denotes the number of

grid cells that make up the map. Nevertheless, computing the posterior probabilities

for all possible 2C maps is a formidable problem for typical OG maps with thousands

to millions of grid cells.

To circumvent this issue, OG methods decompose this high-dimensional problem
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into a collection of independent, one-dimensional estimation problems, wherein the

state of each cell is estimated independently of the states of the remaining cells in

the map. Methods based on Bayesian inference [26,27,85], Dempster-Shafer evidence

theory [100], Fuzzy set theory [98,99], and various ad hoc rules, particularly in the

early literature, exist to update estimates of the state of each cell in the grid as

new measurements arrive.1 The key concession common to all these methods is

the inability to represent dependencies between the states of multiple cells. These

dependencies arise because sensors typically observe more than a single grid cell

during each measurement [117].

2.1.1 Bayesian OG Mapping

This work is concerned with application and extension of the Bayesian method exclu-

sively. The Bayesian approach seeks to estimate the marginal posterior probability

densities p (p, I Zt) for all cells c given prior probability densities p (jc)- Since these

densities all correspond to binary random variables, they are equivalently determined

by the knowledge of the posterior probability of occupancy P [m, I Zt] or of empti-

ness P [Inn I Zt] = 1- P [mc I Zt], where m, and rin, denote l1e = land , = 0

respectively.

A simple recursive update rule for these posteriors is attained if we regard estimat-

ing the states of all cells as a collection of independent binary estimation problems.

Begin by applying Bayes Rule to the marginal posterior:

P [m, I Zt] P [mc I zt, Zt-l]

P [z' Z t-, mc] P [m I Zt-1] (2.1)

P [zI I zt-1]

To proceed, a critical assumption is required:

p (ztI zt-l, 1) = p (zt ' (2.2)

Eq. (2.2) states that the current measurement is conditionally independent of all pre-

vious measurements given knowledge of the state of the single cell c. Sensors that

1 Ribo and Pinz [106] provide an insightful comparison of three modern map update rules in a
typical office environment.
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simultaneously measure the state of multiple grid cells violate this assumption [1171.

A sensor that scans multiple cells to generate a single scalar measurement z' implies

that information about the states of grid cells other than the one being updated could

help to predict the outcome of the measurement z'. There must be information about

the state of the grid in Z'-1 or else there would be no point in having made these

measurements. As a result, Z`- contains information about the probable outcome of

zt not subsumed by knowledge of y, and conditional independence cannot hold. The

ramifications of this particular assumption are many and I will refer to it throughout

this work. I will use the acronym CIM to denote Conditional Independence of Mea-

surements, leaving implicit that the conditioning required is the state of single cell

being updated.

Accepting the CIM assumption for the moment, (2.1) becomes

P [mc I Z']=_ 1 -p [z' I mc] p [mc Z'_']
P [me, It t1 ] 2 3P p121 p [me 12 zqp [m, IZ'-1] .3

P [zt IZt-1] P [Ml]

where the second line follows from the reapplication of Bayes Rule to the second term.

An analogous procedure leads to the posterior probability of emptiness:

P [zt ] P [r7n, I zt] p [77e I Zt-1] (2.4)P [r IZt] =P [zt Zt-1] P [[n(]

The lead terms cancel upon constructing the so-called odds ratio rt A P [me I Zt]/P [rci Zt]:

t P [me I zt] 1 - Pim,] t-1 (2.5)rC I - P [m, I zt] P [mc] "r ,

where we have made use of the binary nature of p, to replace all probabilities of

emptiness with one minus the corresponding probability of occupancy.

The form of (2.5) is intuitively appealing. Cells whose occupancy is strongly sug-

gested by the current measurement (P [m, I zt ] z 1) have their odds of being occupied

raised. Analogously, cells whose vacancy is supported by the current measurement

(P [m, I ztj - 0) have their odds of being occupied lowered. In each case, the result
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includes weighting by the prior odds and the previous estimate of the odds ratio.

Though intuitively satisfying and computationally attractive (recursive), (2.5) relies

on the fallacy that measurements represent independent observations of individual

cells.

Relationship to Joint Posterior

The true relationship between each single-cell marginal posterior and the joint poste-

rior over the whole map is attained by marginalizing over all maps {m: me} wherein

cell c is occupied:

P[meIZ t]= Z P[m I Zt  . (2.6)

A low marginal posterior implies the maps with that cell occupied are unlikely given

the data, and conversely, a high marginal posterior implies a cell that is occupied

in likely maps. This fact accounts for the utility of the occupancy grid representa-

tion; however, the algorithm specified by (2.5) does not compute the true marginal

posteriors due to the CIM assumption.2

Recall that the updating algorithm decomposes the problem of estimating the joint

posterior into a collection of one-dimensional problems. At best, the joint posterior

could be approximated by assuming that the posterior probabilities computed this

way represent the true marginal posteriors and furthermore that these marginals are

independent:
C

p(m Zt) = p((cA.Z! ) . (2.7)
C=l

Note that (2.7) requires the prior probabilities of occupancy for each cell be indepen-

dent in order to hold in the base case (Zt = 0):

p (m)= J p(/s) . (2.8)
SE{1 ,...,.c}

This assumption along with CIM leads directly to (2.7) since independence of the

marginal priors will not be broken by a sensor that observes single cells individually

(the only type that satisfies CIM). However, the converse, that independence of the
2 1n fact, it will be shown that the algorithm specified by (2.5) serendipitously produces the true

marginal posteriors when conditioned exclusively on non-detections (§ 2.4).
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marginal posteriors implies CIM, is false. I show in § 2.3.2 that for a certain form

of binary sensor model to be introduced subsequently, the standard update rule (2.5)

applied exclusively to non-detections correctly computes the marginal posteriors, and

furthermore these marginal posteriors satisfy (2.7). Under those special conditions,

(2.5) can be derived without requiring CIM. Indeed, it will be shown that the CIM

assumption remains false. By contradiction, (2.7) does not, therefore, imply CIM.

"Static World" Assumption

Though not strictly required to derive (2.5), a common additional assumption in

made occupancy grid mapping is that the world is static [1171:

p (z' Z'-,m) = p (z' I m) . (2.9)

This assumption states that measurements carry no information about one another

not subsumed by knowledge of the entire static map. It is necessary for the CIM

assumption (2.2) to hold and is much weaker. Recent research [131] is alleviating this

restriction; however, the methods developed in this work all require (2.9) to hold.

Moving objects, by definition not part of the static map, violate this assumption

because observations of such objects are generally useful to predict the outcome of

future observations. To illustrate the point, consider two subsequent detections of

a chemical plume in ambient flow at two different locations. Moving the sensor

upwind (against the wind) from the first detection location will present the sensor with

unsampled fluid and therefore the outcome of the previous measurement is irrelevant

to the present measurement except insomuch as it contains information about the

plume's source. Of course, the conditioning on knowledge of the entire map of source

locations subsumes this information. On the other hand, motion downwind (with

the wind) would tend to sample the same water thereby ensuring correlation of the

previous and present measurements, thereby violating (2.9).
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2.1.2 Map Artifacts

Several authors working with sonar range-finder data have noted artifacts in OG

caused by violating the CIM assumption and have proposed solutions.' Moravec and

Cho [86] (see also [74]) propose a method wherein new range data is interpreted rela-

tive to current state of the map, termed the "context-sensitive" approach. Berler and

Shimony [10] propose constructing a Bayes network to represent the dependencies be-

tween dynamically defined regions created by the overlap of successive measurements.

In their work, the grid representation is used only to visualize the result, since rather

than estimating the probability of cell occupancy, they estimate the probability that

an obstacle exists somewhere within each region. Konolige [58] developed a significant

extension to the occupancy grid framework called MURIEL (MUltiple Representa-

tion, Independent Evidence Log) which keeps track of robot poses that have observed

each cell so as to ignore highly correlated measurements of a cell from similar poses

rather than treating them as independent. MURIEL also uses the observations of a

cell to update the probability that some readings were due to specular reflections.

In more recent work, Thrun [117] gives a particularly insightful discussion of the

manifestations of the CIM assumption in typical OG maps. He shows that indepen-

dently estimating the states of individual grid cells means that apparently conflicting

data about the occupancy of individual grid cells will get averaged together into in-

termediate values despite the existence of map configurations that could explain the

data without conflict. These conflicts are manifest around doorways and other fea-

tures whose openings are wide enough for sonar beams from some vantage points to

pass through, but obscure others. He demonstrates a batch processing method that

3Much of the work specific to indoor environments revolves around limiting the propensity of
specular reflections to declare large portions of the map as unoccupied. This tends to occur when cells

are updated independently because information in previous measurements about the rest of the map
cannot be used to assess the possibility that the present measurement represents a spurious range
reading [10]. Specular reflections refer to the coherent reflection of impinging waves on a surface.

Specular reflections occur when surfaces are smooth on the scale of the wavelength. Multipath
returns occur when a signal reflects specularly off multiple surfaces before returning to the receiver.
As a result the receiver reports an erroneously long range. When surfaces are sufficiently flat
to produce specular reflections, multipath returns become increasingly likely at steep angles of

incidence, however, specular returns with favorable geometry usually result in a strong return and a
correct reading [68]. Thus, while specular reflections can cause multipath returns, specular reflections
are not synonymous with multipath returns; however, some of the occupancy grid mapping literature
uses these terms interchangeably.
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utilizes expectation maximization (EM) to search the space of complete maps for maps

that maximize the likelihood of all measurements. The method has the disadvantage

that it is not recursive and consequently more computationally intensive.

Additional discussion of these works appears in the conclusion to this chapter

where I discuss the possible applicability of the methods developed subsequently to

indoor environments.

2.1.3 Low Prior Environments

In contrast to indoor sonar mapping, the dominant aspect of a Bayesian OG mapping

approach applied to the problem of chemical plume source localization is the low

prior with which the grid must be initialized. The Bayesian prior encodes belief in

the likelihood of occupied cells before any measurements have been made. Typical

occupancy grid mapping applications assume a prior probability of occupancy of

P [m,] E [0.2,0.5], in effect assuming somwhere near one half of the environment is

expected to be occupied by obstacles [117]. In Part II of this thesis, the OG mapping

framework is applied to example data sets from hydrothermal sites in the deep sea on

grids with 0 (10') cells, typically only a few of which contain active vents. Depending

on grid cell size, priors of P [me] E [10-5, 10-2] are appropriate in such settings.

Unfortunately, the adverse effects of the CIM assumption tend to be exacerbated

in a low prior environment. To see why this might be the case, consider the scenario

depicted in Fig. 2-1 in which two successive detections of a chemical plume are reg-

istered by a robot. The first detection supports the presence of at least one source

within the upwind cone denoted C1. Considered independently, the second detection

supports the presence of at least one source within the upwind code denoted C2 .

Considered together, several possibilities emerge, two of which are shown schemati-

cally in Fig. 2-2. Clearly a very likely possibility is that there is a source within the

intersection denoted C1 n C2. Without a source in C, n C2 at least two sources are

required to account for both detections, one each in the portions of C1 and C2 not

part of their intersection. A small number of expected sources strongly favors the

possibility that minimizes the number of sources required to explain the data, so the

first explanation is probably correct.

Now consider the same scenario in the context of updating the marginal posteriors
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-c, n C2

C2

current

Figure 2-1: Schematic depiction of two detections of a chemical plume made by an
AUV showing the upwind regions in which the source or sources of the detected chemical
are likely to lie. The current is setting to the right.

(a) (b)

current

Figure 2-2: Candidate explanations for two plume detections made by a surveying
AUV: (a) one source, vehicle relatively far downwind; (b) two sources, vehicle relative
close to both.

within an OG map subject to the CIM assumption. Cells that fall within C, will have

their posteriors increased following the first detection, as will cells that fall within

C2 following the second. Consequently, the posteriors of cells within the intersection

C1 f C2 will have increased twice. This is consistent with the notion that maps having

a source within the intersection C1 f C2 are now more likely.4 However, the attendant
4 1n fact, the posteriors within the intersection C, n C 2 will have increase too much. Because the
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effect that maps having occupied cells within the portions of C1 and C2 not part of the

intersection are now less likely than after either detection considered alone 5 cannot

be captured by an algorithm that estimates of the state of each cell independently,

by ignoring the information present in previous measurements about the rest of the

map. There is no mechanism in such an algorithm to seek maps consistent with

all measurements, and consequently no mechanism to ensure the marginal posteriors

reflect the likelihood of occupancy across all maps. This is true regardless of the

prior probability of occupancy in each cell; however, a low prior exacerbates the

errors incurred because maps with few numbers of occupied cells should be strongly

favored.

I emphasize that all OG methods, whether Bayesian or otherwise, will fail to

produce exact results in the scenario depicted by Fig. 2-1. This is because all OG

methods estimate the state of each cell independently, interpreting each measurement

without regard to explanations for that measurement external to the specific cell being

updated. An environment with few occupied cells exacerbates the ramifications of

this property.

Previous Work

To my knowledge, no previous work directly addresses the consequences of the CIM

assumption in Bayesian OG maps initialized with a low prior. Though distinct from

OG methods, Pang [101] includes the description of a Bayesian methodology in his

doctoral thesis for learning the state of a binary random field of possible locations

for a single source from binary detections and non-detections of chemical effluent

along with a record of advective currents. His method is developed specifically for

short time-scale plumes amenable to modelling [8, 30] as a collections of indepen-

dently diffusing "filaments" executing biased random walks due to turbulent motions

with superimposed advection. The key probabilistic quantity attained from this per-

spective on plume evolution is, in the notation of [101], Sij(tl, tk) which denotes the

detections overlap, they are correlated. Though both detections support the presence of a cell in the
intersection C1 n C2, they are not independent observations, and the sum total of their information
content is less than if they were.

5 Because a source in the intersection C, n C2 explains both detections, the measurements carry
correspondingly less information about the remaining portions of C, and C2 then when considered
independently.
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probability that a source in cell i released a single chemical filament at time t, given

that the filament was present in cell j at time tk. For cells i that lie far from an up-

wind trajectory terminating at cell j, Sii(t1 , tk) --* 0. Because only a single source is

assumed, the goal of his method is distinct from that of OG mapping which seeks the

marginal posterior probabilities of occupancy without constraining the total num-

ber of occupied cells, nevertheless, his grid-based representation of possible source

locations provided some of the early inspiration for pursuing OG methods, and his

modelling efforts are amenable to incorporation into the OG framework developed

later in this chapter.

Pang's assumption of a single source in the search domain provides a powerful

constraint. This constraint ultimately leads to an update rule for a continuously

releasing source that enables cells in portions of the grid not actually observed at a

given time to nevertheless have their posteriors updated. Consider that the detection

of plume effluent at one location means all potential source locations not upwind of

the detection are unlikely to contain the source. Therefore, the assumption of a single

source has enabled information about all cells in the map to be gleaned from a single

measurement, regardless of which cells lie upwind of the measurement location. A

similar argument applies to measurements where no effluent is observed. Simulation

results presented in [101] demonstrate the applicability of the method to single-source

scenarios; however, its extension to multiple-source scenarios is not straightforward

because key probabilistic quantities are formulated assuming the existence of only a

single source. Appendix E contains a thorough analysis.

The remaining sections of this chapter are devoted to an exact formulation of the

marginal posteriors for a specific form of sensor model. In the next chapter, we turn

to novel approximate algorithms that relax or eliminate the CIM assumption in favor

of alternate assumptions.

2.2 Forward and Inverse Sensor Models

The work herein is applicable to a particular form of invertible forward sensor model.

Forward sensor models are distinct from the typical inverse modelling required to

interpret sensor measurements in standard occupancy grid mapping. To paraphrase

Thrun [117]:
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Forward models predict measurements made from within a known map, that is,

they model the physics of the sensor. A probabilistic forward model has the

form p (zt I m). This probability density function specifies a distribution over

measurements z' given a map m.

Inverse models attempt to reason from a sensor measurement to its causes within an

unknown map. The form of probabilistic inverse model required by standard

occupancy grid mapping methods is p (p, I zt), which specifies the marginal

probability of occupancy (p, = m,) and emptiness (pc = th,) for a single cell c

given the measurement z'.

Because forward models attempt to capture the the physics of the sensor they are

arguably more natural. Arbitrarily complex physical phenomena may be included,

hence they are also potentially more accurate.

In principle, Bayes Rule applied to any forward sensor model will generate a

corresponding inverse model p (m zt). The inverse model required by the standard

OG algorithm could then be attained by marginalization over all maps:

Er Z I M) m(M
p [mc IP(zt ]m)pm) (2.10)P~me] zt =E p (zt I n) p (n) (.0

m

Marginalization is a form of averaging. The marginal inverse model P [m, I zt] is the

normalized sum of the probabilities of all maps in which cell c is occupied. The large

space of all maps (2C) renders such marginalization by direct summation intractable

for most models [118]; however, the form of binary forward sensor model introduced

next admits the analytical evaluation of these sums.

2.3 An Invertible Forward Model for Binary Mea-

surements

Let 6' E {0, 1} denote a binary-valued random measurement at time t, with zt reserved

for generic measurements. Further, let dt denote the event of a detection (it = 1)

and ct the event of a non-detection (it = 0). The two probabilities P [dt I m] and
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P [of I m] = 1-P [dt I m] then completely specify a forward sensor model. The work

described herein is applicable to a restricted class of binary forward sensor models

that satisfy

P[d' I m] = 1 --(1- Pp,) 1(1- I- ) (2.11)
sES

where

I, P [Suficient signal fromn occupied cell c arrives to trigger a detection at tuie t.]

t, P [A false alarm occurs at time t.]

S {s: in .s E {1,....C}} the set of occupied cell indices in m.

The subscripts s and c both denote cell index, with s used within products and c

externally. False alarms are independent of legitimate detections so that

P[i 0: ] =(1- ) (2.12)
p [ s ] = (1 - FI') (1 -

In words, the first relation above states that the probability of a non-detection given

an empty mnap is equal to the probability that no false alarmi occurred. The second

states that the probability of a non-detection given a map with only a single occupied

cell is equal to the probability that a false alarm did not occur and that the single

occupied( cell did hot present sufficient signal to the detector to trigger a detection.

If all occupied cells of a map have independent probabilities of triggering a detec-

tion. then it follows that

P [d' m] =(1 - (I) IJ(1 - Pt) (2.13)
sES

Eq. (2.11) then follows trivially. Eq. (2.13) states that the probability of a non-

detection is the probability that no false alarm occured times the probabilities that

no occupied cell presented sufficient signal to the detector to trigger a detection.

This model admits the possibility that multiple cells could simultaneously present

sufficient signal to the detector to cause a detection; however it disallows occupied cells

from reinforcing one another's signals to trigger a detection when the signal present

at the detector from each individual occupied cell is insufficient on its own. This
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Figure 2-3: Schematic representation of a sonar range-finder reading decomnposed
into a binary detection and non-detection. Instead of retiurning a single range after
each ping. the inodel decomposes each ping into two measurements: a uoii-(letectioii
that observes cells in a sector with a radiius less than the would be reported range,
and a detection that observes cells in an arc centered at the reported range. Similar
decompositions have been emnployed by others [10]. Occupied cells are outlined in black.
The non-detection region is highlighted in blue, the detection region in red.

restriction makes it impossible to infer the number of occupied cells in al observation

region following a detection, except that at least one must be occupied. or else a false

alarm occurred. I discuss this property in detail in the next section.

That said, there is considerable freedom in specifying the TI and consequently.

the form of (2.11) is less restrictive than might initially seem. For instance. Fig. 2-3

shows a simple model of a sonar range-finder (like those for which OG mapping was

originally developed) that satisfies this form of forward model. Instead of using the

reported range directly, the range measurement is decomposed into two measurements

from fictitious binary sensors. The first observes cells within a cone shorter than the

reported range and registers a non-detection; the second observes a rind of cells

centered about the reported range and registers a detection. Part II of this thesis

develops several models fir chemical plume detection also of the same form. Those

rilodels rely on vehicle navigation and measurements of background adwvective flow ini

addition to chemical detection to generate the P11.

2.3.1 Inversion and Marginalization

The forim of (2.11) is special because it is possible to compute the marginal inverse

probabilities P [17, Idt] and P [rm, d] exactly. Using (2.10) with z" E {d'. 1 } J`Iand

56



substitutions (2.11) and (2.13) for P [dt I m] and P [do m] respectively, leads by

iterative evaluation of the sums to

C

1-(1 - PP)(1 - PF) fl(1 - PFP[m ])

P [m, dt] = C ,3c P [m'] (2.14a)
1 - (1 - PP) H- (1 - psp [ms])

s=1

P [mcI d] = 1. [mc] (2.14b)

Note that the large sums over {m :m'} implied by (2.10) have been replaced with

products over C. The derivation of these expressions is provided in App. B.2.

The (information theoretic) entropy of the posterior probability distribution given

by (2.14) provides an assessment of the information content of a single measurement

from a sensor having the form of (2.11). The entropy of a probability distribution

p (x) is defined by (e.g. [1181):

H. = E [- log 2 p (x)] , (2.15)

with conditional entropy defined analogously. The conditional probability distribution

p (pc j 6') is bivalued and hence (2.15) resolves to

H 1( 6 t) = -P [mc 16 1 0log2 P [mc6] - P [i-,c 16] log2 P [f, ]. (2.16)

This expression attains a maximum value of 1 for P [m, 1t] = 0.5, corresponding to

complete uncertainty. If P [me] = 0.5, the unconditional entropy of the prior H,, = 1

and the posterior conditional entropy can be regarded as an inverse measure of the

information content of 6'. A posterior entropy H,, 16t = 0 denotes perfect certainty

and hence maximum information. Figure 2-4 shows the posterior entropies H,, I dt

and H,, I jt versus the number of cells observed in a single measurement and versus

Pc respectively.

Equation (2.14a) links P [mc dt] through the P, to the probabilities that the

detection could have been caused by another cell in the map. These alternate possi-

bilities strongly influence the probability that an occupied cell at c was responsible for

the detection. In essence, a single detection does not contain sufficient information
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Figure 2-4: Entropy of the inverse sensor model given by (2.14): (left) entropy
following a detection versus the size of the region observed; (right) entropy following
a non-detection versus Pc. As the number of non-zero P,' climbs with the size of the
region observed by a detection, the information aquired about any single cell is reduced
because a detection is only sufficient to constrain the observed region to containing at
least one occupied cell. Information attained from a single non-detection is independent
of the number of cells observed. Instead, as probability of detection improves P" -4 1
the posterior entropy monotonically decreases. Fixed values used were P [me] = 0.5 for
both panels, and Pct - 0.5 for the left panel.

to infer the number of cells that are occupied out of those having non-zero P", except
that at least one must be occupied. Indeed, as the number of non-zero P' climbs

with the size of the region observed by the sensor, the information acquired about

any single cell is reduced and the inverse probability of occupancy P [me I dt] decays

to the prior. This is of course also the case for PF -* 1.

A non-detection, by contrast, does not link P [m, I &] to other cells and are

easier to interpret. For instance, a non-detection declared by a perfect sensor upon
observing some region indicates unequivocally that all cells within the region are

unoccupied. The information contained about any single cell in a non-detection is
independent of the size of the region observed by the sensor except insomuch as region

size will generally influence Pt. Furthermore, as P- _ 1, cell c becomes confidently
unoccupied. The probability of false alarm PF' plays no role in P [me ] since clearly

no false alarm occurred if the sensor reported a non-detection.

Of course, the whole point of occupancy grid mapping is to combine the informa-
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tion available in individual measurements into a consistent map. Detections become

valuable when interpreted in light of non-detections that constrain the portions of the

map from whence the detection was unlikely to have come.

Notation Some additional notation will facilitate the development in the remainder

of this chapter. The set of occupied cells S in the true map m has already been

defined. Let its complement S denote the set of all vacant cells S = {s : fhn, s E

{1,..., C}}, and let S = ISI and S = C - S denote the cardinalities of S and S
respectively. Specifying S or S is equivalent to specifying a map m. To indicate that

the set of all measurements consists of binary detections and non-detections, I use

At instead of Zt. Further, let Dt denote the set of all measurements that resulted in

detections up to time t and the set of all non-detections as Dt so that At = {Dt, Dt}.

Similarly, I denote the set of times that resulted in detections "rt , and the set of non-

detection times .t. These sets have cardinalities of nt and fWt = t - nt respectively.

Throughout, a normal typeface superscript of t or T denotes a temporal index. Sets

of temporal indices are denoted in boldface and when used as a superscript denote

the union over their elements, as in A" = U[,C.t 6 7".

2.3.2 Posterior Independence Property

The fact the Pt for all s 5€ c do not enter into the inverse model for a single non-

detection (2.14b) suggests that independence of the posteriors may persist following

any number of non-detections:
C

p (mI A) -=Hp (PAst) I (2.17)
s=1

If so, then the probability of any particular map m is simply the product of the

marginal posteriors for all occupied and unoccupied cells in that particular map:

P [m I Dt] = H P [rn, I Dr]" 1 P [rfn I D] . (2.18)
sES sES

In fact, it can be shown that a forward model of the form (2.11) is both necessary and

sufficient for (2.17) to hold (App. B.3). For t = 0, (2.17) merely restates the usual
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assumption that the marginal priors are independent. Because of this relationship

between P [m I!Dt] and P [m,], the rest of this thesis adopts the notation Pt A

P [m, I D]t with P/ = P [m,].

Equation 2.17 is exploitable insomuch as it allows recursive computation of the

exact marginal posteriors when conditioned on exclusively non-detections. In Sec-

tion 2.4 an exact expression for the odds ratio conditioned on exclusively At' is

found that is identical to the standard OG mapping algorithm. Of course, the infor-

mation contained in detections must also be incorporated into the O map for it to

be useful.

A natural question is whether the CIM assumption is actually correct when all

measurements consist of exclusively non-detetions (At = Dt) for a sensor model of the

form (2.11). Expressed for exclusively non-detections, the conditional independence

assumption required by the standard OG mapping algorithm is p (dt IAt",) =

p (&t Ip,). Except under certain trivial conditions, this assumption remains false.

A proof exploiting (2.17) is provided in App. B.4; however, intuitive reasoning leads

to the same conclusion: Previous non-detections will have made some portions of

the map less likely to be occupied than others. Therefore, a measurement including

observations of these cells will be less likely to result in a detection than it would

have been otherwise, regardless of occupancy of cell c.

2.4 An Exact Algorithm for the Marginal Posteri-

ors

In this section the multiplicative structure of the binary measurement forward model

(2.11) is exploited to derive an exact algorithm for the marginal posteriors P [m, 1 D', I)']
Computing the marginal posteriors would nominally require the comuting and stor-

ing the full posterior p (m I D', 0t) followed by marginalization, both daunting tasks

considering the large space of all possible maps. The algorithm preserves the depen-

dence between cell posteriors that arises following a detection. It recursively processes

non-detections, but requires batch-processing of all detections. Unfortunately, the al-

gorithm is ultimately impracticable as the number of detections nt increases due to

computational and numerical aspects of the batch-processing step. Nevertheless, the
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algorithm does enable practical computation of the exact marginals for small n', and

more significantly, provides the basis for the several approximate algorithms intro-

duced in the next chapter.

In principle the marginal posteriors could be computed for a binary measurement

model exactly according to

P [m, ID', D']= E p (m IDt, Dt)

m:mC

=*. Z P[Dt ,Dt m]P[m] (2.19)

=r7- E f P [dt Im]" - P [dt I m]'-P [m],

M:mr tErt tErt

where q is a normalizing constant and the static world assumption was used to ar-

rive at the last line. This procedure presents analogous implementation problems as

inversion of a general forward sensor model, namely storage of p (m I Dt, Dt) and

costly 2C-term summation over the set of all maps with cell c occupied {m : mc}.

As with the inversion of P [dt I m] and P [dt m m] in the previous section, the

special form of (2.11) enables such marginalization by direct summation to be circum-

vented. This leads to a particularly simple and computationally attractive (recursive)

expression for the marginal posterior odds conditioned on non-detections exclusively
t-t

SPC [m ,I D t] /P [fn, I (2.20)

S(1 - pltc) PtC-

The simplicity of this result is perhaps not surprising given property (2.17). Interest-

ingly it is also identical to the odds ratio computed via the standard algorithm for

At = Dt ; however, the CIM is not required to derive it for forward sensor models of

the form (2.11). The proof appears in App. B.5.
The expression for the general odds ratio rcA P[

does not simplify as cleanly; however, it is still possible to avoid direct marginalization

and its attendant exponential cost in map size in favor of a non-recursive expression

whose computational cost instead scales linearly in map size but exponentially with
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the number of detections nt:

nt q1+ E(-1)q F I-I (1I 2) t(/
ptc _ q=l 77g-_7t,i7ENq i=1

PC- lt

1 + nt( -1) f c (r_) (2.21)
q=1 7iC-rtrENq

t= Pt.

In the above f,(rq) denotes the product

1,71 1771

f, = fJ7(1 - Pl') -I(1 - (1 - J(1- PI))Ps) • (2.22)
i=1 Syc i=1

The limit rj C -r', 1) E No denotes all q-length combinations of the detection times

7-r E 7-". The upper limits on the products in (2.22) refer to the cardinality of qj (i.e.

q in (2.21)). At t = 0, ro and po are initialized as re = 1=pm]". Eq. (2.21) is

complicated because it maintains the dependencies between the marginal posteriors

that form after cells have been observed by more than one measurement that resulted

in a detection. The derivations of (2.20) and (2.21) are provided in App. B.5.

Because of the CIM assumption required to derive it, the standard OG mapping
algorithm fails to maintain the dependencies that arise between cells following detec-

tions, and consequently it fails to produce correct values for the marginal posteriors.

Eq. (2.21) enables exact computation of the posteriors for maps of arbitrary size,
albeit for only a few detections. Figure 2-5 demonstrates the improvement attained

by the exact algorithm over the standard algorithm for a detection followed by a
non-detection on a simple 2-cell map. The next chapter explores the consequences of

the standard conditional independence assumption on realistically sized maps. Before

considering the practical application of (2.21), the next section quantifies the com-

putational cost incurred by computing the posteriors via (2.21) and the numerical
stability of the result. Unfortunately, (2.21) is not a panacea; however, it provides

the foundation for the several novel approximate algorithms introduced in the next

6Note that pt $ p [me Dt] /P [h, I Dt]. Rather, the definition in (2.21) reflects the parallel
roles of ptC and fit in the algorithmic implementations of (2.21) presented in this chapter and the
next. A useful definition for ptc is pt ` P [Dt I D t , m,] /P [D t I Dt, nc].
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Algorithm 1 Ali exact algorithmn for the odds ratio. The required iniitialization is

= ) </ (1- P).Unless otherwise noted. all subscripts c imlply the operation is for
all cE { (IT_____________

Require:

Pt -

I V ri E '

r,= og-exact{
1: if (F- (de(t(ection) then
2: 1ý pl
3: 1)1 p7( + 10.
4: else if d' (iiondetection) then

5i: 1) 9/( jb

7: end if

q q

0 0 -I

chiapter.

Algorithmii 1 iniplemients the iterative update of anl OG iiap via equations (2.20)

and (2.21) iii lseudocodle. Ani inipiementation exploitinig the lack of (lependence

betweenl detectionis that observe p~ortionls of the miial) not related to one( another either

bY direct overlap or through overlap with shiared neighbors is provided ini App. C. Thie

hinlllenileutatiou can cut down signlificanltl 'y onl the comiputational load if detections

teil(1 to occur ini disconmnected clusters since such groups of detectionis canl be treated

hindelendenlt of one anmot her without aplproximiation.

2.4.1 Numerical and Computational Considerations

Thie unumber of arithmnetic operations reqjuired to comipute p', via (2.21) is approxi-

niiately Iprolportionial 7 to C T. That is, the coniputational cost is linear inii map size

7As written, the precise number of arithmetic operations required by (2.21) is (6(C -+ 1)) ± 4nI +

6C- 1) 2"' +(2C +1 1) n'2"~'. Ail uipper bound for this wnumber is 14i4Cn2"t thus the proportionality
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Std. Algorithm Exact Alg.

t = 0: prior DD LI
t = 1: detection [7fB1 A 1 B]7

observes cells A & B H H -p K'I
DI = {d'}, D 1 = L

t= 2: iioidetec(tion A A B

observes cell A onlyIZ
D2 = {d, 1. ) 2 = {•P}

Figure 2-5: Comparison of standard OG mapping algorithm with the exact algorithm
specified by (2.21) and (2.20) for a two-cell map. A perfect receiver is assumied: P, _E 1,
Ptý, = 0. The values within each cell indicate the posterior probability of occupancy
after processing the data from each time step. Because a perfect receiver cannot Imiss
a detection. both algorithins correctly assign a zero probability of occupancy to cell A
after mneasuring the state of cell A (exclusively) at t = 2. At the same time the exact
algorithm also correctly identifies cell 2 as conclusively occupied, whereas the standard
algorithm does not update its estimate for cell B.

C and exponential in the number of detections n'. Figure 2-6 shows the results of a

numerical confirmation of this scaling. Direct application of (2.21) to update all cells

would incur quadratic cost in C; however, the ft (ri) need only be computed once tper

iteration so that linear cost in C is maintained. While exponential cost in anything

is undesirable, it is possible to use (2.21) to compute the exact odds ratios for simall
it. This is not the case in general because of the exponential cost (2ý') in lmap size

implied by the marginalization in (2.19).

Computation of the exact odds via (2.21) can be numerically problematic as well.

particularly if the I" and J-t are small. Under these conditions. the products within

the inner sunis in the numerator and denominator of (2.21) tend to equal values near 1.

Summation over all q-length combinations of Tri E r t therefore tends to yield values

near ("•) for the inner sums. The outer summation over the resulting alternating

series then tends to yield values close to zero.8 Numerical investigation suggests rapid

convergence of the sums in the numerator and denominator of (2.21) toward zero as

Ttt is increased. Indeed, the numerator and denominator of p", are P [0)tl L, m,.] anld

claimed in the main text is conservative.

"MBy the Binomial Theorem, E(-1)q () = 0.
q 

q
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Number of Detections n' Map Size C
Figure 2-6: Computation time for an implementation of Algorithm 1 versus the num-
ber of detections nt (left) and the size of the map C (right). Each data point represents
the average of 10 runs. The gray lines in both plots are curves of y = const. • Cnt2nt for
a range leading constants. These plots confirm a computational complexity that scales
approximately as nt2nt with n t and linearly with C. Deviation from this scaling for
small maps and low nt is due to overhead.

P [DI I Dt, fc] respectively. The probability that the set of measurement times r'

resulted in detections will approach zero as t- > oc in the same manner that the

probability of observing any particular sequence of heads and tails from a sequence of

coin flips will approach zero as the number of flips increases; however, the convergence

is particularly sensitive to the number of detections in this case because the probability

of observing sequences containing detections is unlikely for small P, and P". This

behavior becomes problematic when the results of the sums approach the machine

precision of the much larger > 0 (1) terms within them.

