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Abstract

This thesis presents a stochastic mapping framework for autonomous robotic chemical plume source
localization in environments with multiple sources. Potential applications for robotic chemical plume
source localization include pollution and environmental monitoring, chemical plant safety, search
and rescue, anti-terrorism, narcotics control, explosive ordinance removal, and hydrothermal vent
prospecting. Turbulent flows make the spatial relationship between the detectable manifestation of
a chemical plume source, the plume itself, and the location of its source inherently uncertain. Search
domains with multiple sources compound this uncertainty because the number of sources as well as
their locations is unknown a priori.

Our framework for stochastic mapping is an adaptation of occupancy grid mapping where the
binary state of map nodes is redefined to denote either the presence (occupancy) or absence of
an active plume source. A key characteristic of the chemical plume source localization problem
is that only a few sources are expected in the search domain. The occupancy grid framework
allows for both plume detections and non-detections to inform the estimated state of grid nodes
in the map, thereby explicitly representing explored but empty portions of the domain as well as
probable source locations. However, sparsity in the expected number of occupied grid nodes strongly
violates a critical conditional independence assumption required by the standard Bayesian recursive
map update rule. While that assumption makes for a computationally attractive algorithm, in our
application it results in occupancy grid maps that are grossly inconsistent with the assumption of
a small number of occupied cells. To overcome this limitation, several alternative occupancy grid
update algorithms are presented, including an exact solution that is computationally tractable for
small numbers of detections and an approximate recursive algorithm with improved performance
relative to the standard algorithm but equivalent computational cost.

Application to hydrothermal plume data collected by the autonomous underwater vehicle ABE
during vent prospecting operations in both the Pacific and Atlantic oceans verifies the utility of
the approach. The resulting maps enable nested surveys for homing-in on seafloor vent sites to be
carried out autonomously. This eliminates inter-dive processing, recharging of batteries, and time
spent deploying and recovering the vehicle that would otherwise be necessary with survey design
directed by human operators.

Thesis Supervisor: Dana R. Yoerger
Title: Associate Scientist, WHOI
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Chapter 1
Introduction

Hydrothermal vents are deep ocean phenomena that likely play important roles in the
global heat budget and various global chemical budgets, support unique ecosystems,
and offer clues about the geological processes that regulate the formation of oceanic
crust [40,49]. Since the first discovery of a vent field in 1979 [19], enormous scientific
attention has been directed toward their study. Nevertheless, Baker and German 5]
conclude in a recent study that only 20% of the Earth’s 50,000 kmto 60,000 km
of mid-ocean spreading axes has at most cursorily been surveyed for the presence
of hydrothermal venting, and only 10% studied thoroughly enough to identify the
locations of individual vent fields on the seafloor.

Seafloor hydrothermal vents emit vast plumes of effluent that can be detected
kilometers away from the source vent field itself. While these plumes are interesting in
their own right, they also enable what would otherwise be an impossibly small target
to be located, though the process is far from trivial. Inferring vent field location from
hydrothermal plume data is known as hydrothermal vent prospecting [4]. The value
of employing an autonomous underwater vehicle (AUV) as a complementary tool
within the arsenal of existing sensors and methods for hydrothermal vent prospecting
has now been demonstrated on several successful expeditions in both the Pacific and
Atlantic Oceans [39,65]. However, one aspect of AUVs that was not wholly capitalized
upon during these expeditions is their capacity for autonomous decision-making.

The original goal of this work was to enhance the scientific yield from AUV-based
hydrothermal vent localization and characterization missions by transferring much of

the onus of data processing and survey design onto the vehicle itself. In this respect,
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I claim some success. Though hydrothermal vent prospecting remains the primary
motivator behind this work, I have striven to abstract the results and methodologies
developed as much as possible from that specific application. By focusing on the
development of generic frameworks and tools, the methods developed herein have
broader application to robotic chemical plume source localization' in general, and
contain insights into the probabilistic robotic mapping algorithm known as occu-
pancy grid (OG) mapping as well as a novel application for this probabilistic robotics

workhorse.

1.1 Background

The spatial relationship between the detectable manifestation of a chemical plume

source, the plume itself, and the location of its source is inherently uncertain:

e turbulent processes result in the random motion of plume effluent and spreading
of the plume;

e background currents advect the plume and cannot be measured exactly;

e plume structure may depend on processes occupying a wide range of spatial and
temporal scales;

e plumes from several sources may interact;
e there may be uncertainty in whether a chemical plume has in fact been detected;

e measured concentration may be only weakly dependent on measurement loca-
tion.

Of course, plume spread due to turbulence and background advection are responsible
for making plumes useful for localizing sources in the first place by producing a
relatively large spatial signature compared to the size of the source itself. The relative

importance of these factors and the others listed above depends on the nature of

'The more common term in the literature is chemical plume tracing (CPT); however, I will use
the term “chemical plume source localization” preferentially to CPT throughout most of this work
because not all methods for finding the sources of plumes actually require following (tracing) the
plume itself.
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the source, its environment, and the characteristics of the effluent composing the
plume itself. Many biologically important plumes, for instance the pheromone plume
emitted by a female moth seeking a mate, occupy short time scales and contain a
specific, passive tracer. Geophysical plumes, for instance the deep-sea hydrothermal
plumes that are the principal application area of this work, often occupy much larger
temporal and spatial scales, may include buoyancy effects, and usually contain a
variety of tracers rather than one specific chemical.

Potential robotic applications for chemical plume tracing are many and varied.
They include pollution and environmental monitoring, chemical plant safety, search
and rescue, anti-terrorism, narcotics control, and explosive ordinance removal includ-
ing demining, and hydrothermal vent prospecting as explored in this thesis. Potential
algorithmic solutions to the chemical plume tracing problem range from gradient as-
cent, to biologically inspired algorithms, to strategies that rely on building maps
to estimate source location, with some recent work also exploring multi-agent co-
operative approaches. In all cases, successful search requires an algorithm designed
to capitalize on the scales present in plume structure that carry information about

source location.

1.1.1 Examples from the Natural World: Moths, Starfish,
Lobsters and Crabs

Examples of olfactory-based localization of odor sources abound in the natural world.
Lobsters, crabs and moths in particular all have extensive literatures devoted to
describing the aspects of their behavior that result in the robust and efficient tracking
of odor sources that these animals routinely execute (for recent overviews, see [122,
126]).

Even in environments with comparatively high Reynolds numbers, dominated by
turbulent flow, sufficiently long time scales combined with a means to sense instan-
taneous gradient may make classical (mean-gradient) chemotaxis a viable strategy.
Given enough time, the average concentration of a turbulent plume does provide gra-
dient information as to the location of its source. This strategy may be the method by
which starfish find the plumes of altered water emitted by their bivalve prey [21,24].

The pheromone tracking ability of male moths of various species is well known (for
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an extremely condensed historical overview of the literature, see Ludlow [75]). The
environmental conditions in which male moths seek out females emitting pheromone
are characterized by wind-driven turbulent advection that produces a plume both
spatially and temporally variable on timescales relevant to those imposed by the
moth'’s flight. In this case, behavior tuned to advective timescales makes sense because
wind direction provides the most direct clue about source location relative to the

searcher.

The principal complication in tracking odor plumes at these scales is the in-
termittency of the pheromone signal caused by small-scale turbulence in the mean
flow [69,91,122,124]. Meso-scale eddies on the order of meters result in meandering
plumes [90] such that maintaining intermittent contact with the plume becomes a
critical component of the tracking strategies employed by moths [54]. Though there
is some debate as to the underlying mechanism, a plume-tracking moth’s behavior
can be segmented generally into surging and casting [54]. In essence, male moths
“surge” upwind at some angle to the wind upon encountering pheromone above some
threshold concentration, but switch to cross-wind lateral excursions (“casting”) af-
ter sufficient time without further stimulus. The result is a zigzagging pattern that
gradually progresses upwind toward the source. Both simulations and experiment
convincingly point to the utility of zigzagging across an odor plume as a strategy well
suited to maintaining intermittent contact with the plume [9,69,122]. This strategy is
known as odor-gated anemotaxis, since it relies on sensing wind direction, but seems

to require only binary chemical detection.

Relatively large and slow-moving aquatic creatures such as blue crabs and lobsters
likely use a combination of chemical cues and up-current motion (rheotaxis) to locate
odor sources emitted by carrion, prey, or other individuals [122,124]. Blue crabs and
lobsters forage in a turbulent boundary layer over the coastal and estuarine sea floor.
Chemical plumes in these habitats are thus turbulent themselves and, like atmospheric
odor plumes, consist of discrete propagating packets or filaments separated by non-
odor-laden fluid [34]. Due to the greater density of water, however, the relevant scales
of turbulence are about an order of magnitude smaller than in air [2]. Though lobsters
and crabs move more slowly than moths, mean flow velocities encountered in their
habitats are typically lower than in air, and they too must react to chemical stimulus

on the time scales associated with the small scale eddies that cause the intermittent
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nature of the chemical signal [41,122,124,138]. The influence of larger eddies, at scales
sufficient to cause the plume to meander, is relatively unexplored due to the limited
sizes of laboratory flumes [138], though it is likely that search behaviors exhibited by
crabs and lobsters must also be robust to occasional loss of intermittent contact with
the plume [124]. The relatively large size of these arthropods is important because it is
comparable to the typical near field widths of odor plumes found in their environment.
These animals are likely to have evolved to exploit the additional spatial information
available in the plume to improve the efficiency of their search [2,3,122], for instance
to remain closer to the centerline of the plume [125].

1.1.2 Robotic Plume Source Localization

Robotic approaches to chemical plume source localization can be classified into two
broad categories: (1) biomimetic strategies that seek to emulate the remarkable feats
of plume tracing in the animal and microbial worlds; (2) model-based strategies that
rely on analytical models for plume evolution to invert records of concentration and
flow measurements for source location. Multi-agent methods suited to either of these

strategies have also been proposed.

Biomimetic Approaches

Grasso [43] states, “Biomimetics operates on the premise that animal behavior serves
as an existence proof of a solution.” Numerous authors have attempted to implement
on robots biomimetic solutions to the problem of tracing a chemical plume to its
source [18,32,43,52,62,92]. While many of these attempts proved successful in the
sense that the robot was able, at least some of the time, to locate the odor source,
the results have generally failed to match the performance of the creatures whose
behaviors researchers were seeking to emulate [41]. This is not altogether surprising
considering that the biological algorithms remain incompletely characterized (see the
preceding section), and that current olfactory sensor technology still does not rival
its natural counterpart [52].

Farrell et al. [29] report a successful plume tracing algorithm inspired by moths and
implemented on a REMUS AUV [1]. Their Chemical Plume Tracing (CPT) algorithm

consisted of six behaviors switched by chemical detection events and timeouts. The
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several versions of the RoboLobster [18,42,43] are an attempt to emulate the behavior
of chemical plume tracking lobsters, specifically to investigate the role that spatial
information available in the plume plays in the algorithm. As of 2002, live lobsters
easily outperformed the RoboLobster, but the work showed conclusively that spatial
information can improve the efficiency of biomimetic CPT.

Within the terrestrial robotics community, Kuwana et al. [60-63] and Nagasawa et
al. [92,93] circumvented the technological limitations imposed by the sensitivity and
response time of artificial olfactory sensors by attaching live antennae from a silkworm
moth Bombyz mori to a series of silkworm moth mimics called PheGMots (Pheromone
Guided Mobile Robots). Two European groups at the University of Tiibingen in
Germany [70-72,123] and Orebro University in Sweden [23,28] are working to design
robots (“electronic watchmen” [72]) capable of localizing chemical sources in indoor
environments without strong and persistent mean flows. Although not explicitly
biomimetic, the algorithms employed are either strictly reactive or driven by trained

neural networks.

Model-based Approaches

A different approach to robotic plume source localization pursued by some authors re-
quires estimating or assuming the parameters of some model of plume formation while
concurrently inverting that model for source location. Unlike biomimetic methods,
navigation with bounded uncertainty is requisite because some spatial representation
of acquired data must be maintained. Ultimately, the results are subject to how well
the model represents the environment. To my knowledge, all previously reported
results apply only to single source scenarios.

Ishida et al. [51] developed a terrestrial system that estimates the parameters
(including source location) of a time-averaged model of plume dispersal in a uniform
advective field. Their robot was able to successfully locate an ethanol source a few
meters away from its starting location in several minutes. The slow convergence time
and limited range are a consequence of the time required for average concentrations
in the actual plume to converge to those predicted by the model. Christopoulos
and Roumeliotis [15] describe an algorithm for optimally adapting robot trajectory
to estimate the parameters of an advection/diffusion model of plume evolution and

present simulation results.
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Farrell et al. [32] developed a plume mapping and source localization approach
based on hidden Markov methods to concurrently estimate the likelihood of odor
detection versus position, the likelihood of source location versus position, the most
likely path taken by the odor to a given location, and the path between two points
most likely to result in odor detection. This approach is suited to strongly advective
environments when the width of the plume is small relative to the search area.

Pang [101,102] has developed a Bayesian method for updating the probability that
discrete cells on a grid contain the source of a chemical plume. His algorithm relates to
the approach pursued here and is discussed in more detail in Ch. 2. Advances reported
in this work include: applicability to multiple-source domains, and applicability to a

class of sensor model rather than to a specific type of chemical plume.

Multi-Agent Approaches

Several authors have developed multi-agent plume source localization algorithms. The
basic idea is that search times can be reduced by sharing information across a dis-
tributed group of robots. “Biologically-inspired” methods [33,44] rely on each robot
to execute its own plume search algorithm with communication between agents used
to direct the swarm toward robots having the greatest success. Alternate methods
use robots as nodes in a distributed sensing network to estimate the parameters of a
plume model (including source location) [16] or to instantaneously compute spatial

gradients toward source location [136].

1.1.3 Hydrothermal Vent Prospecting

Although the plumes of altered water emitted by hydrothermal vents are often read-
ily detectable with standard in situ sensors to within kilometers of seafloor vent
sites [5-7], the physical characteristics of hydrothermal plumes make pinpointing
vent sites on the seafloor time-consuming and challenging. Ship-based conductivity;
temperature; depth (CTD) vertically oscillating tows or “tow-yos” are the primary
means of determining the presence of hydrothermal venting [6] with towed arrays of
temperature and optical backscatter probes also now widely employed [7]. One pass
along the axis of a mid-ocean ridge is generally sufficient to detect the presence of

large-scale (100 + MW) venting and localize its source to within a few kilometers,
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perhaps less if high resolution bathymetry of the search area is available. Following
initial detection, further CTD tows may be conducted to map the plume and infer
the source location. This process is made challenging by the fact that the plume is
changing significantly on scales of a few hours due to tidal currents, and concurrently
represents the integrated output of several tidal cycles worth of discharge (Fig. 4-2).
At some point, near-bottom assets must be deployed. The degree to which the area is
constrained, over which near-bottom assets requiring surface supervision must search

before locating the vent field, significantly impacts the scientific return of the cruise.

This is particularly true when the assets available require dedicated use of the
ship from which they are deployed. Towed, tethered, and occupied assets all require
the attention of a dedicated ship; however, towed assets remain indispensable for
establishing initial contact with a hydrothermal plume, and tethered or occupied
vehicles remain the only option for tasks involving sampling, detailed inspection, and
manipulation of objects or instruments on the seafloor. The intermediate task, that of
localizing and initial characterization of a hydrothermal source once within the plume,
is one to which AUVs are uniquely suited and for which we have had considerable
success [39,65]. This portion of the localization process is essentially one of mapping
the plume, with multiple sensing modalities each offering their own insight into a

plume’s probable source.

Several approaches to chemical source localization specific to hydrothermal plumes
have been proposed. Veirs et al. [121] propose a method whereby CTD-based detec-
tions of density inversions are back-propagated to their probable sources using records
of current velocity between the time of detection and a time in the past based on the
theoretical maximum equilibration time of hydrothermal plumes. This method suc-
cessfully identified the locations of several known vent fields and suggested locations
that might contain undiscovered sites. Lavelle et al. [67] describe an inverse calcu-
lation whereby temperature and current velocity records from a stationary mooring
were inverted for source locations and associated buoyancy flux on a discrete grid. A
so-called “puff” model of plume dispersal, along with a four day record of currents
and temperature were sufficient to resolve locations for all known sources in the re-
gion. Finally, Burian et al. [11] describe several gradient ascent methods specifically

intended for implementation on an AUV and robust to local concentration maxima.
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1.2 Approach

This thesis develops tools to enable chemical plume source localization via the au-
tonomous execution of nested surveys. The essential characteristics of a nested survey
are that each successive stage be smaller in extent and provide higher resolution in-
formation about the feature of interest than the previous stage, thereby enabling the
surveying vehicle to “home-in” on the target(s). Nested surveys are a conceptually
intuitive methodology for locating small features in a large environment when those
features have manifestations in the environment larger than themselves (e.g. the
plume emitted by a chemical source). Figure 1-1 summarizes the components of ap-
proach and Figure 4-4 shows an example of a set of nested AUV surveys employed to
localize the source vent field of a hydrothermal plume. Higher resolution data associ-
ated with source location was attained on each successive survey by both descending
in the water column toward the seafloor and by tightening trackline spacing.

A strategy based on nested surveys is just one of many search methods poten-
tially applicable to the chemical plume source localization problem. Figure 1-2 places
the nested survey approach in context with the alternate strategies discussed in the
preceding section. All fall into one of two broad groups differentiated by the strength
of the coupling between vehicle trajectory and sensory input. Strategies with weak
coupling (map-based) rely on abstracted representations of sensor data in terms of
probable source location to adapt vehicle trajectory, and often only after long periods
of no adaptation. Strategies with strong coupling (behavior-based or reactive) modu-
late vehicle motion directly in response to sensor input, usually over short timescales.
Among the map-based strategies, nested surveys are intermediate between completely
preplanned surveys with no data-driven component and fully adaptive trajectory gen-

eration wherein trajectory is continuously modulated.

1.2.1 Nested Surveys for Chemical Plume Source Localiza-
tion

I chose to pursue automation of a nested survey approach to chemical plume source

localization in this work for the following reasons:
e applicability to multi-source domains;
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The nested survey approach to chemical plume source localization.
Sources release plumes into the environment which are mapped through a surveying
vehicle's sensors and its trajectory onto a timeseries of measured concentration. Pro-
cessing yields a map of the plumes themselves which should emphasize scales that
contain information about source location. Further processing yields a map of probable
source locations and of locations unlikely to contain sources. This information drives
the design of the subsequent survey stage and the process repeats. With the comple-
tion of each successive high-resolution survey, uncertainty in source locations should



stronger

sensor-trajectory >

coupling

-+ T
weaker

Figure 1-2: A spectrum of chemical plume source localization methodologies differ-
entiated by the strength of coupling between vehicle trajectory and sensory input. A
strategy based on nested surveys as pursued in this work alters vehicle trajectory only
after completion of a survey stage. All data from the previous stage can be used to drive
design of the subsequent stage, if encapsulated in a map of likely source locations. The
tradeoff is attainable efficiency. A behavior-based or reactive strategy well-matched to
type of plume being traced can potentially home-in on a source much faster; however,
these strategies only apply to single source domains, although ad hoc modifications [31]
have been employed to overcome this limitation.
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guaranteed coverage of the prescribed survey area;

robustness to low-value targets and false alarms;

compatibility with existing AUV operating paradigms;

the demonstrated success of nested surveys for AUV-based hydrothermal vent
prospecting when directed by humans [39,64,65].

The first three bullets above are related. When multiple chemical sources might be
present in the survey domain, it is often important to find them all. For example, a
navy may wish to be confident a harbor is completely free of mines. Tight coupling
of vehicle trajectory generation to sensory input provides little guidance on how to
proceed once a single mine has been found. It is difficult in such contexts to ascertain
what portion of the environment has in fact been searched.

In contrast, complete, pre-specified surveys guarantee a certain degree of coverage
that can be computed ahead of time. When multiple sources might be present,
the map produced from a completed survey enables the probable number of sources
present to be assessed and will guide selection of the portions of the search domain
that are likely to contain the highest value targets. This approach permits the vehicle
to focus on the most interesting aspects of the data, rather than relying on careful
design of a threshold to trigger pursuit of all potentially interesting features as they are
encountered [12]. For the problem of detecting and locating persistent hydrothermal
vents on the seafloor. nested surveys may require the vehicle to cover more ground
than a triggered approach would. However, the vehicle is less likely to spend time
exploring false alarms or low-value targets.

The last bullet refers to the fact that typical AUV operations involve flying regular
tracklines in a grid pattern so as to uniformly sample a prescribed area. While regular
tracklines may not be necessary for plume survey in general. they are necessary. for
instance, when collecting acoustic bathymetry or optical imagery for photomosaicking.
Nested surveys do not require alteration of vehicle trajectory, meaning these other
aspects of a survey can continue unimpeded, perhaps dictating some aspect of the

nested surveys themselves.
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Successful execution of a nested survey strategy relies on the creation of maps
at each stage of the survey to guide the design of the follow-on stage. The key
survey design elements that must be drawn from each map are good choices for the
location and extent of the subsequent survey stage. Survey resolution might also be
guided by the map or alternately fixed by the known characteristics of the feature of
interest or by constraints imposed by other sensing modalities. A rudimentary map
might simply comprise the locations at which the plume was detected, and perhaps
the concentrations of those detections (which may or may not contain significant
information about source location depending on the nature of the plume). Of more
direct utility are maps that encapsulate the likely locations of the sources themselves.
That requires processing raw sensor data through a model of plume evolution, that
is, inversion of the plume for source location.

As the relationship between plume location and concentration is inherently uncer-
tain, I conjecture that constructing maps of source locations that include an assess-
ment of the uncertainty in these locations will facilitate autonomous survey design.
Such an approach falls within the rubric of probabilistic robotics, the central goal of
which is to represent information in the form of probability densities [115,118]. Maps
that are suitable for autonomous interpretation in terms of follow-on stage design
must offer clear indications of high-value regions and the survey extent required to
cover them. The probabilistic map-making methodology pursued in this thesis is
known in the robotics literature as occupancy grid (OG) mapping.

1.2.2 Occupancy Grid Mapping and its Application to Chem-

ical Plume Source Localization

OG maps discretize the environment into a collection of cells arranged in a regular
pattern wherein each cell has a binary state, either occupied or empty. OG mapping
algorithms then generate estimates of the posterior probabilities of occupancy and
emptiness of each grid cell. Most occupancy grid update rules recursively incorporate
new measurements thereby enabling real time operation. A recursive update rule is
not strictly necessary for a survey strategy that calls for completion of predetermined
survey patterns prior to map analysis. Nevertheless, this property remains attractive
because it broadens applicability to hybrid strategies that might not require comple-
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tion of a full survey stage before adapting vehicle trajectory.

OG mapping was originally developed at the Carnegie-Mellon University Mobile
Robot Laboratory as a means of incorporating imprecise information about the range
from a mobile robot to nearby obstacles acquired from low-cost wide-angle sonar range
finders into a detailed map of empty and occupied space [25,85,87].? The same repre-
sentation is adaptable to chemical plume source localization by redefining occupancy
to indicate a cell contains an active chemical plume source rather than indicating the
presence of an obstacle in the cell. Occupancy grid mapping has traditionally been
restricted to the mapping of static environments, though recent extensions [130,131]
are alleviating this restriction. Though chemical plumes are dynamic phenomena,
a static OG representation suffices if the static locations of immobile sources are
sought, rather than the variable locations of their emitted plumes. Scalar observa-
tions of plume presence and absence take the place of range measurements in the
typical application, with absence providing constraints on where sources are unlikely
to lie.

There are two aspects of the OG representation that make it particularly suited
to chemical plume source localization. First, because an occupancy grid map ex-
plicitly represents empty space with a degree of confidence, the map can be used to
assess not only probable source locations but also whether a survey area has been
adequately searched, thereby providing guidance on the extent of follow-on survey
stages. Second, since occupancy grid maps are not maps of feature locations, they
do not require the additional overhead of reliably identifying recognizable features
and then differentiating between individual features. This property is important for

multiple source scenarios, where the number of sources cannot be known a priori.

1.3 Contributions

This dissertation contains contributions on three fronts: (1) occupancy grid mapping;
(2) general chemical plume source localization; and (3) hydrothermal vent prospect-

ing. The following lists the specific contributions in each category.

2These references predate use of the term “occupancy grid” in the published literature. Instead,
these earlier references refer variously to “occupancy maps,” and “certainty grids.” The latter reflects
the realization that other types of information besides just occupancy can be represented [79]. The
term “Occupancy Grid” appears to have been coined by Elfes [26] in the title of his doctoral thesis.
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Occupancy Grid Mapping

The application of occupancy grid mapping to a novel arena-multi-source chem-

ical plume source mapping.

An articulation of the problems associated with the application of standard
Bayesian occupancy grid mapping to environments with few expected occupied
cells (low prior probability of occupancy) and stemming from a key indepen-
dence assumption required by the standard algorithm.

An exact solution for the state of an occupancy grid when measurements con-
sist of binary detections and non-detections generated by a particular form of

forward sensor model.

A family of novel approximate algorithms applicable to low prior environments

based on this exact formulation.

Chemical Plume Source Localization

An abstracted forward model for binary chemical plume detection that encapsu-
lates the role of multiple sources without reference to the physics of a particular

type of plume.

A plume source location mapping method suitable for use in multi-source envi-

ronments.

Hydrothermal Vent Prospecting

A procedure for automatic classification of hydrographic data into the back-
ground water and the two main components of a hydrothermal plume-the buoy-
ant and non-buoyant plume-and its application to field data.
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e An algorithm for the generation of occupancy grid maps of the seafloor showing
locations likely to contain hydrothermal vents and also regions unlikely to con-
tain vents. These maps are shown to be suitable for the automation of nested

surveys in support of autonomous hydrothermal vent prospecting,.

e A simple model for buoyant hydrothermal plume evolution suitable for use with

occupancy grid mapping methods.

¢ An evaluation of the utility of measuring crossflow velocity on a surveying AUV

for constraining the source locations of encountered buoyant plumes.

1.4 Document Structure

This dissertation is divided into two parts intended to separate the more broadly ap-
plicable theoretical contributions of this thesis from the specific application of those
methods to AUV-based hydrothermal vent prospecting. This chapter provided an
introduction to the problem of chemical plume tracing and specifically its applica-
tion to hydrothermal vent prospecting. Chapter 6 ties the specific contributions of
this thesis back into this wider context and suggests productive avenues for further
research. The following provides an overview of the intervening chapters.

Readers interested only in the application of AUVs to hydrothermal vent prospect-
ing can begin at Part II, but should familiarize themselves with occupancy grid map-
ping (Ch. 2, § 2.1) before reading Ch. 5.

Part I: Bayesian Occupancy Grid Mapping with Binary Measurements in
Environments with Few Occupied Cells

Chapter 2: Exact Occupancy Grid Mapping for Binary Measurements
This chapter explores the application of occupancy grid mapping to the chemical
plume source localization problem, and more generally to environments with few
expected occupied cells (low prior probabilities of occupancy). I begin by develop-

ing a generic forward model for binary detection of chemical efluent from multiple
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sources. Initially I had expected to be able to then apply standard occupancy grid
mapping methods without modification. This chapter reveals why a key indepen-
dence assumption required by the standard algorithm fails to produce accurate maps
in this application. However, special properties inherent in the forward model allow
for existence of an exact solution computable under certain conditions. In particu-
lar, it is shown that non-detections can be incorporated into an occupancy grid map

recursively, and without approximation.

Chapter 3: Approximate Algorithms for Low Prior Environments The
exact occupancy grid mapping algorithm introduced in Ch. 2 incurs linear cost in map
size, the penalty for which is exponential cost in the number of detections registered
by the sensor. This exponential scaling renders the exact formulation impracticable.
Its utility derives instead from providing the foundation for several novel approximate
algorithms introduced in this chapter. Two families of algorithms are developed and
their performance studied in simulation relative to the exact algorithm and to other
metrics of performance.

Part II: Automated Nested Survey for Hydrothermal Vent Localization

Chapter 4: Hydrothermal Plume Survey by Autonomous Underwater Ve-
hicle This chapter introduces hydrothermal plumes as perceived by a surveying
AUV. I explore the hydrographic data obtained by the ABE AUV during several re-
cent hydrothermal plume prospecting expeditions in order to develop methods for the
automated detection of hydrothermal effluent, and to develop constraints on seafloor
vent location from the locations of those detections above the seafloor along with
measurements of ambient crossflows. The modeling efforts in this chapter form the

foundation for the application of occupancy grid methods to the same data in Ch. 5.

Chapter 5: Buoyant Hydrothermal Plume Source Localization via Nested
Survey This chapter shows how the occupancy grid mapping methods developed in
Part I can be applied to mapping the probable locations of hydrothermal vents on the
seafloor. These maps are readily machine-interpretable in terms of the parameters

of each survey stage within a nested survey. These automatically generated survey
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trajectories are found to compare favorably to the actual human-generated surveys
planned in the field.

40



Part 1

Bayesian Occupancy Grid Mapping
with Binary Measurements in

Environments with Few Occupied

Cells

41



42



Chapter 2

Exact Occupancy Grid Mapping

for Binary Measurements

This chapter presents the derivation of an exact occupancy grid mapping algorithm
under the dual restrictions that

e the mapping sensor report only binary detections and non-detections,

e and that the sensor can be modeled with a particular invertible form of forward

model to be introduced.

Nominally the computational cost of exactly computing the marginal posteriors would
scale exponentially with map size and is consequently unfeasible [118]. This chapter
reports an exact algorithm with linear cost in map size, the penalty for which is
exponential cost in the number of detections registered by the sensor. While the
number of detections expected in an environment with few occupied cells may be
quite modest, this exponential scaling renders the algorithm ultimately impracticable.
Its utility derives instead from the insights it offers into the nature of occupancy grid
mapping in a low-prior environment and by providing the foundation for the several
novel approximate algorithms that form the subject of the next chapter.

Though the application pursued in this thesis is underwater chemical plume trac-
ing, the insights offered into OG mapping are more general, having broader relevance
particularly in sparsely occupied environments. If observations are limited to scalar
measurements of a chemical tracer, atmospheric plume tracing is an obvious appli-

cation arena; however, the methodology developed in this and the next chapter is
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more broadly applicable to any static mapping problem wherein measurements can
be distilled to binary detections and non-detections. The archetypal application of
indoor mapping with sonar range-finders can be formulated in these terms; though
additional work remains to determine whether the methods developed herein offer any
advantages over traditional methods. Robotic mapping efforts in sparsely occupied
environments should benefit directly. Such environments are usually the purview of
feature-based methodologies; however, a map of feature locations includes no intrinsic
mechanism to represent confidently unoccupied space, meaning OG methods could
play a complementary role in combined mapping/exploration missions.

This chapter begins with a presentation of the classical Bayesian formulation of
the OG mapping algorithm [85], the formulation studied and extended in this and
the next chapter. The key assumptions required are described along with a review of
the literature devoted to exploring the consequences of these assumptions and their
circumvention. The validity of these assumptions is then assessed in the context of
the localization of chemical plume sources. This analysis provides the motivations for
the extensions to the standard Bayesian approach developed next. For the sake of
readability, only key results appear in the main text. Detailed derivations have been
relegated to App. B.

2.1 Background: Occupancy Grids

Probabilistic mapping algorithms strive to estimate the posterior probability dis-
tribution over the space of all maps m given the set of all measurements Z! =
{z*,2*7,...,2'} made of the environment: p (m | Z') [117]. Since the real world
is continuous, the space of all maps is infinite dimensional and this problem is in
general intractable. OG mapping algorithms rely on a discretization of the world
into a regular grid of cells, each of which is represented by a binary random variable
ie € {0,1} indicating respectively emptiness or occupancy of that cell. The space of
all maps is now finite with a dimensionality of 2°, where ' denotes the number of
grid cells that make up the map. Nevertheless, computing the posterior probabilities
for all possible 2¢ maps is a formidable problem for typical OG maps with thousands
to millions of grid cells.

To circumvent this issue, OG methods decompose this high-dimensional problem
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into a collection of independent, one-dimensional estimation problems, wherein the
state of each cell is estimated independently of the states of the remaining cells in
the map. Methods based on Bayesian inference [26,27,85], Dempster-Shafer evidence
theory [100], Fuzzy set theory [98,99], and various ad hoc rules, particularly in the
early literature, exist to update estimates of the state of each cell in the grid as

! The key concession common to all these methods is

new measurements arrive.
the inability to represent dependencies between the states of multiple cells. These
dependencies arise because sensors typically observe more than a single grid cell

during each measurement [117].

2.1.1 Bayesian OG Mapping

This work is concerned with application and extension of the Bayesian method exclu-
sively. The Bayesian approach seeks to estimate the marginal posterior probability
densities p (,u,,c | Z‘) for all cells ¢ given prior probability densities p (u.). Since these
densities all correspond to binary random variables, they are equivalently determined
by the knowledge of the posterior probability of occupancy P [mc | Z‘] or of empti-
ness P [ﬁlc ‘ Z‘] =1-P [mc ‘ Z‘], where m. and m, denote p. = 1 and p. = 0
respectively.

A simple recursive update rule for these posteriors is attained if we regard estimat-
ing the states of all cells as a collection of independent binary estimation problems.

Begin by applying Bayes Rule to the marginal posterior:
P[m.| 2'] =P [m.| 2, 2"

P [#| 2,m,] P [m, | 2t (2.1)
P [z‘ [ Zt—l] :

To proceed, a critical assumption is required:

p(2'| 27" ne) =p (2 | o) - (22)

Eq. (2.2) states that the current measurement is conditionally independent of all pre-

vious measurements given knowledge of the state of the single cell ¢. Sensors that

'Ribo and Pinz [106] provide an insightful comparison of three modern map update rules in a
typical office environment.



simultaneously measure the state of multiple grid cells violate this assumption [117].
A sensor that scans multiple cells to generate a single scalar measurement 2* implies
that information about the states of grid cells other than the one being updated could
help to predict the outcome of the measurement 2'. There must be information about
the state of the grid in Z*~! or else there would be no point in having made these
measurements. As a result, Z¢~! contains information about the probable outcome of
2! not subsumed by knowledge of ., and conditional independence cannot hold. The
ramifications of this particular assumption are many and I will refer to it throughout
this work. I will use the acronym CIM to denote Conditional Independence of Mea-
surements, leaving implicit that the conditioning required is the state of single cell
being updated.

Accepting the CIM assumption for the moment, (2.1) becomes

P [m, | 2] = W P2t | m] P [me | 2]
P [2Y] P [*mc ‘ z‘]
Pl2t| 2] P[m]

(2.3)

I

P2 [:r;q:r | Z‘_l] :

where the second line follows from the reapplication of Bayes Rule to the second term.

An analogous procedure leads to the posterior probability of emptiness:

Pl P[m]|=]
[zt | 2] Plm,]

P [ﬁlc [ Z‘} =3 P [ﬁlc

ZvY . (2.4)

The lead terms cancel upon constructing the so-called odds ratio v £ P [mc ‘ Z‘] /P [mc | Z"l:

™ P[mszt] . 1 -P[m] s
¢ l—P[mclz!} P [m,] s "

(2.5)

where we have made use of the binary nature of p, to replace all probabilities of

emptiness with one minus the corresponding probability of occupancy.

The form of (2.5) is intuitively appealing. Cells whose occupancy is strongly sug-
gested by the current measurement (P [mc [ z‘} ~ 1) have their odds of being occupied
raised. Analogously, cells whose vacancy is supported by the current measurement

(P [me | 2!] & 0) have their odds of being occupied lowered. In each case, the result
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includes weighting by the prior odds and the previous estimate of the odds ratio.
Though intuitively satisfying and computationally attractive (recursive), (2.5) relies
on the fallacy that measurements represent independent observations of individual
cells.

Relationship to Joint Posterior

The true relationship between each single-cell marginal posterior and the joint poste-
rior over the whole map is attained by marginalizing over all maps {m: m.} wherein
cell e is occupied:

Pme| 2= Y ¥Pm|2] . (2.6)

mime

A low marginal posterior implies the maps with that cell occupied are unlikely given
the data, and conversely, a high marginal posterior implies a cell that is occupied
in likely maps. This fact accounts for the utility of the occupancy grid representa-
tion; however, the algorithm specified by (2.5) does not compute the true marginal
posteriors due to the CIM assumption.?

Recall that the updating algorithm decomposes the problem of estimating the joint
posterior into a collection of one-dimensional problems. At best, the joint posterior
could be approximated by assuming that the posterior probabilities computed this
way represent the true marginal posteriors and furthermore that these marginals are

independent:
¢

p(m|z)=]]p (k|2 . (2.7)

e=1
Note that (2.7) requires the prior probabilities of occupancy for each cell be indepen-
dent in order to hold in the base case (Z' = ©@):

pm)= [ pu)- (2.8)

s€{1,...,C}

This assumption along with CIM leads directly to (2.7) since independence of the
marginal priors will not be broken by a sensor that observes single cells individually

(the only type that satisfies CIM). However, the converse, that independence of the

2In fact, it will be shown that the algorithm specified by (2.5) serendipitously produces the true
marginal posteriors when conditioned exclusively on non-detections (§ 2.4).
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marginal posteriors implies CIM, is false. I show in § 2.3.2 that for a certain form
of binary sensor model to be introduced subsequently, the standard update rule (2.5)
applied exclusively to non-detections correctly computes the marginal posteriors, and
furthermore these marginal posteriors satisfy (2.7). Under those special conditions,
(2.5) can be derived without requiring CIM. Indeed, it will be shown that the CIM

assumption remains false. By contradiction, (2.7) does not, therefore, imply CIM.

