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Executive Summary

This project was to use nuclear magnetic resonance (NMR) to investigate quantum information
processing (QIP) that is nearer term than full quantum computing (QC). The two areas of most
relevance are type-Il quantum computing and quantum simulation. In early work we
demonstrated type-LI algorithms and quantified the errors associated with their implementations.
Since these algorithms have rather limited quantum speedups only very large-scale
implementations have potential for exceeding the capabilities of classical processors. Therefore
we turned more of our attention to quantum simulations over the past couple of years. There are
three new results to report here:

"* the implementation of the quantum saw-tooth map,
"* a cyclic manipulation of quantum entanglement that reveals the structure of errors,
"* the theoretical study of path interference for state transfers.

The Quantum Saw-Tooth map is a quantized version of a classically chaotic map. This map was
implemented on a 3-qubit NMR QIP and repeated cycles of the map were performed. We
demonstrated that the expected quantum localization was observed when errors were sufficiently
small and that otherwise the expected diffusive behavior was seen. We were also able to
characterize the types of errors (coherent, incoherent and decoherent) that were responsible for
the transition away from localized dynamics. This work has been reported in the peer-reviewed
literature.

The cyclic manipulation of entanglement enables one to efficiently characterize incoherent errors
without the need for fidelity decay experiments. Incoherence is importance to identify in a QIP
since the errors accumulate rapidly and there are relatively straightforward approaches to
avoiding this. The challenges are that at short times incoherence looks like decoherence, and
that in a time-reversal experiment (such as is required for fidelity decay studies) the influences of
incoherence are not necessarily reversed. So fidelity decay often again associates the incoherent
errors with decoherence. By exploring a cyclic process the map has an effective propagator of
the identify matrix and so fidelity decay type measurements are possible without time-reversal
and still the dynamics show partial recurrences. We have demonstrated this in a three-qubit
system and reported this in a peer-reviewed publication.

The transfer of coherent information between two qubits is a fundamental building block of all
QIP. In order to improve the fidelity of this operation we explore state transfers when there are
multiple paths available. The presence of multiple paths permits quantum interference and can
speedup the transfer (resulting in reduced errors). This work has not yet been reported and is
described more fully below.

In conclusion over this project we have shown that useful quantum simulations can be explored
via NMR/QIP and we are moving to systems where the Hilbert space size permits non-trivial
computations. In separate work we have reported on entanglement of 11 spins and we are
working on a processor that contains 15 spins. Although perfectly unitary operations on these
processors can be simulated on classical computers, processes that include incoherence and
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decoherence start to be too large for classical systems and are certainly more efficiently
investigated on the NMR/QIP test-bed.
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Chapter 1

Introduction

Recent research [1, 2, 3] has demonstrated that the computational advantages theoret-

ically shown attainable through quantum information processing [4, 5] are realizable,

at the most elementary level, in a variety of controllable physical systems. Attempts

to identify and develop the most promising of these systems draw increasing inter-

est to several practical issues associated with fundamentally quantum mechanical

computation. Chief among these is the faithful transportation of non-classical infor-

mation over a set distance, for example, as a quantum wire necessary for quantum

teleportation [6] or as a quantum data bus between two distinct quantum devices.

It is implicitly assumed that such devices be sufficiently distant as to remove the

possibility of direct coupling, yet not so distant as to warrant the introduction of a

potentially lossy interface to an optical fiber.

The simplest solution to meet this end is a series of concatenated SWAP gates

spatially connecting the initial and final state locations. This is, though, far from ideal

as the application of each gate, regardless of implementation, currently requires fine

dynamical control over the chosen system which necessarily increases the potential

for error and decoherence. More intricate solutions have been proposed utilizing

photons in cavity QED [7] and phonons in ion traps [8] yet are not applicable to

several quantum information processing implementations, such as optical lattices 19]

and arrays of quantum dots t10], which inherently rely on collective phenomena to

transport quantum states as opposed to the singular phonons and photons used as
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individual information carriers in the proposed.

Another solution, considered here, is the use of specialized coupling geometries in

unmodulated nuclear spin lattices. Initially investigated as a linear spin chain evolving

under uniform nearest neighbor coupling [11], this paper seeks to investigate specific

geometries utilizing designed, time-independent couplings as a potential realization

of a robust quantum data bus.

In the most general case, a sample of N spin-! particles evolves under the time-

independent Hamiltonian

N

.,J ji. - Ba.(1.1)

a' = (i, 4, a,) are the Pauli matrices for the il spin, JIj > 0 is the coupling

strength between spins i and j, and Bi > 0 is the magnitude of an external magnetic

field at spin i. The coupling and magnetic field strengths are both required static

in time for ease of implementation, yet are allowed arbitrary through the utilization

of the fictitious spins and the "column method" of [121 as described in [13]. The

Hamiltonian explicitly excludes the utilization of radio frequency pulses in a further

attempt to reduce possible sources of error.

It is assumed that a sender, Alice, is able to attach a single spin in an arbitrary,

unknown state parameterized by 0,

0 .8O
cosi) +ce s+in T). (1.2)

to the sth spin without error. Inputs involving multiple qubits, including entangle-

ment, are considered later. Further assuming that all other lattice spins are initialized

in the ground state 11), the state of the chain is described by the wave function

0 0 Ar•

IIF(t)) = cos i10) + eiOsin 2 e Is) Ij) (1.3)

where the notation U) is utilized to denote the state in which only the 3Lh spin is in
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the state IT). 10) designates the lattice ground state.

While general, Eq. 1.3 does not directly reveal any useful information until a

Hamiltonian is selected. Still, several useful quantities can be obtained, as shown in

[11], before specifying further. If a receiver, Bob, is able to detach a spin from the

rh site without error at time to, he will obtain the generally mixed state

S(cos: ) + e".fr(t) sin 0 IT) (1.4)

where P(t) = cos2 (f) + sin' (1) If$,'(t)12 and fN(t) (ri e-ýt/IA Is), the transition
amplitude of an excitation from the st site to the rth site. Rom this, one can obtain

the fidelity averaged over all possible input states

I 3 +(to) I fo(to) 2
F + + (1.5)3 6

which is maximized by choosing Bi such that -y arg (fQ (to)) is a multiple of 27r.

It is further shown that that the entanglement between the sth and r14 spins, as

measured by concurrence [141, will be

e = jf (to)l. (1.6)

Thus, for any nonzero fý,(t0), entanglement shared through the channel can distilled

into pure singlets, and used for teleportation [15, 16].

By specifying that Alice and Bob sit at opposite ends of a one dimensional spin

chain of uniform coupling in a constant magnetic field, it has been shown [11] that
for chains of N < 80 fidelity exceeds the upper bound of classical transmission [17]

including several near perfect fidelities for chains with N < 20.

Consideration of coupling geometries extending to two and three spatial dimen-
sions has yielded several important restrictions and constructions for classes of lat-

tices geometries exhibiting perfect fidelity. Notable among these is a method for the

construction of unity fidelity geometries as the Cartesian product of two geometries

known to exhibit perfect fidelity [18J. The produced graph will display perfect trans-
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fer at the least common multiple of the transfer times of its constructing graphs. In

this way, one could conceivably construct a geometry for perfect swap over arbitrarily

large distances in constant time, though with substantial overhead.

This paper seeks to investigate nuclear spin geometries which produce unity fi-

delity state transfer without dependence on any external manipulation. This investi-

gation is pursued on a purely theoretical basis through simulation using a Hamiltonian

reduced on the restriction that [k', aoI] = 0, reducing dimensionality from 2' to NCI.

The result is identical to the graph adjacency matrix. These simulations produced a

complete set of geometries with N < 8 known to display perfect fidelity with uniform

coupling or with a single coupling variable. Several interesting cases are examined in

detail. Further, a method for finding necessary and sufficient conditions for perfect

fidelity in geometries with a fixed number of spins is found by use of the inverse

Laplace transform. Finally, the problem of solving Eq. 1.3 generally is related to sev-

eral problems of known difficulty, and the use of such lattices structures for transport

of multiple qubits, including entanglement and the performance of arbitrary in-transit

quantum logic operations, is examined.
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Chapter 2

Small-Spin Simulations

Due to the difficulty of reducing the evolution operator for a general geometry and the

usefuilness of a robust data set for verification of results, simulations wcre performed

using the reduced Hamiltonian to examine the evolution of a single input excitation

in all coupling geometries with N < 8 and uniform coupling or a single coupling

variable. Since .V, atxt] = 0, simulation of the evolution of a single input excitation

may be used as a direct measure of fidelity, simplifying simulations over what would

be required to simulate a more general input state, Eq. 1.2.

All graphs found to exhibit perfect swap are replicated in Table 2.1. Except for

special, denoted cases where fidelity is known to be exactly unity, fidelities were shown

perfect to at least four decimal places. Where listed, all hitting times are relative to

the time scale set the single link chain.

At first glance, one notices the frequency of simple ratios both in the required cou-

pling ratios and the hitting times. Further, all satisfying graphs are mirror symmetric

with regard to the input and output spins and are thus subject to the conditions set

forth in [18]. As such, the entire lattice wave function must be periodic which is

equivalent to the requirement that the ratios of the differences of the eigenvalues are

rational.
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Coupling Geometry Maximum Fidelity Coupling Restrictions Hitting TimesJ

1.0 VJ aw

0.9999 J = 4j ME

0.9999 J= --__J nir

1.0 vJ A.

_____________0.9999 J,= 3J0.9999 j, = V3

0.9999 J'= 3J

0.9999 X'= MJ"-

0.9999 = 0.446162J 2.71546

0.9999 X =2.24134J 1.21153

1.0 VJ 1_ 1415

Table 2.1: All coupling geometries generating perfect fidelity of N < 8 with one
coupling variable. The input and output spins are marked as white circles with black
circles as intermediary spins. All unlabeled couplings are of strength J.
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Chapter 3

A Method for Finding a Necessary

and Sufficient Condition for

Perfect Fidelity for Given N

As stated, Eqs. 1.3, 1.4, and 1.5 are not particularly useful due to the difficulty in

conveniently expressing fr(to) for a general Hamiltonian. However, it is possible to

draw a necessary and sufficient condition for perfect swap from Eq. 1.5 when one

makes use of the following identity:

-r[eAt] = (sl - A)-'. (3.1)

As the input and output states of a lattice are predetermined, only one matrix

element of the infinite expansion eIt/A' is of importance in determining fidelity. Be-

cause the Laplace transform, and likewise, the inverse Laplace transform are linear,

their presence does not prevent access to the single important matrix element. In this

way, the condition for perfect fidelity may evolve as follows:

11



S+• os I(t)I23 6 2

_ I(rl e- "1 Is)I cos y I(rIe-it/A I.q)l 12
- 3 + 6 +

-I(-I.-' [(81- -ir/h)-'] IS)lcos-Y I(r,'1 [(SI - iy/e)-] IS)1 +
3 + 6 2

[(rI (sl - i'/h)-' Is)] cos-y Y-1 [(rl (sl - iy/l)-/ is)] i
3 + 6 +2

(3.2)

The above may not seem like a significant improvement over the original expression

due to the required matrix inversion. However, the selection of a dimensionality, N,
will allow for the reduction of the inversion to a more general expression obtained

through blockwise inversion. The application of the inverse Laplace transform will
result in a final condition on the coupling Hamiltonian that is satisfied if and only if
a geometry demonstrates perfect fidelity. Here we continue to find such an expression

for all 3-spin systems.

Consider the most general 3-spin Hamiltonian

0 a b]1

, a 0 c
b c 0

Ss -ialh -ib/h 1
A• sl - iO/h = -ia/h s -ic/h

-ib/•h -ic/h s

The inversion of a general 3 x 3 matrix is known to be

d- im-jl fl-em ej-fi

h iij-mdm-fk fh-djejk+,fh +dim-fik-djl-ehm [k-hm

k I m hl-ik ek-dI di-eh
(3.4)
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=•(sl - ia•/tif-' =

abc + (a2 +. b2 + c2)a 3)-l c2 /r + S2 ia/lh - bc/l ibsl - ac/h 2 1
3 A12 +S ias/ti - bc/h 2  s2 + b2/4 2  ics/h - ab/h 2

ibs/h - ac/h2 ics/Il - ab/h 2  s2 + a2/h

(3.5)
If it is arbitrarily taken that a transfer is desired between the first and third

spins, all matrix elements may be removed except for the comer off-diagonal element.
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Experimental Demonstration and Exploration of Quantum

Lattice Gas Algorithms

by

Zhiying Chen

Submitted to the Department of Nuclear Engineering
on February, 2005, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Nuclear Science and Engineering

Abstract

Recently, it has been suggested that an array of small quantum information processors
sharing classical information can be used to solve selected computational problems,
referred to as a type-II quantum computer. The first concrete implementation demon-
strated here solves the diffusion equation, and it provides a test example from which
to probe the strengths and limitations of this new computation paradigm. The NMR
experiment consists of encoding a mass density onto an array of 16 two-qubit quan-
tum information processors and then following the computation through 7 time steps
of the algorithm. The results show a good agreement with the analytic solution for
diffusive dynamics.

From the numerical simulations of the NMR implementations, we explore two
major error sources (1) the systematic error in the collision operator and (2) the linear
approximation in the initialization. Since the mass density evolving under the Burgers
equation develops sharp features over time, this is a stronger test of liquid state NMR
implementations of type-II quantum computers than the previous example using the
diffusion equation. Small systematic errors in the collision operator accumulate and
swamp all other errors. We propose, and demonstrate, that the accumulation of
this error can be avoided to a large extent by replacing the single collision operator
with a set of operators, that have random errors and similar fidelities. Experiments
have been implemented on 16 two-qubit sites for eight successive time steps for the
Burgers equation. The improvement in the experimental results suggests that more
complicated modulation of error terms may offer further improvement.

An alternative approach has been suggested to encode in the Fourier space (k-
space) to remove the usage of this linear approximation. This new method also
provides us a simple means to implement the streaming operation quantum mechan-
ically by controlling magnetic field gradients sandwiched with RF pulses. Therefore,
this method might serve as a new tool to probe the implementations of quantum
lattice gas (QLG) algorithms. Experimental demonstration of the diffusion equation
has been performed on 16 two-qubit sites for four successive time steps.

Recently, much attention has been focused on constructing many identical simple
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processing elements arranged in a cellular automata architecture recently. It is likely
that the early quantum hardware will be built in a similar manner. Quantum lattice
gas algorithms therefore provide a bridge between such hardware and potential early
algorithms. We propose a quantum lattice gas model similar to the one proposed by
Margolus for the classical setting. This quantum algorithm simulates the one-particle
quantum random walk. The preliminary experimental design associated with the
lattice gas model on a ring molecule is presented. The searches for the suitable pulses
to construct the unitary operators, used in the implementations of the lattice gas
model, are done and the results are encouraging.

Thesis Supervisor: David G. Cory
Title: Professor
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Chapter 1

Introduction

In 1965 Intel co-founder Gordan Moore noted that the processing power (number of

transistors and speed) of computer chips was almost doubling every 18 months. This

trend has continued roughly since the first computer in 1946. Such an exponential

and rapid acceleration in computing ability is impressive. However, the basic tec'h-

nologies that have enabled Moore's Law are reaching fundamental physical limits.

The miniaturization of processor components, which has taken transistor sizes from

one centimeter in 1965 to 0.1 microns today. If Moore's law continues unabated, then

each transistor is predicted to be as small as a hydrogen atom by about 2030. At

that size, the quantum nature of electrons in the atoms becomes significant. Current

technologies cannot possibly continue miniaturization beyond the scale of atoms, and

errors will be generated in the computation. However, it is possible to exploit the

quantum physics as a new way to do computation. This new way opens up fantastic

new computational power based on the superpositions of quantum states.

The field of quantum information processing (QIP) has made steady progress in

the past decade, driven in part by the realization that some quantum algorithms offer

a computational advantage over the best-known classical counterparts [1]. Integer

factorization of large numbers is believed to be practically impossible with an ordinary

computer. By comparison, a quantum computer could solve this problem very quickly

[2]. This ability would allow a quantum computer to break many of the cryptographic

systems in use today. It comes with no surprise that quantum computers could also
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be useful for running simulations of many-body quantum systems [3, 4, 5, 6, 7]. In

theory, these problems can be easily emulated with a well controlled quantum system.

To reach a practical improvement, quantum algorithms require precise control in a

large Hilbert space, making physical implementations difficult.

Recently, much attention has been focused on lattice gas algorithms as candi-

date quantum algorithms. Quantum lattice gas algorithms are the generalizations

of classical lattice gas algorithms, which are implemented on a lattice of many iden-

tical simple units associated with homnogeneous update rules to all the lattice sites.

Such an architecture offers the experimental simplification that the early quantum

hardware is likely to build in a similar manner.

Two types of quantum lattice gas algorithms are defined according to the quan-

turn computing architectures: type-I and type-II quantum information processors. In

a type-I design [8, 9, 10], the lattice points are presented by either the states of the

quantum system or quantum qubits. The system wave function inust remain coher-

ent for the duration of the quantum gate sequence needed to implement a particular

algorithm. An algorithm of type-I quantum lattice gas models unfolds the quantum

operator into an ordered sequence of basic two-qubit quantum operations. Type-II

[11] is eNsentially an array of small quantum information processors interconnected by

classical communication channels. Quantum coherence only exist inside each proces-

sor for a short period. This particular architecture significantly simplifies the quantum

controls by using magnetic resonance imaging (MRf) techniques. It may also increase

the range of problems that small quantum processors can tackle and thus serve as an

intermediate architecture between few-qubit and large scale quantum computers.

In the present thesis, I aim to provide a reader who is unfamiliar with the field of

lattice gases and quantum lattice gases with an introduction to the lattice Boltzmann

methods and recently progress in the quantum lattice gas algorithms. This thesis is

divided into a comprehensive introduction which gives a detailed overview of lattice

Boltzmann methods, followed by sections on the methodologies used to implement

type-II quantum lattice gas algorithms using NMR. The approaches for improving

the control and reducing errors during the experiments will be discussed in depth
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in Chapter 4 and 5. In the last chapter, a brief introduction of type-I lattice gas

algorithms is given and a preliminary experimental design using nuclear magnetic

resonance (NMR) is presented.
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Chapter 2

Type-II Quantum Lattice Gas

Algorithm

2.1 Lattice Gas Method

The lattice gas method is a tool of computational physics used to model complex

hydro-dynamical flows that are too large for a standard low-level molecular dynamics

treatmentt. This method contains discontinuous inter-facial boundaries that prevent

a high-level partial differential equation description [12, 13, 14, 15]. The basic idea

underlying the lattice gas method is to statistically represent a macroscopic scale

time-dependent field quantities by "averaging" repeated artificial microscopic parti-

cles scattering aiid propagating throughout a lattice of interconnected sites. Many

particle.s are distributed over the lattice sites. These particles may coexist at each site

at a given time, and each particle carries a unit mass anid a unit momentum of energy.

They interact on site by an artificial collision rule which is locally invariant under the

point-group symmetries of the lattice, and, furthermore, which exactly conserves the

total mass, momentum, and energy at that site. The movement of particles along

the lattice is prescribed by a streaming operation that shifts particles to the nearest

neighboring sites, thus endowing the particles with the property of momentum. In a

'This section was extracted from M. A. Pravia, Z. Chen, J. Yepez, D. G. Cory, "Experimental

Demonstration of Quantum Lattice Gas Computation," QIP, 2002.
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maximally discrete way, the algorithm encapsulates the microscopic scale kinematics

of the particles scattering on site and moving along the lattice. The mean-free path

length between collisions is about one lattice cell size, and the mean-free time between

collision elapses after a single update. This is computationally simple in comparison

to molecular dynamics where many thousands of updates are required to capture such

particle interactions.

The nmesoscopic evolution is obtained by taking the ensemble average over many

steps in microscopic realization. At the mesoscopic scale, the average presence of

eaxch particle type is defined by a real-valued occupation probability. In addition, the

microscopic collision and streaming rules translate into the language of kinetic theory.

The behavior of the system is described by a transport equation for the occupation

probabilities, and this equation is a discrete Boltzmann equation called the lattice

Boltzmann equation.

The lattice Boltzmann equation further translates into a macroscopic, continuous,

effective field theory by letting the cell size approach zero (the limit of infinite lattice

resolution called the continuum limit). At, the macroscopic scale, partial differential

equations describe the evolution of the field, admitting solutions such as propagating

sound wave modes and diffusive modes. The passage of the Boltzmann equation

to the effective field theory begins by expanding the occupation probabilities, which

have a well-defined statistical finctional form in terms of the continuous macroscopic

variables, such as the mass density p (and the velocity or energy field if they are

defined in the model). This expansion usually is carried out perturbatively in a

small parameter such as the Knudsen number (ratio of mean-free path to the largest

characteristic length scale) or the Mach number (ratio of the sound speed to the largest

characteristic flow speed) in a fashion analogous to the Chapmuan-Enskog expansion

of kinetic theory. Conversely, the macroscopic field quantities can also be expressed as

a function of the mesoscopic occupation probabilities for example, the mass density

at some point is a sum over the occupation probabilities in that vicinity.
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2.2 The 1-D Diffusion Automaton

2.2.1 Microscopic Regime

We here consider a one-dimensional system [16, 17] in which particles may travel

upwards or downwards to the nearest sites with some probabilities. Usually, a random

walk is simulated by selecting one particle in the system and transporting it at random

upwards or downwards, provided that the destination site is empty. At each site z of

the lattice, we define two Boolean variables ni (z, t) and 712 (z, t). These quantities are

occupation numbers indicating whether or not a particle is entering site z at time t

in direction el (tip) and e2 (down), respectively.

In the microscopic regime, random motion is obtained by shuffling the two direc-

tions of motion indecently at each lattice site and at each time step. In other words,

what is traveling in direction el will be exchanged with what, is traveling in direction

e2 with a probability 1 - p(z, t). The inicro-dynamnics has two phases: collision and

propagation to the nearest neighbor. A particle entering site z + Az at tite t + At

with velocity pointing upwards must have been at site z at, t. With a probability

1L(z, t), this particle was the one with a velocity pointing upwards and with proba-

bility 1 - IL(z, t) the one which had a velocity pointing downwards. Therefore, the

randomi walk rule obeys

n, (z + Az, t + At) =Lz, t)nl (z, t) + (1 - p(z, t))n2(z, t)

n2(z - Az, t + At) = (1 - I(z, t))n, (z, t) + jz(z, t)n 2(z, t). (2.1)

The tite step is denoted by At, while the lattice spacing is given by Az.

2.2.2 Mesoscopic Regime

At a mnesoscopic scale, the variables ni no longer appear as Boolean quantities but

rather as an ensemble average of all the Boolean quantities (varying continuously

between 0 and 1). Indeed, a mesoscopic point of coordinate z designates a micro'scopic

volume comprising many particles. Formally, this averaging fi(z, t) =-< ni(z, t > is
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treated as an ensemble average in the sense of statistical mechanics. Since /,(z, t) is

statistically independent of ni (z, t), the average of < rni > yields

< J(z,t,)n,(z,t) >=< ,(z,t) >< n,(z,t) >= pf(z,t). (2.2)

The variables fl(z, t) and f2(z, t) are the occupation probabilities for finding upward-

and downward-moving particles, respectively, at the site location z and time t. There-

fore, relations in Eq. 2.1 can be averaged and yield

f1 (Z + AZ, t + At) =pfl(z, t) + (I - p)2(z, t)

f 2 (z - Az, t + At) - (1 - p)fl(z, ) + pf 2 (z,t). (2.3)

In this case, the interesting quantity of the lattice gas is the mass density field, p,

defines as the sum of upward- and downward-moving particles

2
p(z,t) - Zfi(z,t). (2.4)

j=1

We can arrange Eq. 2.3 as following:

f,(z + Az, t + At) - f,(z,t) (p- 1)If,(z,t) - f2 (z,t)J

f22 (z - Az, t + At) - f.2(z, t) (p- 1) [f2(z, t)- f (z, t)] (2.5)

By summing these two equations, we obtain

f,(z + z, t + At) + f 2 (z - Az,t + At) - p(z, t) = 0. (2.6)

This equation reflects the conservation of mass: the number of particles entering site

z at time t are exiting at time t + At. For this reason, Eq. 2.6 is called the continuity

equation.
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The lattice gas described above is summarized by the Boltzmann equation

f1 ,2 (z + Az, t + At) = fl,2 (z, t) + Q1, 2,(z, t), (2.7)

where the left-hand side denotes the occupation of the lattice as a function of the

previous lattice configuration and where the collision terms are

11,2 = +(P- 1) [fl - f2] (2.8)

The collision terms define different numerical problem that we desired to solve. It

changes the direction of some particles, thus it is responsible for the diffusive behavior.