The much simplified case of a 2-cell map with repeated identical and uniform

measurements (C = 2; Pt = PD; P' - 0; R P4 = 0) illustrates the behavior. Under

these conditions and for a sequence of nt detections, numerical failure will occur first

in the denominator of (2.21), which reduces to

nt E(-1) (t (1-(1(1 - PD)q) PO) . (2.23)

q=0

Upon simplification and application of the Binomial Theorem, the above becomes

simply(PD)nl Po which converges exponentially toward zero, and very rapidly for small
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101 Direct Marginalization -!- Numerator
---Eq. (2 .21) IF-- Denominator

100
•100-5

S~10-10
0 10-2 
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110-15

10-41 10-20
0 1 2 3 4 5 1 2 3 4 5

Number of detections n' Number of detections nt

Figure 2-7: Comparison of the odds ratio computed from (2.21) versus via direct
marginalization for a two-cell map (left) and the values of the numerator and denomi-
nator of (2.21) as functions of the number of detections. The precision of 0 (1) numbers
for these computations was approximately 10-16. Numerical failure of (2.21) is evident
at nt = 4, consistent with finite precision problems in representing the denominator of
(2.21) for Pt = 0.001; Pt -= 0.001; P =- 0. These values were chosen for illustrative
purposes and not as representative of a real application.

PD. Numerical failure will occur when the product (PD)" Po approaches the machine

precision of the 0 (1) summands in (2.23). Figure 2-7 illustrates this by comparison

to the solution computed from marginalization over the space of all maps:

(PD) t (1 - P0) P0 +(1 -(1 - PD)2)n' p2

re (2.24)

Direct marginalization is possible here because of the small size of the map.

In situations where P4 is not negligible, the numerical results produced by (2.21)

remain accurate for larger n'. This is because larger Pk have the effect of dampening

the oscillations of the outer alternating sums in the numerator and denominator. Non-

zero P4 also relax the constraint that data be completely consistent, which lends some

intuitive support to the improved numerical behavior of (2.21) for larger P1.

Finally, it should be noted that the standard Bayesian OG algorithm as usually

implemented works by summing the logarithms of the individual factors of (2.5) so as

to avoid numerical problems associated with representing values near 1 and 0 [85,118].

Because (2.21) consists of both sums and products, logarithms are of limited utility
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here.

2.5 Summary, Contributions, and Future Work

This chapter introduced the standard Bayesian OG mapping algorithm, the key as-

sumptions required to derive it, and paid particular attention to the assumed condi-

tional independence of measurements (CIM assumption) and its manifestation in OG

maps. Recall that the CIM states that measurements are conditionally independent

of one another given knowledge of the state of a single cell in the map. The assump-

tion applies to each cell updated by the algorithm at each iteration. Though the

CIM assumption enables the mapping problem to be decomposed into a collection of

one-dimensional binary state-estimation problems, the results do not reflect the de-

pendencies between cell states that naturally arise as a consequence of using sensors

that sweep over multiple cells [117]. I argued that such dependencies are particu-

larly important in environments with a naturally low density of occupied cells, where

explanations of the data that require a minimal number of occupied cells should be

strongly favored.

To address this shortcoming of the standard method, an exact expression for the

marginal posteriors was derived that is applicable to a special form of invertible bi-

nary forward sensor model. It was shown that non-detections could be incorporated

into the OG map recursively, with computational cost equivalent to the standard

algorithm. At present, incorporating detections requires batch-processing of all de-

tections, with computational cost exponential in the number of detections. Neverthe-

less, the existence of this exact expression for the marginals proves that (for a specific

class of sensor model) the exponential complexity in map size suggested by direct

marginalization of the full posterior p (m I D', D') can be exchanged for exponential

complexity in the number of detections. For small numbers of detections and arbi-

trary numbers of non-detections, this work enables the practical attainment of exact

OG maps regardless of map size.

The results presented herein differ from previous research aimed at compensating

for the consequences of the CIM assumption in OG maps of indoor environments.

To my knowledge, the only other directly comparable exact method was developed

by Berler and Shimony [10]. Though they employ an OG only for display purposes
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(instead regions are dynamically defined with each new measurement), their algo-

rithm is capable of producing exact posteriors, and like the exact methods presented

in this chapter (§ 2.4), theirs scales exponentially in computational complexity with

the number of measurements. Unlike in their algorithm, the complexity of the envi-

ronmental representation (the map) remains fixed at C grid cells for the algorithms

developed in this chapter and the next. In contrast to methods employing augmented

OGs (principally to address specular reflections in indoor environments, e.g. [48,58]),

the CIM assumption is addressed without augmenting the representation of the envi-

ronment. Finally, the present approach has been formulated utilizing a sensor model

of a particular form, but not specific to a particular sensing modality (e.g. the "con-

text sensitive" OG mapping algorithm developed for sonar range finders by Moravec

and Cho [86]).

68



Chapter 3

Approximate Algorithms for Low

Prior Environments

Simulations presented in this chapter demonstrate the significant degradation in ac-

curacy of the single cell posteriors that occurs when the standard OG mapping algo-

rithm is applied to an environment with a low prior probability of occupancy. The

last chapter provided an exact expression (2.21) for the marginal posterior odds, but

unfortunately also revealed numerical and computational aspects of that expression

that rendered it ultimately impractical. This chapter presents several novel approxi-

mate algorithms that each retain some ability to maintain the dependence that arises

between cell states after observations that result in detections.

Two of these new algorithms are closely related to the standard algorithm. This

first class requires variants of the standard CIM assumption that leverage the utility

of (2.21) for small numbers of detections. As was shown in the preceding chapter,

the marginal posteriors conditioned on exclusively non-detections maintain their in-

dependence (§ 2.3.2). Since non-detections are easy to handle exactly, I focus on

developing relaxed assumptions on the independence of times that resulted in detec-

tions. A second class of algorithms instead requires assuming independence of the

marginal posteriors. Algorithms of this class essentially "revise the prior" to reflect

the current posterior before incorporating a new measurement. These algorithms are

also amenable to extension via the processing of subsets of detections with (2.21).

In each case, analytic sufficient conditions for the algorithm to produce exact

results are provided. The performance of each algorithm is then evaluated in a sim-
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ulated low prior environment. The simulation results show qualified improvement

over the standard algorithm, with the best results produced by algorithms assuming

independence of the marginal posteriors. The principal improvement demonstrated is

the computation of posteriors more consistent with the prior, particularly a reduced

propensity to produce very high, unrealistic posteriors over large portions of the map.

3.1 Approximate Algorithms from Relaxed CIM

Assumptions

The various extensions of the CIM assumption are perhaps best understood by rewrit-

ing the odds ratio rt P [m I Dt , Dt] /P [fc I Dt, Dt] in a modified form with the

odds ratio conditioned on exclusively non-detections Pt as a factor:

P [Dt Dtmc] P [m, Dt]
rc P [Dt Dt,fh,] P [tihe Dt] (3.1)

P [Dt I f"t I ]
P [Dt I Dc M c

Eq. (3.1) is readily derived by the application of Bayes Rule to the definition of rt. The

key quantity in (3.1) is the ratio of the probabilities of the measurements that resulted

in detections given a single cell c and all non-detections P [Dt Dt, mc] /P [Dt IDt, ri].

Computationally tractable expressions for this quantity can be attained by placing

assumptions on the conditional independence of measurements at times r E rt

p (Art I A't, c) .

These are the measurements that resulted in detections. Obviously such assumptions

cannot be made a priori; however, the output of approximate algorithms can be

qualitatively assessed by analyzing the quality of the assumptions required given the

measurement history. There are no guarantees, but bad assumptions usually lead to

bad maps.

For instance, the standard OG mapping algorithm computes the odds ratio condi-

tioned on non-detections exclusively, fit, exactly. This fact could not be deduced from
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the derivation alone if the standard CIM assumption for binary measurements were

left in the unaltered form (2.2) where it applies to both detections and non-detections.

The next section presents a modified, weaker version of the CIM assumption that

nonetheless leads to the standard algorithm, thereby confirming directly that the Pt.

computed via the standard algorithm are exact.

The standard CIM assumption for binary measurements

The standard CIM assumption expressed for binary measurements is

p W 1I A't-1, Pc) = P (Ot I P-c) , (3.2)

where equality must hold for all t. By repeated application of the definition of con-

ditional independence, (3.2) is equivalent to

t

p(A t I P,) = -IJp(3T O T ) (3.3)
r=1

which states that all measurements carry no information about one another not sub-

sumed by knowledge of the state of the single cell c. This assumption does not apply

globally across all cells; that is, only the version corresponding to cell c is required

each time cell c is updated.

With a forward sensor model of the form (2.11), however, the standard algorithm

can be derived by making the weaker (necessary, but not sufficient) assumption

p(z l , = FI [6r lI, ] (3.4)

which removes measurement times that resulted in non-detections from (3.3), though

it still requires that all measurements at times that resulted in detections be condi-

tionally independent of measurements at times that resulted in non-detections. The

derivation is carried out below in § 3.1.1.
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Relaxing CIM by Grouping Measurements

Intuition suggests that results superior to the standard OG mapping algorithm might

be achievable by requiring that conditional independence hold only between subsets

of detections, rather than between each detection, that is, by further relaxing (3.4).

Such an approach is made possible by exploiting (2.21) to compute the exact odds

ratio for subsets of correlated detections. These subsets must be sufficiently small to

avoid the numerical and computational pitfalls of (2.21) discussed in § 2.4.1.

Managing subsets of detection times requires introducing some notation. Let

g' C r' denote the kth subset of detection times from a partition of r'. Also, let 9t

denote the set of indices k such that

U t IU = (3.5)
k=1

where 19'1 is the cardinality of 9' or equivalently its maximum element. It will prove

convenient to also define a subset of indices 9' into groups of some maximum size:

9 {k: k Ct, Ig I = MAXGROUPMEMBERS}. (3.6)

With these definitions, two weaker variations on (3.4), again in the sense of being

necessary but not sufficient, are

Igt 1
p(A-'i A , PC - p (Ag, PC) (3.7a)

k=1

k=1

The first of these collapses to (3.4) if Ig I = 1 V k, and like the standard assump-

tion, assumes that measurements at times that resulted in non-detections carry no

information relevant to the outcome of the remaining measurements not subsumed

by knowledge of PC. For this reason, I regard the algorithm derived from (3.7a) in

(§ 3.1.2) as an extension of the standard algorithm. The second assumption above

further relaxes (3.4) by retaining the conditioning on A÷'. I call the novel algorithm
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that results from this assumption the Conditional Independence of Detections (CID)

algorithm. Its derivation is given in § 3.1.3.

As with the standard CIM assumption, assumptions (3.7a & b) are unique to

each cell c. Essentially, the algorithms with these assumptions at their core still treat

the problem of estimating the marginal posteriors as a of set C independent binary

estimation problems; albeit with some all measurements properly regarded correlated

observations observations.

Furthermore, these modified CIM assumptions beg the question of how r' should

be partitioned into the subsets g'. Numerical examples presented later in this chapter

(§ 3.3) indicate the numerical value of the posterior varies substantially for different

partitions of r7. In fact, since the assumption required is unique to each cell, a

different partition could be used for each cell; however, the computational burden of

updating the whole map is greatly decreased by using a global partition.

The results presented in this work rely on a heuristic method for partitioning r'.

The method, implemented in pseudocode as Algorithm 2, uses pairwise comparisons

of detections to assign new detections to existing subsets or else to instantiate a new

subset. The algorithm groups relatively correlated measurements into the same subset

so as to avoid treating them as independent. The normalized correlation coefficient

vt,, between a new measurement 6' and an old measurement Sr is

V ' cov (Y 't, "
vt- /`var -(6t) var (7)

fo(t, I) - fo(t) fO(T) (3.8)

((1 - fo(t))f°(t) (1- fo(T))fo(T) 2

where the f' 0(7) for 77 C {t,T} are given by

1 7l C I n)fo(77) = 1(10 _F ) H (1 _ (1- I- (1 - ps,)o I 39
ji=1

The correlation coefficient between two detections provides a measure of how depen-

dent they are. Overlapping measurements will tend to be highly correlated, whereas

measurements that observe different portions of the map are independent and there-

fore uncorrelated. Highly correlated measurements strongly violate the CIM assump-
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tion and should be processed exactly if possible.

Eq. (3.9) differs from (2.22) only in the limits of the product over cell indices.

Note that vt,, > 0. If the largest vt,- so computed surpasses a fixed threshold, then 6t

is added to the subset of i-t to which F" belongs, or else a new subset is instantiated.

Once a subset has reached the maximum size set by MAXGROUPMEMBERS, it

becomes static. New measurements that might have been grouped with members of

a static set are either placed into other subsets or else instantiate new subsets.

At the beginning of this section it was suggested that mapping algorithms that

make use of (2.21) to compute the exact odds ratio for subsets of measurements should

produce progressively better approximations to the exact posteriors as subset size

increases. Though intuitively attractive, there is no guarantee that just weakening the

standard assumption according to the relaxed CIM assumptions (3.7a) or (3.7b) will

result in an improved map. Indeed, simulation results in § 3.3 show a more complex

picture. Before presenting these, I derive the binary OG mapping algorithms that

result from making the CIM-like assumptions introduced above. The starting point

in each case is (3.1). The derivations are followed by discussions of the computational

features of each algorithm. Pseudocode implementations of each algorithm are also

provided.

3.1.1 Standard Algorithm for Binary Measurements

To derive the standard algorithm from (3.1), apply (3.4) and then Bayes Rule:

t P[D' Dt, m,] _t

HIEt- P [dT me]

HTE=-tP [d,- frin] "P

= I p[mI d-] P [fn] (3.10)

,rE,,t  P [f dj] P [mcn] "Pc

( I [ M ] f lt P m c d ](\-V [m']) HtI - P [mc d-
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Algorithm 2 Pairwise grouping algorithm.

Require:
Pt

Pj7, V Ti E rt-1
gt --1 g t-1

gk9, V k E 9t-1
1: Loop over exisitng subsets:
2: for all {k: k E 9", k 9 `11} do
3: Loop over members of each subset:
4: for all {j: rj E gt- 1 } do

5: W = fOt,"j)-fOt)fO(j)
( (l_fOt))fo~t (l1fOr j))fO(.rj) T

6: end for
7: Vk = max Wy

8: end for
9: kma, = argmax Vk

k
10: if Vkmax > GROUPINGTHRESHOLD then
11: Add to existing subset:
12: g9k 9 V k c t9'1, k # kmax
13: 9t = 9t-1

tt-
14: gkýo• = {g 1kmI,t}

15: if Ig~aý I = MAXGROUPMEMBERS then
16: Make subset static:
17: 9 = {gt-l,kmaxl

18: else
19: F F -

20: end if
21: else
22: Instantiate new group:
23: 9k gt-I V k E 9t-1
24: t = {Wt- -l 1t- 1

1 + 1}
25: gi:{t}
26: end if

To see that (3.10) is equivalent to the recursive form of the standard algorithm (2.5)

for zt = 6 t requires some manipulation. From (2.20),

PIC= (I(-P t -P=[m]

(-Pm ) 1 - P [m] (3.11)

-[m,] 75 1- P [m, dT]



Algorithm 3 The standard algorithm for approximating the odds ratio. The required

initializations are = POand p =1. This implementation is somewhat atypical to1 -p cP
facilitate comparison with the other algorithms introduced in this work. In particular,
separate maintenance of pt and fit is not necessary.
Require:

t>0
t-1 -t-1

PC CPPc ,Pc

1: if dt (detection) thenPt = fio-,
2:

3: P [?n [ar] = 1-(1-P•tXl-Pc0) fI(1-P.lPlms])
3: P I3c P [m,]

[-(1-Pt) Hl(1-P.tpmsI)

4: = P mcI t . t1
4:PC7-~Pm-c 71t PC

5: else if dt (nondetection) then
6: i ( -P)9,
7: p t p t-1c -c ),

8: end if
9 : r c = p O P C " P c

where the first line can be attained from the second by substituting (2.14b) for

P [me dT] and simplifying. Combining these results yields

t (1_ Pr]P[Mc t P [mc 16T I P[rmn]
re = mP] 171 -- P 1-m 1 - P [MC]

m=1  (3.12)

1 P[ml P-[mcK1l -rj .

For completeness, Algorithm 3 implements an equivalent recursive form in pseu-

docode.

This algorithm "does the right thing" following a detection, in the sense of in-

creasing the posterior in cells where P [me I&d] is high; however it does so without

respect to information in previous measurements about the rest of the map. Simu-

lations presented later show this tends to lead to inflated estimates of the posteriors

over large areas. The advantage of this algorithm is its ease of implementation and
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minimal memory and processing requirements.

3.1.2 Extended-Standard Algorithm

The relaxed CIM assumption (3.7a) requires conditional independence to hold only

between subsets of detections and leads to an extended version of the standard algo-

rithm. Starting from (3.1), apply (3.7a), followed by Bayes Rule:

t P [Dt' D,m,] _t
P [Dt I Dt, fcl P]

1911 P [D9 'k m c] _t
fl P [Dgtk fi c] vc 3.3
k=1

,19 [rnc D9 D•] (1- P°)
k=1I P [fn, I n9'k] • "•'e

To evaluate the arguments of the product above, use the expressions for P [mC I Dt, Dt]

and P [fnc I Dt , Dt] given by equations (B.29) and (B.30) with Dt  0 so that
Pt = PC:

Ig, I q
P [meDk] : (1+ (-1) q (1

q=1 i=1 (3.14)
IgiJ

q= l •gt ,77ENQ

Substitution of these expressions into the last line of (3.13) yields

IgtI q

1 + _ (1)q z 1-(1 - P:i) fO°)
I=11tIlcrc 11 ~ Igt' Cgk jq I= "PC- . (3.15)

k=1 1 + E (-1J)q fc f (,q)
q=1 77g9,gtENq

The OG mapping algorithm with (3.15) at its core is implemented in pseudocode as

Algorithm 4.
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Algorithm 4 The extended-standard OG mapping algorithm for approximating the

posterior odds ratios. The required initializations are fiO = P, and pO = 1. The1-PPg
additional ratio p',, which is analogous to pt for all {1 T : r E UkEgF g', is maintained
to avoid permanent storage of the ppt for static subsets of detection times. If Ig' I
1 V k, this algorithm is equivalent to the standard algorithm for binary measurements
(Algorithm 3).

Require:
t-1 t-1 -t-1

PC , PCF ' PC
Ptc, PtF
9', 9tF, GtF-1

gý, V i E 9'
P;,, V ir E U g5k

kEgt\tF-1

1: if dt (detection) then
2: C =
3: if gF = g9 1 then
4: PF = PCF

5: else
6: k = 9t \ 9t1

F+ FAk q1+ E (-1)q l (_I [(- P£" )fg°n)
q= l •?9gtk 17ENq7: ptF =g I,•

1+ E (-1)q fftv$
q=l n~gtk' 7ENq

8: end if
141 q

1+ E (--1)q r- =(i-P,7)fA'7)q = 1 n c g t '17E N q i =

9: P=C P H rI I
kE• t\9Ft 1+ r, (- l)q E f n

q=1 liggt ,7ENq

10: else if & (nondetection) then
11: PI= (1- P:)Pt --1

12: pI = Pj 1

13: end if
14 t = t -t

14: P C

If Ig'I = 1 V k, then Algorithm 4 is identical to the standard algorithm. For

larger subsets gt C -rt, Algorithm 4 retains the standard algorithm's property that

detections and non-detections are incorporated into the map independently of one

another. Thus, if a subset of detection times becomes static, it can be permanently
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incorporated into the posterior and the corresponding data cleared from memory. In
this work, Algorithm 2 is used to define the g', so that all gt such that k E can

be eliminated from memory.

3.1.3 Conditional Independence of Detections Algorithm

The relaxed CIM assumption (3.7b) requires conditional independence to hold only

between subsets of detections while retaining the conditioning on non-detections and

leads to an alternative approximate algorithm that retains the dependence of detec-

tions on non-detections. The derivation proceeds along much the same lines as for

the extended-standard algorithm above, but I include it here for completeness. Again

starting from (3.1), this time apply (3.7b), followed by Bayes Rule:

t P [DI ID t ,m ] _t
tr P [Dt I[ t,m-]

1=1 p [D9'i b1,,c] _tk 
(3.16)

f-I P [D91IDQtff,D1P~rhc
k=1

k=1 P [ D9'kDt] P [mf I t] 't

To evaluate the arguments of the product above, again use the expressions for

P [m, I Dt, Dt] and P [rfc I Dt, Dt] given by equations (B.29) and (B.30), only this

time with the modification Dt = D9k. Substitution of the resultant expressions into

the last line of (3.16) yields

IgtI q
1 + (-1)q 1- (1 -Pq')ftc(1)19ti q=1 779gt 17EN9 =

rc = 141 "Sc" (3.17)
k=1 + E(-1)q E fc, (,7)

q=1 +tCgt ,7CNQ

The OG mapping algorithm with (3.17) at its core is implemented in pseudocode as

Algorithm 5.

The algorithms introduced previously do not compute exact posteriors after even

a single detection. By retaining the conditioning on Dt, this algorithm produces exact
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Algorithm 5 The CID algorithm for approximating the odds ratio. The required
-O

initialization is f=
Require:

pt-1C
Pt

C
P7'T, V ri 1 rt-1
9t

' V i C9 t

1: for all s E {1,...,C} do
2: if dt (detection) then
3: S -
4: else if dt (nondetection) then
5: fts = (1 - Ps)ptS-1

6: end if
7: P• = l/( + ptl)

8: end for

9: PI
k=1l +F_)

q=1 99 17 • WENq

1 :rt = t . t

results in regions of the map observed exclusively by detections belonging to the same

subset of detection times. However, this concession necessitates batch processing of

all detections following each measurement, including after non-detections because the

marginal posteriors conditioned on exclusively non-detections Pt enter into the fR (v7).

Unlike Algorithm 4 (and Algorithm 3, a special case of Algorithm 4), the P,' for every
detection must therefore be permanently stored in memory. This algorithm is similar

in operation to Algorithm 4 with the exception that the exact revised priors Ptc are

used in place of the original priors. Since Pt _< P,, the CIM-like assumption (3.7b)

is effectively required to hold in an environment with a reduced prior. Simulations

presented later show that, especially when combined with an already low prior, this

property can lead to inflated posteriors following detections like those generated by

the standard algorithm.
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3.2 Approximate Algorithms from Assuming In-

dependence of the Posteriors

Section § 2.3.2 showed that the marginal posteriors conditioned exclusively on mea-

surement times that resulted in non-detections P [m, Dt] remained independent of

one another. The same property does not hold for posteriors when the condition-

ing includes detections because detections create dependencies between the observed

cells. However, ignoring that fact and assuming that such conditional independence

is maintained leads to an alternate class of algorithms that eliminate or further relax

the modified CIM assumptions of the preceding section.

Though an assumption on the posteriors may seem initially unattractive since it

explicitly violates the dependence that arises between them, it is perhaps natural in

the context of occupancy grid mapping where the full posterior is unattainable except

under the condition that the single-cell posteriors remain independent. Furthermore,

algorithms assuming independence of the posteriors avoid requiring that measure-

ments be interpreted completely independently. Though the dependencies between

cells are not maintained, their "revised priors" reflect the belief accrued from previous

measurements.

The algorithms developed below in § 3.2.1 all rely on assuming the single-cell

marginal posteriors are independent conditioned on certain sets of detection times
7-E "-t:

C

p (M I AT', A•) H Hp(P, I AT, AT) .(3.18)

If (3.18) holds for all detection times, then a recursive algorithm with memory require-

ments identical to the standard algorithm is attained. Alternately, the exact odds

(2.21) can be exploited to produce a hybrid algorithm that requires an additional

assumption akin to (3.7b) to be valid for the set of detection times {g': k E 9' \ G'}.

The algorithms based on (3.18) essentially "revise the prior" to reflect the cur-

rent posterior before incorporating a new measurement. This terminology reflects

the shared property of independence between the marginal priors /-0 and the true

marginal posteriors when conditioned on non-detections alone Pe. Inherent in this

procedure is a dependence on the order with which measurements are incorporated

into the map. The "revised prior" provides a weak linkage between previous mea-

81



surements that resulted in detections and more recent ones; however, the linkage is

uni-directional and these algorithms lack a mechanism to reinterpret previous mea-

surements in light of the new data. Since these algorithms rely partially on the

current state of the map to interpret new measurements, they are vulnerable to bias

introduced by reinforcing the inaccuracies of a partially resolved map.

3.2.1 IP Algorithm

Assumptions of the form (3.18) lead to a novel class of OG mapping algorithms I call

the Independence of Posteriors (IP) algorithms. In principle, independence of the

posteriors could be assumed in conjunction with any sensor model; however, forward

model (2.11) is special because the priors P1o enter explicitly into the inverse sensor

model generated from it, thereby providing a mechanism for interpreting the current

measurement in terms of the present belief in the states of the cells in the map. Unlike

the related "context-sensitive" OG methods of [74,86], which also consider the present

state of the map to interpret new measurements, the IP algorithms are applicable to

any sensor satisfying (2.11) rather than specific to sonar range finders.

This section begins with the derivation of a recursive OG mapping algorithm with

identical memory and processing requirements as the standard algorithm. The deriva-

tion is followed by the extensions required to capitalize on (2.21) for the preprocessing

of subsets of detections. A discussion of the computational features and a pseudocode

implementation of each algorithm follows.

Recursive IP Algorithm

Assumption (3.18) applied to all times t C r't is sufficient to derive a recursive algo-

rithm with memory and processing requirements identical to the standard algorithm.

The derivation proceeds inductively. Suppose at time t = r,• a detection is regis-

tered. Under the assumptions that r'- is exact for all c and that p (m =
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p (p it,, it can be shown that

'r't (1 - P1) rt-V 7h < I < Tl (3.19a)
1 -(1-- i"'')( -i-in) (1i •, 1/-mttp, ,)

1 -(1- P- ") n (i - (3.191))

where -r,, denotes the next tine t > 7., at which a detection occurs and the PT-

denote the approxinmate revised priors. At t -- 'r, i-- 1. these can be computed from

C, , as

t sg( (i )(3.20)(1+ C'"-)

Since &r, computed using (3.19a b) is exact by (2.21), it follows by induction that

ri. computed this way is exact for all t if at each T- E "t independence of the posteriors

is asslined:

p (Mi )_-Ip( L) , T E I (3.21)
s I

The remaining step of showing (3.19a & b) for 7-, < t < ,-r,, is given in App. D. 1.

The algorithm defined by (3.19) has the same memory and computation require-

ierits as the standard algorithm; however, it behaves quite differently. The uni-

directioIal linkage of past detections to new ones via the *revised prior" is demon-

strated in Fig. 3-1. An imiplementation in pseudocode is provided as Algorithln 6.

Extended IP Algorithm

Extending the recursive foirm of the IP algorithln for Ig'. 1 1 is straightforward.

but requires the additional mnodified CIM assumnption on all subsets of detection

timles {g :' A - \ 9.} given below. For the purposes of the following derivation.

it is convenient to define the "revised prior- odds. •- f,!/(1 - P,') and the set of

ineasurenment times that are members of fixed subsets, t rL Uk.g''9 t

As above, the derivation proceeds inductively. Suppose at tine t = 7,, a detection

is registered and that 97" D 97!"-' where D denotes a strict sup)erset. That is, at timie
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Standard Alg. Revised Prior Aig. Exact Alg.

t = 0: prior DDEZILZ i

t = 1: detection [7
D= }I= 04 440 = D40
-Rl = {1 2, 3}

t 2: detection [ [ ] W F
={d2,d

2 f D2 1, [r)2 = 0. 00 2 i.
r7I {2= 3, 4}

1}.63E 0.411E11JE.06 2002

Figure 3-1: Recursive update of a 4-cell map via the standard and recursive IP
algorithms versus the exact result. The sensor characteristics were Pt -= 0.1 for all cells
within each detection region and P'. 0- . All three algorithms produce the identical
result following the first detection. Following tile second detection, neither the standard
nor the IP algorithms update the posterior in cell 1; however, the standard algorithm
also grossly over-estimates the posteriors in cells 2 4. This is because the detection at
time t = 2 is interpreted without enforcing consistency with the previous detection or
with the prior. The IP algorithIn only slightly raises the posterior in cell 4 because the
high revised prior of cells 2 and 3 following the detection at t = 1 make the detection
at t = 2 highly likely to have originated from one of these cells. The posteriors in cells
2 and 3 are slightly higher than correct, a consequence of regarding the map at t = 1
as describing a new prior and effectively making a map with two occupied cells more
likely than suggested by the original prior.
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Algorithm 6 The recursive version of the IP algorithm for approximating the odds

ratio. The required initialization is rc =- /(i-I0).

Require:
t-1r tcP.ý

t>O
1: if dt (detection) then
2: pc

c ~11- P,-P x l-P•t) fl(1-P .,t ),
3:• rtS4 t-1

3: re- = - P-) P(1-PTP.) .C

4: else if dP (nondetection) then
5: re = -- t-1

6: end if

t = T, the subset of detection times to which T,- was added is now immutable. Under

the assumption that ý'c-1 is exact and that the posteriors are independent

C

p (m I ATF, AT") = lp (pe I A7F, An) ,

the "revised prior odds" ý'n can be computed readily. Let gr = g -" 7n E 9" }

denote the subset of detection times to which the detection at t = T- was added. It

can then be shown that

I9F1 q1+E(-1)', (I- (1-p,,) fo (-,Tn
ITn = -n- q=l rlg9F,7rENQ i=1

C P9F1 (3.22)
S+ E (-1)" E L (,-.)

q=1 nlgFEN"

where
f 7(1- (P7) ) (I - (1 -1J (1 - p:,))!5 ,-) . (3.23)

i=1 s#c3.

Under the additional modified CIM assumption given by

p AFAIIC) = I- p (A Ip (3.24)
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it follows that

t Pc,{:g~g,~ t0it = 1-- Pctý) 9,-1 t: 9F = 9F , t "t)(3.25a)

fit- {t: 9' = 9'no, t E •-rt

Igil q1+E(-1)q E (I _-Pjc) f,(t)
rt -- q=1 il""1

kE9'\9F 1 + J-)q f ct
q=1 • ,nr-zNq

(3.25b)

The inductive base case corresponds to all t > 0 such that gt = 0. In the base

case, the above is identical to the CID algorithm (§ 3.1.3), and assumption (3.24) is

identical to the modified CIM assumption required by the CID algorithm. Therefore

under assumption (3.24), the above produces exact results in the base case. It follows

by induction that r' computed via (3.25a)-(3.25b) is exact if in addition to (3.24),

conditional independence of the posteriors is assumed according to:

C
p(M I AF, A') =Jp (jj t El' f t {: gt D) . (326

S=1

The remaining steps are provided in App. D.2.

This extended IP algorithm shares most of its properties with the recursive form,

though the core assumption on the independence of the posteriors need only apply

for a smaller set of detection times t E {fT: 9' D 9"J-}. The price is an increased
memory requirement (all PF for T- E 7t \ -r' must be stored) and of course the added

CIM assumption given by (3.24).

Despite the need for a CIM assumption like that for the CID algorithm, there is

a crucial difference between these algorithms. The present algorithm rarely requires

making a CIM assumption on subsets of detection times that observe similar portions

of the map. Instead it will usually revise the prior using a complete subset before

instantiating a new subset in the same region of the map. Reasonable mechanisms

for generating the subsets of detection times g' should fill the active subset in a

portion of the map (add it to 9t) before instantiating a new subset from a detection

in the same region. That said, depending on the nature of the algorithm used to
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Algorithm 7 The extended IP algorithm for approximating the odds ratio.

Require:
t-1 -t-1

PC ,PC

P
t'

P,7i, V Ti c i-''
9t, 9t
gi, V i E 9t

1: for all s E {1,...,C} do
2: if dt (detection) then
3: if g =ý 0then
4: k F

1+ F (-I)q E N=O(-Pý"')fA71)
q=1l • gtk W

5 : P t fi -t - 1 , C1 ,

1+ (--1) E M17q)
q=l , 1 CggnENq

6: 9t = g t \ g t

7: 9t = 0
8: else
9: fits fit--1

10: end if
11: else if dt (nondetection) then
12: pts= (1-- P-)PS-1

13: end if
14: st -fir(+Pts)

15: end for
Ig tlI q .

1•l + D(-IW E Fl(1-P7' ) fA')

q=l n99'.,ENq

16: p• = HI I k

k=1 ko~k 1-+ r_(_1)q 1: f977)
q-l 79/Cg• ,nENq

t = -t fi
17: r CC

assign detection times to the gt, situations may occasionally arise where two initially

disparate gt will end up overlapping strongly following additional detections before

either is assigned to g' . Algorithm 7 implements (3.25a)-(3.25b) in pseudocode.
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3.3 Simulation

This section presents two sets of numerical simulations that compare the behavior

of the standard occupancy grid mapping algorithm and the three new approximate

algorithms proposed in the previous section to each other, and when possible, to the

exact marginal posterior odds ratio (2.21).

The first set of investigations examines a short, deterministic sequence of suc-

cessive detections with no intervening non-detections. The results demonstrate the

appearance of inflated odds as a consequence of the CIM assumption. The new ap-

proximate algorithms produce better estimates of the true posterior than the standard

algorithm, but their relative quality is dependent on how individual measurements

are grouped. Because only a small number of detections are considered, the exact

posterior odds can be computed and the approximate algorithms compared directly.

Results follow from simulations of a long record of binary measurements produced

from repeated observation of a sparsely occupied environment at randomly generated

locations. The large number of measurements prohibits computation of the exact

posterior odds, and alternative map evaluation metrics are explored to facilitate inter-

comparison of the results produced by the approximate algorithms.

A major difference between these simulations and real surveys conducted by au-

tonomous vehicles is the random sampling pattern used here. The difference is delib-

erate and reflects the expectation that sampling trajectories, e.g. along regular track-

lines, will interact with the approximations required by each algorithm. However,

there are important distinctions in the behaviors of the various algorithms studied

that become apparent without the additional complication of trackline artifacts.

Simulation Environment

The simulation environment consists of a square two-dimensional grid with a uniform

prior probability of occupancy P [m,]. The forward sensor model conforms to the

form of (2.11), with the single-source detection probabilities P, specified according

to,

Pt = PDmax e -xIi, (3.27)

'To speed calculation, values of Pt < 0.001 were approximated as zero.
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where x t and x, denote the sensor location and the location of node c respectively.

Table 3.1 lists numerical values of all constants used in the simulations. The

choices reflect the nature of the chemical plume tracing problem [30]: relatively few

sources, a measurement record composed mostly of non-detections, a high degree of

spatial ambiguity between detection location and source location, and a low proba-

bility of false alarm.

Table 3.1: Parameter values used in simulations.

Environment
C 1600 or 10000 Number of grid nodes
P [mc] 0.001 Prior probability of occupancy

Forward Model
PDmax 0.4 Maximum single-source detec-

tion probability
a 3 or 6 Sensor aperture length scale
PF 0 or 0.01 Probability of false detection

(constant)
Approximate Algorithms

GROUPING-THRESHOLD 0.001
MAXGROUPMEMBERS varied

Algorithm Demonstration, Detections Only

Figures 3-2 and 3-3 show maps generated from a deterministic sequence of five (Fig. 3-

2) and ten (Fig. 3-3) detections proceeding counter-clockwise in a ring about the

center of the map. Relative to the correct posterior odd ratios, the standard algorithm

produces a map with very high odds across a broad peak at the center of the map.

The ring-shaped ridge of the correct map is wholely absent.

In contrast, both the CID and IP approximate algorithms produce maps that to

varying degrees preserve the ring-like structure of the correct posterior odds and to

a lesser extent the actual value of the posterior odds. The variability within these

maps reflects different partitions of -rt and the different mechanisms by which the

two algorithms process groups of maximal size. The largest deviations from the true

posterior odds occur where the gk overlap strongly. Comparison of the CID results

with sequentially composed subsets of 3 and 5 indicates improved performance for
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larger subset size; however the major artifact in the Ig' - 3 result is a manifestation

of unequal subset size (three groups of 3 plus one group of 1). The significantly

degraded map produced by randomly assigning measurements to subsets illustrates

the dependence of these results on how detections are grouped. Sequential grouping

produces good results in this case because nearby measurements are grouped together.

