
NUWC-NPT Technical Report 11,814
21 May 2007

Stability Analysis of a Tensioned
String with Periodic Supports
Andrew J. Hull
Benjamin A. Cray
Autonomous Systems and Technology Department

Albert H. Nuttall
Sensors and Sonar Systems Department

NEWPORT

Naval Undersea Warfare Center Division
Newport, Rhode Island
Approved for public release; distribution is unlimited.



PREFACE

The work described in this report was prepared under Project
07PR01253-00, "Broadband Acoustic Window Designs for
Heavyweight and Lightweight Torpedoes," principal investigator
Andrew J. Hull (Code 8212). The sponsoring activity is the Office
of Naval Research, program manager David Drumheller
(ONR 333).

The technical reviewer for this report was Paul V. Cavallaro
(Code 70T).

Reviewed and Approved: 21 May 2007

es S. Griffin
Head, Autonomous Systems and Technology Department

IQ



REPORT DOCUMENTATION PAGE Form ApprovedR O DOMB No. 0704-0188

Public reporting for this collection of information Is estimated to average I hour per response, Including the time for reviewing Instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

21 May 2007

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Stability Analysis of a Tensioned String with Periodic Supports

6. AUTHOR(S)
Andrew J. Hull
Benjamin A. Cray
Albert H. Nuttall

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Undersea Warfare Center Division REPORT NUMBER

1176 Howell Street TR 11,814
Newport, RI 02841-1708

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Office of Naval Research AGENCY REPORT NUMBER

875 North Randolph Street
Suite 1425
Arlington VA 22203-1995

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report analyzes the zero-pole locations of an infinite length of tensioned string that has attached periodic supports. The
dynamic response of the system is derived for distributed wavenumber forcing and discrete point forcing acting on the string. These
wavenumber-frequency transfer functions are then written in zero-pole format by a mathematical transformation of their infinite
series. Once this is accomplished, the locations of the system's poles and zeros become apparent, and they can be plotted in the
wavenumber-frequency plane. It is shown that there are specific regions where an infinite number of poles can exist and specific
regions where poles cannot exist. For the system with wavenumber forcing, the system zeros correspond very closely to the
system poles except in the area of the fundamental unsupported string resonance. For the system with point forcing, the zeros can
exist in the entire wavenumber-frequency plane except at the fundamental resonance. A numerical example is included, and the
different zones of the system are demonstrated.

14. SUBJECT TERMS 15. NUMBER OF PAGES
28

Acoustics Tensioned Strings Zero-Pole Analyses 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102



TABLE OF CONTENTS

Section Page

L IST O F T A B L E S .............................................................................................................. ii

I IN TRO D U CTIO N ...................................................................................................... 1

2 EQ UATION OF M OTION ............................................................................................. 3

3 SOLUTION WITH A WAVENUMBER-FORCING FUNCTION ............................... 5

4 SOLUTION WITH A POINT-FORCING FUNCTION ................................................. 7

5 TRANSFORMATION INTO ZERO-POLE FORM ...................................................... 9

6 NUM ERICAL EXAM PLE .......................................................................................... 15

7 C O N C L U SIO N S ................................................................................................................ 25

8 R E F E R E N C E S .................................................................................................................. 27

LIST OF ILLUSTRATIONS

Figure Page

1 Tensioned, Reinforced String with Coordinate System .................................................... 3

2 Regions of Pole Existence (Gray) and Nonexistence (White) ........................................ 12

3 Location of the System Poles (Black Lines) in the Wavenumber-Frequency Plane ..... 16

4 Response of the String Versus Wavenumber and Frequency for an Applied
W avenum ber Load ........................................................................................................ 17

5 Response of the Wavenumber-Forced System at 225 Hz ............................................... 18

6 Response of the Wavenumber-Forced System at 275 Hz ............................................... 18

7 Location of the System Zeros (Black Lines) in the Wavenumber-Frequency Plane for
Continuous W avenumber Forcing ............................................................................... 20