“Static World” Assumption

Though not strictly required to derive (2.5), a common additional assumption in
made occupancy grid mapping is that the world is static [117]:

p(2t| 2" m)=p(z|m) . (2.9)

This assumption states that measurements carry no information about one another
not subsumed by knowledge of the entire static map. It is necessary for the CIM
assumption (2.2) to hold and is much weaker. Recent research [131] is alleviating this
restriction; however, the methods developed in this work all require (2.9) to hold.
Moving objects, by definition not part of the static map, violate this assumption
because observations of such objects are generally useful to predict the outcome of
future observations. To illustrate the point, consider two subsequent detections of
a chemical plume in ambient flow at two different locations. Moving the sensor
upwind (against the wind) from the first detection location will present the sensor with
unsampled fluid and therefore the outcome of the previous measurement is irrelevant
to the present measurement except insomuch as it contains information about the
plume’s source. Of course, the conditioning on knowledge of the entire map of source
locations subsumes this information. On the other hand, motion downwind (with
the wind) would tend to sample the same water thereby ensuring correlation of the
previous and present measurements, thereby violating (2.9).
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2.1.2 Map Artifacts

Several authors working with sonar range-finder data have noted artifacts in OG
caused by violating the CIM assumption and have proposed solutions.* Moravec and
Cho [86] (see also [74]) propose a method wherein new range data is interpreted rela-
tive to current state of the map, termed the “context-sensitive” approach. Berler and
Shimony [10] propose constructing a Bayes network to represent the dependencies be-
tween dynamically defined regions created by the overlap of successive measurements.
In their work, the grid representation is used only to visualize the result, since rather
than estimating the probability of cell occupancy, they estimate the probability that
an obstacle exists somewhere within each region. Konolige [58] developed a significant
extension to the occupancy grid framework called MURIEL (MUltiple Representa-
tion, Independent Evidence Log) which keeps track of robot poses that have observed
each cell so as to ignore highly correlated measurements of a cell from similar poses
rather than treating them as independent. MURIEL also uses the observations of a
cell to update the probability that some readings were due to specular reflections.
In more recent work, Thrun [117] gives a particularly insightful discussion of the
manifestations of the CIM assumption in typical OG maps. He shows that indepen-
dently estimating the states of individual grid cells means that apparently conflicting
data about the occupancy of individual grid cells will get averaged together into in-
termediate values despite the existence of map configurations that could explain the
data without conflict. These conflicts are manifest around doorways and other fea-
tures whose openings are wide enough for sonar beams from some vantage points to

pass through, but obscure others. He demonstrates a batch processing method that

3Much of the work specific to indoor environments revolves around limiting the propensity of
specular reflections to declare large portions of the map as unoccupied. This tends to occur when cells
are updated independently because information in previous measurements about the rest of the map
cannot be used to assess the possibility that the present measurement represents a spurious range
reading [10]. Specular reflections refer to the coherent reflection of impinging waves on a surface.
Specular reflections occur when surfaces are smooth on the scale of the wavelength. Multipath
returns occur when a signal reflects specularly off multiple surfaces before returning to the receiver.
As a result the receiver reports an erroneously long range. When surfaces are sufficiently flat
to produce specular reflections, multipath returns become increasingly likely at steep angles of
incidence, however, specular returns with favorable geometry usually result in a strong return and a
correct reading [68]. Thus, while specular reflections can cause multipath returns, specular reflections
are not synonymous with multipath returns; however, some of the occupancy grid mapping literature
uses these terms interchangeably.
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utilizes expectation maximization (EM) to search the space of complete maps for maps
that maximize the likelihood of all measurements. The method has the disadvantage
that it is not recursive and consequently more computationally intensive.

Additional discussion of these works appears in the conclusion to this chapter
where I discuss the possible applicability of the methods developed subsequently to

indoor environments.

2.1.3 Low Prior Environments

In contrast to indoor sonar mapping, the dominant aspect of a Bayesian OG mapping
approach applied to the problem of chemical plume source localization is the low
prior with which the grid must be initialized. The Bayesian prior encodes belief in
the likelihood of occupied cells before any measurements have been made. Typical
occupancy grid mapping applications assume a prior probability of occupancy of
P [m.] € [0.2,0.5], in effect assuming somwhere near one half of the environment is
expected to be occupied by obstacles [117]. In Part II of this thesis, the OG mapping
framework is applied to example data sets from hydrothermal sites in the deep sea on
grids with O (10%) cells, typically only a few of which contain active vents. Depending
on grid cell size, priors of P [m,] € [107°,10~2] are appropriate in such settings.
Unfortunately, the adverse effects of the CIM assumption tend to be exacerbated
in a low prior environment. To see why this might be the case, consider the scenario
depicted in Fig. 2-1 in which two successive detections of a chemical plume are reg-
istered by a robot. The first detection supports the presence of at least one source
within the upwind cone denoted C;. Considered independently, the second detection
supports the presence of at least one source within the upwind code denoted Cj.
Considered together, several possibilities emerge, two of which are shown schemati-
cally in Fig. 2-2. Clearly a very likely possibility is that there is a source within the
intersection denoted 'y N C,. Without a source in C; N Cy at least two sources are
required to account for both detections, one each in the portions of ', and (', not
part of their intersection. A small number of expected sources strongly favors the
possibility that minimizes the number of sources required to explain the data, so the

first explanation is probably correct.

Now consider the same scenario in the context of updating the marginal posteriors
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current
Figure 2-1: Schematic depiction of two detections of a chemical plume made by an
AUV showing the upwind regions in which the source or sources of the detected chemical
are likely to lie. The current is setting to the right.

(a)

current

Figure 2-2: Candidate explanations for two plume detections made by a surveying
AUV: (a) one source, vehicle relatively far downwind; (b) two sources, vehicle relative
close to both.

within an OG map subject to the CIM assumption. Cells that fall within C; will have
their posteriors increased following the first detection, as will cells that fall within
(', following the second. Consequently, the posteriors of cells within the intersection
C,NCy will have increased twice. This is consistent with the notion that maps having

a source within the intersection €, NC5 are now more likely. However, the attendant

4In fact, the posteriors within the intersection Cy N C, will have increase too much. Because the



effect that maps having occupied cells within the portions of C; and C; not part of the
intersection are now less likely than after either detection considered alone® cannot
be captured by an algorithm that estimates of the state of each cell independently,
by ignoring the information present in previous measurements about the rest of the
map. There is no mechanism in such an algorithm to seek maps consistent with
all measurements, and consequently no mechanism to ensure the marginal posteriors
reflect the likelihood of occupancy across all maps. This is true regardless of the
prior probability of occupancy in each cell; however, a low prior exacerbates the
errors incurred because maps with few numbers of occupied cells should be strongly
favored.

I emphasize that all OG methods, whether Bayesian or otherwise, will fail to
produce exact results in the scenario depicted by Fig. 2-1. This is because all OG
methods estimate the state of each cell independently, interpreting each measurement
without regard to explanations for that measurement external to the specific cell being
updated. An environment with few occupied cells exacerbates the ramifications of

this property.

Previous Work

To my knowledge, no previous work directly addresses the consequences of the CIM
assumption in Bayesian OG maps initialized with a low prior. Though distinct from
OG methods, Pang [101] includes the description of a Bayesian methodology in his
doctoral thesis for learning the state of a binary random field of possible locations
for a single source from binary detections and non-detections of chemical effluent
along with a record of advective currents. His method is developed specifically for
short time-scale plumes amenable to modelling [8,30] as a collections of indepen-
dently diffusing “filaments” executing biased random walks due to turbulent motions
with superimposed advection. The key probabilistic quantity attained from this per-

spective on plume evolution is, in the notation of [101], S;;(#;, tx) which denotes the

detections overlap, they are correlated. Though both detections support the presence of a cell in the
intersection €'y N Cq, they are not independent observations, and the sum total of their information
content is less than if they were.

SBecause a source in the intersection C; N C; explains both detections, the measurements carry
correspondingly less information about the remaining portions of C; and C5 then when considered
independently.
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probability that a source in cell 7 released a single chemical filament at time ¢; given
that the filament was present in cell j at time tx. For cells ¢ that lie far from an up-
wind trajectory terminating at cell j, S;;(¢;,tx) — 0. Because only a single source is
assumed, the goal of his method is distinct from that of OG mapping which seeks the
marginal posterior probabilities of occupancy without constraining the total num-
ber of occupied cells, nevertheless, his grid-based representation of possible source
locations provided some of the early inspiration for pursuing OG methods, and his
modelling efforts are amenable to incorporation into the OG framework developed
later in this chapter.

Pang’s assumption of a single source in the search domain provides a powerful
constraint. This constraint ultimately leads to an update rule for a continuously
releasing source that enables cells in portions of the grid not actually observed at a
given time to nevertheless have their posteriors updated. Consider that the detection
of plume effluent at one location means all potential source locations not upwind of
the detection are unlikely to contain the source. Therefore, the assumption of a single
source has enabled information about all cells in the map to be gleaned from a single
measurement, regardless of which cells lie upwind of the measurement location. A
similar argument applies to measurements where no effluent is observed. Simulation
results presented in [101] demonstrate the applicability of the method to single-source
scenarios; however, its extension to multiple-source scenarios is not straightforward
because key probabilistic quantities are formulated assuming the existence of only a
single source. Appendix E contains a thorough analysis.

The remaining sections of this chapter are devoted to an exact formulation of the
marginal posteriors for a specific form of sensor model. In the next chapter, we turn
to novel approximate algorithms that relax or eliminate the CIM assumption in favor

of alternate assumptions.

2.2 Forward and Inverse Sensor Models

The work herein is applicable to a particular form of invertible forward sensor model.
Forward sensor models are distinct from the typical inverse modelling required to
interpret sensor measurements in standard occupancy grid mapping. To paraphrase
Thrun [117]:

53



Forward models predict measurements made from within a known map, that is,
they model the physics of the sensor. A probabilistic forward model has the
form p (2* ] m). This probability density function specifies a distribution over

measurements z' given a map m.

Inverse models attempt to reason from a sensor measurement to its causes within an
unknown map. The form of probabilistic inverse model required by standard
occupancy grid mapping methods is p (pc ‘ z‘), which specifies the marginal
probability of occupancy (p. = m.) and emptiness (u. = m,) for a single cell ¢

given the measurement 2°.

Because forward models attempt to capture the the physics of the sensor they are
arguably more natural. Arbitrarily complex physical phenomena may be included,
hence they are also potentially more accurate.

In principle, Bayes Rule applied to any forward sensor model will generate a
corresponding inverse model p (m j z‘). The inverse model required by the standard

OG algorithm could then be attained by marginalization over all maps:

> p(z'| m)p(m)

P [m, o = mam, ‘ ;
[me | 1] S p(zt| m)p(m) (2.10)

Marginalization is a form of averaging. The marginal inverse model P [mc I z‘} is the
normalized sum of the probabilities of all maps in which cell ¢ is occupied. The large
space of all maps (2¢) renders such marginalization by direct summation intractable
for most models [118]; however, the form of binary forward sensor model introduced

next admits the analytical evaluation of these sums.

2.3 An Invertible Forward Model for Binary Mea-

surements

Let 8! € {0, 1} denote a binary-valued random measurement at time ¢, with 2! reserved
for generic measurements. Further, let d' denote the event of a detection (§' = 1)

and d" the event of a non-detection (6" = 0). The two probabilities P [d' | m] and
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P [ff' \ m} =]1=P [d‘ | m} then completely specify a forward sensor model. The work
described herein is applicable to a restricted class of binary forward sensor models
that satisfy

P[d|m]=1-(1-Pp)[J(1-P) (2.11)

SES
where
P! £ P [Sufficient signal from occupied cell ¢ arrives to trigger a detection at time .|
Pj- 2 P [A false alarm occurs at time .|

S Ed5 Wiy 8E {Lgnowy ('}} the set of occupied cell indices in m.

The subscripts s and ¢ both denote cell index. with s used within products and ¢

externally. False alarms are independent of legitimate detections so that

Pld|S=2]=01-FF)
Pld|S=c|=(1-Pp)(1-F) .

i

(2.12)

In words. the first relation above states that the probability of a non-detection given
an empty map is equal to the probability that no false alarm occurred. The second
states that the probability of a non-detection given a map with only a single occupied
cell is equal to the probability that a false alarm did not occur and that the single
occupied cell did not present sufficient signal to the detector to trigger a detection.
If all occupied cells of a map have independent probabilities of triggering a detec-

tion. then it follows that

P[d|m]=(1-P)]JC1-P) . (2.13)

5€

v

Eq. (2.11) then follows trivially. Eq. (2.13) states that the probability of a non-
detection is the probability that no false alarm occured times the probabilities that
no occupied cell presented sufficient signal to the detector to trigger a detection.
This model admits the possibility that multiple cells could simultaneously present
sufficient signal to the detector to cause a detection; however it disallows occupied cells
from reinforcing one another’s signals to trigger a detection when the signal present

at the detector from each individual occupied cell is insufficient on its own. This
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Figure 2-3: Schematic representation of a sonar range-finder reading decomposed
into a binary detection and non-detection. Instead of returning a single range after
each ping. the model decomposes each ping into two measurements: a non-detection
that observes cells in a sector with a radius less than the would be reported range.
and a detection that observes cells in an arc centered at the reported range. Similar
decompositions have been employed by others [10]. Occupied cells are outlined in black.
The non-detection region is highlighted in blue. the detection region in red.

restriction makes it impossible to infer the number of occupied cells in an observation
region following a detection, except that at least one must be occupied. or else a false
alarm occurred. I discuss this property in detail in the next section.

That said, there is considerable freedom in specifying the /”' and consequently.
the form of (2.11) is less restrictive than might initially seem. For instance, Fig. 2-3
shows a simple model of a sonar range-finder (like those for which OG mapping was
originally developed) that satisfies this form of forward model. Instead of using the
reported range directly, the range measurement is decomposed into two measurements
from fictitious binary sensors. The first observes cells within a cone shorter than the
reported range and registers a non-detection; the second observes a rind of cells
centered about the reported range and registers a detection. Part II of this thesis
develops several models for chemical plume detection also of the same form. Those
models rely on vehicle navigation and measurements of background advective flow in

addition to chemical detection to generate the P!

2.3.1 Inversion and Marginalization

The form of (2.11) is special because it is possible to compute the marginal inverse
probabilities P [m, | d'] and P [m, | d'] exactly. Using (2.10) with 2' € {d',d'} and
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substitutions (2.11) and (2.13) for P [di | m} and P [cf‘ [ m] respectively, leads by

iterative evaluation of the sums to

1—(1- PR)(1 - P {11~ PP )
P[m.|d'] = = il P [m,] (2.14a)
L1~ ) T1(1 - PP )
P[m|d] = %%P [m,] . (2.14b)

Note that the large sums over {m : m.} implied by (2.10) have been replaced with

products over C'. The derivation of these expressions is provided in App. B.2.

The (information theoretic) entropy of the posterior probability distribution given
by (2.14) provides an assessment of the information content of a single measurement
from a sensor having the form of (2.11). The entropy of a probability distribution
p (z) is defined by (e.g. [118]):

H, = E[~log2p (2)] , (2.15)

with conditional entropy defined analogously. The conditional probability distribution
p (ue | 6) is bivalued and hence (2.15) resolves to

H,, | 5(0") = =P [m. | 6'] loga P [m. | 8'] — P [m | 6'] loga P [ | 6] . (2.16)

This expression attains a maximum value of 1 for P [m, | 6'] = 0.5, corresponding to
complete uncertainty. If P [m.] = 0.5, the unconditional entropy of the prior H, =1
and the posterior conditional entropy can be regarded as an inverse measure of the
information content of §*. A posterior entropy H,, |s = 0 denotes perfect certainty
and hence maximum information. Figure 2-4 shows the posterior entropies H,_ | 4
and H,_| & versus the number of cells observed in a single measurement and versus

P! respectively.

Equation (2.14a) links P [m, | d'] through the P! to the probabilities that the
detection could have been caused by another cell in the map. These alternate possi-
bilities strongly influence the probability that an occupied cell at ¢ was responsible for

the detection. In essence, a single detection does not contain sufficient information
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Figure 2-4: Entropy of the inverse sensor model given by (2.14): (left) entropy
following a detection versus the size of the region observed; (right) entropy following
a non-detection versus P!. As the number of non-zero P! climbs with the size of the
region observed by a detection, the information aquired about any single cell is reduced
because a detection is only sufficient to constrain the observed region to containing at
least one occupied cell. Information attained from a single non-detection is independent
of the number of cells observed. Instead, as probability of detection improves P! — 1
the posterior entropy monotonically decreases. Fixed values used were P [m.| = 0.5 for

both panels, and P! = 0.5 for the left panel.

to infer the number of cells that are occupied out of those having non-zero P!, except

that at least one must be occupied. Indeed, as the number of non-zero P! climbs

with the size of the region observed by the sensor, the information acquired about

any single cell is reduced and the inverse probability of occupancy P [mc d‘] decays

to the prior. This is of course also the case for Pi — 1.

A non-detection, by contrast, does not link P [mc [ &‘] to other cells and are
easier to interpret. For instance, a non-detection declared by a perfect sensor upon
observing some region indicates unequivocally that all cells within the region are
unoccupied. The information contained about any single cell in a non-detection is
independent of the size of the region observed by the sensor except insomuch as region
size will generally influence P!. Furthermore, as P! — 1, cell ¢ becomes confidently
unoccupied. The probability of false alarm P} plays no role in P [mc ‘ J‘] since clearly
no false alarm occurred if the sensor reported a non-detection.

Of course, the whole point of occupancy grid mapping is to combine the informa-
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tion available in individual measurements into a consistent map. Detections become
valuable when interpreted in light of non-detections that constrain the portions of the
map from whence the detection was unlikely to have come.

Notation Some additional notation will facilitate the development in the remainder
of this chapter. The set of occupied cells S in the true map m has already been
defined. Let its complement S denote the set of all vacant cells S={s:m, s€
{1,...,C}}, and let S = |S| and S = C — S denote the cardinalities of S and S
respectively. Specifying S or S is equivalent to specifying a map m. To indicate that
the set of all measurements consists of binary detections and non-detections, I use
At instead of Z¢. Further, let D' denote the set of all measurements that resulted in
detections up to time ¢ and the set of all non-detections as D! so that A* = { D!, D'}.
Similarly, I denote the set of times that resulted in detections 7!, and the set of non-
detection times 7'. These sets have cardinalities of n' and a' = t — n' respectively.
Throughout, a normal typeface superscript of ¢ or 7 denotes a temporal index. Sets
of temporal indices are denoted in boldface and when used as a superscript denote
ar.

. . . t
the union over their elements, as in A™ = J .,

2.3.2 Posterior Independence Property

The fact the P! for all s # ¢ do not enter into the inverse model for a single non-
detection (2.14b) suggests that independence of the posteriors may persist following
any number of non-detections:
c
=1 =t
p(m|a™) =TIp(k|27) . (2.17)

s=1

If so, then the probability of any particular map m is simply the product of the

marginal posteriors for all occupied and unoccupied cells in that particular map:

P[m|D'|=][P[m.| D] []P[m|D] . (2.18)

s€S seS

In fact, it can be shown that a forward model of the form (2.11) is both necessary and
sufficient for (2.17) to hold (App. B.3). For t = 0, (2.17) merely restates the usual
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assumption that the marginal priors are independent. Because of this relationship
between P [m, | D'] and P[m,], the rest of this thesis adopts the notation P! £
P [m, | D] with P? =P [m,].

Equation 2.17 is exploitable insomuch as it allows recursive computation of the
eract marginal posteriors when conditioned on exclusively non-detections. In Sec-
tion 2.4 an exact expression for the odds ratio conditioned on exclusively A™ is
found that is identical to the standard OG mapping algorithm. Of course, the infor-
mation contained in detections must also be incorporated into the OG map for it to
be useful.

A natural question is whether the CIM assumption is actually correct when all
measurements consist of exclusively non-detetions (A! = D!) for a sensor model of the
form (2.11). Expressed for exclusively non-detections, the conditional independence
assumption required by the standard OG mapping algorithm is p (d* | AT ,m.) =
p (a_" | ,uc). Except under certain trivial conditions, this assumption remains false.
A proof exploiting (2.17) is provided in App. B.4; however, intuitive reasoning leads
to the same conclusion: Previous non-detections will have made some portions of
the map less likely to be occupied than others. Therefore, a measurement including
observations of these cells will be less likely to result in a detection than it would

have been otherwise, regardless of occupancy of cell c.

2.4 An Exact Algorithm for the Marginal Posteri-

ors

In this section the multiplicative structure of the binary measurement forward model
(2.11) is exploited to derive an exact algorithm for the marginal posteriors P ['m.,. ‘ > D"‘].
Computing the marginal posteriors would nominally require the comuting and stor-
ing the full posterior p (m ‘ Dt D‘) followed by marginalization, both daunting tasks
considering the large space of all possible maps. The algorithm preserves the depen-
dence between cell posteriors that arises following a detection. It recursively processes
non-detections, but requires batch-processing of all detections. Unfortunately, the al-

t

gorithm is ultimately impracticable as the number of detections n' increases due to

computational and numerical aspects of the batch-processing step. Nevertheless, the
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algorithm does enable practical computation of the exact marginals for small n‘, and
more significantly, provides the basis for the several approximate algorithms intro-
duced in the next chapter.

In principle the marginal posteriors could be computed for a binary measurement

model exactly according to

Pme| DD = 3" p(m | Dt DY)
=7n- Y P[D'.D'|m]P[m] (2.19)
=7n- Z HP[d“m] . HP[dﬂ|m} -P[m] ,

where 7 is a normalizing constant and the static world assumption was used to ar-
rive at the last line. This procedure presents analogous implementation problems as
inversion of a general forward sensor model, namely storage of p (m ] D!, D) and

costly 2€-term summation over the set of all maps with cell ¢ occupied {m : m.}.

As with the inversion of P [d‘ ‘ m] and P [cf’ | m] in the previous section, the
special form of (2.11) enables such marginalization by direct summation to be circum-
vented. This leads to a particularly simple and computationally attractive (recursive)

expression for the marginal posterior odds conditioned on non-detections exclusively

i
A2 P [me| D] /P [me | D

(2.20)
=(1-FP)p"

The simplicity of this result is perhaps not surprising given property (2.17). Interest-
ingly it is also identical to the odds ratio computed via the standard algorithm for
A! = DY however, the CIM is not required to derive it for forward sensor models of
the form (2.11). The proof appears in App. B.5.

The expression for the general odds ratio rt £ P [m. | D!, D] /P [m. | D', D']
does not simplify as cleanly; however, it is still possible to avoid direct marginalization
and its attendant exponential cost in map size in favor of a non-recursive expression

whose computational cost instead scales linearly in map size but exponentially with
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the number of detections n':

1+;z](—1)q S 110 - P fim)

o nCrtmeNe i=1
LX) % fim) (2.21)
g=1 nCrt meN?
rt=pt.pt.
In the above f!(n) denotes the product
Iml Il :
rm=TIa-p») TI(1- - [Ta-rm)P). (2:22)
i=1 s#c 1=1

The limit n C 7', € N denotes all g-length combinations of the detection times
7 € T'. The upper limits on the products in (2.22) refer to the cardinality of i (i.e.
g in (2.21)). At t =0, r0 and p? are initialized as 70 = p0 = :P"[:Irl.ﬁ Eq. (2.21) is
complicated because it maintains the dependencies between the marginal posteriors
that form after cells have been observed by more than one measurement that resulted

in a detection. The derivations of (2.20) and (2.21) are provided in App. B.5.

Because of the CIM assumption required to derive it, the standard OG mapping
algorithm fails to maintain the dependencies that arise between cells following detec-
tions, and consequently it fails to produce correct values for the marginal posteriors.
Eq. (2.21) enables exact computation of the posteriors for maps of arbitrary size,
albeit for only a few detections. Figure 2-5 demonstrates the improvement attained
by the exact algorithm over the standard algorithm for a detection followed by a
non-detection on a simple 2-cell map. The next chapter explores the consequences of
the standard conditional independence assumption on realistically sized maps. Before
considering the practical application of (2.21), the next section quantifies the com-
putational cost incurred by computing the posteriors via (2.21) and the numerical
stability of the result. Unfortunately, (2.21) is not a panacea; however, it provides
the foundation for the several novel approximate algorithms introduced in the next

Note that p! # P [m, | D'] /P [m. | D']. Rather, the definition in (2.21) reflects the parallel
roles of p! and p! in the algorithmic implementations of (2.21) presented in this chapter and the
next. A useful definition for p is pL = P [D' | D*,m.] /P [D* | D*,m.] .
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Algorithm 1 An exact algorithm for the odds ratio. The required initialization is
P f_{f/(l — f_’rf]A Unless otherwise noted. all subscripts ¢ imply the operation is for
all ee {l,.:, C}.
Require: |
it
P
PR N+ e rt?

rl = og exact{

. if d' (detection) then
fo = pt
Pt =pL/(1+ pt)

else if d' (nondetection) then
pe =(1-PY)p.!

6: P=pt1+7)

o b o 19 e

7. end if
nt q .
1+ 31 X [1(1-P" ) i)
i = 9=1 nCrt pent i=l
N P = =
L 3 (=1)7 3N Fim
=l nCrfnent
9: vt =p-pt

chapter.

Algorithm 1 implements the iterative update of an OG map via equations (2.20)
and (2.21) in pseudocode. An implementation exploiting the lack of dependence
between detections that observe portions of the map not related to one another either
by direct overlap or through overlap with shared neighbors is provided in App. C. The
implementation can cut down significantly on the computational load if detections
tend to occur in disconnected clusters since such groups of detections can be treated

independent of one another without approximation.

2.4.1 Numerical and Computational Considerations

The number of arithmetic operations required to compute p! via (2.21) is approxi-
. ird t . . H . . “

mately proportional” to ('n'2™ . That is. the computational cost is linear in map size

"As written, the precise number of arithmetic operations required by (2.21) is(6(C' + 1)) + dn' +

6(C — 1)2" +H2C + 1}::"2“" An upper bound for this number is 14C'n'2"", thus the proportionality
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D*={d'}, D? ={d*}

Figure 2-5: Comparison of standard OG mapping algorithim with the exact algorithm
specified by (2.21) and (2.20) for a two-cell map. A perfect receiver is assumed: P! =1,
Pj: = 0. The values within each cell indicate the posterior probability of occupancy
after processing the data from each time step. Because a perfect receiver cannot miss
a detection. both algorithms correctly assign a zero probability of occupancy to cell A
after measuring the state of cell A (exclusively) at t+ = 2. At the same time the exact
algorithm also correctly identifies cell 2 as conclusively occupied. whereas the standard
algorithim does not update its estimate for cell B.

(" and exponential in the number of detections n'. Figure 2-6 shows the results of a
numerical confirmation of this scaling. Direct application of (2.21) to update all cells
would incur quadratic cost in (’; however, the f!(n) need only be computed once per
iteration so that linear cost in ' is maintained. While exponential cost in anything
is undesirable, it is possible to use (2.21) to compute the exact odds ratios for small
n'. This is not the case in general because of the exponential cost (2°) in map size
implied by the marginalization in (2.19).

Computation of the exact odds via (2.21) can be numerically problematic as well.
particularly if the P! and P! are small. Under these conditions. the products within
the inner sums in the numerator and denominator of (2.21) tend to equal values near 1.
Summation over all g-length combinations of 7; € 7' therefore tends to yield values
near (':;) for the inner sums. The outer summation over the resulting alternating
series then tends to yield values close to zero.® Numerical investigation suggests rapid
convergence of the sums in the numerator and denominator of (2.21) toward zero as

n' is increased. Indeed, the numerator and denominator of p!, are P [Hr | Dt m.,.] and

claimed in the main text is conservative.
t
mn '
8By the Binomial Theorem, (- 1) (’; ) =0.
q—0
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Figure 2-6: Computation time for an implementation of Algorithm 1 versus the num-
ber of detections n' (left) and the size of the map C (right). Each data point represents
the average of 10 runs. The gray lines in both plots are curves of y = const. .Cn'2" for
a range leading constants. These plots confirm a computational complexity that scales
approximately as n'2n' with n' and linearly with C. Deviation from this scaling for
small maps and low n! is due to overhead.

5 [D‘ | Dt ﬁl.c} respectively. The probability that the set of measurement times 7
resulted in detections will approach zero as t— > oo in the same manner that the
probability of observing any particular sequence of heads and tails from a sequence of
coin flips will approach zero as the number of flips increases; however, the convergence
is particularly sensitive to the number of detections in this case because the probability
of observing sequences containing detections is unlikely for small P! and P!. This
behavior becomes problematic when the results of the sums approach the machine
precision of the much larger > O (1) terms within them.

The much simplified case of a 2-cell map with repeated identical and uniform
measurements (C' = 2; P! = Pp; P! = Py; P} = 0) illustrates the behavior. Under
these conditions and for a sequence of n' detections, numerical failure will occur first

in the denominator of (2.21), which reduces to

S0 (T)a-a-a-ro)R) (2.23)

Upon simplification and application of the Binomial Theorem, the above becomes

simply(PD)"‘ P, which converges exponentially toward zero, and very rapidly for small
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Figure 2-7: Comparison of the odds ratio computed from (2.21) versus via direct
marginalization for a two-cell map (left) and the values of the numerator and denomi-
nator of (2.21) as functions of the number of detections. The precision of O (1) numbers
for these computations was approximately 10~'¢. Numerical failure of (2.21) is evident
at n' = 4, consistent with finite precision problems in representing the denominator of
(2.21) for P! = 0.001; P! = 0.001; P} = 0. These values were chosen for illustrative
purposes and not as representative of a real application.

Pp. Numerical failure will occur when the product (Pp)™ Py approaches the machine
precision of the O (1) summands in (2.23). Figure 2-7 illustrates this by comparison
to the solution computed from marginalization over the space of all maps:

,_ (PO -P) P +(1-( - Po))" I}

(Pp)" (1 - PRy) Py -

Direct marginalization is possible here because of the small size of the map.

In situations where P}, is not negligible, the numerical results produced by (2.21)
remain accurate for larger n‘. This is because larger P}. have the effect of dampening
the oscillations of the outer alternating sums in the numerator and denominator. Non-
zero P} also relax the constraint that data be completely consistent, which lends some
intuitive support to the improved numerical behavior of (2.21) for larger Pf..

Finally, it should be noted that the standard Bayesian OG algorithm as usually
implemented works by summing the logarithms of the individual factors of (2.5) so as
to avoid numerical problems associated with representing values near 1 and 0 [85,118].
Because (2.21) consists of both sums and products, logarithms are of limited utility
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here.

2.5 Summary, Contributions, and Future Work

This chapter introduced the standard Bayesian OG mapping algorithm, the key as-
sumptions required to derive it, and paid particular attention to the assumed condi-
tional independence of measurements (CIM assumption) and its manifestation in OG
maps. Recall that the CIM states that measurements are conditionally independent
of one another given knowledge of the state of a single cell in the map. The assump-
tion applies to each cell updated by the algorithm at each iteration. Though the
CIM assumption enables the mapping problem to be decomposed into a collection of
one-dimensional binary state-estimation problems, the results do not reflect the de-
pendencies between cell states that naturally arise as a consequence of using sensors
that sweep over multiple cells [117]. I argued that such dependencies are particu-
larly important in environments with a naturally low density of occupied cells, where
explanations of the data that require a minimal number of occupied cells should be
strongly favored.

To address this shortcoming of the standard method, an exact expression for the
marginal posteriors was derived that is applicable to a special form of invertible bi-
nary forward sensor model. It was shown that non-detections could be incorporated
into the OG map recursively, with computational cost equivalent to the standard
algorithm. At present, incorporating detections requires batch-processing of all de-
tections, with computational cost exponential in the number of detections. Neverthe-
less. the existence of this exact expression for the marginals proves that (for a specific
class of sensor model) the exponential complexity in map size suggested by direct
marginalization of the full posterior p (m | D', D) can be exchanged for exponential
complexity in the number of detections. For small numbers of detections and arbi-
trary numbers of non-detections, this work enables the practical attainment of exact
OG maps regardless of map size.

The results presented herein differ from previous research aimed at compensating
for the consequences of the CIM assumption in OG maps of indoor environments.
To my knowledge, the only other directly comparable exact method was developed
by Berler and Shimony [10]. Though they employ an OG only for display purposes
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(instead regions are dynamically defined with each new measurement), their algo-
rithm is capable of producing exact posteriors, and like the exact methods presented
in this chapter (§ 2.4), theirs scales exponentially in computational complexity with
the number of measurements. Unlike in their algorithm, the complexity of the envi-
ronmental representation (the map) remains fixed at C' grid cells for the algorithms
developed in this chapter and the next. In contrast to methods employing augmented
OGs (principally to address specular reflections in indoor environments, e.g. [48,58]),
the CIM assumption is addressed without augmenting the representation of the envi-
ronment. Finally, the present approach has been formulated utilizing a sensor model
of a particular form, but not specific to a particular sensing modality (e.g. the “con-
text sensitive” OG mapping algorithm developed for sonar range finders by Moravec
and Cho [86]).
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Chapter 3

Approximate Algorithms for Low

Prior Environments

Simulations presented in this chapter demonstrate the significant degradation in ac-
curacy of the single cell posteriors that occurs when the standard OG mapping algo-
rithm is applied to an environment with a low prior probability of occupancy. The
last chapter provided an exact expression (2.21) for the marginal posterior odds, but
unfortunately also revealed numerical and computational aspects of that expression
that rendered it ultimately impractical. This chapter presents several novel approxi-
mate algorithms that each retain some ability to maintain the dependence that arises
between cell states after observations that result in detections.

Two of these new algorithms are closely related to the standard algorithm. This
first class requires variants of the standard CIM assumption that leverage the utility
of (2.21) for small numbers of detections. As was shown in the preceding chapter,
the marginal posteriors conditioned on exclusively non-detections maintain their in-
dependence (§ 2.3.2). Since non-detections are easy to handle exactly, I focus on
developing relaxed assumptions on the independence of times that resulted in detec-
tions. A second class of algorithms instead requires assuming independence of the
marginal posteriors. Algorithms of this class essentially “revise the prior” to reflect
the current posterior before incorporating a new measurement. These algorithms are
also amenable to extension via the processing of subsets of detections with (2.21).

In each case, analytic sufficient conditions for the algorithm to produce exact

results are provided. The performance of each algorithm is then evaluated in a sim-
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ulated low prior environment. The simulation results show qualified improvement
over the standard algorithm, with the best results produced by algorithms assuming
independence of the marginal posteriors. The principal improvement demonstrated is
the computation of posteriors more consistent with the prior, particularly a reduced

propensity to produce very high, unrealistic posteriors over large portions of the map.

3.1 Approximate Algorithms from Relaxed CIM

Assumptions

The various extensions of the CIM assumption are perhaps best understood by rewrit-
ing the odds ratio rt £ P [mc ‘ Dt, D‘} /P [ﬁzc ‘ D¢, D‘] in a modified form with the

odds ratio conditioned on exclusively non-detections g as a factor:

_ P[pt| D, mc} P [m. | D!]
" P[Dt|Dt,m.] P[m.|D]
P[D'|D'm]

[D‘ | Dt, mc]

(3.1)

Eq. (3.1) is readily derived by the application of Bayes Rule to the definition of rf. The
key quantity in (3.1) is the ratio of the probabilities of the measurements that resulted
in detections given a single cell ¢ and all non-detections P [D" | Dt, mc] /P [D‘ | Dt, ?ﬂc] .
Computationally tractable expressions for this quantity can be attained by placing

assumptions on the conditional independence of measurements at times 7 € 7*
.rt .i.t
plA ‘ AT g

These are the measurements that resulted in detections. Obviously such assumptions
cannot be made a priori; however, the output of approximate algorithms can be
qualitatively assessed by analyzing the quality of the assumptions required given the
measurement history. There are no guarantees, but bad assumptions usually lead to
bad maps.

For instance, the standard OG mapping algorithm computes the odds ratio condi-
tioned on non-detections exclusively, p!, exactly. This fact could not be deduced from
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the derivation alone if the standard CIM assumption for binary measurements were
left in the unaltered form (2.2) where it applies to both detections and non-detections.
The next section presents a modified, weaker version of the CIM assumption that
nonetheless leads to the standard algorithm, thereby confirming directly that the p.

computed via the standard algorithm are exact.

The standard CIM assumption for binary measurements

The standard CIM assumption expressed for binary measurements is

p (6| A ) =p (8| e) (3.2)

where equality must hold for all t. By repeated application of the definition of con-

ditional independence, (3.2) is equivalent to

t

p(A | ) =]]p (&

r=1

fe) s (3.3)

which states that all measurements carry no information about one another not sub-
sumed by knowledge of the state of the single cell c¢. This assumption does not apply
globally across all cells; that is, only the version corresponding to cell ¢ is required

each time cell ¢ is updated.

With a forward sensor model of the form (2.11), however, the standard algorithm

can be derived by making the weaker (necessary, but not sufficient) assumption

& —%
p(a™ | &%, u) = [T P [ | (3.4)
TeTrt
which removes measurement times that resulted in non-detections from (3.3), though
it still requires that all measurements at times that resulted in detections be condi-
tionally independent of measurements at times that resulted in non-detections. The

derivation is carried out below in § 3.1.1.
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Relaxing CIM by Grouping Measurements

Intuition suggests that results superior to the standard OG mapping algorithm might
be achievable by requiring that conditional independence hold only between subsets
of detections, rather than between each detection, that is, by further relaxing (3.4).
Such an approach is made possible by exploiting (2.21) to compute the exact odds
ratio for subsets of correlated detections. These subsets must be sufficiently small to

avoid the numerical and computational pitfalls of (2.21) discussed in § 2.4.1.

Managing subsets of detection times requires introducing some notation. Let
gl. € 7! denote the k' subset of detection times from a partition of 7¢. Also, let G
denote the set of indices k such that

| )t =+ (3.5)

where |G*| is the cardinality of G' or equivalently its maximum element. It will prove

convenient to also define a subset of indices G} into groups of some maximum size:

Gt 2 {k: ke G, |gl| = MAX_.GROUP_.MEMBERS} . (3.6)

With these definitions, two weaker variations on (3.4), again in the sense of being

necessary but not sufficient, are

p (ﬁ\”"t | A*t,pc) = ﬁ p (Agi ‘ ,uc) (3.7a)
k=1

p(A™ | A% pe) = Il p(a% | A% p) (3.7b)
k=1

The first of these collapses to (3.4) if |g}.| = 1 V k, and like the standard assump-
tion, assumes that measurements at times that resulted in non-detections carry no
information relevant to the outcome of the remaining measurements not subsumed
by knowledge of p.. For this reason, I regard the algorithm derived from (3.7a) in
(§ 3.1.2) as an extension of the standard algorithm. The second assumption above
further relaxes (3.4) by retaining the conditioning on A™". I call the novel algorithm
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that results from this assumption the Conditional Independence of Detections (CID)
algorithm. Its derivation is given in § 3.1.3.

As with the standard CIM assumption, assumptions (3.7a & b) are unique to
each cell c. Essentially, the algorithms with these assumptions at their core still treat
the problem of estimating the marginal posteriors as a of set C' independent binary
estimation problems; albeit with some all measurements properly regarded correlated
observations observations.

Furthermore, these modified CIM assumptions beg the question of how 7 should
be partitioned into the subsets g|.. Numerical examples presented later in this chapter
(§ 3.3) indicate the numerical value of the posterior varies substantially for different
partitions of 7!. In fact, since the assumption required is unique to each cell, a
different partition could be used for each cell; however, the computational burden of
updating the whole map is greatly decreased by using a global partition.

The results presented in this work rely on a heuristic method for partitioning 7*.
The method, implemented in pseudocode as Algorithm 2, uses pairwise comparisons
of detections to assign new detections to existing subsets or else to instantiate a new
subset. The algorithm groups relatively correlated measurements into the same subset
so as to avoid treating them as independent. The normalized correlation coefficient

v,r between a new measurement 6* and an old measurement 07 is

A cov (0%,07)
~ /var (6") var (1)

£°(t,7) = 1) £7) | (38)
(=)o @-rmee) )

V,r

1
2

where the f°(n) for n C {t,7} are given by

inl

| c
oy =T1a-P)TI(- -] a-rm)P). (3.9)
i=1 a=1 i=1
The correlation coefficient between two detections provides a measure of how depen-
dent they are. Overlapping measurements will tend to be highly correlated, whereas
measurements that observe different portions of the map are independent and there-
fore uncorrelated. Highly correlated measurements strongly violate the CIM assump-
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tion and should be processed exactly if possible.

Eq. (3.9) differs from (2.22) only in the limits of the product over cell indices.
Note that v, . > 0. If the largest v, , so computed surpasses a fixed threshold, then &
is added to the subset of 7* to which 67 belongs, or else a new subset is instantiated.
Once a subset has reached the maximum size set by MAX_GROUP_MEMBERS, it
becomes static. New measurements that might have been grouped with members of

a static set are either placed into other subsets or else instantiate new subsets.