The same arguments hold for the maps generated by the IP algorithm, though the

results are superior to those generated by the CID algorithm. Since all measurements

are detections, the extended-standard algorithm produces results identical to the CID

algorithm.

Algorithm Demonstration, Simulated Measurements

Figures 3-4, 3-5, & 3-6 show occupancy grid maps generated in simulation by the

approximate algorithms proposed above along with the standard algorithm. For these

simulations, a random groundtruth map of occupied cells was generated by sampling

from the binary prior to assign the state of each node. Measurement locations were

generated by sampling from a uniform distribution over the spatial domain of the grid.

The binary sensor measurements were generated by sampling from the binary forward

model (2.11) with the P, specified according to the position of each measurement

location relative to all occupied cells in the map via (3.27). Insights into the behaviors

and performance of each algorithm are facilitated by viewing the simulation results

at several time steps.

t - 200, Figure 3-4

The maps produced by each algorithm after 200 measurements (Fig. 3-4) already

show peaks near many of the occupied cells and indicate confident emptiness over

large areas. However, there are significant differences between the maps. With the

exception of the IP results, the maps using no grouping of detections into dependent

subsets (Ig'j = 1) already show evidence of inflated posteriors at t = 200 in regions of

dense detections. For instance, the main peak of the standard result contains roughly

100 cells whose posterior probability of occupancy is at least 0.10, suggesting some 10

cells of the 100 are occupied, when in fact only two are occupied. The CID show even

more inflated posteriors. The algorithms produced using Ig'! < 6 show less evidence
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Figure 3-2: Occupancy grid maps after nt = 5 successive detections computed exactly

(upper left). via the standard algorithm (upper right) and via the new approximate

algorithms for different group sizes and grouI)ing schemes (remaining panels). The color
of each cell is scaled according to loglo rt, with hot colors indicating a high posterior
odds of occupancy. The CID and IP results for groups of five measurements are identical
to the exact solution. The color scale spans a larger range for the standard algorithm
to avoid clipping. 91
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Figure 3-3: The occupancy grid maps of Fig. 3-2, but after nt = 10 successive (dc-
tections. The influence of different groupings of measurements is evident in the results
for the three instances each of the CID and IP algorithms, however, all instances out-
perform the standard algorithm in ternis of the accuracy of the estimated posteriors
relative to the exact result.
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Figure 3-4: Occupancy grid maps generated in simulation by four approximate OG
mapping algorithins, including the standard algorithm. The upper plots of the IP
and CID results were produced with jg9 . = 1; the lower plots with IgtI < 6. In
each map occupied cells are marked by white x's. These plots show the maps after 200
measurements, Imost of which were ilon-detections. The plot in the upper left shows the
spatial location of each nmeasurement and its result: detection (red), or non-detection
(blue). The grayscale plot applies to the results for g'j < 6 only. The color of each cell
indicates the number of subsets of detections that include at least one observation of
that cell. Posteriors within regions of the mI ps produced by the CID and IP algorithmis
with g9• < 6 observed exclusively by detecu ons belonging to the same subset are exact.
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of inflated posteriors, a consequence of the less stringent CIM assumptions required.

Additionally, the peaks are more uniform, reflecting the strong correlation between

nearby detections. The extended-standard results appear the least satisfying. with

almost no portions of the map raised above the prior.

More subtle differences between the algorithms are manifest near the occupied cells

observed by isolated detections at approximately (45, 10) and (95, 70). In the Ig',I < 6

maps produced using the IP and CID algorithms, these posteriors are relatively high.

Since all jg'. < 6 at the time shown, the IP and CID results are in fact identical.

With no other nearby detections, the posteriors near (95, 70) are exact. and nearly

so around (45, 10). All algorithms using Ig' I = 1 except the CID algorithm have

produced underestimates of the posteriors in these places because the detections 1wve

not been considered in light of the revised prior generated from non-detections alone.

With the low P" used in these simulations, the possibility of a false alarm is very

nearly nil, hence requiring overwhelming negative evidence to contradict the existence

of an occupied cell somewhere near each isolated detection.

I = 300, Figure 3-5

For the most part, these trends continue with the addition of another 100 measure-

Iments (Fig. 3-5). The exception is the apparent divergence of the Ig. I :_ 6 IP and

CID results. Shortly before the time shown, the g' centered near (20, 80) achieved

capacity. The nearby detection momentarily thereafter was processed as if it were

independent by each algorithm, with significantly different results. In contrast to

the map produced by the IP algorithin, the CID result shows aim apparently inflated

posterior, a trend that will worsen as more measurements are added. Unfortunately,
relaxing the CIM assumption according to (3.7b) effectively lowers the prior before

requiring conditional independence to hold, thereby making the assumption worse.

Eventually, the posteriors conditioned exclusively on nion-detections will become low

enough to cause numerical failure.

t = 1000, Figure 3-6

By t = 1000 (Fig. 3-6), only the extended-standard and IP results are free from obvi-

ously inflated posteriors. Most occupied cells in the extended-standard map are asso-
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Figure 3-7: Error between the actual and expected number of occupied cells versus
time for maps produced using the IP algorithm. Each curve represents the average of
3 trials using either the correct prior PO = PO or else the underestimate Po = 1PO.
All trials were conducted with Ig9 I = 1. The error bars indicate standard deviation.
Results with g'.I < 6 were within one standard deviation of the results shown.

ciated with posteriors below the prior making the maj)ping result essentially worthless.

In contrast, the IP maps exhibit peaks of relatively uniform mnagnitude near all oc-

cupied cells (see also Fig. 3-9). Nevertheless, all maps except the extended-standard

map in Fig. 3-6 show raised p)osteriors near occupied cells and could potentially be

useful to guide a refined search. I explore this idea in the next section.

Summary

Most of the maps of Figs. 3-4, 3-5. 3-6 indicate high posteriors over large areas that

are grossly inconsistent with both the assumed low prior 0.001) and time actual

mnilnber of occupied cells (nine). The IP results do not show obviously high posteriors.

Indeed. Fig. 3-7 supports the contention that the algorithln is capable p)redicting the

actual number of occupied cells even when that nuniber does riot corresp)ond well

to the assumed prior. The estimates shown ini Fig. 3-7 are the expected number of

occupied cells:2 E [E-' PI I A'] = E , P [m, I A'].

Obviously these results apply strictly only to the paranmeters tested here. Emnpir-

2Higher order moments are problematic to estimate without assimming independence of the
lmarginal posteriors.
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ical evidence from addition simulations suggests these inter-algorithmn treindi"s persist

over a range of parameters; however two qualitative observations are of note. (1)

Increasing sensor aperture reduces the quality of the results, not only blecauise the

sensor is consequently less specific, but because measurements tend to be conle more

correlated and cell posteriors more dependent thereby exacerbating the weaknesses

of these algorithms. (2) Increasing Pk reduces the correlation between measurements

and tends to blur the distinctions between the algorithms described here. Of course

the degradation in sensor performance implied by high I", also produces degraded

mapping results.

Map Evaluation

The large number of detections in the sinmulations presented ab)ove prevent coiilp-

tation of the the correct posterior via (2.21) and hence preclude evaluation of these

miaps in ternis of absolute error. Many previous investigations into OG mapping have

relied on entropy to evaluate maps and to guide robotic exploration [79. 118]. The

entropy of the posterior on p,. is:

H,.I At =-P [74 11)', D)'] log 2 (P [m, IDL f)])

-(1-P[", ), f)t] ) log,,(1 - P [m71 11), f)']) (3.28)

This expression captures the information content in the posterior. Ai entropy of

1 corresponds to total uncertainty (P [rn, I Dt, Dt] = 0.5); and entropy of 0 corre-

sponds to complete certainty in either occupancy (P [T71. J/)t 0] = 1) or emptiness

(P [rnI D', 0Jf] = 0). Assuming independence of the posteriors, the total entropy of

an OG Inap is given by the sum E I HP., A•.

Unfortunately, the utility of entropic measures of iiap quality are limited in the

context of a low prior. Low priors imply a very low sumnnied entropy before any mea-

suremnents are made. Subsequent non-detections do reduce iiap entropy, an(l since

independence of the posteriors is maintained when conditioned on exclusively non-

detections, the sumiied entropy remains exact. In contrast, detections tend to raise

3Singh [109] offered another perspective on entropic measures in OG mapping. He investigated
the rate of entropy change to evaluate the efficiency of sonar mapping with respect to sensing
modality, navigation uncertainty, and survey parameters.
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summed map entropy, and furthermore, because the posteriors are no longer inde-

pendent, the summed entropy no longer represents a measure of the true information

content of the map. This behavior persists even in the over-confidently occupied maps

produced by some of the algorithms explored above. Though large portions of the

maps produced by those algorithms are confidently occupied or empty, the boundary

between these regions tends to increase in length as the area of the confidently oc-

cupied regions increases. The alternative measure of map quality introduced next is

motivated by the intended use of these maps to guide subsequent higher-resolution

survey in small areas around probable occupied cells.

Suppose that a fixed fractional percentage of the map likely to be occupied will

be revisited (re-surveyed) on a subsequent survey to refine the locations of occupied

cells within these regions. In that case, precise posteriors are not critical as long as

the highest posteriors occur near occupied cells. From this perspective better maps

will have more tightly constrained high posterior regions around each occupied cell.

Figure 3-8 shows the fraction of the total number of occupied cells within the revisited

portion of each map for various fixed revisitation percentages averaged over 10 trials.

Prior to t z 150 all the algorithms produce, on average, nearly identical results. This

is because early non-detections act to reduce the posterior in large, uninterrupted

areas of unoccupied space. At times t > 200 the differences in scores between the

algorithms reflect the different methods used by each to process detections. Only

tile IP algorithm shows consistently better performnance for the revisit ation-fract ions

investigated. The largest differences between using no grouping (Ig'9I = 1) and the

largest miaximum group size investigate (jg'. < 6) are apparent in the CID results

(bottom panel, Fig. 3-8). With jgtj < 6, the decline in map score evident in the top

paiiel of Fig. 3-8 after t ; 200 is delayed. Nevertheless, even under this further relaxed

CIM assumption, the CID results are superior to the standard algorithm results over a

relatively short interval before severely inflated posteriors begin to degrade the result.

There is also nmild improvement in the IP results for Ig9I < 6. The extended-standard

algorithm scores surprisingly well considering the maps of the previous section., a

result which can again be attributed to the action of non-detections.

Fixing the fraction of the map to revisit a priori is a straightforward way to

design subsequent sampling strategies and is apparently quite robust to errors in

the marginal posteriors. That said, more efficient strategies are likely to require
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Figure 3-8: Percentage of the total number of occupied cells within the revisited xiap
portion. averaged over 10 trials. The uipper two panels show average scores versus tiine
for each algorithm and various revisitation map fractions (indicated to the left of each
panel). The bottom panel slows the average ilnprovenment attained tising g1. < 6
across all revisit at ion-fractions for each algorithm.

accurate posteriors upon which to base real-time decisions. For instance. posteriors

suggesting a high local density of occupied cells suggest a more valuable target than

widely dispersed peaks because a sampling vehicle would need to spend less time

transiting enmpty regions. Figure 3-7 supports the conjecture that the IP algorithin is

capable of estimating posteriors consistent with the actual nuniber of occupied cells.

For the IP algorithm Fig. 3-9 investigates the behavior of the expected number of

occupied cells within selected sub-regions of a map. The results show reasonably

accurate and stable estimates of the actual nuimber of occupied cells in each region

after a few hundred measurements. With g'j <- 6, these estimates fluctuate less.

Unlike the maps produced by the other algorithms, these maps could be used to drive
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Figure 3-9: Expected nurbers of occupied cells within selected regions of the miap
of Fig. 3-6 produced by the IP algorithtn. The left panels show the OG maps after
t = 1000 measurements for inax ]g' E {1 6}. To facilitate intercoinparison. the colors
indicate posterior probability of occupancy rather than log,( rt. as in the previous fig-
mres. The right panels show the expected malber of occupied cells vs. time within the
regions highlighted in the left panels. Both results are reasonably consistent with the
actual number of occut)ied cells in each region suggesting the IP algorithln is capable
of producing reasonable estimates of the true marginal posteriors. The results pro-
(luced by processing subsets of detections (Ig'I < 6) show reduced variance over those

produced without using subsets of detections ([g'.I = 1).

survey optinization strategies that trade-off transit time with the expected number

of occupied cells within higher-resolution survey areas.

3.4 Summary, Contributions, and Future Work

I have devoted a large fraction of this chapter to exploring the appearance of inflated

p)osteriors in OG inaps produced in low prior environments as a consequence of the in-

depenidence assumptions required. Indeed their appearance in some early simulations

was the motivation behind the exploration of alternative OG algorithms that formied

the subject of Part I of this thesis. Two classes of novel algorithms were introduced.

based on: (1) partial relaxation of the standard CIM assumption required in standard

OG nmapping, or (2) the assumption that the marginal posteriors renmain indep)endent
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even following detections. Figure 3-10 summaries the application domain of each al-

gorithin studied in terms of the expected number of detections and prior probability

of occupancy.

The IP algorithms hold the greatest potential for practical significance. They

generated estimates of the posteriors that were consistent with the true number of

occupied cells and produced better maps as the number of measureinents increased.

Furthermore, the improvements attained with IP by processing subsets of detections

exactly with a maxinum subset size Ig' <- 6 instead of process each detection imlne-

diately upon reception (Ig' I = 1) were modest suggesting that most of the enhanced

performance of this algorithm relative to the standard algorithm in a low prior envi-

ronnient can be attained with no additional computation or storage cost. A potential

weakness of this class of algorithm is the dependence of their results on the order with

which measurements are acquired. Regular sampling trajectories may exacerbate this

weakness and deserve further study. Nevertheless the successful applications of the

IP algorithm to real world hydrothermal vent prospecting data appear in Cli. 5.
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large numubers of detections. Of couirse, these boundaries are subject to the parameters
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and tenls to exacerbate the differences.
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Chapter 4

Hydrothermal Plume Survey by

Autonomous Underwater Vehicle

Recent expeditions utilizing the Autonomous Benthic Explorer (ABE) AUV have

demonstrated the effectiveness of an AUV for ineso-scale vent localization [39. 65].

This chapter explores the hydrographic data attained by ABE during these expe-

ditiolns and develops constraints oil seafloor vent location from detections of llhydro-

thermal effluent registered by the vehicle at various heights above the seafloor. AUV

data is distinct froim the more typical CTD-derived data usually employed for vent

prospfecting (e.g., [4]). Whereas towed CTD packages generate vertical slices through

the plume, AUVs are inore suited to producing densely sampled horizontal slices.

Such surveys are more likely to intercept the relatively small signature of a, buoyant

plumne (BP) elmanating from a seafloor vent froin within the much larger spatial sig-

nature of the so-called non-buoyant plume (NBP) that forms at soine height above

the seafloor as a result of persistent venting.

Depending on the tracer, hydrothermal plumes can be detected at a range of sev-

eral kilomneters in situ and out to thousands of kilometers with laboratory analysis

of water samples [78]. Hydrothernial plumes inhabit a broad range of spatial and

temporal scales, only a subset of which are resolvable by a surveying AUVM and not

all of which contain useful information about the source location of that phlme. A

perisistent themle throughout this chapter is to identify which scales are resolvable

on the time and length scales imposed by an AUV survey, and subsequently to quain-

tiftv the uncertainty inherent in the spatial relationship between water-colummii plume
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effluent and seafloor source location.

The first contribution of this chapter is a methodology for the classification of

certain hydrographic data collected by an AUV as indicative of background, NBP, or

BP water. A necessary precondition for succussful localization of hydrothernial vents

is the identification of phmle effluent in vehicle sensor data and the interpretation of

these data in terms of the constituent components of a hydrothernmal phlune. Depend-

ing oil a tracer's water colunin residence time and the predictability of its evolution.

the presence of certain tracers can constrain the age of the plume being observed. I

describe the processing applied to four tracers measured on ABE (potential tepilpera-

ture 0, acfOBS. reduction-oxidation potential (eH), acfVVA), each of which exhibits

different characteristics depending on the stage of plume evolution.

The second contribution presented in this chapter is a model for the probable lo-

cation of a buoyant plune's source oii the seafloor parameterized by vehicle height at

the timle of detection. Background currents, tidally forced or otherwise are a signifi-

cant environmental influence affecting hydrothermal plumne structure. With the aid of

an on-board acoustic Doppler current profiler (ADCP) and anl accurate estimate of its

own velocity-over-ground and heading. aii AUV call measure water colunn velocities.

The degree to which these measurements will provide constraints on source location

depends on the degree to which the measured current record represents the temporal

scales resolvable in the plumiie, the relative importance of background crossflows in

defining plume structure, and the degree to which those influences can be modeled.

The inodel enables an assessment of the refinement in the source location attainable

by incorporating measurements of ADCP-derived crossflow velocity.

The development in this chapter considers only the information contained in sin-

gle water-column detections in isolation, without regard to the spatial arrangement

of multiple plume detections or regions in which no anomalies were observe(d. The oc-

cupancy grid (OG) mapping algorithms of Part I provide a mnethodology to generate

maps of seafloor source locations consistent with all measurements; those results forii

the subject of Ch. 5. The current chapter develops the necessary background, specifi-

cally the probabilistic mapping between source location and water coluin detections,

and methods to distill raw sensor data into the binary detection/inoil-detectiomi form

required by the methods of Part I.

This chapter is organized as follows: Section 4.1 provides a brief overview of the
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physics governing hydrothermal plume evolution as they pertain to AUV-based sur-

vey. Section 4.2 describes the 3-stage nested survey methodology employed to localize

hydrothermal vent sites with the ABE AUV. Section 4.3 presents the methods ap-

plied to raw hydrographic data from these surveys to identify hydrothermal anomalies

and presents maps of hydrothermal plume activity. Section 4.4 demonstrates miea-

suremnent of background current profiles from a vehicle-Inounted acoustic Doppler

current profiler (ADCP). Section 4.5 presents a conceptual model for short-timescale

plume evolution, which I then employ to predict the utility of measuring current.

The unknown parameters of this inodel are determined by comparison to successfully

localized seafloor source locations.

4.1 Hydrothermal Plumes from an AUV's Perspec-

tive

Hydrothernmal vents occur where volcanic and tectonic processes induce the circulation

of seawater through young oceanic crust.' Hot, cheinically altered seawater is per-

sistently discharged, or vented, as a turbulent, buoyant plumie (BP) that rises above

time sea floor to a height of 100 -400 m in typical hydrographic settings [110], and

then spreads laterally along isopycnals as the so-called non-buoyant phune (NBP).

This structure suggests a natural strategy for "homing-in" on the source of venting:

establish contact with the large spatial signature of time NBP; find the buoyant stems

within, and finally follow these to the seafloor.

The following two sections provide a brief overview of the structure of and scales

inhabited by hydrothermial plumes and outline the physical processes that drive their

evolution.' I focus here on the imiplications for robotic searcher. Specifically, what

'Not all hydrothernmal venting is driven by a magmatic heat source. In particular, an exothermic
reaction between seawater and young oceanic crust drives recently discovered hydrothermal venting
at the Lost City site on the Mid-Atlantic Ridge [55].

2 For the interested reader, McDuff [82] and references therein review physics of hydrotherinal
plume evolution in the buoyant phase through the use of classical models of buoyant plume evolution
[89]. Lavelle [661 employs a large eddy numerical simulation to investigate the effects of crossflow.
Middleton and Thomson [84] also investigate crossflow, but from an integral model perspective. The
physical processes governing evolution of the NBP are more varied on account of the larger range
of scales occupied by the NBP. Lupton [781 provides an overview; Helfrich and Speer [461 define
the scales involved; Wetzler et al. [127] study the influence of ambient currents; and Thomson et.
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physical processes affect the plume as mapped through the vehicle's trajectory and

visualized through the AUV's sensors.

4.1.1 Buoyant Hydrothermal Plumes

The dynamics of typical buoyant hydrotherinal plumes are dominated by turbulent

entrainmnent [119] of the surrounding seawater. This process dilutes vented hydro-

thermal effluent by a factor of 104-105 by the time the density of the imuxed fluid

matches that of the surrounding fluid at its terminal rise height [77]. Turbulent en-

trainmnent of ambient waters inakes regional hydrography an important influence on

the trajectory followed by an ascending BP, and acts directly to obscure source loca-

tion by expanding phnume diameter during ascent. Ambient crossflows also influence

)lume trajectory by bending the plume centerline in the direction of flow.

Turbulent Entrainment In a time-averaged sense. over the course of its rise froom

the seafloor a buoyant hydrothermal plume will have expanded laterally fromn oil the

order of a few centimeters at an individual vent orifice to a diameter of 50 -100 in

at equilibriun height based oil model predictions [110]. Instantaneously. the buoyant

plume is resolvable as a patchy, irregular structure of high intensity anomalies inter-

spersed with unaltered background water [78]. This irregular structure is the result of
the turbulent entrainment of surrounding water as tlie plume ascends: the buoyancy

of time discharged vent water creates a strong vertical instability which in turn sets up

shear instabilities at the edges of the ascending fluid resulting in eddies that engulf

aInbient fluid and mnix it into the interior of the plume [119]. From the perspective of

a robotic searcher, this implies time-averaged quantities like plume width and mean

tracer concentration. which carry information about (list ance-to-source and source

intensity and which could define a concentration gradient toward the source, are diffi-

cult to resolve. However., detection is facilitated by both the imuch higher than average

tracer intensities encountered, and by the rapidly fluctuating signal. characteristics

which become more pronounced as the plunme's spatial signature decreases toward the

seafloor (Fig. 4-1).

al [114] explore venting-induced circulation and the role of bat hyinetry.
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Figure 4-1: In situ temperature records collected by ABE as it passed at approxi-
imately constant speed (0.6 m/s) through buoyant hydrothermal plumes emanating firom
the Kilo Moana vent field on the ELSC (20'3' S. 176' 12' W): (a) 300 in above bottomn
at the depth of the NBP; (b) 50 in above bottom; (c) 5 in above bottom. Plots (b)
and (c) indicate repeated contact with individual nearby plume stems, whereas plot
(c) shows a relatively broad peak that may be the result of plumes from individual
sources below having coalesced. In all cases the turbulent nature of buoyant plumes is
evident in the fluctuations of the signals, but its spatial extent increases with height
off-bottom while the magnitude of the observed temperature anomaly decreases by
two orders of magnitude. Time series like these are characteristic of vent-prospecting
surveys conducted by ABE. Additional examples are provided in App. F.
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Regional Hydrography Regional hydrography, particularly the strength of the

(stable) density gradient, plays a critical role in determining terminal rise height.

Steeper gradients result in lower rise heights because the density deficit of the ris-

ing plume relative to background water at the same height decreases more rapidly

with height due to both the steepness of the background density gradient and the

entrainment of relatively denser waters during ascent. In contrast. the dependence of

rise height on source heat flux over the range of typical black smoker vents (1 MWto

100 MW) is relatively weak, producing less than an order of magnitude difference

in ternfinal rise height for the same density gradient [78]. Temperature and salinity

profiles (not just the resulting density gradient) are also important. Though both

the deep Atlantic and deep Pacific are stably stratified. the salinity gradient in the

Atlantic decreases with depth, whereas it increases in the Pacific. Curiously, this

difference produces a warm and salty NBP relative to background in the Pacific anld

a cold and fresh NBP in the Atlantic [110]. Furthermore. source chemistry (salinity)

affects both rise height and the temperature anomaly associated with terminal rise

height [82], to the extent that expected sign of the anomnaly changes (e.g. [108]). The

dominant role of regional hydrography is fortuitous from the perspective of a robotic

searcher because background profiles can be determined a priori (froom CTD casts) or

nleasured by the vehicle before comnmencing a search (e.g. during its descent).

Ambient Crossflow Background currents impart their momentum on the rising

water in buoyant plume stems, thereby bending the plume's centerline in the di-

rection of the crossflow. Acceleration to crossflow velocity is comJplete within the

immediate vicinity of the source [84]. Crossflows result from the conibined influence

of tidal currents, basin-scale circulation, episodic events, and circulation induced ly

the venting itself [114]. Crossflow velocities at hydrothermal vent sites vary: Data

acquired by Thomson et al. [113] oil the Endeavour Segment of the Juan de Fuca

Ridge reveal tidally-forced oscillatory currents of up to 10 cmm/s with superimnposed

steady currents of 5 c('r/s and strong attenuation of these currents within the con-

fines of the axial valley. The maximum crossflow magnitude observed by ABE from

on-board ADCP measurements as of 2006 was 16 cm/s at a site omi the Southern

Mid-Atlantic Ridge (SMAR) (Fig. F-73). The location of buoyant plumnes high in the

water colunmn reflects the combined effect of turbulent entrainment and superimposed
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advection. For a characteristic rise timie of 1 11 [110], a crossflow of 10 cm/s will a(lvect

some effluent a few hundred meters froni its source. Crossflows also reduce rise height

by as much as a factor of two for very strong crossflow magnitudes of 20 cIn/s. [84]1.

Other Factors Other factors affecting affecting the behavior of hydrothermial plunies

in the buoyant phase are source geometry, entrainment of nearby diffuse venting, al-

teration of the background profile by persistent venting, and density alteration on

account of the presence of suspended particles [82]. Nearby plumies from multiple

sources may also coalesce as their expanding cross-sections interfere with one an-

other.

4.1.2 Non-buoyant hydrothermal plumes

The laterally-spreading non-buoyant plume evolves according to a self-imposed pres-

sure gradient, the influence of background currents (mean. tidally forced. and venting-

induced). and beginning at scales 0 (1000 kin). by the rotation of the earth [46]. The

vertical thickness of time non-buoyant phlne 0 (100 in) is dependent upon variations

in the intensity of background currents which alter time rise height of buoyant plunmes

by inducing lateral drift during ascent and thereby increasing time amount of mixing

achieved for a given rise height.

At the point of neutral buoyancy, the remmaining vertical imonmentumn of the rising

plumme water dictates that it will overshoot before sinking back into the non-buoyant
layer. This fact has important imp)lications for AUV-based search because it implies

buoyant stemis completely penetrate the non-buoyant plume. and can be detected by

an AUV surveying within its vertical confines. 4

Once the depth of the non-buoyant plume has been established, an AUV ofters

certain advantages over a towed package as a imeans of finding the relatively small

scale 0 (100 ii) signature of buoyant stems within the non-buoyant plunie. AUVs

are highly maneuverable, relatively fast, and can navigate with a precision on the

3Rudnicki and German [108] report field evidence of rise-height modulation by crossflow speed
from a continuous record of a stationary vertically-oscillating CTD cast.

"This simplistic perspective is strictly true only for a single BP in an otherwise steady environ-
ment. Multiple sources and dynamic crossflows can create non-buoyant layers over a range of a few
hundred meters depth, sufficiently thick that not all buoyant stems will necessarily penetrate this
layer completely.
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Figure 4-2: Optical backscatter (OBS) data collected by ABE over High Rise vent
field on the Juan de Fuca Ridge (47054' N, 129'10' W). The left plot shows OBS
plotted according to the position of the vehicle at the time each sample was taken, i.e.
as if the data were acquired synoptically. In reality, the vehicle commenced surveying
in the upper right corner of the inner high-density grid and completed its survey on the
outer arm of the spiral 12 h later. The image is not representative of the true state of
the plume at the conclusion of the survey: the sequence of images on the right show
snapshots of survey data during the dlive with the position of each OBS measurement
adjusted for integrated current velocity from the time the sample was taken. The
vehicle's track is shown in red. During the first part of the survey, ABE re-sampled
essentially the same plume water repeatedly as it advected to the southwest. Credence
to this interpretation of data is provided by the consistency between OBS ineasured on
tracklines passing through the predicted positions of old measurements.
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order of meters with the addition of external acoustic beacons [134]. The usual

trade-offs between coverage, resolution and synopticity [129] still apply of course.

but for survey areas O (kin 2 ), AUVs canl produce plume maps that are spatially of

higher resolution (precise tracklines) 5 , and perhaps also temporally closer to synoptic

(higher speed). Additionally, water velocity profiles from ADCPs., which are becoming

standard instrumentation on AUVs, can be used to compensate inaps for asynopticity.

as was donie to create the sequence of OBS maps in Fig. 4-2. Finally, and perhaps

most significantly. AUVs have sufficient computational resources aboard to enable

(Iata-drive'n adaptive surveys [12, 31. 134].

Buoyant plume steiis are discernible within the non-buoyant plunie both pthysi-

(ally aii chemnically. Sufficiently close to the centerline of a rising plume stem, the

net upward transport of water is often sufficiently strong to overcoiie ABE's vertical

thrusters resulting in a forced excursion from desired depth.6

Currents with strong tidal components complicate the process of inferring the lo-

cations of buoyant plume stems directly from measurements of essentially conserved

tracers (e.g. potential temperature). Small Inean compoIlents (donmiliated by tidally

forced oscillations create a plume structure that is simultaneously variable on tidal

tiiiescales and yet represents the integrated output of several tidal cycles worth of

discharge (see particularly [120, 127]). As a result. locally high colicentrations, es-

pecially of conservative tracers like potential temperature. resulting from periods of

slack tide caii occur far from buoyant stemis. Records from multiple tracers subject

to differing reaction rates with seawater can constrain the age of non-buoyant plume

water [53]

5Both towed assets and AUVs ('anl be acoustically navigated in anl absolute frame to yield an

accurate map; however, because they lack the maneuverability that is available to AUVs, plume

maps produced with towed assets are limited in resolution.
6 Previous expeditions to hydrothermal sites on the Juan de Fuca Ridge with ABE have employed

anl acoustic travel-time velocimeter to directly measure vertical velocity in support of hydrothermal

heat-flux measurements [111, 132].
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Figure 4-3: The mid-ocean ridge system, and the locations of two recent hydro-
thermal vent-finding expeditions that utilized an AUV as coomplementary to towed as-
sets. ELSC (20'3' S, 176'12' W): Eastern Lau Spreading Center (September/October
2004). SMAR (4054' S, 12'28' W): Southern Mid-Atlantic Ridge (Mar'ch 2005).

4.2 Background: A Three-Stage Nested Survey

Approach

On two separate expeditions, to the Eastern Lau Spreading Center (ELSC) (Septeni-

ber/October 2004) and to the Southern Mid-Atlantic Ridge (SMAR) (March 2005)

the AUV ABE [133] was emp)loyed to localize the undiscovere(d sources of several

known hydrothermal plumes and to provide preliminary characterizations of the as-

sociated vent fields upon discovery (Fig. 4-3). Critically, in both cases ridge-scale

hydrographic and bathymetric work carried out using towed and lowered assets had

previously identified promising sites (ELSC: [80]; SMAR: [39]). This type of data

is essential for initially establishing contact with the NBP, as the task of finding

0 (10 kui) plunes on the ridge-scale 0 (100 1000 kin) reimains beyond the energy

capacities of most AUVs.

The AUV perforined three successively finer-scale nested survey dives at each site.

according to the methodology first deployed in the ELSC [39, 65]:

"* Phase-l: Hydrographic mapping of the NBP (200 400 in altitude)

"* Phase-2: Hydrographic and multibeam bathymetric niapping (50 in altitude).

"* Phase-3: Photo-niosaicking of individual vent fields (3 5 in altitude).
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Each stage was executed at progressively lower altitudes and finer trackline spacing

based upon the results of the previous stage and any available ancillary data, a pro-

cess that broadly reflects the physical structure of hydrothermal plumes themselves

(§ 4.1). Ideally, Phase-1 hydrographic data was sufficient to locate BP sterns inter-

secting the NBP, or at a minimum to better constrain regions of highest intensity

anomalies.7 Assuming conclusive results from Phase-i, Phase-2 hydrographic data

usually contains multiple BP interceptions, further constraining the extent of any

vent fields. Phase-3 data then serves to map individual hydrothermally active regions

within a vent field on a scale of meters and via high-resolution digital still photogra-

phy to provide preliminary data for biological characterization of the site. Figure 4-4

shows an example of tracklines from Phase-1 through Phase-3 at an ELSC site.

Most of the data in this chapter was acquired over the course of several Phase-1

through Phase-3 nested survey progressions. The dataset is unique in that all of

it was collected by a single vehicle (ABE) and includes both water-column plume

data (from Phase-1 and Phase-2 dives) as well as groundtruth vent locations (from

Phase-3 dives). Given the apparent success [39,65] of the strategy outlined above, one

might legitimately question the value of further analyzing the data to improve search

strategies. After all, at least some vent fields were located at most sites following the

discovery of NBP activity by other means.8 On the contrary, there is a great deal

to be gained from careful a posteriori analysis of this data, particularly with an eye

toward automation of the above procedure on future expeditions:

reliability: On occasions where no vent fields were discovered on Phase-3 (lives, could

automatic interpretation of data have indicated that Phase-i and/or Phase-2

data was insufficiently conclusive to warrant progressing to the next stage?

efficiency: How efficient (in terms of trackline length) was human design of Phase-2

and Phase-3 dives, i.e., was the uncertainty in source location based on water

'It was already remarked upon in § 4.1.2 that 0 (kin) structure is strongly influenced by oscillatory

tidal currents which can produce strong anomalies not directly associated with the instantaneous
locations of buoyant feeder plumes.

'ELSC: successful localizations at 3 out of 5 sites; SMAR: successful localization of two distinct
vent fields at one site.

115



-20-3.00 11

K4

-20 -3.50 J

-20 -4.00 -Y

-20-48.50 N1680 / 1675

Longitud

Figre4-4 Vhice raclies ro theenesedsurey (Pas-1,Phse-, has-3

ata ydoteralsie n h E-2((0'-5,.06120W)

column ~ ~ ~ ~ ' deetosoe r neetmtd

autonomy:~- Mos imotaty col hssrtg ecr ieotaunmusyy

Figure n t-4 e vehicle tacliesig frm uhrcestied suvys(hasesfth ive Pbased-2, itaseow

116



autonomous interpretations of the data so as to make better use of available

bottom time?

To attain answers to these questions, interpretation of the raw data from Phase-I and

Phase-2 has to be made automatic and quantitative. That is the goal of the next three

sections. Lest the potential savings associated with automation be underestimated,

consider that the ratio of time associated with inter-survey recovery, human analysis

of the data acquired, vehicle maintenance, and re-deployment relative to the time

spent actually collecting data on these expeditions was roughly 2-to-1.

4.3 Anomaly Maps

A necessary component of any strategy for finding hydrothermal vents based on the

locations of water-column plume detections is reliable classification of water-column

data into background water unaffected by hydrothermal input and plume water. Hy-

drographic sensors measure absolute concentrations of chemical or physical quantities,

not the presence or absence of hydrothermal effluent. Background values must be sub-

tracted from raw measurements to arrive at the portion of the signal that represents

hydrothermal input. This would be trivial if background concentrations were known

perfectly. In reality, many tracers have background concentrations that are subject to

variability in space and time, and inevitably suffer some contamination from sensor

noise.