8 Response of the String Versus Wavenumber and Frequency for an Applied Point Load... 22

9 Response of the Point-Forced System at 225 Hz ............................................................. 23

10 Response of the Point-Forced System at 275 Hz ............................................................. 23

11 Location of the System Zeros (Black Lines) in the Wavenumber-Frequency Plane for
D iscrete Forcing ................................................................................................................ 24

i



LIST OF TABLES

Table Page

1 Location of Poles in Wavenumber for a Frequency of 275 Hz ....................................... 19

2 Location of Zeros in Wavenumber for the System with a Wavenumber Forcing ........... 21

3 Location of Zeros in Wavenumber for the System with a Point Forcing ........................ 25



STABILITY ANALYSIS OF A TENSIONED
STRING WITH PERIODIC SUPPORTS

1. INTRODUCTION

The motion of tensioned strings is typically studied to understand the dynamic response of

more complicated systems. Using a number of assumptions, the underlying differential equation

of motion is typically a second-order wave equation written as a function of space and time. The

problem of an unreinforced string is a classical continuous media problem and has been

discussed by numerous authors." 2' 3 The equation of motion of a tensioned string with multiple

sets of supports has been derived.4 The tensioned string with periodic stiffeners has been

analyzed in the frequency domain with a moving harmonic force5 and a suddenly applied

concentrated force.6 In these papers, the stability of the system is discussed, particularly with

respect to the value of the stiffeners. There is no extension of the problem into the wavenumber

domain. Other continuous systems, specifically thin plates,7'8 thick plates, 9 and beams' 0 have

been modeled with periodic masses, dampers, and/or springs attached to the medium. These

studies typically involve modeling a continuous system with one or more differential equations,

using various boundary conditions to represent the mechanical elements attached to the system,

and then deriving a solution technique to find the corresponding displacements of the system.

This report presents a zero-pole analysis of a tensioned string in wavenumber-frequency

space when it is loaded with a continuous wavenumber-forcing function and a discrete point-

forcing function. The equations of motion and corresponding solution to both mechanical loads

are found using a previously derived analytical method. These equations are then transferred

from an infinite summation series into a continuous analytical expression using a series-to-

trigonometric mathematical formula. Once this is accomplished, the dynamic response of the

system is in zero-pole format, allowing an examination of the stability of the system from a

parametric standpoint. Additionally, the locations of the transfer function poles and zeros are

apparent. A numerical example is included to illustrate these effects. The dynamic response of

this system is discussed.
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2. EQUATION OF MOTION

The system model is that of an infinite-length, tensioned string attached to periodically

spaced discrete stiffeners, as shown in figure 1. The string is under a tension of T (N), has a

constant mass per unit length p (kg/m), and an external load per unit length of f(x,t) (N/m).

The stiffeners are equally spaced at a distance of L (in) in the x-direction and each has a stiffness

of K (N/m). The model uses the following assumptions: (1) the forcing function acting on the

string is at a definite wavenumber and frequency or is a discrete point function at a definite

frequency, (2) motion is normal to the string in the transverse direction (one-dimensional

system), (3) the string has infinite spatial extent in the x-direction, (4) the particle motion is

linear, (5) the string offers no resistance to bending, (6) the string is perfectly elastic, and

(7) there is no damping present in the system.