At the beginning of this section it was suggested that mapping algorithms that
make use of (2.21) to compute the exact odds ratio for subsets of measurements should
produce progressively better approximations to the exact posteriors as subset size
increases. Though intuitively attractive, there is no guarantee that just weakening the
standard assumption according to the relaxed CIM assumptions (3.7a) or (3.7b) will
result in an improved map. Indeed, simulation results in § 3.3 show a more complex
picture. Before presenting these, I derive the binary OG mapping algorithms that
result from making the CIM-like assumptions introduced above. The starting point
in each case is (3.1). The derivations are followed by discussions of the computational
features of each algorithm. Pseudocode implementations of each algorithm are also

provided.

3.1.1 Standard Algorithm for Binary Measurements

To derive the standard algorithm from (3.1), apply (3.4) and then Bayes Rule:

B P[D!| Dt,m. |
~P[D'| Dhmg e
HTE?‘ p [dT ! m’c] —t
—L il
HTGT‘ [d ‘ﬂ ]

_ 11 Plme|d]P[m] (3.10)
N .,151 P [m, | dT] P [m,] e

_(1-P[m,] P [m, | d'] 3

_(W g 1-P[m.[d] P
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Algorithm 2 Pairwise grouping algorithm.

Require:

24:
25:
26:

A - - O

Pt

Pi V1ert!

G-, g

gtk—l1I vk & gt—l

Loop over exisitng subsets:

for all {k: k€ G, k¢ Gi'} do
Loop over members of each subset:
for all {j: 7; € gi"'} do

) -0 f)

'u_}j —

end for
Vg = max wj
2

end for
Kmar = argmax v

2
(G-r0) 0 (1-smep) s )

k
if vi,.. > GROUPING_THRESHOLD then

Add to existing subset:

9. =9 ' Vk€GT k# kmas
gt = gt—!

Fhar = {Ghperr )

if [gi | =MAX GROUP.MEMBERS then

Make subset static:
i‘ =t {gfﬁ‘_lskmm:}
else
= gt
end if

: else

Instantiate new group:
g9k =g; Ykeg!
G = {gt—l‘]gz-—1| +1}
glor = {1}

end if

To see that (3.10) is equivalent to the recursive form of the standard algorithm (2.5)

for 2! = 6* requires some manipulation. From (2.20),

ﬁi=£_lﬂ(1—f’:) -~—1f£§"[jllc]
- , (3.11)
_ (1=PmJ\" P [m, | d']
*( P[mJ ) TSTQI—P[mC‘JT}'



Algorithm 3 The standard algorithm for approximating the odds ratio. The required

initializations are p° = —5;5 and p? = 1. This implementation is somewhat atypical to
facilitate comparison with the other algorithms introduced in this work. In particular,
separate maintenance of pf and g is not necessary.

Require:
t>0
ptl, ptl
c ? [
P, Py
1: if d' (detection) then
2
1-(1-PE Y 1-Pt) ﬁ(l-P;P[m.])
3: 7 P [m,]
1—(1-P}_-) [[](I—PgP[m,])
4: o

else if d' (nondetection) then

o

6 Fo=({-FR"
T ptc == pc

8 end if

9:

t— 1=Pl.y 4
?"C— pé-l pc'pc

where the first line can be attained from the second by substituting (2.14b) for
P [mc [ Jf} and simplifying. Combining these results yields

i [1=P[m] t_ L P [m, | 67] ~_P[m]

= () Uratst =Fim
_ 1—P[m,] . P [mc | 5t] pt=1

Pimd 1-P[m]]

(3.12)

C

For completeness, Algorithm 3 implements an equivalent recursive form in pseu-
docode.

This algorithm “does the right thing” following a detection, in the sense of in-
creasing the posterior in cells where P [m, | d'] is high; however it does so without
respect to information in previous measurements about the rest of the map. Simu-
lations presented later show this tends to lead to inflated estimates of the posteriors

over large areas. The advantage of this algorithm is its ease of implementation and

76



minimal memory and processing requirements.

3.1.2 Extended-Standard Algorithm

The relaxed CIM assumption (3.7a) requires conditional independence to hold only
between subsets of detections and leads to an extended version of the standard algo-
rithm. Starting from (3.1), apply (3.7a), followed by Bayes Rule:

P[D!| Dtme]
Te = S *Pe
P [D¢ | Dt )

Ll P | D% | m,
_ H 5 %ng i mj £ B (3.13)
]

To evaluate the arguments of the product above, use the expressions for P [mc | D, D‘]
and P [m. | D', D] given by equations (B.29) and (B.30) with D' = @ so that
Pt= P

lgk!

P [mc ‘ ng‘} = ( 14 Z:(—l)q Z ﬁ(l — PX) f2(n) )Pf

n<gj.meN? i=1

o (3.14)
k
Plme| D] = (1+) (-1 X fom) )(1-FY) .
q=1 nCgj meNT
Substitution of these expressions into the last line of (3.13) yields
g} "
G| 1+Zl(_1)q E n(l P¥) fen)
= C Ne i=1
=1 ——— L B (3.15)
L .k
= 1+3 (-1 ¥ fom)
g=1 nCgj meNT

The OG mapping algorithm with (3.15) at its core is implemented in pseudocode as
Algorithm 4.

77



Algorithm 4 The extended-standard OG mapping algorithm for approximating the
posterior odds ratios. The required initializations are p? = %* and p? = 1. The
additional ratio pf_, which is analogous to pf. for all {d": 7 € Ukeg;. g%}, is maintained
to avoid permanent storage of the ppt for static subsets of detection times. If |g}| =

1 V k, this algorithm is equivalent to the standard algorithm for binary measurements
(Algorithm 3).

Require:
At o i
P!, P
g, Viegt
P, V1 € U gL
keGN\GL!
1: if d' (detection) then
2 pe=pc
3 if g,‘r = g;;l then
& Pop = Pp
5 else
6 k=Gr\Gg!
lof| q .
+3 (-1 ¥ JI(1-P")f&n)
7 = g=1 nCof mena i=1
Per 9|
143 (-1)7 ¥ San)
9=1 nCgf nena
8 end if
lof| q »
SV ILED VR | (S 2O VEL)
9= nCgl meNT 1=
9: pf’_‘ = pi‘p : l_[ lgtk! :
AEOM\OE +R (-1 T f%n)
a=1 nCgf mend

10: else if d' (nondetection) then
;. pp=(1-F)p;"

122 po=p7

13: end if

14: ¢ = pL.-

If |gi] = 1 V k, then Algorithm 4 is identical to the standard algorithm. For
larger subsets gj. C 7', Algorithm 4 retains the standard algorithm’s property that
detections and non-detections are incorporated into the map independently of one

another. Thus, if a subset of detection times becomes static, it can be permanently
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incorporated into the posterior and the corresponding data cleared from memory. In
this work, Algorithm 2 is used to define the g, so that all g} such that k € G- can

be eliminated from memory.

3.1.3 Conditional Independence of Detections Algorithm

The relaxed CIM assumption (3.7b) requires conditional independence to hold only
between subsets of detections while retaining the conditioning on non-detections and
leads to an alternative approximate algorithm that retains the dependence of detec-
tions on non-detections. The derivation proceeds along much the same lines as for
the extended-standard algorithm above, but I include it here for completeness. Again
starting from (3.1), this time apply (3.7b), followed by Bayes Rule:

P[D'|Dm|
P(Dt|DLm] **
_'l‘f[' P [Dot | DY, m,
23 P[D% | Dt,m,
16|

To evaluate the arguments of the product above, again use the expressions for
P [m. | D', D'] and P [m | D', D] given by equations (B.29) and (B.30), only this
time with the modification D! = D% . Substitution of the resultant expressions into
the last line of (3.16) yields

- P (3.16)

[me | D]
[me

D]

]

P ]

P [mc | D9k D}
P [mc ] D% D‘}

g |

o 142D ¥ [~ Pm s
g=1 nCgj meN i=1 u
= o] Pl (3:17)
1+3(-1)' ¥ fin)
q=1 nCgl meN?

The OG mapping algorithm with (3.17) at its core is implemented in pseudocode as
Algorithm 5.
The algorithms introduced previously do not compute exact posteriors after even

a single detection. By retaining the conditioning on Dt, this algorithm produces exact
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Algorithm 5 The CID algorithm for approximating the odds ratio. The required
initialization is 70 = &.

Require:

g, vVieg
1: for all s€ {1,...,C} do
2. if d' (detection) then
s p=pt
4:  else if d' (nondetection) then
5 p=(1- Pt
6: end if
= Pi=p/(1+ )
8: end for

g HXDT X TI(-PN) )

q=1 ’?c_:ﬂi‘ﬂENq =1

@
=
Il

ol lgj|
- 1+ ZI(—UQ 2 fin)
0=

nCgf men?
O, T -
10: 7. = p.- Pe

results in regions of the map observed exclusively by detections belonging to the same
subset of detection times. However, this concession necessitates batch processing of
all detections following each measurement, including after non-detections because the
marginal posteriors conditioned on exclusively non-detections PF‘_ enter into the f!(n).
Unlike Algorithm 4 (and Algorithm 3, a special case of Algorithm 4), the P! for every
detection must therefore be permanently stored in memory. This algorithm is similar
in operation to Algorithm 4 with the exception that the exact revised priors P! are
used in place of the original priors. Since P! < P?, the CIM-like assumption (3.7b)
is effectively required to hold in an environment with a reduced prior. Simulations
presented later show that, especially when combined with an already low prior, this
property can lead to inflated posteriors following detections like those generated by

the standard algorithm.
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3.2 Approximate Algorithms from Assuming In-

dependence of the Posteriors

Section § 2.3.2 showed that the marginal posteriors conditioned exclusively on mea-
surement times that resulted in non-detections P [mc | D‘] remained independent of
one another. The same property does not hold for posteriors when the condition-
ing includes detections because detections create dependencies between the observed
cells. However, ignoring that fact and assuming that such conditional independence
is maintained leads to an alternate class of algorithms that eliminate or further relax
the modified CIM assumptions of the preceding section.

Though an assumption on the posteriors may seem initially unattractive since it
explicitly violates the dependence that arises between them, it is perhaps natural in
the context of occupancy grid mapping where the full posterior is unattainable except
under the condition that the single-cell posteriors remain independent. Furthermore,
algorithms assuming independence of the posteriors avoid requiring that measure-
ments be interpreted completely independently. Though the dependencies between
cells are not maintained, their “revised priors” reflect the belief accrued from previous
measurements.

The algorithms developed below in § 3.2.1 all rely on assuming the single-cell
marginal posteriors are independent conditioned on certain sets of detection times

TEeT:
c

p(m| AT, A7) =]]p (u | &7,A7) . (3.18)

s=1
If (3.18) holds for all detection times, then a recursive algorithm with memory require-
ments identical to the standard algorithm is attained. Alternately, the exact odds
(2.21) can be exploited to produce a hybrid algorithm that requires an additional
assumption akin to (3.7b) to be valid for the set of detection times {g}: k € G* \ Gi-}.
The algorithms based on (3.18) essentially “revise the prior” to reflect the cur-
rent posterior before incorporating a new measurement. This terminology reflects
the shared property of independence between the marginal priors P? and the true

c

marginal posteriors when conditioned on non-detections alone P!. Inherent in this
procedure is a dependence on the order with which measurements are incorporated

into the map. The “revised prior” provides a weak linkage between previous mea-
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surements that resulted in detections and more recent ones; however, the linkage is
uni-directional and these algorithms lack a mechanism to reinterpret previous mea-
surements in light of the new data. Since these algorithms rely partially on the
current state of the map to interpret new measurements, they are vulnerable to bias

introduced by reinforcing the inaccuracies of a partially resolved map.

3.2.1 IP Algorithm

Assumptions of the form (3.18) lead to a novel class of OG mapping algorithms I call
the Independence of Posteriors (IP) algorithms. In principle, independence of the
posteriors could be assumed in conjunction with any sensor model; however, forward
model (2.11) is special because the priors PO enter explicitly into the inverse sensor
model generated from it, thereby providing a mechanism for interpreting the current
measurement in terms of the present belief in the states of the cells in the map. Unlike
the related “context-sensitive” OG methods of [74,86], which also consider the present
state of the map to interpret new measurements, the IP algorithms are applicable to

any sensor satisfying (2.11) rather than specific to sonar range finders.

This section begins with the derivation of a recursive OG mapping algorithm with
identical memory and processing requirements as the standard algorithm. The deriva-
tion is followed by the extensions required to capitalize on (2.21) for the preprocessing
of subsets of detections. A discussion of the computational features and a pseudocode

implementation of each algorithm follows.

Recursive IP Algorithm

Assumption (3.18) applied to all times ¢t € 7! is sufficient to derive a recursive algo-
rithm with memory and processing requirements identical to the standard algorithm.
The derivation proceeds inductively. Suppose at time ¢t = 7, a detection is regis-
tered. Under the assumptions that r[* is exact for all ¢ and that p (m | A™) =
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H{ 1 P (ﬂ-,- | /_\""). it can be shown that

el = PRt 7w L 2T (3.19a)
1—(1=Prt)(1 = P 1‘[(1—1{:"»1!"{:::»:)
P — = Lyt =] (3.19b)
1 _(1 — I’:‘”H) l_[ (l = [);ul]!_):nll)
sfce

where 7, denotes the next time { > 7, at which a detection occurs and the P77
denote the approximate revised priors. At { = 7, — 1, these can be computed from

Tnp1—1
P

as
l,.T,. +1—1

Pt e, (3.20)
()

Since r' computed using (3.19a & b) is exact by (2.21), it follows by induction that

r! computed this way is exact for all  if at each 7 € 7' independence of the posteriors

is assumed:
&

p(m|A7) = Hp (i | &) « 7€YL, (3.21)

a1

The remaining step of showing (3.19a & b) for 7, <t < 7,1 is given in App. D.1.
The algorithm defined by (3.19) has the same memory and computation require-

ments as the standard algorithm; however. it behaves quite differently. The uni-

directional linkage of past detections to new ones via the “revised prior” is demon-

strated in Fig. 3-1. An implementation in pseudocode is provided as Algorithm 6.

Extended IP Algorithm

Extending the recursive form of the IP algorithm for |gi| # 1 is straightforward.
but requires the additional modified CIM assumption on all subsets of detection
times {g}: k € G' \ Gi.} given below. For the purposes of the following derivation,
it is convenient to define the “revised prior” odds, g £ P!/(1 — P!) and the set of
measurement times that are members of fixed subsets. 74 £ Ukeg;; gi.

As above, the derivation proceeds inductively. Suppose at time ¢ = 7, a detection

is registered and that G D ¢! where D denotes a strict superset. That is. at time
5 I I
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Standard Alg. Revised Prior Alg. Exact Alg.

= 0 p]‘lur 1 2 1 2 1 2
0.010 ] 0.010 0.010 0.010 0.010 |] 0.010
3 4 a4 4 3 1
0.010 ] 0.010 0.010 0.010 0.010 [] 0.010
t=1; dmm-tjuu 1 2 1 2 1 2
D'={d'},D'=@2 0.340 || 0.340 0.340| | 0.340 0.340 || 0.340
R ={1,2,3)
-} 4 3 4 3 4
0.340 || 0.010 0.340 0.010 0.340 | 0.010
t = 2: detection . 2 3 2 . -
D? = {d".d*}. D? =@ |[0.340 || 0.963 0.340 0.659 0.023 || 0.506
R' = {2.3.4}
i 4 3 4 | 1
0.963 || 0.340 0.659 [ | 0.024 0.506 || 0.023

Figure 3-1: Recursive update of a 4-cell map via the standard and recursive 1P
algorithins versus the exact result. The sensor characteristics were P! = 0.1 for all cells
within each detection region and P = 0. All three algorithms produce the identical
result following the first detection. Following the second detection. neither the standard
nor the IP algorithins update the posterior in cell 1:; however. the standard algorithm
also grossly over-estimates the posteriors in cells 2-4. This is because the detection at
thne ¢+ = 2 is interpreted without enforcing consistency with the previous detection or
with the prior. The IP algorithm only slightly raises the posterior in cell 4 because the
high revised prior of cells 2 and 3 following the detection at t = 1 make the detection
at t = 2 highly likely to have originated from one of these cells. The posteriors in cells
2 and 3 are slightly higher than correct, a consequence of regarding the map at + = 1
as describing a new prior and effectively making a map with two occupied cells more
likely than suggested by the original prior.
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Algorithm 6 The recursive version of the IP algorithm for approximating the odds
ratio. The required initialization is ¥ = P%/(1 — P?).

Require:
vl
P
t>0
1: if d' (detection) then
) t = l’" 1
& P" 1418 )
1-{1-PL)1-Pt) TI(1-PLP!
g TR gl

c

¢ 1-(1-P%) 11 (1 D)
4: else if d' (nondetectlon) then
s r=({l-=EBYr?

6: end if

t = 7, the subset of detection times to which 7,, was added is now immutable. Under

the assumption that p7» ' is exact and that the posteriors are independent

c
p(m ' ATF,A?TH) _ Hp(ﬂc ‘ ATF.A-i-Tn) ,
s=1
the “revised prior odds” pi* can be computed readily. Let gp = {g;": ™, € g}
denote the subset of detection times to which the detection at t = 7, was added. It

can then be shown that

lgr|

1+35°(-1) ¥ 1= Pm) f(r)

e =1 CgpmeN? i=1
= —— : , (3.22)
B T G VL SR -
q=1 ncgp neNT
where
: | |77l
) =T10-P)[[(1- a-T[ a-rr)Pr). (3.23)
i=1 s#c i=1
Under the additional modified CIM assumption given by
p (A"‘\T'F | Af%,A*',,u,c) = T » (Asi | AT?'A"",;LC) (3.24)

keG\GL
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it follows that

1—PYpt-1 {t: GL =G, t
pc_v {tg}*: Fn?teT}

lgj.| N

SOV C DI | CEEOTAD
q= cNe i=
t= 11 T A {tgh=p}.
G daLfa T £
9=1 nCgj .meN?
(3.25b)

The inductive base case corresponds to all ¢ > 0 such that Gi. = @. In the base
case, the above is identical to the CID algorithm (§ 3.1.3), and assumption (3.24) is
identical to the modified CIM assumption required by the CID algorithm. Therefore
under assumption (3.24), the above produces exact results in the base case. It follows
by induction that 7! computed via (3.25a)—(3.25b) is exact if in addition to (3.24),

conditional independence of the posteriors is assumed according to:

Q

p(m | ATF,A*') =Hp(p:c | A”‘,A""') . teft gb3eE). (3.26)

s=1

The remaining steps are provided in App. D.2.

This extended IP algorithm shares most of its properties with the recursive form,
though the core assumption on the independence of the posteriors need only apply
for a smaller set of detection times ¢t € {7: G D Gi'}. The price is an increased
memory requirement (all P for 7 € 7'\ 7% must be stored) and of course the added
CIM assumption given by (3.24).

Despite the need for a CIM assumption like that for the CID algorithm, there is
a crucial difference between these algorithms. The present algorithm rarely requires
making a CIM assumption on subsets of detection times that observe similar portions
of the map. Instead it will usually revise the prior using a complete subset before
instantiating a new subset in the same region of the map. Reasonable mechanisms
for generating the subsets of detection times g} should fill the active subset in a
portion of the map (add it to G%.) before instantiating a new subset from a detection

in the same region. That said, depending on the nature of the algorithm used to
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Algorithm 7 The extended IP algorithm for approximating the odds ratio.

Require:
o,
”

PR, Ny €15
gtl gi"
g, vVieg

: for all s € {1,...,C} do

if d' (detection) then

if Gt # @ then
k=Gt

il o

Iyil q
431" ¥ [1(1=P%) f4n)
g=

43 nCg} meNa i=1

i =t
5: Ps = Ps

lokl
+3.(-1)' X fdn)

o=l nCgf meN?
gt — gt \ gi:
G'=2
else
=t
10: end if
11:  else if d' (nondetection) then
12: P = (1 - PY)pt!
13: e_nd if
14: P; = ﬁ;/(l +ﬁ;)
15: end for
ok . .
PR > Cn S LD D | (R VL)
16 ph= ] — oo "
HRES k=1 I
-0 X )
)..s

nCaf meNd

00 =3 ‘en

17: 1 = p;* Pe

assign detection times to the g}, situations may occasionally arise where two initially
disparate g! will end up overlapping strongly following additional detections before

either is assigned to G%. Algorithm 7 implements (3.25a)—(3.25b) in pseudocode.
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3.3 Simulation

This section presents two sets of numerical simulations that compare the behavior
of the standard occupancy grid mapping algorithm and the three new approximate
algorithms proposed in the previous section to each other, and when possible, to the
exact marginal posterior odds ratio (2.21).

The first set of investigations examines a short, deterministic sequence of suc-
cessive detections with no intervening non-detections. The results demonstrate the
appearance of inflated odds as a consequence of the CIM assumption. The new ap-
proximate algorithms produce better estimates of the true posterior than the standard
algorithm, but their relative quality is dependent on how individual measurements
are grouped. Because only a small number of detections are considered, the exact
posterior odds can be computed and the approximate algorithms compared directly.

Results follow from simulations of a long record of binary measurements produced
from repeated observation of a sparsely occupied environment at randomly generated
locations. The large number of measurements prohibits computation of the exact
posterior odds, and alternative map evaluation metrics are explored to facilitate inter-
comparison of the results produced by the approximate algorithms.

A major difference between these simulations and real surveys conducted by au-
tonomous vehicles is the random sampling pattern used here. The difference is delib-
erate and reflects the expectation that sampling trajectories, e.g. along regular track-
lines, will interact with the approximations required by each algorithm. However,
there are important distinctions in the behaviors of the various algorithms studied

that become apparent without the additional complication of trackline artifacts.

Simulation Environment

The simulation environment consists of a square two-dimensional grid with a uniform
prior probability of occupancy P [m.]. The forward sensor model conforms to the
form of (2.11), with the single-source detection probabilities P! specified according
to!

P: = PDma:e'_EZI;EHXt_Xt” L (327)

'To speed calculation, values of P! < 0.001 were approximated as zero.

88



where x! and x, denote the sensor location and the location of node ¢ respectively.
Table 3.1 lists numerical values of all constants used in the simulations. The
choices reflect the nature of the chemical plume tracing problem [30]: relatively few
sources, a measurement record composed mostly of non-detections, a high degree of
spatial ambiguity between detection location and source location, and a low proba-

bility of false alarm.

Table 3.1: Parameter values used in simulations.

Environment
c 1600 or 10000 Number of grid nodes
P [m,] 0.001 Prior probability of occupancy
Forward Model
Pp: 0.4 Maximum single-source detec-
tion probability
o Jorb Sensor aperture length scale
Pr. 0 or 0.01 Probability of false detection
(constant)
Approximate Algorithms
GROUPING_THRESHOLD 0.001
MAX_GROUP_MEMBERS varied

Algorithm Demonstration, Detections Only

Figures 3-2 and 3-3 show maps generated from a deterministic sequence of five (Fig. 3-
2) and ten (Fig. 3-3) detections proceeding counter-clockwise in a ring about the
center of the map. Relative to the correct posterior odd ratios, the standard algorithm
produces a map with very high odds across a broad peak at the center of the map.
The ring-shaped ridge of the correct map is wholely absent.

In contrast, both the CID and IP approximate algorithms produce maps that to
varying degrees preserve the ring-like structure of the correct posterior odds and to
a lesser extent the actual value of the posterior odds. The variability within these
maps reflects different partitions of 7 and the different mechanisms by which the
two algorithms process groups of maximal size. The largest deviations from the true
posterior odds occur where the g overlap strongly. Comparison of the CID results

with sequentially composed subsets of 3 and 5 indicates improved performance for
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larger subset size; however the major artifact in the |g}| < 3 result is a manifestation
of unequal subset size (three groups of 3 plus one group of 1). The significantly
degraded map produced by randomly assigning measurements to subsets illustrates
the dependence of these results on how detections are grouped. Sequential grouping
produces good results in this case because nearby measurements are grouped together.
The same arguments hold for the maps generated by the IP algorithm, though the
results are superior to those generated by the CID algorithm. Since all measurements
are detections, the extended-standard algorithm produces results identical to the CID

algorithm.

Algorithm Demonstration, Simulated Measurements

Figures 3-4, 3-5, & 3-6 show occupancy grid maps generated in simulation by the
approximate algorithms proposed above along with the standard algorithm. For these
simulations, a random groundtruth map of occupied cells was generated by sampling
from the binary prior to assign the state of each node. Measurement locations were
generated by sampling from a uniform distribution over the spatial domain of the grid.
The binary sensor measurements were generated by sampling from the binary forward
model (2.11) with the P! specified according to the position of each measurement
location relative to all occupied cells in the map via (3.27). Insights into the behaviors
and performance of each algorithm are facilitated by viewing the simulation results

at several time steps.

t = 200, Figure 3-4

The maps produced by each algorithm after 200 measurements (Fig. 3-4) already
show peaks near many of the occupied cells and indicate confident emptiness over
large areas. However, there are significant differences between the maps. With the
exception of the IP results, the maps using no grouping of detections into dependent
subsets (|gk| = 1) already show evidence of inflated posteriors at ¢ = 200 in regions of
dense detections. For instance, the main peak of the standard result contains roughly
100 cells whose posterior probability of occupancy is at least 0.10, suggesting some 10
cells of the 100 are occupied, when in fact only two are occupied. The CID show even

more inflated posteriors. The algorithms produced using |gk| < 6 show less evidence

90



Exact Standard
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Figure 3-2: Occupancy grid maps after n' = 5 successive detections computed exactly
(upper left). via the standard algorithm (upper right) and via the new approximate
algorithins for different group sizes and grouping schemes (remaining panels). The color
of each cell is scaled according to logyg . with hot colors indicating a high posterior
odds of occupancy. The CID and IP results for groups of five measurements are identical
to the exact solution. The color scale spans a larger range for the standard algorithim
to avoid clipping. 91



Exact Standard
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Figure 3-3: The occupancy grid maps of Fig. 3-2, but after n' = 10 successive de-
tections. The influence of different groupings of measurements is evident in the results
for the three instances each of the CID and IP algorithms; however, all instances out-
perform the standard algorithm in terms of the accuracy of the estimated posteriors
relative to the exact result.
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Figure 3-4: Occupancy grid maps generated in simulation by four approximate OG
mapping algorithims, including the standard algorithm. The upper plots of the IP
and CID results were produced with |g).| = 1: the lower plots with |gi| < 6. In
cach map occupied cells are marked by white x’s. These plots show the maps after 200
measurements. most of which were non-detections. The plot in the upper left shows the
spatial location of each measurement and its result: detection (red), or non-detection
(blue). The grayscale plot applies to the results for |g).| < 6 only. The color of each cell
indicates the number of subsets of detections that include at least one observation of
that cell. Posteriors within regions of the l%u_%[)s produced by the CID and IP algorithimns
with |g}.| < 6 observed exclusively by det ections belonging to the same subset are exact.
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of inflated posteriors, a consequence of the less stringent CIM assumptions required.
Additionally. the peaks are more uniform, reflecting the strong correlation between
nearby detections. The extended-standard results appear the least satisfying. with
almost no portions of the map raised above the prior.

More subtle differences between the algorithms are manifest near the occupied cells
gil <6
maps produced using the IP and CID algorithms, these posteriors are relatively high.

observed by isolated detections at approximately (45, 10) and (95.70). In the

Since all |g}.| < 6 at the time shown, the IP and CID results are in fact identical.
With no other nearby detections, the posteriors near (95.70) are exact. and nearly
so around (45.10). All algorithms using |g).| = 1 except the CID algorithm have
produced underestimates of the posteriors in these places because the detections have
not been considered in light of the revised prior generated from non-detections alone.
With the low P used in these simulations, the possibility of a false alarm is very
nearly nil, hence requiring overwheliming negative evidence to contradict the existence

of an occupied cell somewhere near each isolated detection.

t = 300, Figure 3-5

For the most part. these trends continue with the addition of another 100 measure-
ments (Fig. 3-5). The exception is the apparent divergence of the |g}| < 6 IP and
CID results. Shortly before the time shown, the g} centered near (20.80) achieved
capacity. The nearby detection momentarily thereafter was processed as if it were
independent by each algorithm, with significantly different results. In contrast to
the map produced by the IP algorithm, the CID result shows an apparently inflated
posterior, a trend that will worsen as more measurements are added. Unfortunately.
relaxing the CIM assumption according to (3.7b) effectively lowers the prior before
requiring conditional independence to hold, thereby making the assumption worse.
Eventually. the posteriors conditioned exclusively on non-detections will become low

enough to cause numerical failure.

t = 1000, Figure 3-6

By t = 1000 (Fig. 3-6), only the extended-standard and IP results are free from obvi-

ously inflated posteriors. Most occupied cells in the extended-standard map are asso-
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Figure 3-7: Error between the actual and expected munber of occupied cells versus

time for maps produced using the IP algorithm. Each curve represents the average of

3 trials using either the correct prior Py = I or else the underestimate ) = %Pu,
All trials were conducted with |gi.| = 1. The error bars indicate standard deviation.
Results with [g}| < 6 were within one standard deviation of the results shown.

ciated with posteriors below the prior making the mapping result essentially worthless.
In contrast, the IP maps exhibit peaks of relatively uniform magnitude near all oc-
cupied cells (see also Fig. 3-9). Nevertheless. all maps except the extended-standard
map in Fig. 3-6 show raised posteriors near occupied cells and could potentially be

useful to guide a refined search. T explore this idea in the next section.

Summary

Most of the maps of Figs. 3-4, 3-5, & 3-6 indicate high posteriors over large areas that
are grossly inconsistent with both the assumed low prior (P = 0.001) and the actual
number of occupied cells (nine). The IP results do not show obviously high posteriors.
Indeed. Fig. 3-7 supports the contention that the algorithm is capable predicting the
actual number of occupied cells even when that number does not correspond well
to the assumed prior. The estimates shown in Fig. 3-7 are the expected number of
occupied cells:* E [Zi i e A'] =3¢ P [m, | AY].

Obviously these results apply strictly only to the parameters tested here. Empir-

?Higher order moments are problematic to estimate without assuming independence of the
marginal posteriors.
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ical evidence from addition simulations suggests these inter-algorithm trends persist
over a range of parameters; however two qualitative observations are of note. (1)
Increasing sensor aperture reduces the quality of the results, not only because the
sensor is consequently less specific, but because measurements tend to be come more
correlated and cell posteriors more dependent thereby exacerbating the weaknesses
of these algorithms. (2) Increasing Pj: reduces the correlation between measurements
and tends to blur the distinctions between the algorithms described here. Of course
the degradation in sensor performance implied by high P} also produces degraded

mapping results.

Map Evaluation

The large number of detections in the simulations presented above prevent compu-
tation of the the correct posterior via (2.21) and hence preclude evaluation of these
maps in terms of absolute error. Many previous investigations into OG mapping have
relied on entropy to evaluate maps and to guide robotic exploration [79.118]. The

entropy of the posterior on g, is:

H,. | at =—P [m,‘ | V5 .8 D’] logs (P [m,‘ | D', !_)’])
—(1=P[m.| D", D'])loga(1 =P [m. | D'. D']) (3.28)

This expression captures the information content in the posterior. An entropy of
1 corresponds to total uncertainty (P [m,. | D !_)’] = 0.5); and entropy of 0 corre-
sponds to complete certainty in either occupancy (P [m.,_. | 0, f)‘] = 1) or emptiness
(P [m.,._ | D*. f_)'} = 0). Assuming independence of the posteriors. the total entropy of
an OG map is given by the sum Ef i Hi, vae. ®

Unfortunately, the utility of entropic measures of map quality are limited in the
context of a low prior. Low priors imply a very low summed entropy before any mea-
surements are made. Subsequent non-detections do reduce map entropy. and since
independence of the posteriors is maintained when conditioned on exclusively non-

detections, the summed entropy remains exact. In contrast, detections tend to raise

3Singh [109] offered another perspective on entropic measures in OG mapping. He investigated
the rate of entropy change to evaluate the efficiency of sonar mapping with respect to sensing
modality, navigation uncertainty. and survey parameters.
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summed map entropy, and furthermore, because the posteriors are no longer inde-
pendent, the summed entropy no longer represents a measure of the true information
content of the map. This behavior persists even in the over-confidently occupied maps
produced by some of the algorithms explored above. Though large portions of the
maps produced by those algorithms are confidently occupied or empty, the boundary
between these regions tends to increase in length as the area of the confidently oc-
cupied regions increases. The alternative measure of map quality introduced next is
motivated by the intended use of these maps to guide subsequent higher-resolution

survey in small areas around probable occupied cells.

Suppose that a fixed fractional percentage of the map likely to be occupied will
be revisited (re-surveyed) on a subsequent survey to refine the locations of occupied
cells within these regions. In that case, precise posteriors are not critical as long as
the highest posteriors occur near occupied cells. From this perspective better maps
will have more tightly constrained high posterior regions around each occupied cell.
Figure 3-8 shows the fraction of the total number of occupied cells within the revisited
portion of each map for various fixed revisitation percentages averaged over 10 trials.
Prior to { 2 150 all the algorithms produce, on average, nearly identical results. This
is because early non-detections act to reduce the posterior in large, uninterrupted
areas of unoccupied space. At times { > 200 the differences in scores between the
algorithms reflect the different methods used by each to process detections. Only
the IP algorithm shows consistently better performance for the revisitation-fractions
investigated. The largest differences between using no grouping (|gj.| = 1) and the
largest maximum group size investigate (|g}.| < 6) are apparent in the CID results
(bottom panel, Fig. 3-8). With |g}.| < 6. the decline in map score evident in the top
panel of Fig. 3-8 after t = 200 is delayed. Nevertheless, even under this further relaxed
CIM assumption. the CID results are superior to the standard algorithm results over a
relatively short interval before severely inflated posteriors begin to degrade the result.
There is also mild improvement in the IP results for |g}| < 6. The extended-standard
algorithm scores surprisingly well considering the maps of the previous section, a

result which can again be attributed to the action of non-detections.

Fixing the fraction of the map to revisit a priori is a straightforward way to
design subsequent sampling strategies and is apparently quite robust to errors in

the marginal posteriors. That said, more efficient strategies are likely to require
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Figure 3-8: Percentage of the total number of occupied cells within the revisited map
portion, averaged over 10 trials. The upper two panels show average scores versus time
for each algorithm and various revisitation map fractions (indicated to the left of each
panel). The bottom panel shows the average improvement attained using |gi| < 6
across all revisitation-fractions for each algorithm.

accurate posteriors upon which to base real-time decisions. For instance, posteriors
suggesting a high local density of occupied cells suggest a more valuable target than
widely dispersed peaks because a sampling vehicle would need to spend less time
transiting empty regions. Figure 3-7 supports the conjecture that the I[P algorithm is
capable of estimating posteriors consistent with the actual number of occupied cells.
For the IP algorithm Fig. 3-9 investigates the behavior of the expected number of
occupied cells within selected sub-regions of a map. The results show reasonably
accurate and stable estimates of the actual number of occupied cells in each region
after a few hundred measurements. With [gi| < 6, these estimates fluctuate less.

Unlike the maps produced by the other algorithms, these maps could be used to drive

100



t = 1000

.

0 50 100 0 100 200 300 400 500 600 700 800 900 1000
100 0.05 8 — - - -
- 6} J
VI o
_ 50 I 4
= & 9
0 () g—- 2 I ot U e — | ST 1 J
0 50 100 0 100 200 300 400 500 600 700 800 900 1000

Measurements
Figure 3-9: Expected numbers of occupied cells within selected regions of the map
of Fig. 3-6 produced by the IP algorithm. The left panels show the OG maps after

t = 1000 measurements for max |g}.| € {1.6}. To facilitate intercomparison. the colors
indicate posterior probability of occupancy rather than logr! as in the previous fig-
ures. The right panels show the expected munber of occupied cells vs. time within the
regions highlighted in the left panels. Both results are reasonably consistent with the
actual number of oceupied cells in each region suggesting the IP algorithm is capable
of producing reasonable estimates of the true marginal posteriors. The results pro-
duced by processing subsets of detections (|gi| < 6) show reduced variance over those
produced without using subsets of detections (|gi| = 1).

survey optimization strategies that trade-oft transit time with the expected number

of occupied cells within higher-resolution survey areas.

3.4 Summary, Contributions, and Future Work

I have devoted a large fraction of this chapter to exploring the appearance of inflated
posteriors in OG maps produced in low prior environments as a consequence of the in-
dependence assumptions required. Indeed their appearance in some early simulations
was the motivation behind the exploration of alternative OG algorithms that formed
the subject of Part 1T of this thesis. Two classes of novel algorithms were introduced.
based on: (1) partial relaxation of the standard CIM assumption required in standard

OG mapping, or (2) the assumption that the marginal posteriors remain independent
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even following detections. Figure 3-10 summaries the application domain of each al-
gorithm studied in terms of the expected number of detections and prior probability
of occupancy.

The IP algorithms hold the greatest potential for practical significance. They
generated estimates of the posteriors that were consistent with the true number of
occupied cells and produced better maps as the number of measurements increased.
Furthermore, the improvements attained with IP by processing subsets of detections

exactly with a maximum subset size |g}| < 6 instead of process each detection imme-

diately upon reception (|g}| = 1) were modest suggesting that most of the enhanced
performance of this algorithm relative to the standard algorithm in a low prior envi-
ronment can be attained with no additional computation or storage cost. A potential
weakness of this class of algorithm is the dependence of their results on the order with
which measurements are acquired. Regular sampling trajectories may exacerbate this
weakness and deserve further study. Nevertheless the successful applications of the

[P algorithm to real world hydrothermal vent prospecting data appear in Ch. 5.
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Figure 3-10: Binary measurement OG algorithm choice based on map prior and
expected munber of detections showing heuristic domains of applicability for each. The
standard algorithm is appropriate for priors near 0.5. Other algorithms produce more
accurate results for lower priors. For a small number of detections n' an exact solution
can be computed. Slightly larger munbers of detections can be handled by the CID
algorithm. The IP algorithm performs well in low prior environments for moderate to
large numbers of detections. Of course, these boundaries are subject to the parameters
of the forward model employed. Higher probability of false alarm tends to blur the
differences between the various algorithms because it reduces the correlation between
detections. whereas increased correlation as from a wider sensor aperture (footprint)
and tends to exacerbate the differences.

103



Part Ll

Automated Nested Survey for
Hydrothermal Vent Localization

and Mapping

104



Chapter 4

Hydrothermal Plume Survey by

Autonomous Underwater Vehicle

Recent expeditions utilizing the Autonomous Benthic Explorer (ABE) AUV have
demonstrated the effectiveness of an AUV for meso-scale vent localization [39.65].
This chapter explores the hydrographic data attained by ABE during these expe-
ditions and develops constraints on seafloor vent location from detections of hydro-
thermal effluent registered by the vehicle at various heights above the seafloor. AUV
data is distinet from the more typical CTD-derived data usually employed for vent
prospecting (e.g.. [4]). Whereas towed CTD packages generate vertical slices through
the plume, AUVs are more suited to producing densely sampled horizontal slices.
Such surveys are more likely to intercept the relatively small signature of a buoyant
plume (BP) emanating from a seafloor vent from within the much larger spatial sig-
nature of the so-called non-buoyant plume (NBP) that forms at some height above
the seafloor as a result of persistent venting.