2.2.3 Macroscopic Regime

The Chapman-Enskog expansion technique is commonly used in statistical mechanics

to derive the mactroscopic laws governing the relevant physical quantities. The idea

of the Chapman-Enskog expansion is the following: it is assumed that the actual

occupation numbers fi are close to the equilibrium population f ý0). The occupation

number can be expanded in terms of a small parameter c:

()+ fl +± C2 Q(2) 329I,=fi 0 A 11 + €fi) + O(C:', (2.9)

where the fiL)s are functions of z and t to be determined.

The next step is to take a Taylor expansion of the left-hand side of Eq. 2.5. One

has

fj(z + Azq,t + At)- f,(z,t) = (2.10)[ At2 a2+A(,g +AZ2 1i ,[Ao,+ ++ 2-2 , + AtAZ(oLaa] fi(z, t),

where we have defined c, z -1 2 = 1 and neglected third-order terms in the expansion.

The infinitely short time step At and small lattice spacing Az are not in the same

order of magnitude when they approach the continuous limit. The propagation speed
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v of the particles appears as the ratio between the lattice spacing and time step

Az/At, which remains finite. It turns out that the time step goes faster to zero than

the lattice spacing because of an interesting case (Az)2/At -- constant. As a result,

we express Az - FAz and At - f'At.

By comparing both sides of Eq. 2.5 and Eq. 2.10, order by order,

[ +At 2 192+AC AZ2
___~~ +C? a'2 c + f'(zAt)

AtO 2 2 AtAzcOtrfi(z,t) (2.11)

=(1 -- P V)[ (Z, 0 - fj (Z, 0)]

we can obtain the solutions for fA0) and higher order terms as well. For the order

O(c°) we have fl')(z t) = fJ2'(z, t) because the left-hand term is zero. This results in

f (0) (0) 1=
S(2.12)

and the condition that

f 0 =O, if I > 1. (2.13)

The next order O(f) of the Boltzmann equation is given by taking the term Azcjaf

of the Taylor expansion and the term f¶l) in the right-hand side of the equation. Since

foM -_ p/ 2 , we obtain

Az- =P (- 1)(f]") -

Az2 = (pA- 1)(j:1 ' - 1i')). (2.14)

The solution of Eq. 2.14 is then straightforward

f(1) AZ (2.15)
4(p- 1)ciOZp.

The equation governing the evolution of p is given by the continuity Eq. 2.6. The

order O(c') reads
2

ZAzcaOfi0l) 0, (2.16)
i=3
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which is obviously satisfied by our solution. The next order is O(02)

2Az 2 2 02
, Ata0,/) + Azci6zSV) + 2 , a O . (2.17)

Using the solution for S•°) and f(I), we obtain the equation2 a.
2tP [2(p- 1) + 2 •p=0 (2.18)

and, finally

Ozp = D62p (2.19)

which is the expected diffusion equation with the diffusion constant

D=Az2 p
,At 2(1 - p). (2.20)

Finally, in this implementation we consider an initial mass density p(z, t = 0)

whose evolution obeys the periodic boundary condition p(z, t) = p(z + L, t), where

L is the length of the lattice. As a result, the initial mass density diffuses until the

total rmass is evenly dispersed throughout the lattice.

2.2.4 Transition Matrix

We introduce a transition matrix A(i, i'), which gives the probability for an input state

i transformed into an output state i' in a collision process. Clearly the whole collision

process can be defined by giving the full transition matrix A. A(i, i') obviously has

SA(i,i') = 1 (2.21)
it

for any i (This is the normalization constraint.). In some models, the transition

matrix is symmetric:

A(i,i') = A(i',i) (2.22)
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and one says that detailed balance holds. However, in general, this is not true. A

weaker property is the so-called semi-detailed balance which only requires

SA(i,i') = 1 (2.23)
if

for any i'. Semi-detailed balance is obeyed by most lattice gas models. The ma-

trix that satisfies the normalization but does not hold detailed balance constraint is

Markov or stochastic matrix. Satisfying both the normalization and semi-detailed

balance, the matrix is referred as a doubly stochastic matrix.

2.3 Type-II Quantum Lattice Gas Algorithm

Quantum lattice gas (QLG) algorithms are generalizations of the classical lattice gas

algorithms described above, where quantum bits are used to encode the occupation

probabilities and where the principle of quantum mechanical superposition is added

to the artificial microscopic world. In this quantum case, the mesoscopic occupa-

tion probabilities are mapped onto the wave fuinctions of quantum mechanical sites.

In the case where the quantum lattice gas describes a hydrodynamic system when

the time evolution of the flow field is required, we must periodically measure these

occupation probabilities, making the quantum lattice gas algorithm suitable to a

type-II implementation. Such type-I algorithms have been shown to solve dynamical

equations such as the diffusion equation [18], the Burgers equation [19], and magneto-

hydrodynamic Burgers turbulence equation[20]. In this chapter, I will discuss about

the QLG algorithm for the diffusion equation.

The quantum lattice gas algorithm that solves the 1-D diffusion equation derives

from a classical lattice gas of particles moving up and down a 1-D lattice[18]. The

corresponding quanturm lattice gas algorithm description begins by encoding the oc-

cupation probabilities, and thus the mass density, in the states of a lattice of quantum

objects. The streaming and collision operations are then a combination of classical

and quantum operations, including measurements. The aim of the algorithm is to
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take an initial mass density field and to evolve its underlying occupation probabili-

ties according to the Boltzmann equation (2.7). A schematic of the entire quantum

algorithm is shown in Fig. 3-3. A single time step of the algorithm is decomposed

into four sequential operations:

1. encoding of the mass density

2. applying the collision operator C at all sites

3. measuring the occupation numbers

4. streaming to neighboring sites.

These operations are repeated until the mass density field has evolved for the desired

number of time steps. In the first time step, the encoding operation specifies the

initial mass density profile, while in all the subsequent steps the encoding writes the

results of the previous streaming operation. The final time step ends with the readout

of the desired result, so operation 4 is not performed.

Each occupation probability is represented as the quantum mechanical expectation

value of finding a two-level system, or qubit, in its excited state I1). As a result, the

state of the qubit encoding the value fi(z, t) is

Ifi(z, t)) = fi(z,t)I1) + 1- fi(z,t) Io). (2.24)

It follows that a single value of the mass density is recorded in two qubits, one for

each occupation number. The combined two-qubit wave function for a single node

becomes

IV(z,t)) = flf2Ill) + 'f(1 - f2)1lO) + (2.25)
V(1 - f')f2101) + V(1 - fJ)(1 - f2)100).

The kets 100), 101), 110), and Ill) spain the joint Hilbert space of the two qubits, and

this is the largest dimension space over which quantum superpositions are allowed.

As with the classical algorithm, the constraint for local equilibrium (2.12) forces the
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initial occupation probabilities at a node to be half of the corresponding mass density

value.

The occupation numbers encoded in the two-qubit wave function 1,0(z, t)) can be

recovered by measuring the expectation value of the number operator hi, as given in

f(z, t)= (V(z, t)IfI7(zI0)) (2.26)

where h., z= h, 0 1, f12 = 1 h , where 1 is the 2 x 2 identity matrix, and where the

action of the single-qubit number operator ft returns 1 if the qubit is in its excited

state and 0 for the ground state.

The encoded occupation probabilities evolve as specified in the Boltzmann equa-

tion by the combined action of the collision operator, the measurement, and stream-

ing. The collision operator contributes by taking the local average of the two occu-

pation probabilities. This averaging (not to be confused with statistical coarse-grain

averaging, time averaging, or ensemble averaging) is done by choosing the the collision

operator C to be the "square-root-of-swap" gate, written as

1 0 0 0)

o I+i I-i o

-2 2 (2.27)
2 2

0 0 0 1

in the standard basis. The propagator C induces local quantum entanglement. The

same collision is applied simultaneously at every site, resulting in

I'(z, t)) 6I(z, t)) (2.28)

Using (2.26), the intermediate occupation probabilities of the wave function I'V(z, W))

are

f:(z, t) - - (fl + 12) (2.29)
2

as required for i = 1, 2. The third operation physically measures these intermediate
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occupation probabilities f•(z, t) at all the sites. A single time step is completed with

the streaming of the occupation probabilities to the nearest neighbors, according to

the rule

f, (z- Az, t + At) = f (z, t) (2.30)

h(z + Az, t + At) f2 -(z,t). (2.31)

The information of each qubit is shifted to the neighboring sites in opposite directions.

The streaming operation is a classical step causing global data shifting, and it is

carried out in a classical computer interfaced to the quantumn processors. Together,

the last three operations result in

fl,2 (z I Az, t + At) [fl(z,t) + f 2 (z,t)], (2.32)

which is the exact dynamics described by the Boltzmann equation (2.7).
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Chapter 3

NMR Demonstration

Here, we explore the experimental aspects of building a type-Il quantum computer

using NMRL techniques [21]. QIP experiments utilizing NMR typically employ a

liquid sample of molecules containing spin-! nuclei. The sample is subjected to a

strong magnetic field B0 of order , 10 T creating an energy difference AE between

the aligned and anti-aligned spin states that results in an equilibrium state with

net magnetization. At room temperature, AE/k 8 T is about 1(-', so that the net

magnetization is relatively small, but, given the large number of molecules in the

sample (,- 1018), it is still easily detectable. The entire spin ensemble is accurately

described by a reduced density matrix of only the intramolecular spin degrees of

freedom. The ensemble nature of the NMR sample thus makes it inherently applicable

to parallel computation. A type-II architecture can be mapped onto an NMR sample

by creating a correspondence between the sites of the lattice and spatially distinct

spin ensembles. Using magnetic field gradients and radio frequency (RF) pulses,

information in the lattice can be encoded, manipulated, and read out.

1This section was extracted from M. A. Pravia, Z. Chen, J. Yepez, D. G. Cory, "Experimental

Demonstration of Quantum Lattice Gas Computation," QIP, 2002.
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3.1 Methodology for NMR Implementations

3.1.1 Spin System and Control

For this two-qubit problem, we chose a room-temperature solution of isotropically-

labeled chloroform (13CHC13), where the hydrogen nucleus and the labeled carbon

nucleus served as quibits 1 and 2 Fig. 3-1, reppectively. The chloroform sample was

divided into 16 classically-connected sites of two qubits each, creating an accessible

Hilbert space larger than would be available with 32 non-interacting qubits.

Wi' /11o)Qui I !

I /0

101

13C-Chloroform 100)

Figure 3-1: Labeled chloroform Labeled chloroform consists of two qubits, the
hydrogen nucleus and labeled carbon served as qubits 1 and 2. States 10) and 11) are
the ground state and excited state, respectively, induced by the Zeeman interaction
with the applied magnetic field. Frequencies wu and 112, defined as multiplication of
the gyro-magnetic ratio - and the magnetic field B0 , are the resonant frequencies to
flip the spins.

The internal Hamniltonian of this system in a strong and homogeneous magnetic

field BO is
1 1 _rJ

Hi =-- (-)1 B0)& -a ('ycBo)a' + "' 1 a2 (3.1)
2 Z 2 z 2z z

where the first two terms represent the Zeeman couplings of the spins with B0 and the

last term is the scalar coupling between the two spins. The operators of the form a4 are

Pauli spin operators for the spin i and the Cartesian direction k. In the rotating frame,

the internal Hamiltonian can be reformulated as: inal The choice of

chloroform is particularly convenient because the different gyro-magnetic ratios, 7/H
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and -C, generate widely spaced resonant frequencies. As a result, a RF pulse applied

on resonance with one of the spins does not affect, to a good approximation, the

other spin. In the 7 T magnet utilized for the implementation, the hydrogen and

carbon frequencies were about 300 MHz and 75 MHz, respectively. The widely spaced

frequencies allow us to write the two RF control Hamiltonians as acting on the two

spins independently. More concretely, the externally-controlled RF Hamiltonians are

written as

Hj'?F1(t) i . (t)u' + 7,(t)u,] (3.2)

The RF Hamiltonians generate arbitrary single-spin rotations with high fidelity when

the total nutation frequencies

1 2

h-•[w2 ± [2.4]2 (3.3)

are much stronger than J, the scalar coupling constant. The scalar coupling Hamil-

tonian and the single-spin rotations permit the implementation of a universal set of

gates, and they are the building blocks for constructing more involved gates such as

the collision operator C.

The lattice of quantum information processors shown in Fig. 3-2 is realized by

superimposing a linear magnetic field gradient on the main field B 0 , adding a position

dependent term to the Hamiltonian having the form

Hy~~~dim9B () (Ha Z(7_ (Y )1.2 (3.4)22 1Z 2 z

The variable z denotes the spatial location along the direction of the main field,
while the constant H specifies the strength of the gradient. The usefulnems of this

woZ
Hamiltonian can be appreciated by noticing that the offset frequencies APHC

yc,( (C 19)] z of the spins vary with position when the gradient field is applied. Spins at

distinct locations can thus be addresmsed with BF fields oscillating at the corresponding

frequencies. In this way, the magnetic field gradient allows the entire spin ensemble

to be sliced into a lattice of smaller, individually addressable sub-ensembles.
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Gradient Coil

4 RIF Coil

Liquid Sample Separated
into Spatial Nodes

Figure 3-2: Liquid sample in the coils The lattice initialization is demonstrated.
The liquid sample is placed in the middle with the gradient coils on both ends and
surrounded by the RF coils. Once the gradient field is turned on, the resonant
frequencies across the sample will vary corresponding to the strength and duration of
the gradient. Thus, the spin ensemble can be sliced into a lattice of small blocks.
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Using the coupling, RF, and gradient Hamiltonians described above, together with

the appropriate measurement and processing tools, we can now describe in detail

how the four steps of the diffusion QLG algorithm translate to experimental tasks.

The lattice initialization step (1) uses the magnetic field gradients to establish sub-

ensembles of varying resonant frequency addressable with the RF Hamiltonians as

described in Fig. 3-3. The collision step (2) makes use of both the RF and the

internal coupling Hamiltonians to generate the desired unitary operation C. The

readout (3) is accomplished by measuring the spins in the presence of a magnetic

field gradient. And finally, the streaming operation (4) is performed as a processing

step in a classical computer in conjunction with the next initialization step.

3.1.2 Lattice Initialization

The initialization of the lattice begins by transforming the equilibrium state of the

ensemble into a starting state amenable for quantum computation. At thermal equi-

librium, the density matrix is

1 e Hinter.nal I + 21
(71hertTua ex Pk + a (3.5)

where c has a value on the order of 10-' arid Z is the partition function. The

equilibrium state is highly mixed and the two spins have unequal magnetizations. To

perform quantum computations, it is convenient to transform the equilibrium state

into a pseudo-pure state [22, 23], a mixed state whose deviation part transforms

identically to the corresponding pure state and, when measured, returns expectation

values proportional to those that would be obtained by measuring the underlying

pure state. Two transformations create the starting pseudo-pure state 100) from the

thermal state. First, the magnetizations of the two spins are equalized 2, illustrated

•f.G -4 M ] H'("

'This is achieved by applying the pulse sequence: [1]H2(1 1 (A) • [!. * (47) 2

-- gradient(z).
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1-D Diffusion QLGA Circuit Diagram
Step 1 Step 2 Step 3 Step M

Site 1 10)

10)

•" Site 2 10)

SSite 3 110)

I
Site N Io) M.

Encoding of mass c] Application of diffusion E] Measurement of \ Streaming of measured
U density[ collision operator occupation numbers occupation numbers to

o a nneighboring lattice sites

Figure 3-3: Quantum lattice gas algorithm for solving the 1-D diffusion
equation. The algorithm employs N two-qubit sites to encode the discretized mass
density. Each site codes for a single value of the mass density using the quantum
state of the two qubits. The encoded information is subjected to a series of local
transformations that evolve the system. The collision operator C is the only en-
tangling operation in the algorithm, and it creates quantuin coherences limited to
each two-qubit system. The streaming is executed by classical conmtunication, and
it mioves the occupation numbers iip and down the lattice as denoted by the arrows.
The sectioned cylinder depicts the position of the sites in the NMR sample. Each
site is physically realized as an addressable slice of isotropically-labeled chloroform
solution.
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in Fig. 3.1.2,

Voquliz 1 (71 + 2 (3.6)7h'ernal (7equl ± - + -1 ft71 ±

followed by a pseudo-pure state creation sequence 3 that, results in

a.equa•,, Pi Ud - • + 6 Il a 21 (3.7)

The equalization and pseudo-pure state creation sequences are described in detail

in reference [24]. For clarity, we define the constant in front of the brackets to be F,

allowing us to write the pseudo-pure state app in terms of the desired spinor 100) as

- 1 + CI00) (()01. (3.8)

Expressed in this manner, it is now more easily seen how a Ulnitary transformation

applied to app acts trivially on the term proportional to the identity, but it evolves

the term 100)(001 as it would a pure state as shown in Fig. 3-5.

Individually addressing the sites of the lattice, as depicted in Fig. 3-3, is accom-

plished by selectively addressing slices of the cylindrical sample. The procedure is

related to slice-selection in magnetic resonance imaging (MRI) [25], and it works

by applying the gradient Hamiltonian in the presence of suitably shaped RF pulses.

First, consider the Hamiltonian for a one-spin system subjected to a linear magnetic

field gradient in the z-direction and to a time-dependent RF pulse applied in the

y-direction. In this case, the Hamiltonian is

11 I' B2 N 1
HRFG, (z,t) 0 - -- z I -- -=w (t)o (3.9)

where the a, term is the linearly-varying static field and the o., term is the time-

dependent BF. The Hamiltonian H,,(z, t) does not commute with itself at all times,

so a closed-form and exact solution cannot be easily given without specifying the

'It is amcomplished by the application of -4 (2-!) -[ [E] -4 gradient(z).
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Carbon Channel Hydrogen Channel

(a)

(b)

I I I I I I I I I I

200 100 0 -100-200 200 100 0 -100-200
Frequency [HzI Frequency IHz]

Figure 3-4: Equalizing magnetization Since the ratio of 'YH to Y(, is a factor of
four, the spectra of H and C following a 1 pulse should reflect 4 : 1 ratio in the
peak heights, shown in (a). In order to compensate the different magnetization, the
equalization pulse sequence is applied and results in the spectrum (b).
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Carbon Channel Hydrogen Channel

(a)

(b)

Figure 3-5: Pseudo-pure states The results of pseudo-pure states of hydrogen and
carbon are shown in (a) and (b), respectively.

function wv(t). (The two terms in the Hamiltonian doesn't commute with each other

at all times.) A valuable approach, however, is to consider the approximate evolution

generated by H1;a(z, t) during infinitesimal periods of the RF pulse. To first order,

the evolution during the initial period At becomes

u?.F,(,At = At) •. exp [iX (t At z a,] exp [i7I.w(At)At] (3.10)

By defining the term in the parenthesis as Aký -y-- , At, the evolution of an initial

density matrix az through a single period becomes

UIRF,GUrzUkFG ,z,ý exp [i zzTU, a, exp [-iAza ],(At)At + a, (3.11)

where small angle approximations have been made. The first term is a spatial helix
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of the x and y magnetizations having a wavenumber Ak,. The second term is the

first order approximation to the magnetization remaining in the state a(. Another

period of evolution will affect the a, term as described, creating a new magnetization

helix with wavenumber Ak,. In addition, the initial helix will have its wavenumber

increased by an amount Akz. The final result over many periods is the formation a

shaped magnetization profile having many components

N r.nAkzz 1---Az w v(nAt)At + o,(..

Orz -4 Eexp [, rz] u, exp (3.12)
n- 2 2

Each term in summation can be interpreted as a cylindrical Fourier component of

the x-y magnetization weighted by the RF nutation rate w,,(nAt). The RF waveform

specifies the magnitude of each spatial Fourier component, and the resulting spatial

profile is the Fourier transform of the RF waveform[30]. An equivalent description

is to say that, for weak RF pulses, the excited magnetization of the spins at a given

resonance frequency is, to first order, proportional to the Fourier component of the

BF waveform at that frequency. As a result, control of the appropriate RF Fourier

component essentially translates to selective addressing of spatial frequencies, which

in turn allows the excitation of particular spatial locations.

The Fourier transform approximation allows encoding of arbitrary shapes on the

various spatial locations of one uncoupled nuclear species. For QIP, however, coupled

spins are required to implement entangling operations. In particular, the chloroform

carbons and protons are coupled together via the scalar coupling. Given that the

required RF waveforms should be weak, the coupling interferes with the desired evo-

lution. The effect of the coupling present while encoding on spin 1 is removed by

applying a strong RF decoupling sequence on the second spin '. The decoupling

modulates the (7, operator in the interaction Hamiltonian, making its average over

4The decoupling was accomplished by applying the pulse cycle QQQQ during the pos-
itive and negative gradients. The element Q is a composite ir pulse implemented with
four sequential pulses having nutation angles 80.40,362.0', 181.60, 180.8' and respective phases
271.30, 132.40,292.30,200.4-. This composite pulse was chomen over imore commnonly used pulse
sequence for its relatively short total nutation angle and good decoupling, allowing the cycle to fit
within a gradient period.
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a cycle period equal to zero. As a result, the second spin feels an identity operation

during the decoupling. Fig. 3-6 shows the complete RF and gradient pulse sequence.

As can be seen from the diagram, the first encoding on qubit 1 was subsequently

swapped to qubit 2, followed by a re-encoding of qubit 1. We chose this method be-

cause the smaller gyro-magnetic ratio of 13C causes a narrower frequency dispersion

in the presence of the gradients, making the carbon decoupling simpler.

As described above, the encoding process writes the desired shapes in the spatial

dependence of each spin's x-magnetization. The occupation numbers, however, are

proportional to the z-magnetization, as can be seen when the number operator in the

equation

STnXt) = (O(nO(nAz, muAt)), (3.13)

is replaced with hi = 1(1 + a') resulting in

f(nAz, mAt) [1 + (O(nAz, mAt)IoI'jV(nAz, mAt))]. (3.14)

where second term in the brackets represents the z-magnetization. The encoding

process is followed by a 7r/2 pulse that rotates the excited x-magnetization to the z

direction.