In this section I develop a methodology for the detection of hydrothermal effluent

from sensor measurements collected by an AUV. I demonstrate its broad applicability

by presenting results using four markedly different tracers recorded by the ABE AUV

(described subsequently) during several recent vent-prospecting missions.' I do not

claim the methodology presented here is optimal, just that it is both effective and

practical, particularly in that the number of tunable parameters is deliberately kept

small. Different strategies are required for detection of effluent in the non-buoyant

plume (NBP) versus buoyant plume (BP) stems on account of the vastly different

spatial scales inhabited by each. Fortunately, this separation in scales also enables

9 Complete results for ABE dives 128, 131, 136, and 137 (ELSC); and dives 150, 151, and 152
(SMAR) appear in App. F. In this section, I restrict my attention to ABE-126, a Phase-1 dive at
ELSC that included interception of a buoyant plume.
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reliable detection of BP stems from within the NBP, the key component of the three-

phase survey strategy outlined in § 4.2.

NBP The approach to detection of the NBP is essentially analogous to the stan-

dard techniques applied to lowered or towed CTD data (e.g. [4, 77, 78]), with two

enhancements tailored to autonomous operations:

1. Self-contained: background tracer profiles are determined using data collected

during vehicle descent.

2. Classified output: continuous-valued anomalies are classified into statistically

significant detections and non-detections of plume water based on deviation

from the profiles determined during vehicle descent.

The first of these eliminates the need for cross-calibration between sensors aboard

the AUV and other platforms and minimizes the impact of spatial and temporal

variability in background tracer concentration. The second allows delineation of the

plume and could potentially provide the necessary input to a stochastic mapping

algorithm like that applied to BP detections subsequently in Ch. 5.O As the goal is to

disambiguate NBP water from unaffected background water, the method applies only

to conservative tracers or non-conservative tracers (see § 4.3.1 for a, definition of these

terms) with long residence times. That said, non-conservative tracers with relatively

short residence times have proven extremely useful in qualitatively constraining the

location of BP stems from Phase-i ABE data in the event of no definitive interception

of buoyant effluent. I return to this point in the conclusion of the present chapter.

BP In contrast to a typical NBP resolvable in situ at kilometer scales, typical

buoyant plume stems represent a target orders of magnitude smaller in horizontal

extent. Whereas a Phase-1 survey conducted with ABE may remain in contact with

a NBP over most of the dive, BP detections are rare. Consequently methods for

BP declaration based on outlier detection are suitable, whereas they would likely

fail if applied to NBP detection. An outlier-based approach avoids the need for an

assumed distribution to describe measurements while in contact with BP effluent.

"1°The potential payoff is significant as the scales over which effluent in the NBP is detectable in
situ far exceeds the spatial scale of BP stems within the NBP.
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That feature is attractive, as the turbulent structure of a BP implies a strongly

fluctuating signal whose distribution would be difficult to predict in any case, and

especially so without a priori knowledge of source parameters. The vigorous and

relatively unpredictable fluctuations in tracer concentration within a BP strongly

favor an outlier-based approach to detection.

Ultimately the outlier-based approach still comes down to the careful choice of a

threshold. The principal challenge to such an approach is variation in the background

(potentially significant in hydrothermally active areas) which does not necessarily ob-

scure BP activity so much as make choosing a threshold a potentially brittle undertak-

ing. Automatic threshold determination is desirable and should minimize the number

of parameters requiring manual tuning. The approach pursued herein first removes

predictable trends in tracer concentration before batch-processing each tracer to au-

tomatically assign a meaningful threshold. The last steps classify measurements into

binary detections and non-detections according to their status as outliers, and finally

combine these binary classifications into a single binary indicator variable based on

a heuristic assessment of the specificity of each tracer. Batch-processing trades the

potential for real-time detection (and perhaps triggering of special vehicle actions)

for increased robustness, in line with the philosophy of a nested survey approach to

search.

4.3.1 A Taxonomy of Hydrothermal Tracers

Hydrothermal effluent contains a wide variety of chemical species that react at varying

rates with seawater so that the chemical signature of a plume is dependent in part

on water-column residence time, but also on source water composition, background

water composition, and biological factors [73]. At the coarsest level, hydrothermal

chemical hydrographic tracers are of two types [78]:

conservative tracers whose concentrations are affected only by passive advection

and diffusion, and

nonconservative tracers whose concentrations are affected in addition by chemical

reactions, biological processes, or radioactive decay.

The most readily measured conservative hydrothermal tracers are the physical

properties temperature and salinity. Though the density of a NBP is equivalent to
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the background value by definition, the potential temperature and salinity within

this layer deviate from background profiles [77]. As mentioned previously, the sign of

these anomalies is dependent on background stratification, resulting in a warm and

salty hydrothermal anomaly in the Pacific and, counter-intuitively, a cold and fresh

hydrothermal anomaly in Atlantic waters [110].

Of the non-conservative chemical species enriched in hydrothermal source fluids,

hydrogen H2, methane CH 4 , iron Fe, and manganese Mn have received the most at-

tention [5,73], and many can now be measured in situ on packages suitable for AUV

deployment [13,17,96,105,112]. While some of these new instruments have seen de-

velopmental deployment on ABE [38], that data will not be considered here. Instead,

I focus on data from two instruments that provide proxy measurements related to the

presence of these chemical species: optical backscatter (OBS) and reduction-oxidation

(redox) potential (ell). OBS is related to some of the non-conservative chemical trac-

ers listed above by virtue of the particulate matter they form as a result of chemical

transformations initiated upon contact with seawater. Redox potential provides an

indication of the age of nascent plume water by measuring the the degree to which

these and other reactions have progressed.

The chemical evolution of hydrothermal particulate matter depends on oxidation,

precipitation, dissolution, adsorption and scavenging reactions, many of which are

biologically mediated [53,73]. Particulates settle out from the water column at vary-

ing rates to form distinctive deposits near hydrothermal sites, or slowly dissolve back

into the water column once mixing has led to sufficient dilution with ambient seawa-

ter. Optical backscatter and transmissivity provide sensitive and economical optical

proxies for particle concentration and are increasingly used to infer the presence of

hydrothermal venting without other indicators [5,7]. The complexity of the physical

and chemical transformations undergone by hydrothermal particulates as well as the

particle-size-dependent nature of optical measurements makes these measurements

difficult to interpret in terms of source proximity. Nevertheless, with the exceptions

of false positives due to sediment resuspension and missed detections of diffuse or

low temperature venting, optical properties of the water column "almost invariably

provide a reliable indicator of underlying hydrothermal activity" [5].

The reduction-oxidation (redox) potential (eH) of an aqueous solution is a measure

of the affinity of dissolved chemical species for acquiring electrons, a process known as
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reduction. Measured in volts, eH is expressed relative to the redox potential of hydro-

gen, which is set to zero by definition. Substances with positive redox potentials are

more capable of oxidation than hydrogen; substances with negative redox potentials

are more capable of reducing. Hydrothermal fluids tend to be enriched with reducing

chemical species from circulation through young oceanic crust prior to emission from

vents as plumes. Contact with seawater will oxidize these chemical species, though

at varying rates [53]. Thus anomalously low eH is indicative of recently expelled

hydrothermal effluent [95].

4.3.2 Anomaly Definition

I use the term anomaly to refer to the signed difference between the value of some

scalar quantity v and its background value v0 measured at identical reference condi-

tions y. In notation of [120], Ayv = v(y) - vo(y). (I reserve the label detection for

anomalies that exceed some to-be-determined threshold.) Background values could

be tabulated over the relevant ranges of the reference variables, or assumed to satisfy

some functional relationship v0 = f(y). A complete description of the background

would be given by a y composed of time and the three spatial coordinates, though

other choices of reference variables might prove more suitable. Indeed, most hy-

drographic parameters in the deep ocean vary strongly with depth and only weakly

otherwise. An appropriate choice of reference variable(s) should reflect the expected

complexity of the background relationship and also the fidelity with which that rela-

tionship can be known a priori or determined from measurements. Tracers specific to

hydrothermal activity, and therefore lacking any dependence on reference variables,

can be accommodated with the notation Av.

Algorithm 8 outlines the entire procedure applied to raw sensor measurements.

These are assumed to fall into two classes: (1) tracers exhibiting variation with depth,

and (2) tracers specific to hydrothermal venting. Raw data are first pre-processed

in a way specific to each sensor (detailed in the text for the tracers studied herein).

The next steps remove trends due to background profiles, and in the case of BP-

detection, also contamination from background profile alteration (for surveys below

the NBP) and the NBP (for surveys within the NBP). The final steps generate a

binary output on the basis of an automatic threshold determination. These steps are
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different depending on whether detections should reflect NBP or BP contact. In either

case, final declarations of NBP contact and BP interceptions are made by combining

indicator variables from k tracers according boolean functions f : Bk , B.

The key computations involved in each step are provided as pseudo-code along

with a flowchart to indicate signal flow. Most of the processing applied to NBP

detection applies to BP detection as well. The additional aspects of BP detection are

designed to remove low-frequency trends prior to outlier declaration. Diagonal open-

headed arrows in the flowchart indicate key user-supplied information and tunable

parameters. These amount to a single scalar PF to denote a desired probability of false

alarm (possibly different for each tracer), and the boolean functions fNBP and fBP.

The following sections discuss each step in detail, beginning with the preprocessing

applied and specific to the tracers measured on ABE. The remaining steps of the

flowchart should be readily applicable to other measurements beyond the ones studied

here.

4.3.3 Preprocessing Applied

The paragraphs that follow detail the specific processing applied to a representa-

tive subset of sensors aboard ABE used for hydrothermal plume detection: potential

temperature 0, optical backscatter (OBS), reduction-oxidation potential (eH), and

vertical velocity anomaly (VVA). This selection spans conservative to highly noncon-

servative behavior, and includes tracers both with and without background profiles.

The specific preprocessing applied in each case is unique but may include any/all

of the following: combination of raw sensor measurements into a composite mea-

surement, removal of certain sensor pathologies, and pre-filtering. All measurements

discussed below were sampled between 1 Hzand 3 Hz.

Potential Density In thus study, potential density a is not used as a tracer di-

rectly,' instead serving as a reference variable for tracers with profiles; however it too

is a measurement subject to error. Potential density is computed from in situ temper-

"1iThe vertical gradient in potential density, measured for instance by two vertically-displaced
conductivity/temperature probe pairs, could be used as a hydrothermal tracer. The normalized
gradient is known as stability [57]. Viers et al. [121] inferred negative stabilities (density inversions)
to be indicative of BP contact.
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Algorithm 8 Hydrothermal plume anomaly processing and detection algorithm and
key function definitions. User-supplied inputs, indicated by open-headed arrows, are
limited to specifying a probability of false alarm PF and the function f. Relational
operations in square brackets [1produce a binary result.

Variable Definitions
tra~cerss tracers
wIprofiles w/o profiles v tracer measurement

(CTD . 8S) 71 (eH, WVA) or potential density

Ac,v v-anomaly w.r.t. profile
Av v-anomaly

premrOmss Ir6PI V Av' v-anomaly following filtering
DESCENT SURVEY J5, binary indicator (v

6 binary indicator (BP)
fidprfl PF tunable false alarm rate

L_* V AVFunction Definitions
compute profile find-profile(v, a){

i, Vre argmin E:(v' - TO-C Vr.ef
a,, t

A'Vreturn 'g, ref

declre nomaiescompute-profile-anomaly (v, ýr, if)
(prediction interval) remove background f

ABP ~ Aav = v - (57aa + Vref)

6V zAv' p return A~v

boolan lgic)(Hampel Identifier) prediction -nterval (A, v)

ýNBP 6 ýA~v= sample variance A v

Cý P return 
6, ~1 P/)

declae SPHampel -dentifier (AV'){
anomliesAvt = median Av'

SS =1.4826medianlAv' - AvtI

= 6 [ i V .V > ~(P1 - PF/2)]

C return 
6v
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ature, salinity and pressure using an empirical equation of state for seawater [36,88].

Temperature and pressure can be measured directly, but salinity is usually derived

from measurements of conductivity. As with most lowered CTDs, the conductivity

and temperature probes on ABE are very nearly co-located and a constant flow rate

pump ensures that the sensors are flushed nearly simultaneously with the same parcel

of seawater. Nevertheless, because salinity varies over a relatively small range, the

conductivity of seawater tends to track temperature closely and even slight mismatch

between the temperature signal and the portion of the conductivity signal due to

temperature can lead to so-called "salinity-spiking" [97]12 This is a cumulative effect

due to temporal delay between the sensors; thermal mass of the conductivity cell; and

a difference in diffusion rates between heat and salt [76]. Since we employ potential

density as an independent variable, noise from the raw sensor measurements as well

as from salinity-spiking contribute to a noise floor that is present in the determination

of all subsequent anomalies.

Potential Temperature As with potential density, potential temperature is de-

rived from an empirical relationship that depends on in situ temperature, salinity, and

pressure [36,88]. Heat is conserved, therefore potential temperature behaves as a con-

servative tracer. As discussed in § 4.1, the sign of the potential temperature anomaly

depends on background stratification and height above the source. In the Pacific, the

AO associated with hydrothermal venting is always positive. Non-buoyant hydro-

thermal plumes in the Atlantic result in Ao < 0; however, at some distance beneath

this level of neutral buoyancy, the sign of AO associated with the buoyant plume

becomes positive.13 On ABE, 99.9% prediction intervals for background AO are

typically 2.5 m°C. The maximum recorded in situ temperature to date was - 60 'C,

observed during a near-bottom dive on the ELSC.

"12Salinity spiking tends to plague vertical CTD casts more so than typical horizontal AUV surveys
because vertical gradients of salinity and temperature in the ocean dramatically exceed horizontal
gradients. However, strong horizontal gradients can be encountered in waters contaminated by
hydrothermal venting.

"3 Modeling by Speer and Rona [110] for the time-averaged behavior of a typical Atlantic plume
predicts a change of sign in AO at a rise height of 200 m however, significant negative anomalies
were observed on ABE dives 151 and 153 at only 50 m height.
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Optical Backscatter OBS is measured on ABE with a sensor that outputs a signal

proportional to the intensity of light backscattered from a small volume illuminated by

the sensor.14 Spikes in the output are frequent, presumably the result of some larger-

than-average particle momentarily occupying the sensing volume. To attenuate these

high-frequency phenomena, the raw output is passed through a 10-point median filter.

Few sources of suspended matter exist in the deep sea besides hydrothermal venting

and consequently any dependence of OBS on depth is usually slight. This fact along

with the relatively low cost of OBS instrumentation has made OBS a popular tool

in hydrothermal prospecting, especially for identifying NBP waters. However, the

complex dependence of particle formation on vent and background water chemistry

and particle fallout renders quantitative interpretation of OBS difficult.' Only posi-

tive deviations from background are considered potentially indicative of hydrothermal

venting. OBS measurements on ABE following median filtering typically fall within

2 mV of the mean (instrument voltage, 5 V full scale). The OBS data presented sub-

sequently have been corrected for a consistent 0.1 mV/h drift, presumably the result

of a slowly falling supply voltage to the instrument's internal voltage regulator as

ABE depletes its batteries during a mission.

Redox Potential On recent expeditions, ABE has carried a reduction-oxidation

potential (eH) probe provided by Dr. Ko-ichi Nakamurat that has enabled this valu-

able measurement to be made in situ. The sensor has a complicated response charac-

terized by a relatively fast onset time and slow recovery time of hundreds of seconds.

Ongoing work by the instrument's inventor suggests that the magnitude of differenti-

ated eH (d/dt(eH)) is correlated with the concentrations of reducing chemical species

typically encountered in vent fluids [94]. Based on experience, steeply decreasing eH

"4 Seapoint Sensors, Inc., http://www. seapoint. com/

15For instance, iron-oxides make up a substantial portion of suspended matter in the NBP; however
their formation in the relatively oxygen-rich waters of the deep Atlantic is considerably more rapid

than in the older, oxygen-poor waters of the deep Pacific. Consistent with this explanation, OBS
records from ABE dives on the ELSC (SW Pacific) often show relatively low intensity signals in the
immediate vicinities of BP sterns relative to a few hundred meters away (larger sulfate and sulfide
particles responsible for the "smoke" of typical black-smoker type vents tend to fall out during
ascent) [37].

tNational Institute of Advanced Industrial Science and Technology (AIST), Institute for Marine
Resources and Environment, Seafloor Environment and Resources Research Group 1, Tsukuba,
Ibaraki, 305-8567 Japan
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appears to be a reliable indicator of the interception of nascent hydrothermal effluent.

For this reason, eH voltage from the sensor is differentiated prior to passing through

the latter stages of Algorithm 8. To avoid enhancing quantization noise, the raw sen-

sor output is pre-filtered before applying an approximate numerical derivative. Use of

the derivative means weak gradients in redox potential will not be resolved, whereas

the steep gradients encountered, for instance, upon entering a BP will be emphasized.

Vertical Velocity Anomaly (VVA) Vertical velocity anomaly (VVA) refers to

the vertical component of measured water current velocity. Significant vertical wa-

ter velocities provide an essentially unequivocal indicator of contact with a BP by

definition. Though VVA is a scalar it has no meaningful associated measure of con-

centration and is consequently not a tracer in the same sense as the other tracers

considered. Nevertheless, in practical terms it is analogous to a non-conservative

tracer with effectively zero NBP residence time."6 On account of their specificity,

VVA detections are valuable, but also rare. This thesis presents results from two

different approaches to measuring VVA aboard ABE: (1) directly, using an on-lboardl

ADCP;' 7 (2) by comparing vehicle behavior in the vertical plane to a reference inodel.

Measuring vertical velocity from an on-board ADCP is conceptually straightfor-

ward. Within range of the bottom (200 m to 300 in height with ABE's 300 kHz

unit), ground-referenced vehicle velocity is simply subtracted from water-referenced

vehicle velocity, both measurements being provided by the unit. At greater heights

off bottom, differentiated depth provides an accurate, low-noise estimate of vertical

vehicle velocity."8 Potentially complicating factors are that BP interceptions tend to

be brief, so that available averaging time is short and may not occupy all beams of

the instrument, which can lead to large errors in the computed velocity and possible

rejection by the instrument.

Alternatively, a unique methodology developed by Yoerger et al. [135] estimates

ambient vertical velocity by comparing the output of a simple one degree-of-freedom

model for the vertical dynamics of the vehicle driven by commanded thrust to the

"16Significant vertical water velocities are uncommon within the NBP when not directly associated
with BPs.

"17RD Instruments, Inc. 300 kllz Workhorse ADCP/DVL, http: //www. rdinstruments. com/

l 8No such nearly ideal reference exists for horizontal vehicle velocity (cf. § 4.4).
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vehicle's actual, measured depth.19 The resulting estimate of vertical water velocity

represents, to the accuracy of the model, the actual water velocity filtered through the

vehicle dynamics [135]. The simplicity of the vehicle model limits its use to approxi-

mately straight and level flight at constant speed. Phase-1 (lives in the NBP satisfy

these criteria, and the method resolves vertical velocities of -- 1.5 cm/s reliably after

the removal of turns. Though the detection limit suffers, the method still provides

indication of much stronger vertical velocities on 50 m height Phase-2 dives, despite

active depth changes by the vehicle while bottom-following.

4.3.4 Background Profile

AUVs are well-suited to collecting data at constant depth;20 however, depth is not

ideal as an independent reference variable for defining background profiles. The rel-

ative quiescence of tile deep ocean and stable stratification thereof make potential

density a, defined relative to some convenient reference pressure, a better choice.

This reflects the fact that oceanic mixing occurs primarily along surfaces of constant

potential density, which in turn reflects the suppression of vertical mixing by stable

stratification (e.g. [57]). Furthermore, anomalies defined with respect to potential

density are immune to the vertical displacement of isopycnals due, for instance, to

passing internal waves. Potential density, rather than in situ density, removes the

effects of pressure on density due to the compressibility of water, which has nothing

to do with mixing.

Over the short depth interval of interest to hydrothermal studies, assuming a

linear dependence on a often provides a good fit, and one sufficient to identify the

deviations associated with a NBP within a few kilometers of the source. 21 Under

the assumption of a linear dependence on potential density, background profiles will

"19 Yoerger's original model included a static buoyancy force; however, to avoid re-calibrating the
inodel for each dive to account for a changed payload or different survey depth, I have removed this

element of the model in favor of band-passing the difference between the measured depth and model
out1 put.

21)More accurately, AUVs typically fly along isobaric surfaces since depth is usually mapped one-
to-one from measured pressure.

21Assuming a linear dependence is, however, insufficiently accurate for certain sensitive heat flux
computations [120].
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satisfy

A'V = -9V (a - Orref) + Vref (4.1)

where the derivative is presumed constant and (Oref, Vref ) is an arbitrary reference

point. It remains to estimate the terms 2and Vref in (4.1) anl to define thresholds

for each tracer above which Aov can be reliably regarded as due to hydrotherinal

input as opposed to background variability or measurement noise.

If available, a CTD cast in nearby waters unaffected by hydrothermal input can
provide the parameters of (4.1) for tracers that possess background profiles; however,

there are several reasons to prefer a background profile generated using data from the
vehicle's own descent:

1. There is no requirement for sensor cross-calibration.

2. The profile could vary significantly between the location or time of a background

CTD cast and the survey site and deployment time.

3. The AUV may carry some sensors not also available on the host ship's CTD.

4. Sensors aboard the AUV may have different noise characteristics than identical

ones on lowered CTDs (hydrodynamics and horizontal vs. vertical deployment).

The finite battery energy available to an AUV dictates that it be deployed as close

as safely possible to the survey location. Consequently the vehicle is likely to pass
through the NBP during its descent in which case profile data will be contaminated

by the very anomalies we wish to identify. In that case, (4.1) can be used to ex-

trapolate data from immediately above the NBP to greater depth. Results presented
subsequently attest to the viability of this approach within the depth intervals corre-

sponding to encountered NBP. Further extrapolation to depths below the NBP tends
to be less successful, at least partly for reasons unrelated to the accuracy of (4.1) or to

the extrapolation thereof. Persistent hydrothermal activity, particularly in enclosed
axial valleys, will alter profiles beneath the NBP relative to uncontaminated off-axis

profiles [82], meaning that BP anomalies are more appropriately computed relative

to a moving baseline as discussed below.

Identifying depths altered by hydrothermal venting in hydrographic profiles fol-
lowing vehicle recovery is fairly straightforward if somewhat subjective. Of the hydro-

thermal tracers that are measurable on ABE, OBS has proven the most reliable for
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delineating the vertical extent of the NBP. Estimates of the parameters andl

in (4.1) are then determined by least squares applied to a suitable interval above

the top of the NBP. Autonomous implementation of Algorithm 8 would require

the vehicle to perform this task independently. I have attained moderate success

in this regard with a robust model-fitting technique based on the RANdom SAm-

pie Consensus (RANSAC) algorithin [35I. RANSAC works by randomnly selecting a

subset of data. fitting the model to this data. counting the numlber of inliers from

the whole dataset based oil a threshold criterion, and iterating until converging on

the model paramneters that maximize the number of inliers. By selecting candidate

inliers only from outside of a random interval instead of completely at randoni. the

algorithln can be imade to return aim estimate of the interval correspon(ling to the

NBP as well as model parameter estimates. The weakest link appears to be selection

of the portion of the vehicle's descenIt to use as ami initial data set. Too much (data

above the NBP leads to unreliable fits because of nonlinearity in the profile, whereas

too little data can lead the algorithum to choose other portions of the descent. A p)riori

ap)proximate knowledge of the depth of the NBP greatly facilitates the choice of a

good interval.

Figure 4-5 shows an example of successful automatic NBP interval (determinati(o)l

applied to the last 500 mu of a descent. Figure 4-6 shows least squares linear fits to the

profiles of 0 and OBS extrapolated to the seafloor. Removal of background profiles

enables data collected from disparate depths to be compared quantitatively and is

especially valuable for (lives that span multiple depths (e.g.. (lives 128 and 150 in

App. F). Figure 4-7 shows the results of background profile removal applied to OBS

and 0 time-series data from ABE-126.

Anomalies computed for data from beneath the NBP undergo an additiomal pro-

eessing step before (declaring detections. Tracer time-series pass through a high p)ass

filter (labeled HPF in Algorithm 8) with a cutoff frequency corresponding to 1 km of

trackline at nominal vehicle speed.2 2 This step removes low frequency trends fromi

non-linearity in the computed profile or from local variations caused by persistent

hydrothermal venting and not directly indicative of BP contact. This kind of filtering

would be inappropriate for anomaly computation in the NBP where the majority of

"2 This choice of cutoff frequency is arbitrary but significantly longer than any vent field yet
encountered by ABE while still short on the length scale of an entire ABE dive.
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Figure 4-5: Potential temperature and OBS profiles showing containnation by NBP
waters and automatic segmentation using OBS of the contaminated portion of the
profile. Data are from Phase-1 dive ABE-126.
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Figure 4-7: OBS and potential temnperature anomaly following removal of background
profile. Dashed lines indicate the 99.97X prediction interval above which anomalies are
declared as indicative of NBP contact. Data are from ABE-126.

a dive can consist of contact with the NBP. Contacts with BP stems. on the other

hand. comprise only a small fraction of any given data set. Figure 4-8 shows the

results of background profile removal and high-pass filtering applied to all time-series

data from ABE-126 (Phase-i).

4.3.5 Declaring Detections

Upon removal of trends, anomalies are classified into either detections or non-detections.

Different processing is applied to the declaration of NBP detections than to BP de-

tections. As with the de-trending discussed above, these differences reflect the wide

separation in length scale between a NBP and any BP stems feeding it. NBP de-

tections are declared using the standard statistical measure of a prediction interval.

Interval width is learned from data known to be uncontalminated collected during the

vehicle's descent. Outlier detection methods provide a better fit for BP detection;

the method employed here is known as a Hanipel Identifier [22].

Ultimately both methods amount to the careful choice of a threshold for each

(detrended) anomaly time-series. Their value lies in automatic( determination of that

threshold value according to a specified probability of false alarm P1 :. In both cases.

normality of the underlying probability density of anomalies At, within background
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Figure 4-8: Tracer time-series following detrending for buoyant plume detection.
Dashed lines indicate thresholds determined by application of a Hampel Identifier to
each data set. VVA samples lying outside these thresholds are indicative of BP con-
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ABE-126.

132



waters is assulne( so that given an estimate of the associate(d variance AA, '1 a1d(

assuming successful (letrending has removed any imean. Pb, is given by:

P A = jA Vfu; 0. AA,, Iu (4.2)

where ;,J deniotes the threshold for declarilng detections. Given a desired Pp the

corresponding threshold is

0, = (AA,,)/2 (1 - PF/2) , (4.3)

where ( denotes the cumulative (list ribut ion function for a standard nornial.23

Unlike classical hypothesis-test base(l (letection theory. the use of prediction iin-

tervals an(l outlier (letection avoids the problematic task of specifying a probability

(listribution for tracer concentration within phlmes. However, without this (listribu-

tion the classical notion of a probability of detection is impossible to compute as is

the associate(l operating characteristic. 2
4 On the other hand. note that a probability

of detection so defined refers only to the probability of declaring a detection while

iinierse(l in either a NBP or BP. From a survey design perspective, the proltability

of even encountering a BP is of far greater importance. Key elements of that quan-

tity are developed subsequently in § 4.5 of this chapter; development is conmplete(l in

Ch. 5.

NBP: Prediction Intervals

Temporal and horizontal variability in the water column, sensor noise, senmsor drift,

alld anly nonlinearity in the true profile will all contribute to variation about the

estimated linear profile (4.1). Under the assumption that the resulting errors are in-

dependent, i(lentically distributed and normally distributed, prediction intervals that

specify the probability of fuiture values occurring withini sonm interval canl be coin-

2 E'Eq. (4.2) applies to bilateral anomalies for which absolute values excee(ding the threshold are

regarded as outliers and hence as detections. If, for example. only negative values qualify as outlier

candidates then the analogous expression for unilateral anomalies is P2 = .A,,,{u: 0, A,, } (du,

and the threshold as a function of desired PF is 0, = 4)(1 - Pp').
"2 4The operating characteristic of a generic detector consists of a curve on which which increased

probability of detection can be traded off with increased probability of false alarm by decreasing the
detection threshold.
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puted using standard methods (e.g., [45], pg. 633). Values that fall outside these

prediction intervals are statistically unlikely to have been drawn from the same dis-

tribution as background values and are therefore likely to represent NBP contact. Of

course, the extent to which the actual data conforms to the assumption of norlnality

will influence the degree to which this is true in practice. This approach has the

advantage that all thresholds are defined after descent but prior to commencing the

survey portion of a dive. thereby potentially enabling real-time adaptive responses to

NBP detection.

Figure 4-6 shows 99.9% prediction intervals (Pp, = 0.001) for OBS and potential

temperature 0 along with data fromn the survey portion of the (live indicating a large

fraction of data collected oil this dive salnpled NBP water. Samples tagged as de-

tections are plotted in Figs. 4-9 k- 4-10 and illustrate the utility of iiulti-tracer data

to interpret plume structure. Conservative potential temperature anomalies serve to

delineate the extent of the non-buoyant plune and suggest interception of a buoyanlt

plume at the northwest corner of the survey. OBS plays a complementary role with

a stronger signal over much of the pluImes extent but with less predictable intensity

(liue to the complex rionconservative behavior of time hydrothermal particulates. Dif-

ferentiated reedox potential (I/dt(eH) is helpful for identifying the younger parts of

a NBP; however, the sensor's dynamics imply gross violations of the assuimnption of

normality above, and better results have been obtained using the outlier detection

method discussed next. VVA is specific to BP stemis and not considered here.

BP: Hampel Identifier

Outlier detection based on the Hampel Identifier [22. 103, 104] is the key processing

step applied to BP detection. The procedure relies on robust estimates for the miean

and standard deviation of time supposedly Gaussian background computed using the

inedian and median absolute deviation (MAD). Multiplication by the factor 1.4826 in

Algorithln 8 makes the expected value of the result equal to the standard deviation for

normally distributed data [104]. Data that exceed the nmedian by a specified number

of MAD are declared outliers, or in the present application, detections. As above,

this threshold is determined from a desired P, using the scaled MAD estimate for

the variance AA,, in (4.3). This method requires batch-processing of the entire record

fromI the survey portion of a (live before declaring BP detections. Moving-window
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Figure 4-9: Potential temperature anomaly A,9 observed during Phase-1 dive ABE-
126: (left) anomalies plotted at the location they were observed; (right) the distri-
bution of anmomalies observed over the course of the survey. Color indicates intensity.
The thin black line in the left plot shows the vehicle track through background regions.

The strongest 9 anomalies are associated with interception of a buoyant plume near
the northwest corner of the survey. With the exception of a smnall patch of background

water to the south of this location, the entire survey appears to suggest contact with hy-
drothermnally influenced water; though anomalies in the southern portion of the survey
are relatively weak and may represent gradually varying hydrography.
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Figure 4-10: Optical backscatter anomaly A,OBS observed during Phase-1 dive ABE-
126: (left) anomalies plotted at the location they were observed; (right) the distribu-
tion of anomalies observed over the course of the survey. The nonconservative nat ure of
OBS is evident. The strongest OBS anomalies were observed in a patch several hiundred
meters to the west froin where the vehicle intercepted buoyant plume water. A second
patchL of high OBS to the south of the strongest anoinalies confirmLs the lhydrotlhermal
origin of weaker AO anomaly evident in Fig. 4-9.
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versions of the Hanipel Identifier exist [1041 but would be inappropriate in this case

because minor anomalies in relatively quiescent portions of dives would be identified

as detections despite being much smaller in magnitude than anomalies associated

with actual BP contact, which tend to occur in backgrounds with greater variability.

Figure 4-11 shows the locations of outliers for each tracer from a sample Phase-i

dlive in the NBP. Within the NBP, these plots complement those of Figs. 4-9 & 4-

10. Both potential temp)erature and redox potential (eH) suggest intercep)tion of

nascent phlme water near the northwest corner of the survey. The latter also reveals

the relative youth of the NBP encountered over the northern portion of the survey.

The single group of VVA anomalies confirms interception of a BP at the northwest

corner of the survey, and the lack of other VVA anomalies indicate that the remaining

eH anomalies were p)ro)bably not associated directly with BP activity. Examples of

this processing applied to Phase-2 dives are in App. F. All tracers and (lives were

processed with Pt = 10-s, corresponding to declaring outliers above approximately

six standard deviations from zero.

BP: Consensus Detection Declaration

Applied to individual anomaly time-series, the Hanipel Identifier does a qualitatively

good job of picking out data associated with nearby BP activity. However. many

more OBS. eH. and 0 anomalies tend to be identified as outliers than VVA anonmalies.

Regar(dless of the specific tracers employed, the logical expression of the last block in

Algorithm 8 represents one means of deciding whether. taken together. the anomalies

indicate a BP detection or contradict one another, suggesting some detections may

have an alternate exp)lanation. 25

In part, the rarity of VVA anomalies reflects a relatively high noise level; nonethe-

less, I will take the perspective that only significant VVA qualifies as indicative of

definitive BP contact. To improve rejection of spurious VVA outliers, the final step

in Algorithm 8 requires that VVA detections be accompanied by eH detections. In

25Decisions based on the magnitudes of anomalies represent another, but more complex approach,
as the required decision rule would consist of a mapping f : Rk - B instead of a relatively simple
boolean expression f :k --+ B.
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Figure 4-11: Anomalies classified by a Hampel Identifier as BP detections (during
Phase-1 dive ABE-126: (a) potential temperature 0; (b) optical backscatter (OBS):
(c) redox potential (eHl); (d) vertical velocity anomaly (VVA). Color indicates iliten-
sity. VVA and 0 both indicate interception of a BP near the northwest corner of the
survey. Redox potential decreased rapidly somewhat before this encounter, but addi-
tional spikes correlate with the main detection. In addition, eH shows plume waters
immediately to the east of the detection location to be composed of nascent plume
water consistent with the downwind location of these detections (cf. App. F). OBS
anomalies were considerably more intense within this nascent portion of the NBP than
in the BP encountered, probably reflecting the slow formation of iron oxides in the
oxygen-poor waters of the deep Pacific [37]. VVA anomaly intensity is shown according
to measurements from ABE's on-board ADCP; however, problemis with the instrument
during this dive necessitated that only those outliers also associated with model-based
VVA outliers be considered as candidates fr detections.



terms of the boolean function f in Algorithm 8,

6t = [6•yVAn6,t,]H (4.4)

where the 6tf denote binary indicator variables associated with each tracer at time

t, and the square brackets denote a logical operation that produces a boolean result.

All buoyant plume detections used subsequently in § 4.5 and Ch. 5 were declared

according to this rule. This choice for f reflects the thinking that the nascent, as

yet unoxidized plume water within a BP should be accompanied by a strong drop in

eH relative to background [95]. Potential temperature could serve a similar function

without concern for sensor response characteristics; however, possible changes in sign

of the anomaly make 0 somewhat less attractive. The presence of OBS anomalies,

while reliable indicators of NBP contact, appear often enough outside BP stems, 26

or within them at relatively low intensities, 2
1 to warrant dismissal in favor of one or

both of eH and 9.

4.3.6 Results from Additional Dives

The Phase-i dive discussed in this section (ABE-126) was selected because interpreta-

tion of the tracer records was straightforward and groundtruth locations of vent sites

were well-resolved from subsequent dives on the site. Anomaly maps for all other

dives discussed in this work are provided in App. F. These include both Phase-i

and Phase-2 dives; however, not all of these included BP detections according to the

methodology developed above. For these dives, successful vent localization was still

sometimes achieved based on manual interpretation of the data. The maps presented

here and in App. F suggest that proximal BP activity is sometimes associated with

elevated anomalies in the other tracers even in the absence of any significant VVA

anomaly. That appears to be especially true of redox potential (eH) within the NBP,

which is unique among the tracers measured on ABE in its ability to distinguish

nascent, though not necessarily still buoyant, plume water. The last component of

the methodology above could therefore be criticized on grounds of ignoring this poten-

"26 Possible explanations include particle fallout from above and sediment resuspension.