Depending on the tracer, hydrothermal plumes can be detected at a range of sev-
eral kilometers in situ and out to thousands of kilometers with laboratory analysis
of water samples [78]. Hydrothermal plumes inhabit a broad range of spatial and
temporal scales, only a subset of which are resolvable by a surveying AUV, and not
all of which contain useful information about the source location of that plume. A
perisistent theme throughout this chapter is to identify which scales are resolvable
on the time and length scales imposed by an AUV survey, and subsequently to quan-

tify the uncertainty inherent in the spatial relationship between water-column plume
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efuent and seafloor source location.

The first contribution of this chapter is a methodology for the classification of
certain hydrographic data collected by an AUV as indicative of background, NBP, or
BP water. A necessary precondition for succussful localization of hydrothermal vents
is the identification of plume effluent in vehicle sensor data and the interpretation of
these data in terms of the constituent components of a hydrothermal plume. Depend-
ing on a tracer’'s water column residence time and the predictability of its evolution.,
the presence of certain tracers can constrain the age of the plume being observed. 1
describe the processing applied to four tracers measured on ABE (potential tempera-
ture @, acfOBS, reduction-oxidation potential (eH). acfVVA). each of which exhibits
different characteristics depending on the stage of plume evolution.

The second contribution presented in this chapter is a model for the probable lo-
cation of a buoyant plume’s source on the seafloor parameterized by vehicle height at
the time of detection. Background currents, tidally forced or otherwise are a signifi-
cant environmental influence affecting hydrothermal plume structure. With the aid of
an on-board acoustic Doppler current profiler (ADCP) and an accurate estimate of its
own velocity-over-ground and heading. an AUV can measure water column velocities.
The degree to which these measurements will provide constraints on source location
depends on the degree to which the measured current record represents the temporal
scales resolvable in the plume, the relative importance of background crossflows in
defining plume structure, and the degree to which those influences can be modeled.
The model enables an assessment of the refinement in the source location attainable
by incorporating measurements of ADCP-derived crossflow velocity.

The development in this chapter considers only the information contained in sin-
gle water-column detections in isolation, without regard to the spatial arrangement
of multiple plume detections or regions in which no anomalies were observed. The oc-
cupancy grid (OG) mapping algorithms of Part I provide a methodology to generate
maps of seafloor source locations consistent with all measurements; those results form
the subject of Ch. 5. The current chapter develops the necessary background. specifi-
cally the probabilistic mapping between source location and water column detections,
and methods to distill raw sensor data into the binary detection/non-detection form

required by the methods of Part 1.

This chapter is organized as follows: Section 4.1 provides a brief overview of the
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physics governing hydrothermal plume evolution as they pertain to AUV-based sur-
vey. Section 4.2 describes the 3-stage nested survey methodology employed to localize
hydrothermal vent sites with the ABE AUV. Section 4.3 presents the methods ap-
plied to raw hydrographic data from these surveys to identify hydrothermal anomalies
and presents maps of hydrothermal plume activity. Section 4.4 demonstrates mea-
surement of background current profiles from a vehicle-mounted acoustic Doppler
current profiler (ADCP). Section 4.5 presents a conceptual model for short-timescale
plume evolution, which I then employ to predict the utility of measuring current.
The unknown parameters of this model are determined by comparison to successfully

localized seafloor source locations.

4.1 Hydrothermal Plumes from an AUV’s Perspec-
tive

Hydrothermal vents occur where volcanic and tectonic processes induce the circulation
of seawater through young oceanic crust.! Hot, chemically altered seawater is per-
sistently discharged, or vented, as a turbulent, buoyant plume (BP) that rises above
the sea floor to a height of 100 —400 m in typical hydrographic settings [110]. and
then spreads laterally along isopycnals as the so-called non-buoyant plume (NBP).
This structure suggests a natural strategy for “homing-in” on the source of venting:
establish contact with the large spatial signature of the NBP; find the buoyant stems
within, and finally follow these to the seafloor.

The following two sections provide a brief overview of the structure of and scales
inhabited by hydrothermal plumes and outline the physical processes that drive their

evolution.? 1 focus here on the implications for robotic searcher. Specifically, what

'Not all hydrothermal venting is driven by a magmatic heat source. In particular, an exothermic
reaction between seawater and young oceanic crust drives recently discovered hydrothermal venting
at the Lost City site on the Mid-Atlantic Ridge [55].

2For the interested reader, McDuff [82] and references therein review physics of hydrothermal
plume evolution in the buoyant phase through the use of classical models of buoyant plume evolution
[89]. Lavelle [66] employs a large eddy numerical simulation to investigate the effects of crossflow.
Middleton and Thomson [84] also investigate crossflow. but from an integral model perspective. The
physical processes governing evolution of the NBP are more varied on account of the larger range
of scales occupied by the NBP. Lupton [78] provides an overview: Helfrich and Speer [46] define
the scales involved; Wetzler et al. [127] study the influence of ambient currents; and Thomson et.
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shysical processes affect the plume as mapped through the vehicle’s trajectory and
P11y PI : .

visualized through the AUV’s sensors”?

4.1.1 Buoyant Hydrothermal Plumes

The dynamics of typical buoyant hydrothermal plumes are dominated by turbulent
entrainment [119] of the surrounding seawater. This process dilutes vented hydro-
thermal effluent by a factor of 10* 10° by the time the density of the mixed fluid
matches that of the surrounding fluid at its terminal rise height [77]. Turbulent en-
trainment of ambient waters makes regional hydrography an important influence on
the trajectory followed by an ascending BP, and acts directly to obscure source loca-
tion by expanding plume diameter during ascent. Ambient crossflows also influence

plume trajectory by bending the plume centerline in the direction of flow.

Turbulent Entrainment In a time-averaged sense, over the course of its rise from
the seafloor a buoyant hydrothermal plumne will have expanded laterally from on the
order of a few centimeters at an individual vent orifice to a diameter of 50 =100 m
at equilibrium height based on model predictions [110]. Instantaneously. the buoyant
plume is resolvable as a patchy, irregular structure of high intensity anomalies inter-
spersed with unaltered background water [78]. This irregular structure is the result of
the turbulent entrainment of surrounding water as the plume ascends: the buoyancy
of the discharged vent water creates a strong vertical instability which in turn sets up
shear instabilities at the edges of the ascending fluid resulting in eddies that engulf
ambient fluid and mix it into the interior of the plume [119]. From the perspective of
a robotic searcher, this implies time-averaged quantities like plume width and mean
tracer concentration, which carry information about distance-to-source and source
intensity and which could define a concentration gradient toward the source, are diffi-
cult to resolve. However, detection is facilitated by both the much higher than average
tracer intensities encountered. and by the rapidly fluctuating signal. characteristics
which become more pronounced as the plume’s spatial signature decreases toward the

seafloor (Fig. 4-1).

al [114] explore venting-induced circulation and the role of bathymetry.
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Figure 4-1: In situ temperature records collected by ABE as it passed at approxi-
mately constant speed (0.6 m/s) through buoyant hydrothermal plumes emanating from
the Kilo Moana vent field on the ELSC (20°3’ S. 176°12" W): (a) 300 m above bottom
at the depth of the NBP; (b) 50 m above bottom: (c¢) 5 m above bottom. Plots (b)
and (c) indicate repeated contact with individual nearby plune stems, whereas plot
(¢) shows a relatively broad peak that may be the result of plumes from individual
sources below having coalesced. In all cases the turbulent nature of buoyant plumes is
evident in the fluctuations of the signals, but its spatial extent increases with height
off-bottom while the magnitude of the observed temperature anomaly decreases by
two orders of magnitude. Time series like these are characteristic of vent-prospecting
surveys conducted by ABE. Additional examples are provided in App. F.
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Regional Hydrography Regional hydrography, particularly the strength of the
(stable) density gradient, plays a critical role in determining terminal rise height.
Steeper gradients result in lower rise heights because the density deficit of the ris-
ing plume relative to background water at the same height decreases more rapidly
with height due to both the steepness of the background density gradient and the
entrainment of relatively denser waters during ascent. In contrast, the dependence of
rise height on source heat flux over the range of typical black smoker vents (1 MWto
100 MW) is relatively weak, producing less than an order of magnitude difference
in terminal rise height for the same density gradient [78]. Temperature and salinity
profiles (not just the resulting density gradient) are also important. Though both
the deep Atlantic and deep Pacific are stably stratified, the salinity gradient in the
Atlantic decreases with depth. whereas it increases in the Pacific. Curiously. this
difference produces a warm and salty NBP relative to background in the Pacific and
a cold and fresh NBP in the Atlantic [110]. Furthermore, source chemistry (salinity)
affects both rise height and the temperature anomaly associated with terminal rise
height [82]. to the extent that expected sign of the anomaly changes (e.g. [108]). The
dominant role of regional hydrography is fortuitous from the perspective of a robotic
searcher because background profiles can be determined a priori (from CTD casts) or

measured by the vehicle before commencing a search (e.g. during its descent).

Ambient Crossflow DBackground currents impart their momentum on the rising
water in buoyant plume stems, thereby bending the plume’s centerline in the di-
rection of the crossflow. Acceleration to crossflow velocity is complete within the
immediate vicinity of the source [84]. Crossflows result from the combined influence
of tidal currents, basin-scale circulation, episodic events, and circulation induced by
the venting itself [114]. Crossflow velocities at hydrothermal vent sites vary: Data
acquired by Thomson et al. [113] on the Endeavour Segment of the Juan de Fuca
Ridge reveal tidally-forced oscillatory currents of up to 10 cm/s with superimposed
steady currents of 5 cm/s and strong attenuation of these currents within the con-
fines of the axial valley. The maximum crossflow magnitude observed by ABE from
on-board ADCP measurements as of 2006 was 16 cm/s at a site on the Southern
Mid-Atlantic Ridge (SMAR) (Fig. F-73). The location of buoyant plumes high in the

water column reflects the combined effect of turbulent entrainment and superimposed
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advection. For a characteristic rise time of 1 h [110]. a crossflow of 10 em/s will advect
some effluent a few hundred meters from its source. Crossflows also reduce rise height

by as much as a factor of two for very strong crossflow magnitudes of 20 cm/s. [84].%

Other Factors Other factors affecting affecting the behavior of hydrothermal plumes
in the buoyant phase are source geometry, entrainment of nearby diffuse venting, al-
teration of the background profile by persistent venting. and density alteration on
account of the presence of suspended particles [82]. Nearby plumes from multiple
sources may also coalesce as their expanding cross-sections interfere with one an-

other.

4.1.2 Non-buoyant hydrothermal plumes

The laterally-spreading non-buoyant plume evolves according to a self-imposed pres-
sure gradient, the influence of background currents (mean, tidally forced, and venting-
induced), and beginning at scales O (1000 km). by the rotation of the earth [46]. The
vertical thickness of the non-buoyant plume O (100 m) is dependent upon variations
in the intensity of background currents which alter the rise height of buoyant plumes
by inducing lateral drift during ascent and thereby increasing the amount of mixing
achieved for a given rise height.

At the point of neutral buoyancy. the remaining vertical momentum of the rising
plume water dictates that it will overshoot before sinking back into the non-buoyant
layer. This fact has important implications for AUV-based search because it implies
buoyant stems completely penetrate the non-buoyant plume, and can be detected by
an AUV surveying within its vertical confines.*

Once the depth of the non-buoyant plume has been established, an AUV offers
certain advantages over a towed package as a means of finding the relatively small
scale O (100 m) signature of buoyant stems within the non-buoyant plume. AUVs
are highly maneuverable, relatively fast, and can navigate with a precision on the

*Rudnicki and German [108] r(rpor; ficld evidence of rise-height modulation by crossflow speed
from a continuous record of a stationary vertically-oscillating CTD cast.

"This simplistic perspective is strictly true only for a single BP in an otherwise steady environ-
ment. Multiple sources and dynamic crossflows can create non-buovant lavers over a range of a few

hundred meters depth. sufficiently thick that not all buoyant stems will necessarily penetrate this
laver completely.
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Figure 4-2: Optical backscatter (OBS) data collected by ABE over High Rise vent
field on the Juan de Fuca Ridge (47°54" N, 129°10" W). The left plot shows OBS
plotted according to the position of the vehicle at the time each sample was taken. i.c.
as if the data were acquired synoptically. In reality, the vehicle commenced surveying
in the upper right corner of the inner high-density grid and completed its survey on the
outer arm of the spiral 12 h later. The image is not representative of the true state of
the plume at the conclusion of the survey: the sequence of images on the right show
snapshots of survey data during the dive with the position of each OBS measurement
adjusted for integrated current velocity from the time the sample was taken. The
vehicle's track is shown in red. During the first part of the survey, ABE re-sampled
essentially the same plume water repeatedly as it advected to the southwest. Credence
to this interpretation of data is provided by the consistency between OBS measured on
tracklines passing through the predicted positions of old measurements.




order of meters with the addition of external acoustic beacons [134]. The usual
trade-offs between coverage, resolution and synopticity [129] still apply of course,
but for survey areas O (km?), AUVs can produce plume maps that are spatially of
higher resolution (precise tracklines)®, and perhaps also temporally closer to synoptic
(higher speed). Additionally, water velocity profiles from ADCPs, which are becoming
standard instrumentation on AUVs, can be used to compensate maps for asynopticity.
as was done to create the sequence of OBS maps in Fig. 4-2. Finally, and perhaps
most significantly. AUVs have sufficient computational resources aboard to enable

data-driven adaptive surveys [12,31,134].

Buoyant plume stems are discernible within the non-buoyant plume both physi-
cally and chemically. Sufficiently close to the centerline of a rising plume stem. the
net upward transport of water is often sufficiently strong to overcome ABE's vertical

thrusters resulting in a forced excursion from desired depth.®

Currents with strong tidal components complicate the process of inferring the lo-
cations of buoyant plume stems directly from measurements of essentially conserved
tracers (e.g. potential temperature). Small mean components dominated by tidally
forced oscillations create a plume structure that is simultaneously variable on tidal
timescales and yet represents the integrated output of several tidal cycles worth of
discharge (see particularly [120,127]). As a result, locally high concentrations, es-
pecially of conservative tracers like potential temperature, resulting from periods of
slack tide can occur far from buoyant stems. Records from multiple tracers subject
to differing reaction rates with seawater can constrain the age of non-buoyant plume

water [53]

"Both towed assets and AUVs can be acoustically navigated in an absolute frame to yield an
accurate map: however. because they lack the maneuverability that is available to AUVs, plume
maps produced with towed assets are limited in resolution.

SPrevious expeditions to hydrothermal sites on the Juan de Fuca Ridge with ABE have employed
an acoustic travel-time velocimeter to directly measure vertical velocity in support of hydrothermal
heat-Hux measurements [111,132].
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Figure 4-3: The mid-ocean ridge system. and the locations of two recent hydro-
thermal vent-finding expeditions that utilized an AUV as complementary to towed as-
sets. ELSC (20°3" S, 176°12" W): Eastern Lau Spreading Center (September/October
2004). SMAR (4°54” 5, 12°28" W): Southern Mid-Atlantic Ridge (March 2005).

4.2 Background: A Three-Stage Nested Survey
Approach

On two separate expeditions, to the Eastern Lau Spreading Center (ELSC) (Septem-
ber/October 2004) and to the Southern Mid-Atlantic Ridge (SMAR) (March 2005)
the AUV ABE [133] was employed to localize the undiscovered sources of several
known hydrothermal plumes and to provide preliminary characterizations of the as-
sociated vent fields upon discovery (Fig. 4-3). Critically. in both cases ridge-scale
hydrographic and bathymetric work carried out using towed and lowered assets had
previously identified promising sites (ELSC: [80]; SMAR: [39]). This type of data
is essential for initially establishing contact with the NBP, as the task of finding
O (10 km) plumes on the ridge-scale O (1001000 km) remains beyond the energy
capacities of most AUVs.

The AUV performed three successively finer-scale nested survey dives at each site.

according to the methodology first deployed in the ELSC [39.65]:
e Phase-1: Hydrographic mapping of the NBP (200 400 m altitude)
e Phase-2: Hydrographic and multibeam bathymetric mapping (50 m altitude).
e Phase-3: Photo-mosaicking of individual vent fields (3-5 m altitude).
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Each stage was executed at progressively lower altitudes and finer trackline spacing
based upon the results of the previous stage and any available ancillary data, a pro-
cess that broadly reflects the physical structure of hydrothermal plumes themselves
(§ 4.1). Ideally, Phase-1 hydrographic data was sufficient to locate BP stems inter-
secting the NBP, or at a minimum to better constrain regions of highest intensity
anomalies.” Assuming conclusive results from Phase-1, Phase-2 hydrographic data
usually contains multiple BP interceptions, further constraining the extent of any
vent fields. Phase-3 data then serves to map individual hydrothermally active regions
within a vent field on a scale of meters and via high-resolution digital still photogra-
phy to provide preliminary data for biological characterization of the site. Figure 4-4
shows an example of tracklines from Phase-1 through Phase-3 at an ELSC site.
Most of the data in this chapter was acquired over the course of several Phase-1
through Phase-3 nested survey progressions. The dataset is unique in that all of
it was collected by a single vehicle (ABE) and includes both water-column plume
data (from Phase-1 and Phase-2 dives) as well as groundtruth vent locations (from
Phase-3 dives). Given the apparent success [39,65] of the strategy outlined above, one
might legitimately question the value of further analyzing the data to improve search
strategies. After all, at least some vent fields were located at most sites following the

8 On the contrary, there is a great deal

discovery of NBP activity by other means.
to be gained from careful a posteriori analysis of this data, particularly with an eye

toward automation of the above procedure on future expeditions:

reliability: On occasions where no vent fields were discovered on Phase-3 dives, could
automatic interpretation of data have indicated that Phase-1 and/or Phase-2

data was insufficiently conclusive to warrant progressing to the next stage?

efficiency: How efficient (in terms of trackline length) was human design of Phase-2

and Phase-3 dives, i.e., was the uncertainty in source location based on water

1t was already remarked upon in § 4.1.2 that O (km) structure is strongly influenced by oscillatory
tidal currents which can produce strong anomalies not directly associated with the instantaneous
locations of buoyant feeder plumes.

SELSC: successful localizations at 3 out of 5 sites; SMAR: successful localization of two distinct
vent fields at one site.
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Figure 4-4: Vehicle tracklines from three nested surveys (Phase-1, Phase-2, Phase-3)
at a hydrothermal site on the ELSC ((20°3’ S, 176°12" W)).

column detections over or underestimated?

autonomy: Most importantly, could this strategy be carried out autonomously by

allowing the vehicle to design successive phases of the dive based on its own
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autonomous interpretations of the data so as to make better use of available

bottom time?

To attain answers to these questions, interpretation of the raw data from Phase-1 and
Phase-2 has to be made automatic and quantitative. That is the goal of the next three
sections. Lest the potential savings associated with automation be underestimated,
consider that the ratio of time associated with inter-survey recovery, human analysis
of the data acquired, vehicle maintenance, and re-deployment relative to the time

spent, actually collecting data on these expeditions was roughly 2-to-1.

4.3 Anomaly Maps

A necessary component of any strategy for finding hydrothermal vents based on the
locations of water-column plume detections is reliable classification of water-column
data into background water unaffected by hydrothermal input and plume water. Hy-
drographic sensors measure absolute concentrations of chemical or physical quantities,
not the presence or absence of hydrothermal efluent. Background values must be sub-
tracted from raw measurements to arrive at the portion of the signal that represents
hydrothermal input. This would be trivial if background concentrations were known
perfectly. In reality, many tracers have background concentrations that are subject to
variability in space and time, and inevitably suffer some contamination from sensor
noise.

In this section I develop a methodology for the detection of hydrothermal efluent
from sensor measurements collected by an AUV. I demonstrate its broad applicability
by presenting results using four markedly different tracers recorded by the ABE AUV
(described subsequently) during several recent vent-prospecting missions.” I do not
claim the methodology presented here is optimal, just that it is both effective and
practical, particularly in that the number of tunable parameters is deliberately kept
small. Different strategies are required for detection of effluent in the non-buoyant
plume (NBP) versus buoyant plume (BP) stems on account of the vastly different

spatial scales inhabited by each. Fortunately, this separation in scales also enables

Complete results for ABE dives 128, 131, 136, and 137 (ELSC); and dives 150, 151, and 152
(SMAR) appear in App. F. In this section, I restrict my attention to ABE-126, a Phase-1 dive at
ELSC that included interception of a buoyant plume.
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reliable detection of BP stems from within the NBP, the key component of the three-
phase survey strategy outlined in § 4.2.

NBP The approach to detection of the NBP is essentially analogous to the stan-
dard techniques applied to lowered or towed CTD data (e.g. [4,77,78]), with two

enhancements tailored to autonomous operations:

1. Self-contained: background tracer profiles are determined using data collected

during vehicle descent.

2. Classified output: continuous-valued anomalies are classified into statistically
significant detections and non-detections of plume water based on deviation

from the profiles determined during vehicle descent.

The first of these eliminates the need for cross-calibration between sensors aboard
the AUV and other platforms and minimizes the impact of spatial and temporal
variability in background tracer concentration. The second allows delineation of the
plume and could potentially provide the necessary input to a stochastic mapping
algorithm like that applied to BP detections subsequently in Ch. 5.1 As the goal is to
disambiguate NBP water from unaffected background water, the method applies only
to conservative tracers or non-conservative tracers (see § 4.3.1 for a definition of these
terms) with long residence times. That said, non-conservative tracers with relatively
short residence times have proven extremely useful in qualitatively constraining the
location of BP stems from Phase-1 ABE data in the event of no definitive interception

of buoyant effluent. I return to this point in the conclusion of the present chapter.

BP In contrast to a typical NBP resolvable in situ at kilometer scales, typical
buoyant plume stems represent a target orders of magnitude smaller in horizontal
extent. Whereas a Phase-1 survey conducted with ABE may remain in contact with
a NBP over most of the dive, BP detections are rare. Consequently methods for
BP declaration based on outlier detection are suitable, whereas they would likely
fail if applied to NBP detection. An outlier-based approach avoids the need for an

assumed distribution to describe measurements while in contact with BP effluent.

19T he potential payoff is significant as the scales over which effluent in the NBP is detectable in
situ far exceeds the spatial scale of BP stems within the NBP.
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That feature is attractive, as the turbulent structure of a BP implies a strongly
fluctuating signal whose distribution would be difficult to predict in any case, and
especially so without a priori knowledge of source parameters. The vigorous and
relatively unpredictable fluctuations in tracer concentration within a BP strongly
favor an outlier-based approach to detection.

Ultimately the outlier-based approach still comes down to the careful choice of a
threshold. The principal challenge to such an approach is variation in the background
(potentially significant in hydrothermally active areas) which does not necessarily ob-
scure BP activity so much as make choosing a threshold a potentially brittle undertak-
ing. Automatic threshold determination is desirable and should minimize the number
of parameters requiring manual tuning. The approach pursued herein first removes
predictable trends in tracer concentration before batch-processing each tracer to au-
tomatically assign a meaningful threshold. The last steps classify measurements into
binary detections and non-detections according to their status as outliers, and finally
combine these binary classifications into a single binary indicator variable based on
a heuristic assessment of the specificity of each tracer. Batch-processing trades the
potential for real-time detection (and perhaps triggering of special vehicle actions)
for increased robustness, in line with the philosophy of a nested survey approach to

search.

4.3.1 A Taxonomy of Hydrothermal Tracers

Hydrothermal effluent contains a wide variety of chemical species that react at varying
rates with seawater so that the chemical signature of a plume is dependent in part
on water-column residence time, but also on source water composition, background
water composition, and biological factors [73]. At the coarsest level, hydrothermal

chemical hydrographic tracers are of two types [78]:

conservative tracers whose concentrations are affected only by passive advection
and diffusion, and

nonconservative tracers whose concentrations are affected in addition by chemical
reactions, biological processes, or radioactive decay.

The most readily measured conservative hydrothermal tracers are the physical

properties temperature and salinity. Though the density of a NBP is equivalent to
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the background value by definition, the potential temperature and salinity within
this layer deviate from background profiles [77]. As mentioned previously, the sign of
these anomalies is dependent on background stratification, resulting in a warm and
salty hydrothermal anomaly in the Pacific and, counter-intuitively, a cold and fresh

hydrothermal anomaly in Atlantic waters [110].

Of the non-conservative chemical species enriched in hydrothermal source fluids,
hydrogen Hy, methane CHy, iron Fe, and manganese Mn have received the most at-
tention [5,73], and many can now be measured in situ on packages suitable for AUV
deployment [13,17,96,105,112]. While some of these new instruments have seen de-
velopmental deployment on ABE [38], that data will not be considered here. Instead,
I focus on data from two instruments that provide proxy measurements related to the
presence of these chemical species: optical backscatter (OBS) and reduction-oxidation
(redox) potential (eH). OBS is related to some of the non-conservative chemical trac-
ers listed above by virtue of the particulate matter they form as a result of chemical
transformations initiated upon contact with seawater. Redox potential provides an
indication of the age of nascent plume water by measuring the the degree to which

these and other reactions have progressed.

The chemical evolution of hydrothermal particulate matter depends on oxidation,
precipitation, dissolution, adsorption and scavenging reactions, many of which are
biologically mediated [53,73]. Particulates settle out from the water column at vary-
ing rates to form distinctive deposits near hydrothermal sites, or slowly dissolve back
into the water column once mixing has led to sufficient dilution with ambient seawa-
ter. Optical backscatter and transmissivity provide sensitive and economical optical
proxies for particle concentration and are increasingly used to infer the presence of
hydrothermal venting without other indicators [5,7]. The complexity of the physical
and chemical transformations undergone by hydrothermal particulates as well as the
particle-size-dependent nature of optical measurements makes these measurements
difficult to interpret in terms of source proximity. Nevertheless, with the exceptions
of false positives due to sediment resuspension and missed detections of diffuse or
low temperature venting, optical properties of the water column “almost invariably

provide a reliable indicator of underlying hydrothermal activity” [5].

The reduction-oxidation (redox) potential (eH) of an aqueous solution is a measure

of the affinity of dissolved chemical species for acquiring electrons, a process known as
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reduction. Measured in volts, eH is expressed relative to the redox potential of hydro-
gen, which is set to zero by definition. Substances with positive redox potentials are
more capable of oxidation than hydrogen; substances with negative redox potentials
are more capable of reducing. Hydrothermal fluids tend to be enriched with reducing
chemical species from circulation through young oceanic crust prior to emission from
vents as plumes. Contact with seawater will oxidize these chemical species, though
at varying rates [53]. Thus anomalously low eH is indicative of recently expelled

hydrothermal effluent [95].

4.3.2 Anomaly Definition

[ use the term anomaly to refer to the signed difference between the value of some
scalar quantity v and its background value vy measured at identical reference condi-
tions y. In notation of [120], Ayv = v(y) — vo(y). (I reserve the label detection for
anomalies that exceed some to-be-determined threshold.) Background values could
be tabulated over the relevant ranges of the reference variables, or assumed to satisfy
some functional relationship vy = f(y). A complete description of the background
would be given by a y composed of time and the three spatial coordinates, though
other choices of reference variables might prove more suitable. Indeed, most hy-
drographic parameters in the deep ocean vary strongly with depth and only weakly
otherwise. An appropriate choice of reference variable(s) should reflect the expected
complexity of the background relationship and also the fidelity with which that rela-
tionship can be known a priori or determined from measurements. Tracers specific to
hydrothermal activity, and therefore lacking any dependence on reference variables,
can be accommodated with the notation Av.

Algorithm 8 outlines the entire procedure applied to raw sensor measurements.
These are assumed to fall into two classes: (1) tracers exhibiting variation with depth,
and (2) tracers specific to hydrothermal venting. Raw data are first pre-processed
in a way specific to each sensor (detailed in the text for the tracers studied herein).
The next steps remove trends due to background profiles, and in the case of BP-
detection, also contamination from background profile alteration (for surveys below
the NBP) and the NBP (for surveys within the NBP). The final steps generate a

binary output on the basis of an automatic threshold determination. These steps are
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different depending on whether detections should reflect NBP or BP contact. In either
case, final declarations of NBP contact and BP interceptions are made by combining
indicator variables from k tracers according boolean functions f : B*¥ — B.

The key computations involved in each step are provided as pseudo-code along
with a flowchart to indicate signal flow. Most of the processing applied to NBP
detection applies to BP detection as well. The additional aspects of BP detection are
designed to remove low-frequency trends prior to outlier declaration. Diagonal open-
headed arrows in the flowchart indicate key user-supplied information and tunable
parameters. These amount to a single scalar Pr to denote a desired probability of false
alarm (possibly different for each tracer), and the boolean functions fypp and fgp.
The following sections discuss each step in detail, beginning with the preprocessing
applied and specific to the tracers measured on ABE. The remaining steps of the
flowchart should be readily applicable to other measurements beyond the ones studied

here.

4.3.3 Preprocessing Applied

The paragraphs that follow detail the specific processing applied to a representa-
tive subset of sensors aboard ABE used for hydrothermal plume detection: potential
temperature ¢, optical backscatter (OBS), reduction-oxidation potential (eH), and
vertical velocity anomaly (VVA). This selection spans conservative to highly noncon-
servative behavior, and includes tracers both with and without background profiles.
The specific preprocessing applied in each case is unique but may include any/all
of the following: combination of raw sensor measurements into a composite mea-
surement, removal of certain sensor pathologies, and pre-filtering. All measurements

discussed below were sampled between 1 Hzand 3 Hz.

Potential Density In thus study, potential density o is not used as a tracer di-

11

rectly,'' instead serving as a reference variable for tracers with profiles; however it too

is a measurement subject to error. Potential density is computed from in situ temper-

"'"The vertical gradient in potential density, measured for instance by two vertically-displaced
conductivity /temperature probe pairs, could be used as a hydrothermal tracer. The normalized
gradient is known as stability [57]. Viers et al. [121] inferred negative stabilities (density inversions)
to be indicative of BP contact.
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Algorithm 8 Hydrothermal plume anomaly processing and detection algorithm and
key function definitions. User-supplied inputs, indicated by open-headed arrows, are
limited to specifying a probability of false alarm Pr and the function f. Relational
operations in square brackets [-] produce a binary result.

Variable Definitions
wl mﬁes m pmfm v tracer measurement
(CTD, 0BS) (eH, VWVA) o  potential density

Agv  v-anomaly w.r.t. profile
Av  v-anomaly

s i Av'  v-anomaly following filtering
DESCENT _ | — 0,  binary indicator (v)
4  binary indicator (BP)
find profile Pr  tunable false alarm rate
|1 av . "y
4 Function Definitions
compute profile find_profile(v, o) {
i 8 - - t_ v 2
G+ Ores = argmin Y (vt — §Eo — vrey)
S t
o1 Uref
Ayv v return g%, Uref
Pr }

% )
PN compute_profile_anomaly (v, 57, Urer)
(prediction interval) s bikatend {

variation (high pass) Av—=1p— (dt o+v f)
/ 61, ﬂ fNBP 7 f;; n A :r 3
I\ Av | 5 Pr retur :
declare NBP ; }
anomalies declare anomalies
(boolean logic) (Hampel Identifier) prediction_interval(A,v)
T |4 / by
NBP 0y Aa, v = sample variance A, v
Agv
Y o= 22 > &1~ Pr/2)

o return 4,
(NBP) }

A Isp
— Hampel Identifier(Av') {
anomalies Avf = median Av'

(boslean logie) S = 1.4826 median|Av’ — Av'|

/] dsp 8= [ B B0 o — PF/Q)]

done return 4,
(BP }
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ature, salinity and pressure using an empirical equation of state for seawater [36,88].
Temperature and pressure can be measured directly, but salinity is usually derived
from measurements of conductivity. As with most lowered CTDs, the conductivity
and temperature probes on ABE are very nearly co-located and a constant flow rate
pump ensures that the sensors are flushed nearly simultaneously with the same parcel
of seawater. Nevertheless, because salinity varies over a relatively small range, the
conductivity of seawater tends to track temperature closely and even slight mismatch
between the temperature signal and the portion of the conductivity signal due to
temperature can lead to so-called “salinity-spiking” [97]."? This is a cumulative effect
due to temporal delay between the sensors; thermal mass of the conductivity cell; and
a difference in diffusion rates between heat and salt [76]. Since we employ potential
density as an independent variable, noise from the raw sensor measurements as well
as from salinity-spiking contribute to a noise floor that is present in the determination

of all subsequent anomalies.

Potential Temperature As with potential density, potential temperature is de-
rived from an empirical relationship that depends on in situ temperature, salinity, and
pressure [36,88]. Heat is conserved, therefore potential temperature behaves as a con-
servative tracer. As discussed in § 4.1, the sign of the potential temperature anomaly
depends on background stratification and height above the source. In the Pacific, the
A, 0 associated with hydrothermal venting is always positive. Non-buoyant hydro-
thermal plumes in the Atlantic result in A,6# < 0; however, at some distance beneath
this level of neutral buoyancy, the sign of A,f associated with the buoyant plume
becomes positive.'> On ABE, 99.9% prediction intervals for background A, are
typically 2.5 m°C. The maximum recorded in situ temperature to date was ~ 60 °C,

observed during a near-bottom dive on the ELSC.

2Salinity spiking tends to plague vertical CTD casts more so than typical horizontal AUV surveys
because vertical gradients of salinity and temperature in the ocean dramatically exceed horizontal
gradients. However, strong horizontal gradients can be encountered in waters contaminated by
hydrothermal venting.

¥Modeling by Speer and Rona [110] for the time-averaged behavior of a typical Atlantic plume
predicts a change of sign in A,# at a rise height of 200 m however, significant negative anomalies
were observed on ABE dives 151 and 153 at only 50 m height.
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Optical Backscatter OBS is measured on ABE with a sensor that outputs a signal
proportional to the intensity of light backscattered from a small volume illuminated by
the sensor.!* Spikes in the output are frequent, presumably the result of some larger-
than-average particle momentarily occupying the sensing volume. To attenuate these
high-frequency phenomena, the raw output is passed through a 10-point median filter.
Few sources of suspended matter exist in the deep sea besides hydrothermal venting
and consequently any dependence of OBS on depth is usually slight. This fact along
with the relatively low cost of OBS instrumentation has made OBS a popular tool
in hydrothermal prospecting, especially for identifying NBP waters. However, the
complex dependence of particle formation on vent and background water chemistry
and particle fallout renders quantitative interpretation of OBS difficult.!® Only posi-
tive deviations from background are considered potentially indicative of hydrothermal
venting. OBS measurements on ABE following median filtering typically fall within
2 mV of the mean (instrument voltage, 5 V full scale). The OBS data presented sub-
sequently have been corrected for a consistent 0.1 mV /h drift, presumably the result
of a slowly falling supply voltage to the instrument’s internal voltage regulator as

ABE depletes its batteries during a mission.

Redox Potential On recent expeditions, ABE has carried a reduction-oxidation
potential (eH) probe provided by Dr. Ko-ichi Nakamura' that has enabled this valu-
able measurement to be made in situ. The sensor has a complicated response charac-
terized by a relatively fast onset time and slow recovery time of hundreds of seconds.
Ongoing work by the instrument’s inventor suggests that the magnitude of differenti-
ated eH (d/dt(eH)) is correlated with the concentrations of reducing chemical species

typically encountered in vent fluids [94]. Based on experience, steeply decreasing eH

MSeapoint Sensors, Inc., http://www.seapoint.com/

15For instance, iron-oxides make up a substantial portion of suspended matter in the NBP; however
their formation in the relatively oxygen-rich waters of the deep Atlantic is considerably more rapid
than in the older, oxygen-poor waters of the deep Pacific. Consistent with this explanation, OBS
records from ABE dives on the ELSC (SW Pacific) often show relatively low intensity signals in the
immediate vicinities of BP stems relative to a few hundred meters away (larger sulfate and sulfide
particles responsible for the “smoke” of typical black-smoker type vents tend to fall out during
ascent) [37].

fNational Institute of Advanced Industrial Science and Technology (AIST), Institute for Marine
Resources and Environment, Seafloor Environment and Resources Research Group 1, Tsukuba,
Ibaraki, 305-8567 Japan
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appears to be a reliable indicator of the interception of nascent hydrothermal effluent.
For this reason, eH voltage from the sensor is differentiated prior to passing through
the latter stages of Algorithm 8. To avoid enhancing quantization noise, the raw sen-
sor output is pre-filtered before applying an approximate numerical derivative. Use of
the derivative means weak gradients in redox potential will not be resolved, whereas

the steep gradients encountered, for instance, upon entering a BP will be emphasized.

Vertical Velocity Anomaly (VVA) Vertical velocity anomaly (VVA) refers to
the vertical component of measured water current velocity. Significant vertical wa-
ter velocities provide an essentially unequivocal indicator of contact with a BP by
definition. Though VVA is a scalar it has no meaningful associated measure of con-
centration and is consequently not a tracer in the same sense as the other tracers
considered. Nevertheless, in practical terms it is analogous to a non-conservative
tracer with effectively zero NBP residence time.'® On account of their specificity,
VVA detections are valuable, but also rare. This thesis presents results from two
different approaches to measuring VVA aboard ABE: (1) directly, using an on-board
ADCP;!7 (2) by comparing vehicle behavior in the vertical plane to a reference model.

Measuring vertical velocity from an on-board ADCP is conceptually straightfor-
ward. Within range of the bottom (200 m to 300 m height with ABE’s 300 kHz
unit), ground-referenced vehicle velocity is simply subtracted from water-referenced
vehicle velocity, both measurements being provided by the unit. At greater heights
off bottom, differentiated depth provides an accurate, low-noise estimate of vertical
vehicle velocity."® Potentially complicating factors are that BP interceptions tend to
be brief, so that available averaging time is short and may not occupy all beams of
the instrument, which can lead to large errors in the computed velocity and possible
rejection by the instrument.

Alternatively, a unique methodology developed by Yoerger et al. [135] estimates
ambient vertical velocity by comparing the output of a simple one degree-of-freedom

model for the vertical dynamics of the vehicle driven by commanded thrust to the

6Gignificant vertical water velocities are uncommon within the NBP when not directly associated
with BPs.

I"RD Instruments, Inc. 300 kllz Workhorse ADCP/DVL, http://www.rdinstruments.com/

"¥No such nearly ideal reference exists for horizontal vehicle velocity (cf. § 4.4).
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vehicle’s actual, measured depth.'® The resulting estimate of vertical water velocity
represents, to the accuracy of the model, the actual water velocity filtered through the
vehicle dynamics [135]. The simplicity of the vehicle model limits its use to approxi-
mately straight and level flight at constant speed. Phase-1 dives in the NBP satisfy
these criteria and the method resolves vertical velocities of ~ 1.5 ecm/s reliably after
the removal of turns. Though the detection limit suffers, the method still provides
indication of much stronger vertical velocities on 50 m height Phase-2 dives, despite

active depth changes by the vehicle while bottom-following.