3.1.3 Collision and Swap Gates

After initialization, the next step is to apply the collision operator. For the QLG

algorithm solution to the diffusion equation, the collision operator C is the square-

root-of-swap gate. Expressed in terms of the Pauli operators, it is

C = exp [--z IT a+ + a aa+ (3.15)

where an irrelevant global phase has been ignored. Written in this form, the operation

C can be decomposed into a sequence of implementable RF pulses and scalar coupling

evolutions[33, 35] by noticing that the product operators in the exponent commute
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NMR Implementation

H 10), - c hp SaeX Observe -m
"M Encoding pulses for

C P)2_ - Dec Dec D•c Dec - next step processed

Gradient __ou

Encoding Measurement Streaming

Figure 3-6: NMR methodology for QLG algorithm. The NMR, implementation
consists of four main sections, each corresponding to the prescribed QLG algorithm
step. The top two lines in the diagram correspond to RF pulses applied to the proton
and carbon qubits, respectively. The third line shows the application of magnetic
field gradients. In the encoding section, the initial carbon magnetization is recorded
on the protons before being transferred to the carbons. The starting magnetization is
specified by using a RF pulse shaped as the Fourier transform of the desired magne-
tization. The shaped pulses are applied in the presence of gradients so that each site
can be addressed. A carbon decolpling sequence prevents the scalar coupling from
interfering with the low power shaped pulses. The 2 at the end of the encoding move
the information form the x-axis to the z-axis, as required by the QLG algorithm. The
collision operator follows the encoding, and it is implemented without gradients to
ensure that all of the sites in the sample feel the same transformation. The results are
observed in two experiments, each time using the more sensitive proton channel. A
swap gate is added when measturing the carbon magnetization. Finally, the streaming
operation is applied by shifting the frequencies of the carbon and proton shapes in
opposite directions.
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with each other, resulting in
_i_ 1,721 i'• •1 2] ,p[_i•" 7:1

Sexp [i8 ] exp exp [- 8 Z Z 8 (3.16)

Expanding the first and last exponentials as scalar couplings sandwiched by the ap-

propriate single-spin rotations results in

S exp [i-7. exp [i u)] exp [iUý&] exp i [ ex]p -i-d]
.71 1 2

exp P--8 azaz (3.17)
.7r 7 r 2 7r 7 1. r

xpexp [-i~~ exp i- exp [i-a ] exp [i'ro7]

The exponents of terms proportional to aey (2 represent internal Hamiltonian evo-

lutions lasting for a time t', = 1/(4,1). The exponents of terms with single-spin

operators are implemented by 7r/2 rotations as in Fig. 3-7. They were generated by

RF pulses whose, nutation rate was about 50 timNs greater than .1. All of the pulses

and delays were applied without a magnetic field gradient in order to transform all

of the sites identically.

As shown in Fig. 3-6, swap gates were utilized both in the lattice initialization

and in the measurement of the carbon magnetization. The pulse sequence for the

swap gates was almost identical to the sequence for C. The only difference was that

the internal evolution delay was set to t"'P = 1/(2J).

3.1.4 Measurement

If the algorithm is performed on individual quantum systems, then the values are

obtained by averaging over many strong quantum measurements of identical instances

of each step. However, when the algorithm is performed using a large ensemble of

quantum systems, as in the case of NMR, then a single weak measurement of the entire

ensemble can provide sufficient precision to obtain fi'(z, t). The occupation numbers

resulting from the collision were obtained by measuring the z-magnetizations and

using equation (3.14). Since only the (a' and a7. operators are directly observable,
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,C ,' ffC F,C

H, C

Figure 3-7: Pulse sequence for the collision operator The collision operator for
the diffusion equation can be generated by applying ' pulses oin both channels with
delay timne I in between. The same sequence can be used to generate the swap gate
by increasing the delay time to 2-1"

a "read out" ir/2 pulse transformed the z-magnetization into x-magnetization. The

proton magnetization was measured directly after the collision, while the carbon

magnetization was first swapped to the protons before observation. Meassurements of

both the "3 C and 'H magnetizations were carried out separately, and in both cases via

the more sensitive proton channel. The meassurements were made in the presence of

a weak linear magnetic field gradient, causing signals from different sites to resonate

with distinguishable frequencies. The observed proton signal was digitized and Fourier

transformed to record an image of the spatial variation of the spin magnetization.

The observed spectrum was then processed to correct the baseline and to obtain the

res•lting magnetization at each site. Bec(ause each site is composed of a slice of the
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sample with spins resonating in a band of frequencies, the occupation number for

each site was obtained by averaging over all spins in the corresponding band.

3.1.5 Streaming

The final step involves classically streaming the results of the measurements according

to Eqs. (2.30) and (2.31). For the diffusion equation, the streaming operation is

applied in conjunction with the next lattice initialization step by adding a linearly

varying phase to the Fourier transform of the desired shape. The added phase causes

a shift in the frequency of the pulse determined by the slope of the phase. When the

frequency-shifted pulse is applied in the presence of the magnetic field gradient, the

shift results in spatial translation of the encoded shape. The streaming operation is

thus implemented as a signal processing step in the lattice initialization procedure.

3.2 Experiment Demonstration

The results of the experiment are shown in Fig. 3-8, together with plots of the an-

alytical solution and of numerical simulations of the NMR, experiment. In total, 7

steps of the algorithm were completed using a parallel array of 16 two-qubit ensemble

NMR, quantum processors. The observed deviations between the data points and the

analytical plots can be attributed to imperfections in the various parts of the NMR

implementation.

3.3 Conclusion

Ensemble NMR. techniques have been used to study the experimental details involved

in quantum information processing. The astronomical number of individual quantum

systems (- 10') present in typical liquid-state spin ensembles greatly facilitates the

problem of measuring spin quantum coherences. In addition, the ensemble nature

has been successfully utilized to create the necessary pseudo-pure states[22, 23] and

to systematically generate non-unitary operations over the ensemble [26]. In this
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Figure 3-8: QLG. algorithm experimental results. The experimental mass den-
sities are plotted in the figure, together with plots of the analytical solution and the
nmnerical sinnilation of the NMR experiment. Seven steps of the algorithm were
implemented on 16 two-qubit sites. The simulations were performed using the ac-
tual RF nutation rates and times of the experimental setup. The calculations closely
match the data, suggesting that the deviation between the analytical results and the
data can be attributed imperfections in the methodology. As a result, the simulations
promise to be useful in exploring the errors from alternate methods.

experiment, we again exploit the ensemble nature, but this time as a means of realizing

a parallel array of quantum information processors. The novel architecture is then

used to runi a quantum lattice gas algorithm that solves the 1-D diffusion equation.

The closeness of the data to the analytical results is encouraging, and it demon-

strates the possibility of combining the advantages of quantum computation at each

node with massively parallel classical computation throughout the lattice. Currently,

commercial MII machines routinely take images with 256 x 256 x 256 volume elements.

As a result, the large size of the NMR ensemble provides, in principle, sutficient room

to explore munch larger lattices. However, in moving to implementations with more

computational power, several challenges remain. The limited control employed here

is sufficient for a few time steps of the algorithm, but refinements are necessary to

increase the number of achievable iterations. In addition, although complicated op-
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erations have been done in up to 7 NMR qubits [27, 28, 291, the problem of efficiently

initializing a large lattice of few-qubit processors still remains. Our results provide a

first advance in this direction, and they provide confirmation that NMRI techniques

can be used to test these new ideas.
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Chapter 4

Systematic Error

The ensemble nature of the spin system allows us to split the sample into a spatial ar-

ray of lattice sites. As we mentioned in the previous chapter, well developed methods

from MmI [25] allow us to selectively address the spins in each of these sites. Typi-

cally the addressing is carried out in a space reciprocal to the spatial mapping, called

k-space [30], where k is the wave-number of the corresponding Fourier components.

The k-space formalism provides a recipe for writing a spatially varying spin rotation

across an ensemble of spins that have been distinguished from each other by a mag-

netic field gradient. The k-space formalism is essentially the application of shaped

RF pulses in the presence of a linear magnetic gradient field as a means of exciting

selective frequencies. For most studies the full k-space formalism is not employed and

a linear approximation is invoked. If the rotation angle of the shaped pulse is small,

then the excited magnetization may be accurately calculated only to first order in

that angle, and the excited magnetization is related to the RF wavefornm simply by

a Fourier transform. As a result, the required RF waveform can also be determined

by taking the inverse Fourier transform of the desired initial magnetization. This

technique allows us to encode arbitrary magnetization profiles spanning the various

spatial locations in our experiment and thereby approximating any desired initial

conditions. In the previously implemented diffusion equation, higher order Fourier

'This se(tion was extracted from Z. Chen, J. Yepez, D. G. Cory, "Simulation of the Burgers
equation by NMR. quantum information processing," submitted, 2005.
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components of the number density are attenuated bJy the dynamics and the solution

is stable even in the presence of substantial accumulated errors.

To push the development of type-TI implementations we have chosen to explore

the nonlinear Burgers equation to test the breakdown for the linear approximation.

Over time, a shock, front forms and high spatial frequencies in the magnetization

profile become important and it is these high spatial frequencies that we expect to

be most sensitive to errors. The numerical treatment of the QLG algorithm for the

Burgers equation therefore offers a stronger proof of our NMR quantum computing

approach since the effect of the nonlinear convective term in the equation generates

a sharp edge as a shock develops in time that is not mimicked by spin relaxation,

random self-diffusion, nor RF inhomogeneities.

4.1 The Burgers Equation

4.1.1 QLG Algorithm for the Burgers Equation

The QLG algorithm is initialized, in the NMRI case, by encoding the particles' occu-

pation probabilities as a spin-magnetization profile. To handle the one-dimensional

Burgers equation [19], it is sufficient to use two qubits (two spin-' nuclei) per lattice

site, where each stores a single real valued occupation probability. A lattice of QIPs

are related to the ensemble sample by creating a correspondence between lattice sites

and spatially dependent positions in the sample. The dynamical evolution is caused

by a collision operator (a quantum operation), and measurement and streaming (clas-

sical operations) according to the QLG algorithmic paradigm.

First, each occupation probability is mapped onto a lattice site as the expectation

value of a number operator at a space time site z at time t. As a result, the initial

state of the ith qubit is Vf(z, t)11)+ 1 - fi(z, t)j(). The combined the wave finction

for a lattice site is a tensor product over the qubits:

) = flf 2111) + fi(1 - f2)1)+ (1- f,)f2101)+ (1 - f)(1 -f2)IO). (4.1)
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In the basis of a two-qubit system, the number operators for the occupancy of qubits

are defined in terms of the single qubit number operation ft as follows:

fi, = 1 ® h. and 2 = ft ® 1. Therefore, the occupation probability is represented as

follows:

A(z,t) = (z, t) litilV(z, )). (4.2)

The macroscopic scale dynamical quantity of the quantum lattice gas is the num-

ber density, p, defined as the sum of the occupancy probability. The equilibrium

occupation probabilities that we use are

fifq P= + • • +1 -1 ( + I) a21) -2 p y2p 2
2 2,

g2 -P2 2o1 ( 1 + 1 +._'(r.±1) l 2 r.±p 2 . (4.3)

where 0Y is denoted by cot 0 (!os((- ) for convenience. (0, •, and ( are the "Euler"

angles introduced by the collision operator, which will be covered below.)

Second, the evolution of fi is governed by the combined action of the collision op-

erator, measurement and streaming. The collision operator is applied to all the lattice

sites independently, resulting in Iv)'(z)) = C010(z)), for all lattice sites. The choice

of the particular components of the unitary collision operator determines the form of

the macroscopic effective field theory (a parabolic partial differential equation) and

the value of its transport coefficients (coefficients of the dissipative terms). A general

representation of the collision operator for the Burgers equation is a block diagonal

matrix. This single quantum operator has the following matrix representation:

1 0 0 0

0 eioeiý cos 0 CiOe'( sin 0 0
0 -e 4 -'e' sin9 ei-0 ecos9 0 (4.4)

o 0 0 1

where •, •, (, and 0 are the "Euler" angles. The corresponding nonlinear Burgers
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equation reads

19P +-csin20cos(( - 1)(p-i) -p 1 Az &p (4.5)
at (p z 2 At (z2"

Here, At is the update time and a cell size is presented by Az. The propagation

speed c of particles is determined as the ratio of the lattice cell size to the time step

interval.

Third, we measure the occupation probabilities. This process erases all the su-

perpositions and quantum entanglement that was created by the unitary collision

operator in the second step.

Fourth, and last step of the QLG algorithm, we shift the fi obtained in the previous

step to its nearest neighbor. This step requires only classical communication between

neighboring sites. The time is incremented after this step. Then, we loop back to

step 1 and update the field of occupation probabilities over the lattice sites. In this

way, we can continue to iterate forward in time and make a time-history record of the

occupation probabilities, which in turn gives us the temporal evolution of the number

density field.

4.1.2 First Implementation using NMR

In the first implementation of the Burgers equation, we chose the "Euler" angles in

Eq. 4.4 to be = 0, and 0 =. As a result, the general collision operator

reduces to the quantum gate

1 0 0 0)

C J, (4.6)0 - 1 1 0

0 0 0 1

and the equilibrium occupation probabilities for the Burgers equation are expressed:

S=+- 1 1- , (4.7)
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where ej is ±1 for different qubits. Then we have the Burgers equation in standard

form
19t u- O-2U 

(4.8)

where v 2A is the transport coefficient (viscosity term) and the flow field is defined

as u = c(p - 1).

A room-temperature solution of isotropically-labeled chloroform (13CHC13) has

been chosen for implementing the Burgers experiments. The hydrogen and the labeled

carbon nucleus are served as qubits 1 and 2, and the difference of the gyro-magnetic

ratio of two spins generates widely spaced resonant frequencies that allows us to

address each spin independently.

The initial magnetization is specified by using a RF pulse shaped by the Fourier

transform of the desired magnetization (transform of the initial number density pro-

file). While applying the shaped pulse, a carbon decoupling sequence is performed

to prevent the scalar coupling from interfering with the low power shaped pulses. In

addition, the Z pulse, which rotates the information from the x-axis to the z-axis,

is applied separately just after each initialization. This is done to keep the valuable

information along the longitudinal direction where it will not be affected by the gradi-

ent and chemical shift. The encoding of initial states on both spins is accomplished in

two steps: The initial carbon magnetization is recorded on the protons before being

transferred to the carbons and followed by the initialization of proton magnetization.

Furthermore, a short pulse sequence, called the clean sequence, is executed after the

first swap gate to erase the phase distortion that may be caused by the decoupling

sequence.

The unitary operator C can be decomposed of a sequence of RF pulses and scalar

coupling. The product operators in the exponent commute with each other, resulting

e i .x (i 2* Both terms c:an be expanded as natural scalarin~~~ ~ C"' =xp[za •]exp [I•y ,]

2The collision operator is achieved by the pulse sequence: [IV ' -4 M [ G 2] • ' C

•r H •-4 [x]H,C

4 x 4 2 y
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Hamiltonian couplings sandwiched with the appropriate single rotations, resulting in

7r, r ( 1<1 ),,
c exp i ý+ (7 exp i7 7]exp [i 7 - (4.(9))

.7r 7r - (,, + (Y I 7r H l .r H, C
ex i-a exp [ -~a exp [-i(7 (Y~ exp [i-((7 + Y

The exponential terms of single spin rotations are implemented by 7r/2 and ir/4

pulses. The exponents of terms with oU< represent the natural internal Hamiltonian

evolutions with time period 1/2.1.

The occupation numbers of each spin are obtained following the collision step by

measuring the z-magnetization according to the following equation

MZiOz )--1 [1 + M¢z't,)lO'ilO(zt))] (4.10)

Since only a, and a7 are observable in our NMR, spectrometer, a 7r/2 pulse has

been used to bring the z-magnetization into the transverse plane. The measurements

are done in two separate experiments, where a SWAP gate is applied to bring the

magnetization from carbon channel to the proton channel. This SWAP operation

is done because the higher signal-to-noise ratio in the proton channel allows us to

improve the accuracy of our implementation. During the "readout" process (Step

3), a week magnetic field gradient is applied to distinguish different sites. The ob-

served proton signals are digitized and Fourier transformed, allowing us to record the

spatially-dependent spin magnetization profile. The four main sections of the NMR,

implementation of QLG algorithm are graphically depicted in Figure 4-1.

The experiments have been performed on a lattice of 16 cells for 15 time steps,

shown in Fig. 4-2. After ten iterations, the deviation between the experimental data

and simulation results becomes significant. This indicates that our numerical simula-

tions do not include all the potential error sources. However, some of them are small

enough to be ignored for now. As described before, the "Euler" angles of the collision

matrix are tunable and determiners the viscosity term in the Burgers equation. We

aims to choose another collision matrix for the Burgers equation, which contains a
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Figure 4-1: QLG algorithm for the Burgers equation implemented in four
steps. Three horizontal lines represent proton spin, carbon spin and field gradients.
Both starting magnetizations are encoded in proton channel first due to the high
signal to noise ratio while decoupled in carbon channel to prevent interfering of scalar
coupling. The collision operator is applied after the initialization. Measurement are
also taken in two steps in the proton channel followed by data processing in a personal
computer.

higher viscosity parameter, thus it takes less time steps to form the sharp front.

4.1.3 The Collision Matrix with Higher Viscosity Term

This time, •, (, and • are still set to be zero, but cos 0 is selected to be 0.8 for

convenience. In this particular case, the equilibrium occupation probabilities for the

Burgers equation are determined by

P ~ ~ 2 2 1 • -• (-)]. (4.11)

The collision quantum operator 3 is written to be C exp [4.•82 (?Ta% - a ).

3The corresponding pulse sequence is the following:[ jM -4 -1 I.l 2P - y

r H -4 7U -4 [.]H,C 
-6
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Figure 4-2: Experiment results comparing with simulation and analytical
solutions. The experimental data (dots) are plotted together with the simulations
(grey dash lines) and the analytical solutions (black solid lines) for 15 time steps on a
lattice of 16 cells. The horizontal axis for each plot indicates the number of the lattice

cells and vertical axis is the flow velocity. The unibers associated with each plot are
the time steps. The deviation between the simulation and analytical solutions is
mainly due to the accumulative errors in the collision operator. We also observed the
deviation between the experimental data and simulation results, possibly introduced

by inhomogeneity, self-diffusion.
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The corresponding matrix representation is written as

1 0 0 0

0 0.8 0.6 0
0 -0.6 0.8 0 (4.12)

The viscosity term associated with this unitary operator is which doubles the

value in the previous one.

Nine successive time steps of the quantum algorithm have been implemented on

16 two-qubit sites, decipted in Fig. 4-3. Using the new collision matrix, the deviation

between experimental data and simulation results has been reduced as we expected.

Here, we have demonstrated shock-formation driven by a tunable viscosity paraine-

ter to show that the width of the shock front is not determined by implementation

imperfections.

4.1.4 Numerical Simulations

The NMR. numerical simulation has provided an alternative way to study the spectro-

scopic implementations. We have observed the deviation between the experimental

data and analytical solutions due to the errors in the implementation. To explore the

source and relative size of these errors, we simulated perfect experiments, each time

adding controlled errors in four sections of the implementation:

"* The linear approximation in the initialization

"* Inefficiency of the decoupling sequence

"* Swap gate errors

"* Collision operator errors

The errors originating from the imperfect decoupling sequence caused least impact

to the mass density, followed by the errors in the SWAP gates. The Fourier transform

approximation executes a correct writing of the desired magnetization only to first
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Figure 4-3: Experimental data The experimental data (dots) are plotted, together
with plots of the analytical solutions (solid lines) and the numerical simulations (dash
lines) of the NMR experiment. Nine time steps (numbers) of the algorithm have been
carried out on 16 two-qubit sites. The vertical axis is associated with flow speed
and the horizontal axis presents the lattice sites. The simulations closely match the
data, suggesting that the deviation between the analytical results and the data can
be attributed to four imperfection controls, discussed below, in the implementations.
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Figure 4-4: Relative strength of four types of errors We present the relative
strength of each source here. Horizontal axis is denoted by time steps and vertical
axis shows the difference between the simulation results with the analytical solutions.
We notice that the deviation is mainly caused by the linear approximation at the
beginning and the accumulated errors in the collision operators take over after a few
time steps.

order in the overall flip angle. The largest deviations originated from realistic simula-

tions of the collision gate. It is important to note that the simulated gate fidelities for

the swap and collision gates, although imperfect, are still about 0.995. This suggests

that the observed deviations are caused by the coherent buildup of errors through a

few iterations, and not just by the individual errors from a single gate. The complete

simulation result, showing the relative size of each error, is plotted in Fig. 4-4.

In the NMB, implementations to date there are two important sources of sys-

tematic errors: (1) a linear approximation relating the excited magnetization to the
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Fourier components of the shaped lRF pulse; and (2) errors from the repeated collision

operators. Here we explore the impact of these errors on a simple computation and

illustrate a simple means of reducing the accumulated errors. In summary, one of the

most important challenges to implement a useful type-IT quantum architecture is to

avoid the accumulation of systematic errors. In the next section, our discussion aims

to an alternative method to mitigate the growth of systematic errors.

4.1.5 The Collision Operator with Modulated Phases

The first-order accurate Fourier approximation was expected to be the dominant

error source in the NMR implementation. However, NMR, simulations with controlled

errors shows that the systematic error induced by the experimental implementation

of the unitary collision operator associated with the QLG algorithm is the major

challenge. Replacing the single collision operator with a set of operators to randomnize

errors allows us to improve the robustness of the implemIentation.

In the implementation of the Burgers equation, we also observed deviations be-

tween the numerically predicted data points and analytically predicted solutions. The

major error sources in the NMR, implementation are known, so to explore the source

and relative strength of these errors, we have simulated the NMR experiments. The

major error source in this implementation is the collision operator, and it is intro-

duced by ignoring the scalar coupling between proton and carbon during the RF

pulses. When applying a RF pulse on the proton qubit, the Hamiltonian in the ro-

tating form is H = 21r,lJa ac + "7HB, I4, where B, is the strength of the RF pulse.

With the presence of the scalar coupling, a small portion of the proton magnetization

has been transfered to the carbon qubit. Therefore, the applied propagator can be

recast as U = UdesiredUe.ror.

The error in the collision operator is a systematic error that builds up throughout

the successive time steps. Although this is not the significant error at the beginning

of the implementation, it eventually dominates the first-order error due to the Fourier

approximation and becomes the dominant issue after just several time step interac-

tions. Notice that while the reduction of the initial magnetization from the Fourier
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Figure 4-5: Systematic errors The growth of the systematic errors due to the
collision operator in two NMR, implementation. The single collision operator data
(dots) is fit (solid line) with a line of slope 1, which shows linear growth of the error.
The collision operator data with modulated phases (pluses) is the fit with a line of
slope 3/4 (dashed line). The buildup of the systematic errors has been slowed down
by proposed method. However, the systematic errors have not been totally converted
into random errors.

transform is systematic, since the magnetization profile is changing the errors are not

precisely repeated. In the collision operator, however, the errors are exactly the same

from step to step. In addition we expect that the radio frequency inhomogeneity

leads to strongly correlated errors in the lattice encoding. Hence, we have proposed

replacing a single collision operator with a set of collision operators that have similar

fidelity but randomized error terms.

Since the collision operator for the Burgers equation is a zero-order coherence

term, the collision operator commutes with the rotation operator. Therefore, we
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apply a 900 rotation operator to the collision operator at each step to mitigate error

growth. Consequently, a dramatic improvement is observed as shown in Fig. 4-5.

On a logarithmic plot, the simulation results fit a line with a slope of 3/4. If the

error terms in the collision operators were totally randomized and hence followed a

Gaussian distribution, the best-fit regression line should have had a slope of 1/2. The

deviation between our simulation data and the ideal Gaussian case indicates residual

systematic error in the collision operator. In a future study, we may use strongly

modulated pulses to randomize the error terms [31].

The experimental number densities are over-plotted in Fig. 4-6 with the exact an-

alytical solutions. Eight successive time steps of the quantumn algorithm were imple-

mented on 16 two-qubit sites. An improvement of our present experimental approach

using collision operators with modulated phases is observed. The agreement of the

data to the analytical solutions is encouraging and suggests that totally randomizing

error terms in the collision operator mnay offer fuirther improvement.

4.2 Conclusion

From the simulation, we find the major error sources are due to imperfect control

of the quantum spin system and the Fourier approximation associated with setting

its magnetization profile. Our proposed method for converting the systematic errors

into random errors is effective. The improvement we achieve relative to the previous

experiment is encouraging, and it demonstrates the possibility of using the same tech-

nique in future studies. The closeness of the numerical data to the exact analytical

results for the nonlinear Burgers equation fuirther proves the practicality of imple-

menting the QLG algorithm using a spatial NMR, technique. In addition, although

the limitation of the Fourier approximation is not dominant, the problem of precisely

initializing a lattice of QIPs still remains an open issue.