"2 7This effect may reflect insufficient water-column residence time for precipitates to have been
produced or variations in source and background water chemistry.
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tially valuable source of data. Subsequent development in § 4.5 and Ch. 5 capitalizes

on the availability of models that describe BP evolution and hence provide a tool

with which to predict source location on the seafloor following a BP detection. To

fully capitalize on eH detections within the NBP will require the development of an

analogous model capable of predicting the locations of these detections relative to the

locations of buoyant feeder plumes.
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4.4 Water Velocity Profiles from On-Board ADCP

In principle, knowledge of ambient crossflow current should aid in constraining the

source of hydrothermal plumes. Because water current velocity cannot be observed

directly from a moving platform, the essential element common to all methods for

estimating water current velocity from moving platforms is vector-subtraction of the

platform's velocity-through-water (VTW) from the platform's velocity-over-ground

(VOG).2 Simply because of the water's proximity to the vehicle, it is relatively easy

to measure velocity-through-water (VTW). In contrast, measuring VOG can be much

more difficult because the ground, or some other suitable reference is often far from the

vehicle and outside the range of on-board sensors. If available, differentiated position

measurements can be substituted for direct measurements of VOG. As the following

will show, crossflow determination using the latter can be sensitive to small orientation

errors, and every effort must be made to remove such errors. This section concludes

by presenting crossflow velocity measured both with and without the availability of

an instrument-frame VOG measurement. Success is attained in either case, albeit

with reduced temporal resolution in the latter.

4.4.1 Error Sources

To compute earth-referenced water current velocity, three types of measurements are

required: (1) vehicle VTW, u, E lRa; (2) vehicle VOG, ug E Ra); (3) vehicle attitude

(roll, pitch, heading). In underwater vehicle applications using a combined ADCP

and Doppler velocity log (DVL) to provide velocity measurements, the dominant error

sources consist of approximately zero-mean velocity noise and instrument (or vehicle)

orientation biases. With the exception of heading, underwater vehicle attitude is rel-

atively easy to measure with low-cost tilt-meters on account of the ubiquitous gravity

vector and relatively slow accelerations involved in vehicle maneuvers. Heading can

be measured cost-effectively with magnetic compasses, however careful calibration

to account for the magnetic properties of the platform is essential [14]. Imperfect

calibration produces so-called hard-iron and soft-iron errors, which result in heading

bias that is a function of true heading (heading-dependent heading bias) [14]. Even

281 will reserve the more common terms speed-over-ground (SOG) and speed-through-water (STW)
to refer to scalar speeds, using VOG and VTW to denote vectors.
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with proper calibration, environmental variability of the Earth's magnetic field can

produce local biases that cannot be calibrated away a priori. More costly fiber-optic

north-seeking gyroscopes provide nearly ideal attitude measurements (0.10 accuracy);

these have enabled Kinsey and Whitcomb [56] to solve the problem of in situ relative

alignment between instruments for DVL-equipped vehicles operating near bottom. 29

However, their method does not address the heading-dependent heading bias as re-

sults from use of a magnetic compass and requires that the Doppler sensor be within

range of the seafloor to measure VOG.

The key difference between zero-mean velocity noise and orientation or attitude

bias (systematic error) is that the former can be attenuated by averaging. Tidal

currents vary slowly (hrs.) whereas typical update rates for navigation sensors on

AUVs are 0 (0.1 - 10 Hz) [128] so that averaging readily attenuates zero-mean noise,

assuming, of course, that the averaging can be applied in the earth-frame. Attitude

and orientation bias corrupt the transformation of instrument-frame velocities into

the earth frame. If both VOG and VTW are measured in the instrument-frame,

the error incurred for small biases is commensurately small; however, as the ensuing

analysis shows, even small biases can completely obscure estimated water current
velocity when VOG cannot be measured natively in the same frame as VTW.

4.4.2 Effect of Heading Error

Since many ADCPs suitable for use on AUVs include tilt-meters for measuring pitch

and roll of the unit, I will consider only the effect of a heading error. For simplicity,

consider a vehicle translating along a straight line at constant attitude (roll, pitch,

heading) in a steady current w collecting noiseless pitch, roll, VTW u", and VOG

U9 measurements, but where either heading V), static vehicle-relative velocity sensor

orientation v'R, or both are subject to unknown bias. Water velocity is computed

from these measurements in different ways depending on whether ug is measured in

29 Kinsey and Whitcomb [56] report a method for in-situ calibration of attitude and acoustic
Doppler sensors. Their method solves for a static sensor orientation that minimizes the difference
between dead-reckoned position estimates from the Doppler sensor and absolute position meawsure-
ments from a long baseline (LBL) system.
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the instrument-frame (4.5a) or earth-fixed reference frame (4.5b):

ew= R(O) VR (-ug- u,) inst.-frame; (4.5a)

e ue - R(V)) l-R ',-u earth-frame. (4.5b)

Frame-notation is described in App. A; underscored frame identifiers denote the lev-

eled versions of those frames. The transformation between the leveled instrument

frame i and leveled vehicle frame v can be expressed in terms of the unleveled in-

strument orientation rotation matrix • R as '_R = 'R i'R 'R. For constant vehicle

pitch and roll, •'R describes a static rotation about the gravity vector. Under these

conditions, a error in VR results in a static bias indistinguishable from vehicle heading

error.

Figure 4-12 depicts the effect of heading error (and sensor orientation error) on the

horizontal earth-frame water velocity estimate assuming otherwise noiseless measure-

ments. When both ug and u, are measured in the instrument-frame, the magnitude

of the water current velocity w - JIw is unaffected, whereas its direction Zw • Zw

is rotated from true by exactly the heading error ',. Changes in vehicle attitude will

produce dynamic Zw errors and hence affect the earth-frame averaging of w; however,

since V) is typically small and most AUV missions consist of long, straight tracklines,

good estimates of w are generally obtainable. Alternately, when an instrument-frame

VOG estimate is unavailable and replaced by an earth-frame estimate, heading bias

incurs errors in both water velocity magnitude w and direction Zw. The difference

in sensitivity to heading-bias between w computed via (4.5a) versus (4.5b) can be

understood intuitively by considering the vector subtraction depicted in Fig. 4-12.

In case (b), the length of two sides of the triangle and the angle between them are

known, hence the triangle is completely constrained except for its orientation in the

earth-fixed reference frame. In case (b), the length two sides of the triangle are known,

but the angle between them is subject to error, hence the third side (w) is subject to

both magnitude and direction error.

Whereas case (b) in Figure 4-12 is straightforward, the effect of heading bias in

case (c) is dependent on both crabbing angle -y (defined as the angle between u9 and

u') and on the relative magnitudes of ug and un,. Henceforth, I restrict my attention

to case (c): VOG measured in an earth-fixed reference frame. Figure 4-13 depicts
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Figure 4-12: Effect of heading error on earth-frame water velocity estimates: (a) no

heading error (b = 0); (b) non-zero heading error with both VOG u, and VTW u',
measured in the instrument-frame; (c) non-zero heading error with u9 measured in the
earth-frame and U., measured in the instrument-frame. The crabbing angle is denoted
by -y. When both u 9 and uw, are measured in the frame of the ADCP, 0 # 0 results in a
rotated water velocity estimate, but no magnitude error. If the instrument-frame VOG
measurement is unavailable from the ADCP (e.g. no bottom-lock), then an earth-frame
VOG estimate from LBL navigation can be substituted; however, 4 # 0 perturbs both
the magnitude and direction estimate of w. The resulting error is dependent both on
y and the relative magnitudes of us and uw.
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the dependence of water current velocity w on y for constant STW and two SOGs

corresponding to a tailwind (lugl > juwI) and headwind (jugl < juwI).3° The water

current velocity magnitude w is attained by application of the law of cosines to the

triangle depicted in case (c) of Fig. 4-12:

Iw12 = -ugl 2 + 1U.1 2 - 21ug 121uw2 cosy . (4.6)

Its direction Zw is given by the law of sines:

sin Zw _ sin(ir - Zw - y)

lu -U (4.7)

Non-dimensionalization of SOG and water current speed w by vehicle STW yields the

non-dimensional variables u' A ugl/Iuwl and w' A IwI/IuwI. Equations (4.6) and

(4.7) become:

w (U, 2 + 1 - 2u cos)2

W= tan-l( sin-y ) (4.8)

u9g - COS

When VOG is measured in an earth-fixed coordinate frame, heading error is equivalent

to an error in crabbing angle -y. Therefore, the non-dimensional magnitude error 1V

and direction error Zw due to an error in heading b are:

zI9'(4) = w'(7 + 0) - w'(y) (4.9)

ZFV(0) = Zw(7 + 0) - Zw'(y)

A Taylor expansion of these expressions about ' = 0 yields

ill (Q) = u9 sinl -

U /2 + 1- 2u'cos72

"3°These definitions of headwind and tailwind assume that vehicle speed exceeds water current
speed (juwj > lwl), a necessary condition for safe vehicle operation.
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(a) (b)

Figure 4-13: Schematic dependence of water velocity measurement w on crabbing
angle -' for two earth-frame SOC u. = lugi to STW u, = ju1 , ratios ug/uu,: (a)
headwind with ug/u. = 0.75; (b) tailwind with ug9/uw, = 1.25. Heading error is additive
to crabbing angle -y and produces a false crabbing angle estimate. These plots indicate
the resulting error in the w estimate is strongly dependent on the actual crabbing angle
-y. To see this, consider that for a given 3`, the variation in the magnitude and direction
of w for small ' can be assessed by altering w such that its tail lies on a line tangent
to the dashed circle at the actual y. For instance, near -y = 0, heading errors always
result in small current magnitude errors, but large directional errors. Large crabbing
angles produce magnitude errors that are much more severe in a tailwind than in a
headwind, whereas directional errors are more severe in a headwind. The grayed out
portions of each pie represent unsafe operating conditions where current speed exceeds
vehicle speed (Iwl > 'uw).

Since heading errors should be small, the leading terms in these expressions approxi-

mate water current velocity error per unit heading error. They are plotted as functions

of u' for various -y in Fig. 4-14.

The key insight offered by Fig. 4-14 is that water current velocity estimation for

small crabbing angles -y - 0 and little difference between SOG and STW 'u$t • I

is sensitive to heading error. These conditions imply either low current magnitudes

(w • 0), or else a "fast vehicle" (Iul >> wI). Grossly incorrect Zw may be irrel-

evant for wl ; 0; indeed, Zw is undefined for jIw = 0. However, current velocity

magnitude error due to heading bias is potentially severe for a fast vehicle because

the dimensional error is proportional to vehicle speed.

In terms of non-dimensional water current speed w', a fast vehicle corresponds to

WI ---+ 0, or equivalently to y -* 0 and u' -+ 1. In the limit, the leading terms of
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Figure 4-14: Non-dimensional error in water velocity magnitude and direction from
heading error as a function of non-dimensional SOG ug = ugj/IUw, for various crab-

bing angle -y: (a) first-order magnitude error per unit heading error ý ; (b) first-order
direction error per unit ý. Over the range of u' plotted, heading errors of V = 1' pro-
duce water velocity magnitude errors of between approximately 1% and 2% of vehicle
speed. Faster vehicles and slower currents make water velocity magnitude progressively
more sensitive to heading error. The same is true for water velocity direction: slow
currents and relatively fast vehicles imply small crabbing angles yý Z 0 and u 1.
These conditions produce progressively larger direction errors per unit heading error as

S--+ 1 and 0' -- O until attaining a singularity at u' = 1. The dashed lines in both
plots indicate the maximum crabbing angle for a given u' under the constraint that
vehicle speed exceed current speed (Iwl > uwD) to allow for safe vehicle operation.
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(4.10) are singular. To avoid this uninformative singularity, consider the behavior of

the water current magnitude and direction errors in its vicinity, that is, as u' -4 1

for small -y z 0:

lim V = lim u'g 0
w'-- u-- U -1 11 1 (4.11)
lim ZZ7V = lim -- ¢

w'--•+ u1-l U9 -1

Evidently both types of water current velocity error become extremely sensitive to

heading error 4' for fast vehicles when VOG cannot be measured in the same frame

as VTW.

4.4.3 Results

ABE is equipped with a 300 kHz ADCP/DVL31 and a calibrated magnetic flux gate

magnetometer 32 with 3-axis magnetic flux density and tilt-compensated heading out-

puts.3 3 In light of the preceding discussion, every effort has been made to eliminate

heading bias and errors in the static orientation of the ADCP on the vehicle:

P ABE executes a heading calibration spin during its descent, the data from which

is used to determine any remaining hard-iron error using a technique based on

finding a hard-iron magnetization vector that fits leveled magnetic flux density

to a circle for each complete vehicle revolution [14].

* A static, leveled (single parameter) instrument orientation is computed by com-

paring VOG from bottom-track DVL velocity to VOG from differentiated LBL

position. This compensates for sensor misalignment at a static vehicle pitch

and roll and is adequate for a passively stable vehicle like ABE.

3 1RD Instruments, Inc. Navigator ADCP, rdinstruments, com.
3 2PNI Corp. TCM2 electronic compass module, www.pnicorp. corn
"33ABE's ADCP contains its own heading reference; however, the unit has not yet been calibrated

for the magnetic properties of the vehicle owing to the awkwardness of precisely orienting a 700 kg
vehicle.
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Figure 4-15: Crossflow speed and direction profiles vs. time (5 min averages) from
Phase-2 dive ABE-151. Dashed lines indicate the boundaries between 10 m bins beneath
the vehicle. There appears to be little variation of crossflow speed or direction with
depth compared to temporal variability, though for this type of plot, spatial variability
will contribute to the apparent temporal variability. Gaps indicate interference from
the seafloor. Bottom lock was maintained throughout the duration of this 50 m height
dive.

The next two sections compare results for a water current velocity record acquired

by ABE when using bottom-track velocity from ABE's DVL for VOG versus differ-

entiated position estimates from LBL acoustic navigation.

Instrument-Frame VOG

ABE's ADCP/DVL is capable of acquiring bottom-lock between heights of 200 m and

300 m above the seafloor. All Phase-2 dives fall within this range, and bottom-lock

was available on some Phase-1 dives as well. Figure 4-15 shows profiles of horizon-

tal crossflow averaged over 5 min intervals observed during ABE-151, a 50 m height

Phase-2 dive at SMAR. The impressively variable crossflow magnitudes and direc-

tions observed are also shown in Fig. 4-16 from a birds-eye perspective. Figure 4-16

in particular illustrates a temporal and spatial variability characteristic of the records

acquired by ABE (cf. App. F).

Earth-Frame VOG

ABE is a relatively slow AUV; nonetheless, referring to Fig. 4-14, a heading bias of just

1' in weak crossflows will produce approximately 1 cm/s worth of crossflow speed error
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Figure 4-16: Birds-eye view of crossflow speed and direction observed during ABE-
151 (5 min averages). Spatial variability in crossflows is especially evident on tracklines
near coordinates (10.4,10.4). The eastern ends of these tracklines indicate almost no
flow, whereas a westerly component appears persistent on their western ends despite
a complete reversal of the northerly component of the flow as the vehicle progressed
north. The tracklines shown span about 14 h. Bottom lock was maintained throughout
the duration of this 50 m height dive.
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Figure 4-17: LBL-derived crossflow magnitude and direction profiles versus time,

shown as 5 min and 1 h averages. The 5 min averages show considerably more variability

than indicated by the same data processed using bottom-track velocity and shown in

Fig. 4-15; however, the 1 h averages agree well.

at ABE's cruising speed of approximately 0.6 m/s. A 1 cm/s error is substantial when

compared to typical observed crossflow speeds of 5 cm/s. Fortunately, comparisons

of VOG computed from LBL to bottom-track VOG (when available) indicate that

increasing the length of averaging intervals to span multiple tracklines on reciprocal

headings substantially reduces error. This suggests a residual hard iron error [14].

Heading error due to hard iron offset will approximately cancel on reciprocal headings

because hard-iron-induced heading errors are approximately sinusoidal with a period

of 27r.

Figure 4-17 compares 5 min averages of LBL-derived crossflow velocity to 1 h

averages for the same dive as shown in Fig. 4-15. The considerably increased tempo-

ral variability in the 5 min averages suggested by Fig. 4-17 over Fig. 4-15 indicates

contamination from residual heading error. However, 1 h averages agree well with

bottom-track derived crossflows on the same timescale; of course, a longer averaging

interval engenders a loss of resolution as shown in Fig. 4-18. Crossflow measurements

for dives lacking bottom-track are shown in App. F as 1 h averages.
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Figure 4-18: Crossflow error velocity computed by comparing interpolated 1 h aver-
age LBL-derived crossflow estimates to 5 min average bottom-track-derived crossflow
estimates. Increasing averaging time from 5 min to 1 h improves the accuracy of LBL-
derived crossflow estimates, but at the cost of reduced resolution.
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4.5 Uncertainty in Seafloor Vent Location

This section develops the constraints on source location attained from individual de-

tections of buoyant effluent considered in isolation. Intuitively, the spatial ambiguity

associated with a single detection will depend on the width of the plume at the

detection location, the strength of ambient currents (which advect the plume away

from its source), as well as numerous secondary factors including source parameters,

bathymetry, local hydrography, and the uncertainties associated with each. Because

of the importance of horizontal advection in plume evolution, a ancillary goal of this

section is to quantify the achievable reduction in source location uncertainty attained

by measuring water current velocity on board the surveying vehicle. In principle,

knowledge of current velocity should reduce the area of seafloor from which a plume

could have emanated by constraining the source to lie upwind of the detection loca-

tion. However, the achievable performance improvement will depend on the relative

importance of advective versus dispersive processes in determining plume evolution

and on the accuracy and availability of a plume model to predict that influence.

Presumably because of the much smaller range of space and time scales involved,

BP detections have proven more amenable to interpretation in terms of source location

than NBP detections, especially with respect to crossflowsa 4 For this reason I restrict

my attention in this section to the analysis of BP detections. Even for BP detections,

the dependence on a model for describing BP rise is potentially problematic for two

reasons: (1) source parameters cannot be known a priori; (2) it is impossible to

predict turbulent plume tracer concentrations on the short timescales observed by a

surveying AUV passing through a BP. Nevertheless, the modeling efforts presented

in this section enable a key inference to be drawn from the anomaly maps of the

previous section, namely the portion of seafloor that likely contains the source of

each BP detection.

This section approaches vent localization from an inverse perspective. To apply

the OG mapping methods of Part I to this problem, ultimately a forward model

"34Lavelle [67] has shown it, is possible to invert a long record of current velocity and potential

temperature in the NBP for the source strengths of hypothetical vent fields on a uniform grid;
however, current records collected by the ABE AUV in our field operations have generally been too

short to employ such a methodology, the cumulative advected distance rarely exceeding trackline
spacing for phase-1 dives within the non-buoyant plume.
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is required. Most of the aspects of the required model are developed here from an

inverse perspective, with the remaining elements required to formulate the forward

perspective left for the next chapter.

4.5.1 Buoyant Plume Interception

Figure 4-19 shows schematically an AUV intercepting a buoyant hydrothermal plume

at some source relative vehicle height h,,. The plume outline depicts rise due to

buoyancy flux at the seafloor, plume spread due to self-generated and ambient turbu-

lence and horizontal advection by ambient background currents. Because the volume

of fluid ejected from the source is insignificant relative to the entrained fluid within

most of the plume, the plume will acquire the horizontal momentum of the ambient

fluids within a few source-diameters of rise height [20]. Detections of buoyant plume

effluent are likely when the vehicle passes near the plume centerline; however, the in-

formation these detections carry about seafloor source location is obscured by plume

spread. Even assuming perfect knowledge of the shape of the plume centerline, as

vehicle height above the seafloor increases, the spatial extent of seafloor from which

that plume could have emanated grows. However, the potential benefit attained by

measuring ambient current velocity also increases because effluent will have advected

farther from the source by the time it attains the height of the vehicle.

Independently of vehicle height, the physics governing plume rise affect the relative

value of measuring currents. Interception of a faster rising plume will occur closer to

the source, whereas advection will have longer to act on slower rising fluid, advecting

it father from the source before interception for the same vehicle height. Clearly the

relative magnitude of these velocities is important. Recall from § 4.1 that plume rise

is also affected by background stratification, source buoyancy flux, source chemistry,

and source diameter [81,82,84,110]. Of these, only the first can be known a priori.

Usually a surveying vehicle will only be able to measure a vertical profile of cur-

rent velocity at its own location.3 5 Assuming horizontal homogeneity, temporal vari-

ation in currents is easily accommodated. Over sufficiently large horizontal distances,
35ADCPs carried on AUVs are typically oriented vertically (e.g. ABE and REMUS [1]) and can

thus acquire vertical current profiles. ADCPs can be oriented horizontally, however, because the
deep ocean is fairly homogeneous on short horizontal length-scales, the range would have to be
significant. Furthermore, a horizontal orientation could result in bottom interference because of the
20' angular between the ADCP's beams.
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Figure 4-19: Buoyant hydrothermal plume interception by a vehicle surveying at a
source-relative height h,,.
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Figure 4-20: The effect of ambient crossflow strength U0 on the location of a plume
at vehicle depth assuming constant rise rate W0 : (a) strong crossflow (Uo/Wo > 1);
(b) weak crossflow (Uo/Wo < 1). Higher intensity crossflows advect the plume over
larger horizontal distances for the same vertical source-vehicle separation It,,. Within
the plume, the average distance to the plume centerline E [Irn] is less than the average
distance to the plume source on the seafloor E [Ir0l]; however, wide plumes and weak
advection reduce the magnitude of the difference.

bathymetry and other influences will degrade the quality of this assumption. Fur-

thermore, without assuming some kind of model for the spatio-temporal variability of

the currents, it is impossible to separate spatial variations from temporal variations,

the two being coupled through the motion of the vehicle. 36

4.5.2 Distribution of BP Detection Location

Figure 4-20 schematically illustrates the effect of ambient crossflow strength IUoI on

the source-relative location of a buoyant plume. Effluent is assumed to issue from a

point source and rise at a constant rate W0 thereafter.3 7 Letting a, denote a, character-

istic plume radius, case (a) corresponds to dominant advection (up < U0 h1 ,,/Wo), and

case (b) corresponds to weak advection with plume evolution dominated by plume

spread (ap > Uoh 1, /W). Higher intensity crossflows advect the plume over larger

horizontal distances for the same vertical source-vehicle separation h,,.

"36For processes with known spatio-temporal spectra, Zhang et al. [137] developed the concept
of a "mingled-spectrum" to describe the mapping of spatial and temporal variation onto a single
temporal axis through the vehicle's velocity.

3 7This assumption is useful here to establish intuition on the basis of the simple geomnetric rela-

tionships that result. A justification is offered subsequently in § 4.5.3
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Figure 4-20 also defines two scalar quantities r0 , the horizontal distance between a

vent and vehicle location upon detection of the plume emanating from that vent, and

r, the horizontal distance between the plume's centerline location at vehicle depth and

vehicle location upon detection. These distances are the key to assessing the value of

measuring U 0 in situ. Because the plume evolution itself is a random process, these

quantities are both inherently random. In principle, knowledge of centerline evolu-

tion and crossflow should enable the uncertainty associated with the source location

to reflect the statistics of r rather than r0 . Thus the attainable reduction in source lo-

cation uncertainty only becomes significant when crossflow intensity dominates plume

growth, as in case (a) of Fig. 4-20.

For all crossflow intensities and plume widths, the triangle inequalities applied to

r0 , r, and centerline length Uoh, 8/Wo yield the constraints:

ror Uoh
-wo (4.12)

1 . - r l < _ --h
wo

These bounds are purely geometric, and apply subject to the assumption of a constant

rise rate W0 so long as crossflows remain invariant. These bounds reveal themselves in

Figure 4-21 which shows realizations of r vs r0 attained for 20 simulated detections,

using (a) a relatively strong non-dimensional crossflow Uo/Wo and (b) a relatively

weak non-dimensional crossflow. The samples were generated under the assumption

that r is Rayleigh distributed about the centerline location. While on average E [r] <

E [ro], for an individual detection the associated r and r0 may be such that r0 < r.

Of course there is no way of knowing that the source is in fact closer than the plume

centerline without a priori knowledge of source location.

4.5.3 Dependence on source-relative vehicle height h•,

Under favorable crossflow conditions, realizing a reduction in source location ambi-

guity from measurement of the crossflow still requires accurate prediction of plume

centerline location at vehicle depth. That prediction will be subject to modeling er-

ror as well as to error in estimates of the crossflow due to either direct measurement

error, or the spatial variability thereof. Furthermore, both the attainable reduction
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Figure 4-21: Non-dimensional distance to plume centerline versus non-dimensional
distance to source for 20 simulated detection locations assuming Rayleigh distribu-
tion about plume centerline: (a) strong crossflow (Uo/Wo > 1); (b) weak crossflow
(Uo/Wo < 1). The bounds specified by (4.12) are indicated by dashed lines. As cross-
flow intensity decreases, these bounds move toward the 1 : 1 line, reducing any benefit
attained from accurate prediction of centerline location. Similarly, as plume width in-
creases the sample points spread out along the r axis, filling a larger portion of the
band around the 1 : 1 line, thereby effectively reducing the distinction between r and
r0 as well.
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in source location ambiguity as well as the fidelity of any centerline prediction should

be functions of source-relative vehicle height h,,: a plume encountered at larger h,,.,

will have had more time to advect farther from its source in the same crossflow. This

intuitive idea is supported by Fig. 4-22 which shows the distances at which BP detec-

tions were observed versus vehicle height. Finally, effective source size or vent field

extent will bound the achievable resolution. I turn my attention to these factors next.

The ensuing development also affords an opportunity to assess the assumptions of a

constant rise rate and of a Rayleigh distribution for r employed in Figs. 4-20 & 4-21.

I now develop a model for the expected distribution of source-relative detection

locations from the elementary perspective of a discrete particle of vent fluid ejected

from a hydrothermal source. From § 4.1, the factors affecting the trajectory of the

particle are (1) buoyancy of the particle and the surrounding fluid; (2) turbulence,

mostly self-generated by the plume's own buoyancy; (3) advection by horizontal cross-

flow. Contributions from both buoyancy and turbulence will determine the vertical

motions undertaken by the particle. Considerable simplification is attained, however,

by assuming that buoyancy dominates and furthermore that it acts to deterministi-

cally increase particle height above the source as a function of time. Finally, I assume

that crossflows (composed primarily of diurnal tidal currents) can be regarded as

constant over the 1 h timescale of buoyant plume rise. Under these assumptions, the

particle's position xi as a function of time t and time-since-emission Te is:

xi(t, Te) = x, + U(t) .T, + hcL(T,) l + I ui(t - T) dr, (4.13)

where x, denotes the particle's origin from a source on the seafloor, U(t) denotes hori-

zontal advective currents assumed constant over the interval [t - Tr, t] and henceforth

denoted UO, k denotes the unit vertical (positive down), hCL(-r) denotes centerline

rise height as a function of time-since-emission, and ui(t) denotes the turbulent mo-

tions executed by the particle. These are limited to horizontal motions about plume

centerline by assumption, i.e. ui T- = 0. Two elements of (4.13) are subject to ran-

domness: x8, because vent fields have finite size, and ui(t), because of the stochastic

nature of turbulence.

While an individual hydrothermal orifice might be reasonably approximated by a
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point source, nearby orifices on a single hydrothermal structure, or multiple venting

structures in a field may produce plumes that coalesce as they rise. To account for

this, let the horizontal component of particle emission location hx, follow a normal

distribution:
hxS '{hk 8 ,oaI2 x2 } , (4.14)

where h R, denotes the center of the vent field, and a, a measure of field extent. I as-

sume the the vertical emission location z, is known approximately from bathymetry

and constrained to a small depth interval (relative to o,) such that it can be re-

garded as deterministic. The horizontal field extent represents a lower bound on the

achievable precision of source locations inferred from mid-water column detections.

It remains to describe the distribution of the horizontal components of the tur-

bulent motions hui(t). This can be done by linking the random motions of individ-

ual particles to the known time-averaged concentration profile across a plume. The

probability density function of an individual particle's location p (xi; Te) is linked to

ensemble average concentration X(x, Te) through the relationship [20]:

x(x, -e,) = Qp (x; Te) dx (4.15)

where p (x; Te) denotes the particle position probability density evaluated at x, and

Q denotes the total mass of particles released. The probability densities associated

with each particle must be identical functions of T, for (4.15) to apply. The analogous

form of (4.15) for a steady, continuous release of particles is, by superposition of the

ensemble average fields [20],

X(x) = qj p(x;T)d--dx, (4.16)

where the ensemble average no longer contains any time dependence and is equiva-

lently a time-average concentration."8 Total particle mass Q has been replaced by

a steady mass release rate q to accommodate this continuous release perspective, as

opposed to the release of an discrete number of particles.3 9

"3SEnsemble average connection to time-average for continuous release.
"39I assume a steady release rate throughout this work. Hydrothermal venting is known to vary in

intensity, though the extent of this variation is poorly constrained. Other types of geophysical flows
like cold seeps may be subject to considerable variation due to tidally induced pressure changes.
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Assuming independence of the three components of particle position,

x(hx, z) = q p (hX; T) p (z; T) dr -dx. (4.17)

By assumption, vertical particle position zi is a deterministic function of time-since-

release Te so that

p (z; Te) = 6 (z - hCL(Te)) • (4.18)

Further assuming that hcL('re) is invertible, the integrand of (4.17) will be zero ev-

erywhere except at 7e = h- (Zs - z) yielding

X(hx, z) = q p (hx; hc•(z, - z)) dx. (4.19)

Turbulent motions are three-dimensional, thus the assumption of a deterministic z, is

a considerable simplification. However, their effects on time-averaged concentration

X(x) are minor if the ascending plume is narrow such that the concentration gradient

in the z-direction is shallow relative to the horizontal gradient. In that case, turbulent

vertical motions will tend to cancel one another out in a frame moving with the bulk

flow, as effluent from above will be brought down at roughly the same rate as effluent

being brought up from below. 40

Observations of laboratory plumes indicate that time-averaged concentration pro-
files across buoyant plumes are approximately Gaussian [82], therefore it follows from

(4.19) that hxi(z) will be normally distributed. Thus only the covariance of the in-

tegral containing ui in the particle position model (4.13) is required to completely

specify the distribution of xi(re). In general, this covariance will be a function of time-

since-release T,. Integration of the turbulent velocities hui will tend to de-correlate

the components of the resulting vector such that a Te-dependent covariance describing

Applying the approaches developed in this thesis to systems with significant temporal variability
in source characteristics would require models capable of predicting this variation, a daunting task,
or else models that do not attempt to predict the aspects of plumes affected by varying source
fluxes. Sources that move or turn off completely imply a time-dependent true map and cannot be
accomodated without augmenting the state space of the map.

4 0This argument is usually employed to justify the so-called "slender-plume" approximation to
turbulent diffusion of a passive tracer. The argument requires explicit integration of (4.15) using an
assumed (Gaussian) form for p (x; T-) and assuming the associated variance is known as a function
of Te (e.g. [20]), but avoids the need for an a priori assumption of negligible axial diffusion.
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plume width can be expected to have the form

U'p(Tr)I2× 2 = coy (j hui()dT) , (4.20)

where the dependence on time t has been dropped since the statistics of hui are a

function of re alone. Below, I specify up(Te) directly based on empirical observations

of buoyant hydrothermal plumes, obviating any need to specify the statistics of ui, in

effect relying on the Central Limit Theorem to ensure that the resulting distribution

of particle position will be Gaussian regardless of the details of ui.41 On the basis of

this argument, horizontal particle position will be distributed according to

hXi(Te) _ )V {hjý8 + hU 0 _T, (0"(Te) + 0r) 12.2} (4.21)

Finally, the dependence on Te can be replaced by a dependence on z via the transfor-

mation T, = hc(zs - z) (assumed to exist over the range of interest, z < z,):

hx•(z)• AF {h~+hU 0 h•(z, - z), (P (h (z8 -z))+I )I2Z2} . (4.22)

Up to this point, no specific reference has been made to any models of buoyant

plume rise, only to the general characteristics thereof. To proceed, the functions

hcL(T,) and op(-e) need to be specified. A crude, but nonetheless illuminating per-

spective is afforded by assuming a constant rise rate Wo, and furthermore that plume

radius grow linearly with height hcL:

hCL(Te) = WOTe (4.23a)

ap(hcL) = lahcL , (4.23b)

where a represents a constant of proportionality describing the increase in plume

radius per unit rise.42 . Though crude, these expressions can be justified to a degree

41The relationship between apr,7- and the covariance of hu, is easily attained under the simplifying

assumption that hu, is a (non-stationary) continuous-time white noise process. Straightforward
manipulations lead to cov (ui) = -- a'2(Te)1212. For example, if cov (ui) were constant (as it would

be for molecular diffusion), then up(Te) cx V/•e, yielding the familiar (e.g. [20]) Vt law for the growth
in width of a passive plume in the far field of a continuously releasing source.

122The leading factor of 1 reflects the scaling between plume radius for a top hat cross-section
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with respect to the classical "top-hat" model of time-averaged buoyant plume rise

originally formulated by Morton, Taylor, and Turner [89], and applied subsequently

to hydrothermal plumes by Speer and Rona [110] and others.

The essence of the MTT model is an artificial distinction between the ambient

environment and plume fluid [20]. That distinction enables the closure of integral con-

servation equations for the mass, momentum and buoyancy of the rising plume via

the assumption that such plumes grow by incorporating ambient fluid into themselves

as they rise. The process by which this occurs is known as turbulent entrainment. Be-

cause the entrainment results from the plumes own motion, a reasonable assumption

is that it should occur at a rate proportional to its local vertical velocity.43 The asso-

ciated constant of proportionality, known as the entrainment coefficient and usually

denoted a, has a typical value of a = 0.07 (e.g. [82]).

In unstratified surroundings, the MTT model predicts indefinite rise and linear

growth in plume radius with respect to height. In uniformly stratified surroundings

(constant Brunt-Viiis1Id buoyancy frequency) buoyant plumes eventually achieve a

terminal rise height, though their radii still grow approximately linearly up to roughly

90% of the level of neutral buoyancy before beginning a more rapid expansion [119].

On this basis, the assumption of linear growth in plume radius (4.23a) is a reasonable

approximation, especially for plumes encountered beneath the NBP. Mcduff [83]

reports a radial growth rate of 10 cm per meter of rise for typical plumes emanating

from the hydrothermal vents of the Main Endeavour Field located in the Northeast

Pacific giving a = 0.1 m/m.

The assumption (4.23b) of a constant rise rate is rather more difficult to defend as

it ignores the dynamic balance between plume growth through entrainment, vertical

momentum, and buoyancy forces acting on the ascending plume. Modeling studies

carried out by Speer and Rona [110] for canonical Pacific and Atlantic plumes predict

a nearly instantaneous initial vertical acceleration followed by rapid decay over the

first few tens of meters of rise, then relatively slow decay throughout most of a plume's

rise, until a final period of rapid decay beyond the level of neutral buoyancy. They

give a figure of 10 cm/s for both Atlantic and Pacific plumes as describing vertical

versus standard deviation for a Gaussian plume cross-section [47]
43Turner [119] presents an overview of the many applications of the entrainment assumption to

geophysical flows as well as a discussion of the mechanism itself.