4.3.4 Background Profile

AUVs are well-suited to collecting data at constant depth;*® however, depth is not
ideal as an independent reference variable for defining background profiles. The rel-
ative quiescence of the deep ocean and stable stratification thereof make potential
density o, defined relative to some convenient reference pressure, a better choice.
This reflects the fact that oceanic mixing occurs primarily along surfaces of constant
potential density, which in turn reflects the suppression of vertical mixing by stable
stratification (e.g. [57]). Furthermore, anomalies defined with respect to potential
density are immune to the vertical displacement of isopyenals due, for instance, to
passing internal waves. Potential density, rather than in situ density, removes the
effects of pressure on density due to the compressibility of water, which has nothing
to do with mixing.

Over the short depth interval of interest to hydrothermal studies, assuming a
linear dependence on o often provides a good fit, and one sufficient to identify the

21

deviations associated with a NBP within a few kilometers of the source. Under

the assumption of a linear dependence on potential density, background profiles will

YYoerger's original model included a static buovancy force; however, to avoid re-calibrating the
model for each dive to account for a changed payload or different survey depth, I have removed this
element of the model in favor of band-passing the difference between the measured depth and model
output.

20NMore accurately, AUVs typically fly along isobaric surfaces since depth is usually mapped one-
to-one from measured pressure.

21 Assuming a linear dependence is, however, insufficiently accurate for certain sensitive heat flux
computations [120].
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satisfy 5
s
Aju = %(a—amf)—kvref (4.1)

where the derivative is presumed constant and (o, £+ Ures) is an arbitrary reference
point. It remains to estimate the terms % and v,es in (4.1) and to define thresholds
for each tracer above which A,v can be reliably regarded as due to hydrothermal
input as opposed to background variability or measurement noise.

If available, a CTD cast in nearby waters unaffected by hydrothermal input can
provide the parameters of (4.1) for tracers that possess background profiles; however,
there are several reasons to prefer a background profile generated using data from the

vehicle's own descent:

1. There is no requirement for sensor cross-calibration.

2. The profile could vary significantly between the location or time of a background

CTD cast and the survey site and deployment time.
3. The AUV may carry some sensors not also available on the host ship’s CTD.

4. Sensors aboard the AUV may have different noise characteristics than identical

ones on lowered CTDs (hydrodynamics and horizontal vs. vertical deployment).

The finite battery energy available to an AUV dictates that it be deployed as close
as safely possible to the survey location. Consequently the vehicle is likely to pass
through the NBP during its descent in which case profile data will be contaminated
by the very anomalies we wish to identify. In that case, (4.1) can be used to ex-
trapolate data from immediately above the NBP to greater depth. Results presented
subsequently attest to the viability of this approach within the depth intervals corre-
sponding to encountered NBP. Further extrapolation to depths below the NBP tends
to be less successful, at least partly for reasons unrelated to the accuracy of (4.1) or to
the extrapolation thereof. Persistent hydrothermal activity, particularly in enclosed
axial valleys, will alter profiles beneath the NBP relative to uncontaminated off-axis
profiles [82], meaning that BP anomalies are more appropriately computed relative
to a moving baseline as discussed below.

Identifying depths altered by hydrothermal venting in hydrographic profiles fol-
lowing vehicle recovery is fairly straightforward if somewhat subjective. Of the hydro-

thermal tracers that are measurable on ABE, OBS has proven the most reliable for
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delineating the vertical extent of the NBP. Estimates of the parameters 5% and v,
in (4.1) are then determined by least squares applied to a suitable interval above
the top of the NBP. Autonomous implementation of Algorithm 8 would require
the vehicle to perform this task independently. I have attained moderate success
in this regard with a robust model-fitting technique based on the RANdom SAm-
ple Consensus (RANSACQC) algorithm [35]. RANSAC works by randomly selecting a
subset of data, fitting the model to this data. counting the number of inliers from
the whole dataset based on a threshold criterion. and iterating until converging on
the model parameters that maximize the number of inliers. By selecting candidate
inliers only from outside of a random interval instead of completely at random. the
algorithmm can be made to return an estimate of the interval corresponding to the
NBP as well as model parameter estimates. The weakest link appears to be selection
of the portion of the vehicle's descent to use as an initial data set. Too much data
above the NBP leads to unreliable fits because of nonlinearity in the profile, whereas
too little data can lead the algorithm to choose other portions of the descent. A priori
approximate knowledge of the depth of the NBP greatly facilitates the choice of a
good interval.

Figure 4-5 shows an example of successful automatic NBP interval determination
applied to the last 500 m of a descent. Figure 4-6 shows least squares linear fits to the
profiles of 0 and OBS extrapolated to the seafloor. Removal of background profiles
enables data collected from disparate depths to be compared quantitatively and is
especially valuable for dives that span multiple depths (e.g.. dives 128 and 150 in
App. F). Figure 4-7 shows the results of background profile removal applied to OBS
and @ time-series data from ABE-126.

Anomalies computed for data from beneath the NBP undergo an additional pro-
cessing step before declaring detections. Tracer time-series pass through a high pass
filter (labeled HPF in Algorithm 8) with a cutoff frequency corresponding to 1 km of
trackline at nominal vehicle speed.?? This step removes low frequency trends from
non-linearity in the computed profile or from local variations caused by persistent
hydrothermal venting and not directly indicative of BP contact. This kind of filtering

would be inappropriate for anomaly computation in the NBP where the majority of

#2This choice of cutoff frequency is arbitrary but significantly longer than any vent field vet
encountered by ABE while still short on the length scale of an entire ABE dive.
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Figure 4-6: Potential temperature and optical backscatter versus potential density

for the descent and survey portions of a dive.
to descent data in an approximately

The solid line is a least squares fit
100 m thick layer immediately above the NBP.

Dashed lines indicate the width of the 99.9% prediction interval extrapolated to the
approximate potential density at nominal survey depth. Anomalies encountered during

the survey computed using these profiles are shown versus horizontal coordinates in
Figs. 4-9 & 4-10. Data are from Phase-1 dive ABE-126.

130



00 : 00 : 00 - 04 : 00 : 00 0% =00 : 00
Mission Day Time [HH:MM:SS|

ubs (mV)

00 :00: 00 0400 : 00 08 00 : 00
Mission Dav Time [HH:MM:SS]

Figure 4-7: OBS and potential temperature anomaly following removal of background
profile. Dashed lines indicate the 99.9% prediction interval above which anomalies are
declared as indicative of NBP contact. Data are from ABE-126.

a dive can consist of contact with the NBP. Contacts with BP stems, on the other
hand. comprise only a small fraction of any given data set. Figure 4-8 shows the
results of background profile removal and high-pass filtering applied to all time-series
data from ABE-126 (Phase-1).

4.3.5 Declaring Detections

Upon removal of trends, anomalies are classified into either detections or non-detections.
Different processing is applied to the declaration of NBP detections than to BIP de-
tections. As with the de-trending discussed above, these differences reflect the wide
separation in length scale between a NBP and any BP stems feeding it. NBP de-
tections are declared using the standard statistical measure of a prediction interval.
Interval width is learned from data known to be uncontaminated collected during the
vehicle’s descent. Outlier detection methods provide a better fit for BP detection;
the method employed here is known as a Hampel Identifier [22].

Ultimately both methods amount to the careful choice of a threshold for each
(detrended) anomaly time-series. Their value lies in automatic determination of that
threshold value according to a specified probability of false alarm FPp. In both cases.

normality of the underlying probability density of anomalies Av within background
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Figure 4-8: Tracer time-series following detrending for buoyant plune detection.
Dashed lines indicate thresholds determined by application of a Hampel Identifier to
each data set. VVA samples lying outside these thresholds are indicative of BP con-
tact. The other tracers are used as corroborating evidence. Data are from Phase-1 dive
ABE-126.



waters is assumed so that given an estimate of the associated variance Aa,. and

assuming successful detrending has removed any mean, P is given by:
Pp = / N {u; 0, A} du (4.2)
7 |Av|> oy

where ¢, denotes the threshold for declaring detections. Given a desired FPp the

corresponding threshold is
b =(Ma, )2 ®(1 — Pp/2) , (4.3)

where ® denotes the cumulative distribution function for a standard normal.??
Unlike classical hypothesis-test based detection theory. the use of prediction in-
tervals and outlier detection avoids the problematic task of specifying a probability
distribution for tracer concentration within plumes. However, without this distribu-
tion the classical notion of a probability of detection is impossible to compute as is
the associated operating characteristic.! On the other hand, note that a probability
of detection so defined refers only to the probability of declaring a detection while
immersed in either a NBP or BP. From a survey design perspective, the probability
of even encountering a BP is of far greater importance. Key elements of that quan-
tity are developed subsequently in § 4.5 of this chapter; development is completed in

Ch. 5.

NBP: Prediction Intervals

Temporal and horizontal variability in the water column, sensor noise, sensor drift.
and any nonlinearity in the true profile will all contribute to variation about the
estimated linear profile (4.1). Under the assumption that the resulting errors are in-
dependent. identically distributed and normally distributed. prediction intervals that

specify the probability of future values occurring within some interval can be com-

2 Eq. (4.2) applies to bilateral anomalies for which absolute values exceeding the threshold are
regarded as outliers and hence as detections. If, for example. only negative values qualify as outlier
candidates then the analogous expression for unilateral anomalies is Pp = [, _ i N Au:0, Aa, } du,
and the threshold as a function of desired Pp is ¢, = (1 — Pp).

21The operating characteristic of a generic detector consists of a curve on which which increased
probability of detection can be traded off with increased probability of false alarm by decreasing the
detection threshold.
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puted using standard methods (e.g.. [45], pg. 633). Values that fall outside these
prediction intervals are statistically unlikely to have been drawn from the same dis-
tribution as background values and are therefore likely to represent NBP contact. Of
course, the extent to which the actual data conforms to the assumption of normality
will influence the degree to which this is true in practice. This approach has the
advantage that all thresholds are defined after descent but prior to commencing the
survey portion of a dive, thereby potentially enabling real-time adaptive responses to
NBP detection.

Figure 4-6 shows 99.9% prediction intervals (Pp = 0.001) for OBS and potential
temperature ¢ along with data from the survey portion of the dive indicating a large
fraction of data collected on this dive sampled NBP water. Samples tagged as de-
tections are plotted in Figs. 4-9 & 4-10 and illustrate the utility of multi-tracer data
to interpret plume structure. Conservative potential temperature anomalies serve to
delineate the extent of the non-buoyant plume and suggest interception of a buoyant
plume at the northwest corner of the survey. OBS plays a complementary role with
a stronger signal over much of the plumes extent but with less predictable intensity
due to the complex nonconservative behavior of the hydrothermal particulates. Dif-
ferentiated redox potential d/dt(eH) is helpful for identifying the younger parts of
a NBP: however, the sensor’s dynamics imply gross violations of the assumption of
normality above, and better results have been obtained using the outlier detection

method discussed next. VVA is specific to BP stems and not considered here.

BP: Hampel Identifier

Outlier detection based on the Hampel Identifier [22.103.104] is the key processing
step applied to BP detection. The procedure relies on robust estimates for the mean
and standard deviation of the supposedly Gaussian background computed using the
median and median absolute deviation (MAD). Multiplication by the factor 1.4826 in
Algorithm 8 makes the expected value of the result equal to the standard deviation for
normally distributed data [104]. Data that exceed the median by a specified number
of MAD are declared outliers, or in the present application, detections. As above,
this threshold is determined from a desired Pp using the scaled MAD estimate for
the variance Aa, in (4.3). This method requires batch-processing of the entire record

from the survey portion of a dive before declaring BP detections. Moving-window
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Figure 4-9: Potential temperature anomaly A,6 observed during Phase-1 dive ABE-
126: (left) anomalies plotted at the location they were observed: (right) the distri-
bution of anomalies observed over the course of the survey. Color indicates intensity.
The thin black line in the left plot shows the vehicle track through background regions.
The strongest # anomalies are associated with interception of a buoyant plume near
the northwest corner of the survey. With the exception of a small patch of background
water to the south of this location. the entire survey appears to suggest contact with hy-
drothermally influenced water: though anomalies in the southern portion of the survey
are relatively weak and may represent gradually varying hydrography.
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Figure 4-10: Optical backscatter anomaly A, OBS observed during Phase-1 dive ABE-
126: (left) anomalies plotted at the location they were observed: (right) the distribu-
tion of anomalies observed over the course of the survey. The nonconservative nature of
OBS is evident. The strongest OBS anomalies were observed in a patch several hundred
meters to the west from where the vehicle intercepted buoyant plume water. A second
patch of high OBS to the south of the strongest anomalies confirms the hydrothermal
origin of weaker A, 0 anomaly evident in Fig. 4-9.
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versions of the Hampel Identifier exist [104] but would be inappropriate in this case
because minor anomalies in relatively quiescent portions of dives would be identified
as detections despite being much smaller in magnitude than anomalies associated
with actual BP contact, which tend to occur in backgrounds with greater variability.

Figure 4-11 shows the locations of outliers for each tracer from a sample Phase-1
dive in the NBP. Within the NBP. these plots complement those of Figs. 4-9 & 4-
10. Both potential temperature and redox potential (eH) suggest interception of
nascent plume water near the northwest corner of the survey. The latter also reveals
the relative youth of the NBP encountered over the northern portion of the survey,
The single group of VVA anomalies confirms interception of a BP at the northwest
corner of the survey, and the lack of other VVA anomalies indicate that the remaining
eH anomalies were probably not associated directly with BP activity. Examples of
this processing applied to Phase-2 dives are in App. F. All tracers and dives were
processed with P = 1077, corresponding to declaring outliers above approximately

six standard deviations from zero.

BP: Consensus Detection Declaration

Applied to individual anomaly time-series, the Hampel Identifier does a qualitatively
good job of picking out data associated with nearby BP activity. However, many
more OBS, eH, and ¢ anomalies tend to be identified as outliers than VVA anomalies.
Regardless of the specific tracers employed, the logical expression of the last block in
Algorithm 8 represents one means of deciding whether. taken together. the anomalies
indicate a BP detection or contradict one another. suggesting some detections may
have an alternate explanation.*

In part, the rarity of VVA anomalies reflects a relatively high noise level; nonethe-
less. T will take the perspective that only significant VVA qualifies as indicative of
definitive BP contact. To improve rejection of spurious VVA outliers, the final step

in Algorithm 8 requires that VVA detections be accompanied by eH detections. In

2"Decisions based on the magnitudes of anomalies represent another, but more complex approach,
as the required decision rule would consist of a mapping f : R¥ — B instead of a relatively simple
boolean expression f : B — B.
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Figure 4-11: Anomalies classified by a Hampel Identifier as BP detections during
Phase-1 dive ABE-126: (a) potential temperature 6; (b) optical backscatter (OBS):
(c) redox potential (eH); (d) vertical velocity anomaly (VVA). Color indicates inten-
sity. VVA and # both indicate interception of a BP near the northwest corner of the
survey. Redox potential decreased rapidly somewhat before this encounter, but addi-
tional spikes correlate with the main detection. In addition, eH shows plume waters
immediately to the east of the detection location to be composed of nascent plume
water consistent with the downwind location of these detections (c¢f. App. F). OBS
anomalies were considerably more intense within this nascent portion of the NBP than
in the BP encountered, probably reflecting the slow formation of iron oxides in the
oxygen-poor waters of the deep Pacific [37]. VVA anomaly intensity is shown according
to measurements from ABE’s on-board ADCP; however, problems with the instrument
during this dive necessitated that only those outliers also associated with model-based
VVA outliers be considered as ('anditi;n(!ﬁli: :§ detections.



terms of the boolean function f in Algorithm 8,
= [6{/17..4 N ‘szn} (4.4)

where the 't denote binary indicator variables associated with each tracer at time
t, and the square brackets denote a logical operation that produces a boolean result.
All buoyant plume detections used subsequently in § 4.5 and Ch. 5 were declared
according to this rule. This choice for f reflects the thinking that the nascent, as
yet unoxidized plume water within a BP should be accompanied by a strong drop in
eH relative to background [95]. Potential temperature could serve a similar function
without concern for sensor response characteristics; however, possible changes in sign
of the anomaly make # somewhat less attractive. The presence of OBS anomalies,
while reliable indicators of NBP contact, appear often enough outside BP stems,?
or within them at relatively low intensities,?” to warrant dismissal in favor of one or
both of eH and 6.

4.3.6 Results from Additional Dives

The Phase-1 dive discussed in this section (ABE-126) was selected because interpreta-
tion of the tracer records was straightforward and groundtruth locations of vent sites
were well-resolved from subsequent dives on the site. Anomaly maps for all other
dives discussed in this work are provided in App. F. These include both Phase-1
and Phase-2 dives: however, not all of these included BP detections according to the
methodology developed above. For these dives, successful vent localization was still
sometimes achieved based on manual interpretation of the data. The maps presented
here and in App. F suggest that proximal BP activity is sometimes associated with
elevated anomalies in the other tracers even in the absence of any significant VVA
anomaly. That appears to be especially true of redox potential (eH) within the NBP,
which is unique among the tracers measured on ABE in its ability to distinguish
nascent, though not necessarily still buoyant, plume water. The last component of

the methodology above could therefore be criticized on grounds of ignoring this poten-

26Ppssible explanations include particle fallout from above and sediment resuspension.
21T his effect may reflect insufficient water-column residence time for precipitates to have been
produced or variations in source and background water chemistry.
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tially valuable source of data. Subsequent development in § 4.5 and Ch. 5 capitalizes
on the availability of models that describe BP evolution and hence provide a tool
with which to predict source location on the seafloor following a BP detection. To
fully capitalize on eH detections within the NBP will require the development of an
analogous model capable of predicting the locations of these detections relative to the

locations of buoyant feeder plumes.
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4.4 Water Velocity Profiles from On-Board ADCP

In principle, knowledge of ambient crossflow current should aid in constraining the
source of hydrothermal plumes. Because water current velocity cannot be observed
directly from a moving platform, the essential element common to all methods for
estimating water current velocity from moving platforms is vector-subtraction of the
platform’s velocity-through-water (VITW) from the platform’s velocity-over-ground
(VOG).?® Simply because of the water’s proximity to the vehicle, it is relatively easy
to measure velocity-through-water (VITW). In contrast, measuring VOG can be much
more difficult because the ground, or some other suitable reference is often far from the
vehicle and outside the range of on-board sensors. If available, differentiated position
measurements can be substituted for direct measurements of VOG. As the following
will show. crossflow determination using the latter can be sensitive to small orientation
errors, and every effort must be made to remove such errors. This section concludes
by presenting crossflow velocity measured both with and without the availability of
an instrument-frame VOG measurement. Success is attained in either case, albeit

with reduced temporal resolution in the latter.

4.4.1 Error Sources

To compute earth-referenced water current velocity, three types of measurements are
required: (1) vehicle VTW, u,, € R?; (2) vehicle VOG, u, € R?); (3) vehicle attitude
(roll, pitch, heading). In underwater vehicle applications using a combined ADCP
and Doppler velocity log (DVL) to provide velocity measurements, the dominant error
sources consist of approximately zero-mean velocity noise and instrument (or vehicle)
orientation biases. With the exception of heading, underwater vehicle attitude is rel-
atively easy to measure with low-cost tilt-meters on account of the ubiquitous gravity
vector and relatively slow accelerations involved in vehicle maneuvers. Heading can
be measured cost-effectively with magnetic compasses, however careful calibration
to account for the magnetic properties of the platform is essential [14]. Imperfect
calibration produces so-called hard-iron and soft-iron errors, which result in heading

bias that is a function of true heading (heading-dependent heading bias) [14]. Even

28] will reserve the more common terms speed-over-ground (SOG) and speed-through-water (STW)
to refer to scalar speeds, using VOG and VT'W to denote vectors.
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with proper calibration, environmental variability of the Earth’s magnetic field can
produce local biases that cannot be calibrated away a priori. More costly fiber-optic
north-seeking gyroscopes provide nearly ideal attitude measurements (0.1° accuracy);
these have enabled Kinsey and Whitcomb [56] to solve the problem of in situ relative
alignment between instruments for DVL-equipped vehicles operating near bottom.?’
However, their method does not address the heading-dependent heading bias as re-
sults from use of a magnetic compass and requires that the Doppler sensor be within

range of the seafloor to measure VOG.

The key difference between zero-mean velocity noise and orientation or attitude
bias (systematic error) is that the former can be attenuated by averaging. Tidal
currents vary slowly (hrs.) whereas typical update rates for navigation sensors on
AUVs are O (0.1 — 10 Hz) [128] so that averaging readily attenuates zero-mean noise,
assuming, of course, that the averaging can be applied in the earth-frame. Attitude
and orientation bias corrupt the transformation of instrument-frame velocities into
the earth frame. If both VOG and VITW are measured in the instrument-frame,
the error incurred for small biases is commensurately small; however, as the ensuing
analysis shows, even small biases can completely obscure estimated water current

velocity when VOG cannot be measured natively in the same frame as VTW.

4.4.2 Effect of Heading Error

Since many ADCPs suitable for use on AUVs include tilt-meters for measuring pitch
and roll of the unit, I will consider only the effect of a heading error. For simplicity,
consider a vehicle translating along a straight line at constant attitude (roll, pitch,
heading) in a steady current w collecting noiseless pitch, roll, VTW u,,, and VOG
u, measurements, but where either heading v, static vehicle-relative velocity sensor
orientation R, or both are subject to unknown bias. Water velocity is computed

from these measurements in different ways depending on whether u, is measured in

#Kinsey and Whitcomb [56] report a method for in-situ calibration of attitude and acoustic
Doppler sensors. Their method solves for a static sensor orientation that minimizes the difference
between dead-reckoned position estimates from the Doppler sensor and absolute position measure-
ments from a long baseline (LBL) system.
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the instrument-frame (4.5a) or earth-fixed reference frame (4.5b):

‘w={R(¥) {R (**—tu,) inst.-frame; (4.5a)
‘w="‘u, —R(¥);R ‘u,, earth-frame. (4.5b)

Frame-notation is described in App. A; underscored frame identifiers denote the lev-
eled versions of those frames. The transformation between the leveled instrument
frame i and leveled vehicle frame v can be expressed in terms of the unleveled in-
strument orientation rotation matrix YR as R = YR YR !R. For constant vehicle
pitch and roll, fﬁ' describes a static rotat.ionuabout the gra?vity vector. Under these
conditions, a error in ¥ R results in a static bias indistinguishable from vehicle heading

error.

Figure 4-12 depicts the effect of heading error (and sensor orientation error) on the
horizontal earth-frame water velocity estimate assuming otherwise noiseless measure-
ments. When both u, and u,, are measured in the instrument-frame, the magnitude
of the water current velocity w £ |w]| is unaffected, whereas its direction Zw £ Zw
is rotated from true by exactly the heading error ). Changes in vehicle attitude will
produce dynamic Zw errors and hence affect the earth-frame averaging of w; however,
since 1 is typically small and most AUV missions consist of long, straight tracklines,
good estimates of w are generally obtainable. Alternately, when an instrument-frame
VOG estimate is unavailable and replaced by an earth-frame estimate, heading bias
incurs errors in both water velocity magnitude w and direction Zw. The difference
in sensitivity to heading-bias between w computed via (4.5a) versus (4.5b) can be
understood intuitively by considering the vector subtraction depicted in Fig. 4-12.
In case (b), the length of two sides of the triangle and the angle between them are
known, hence the triangle is completely constrained except for its orientation in the
earth-fixed reference frame. In case (b), the length two sides of the triangle are known,
but the angle between them is subject to error, hence the third side (w) is subject to

both magnitude and direction error.

Whereas case (b) in Figure 4-12 is straightforward, the effect of heading bias in
case (c¢) is dependent on both crabbing angle v (defined as the angle between u, and
u,,) and on the relative magnitudes of u, and u,,. Henceforth, I restrict my attention

to case (¢): VOG measured in an earth-fixed reference frame. Figure 4-13 depicts
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Figure 4-12: Effect of heading error on earth-frame water velocity estimates: (a) no
heading error (¥ = 0); (b) non-zero heading error with both VOG u, and VI'W u,,
measured in the instrument-frame; (c¢) non-zero heading error with uy measured in the
earth-frame and u,, measured in the instrument-frame. The crabbing angle is denoted
by v. When both u, and u,, are measured in the frame of the ADCP, ¥ # 0 results in a
rotated water velocity estimate, but no magnitude error. If the instrument-frame VOG
measurement is unavailable from the ADCP (e.g. no bottom-lock), then an earth-frame
VOG estimate from LBL navigation can be substituted; however, 1/ # 0 perturbs both
the magnitude and direction estimate of w. The resulting error is dependent both on
v and the relative magnitudes of uy and u,,.
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the dependence of water current velocity w on < for constant STW and two SOGs
corresponding to a tailwind (Ju,| > |u,|) and headwind (Ju,| < |u,|).** The water
current velocity magnitude w is attained by application of the law of cosines to the

triangle depicted in case (c) of Fig. 4-12:
lw|* = |ug|2 : |u¢L|2 - 2'“9[2|um|2 Cosy . (4.6)

Its direction Zw is given by the law of sines:

sin Zw _ sin(m — Zw — )
luw[ [ugl

Non-dimensionalization of SOG and water current speed w by vehicle STW yields the
non-dimensional variables u), £ [u|/[u,| and w’ £ |w|/|uy|. Equations (4.6) and
(4.7) become:

B

gl a2 G ,
u’—(ug +1 2ugcos'})
- ) (4.8)

Zw = tan™ et
Ug — COS7Y

When VOG is measured in an earth-fixed coordinate frame, heading error is equivalent
to an error in crabbing angle v. Therefore, the non-dimensional magnitude error '

and direction error Zw due to an error in heading v are:

@ () =w'(y+9) —w'(v)

e - ; (4.9)
Zw(Y) = Lw(y + ) — Lw'(7)
A Taylor expansion of these expressions about 5 = 0 yields
- ul siny ~ .
W) = ———— v +0(Y)
(u)* + 1 — 2u}, cosy) (4.10)
uy cosy — 1 » e

Lw(y) =

e _ ] '
up” + 1 — 2ug cosy

T hese definitions of headwind and tailwind assume that vehicle speed exceeds water current
speed (|u,| > |w|), a necessary condition for safe vehicle operation.
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(a) (b)

Figure 4-13: Schematic dependence of water velocity measurement w on crabbing
angle v for two earth-frame SOG uy = |uy| to STW wuy,, = |uy| ratios ug/uy: (a)
headwind with ug/u,, = 0.75; (b) tailwind with ug/u,, = 1.25. Heading error is additive
to crabbing angle 4 and produces a false crabbing angle estimate. These plots indicate
the resulting error in the w estimate is strongly dependent on the actual crabbing angle
~. To see this, consider that for a given v, the variation in the magnitude and direction
of w for small ¢ can be assessed by altering w such that its tail lies on a line tangent
to the dashed circle at the actual 4. For instance, near v = 0, heading errors always
result in small current magnitude errors, but large directional errors. Large crabbing
angles produce magnitude errors that are much more severe in a tailwind than in a
headwind, whereas directional errors are more severe in a headwind. The grayed out
portions of each pie represent unsafe operating conditions where current speed exceeds
vehicle speed (|w| > uy).

Since heading errors should be small, the leading terms in these expressions approxi-
mate water current velocity error per unit heading error. They are plotted as functions
of uy, for various v in Fig. 4-14.

The key insight offered by Fig. 4-14 is that water current velocity estimation for
small crabbing angles v =~ 0 and little difference between SOG and STW u; ~ 1
is sensitive to heading error. These conditions imply either low current magnitudes
(w = 0), or else a “fast vehicle” (|u,| > |w|). Grossly incorrect Zw may be irrel-
evant for [w| =~ 0; indeed, Zw is undefined for |w| = 0. However, current velocity
magnitude error due to heading bias is potentially severe for a fast vehicle because

the dimensional error is proportional to vehicle speed.

In terms of non-dimensional water current speed w’, a fast vehicle corresponds to

w' — 0, or equivalently to ¥ — 0 and u;, — 1. In the limit, the leading terms of
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Figure 4-14: Non-dimensional error in water velocity magnitude and direction from
heading error as a function of non-dimensional SOG uy = |ug|/|uy| for various crab-
bing angle v: (a) first-order magnitude error per unit heading error v; (b) first-order
direction error per unit v. Over the range of uy plotted, heading errors of ) = 1° pro-
duce water velocity magnitude errors of between approximately 1% and 2% of vehicle
speed. Faster vehicles and slower currents make water velocity magnitude progressively
more sensitive to heading error. The same is true for water velocity direction: slow
currents and relatively fast vehicles imply small crabbing angles v =~ 0 and u"g =~ 1.
These conditions produce progressively larger direction errors per unit heading error as
uy — 1 and v — 0 until attaining a singularity at u; = 1. The dashed lines in both
plots indicate the maximum crabbing angle for a given u; under the constraint that
vehicle speed exceed current speed (|w| > |uy|) to allow for safe vehicle operation.
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(4.10) are singular. To avoid this uninformative singularity, consider the behavior of
the water current magnitude and direction errors in its vicinity, that is, as u; — 1

for small v = 0:

uyYy -
lim @' = lim —*—
M ul — u. —
“ e, (4.11)
lim Zw = lim — Y
w'—0% uy—1 Ug — 1

Evidently both types of water current velocity error become extremely sensitive to
heading error 'UTJ for fast vehicles when VOG cannot be measured in the same frame
as VTW,

4.4.3 Results

ABE is equipped with a 300 kHz ADCP/DVL3! and a calibrated magnetic flux gate
magnetometer®? with 3-axis magnetic flux density and tilt-compensated heading out-
puts.® In light of the preceding discussion, every effort has been made to eliminate

heading bias and errors in the static orientation of the ADCP on the vehicle:

o ABE executes a heading calibration spin during its descent, the data from which
is used to determine any remaining hard-iron error using a technique based on
finding a hard-iron magnetization vector that fits leveled magnetic flux density

to a circle for each complete vehicle revolution [14].

e A static, leveled (single parameter) instrument orientation is computed by com-
paring VOG from bottom-track DVL velocity to VOG from differentiated LBL
position. This compensates for sensor misalignment at a static vehicle pitch
and roll and is adequate for a passively stable vehicle like ABE.

3IRD Instruments, Inc. Navigator ADCP, rdinstruments.com.

32PNI Corp. TCM2 electronic compass module, www. pnicorp.com

33ABE’s ADCP contains its own heading reference; however, the unit has not yet been calibrated
for the magnetic properties of the vehicle owing to the awkwardness of precisely orienting a 700 kg
vehicle.
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Figure 4-15: Crossflow speed and direction profiles vs. time (5 min averages) from
Phase-2 dive ABE-151. Dashed lines indicate the boundaries between 10 m bins beneath
the vehicle. There appears to be little variation of crossflow speed or direction with
depth compared to temporal variability, though for this type of plot, spatial variability
will contribute to the apparent temporal variability. Gaps indicate interference from
the seafloor. Bottom lock was maintained throughout the duration of this 50 m height
dive.

The next two sections compare results for a water current velocity record acquired
by ABE when using bottom-track velocity from ABE’s DVL for VOG versus differ-

entiated position estimates from LBL acoustic navigation.

Instrument-Frame VOG

ABE’s ADCP/DVL is capable of acquiring bottom-lock between heights of 200 m and
300 m above the seafloor. All Phase-2 dives fall within this range, and bottom-lock
was available on some Phase-1 dives as well. Figure 4-15 shows profiles of horizon-
tal crossflow averaged over 5 min intervals observed during ABE-151, a 50 m height
Phase-2 dive at SMAR. The impressively variable crossflow magnitudes and direc-
tions observed are also shown in Fig. 4-16 from a birds-eye perspective. Figure 4-16
in particular illustrates a temporal and spatial variability characteristic of the records
acquired by ABE (cf. App. F).

Earth-Frame VOG

ABE is a relatively slow AUV; nonetheless, referring to Fig. 4-14, a heading bias of just

1° in weak crossflows will produce approximately 1 em/s worth of crossflow speed error
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Figure 4-16: Birds-eye view of crossflow speed and direction observed during ABE-
151 (5 min averages). Spatial variability in crossflows is especially evident on tracklines
near coordinates (10.4,10.4). The eastern ends of these tracklines indicate almost no
flow, whereas a westerly component appears persistent on their western ends despite
a complete reversal of the northerly component of the flow as the vehicle progressed
north. The tracklines shown span about 14 h. Bottom lock was maintained throughout
the duration of this 50 m height dive.
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Figure 4-17: LBL-derived crossflow magnitude and direction profiles versus time,

shown as 5 min and 1 h averages. The 5 min averages show considerably more variability

than indicated by the same data processed using bottom-track velocity and shown in

Fig. 4-15; however, the 1 h averages agree well.

22:00:00  00:00:00 02:00:00

at ABE’s cruising speed of approximately 0.6 m/s. A 1 cm/s error is substantial when
compared to typical observed crossflow speeds of 5 cm/s. Fortunately, comparisons
of VOG computed from LBL to bottom-track VOG (when available) indicate that
increasing the length of averaging intervals to span multiple tracklines on reciprocal
headings substantially reduces error. This suggests a residual hard iron error [14].
Heading error due to hard iron offset will approximately cancel on reciprocal headings
because hard-iron-induced heading errors are approximately sinusoidal with a period
of 2m.

Figure 4-17 compares 5 min averages of LBL-derived crossflow velocity to 1 h
averages for the same dive as shown in Fig. 4-15. The considerably increased tempo-
ral variability in the 5 min averages suggested by Fig. 4-17 over Fig. 4-15 indicates
contamination from residual heading error. However, 1 h averages agree well with
bottom-track derived crossflows on the same timescale; of course, a longer averaging
interval engenders a loss of resolution as shown in Fig. 4-18. Crossflow measurements

for dives lacking bottom-track are shown in App. F as 1 h averages.
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Figure 4-18: Crossflow error velocity computed by comparing interpolated 1 h aver-
age LBL-derived crossflow estimates to 5 min average bottom-track-derived crossflow
estimates. Increasing averaging time from 5 min to 1 h improves the accuracy of LBL-
derived crossflow estimates, but at the cost of reduced resolution.
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4.5 Uncertainty in Seafloor Vent Location

This section develops the constraints on source location attained from individual de-
tections of buoyant effluent considered in isolation. Intuitively, the spatial ambiguity
associated with a single detection will depend on the width of the plume at the
detection location, the strength of ambient currents (which advect the plume away
from its source), as well as numerous secondary factors including source parameters,
bathymetry, local hydrography, and the uncertainties associated with each. Because
of the importance of horizontal advection in plume evolution, a ancillary goal of this
section is to quantify the achievable reduction in source location uncertainty attained
by measuring water current velocity on board the surveying vehicle. In principle,
knowledge of current velocity should reduce the area of seafloor from which a plume
could have emanated by constraining the source to lie upwind of the detection loca-
tion. However, the achievable performance improvement will depend on the relative
importance of advective versus dispersive processes in determining plume evolution
and on the accuracy and availability of a plume model to predict that influence.
Presumably because of the much smaller range of space and time scales involved,
BP detections have proven more amenable to interpretation in terms of source location

than NBP detections, especially with respect to crossflows.*

For this reason I restrict
my attention in this section to the analysis of BP detections. Even for BP detections,
the dependence on a model for describing BP rise is potentially problematic for two
reasons: (1) source parameters cannot be known a priori; (2) it is impossible to
predict turbulent plume tracer concentrations on the short timescales observed by a
surveying AUV passing through a BP. Nevertheless, the modeling efforts presented
in this section enable a key inference to be drawn from the anomaly maps of the
previous section, namely the portion of seafloor that likely contains the source of
each BP detection.

This section approaches vent localization from an inverse perspective. To apply

the OG mapping methods of Part 1 to this problem, ultimately a forward model

3Lavelle [67] has shown it is possible to invert a long record of current velocity and potential
temperature in the NBP for the source strengths of hypothetical vent fields on a uniform grid;
however, current records collected by the ABE AUV in our field operations have generally been too
short to employ such a methodology, the cumulative advected distance rarely exceeding trackline
spacing for phase-1 dives within the non-buoyant plume.
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is required. Most of the aspects of the required model are developed here from an
inverse perspective, with the remaining elements required to formulate the forward

perspective left for the next chapter.

4.5.1 Buoyant Plume Interception

Figure 4-19 shows schematically an AUV intercepting a buoyant hydrothermal plume
at some source relative vehicle height h,;. The plume outline depicts rise due to
buoyancy flux at the seafloor, plume spread due to self-generated and ambient turbu-
lence and horizontal advection by ambient background currents. Because the volume
of fluid ejected from the source is insignificant relative to the entrained fluid within
most of the plume, the plume will acquire the horizontal momentum of the ambient
fluids within a few source-diameters of rise height [20]. Detections of buoyant plume
effluent are likely when the vehicle passes near the plume centerline; however, the in-
formation these detections carry about seafloor source location is obscured by plume
spread. Even assuming perfect knowledge of the shape of the plume centerline, as
vehicle height above the seafloor increases, the spatial extent of seafloor from which
that plume could have emanated grows. However, the potential benefit attained by
measuring ambient current velocity also increases because effluent will have advected
farther from the source by the time it attains the height of the vehicle.
Independently of vehicle height, the physics governing plume rise affect the relative
value of measuring currents. Interception of a faster rising plume will occur closer to
the source, whereas advection will have longer to act on slower rising fluid, advecting
it father from the source before interception for the same vehicle height. Clearly the
relative magnitude of these velocities is important. Recall from § 4.1 that plume rise
is also affected by background stratification, source buoyancy flux, source chemistry,
and source diameter [81,82,84,110]. Of these, only the first can be known a priori.
Usually a surveying vehicle will only be able to measure a vertical profile of cur-
rent velocity at its own location.?® Assuming horizontal homogeneity, temporal vari-

ation in currents is easily accommodated. Over sufficiently large horizontal distances,

3 ADCPs carried on AUVs are typically oriented vertically (e.g. ABE and REMUS [1]) and can
thus acquire vertical current profiles. ADCPs can be oriented horizontally, however, because the
deep ocean is fairly homogeneous on short horizontal length-scales, the range would have to be
significant. Furthermore, a horizontal orientation could result in bottom interference because of the
20° angular between the ADCP’s beams.
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VEHICLE TRACKLINE

Figure 4-19: Buoyant hydrothermal plume interception by a vehicle surveying at a
source-relative height f,.
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Figure 4-20: The effect of ambient crossflow strength Uy on the location of a plume
at vehicle depth assuming constant rise rate Wy: (a) strong crossflow (Up/Wy > 1);
(b) weak crossflow (Uy/Wp < 1). Higher intensity crossflows advect the plume over
larger horizontal distances for the same vertical source-vehicle separation h,,. Within
the plume, the average distance to the plume centerline E [|r|] is less than the average
distance to the plume source on the seafloor E [|ry|]: however, wide plumes and weak
advection reduce the magnitude of the difference.

bathymetry and other influences will degrade the quality of this assumption. Fur-
thermore, without assuming some kind of model for the spatio-temporal variability of
the currents, it is impossible to separate spatial variations from temporal variations,

the two being coupled through the motion of the vehicle.®

4.5.2 Distribution of BP Detection Location

Figure 4-20 schematically illustrates the effect of ambient crossflow strength |Up| on
the source-relative location of a buoyant plume. Effluent is assumed to issue from a
point source and rise at a constant rate W, thereafter.*” Letting o, denote a character-
istic plume radius, case (a) corresponds to dominant advection (o, < Uph,s/Wy), and
case (b) corresponds to weak advection with plume evolution dominated by plume
spread (o, > Uph,s/W). Higher intensity crossflows advect the plume over larger

horizontal distances for the same vertical source-vehicle separation h,.