S~x--

L

K<

Figure 1. Tensioned, Reinforced String with Coordinate System

The motion of the system is governed by the equation4

S2 w(x' K) a 2w(x' t) n=)a9 - K xw(x,tax(x-nL)=)f(x,t)(
ax 2  at 2  n=-

where w(x,t) is the transverse displacement of the string (in), x is the position on the string (in), t
is time (s), and 6(x - nL) is the spatial Dirac delta function (1/m).
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3. SOLUTION WITH A WAVENUMBER-FORCING FUNCTION

The problem is first solved with a wavenumber-forcing function, which is a continuous

exponential harmonic function in space and time, written as

f (x, t) = F exp(ikx) exp(-iowt), (2)

where t is frequency (rad/s), k is wavenumber with respect to the x-axis (rad/m), and F is the

magnitude of the distributed force (N/m). The solution to the problem is written in series form

where the string displacement is equal to a sum of unknown functions of wavenumber and

frequency multiplied by an exponential spatially harmonic function in the x-direction multiplied

by an exponential harmonic function in time. The displacement becomes

n =-+-c

w(x,t)= EWn(k,co)exp(iknx)exp(-icot), (3)
n'= --.oo

where

2,rn
kn =k+ -. (4)

L

Using the principle of virtual work" results in the governing equation, which is written as

(-k -F m=O
+PW 2 )Wm(kmo)- ZWn(kno) ' (5)

L n=-O m#0

or

A~~k K n=o rk C)=F m=O(6A(kM,,W)Wm(km,W- ) L WI (k., )j m (6)
n=-•m3O



where

2 2(7A(km,cO)=-TkM+Poo2 (7)

and k is the wavenumber of excitation (rad/m). Solving for the coefficients, and noting that the

solution in the wavenumber-frequency domain is the zeroth order coefficient, yields the

displacement divided by the input force as

W0(~K 1 A -JA (k,co)Wo(k, co) =A-I (k, ow) L+A-1 (k,oa), (8)
F -- A-l(km ,co)

m A-

which, after some rearranging, becomes

(K/L) n=+oc (K/I,)
2 2 E2 2

Wo(k,o) I (-Tk + p-2) n=--c(-Tk2 +Pw2) (9)

F (-Tk 2 +pw 2 ) Info (K/L)

F (-TkA2 + PCO)
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4. SOLUTION WITH A POINT-FORCING FUNCTION

The problem is next solved with a point-forcing function, which is a continuous exponential

harmonic function in time and a delta function in space, written as

f (x, t) = Fe5(x - x0 ) exp(-ict), (10)

where x0 is the spatial location of the point force (m) and F is the magnitude of the point force

(N). To differentiate this solution from the solution found in section 3, the displacement variable

is changed from w(x,t) to u(x,t). The system equation in the wavenumber-frequency domain,

when x0 = 0, becomes

2 2K F
(-k T +P Z)U(k,'co) = U(knc)+ L (11)

rL =--oL

This equation is solved in the wavenumber domain using previously developed analytical

methods,7'8 and the result is

U(k,co) _ 1 1 (12)

(F/L) (-Tk2 +P0 2 ) 1-=-- (KIL)
E7 ((K 

b an
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5. TRANSFORMATION INTO ZERO-POLE FORM

To facilitate an understanding of this system, it is desirable to transform equations (9) and

(12) into a single analytical expression that does not contain summations. This transformation is

accomplished by rewriting the infinite series solution term as12

nlk = 4-0-_Lcos( 2cL sin( 2L(
E + 2 2 =. 1 c) ,2c[(___ O _L ) , (13)

n=- (-Tk2 + PC2) 2coj sin2 ) - sin2(j)]

where c = -ip.

Inserting equation (13) into equation (9) results in

W 0 (k , c) z ,,(k , co ) ( 4
F p(k, ow)

where z w(k, ow) is an expression that contains the system zeros for a continuous forcing function

and p(k, co) is an expression that contains the system poles in the wavenumber-frequency plane.

These expressions are

zwk~•)2o•-fpK 2 (kL 2 (0)L)] coCL~sin((OL), (15)

= (k, [o) = 2c+ 1 sin2 -- sin2 -jc + Kcos )i j (15)ý T -[L(-Tk 2 + pco 2 2)c2c 2

and

p(k,)=(-Tk2 +W ) (2w -p)Lsin 2 kL -sin 2  + K cos(C.0LJsinC L l } (16)P~k°J=(Tk +P°2) 1 2 2 cJ]• 2c 2c "

Inserting equation (13) into equation (12) results in
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U (k, co) _zu, (k, co), (17)

(FIL) p(k, co)

where zu (k, co) is an expression that contains the system zeros for a point-forcing function and

p(k, co) is an expression that contains the system poles in the wavenumber-frequency plane.