164



velocity throughout most of the vertical extent of the plume. I will refer to this figure,

W0 = 0.1 m/s, subsequently as the "canonical rise rate" for buoyant hydrothermal

plumes. Thus the assumptions (4.23), though rough, are not unreasonable on the

basis of theoretical predictions, the first of which applies to all buoyant plumes, and

the latter specifically to hydrothermal plumes.4 4 MTT-based modeling efforts specific

to hydrothermal plumes in the buoyant phase (e.g. [81,84,107,110]) should in principle

produce more accurate results than the simplistic perspective taken above; however,

these are of dubious utility in the present context where source parameters cannot be

known a priori.

Returning now to the probability distribution of the location of a particle emitted

from a hydrothermal source, the assumptions (4.23) provide a functional form in

terms of source-relative vehicle height h,, = z, - z, at the hypothetical interception

of particle i:

h h) g{h h hw 1 . (4.24)h x i(h s•) - Ar Itxk + hU 0 h , (Q a 2h•,, + 02) 12 .2 (4 24

Intuitively, a parallel exists between the uncertainty associated with an emitted par-

ticle's location given its origin and the uncertainty associated with a particle's origin

given its location in the water column. Since centerline evolution and crossflow play

important roles in determining particle location, knowledge of these processes should

enable a reduction in the uncertainty associated with source location; however, nei-

ther can be known exactly. A prediction of particle location i1 , or equivalently an

estimate of source location :s will in either case be subject to crossflow measurement

error and centerline model error in addition to the inherent uncertainty introduced

by plume growth and source extent indicated by (4.24). I will restrict my attention to

errors in the measurement of crossflow Uo, since its effect is of principal importance

"4 In light of the entrainment assumption, the consistency of the assumptions (4.23) might also be
of concern. According to the MTT model, conservation of mass expressed for a horizontal disk of
plume with area A(z) and vertical velocity W(z) gives d/dz(AW) = 2V/iaA'/ 2 W where a denotes
the entrainment coefficient. Assuming linear growth in plume radius parameterized by a leads to a

solution for plume rise rate W(z) = const., z-,H,2a-2a) (not the usual MTT solution of course, which
requires simultaneous solution of equations for conservation of mass, momentum, and buoyancy). On
the basis of this equation, if a = 2a, rise rate would in fact be constant even under the assumption of
a linear growth in plume radius. The values for a and a quoted in the text (0.1 and 0.07, respectively)
are in rough agreement with this condition.
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in determining the value of measuring currents aboard an AUV. Let U0 denote the

crossflow estimate, and to 1 U0 - U0 denote the associated error:

U0  A/ {0, 40oI12x2} (measured)Cio (4.25)

U0o ,- AM{O, 0,12x2} (not measured)

where the covariance associated with not measuring currents aUoI2x2 reflects the co-

variance of the crossflow itself, while a 12,i2 reflects measurement error, and presum-
ably ou 0 > aO.

An unbiased estimate of horizontal particle location at depth zi = z, + h CL for

known source location k, is:

h: = hk•= + 1j0 hCL
hi h Wo (4.26)

Assuming the sources of uncertainty described above are uncorrelated, the error in

predicted particle location ii icx - xi will be distributed according to

h~i ,0 2((a;W( + 4 CL + a) 12x2} (4.27)

Ej = 0 (by assumption)

where au = au, without crossflow measurements, or else au = aOo. The covariance in

(4.27) is functionally dependent on two constant parameters: a0 and 4wA +

which consists of the lumped contribution from imperfect knowledge of advection plus

plume growth. At low altitudes, source size a, dominates the uncertainty, whereas as

height increases, an approximately linear dependence on hcL develops, scaled by /1.

Figure 4-23 shows distance to source r0 and distance to predicted centerline lo-

cation r computed for the BP interceptions plotted in Fig. 4-22. According to par-

ticle position model (4.27), these data will follow a Rayleigh distribution with h/I,-
dependent parameter (O3h• 8 + ) and different f according to:

_o aor2 a 2
W2 2

OT a2  (4.28)

W0 4
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Table 4.1: Maximum likelihood estimates (95% confidence) of lumped plume spread
(3 and characteristic vent field size ao. The value for ao with0 -= 0 represents a baseline
computed by assuming no dependence of uncertainty on vehicle height. Because of the
small number of BP detections at heights above - 50 m, this estimate is likely biased
toward a smaller value.

Distance Source Assignment 13 a8 (m)

TO argininl, - xvl -0 43 [34,57]
S

7"0 argminlli 8 - xvl - Uoh,,/0.11 0.11 [-0.04, 0.26] 30 [13,48]
S

r argminil: 8 - Xv - Uohv8/0.1I 0.000 [-0.011,0.012] 26 [19,33]
S

These data were used to compute maximum likelihood estimates of the parameters

;3 and a,; results are given in Table 4.1. The 95% confidence intervals for 3 are wide

reflecting the sparsity of BP detections for h,, > 50 m. Nevertheless, as expected,

the 13 predicted for r0 with crossflow treated as random is larger than for r. The

estimated values of ao, which are theoretically identical in either case, agree well.

Especially considering the wide confidence intervals, a comparison to order-of-

magnitude estimates of a, and especially 13 is instructive. Field extent a, is obviously

site-specific; however, values computed for a, in Table 4.1 probably reflect both the

crudeness of the model (4.27) as well as variability between the five different vent

fields discovered over the course of the dives considered. The parameter 13 is more

easily predicted. A auo = 0.04 m/s is consistent with a Rayleigh distribution of

crossflow intensity such that E [lUol] = 5 cm/s. A a 0o = 0.01 m/s overestimates the

attainable precision of ADCP derived current measurements, but I believe represents

a reasonable estimate of the influence of spatial variability in crossflow on predicted

plume location. Along with a = 0.1 from above, these numbers result in values of

0.16 and 0.013 for 13 associated with r0 and r respectively, in broad agreement with

the maximum likelihood estimates in Table 4.1.

Performance Metric

The preceding discussion derived distributions for distance-to-source r0 and distance-

to-plume-centerline r from detection location as functions of vehicle height h,, and

employed data from ABE dives to determine values for the unknown parameters.
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Figure 4-23: Non-dimensional distance to plume centerline r/hv, versus non-
dimensional distance to source roh,, for BP detections from five ABE dives (indicated
by the mark shape): (a) source assignment for r0 according to minimum distance; (b)
by proximity to a circle of radius Uohs/0.1 around the detection location. Centerline
locations were predicted by numerically integrating measured crossflow. Average mea-
sured crossflow intensity is indicated by the color of each mark. In both panels, most
points occur either near or below the 1 : 1 line indicating that, on average, a reduction
in source location ambiguity is attainable by predicting centerline location at vehicle
height. Distances measured during periods of low crossflow intensity (lightest gray)
show only minimal improvement as expected since plumes should rise nearly vertically
under these conditions. Medium crossflow intensities (dark gray) produced the best
and most consistent improvement. Distances measured during periods of high intensity
crossflow (black) produced scattered results, even though the best improvements should
have been observed during these times. This may reflect the inadequacy of the constant
rise-rate assumption to account for the interplay between crossflow and rise rate [84].
Starred data points indicate those detections for which the source assignment used to
compute r and r0 was in disagreement. The crossflow record for the one double-starred
point from ABE-136 was insufficiently long to predict centerline location by integration
of measured crossflow, and a centered average was used instead.
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This section derives a non-dimensional metric for the reduction of source location

ambiguity attained by using crossflow measurements to help constrain source location.

Let each detection be associated with a patch of seafloor from which it could

have emanated of some characteristic area. Assuming known hcL = h,,,45 the uncer-

tainty associated with source location given the location of a buoyant plume detec-

tion is simply the uncertainty associated with detection location given source location

developed above. Thus accurate prediction of centerline trajectory, enabled by on-

board measurement of crossflow, should reduce the characteristic seafloor area from

var (ro) to the (smaller) characteristic area 0,2 L var (r).

A normalized quantity describing the reduction in locational ambiguity attained

by including an estimate of plume centerline in interpreting a water-column detection

is

,, Aro - 0r (4.29)
Ur 0

The normalized improvement 77r E [0, 1] represents the normalized reduction in the

characteristic radius of the patch of seafloor expected to contain the source of the

detected plume. From (4.27) & (4.28), 77r may be parameterized as:

r7r 7/r ( Ou0 ,1 0", a, Wo, hs, aos) (4.30)

Supposing crossflow is measured accurately such that dependence on at? is elimi-

nated 4
1, and setting "u0 ox UO yields a simplified parameterization in terms of non-

dimensionalized quantities:

07r , h(s,, (4.31)

4
1Source-relative vehicle height h,,, or equivalently centerline height at interception hCL, will be

known approximately from bathymetry. Considerable relief on length scales comparable to the un-

certainty in source location will alter the shape of the patch of seafloor from which the detected

plume emanated. This effect is automatically accommodated by the Occupancy Grid based stochas-

tic mapping method applied to BP detections in Ch. 5.

"4 6 ýroin (4.28) measured accurately enough to be ignored requires < 4.
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The functional form of (4.31) is then

~ +1a2 -•' 2 +1

I (,U o /(4.32)___(_O)w0 + .) (h-•)2+1•

where the factor of ! arises from assuming a Rayleigh distribution for crossflow mag-
Tr

nitude IU01. 47

Eq. (4.32) is plotted in Fig. 4-24 for fixed a = 0.1 m/rn. Attainable performance

improves as crossflow speed increases and for increasing vehicle height, whereas larger

characteristic vent field size o, reduces qr,. For the parameter estimates in Table 4.1

and at a typical observed crossflow velocity of 5 cm/s Fig. 4-24 indicates 7i, = 0.2 for

Phase-2 dives at 50 m height, and 71r = 0.7 for a maximum Phase-i vehicle height of

300 m.

4.6 Conclusions

This chapter contains two principal contributions:

1. An automated procedure for the classification of hydrographic data as either

background water unaffected by hydrothermal input, water contaminated by a

non-buoyant plume (NBP), or buoyant plume (BP) water.

2. A parameterized model for the probability density function of the seafloor lo-

cation of the source of a BP detected at some height above the seafloor.

The first of these was applied to a set of four measurements collected by the ABE

vehicle to produce maps of plume activity suitable for autonomous interpretation by

virtue of having segmented plumes from background. The method is grounded in the

physical characteristics of hydrothermal plumes rather than in the specifics of each

measurement and should be applicable to scalar measurements from sensors other

than those studied here.

4 7With Uo = E [HUo0], a Rayleigh distribution for lUol implies au, = Uo.
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Figure 4-24: Attainable reduction in normalized source location ambiguity 77, from

on-board measurement of crossflow as a function of non-dimensionalized crossflow speed
Uo/Wo and non-dimensionalized vehicle height h,,/i 8 for fixed plume growth param-

eter a = 0.1. Attainable performance improves as crossflow speed increases and for
increasing vehicle height. Larger characteristic vent field size a, reduces the attainable

performance improvement. Marks on right side of the plot indicate performance im-
provement in the limit of a point source (a, -- 0), in which case 7r, becomes independent

of vehicle height.
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Based on the estimated parameters of the model for uncertainty in source loca-

tion, source locations can be estimated with respect to the locations of individual BP

detections with a standard deviation of - 25 m at a vehicle height of 50 in (nominal

Phase-2), increasing to - 40 m at a maximum Phase-1 height of 100 mi, all assum-

ing the availability of crossflow measurements from an on board ADCP. Without

an ADCP for measuring crossflow, these numbers worsen to ,- 30 in and - 100 m,

respectively.

Now consider these contributions in light of the questions posed at the end of § 4.2.

Recall that these pertained to the reliability, efficiency, and potential for autonomy

in the three-stage nested survey plan introduced in § 4.2.

Reliability: The first contribution listed above provides for detection of BP

contact with a specified probability of false alarm. Based on the complete results

provided for all dives in App. F, BP detections were reliable indicators of venting

below, consistent with a low probability of false alarm. That is, active venting was

discovered in all areas near BP detections (when that area was surveyed during a

Phase-3 near-bottom dive). One notable exception was the southern-most BP detec-

tion during ABE-128. Further evidence of BP contact in this region was observed

during the Phase-2 dive at this site (ABE-136); however the source was never suc-

cessfully localized. Given the corroborating evidence between Phase-1 and Phase-2

dives at this site, it is unlikely that these detections represent false alarms. Rather,

it suggests incorrect interpretation of the likely source of these detections, or simply

an unlucky Phase-3. In some cases, notably ABE-151, BP detections indicate uncon-

firmed additional vent sites that were not explored on subsequent Phase-3 dives.

In retrospect, a strategy based exclusively on BP detections nearly guarantees

successful localization of those vent sites whose BPs were intercepted; however, this

strategy may also be too conservative with respect to declaring worthwhile targets for

pursuit. This is especially true for Phase-1 dives, where direct BP detection can be

quite rare on account of wide trackline spacing. Comparing Phase-1 dives ABE-131

(ELSC, Site 5) and ABE-150 (SMAR) illustrates the tradeoff. No BPs were detected

on either dive. Nevertheless, eH data from ABE-131 led to two subsequent (lives at

this site, neither of which ultimately discovered any further evidence of BP activity,
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and the site was eventually abandoned.4" Additional Phase-1 dives at this site would

likely have been a better expenditure of time. In contrast, and despite very wide

trackline spacing (1 km), ABE-150 led to the successful discovery of two distinct vent

sites, and Phase-2 dives indicated several others in the vicinity. Success was achieved

at SMAR largely because eH measurements constrained the younger parts of the

NBP. Even so, significant eH anomalies were observed over a large portion of ABE-

150. The first of two Phase-2 dives was designed to cover an area beneath the strongest

observed eH anomalies. Though successful, both the vent fields discovered during this

dive that were eventually confirmed by Phase-3 dives were discovered near the edges

of that survey, and could have easily been missed completely. Survey design would

likely have benefitted from incorporating measurements of ADCP-derived crossfiow

velocity.

Efficiency: Relative to the uncertainty in source location derived in this chapter,

most Phase-2 and particularly Phase-3 dives could have been designed to cover smaller

areas49 if the goal were only to follow up on BP detections. For instance, at ELSC

Site-3 (Fig. F-17), all vent sites eventually confirmed were first detected on the Phase-

1 dive at this site. The Phase-2 dive could have been considerably smaller in extent

without missing any of these vent sites; however, it was not known at the time whether

other BP within the survey area might have been missed. This chapter developed

constraints on source location following detection of a BP, but those constraints,

while useful, do not provide any guidance on how likely BP detection events are in

the first place. One of the reasons for pursuing a nested survey approach to search

is to guarantee coverage of a predetermined area. Any measure of performance must

include an assessment of how well that goal was achieved. As the next chapter reveals,

the information contained in non-detections provides the key to assessing coverage.

Autonomy: One necessary component for the automation of nested surveys for

hydrothermal vent discovery has been satisfied: autonomous BP detection. A strat-

egy for survey design based upon those detections remains unspecified. Autonomous

"4SVenting was discovered by a subsequent expedition nearby to the area where the ABE dives
took place [50].

49hl some cases extenuating circumstances also drove survey design. In particular, bathymetry

acquired during Phase-2 sometimes indicated geological features worth investigating.
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nested survey design would require the specification of survey extent, trackline spac-

ing, and survey height. The development in this chapter does provide guidance on

survey extent: an obvious heuristic strategy would be to require that surveys cover

areas within some number of standard deviations of predicted source locations. How-

ever, it remains unclear (1) how densely the tracklines within should be spaced,

(2) how information from multiple nearby detections might be aggregated, and (3)

whether the surveyed areas could be declared searched with some measure of cer-

tainty. Occupancy grid mapping, applied to the data from this chapter in the next,

provides one mechanism to answer these questions.
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Chapter 5

Buoyant Hydrothermal Plume

Source Localization via Nested

Survey

I have pursued a map-based approach toward nested survey automation. The final

components in this approach are the occupancy grid (OG) maps of probable seafloor

vent location presented in this chapter. These maps are sufficient to provide guidance

on both the location and extent of a subsequent survey because they encapsulate all

sensor data from the previous stage(s) into a simple spatial representation of seafloor

area likely to contain active hydrothermal vents.

5.1 Introduction

In the previous chapter a simple model for the location of a buoyant particle emitted

by a vent within a source field of known location was derived. After accounting for

measurement uncertainties, this led to a probability density function for predicted par-

ticle location. Given particle location instead of source field location, it was remarked

that this same probability density function applied to the now uncertain source lo-

cation.' In effect, a forward perspective was utilized to arrive at an inverse model

for mapping the locations of BP detections to their likely sources on the seafloor.

1In fact, this duality applies only for a flat bottom.
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However, the inverse model so attained suffers several shortcomings. First, it applies

to detections only; the vast majority of measurements are non-detections that conse-

quently cannot be utilized. Second, it offers no guidance on how repeated detections

might be combined to yield refined estimates of source location, particularly when

multiple sources could be present in the domain. Both these shortcomings can be

addressed by retaining the forward perspective and using the OG methods developed

in Part I to iteratively construct a map of probable source locations consistent with

all measurements.

5.2 Implementation

Figure 5-1 schematically depicts the role of OG mapping within the larger context

of nested survey applied to hydrothermal vent localization. The diagram shows how

the components of this thesis work together:

1. Start with a survey design informed by the model of the phenomenon being

surveyed (§ 4.5).

2. Sensor data collected along the vehicle trajectory is distilled into binary de-

tections and non-detections (§ 4.3). Sensor data may also be used to specify

elements of the forward model if it includes dynamic elements (e.g. crossflow

velocity).

3. The detection record and forward model are incorporated into probabilities of

source occupancy on a discrete grid via an OG mapping algorithm (Ch. 2 & 3).

If only a single stage survey was specified, the resultant map is the final output.

4. Otherwise, the next nested survey is designed based upon the state of the OG

map at the conclusion of the current survey stage (this chapter).

I concentrate in this section on specifying the internal workings of the elements within

the core mapping portion of Fig. 5-1. In particular, I reformulate the model for source
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location uncertainty developed in § 4.5 as a binary forward sensor model for use with

the OG methods developed in Part I of this thesis, describe the subsampling required

to satisfy the "static world" assumption (§ 2.1.1), and discuss setup of the OG map

itself (bathymetry, grid cell size, and prior P/).

5.2.1 Forward Model for BP Detection

The OG methods of Part I were formulated for use with a specific kind of forward

model requiring specification of the quantities P, for all grid cells s E { 1,... C}. Re-

call that the quantity P,' denotes "the probability that sufficient signal from occupied

cell s arrived at the sensor at time t to trigger a detection" (§ 2.3). This section de-

rives an expression for the Pt from the particle location probability density function

p (xi I :R,; h,,) derived in the last chapter. As will be shown, two additional quantities

are required: (1) the probability of detecting a particle given its location relative to

the sensor, and (2) the number of such particles composing the plumes emitted from

a source field.

Recall from § 4.5 that, given a vent field's centroid location k, particles released

from the field will be distributed in the water column according to

II("xi hR8 ; ý;8) =Ar h cR + h uo hCL ((½ahcL)2 + 0,2) 12x2f (5.1a)p (hx WO 2:s 8,)=N ys+U-

zi(hcL) = -hct. (5.1b)

To relate this probability density to the probability of detecting particle i, particles

must have some characteristic size. Let each the particle position h xi be redefined

to instead denote the center of mass of a finite size parcel of effluent having some

characteristic radius b(hcL) in the horizontal plane. Let the detection of parcel i at

time t be denoted d'i and suppose that detection will occur if the detector is immersed

within the confines of the parcel. Taking hX' to denote the horizontal location of the

centroid of parcel i at time t, the probability of parcel i triggering a detection at time

t is

P [dI h•; ] J p [Ihxt - hXtI < b(ht,) I hR] - z' (5.2)

0, otherwise

Larger parcels (up to plume width) are more likely to be detected than smaller ones
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Figure 5-1: Occupancy grid map-driven nested survey applied to hydrothermal vent
localization. The AUV enhabits a search domain and flys the first, predefined stage
of it's nested survey while constructing an OG map of likely seafloor vent locations.
The mapping process consists of acquiring sensor data, interpreting those data via a
probabilistic forward model of source location, and applying an OG mapping algorithm
to iteratively learn the state of an OG map. Upon completion of one stage of the nested
survey, regions of the OG map with posteriors raised above the prior define the location
and extent of the follow-on stage. The OG representation facilitates closure of the loop
depicted by virtue of its simple indication of coverage (cells with posteriors beneath
the prior) and of regions likely to yield additional data useful to refine source location
(cells with posteriors raised above the prior).
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simply because the vehicle is more likely to intercept a larger target. The probability

of immersion in parcel i when h', - z is approximately

P [Ihx -x < b(h',) 1h]
thk + 1( h'+hUtOhto--h X t 12

(b(hw ))2 (exp .. . . (5.3)27rr((½aht,) +or,2) 2 (a')2 + 2•)

This approximation holds as long as patch size is small relative to the uncertainty in

parcel location: b(hcL) <«((IahcL)2 + 2 1/2

Thus far, h k has been regarded as continuous-valued. Assuming a sufficiently fine

grid A «< a, where A denotes the length of the sides of each grid cell, the probability

of detecting parcel i given source location is approximately equal to the probability

of detecting that parcel given that its source lies within cell s:

P [1i h,;] P [d$ I S = s; Z](5.4)

where the single occupied cell s is chosen such that hkS lies within its confines. The

approximation in (5.4) applies to any map with cell s occupied and not just to maps

m with the set of occupied cells confined to a single cell S = s. However, the rest

of the map is completely irrelevant to the probability on the left hand side because

parcel i is inherently associated with a particular source field. The right hand side of

(5.4) reflects simply a convenient choice of map; convenient because P [d I S = s; •]

happens to be related to the total probability of detection a-specific to any particular

parcel.

To get at the total probability of detection, all parcels released by a source field

must be considered together. It does not matter which specific parcel is detected,

only that at least one parcel is detected. The probability of detection within a map

having only one occupied cell is given by

P [dr I S = s] = (1 - p~t) i(I - P dtIS=s (5.5)

where the product is over all parcels released by the source and I have dropped the

dependence on bathymetry 2 for convenience. For a continuously releasing source,
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the product in (5.5) has an infinite number of terms; however, with the vertical

position of each parcel zi deterministic, most of these terms are unity so that:

P [d'IS = s] =1- (1- P,) H ( - s]) •I (5.6)
:Z t---

Furthermore, P [d IS = s] is identical for all parcels i satisfying zi = - h',,. This

yields the particularly simple expression

P [dt I S = s] = 1 - (1 - P,) (1 - P [d'I S = s])Q (5.7)

where Q denotes the number of parcels present from the source in cell s at vehicle

depth. The number Q is analogous to a release rate and as such should therefore be

constant with height above the seafloor.

The final step to attaining an expression for the P" requires relating the P' to the

single-occupied-cell map via (2.12), repeated here for completeness:

P[d' I S = =1 - (1 - P•)( - P,) - (5.8)

Substituting the results from (5.7) and (5.3) into the above yields

P t I -(I - P [dt I S =s])Q

1hR + hUt h h It 12 Q
29_ 0.._o Wo -. V___•

1 (b(ht,)) ½ 2+r) exp 2((•ah,)2 +V 2 r l ht. ) 2 + 02) ( 1 at '2 + 2)

(5.9)

It remains to specify the parameters b(hcL) and Q. Those estimates are the subject of

the following two short sections. Once estimates for parameters have been attained,

the forward model required by the OG methods of Part I will be completely specified.

Parcel population An appropriate choice for parcel population Q depends pri-

marily on the accuracy of the plume model employed. The rather large characteristic

source size a, , 25 m found in Ch. 4 indicates our model is insufficiently accurate

to predict the location of individual vents on the seafloor, instead being suited to
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predicting the locations of entire vent fields. Parcel population Q should therefore

reflect the number of discrete plumes emanating from a field. Unfortunately such

knowledge is obviously not available a priori. A "reasonable" value, say 1 < Q < 5

unless especially large vent fields are expected, is the only viable recourse.

Parcel size Figure 5-2 shows encountered patch size as a function of vehicle height

above bottom at the time of interception. Patch size was determined by first tempo-

rally clustering full sample rate detections and then computing the maximum pairwise

distance between detections within each group. Almost all patches were continuous at

the sample rate of , 1 Hz, though some were bimodal. Most patches at low altitude

substantially exceed the expected width of a point-source plume assuming a linear

spreading rate of a = 0.1 m/m. This could reflect interception of multiple plumes

within a single patch; however, even some of the largest patches were unimodal. Of

course, on the short timescale of a single transect through a buoyant plume, the

observed profile cannot be expected to reflect time-averaged behavior. Based on

Fig. 5-2, a linear growth rate would significantly under-predict of the probability of

plume interception at 50 m. Instead, I employ an affine model for average plume size

as a function of centerline rise height hcL:

b(hcL) = bo + lahcL (5.10)

The constant b0 represents the effect of finite source size. The height dependence was

chosen to be consistent with the assumptions of the particle model for plume growth

(4.23). Unfortunately, Figure 5-2 provides little guidance on the correctness of this

choice, particularly because of the dearth of data at large heights. The lahcL line for

a = 0.1 is plotted on Fig. 5-2 and suggests at least plausibility, especially considering

that patch width at interception will tend to be somewhat smaller than maximum

patch width.

A maximum likelihood estimate of b0 for each dive was attained from groundtruth
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Figure 5-2: Observed plume width vs. vehicle height hr. Widths plotted are one-half
the portion of trackline associated with each detection. Superscripted numbers indicate
detections that clearly showed either 1 or 2 modes in vertical velocity. Observed widths
were broadly distributed but indicate much larger average widths at h, - 50 in than
would be expected from point sources with linear radial growth rates of 0.1 in/m. This
observation motivated the affine model proposed in the text.
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Table 5.1: Maximum likelihood estimates of characteristic source size b0 for each dive
that included interception of BP water.

Dive Number Dive Type Location b0

ABE-126 Phase-1 ELSC-1 12
ABE-128 Phase-1 ELSC-2 6
ABE-136 Phase-2 ELSC-2 4
ABE-137 Phase-2 ELSC-1 4
ABE-151 Phase-2 SMAR 13

vent field location and measurement history A' according to:

= argmax P [At m]
bo

t

171 P [6- m] (5.11)
T=1

= - P [lml] Pf(1-P[d lm]),
TE71 TE~t

where the second line follows from the static world assumption (§ 2.1.1). The proba-

bilities appearing in the last line of the above are given by the forward model (2.11)

with the P] from (5.9). Numerical estimates were attained using all groundtruth vent

locations (with Q = 1 for each) and are listed in Table 5.1.

The values for b0 in Table 5.1 show considerable variation between dives. This

is not unexpected, as the estimate will depend strongly on vent field configuration

and each individual detection record. Furthermore, these estimates do not take into

account that crossflows cannot be known exactly, and so will tend to produce overesti-

mates of b0. Ultimately a choice must be made that is reasonable across all dives. The

occupancy grid maps produced later in this section were produced using b0 = 5 mi.2

Increasing b0 increases the likelihood of detections at smaller heights above seafloor

proportionally more so than at larger heights.

In light of a characteristic parcel size specified by (5.10), the accuracy of the single-

point integration scheme in (5.3) might be questioned. The worst case corresponds

21t is likely that the value for ABE-126 above is high on account of the large height of this dive

(300 mn) meaning that crossflow uncertainty will have corrupted the estimate.
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to the largest height above seafloor of interest. For the parameter values used in this

thesis, characteristic parcel size at 300 m above the seafloor will be 20 m while the

standard deviation associated with parcel location will be about 40 m. Though only

separated by a factor of two, single-point integration continues to provide a reasonable

answer in practice.

5.2.2 Input Data

The OG mapping algorithms developed in Part I of this thesis require a binary input:

detection or non-detection. Distillation of the raw sensor data collected on ABE into

binary measurements was discussed in § 4.3; however, the development applied to

data at full sample rate - 1 Hz. Solitary detections at this sample rate have yet

to be observed (cf. patch width data presented in Fig. 5-2) indicating samples at

-1 Hz are correlated. Blind use of the detection record at full bandwidth would

therefore violate the static world assumption (§ 2.1.1). Recall that this assumption

requires that measurements be independent conditioned on knowledge of the entire

map m. 3 At full sample rate, and independent of m, a detection makes it likely that

the next measurement will also be a detection simply because hydrothermal BPs have

significant width at survey height compared to the spatial bandwidth implied by this

sample rate.

To avoid treating correlated data as independent, the full bandwidth detection

record consisting of binary samples 6' is downsampled. The anti-aliasing applied is

non-standard in the sense that the output Yt must still be binary. This is done by

declaring downsampled detections when at least a fraction 7r E [0, 1] of the original

samples within the new sampling period were detections:

6'= [ {t : J,,, t E[t- T/2, t + T/2) }> (5.12)

where To denotes the original sampling period, T denotes the downsampled period,

3The static world assumption does not require that the entire world actually be static. Crossflow
velocity is readily incorporated into specification of the probabilities of detection Pt; concentration of
tracers with known decay rates could similarly be incorporated into this specification by raising the
Pt for cells at the proper upwind distance from the sensor. On the other hand, plume sources that

move or periodically turn off cannot be accomodated without violating the static world assumption
because in this case the true OG map would become time-dependent.
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and the enclosing square brackets imply a boolean result. An r/ = 0 makes every

interval containing at least one detection at the original sampling frequency into a

detection at the new sampling frequency. An r/ = 1 requires that all measurements at

the original sample rate within the interval be detections before declaring a detection

at the new sampling frequency. Large 77 close to 1 decrease the probability of false

alarm at the expense of decreased probability of detection. The results in § 5.3 were

all produced with 77 = 0.5.

Choosing a good downsampling period T is crucial. Large T will decorrelate the

samples more effectively, but reduce the precision of the measurement's location. A

good choice for T will reflect the spatial scales of the phenomenon of interest. For

BP detection, T times vehicle speed I ti should be on the order of expected plume

width at survey height:

T (bo± +lab) (5.13)

Thus for a Phase-2 survey at 50 m height and ABE's typical survey speed of 0.6 m/s,

T - 10 s. At 300 m height, T - 30 s.

5.2.3 Mapping Domain

For hydrothermal vent mapping, a grid is defined on the seafloor. Bathymetry ac-

quired from a surface ship will have a resolution on the order of 100 m, which is

adequate. Grid cell size and a prior probability of occupancy need to be specified.

The forward model formulated above applies to the locations of entire vent fields.

Grid cell size should be small relative to the characteristic uncertainty associated

with source location. The lower bound is set by as, about 25 m in the data sets

studied. A grid cell size of A = 5 m on a side is sufficiently dense in practice. At

larger heights, a lower resolution is sufficient and also desirable because these dives

typically span a larger area and computational load grows quadratically with survey

area (linearly with the number of grid cells).

An appropriate cell prior reflects the expected number of vent fields in the survey

area scaled by grid resolution. Let pf denote the expected the field density, that is,

the expected number of fields divided by the survey area: pf a E [S] /(CA 2 ).4 The

4 Recall from Ch. 2 that S denotes the set of occupied grid cells in a map and C denotes the
number of grid cells in the map.
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expectation evaluates to E [S] = CP/5 so that the prior probability of occupancy for

each cell is given by:

P°= A . (5.14)

All OG maps presented in this work employed an assumed vent field density of pf =

1 /km 2 , yielding priors between about 10-5 and 10-3 depending on grid cell size.

For nested surveys, the finished OG map from one stage can be used to initialize

a higher resolution OG map for the subsequent stage. To do so requires regarding

the final posteriors of the original map as independent. With this assumption, the

new priors can be attained from the old posteriors by dividing the old posteriors

equally among each of the new grid cells within the corresponding cell of the old

grid such that expected occupancy of the region contained within the original cell is

unaltered.' This transformation also preserves the expected number of source fields

from the finished map. Finally note that the assumption of independence required is

consistent with the assumptions required by the IP algorithms developed in § 3.2.

5.2.4 Choice of OG Algorithm

Figure 3-10 illustrates the factors affecting choice of OG algorithm. The low prior

appropriate for hydrothermal vent field localization rules out the standard algorithm.

This leaves the exact algorithm and the various approximations developed in Ch. 3.

Since only very few BP detections (about 10 or less, and distributed between different

vent fields) are expected during each survey stage, the exact formulation could have

been applied; however, the recursive form of the IP algorithm is the most practical

from the perspective of real-time application and the results presented next all em-

ploy the IP approximation. Only minor degradation of the IP maps relative to the

exact result was observed. Appendix G contains a thorough comparison to the exact

result along with an example of the highly degraded map produced by the standard

algorithm applied to the same data.

5 Kraetzschmar et al. [591 use this same "probabilistic mean" to propagate probabilities of occu-
pancy through a multi-resolution probabilistic quad tree.
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5.3 Results: Vent Field OG Maps

Figures 5-3 & 5-4 show OG maps generated from data collected on two separate

dives, ABE-128 (Phase-i) and ABE-136 (the subsequent Phase-2 dive). Both de-

tections and non-detections were used as input data to the recursive form of the IP

algorithm (§ 3.2.1). Regions with relatively high posterior odds of occupancy (hot

colors) agree well with clusters of groundtruth vent locations. Regions with relatively

low posterior odds (cool colors) indicate coverage over regions where no BPs were en-

countered. Multiple detections plus nearby non-detections create the irregular shape

of some of the regions with relatively high posterior odds.6 However, the influence

of non-detections is relatively weak because detections are unlikely according to the

forward model of § 5.2.1 and consequently non-detections carry less information than

detections.

Figure 5-4 illustrates the result of using the posterior from a previous dive as a

prior. ABE-128 and ABE-136 were conducted at - 250 m and 50 m above bottom

respectively. Because of this difference in height, the grid cell sizes chosen were

different: 20 m and 5 m on a side respectively. Each cell in the map shown in Fig. 5-3

was split into sixteen descendant cells, each of which were initialized with a probability

of occupancy 1/16 that of the posterior in the original parent cell, as per the procedure

in § 5.2.3. In this case, incorporation of the Phase-1 result improved the resulting

map by retaining high posteriors over portions of the fields that were not detected

during ABE-136.

Both maps were produced using the recursive form of the IP OG mapping algo-

rithm (§ 3.2.1). The number of detections was sufficiently small to allow use of the

exact algorithm (§ 2.4), however, the resulting maps are qualitatively similar, and the

recursive IP algorithm completely avoids the numerical and computational vulnera-

bilities of the exact algorithm. Furthermore, propagating the posterior from previous

dives into a higher resolution grid via the procedure in § 5.2.3 is consistent with the

assumption of independent posteriors required by the IP algorithm. The standard

algorithm (§ 3.1.1) applied to this data produces posteriors near unity in hundreds

of cells near some of the vent fields, in gross violation of the assumed low prior but

6 Using the recursive form of the IP OG algorithm to create these maps instead of the exact,
formulation also has some effect because, unlike the exact algorithm, the IP algorithm is incapable
of reducing any posterior odds following a detection.
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consistent with the observed failure mode of the standard algorithm in simulation

(§ 3.3). Appendix G contains a cross-comparison between maps produced using all

three algorithms.

5.3.1 Conversion from Field Map to Vent Map

The forward model developed in § 5.2.1 applies to the probability of detection given

knowledge of vent field location. The posterior odds in OG maps like Fig. 5-3 & 5-

4 therefore indicate the odds that a cell is occupied by the center of a vent field.

As long as vehicle height exceeds characteristic vent field size a5, this perspective is

appropriate. Closer to the seafloor (e.g. Phase-3 dives at 5 in height) it is desirable

to map the individual vents within a vent field. To choose the extent of a low-height

survey based on an OG map, the cell posteriors should represent the probability that

they are occupied by individual vents.