68



1. t=O1 .
t=0.00694444

U1. 1.2

EQ 1 U) 1

3o0.8 0.8
0 0

4 0.6 4o.6

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
position position

1.4 t=0.0138889 1.4 t=0.0208333
S1.2

U) 1 U) 1

•0.8 o 0.80 0
L" 0. 6 44 0. 6

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
position position

14 t=0.0277778 1.4

0. 041 
U) 1o.8 
o0.8

4 0.6 410. 6

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
position position

1.4 [
t=.0416667 1.400

04 0

0.8 •o0.8
0 H
4410.6 41 0.6

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
position position

Figure 4-6: Experiment data versus analytical results The experimental data
are plotted together with the analytical solutions for 8 time steps on a lattice of 16
parallel two-qhit QIPs. Viscosity: !A2. Experimental NMR data (dots) versus4 At
analytical solution (curves). Randomizing the error terms in the collision operator
has improved the experimental results dramatically.
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4.3 Other Error Sources

Other potential sources of errors include signal to noise, the state fidelity of the

starting pseudo pure state, and gradient switching time. In addition, the random

self-diffusion of the liquid molecules in the presence of a strong gradient can result

in a substantial loss of signal. Although these errors were not significant in our

implementation, they are likely to become important as more complicated algorithms

are executed on larger lattices.

In particular, molecular diffusion over the time of an operation places a lower

bound on the physical size of the volume element corresponding to each site in the

computation. In the 1-D case discussed here, the root-mean-squared displacement

(Az = V/2-D) for chloroform (D = 2.35 x 10-'Ocm 2/s) is about 10.81Lm over the 25ms

needed for encoding and the collision operator. Since the actual volume element

were about 625/um across, this resulted in a negligible mixing of the information in

adjacent sites. However, it is clear that for this approach to type-II quantumn computer

to remain viable for large matrixes and more complex collision operators the physical

size of the sample must grow with the size of the problem.

4.4 Discussion

It has been suggested by Peter Love in [321 that the transition matrix A in the type-II

lattice gas algorithms for the Burgers equation may not be a doubly stochastic ma-

trix. It should be clear here that the transition imatrix defining the lattice Boltzmann

equation is not the collision operator defined in the algorithmis. We begin the discus-

sion by deriving the transition matrix A from the unitary collision operator C. The

occupation numbers in the classical Boltzmann model are encoded as the diagonal

terms in the density matrix n = [(1 - f,)(1 - f2),(1 - f2)fl,f2(1 - fl),flf2j. The

collision step of the Boltzmamn model is given by the multiplication of the vector n

by the transition matrix that satisfies normalization and semi-detailed balance. In

our type-II simulation, the result of the collision step is reproduced by conjugating
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the density matrix by the collision operator. The transition matrix is denoted by the

effect of this conjugation on the diagonal elements in the density matrix.

As mentioned earlier in this chapter, the collision transformation call be expressed

by a general block-diagonal unitary matrix with complex coefficient:

1 0 0 0)

0 ei~ei cos 0 eieic sill 9 0 0
C 0 -ei~e-i sin 9 eiOe-i cos 9 (4.13)

0) ( 0 1)

Therefore, quantum transition map oil the diagonal elements in the density matrix

can be written as:

d22 = cOs 2 oft2 + Sil 2 0p33 + e-i(-) COS 0 Sill OP32 + ei(-) COS 0 sinl OP23

p3 = sin2 Ofi9.2 + cos 2 0p3 - e-i(ý-•) cos 0 sin 2 - (- cos 0 sin Op.3

PA4 :- P44 (4.14)

The transition matrix then contains two components: classical diffusive part and

quantum mechanical part as, described:

1 0 0 0) 0 0 0 0)

0 Cos 2 9 sin 2 0 0 1 0 e-i(-o)-32 ei(P-2)u 0
A= +2cos2 P22 , P33 (4.15)

sn0 20P22 P33

k0 0 o 1 0 0

where the quantum mechanical part gives rise non-diffusive behavior, the nonlinear

shock formation characteristic of the Burgers equation. Furthermore, the quantum

mechanical part, brings the off-diagonal information to the diagonal elements, intro-

ducing local quantum superposition and entanglement. Thus, the new values of the

occupation probabilities in the lattice Boltzmann model is not, ex(:lusively, deter-

mined by the occupation numbers in the previous step.
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The unitarity of C implies that the classical part of the transition matrix A

obeys normalization and semi-detailed balance. It is trivia to realize that the sum

of each column in the second term is zero. Thus, any arbitrary collision operator

for the Burgers equation obeys the semi-detailed balance. To formulate a sufficient

normalization constraint, we simplify the constraint to be

C-(ý-•)P32 + j(--() A2 = 0. (4.16)
P22 P33

Only when Eq. 4.16 is satisfied, the collision transformation is a doubly stochas-

tic matrix. Therefore, it leaves us an open issue about the algorithms and further

discussion should be invoked.

The systematic error that we discussed in this chapter is not caused by this open

problem, but introduced by the imperfect implementations. Details about the quan-

tum control of the NM1I system are accessible in [36, 37, 38, 39].
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Chapter 5

Linear Approximation

We utilize the magnetic image technique to slice NMR spin ensemble into a lattice of

cells and address all the spatial locations simultaneously. This technique is essentially

the application of shaped RF pulses in the presence of a gradient field as a means

of exciting selective frequencies. If the flip angle of the shaped pulse is small aiid

the excited magnetizations, to a good approximation, are proportional to the Fourier

transform of the RF waveformi. As a result, the RF waveform can also be determined

by the inverse Fourier transform of the desired transverse magnetization. The above

technique allows the encoding of arbitrary shapes at the various spatial locations

in our experiment. However, this Fourier approach for determining the frequency

selectivity of a pulse sequence is only accurate to the first order and generates potential

error sources.

We aims to remove the linear approximation by mapping lattice cells to a set

of Fourier components in the k-space, a space reciprocal to the spatial locations.

This new approach gives us the freedom to perform the streaming step quantum

mechanically by controlling the linear magnetic field gradients. It may arise new

applications using this particular architecture for quantum lattice gas algorithms.

We have chosen to the diffusion equation to explore the NMR implementation

using the k-space mapping. Diffusion equation provides a neat and robust test since

low frequencies Fourier components in the magnetization profile are less sensitive to

errors.
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5.1 Mapping to k-space

In a type-II quantum lattice gas algorithm, the occupation probabilities are encoded

to the wave function of lattice sites. Each occupation probability fi(z, t) is repre-

sented as the quantum mechanical expectation value of finding a two-level system in

its excited state. The combined two-qubit wave finction for a single node becomes

10((z, t)) = V/-U-111) + f1 (1- I)I1) + (1f )1 fljf2I1) ± (- f,)(1 - f2))Ioo).

The collision operator is a unitary evolution matrix applied homogeneously across all

the lattice sites causing local quantum superposition and entanglement, 101(z, t)) =

010¢(z, t)). Measurement process is a non-unitary action that destroys all the su-

perpositions and entanglements caused by the previous step, resulting in fi(z, t) =

(0 (z, t + At) Irii 0(z, t + At)), where mi are the number operators. In practice, the

occupation numbers must be determined by repeated measurernent of a single real-

ization or by a single measurement over a statistical ensemble. The NMR ensemble

nature make this measurement particular simple.

The wave function method outlined above is adequate for simple problems that

consists of few spins, but becomes tedious to describe more complicated cases involv-

ing more spins. The magnetic state of the NMR ensemble, therefore, is conveniently

defined using the density matrix formalism. The density matrix corresponded to the

wave functions is

p(z,t) = 1V)(z't))(O(z't)[. (5.1)

and the collision step can be reformulated as

p'(z, t) = Cp(z, t)COt. (5.2)

The measurement process consists in taking the trace of the measurement operator

acting on the density matrix of the system being measured:

< n, >z-=rI('Oi (5.3)

A similar presentation of the lattice can be formulated in the k-space by creating
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the correspondence between a lattice node with a Fourier component, generated by

magnetic field gradients. Once a static field gradient is applied, the spin procession

frequency varies linearly with the position along the z direction. It induces the trans-

verse phase to accumulate linearly with position as well. The gradient field, therefore,

modulate the transverse magnetization into a spatial helix, referred as a Fourier com-

ponent characterized with it wave number k. A RF pulse can modulate the phase

and amplitude of each Fourier helix and also produce amplitude modulated magne-

tization gratings along z direction by transforming the transverse magnetizations to

longitudinal direction. However, a RF pulse does not change the pitch of the grating

and only the gradients can change the k value of each component to another in the

k-space. Due to the linear nature of the k-space, each separate Fourier component

may be treated independently. The corresponding formalism of the density matrix

5.1 results in

p(k,t) = jV)(k,t))(V)(k,t)j, (5.4)

where k indicates a lattice cell. The evolution of the collision step is described by the

following equation

p'(k,t) = Cp(k,t)&t. (5.5)

Then, the measurement is given by

< f >= tr [ktij (5.6)

5.2 NMR Implementation

The same room-temperature solution of labeled chloroform used in the previous ex-

periments has been selected. The resonant frequencie-s of the two spins, hydrogen

and labeled carbon, in this heteronuclear molecule is about 225MHz apart in 10 T

magnet. Therefore, a single pulse on resonance with one spin will not affect the other.

The interaction term between the spins can be characterized by the scalar coupling

constant .1 - 214Hz. More details about the sample can be found in Chapter 3.
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5.2.1 Encoding

Individual addressing the sites of the lattice is established by a sequence of RF pulses

followed by the gradient Hamiltonians. We begin by studying the evolution of a

one-spin system and the small angle approximation is invoked here to simplify the

calculation. Then the discussion moves to a weakly coupled two-spin system. In

this system, there are two important challenges to implement a type-II quantum

architecture: (1) lattice initialization to an identical Fourier component; and (2) the

internal Hamiltonian interfering information between spins. We demonstrate that the

usage of 7r pulses on one spin in conjunction with two static gradients for the same

duration can give the desired results. Wisely selecting the gradient strengths, the

Fourier helices associated with both spins can have same wave number even though

they have different gyro-magnetic ratios. The 7r pulses modulate the interaction

Hamiltonian and refocus scalar term after one period of the sequence: the system,

thus, can be treated independently as two one-spin systems.

First, consider the Hamiltonian for a one-spin system subjected to a RF pulse

applied in the y-direction followed by a linear field gradient in the z-direction. The

RF Hamiltonian is

HRF 1 -- W Yf.f (5.7)

and the gradient Hamiltonian is

1 (OB\ z 1

H1G - - -- z) 17 - -- Gza, (5.8)

where wv is a constant value during the pulse time T and the gradient term is a linearly

varying static field. The static gradient strength is denoted by G. The evolution of

the period 7 + At becomes

U(t = -r + At) exp [2 Akzzu, 1 exp [1w2TVO11 (5.9)

where Ak, is the wavenumber, parametered as Akz =- 9-- At. The evolution of an
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initial density matrix p0 = (z through a single period yields

i AiAco

p(r + At)= UazUt Sill (W'r) exp [Akzzaz]af exp [-Akzzaz1 + COS(wr)a

(5.10)

If the small angle approximation applies, the density matrix becomes

iA iA
p(r + At) P wT exp [ jAk.zzlaexp [ -- Akzza] + (z . (5.11)

Another period evolution will affect the (Y. term as described above, creating the new

magnetization helix and incrementing wavenuniber by Ak.. The final result is the

formation of mnany Ak. components

N [nk -nZ

(7, --4 E wy(n)Texp [ nAkzz(Jxexp [-+Akazq2 J ±o7. (5.12)
n=1 21 12

Each term is summation can be interpreted as a cylindrical Fourier component of the

transverse magnetization weighted by the RF nutation rate w (n).

Next step, we will consider the evolution of two weakly coupled spins with gyro-

magnetic ratio 'Y, and y,,,respectively. The RF Hamiltonian is expressed a-s the

sum of two single RF terms because of the realization that both spins are addressed

independently through two channels.

1 111 2 122SHRF 2 - -w.v (Y/2W-V -•wY (5.13)

and the gradient Hamiltonian gives

""c = (7H + ) z = -- (_YH + yc) Gza., (5.14)
2 az2

Consequently, the evolution operator of a single period consists of two exponential

terms: a single spin rotation and gradient evolution term. Since the internal Hamilto-

nian commute with the gradient Hamiltonian, the gradient evolution can be expressed
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by two separate terms as well,

U(t T + At) exp 1 (Aka7 + Ak')z + r 7 2 )

= exp (ko + Ak20,2Z] exp [~r.1 1 01 Ai (5.15)2iA, z rill 2 z

exp [ (U) .W V. +

where the exponential terms of a1a2 are attributed to the internal Hamiltonian. One

may realize that the scalar coupling evolution has not been considered during the RF

pulse. It has been neglected because the total nutation frequencies induced by the

RF Hamiltonians are much stronger then the interaction constant.

1 2
An initial density matrix or' + a7 through a single period becomes

pU(al + a)U = a( + a + exp - 1(Akza1 + Akz27)Z] (5.16)

r 'At] 1• 1 2 2 re•xp 1  2 ]

exp [(Ak'a' + Ak 2(7)Z]

A string of 7r pulses on the first spin is applied to modulate the Fourier components,

remove the chemical shift, and refocus the scalar interactions. The 7r pulse along x

modulates a., a. terms with minus signs and leaves a, operator unchanged: a, -4

Sa•,, -* -a•,a 2 -- -a 2 . After a single 7r pulse along x on qubit 1, the density

matrix picks up a minus sign for all the terms which contain a' and a,

2a2k + iT (.17
P1 2 [-iA( a 221 ___ 1(721-az + a( + exp [ Ak-a)z exp aaA (5.17)Z [2\Z Z Z 12 zZI

(W ±W' TU:2) eXP -[ 0uuA1 exp [(Ak'u ±l Akaz]

The operator, given by the application of a static gradient for another period At with

a variant strength, causes the internal Hamiltonian average over at the end of the
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period,

2- ±az ±exp {2 [(Ak' - Akz)u71 + (Ak' + Ak)ak]z (5.18)

Ak= -- (z + 7 + exp

(W,' 7,T4 -( Uý2 2ep2 [(Ak"' - Akl)a7' + (Ak + ±Ak~) }

where wave numbers of corresponding Fourier components on both spins are increased

by Ak"' and Ak2' respectively. Another ir pulse, following the magnetic gradient, is

performed to reverse the minus signs on all the aT terms,

P=(1 2 {•[iz_ i A2 2z )(7z 2}

p z + oz + exp f, Akz)lz1 + Ak + Lk ,] zj (5.19)

17a 2 U2 Aza+ + 2(Y w:r wTa)ep~ [(Ak' - Akl')&' ± (Ak 2 ± Ak 21)U21}

We can rewrite Eq. 5.19 as Eq. 5.20 if the actions of the gradient Hamiltonians on

both qubitfs are identical, Ak' - Ak' = Ak2 + Ak•' -- Akz.([1 21 2Z] ] 7)
p (71 +( +exp +Ak( (7 )z+ (wrTu a e k+; (5.20)

Effects of both field gradients accumulate on the carbon nucleus, while the second

gradient attenuates, to some extent, the first one for the proton spin. Thus, the devia-

tion between the k values caused by the different gyro magnetic ratios is compensated

by applying the above pulse sequence. The condition is satisfied if the ratio of two

gradients obeys
G , - 7H + -y(,( .1G2 - Y -±'c (5.21)

The procedure described above is illustrated in Fig. 5-1.

After n periods application of the composition of RF pulses and gradients, it gives

az + z -4 oI + a• + (5.22)

Sexpi [ (a: o)z] [w•(n)r± w•(n)-ro7] exp [--nAkz(cz + .
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The exact solution can be achieved and it is given in [30],

N N

( +±( -4 1 cos(w 1 (f)T)>4 + u,-I COS (n) T))To- ± (5.23)
n=1 n=1

Sexp [nAkz(KY ])z [A'4(n)(,. + AX,,.(n)l(7 + A2(n)7, + A'r,z('n)K•]

For a train of RF pulse.s of nutation angles 41 (n) and w2(n) all with the same phase,

the nth transverse and longitudinal Fourier series coefficient after Nth pulses, may be

determined from the previous coefficients by the recursion relationships

A(n) -1)COS 2 (w(n)/2)- A _, 1) si 2 (WiA'() A'_ ' -- 1) sins( (P)N

--AzN- I,z(I nj) sin(w" (n)r) (2

At,(n) [A._i(n,- 1) + At 1 (-n- 1)] SiIl(w;(TL)r)

(fn

+ A"N_ ,,, (n) c s w( ) (5.24)

where c•, = 1 + 5,,. Initial conditions have to satisfy that Ai0. (n) = and that all

A'o(n) = 0. The appropriate choice of the nutation angles enable us to construct

arbitrary density matrix.

5.2.2 Collision

The choice of the particular components of the unitary collision operator determines

the form of the macroscopic effective field theory and values of its transport coeffi-

cients. The same collision operator for the diffusion equation has been chosen:
7 r I (T2, 1 2 +(1_ (Yz2)~

exp _ (KK.a , K±KK)]. (5.25)

We already learn that a RF pulse does not shift the k value of each component, indi-

cating the information between the neighbors cannot be manipulated using RF pulses

and scalar evolution. Therefore, the local quantum collision gate can be accomplished
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Figure 5-1: One step in the initialization One period of the sequence used in
the initialization and corresponding changes of k values in the k-space are presented.
The solid line, in the k space diagram, illustrates the shift of the wave number for the
hydrogen spin while the time iterates forwards. The dash line gives the movement
of k value for the carbon. At the end of the sequence, the wave numbers of the
characteristic Fourier components of both spins are incremented by the same amount.
Below the plot, the pulse sequence is demonstrated.
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by the same pulse sequence described in Chapter 3.

5.2.3 Measurement

The occupation numbers resulting from the collision are obtained by measuring the

z-mnagnetization, corresponding to nr = '(1 + a'). Since only the o7 and (T' op-

erators are directly observable, a 7r/2 pulse transformed the z-magnetization into

x-magnetization.

The measurements are carried out in two separate experiments, where a SWAP

gate is applied to bring the magnetization from carbon channel to the proton channel

due to the higher signal-to-noise ratio in the proton channel.

During the process, a weak magnetic field gradient is applied to refocus the gra-

dient Hamiltonians. It is easy to realize that the signal is only observable while the

k value is around zero. Otherwise, the ensemIble signal is averaged over across the

sample. Note that a spatial map of spin density in the sample weighted in some fash-

ion during the measurement. The corresponding modulation function for our finite

and uniform sample is. a sinc function. Instead of observing a sharp magnetization

peak, the signal is specified by a sinc function. Hence, the readout gradient has to be

weak enough to separate the overlap between two sinc fuinctions induced by the spin

density.

5.2.4 Streaming

The last step of the QLG algorithm, we shift the occupation Inumbers obtained in

the previous step to its nearest neighbors. In the k-space, the streaming step can be

easily created by the application of linear field gradients sandwiched with 7r pulses:

G3(z)At -4 [ -r] - G4(z)At -4 [7r]R, where.G 3(z), G4 (z) are the gradient strength

and At is the duration. This sequence illustrates a single propagation where the

occupation probability on the first qubit at site nAk moves to site (n - 1)Ak, while

the occupation number on the second spin advances to site (n + 1)Ak. The shift of
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Figure 5-2: Readout Measurement on the hydrogen spin is ilhlstrated here. The
magnetization peaks are related to the occupation numbers at each lattice site by
" --- 1(1 + a7). The observed spectrum is imposed by a sinc function.
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the k values should satisfy the following equation,

- (Ak4-- Ak) - Ak2 + Ak 21 Ak. (5.26)

Hence, the relation between two field gradients (an be derived by

Ga(z) _ • n+'yc
G -(Z) 7H 'U (5.27)G4 (Z) 7-H - ^/G"

Choose an identical time period At as in the lattice initialization step resulting in

G3 (z) = G 2(z) and G4(z) = G,(z).

5.3 Conclusion and Discussion

The experimental mass densities are plotted in Fig. 5-3 with the exact analytical

solutions. Four successive time steps of the quantum algorithm were implemented on

16 two-qubit sites.

Here, we demonstrate a single streaming step accomplished by the linear magnetic

field gradient. Notice that contiguously applying the collision step and streaming step

doesn't lead us to the numerical solution for the diffusion equation. However, it can

be used to implement some type-I quantum lattice gas algorithms.
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Figure 5-3: k-space experimental data versus analytical solutions The experi-
mental data (dots) are plotted together with analytical sohltions (solid lines) for four
time steps on 16 two-qubit sites.
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Chapter 6

Type-I Quantum Lattice Gas

Algorithms

The difficulty of constructing, controlling and maintaining coherence in a single com-

plicated quantum device makes an array of simple devices with fixed interations par-

ticularly attractive from the point of view of quantum computation. In this paradigm,

a quantum computer is a quantum cellular automata (QCA): the state of each simple

device in the array depends on the states of the cells in some local neighborhood at

the previous time-step. QCA, therefore, provide a valuable test-bed for investigating

both potential quantum computer architectures and algorithms. The study of QCA

is probably originated with the interesting work of Grossing and Zeilinger [40, 41, 42].

However, their models are approximately quantum mechanical because they are not

linear and unitary even though the probability is preserve. The first homogeneous

quantum cellular automata was introduced by Meyer [8]. He also defined one parti-

cle quantumi lattice gas algorithm which simulates one-dimensional Dirac equation.

Boghosian and Taylor [43, 44, 45] and separately Succi [46, 471 have defined QLG

models for the Schroedinger equation in D dimensions.

The QLG algorithms may be simulated on a quantum computer with realizable

substantial speedup over classical hardware. Watrous [48] showed that any partitioned

'This section was extracted from an unpublished paper. This research is (cooperated with Carlos
Perez, University of Waterloo, Canada.
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quantum cellular automata can be simulated by a quantum Turning machine. The

first special quantum processor designed to directly realize quantum cellular automata

is suggested by Seth Lloyd. Preliminary experimental designs have been proposed for

ion traps, optical lattices and endohedral fullerenes on silicon [49, 50, 51].

Liquid state NMR has been proved to be an ideal way to explore many aspects

of quantum computing and QIP. The success of NMR quantum computations means

that large arrays of few entangled qubit quantum computers are already available

now. We propose a QLG algorithm here and a potential design to implement the

algorithm by nuclear magnetic resonance. A simple ring model has been chosen as

the first test.

6.1 Quantum lattice gas algorithms

Usually, a random walk is simulated by selecting one particle in the system and

transporting it at random upwards and downwards, provided that the destination site

is empty. At each site z of the lattice, instead of only registrating the position of the

particle, one also tracks down the directions by associating two binary values nm (z, t)

and n 2 (z, t). These quantities present occupation numbers indicating whether or not

a upward- or downward-moving particle is entering site z at time t, respectively. The

random motion is obtained by shuffling the two directions of motion at each lattice site

and at each time step. A upward-moving particle, entering site z at time t + At, must

be the one with probability p moving in the same direction at the site z - Az at time

t, and with probability 1 - p, it may be the one at the same site pointing downwards

at site z + Az and time t. Therefore, the random walk rule can be expressed by a

transition matrix,
A= -- (p - p1-)p (6-1)

The quantum lattice gas algorithms are the generalizations of classical lattice

gas algorithms, introducing quantum mechanical features into the lattice. One may

consider to replace a classical cell by a quantum state and the binary values associated
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with each cell are denoted by complex values then [8]. The occupation numbers n, and

n 2 map to the probability amplitudes 4',, and y),, of the position z, respectively.