%For processes with known spatio-temporal spectra, Zhang et al. [137] developed the concept
of a "mingled-spectrum” to describe the mapping of spatial and temporal variation onto a single
temporal axis through the vehicle's velocity.

37This assumption is useful here to establish intuition on the basis of the simple geometric rela-
tionships that result. A justification is offered subsequently in § 4.5.3
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Figure 4-20 also defines two scalar quantities rq, the horizontal distance between a
vent and vehicle location upon detection of the plume emanating from that vent, and
r, the horizontal distance between the plume’s centerline location at vehicle depth and
vehicle location upon detection. These distances are the key to assessing the value of
measuring Uy in situ. Because the plume evolution itself is a random process, these
quantities are both inherently random. In principle, knowledge of centerline evolu-
tion and crossflow should enable the uncertainty associated with the source location
to reflect the statistics of r rather than ry. Thus the attainable reduction in source lo-
cation uncertainty only becomes significant when crossflow intensity dominates plume
growth, as in case (a) of Fig. 4-20.

For all crossflow intensities and plume widths, the triangle inequalities applied to

ro. 7, and centerline length Uph,/W yield the constraints:

hvs
obrz L
Uoh (412)
Sals

These bounds are purely geometric, and apply subject to the assumption of a constant
rise rate Wy so long as crossflows remain invariant. These bounds reveal themselves in
Figure 4-21 which shows realizations of r vs ry attained for 20 simulated detections,
using (a) a relatively strong non-dimensional crossflow Uy/W, and (b) a relatively
weak non-dimensional crossflow. The samples were generated under the assumption
that r is Rayleigh distributed about the centerline location. While on average E [r] <
E [ro], for an individual detection the associated r and r¢ may be such that ro < r.
Of course there is no way of knowing that the source is in fact closer than the plume

centerline without a priori knowledge of source location.

4.5.3 Dependence on source-relative vehicle height A,

Under favorable crossflow conditions, realizing a reduction in source location ambi-
guity from measurement of the crossflow still requires accurate prediction of plume
centerline location at vehicle depth. That prediction will be subject to modeling er-
ror as well as to error in estimates of the crossflow due to either direct measurement

error, or the spatial variability thereof. Furthermore, both the attainable reduction
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Figure 4-21: Non-dimensional distance to plume centerline versus non-dimensional
distance to source for 20 simulated detection locations assuming Rayleigh distribu-
tion about plume centerline: (a) strong crossflow (Up/Wy > 1); (b) weak crossflow
(Up/Wy < 1). The bounds specified by (4.12) are indicated by dashed lines. As cross-
flow intensity decreases, these bounds move toward the 1 : 1 line, reducing any benefit
attained from accurate prediction of centerline location. Similarly, as plume width in-
creases the sample points spread out along the r axis, filling a larger portion of the
band around the 1 : 1 line, thereby effectively reducing the distinction between r and
ro as well.
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in source location ambiguity as well as the fidelity of any centerline prediction should
be functions of source-relative vehicle height h,,: a plume encountered at larger h,,
will have had more time to advect farther from its source in the same crossflow. This
intuitive idea is supported by Fig. 4-22 which shows the distances at which BP detec-
tions were observed versus vehicle height. Finally, effective source size or vent field
extent will bound the achievable resolution. I turn my attention to these factors next.
The ensuing development also affords an opportunity to assess the assumptions of a

constant rise rate and of a Rayleigh distribution for » employed in Figs. 4-20 & 4-21.

I now develop a model for the expected distribution of source-relative detection
locations from the elementary perspective of a discrete particle of vent fluid ejected
from a hydrothermal source. From § 4.1, the factors affecting the trajectory of the
particle are (1) buoyancy of the particle and the surrounding fluid; (2) turbulence,
mostly self-generated by the plume’s own buoyancy; (3) advection by horizontal cross-
flow. Contributions from both buoyancy and turbulence will determine the vertical
motions undertaken by the particle. Considerable simplification is attained, however,
by assuming that buoyancy dominates and furthermore that it acts to deterministi-
cally increase particle height above the source as a function of time. Finally, I assume
that crossflows (composed primarily of diurnal tidal currents) can be regarded as
constant over the 1 h timescale of buoyant plume rise. Under these assumptions, the
particle’s position x; as a function of time ¢ and time-since-emission 7, is:

i

xi(t,Te) =xs +U(t) -7 + hCL(TQ)lAc +/ u;(t —7)dr, (4.13)

t—Te

where x, denotes the particle’s origin from a source on the seafloor, U(t) denotes hori-
zontal advective currents assumed constant over the interval [t — 7., t| and henceforth
denoted Uy, k denotes the unit vertical (positive down), hci(7.) denotes centerline
rise height as a function of time-since-emission, and u;(t) denotes the turbulent mo-
tions executed by the particle. These are limited to horizontal motions about plume
centerline by assumption, i.e. u; 'k = 0. Two elements of (4.13) are subject to ran-
domness: x,, because vent fields have finite size, and u,(t), because of the stochastic

nature of turbulence.

While an individual hydrothermal orifice might be reasonably approximated by a
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Figure 4-22: Measured distance to source rg versus (a) source relative vehicle height Ay for all studied ABE dives;
(b) vehicle height sealed by measured crossflow intensity and canonical rise rate. Ughye/0.1; (€) vehicle height scaled by
mensured crosstlow intensity and measured rise rate. Ughys /W, Measured crossHow intensity is indieated by the color of
cach mark. Detections from five dives are plotted. indicated by the shape of the mark used. All plots indicate an increase
in ro with vehicle height. although considerable scatter is also evident at vehicle heights of ~ 50 m where BP detections
were encountered most often. Assuming a constant, rise rate. sealing of hys by crossflow intensity over rise rate should
account for variations in crossflow intensity thereby making most detections fall nearer to the 1: 1 line indicated in each
plot by a dashed line. Using the average measured rise rate as in (¢) as opposed to the canonical value as in (b) appears to
improve the trend. In case of multiple nearby sources, detections were assigned to sources based on proximity to a circle
of radius Uphy, /Wy using Wy = 0.1 m/s (panels a&b) or measured rise rate (panel ¢). Starred data points indicate those
detections for which another source was closer to the detection location than the assigned source. Error bars indicate a
weighted measure of the width of each detection.
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point source, nearby orifices on a single hydrothermal structure, or multiple venting
structures in a field may produce plumes that coalesce as they rise. To account for
this, let the horizontal component of particle emission location "x, follow a normal
distribution:

Pxs ~ N {"%s,02Iox2} (4.14)

where "X, denotes the center of the vent field, and o, a measure of field extent. I as-
sume the the vertical emission location z, is known approximately from bathymetry
and constrained to a small depth interval (relative to o) such that it can be re-
garded as deterministic. The horizontal field extent represents a lower bound on the
achievable precision of source locations inferred from mid-water column detections.
It remains to describe the distribution of the horizontal components of the tur-
bulent motions "u;(t). This can be done by linking the random motions of individ-
ual particles to the known time-averaged concentration profile across a plume. The
probability density function of an individual particle’s location p (x;; 7) is linked to

ensemble average concentration x(x,7.) through the relationship [20]:
x(x,7) = Qp (x:7.) dx (4.15)

where p (x:7.) denotes the particle position probability density evaluated at x, and
Q@ denotes the total mass of particles released. The probability densities associated
with each particle must be identical functions of 7, for (4.15) to apply. The analogous
form of (4.15) for a steady, continuous release of particles is, by superposition of the

ensemble average fields [20],

x(x) =q/:Cp(x;T)dT-dx . (4.16)

where the ensemble average no longer contains any time dependence and is equiva-
lently a time-average concentration.*® Total particle mass @ has been replaced by
a steady mass release rate ¢ to accommodate this continuous release perspective, as

opposed to the release of an discrete number of particles.

¥ Ensemble average connection to time-average for continuous release.
491 assume a steady release rate throughout this work. Hydrothermal venting is known to vary in
intensity, though the extent of this variation is poorly constrained. Other types of geophysical flows

like cold seeps may be subject to considerable variation due to tidally induced pressure changes.
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Assuming independence of the three components of particle position,

x("x,z) = q/:op (hx;'r) p(z;7)dr-dx . (4.17)

By assumption, vertical particle position z; is a deterministic function of time-since-
release 7. so that
p(z;7e) =6 (2 — her(7e)) - (4.18)

Further assuming that hc(7.) is invertible, the integrand of (4.17) will be zero ev-

erywhere except at 7. = h¢| (25 — 2) yielding
x(*x,2) = g p (*x; hgl (25 — z)) dx . (4.19)

Turbulent motions are three-dimensional, thus the assumption of a deterministic z, is
a considerable simplification. However, their effects on time-averaged concentration
x(x) are minor if the ascending plume is narrow such that the concentration gradient
in the 2-direction is shallow relative to the horizontal gradient. In that case, turbulent
vertical motions will tend to cancel one another out in a frame moving with the bulk
flow, as effluent from above will be brought down at roughly the same rate as efluent

being brought up from below.*"

Observations of laboratory plumes indicate that time-averaged concentration pro-
files across buoyant plumes are approximately Gaussian [82], therefore it follows from
(4.19) that "x,(z) will be normally distributed. Thus only the covariance of the in-
tegral containing u; in the particle position model (4.13) is required to completely
specify the distribution of x;(7.). In general, this covariance will be a function of time-
since-release 7,. Integration of the turbulent velocities "u; will tend to de-correlate

the components of the resulting vector such that a 7.-dependent covariance describing

Applying the approaches developed in this thesis to systems with significant temporal variability
in source characteristics would require models capable of predicting this variation, a daunting task,
or else models that do not attempt to predict the aspects of plumes affected by varying source
fluxes. Sources that move or turn off completely imply a time-dependent true map and cannot be
accomodated without augmenting the state space of the map.

40This argument is usually employed to justify the so-called “slender-plume” approximation to
turbulent diffusion of a passive tracer. The argument requires explicit integration of (4.15) using an
assumed (Gaussian) form for p (x; 7.) and assuming the associated variance is known as a function
of 7. (e.g. [20]), but avoids the need for an a priori assumption of negligible axial diffusion.

162



plume width can be expected to have the form
0p(Te)Iax2 = cov (/ hu,-('r)d-r) 4 (4.20)
0

where the dependence on time ¢ has been dropped since the statistics of "u; are a
function of 7, alone. Below, I specify o,(7.) directly based on empirical observations
of buoyant hydrothermal plumes, obviating any need to specify the statistics of u;, in
effect relying on the Central Limit Theorem to ensure that the resulting distribution
of particle position will be Gaussian regardless of the details of u;.*' On the basis of

this argument, horizontal particle position will be distributed according to
hxl_(.re) ms A {"}_(3 FIL O (0'12’(1'9) + gf) I2x2} ! (4.21)

Finally, the dependence on 7, can be replaced by a dependence on z via the transfor-

mation 7, = hg'(2s — 2) (assumed to exist over the range of interest, z < z,):
"xi(z) ~ N {"%, +"Uo- hgl(2s — 2), (05(hel(2s —2)) +03) Iaxa} . (4.22)

Up to this point, no specific reference has been made to any models of buoyant
plume rise, only to the general characteristics thereof. To proceed, the functions
heu(7e) and o,(7.) need to be specified. A crude, but nonetheless illuminating per-
spective is afforded by assuming a constant rise rate Wy, and furthermore that plume

radius grow linearly with height Aci:

heu(1e) = WoTe (4.23a)
Up(h.q_) = %(L.}LCL s (4?3}))

where a represents a constant of proportionality describing the increase in plume

radius per unit rise.*?. Though crude, these expressions can be justified to a degree

“IThe relationship between 0,7, and the covariance of h, is easily attained under the simplifying
assumption that "u, is a (non-stationary) continuous-time white noise process. Straightforward
manipulations lead to cov (u;) = d—f('_ﬂ'g(‘i'e)lzxz- For example, if cov (u;) were constant (as it would
be for molecular diffusion), then op,(7.) x /7, yielding the familiar (e.g. [20]) V't law for the growth
in width of a passive plume in the far field of a continuously releasing source.

*2The leading factor of % reflects the scaling between plume radius for a top hat cross-section
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with respect to the classical “top-hat” model of time-averaged buoyant plume rise
originally formulated by Morton, Taylor, and Turner [89], and applied subsequently
to hydrothermal plumes by Speer and Rona [110] and others.

The essence of the MTT model is an artificial distinction between the ambient
environment and plume fluid [20]. That distinction enables the closure of integral con-
servation equations for the mass, momentum and buoyancy of the rising plume via
the assumption that such plumes grow by incorporating ambient fluid into themselves
as they rise. The process by which this occurs is known as turbulent entrainment. Be-
cause the entrainment results from the plumes own motion, a reasonable assumption
is that it should occur at a rate proportional to its local vertical velocity.”® The asso-
ciated constant of proportionality, known as the entrainment coefficient and usually
denoted a, has a typical value of a = 0.07 (e.g. [82]).

In unstratified surroundings, the MTT model predicts indefinite rise and linear
growth in plume radius with respect to height. In uniformly stratified surroundings
(constant Brunt-Viisila buoyancy frequency) buoyant plumes eventually achieve a
terminal rise height, though their radii still grow approximately linearly up to roughly
90% of the level of neutral buoyancy before beginning a more rapid expansion [119].
On this basis, the assumption of linear growth in plume radius (4.23a) is a reasonable
approximation, especially for plumes encountered beneath the NBP. Mecduff [83]
reports a radial growth rate of 10 cm per meter of rise for typical plumes emanating
from the hydrothermal vents of the Main Endeavour Field located in the Northeast
Pacific giving a = 0.1 m/m.

The assumption (4.23b) of a constant rise rate is rather more difficult to defend as
it ignores the dynamic balance between plume growth through entrainment, vertical
momentum, and buoyancy forces acting on the ascending plume. Modeling studies
carried out by Speer and Rona [110] for canonical Pacific and Atlantic plumes predict
a nearly instantaneous initial vertical acceleration followed by rapid decay over the
first few tens of meters of rise, then relatively slow decay throughout most of a plume’s
rise, until a final period of rapid decay beyond the level of neutral buoyancy. They

give a figure of 10 cm/s for both Atlantic and Pacific plumes as describing vertical

versus standard deviation for a Gaussian plume cross-section [47]
“Turner [119] presents an overview of the many applications of the entrainment assumption to
geophysical flows as well as a discussion of the mechanism itself.
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velocity throughout most of the vertical extent of the plume. I will refer to this figure,
Wy = 0.1 m/s, subsequently as the “canonical rise rate” for buoyant hydrothermal
plumes. Thus the assumptions (4.23), though rough, are not unreasonable on the
basis of theoretical predictions, the first of which applies to all buoyant plumes, and
the latter specifically to hydrothermal plumes.*® MTT-based modeling efforts specific
to hydrothermal plumes in the buoyant phase (e.g. [81,84,107,110]) should in principle
produce more accurate results than the simplistic perspective taken above; however,
these are of dubious utility in the present context where source parameters cannot be

known a priori.

Returning now to the probability distribution of the location of a particle emitted
from a hydrothermal source, the assumptions (4.23) provide a functional form in
terms of source-relative vehicle height h,, = z; — 2, at the hypothetical interception

of particle #:

h"l-‘&

hxi(ht's) ~ N his i hUO_,a
H/{]

(%a.zh.‘,s + 0?) ngg} : (4.24)
Intuitively, a parallel exists between the uncertainty associated with an emitted par-
ticle’s location given its origin and the uncertainty associated with a particle’s origin
given its location in the water column. Since centerline evolution and crossflow play
important roles in determining particle location, knowledge of these processes should
enable a reduction in the uncertainty associated with source location; however, nei-
ther can be known exactly. A prediction of particle location Xx;, or equivalently an
estimate of source location X, will in either case be subject to crosslow measurement
error and centerline model error in addition to the inherent uncertainty introduced
by plume growth and source extent indicated by (4.24). I will restrict my attention to

errors in the measurement of crossflow Uy, since its effect is of principal importance

“n light of the entrainment assumption, the consistency of the assumptions (4.23) might also be
of concern. According to the MTT model, conservation of mass expressed for a horizontal disk of
plume with area A(z) and vertical velocity W (z) gives d/dz(AW) = 2\/mraA'/?W where a denotes
the entrainment coefficient. Assuming linear growth in plume radius parameterized by a leads to a
solution for plume rise rate W(z) = const. 2w la—2a) (not the usual MTT solution of course, which
requires simultaneous solution of equations for conservation of mass, momentum, and buoyancy). On
the basis of this equation, if a = 2, rise rate would in fact be constant even under the assumption of
a linear growth in plume radius. The values for a and o quoted in the text (0.1 and 0.07, respectively)
are in rough agreement with this condition.
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in determining the value of measuring currents aboard an AUV. Let U, denote the

crossflow estimate, and Uy £ Uy — U denote the associated error:

fJO ~ N{O, O’E,Gl-zxg} (measured)

) (4.25)
Uy ~ N{O, af;ulgxg} (not measured)

where the covariance associated with not measuring currents org,u Iowo reflects the co-
variance of the crossflow itself, while UEBIQXQ reflects measurement error, and presum-
ably oy, > oy,.

An unbiased estimate of horizontal particle location at depth z; = 2, + hc for

known source location X, is:

i 2 h.c|_
"% = "%, + Up— . (4.26)
Wo
Assuming the sources of uncertainty described above are uncorrelated, the error in

predicted particle location X; £ %X; — x; will be distributed according to

h%, N{O (iﬂ-gj e a2
i . H/('f 4 CL 5 2x2 (42?)

2, =0 (by assumption)

where o, = oy, without crossflow measurements, or else oy = op,- The covariance in
(4.27) is functionally dependent on two constant parameters: o, and 3 = (%Ej][ + "Tz)
which consists of the lumped contribution from imperfect knowledge of advection plus
plume growth. At low altitudes, source size o dominates the uncertainty, whereas as
height increases, an approximately linear dependence on hc. develops, scaled by /3.
Figure 4-23 shows distance to source ry and distance to predicted centerline lo-
cation r computed for the BP interceptions plotted in Fig. 4-22. According to par-
ticle position model (4.27), these data will follow a Rayleigh distribution with A,-

1
dependent parameter (3h2, + 0?)?, and different 3 according to:

2 2
o7, a
iy i el g
ro: | WOQ + 1 ‘
52 § (4.28)
R 78 4 udl Z
wz T q
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Table 4.1: Maximum likelihood estimates (95% confidence) of lumped plume spread
(3 and characteristic vent field size g5. The value for o3 with 3 = 0 represents a baseline
computed by assuming no dependence of uncertainty on vehicle height. Because of the
small number of BP detections at heights above ~ 50 m, this estimate is likely biased
toward a smaller value.
Distance Source Assignment 6] os (m)
o argmin|X, — X,/ = 43 (34,57

To argmin||Xs — Xo| — Ughys/0.1| 0.11 [-0.04,0.26] 30 [13,48]
r argmin|[X, — Xo| — Ushes/0.1]  0.000 [=0.011,0.012] 26 [19,33]

These data were used to compute maximum likelihood estimates of the parameters
3 and o,; results are given in Table 4.1. The 95% confidence intervals for 3 are wide

> 50 m. Nevertheless, as expected,

~

reflecting the sparsity of BP detections for hys
the 3 predicted for ry with crossflow treated as random is larger than for r. The
estimated values of o, which are theoretically identical in either case, agree well.
Especially considering the wide confidence intervals, a comparison to order-of-
magnitude estimates of o, and especially [ is instructive. Field extent o, is obviously
site-specific; however, values computed for o, in Table 4.1 probably reflect both the
crudeness of the model (4.27) as well as variability between the five different vent
fields discovered over the course of the dives considered. The parameter 3 is more
easily predicted. A oy, = 0.04 m/s is consistent with a Rayleigh distribution of
crossflow intensity such that E[[Uq[] = 5 cm/s. A o5, = 0.01 m/s overestimates the
attainable precision of ADCP derived current measurements, but I believe represents
a reasonable estimate of the influence of spatial variability in crossflow on predicted
plume location. Along with @ = 0.1 from above, these numbers result in values of
0.16 and 0.013 for /3 associated with ry and r respectively, in broad agreement with

the maximum likelihood estimates in Table 4.1.

Performance Metric

The preceding discussion derived distributions for distance-to-source ry and distance-
to-plume-centerline r from detection location as functions of vehicle height A, and

employed data from ABE dives to determine values for the unknown parameters.
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Figure 4-23: Non-dimensional distance to plume centerline r/h,s versus non-
dimensional distance to source rohys for BP detections from five ABE dives (indicated
by the mark shape): (a) source assignment for 7y according to minimum distance; (b)
by proximity to a circle of radius Uphys/0.1 around the detection location. Centerline
locations were predicted by numerically integrating measured crossflow. Average mea-
sured crossflow intensity is indicated by the color of each mark. In both panels, most
points occur either near or below the 1 : 1 line indicating that, on average, a reduction
in source location ambiguity is attainable by predicting centerline location at vehicle
height. Distances measured during periods of low crossflow intensity (lightest gray)
show only minimal improvement as expected since plumes should rise nearly vertically
under these conditions. Medium crossflow intensities (dark gray) produced the best
and most consistent improvement. Distances measured during periods of high intensity
crossflow (black) produced scattered results, even though the best improvements should
have been observed during these times. This may reflect the inadequacy of the constant
rise-rate assumption to account for the interplay between crossflow and rise rate [84].
Starred data points indicate those detections for which the source assignment used to
compute r and ry was in disagreement. The crossflow record for the one double-starred
point from ABE-136 was insufficiently long to predict centerline location by integration
of measured crossflow, and a centered average was used instead.
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This section derives a non-dimensional metric for the reduction of source location

ambiguity attained by using crossflow measurements to help constrain source location.

Let each detection be associated with a patch of seafloor from which it could
have emanated of some characteristic area. Assuming known hcy = hys,* the uncer-
tainty associated with source location given the location of a buoyant plume detec-
tion is simply the uncertainty associated with detection location given source location
developed above. Thus accurate prediction of centerline trajectory, enabled by on-
board measurement of crossflow, should reduce the characteristic seafloor area from
o2 £ var () to the (smaller) characteristic area o7 = var (r).

A normalized quantity describing the reduction in locational ambiguity attained
by including an estimate of plume centerline in interpreting a water-column detection
15

Al 10‘_" _ (4.29)
To

The normalized improvement 7, € [0,1] represents the normalized reduction in the
characteristic radius of the patch of seafloor expected to contain the source of the

detected plume. From (4.27) & (4.28), i, may be parameterized as:
e =Ny (OUg: Ty @ Woy Ry 05) (4.30)

Supposing crossflow is measured accurately such that dependence on oy is elimi-
nated®®, and setting oy, o Uy yields a simplified parameterization in terms of non-

dimensionalized quantities:

e L
H’n Tg4

Y hoys
=1 ({ : : ) : (4.31)

5Gource-relative vehicle height h,, or equivalently centerline height at interception hci, will be
known approximately from bathymetry. Considerable relief on length scales comparable to the un-
certainty in source location will alter the shape of the patch of seafloor from which the detected
plume emanated. This effect is automatically accommodated by the Occupancy Grid based stochas-
tic mapping method applied to BP detections in Ch. 5.

46From (4.28) measured accurately enough to be ignored requires %‘i £E S
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The functional form of (4.31) is then

B =

2
(s
= 1- : .
' (2(2&)2+£) (m)zﬂ
™ W‘u 4 Ts

where the factor of 72? arises from assuming a Rayleigh distribution for crossflow mag-
nitude |Up|.*"
Eq. (4.32) is plotted in Fig. 4-24 for fixed @ = 0.1 m/m. Attainable performance

(4.32)

improves as crossflow speed increases and for increasing vehicle height, whereas larger
characteristic vent field size o¢ reduces 7,. For the parameter estimates in Table 4.1
and at a typical observed crossflow velocity of 5 em/s Fig. 4-24 indicates 7, = 0.2 for
Phase-2 dives at 50 m height, and 7, = 0.7 for a maximum Phase-1 vehicle height of
300 m.

4.6 Conclusions
This chapter contains two principal contributions:

1. An automated procedure for the classification of hydrographic data as either
background water unaffected by hydrothermal input, water contaminated by a

non-buoyant plume (NBP), or buoyant plume (BP) water.

2. A parameterized model for the probability density function of the seafloor lo-

cation of the source of a BP detected at some height above the seafloor.

The first of these was applied to a set of four measurements collected by the ABE
vehicle to produce maps of plume activity suitable for autonomous interpretation by
virtue of having segmented plumes from background. The method is grounded in the
physical characteristics of hydrothermal plumes rather than in the specifics of each
measurement and should be applicable to scalar measurements from sensors other

than those studied here.

TWith Uy = E [[Uyl], a Rayleigh distribution for [Uy| implies oy, = \/EU(;.
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Figure 4-24: Attainable reduction in normalized source location ambiguity 7, from
on-board measurement of crossflow as a function of non-dimensionalized crossflow speed
Uy/Ws and non-dimensionalized vehicle height h,s/o, for fixed plume growth param-
eter a = 0.1. Attainable performance improves as crossflow speed increases and for
increasing vehicle height. Larger characteristic vent field size o4 reduces the attainable
performance improvement. Marks on right side of the plot indicate performance im-
provement in the limit of a point source (o5 — 0), in which case 7, becomes independent
of vehicle height.
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Based on the estimated parameters of the model for uncertainty in source loca-
tion, source locations can be estimated with respect to the locations of individual BP
detections with a standard deviation of ~ 25 m at a vehicle height of 50 m (nominal
Phase-2), increasing to ~ 40 m at a maximum Phase-1 height of 100 m, all assum-
ing the availability of crossflow measurements from an on board ADCP. Without
an ADCP for measuring crossflow, these numbers worsen to ~ 30 m and ~ 100 m,

respectively.

Now consider these contributions in light of the questions posed at the end of § 4.2.
Recall that these pertained to the reliability, efficiency, and potential for autonomy

in the three-stage nested survey plan introduced in § 4.2.

Reliability: The first contribution listed above provides for detection of BP
contact with a specified probability of false alarm. Based on the complete results
provided for all dives in App. F, BP detections were reliable indicators of venting
below, consistent with a low probability of false alarm. That is, active venting was
discovered in all areas near BP detections (when that area was surveyed during a
Phase-3 near-bottom dive). One notable exception was the southern-most BP detec-
tion during ABE-128. Further evidence of BP contact in this region was observed
during the Phase-2 dive at this site (ABE-136); however the source was never suc-
cessfully localized. Given the corroborating evidence between Phase-1 and Phase-2
dives at this site, it is unlikely that these detections represent false alarms. Rather,
it suggests incorrect interpretation of the likely source of these detections, or simply
an unlucky Phase-3. In some cases, notably ABE-151, BP detections indicate uncon-

firmed additional vent sites that were not explored on subsequent Phase-3 dives.

In retrospect, a strategy based exclusively on BP detections nearly guarantees
successful localization of those vent sites whose BPs were intercepted; however, this
strategy may also be too conservative with respect to declaring worthwhile targets for
pursuit. This is especially true for Phase-1 dives, where direct BP detection can be
quite rare on account of wide trackline spacing. Comparing Phase-1 dives ABE-131
(ELSC, Site 5) and ABE-150 (SMAR) illustrates the tradeoff. No BPs were detected
on either dive. Nevertheless, eH data from ABE-131 led to two subsequent dives at

this site, neither of which ultimately discovered any further evidence of BP activity,
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and the site was eventually abandoned.*® Additional Phase-1 dives at this site would
likely have been a better expenditure of time. In contrast, and despite very wide
trackline spacing (1 km), ABE-150 led to the successful discovery of two distinct vent
sites, and Phase-2 dives indicated several others in the vicinity. Success was achieved
at SMAR largely because eH measurements constrained the younger parts of the
NBP. Even so, significant eH anomalies were observed over a large portion of ABE-
150. The first of two Phase-2 dives was designed to cover an area beneath the strongest
observed eH anomalies. Though successful, both the vent fields discovered during this
dive that were eventually confirmed by Phase-3 dives were discovered near the edges
of that survey, and could have easily been missed completely. Survey design would
likely have benefitted from incorporating measurements of ADCP-derived crossflow

velocity.

Efficiency: Relative to the uncertainty in source location derived in this chapter,
most Phase-2 and particularly Phase-3 dives could have been designed to cover smaller
areas'® if the goal were only to follow up on BP detections. For instance, at ELSC
Site-3 (Fig. F-17), all vent sites eventually confirmed were first detected on the Phase-
1 dive at this site. The Phase-2 dive could have been considerably smaller in extent
without missing any of these vent sites; however, it was not known at the time whether
other BP within the survey area might have been missed. This chapter developed
constraints on source location following detection of a BP, but those constraints,
while useful, do not provide any guidance on how likely BP detection events are in
the first place. One of the reasons for pursuing a nested survey approach to search
is to guarantee coverage of a predetermined area. Any measure of performance must
include an assessment of how well that goal was achieved. As the next chapter reveals,

the information contained in non-detections provides the key to assessing coverage.

Autonomy: One necessary component for the automation of nested surveys for
hydrothermal vent discovery has been satisfied: autonomous BP detection. A strat-

egy for survey design based upon those detections remains unspecified. Autonomous

4BVenting was discovered by a subsequent expedition nearby to the area where the ABE dives
took place [50].

1n some cases extenuating circumstances also drove survey design. In particular, bathymetry
acquired during Phase-2 sometimes indicated geological features worth investigating.
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nested survey design would require the specification of survey extent, trackline spac-
ing, and survey height. The development in this chapter does provide guidance on
survey extent: an obvious heuristic strategy would be to require that surveys cover
areas within some number of standard deviations of predicted source locations. How-
ever, it remains unclear (1) how densely the tracklines within should be spaced,
(2) how information from multiple nearby detections might be aggregated, and (3)
whether the surveyed areas could be declared searched with some measure of cer-
tainty. Occupancy grid mapping, applied to the data from this chapter in the next,

provides one mechanism to answer these questions.
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Chapter 5

Buoyant Hydrothermal Plume

Source Localization via Nested

Survey

I have pursued a map-based approach toward nested survey automation. The final
components in this approach are the occupancy grid (OG) maps of probable seafloor
vent location presented in this chapter. These maps are sufficient to provide guidance
on both the location and extent of a subsequent survey because they encapsulate all
sensor data from the previous stage(s) into a simple spatial representation of seafloor

area likely to contain active hydrothermal vents.

5.1 Introduction

In the previous chapter a simple model for the location of a buoyant particle emitted
by a vent within a source field of known location was derived. After accounting for
measurement uncertainties, this led to a probability density function for predicted par-
ticle location. Given particle location instead of source field location, it was remarked
that this same probability density function applied to the now uncertain source lo-
cation.! In effect, a forward perspective was utilized to arrive at an inverse model

for mapping the locations of BP detections to their likely sources on the seafloor.

"In fact, this duality applies only for a flat bottom.
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However, the inverse model so attained suffers several shortcomings. First, it applies
to detections only; the vast majority of measurements are non-detections that conse-
quently cannot be utilized. Second, it offers no guidance on how repeated detections
might be combined to yield refined estimates of source location, particularly when
multiple sources could be present in the domain. Both these shortcomings can be
addressed by retaining the forward perspective and using the OG methods developed
in Part I to iteratively construct a map of probable source locations consistent with

all measurements,

5.2 Implementation

Figure 5-1 schematically depicts the role of OG mapping within the larger context
of nested survey applied to hydrothermal vent localization. The diagram shows how

the components of this thesis work together:

1. Start with a survey design informed by the model of the phenomenon being
surveyed (§ 4.5).

1o

Sensor data collected along the vehicle trajectory is distilled into binary de-
tections and non-detections (§ 4.3). Sensor data may also be used to specify
elements of the forward model if it includes dynamic elements (e.g. crossflow

velocity).

3. The detection record and forward model are incorporated into probabilities of
source occupancy on a discrete grid via an OG mapping algorithm (Ch. 2 & 3).

If only a single stage survey was specified, the resultant map is the final output.

4. Otherwise, the next nested survey is designed based upon the state of the OG

map at the conclusion of the current survey stage (this chapter).

I concentrate in this section on specifying the internal workings of the elements within

the core mapping portion of Fig. 5-1. In particular, I reformulate the model for source
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location uncertainty developed in § 4.5 as a binary forward sensor model for use with
the OG methods developed in Part I of this thesis, describe the subsampling required
to satisfy the “static world” assumption (§ 2.1.1), and discuss setup of the OG map
itself (bathymetry, grid cell size, and prior P?).

5.2.1 Forward Model for BP Detection

The OG methods of Part I were formulated for use with a specific kind of forward
model requiring specification of the quantities P! for all grid cells s € {1,...C}. Re-
call that the quantity P! denotes “the probability that sufficient signal from occupied
cell s arrived at the sensor at time ¢ to trigger a detection” (§ 2.3). This section de-
rives an expression for the P! from the particle location probability density function
p (:t(1 | X h.w) derived in the last chapter. As will be shown, two additional quantities
are required: (1) the probability of detecting a particle given its location relative to
the sensor, and (2) the number of such particles composing the plumes emitted from
a source field.

Recall from § 4.5 that, given a vent field’s centroid location X, particles released

from the field will be distributed in the water column according to

p (":ﬁcl | hRe: Es) =N {"is + hUOhﬁ‘_ ((%ath)? - Jf) ngz} (5.1a)
W

Zi(fLCL) = Zg— -‘Jf-CL . (51}))

To relate this probability density to the probability of detecting particle ¢z, particles
must have some characteristic size. Let each the particle position "x; be redefined
to instead denote the center of mass of a finite size parcel of effluent having some
characteristic radius b(hc.) in the horizontal plane. Let the detection of parcel i at
time ¢ be denoted d! and suppose that detection will occur if the detector is immersed
within the confines of the parcel. Taking "x! to denote the horizontal location of the
centroid of parcel ¢ at time ¢, the probability of parcel 7 triggering a detection at time
tis

P [di | - 53] _ P [|"x§ —hxt| < b(h,) I ")'cs] v B =F— 2 (5.2)

0, otherwise

Larger parcels (up to plume width) are more likely to be detected than smaller ones
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Probabilistic

Sensor Model:
buoyant plume
structure

Observation:
detection/non-detection
of buoyant HT plumes

Inference

Planning:
location and
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Figure 5-1: Occupancy grid map-driven nested survey applied to hydrothermal vent
localization. The AUV enhabits a search domain and flys the first, predefined stage
of it’s nested survey while constructing an OG map of likely seafloor vent locations.
The mapping process consists of acquiring sensor data, interpreting those data via a
probabilistic forward model of source location, and applying an OG mapping algorithm
to iteratively learn the state of an OG map. Upon completion of one stage of the nested
survey, regions of the OG map with posteriors raised above the prior define the location
and extent of the follow-on stage. The OG representation facilitates closure of the loop
depicted by virtue of its simple indication of coverage (cells with posteriors beneath
the prior) and of regions likely to yield additional data useful to refine source location
(cells with posteriors raised above the prior).
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simply because the vehicle is more likely to intercept a larger target. The probability

of immersion in parcel ¢ when hl, = z, — 2! is approximately

p [lhx: - hin < b(h’is) [ his} =

hg 4 hppthis _ hyt)2
(b(h:}s))2 ) 1 _ exp | X, + UG“;[I X.ul (53)
27 ((%ah{,s) + 03) 2((%&!;1,3 + Ug)

This approximation holds as long as patch size is small relative to the uncertainty in
parcel location: b(hc ) < ((%a.hqf + 03) 1/2.

Thus far, "x, has been regarded as continuous-valued. Assuming a sufficiently fine
grid A < o,, where A denotes the length of the sides of each grid cell, the probability
of detecting parcel i given source location is approximately equal to the probability

of detecting that parcel given that its source lies within cell s:
P[d | %552 = P& | 8 =8%) (5.4)

where the single occupied cell s is chosen such that "X, lies within its confines. The
approximation in (5.4) applies to any map with cell s occupied and not just to maps
m with the set of occupied cells confined to a single cell S = s. However, the rest
of the map is completely irrelevant to the probability on the left hand side because
parcel 7 is inherently associated with a particular source field. The right hand side of
(5.4) reflects simply a convenient choice of map; convenient because P [d! | S = s; Z_q]
happens to be related to the total probability of detection a-specific to any particular
parcel.

To get at the total probability of detection, all parcels released by a source field
must be considered together. It does not matter which specific parcel is detected,
only that at least one parcel is detected. The probability of detection within a map

having only one occupied cell is given by

Pld'|S=s]=1-(1-Pf) H(l—P[d: 8=4]) , (5.5)

where the product is over all parcels released by the source and I have dropped the

dependence on bathymetry z; for convenience. For a continuously releasing source,
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the product in (5.5) has an infinite number of terms; however, with the vertical

position of each parcel z; deterministic, most of these terms are unity so that:

Pld|S=s]=1-(1-P) [J] (-P[d]|S=5]). (5.6)

foat—z _ht
i:2f=2,—hi,

Furthermore, P [d! | S = s] is identical for all parcels i satisfying z; = z, — h!,. This

yields the particularly simple expression
Pld|S=s]=1-(1-P:) (1-P[d|S=4])°. (5.7)

where Q denotes the number of parcels present from the source in cell s at vehicle
depth. The number @ is analogous to a release rate and as such should therefore be
constant with height above the seafloor.

The final step to attaining an expression for the P! requires relating the P! to the
single-occupied-cell map via (2.12), repeated here for completeness:

Pld|S=s]=1-(1-P;)(1-PF) . (5.8)
Substituting the results from (5.7) and (5.3) into the above yields

Pi=1-(1-P[d|5=4])°

Q
hs hyTt bt hyt|2
1 Xs + "Ugs — 'xt
=1=11 —(b(;l-:i,s))2 . : exp| — | 3 "Z“ 5
QW((%ah{w) +af) 2((%(1!:{,3) -+ a:f)
(5.9)

It remains to specify the parameters b(hc ) and Q). Those estimates are the subject of
the following two short sections. Once estimates for parameters have been attained,

the forward model required by the OG methods of Part I will be completely specified.

Parcel population An appropriate choice for parcel population @ depends pri-
marily on the accuracy of the plume model employed. The rather large characteristic
source size 0, ~ 25 m found in Ch. 4 indicates our model is insufficiently accurate

to predict the location of individual vents on the seafloor, instead being suited to
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predicting the locations of entire vent fields. Parcel population @ should therefore
reflect the number of discrete plumes emanating from a field. Unfortunately such
knowledge is obviously not available a priori. A “reasonable” value, say 1 < Q <5

unless especially large vent fields are expected, is the only viable recourse.