The transformation is straightforward. I assumed in § 5.2.1 that a typical vent

field will contain Q individual vents whose locations will be normally distributed

about the field's center "~S. Under these assumptions and given hk 5 , the probability

of a cell at hx, containing a vent is

p [v-c ,] 1 - 1 - exp x R( - hx 12 Q (5.15)

where vm, denotes occupancy of cell c by a vent. In words, the probability that. a cell

c is occupied by a vent is one minus the probability that it is not occupied by any

of the Q vents in the field. Multiplication by A2 approximates integration over the

area of cell c. Now let fm, denote that cell s is occupied by the center of a vent field.

Supposing x,8 lies within a cell s, P [VIm I fis] -: P [vmec I x,]. To transform the the

posterior probability of field occupancy P [Ifn 5 I A'] to the posterior probability of

vent occupancy P [Vmc I A'], sum over all possible field locations:

C

P [Vrn At] = P ['mc I fin8 ] P [fin I A'] . (5.16)
8=l

Figure 5-5 shows the results of applying this transformation to the field OG map of

Fig. 5-4.
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Figure 5-3: OG Map prodliced from Phase-1 dive ABE-128. Grouudtruth vents are
shown as white crosses. The vehicle registered detections near two of tile three vent
fields uiltimately localized in addition to a detection near the southern end of the survey.
the source location of which remains ulnknown. High posterior odds in the occupancy
grid imap (red) show good agreement with the locations of the two detected vent fields.
Lowered posterior odds (dark blue) indicate trackline spacing was insufficient by roughly
a factor of two. In fact, the dive shown included a first pass over this site at a different
depth and offset by half the trackline spacing shown, which would have doubled the
trackline density except that vehicle depth was shallower than the NBP making BP
contact unlikely. A subsequent survy designed purely based upon this map would
have discovered two of the three vent fields shown and possibly a third site to the
south, though it would have imissed one field. However, that field was missed because
it was not detected, and not because the OG algorithim failed to produce a good umap.
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Figure 5-4: OG Map pro(duced from Phase-2 dive ABE-136 using the map of Fig. 5-3
to define the prior. The locations of all vent fields ultimately confirmed agree well
with the regions of the map populated by cells with high posterior odds (hot colors).
Detections at the southern edge of the survey confirm the presence of an additional field.
first detected during the Phase-i dive at this site: however, this southern site was never
groundtrntied. Regions with low p)osterior odds (cool colors) indicate fairly uniforrm
coverage over most of the survey extent. though with some patchiness particularly in the
southern half of the survey area. Interestingly, this site was snrveyed in two passes, first
progressing to the west. then back toward the east in between the previums tracklines.
The crossflow direction was observed to approximately reverse over the course of the
survey, resulting in tracklines that effectively observed the same portion of the seafloor
as the previous pass. When these portions of the seafloor included vent sites, the data
was valuable to "triangulate" the location of the vent field. On the other hand. when
these portions of the seafloor were empty, little additional information was attained. In
retrospect. improved coverage would have been attained by a single pass at full trackline
density.
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The transforrmed miap shows broader peaks over wider areas than the field location

map in Fig. 5-4, a result that is consistent with vent fields of finite size. Also note that

the residual high-frequency features in the mnap of Fig. 5-4 left over from incorporation

of the lower resoltion prior have been smoothed. Maps like these could be used to

guide subsequent near bottoni Phase-3 miapping surveys of individual vent fields.

5.3.2 Survey Design from OG Map

The algorithm used to generate the map of Figs. 5-5 incorporates tracer data and

measured crossflows into consistent maps of the seafloor that identify both regions

worth revisiting and regions unlikely to contain vents. Following completion of one

stage of a nested survey, design of the next stage sh(ould favor tracklines that provide

coverage over the portions of the map raised above the prior. Likewise, tilne spent over

portions of the survey area with lowered posteriors will likely be wasted fruitlessly.

and so should be avoided. For example, Fig. 5-5 includes the superimposed outline

of a Phase-3 dive. that while successfull in acquiring groundtruth locations for 5 of

8 vents ultimately discovered, also included substantial coverage of seafloor unlikely

to contain vents according to the OG Inap. Dive tuime could have been allotted more

efficiently, and probably would have yielded additional groundtruth vent locations.

Figure 5-6 presents a quantitative evaluation of the efficiency of Phase-2 (lives

relative to OG nmaps from preceding Phase-1 surveys and of Phase-3 surveys relative to

00G laps from preceding Phase-2 surveys. The figure indicates mnost follow-on surveys

covered too inuch ground unlikely to contain vents. In many cases, potentially high

value areas were consequently ignored even though they could have been survevyed

without extending the duration of the dive.7 On the other hand, wider coverage

sometimes resulted in detections of vent fields that would have been inissed had

subsequent surveys been designed purely based upon the OG inap of the previous

stage. For instance, the second field from the north in Fig. 5-4 is not evident in the

OG lnap from the previous (live Fig. 5-3. However, in these cases, either insufficient

coverage froin the previous survey or else a missed detection was to blame. The BP

detection inethod implemented in § 4.3 was deliberately designed with a very low

7Other factors did sometimes affect survey design, for instance, bathymietry, CTD data. and
imposed time-constraints.
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Figure 5-5: The OG map of Fig. 5-4 transformed fromn probability of vent field oc-
cupancy into individual vent occupancy. Relative to the field map, this iniap exhibits
wider, smoother peaks consistent with vent fields of significant extent (10s of meters).
The outline of the subsequent Phase-3 near-bottom survey at this site is shown in white.
That survey was designed while at sea on the original expedition, before development
of the OG mapping framework. Better coverage could have been attained by decreas-
ing the north-south extent of the northern survey in favor of extending it to the west.
Indeed, the three western groundtruth vent locations that lie outside the bounds of the
Phase-3 survey were discovered by ROV several months after the completion of ABE
operations at this site. Finally, the map indicates the southern Phase-3 survey was
misplaced, and should have been centered some 200 in to the southeast.
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Figure 5-6: Surwey coverage relative to high and low value map areas identified in OG

maps. The labels indicate the dive used to create the OG and the dive whose coverage is

evaluated relative to that lnmp: map (live -+ subsequent survey. For each pair of dives,
three areas were conIputed: (blue) area covered by the subsequent survey but less than

the prior (< 0.99/,ý); (green) area not covered but raised above the prior (> 1.01/¶,'):

(red) area not covered with relatively high posteriors greater than 0.01 (i.e. at least

a 1:100 chance of vent occulpancy). Qualitatively these areas indicate, respectively,

unnecessary coverage. possible missed opportunities, and likely missed opportunities.

For the same dive (duration, better survey performance might have been attained in

most cases by covering the areas represented by the red and green bars instead of the

areas represented by the blue bars. Dives that discovered vent fields in places indicated

by the OG map as unlikely to have been occulpied are possible exceptions. These (lives

are starred. In all cases. indications of BP contact (usually eH) were present iii tie
data used to make the OG map: however, the evidence was insufficiently compelling

(usually lacking significant VVA) to result in a detection according to the method of
S4.3.

probability of false alarm because the forward model employed is specific to direct

BP contact.

From the perspective of automating nested surveys, the results in Fig. 5-6 are sig-

nificant because they indicate that relatively short-duration subsequent stages would

have been adequate to localize many vents. Short-duration, vehicle directed stages

could therefore have been added to the ends of Phase-i dives without significantly

impacting the overall coverage attained. In many cases, this would have enabled

the vehicle to return from a single (live with colmplete preliminary assessment of at

least one nmew vent site including groundtruthed location, nearby bathymetry and

photographs of tile surrounding biological conmmunity.
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5.4 Conclusions

This chapter presented a parameterized forward model for BP detection anlt applied it

to the construction of OG maps of likely vent locations from real world hydrograI)hiC

data collected by the ABE vehicle on recent hydrothermal vent prospecting missions

in both the Pacific and Altantic oceans. These maps can be used to distill scusor (atta

to aid human interp)retation or, by virtue of their simplicity, to drive fully autonomous

survey stage design.
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Chapter 6

Conclusion

This thesis presented a stochastic mapping framework designed to enable a robotic

platform to automously localize chemical plume sources in environments with multiple

sources. Potential applications for robotic chemical plume source localization include

pollution and environmental monitoring, chemical plant safety, search and rescue.

anti-terrorism, narcotics control, explosive ordinance removal, and hydrothermal vent

prospecting. Turbulent flows make the spatial relationship between the detectable

manifestation of a chemical plume source, the plume itself, and the location of its

source inherently uncertain. Search domains with multiple sources compound this

uncertainty because the number of sources as well as their locations are unknown.

The framework is an adaptation of occupancy grid mapping wherein the binary

state of map nodes is redefined to denote either the presence (occupancy) or a ab-

senice of an active plume source instead of the usual presence or absence of a physical

obstacle. A key characteristic of the chemical plume source localization problem is

that only a few sources are expected within the search domain. The occupancy grid

framework allows for both plume detections and non-detections to inform the esti-

mated state of grid nodes in the map, thereby explicitly representing explored but

empty portions of the domain as well as probable source locations. However, sparsity

in the expected number of occupied grid nodes strongly violates a critical conditional

independence assumption required by the standard Bayesian recursive map update

rule. While that assumption makes for a computationally attractive algorithm, in

our application it results in occupancy grid maps that are grossly inconsistent with

the assumption of a small number of occupied cells. To overcome this limitation, sev-
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eral alternative occupancy grid update algorithms were presented, including an exact

solution that is computationally tractable for small numbers of detections and an

approximate recursive algorithm with improved performance relative to the standard

algorithm but equivalent computational cost.

Application to hydrothermal plume data collected by the autonomous underwa-

ter vehicle ABE during vent prospecting operations in both the Pacific and Atlantic

oceans verified the utility of the approach. The resulting maps were shown to enable

nested surveys for homing in on seafloor vent sites to be carried out autonomously.

Real-time implementation would eliminating inter-dive processing, recharging of bat-

teries, and time spent deploying and recovering the vehicle that is otherwise necessary

with survey design directed by human operators.

The remaining paragraphs reiterate the contributions made by this work to the

three areas identified in Ch. 1: (1) occupancy grid (OG) mapping; (2) general chemical

plume source localization; (3) hydrothermal vent prospecting. In each category I

identify candidate directions for future research that leverage these contributions.

Occupancy Grid Mapping

"* The application of OG mapping to novel arena- multi-source chemical ptlume

source mapping.

"* An articulation of the problems associated with application of standard Bayesian

OG mapping to environments with few expected occupied cells (low prior prob-

ability of occupancy) and stemming from a key independence assumption re-

quired by the standard algorithm.

"* An exact solution for the state of an OG map when measurements consist of

binary detections and non-detections generated by a particular form of forward

sensor model.

"* A family of novel approximate algorithms applicable to low prior environments

based on this exact formulation.

196



Hybrid Feature-Based and OG Mapping This thesis showed how, for a partic-

ular form of binary forward sensor model, non-detections can be incorporated into the

map recursively and without approximation. When the number of cells expected to

be occupied is low, feature-based mapping methods make for a logical choice because

the correspondence problem is low-dimensional. However, feature maps cannot make

direct use of sensor information indicating emptiness because these observations can-

not be correctly attributed to any one feature in the map, and because feature maps

include no explicit representation of empty space. A map of feature locations does

not indicate whether an region in the map not containing any features is likely to be

empty, or hasn't been searched, or resulted in conflicting information.

A hybrid approach might prove feasible wherein sensor measurements are distilled

into binary detections and non-detections, the latter being incorporated into an oc-

cupancy grid map, and the former into a feature-based map. For the sum to be

greater than its parts, the information in these two maps would have to be linked.

For instance, feature locations could be locally biased toward regions less likely to be

empty according to the underlying OG map. A hybrid map would be particularly

useful in combined mapping/exploration missions in sparsely occupied environments.

Implications for OG mapping in Indoor Environments Low priors are a

characteristic of the chemical plume source localization problem when framed as a

Bayesian OG mapping problem, an aspect that was shown to exacerbate the deleteri-

ous effects of regarding each measurement as conditionally independent of all others

given only knowledge of the single cell being updated. Ubiquitous walls and furni-

ture imply that indoor environments (the original application for which OG mapping

was developed) are not characterized by low prior probabilities of occupancy when

discretized into an OG map. Nevertheless, the assumptions required by the standard

OG mapping algorithm do manifest themselves as undue ambiguity around critical

features like doorways [117].

It remains to be seen whether the methods developed in this thesis offer any

advantages in indoor environments over existing OG algorithms. The particular form

of sensor model required can be applied to sonar range-finders (Fig. 2-3; however, the

inverse models typically employed in classical OG mapping do not fit the constraints

imposed by (2.11). Rather, these highly tuned inverse models (e.g. [116]) tend to
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produce good results precisely because they infer more about the environment than

is strictly available, at least from the simplified geometric perspective of Fig. 2-3.

In particular, indoor environments are structured, that is, they consist of regular

walls that imply occupied cells usually occur together, a fact that can be exploited

in an inverse model, but not in a forward model wherein each occupied cell can

independently trigger a detection at the receiver. Nevertheless, the exact solution

presented here enforces consistency between the posteriors and all data, so that in

principle its application to indoor environments address the same issues explored by

Thrun [117].

Chemical Plume Source Localization

"* An abstracted forward model for binary chemical plume detection that encapsu-

lates the role of multiple sources without reference to the physics of a particular

type of plume.

"* A plume source location mapping method suitable for use in multi-source en-

vironments, for instance in mine-clearing, explosive ordinance removal, and in

hydrothermal vent prospecting.

Map-Driven Multi-Source Biomimetic CPT In this thesis I focused on the

application of OG maps to automating nested surveys. For some types of plumes,

nested surveys can be wasteful of vehicle time. In particular, when all sources are

equally valuable and detections are unequivocal, completing a survey stage before

following up on a detection requires that subsequent surveys span the potentially

large portion of the map that may contain the source of that detection. For short-

timescale passive plumes, biomimetic strategies provide an attractive alternative, but

it remains unclear how best to adapt such strategies to multiple-source domains: a

male moth seeking a mate needs only to find one pheromone-emitting female.

Enhanced efficiency could be attained in a multi-source domain over nested sur-

veying by combining biomimetic plume tracing with higher-level mapping to direct

the surveying vehicle toward unexplored regions of the survey area and to identify

when new detections are likely to have emanated from an already-localized source.
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An OG map and associated forward sensor forward model provide a natural mecha-

nism to affect this strategy. The forward model can be employed to generate locations

where the plume emanating from a grid node is likely to be detected under the as-

sumption that the node is occupied by a source. The present state of the OG map in

turn indicates which cells are most worth attempting to observe. Successful previous

localizations will have rendered those portions of the map fully resolved (posterior

probabilities of occupancy near one or zero.), whereas cells in unexplored regions will

have the most uncertain state and the highest value of observation. One challenge to

implementing this strategy is that it will be sensitive to accurate posteriors, particu-

larly if entropy is employed as the metric to assess the relative worth of observing a

cell.

Hydrothermal Vent Prospecting

o A procedure for automatic classification of hydrographic data, into the back-

ground water and the two main components of a hydrothermal plume-the

buoyant and non-buoyant plume-and its application to field data.

o An algorithm for the generation of occupancy grid maps of the seafloor show-

ing locations likely to contain hydrothermal vents and also regions unlikely to

contain vents based on the data acquired, and suitable for the automation of

nested surveys in support of hydrothermal vent prospecting.

o A simple model for buoyant hydrothermal plume evolution suitable for use with

the occupancy grid mapping methods developed in this thesis.

o An evaluation of the utility of measuring crossflow velocity on a surveying AUV

for constraining the source locations of encountered buoyant plumes.

Real-Time Automated Nested Survey Implementation The OG maps in

this dissertation were all generated long after the ABE AUV actually collected the

data. Throughout I have tried to be mindful of the constraints imposed by real-time
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operation and the often chaotic environment of a research vessel at sea. To these ends,

the results presented in Ch. 5 all used the computationally minimal recursive form

of the IP OG mapping algorithm, and the same model parameters were used across

all dives to simulate ignorance about the specific environment to be encountered on

a given dive. Nevertheless, only actual real-time deployment in the deep sea will

ultimately prove the utility of these algorithms for automating the nested survey

process.

Improving Performance beneath the NBP Reduction-oxidation potential (eH)

and potential temperature anomaly data collected during 50 m height Phase-2 dives

with the ABE AUV (App. F) indicates vent fields tend to be associated with sig-

nificant anomalies in these tracers over much larger areas than vertical velocity

anomaly (VVA), though the strongest anomalies are well correlated with VVA. The

simplistic BP model employed here cannot account for these farther-afield anomalies.

Numerical modeling work by Lavelle [66] shows that buoyant hydrothermal plumes

rising in crossflows possess an asymmetric potential temperature cross-section in the

horizontal plane with significant downwind elongation in the wake of the core of the

plume. Presumably a model amenable to real time computation could be developed

to capture at least the rudiments of this process (there is no need to accurately pre-

dict temperature anomaly for instance). The benefit of including these anomalies in

the construction of an OG map to drive nested survey is obvious: trackline spacing

could increase without compromising coverage, thereby reducing the time required to

survey a prescribed area.

Application to eH Anomalies in the NBP Direct detection of BP stems within

the NBP is unlikely when vehicle trackline spacing exceeds the characteristic width

of BPs at altitude (< 100 in). Substantial gains in both efficiency and coverage are

possible if the age of NBP water can be determined and interpreted in terms of likely

BP location without requiring direct BP contact. Emerging in situ chemical sensors,

for instance the reduction-oxidation (eH) probe discussed in Ch. 4, promise to be able

to provide constraints on the age of NBP water. Indeed, successful vent discoveries

at SMAR, based oil the initial widely (1 kin) spaced tracklines of the single Phase-1

(live at the site were almost entirely due to the eH probe providing indications of
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relatively young NBP water despite lack of direct contact with any BPs.

Thus far the design of ABE surveys based on eH anomalies in the NBP has been

heuristic. Adaptation of the OG mapping framework to the mapping of the probable

locations of BP stems intersecting the NBP should be possible with the development of

a forward model to describe the probability of eH detection analogous to that applied

to BP detection. The information that can be gleaned from an eH anomaly about

likely BP location will be greatly enhanced if the residence time in the NBP could

be constrained from the magnitude of the anomaly. In terms of the binary forward

model developed in Ch. 2, this information can be incorporated in the specification

of the P< by making grid cells at the right distance upwind more like to have emitted

the reducing fluid than those closer or farther away.
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Appendix A

Notation

Conventions

Typeface

x (normal) scalar variable

x (bold) vector

X (calligraphic) set

R (blackboard bold) e.g. the set, of real numbers R

Time Dependence

Xt superscripted t or Tr denotes time dependence

x the set {': 7 E -}

Probabilistic Quantities

P [A] probability of event A

P [A I B] conditional probability of event A given event B

p (x) probability density function of random variable x

p (r I y) conditional probability density function of x given y

E [x] expectation of x

E [x Iy] conditional expectation of x given y

Hx entropy of x

Hx I (y) conditional entropy of x given y

Frames
fx vector x expressed in frame f
flu Rotation matrix between frames f, and f2: fIx = RlH f2x
f2 f2
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Variable List: Occupancy Grid Mapping

Map and Cells

,it random binary indicator variable /I, E {0, 1} for the state of cell c

rn, the event that cell c is occupied: pc = 1

fi, the event that cell c is empty: Ltc 0

m the map, i.e. the set {pc: c E {1,.. .,C}}

C the number of cells in the map: m E BC

S the set of occupied cells: S _ {s : mn,, s E {1,...,C}}

S the set of empty cells: S 4 {s : r 8, s E {1,...f C}}

Measurements
zt sensor measurement at time t

Zt the set of all sensor measurements lip to time t
6t binary measurement 6t E {0, 1}

At the set of all binary measurements

d' the event of a detection at time t: 6t = 1

dt the event of a non-detection at time t: 6t = 0

Dt the set of all measurements that resulted in detections

Dt  the set of all measurements that resulted in non-detections up to

time t

?It the number of detections up to time t: nt A I Dtl

int the number of non-detections up to time t: nt -- I[DtI
rt the set of measurement times that resulted in detections

;r the set of measurement times that resulted in non-detections
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Selected Probabilistic Quantities

p (m Zt) full posterior over all maps given all measurements up to time t

P [m, Zt] marginal posterior for the occupancy of cell c given all measurements

lip to time t

P,' (shorthand) probability that sufficient signal from cell c arrives at

the sensor to trigger a detection at time t

PO (shorthand) prior probability of occupancy for cell c: P- P [m,]

P,' (shorthand) posterior probability of occupancy for cell c conditioned

on all non-detections up to time t: Pt L p [Tn, I Dt]

P,' (shorthand) "revised prior:" the marginal posterior probability of

occupancy under the assumption that the marginal posteriors are

independent.

PF' probability of false alarm (detection) at time t

rt odds ratio for cell c: r P [mt Zt]A/P [P, IZt]

pC odds ratio for cell c conditioned on exclusively non-detections: pf A

P [mc I Dt,Dt] /P I Dt, Dt ]
PC. not an odds ratio but notation reflects parallel algorithmic role to

C: P - p [Dt I D, mc] /P [Dt I Dt, hn]

Miscellaneous

9k arbitary grouping of measurement times that resulted in detections;

k denotes group index

91 indecies k of groups g%
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Appendix B

Exact Binary Occupancy Grid

Mapping Derivations

B.1 Sums Over Maps

Sums of the form -- :L, Hs h, IES T,,, appear throughout the derivations con-

tained in this appendix. They can be simplified iteratively as follows:

E3 11 h, fl h,
r:mm sES sES

m:m, sES,sjc seS

m:mc,,mb sES,s~c sES m:m m,?nb ES s#c sGS

h, h Eh~ Hh, 11 6 h, H hs H E 11)
m~crbsES,sý6c,b 5ES M:fll,,Thb SES,S~kc sES~s5b (13.1)

h,( >3. H1 h, H1h,+ hb* >3 HI 'f h
M m:mc,mb sESs#cb sES m:mc,mb sESs#c,b sES

~h,(h6 ± 116) >31 H 11, ]7fJ h,
m:m0 ,m1 , SES,s#c,b sES

I(iterate over s E {1,. .. ,}s $ c, b)

s20c
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Changing the limit on the sum to all maps m alters this result trivially to

C

S i-l h,. 7 h = -jI (h + h,) . (B.2)
m SES sES 8=l

B.2 Derivation: Binary Inverse Model

To derive (2.14) in the main text, begin by applying Bayes Rule to P [d' m] and

P [ m I i], and then marginalize:

P [,n' dI] m-•:mm (B.3a)
rP d' m p(m)

P [m- m] - & ]P(M) (B1.3b)
EP P, m p(m)

where p (m) denotes the prior on the map. The state of each grid cell is assumed

to be independent so that p (m) -- IJSs/o. i11,c(1 _- Pj)) where P( denotes the

single-cell prior P [mn,].

To proceed we substitute (2.11) into the numerator of (B.3):

SP [d' m] p((n)

- 5(i-(1- P;)I(1- P')) IlPl(1 -P )
m:mn sES sES sES

_(1- P') 5 7(1 - Pt)PIO 1 _[( /5!2) (B.4)
m:m, sES sES

=P],° - (i -P P - pc• H ((I_ p 0 ,+ I-0)

s7/:c

=, p(i-(1- P)- P,) I-(1- pP())

where the third line follows from the result for generic sums of this form (App. 13.1).

Upon noting that Zm:rnc P [d! I m] p (tn) = Em:,,n (1 - P [d' Inm] )p (m), the

remaining sumns appearing in (13.3) become trivial modifications of (13.4). Substituting
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the resulting expressions into (B.3) leads, after some straightforward simplification,

to the complete inverse sensor model given as (2.14) in the text.

B.3 Proof: p (M I Dt)= H-scs S . I-scs (1 - Pt)

It is shown that the conditional independence of cells holds if conditioned only on

nondetections:
p (M 1D0)= l P•" -U(1 - P.,) '(13.5)

sES sE.

and furthermore that a binary forward model of the form (2.11) is both the necessary

and sufficient condition.

Proof. The proof of sufficiency is by induction. Let Q(t) be the proposition that

p (m M 11) = S 14 (' (I - P")
,sE$ s.ES

and
p+1 (P±

1
p

p
t
+l Pt

In the base case. the first portion of Q(O) is true because p (m I DO) = p (in) by

definition and the map nodes are independent so that

p (mr) =4 UP . f 1-(1 - P°0)
sES sES

The second portion of Q(O) is also true, by our previous result for the inverse sensor

model (2.14b).

For t > 0, applying Bayes Rule to p (m bt+l) yields

p (m P (d'+1 I beP( ),

Y-P (dti+1 Dt~m) P(M DC) (13.6)

Zýp Fdt±1 be)~mID

where the second line follows from the "static world" assumption.

209



By induction the term p (m I D') can be expressed as a product over all cells so

that the sum appearing in the denominator of (B.6) is of the same form as (B.4).

Thus Emp (p +l m) p (m (1 - P'+) fIs(1 - pý,`Pt).

With this substitution and our expression (2.11) for the forward measurement

model P [j i m], (B.6) becomes

p(1-PtF+')s(1-Pst+l)

p(M - 'F ES ~-n +,F~lp+,/ p[J /)4(1-z p 1-p (M

I -PS P8  1 pH Ip, I
-II II

sES sES

which completes the proof. El

That the form of P [d? I ] given by (2.11) is also a necessary cond(ition for (B.5)

to hold is shown by direct proof.

Proof. Begin by applying Bayes Rule to p (. t m) and then factor p (on it Y) using

the independence property proved above:

pD M) p(m ) p(10 t)

p(IY m)= p(m)

p(D t )
p (0- ) Jj P [ms I Dt] P[iii 0 (B.8)

P [mS D)] ] P [ih] =P !Sp •¢sl P [ I D t] P [rn,] 11= p[.i

By (B.5) the latter product in the last line of (B.8) is

C P [frl D'_- P[S= 01']

P[r 5 ] P [S= 0]8=1 0] (B.9)

p (/t)
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where the second line follows by Bayes Rule.

Similarly,

P[7nI'] .flP[m, t ] =P [S= cl P]

)t I =c)P[=c] (B.IO)

p (D)

Rearranging terms and using the independence of the prior,

P ['m, I L) _ p(Lt IS=c) P [rfi](B

P ["IC] pH(bt) P [mI (B. 1)

With this result the argument of the first product, in the last line of (B.8) becomes

P [iTn I!)t] P [fin] p (D t IS = c) C P [rhl]
p )] p[m•] = p (Dt S C) I(B.12)

p(Dt S=z)

where the last line follows upon substitution of the result from (B.9).

The probabilities in results (B.9) and (B.12) can be evaluated in terms of the

definitions for Pt and P4t by taking advantage of the static world assumption:

p(p t I=e) = flP[jP S= 0]

-fl1-(B.13)

TE-tt

and

p (PYlS = c) = [IIJ Is = c]
T-t÷ (B.14)

= H (1 - m(1 - P•)
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Substituting these results into (B.9) and (B.12) yields

J_ (1 - P) (B.15a)
=1 P [f'] p _(Dt) TE' t

P [ms IDt] P
H P [fn-i Dt] P [Mn] =1H fJ(1 -P") . (B.15b)

Finally, substituting (B.15a) and (B.15b) into (B.8) gives

P Mb I,) -- 1 (1 - r•. (1 - P,)
TG~qt ses. -reqttB 6

= ((1 - P") fl(1 - Pr)) (B.16)
TEl-C

t  SES

This result must be also be true for j. = t, thus P [ m m] as given by (2.13) is not

only sufficient, but also necessary for (B.8) to hold. ED

B.4 Proof: P [d Dt 1,mc] - P mc]

The conditional independence assumption required by the standard OG mapping
algorithm is P [ztI Z", mr] = P [zt I m,]. This assumption remains false even

when all measurements consist solely of non-detections (Zt = ' t). This can be
shown by exploiting (2.17), proven above, to derive exact expressions for P [1dt Ic]

and P [it t D-l' 1].

Beginning with P [d I m],

P [dt I ,,] = P[J] Z p [d I m] p (n)

=1 pct) E 11 (1 - Pt) p IM]" -P[fit,]
M:m ' sES,sOc (B.17)

= (1- Pt) I-[(( - P't Pi, + I1- Pm])B.7
s~c

= (1- P't) I I(1 - P,'t P•)
s:2c
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Similarly, for P [jt bt, mn],

P[D ,rnl] = 101 E p ['t 0 t - 1 m] p (mP[n] M[ e (m t-l)

7fl~:mc--p[l I P [d' m] p (m [7tl

=(I-Pc) E H (1-PI-)P[ DP-l]" [iP[i-,IP-']
memn SESs8c sES

s#c

(B.18)

The second line above follows from the static world assumption. The third line

exploits (2.17) to factor p (m 1 &1).

It may be shown readily that

P [m< - <_ P [me] (B.19)

where equality holds only for the trival conditions P, = 0 V T or P [n,] {0, 1}.

Consequently,

(1 - pJ) f(1 - Pdp [msI D1-1]) > (0 - PC,) JJ(1 - PP [MI) (B.20)
s#c s5c

where the strict inequality holds unless t = 1, Pt = 1, or at least one of the other

trivial conditions is met for each s # c. Thus the standard OG mapping algorithm

assumption remains invalid even when applied exclusively to non-detections.

The inequality (B.19) is most readily derived from the expression for the odds

ratio conditioned solely on non-detections (2.20) from which it follows that

t-1

HI (1 - Pr)
p [ - = r=1 P [m] . (B.21)

213
1- (I (- pcr) P [,ni]

7=1
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To show (B.19) it is therefore sufficient to show,,i ( ,1
11(1 - P) _< 1- 1- l- (1- PY) P[r(c]. .22)
T=l 7-1

Rearraging terms,

t-1

JjJ(I - PT) (1 - P [me]) _ (1 - P [me]) (B.23)
T=I

which is obviously true. Equality holds iff Pj = 0 V T or P [m,] 1. From (B.21),

P [mc -D'] = P [m,] also holds under the condition P [m] = 0.

B.5 Derivation: Exact Solution

This section derives the expressions for the exact posterior odds ratios given by (2.20)

and (2.21). The posterior odds ratio conditioned on exclusively non-detections (2.20)

is readily attained by application of (B.12)-(B.14):

t P [71 [ , 1 ']
PC [fit 0t]

p ( t S= c) P [m (B.24)

p(Dt 1S0) P [rhc]
,0i(1 _ P'T). P

Expressed in recursive form,

P't = (1 - P£t) •Pt1 (B.25)

as given in the text.

To derive the expression for the complete posterior odds ratio (2.21) begin by

applying Bayes Rule to the marginal posterior, making use of the static world as-

sumption to split up p (D', Dt I m), and then reapply Bayes rule to just the term
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containing 0t:

P [r D t, Dt]= Z p(m Dt,, 0)

p P(Dt',DL I m) p (m)

m:m,, p (Dt, /t)

p(Dtup) S P(D t m) p(Lt m)p(m)
m:?nc

=P(DfD' p P(Dt I m) (m It)')
p(DtDt) (D m)pr P)

Upon substituting in our expression for the forward model (2.11),

P [rn, I D t D'] = p(t)
p(Dt,bt)

x E H 0 -(1-.PP)H(1-.PI))p(m .)t) (B.26)

m:rn1c TjE1t sES

Note that the dependence on the prior p (i) has been replaced by a dependence on

p (m I Dt) which nonetheless retains the prior's multiplicative structure by virtue of

the conditional independence proved in App. B.3.

To proceed we expand the product over Dt as a sum:

H 01- (1 - PP-) H(I - ]r,)

r E It sE$
tH

1 + E(-1)q E 1((1- P1
1p) 1- PJ7)I)-

q=1 nc-rt i=1 sES

TENq

This expression allows the order of summation in (B.26) to be changed:

P [m, ID t ,D t ] =-p(D ,D)

nt ~q
+ q(-1)q ) 1 0((1 - pP) f(i _ Pri)) p (m Dt)I . (B.27)

q=l _C1r t m:it i=1 sES

72ENq

215



To arrive at the above, we have used the conditional independence of p (m !t) to

get Zm~cp (m I t) = /"t.

Working now with just the sum over m : m,
q

H((1 F I ~) (' -- P,')pm !

Tfl:mci= 1 sES

q110 H(I P,,
i=1

SE l(H( - P(IIF)PII) fl(1- P) (B.28)
mM sES i=1 sES

q q
=/C ( Pci) • rl(1 - PF'

=1 1~
q

X ~(H (1 - Pqi ')! 11 (l -p~t).

M:m, sES i=1 sE
s#c

The remaining sum in (B.28) can be converted into a product over the much smaller

space s ? c in the usual way:

q q

fl(1 - P E) E fl(II(1 - P s)P) fl(1 -/P)

m:m, sES i=1 sES
8#c

q q

l(1- F•) f !(PIy(1i-PP) + (1-Pt))

177 1,71= I1(• ,•/ I(1 - (1 - 10 - Ps,• P:t
i=1 s~c i=1

Substituting this result into (B.28) and the resulting expression into (B.27) yields the
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posterior probability of occupancy:

P [m, I D',Dt ]

p ~nt q

p(D,,Dt) [ q+=1-1Q -779irP = p, . (B. 29)

,7ENq

A nearly identical procedure carried out for the posterior probability of emptiness

leads to:

P [fin, D', Dt]

- p(DtJt) 1 + E(--1)q E fq(r) (1 - Pt) . (B.30)
q=1 ,gCre 

I
17ENq

The unknown leading coefficient is identical for both occupancy and emptiness and

cancels upon constructing the odds ratio.

217



218



Appendix C

Exact OG mapping algorithm with

unconnected observation regions

This implementation of Algorithm 1 exploits the lack of dependence between detec-

tions that observe portions of the map not related to one another either by direct

overlap or through overlap with shared neighbors.

Let V = {c: Pt > 0} denote the portion of the map observed by a measurement

at time t, and let R't denote the union of all connected R' for T- E T-r 1 such that

at least one Zti- C R' overlaps with Vtt. Note that R' is exclusive of any cells

belonging to R'• alone and may consist of disjoint subsets of the RT'. The definition of

R', is illustrated schematically in Fig. C-1 and Algorithm 10 implements a recursive

procedure in pseudocode for finding R', from a seed region.