The single time step evolution is the composition of propagation and collision as

described:

Z, (k propagaion Zv, 1  + (V, oz)

l Zsn ). (6.2)

where z is the current position of the particle and a indicates the directions. Then two

In Out

14 oisinO

• •_..i s in O O O N

.4-@ COSO

Figure 6-1: Collision rules for ID QLG algorithm The collisions of the simplest
one dimensional QLG algorithm. A single particle of mass tan 0 at a site has an
amplitude to be scattered i sin 0.

directions of motions are shuffled in the collision step: the amplitudes and directions

are changed by a uniform update rule S,,,•, for all the sites. The collision operator
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can be written as,

S~o, cos 0 i sin 0(63S+<, \i sill 0 Cos 0

Then the particle propagates to the neighboring cell I.x + a,, a) associated with direc-

tion (Y. or Ix - <Y., (V') pointing to .t' at time t + At. The evolution of the dynamic is

given by repeating the actions of the update rules.

This algorithm described above requires a register of size log N where N is the

number of lattice points. However, the above algorithm for a random walk of one

particle does not generalize very nicely to k particles. It does not suffice to simply

randomly shift the position of each particle, since if we are to admit any exclusion

principle, then a particle cannot move to certain positions if those positions are al-

ready at maximum capacity. Say, if each position allows for only one particle, a

particle can move there only if the site is empty. This requires one to check the

current position of each other particles when updating the position of a particular

particle. This approach requires O(k log N) bits of memory, and O(k2 log N) for each

update step. We will refer to this algorithm as a register approach, since it keeps the

positions of each particle in different registers.

Here we propose a different generalization of classical lattice gas algorithm similar

to the partitioned cellular automata mentioned by Morgolus [53], in which each lattice

site is denoted by a single qubit. The dynamic of this system is easier to understand

intuitively by taking the following picture. Two qubits are associated with one lattice

site: qubits 41 (z, U, t) and 4'(z, d, t) represent the presence of a particle in the lattice

point z at time t moving up or down, respectively. The update rule then consists of

partitioning the lattice into a tiling set of contiguous pairs at each time step, such

that the even anid odd time step tilling overlap, depicted in Fig. 6-2. The values of

each pair are then swapped with some probability amplitude. As long as the update

operator 7L for each pair is unitary, so is the evolution of the whole lattice. The
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Partitioned Cellular Automata

Time - -

Evolution

Reversible or unitary evolution

Figure 6-2: Partitioned cellular automata Each square represents a cell, and each
oval is a unitary operator acting on two lattice cells. On odd/even steps the pairing
is exchanged.

operator is defined as
1 0 o 0

0 I+i 1- 0
_ I i 2 (6.4)

2 2

ýo o o 1

commonly called the square-root-of-swap gate. The system is evolved by repeated

application of the unitary operators u. Suppose a system of an even number N of

qubits, indicating N/2 lattice sites. Rewrite the gates in the odd and even time step

as U , N/2 and U,,,,, = 1 ® u/'z-'9 ® 1. Under the evolution U = UL,,,Ud we
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have that:

1+i 1-i

XP (Z, U, t + At) 2 i T(z - Az, d, t) + 2 + ,
1- l+i

'(zd,t + At) 2 i x(z- Azd,t) + 'I'--T(z + Az'ut). (6.5)

Taking kP(z, t) = x(z, u, t) + q(z, d, t) we can calculate the continuous limit using the

Chapman-Enskog method [53]. We get that the evolution limits to

a 9

at 2 z2

which is exactly the Hamiltonian for a freely moving particle in one dimension.

In the automata defined above, we assume that all (randomized) swaps between

contiguous cells are done in parallel in one time step. Hence, this approach requires

O(N) bits of memory and requires 0(1) time for each update step. This is particularly

good if we take k = Q(N), i.e. the number of particles is in the order of lattice

points, which is generally expected in a lattice gas. This performance gain is, of

course, assuming that a cellular automata is a realizable architecture, i.e. it is in fact

possible to perform all the updates of a time step in parallel.

6.2 Chain Architectures

It has been suggested by Seth Lloyd [4, 5] that above algorithms can be implenmented

on a chain of repeated quantum spins. Consider a one dimensional chain of spin 1/2

systems, e.g. a polymer, with three different species, i.e ABCABC.... The transi-

tion between the ground state and excited state of any quantum unit can be driven

by applying a pulse at the resonant frequency. If A, B and C have distinct resonant

frequencies, then they can be addressed independently. Consider only the nearest-

neighbor interaction given by soine (arbitrary) Hamiltonian HAR, HRG, HCA. The

effect of the interaction Hamiltonians is to shift the energy levels of each quantum

unit corresponding to its neighbors. Hence, the resonant frequency WA takes distin-
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Figure 6-3: Spin chain architectures One-dimensional array of quantum units
(ABCABC.. ), such as nuclear spins in a polymer, is decipted here. A series of
spins ABC can be treated as a quanturn information processor. Sequence of resonant
pulses allow one to load information and unload results at the end of an array. Each
processor has the same circuit and they can process information and exchange it with
the nearest neighbors.

guishable values W,), Wj1A , •,•} , w I, depending on whether it's C and B neighbors

are in the states 0 arid 0, 0 and 1, 1 and 0, or 1 and 1. If these are all different, then

transitions on species A spins can be done selectively depending on the value of its

neighbors. For example, by applying a 7r pulse with frequency 1A)60 all species A lattice

points whose both neighbors are in the state 0 will be flipped. It is also possible to

apply any two qubit gates on all pairs A, B or C, A or B, C. Though originally pro-

posed with three distinguishable qubit species, the model can easily work with more

species [52]. These single qubit operations and two qubit gates can supply the logical

operations and can be wired together to give any desired logic gate.
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Input of information and readout of the results are through the end unit of the

array which can be controlled independently because it has only one neighbor. One

can load arbitrary information onto the end of the array and exchange the information

with its neighbor. As a result, any sequence of desired information can be loaded onto

A, B and C by continuing uploading at the end unit and swapping between different

units.

X

A

C B

B OAC

Y

Figure 6-4: The ring model This model shows a chain of 6 quibts. Two loading
qubits are presented by X and Y respectively. All the qubits with the same labels
share the same resonant frequencies.

6.3 NMR Simulations

6.3.1 Spin System

A ring model, illustrated in Fig. 6-4, has been selected for the first study depending

on the following four assumptions. (1) The ring is composed of two pairs of three

distinguishable qubits ABC with qubits X and Y attached to A, served as loading
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qubits. (2) Qubits A, B, C have the same Zeeman interaction with the applied

magnetic field, but associated with different chemical shifts. The chemical shifts for

qubit A, B and C are set to be 0Hz, 4kHz and 8kHz respectively. (3) Only the

nearest neighbor interactions have been taken into account and the scalar coupling

constant is 50Hz altogether between ABC spins. The internal Hamiltonian of these

spins, therefore, is

1' 7r I r R +rRC + CU
Hinternal -2 1 WiOa ± -+ 2 z ( z ±z u z +z z (6.7)

i=A

where wi represent the chemical shifts of the spins and .1 are scalar coupling constants.

(4) Loading qubits are several-hundred megahertz off-resonance and are not affected

by any pulses applied to the ABC spins.

Unlike the labeled chloroform sample, the resonant frequencies are not widely

separated, so that a RF pulse on resonance with one carbon spin will rotate all. Usu-

ally, a low-power RF pulse can be used to obtain selective operation on each qubit

here. However, the selective pulses have disadvantage that low power implies long

duration. This not only introduces errors due to relaxation, or decoherence, but also

allows significant evolution under the action of the internal Hamiltonian. In the past,

this evolution was rarely of concern because there was little importance placed on im-

plementing a particular operation. Here, we use an alternative method with strongly

modulating pulses to implement precisely the desired operations[31]. This allows us

to use high-power pulses that strongly modulate the system's dynamics. These gates,

shown in Table 6.3.1, allow arbitrary rotations of each spin, while refocusing the

internal evolution.

6.3.2 Logic Gates

Information is initially stored ill X and Y and a series of unitary transformations {U}

brings the information to other qubits. This set of unitary operators is essentially a

series of two-qubit SWAP gates between adjacent qubits. A single two-qubit SWAP
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Pulse Time (its) Max. Power (kHz) Discrete Fidelity
Yl[ 226.24 5.18 0.9989

R 267.35 4.87 0.99857r Ix 267.35 4.87 0.9985

2 Ix 355.12 5.25 0.9983
7rLJH 338.19 11.36 0.9973
ir H(: 459 4.95 0.9977

T (; 302.57 13.33 0.9985

Table 6.1: Summary of the relevant characteristics for the set of transfor-
mations required for the implementation of QCA. The three columns list the
pulse duration (in is), maximum power (in kHz), and the fidelity of simulated pulse.

gate for qubit A, B is

A exp [i (0 + e -i-- ] exp [+i(i ± o)1 4 4 z
.7r A RB

exp - ± exp [i-az] exp i (' + U"]

where the exponential terms proportional to U U represent the internal HIamilto-

nian evolutions. Notice that the third spin C is also evolving under the internal

Hamiltonian while applying a two-qubit operator. ir pulses are applied to modulate

the internal interaction terms, resulting in averaging the interaction with qubit C.

The choice of this molecule is particular convenient because the scalar coupling con-

stants are identical. Here, we demonstrate a scheme for implementing the operator

in Fig. 6-5. Hence, the interaction term a u can be recast as

[xp [_i4" z zx[16'• z a- A C ) 7 C] (6.9)

exp±(U]xp i~exp 1-4 ex zU zi16a4a Z T Z+oU exp 2- a~ +z~ h

exp [ -a~a ±U U 4~ + r e7UZ+ a exp [i{'16 za z 1

exp --i-(A - + a- ac) exp [i-(oa +

16, z96
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Figure 6-5: The two-qubit SWAP gate Here demonstrates the pulse sequence of
the SWAP gate on two qubits and untouched the third spin. To refocus the scalar
interactions between pair AC and BC, a •r pulse has been performed on pair AB and
separate the delay period to half. Two 7r pulses are performed on qubit C in the a
quarter and three quarter of the delay respectively.

In summary, the usage of strong modulating pulses in conjunction with the selec-

tive evolution in 6.9 gives us the desired unitary operations to shift the information.

The gate fidelities of these operators are listed in Table 6.3.2.

6.3.3 Methodology

One way to implement our QLG algorithm on a ABC chain is to map every 2 cells of

the QCA lattice to three spins of the chains. For instance, only using A and B spins

here results in a lattice of 4 cells. A single step of implementation of our QCA can

be performed as following:

1. performing the update rule CAR on pairs AB on odd iterations

2. exchanging the information on qubits BC
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Gates Gates Fidelity
U_____ 0.9556

U 0.9443

CAR 0.9605

C(;A 0.9582

Table 6.2: Summary of the gates fidelities. The two cohlmns list the unitary
operators, and the gate fidelity of them .

3. applying the same update rule on CA with GCýA

4. then swapping BC again.

These operations are repeated until the mass density has evolved for the desired

number of time steps.

Equation 6.4 shows the unitary operator used to update in each time step. These

unitary matrix can be implemented by a similar manner described for the SWAP

gates. Table 6.3.2 gives the simulated fidelities for CAN and CCA.

Using the SWAP operators and the update unitary operators, we can translate

QCA to experimental tasks as shown in Fig. 6-6. The lattice initialization step makes

use of both the strong modulating pulses and the internal Hamniltonian to generate

the desired unitary operation and shift the information. The repeated application of

the update rules is accomplished by a similar way. The measurement is the reversed

step of the lattice initialization.
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Figure 6-6: One step QLG algorithm The NMR implementation consists of three
main section, each corresponding to the prescribed QCA step. The horizontal lines in
the diagram correspond to RF pluses applied to each qubit respectively. In the encod-
ing section, the initial magnetization is recorded on loading qubits before transferred
to the other qubits. The unitary operator on pair AB and swap gate between BC
follow the encoding. In the next step, the unitary operator on pair CA are applied,
followed by swap gate between BC again.
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Appendix A

Quantum Simulation using NMR

In 1982, Feynman re(cognized that a quantum system could efficiently be simulated

by a computer based on the principle of quantum mechanics rather than classical

mechanics [3]. This is perhaps one of the most important short term applications of

QIP. An efficient quantumn simulator will also enable new approaches to the study

of rultibody dynamic-s and provide a testbed for understanding decoherence. NMR

has provided a valuable experimental testbed for quantum simulations. Here, We

will briefly review some experiments other than the implementation of the quantum

lattice gas algorithms.

A general scheme of simulating one system by another is expressed in Fig. A-

1. The goal is to simulate the evolution of a quantum system S using a physical

system P. The physical system is relatedto the simulated system via an invertible

map 0, which creates the correspondence of states and the system S is mnapped to

V = OUO-'. After the evolution of the physical system from state p to PI., The

inverse map brings it back to the final state s(T) of the simulated system.

The first explicit experimental NMR. realization of such a scheme was the sirm-

ulation of a truncated quantum harmonic oscillator (QHO) [54]. The states of the

truncated QHO were mapped onto a two-qubit system as follows

In =0) 4 10)10)- 100)

in -- 1) <-+ 10)11) 101)
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Figure A-i: Quantum simulation scheme Correspondence between the simulated
and physical system. The initial state s evolves to s(T) under the propagator U. This
process is related to the evolution of state p in the physical system by an invertible
map €.

in=- 2) 1• 1) 10) -110)

in = 3) 1 1)11) 111Il) (A. 1)

The propagator of the truncated QHO

r 1 3 5 7U = exp 1-i(2 10)(01 + 211)(11 + •12)(21 + 2)13)(31] (A.2)

(QŽ is the oscillator frequency) was mapped onto the following propagator of a two-spin

system

Vr = exp [i(2I2(1 - I•)- 2)QT]. (A.3)
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Figure A-2: Truncated quantum harmonic oscillator NMR signals demonstrate
a quantum simulation of truncated harmonic oscillator. The solid lines are fits to
theoretical expectations. Evolution of the different initial states are shown: (a) evo-
hition of 10) with no oscillation (b) evolution of 10) + i12), showing 2M oscillations (c)
evohltion of 10) + 11) + 12) + 13), showing QŽ oscillation and (d) 3W oscillations.

Implementing this propagator on the 2-spin system sinimlates the truncated QHO as

shown in Fig. A-2.

Qiuantuni siinulatin however is not restricted to unitary dynamics. It is sometimes

possible to engineer the noise in a system to control the decoherence behavior and

simulate non-unitary dynamics of the system [55]. Simple models of decoherence

have been shown using a controlled quantum environment in order to gain filrther

umnderstanding about decoherence Imechanisms.

In one model [56], the environment is taken to be a large number of spins coupled

to a single system spin so that the total Hamiltonian can be expressed as

N N
W ll ý W ~ "' + 2 7 , lk I z' z (A .4 )

k=2 k=2

corresponding to the system, the environment, and the coupling between the sys-

tem and the environment, respectively. The number of spins in a typical QIP NMB

molecule is small, which makes the decoherence arising from the few system-environment
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couplings rather ineffective, as the recurrence time due to a small environment is rela-

tively short. This can be circumvented by using a second classical environment which

interacts with a smaller quantum environment (see Fig. A-3 for an illustration of the

model) [57].

Classical

Environment

S~Quantum

l : Environment

System

Figure A-3: Demonstration of system and environment Basic model for the
system, local quantum and classical environment.

In this model, following the evolution of the system and the small quantumn envi-

ronment, a random phase kick was applied to the quantum environment. This has the

effect of scrambling the system phase information stored in the environment during

the coupling interaction and therefore emulates the loss of memory. When the kick

angles are averaged over small angles, the decay induced by the kicks is exponential

and the rate is linear in the number of the kicks. As the kick angles are completely

randomized over the interval from 0 to 27r, a Zeno type effect is observed. Fig. A-4

shows the dependence of the decay rate on the kick frequency: the decay rate initially

increases to reach a maximum and then decreases, thereby illustrating the motional

narrowing or decoupling limit. This NMR-inspired nodel thus provides implementa-

tion of controlled decoherence yielding both non-exponential and exponential decays

(with some control over the decay rates), and can be extended to investigate other
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noise processes.
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Figure A-4: Decay rate Simuilation showing the dependence of the decay rate oil

the kick rate, and the onset of the decotipling limnit. Beyond 900 kieksl/ms the decay

rate dec'rea~ses.
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Chapter 1

Introduction

Since the advent of Quantum Mechanics at the beginning of the last century, scien-

tists have dreamed of controlling the behavior of systems at the atomic or molecular

scale. To this day, very little of that dream has been realized to different extents,

but recent advances in the theoretical work and experimental realizations of quan-

tum control have generated much excitement in the scientific community recently.

Its important applications include the control of chemical reaction selectivity and of

molecular motion [22], excitation of specified molecular states [6, 16], molecular struc-

ture determination by means of nuclear and electron magnetic resonance spectroscopy

as well as microwave and optical spectroscopy [231, laser cooling [7], and quantum

information [3], have significant implications to the future technologies.

1.1 Quantum vs Classical Behavior?

Quantum mechanics has only been postulated less than a century ago, and yet there

has been no experiment that falsified its predictions. A natural question is, if quantum

mechanics indeed governs the behavior of the physical universe, why does it take so

long for us to discover it? What makes a system 'quantum'? The answer is that

non-classical, i.e. quantum behavior can only be observed under special laboratory

conditions. Quantum behavior arises when a relative small physical system (with

only a few dynamical degrees of freedom) can be well isolated from environmental
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disturbances and dissipative couplings. This may be achieved by cooling down an

experimental setup to temperatures on the order of a few mK. Quantum mechanics is

believed to be a correct microscopic theory of non-relativistic physics, but the reduced

dynamics of sybsystems nearly always corresponds closely to models that fall within

the domain of classical mechanics. Hence strongly non-classical behavior can only

be observed in a system on timescales short compared to those that characterize its

couplings to its environment [15].

1.1.1 Quantum States

A state is a complete description of a physical system. In quantum mechanics, a state

of a closed system is represented by a ray in a Hilbert space, whose dimensionality

is specified according to the physical system under consideration. A ray is an equiv-

alence class of vectors that differ by a non-zero multiplicative scalar. We choose a

representative of the class to have unit norm

(01) = 1

which, for a state in a finite-dimensional Hilbert space expressed as a linear com-

bination of orthonormal basis states [)) = _.,, cala') is a, Ica, 12 = 1, and for a

state in an infinite-dimensional Hilbert space, for example, the position of a particle,

1a) = f cxIx)dx, then f IcX12dx = 1.

We can represent the joint state of several smaller systems using by the tensor-

products of the rays. For example, if we have 2 two-level systems A and B, I/)A =

(ala 2)+ and hP)B = (b1b2)+, we can write

I0) = I¢)A®9IV)B

= (alb, alb2 a2b, a2b2)+

1.1.2 Observables

An observable is a property of a physical system that can in principle by measured.

In quantum mechanics, each observable has a corresponding Hermitian operator. An

14



operator is a linear map taking a vector (repesenting a state) to another vector.

A": [)- > AIVb), A(aIo) + b10)) = aAIV) + bA[e)

The Hermitian conjugate of the operator is defined by (OIAO) = (A+010) for all

vectors 10), IV). A is a Hermitian operator if A = A+.

A Hermitian operator in a Hilbert space H has real eigenvalues, and its eigenvec-

tors form a complete orthonormal basis in H. We can express a Hermitian operator

Aas

A = ~ aP,

where a, is an eigenvalue of A, P,, is the projection operator onto the subspace of

eigenvectors with eigenvalue an. It can be shown that the eigenvalues A, are purely

real and that the Pa's satisfy

PnPm = 6 n,mPn

P+ = P. = In)(nI

1.1.3 Quantum Measurements

Quoting from Dirac, 'A measurement always causes the system to jump into an

eigenstate of the dynamical variable that is being measured.'[19] In classical dynamics,

if we measure the position of a particle along a line, we obtain the value of the x-

coordinate without affecting its position. However, measurements usually change the

state of a quantum system. Before the measurement of an observable is made, the

system is assumed to be a coherent superposition of the eigenstates:

I ax) =Za. c.'I a') = E.,' a') (L'I a)

When a measurement is performed, the system is 'thrown into' one of the eigentstates,

for example, la') . Therefore, unless the system was already in an eigenstate of the

observable being measured prior to the measurement, the state of the system is always
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changed. This is a postulate of quantum mechanics and cannot be proven. We do

not know which eigenstate would result after the measurement, but the probability

of obtaining a certain value is given by

P(a') = ca,,' = 12 a'

Moreover, thus the quantum system remains in that particular eigenstate im-

mediately after the measurement. Repeated measurements therefore yield the same

result.

In order to determine this probability empirically, we need to consider a great

number of measurements performed on a pure ensemble, i.e. a collection of system

all identically prepared in state jo > and estimate the probability from the frequency

of occurrance of various results.

We define the expectation value of A taken with respect to state Ice) as

(A) = ( IAlr)

since

(A) = E j-•(Ia")(a"lAIa')(a'Io)
aý al

Y. Z'I (a'I a)lI'
a'

agrees with the classical notion of 'average' measured value.

The commutator of two operators A and B are defined to be

[A, B] = AB - BA

Since A and B are operators and not scalars, the commutator may not be zero. If

we have two observables A and B, they will have the same eigenstates if and only if

[A, B] = 0. In other words, after a measurement of A on a system, a measurement

of B will change the state of the system by throwing it into one of the eigenstates of

B. Therefore, only when A and B are compatible observables, i.e., [A, B] = 0, will a
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second measurement of A following the measurement of B give the same answer as

the first A measurement. It can be shown that for any state we have the following

inequality:

((AA)2) ((AB) 2) > 11 ý[A, BI)12

The above is known as the Uncertain Relation and tells us that in general, there is a

limit to how precise our measurements of incompatible observables can be made.

1.1.4 Unitary Quantum Dynamics

The dynamics of any quantum system is governed by the Schrddiner equation, which

is given by

iht = H(t)I'(t))

where h is Planck's constant, and H, the Hamiltonian, is a linear Hermitian oper-

ator that describes the total energy of the system. When the Hamiltonian is time-

independent, the information on the state of the sytem is captured in the wavefunction

-%tHt-Ht

We see that U(t) = e h is a unitary operator since H is Hermitian. In general,

10(t)) = U(t)00(0))

Factoring out 10(0)) on both sides, we obtain

ihM = H(t)U

and the propagator is given by

U(t, t) = Te[l- f'odgt)]

where T is the Dyson time-ordering operator.

The expectation value of a time-independent observable A is

d_ 1- [A, H]
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1.1.5 Density Operator Formalism

In general, we do not have a pure ensemble, but instead, we have a mixed ensemble

in which every system has a random state. Suppose we make a measurement on a

mixed ensemble of some observable A. [19] The ensemble average of A is given by

[A] = Zpi(ailAlai)
i

S E , AI(a'lIai) Ia'
i a'

where la') is an eigenstate of A. The above can be rewritten using a more general

basis, I b'):

[A] = p, > Z(alb')(b'IAIb")(b"la)
i b1 b"

E Z (Elp"(b"ai' ) ('•"ib') (bAlb")
V b" (i

- T(pA)

We define the density operator

p = EZpIija)( (aI

where Er pi 1 and pi > 0. It is a generalization of a ray to represent the state

of a mixed ensemble.The density operator of a pure state is just [1) (0 1 since all but

one of the pi's are zero.

The density operator is Hermitian, positive and:

Tr(p) = 1

In general,

Tr(p2 ) < 1
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Note that Tr(p 2) = 1 if and only if p is a pure state. As with the ray representation

of a pure state, tensor products of density matrices represent the density matrix of

the extended system.