The expression for zu (k, co) is

zu (k,wc) = 2cVP_ sin U )sn kL -CL.(18)

The system pole expression for the discrete point-loaded string is identical to the system pole

expression for the continuous wavenumber-loaded string.

The terms for the poles are now examined. The denominator in equation (14) has two

distinct terms and both are set equal to zero. The first term is

_Tk2 +pW2 ==0, (19)

and this corresponds to the pole location of the string without stiffeners. This is referred to as the

fundamental pole or resonance of the (unstiffened) string. When K is not equal to zero, the

numerator and the denominator in equations (14) and (17) both approach zero when the

relationship between wavenumber and frequency in equation (19) is satisfied and, thus, the term

given by equation (19) does not correspond to a pole of the stiffened system. The second term is

(2owV') sin2 -sin 2  + K cos( .• ) sin( 0, (20)

which can be rewritten as

sin( sin cos°-) sin( (

( 2)2 c )r 2o•2c) k 2c "
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Note that for the equality in equation (21) to hold true, it is required that

0 2  K cos(Li sinwj4< , (22)0 !ýsin 2 c O 2 iS< CO,4rT -7 2) 02c

and this occurs when

tnoL-mK (23)
(. 2c 2 o24T7'

where m is the largest integer, so that

0 < co z< z(24)
2c 2 2

As a result, the inequality given by equation (23) is a necessary condition for poles to exist

in the wavenumber-frequency plane for the stiffened system. This expression is not a function of

wavenumber. Figure 2 is a plot of equation (23) where the x-axis is the term K /(2o.T-p) and

the y-axis is nondimensional frequency oL / 2c. The gray area of the plot is a region that

corresponds to a location where poles may be present in the system response and the white area

is the region where poles cannot exist. When the inequality in equation (23) is satisfied, the

poles of the stiffened system will reside at

k =+ 2 arcsin(,Fo)+nz n 3, ,-3,-2,-1,0,1,2,3,..., (25)n L

where

O = sin 2( -oL K cos(m{L-) sin( o{L (26)
2, 2c ) 2 - 2c .2c'



37t/2 r
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U-
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E

0
z

7Tc/

0-
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Constant K /[2 co (Tp)(1/2)]

Figure 2. Regions of Pole Existence (Gray) and Nonexistence (White)

12



and kP is the location of the n indexed poles (rad/m).

The zeros of the system with a wavenumber-forcing function are found by setting the

numerator of equation (14) equal to zero. This results in

zw(k,o)) = 2o-p [L(TkZ + pW 2 ) + [sin2 -- sin2 .c + K cos(1) sin(.2) '

(27)

which is transcendental in wavenumber and frequency. The zeros of the system with a discrete

forcing function are found by setting the numerator of equation (17) equal to zero. This results

in

nL n -3, - 2, -1,1, 2,3,-, (28)

where ku is the location of the n indexed zeros (rad/m) for the system with point forcing. The

value of n = 0 is not a zero because the fundamental pole exists at this location, which negates

the effects of this specific zero. Note that the zero location given in equation (28) is independent

of the value of the stiffener K.
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6. NUMERICAL EXAMPLE