If a detection was registered at time t, then the posteriors of cells within Rt U 'R'

are dependent. If on the other hand a non-detection occurred, then all disjoint sets

of connected regions remain independent from one another, regardless of any shared

history of observations that resulted in non-detections. Indeed, it can be shown

that all terms in (2.21) containing P, for all s not in the same connected region

as c factor from the numerator and denominator and cancel. Figure C-2 illustrates

the independent update of connected regions using the sonar range finder model of

Fig. 2-3.
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Figure C-1: Schematic definitions of R', the portion of the map observed at time t,
and the previous detection regions that comprise R't, indicated in gray.
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Algorithm 9 An exact algorithm for the odds ratio. The algorithm requires the
subroutine find-connected (10) to determine the portions of the map that require
updating. Unless otherwise noted, all subscripts c imply the operation is for all
CE {1,...,C}.
Require:

t-1 -t-1
PC 'PC

CP"
P [• , V rTi E r't-I

RIt L {c: P, > 0 {current measurement region}
T",, V T, E rt 1 {all previous detection regions}

re= og-exact{

1: if dt (detection) then
2: Pt fit-I

'C C

3: P' = P/(1 +pt)
4: zt, find-connected(JR t )
5: for all c E R, U I t do

I+ (--1) L [I 1 - e•" ' - -6: PC n I'iI 1

1+ E(-1)q y H P (i-0p - ;)
q~l 17Crt,17ENq i=1 sýC' s ETc, 70

7: end for
: Pt -= t-1, Rt

8: P ,PVc Rt
9: else if dt (nondetection) then10: Ptc (I - t) pt- 1 V TC.t

11: ft -t- 1, ,R~t

12: Rt, = find-connected(IVt )
13: p = pt- 1, V c Rtf {The pt outside of Rt, are unchanged}

{Each disjoint subset of connected regions in 7t, can be processed indepen-
dently}

14: -**={T:7<tRITn IV 0}
15: while 3 7 E 7** such that 1ZT q 7 t =$ 0 do
16: R t = find-connected(IT )
17: for all c C Tt, do

11+'D(-1)" E H1-Pt') H S(1-P)c, sC1(\ H(
1 :tt -- q=1 YIC~t i7ENQ l == 96 F S r./ 1 =-1-i l1- J )5

/ 1~11IS: PCl - -t In 117"1
1+ E:(--1)q E H I (1-P,"') Fl I -l_(l - H(Ip -P7)) /5:

q-1 nc~rt 7ENq i=1 s ý, ETR. 1=

19: end for
{ Remove all processed detection times from those remaining to be pro-
cessed. }

20: %, = T " f-r: I -, n R }

21: end while
22: end if 221

t = t. Pt23:
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Algorithm 10 Subroutine for computing a connected set of detection regions given
a seed region. The result returned is exclusive of the seed region. Required for
Algorithm 1.
Require:

-t a_ {c: P, > O} {current measurement region}
IZ'T, V Tj G -rt'- {all previous detection regions}

R't =find-connected(7'Z) {
1: ?Z- = 0

2: T, = 0
3: while 7Z n 7Z-. • ' do
4: 7R- =Z t

5: T• ={T: <t, 7< R nl #0 o}
6: Rt= U T

TETr.

7: end while

}
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and 130.Th dtc io reion fo al = ane--t r otie i e Rdfle

t .i ..... i

Figure C-2: Map cells updated b~y Algorithm 1 following a detection (left) and a non-
detection (right) iising the sonar model of Fig. 2-3. At each suiccessive robot position

(green circles). the robot acquired three range meaLsmrements at headings of 45', 90',
and 1:35'. The detection regions for all measurements are outlined in red. R~ed-filled

regions indicate cells for which lp,- was updated following the third 900 measurement

(thick lines). Similarly, blue-filled cells indicate cells for which pt, was updated, and

purple-filled regions indicate cells for which both p,. and p'. required updating. The

two disjoint sets of detection regions following the non-detection would be ul)dated

indep)enently by Algorithm 1.
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Appendix D

IPAlgorithm Derivations

D. 1 Recursive IP

To show (3.19a) in the main text, begin by applying Bayes Rule to the definition of

"t followed by the total probability theorem and then the static world assumption:

t P [m, Dt, Dt ]
P [fa, I Dt,Dt]

P [D', Dt m,] P [rn]

P [Dt, D)t  ] P [fiic]
E P [Dt, D' m] p (m)

=m:mC (D.I)

SP [D t, t & m ] p (m )

P [dJ Im] P [D7--, Dr ] p (m)
m:mc T=Tn+l

5 H [d ] Dm] P[D--,DI m] p(m)
m:mi, T=•T+I-

Upon substitution of the forward model for a non-detection (2.13) and application
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of Bayes rule to P [DTn, D ra

rI (1-P) M H (HE (1-Ps)) P[m DT , DT-]
t = ,,+1 mmcsES =rT+1 (D.2)

H 0-) M H (1- PF)) .P[m I-D,,D-h]
T=rT+l m:m sES \T=Tn+ i

Now apply the assumption p (m AT-) p (p, AT-), so that

sES sES

and then simplify the resulting sums in the usual way:

SE, (f1 l 01--Pr)"- D_;)" E (1- /Drný)
m:mf sE S T=n+l s

t s (D.3)

7==rn+l s~c -r=7n+lH (1- ) •i " +

Upon cancellation of the products over s -€ c,

t

tr= ('-Pjr)-rC (D.A)

i- =in + 1

which is valid for T- < t < T,,+,. Furthermore, with this same assumption, inde-

pendence of the posteriors continues to hold for t < T,'+± by trivial modification of

Proof B.3. (Replace p (m) with P [m ID, D',n] .) Eq. (3.19b) then follows directly

by trivial modification of the derivation of (2.21) presented in App. B.5. (Replace

p (mi ! t ) with P [m IDr+I-1,Dn+-t1 1 ] .)
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D.2 Extended IP

The first case of (3.25a) follows from the substitution of Dt with D"F in the derivation

for (3.19a). The second case of (3.25a) is trivial because by definition the conditioning

on/5• does not change for a detection. Furthermore, assumption (3.26) evaulated at

t = Tr, implies independence of the posteriors conditioned on DT'F and P t continues

to hold while GF- = gn.
Eq. (3.25b) may then be attained by modification of the procedure used to attain

the CID algorithm as follows:

P [m, IDDt]
tr •P [hc, [Dt, &']

P[Drt \4' I D ,Dt,]mc P [me "t Dt]

P [Dlrt \TF D , Dt , rin] P [77h, Dr'F, Dt] (D.5)
-P [D"t\"kI' D FDtDt]P [D VrF D-F,DV, m,] .t:

p[D \"t" D-F, Dt, fhl]

By the modified CIM assumption (3.24),

rt =ft. P [D9' I D7"F,)', rnm]
Pc C. 1

kc~t\9t P D~k Dý, Dt,rfin,]

Z P [Dg m P {m D7, bt] (D.6)

kC , H P [DggP m] P [m D'1',Dt]

The latter ratio in the last line of (D.6) factors into products over s C S and s G S so

that the same procedure used to derive (2.21) can be employed to arrive at (3.25b).
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Appendix E

Connections to Pang, 2004

This appendix explores the connections between the occupancy grid (OG) map-

ping methods developed in Part I of this thesis and previous work carried out by

Pang [101,102] on chemical plume source localization where the search domain was

similarly discretized. The essential difference is that the Bayesian map update algo-

rithm proposed by Pang requires assuming a single source domain. This is a powerful

constraint that allows inferences to be drawn about portions of the map not actually

ever observed, a property that is fundamentally incompatible with multiple-source

domains where the number sources cannot be known a priori.

The plume detection model developed by Pang can be extended to conform to the

special form of (2.11), making it suitable for multiple source domains. This appendix

presents simulation results that compare Pang's algorithm with the recursive form

of the IP algorithm developed in § 3.2.1. In a known single-source domain, Pang's

algorithm generally produces superior results. However, in multiple source domains

Pang's algorithm produces results inconsistent with the true source locations. In

either case, the recursive IP algorithm produces acceptable results with approximately

equivalent computational cost.

Key Probabilistic Quantities

I begin by recapitulating Pang's model [101] for plume evolution and expressing the

key probabilistic quantities in my notation. The model is appropriate to short time-

scale plumes composed of approximately independently diffusing "filaments" of plume
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effluent [8,30]. The key probabilistic quantity attained from this perspective on plume

evolution is, in the notation of [101], Sij(ti, tk) which denotes the probability that a

source in cell i released a single chemical filament at time t1 given that the filament was

present in cell j at time tk. Considered over a range of release times tI E [to, tk), the

S7j(ti, tk) enable the computation of relevant probabilities for a continuously releasing

source: wij(to, tk), the probability that there is a source in cell i given that there is

detectable chemical in cell j at time tk; -Yj(tO, tk), the probability of not detecting a

chemical in cell j at time tk due to the continuous release of chemical from a source

in cell i. For filaments released at discrete times ti, i E [0, k), these are [101]:

1 k-1 S j t , )

wij (to, tk) = k 1 Sj(t1, tk)
1=0 (E.1)

k-1

•j (to, tk) = fJ(0 - ASij(t1,tk))
1=0

where p denotes a detection probability given that both the sensor and a chemical

filament occupy the same cell. Note that for cells not upwind of cell j, wij -- 0 and

yj ---+ 1, which again reflects the assumption of a single source. In my notation, these

are

P [S = iI dk, S = 1] = wi(to, tk) (E.2)p [d S = = Yj(tO, tk)

where the sensor implicitly occupies cell j at time tk. These probabilities represent

respectively half of an inverse model, and half of a forward model.

Update Algorithm

Pang describes a recursive update rule using these quantities for the probability that

the source lies in cell i. Because a single source is assumed, the quantity being

estimated for each cell is P [S = iI At , S = 1] and not P [mn I At] as in occupancy

grid mapping. In my notation, his update rules for a detection and non-detection
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registered at time tk are, respectively:

P [s = i d •k, k-1] - P [S = i E d k] 3 [k-1]P [S = i]

p [S = i1 d, Ak-1] -= d p [S = il A-1](E3
p [jkl

where the conditioning of all quantities on S = 1 remains but has been dropped for

brevity.

An independence assumption is required to derive (E.3): p (6k, Ak-1) = p [6k] p [Ak-11.
The update rules that result have intuitive appeal and simulation results in [101] in-

dicate their utility for the problem studied. If P [S = i I dt] > P [S = i], then one

expects a detection given a source in i, and the posterior probability that cell i con-

tains the source increases. Additionally, because P [S = i I d] approaches 0 for cells

not upwind of i rather than approaching the prior, the posteriors of cells not upwind

are reduced. Likewise, if P [d- S =i] < P [dk], then one expects a detection given

a source in cell i, and since none was registered, the posterior for cell i is decreased.

As above, P [din I S = i] does not approach the prior for cells not upwind, instead

approaching 1, and consequently those cells will have their posteriors increased. This

behavior is entirely consistent with the assumption of a single source in the search

domain; however, it allows inferences to be made about the entire map regardless of

the portion of the map actually observed, and this property is fundamentally incom-

patible with multiple-source domains.

The derivation of (E.3) also requires that p (6k, Ak-1 I S = i) = p (Jk S -

This relationship is approximately true for all upwind and cross-wind sensor trajecto-

ries assuming the source location is static. It is, in fact, the static world assumption

(§ 2.1.1) stated for all single-source maps and should not be confused with the CIM

assumption required by standard OG methods.

Adaptation for Multiple-Source Domains

Pang's model can be adapted to multiple source domains by recognizing that the

Sij(tl, tk) are related to the probability of non-detection given a single source map by
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the second part of (E.1).' Restating (2.12),

[d Is =(1 - P•)1 pk (E.4)

then leads immediately to

P = 1 _ -(to,tk) ( .

The P,1 are the fundamental probabilities required to implement any of the OG map-

ping algorithms developed in this work.

Simulation Results

Figure E-1 shows the results of Pang's algorithm, the recursive IP algorithm, and the

exact algorithm (§ 2.4) applied to a small single-source domain simulation. Figure E-

2 shows these same algorithms applied to a domain with two sources. The simulated

plume (black) and vehicle trajectory (blue,red) is shown at four times during the

simulation in the bottommost panels of each figure. Non-detections are indicated by

blue (lots; detections by red dots. The remaining panels show the outputs of each

algorithm. Cell colors in the results for Pang's algorithm approximate the logmo odds

that the correct map has the corresponding cell occupied and all others empty. Cell

colors in the recursive IP results approximate the logi0 odds of the marginal posterior

of that cell being occupied. The correct marginal posterior odds are shown in the

topmost column of panels in each figure.

Pang's algorithm produces superior results when applied to a single-source domain

but not when applied to a domain with multiple sources. Both the superior results in

the former case and the algorithm's behavior in the latter stem from the assumption of

a single source. In a single-source domain, the assumption of a single source enables

inferences to be drawn about portions of the map not actually observed during a

specific measurement. From the figures, before the first detection, Pang's algorithm

gradually raises the odds in portions of the map not observed by the non-detections.

Upon registering the first detection, the odds in all of the map not immediately upwind

1The quantity Si(ti, tk) equivalently specifies both a forward and inverse model. It is at once

both the probability that a filament detected in cell j was released from cell i (inverse), and that a
filament released from cell i is in cell j (forward).
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Chapter 6

Conclusion

This thesis presented a stochastic mapping framework designed to enable a robotic

platform to automously localize chemical plume sources in environments with multiple

sources. Potential applications for robotic chemical plume source localization include

pollution and environmental monitoring, chemical plant safety, search and rescue,
anti-terrorism, narcotics control, explosive ordinance removal, and hydrothermal vent

prospecting. Turbulent flows make the spatial relationship between the detectable

manifestation of a chemical plume source, the plume itself, and the location of its

source inherently uncertain. Search domains with multiple sources compound this

uncertainty because the number of sources as well as their locations are unknown.

The framework is an adaptation of occupancy grid mapping wherein the binary

state of map nodes is redefined to denote either the presence (occupancy) or a ab-

sence of an active plume source instead of the usual presence or absence of a physical

obstacle. A key characteristic of the chemical plume source localization problem is

that only a few sources are expected within the search domain. The occupancy grid

framework allows for both plume detections and non-detections to inform the esti-

mated state of grid nodes in the map, thereby explicitly representing explored but

enipty portions of the domain as well as probable source locations. However, sparsity

in the expected number of occupied grid nodes strongly violates a critical conditional

independence assumption required by the standard Bayesian recursive map update

rule. While that assumption makes for a computationally attractive algorithm, in

our application it results in occupancy grid maps that are grossly inconsistent with

the assumption of a small number of occupied cells. To overcome this limitation, sev-
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eral alternative occupancy grid update algorithms were presented, including an exact

solution that is computationally tractable for small numbers of detections and an

approximate recursive algorithm with improved performance relative to the standard

algorithm but equivalent computational cost.

Application to hydrothermal plume data collected by the autonomous underwa-

ter vehicle ABE during vent prospecting operations in both the Pacific and Atlantic

oceans verified the utility of the approach. The resulting maps were shown to enable

nested surveys for homing in on seafloor vent sites to be carried out autonomously.

Real-time implementation would eliminating inter-dive processing, recharging of bat-

teries, and time spent deploying and recovering the vehicle that is otherwise necessary

with survey design directed by human operators.

The remaining paragraphs reiterate the contributions made by this work to the

three areas identified in Ch. 1: (1) occupancy grid (OG) mapping; (2) general chemical

plume source localization; (3) hydrothermal vent prospecting. In each category I

identify candidate directions for future research that leverage these contributions.

Occupancy Grid Mapping

"* The application of OG mapping to novel arena-multi-source chemical pJlune

source mapping.

"* An articulation of the problems associated with application of standard Bayesian

OG mapping to environments with few expected occupied cells (low prior prob-

ability of occupancy) and stemming from a key independence assumption re-

quired by the standard algorithm.

"* An exact solution for the state of an OG map when measurements consist of

binary detections and non-detections generated by a particular form of forward

sensor model.

"* A family of novel approximate algorithms applicable to low prior environments

based on this exact formulation.
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are dropped to near zero. This causes probflems when another detection suggests a

source within one of these regions (Fig. E-2): all data is interpreted in ternis of a

single source so that widely spaced detections are interpreted as evidence of a single

source far ul)wind. It is important to note that Pang's algorithm computes a set

of probabilities that explicitly assunie a single source: P [S = i AI.,S = 1]. The

results produced by Pang's algoritlin in the multiple-source donlain simulation are

a reasonable result for the data if the enviromnent were in fact known to have one

source. However. many practical scenarios do not allow such an assumption to be

made. In both figures, the recursive IP results are similar to the correct marginal

posterior odds computed by the exact algorithmn; though the portions of the imap

observed during early detection times but not observed later has somewhat high o(d(ds

relative to the exact result, a consequence of the uni-directional linkage between past

and current measurements that is characteristic of the IP class of algoritlhns.
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Figure E-1: Pang's [101.102] algorithm vs. the rctursive IP and exac(t (JG in ipping

algoritlhns in a single-source domnain. See the inain text for an explanation of each
panel. The resuilts for Pang's algorithmn are suiperior in the sense that most of the map
has beeni correctly identified empty and with onily a single p~eak siurrouniing the correct
source location. In contrast, the other algorithms have Jprodtuced results with higher
posterior odds over imuch of the map, though the largest peak in each case occurs ini
the right location. The difference is a consequience of the former algorithin assuiming
a knowni number of souirces which enables it to infer information abouit all portions of
the mnap. not Just those directly upwind.
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Figure E-2: Pang's [101,102] algoritlini vs. the recursive IP and exact OG in ijping
algorithmns in a multiple-source domain. See the mnain text for an explanationi of each

panel. The secondl detection is widely sp~acedl fromn the first and~ inconsistent with a

single sonrce in the doinain. Pang's algorithni p~roduces a sinall p~eak away fromn any'

of the the truie sources. These resuilts impiJrove slightly upon further detections, all
fromn tihe samne souirce; however, the single pea~k in the map still does not coincide with
either souirce though it is close to the leftniost source. Both the recursive IP and exact
algo)rithmns lproduce imiulti-niodal mnaps withI relatively high p~osteriors odds over thle

true source locations. One additional high p~osterior odds area is also p~resenmt and not
associated with a trute source: however, i h still consistent with thme data as revealed
by the exact resuilts.
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Appendix F

Anomaly Maps

This appendix is an archive of hydrothernial vent prospecting data from the Au-

to()nious Benthic Explorer (ABE) dives studied in this thesis. Table F.1 lists the

dives stu(die(l by site. Sites at ELSC are identified by their at-sea site numnber (desig-

nation as well as by site namne.

The following sections are organized by site. Each starts with a sumniary plot of

vent prospecting results at that site using the methods developed in Ch. 4. This is

followed by plots of summary data from each Phase-i and Phase-2 (live at the site.

The plots show profiles collected during vehicle (descent, time series data for each

tracer (after pre-processing. p)rocesse(d for NBP detection. processed for BP detection).

bird's eye views of anomaly intensity (processed for NBP detection. processe(d for BP

detection). and a b)ird's eye view of each horiztonal crossfiow record from ABE's

ADCP. 1 Detailed descriptions of each type of plot can be found in Ch. 4.

The most significant rooin for improvement lies with detection of the non-buoyant

plume (NBP). As a whole the NBP tine series plots in this appendix show NBP

contact over more of each (live than the automatically identified intervals. Likely

culprits are mon-linearity of the background profile, changes in sensor behavior durinig

descents versus horizontal surveying, and horizontal variability in the background

profile. In many cases the true background appears somewhat offset from the center

of the prediction interval indicating that simply reducing the probability of false alarm

would not yield imp)roved performance. Detection of NBP would benefit froim batch

'The crossflow record for ABE-134 suffers from compass calibration problems and is not included.
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Table F.1: ABE dives studied in this thesis. Bottom depths are approximate averages
over the course of entire dives.

Site Dive Phase Bottom Depth Height Comments
Depth

ELSC-1 126 1 2650 in 2315 in N/A
ELSC-1 137 2 2650 Inl N/A 50 in
ELSC-3 128 1 2165 In 1880 in; N/A two passes at different

1960 11i depths
ELSC-3 136 2 2165 iii N/A 50 in
ELSC-5 131 1 2050 in 1880 in; N/A three distinct depths over

1800 in; partially overlapping areas
1615 in

ELSC-5 133 2 2050 in N/A 50 in
ELSC-5 134 2 2050 in N/A 50 in
SMAR 150 1 3000 in 2875 1in; N/A alternating depths on each

2750 in trackline
SMAR 151 2 3000 In N/A 50 in
SMAIl 153 2 3000 in N/A 50 in

processing of the entire record instead of the present technique which relies oil the

accuracy of the backgroulnd profile determnined during vehicle descent.
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F.1 ELSC: Site-1 (Kilo Moana)
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Figure F-1: Vent prospecting smunary data. ELSC-1.
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Figure F-2: Closeuip of vent prospecting summary data. ELSC-1.
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F.1.1 ABE-126

Optical Backscatter (inst. V)
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Figure F-3: Dcscent profiles vs. depth, ABE-126.
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Figure F-4: Descent profiles vs. potential density. ABE-126.
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Figure F-5: Time series of hydrothermal tracers after p)re-processing. ABE-126.
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Figure F-6: Thie series of hydrothermal tracers processed for NBP detection. ABE-

126. Intervals highlighted in gray indicate NBP detection.
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Figure F-7: Time series of hydrothermal tracers processed for BP detection. ABE-126.

Intervals highlighted in gray indicate BP detection.
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Figure F-8: Bird's eye view of anomnaly intensity after processing for NBP detection,

ABE-126. Larger diameter dots indicate NBP detection.
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Figure F-9: Bird's eye view of anomnaly inte nsity after p~rocessin~g for BP dletectionl.

ABE-126. Larger diameter dots indicate BP detection.
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Figure F-10: Bird's eye view of ADCP-derived crossflow velocity, ABE-126 (1 h1 verti-

cal average over depth interval 5 in to 25 in below vehicle). Numbers indicate the order

of observation.
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Figure F-11: Descent profiles vs. depth. ABE-137.
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Figure F-12: Descent profiles vs. potential density. ABE-137.
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Figure F--13: Time series of hydrothernial tracers after pre-processing. ABE-137.
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Figure F-15: Bird's eye view of anoinaly intensity after processing for BP detection,
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Figure F-16: Bird's eye view of ADCP-derived crossflow velocity, ABE-137 (5 rain

vertical average over depth interval 5 in to 25 in below vehicle). Numbers indicate the

order of observation.

252



F.2 ELSC: Site-3 (ABE Site)

NBP

w/o ADCP (95%X)

8.5 -

7 "

6.5

6--
7 7.5 8 8.5

Easting (kin)

Figure F-17: Vent prospecting summary data, ELSC-3.
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Figure F-18: Descent profiles vs. depth. ABE-128.

2.7 0.0752 descent (z < N3BI) - descent (: < NBP')

2,65 - descent (z > NI3P) 0 descent (z > N BH)
. surveY . 0.07

0.065

S2 .55 - Oý06

2.15 -
-Z ýý0.0355

2.15 0.5-•

0.05-

2135 0.045

2.3 001

36.78 36,8 36,82 36.8-1 36.86 .78 36.8 36.82 36.8 1 36.86
xrý (kg/rn

3 
1000) a2 (kg/nO- 1000)

Figure F-19: Descent profiles vs. potential density. ABE-128.
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Figure F-20: Thile series of hydrothermal tracers after pre-processing, ABE-128.
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Figure F-21: Time series of hydrothermal tracers processed for NBP detection. ABE-

128. Intervals highlighted in gray indicate NBP detection.
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Figure F-22: Thime series of hydrothertial tracers processed for BP detection. ABE-

128. Intervals highlighted in gray indicate BP detection.
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Figure F-23: Bird's eye view of anomaly intensity afte'r processing for NBP dete('tion,

ABE-128. Larger diameter dots indicate NBP detection.
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Figure F-25: Bird's eye view of ADCP-derived crossflow velocity. ABE-128 (1 h verti-

cal average over depth interval 5 in to 25 in below vehicle). Numbers indicate the order

of observation.
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Figure F-26: Descent profiles vs. depth. ABE-136.
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Figure F-27: Descent profiles vs. potential d(ensity. ABE-136.
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Figure F-28: Time series of hydrotherinal tracers after pre-processing, ABE-136.
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Figure F-29: Time series of hydrothermal tracers processed for BP detection. ABE-

136. Intervals highlighted in gray indicate BP detection.
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Figure F-30: Bird's eye view of anomaly intensity after processing for BP detection,

ABE-136. Larger diameter dots indicate BP detection.
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Figure F-32: Vent prospecting summary data. ELSC-5.
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Figure F-33: Descent profiles vs. depth, ABE-131.
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Figure F-34: Descent profiles vs. potential density. ABE-131.
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Figure F-35: Time series of hydrotherinal tracers after pre-processing, ABE-131.
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Figure F-36: Timne series of hydrothernal tracers processed for NBP detection. ABE-

131. Intervals highlighted in gray indicate NBP detection.
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Figure F-37: Time series of hydrothermal tracers processed for BP detection, ABE-

131. Intervals highlighted in gray indicate BP detection.
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Figure F-38: Bird's eye view of anomaly intensity after processing for NBP detection.

ABE-131. Larger diameter dots indicate NBP detection.
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Figure F-40: Bird's eye view of ADCP-derived crossflow velocity. ABE-131 (I h verti-
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of observation.
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Figure F-41: Descent priofiles vs. depth, ABE-133.
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Figure F-42: Descent profiles vs. potential (denlsity. ABE-133.
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Figure F-43: Time series of lkydrot heriial tracers after pre-processing, ABE-i 33.
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Figure F-44: Time series of hydrothermal tracers processed for BP detection, ABE-

133. Intervals highlighted in gray indicate BP detection.
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Figure F-45: Bird's eye view of anonialY intensity after p~rocessinig for B3P detection.
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277



= 7.5 -
7 "j

1

1 5 5 5.5 6 6.5 7

Easting (kni)

Figure F-46: Bird's eye view of ADCP-derived crossflow velocity. ABE-133 (5 mnin
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order of observation.
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Figure F-47: Descent profiles vs. depth. ABE-134.
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Figure F-48: Descent profiles vs. potential density. ABE-134.
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Figure F-49: Time series of hydrothermal tracers after pre-processing. ABE-134.
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Figure F-50: Time series of hydrothermal tracers processed for BP detection. ABE-

134. Intervals highlighte(d in gray indicate BP detection.
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Figure F-52: Vent prospecting suimmary data, SMAR.
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Figure F-54: Descent profiles vs. depth. ABE-150.
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Figure F-55: Descent profiles vs. potential density. ABE-150.
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Figure F-56: Timue series of hydrotherInal tracers after pre-processing, ABE-150.
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Figure F-57: Time series of hydrothermal tracers processed for NBP detection. ABE-

150. Intervals highlighted in gray indicate NBP detection.
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Figure F-58: Time series of hydrothermal tracers processed for BP detection, ABE-

150. Intervals highlighted in gray indicate BP detection.
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Figure F-59: Bird's eye view of anomaly intensity after processing for NBP detection.
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F.4.2 ABE-151
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Figure F-62: Descent profiles vs. depth, ABE-151.
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Figure F-63: Descent profiles vs. potential density. ABE-151.
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Figure F-65: Time series of hydrothernial tracers p~rocessed for BP de(tection. ABE-

151. Intervals highlighted in gray indicate BP detection.
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F.4.3 ABE-153
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Figure F-68: Descent profiles vs. depth. ABE-153.
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Figure F-69: Descent profiles vs. potential density. ABE-153.
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Appendix G

Comparison of OG Algorithms for

Various Prior

The appendix exlplores the effect of the initializing 00 inaps for llydrotllernial ven'It

localization with various lpriors. The unique aspect of applying 00 miethods to the

plimnie localizationi prolblemn is thme simiall number of cells exp~ected to be occupied

by sources. From a Bayesian perspective, this impllies cells are a priori iiilikely

to b~e occupied andl shouldl therefore be initialized with smnall prior prob~abl~ities of

occupancy. As with all Bayesian problems, the accuracy of the outcome is influenced

by the accuracy of the prior. Because all practical 00 mnethodls are approximate, one

might exp~ect that the choice of 00 algorithmn will also have an effect on the accuracy

of the result. This is indeed the case. The simulations p~resented1 in § 3.3 indicated

that:

1. goodl results (c0u11( be attained with the IP algorithinn;

2. the standlard alorithimi is unsuitable for low prior environmnent.

Both these assertions are borne out here with real (data fromm ABE-151. a Phase-2 dive

(50 in height above lbottoin) at SMAR. In addition. since oml *v very few BP (detection)ms

were encountered (durinig ABE-151 . time exact result could was also computed)' pro-

~III fact thle, CID algYorithmn was used to generate the "exact* results, withl subset size and threshold
set to produce an optimial grouping such that only detections spatially far apart were treated aIs
irldependlent.
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viding the opportunity to quantitatively assess the quality of the IP approxinmation.

G.1 Results: ABE-151 at Nominal Prior

Figures G-1. G-2. & G-3 show OG maps constructed using the exact algorithmn, the

recursive form of the IP algorithm (§ 3.2.1). and the standard algorithlu, respec-

tively. The maps show the posterior odds of occupancy by the center of a vent field.

These maps were initialized with a nomninal prior of 10-5 in each 5 in x 5 in grid cell

correspondinlg to an a priori vent field density of approximately 1 !kl 2.

All three maps are qualitatively similar in that they have produced peaks in the

posterior odds in roughly the saiie places2. However, the lnmerical values of the

posterior o((ds in the IP mnap agree relatively well with the exact miap in (omuparison

to the posterior odds computed using the standard method. On1 practical reason to

prefer the iiore accurate result beyond simply unease with the inaccurate posteriors

produced by the standard algorithm is that the transformation froin field occupancy

to veint occupanlcy (• 5.3.1) applied to the standard result produces huge vent fields.

This happens because of tile large number of cells apparently occupied by vent field

centers. Furthermore. the recursive folrm of the IP algorithln used to produce Fig. G-2

incurs the sanme computational load as the standard algorithm. meaning there is no

reason not to choose the IP algorithm in favor of the standard one fo r this ap)plicati(on.

G.2 Algorithm Performance for Various Priors

This section explores the effect of varying the prior on the maps produced by the

exact. IP, and standard OG mapping algorithms. As above the input data is from

ABE-151. Figure G-4 shows that the IP algorithm produces only slight errors in cell

posteriors relative to the exact result over a broad range of priors, in stark contrast

to the errors produced by the standard algorithm which tend to grow as the prior is

reduced.

Figure G-5 shows tile exp)ected number of source vent fields based on the t)osteri-

ors produced by each algorithm. The IP and exact results agree well over the range
2Recall that all algorithms studied in this thesis behave identically with respect to isolated non-

detections, thus the portions of these maps away from any detections are all identical (and exact).
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Figure G-1: Exact (JG itiap proditced fromi Pliase-2 dive ABE 151. Only two( of tile
five hligh-odds regions sho)wn inl tile iap were explored oil siubsequient dives-, however.
both c~ontained active vents. The weakest and broadest p~eaks in thle imap (at coordinates
(10.20.10.25) and (10.30.10.45)) corresIponld to sinigle dletections. Multip~le detections
over thle remaining sites enabled tile locations of these sites to be better resoloved.
resullting inl mlore tightly conistrained peaks with higher odds. The eastern-lo~st venlt
field (starred) was discovered onl a subsequent expedition over a year after ABE-151,
and( maY not have beeni presenlt duiring thle original dive.
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Figure G-2: IP algorithm version of the exact OG map in Fig. G-1. Tile map has
produced odds near to the exact result. though cells with increased odds tend to spread
over broader regions than in the exact map. The recursive forln of the IP algorithmi
includes 11o ncichanismn to ever reduce the posteriors following a detection, which resiilts
in the observed broadening. Of lesser significance, cells in the two weaker peaks at

coordinates (10.20,10.25) and (10.30,10.45) contain somewhat lower odds than the exact
result. This is a conseqilemlce of incorporating detections into the inap irreversibly as a
"*revised prior." Subsequent non-detections acted reduce the posterior in these regions
below that of the exact result.
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Figure G-3: Standard algorithin version of the exact OG imiap iniFig. G-1. T1he color
axis has been rescaled relative to Figs. G-1 & G-2 to show the high p~osterior odds coin-
pited ini some regionis of the map. Note that these odds are inideed very high. W~hereas
the exact result shows nmaxnnunin odds of between (1001 and 0.01, this nmap shows pos-
terior odds as high as 1000. indicating a 1000 1 chanice that the cell is occiupied.
Obvioiisly. oddls this high sp~readh over a significant nmniber of cells are inconsistent with
the low assnitiedl prior. That said, the locations of peaks in the map agree reasonably
well with the exact resilt.
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of priors investigated, whereas tile standard algorithln produces a significant overes-

timate for small priors. Of more interest is the behavior of the predicted number of

source fields relative to the actual groundtruth inumnber of fields. For small priors the

exact and IP results predict the nuninium number of source fields that must have

b)een present in the survey area based on human interpretation of the data. As the

prior increases, the number of predicted fields begins to track the number of expected

fields based oil the prior. That behavior is an indication that the prior was selected

incorrectly. and that it is in conflict with the actual environment.

An incorrectly chosen prior has real consequences regardless of the algorithm, as

shown by Fig. G-6. The figure shows the "efficiency" of each algorithm's iat in terlnS

of tihe nmnber of groundtruth field locations per cell raised al)ove the prior bly the

indicated factor (1.01 or 10). Priors that are too low tend to produce inefficient i)aps

because inon-detections are weakened in their ability to constrain vent field locati(o.

Priors that are too high produce outright failure, that is, mnaps with no cells raised

above time prior. The figure also shows the cost of the broader peaks produced bY the

IP approximation relative to the exact result.

Based on these plots, a prior of 10-5 (approximately 1 field per kill 2 ) was a

reasonable choice for ABE-151. Slightly higher performance could have been achieved

with a prior of 10-4, however, fuirther increase would have produced miaps near the

failure point.
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Figure G-4: Boxplots (e.g. [45]) of errors in the posteriors compauted by: (a) the IP and
(b) the standard OG algorithIns for various priors using data from ABE-151. Note the

difference in the scaling of the y-axis between the two p)lots. Both algorithmis producc
small errors relative to the exact result for relatively large priors > 0.01. For smaller

p)riors the standard algorithin tends to proLduce large posteriors near mnity (for the
smallest priors shown the distribut ion of errors is actually strongly biinodal). whereas
the IP algorithim exhibits fairly consistent sinall errors.
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Figure G-5: Expected liminiber of vent fields from OG inaps Jproduicel lbv the exact.
IP andl standard algorithmns for various priors. The IP and( exact resuilts agree well over
the range of priors inivestigated, whereas the standard algoritimn Jproduces a significant
overestimate for smnall p~rior's. lintecrest ingly',v as the prior increases beyond the niiniiminn
nmminber of fields infered by humnan interp~retation of the dlata, the exact anid IP resul~ts
tend to track the p~rior predicted numnber of souirce fields. This behavior illustrates
the sticceptibility of all Bayesian methods to errors induiced by anl incorrect prior. It
mnight be inferred fromn this plot that priors well below the actuial wvill not comipromiise
the accutracy of the exact and IP resuilts, whereas high priors might. To some extent
this is trule; however, the iftility of oion-detections will be decreased artificially because
detections become even less likely. As a resuilt, peaks in the p~osterior will be broader and
the map less "efficient." as is indicated by Fig. G-6. Inl addition, the dashedl horizontal
line in the plot indicates only the mninimuim numiber of fields. Recall that t hese fields
were assumned to have a characteristic nllmuber of souirces Q each with characteristic size
b0. Inl this particuilar case (ABE-isi ). detections were muore numerous than expectedl
(cf. Table 5.1), so that what appears as anl over-estimate in the plot around a prior of
1i)-

4 instead indicates vent fields with more individual vents or a larger characteristic
souirce area than exp~ect ed.-
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Figure G-6: OG algorithm efficiency for various priors. Efficiency is defined as the
number of groundtruth field locations per cell raised above the prior by the indicated
factor. The small factor (1.01) includes essentially all cells that were raised above the
prior at all, while the large factor (10) includes only the cells most likely to contain the
centers of source fields. Higher efficiencies were attained with the large factor indicating
good agreement with groundtruth source locations. Efficiency suffers for priors that are
too low, whereas outright failure (no cells above the prior) occurs for priors that are
too high. The exact algorithm tends to produce the best maps, except near the point
where outright failure occurs.
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