1.1.6 Decoherence

We can describe the dynamics of an open quantum system as arising from an interac-

tion between the system of interest and an environment, which together form a closed

quantum system. [24]

Pout = &(Pin) = Trenv[U (Pin ( penv) U+1

E Z(eklU (pin 9 Pv) U+ Iek)
k

- AkPllA+
kk

where U is a unitary evolution on the joint Hilbert space of the system and the

environment, and 0 represents a Kronecker product. In the second line we have

assumed that the environment is initially in a pure and separable state Penv = leo) (eo6

and the leA))'s form an orthonormal basis for the environment.

The operators { AA} = (ekIUI 0o) are known as the operation elements of the quan-

tum operation, or superoperator, c. From the unitarity of U, the operation elements

satisfy the completeness relation

ZkAAk = 1

The linear map £ satisfies the following:

1. It preserves Hermiticity:Pot = .k A ,• A+ =

2. It is trace-preserving: tr(po,,t) = Zk Tr(p,,A+Ak) = 1 = Tr(pin)

3. It is completely-positive: (VlJp 0tIl') = Zk ((V¢lAk) pin (A+I0))
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Since

E(pi.) = ZTr(AkpfA-. ) Akp - A•
Tr(AkpinA-j)kk

The above is true of the Kraus operator-sum representation but may not be true

for superoperators in general. The action of the quantum operation is equivalent to

taking the state p and taking it to the state Akpi.nAk with probability Tr(AkpinA-)
Tr(AkpiA+)w k

and can be interpreted as doing a measurement in the computatonal basis of the

environment basis. Note that unitary evolution of system alone is the special case in

which there is only one term in the operator sum.

Quantum decoherence, which is the process by which quantum systems in com-

plex environments exhibit classical behavior, can be understood by the operator-sum

formatlism or this 'tracing over the degrees of freedom' of the environment. Decoher-

ence occurs when a system interacts with its environment in such a way that different

parts of its wavefunction can no longer interfere with each other by invalidating the

superposition principle. In the Copenhagen interpretation of quantum mechanics, de-

coherence is responsible for the appearance of wavefunction collapse. The off-diagonal

entries of the system density matrix represent the quantum correlations or phase re-

lationships in a coherent superposition, and when a system decoheres or dephases,

these entries decay in a specific basis. The application of quantum mechanics to in-

formation processing has changed the nature of interest in the study of decoherence.

Decoherence used to be just the solution to the interpretation of measurement. In

quantum information processing, it is the major problem to be combated since it

destroys the 'quantumness' of quantum information. The time-scales of decoherence

varies from system to system.

Due to a distribution of external experimental parameters, the system undergoes

non-unitary behavior as with decoherence,, which is known as decoherence. This is

known as incoherence. It can be described by the operator-sum formalism, but since

the spread of these parameters is often continuous, we present the corresponding form
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as follows:

Pot = f p(r)(U(r)pi.U+(r))dr

An alternative way to express the above [5] is

IpoW) = SIp1.)

where 1p) is the colunnized density matrix, U is the complex conjugate of U and

p(r) is a classical probability function. The input state lPip,) is thus transformed into

the output state Put by the superoperator

S = f p(r)U(r) ® U(r)dr

Here, p(r) is a classical probability distribution and we can understand it in the

context of the original operation elements as Ak = V/-Uk. We therefore see that

decoherent and incoherent processes are the same mathematically, except that the

operation elements on a decoherent process are not functions of external parameters.

The distinction is therefore practical and depends on the correlation time of the vari-

ation of experimental parameters. If the latter is larger than the typical modulation

frequency, the process falls into the class of incoherent noise. While correcting for

decoherent errors, we need to utilize the full power of quantum error-correction, but

incoherent errors can in principle be refocussed and thus can often by reduced by

careful design of the time dependence of control fields. This is possible since the

operators underlying the incoherence are assumed to be time independent over the

length of the expectation value measurement. Common approaches for instance in

NMR include composite and adiabatic pulses [2] .

Removing the restriction that the operation elements arise from a unitary on the

overall Hilbert space, the completeness relation does not have to be specified, but the

following still holds

Ek AkA+ < 1

This corresponds to processes in which extra information about the processes is ob-

tained by measurement.
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1.2 Optimal Control Theory applied to Quantum

Systems

One of the main goals for theoretical research in quantum control will be further

to integrate what is known from the physics of open quantum systems with core

engineering methodologies. Much progress in the field has been made both experi-

mentally and theoretial. In particular, optimal control theory (OCT) has been applied

to analyze quantum systems in small Hilbert spaces in order to find upper bounds

of control performance as well as derive control sequences to approach these bounds

[15, 8, 9, 11]. OCT-based algorithms have also been developed to search for control

sequences in NMR applications to maximize coherence transfer in given time for both

uncoupled and coupled spin systems and have shown promising results for use in

an ensemble of quantum systems with parameter variations, both in the presence of

absence of relaxation [14, 10, 12]. Quantum filtering equations, which are stochas-

tic differential equations (SDE's) describing the evolution of density matrices under

weak measurements have also been developed and verified in some systems[20, 21].

Assuming controllability and the absence of decoherence, it has been shown that

the extrema of fidelity of quantum control correspond to either perfect control or no

control [18]. In other words, the control landscape of the same dimensions have the

same structure and as we search for fidelity maxima, there are no 'traps' of inferior

solutions of 'false maxima'. In other words, in the absence of relaxation and with

unrestrictions amount of resources, every control is perfect [17]. We also know that

a universal set of quantum gates can be constructed in an n-spin Hilbert space from

one-qubit and two-qubit operations [13].
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Chapter 2

Quantum Control in the NMR

context

We will discuss how unitary control is achieved in Nuclear Magnetic Resonance

(NMR) spectroscopy. An introduction to NMR spectroscopy is therefore worthwhile

and will be the subject of this chapter.

In 1946, Purcell and Bloch observed the magnetic induction of nuclear spins. This

opened up a new field of research leading to important applications such as molecular

structure determination, the study of fluids flows in system and magnetic resonance

imaging (MRI) for medical diagnostics. Recently, NMR has been proposed to imple-

ment quantum information processing devices. NMR is a physical phenomenon based

up the magnetic property of an atom's nucleus. All nuclei that contain odd numbers

of nucleons and some that contain even numbers of nucleons have an intrinsic mag-

netic moment. The most often-used isotopes are hydrogen-1 and carbon-13. NMR

studies a magnetic nucleus by aligning it with a very powerful external magnetic field

and perturbing the nuclear spin state using a usually oscillating electromagnetic field.

The response to this perturbing field allows us to detect a time-domain signal known

as the free induction decay (FID), which is the data we obtain in nuclear magnetic

resonance spectroscopy and magnetic resonance imaging. Before we go into the de-

tails of NMR spectroscopy, we shall introduce a quantum mechanical concept with

no classical counterpart: spin angular momentum.
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2.1 Spin, Magnetic Moment and Angular Momen-

tum

Classically, the angular momentum of a particle about some origin is

L=rxp

where r is the position of the particle and p is the linear momentum of the particle.

Classical angular momentum generates mechanical rotations about the origin. Defin-

ing angular momentum as the generator of rotations, we find in quantum mechanics

that there exists spin angular momentum, which does not depend on the position

or linear momentum of the particle, but is an intrinsic property of particles. This

degree of freedom was clearly shown by Stern and Gerlach in 1920 [19]. A beam of

silver atoms were sent through a magnetic field and a continuum of vertical positions

of screen was expected. However, they witnessed that all particles were deflected ei-

ther up or down by the same amount and postulated that there must be a quantized

angular momentum associated with the nucleus.

Nuclear spin angular momentum is a quantum phenomenon with no classical

counterpart. It is a vector quantity that can be specified along the (x, y, z) directions

by (I, Iy, Iz). Ik is the generator of rotation about the kth axis. The fundamental

commutation relations of angular momentum are as follows:

[Ih, Ij] = ihEijk Ik

where cijk is the Levi-Civita symbol, a completely antisymmetric tensor.

The lowest number of dimensions in which the angular momentum commutation

relation is realized is N=2, corresponding to spin-! systems. The operators are defined
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by

h +)( I-)(+1

2• =-{-I+)(-I + I-)(+I}
ih

Az = {I+)(-I- I->(+I}
2

The above spin operators have matrix representations Ik = "k, where ak are the

Pauli matrices

0 -1

az= ( 0)
When we measure the spin along the x, y or z axis, we obtain one of the eigenstates

of the operator corresponding to the axis we measure along.

Defining

I = h kIx + ",IY + IzI

we can write a rotation operator

R(t,¢) =e

Let i, j, k E x, y, z. Expanding R(ft, ¢) is a Taylor series and using the commutation

relations,

e h Ije= IjcoS4 + E 3kIkSinf
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2.2 Nuclear spin and resonance

The Hamiltonian of a spin in a magnetic field along the positive z direction is

e

H=- S B= -- BIZ=w

where

l eiB _-y
'HtfeC

The frequency w is the Larmor frequency of precession and we shall discuss it again

in the next section. We know from the non-zero commutators of the Ij's that only

one of the three components of I can be specified. The value of the z component of

I is given by

v = hm

where m E {-I, -1+1, ... , I-1, I}. A nucleus with spin I has 21+1 possible values of

I, as specified by the magnetic quantum number m. [4] We can detect the presence of

these energy levels by observing transitions between them. This is achieved in NMR

by irradiating the sample with an electromagnetic radiation, the details of which will

be described in the next section.

The time-evolution operator based on our Hamiltonian is

-ifft .rAIzWtU(t,o) = e

We can show that

(S.(t)) = (S.(O))cos(wt) - (S,(O))sin(wt)

(Sy(t)) = (S,(O))cos(wt) + (S•(O))sin(wt)

(sz(t)) = (S-(0))

The above equations describe the spin-precession of the nuclear spin of an atom
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corresponding to the classical Bloch model.

2.3 The Bloch model and the single-pulse NMR

experiment

Classically, the rate of change of angular momentum is equal to the torque on the

system.

dL

where p is the magnetic moment. Letting y be the gyromagnetic ratio of the

particle, [ is given by

Therefore, we see that

dL
-- =-yB x L = w x Ldt

where w = -yB is the Larmor frequency. In the case of a static field BO along the

z-axis, we see that, surprisingly, the energy difference between the levels is exactly

equal to the classical Larmor freqency of precession.

The coupling between energy levels to stimulate an observable response is com-

monly produced by an alternating magnetic field applied perpendicular to the static

field.

HI, = -yhBl(Icos(wrft + q) + Iysin(w rt + 0))
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To see the effect of this oscillating field on the bulk magnetization, which is pro-

portional to the magnetic moment, we can make a change of coordinates to a frame

rotating with respect to the fixed axis with angular frequency wrf and obtain

dM(t) - M(t) x (-yB(t) + wrf)

dt

The effect field is therefore

W
Beff SB(t) + -

For B(t) = Boi and wrf = -yB 0 ,the magnetization

dM,(t)d----- = Mr(t) x yBr(t)

dt

and the magnetic field in the rotating frame is

B, = BicOasq + BjsinO$ + (wo - wrf)i

When wo = wqf, B, lies entirely on the transverse plane and the radiation is said

to be applied on-resonance. Without losing generality, if we set 0 = 0, the bulk

magnetization Mr precesses around the x-axis at the angular frequency w, = -7B 1 .
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Chapter 3

Methodology

3.1 Strongly Modulating Pulses as an efficient im-

plementation of unitary transformations

In the standard model of quantum computing, an algorithm can be expressed as

"a series of unitary transformations on the quantum states. We would like to have

"a quantum system with a Hamiltonian that contains a sufficient set of externally

controlled parameters to allow for the generation of a universal set of gates, such that

any arbitrary unitary can be achieved. The task of control is to find a time-dependent

sequence of values of these control parameters to generate each particular unitary to

the precision required for fault-tolerance. A metric of a gate's performance should

describe how closely our solution implements the desired unitary operation. Two such

useful metrics are the state correlation and -gate fidelity. The correlation measures

the closeness between our simulated or experimentally obtained output state, P~t,

and the desired output state pi&,i resulting from a particular input state pi" through

evolution of different propagators, where

Pideal = UidealPinUideal
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In order to describe the fidelity and correlation measures we must first explore the

complex dynamics that the physical system undergoes. We will use liquid state NMR

as a model physical implementation. In liquid-state NMR, the homonuclear internal

Hamiltonian for a molecule containing N spin-½ nuclei is

H,", WjN + 27r E ,E' Jk ."i,
)-k=l Wz ÷ j>k k=l k~ IJ

where Wk represents the chemical shift frequency of the kth spin, Jkj is the coupling

constant between the spins k and j and Ik denotes the kth spin's angular momentum

operator. The first term, the nuclear Zeeman interaction, dominates the internal

Hamiltonian. The mapping between the physical spin system and the qubits is to

take the eigenstates of the Zeeman interaction as the computational basis states. the

scalar coupling slightly mixes the states.

The control sequences consist of a time ordered series of intervals during which a

simple RF field is applied. The external Hamiltonian of the time dependent RF field

is

_e.t (t) = I eN -i(w rf(t)±+ 4(t))Ik (-W 1 (t)Ik)et(w •f(t)t+4.(t))I•

where wf is the transmitter's angular frequency, 0(t) the phase, the w1 the power.

Control sequences of this form have the advantages of being simple to simulate (by

moving into the interaction frame of Hezt during each interval) and of being straight-

forward to experimentally implement. For complex propagators in large Hilbert

spaces they are inefficient to find and alternative schemes based on OCT may be

preferred. For the study reported here we are interested in only small Hilbert spaces

and SMP suffice. We expect the conclusions to be true also for OCT methods since

the control limitations reflect the structure of the underlying Hamiltonians. Note

also that the combination of Hit and Hezt(t) is sufficient to provide universal control

unless there are accidental symmetries in Hit (such as wk = Wk,, where k Z k').

This universality has been well described and demonstrated in the literature and it

is easily seen that the commutator of Hi, and Het(t) span the entire Hilbert space.

Given that we have universality we will focus our attention on control sequences in
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the class of strongly modulating pulses (SMP) [5]. These have been shown to provide

compact high fidelity coherent control even in the presence of incoherence. (ref).

Excluding decoherence, the evolution generated by several periods of RF pulses

with different parameters is

Ugate = H -i1 U '(fm, Tm)e-XP[i--Heff(Wrf,m, fm, Om)Tm],

where UI'(fm, Tmn) executes the rotating-frame transformation of the mth period and

Heff is the effective, time-independent Hamiltonin in the new frame of reference. [4]

However, due to decoherence and incoherence, the actual evolution on the system

is non-unitary and is instead given in terms of the Kraus operators Ak.

Pout = Z AkPinA+
k

where

EAk AkA+ < 1

The primary sources of incoherence in our system are the spatial variation in the

power of the RF frequency w1 , and the spatial variation in the Zeeman frequency, wO.

Since the power of the RF field (in frequency units), wl, is in practice a function of

position in the spectrometer due to RF field variations in space within the sample,

we actually have

Pout = f p(r)U(r)pi.U+(r)dr

and

Pout >= f p(r)U(r) ® U(r)drlpin >

where IP > is the columnized density matrix, U is the complex conjugate of U and X

is the Kronecker product of the matrices. The input state 1pn > is thus transformed

into the output state Pout by the superoperator
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S = f p(r)U(r) ® U(r)dr

Note that the superoperator is also capable of characterizing decoherence. Similar

processes may be used to characterize the spatial variation in the Zeeman interaction.

Experimental imperfections are characterized by a spatially or temporally 'inco-

herent variation' in the sytem's Hamiltonian. Experimental reality presents an im-

portant set of challenges to achieving precise control over quantum systems. Spatially

incoherent errors have been a recurring topic of interest in the field of NMR, where

they arise as inhomogeneities in the static and radio-frequency (RF) fields involved.

The spatially incoherent evolution caused by the inhomogeneities dephases the spins

in the NMR ensemble, attenuating and rotating the final state away from the desired

state. The main difference between incoherent errors and decoherent errors lie in the

fact that incoherent errors can in principle be refocused, while decoherence represents

information lost to the environment or to inaccessible degrees of freedom.

The state correlation is the normalized overlap between two quantum states and

quantifies how similar they are. It is a function of pi,,, Uideal and the experimental

output state pout and is given by

C (Pideao, P.0t) = Tr(Pj.P~ t)

Due to non-unitary operations, there is a loss of information. We insert an attenuation

factor to obtain the attenuated correlation, which includes the loss of purity during

the evolution.

CA (Pideal, Pout) = C (Pideoj, P,) P

Tp Tr(p:::•p )
Tr(PtdealPout)

The gate fidelity F is a measure of the precision of the operation
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F = CA(piijea, pi t)

where the overline notation CA represents the average attenuated correlation over

a complete basis of orthonormal Hermitian matrices p3 . In the case of incoherent

processes, it is often convenient to use the equivalent expression for F directly in

terms of Uial and the Kraus operators {Ak},

F = IITr(UeaAk)II2 11'

where N = 2' and n being the number of qubits.

With these backgrounds in mind, we pose the following questions:

1. How do we quantify the robustness of a given control sequence? Do we need

additional resources to engineer robustness into our quantum control systems?

2. We are limited by available resources, for instance, finite power, bandwidth,

and decoherence. Taking resources into account, can we generate any effective

Hamiltonian we desire with arbitrary fidelity?

Quantum Control Theory has yet to develop to the level to answer such questions in

complete generality analytically beyond SU(2), and we therefore rely on numerical

simulations to shed light on these issues.

Here we take the simplest non-trivial system and one that has been well studied

experimentally. Consider the following real system: the two coupled proton spins of

dibromothiophene. The Hamiltonian of the system is given by

Hint = Aw(I• - IV) + 27rJIA. IA

where Aw = 27r65Hz, J = 5.75Hz. There are many possible operators in the 2-spin

Hilbert space of the dibromothiophene molecule. However, much can be learned by
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focussing on the implementation of the following two operators U1 and U12 , where

Ui~e2
U1 e• 2 -x

and

U12 = eis a s r

Here, U2 is a selective ' rotation of spin A about the x-axis; spin B is left unchanged.

In contrast, U12 is a non-selective transformation and rotates both spins A and B by

Sabout the x-axis. We choose these for their computation importance and since the

conditional gates can be constructed from these and periods of free evolution under

the internal Hamiltonian.

For these simple pulses and in this small Hilbert space it is sufficient to achieve

high fidelity to have SMP of only 2 time intervals. We search the space of the 8

parameters for a 2 period pulse to achieve U1 and U12 . First, a random number in a

typical range for each parameter is generated. For U1 , the range for tl and t2 was [0,

lms]; the range for f, and f2 was [0, 60kHz]; the range for w, and w2 was [0, 1MHz]

and the range for 01 and 0 2 was [0, 27r]. These 8 parameters are then fed into a search

function that is aimed at maximizing the fidelity of the unitary propagator U.e.. in

implementing the desired operation Uid,,, given by

F(Uideal, U,.ai) +

The fidelity F measures how closely U,,a,, the unitary propagator on the system

generated by the 2-period RF magnetic pulse implements UideL. For a given desired

operation Uida,, the search function used is a non-derivative method set to minimize

the cost g(x) = 1 - F(Uid&,L, Ue.,ai(x)) over the vector x, where Ura(x) is the unitary

propagator that results from the RF pulse with parameters x. For our 2-period case,

x would be an 8 by 1 vector containing the time durations, RF frequencies, magnetic

field strengths and the initial phases for the two pulses. It is a member of the family
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of coordinate descent methods, more specifically, the Nelder-Mead simplex search

method. This direct search method is particularly convenient since the analytic form

of the fidelity F is unknown. For a function to be optimized with respect to n

parameters, the algorithm randomly generates n+1 convex points, x0 , X1 , x 2,..., X,

and goes through iterations until F converges.

At each iteration, we start with a simplex of n+1 points and end up with another

simplex. Let xmin and Xma, denote the best and worst vertices of the simplex, that

is,

g(xnix) = mini=o,j, 2.,n9(xi)
9(mx = Ma4=,,..(Xi)

Let x denote the centroid of the face of the simplex formed by all vertrices by xm•.

ýý= (-Xmax + E' Xi)
n i

The iteration replaces the worst vertex xma by a better one. A typical iteration

consists of the following steps [1]:

1. Step 1: Reflection step

Compute the reflection point

Xref = 2" - Xmax

Then compute xne to replace xmax according to three cases:

(a) xref has minimum cost: If 9(xmin) > g(xqe), go to Step 2.

(b) xf has intermediate cost: If max{g(xt)Ix' X # x} > g(xrej) >= g(xmni),

go to Step 3.

(c) xref has maximum cost: If 9(xref) >= max{g(xi)'xi - xm,}, go to Step

4.

2. Step 2: Attempt Expansion Compute
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Xexp = 2Xref - X

The new point xnew is given by

{ XeXp, if g(Xexp) < 9(Xref),
Xnew =

I xef otherwise

3. Step 3: Use Reflection Use the Reflection point as the new coordinate.

Xnew = Xref

4. Step 4: Perform Contraction Define

1 (Xmax - i), if g(xep) < 9(X.f),

Xnew

11 (Xei +, ) otherwise

and form the new simplex by replacing xma with x,,.

Using the above algorithm, 25 pulses for U1 and 33 pulses for U12 at fidelity

maxima were generated for the real system. We will next discuss the characterization

of robustness of these pulses.

3.2 Control Curvature: a measure of robustness of

control

It has been our experience in implementing control schemes in larger Hilbert spaces

that occasionally the experimental implementation fails to provide the expected fi-

delity. The reason for this rare event is unknown but we associate it with the effects of

small errors in the control fields. There is imprecision in the control of RF magnetic

fields strength, frequencies, phases and the duration for which these pulses are ap-

plied, as well as variations of field strength within the sample (lack of homogeneity).

All of these factors mean that depending on how sensitive the fidelity of our pulse is

with respect to variations of control parameters, the fidelity would suffer to different
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extents. For example, pulse durations can be controlled to the order of 12.5ns; on top

of that, since we are driving a high Q RF circuit, transient effects may decrease the

precision. Phases can be controlled well to the order of 0.01 degrees, while frequencies

can be controlled to 0.005Hz, but bandwidths for frequency changes are on the order

of 3MHz. We therefore wish to have a measure to characterize the robustness of these

control pulses. One such measure is the curvature C with respect to parameter a (e.g.

one dimension of the vector x) below:

CaIIl'II

The higher the value of Ca is, the more vulnerable the fidelity is with respect to

changes in the parameter a. For the pulses we found, we calculate the curvature with

respect to each of the 8 parameters using the finite difference method. For a being the

ith coordinate of the x vector, the second derivative of the fidelity f is approximated

by

°2F - (F(xk - Axej ) + F(xk - Axe,) - 2F(xk))

Values of F(xk + nAxei), where n = 0, 1 or -1, are obtained by simulating the

effective unitary propagator for the corresponding parameters and calculating the

fidelity F(Uidal, UreaL(Xk + nAxej)). The choice of the interval Ax is tricky, since

pulses with different sensitivities would naturally require different values to give an

accurate estimate. When Ax is too large, the approximation would be inaccurate.

However, if we reduce it too much, the roundoff errors that occur when quantities

of similar magnitude are subtracted gives a large relative error size in the gradient

approximation. Our results were arrived at by trial and error and by ensuring that

the curvature at neighboring points agree to 2 significant figures.

In order for fair comparison between parameters of different units (for example, sec-

onds for time and radians/s for RF strength), we calculated the second derivature

with respect to fractional changes in the parameters, so that C is unitless.

To more meaningfully explore the relationship between fidelity and curvature,

we have integrated the the curvatures with respect to individual parameters such

as tl and f2 to form curvatures with respect to quantities representative of a class
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of parameters such as time duration of the sequence and strength of RF power. We

report such quantities for four classes of parameters, time, control field power, control

field frequency and control field phase. The following quantities have been chosen:

1. Total time of the pulse sequence

t = tl +t 2

2. Average power (in frequency units)

Wave - twi1 +wt 2
Wae tl +t 2

3. Maximum power

Wmax max{wl, w2}

4. Frequency bandwidth

f =I fl- f2[

The frequency bandwidth f = If, - f21, measures the range of RF frequencies

used to excite our system.