Parcel size Figure 5-2 shows encountered patch size as a function of vehicle height
above bottom at the time of interception. Patch size was determined by first tempo-
rally clustering full sample rate detections and then computing the maximum pairwise
distance between detections within each group. Almost all patches were continuous at
the sample rate of ~ 1 Hz, though some were bimodal. Most patches at low altitude
substantially exceed the expected width of a point-source plume assuming a linear
spreading rate of @ = 0.1 m/m. This could reflect interception of multiple plumes
within a single patch; however, even some of the largest patches were unimodal. Of
course, on the short timescale of a single transect through a buoyant plume, the
observed profile cannot be expected to reflect time-averaged behavior. Based on
Fig. 5-2, a linear growth rate would significantly under-predict of the probability of
plume interception at 50 m. Instead, I employ an affine model for average plume size

as a function of centerline rise height hcy:
b(hCL) = by + %uhu 2 (510)

The constant b, represents the effect of finite source size. The height dependence was
chosen to be consistent with the assumptions of the particle model for plume growth
(4.23). Unfortunately, Figure 5-2 provides little guidance on the correctness of this
choice, particularly because of the dearth of data at large heights. The %ah.g_ line for
a = 0.1 is plotted on Fig. 5-2 and suggests at least plausibility, especially considering
that patch width at interception will tend to be somewhat smaller than maximum

patch width.
A maximum likelihood estimate of by for each dive was attained from groundtruth
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Figure 5-2: Observed plume width vs. vehicle height h,,. Widths plotted are one-half
the portion of trackline associated with each detection. Superscripted numbers indicate
detections that clearly showed either 1 or 2 modes in vertical velocity. Observed widths
were broadly distributed but indicate much larger average widths at h,, ~ 50 m than
would be expected from point sources with linear radial growth rates of 0.1 m/m. This
observation motivated the affine model proposed in the text.
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Table 5.1: Maximum likelihood estimates of characteristic source size by for each dive
that included interception of BP water.

Dive Number Dive Type Location by
ABE-126 Phase-1 ~ ELSC-1 12
ABE-128 Phase-1  ELSC-2 6
ABE-136 Phase-2  ELSC-2 4
ABE-137 Phase-2  ELSC-1 4
ABE-151 Phase-2 SMAR 13

vent field location and measurement history A' according to:

f;o = argmax P [A" ‘ m]
by

=Ijlp[5r|m] (5.11)
=[[Pld|m] - [Ja-P[@ |m]),

TET TET!
where the second line follows from the static world assumption (§ 2.1.1). The proba-
bilities appearing in the last line of the above are given by the forward model (2.11)
with the P! from (5.9). Numerical estimates were attained using all groundtruth vent
locations (with @ = 1 for each) and are listed in Table 5.1.

The values for by in Table 5.1 show considerable variation between dives. This
is not unexpected, as the estimate will depend strongly on vent field configuration
and each individual detection record. Furthermore, these estimates do not take into
account that crossflows cannot be known exactly, and so will tend to produce overesti-
mates of by. Ultimately a choice must be made that is reasonable across all dives. The
occupancy grid maps produced later in this section were produced using by = 5 m.?
Increasing by increases the likelihood of detections at smaller heights above seafloor
proportionally more so than at larger heights.

In light of a characteristic parcel size specified by (5.10), the accuracy of the single-

point integration scheme in (5.3) might be questioned. The worst case corresponds

21t is likely that the value for ABE-126 above is high on account of the large height of this dive
(300 m) meaning that crossflow uncertainty will have corrupted the estimate.
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to the largest height above seafloor of interest. For the parameter values used in this
thesis, characteristic parcel size at 300 m above the seafloor will be 20 m while the
standard deviation associated with parcel location will be about 40 m. Though only
separated by a factor of two, single-point integration continues to provide a reasonable

answer in practice.

5.2.2 Input Data

The OG mapping algorithms developed in Part I of this thesis require a binary input:
detection or non-detection. Distillation of the raw sensor data collected on ABE into
binary measurements was discussed in § 4.3; however, the development applied to
data at full sample rate ~ 1 Hz. Solitary detections at this sample rate have yet
to be observed (cf. patch width data presented in Fig. 5-2) indicating samples at
~ 1 Hz are correlated. Blind use of the detection record at full bandwidth would
therefore violate the static world assumption (§ 2.1.1). Recall that this assumption
requires that measurements be independent conditioned on knowledge of the entire
map m.> At full sample rate, and independent of m, a detection makes it likely that
the next measurement will also be a detection simply because hydrothermal BPs have
significant width at survey height compared to the spatial bandwidth implied by this
sample rate.

To avoid treating correlated data as independent, the full bandwidth detection
record consisting of binary samples §! is downsampled. The anti-aliasing applied is
non-standard in the sense that the output §' must still be binary. This is done by
declaring downsampled detections when at least a fraction 7 € [01 1} of the original
samples within the new sampling period were detections:

8t = [|{ t: SLte[t—T/2,t+T/2) }| > ;n] (5.12)

o

where T, denotes the original sampling period, T denotes the downsampled period,

3The static world assumption does not require that the entire world actually be static. Crossflow
velocity is readily incorporated into specification of the probabilities of detection P!; concentration of
tracers with known decay rates could similarly be incorporated into this specification by raising the
P! for cells at the proper upwind distance from the sensor. On the other hand, plume sources that
move or periodically turn off cannot be accomodated without violating the static world assumption
because in this case the true OG map would become time-dependent.
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and the enclosing square brackets imply a boolean result. An n = 0 makes every
interval containing at least one detection at the original sampling frequency into a
detection at the new sampling frequency. An 7 = 1 requires that all measurements at
the original sample rate within the interval be detections before declaring a detection
at the new sampling frequency. Large 7 close to 1 decrease the probability of false
alarm at the expense of decreased probability of detection. The results in § 5.3 were
all produced with 7 = 0.5.

Choosing a good downsampling period T is crucial. Large T will decorrelate the
samples more effectively, but reduce the precision of the measurement’s location. A
good choice for T' will reflect the spatial scales of the phenomenon of interest. For
BP detection, T times vehicle speed |X,| should be on the order of expected plume
width at survey height:

T ~ ,1 (bo + 3ab) . (5.13)
%, | ’
Thus for a Phase-2 survey at 50 m height and ABE’s typical survey speed of 0.6 m/s,
T ~ 10 s. At 300 m height, T' ~ 30 s.

5.2.3 Mapping Domain

For hydrothermal vent mapping, a grid is defined on the seafloor. Bathymetry ac-
quired from a surface ship will have a resolution on the order of 100 m, which is
adequate. Grid cell size and a prior probability of occupancy need to be specified.
The forward model formulated above applies to the locations of entire vent fields.
Grid cell size should be small relative to the characteristic uncertainty associated
with source location. The lower bound is set by o, about 25 m in the data sets
studied. A grid cell size of A = 5 m on a side is sufficiently dense in practice. At
larger heights, a lower resolution is sufficient and also desirable because these dives
typically span a larger area and computational load grows quadratically with survey
area (linearly with the number of grid cells).

An appropriate cell prior reflects the expected number of vent fields in the survey
area scaled by grid resolution. Let p; denote the expected the field density, that is,

the expected number of fields divided by the survey area: p; £ E[S] /(CA?).* The

‘Recall from Ch. 2 that S denotes the set of occupied grid cells in a map and C denotes the
number of grid cells in the map.
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expectation evaluates to E [S] = C'P? so that the prior probability of occupancy for
each cell is given by:
P = A%y . (5.14)

All OG maps presented in this work employed an assumed vent field density of p; =

1 /km?, yielding priors between about 10~° and 10~* depending on grid cell size.

For nested surveys, the finished OG map from one stage can be used to initialize
a higher resolution OG map for the subsequent stage. To do so requires regarding
the final posteriors of the original map as independent. With this assumption, the
new priors can be attained from the old posteriors by dividing the old posteriors
equally among each of the new grid cells within the corresponding cell of the old
grid such that expected occupancy of the region contained within the original cell is
unaltered.® This transformation also preserves the expected number of source fields
from the finished map. Finally note that the assumption of independence required is

consistent with the assumptions required by the IP algorithms developed in § 3.2.

5.2.4 Choice of OG Algorithm

Figure 3-10 illustrates the factors affecting choice of OG algorithm. The low prior
appropriate for hydrothermal vent field localization rules out the standard algorithm.
This leaves the exact algorithm and the various approximations developed in Ch. 3.
Since only very few BP detections (about 10 or less, and distributed between different
vent fields) are expected during each survey stage, the exact formulation could have
been applied; however, the recursive form of the IP algorithm is the most practical
from the perspective of real-time application and the results presented next all em-
ploy the IP approximation. Only minor degradation of the IP maps relative to the
exact result was observed. Appendix G contains a thorough comparison to the exact
result along with an example of the highly degraded map produced by the standard

algorithm applied to the same data.

"Kraetzschmar et al. [59] use this same “probabilistic mean” to propagate probabilities of occu-
pancy through a multi-resolution probabilistic quad tree.
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5.3 Results: Vent Field OG Maps

Figures 5-3 & 5-4 show OG maps generated from data collected on two separate
dives, ABE-128 (Phase-1) and ABE-136 (the subsequent Phase-2 dive). Both de-
tections and non-detections were used as input data to the recursive form of the IP
algorithm (§ 3.2.1). Regions with relatively high posterior odds of occupancy (hot
colors) agree well with clusters of groundtruth vent locations. Regions with relatively
low posterior odds (cool colors) indicate coverage over regions where no BPs were en-
countered. Multiple detections plus nearby non-detections create the irregular shape
of some of the regions with relatively high posterior odds.” However, the influence
of non-detections is relatively weak because detections are unlikely according to the
forward model of § 5.2.1 and consequently non-detections carry less information than
detections.

Figure 5-4 illustrates the result of using the posterior from a previous dive as a
prior. ABE-128 and ABE-136 were conducted at ~ 250 m and 50 m above bottom
respectively. Because of this difference in height, the grid cell sizes chosen were
different: 20 m and 5 m on a side respectively. Each cell in the map shown in Fig. 5-3
was split into sixteen descendant cells, each of which were initialized with a probability
of occupancy 1/16 that of the posterior in the original parent cell, as per the procedure
in § 5.2.3. In this case. incorporation of the Phase-1 result improved the resulting
map by retaining high posteriors over portions of the fields that were not detected
during ABE-136.

Both maps were produced using the recursive form of the IP OG mapping algo-
rithm (§ 3.2.1). The number of detections was sufficiently small to allow use of the
exact algorithm (§ 2.4), however, the resulting maps are qualitatively similar, and the
recursive IP algorithm completely avoids the numerical and computational vulnera-
bilities of the exact algorithm. Furthermore, propagating the posterior from previous
dives into a higher resolution grid via the procedure in § 5.2.3 is consistent with the
assumption of independent posteriors required by the IP algorithm. The standard
algorithm (§ 3.1.1) applied to this data produces posteriors near unity in hundreds

of cells near some of the vent fields, in gross violation of the assumed low prior but

SUsing the recursive form of the IP OG algorithm to create these maps instead of the exact
formulation also has some effect because, unlike the exact algorithm, the IP algorithm is incapable
of reducing any posterior odds following a detection.
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consistent with the observed failure mode of the standard algorithm in simulation
(§ 3.3). Appendix G contains a cross-comparison between maps produced using all

three algorithms.

5.3.1 Conversion from Field Map to Vent Map

The forward model developed in § 5.2.1 applies to the probability of detection given
knowledge of vent field location. The posterior odds in OG maps like Fig. 5-3 & 5-
4 therefore indicate the odds that a cell is occupied by the center of a vent field.
As long as vehicle height exceeds characteristic vent field size o, this perspective is
appropriate. Closer to the seafloor (e.g. Phase-3 dives at 5 m height) it is desirable
to map the individual vents within a vent field. To choose the extent of a low-height
survey based on an OG map, the cell posteriors should represent the probability that
they are occupied by individual vents.

The transformation is straightforward. I assumed in § 5.2.1 that a typical vent
field will contain @ individual vents whose locations will be normally distributed
about the field’s center "x,. Under these assumptions and given "x,, the probability

of a cell at "x, containing a vent is

. e |h)—(~ " hx{.|? Q
P ['mf ‘ i_,_,] ~1-— (1 - exp(-———Qg,z— . (5.15)

where Ym, denotes occupancy of cell ¢ by a vent. In words, the probability that a cell
¢ is occupied by a vent is one minus the probability that it is not occupied by any
of the Q vents in the field. Multiplication by A? approximates integration over the
area of cell c. Now let /m, denote that cell s is occupied by the center of a vent field.
Supposing X lies within a cell s, P ["me | fms] 2P ["mr | is]. To transform the the
posterior probability of field occupancy P [f My \ .f_\‘] to the posterior probability of

vent occupancy P [’*":ﬂrr.C | A'], sum over all possible field locations:
&
P [”'mr [ At] = ZP ["mc ‘ -fms} P [fms | A‘} . (5.16)
s=1

Figure 5-5 shows the results of applying this transformation to the field OG map of
Fig. 5-4.
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Figure 5-3: OG Map produced from Phase-1 dive ABE-128. Groundtruth vents are
shown as white crosses. The vehicle registered detections near two of the three vent
fields ultimately localized in addition to a detection near the southern end of the survey.
the source location of which remains unknown. High posterior odds in the occupancy
grid map (red) show good agreement with the locations of the two detected vent fields.
Lowered posterior odds (dark blue) indicate trackline spacing was insufficient by roughly
a factor of two. In fact. the dive shown included a first pass over this site at a different
depth and offset by half the trackline spacing shown, which would have doubled the
trackline density except that vehicle depth was shallower than the NBP making BP
contact unlikely. A subsequent survey designed purely based upon this map would
have discovered two of the three vent fields shown and possibly a third site to the
south, though it would have missed one field. However. that field was missed because
it was not detected, and not becanse the OG algorithim failed to produce a good map.
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Figure 5-4: OG Map produced from Phase-2 dive ABE-136 using the map of Fig. 5-3
to define the prior. The locations of all vent fields ultimately confirmed agree well
with the regions of the map populated by cells with high posterior odds (hot colors).
Detections at the southern edge of the survey confirm the presence of an additional field.
first detected during the Phase-1 dive at this site: however, this southern site was never
groundtruthed. Regions with low posterior odds (cool colors) indicate fairly uniform
coverage over most of the survey extent, though with some patchiness particularly in the
southern half of the survey area. Interestingly. this site was surveyed in two passes. first
progressing to the west, then back toward the east in between the previous tracklines.
The crossflow direction was observed to approximately reverse over the course of the
survey. resulting in tracklines that effectively observed the same portion of the seafloor
as the previous pass. When these portions of the seafloor included vent sites, the data
was valuable to “triangulate” the location of the vent field. On the other hand. when
these portions of the seafloor were empty. little additional information was attained. In
retrospect. improved coverage would have been attained by a single pass at full trackline
density.
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The transformed map shows broader peaks over wider areas than the field location
map in Fig. 5-4. a result that is consistent with vent fields of finite size. Also note that
the residual high-frequency features in the map of Fig. 5-4 left over from incorporation
of the lower resoltion prior have been smoothed. Maps like these could be used to

guide subsequent near bottom Phase-3 mapping surveys of individual vent fields.

5.3.2 Survey Design from OG Map

The algorithm used to generate the map of Figs. 5-5 incorporates tracer data and
measured crossflows into consistent maps of the seafloor that identify both regions
worth revisiting and regions unlikely to contain vents. Following completion of one
stage of a nested survey. design of the next stage should favor tracklines that provide
coverage over the portions of the map raised above the prior. Likewise, time spent over
portions of the survey area with lowered posteriors will likely be wasted fruitlessly.
and so should be avoided. For example, Fig. 5-5 includes the superimposed outline
of a Phase-3 dive, that while successful in acquiring groundtruth locations for 5 of
8 vents ultimately discovered, also included substantial coverage of seafloor unlikely
to contain vents according to the OG map. Dive time could have been allotted more
efficiently, and probably would have yielded additional groundtruth vent locations.
Figure 5-6 presents a quantitative evaluation of the efficiency of Phase-2 dives
relative to OG maps from preceding Phase-1 surveys and of Phase-3 surveys relative to
OG maps from preceding Phase-2 surveys. The figure indicates most follow-on surveys
covered too much ground unlikely to contain vents. In many cases, potentially high
value areas were consequently ignored even though they could have been surveyed
without extending the duration of the dive.” On the other hand, wider coverage
sometimes resulted in detections of vent fields that would have been missed had
subsequent surveys been designed purely based upon the OG map of the previous
stage. For instance. the second field from the north in Fig. 5-4 is not evident in the
OG map from the previous dive Fig. 5-3. However. in these cases. either insufficient
coverage from the previous survey or else a missed detection was to blame. The BP

detection method implemented in § 4.3 was deliberately designed with a very low

"Other factors did sometimes affect survey design, for instance, bathymetry, CTD data. and
imposed time-constraints.
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Figure 5-5: The OG map of Fig. 5-4 transformed from probability of vent field oc-
cupancy into individual vent occupancy. Relative to the field map. this map exhibits
wider, smoother peaks consistent with vent fields of significant extent (10s of meters).
The outline of the subsequent Phase-3 near-bottom survey at this site is shown in white.
That survey was designed while at sea on the original expedition, before development
of the OG mapping framework. Better coverage could have been attained by decreas-
ing the north-south extent of the northern survey in favor of extending it to the west.
Indeed. the three western groundtruth vent locations that lie outside the bounds of the
Phase-3 survey were discovered by ROV several months after the completion of ABE
operations at this site. Finally, the map indicates the southern Phase-3 survey was
misplaced. and should have been centered some 200 m to the southeast.
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Figure 5-6: Survey coverage relative to high and low value map areas identified in OG
maps. The labels indicate the dive used to create the OG and the dive whose coverage is
evaluated relative to that map: map dive — subsequent survey. For each pair of dives.
three areas were computed: (blue) area covered by the subsequent survey but less than
the prior (< 0.99P"): (green) area not covered but raised above the prior (> 1.01PY):;
(red) area not covered with relatively high posteriors greater than 0.01 (i.e. at least
a 1:100 chance of vent occupancy). Qualitatively these areas indicate. respectively.
unnecessary coverage. possible missed opportunities, and likely missed opportunities.
For the same dive duration. better survey performance might have been attained in
most cases by covering the areas represented by the red and green bars instead of the
areas represented by the blue bars. Dives that discovered vent fields in places indicated
by the OG map as unlikely to have been occupied are possible exceptions. These dives
are starred. In all cases. indications of BP contact (usually eH) were present in the
data used to make the OG map; however, the evidence was insufficiently compelling
(usually lacking significant VVA) to result in a detection according to the method of
§ 4.3

probability of false alarm because the forward model employed is specific to direct
BP contact.

From the perspective of automating nested surveys, the results in Fig. 5-6 are sig-
nificant because they indicate that relatively short-duration subsequent stages would
have been adequate to localize many vents. Short-duration. vehicle directed stages
could therefore have been added to the ends of Phase-1 dives without significantly
impacting the overall coverage attained. In many cases. this would have enabled
the vehicle to return from a single dive with complete preliminary assessment of at
least one new vent site including groundtruthed location, nearby bathymetry and

photographs of the surrounding biological community.
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5.4 Conclusions

This chapter presented a parameterized forward model for BP detection and applied it
to the construction of OG maps of likely vent locations from real world hydrographic
data collected by the ABE vehicle on recent hydrothermal vent prospecting missions
in both the Pacific and Altantic oceans. These maps can be used to distill sensor data
to aid human interpretation or, by virtue of their simplicity. to drive fully autonomous

survey stage design.
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Chapter 6
Conclusion

This thesis presented a stochastic mapping framework designed to enable a robotic
platform to automously localize chemical plume sources in environments with multiple
sources. Potential applications for robotic chemical plume source localization include
pollution and environmental monitoring, chemical plant safety, search and rescue,
anti-terrorism, narcotics control, explosive ordinance removal, and hydrothermal vent
prospecting. Turbulent flows make the spatial relationship between the detectable
manifestation of a chemical plume source, the plume itself, and the location of its
source inherently uncertain. Search domains with multiple sources compound this
uncertainty because the number of sources as well as their locations are unknown.
The framework is an adaptation of occupancy grid mapping wherein the binary
state of map nodes is redefined to denote either the presence (occupancy) or a ab-
sence of an active plume source instead of the usual presence or absence of a physical
obstacle. A key characteristic of the chemical plume source localization problem is
that only a few sources are expected within the search domain. The occupancy grid
framework allows for both plume detections and non-detections to inform the esti-
mated state of grid nodes in the map, thereby explicitly representing explored but
empty portions of the domain as well as probable source locations. However, sparsity
in the expected number of occupied grid nodes strongly violates a critical conditional
independence assumption required by the standard Bayesian recursive map update
rule. While that assumption makes for a computationally attractive algorithm, in
our application it results in occupancy grid maps that are grossly inconsistent with

the assumption of a small number of occupied cells. To overcome this limitation, sev-
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eral alternative occupancy grid update algorithms were presented, including an exact
solution that is computationally tractable for small numbers of detections and an
approximate recursive algorithm with improved performance relative to the standard
algorithm but equivalent computational cost.

Application to hydrothermal plume data collected by the autonomous underwa-
ter vehicle ABE during vent prospecting operations in both the Pacific and Atlantic
oceans verified the utility of the approach. The resulting maps were shown to enable
nested surveys for homing in on seafloor vent sites to be carried out autonomously.
Real-time implementation would eliminating inter-dive processing, recharging of bat-
teries, and time spent deploying and recovering the vehicle that is otherwise necessary
with survey design directed by human operators.

The remaining paragraphs reiterate the contributions made by this work to the
three areas identified in Ch. 1: (1) occupancy grid (OG) mapping; (2) general chemical
plume source localization; (3) hydrothermal vent prospecting. In each category 1

identify candidate directions for future research that leverage these contributions.

Occupancy Grid Mapping

e The application of OG mapping to novel arena—multi-source chemical plume

source mapping.

e An articulation of the problems associated with application of standard Bayesian
OG mapping to environments with few expected occupied cells (low prior prob-
ability of occupancy) and stemming from a key independence assumption re-

quired by the standard algorithm.

e An exact solution for the state of an OG map when measurements consist of
binary detections and non-detections generated by a particular form of forward

sensor model.

e A family of novel approximate algorithms applicable to low prior environments

based on this exact formulation.
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Hybrid Feature-Based and OG Mapping This thesis showed how, for a partic-
ular form of binary forward sensor model, non-detections can be incorporated into the
map recursively and without approximation. When the number of cells expected to
be occupied is low, feature-based mapping methods make for a logical choice because
the correspondence problem is low-dimensional. However, feature maps cannot make
direct use of sensor information indicating emptiness because these observations can-
not be correctly attributed to any one feature in the map, and because feature maps
include no explicit representation of empty space. A map of feature locations does
not indicate whether an region in the map not containing any features is likely to be
empty, or hasn't been searched. or resulted in conflicting information.

A hybrid approach might prove feasible wherein sensor measurements are distilled
into binary detections and non-detections, the latter being incorporated into an oc-
cupancy grid map, and the former into a feature-based map. For the sum to be
greater than its parts, the information in these two maps would have to be linked.
For instance, feature locations could be locally biased toward regions less likely to be
empty according to the underlying OG map. A hybrid map would be particularly

useful in combined mapping/exploration missions in sparsely occupied environments.

Implications for OG mapping in Indoor Environments Low priors are a
characteristic of the chemical plume source localization problem when framed as a
Bayesian OG mapping problem, an aspect that was shown to exacerbate the deleteri-
ous effects of regarding each measurement as conditionally independent of all others
given only knowledge of the single cell being updated. Ubiquitous walls and furni-
ture imply that indoor environments (the original application for which OG mapping
was developed) are not characterized by low prior probabilities of occupancy when
discretized into an OG map. Nevertheless, the assumptions required by the standard
OG mapping algorithm do manifest themselves as undue ambiguity around critical
features like doorways [117].

It remains to be seen whether the methods developed in this thesis offer any
advantages in indoor environments over existing OG algorithms. The particular form
of sensor model required can be applied to sonar range-finders (Fig. 2-3; however, the
inverse models typically employed in classical OG mapping do not fit the constraints

imposed by (2.11). Rather, these highly tuned inverse models (e.g. [116]) tend to
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produce good results precisely because they infer more about the environment than
is strictly available, at least from the simplified geometric perspective of Fig. 2-3.
In particular, indoor environments are structured, that is, they consist of regular
walls that imply occupied cells usually occur together, a fact that can be exploited
in an inverse model, but not in a forward model wherein each occupied cell can
independently trigger a detection at the receiver. Nevertheless, the exact solution
presented here enforces consistency between the posteriors and all data, so that in
principle its application to indoor environments address the same issues explored by
Thrun [117].

Chemical Plume Source Localization

e An abstracted forward model for binary chemical plume detection that encapsu-
lates the role of multiple sources without reference to the physics of a particular

type of plume.

e A plume source location mapping method suitable for use in multi-source en-
vironments, for instance in mine-clearing, explosive ordinance removal, and in

hydrothermal vent prospecting.

Map-Driven Multi-Source Biomimetic CPT In this thesis I focused on the
application of OG maps to automating nested surveys. For some types of plumes,
nested surveys can be wasteful of vehicle time. In particular, when all sources are
equally valuable and detections are unequivocal, completing a survey stage before
following up on a detection requires that subsequent surveys span the potentially
large portion of the map that may contain the source of that detection. For short-
timescale passive plumes, biomimetic strategies provide an attractive alternative, but
it remains unclear how best to adapt such strategies to multiple-source domains: a
male moth seeking a mate needs only to find one pheromone-emitting female.
Enhanced efficiency could be attained in a multi-source domain over nested sur-
veying by combining biomimetic plume tracing with higher-level mapping to direct
the surveying vehicle toward unexplored regions of the survey area and to identify

when new detections are likely to have emanated from an already-localized source.

198



An OG map and associated forward sensor forward model provide a natural mecha-
nism to affect this strategy. The forward model can be employed to generate locations
where the plume emanating from a grid node is likely to be detected under the as-
sumption that the node is occupied by a source. The present state of the OG map in
turn indicates which cells are most worth attempting to observe. Successful previous
localizations will have rendered those portions of the map fully resolved (posterior
probabilities of occupancy near one or zero.), whereas cells in unexplored regions will
have the most uncertain state and the highest value of observation. One challenge to
implementing this strategy is that it will be sensitive to accurate posteriors, particu-
larly if entropy is employed as the metric to assess the relative worth of observing a

cell.

Hydrothermal Vent Prospecting

e A procedure for automatic classification of hydrographic data into the back-
ground water and the two main components of a hydrothermal plume—the

buoyant and non-buoyant plume—and its application to field data.

e An algorithm for the generation of occupancy grid maps of the seafloor show-
ing locations likely to contain hydrothermal vents and also regions unlikely to
contain vents based on the data acquired, and suitable for the automation of

nested surveys in support of hydrothermal vent prospecting.

e A simple model for buoyant hydrothermal plume evolution suitable for use with

the occupancy grid mapping methods developed in this thesis.

e An evaluation of the utility of measuring crossflow velocity on a surveying AUV

for constraining the source locations of encountered buoyant plumes.

Real-Time Automated Nested Survey Implementation The OG maps in
this dissertation were all generated long after the ABE AUV actually collected the

data. Throughout I have tried to be mindful of the constraints imposed by real-time
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operation and the often chaotic environment of a research vessel at sea. To these ends,
the results presented in Ch. 5 all used the computationally minimal recursive form
of the IP OG mapping algorithm, and the same model parameters were used across
all dives to simulate ignorance about the specific environment to be encountered on
a given dive. Nevertheless, only actual real-time deployment in the deep sea will
ultimately prove the utility of these algorithms for automating the nested survey

process.

Improving Performance beneath the NBP Reduction-oxidation potential (eH)
and potential temperature anomaly data collected during 50 m height Phase-2 dives
with the ABE AUV (App. F) indicates vent fields tend to be associated with sig-
nificant anomalies in these tracers over much larger areas than vertical velocity
anomaly (VVA), though the strongest anomalies are well correlated with VVA. The
simplistic BP model employed here cannot account for these farther-afield anomalies.
Numerical modeling work by Lavelle [66] shows that buoyant hydrothermal plumes
rising in crossflows possess an asymmetric potential temperature cross-section in the
horizontal plane with significant downwind elongation in the wake of the core of the
plume. Presumably a model amenable to real time computation could be developed
to capture at least the rudiments of this process (there is no need to accurately pre-
dict temperature anomaly for instance). The benefit of including these anomalies in
the construction of an OG map to drive nested survey is obvious: trackline spacing
could increase without compromising coverage, thereby reducing the time required to

survey a prescribed area.

Application to eH Anomalies in the NBP Direct detection of BP stems within
the NBP is unlikely when vehicle trackline spacing exceeds the characteristic width
of BPs at altitude (< 100 m). Substantial gains in both efficiency and coverage are
possible if the age of NBP water can be determined and interpreted in terms of likely
BP location without requiring direct BP contact. Emerging in situ chemical sensors,
for instance the reduction-oxidation (eH) probe discussed in Ch. 4, promise to be able
to provide constraints on the age of NBP water. Indeed, successful vent discoveries
at SMAR based on the initial widely (1 km) spaced tracklines of the single Phase-1

dive at the site were almost entirely due to the eH probe providing indications of
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relatively yvoung NBP water despite lack of direct contact with any BPs.

Thus far the design of ABE surveys based on eH anomalies in the NBP has been
heuristic. Adaptation of the OG mapping framework to the mapping of the probable
locations of BP stems intersecting the NBP should be possible with the development of
a forward model to describe the probability of eH detection analogous to that applied
to BP detection. The information that can be gleaned from an eH anomaly about
likely BP location will be greatly enhanced if the residence time in the NBP could
be constrained from the magnitude of the anomaly. In terms of the binary forward
model developed in Ch. 2, this information can be incorporated in the specification
of the P! by making grid cells at the right distance upwind more like to have emitted

the reducing fluid than those closer or farther away.
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Appendix A

Notation

Conventions
Typeface
& (normal) scalar variable
X (bold) vector
X (calligraphic) set
R (blackboard bold) e.g. the set of real numbers R
Time Dependence
? superscripted ¢ or 7 denotes time dependence
- i the set {z7: 7 € T}

Probabilistic Quantities
P [A] probability of event A
P [./1 \ B] conditional probability of event A given event B
p(x) probability density function of random variable x
p(x ‘ y) conditional probability density function of x given y
E [z] expectation of
E [.r | y] conditional expectation of x given y
H. entropy of

H;|,(y) conditional entropy of x given y

Frames
Ix vector x expressed in frame f
;_‘, R Rotation matrix between frames f; and fo: fix = ‘;’, R 2x
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Variable List: Occupancy Grid Mapping
Map and Cells

i, random binary indicator variable u. € {0,1} for the state of cell ¢

m, the event that cell ¢ is occupied: p, =1

m. the event that cell ¢ is empty: p. =0

m  the map, i.e. the set {u.: c€ {1,...,C}}

(' the number of cells in the map: m € B¢

S the set of occupied cells: S £ {s:my, s€ {1,..., C}}

S the set of empty cells: S £ {s:m,, s € {1,...,C}}

Measurements

2! sensor measurement at time ¢

Z' the set of all sensor measurements up to time {

6" binary measurement §' € {0, 1}

A' the set of all binary measurements

d"  the event of a detection at time ¢: §' = 1

d' the event of a non-detection at time ¢: §* = 0

D' the set of all measurements that resulted in detections

D! the set of all measurements that resulted in non-detections up to
time {

n'  the number of detections up to time t: nt £ |D!|

it the number of non-detections up to time t: n* £ |D!|

7' the set of measurement times that resulted in detections

the set of measurement times that resulted in non-detections
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Selected Probabilistic Quantities

p (m | Z“) full posterior over all maps given all measurements up to time ¢
P [m‘, ‘ Z'] marginal posterior for the occupancy of cell ¢ given all measurements
up to time ¢

oo (shorthand) probability that sufficient signal from cell ¢ arrives at
the sensor to trigger a detection at time ¢

P (shorthand) prior probability of occupancy for cell ¢: P? £ P [m,]

P (shorthand) posterior probability of occupancy for cell ¢ conditioned
on all non-detections up to time t: P! £ P [m, | D!]

1"('; (shorthand) “revised prior:” the marginal posterior probability of
occupancy under the assumption that the marginal posteriors are
independent.

Pk probability of false alarm (detection) at time ¢

i odds ratio for cell ¢: vt £ P [mc [ Z‘] /P [m, | Z"]

ot odds ratio for cell ¢ conditioned on exclusively non-detections: pf £
P [m,_. ’ D, D‘] /P [ﬁzc | . D‘]

P not an odds ratio but notation reflects parallel algorithmic role to
P =P [D‘ | D'.mc] /P [D‘ ‘ B, mr]

Miscellaneous

g.. arbitary grouping of measurement times that resulted in detections;
k denotes group index

Gg' indecies k of groups g,
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Appendix B

Exact Binary Occupancy Grid
Mapping Derivations

B.1 Sums Over Maps

ums of the form _ahs appear t 1out the derivations con-
Su f the for «es hs appear throughout the derivations con

MM

tained in this appendix. 'lhf) can be simplified iteratively as follows:

I

minme s€S
Z H hg- Hh
T SES, 5%¢C SES
( X I wIlhr 3 1w I1%)
mine my SES, s#C mime,my SES, s#c sES
— hr( hy, - -Hh,,+ hy - Z 1_[ he- H !T.I,,)
m:m, m; SES, wér‘u' SES T Ny SES 87 ¢ SES s#b (Bl)
= f:r( b > [ ke Hh +h Y. [ s Hn_ﬁ)
mime,my SES ., s#¢,b e My SES s# b SES
=he(hs+h) - > I e J]Rs
mume,my SES, s5#¢,b SES
l (iterate over s € {1,..., C}.s# ¢,b)
= he [ [ (hs + hs)
s#r



Changing the limit on the sum to all maps m alters this result trivially to

i
S T As TR =] (hs +Bs) - (B.2)

m seS SES 8=

B.2 Derivation: Binary Inverse Model

To derive (2.14) in the main text, begin by applying Bayes Rule to P [ri‘ | 'm] and

P [a_” | m] and then marginalize:

P [d’ | m}p{m}

%
&) = =iz

P [m, o Id’

(B.3a)

m] plm)

[ns,, [ d] oy l"" ‘ "‘] p(m)

e it [ m[ptm) (B.3b)

where p (m) denotes the prior on the map. The state of each grid cell is assumed
to be independent so that p(m) = [[,es P0- [Lies(1 — P?) where P? denotes the
single-cell prior P [m,].

To proceed we substitute (2.11) into the numerator of (B.3):

Z P [d" | 'm] p(m

= > a-a-pry[Ia-py) [I2TI0-P)
T, S5€8 €S sES
=R <ii=F ¥, [[a-2F [Tn-8 B
mim. S€S SES
=P - (1-P)(1-POHP? J[(1-P) P2 +1—- P?)
s#e
= P(1-( =P (1- P [T - PPY))
s#EC

where the third line follows from the result for generic sums of this form (App. B.1).
P[d'|m]p(m) =3, ...(1 = P[d"| m])p(m), the

remaining sums appearing in (B.3) become trivial modifications of (B.4). Substituting

Upon noting that >

o,
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the resulting expressions into (B.3) leads, after some straightforward simplification,

to the complete inverse sensor model given as (2.14) in the text.

B.3 Proof: P (m | D"): HSGSP H‘?ES( Pf)

It is shown that the conditional independence of cells holds if conditioned only on

s(m | DY =T] P [I-P) . (B.5)

SES seS

nondetections:

and furthermore that a binary forward model of the form (2.11) is both the necessary

and sufficient condition.

Proof. The proof of sufficiency is by induction. Let Q(f) be the proposition that

(m | D) =[] P- [IC-P)

se8 se8

and _
f")f-!—l — (I_R"‘I)‘"-_T
' 1-PEPE
In the base case, the first portion of Q(0) is true because p (m ‘ f)”] = p(m) by

definition and the map nodes are independent so that

p(m) =[] P2-[J(1 = P) .
€S s€S
The second portion of Q(0) is also true, by our previous result for the inverse sensor
model (2.14b).
For ¢ > 0, applying Bayes Rule to p (m | D'*!) yields

sy P Dm)a(m | 5)
)(m ‘ D ) = gp(&m ‘ D'.m)p(mlD‘)
(e 1mp{o)
o T )

where the second line follows from the “static world” assumption.
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By induction the term p (m | D') can be expressed as a product over all cells so
that the sum appearing in the denominator of (B.6) is of the same form as (B.4).
Thus ¥, p (@' | m)p(m | DY) =(1 — PE) [1,(1 = PI+'PY).

With this substitution and our expression (2.11) for the forward measurement
model P [d' | m], (B.6) becomes

(1-PEH) 1‘[(1 Pst+1)

A1y _ At
p(m | D) = (-PF l]ﬂ,(l PR p(m | D')
_ 11 (1-P*)P 1- Pt
- H 1-PIFIRE 1-PIH Pt
€S S
’ * (B.7)
. (1- P“')P‘ (1-PS*1) P
—II SRR 1 =
seS seS
- H pitt . H — Pt
SES sES
which completes the proof. O

That the form of P [J‘ [ m] given by (2.11) is also a necessary condition for (B.5)

to hold is shown by direct proof.

Proof. Begin by applying Bayes Rule to p (D‘ | m) and then factor p (m ‘ f)") using

the independence property proved above:

p(m | D) p (D)

D! =
(D' [ m) o
= P [m, | D!] D'] 5
pt P[m, | D] P[m,] ¢ P [ D'
= ty | . M i)
= L ;l;[; P [m, | D] P [m;] ;l:[] P [m]
By (B.5) the latter product in the last line of (B.8) is
{{Rlm12) _Pls=s]| D]
=1 P [Tﬂ's] 1_.’_[8 = @] (BQ)
_P[Dt|s=g]
- p (Dr)
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where the second line follows by Bayes Rule.

Similarly,

P[m.clf_)i] -HP[mle’] =P[S=c[f)‘]

s#c
B.1
D'\S_CP[S—c] LRI
p (D)
Rearranging terms and using the independence of the prior,
P [m, | D] P (DF | §'=1) _ 1—[ P [m;] (B.11)

P [m,] p (DY) e T [ms | D]

With this result the argument of the first product in the last line of (B.8) becomes

[ ‘ D]P[mr B p(D‘|S=C) 4 P [
| D HP

P [m. ] P [m,] ?(Dt) ’ w1 P [me | D] (B.12)
_pD]S=¢
p(D|S=2)

where the last line follows upon substitution of the result from (B.9).

The probabilities in results (B.9) and (B.12) can be evaluated in terms of the

definitions for P! and P}. by taking advantage of the static world assumption:

p(D'|S=2) =] P[d|S=2]
TET (B13}

= [Ja-#p

TET!
and

)(D! ‘S=C) = HP[J’|S=C}
il (B.14)

= H(l— PIY(1 = PD) .

TET
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Substituting these results into (B.9) and (B.12) yields

GP[m | D] _ 1 i .
1 PmJ]  p(DY) [[a-rp Bd5a)

P [m, | D] P [m]

H P [ﬁ}.s | Df] 5 [7713} - H H(l =Bl s (B.15b)

SES sES TeTt

s=1 TET!

Finally, substituting (B.15a) and (B.15b) into (B.8) gives

p(D'|m) = [[a-pPp)- [ITIC-PD)

TET! SES TET!

=11 (a-Pp - TTa-rD)

TETL SES

(B.16)

This result must be also be true for 7' = ¢, thus P [J" [ m] as given by (2.13) is not

only sufficient, but also necessary for (B.8) to hold. O

B.4 Proof: P[d' | D', m.] #P[d"| m,]

The conditional independence assumption required by the standard OG mapping
algorithm is P [z‘ | Z"',mc} = P [z‘

when all measurements consist solely of non-detections (Z' = D'). This can be

mc]. This assumption remains false even

shown by exploiting (2.17), proven above, to derive exact expressions for P [J’ [ m,.]
and P [J‘ ‘ i_)'_"mc].
Beginning with P [(17‘ ‘ mc].