The theory and equations that were developed in the previous sections are now illustrated

using a numerical example. The system parameters are as follows: the string tension T is 100 N,

the density per unit length p is 1 kg/m, the spring constant K is 3 x 104 N/m, the spring spacing L

is 0.05 m, and the computed wavespeed c is 10 m/s. Figure 3 is a plot of the location of the

system poles, plotted in black, in the wavenumber-frequency plane. This figure is valid for both

the wavenumber load and the discrete load. The gray region corresponds to the gray region from

figure 2 mapped into the wavenumber-frequency space. These gray regions are where poles can

exist, and the white areas are the regions where poles cannot exist. The dashed line in the plot is

the function k = co / c and corresponds to the pole location of the unstiffened (i.e., no supports)

system. Figure 4 is a plot of the response of the string versus wavenumber and frequency with a

wavenumber load. Figure 5 is a constant frequency slice of figure 4 at 225 Hz and corresponds

to an area where poles cannot exist, and figure 6 is a constant frequency slice at 275 Hz and

corresponds to an area where poles can exist. Table I lists the first eight pole locations of the

system in the positive wavenumber space with the value of n used to calculate the pole location

at a frequency of 275 Hz. Figure 3 and table 1 were determined using the positive values of

equation (24). The stability of the system based on the values of the stiffeners is discussed by

others, 5 although their analysis is only in the frequency domain. Figure 7 is a plot of the location

of the system zeros for wavenumber forcing in the wavenumber-frequency plane. These values

were determined by applying a root finder to equation (27). The roots that correspond to

k = o / c were discarded due to the fundamental pole also residing at that location. Table 2 lists

the first seven zero locations of the system in the positive wavenumber space at a frequency of

275 Hz. A zero with a wavenumber value of 127.3 rad/m exists at 225 Hz. Numerical

simulations suggest that for wavenumber forcing, the zeros are almost collocated with the poles

at all locations in the wavenumber-frequency plane except around the region where k = ±CO / c.

This concept can be visualized by comparing figure 3 and figure 7, where the system poles and

zeros are in almost the same location except around the region of k = ±CO / c. Note that in figure

6 the poles and the zeros are almost at the identical location in wavenumber. Figure 8 is a plot of

the response of the string versus wavenumber and frequency with a discrete point load. Figure 9

is a constant frequency slice of figure 8 at 225 Hz and figure 10 is a constant frequency slice at

275 Hz. Figure 11 is a plot of the location of the system zeros for point forcing in the

15



wavenumber-frequency plane. Table 3 lists of the first seven zero locations of the system in the

positive wavenumber space with the value of n used to calculate the pole location at frequencies

of 225 and 275 Hz. Figure 11 and table 3 were determined using the positive values of

equation (28).
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Figure 3. Location of the System Poles (Black Lines) in the Wavenumber-Frequency Plane
(Gray areas are regions where poles can exist. The dashed line is the function k = o / c.)
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Table 1. Location of Poles in Wavenumber for a Frequency of 275 Hz

Pole Location
(rad/m) Value of n

33.3 0

92.4 1

158.9 -1

218.0 2

284.6 -2

343.7 3

410.3 -3

469.4 4
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Figure 7. Location of the System Zeros (Black Lines) in the Wavenumber-Frequency Plane
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Table 2. Location of Zeros in Wavenumber for the System with a Wavenumber Forcing

Zero Location (rad/m) for
275 Hz

35.8

90.0

223.8

283.6

345.3

410.0

470.4
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Table 3. Location of Zeros in Wavenumber for the System with a Point Forcing

Zero Location (rad/m) Zero Location (rad/m) or
for 225 Hz 275 Hz Value of n

15.7 47.1 -1

110.0 78.5 -2

235.6 204.2 -3

267.0 298.5 1

361.3 329.9 -4

392.7 424.1 2

486.9 455.5 -5

7. CONCLUSIONS

The zero-pole response of a tensioned, reinforced string has been derived in the

wavenumber-frequency domain for wavenumber-forcing and point-forcing functions. The

stability of the system for various stiffener values has been demonstrated. A numerical example

was included to illustrate where the poles and zeros are located in the wavenumber-frequency

plane. It was shown that there are regions where the poles can and cannot exist. It was also

shown that zeros for wavenumber forcing are almost collocated with the poles, and the zeros for

point forcing can exist almost everywhere.
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