5. Phase bandwidth

I = i01 - €21

The phase bandwidth 0 = q10 - 021, measures the jump in the phase of the

pulse between the two different time periods.
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Chapter 4

Results and Analysis

4.1 Fidelity vs Curvature

Scatter plots of pulse sequence fidelity versus curvatures with respect to the param-

eters we have chosen are shown in Figures 4-1 through 4-5. We label sequences with

the highest fidelity pulses in the diagrams. Sequence a, b and c correspond to the

three modulation sequences with the highest fidelities.

The first thing we note from all the plots is that the fidelities for the non-selective U1 2

pulses are consistently higher than those for the selective U1 pulses. The U1 pulses also

have a larger spread in fidelities. This was expected and illustrates an important point

for controls to achieve different operators in the Hilbert space, namely, that different

unitary operators will have implementations or controls of different performance.

The second thing we learn is that in all 5 plots, the selective pulses have, on av-

erage, higher curvatures with respect to the integrated parameter concerned, i.e.,

Ca(UI) > Ca(U 1 2 ). These two results have important implications, that in order for

us to achieve a certain fidelity and robustness, selective operators require more re-

sources to implement than a non-selective operator due to the differences in tensor

product structures.
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Fidelity vs curvature wiyjIspect to total time (tl +t2), Ct

1.002 t __,

o Non-selective Rotation U1

o Selective Rotation U1

1 0 > 0 lP4W 1[ Pulse a
* Pulse b
SPulse c
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0

cD 0.996

0
0.994 00

0 0

0.992 0

0 0

0.990 0 0
10 102 104  106 108 1010

Curvature with respect to fractional change in total time, Ct

Figure 4-1: Scatter plot of pulse fidelity verses curvature with respect to fractional changes
in total time, t = tI + t 2 , of the pulse. Each blue diamond corresponds to a U12 pulse and
each circle corresponds to a U1 pulse. Ct for the non-selective rotation U12 are in the range
[10,104], whereas values for the selective rotation U1 lie mostly in the range [105, 108]. This
indicates that the selective pulses are less robust to variations in the durations of applied

RF pulses.
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Fidelity vs curvature with respect to average power, Cap

1.002 1
o Non-selective Rotation Ul
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0 Pulse b
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Curvature with respect to fractional change in average power, Cap

Figure 4-2: Scatter plot of fidelity vs the curvature with respect to the average power
"Wave -- l1tj+w2t2 • Cap for the non-selective rotation U12 are in the range [10, 104], whereas

values for the selective rotation U1 lie mostly in the range [103,1081. This again indicates
that the selective pulses are less robust to variations in pulse parameters: this time the
strength of applied RF fields. For average power, all the three selective U1 pulses with
highest fidelities have very low Cap, which means that they are very good pulses with
respect to both fidelity and robustness to RF power.
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Fidelity vs curvature with respect to maximum power, CmaxP
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Curvature with respect to fractional change in maximum power, CmaxP

Figure 4-3: Scatter plot of fidelity vs the curvature with respect to the maximum power
wnax = max{wl, w2} is expected to be similar to that of the average power. Cma p for the
non-selective rotation U12 are mostly in the range [1, 103], whereas values for the selective
rotation U1 lie mostly in the range [104, 107]. These values are smaller, and within a narrower
range than the average power. The reason is likely that the influence of higher power period
is more dominant, and is thus less vulnerable to variations.
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Fidelity vs curvature with respect to frequency bandwidth (Ifl -f21), Cf

1.002

1 0
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0
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Curvature with respect to fractional change in frequency bandwidth, Cf

Figure 4-4: The Cf for the non-selective rotation U12 are mostly in the range [10-1, 103],
whereas values for the selective rotation U1 lie mostly in the range [104, 107]. This is
consistent with the results about the other parameters. Pulse sequences /3 and f are both
robust with respect to variations in frequency bandwidth. However, pulse a, which has the
highest fidelity, has the largest Cfand hence the worst robustness.
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Fidelity vs curvature with respect to phase bandwidth (Iphl-ph21), C
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Figure 4-5: The CO for the non-selective rotation U12 are mostly in the range [10-6, 106],
whereas values for the selective rotation U, lie mostly in the range [102, 108]. This is
consistent with the results about the other parameters. All the three highest fidelity U,
pulses have the lowest CO values and are thus both robust with respect to variations in q.
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Comparison of fidelity against detuning of the t2 parameter

1

0.995

0.99L
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_: 0.98
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0.96 - Non-selective pulse
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0.955 , , ,

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01
Fractional Change in duration of period 2, t2

Figure 4-6: This is a plot of fidelity versus curvature with respect to fractional changes in
the duration of the second period, t 2 for two given pulses-one selective and one non-selective.
The fidelity of the non-selective is higher than that of the selective pulse, and by inspection,
the curvature is lower, showing more robust behavior.

To further examine the truth of the above two points, we plot the behavior of fidelity

versus detuning from a maximizing parameter value. Figures 4-6 and 4-7 show the

comparison between the highest fidelity non-selective pulse sequence and the highest

fidelity selective pulse sequence, labelled 'nonselective pulse a' and 'selective pulse a'

in Figures 4-13 through 4-16. Figure 4-8 shows a comparison between another pair

of pulse sequences labelled 'nonselective pulse b' and 'selective pulse b'.
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Comparison of fidelity against detuning of the ý1 parameter

i I I I

Non-selective pulse

Selective pulse a
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Fractional Change in duration of period 2, fl

Figure 4-7: This is a plot of fidelity versus curvature with respect to fractional changes
in the RF frequency of the first period, fl for two given pulses-one selective and one non-
selective. Again, the fidelity is higher and the pulse is more robust for the non-selective
case.
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Comparison of fidelity against detuning of the 1 parameter
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Figure 4-8: This is a plot of fidelity versus curvature with respect to fractional changes in
the phase of the first period, 01 for two given pulses-one selective and one non-selective.
Again, the fidelity is higher and the pulse is more robust for the non-selective case.
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The following figures show the trajectories of the two periods of the four modula-

tion sequences we considered. The red and blue arrows show the motion of the spin

A and spin B on the Bloch's respectively. The final position of the spin A for U1 is

positive x, while spin B is to return to the equilibrium positive z eventually. From the

trajectories it can be seen that there is motion of spin B along the Bloch sphere to

a non-equilibrium point, which is unnecessary since we did not intend its state to be

changed. Therefore, we would expect the selective operation U, to be less efficient,

having a lower fidelity and higher curvature.

Non-selective rotation, pulse a Nonwselective rotation, pulse b

0.5 05

.. .. . .. , .

-0.5

l1 1 1
lyly Ix

Figure 4-9: The trajectory of non-selective
pulse a is shown. The red and blue arrows Figure 4-10: The trajectory of non-selective
show the motion of the spin A and spin B on pulse b is shown. As with non-selective pulse
the Bloch's respectively. The motions of both a, the motions of both spins during the two
spins during the two periods are very direct. periods are very direct.
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Figure 4-11: The trajectory of selective pulse Figure 4-12: The trajectory of selective pulse
a is shown. The motions of both spins from b is shown. Spin B moves to negative z during
the initial to final state during the two periods the first period and returns to positive z dur-
are still very direct. ing the second, thus we have used resources

to generate unnecessary rotation.

We would like to have robust control sequences with high fidelity. Therefore,

pulses at the top left corners of our plots are desirable. The pulse sequence with the

highest fidelity are not the ones with the lowest curvature: there is a tradeoff between

finding the pulse with the highest fidelity and lowest curvature C. However, there do

exist reasonably good pulses with both good fidelities and lower C values.

From Figures 4-1 through 4-5, we have observed that any given pulse has very

different sensitivities with respect to different parameters. For example, sequence 0,

the pulse with the best fidelity, has a high Ct value, but has very low values of Cap,

Cmaxp and Co. This fact invites us to define a scaled measure of the overall robustness

of a pulse. A natural way to achieve this is to have a weighted average of the different

Ca values according to the degree of precision of control we have of that parameter.

For example, in our case, due to limited RF field homogenity in the spectrometer, we

can control the RF field strength to an accuracy or homogeneity of only 10 - 15%,

whereas all the other parameters can be controlled very precisely. Therefore, we can

assign values to wt, w,,, wf and wo and define the mean curvature C as follows:

C -w=CZ where i E {t, p, f, 0}

49



Fidelity vs Mean Curvature for Selective Rotation U1
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0.998 E1 selective pulse a
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Mean Curvature, C (using average power) X 107

Figure 4-13: The mean curvature is calulated using Ct, Cap, Cf and Cph.

As an example, I will assign wt = 0.05, wp = 0.85, wf = 0.05 and w, = 0.05 and

integrate the results of the above plots. Figures 6 and 7 show results calculated using

Cap and Cmxp as a measure of robustness with respect to RF power respectively.

The Curvature C, as shown in the two plots, agree to a large extent with each

other. With the above investigations, we see that the curvature C is a good measure

to quantify the robustness of a sequence. Experimental characterization of various

uncertainties can be used to assign these weights to scale different Ca and combine

them to form the Curvature to measure the robustness of a control sequence. Al-

though we focus on NMR RF pulses, this can be straightwardly extended to other

means of quantum control as well. Including the Curvature C into a cost that puts

a penalty on a sequence that is long in time and high in power, and rewards high

fidelity, would greatly improve the quality of our solutions in practice.
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Fidelity vs Mean Curvature for Selective Rotation U1
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Figure 4-14: The mean curvature is calulated using Ct, Cmaxp, C6f and Cph.

Fidelity vs Mean Curvature for Non-selective Rotation U12
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Figure 4-15: The mean curvature is calulated using Ct, Cap, Cf and Cph.
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Fidelity vs Mean Curvature for Non-selective Rotation U12
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Figure 4-16: The mean curvature is calulated using Ct, CmaxP, Cf and Cph.

4.2 The effect of varying coupling strength between

spins

Our next investigation is to vary the parameters of the real system and observe

differences in fidelity of pulses found. Given the form of our internal Hamiltonian

Hi.t = (-A u+B) (IA + IB) + (WA-B) (IA - IB) + 27rjJ-. IA,

if Aw j 0, then we have universal control over SU(4), but if Aw = 0, then the

system collapses into a spin-i and a spin-0 subspace. The RF field does not break

this symmetry, so without adding another qubit, or spin-½ particle, we cannot achieve

universal control. Therefore, as long as there is some chemical shift difference, we can

achieve an ideal selective rotation, if we don't take resources into account. Now we

study the behavior when our resources (in this case, number of periods in the control

sequence) are limited. The use of number of periods scales roughly linearly with time

duration of the pulse sequence. The chemical shift difference Aw was varied to give
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specified values of the coupling strength S = 2J It is expected that the fidelity

would decrease with increasing coupling strength. This is because as the chemical

shift difference decreases, it takes more time to selectively address the spins. When

Aw vanishes, two spins are no longer distinguishable, and by symmetry it is impossible

to achieve selective rotation. More rigorously, let U be transformation between the

Zeeman basis and the eigenbasis, i.e.

1 0 0 0

0 10 1

0 1 0 - 1

0 0 1 0

0 1 0 -1

U+OU 1u 1 01 0
12 0 1 0 1

-1 0 1 0

U+±AU is not a member of the direct sum space, and thus it is impossible for us to

achieve this selective operation when there is no chemical shift difference. By this, we

can deduce that the higher the coupling strength between the two spins, the closer

we get to this limit of the direct sum space, and thus the harder it is to achieve this

addressibility. Given the same number of allowed periods, we expect a monotonically

decreasing fidelity as we increase the coupling strength S. However, the functional

form or rate of the decay is not known.

4.3 Expanding available resources

With the form of pulse sequences we utilize here, a good measure of resources is the

number of periods allowed in the control. As the number of periods increases, we

expect the average fidelity of the selective operation to increase. For example, let

P2 be the 2-period pulse with parameters {t,) W, fl, 1¢ 1 ; t2, w2, f2, 02} and P3 be the

3-period pulse with parameters {ta, Wa, fa, 0.; tb, Wb, f, Ob; t,, we, fe, Or}. If we set the
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Figure 4-17: As expected, the fidelity decreases monotonically as we increase coupling
strength. When the chemical shift difference is set to 0, f = 0.720. The trend indicates an
asymtotic value that the fidelity approaches for each of 2-period and 3-period pulses.
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Average Fidelity of a Selective Pulse vs Number of Periods (Coupling Strength=1)
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Figure 4-18: The result is indeed what we predicted, that fidelity increases as the number
of periods allowed. In the limit of the number of period going to infinity, we will expect to
achieve perfect fidelity in universal control as has been shown by Khaneja without regards
to limitations in resources. (ref 76)

parameters of P3 such that ti ta+tb, fA = fa = fb, W1 = W. = Wb, and 01 = 0a = Ob,

then P2 is actually the same as P3. Therefore, we see that an n-period pulse can do

as least as well as an m-period pulse for m < n. We expect the n-period pulse would

do better because we have more flexibility on the control of the pulse shape, like we

have more 'knobs to turn' in lab. Extending our discussions in the above section,

since there is universality and controllability in a system of n coupled spin- 1 particles

with non-zero chemical shift difference, if we allow more resources in our control, we

would expect an improvement in the fidelity.

From our numerical results, we can answer the second question we posed: we

would like to address: taking resources into account, can we generate any effective
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Hamiltonian we desire with perfect fidelity? The answer is no as long as we don't

have an infinite amount of resources. However, in the limit of an infinite amount of

resources, we are reduced to the previously studied cases, where perfect control can

be achieved. Our discussion on resources can be generalized to for instance, RF power

and frequency bandwidth in NMR and laser power and linewidth in optical control.
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Chapter 5

Conclusions

We have numerically explored some aspects of coherent control in the presence of

limited resources. As expected, the amount of available resources is important. We

find that resources can be used to improve fidelity and robustness. We suggest that

a local curvature may be a useful parameter for robustness. Finally we briefly looked

at the additional resources needed when the addressibility is reduced.

This work is the beginning of an exploration into the effects of non-ideal control to

fidelity of control. There are many more issues that we have not yet studied. Some of

the future directions we see are for instance analytic work on the effects of limited RF

frequency bandwidth on control on SU(2) and SU(4). For example, in SU(4), what is

the analytic expression for the ideal pulse sequences to achieve U1 and U12, and the

average Hamiltonian resulting from these pulse sequences. How are the fidelities and

curvatures degraded as we limit the available resources to implement these sequences?

As the coupling of between the two spins increase, how do decreased resources impact

the fidelity and curvature of selective and non-selective operations?

Another area of relevant possible research is a comparison between different ap-

proaches of control sequence search methods. The two main different types are

Strongly Modulating Pulses (SMP, based on simplex search) [5] and search methods

based on OCT, such as the Gradient Ascent Algorithm (GRAPE)[12]. The former

optimizes for the time duration, RF power and frequency and incorporates simula-

tions of system dynamics into the calculation of fidelity, and minimizes a cost which

57



is aimed at maximizing the fidelty and penalizing very high RF powers and very long

pulse sequences. It increases the number of periods of the sequence if a certain crite-

rion on a cost is not yet met and repeats the process. The latter is based on OCT and

fixes the total duration and number of piecewise constant intervals of the pulse and

just calculates the forward propagated initial density matrix and the back-propagated

target state. It would be interesting to look into how effectively the latter strongly

modulates the dynamics of systems, especially if the systems have strong couplings,

since the simulations of the actual dynamics are not carried out.
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COHERENT CONTROL OF DIPOLAR COUPLED SPINS IN LARGE

HILBERT SPACES

by

SUDDHASATTWA SINHA

ABSTRACT

Controlling the dynamics of a dipolar-coupled spin system is critical to the develop-
ment of solid-state spin-based quantum information processors. Such control remains

challenging, as every spin is coupled to a large number of surrounding spins. In this
thesis, we primarily focus on developing coherent control techniques for such large
spin systems.

We start by experimentally simulating spin squeezing using a liquid-state NMR quan-

tum information processor. We demonstrate that the precision of quantum control

obtained using strongly modulating pulses was sufficient to reproduce the theoretically

expected behavior of the spin observables and the associated entanglement measures
among the underlying qubits.

We then investigate coherent control in a more complex solid-state spin system con-

sisting of an ensemble of spin pairs. Using pulse amplitude modulation techniques,

we decouple the weaker interactions between different pairs and extend the coher-
ence lifetimes within the two-spin system. This is achieved without decoupling the
stronger interaction between the two spins within a pair. We thus demonstrated that

it is possible to restrict the evolution of a dipolar coupled spin network to a much

smaller subspace of the system Hilbert space which allows us to significantly extend

the phase coherence times for selected states.

Finally, we demonstrate the sensitivity of highly correlated multiple-quantum states

to the presence of rare spin defects in a solid-state spin system. We design two

multiple-pulse control sequences - one that suspends all spin interactions in the system

including that of the defect spins, while the other selectively allows the defect spins

to interact only with the abundant spins. By measuring the effective relaxation

time of the rare spins, we demonstrate the efficiency of the two control sequences.
Furthermore we observe that for small spin cluster sizes, the sensitivity of the highly

correlated spin states to the spin defects depends on the coherence order of these

correlated spin states. But beyond a certain cluster size, one observes a saturation
effect as the higher coherence orders are no longer increasingly sensitive to the defect

spin dynamics.

Thesis Supervisor: David G. Cory
Title: Professor
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CHAPTER 1

INTRODUCTION

Quantum information processors (QIPs) derive their power from the quantum paral-

lelism due to the superposition of quantum states. An n-qubit quantum information

processor forms a superposition of 2' states, with each state being equivalent to

a n-bit classical processor. Peter Shor, Lov Grover and other scientists have har-

nessed this massive power to devise quantum algorithms like the factorization and

the quantum database search algorithm. Compared to their classical counterpart, a

QIP provides a more efficient platform to solve certain problems. Physical realization

of a QIP requires precise quantum control of a physical system while protecting the

system from decoherence effects induced by noise in the environment. Coupled with

the fact that, as we push Moore's law to its limit with nano-scale devices - a regime

where nature follows the laws of quantum physics, development of quantum control

techniques assumes added importance.

Various schemes have been proposed for the experimental realization of QIPs includ-

ing ion traps [1], cavity QEDs [2] and SQUIDs [3]. But the experimental implementa-

tion of a QIP based on liquid-state Nuclear Magnetic Resonance (NMR) technology

has been the most successful till date [4, 5]. Existing coherent control NMR techniques

have been adopted to manipulate up to 10 qubits while new techniques have been de-

veloped to account for incoherent and decoherent noise. These advances have enabled

researchers to experimentally implement some of the quantum algorithms. However
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this implementation scheme has its limitations - the non-scalability of the initial state

(known as the pseudo-pure state) preparation, large ratio of the gate time over the

decoherence time, among others. The method of addressing qubits using chemical

shifts becomes increasingly cumbersome as the complexity of the molecules increase

with the number of qubits. This severely limits the maximum number of qubits that

can be manipulated using this technology.

Solid-state spin-based NMR QIP has been proposed as the next generation proces-

sor. The ability to create higher thermal polarization using existing solid-state NMR

techniques, the stronger dipolar couplings and the longer spin-lattice relaxation times

partially address the issues of scalability, faster quantum gates and higher decoherence

times respectively. Using gradient fields to address spins in solid samples removes

some of the limitations one faces while addressing a large number of qubits in its

liquid-state counterpart. To simulate a QIP, various solid-state system designs have

been suggested - single crystals of deuterated molecules with dilute concentration of

suitably labeled ones [61, phosphorous atoms in a silicon grid at a low temperature

[7], endohedral fullerenes on a silicon surface [8], among others.

In any implementation of a solid-state spin-based NMR QIP, an underlying challenge

is the coherent control of spins in large Hilbert spaces. Unlike liquid samples where all

intramolecular interactions are averaged out due to molecular motions, in a rigid-solid

lattice all nuclear spins strongly interact with each other. Thus the solid-state spin

system spans a much larger Hilbert space. The control of spin dynamics in such large

Hilbert spaces is essential for the application of quantum gates - a key step in the

implementation of quantum algorithms. Experimental investigation of these multi-

spin dynamics have been carried out using multiple-quantum coherence [9, 10, 11, 12]

and spin diffusion [13, 14] techniques. In this thesis, we primarily focus on developing

new coherent control techniques for such large spin systems.

We start by experimentally simulating spin squeezing using a liquid-state NMR QIP

(chapter 2). This was done by identifying the energy levels within the symmetric

subspace of a system of n spin-1/2 nuclei with the energy levels of the simulated
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spin-(n/2) system. The results obtained for our simulations of spin-i and spin-

3/2 systems are consistent with earlier theoretical studies of spin squeezing. We

demonstrate that the precision of quantum control obtained using strongly modu-

lating pulses [311 was sufficient to reproduce the theoretically expected behavior of

the spin observables and the associated entanglement measures among the underly-

ing qubits. Then we investigate coherent control in a more complex solid-state spin

system consisting of an ensemble of spin pairs (chapter 3). Using pulse amnplitude-

modulation techniques, we decouple the weaker interactions between different pairs

and extend the coherence lifetimes within the two-spin systems. This is achieved

without decoupling the stronger interaction between the two spins within a pair. Fi-

nally, we demonstrate the sensitivity of highly correlated spin states to the presence

of rare spin defects in a solid-state system (chapter 4). We show that the homonuclear

dipolar interactions of the rare spins can cause decoherence effects in such correlated

spin states even if these spins are decoupled from the correlated spin system. For

our sensitivity measurements, we design two multiple-pulse control techniques (based

on coherent averaging theory) - one that suspends all spin interactions in the system

while the other selectively allows only the heteronuclear dipolar interaction between

the rare spins and the correlated spin system. By measuring the effective relaxation

time of the rare spins, we demonstrate the efficiency of the two control sequences.

Furthermore, we observe that the sensitivity of the highly correlated spin states to

defects depends on the coherence order of the correlated spin states. But beyond a

certain cluster size, one observes a saturation effect in the sensitivity measurements as

the higher coherence orders are not increasingly sensitive to the defect spin dynamics.
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CHAPTER 2

EXPERIMENTAL SIMULATION OF SPIN

SQUEEZING BY NMR

2.1 Introduction

The minimum uncertainty associated with complementary observables is given by

the uncertainty relations. For example, the position and momentum fluctuations in

a coherent state of the quantum harmonic oscillator are both equal to the quantum

limit h/2. States for which the fluctuations in one of these observables is less than

the standard quantum limit of h/2, while the fluctuations in the complementary

observable increase so as to satisfy the uncertainty relation, are called "squeezed

states" [17, 34]. Thus a squeezed state can be visualized as an ellipse of constant

uncertainty in phase space.

Squeezed spin states have been defined using analogous criteria [19, 25, 36, 42, 43,

44, 45], and several experimental demonstrations of spin squeezing have been pub-

lished. They include interaction of collection of atoms with squeezed radiation [15],

the displacement of two optical lattices with respect to each other [37], and col-

lisional interactions between the atoms in a Bose-Einstein condensate [19, 36, 38].

1Parts of this chapter were extracted from the paper "Experimental simulation of spin
squeezing by Nuclear Magnetic Resonance", by S. Sinha, J. Emerson, N. Boulant, T. F. Havel and
D. G. Cory, Quantum Information Processing, Vol. 2, No. 6, December 2003.
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Spin squeezing by quantum non-demolition measurements has also been proposed

[26].