2 [(f‘ | m,.} = ﬁ Z P [Jt ‘ m] p(m)

=(1-F) Y II @-P)Pm)- [Pl
m:m. sES,s5#¢ s€8
(B.17)
=(1-F%) H((l — P)P[my] +1- P[m_q])
s#c
=(1-r) [IQ - PPm) .
s#£c
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Similarly, for P [n_’.‘ l B L mr]}
P [rf" ‘ Dt_l,m,} = ﬁ Z P [{?" | D‘_l,m:[ p(m [ D"l)

P[r]ncl Z P[d' | m] p(m| D)

:(1 - Pj) Z H (1 - P;) P ['m,_q ’ D"’] . HP [rﬁs | I_)t_']
mime SES, s#c seS

== Pj) H(l - PP [ms Dt*l]) :
s#e

(B.18)

The second line above follows from the static world assumption. The third line
exploits (2.17) to factor p (m | Di‘.-—l)l

It may be shown readily that
P [m. | D''] < P[m,] (B.19)

where equality holds only for the trival conditions P = 0V 7 or P[m.] € {0,1}.

Consequently,
(1-PY) H(l - PP [m, | D)) > (1-P)) H(l — PP [my]) (B.20)
s#c s#c

where the strict inequality holds unless ¢t = 1, P! = 1, or at least one of the other
trivial conditions is met for each s # ¢. Thus the standard OG mapping algorithm

assumption remains invalid even when applied exclusively to non-detections.

The inequality (B.19) is most readily derived from the expression for the odds

ratio conditioned solely on non-detections (2.20) from which it follows that

t=1

[1(1 - F7)
Pm,| DY = = P [m,] . (B.21)
1— (l - T1(1 - Pg)) P [m,]
T=1
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To show (B.19) it is therefore sufficient to show

ﬁ(l —-P) < 1- (1 - 1:[(1 - P(T)) P[m,] . (B.22)

T=1 =1
Rearraging terms,

t—1
[[a-P) 1 -Pm]) <(1-P[m]) (B.23)
T=1

which is obviously true. Equality holds iff P7 = 0V 7 or P [in/ = 1. From (B.21),

P [m. | D''] = P [m,] also holds under the condition P [m.] = 0.

B.5 Derivation: Exact Solution

This section derives the expressions for the exact posterior odds ratios given by (2.20)
and (2.21). The posterior odds ratio conditioned on exclusively non-detections (2.20)
is readily attained by application of (B.12)-(B.14):

Y [mc | D']
Pe = Plme | D']
P (D! | S=¢) P [me]

p(Dt]|S=29) " Plm (B:24)
}3(_1
:H(I_Pf)' 1 — po°
TET! :
Expressed in recursive form,
pe=(1- P! pc! (B.25)

as given in the text.

To derive the expression for the complete posterior odds ratio (2.21) begin by
applying Bayes Rule to the marginal posterior, making use of the static world as-

sumption to split up p (D", D! ‘ m), and then reapply Bayes rule to just the term
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containing D':

P [mc | . D‘] = Z p(m ‘ D',D‘)

i ; cp(Dp‘Dl‘m)p(m)
_ngr;, p(D'.D‘)
= 55 2 P (D' [m)p (D | m)p(m)

=%Zp D'|m) p(m|D') .

mime

Upon substituting in our expression for the forward model (2.11),

Pm | D', 0] = 270

<S5 TI (1—(1—P}‘)H(I—R:‘))p(m| DY) . (B.2

mime rert SES

(=7]
—

Note that the dependence on the prior p (m) has been replaced by a dependence on

p(m | D’) which nonetheless retains the prior’s multiplicative structure by virtue of

the conditional independence proved in App. B.3.

To proceed we expand the product over D' as a sum:

[I (1--r)II0-rm)

TET! SES
-1+ 3 T I1(a- Lo ).
=1 nCrt =1 sES
nen?

This expression allows the order of summation in (B.26) to be changed:

P [,’,”_C l Dt. D‘] -, P(D') [ P:

p(Dt.DY)
n' q
+>=10> > H( — P} H(I—P;")) ;_;(mmf)]. (B.27)
q=1 nCrt mume i=1 SES
nel9
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To arrive at the above, we have used the conditional independence of p (m | D') to
Dt — pt
get > m P (M | Df) = B,

Working now with just the sum over m : m,.,

S TI(a- P TIa-P9) p(m| B

mme i=1 sES
q
=1I0-#)
i=1
« S T1(IT0-#)7) Tla-#) (B.28)
mme €S i=1 ses
9 q
= P! H 1 — P’ir H rr.
i=1 i=]
q
x> 11 (H(l = P;"')P.i) [Ja-2.
min,. sES i=1 el

s#c

The remaining sum in (B.28) can be converted into a product over the much smaller

space s # ¢ in the usual way:

~-PF 3 H(H (1- PP [T - PY)

:a

,':1 mom, :iq i=1 S€ES
=ﬁ(]_P;E=) H( ﬁ 1— P™) 1-P_‘))
i=1 s#c i=1
Inl nl
=TIa-Pp) TI(1- 0 -TTa-2m)F)
i=1 s#e =1
= fd(n) -

Substituting this result into (B.28) and the resulting expression into (B.27) yields the
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posterior probability of occupancy:

P [*mC | 2.8 D’}

= D(D,S?Q,) [1 +) (1Y [[(-P™)fim) ]P; . (B.29)

q=1 ng‘r! i=1
nenN’

A nearly identical procedure carried out for the posterior probability of emptiness

leads to:

P [ﬁr.(. | I D']

t

- p(p:(y—Do)) [H;(_an;' f?(n}](l —P!) . (B.30)
neN?

The unknown leading coefficient is identical for both occupancy and emptiness and

cancels upon constructing the odds ratio.
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Appendix C

Exact OG mapping algorithm with

unconnected observation regions

This implementation of Algorithm 1 exploits the lack of dependence between detec-
tions that observe portions of the map not related to one another either by direct
overlap or through overlap with shared neighbors.

Let R' = {c: P' > 0} denote the portion of the map observed by a measurement

I such that

at time ¢, and let R! denote the union of all connected R™ for 7 € 7'~
at least one Rt C R! overlaps with R'. Note that R! is exclusive of any cells
belonging to R* alone and may consist of disjoint subsets of the R™. The definition of
R! is illustrated schematically in Fig. C-1 and Algorithm 10 implements a recursive
procedure in pseudocode for finding R from a seed region.

If a detection was registered at time ¢, then the posteriors of cells within R UR!
are dependent. If on the other hand a non-detection occurred, then all disjoint sets
of connected regions remain independent from one another, regardless of any shared
history of observations that resulted in non-detections. Indeed, it can be shown
that all terms in (2.21) containing P for all s not in the same connected region
as ¢ factor from the numerator and denominator and cancel. Figure C-2 illustrates
the independent update of connected regions using the sonar range finder model of
Fig. 2-3.
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Figure C-1: Schematic definitions of R!, the portion of the map observed at time ¢,
and the previous detection regions that comprise R., indicated in gray.
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Algorithm 9 An exact algorithm for the odds ratio. The algorithm requires the
subroutine find_connected (10) to determine the portions of the map that require
updating. Unless otherwise noted, all subscripts ¢ imply the operation is for all
ce{l,...,C}
Require:

Pt et

i

P Vr1ert!

R' £ {c: P! > 0} {current measurement region}

R, V 7, € 717! {all previous detection regions}

rl = og_exact{
1: if d' (detection) then
% G
& Pt=pl/1+7)
4:  R! = find_connected(R")
50 forallce REUR! do
1+§1(—1)"‘ LB ﬁ(I—P,F*) ‘ﬁ;(l—P;‘) I (1-(1-_ﬁ(1-P,’“))P;)

nCrinenNd =1 s#c, sERLUR? =1

6: p:\ = ot Y i In| ; .
H+ (-1 x H(I—P;-’) I (1—(1—[](1—P_,"))P,!)
e=1 nCrinenNe =1 s#c, seRLURE i=1
7. end for
g p=pL VegR
9: else if d' (nondetection) then

100 p=(1-P)pl, VceR!

11: pt=pt, Veg R

12:.  R! = find_connected(R')

13: pL=p"", Ve g R {The pt outside of R are unchanged}
{Each disjoint subset of connected regions in R! can be processed indepen-
dently}

M: Taw={ri7<t RINR # @}

15 while 37 € 7., such that R”"NR! # @ do

16: R! = find_connected(R")

17: for all c € R! do
wEer s ey fiGer) n (-(-fia-rm) )
18: ,0: e y=t 'nEr‘.neNﬁ i=1 = i=1 s#c, s€RT o i=1
wEer x A n (-G feor)s)
q9=1 nCrtneng 1=1 s#c, s€RT i=1
19: end for

{Remove all processed detection times from those remaining to be pro-
cessed. }

20: T =T\ {E R MR # T}

21:  end while

22: end if 221

2% v =pk-p

}




Algorithm 10 Subroutine for computing a connected set of detection regions given
a seed region. The result returned is exclusive of the seed region. Required for
Algorithm 1.
Require:

R! £ {c: P! > 0} {current measurement region}

R™, V 1; € 717! {all previous detection regions}

R! =find_connected(R!){
Ri =@

Tx = &
while R N R, # R! do
R =R,
n={T:7<t, RTNR; # @}
6 Ri= )R
TET-

7. end while
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Figure C-2: Map cells updated by Algorithm 1 following a detection (left) and a non-
detection (right) using the sonar model of Fig. 2-3. At each successive robot position
(green circles). the robot acquired three range measurements at headings of 45°, 90°,
and 135°. The detection regions for all measurements are outlined in red. Red-filled
regions indicate cells for which p!. was updated following the third 90° measurement
(thick lines). Similarly. blue-filled cells indicate cells for which p! was updated. and
purple-filled regions indicate cells for which both p! and pl required updating. The
two disjoint sets of detection regions following the non-detection would be updated
independently by Algorithm 1.
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Appendix D

IPAlgorithm Derivations

D.1 Recursive IP

To show (3.19a) in the main text. begin by applying Bayes Rule to the definition of

rl, followed by the total probability theorem and then the static world assumption:

_P [mc [ e D']
~ P[m.| D', D]
P [D*, D! | mc] P [m,|
P [D’-. D! ' 'ﬁ'z.c] P [m,]
I [D", D! | m] p(m)
M, . (D ].)
3 P [D’. Dt | 'm] p(m)

LT,

S [1 P[d|m] P[D™. D™ | m]p(m)

m:m: T=Tn+1

Z li_[ P [JT ‘ m] P [DT“. D

e T=Tn+1

£

m| p(m)

Upon substitution of the forward model for a non-detection (2.13) and application
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of Bayes rule to P [D™, D™

M a-r) S 10 ( 1 ( 1_pf) P [m | D™, D™
rf_ = T=Tn+l mime SES \7=Tn+1
c t t
1 0-p) S n( 1 1_p;)) P [m | D, D]
T=Tn+1 mime SES \T7=Tn+1

Now apply the assumption p (m | L B ]_[5;1 p (e | A™), so that

Plm | =] = [] 2 []1-77)

sES SES

and then simplify the resulting sums in the usual way:

> (1 a-rpe) T (i-Pr)

?J _ mume S€ES \7=Tp+1 SES

e 1 - -
> (11 a-r ) T(-Pr)
mime 8€S \7=Tn+1 SES

[ a-r- 2o (11 -Bra(i- 7))

o T=Tn+1 s#c \Tt=Tnr+l1
= " ; = =
(1-77) 11 ( I1 —P:"+(1—P:"))
sF#c T=Tn+1

Upon cancellation of the products over s # ¢,

t
[T a-rp)rr,

T=Tn+1

(D.3)

(D.4)

which is valid for 7, < t < 7,,41. Furthermore, with this same assumption, inde-

pendence of the posteriors continues to hold for ¢ < 7,4, by trivial modification of
Proof B.3. (Replace p (m) with P [m ‘ j 5 358 DT"] .) Eq. (3.19b) then follows directly

by trivial modification of the derivation of (2.21) presented in App. B.5.

p(m | D) with P[m | D=1 Dmai=1] )

226

(Replace



D.2 Extended IP

The first case of (3.25a) follows from the substitution of D with D7F in the derivation
for (3.19a). The second case of (3.25a) is trivial because by definition the conditioning
on pt does not change for a detection. Furthermore, assumption (3.26) evaulated at
t = 7, implies independence of the posteriors conditioned on D7 and D! continues
to hold while Gf. = G

Eq. (3.25b) may then be attained by modification of the procedure used to attain
the CID algorithm as follows:

B P [mc | D, I:)‘}
T [ﬁz | D, D‘]

3 [D"'\*P | D7s Dt mc} P [mc | D7F, D'] D.5
~ P[D™\"k | D¢, D',m,] P [m.|DTF,D!] (D5
_ [D-r!\-r |DT* Dtimr} g
P [D™\*¢ | DF, Dt m,] "¢
By the modified CIM assumption (3.24),
i 1 P [D% | D™, D!, m,]
Te = FPe* ] rl. T u
keG'\G}- P [Dak | D7r, D, ]
S P[D% | m]P [m | D™, D] (D.6)
= S SR T 575
hegh\Gh L '

The latter ratio in the last line of (D.6) factors into products over s € S and s € S so

that the same procedure used to derive (2.21) can be employed to arrive at (3.25b).
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Appendix E

Connections to Pang, 2004

This appendix explores the connections between the occupancy grid (OG) map-
ping methods developed in Part I of this thesis and previous work carried out by
Pang [101,102] on chemical plume source localization where the search domain was
similarly discretized. The essential difference is that the Bayesian map update algo-
rithm proposed by Pang requires assuming a single source domain. This is a powerful
constraint that allows inferences to be drawn about portions of the map not actually
ever observed, a property that is fundamentally incompatible with multiple-source
domains where the number sources cannot be known a priori.

The plume detection model developed by Pang can be extended to conform to the
special form of (2.11), making it suitable for multiple source domains. This appendix
presents simulation results that compare Pang’s algorithm with the recursive form
of the IP algorithm developed in § 3.2.1. In a known single-source domain, Pang’s
algorithm generally produces superior results. However, in multiple source domains
Pang’s algorithm produces results inconsistent with the true source locations. In
either case, the recursive IP algorithm produces acceptable results with approximately

equivalent computational cost.

Key Probabilistic Quantities

I begin by recapitulating Pang’s model [101] for plume evolution and expressing the
key probabilistic quantities in my notation. The model is appropriate to short time-

scale plumes composed of approximately independently diffusing “filaments” of plume
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effluent [8,30]. The key probabilistic quantity attained from this perspective on plume
evolution is, in the notation of [101], S;;(#,tx) which denotes the probability that a
source in cell ¢ released a single chemical filament at time ¢; given that the filament was
present in cell j at time ¢;. Considered over a range of release times {; € [tg,{}), the
Si;(t1, tx) enable the computation of relevant probabilities for a continuously releasing
source: wy;(to,tx), the probability that there is a source in cell ¢ given that there is
detectable chemical in cell j at time #x; 7;;(%o, tx), the probability of not detecting a
chemical in cell j at time {; due to the continuous release of chemical from a source

in cell 7. For filaments released at discrete times ¢;, i € [0, k), these are [101]:

k-1

1
wij(to, tx) = % Zsij(f'{stk)

=i (E.1)
Yij(to, ti) = | | (1 — pSi;(t, tx))

T

0

where p denotes a detection probability given that both the sensor and a chemical
filament occupy the same cell. Note that for cells not upwind of cell j, w;; — 0 and
vi; — 1, which again reflects the assumption of a single source. In my notation, these

are

P[S=i|d S =1] =wy(to, tx)

(E.2)
P[d* | S =i] = ij(to, t)

where the sensor implicitly occupies cell j at time {,. These probabilities represent

respectively half of an inverse model, and half of a forward model.

Update Algorithm

Pang describes a recursive update rule using these quantities for the probability that
the source lies in cell . Because a single source is assumed, the quantity being
estimated for each cell is P [S = ‘ Al S = 1] and not P [m,- | A'] as in occupancy
grid mapping. In my notation, his update rules for a detection and non-detection
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registered at time ) are, respectively:

— i | gk
PlS=i]|d" A" = P[lf[;ilif] P|S=d|A"Y
P[E|S=i] (£:3)
P[‘s="’l | a_'k*Ak_l] = P[(?“] P[S:?' | Ak_l] ]

where the conditioning of all quantities on S = 1 remains but has been dropped for
brevity.

An independence assumption is required to derive (E.3): p (6%, A*-!) =P [r‘)""'] P [A*"’] :
The update rules that result have intuitive appeal and simulation results in [101] in-
dicate their utility for the problem studied. If P [S =1 r d’] > P [S =], then one
expects a detection given a source in ¢, and the posterior probability that cell ¢ con-
tains the source increases. Additionally, because P [S =3 | d.'"] approaches 0 for cells
not upwind of ¢ rather than approaching the prior, the posteriors of cells not upwind
are reduced. Likewise, if P [J"’ ‘ S = '.*T] <P [c?k] then one expects a detection given
a source in cell 7, and since none was registered, the posterior for cell 7 is decreased.
As above, P [ﬂn ‘ S= 'z'] does not approach the prior for cells not upwind, instead
approaching 1, and consequently those cells will have their posteriors increased. This
behavior is entirely consistent with the assumption of a single source in the search
domain; however, it allows inferences to be made about the entire map regardless of
the portion of the map actually observed, and this property is fundamentally incom-
patible with multiple-source domains.

The derivation of (E.3) also requires that p (6%, A1 ‘ 8 =i) = pi(* | §=1):
This relationship is approximately true for all upwind and cross-wind sensor trajecto-
ries assuming the source location is static. It is, in fact, the static world assumption
(§ 2.1.1) stated for all single-source maps and should not be confused with the CIM
assumption required by standard OG methods.

Adaptation for Multiple-Source Domains

Pang’s model can be adapted to multiple source domains by recognizing that the

Si;(t, ty) are related to the probability of non-detection given a single source map by
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the second part of (E.1).! Restating (2.12),

P[d*|8=d] =(1- PE)(1-F) (E.4)
then leads immediately to
: iltoi T
_A =1 %J( 0+ bk . E.

The PF are the fundamental probabilities required to implement any of the OG map-

ping algorithms developed in this work.

Simulation Results

Figure E-1 shows the results of Pang’s algorithm, the recursive IP algorithm, and the
exact algorithm (§ 2.4) applied to a small single-source domain simulation. Figure E-
2 shows these same algorithms applied to a domain with two sources. The simulated
plume (black) and vehicle trajectory (blue,red) is shown at four times during the
simulation in the bottommost panels of each figure. Non-detections are indicated by
blue dots; detections by red dots. The remaining panels show the outputs of each
algorithm. Cell colors in the results for Pang’s algorithm approximate the log;y odds
that the correct map has the corresponding cell occupied and all others empty. Cell
colors in the recursive IP results approximate the log;o odds of the marginal posterior
of that cell being occupied. The correct marginal posterior odds are shown in the
topmost column of panels in each figure.

Pang’s algorithm produces superior results when applied to a single-source domain
but not when applied to a domain with multiple sources. Both the superior results in
the former case and the algorithm’s behavior in the latter stem from the assumption of
a single source. In a single-source domain, the assumption of a single source enables
inferences to be drawn about portions of the map not actually observed during a
specific measurement. From the figures, before the first detection, Pang’s algorithm
gradually raises the odds in portions of the map not observed by the non-detections.

Upon registering the first detection, the odds in all of the map not immediately upwind

"The quantity S;;(#.tx) equivalently specifies both a forward and inverse model. It is at once
both the probability that a filament detected in cell j was released from cell ¢ (inverse), and that a
filament released from cell 7 is in cell j (forward).
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Chapter 6
Conclusion

This thesis presented a stochastic mapping framework designed to enable a robotic
platform to automously localize chemical plume sources in environments with multiple
sources. Potential applications for robotic chemical plume source localization include
pollution and environmental monitoring, chemical plant safety, search and rescue,
anti-terrorism, narcotics control, explosive ordinance removal, and hydrothermal vent
prospecting. Turbulent flows make the spatial relationship between the detectable
manifestation of a chemical plume source, the plume itself, and the location of its
source inherently uncertain. Search domains with multiple sources compound this
uncertainty because the number of sources as well as their locations are unknown.
The framework is an adaptation of occupancy grid mapping wherein the binary
state of map nodes is redefined to denote either the presence (occupancy) or a ab-
sence of an active plume source instead of the usual presence or absence of a physical
obstacle. A key characteristic of the chemical plume source localization problem is
that only a few sources are expected within the search domain. The occupancy grid
framework allows for both plume detections and non-detections to inform the esti-
mated state of grid nodes in the map, thereby explicitly representing explored but
empty portions of the domain as well as probable source locations. However, sparsity
in the expected number of occupied grid nodes strongly violates a critical conditional
independence assumption required by the standard Bayesian recursive map update
rule. While that assumption makes for a computationally attractive algorithm, in
our application it results in occupancy grid maps that are grossly inconsistent with

the assumption of a small number of occupied cells. To overcome this limitation, sev-
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eral alternative occupancy grid update algorithms were presented, including an exact
solution that is computationally tractable for small numbers of detections and an
approximate recursive algorithm with improved performance relative to the standard
algorithm but equivalent computational cost.

Application to hydrothermal plume data collected by the autonomous underwa-
ter vehicle ABE during vent prospecting operations in both the Pacific and Atlantic
oceans verified the utility of the approach. The resulting maps were shown to enable
nested surveys for homing in on seafloor vent sites to be carried out autonomously.
Real-time implementation would eliminating inter-dive processing, recharging of bat-
teries, and time spent deploying and recovering the vehicle that is otherwise necessary
with survey design directed by human operators.

The remaining paragraphs reiterate the contributions made by this work to the
three areas identified in Ch. 1: (1) occupancy grid (OG) mapping; (2) general chemical
plume source localization; (3) hydrothermal vent prospecting. In each category 1

identify candidate directions for future research that leverage these contributions.

Occupancy Grid Mapping

e The application of OG mapping to novel arena—multi-source chemical plume

source mapping.

e An articulation of the problems associated with application of standard Bayesian
OG mapping to environments with few expected occupied cells (low prior prob-
ability of occupancy) and stemming from a key independence assumption re-

quired by the standard algorithm.

e An exact solution for the state of an OG map when measurements consist of
binary detections and non-detections generated by a particular form of forward

sensor model.

e A family of novel approximate algorithms applicable to low prior environments

based on this exact formulation.
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are dropped to near zero. This causes problems when another detection suggests a
source within one of these regions (Fig. E-2): all data is interpreted in terms of a
single source so that widely spaced detections are interpreted as evidence of a single
source far upwind. It is important to note that Pang’s algorithm computes a set
of probabilities that explicitly assume a single source: P[S =i | A* §=1]. The
results produced by Pang’s algorithm in the multiple-source domain simulation are
a reasonable result for the data if the environment were in fact known to have one
source. However. many practical scenarios do not allow such an assumption to be
made. In both figures. the recursive IP results are similar to the correct marginal
posterior odds computed by the exact algorithm; though the portions of the map
observed during early detection times but not observed later has somewhat high odds
relative to the exact result. a consequence of the uni-directional linkage between past

and current measurements that is characteristic of the IP class of algorithms.
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Figure E-1: Pang’s [101,102] algorithm vs. the recursive IP and exact OG mapping
algorithms in a single-source domain. See the main text for an explanation of each
panel. The results for Pang’s algorithm are superior in the sense that most of the map
has been correctly identified empty and with only a single peak surrounding the correct
source location. In contrast. the other algorithms have produced results with higher
posterior odds over much of the map. though the largest peak in each case oceurs in
the right location. The difference is a consequence of the former algorithm assuming
a known number of sources which enables it to infer information about all portions of
the map. not just those directly upwind.
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Figure E-2: Pang’s [101.102] algorithm vs. the recursive IP and exact OG mapping
algorithms in a multiple-source domain. See the main text for an explanation of each
panel. The second detection is widely spaced from the first and inconsistent with a
single source in the domain. Pang’s algorithin produces a small peak away from any
of the the true sources. These results improve slightly upon further detections. all
from the same source; however, the single peak in the map still does not coincide with
cither source though it is close to the leftinost source. Both the recursive IP and exact
algorithms produce multi-modal maps with relatively high posteriors odds over the
true source locations. One additional high posterior odds area is also present and not
associated with a true source: however, 1t)}); still consistent with the data as revealed
by the exact results. =






Appendix F

Anomaly Maps

This appendix is an archive of hydrothermal vent prospecting data from the Au-
tonomous Benthic Explorer (ABE) dives studied in this thesis. Table F.1 lists the
dives studied by site. Sites at ELSC are identified by their at-sea site number desig-
nation as well as by site name.

The following sections are organized by site. Each starts with a summary plot of
vent prospecting results at that site using the methods developed in Ch. 4. This is
followed by plots of summary data from each Phase-1 and Phase-2 dive at the site.
The plots show profiles collected during vehicle descent. time series data for each
tracer (after pre-processing, processed for NBP detection, processed for BP detection),
bird's eye views of anomaly intensity (processed for NBP detection. processed for BP
detection), and a bird’s eye view of each horiztonal crossflow record from ABE's
ADCP." Detailed descriptions of each type of plot can be found in Ch. 4.

The most significant room for improvement lies with detection of the non-buoyant
plume (NBP). As a whole the NBP time series plots in this appendix show NBP
contact over more of each dive than the automatically identified intervals. Likely
culprits are non-linearity of the background profile, changes in sensor behavior during
descents versus horizontal surveying. and horizontal variability in the background
profile. In many cases the true background appears somewhat offset from the center
of the prediction interval indicating that simply reducing the probability of false alarm

would not yield improved performance. Detection of NBP would benefit from batch

"The crossflow record for ABE-134 suffers from compass calibration problems and is not included.
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Table F.1: ABE dives studied in this thesis. Bottom depths are approximate averages

over the course of entire dives.

‘Site  Dive Phase Bottom Depth Height Comments

Depth

2600 m  2315m N/A

2650 m N/A 50 m

2165 m 1880 m; N/A two passes at different
1960 m depths

ELSC-1 126
ELSC-1 137
ELSC-3 128

= B

ELSC-3 136 2 2165 m N/A 50 m

ELSC-5 131 1 2050 m 1880 m; N/A three distinct depths over
1800 m; partially overlapping arcas
1615 m

ELSC-5 133 2 2050 m N/A 50 m

ELSC-5 134 2 2050 m N/A 50 m

SMAR 150 1 3000 m 2875 m; N/A alternating depths on each
2750 m trackline

SMAR 151 2 3000 m N/A 50 m

SMAR 153 2 3000 m N/A 50 m

processing of the entire record instead of the present technique which relies on the

accuracy of the background profile determined during vehicle descent.
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F.1 ELSC: Site-1 (Kilo Moana)
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Figure F-1: Vent prospecting summary data. ELSC-1.
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Figure F-2: Closeup of vent prospecting summary data, ELSC-1.
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F.1.1 ABE-126
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Figure F-3: Descent profiles vs. depth. ABE-126.
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Figure F-5: Time series of hydrothermal tracers after pre-processing. ABE-126.
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Figure F-6: Time series of hydrothermal tracers processed for NBP detection. ABE-

126. Intervals highlighted in gray indicate NBP detection.
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Figure F-7: Time series of hydrothermal tracers processed for BP detection. ABE-126.

Intervals highlighted in gray indicate BP detection.
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Figure F-9: Bird's eye view of anomaly intensity after processing for BP detection,
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Figure F-11: Descent profiles vs. depth. ABE-137.
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Figure F-12: Descent profiles vs. potential density. ABE-137.
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Figure F-13: Time series of hydrothermal tracers after pre-processing. ABE-137.
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Figure F-18: Descent profiles vs. depth, ABE-128.
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Figure F-19: Descent profiles vs. potential density. ABE-128.
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Figure F-20: Time series of hydrothermal tracers after pre-processing. ABE-128.
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Figure F-21: Time series of hydrothermal tracers processed for NBP detection. ABE-
128, Intervals highlighted in gray indicate NBP detection.
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Figure F-26: Descent profiles vs. depth. ABE-136.
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Figure F-28: Time series of hydrothermal tracers after pre-processing. ABE-136.
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Figure F-29: Time series of hydrothermal tracers processed for BP detection, ABE-

136. Intervals highlighted in gray indicate BP detection.
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Figure F-35: Time series of hydrothermal tracers after pre-processing. ABE-131.
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Figure F-37: Time series of hydrothermal tracers processed for BP detection. ABE-

131, Intervals highlighted in gray indicate BP detection.



Northing (km)

57
-

0

4]

—y
-27
— 45

4.5 5 5.5 6 6.5 1.5 b 5.5 fi 6.5
Easting (km) Fasting (km)

OBS (inst. V)

Figure F-38: Bird's eve view of anomaly intensity after processing for NBP detection,

ABE-131. Larger diameter dots indicate NBP detection.

271



Narthing (km)

x“”ﬂ‘l“.‘ﬁ'é“}"”

*

Northing (km)

i% 5 &% 6

Easting (km)

Narthing (km)

15 5 55 6

Easting (km)

Figure F-39: Bird's eye view of anomaly intensity after processing for BP detection.

2 Z ‘.1\."-‘.'@3.-\’{,3 )

0.18

Kk

£

0062z
N6Z=
==

ADCP w (em/s)

Easting (km)

[

Easting (km)

ABE-131. Larger diameter dots indicate BP detection.

27

2

10

it

(RS (mV)

m/s)

vert. vl (



g k\_, Som/s g
- -
A
8af 1 ]
=13 - 4D
£ = \ W - ‘1
T 3 \ £, "
e : ' ¥
'_E_ .0 ) \ ~ l'—'__ e o g I h i
z & ~ 1
Tt 40
<.l
| i
Ak P L 1
-19
i -
20
,"I:‘ | L i L '
| 1.5 5 5.5 6 6.5 7

Fasting (km)
Figure F-40: Bird's eve view of ADCP-derived crossiow velocity, ABE-131 (1 h verti-
cal average over depth interval 5 m to 25 m below vehicle). Numbers indicate the order

of observation.

273



F.3.2 ABE-133

Optical Backscatter (inst. V)

”Hdl,’ri.’n 0.052 0.0525 0.053 0.0535 (L0534 0.0545 0.055 0.0555

-\.-__=-—?; JJ‘"
_— —
1500
1600 + -
T = [ELN

= " —_
= f —=
= ITO0F s ——
= 1 -
= -

1500

1900

2000 : - . - .
25 26 2.7 28 29 3

Potential Temperature (deg )

Figure F-41: Descent profiles vs. depth. ABE-133.
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Figure F-42: Descent profiles vs. potential density, ABE-133.
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Figure F-43: Time series of hydrothermal tracers after pre-processing, ABE-133.
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133. Intervals highlighted in gray indicate BP detection.
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Figure F-48: Descent profiles vs. potential density, ABE-134.
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Figure F-49: Time series of hydrothermal tracers after pre-processing. ABE-134.
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134, Intervals highlighted in gray indicate BP detection.
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Figure F-64: Time series of hydrothermal tracers after pre-processing, ABE-151.
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Appendix G

Comparison of OG Algorithms for

Various Prior

The appendix explores the effect of the initializing OG maps for hydrothermal vent
localization with various priors. The unique aspect of applyving OG methods to the
plume localization problem is the small number of cells expected to be occupied
by sources. From a Bayesian perspective, this implies cells are a priori unlikely
to be occupied and should therefore be initialized with small prior probabilities of
occupancy. As with all Bayesian problems. the accuracy of the outcome is influenced
by the accuracy of the prior. Because all practical OG methods are approximate, one
might expect that the choice of OG algorithm will also have an effect on the accuracy
of the result. This is indeed the case. The simulations presented in § 3.3 indicated

that:

1. good results could be attained with the IP algorithm;

2. the standard alorithm is unsuitable for low prior environment.

Both these assertions are borne out here with real data from ABE-151. a Phase-2 dive
(50 m height above bottom) at SMAR. In addition. since only very few BP detections
were encountered during ABE-151, the exact result could was also computed.! pro-

'In fact the CID algorithm was used to generate the “exact” results, with subset size and threshold
set to produce an optimal grouping such that only detections spatially far apart were treated as
independent.
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viding the opportunity to quantitatively assess the quality of the IP approximation.

G.1 Results: ABE-151 at Nominal Prior

Figures G-1, G-2. & G-3 show OG maps constructed using the exact algorithm. the
recursive form of the IP algorithm (§ 3.2.1), and the standard algorithm. respec-
tively. The maps show the posterior odds of occupancy by the center of a vent field.
These maps were initialized with a nominal prior of 107 in each 5 m x 5 m grid cell
corresponding to an a priori vent field density of approximately 1 /km?,

All three maps are qualitatively similar in that they have produced peaks in the
posterior odds in roughly the same places®. However. the numerical values of the
posterior odds in the IP map agree relatively well with the exact map in comparison
to the posterior odds computed using the standard method. One practical reason to
prefer the more accurate result beyond simply unease with the inaccurate posteriors
produced by the standard algorithm is that the transformation from field occupancy
to vent occupancy (§ 5.3.1) applied to the standard result produces huge vent fields.
This happens because of the large mumber of cells apparently occupied by vent field
centers. Furthermore. the recursive form of the IP algorithm used to produce Fig. G-2
incurs the same computational load as the standard algorithm, meaning there is no

reason not to choose the IP algorithm in favor of the standard one for this application.

G.2 Algorithm Performance for Various Priors

This section explores the effect of varying the prior on the maps produced by the
exact, IP. and standard OG mapping algorithms. As above the input data is from
ABE-151. Figure G-4 shows that the IP algorithin produces only slight errors in cell
posteriors relative to the exact result over a broad range of priors, in stark contrast
to the errors produced by the standard algorithm which tend to grow as the prior is
reduced.

Figure G-5 shows the expected number of source vent fields based on the posteri-

ors produced by each algorithm. The IP and exact results agree well over the range

“Recall that all algorithms studied in this thesis behave identically with respect to isolated non-
detections, thus the portions of these maps away from any detections are all identical (and exact).
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Figure G-1: Exact OG map produced from Phase-2 dive ABE-151. Only two of the
five high-odds regions shown in the map were explored on subsequent dives; however,
both contained active vents. The weakest and broadest peaks in the map (at coordinates
(10.20.10.25) and (10.30.10.45)) correspond to single detections. Multiple detections
over the remaining sites enabled the locations of these sites to be better resoloved,
resulting in more tightly constrained peaks with higher odds. The eastern-most vent
field (starred) was discovered on a subsequent expedition over a year after ABE-151,
and may not have been present during the original dive.
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Figure G-2: IP algorithm version of the exact OG map in Fig. G-1. The map has
produced odds near to the exact result. though cells with increased odds tend to spread
over broader regions than in the exact map. The recursive form of the I algorithin
includes no mechanisin to ever reduce the posteriors following a detection. which results
in the observed broadening. Of lesser significance, cells in the two weaker peaks at
coordinates (10.20.10.25) and (10.30,10.45) contain somewhat lower odds than the exact
result. This is a consequence of incorporating detections into the map irreversibly as a
“revised prior.” Subsequent non-detections acted reduce the posterior in these regions

below that of the exact result.
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Figure G-3: Standard algorithm version of the exact OG map inFig. G-1. The color
axis has been rescaled relative to Figs. G-1 & G-2 to show the high posterior odds com-
puted in some regions of the map. Note that these odds are indeed very high. Whereas
the exact result shows maximum odds of between 0.001 and 0.01, this map shows pos-
terior odds as high as 1000. indicating a 1000 : 1 chance that the cell is occupied.
Obviously. odds this high spread over a significant munber of cells are inconsistent with
the low assumed prior. That said. the locations of peaks in the map agree reasonably
well with the exact result.
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of priors investigated, whereas the standard algorithm produces a significant overes-
timate for small priors. Of more interest is the behavior of the predicted number of
source fields relative to the actual groundtruth number of fields. For small priors the
exact and IP results predict the minimum number of source fields that must have
been present in the survey area based on human interpretation of the data. As the
prior increases, the number of predicted fields begins to track the number of expected
fields based on the prior. That behavior is an indication that the prior was selected
imcorrectly. and that it is in conflict with the actual environment.

An incorrectly chosen prior has real consequences regardless of the algorithm, as
shown by Fig. G-6. The figure shows the “efficiency™ of each algorithm’s map in terms
of the number of groundtruth field locations per cell raised above the prior by the
indicated factor (1.01 or 10). Priors that are too low tend to produce inefficient maps
because non-detections are weakened in their ability to constrain vent field location.
Priors that are too high produce outright failure, that is, maps with no cells raised
above the prior. The figure also shows the cost of the broader peaks produced by the
[P approximation relative to the exact result.

Based on these plots. a prior of 1075 (approximately 1 field per kin?) was a
reasonable choice for ABE-151. Slightly higher performance could have been achieved
with a prior of 107", however, further increase would have produced maps near the

failure point.
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Figure G-4: Boxplots (e.g. [45]) of errors in the posteriors computed by: (a) the IP and
(b) the standard OG algorithms for various priors using data from ABE-151. Note the
difference in the scaling of the y-axis between the two plots. Both algorithms produce
small errors relative to the exact result for relatively large priors > 0.01. For smaller
priors the standard algorithm tends to produce large posteriors near unity (for the
smallest priors shown the distribution of errors is actually strongly bimodal). whereas
the IP algorithin exhibits fairly consistent small errors.
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Figure G-5: Expected munber of vent fields from OG maps produced by the exact.
IP and standard algorithins for various priors. The IP and exact results agree well over
the range of priors investigated. whereas the standard algorithin produces a significant
overestimate for small priors. Interestingly. as the prior increases beyond the minimum
number of fields infered by human interpretation of the data. the exact and IP results
tend to track the prior predicted number of source fields. This behavior illustrates
the succeptibility of all Bayesian methods to errors induced by an incorrect prior. It
might be inferred from this plot that priors well below the actual will not compromise
the accuracy of the exact and IP results. whereas high priors might. To some extent
this is true; however, the utility of non-detections will be decreased artificially because
detections become even less likely. As a result. peaks in the posterior will be broader and
the map less “efficient.” as is indicated by Fig. G-6. In addition. the dashed horizontal
line in the plot indicates only the minimum number of ficlds. Recall that these fields
were assumed to have a characteristic number of sources @ each with characteristic size
by. In this particular case (ABE-151). detections were more mumerons than expected
(ef. Table 5.1). so that what appears as an over-estimate in the plot around a prior of
107" instead indicates vent fields with more individual vents or a larger characteristic
source area than expected.
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Figure G-6: OG algorithm efficiency for various priors. Efficiency is defined as the

number of groundtruth field locations per cell raised above the prior by the indicated

factor. The small factor (1.01) includes essentially all cells that were raised above the
prior at all, while the large factor (10) includes only the cells most likely to contain the
centers of source fields. Higher efficiencies were attained with the large factor indicating
good agreement with groundtruth source locations. Efficiency suffers for priors that are
too low, whereas outright failure (no cells above the prior) occurs for priors that are
too high. The exact algorithm tends to produce the best maps, except near the point

where outright failure occurs.
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