A spin 1/2 is always in a coherent state, but it is possible to squeeze the "effective"

higher spin with j = n/2 that lives within the symmetric manifold of states in a system

of n > 1 spins each with j = 1/2 [20, 33]. In this paper we describe experimental

realizations of squeezed states of these simulated higher order spins on a liquid-state

nuclear magnetic resonance (NMR) quantum information processor, using the method

suggested by Kitagawa [25]. First, we review the properties of coherent spin states and

Kitagawa's method for creating squeezed spin states, along with the representation of

a spin-j system for j = 1 and 3/2 within the totally symmetric subspace of the Hilbert

space of 2j spin-1/2 particles. We then describe the NMR implementation of the

method and the measures used to access its overall precision, after which experimental

results of squeezing are presented and the level of control attained is discussed. We

end by verifying the relation between the degree of squeezing of the simulated spin-j

system and the degree of pure state entanglement among the underlying spin-1/2

particles, as quantified by various well-established entanglement measures (cf. [18,

36, 37]).

2.2 Simulation of spin squeezing in a multi-spin-

1/2 system

Throughout the remainder of this paper we will work with units such that h =

1. Coherent spin states (CSS) may then be defined by the following properties:

(i) The uncertainty relation for the total angular momentum operator J becomes

saturated, i.e. AJx AJy = 1l (J)I1, where (x, y, z) label the coordinate axes. (ii) The

absolute expectation value of the spin in the direction of polarization, e.g. I(J,>),

is maximum and equal to j. (iii) The spin uncertainties are equally distributed in

any two orthogonal directions in the plane normal to the direction of polarization,
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0 0

Figure 2-1: (i) A coherent state spin-j vector with expectation values [(J1), (J4), (JY)J =[1,0, 0] may be visualized as a coherent superposition of angular momentum
vectors on a cone about the x-axis, all with a projection of j/2 along that
axis. (ii) After squeezing via the one-axis mechanism (see text), the conerepresenting the state of a spin-1 particle is elliptical, with its squeezed (mi-nor) axis making an angle of ±ir/4 with the y, z-axes. (iii) In the maximallysqueezed state of a spin-1 particle the cone has been folded into a nearly
degenerate ruled surface.

e.g. AJx = AJy. Kitagawa and Ueda [25] proposed that a spin state is squeezed if
the minimum spin uncertainty in the (x, y)-plane is less than the standard quantum
limit of V72. Since a squeezed spin state (SSS) is not related to a CSS by a simple
rotation, the polarization of an SSS is less than maximum, e.g. I(J) I < j.

To create a SSS, a "non-linear" operation must be applied, i.e. one that involves
products or powers of the spin operators J., J, & Jz, in its Hamiltonian H. Kitagawa
and Ueda proposed two methods for squeezing a CSS: (i) H = ,:2 (the one-axis
twisting mechanism), or (ii) H = JJy + JyJ, (the two-axis twisting mechanism). The
second Hamiltonian can be applied directly to any CSS to squeeze it, whereas the first
requires that the CSS be rotated to the (x, y)-plane before the propagator exp(i kJ2) is
used to squeeze it, where k is real number which we will call the squeezing parameter.
Figure 2-1 illustrate the one-axis process for j = 1, in which case maximum squeezing
in the (y, z)-plane is obtained when k = 7r/2. This one-axis method was used in the
NMR experiments described below.
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Table 2.1: The representation of a spin-1 by two spin-1/2 particles

Uncoupled Representation (Im'm 2)) Coupled Representation (Ij, m))

100) = iTT) I1,I) = ITT)
101) = ITI) 1i,0) = 1[ITI) + I1T)]
110) = 1iT) l1,-1) = Iii)
111) = I10) 0,0) = 4[ITI) - I1T]

Table 2.2: Coupled representation (Ij,m)) of the basis states spanned by three spin-1/2
particles

Spin-3/2 subspace basis Spin-1/2 subspace basis

1I, 3) = ITT) 1½, ½) = [21lT) - ITIT) - IIM)]
7,½)3= *[ITTI) + ITlT) + IlTT)] 12,-)= - [)[IT) + IM) - 2111T)]123 -2x) HIM1£T + ITW£ + ITTI>] 1i, D_ __= 2 2 [ITIT - IMT)]

12,_3) = l1i)1 21,-2) - •[T1Ti) -iiTi)]

A system of two spin-1/2 particles has 4 basis states. In the coupled representation

(in Table 2.1), the three symmetric states span a subspace that transforms under
identical rotations of both spins like a single spin-1. Similarly, a system of three spin-

1/2 particles has 8 basis states, which span a symmetric subspace that transforms

like a single spin-3/2, as well as two spin-1/2 subspaces with lower symmetry. The

four states listed on the left-hand column of Table 2.2 are the coupled representation

of the spin-3/2 subspace.

From the uncoupled and coupled representations, we see that there is a linear mapping

from the spin-j subspaces into the combined 2j spin-1/2 systems. These mappings

induce the mappings between the spin-j operators and products of spin-1/2 operators

(denoted here by I.•i), which for j = 1 is simply

j.= "I: + I'2j, = Il + ,2, J = Il + I3. (2.1)
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For j = 3/2, on the other hand, we obtain

11 + 1. (23 + J2 1 13 )12 (lJ2+J 3 2J)J = I;I,;~2 + + I.I+I 13 .13))J.~~•( = 1.' 1.2 113 212 1.

jy 1 3(2 + 12 13 23+ II - I-(I I-Y2 + I I3 + I2I )-8_(1 ./2-+-J1 .13[+ 2 .I3)) (2.2)

J = 1' 2 3 (2 1 + 1 +2I;I; 3 + .-- + I+•• 3 ..( +21 13+2 i3))

Given the apparent complexity of implementing these operations, it was decided

instead to implement the far simpler analoges of Eq. (2.2), namely:

I.= I:+I+I, j = 1+12 , = 11 +

(2.3)

It is easily shown that J,,, Jy, and J. are contained within the algebra generated by

J., jy, and J4, and that the latter satisfy the usual angular momentum commutation
relations. In fact, since they have two extra pairs of identical eigenvalues ± 1/2, they
are the sum of the angular momentum operators for a spin-3/2 mixed with those for a
pair of spin-1/2. As a result, it was not possible to squeeze the corresponding coherent

states to the amount that would have been possible if a pure spin-3/2 representation

had been used.

It is apparent that for j = 1, exp(-ikJ2) is an evolution exp(-ik4IJI1) under the

bilinear Hamiltonian associated with the scalar coupling interaction between spins in
NMR, up to an overall phase factor. Thus the traceless part of the pseudopure state

as a function of the squeezing parameter, and its spin-1 pure state equivalent, are

e 'k 4I I(I. + 'I. + I1I2)eik41.l' = cos(k)(!I. + 1I. + I,.I) - sin(k)(IY'I. + I.'?)

. ik~~Jx J.2) e ikJ.J = cos(k)J.+ J - i sin(k) ½ [J,,,] , (2.4)

where [,] is the commutator.
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For j = 3/2, on the other hand, we find that

J2 = JI + 1(I .I 2 +I 3 + 2.i3) + 2(1'1' + .ii. + I.If,),

= jý2 +(2.5)

It follows that exp(-i kJ,,) is, to a fairly good approximation, the same as three

equal scalar coupling evolutions up to phase, and the (pure) state as a function of the

squeezing parameter becomes

eik4(8 2.1)1(18 + 21/2) 1 (18 + 2[3)e k4(1. J.'2 1213 2

½(I + I,((I8 - 4II) + cos(2k)i1.(I 8 + 41_ I) - sin(2k) 1,' 2+ I))

18+ 12(1 - 4I,') + cos(2k)I,.(Is + 41,';) - sin(2k) I>2(I. + 1)) (2.6)

'(Is + I.(I8 - 4IVI2) + cos(2k)I.3(I 8 + 4II7)- sin(2k) I3(I,' + I))
- (e-ik/ 4 (1 8  J•) + e 9ik/4 (2_ J))

1(_- 318 - 2J., + 12J.2 + 8J.3) (e ik/4(1-J)+ek/(_j),

where in the last line we have expanded both the exponential exp(-ik J.) and the
initial coherent state along x in terms of angular momentum operators. Finally, the

CSS 10) is, for both values of j, the same as the Zeeman ground state ITT) or IT T T)
in the uncoupled representation.

2.3 The NMR implementation of squeezed spin

states

The implementation of spin squeezing was carried out on a liquid-state NMR quan-
tum information processor, using the two spin-1/2 hydrogen nuclei of 2, 3-dibromo-

thiophene (see Fig. 2-2) to represent the spin-1 system, while the spin-3/2 system
was represented using the three carbon atoms of a "GC-labeled sample of alanine
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(see Fig. 2-3). Both the experiments were carried out on a Bruker AVANCE-400

spectrometer in a field of ca. 9.4 Tesla. In the case of the two-spin experiment,

frequency-selective pulses were used to rotate single spins, and hard 7r-pulses to re-

focus unwanted chemical shifts. To compensate for pulse imperfections, composite

pulses were employed instead of the standard 7-pulse [35]. In the three-spin experi-

ment, strongly modulating pulses were used to more accurately perform the desired

unitary operations [21, 31]. Unlike low-power "soft" pulses, these pulses average out

unwanted evolution, are shorter in time and hence also reduce relaxation effects.

The I, I2 operator used to squeeze the spin-1 system was implemented using 7r-

pulses to refocus the Zeeman evolution of the spins while allowing the scalar coupling

between them to evolve, in the standard fashion [22]. Because the coupling between

spins 1 and 3 of the alanine system is so small (J13 
= - 1.29 Hz), the coupling between

them was generated out of the much stronger 1, 2 and 2,3 couplings [41]. The sum of

the three scalar coupling terms of the form was taken as an approximation to
J2 in the spin-3/2, as described in Eq. (2.5). As usual in NMR quantum information

processing [23, 27], pseudo-pure states were used to represent the dynamics of pure

states. These were obtained using spatial averaging techniques based on magnetic

field gradients [32, 39].

Even though the decoherence times in liquid-state NMR are long, the intrinsic de-

coherence rates of the spins still impose limits on the accuracy of the experimental

results. The T2 relaxation rates in 2, 3-dibromo-thiophene were 3.2 s-' for both of

the hydrogen spins, while in alanine these rates were 0.55, 0.42 and 0.80 s-1 for the

C1, C2 and C3 spins, respectively. The products of the shortest of these decoherence

times, multiplied by the weakest coupling constant used, were better than 15 for both

2, 3-dibromo-thiophene and alanine, which allows about 30 c-NOT gates before deco-

herence begins to seriously degrades the quality of the results. The amount of time
needed for the longest experiments reported here was only about one third of this.

The accuracy of the experiments is further affected by systematic errors like imperfect

calibration of the pulses, off-resonance effects and RF inhomogeneity [22]. The effects
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of these errors may be seen in the density matrices of the final states, which in
turn were determined by full state tomography [30]. Although plots of these density
matrices (see Figs. 2-4 and 2-5) provide a visual overview of the results, a more
quantitative summary of the overall accuracy may be obtained by calculating the
correlation between the theoretically expected and experimentally determined density

matrices Pthe and Pfir, respectively. This is defined as

C tr(pfiPthe) (2.7)
v/tr(Pfinpfn')tr(pthePthe)

To also include an estimate of the precision of the experiment, the amount of signal

(or polarization) lost during the experiment must also be taken into account. This
leads to a metric called the attenuated correlation [21], namely

Catt = C N/tr(pflpn.fn) tr(pfinPthe)V/tr(PWPni) tr(p. Wp,.,)tr(pthePthe) (2.8)

The theoretically expected density matrix Pthe was obtained by applying the intended
unitary transformation Uthe to the initial pseudo-pure state pii, as determined by

state tomography.

2.4 Results of spin squeezing experiments

Using state tomography [30], the 2j spin-1/2 density matrices Pexp were reconstructed
following squeezed state preparation for various values of the squeezing parameter
k = 0,..., 7r. The expectation values and uncertainties along the basis axes were
then calculated directly from these density matrices and the J,, (or approximate i•

matrices given in Eqs. (2.1) and (2.3)), as follows:

(J,) = tr(J pep) ;

(AmJ) = Vtr(Jpexp) - (tr(Jp•P))2
.
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where p = x, y, z.

The correlation for the spin-1 pseudo-pure density matrix (see Fig. 2-4(i)) was 0.99.

For the density matrix corresponding to the maximally squeezed (k = 7r/2) spin-1

state, the correlation and the attenuated correlation were 0.99 and 0.98 respectively.

The correlation for the spin-3/2 pseudo-pure state density matrix (see Fig. 2-5(i)) was

0.98, while the correlation and the attenuated correlation of the maximally squeezed

spin-3/2 state were 0.84 and 0.80, respectively.

Since the squeezing operator conserves the total angular momentum, the combined

2j spin-1/2 system should stay in the spin-j subspace during the course of the ex-

periment. However, due to decoherence and other errors in the implementation there

is some "leakage" out of the effective spin-j subspace. To quantify the accuracy

with which we have been able to simulate the spin-j system, we computed the best

pseudo-pure-state approximation to mixed-state density matrix p~p, by taking the

eigenvector IPrnx) associated with the largest eigenvalue of p.p. The probability of

leakage was then obtained from the definition

J

Pr,•k = 1- ) I(j,mlVmax)12 , (2.10)
M=-j

where IJ, m) are the basis states of spin-j subspace. This probability of leakage,

averaged over all the experiments performed, was (0.02 ± 0.02)% for the spin-1 sim-

ulations and (7.67 ± 3.20)% for the spin-3/2. The substantially larger leakage in the

latter case was due to the fact that the protons were not decoupled from the carbons

during the carbon scalar coupling evolution delays, in order to avoid the possibility

of carbon-proton nuclear Overhauser effects.
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2.4.1 The spin-1 case

The initial pseudo-pure state corresponds to a coherent state of the embedded spin -
1 subspace. It remains in a coherent spin state after a E rotation to the x-axis

and accordingly, state tomography at this point reveals that (Jx) is nearly equal to

1 while the spin uncertainties in the y and z-directions are nearly equal to 1/V/2.

After applying the non-linear interaction for a period of 2f(k) = k/(7rJ), the spin-1

expectation values in all directions are all close to 0, consistent with a maximally

entangled state (see Table 2.3). The uncertainty is now maximum in the x-direction,

while the uncertainties in the y and z-directions are still nearly equal to 1/v/2 because

the principle axes of the squeezed ellipsoid are at 7r/4 to the y and z axes (see Fig. 2-

1(iii)). To make the squeezing more readily apparent, it was convenient to follow the

squeezing step by a 7r/4 x-pulse so that the uncertainty along the z-axis becomes 1.

The experimental and theoretical data for this maximally squeezed and rotated state

are given in Table 2.3.

Table 2.3: Theoretical and experimental spin expectation values and uncertainties of the
maximally squeezed spin-1 states

(JX) (JY) (JA) (W ) WY) (Aj;)

Theory 0.00 0.00 0.00 1.00 0.00 1.00

Experiment 0.00 -0.02 0.00 0.97 0.21 0.98

The variation of I(J,) , AJy and AJ, for different values of k is plotted in Fig. 2-6.

The corresponding values of I(Jy) I and I (Jr) I are close to zero implying that the spin

system is polarized along x direction for all values of the squeezing parameter k.

2.4.2 The spin-3/2 case

After the initial 7r/2 rotation to the x-axis, state tomography showed that the spin-
3/2 angular momentum vector pointed in the x-direction with (J.) • 1.5, and un-

certainties in the y and z-directions nearly equal to their theoretical values of v3/2.
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Table 2.4- Theoretical and experimental spin expectation values and uncertainties of the

maximally squeezed spin-3/2 states

(J.) (Jy) (JP) (AJi) (AJy)(AJz)

Theory 1.00 0.00 0.00 0.87 0.50 1.32
Experiment 0.82 0.05 -0.13 0.92 0.53 1.36

Application of the non-linear interaction for a given k created some apparent entan-

glement in the system, as indicated by the fact that (J,) was reduced to about 1

while (Jy) and (J,) remained zero. The uncertainty in the x-direction also increased

from 0 to v'3/2. To orient the axes of the squeezed uncertainty ellipsoid along the y

and z-directions, the results of state tomography were rotated about the x-axis (on

a computer, since unlike the spin-1 case the rotation angle needed depends on the

value of k [25]). The experimental and theoretical data for the maximally squeezed

state are shown in Table 2.4, while the variation of I(J,) ), AJy and AJ, for different

values of k is plotted in Fig. 2-7. As in the spin-i case, the corresponding values of
(Jy) I and I(J2)I are close to zero, implying that the spin system is polarized along

x-direction for all values of the squeezing parameter k, as desired.

2.4.3 Behavior of entanglement measures

The probability of leakage measurements described above (see Eq. (2.10)) show that

the best pseudo-pure-state approximation to the final mixed-state density matrix

quite accurately describes the spin-j system. Thus this pseudo-pure state may be used

to study the entanglement of the constituent spin-1/2 particles by well-understood

pure-state entanglement criteria. The criteria used here are the entanglement of for-

mation [16] (or, for bipartite pure states, the von Neumann entropy of the partial

trace over either subsystem), and the concurrence [24, 46] of (the partial trace onto

any) pair of qubits. The purpose of this discussion is not to uncover any new features

of entanglement in these simple systems, but rather to use the compatibility of the

experimental results with the well-known behavior of these entanglement measures as
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a benchmark for the precision of control obtained. In addition, these entanglement
measures were computed without taking into account the very large identity compo-

nent that is always represent in liquid-state NMR, and hence should be regarded as
measures of the "pseudo-entanglement" associated with the pseudo-pure states used

for the experiments.

~ 0.8
-0. 0,6

060.4

0.4

Dc 02
002

20 40 60 80 100 120 140 160 180 40 6 80 100 120 140 160 180k A

(i) (ii)

Figure 2-8: Plots of the entanglement of formation (i) and concurrence (ii) with the
squeezing parameter k (in degrees) for spin-1. The solid lines are the theo-
retically expected curves, while the dashed lines interpolate linearly between
the values computed from the experimental density matrices (*) obtained via
tomography.

Figure 2-8 shows plots of the theoretically expected and experimentally observed

entanglement measures as a function of the squeezing parameter k for the spin-
1 experiments. It is immediately apparent that the theory and experiments agree
extremely well with respect to either entanglement measure, in accord with the fact
that the concurrence and entanglement of formation are monotonically related for
two qubits. The maximally squeezed state (k = 90) is observed to correspond to the
maximally entangled state, as theory predicts it should in a representation by Dicke

states [40].

Figure 2-9 shows the analogous pair of plots for the spin-3/2 experiments, where the
interpolation is now done using a fifth-order polynomial fit to the data (dashed lines).
In this case three different entanglements of formation are obtained, depending on
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Figure 2-9: Plots of the Meyer's metric or average entanglement after tracing down to

a single qubit (i) and concurrence after tracing down to any pair of qubits
(ii) with the squeezing parameter k (in degrees) for spin-3/2. The solid lines
are the theoretically expected curves, while the dashed lines are a fifth-order
polyomial fit to the values computed from the experimental density matrices
(*) obtained via tomography.

which pair of qubits is traced over in order to obtain the reduced density matrix,

and their average, also known as the Meyer's entanglement metric[29], is plotted for

simplicity. According to this metric, the maximum entanglement again occurs at

k = 900 and corresponds to a Greenberger-Horne-Zeilinger state, which is however

not a maximally squeezed state. The maximally squeezed state now occurs instead

at k = 34.70 and again at 180 - 34.7 = 155.30, and corresponds to the maximum

concurrence of the reduced density matrix obtained by tracing over any one qubit

(which is attained by a W-state). The correspondence between theory and experiment

in this case is noticeably lower than in the spin-1 experiments, primarily because of

leakage from the carbons used as qubits into the alpha and methyl protons during

the experiment.

2.5 Conclusions

We have demonstrated the use of liquid-state NMR to simulate squeezed states of

the effective spin-i and 3/2 subsystem contained in a two and three-qubit system,

respectively. We have further shown that the precision of quantum control obtained

was sufficient to reproduce the theoretically expected behavior of the spin-1 and 3/2
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observables as well as the associated entanglement measures among the underlying

qubits. The results are a further demonstration of the utility of pseudo-pure states

[23], and the power of strongly modulating pulses [31], for the development and

validation of quantum control methods. The dynamics of the coherences among the

fiducial states that were confirmed by complete tomography axe fully in accord with

these proposals, even though the highly mixed states used in our experiments were, of

course, separable at all times. It is interesting to observe, however, that even when the
identity component of the density matrix is fully taken into account the uncertainties

in the x and y directions were unequal, i.e. the actual mixed states created could be

regarded as (very slightly) "squeezed".

It should also be pointed out that the interpretation of the higher spin states as
"squeezed" or not depends on how the higher spin states are mapped into the sym-

metric subspace of the multi-spin-1/2 system. We discussed earlier, for example, how

the mapping used here for the spin-3/2 experiments actually gave the sum of a spin-

3/2 with a spin-1/2 pair, limiting the degree of squeezing attainable. Even when the

mathematical representation is strictly correct, however, the physical properties of

the squeezed states can be rather different. For instance, if we were to replace the

Dicke states ITT) and 111) in Table 2.1 by the Bell states 1/v2(ITT) ± I11)), the max-

imally squeezed state of the simulated spin-1 would correspond to the unentangled

basis state 100) of the two-qubit system in which it is contained. Such a represen-

tation may be a bit unnatural, since rotations of the qubits no longer correspond to

rotations of the higher spin, but should still be kept in mind when discussing the rela-

tions between entanglement in multi-qubit systems and the squeezing of the effective

higher spins therein [18, 25].
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CHAPTER 3

SELECTIVE COHERENCE TRANSFERS IN
HOMONUCLEAR DIPOLAR COUPLED

SPIN SYSTEMS

3.1 Introduction

Nuclear spins feature prominently in most proposals for solid state quantum infor-

mation processors. They have the advantage of a simple and well defined energy

level structure and they axe normally well isolated from other degrees of freedom.

The challenge of using nuclear spins in solids is to obtain control over the multi-spin

dynamics. In a dielectric solid, the dominant interaction between the spins is the

magnetic dipolar coupling. Since the strength of the coupling between two spins is

inversely proportional to the cube of the distance between them, a single spin is cou-

pled to a large number of surrounding spins, and not just its immediate neighbors.

Therefore every desired gate is embedded in a complex, multi-body space and the

dynamics have so far proven to be intractable. Controlling the evolution of a dipolar

coupled spin system has long been an important goal in solid state NMR, particu-

larly for spectroscopic studies. For example, the dipolar coupling has been effectively

2Parts of this chapter were extracted from the paper "Selective coherence transfers
in homonuclear dipolar coupled spin systems", by C. Ramanathan, S. Sinha, J. Baugh, T. F. Havel
and D. G. Cory, Physical Review A, Vol. 71, 020303(R), February 2005.
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turned off using techniques such as spinning the sample rapidly at the magic angle

(0m = cos-'(1/v3)) and a variety of multiple pulse techniques, which average the

spatial and spin tensors of the coupling respectively, as well as a combination of these

[50, 51].

A very useful element of control would be to map the physical dipolar Hamiltonian

of the spin system onto an effective interaction that has the form of only nearest

neighbor couplings. This would significantly simplify the implementation of accu-

rate two-qubit operations in a many-qubit solid state spin-based quantum processor

[6, 47, 48, 8]. This restricted evolution is also necessary to avoid cross-talk between

adjacent solid state quantum information processors in ensemble quantum computa-

tion [4, 5]. Without such control the gate fidelities achievable within a given processor

element will be degraded due to leakage to other members of the ensemble. Near-

est neighbor mapping would also allow quantum simulations of many-body systems

such as the Ising, XY or Heisenberg Hamiltonians in 1, 2 or 3 dimensions. The map-

ping envisioned here would have significant applications beyond quantum information

processing. For example, a nearest neighbor interaction could allow a more accurate

determination of distances in NMR structural studies, and could be used to perform

sequential polarization transfers, such as along the backbone of a protein.

Here we report the first step towards the experimental realization of such a scheme

for the special case of an ensemble of spin pairs, where the dipolar coupling between

the spins within a pair is significantly larger than the coupling between spins on

neighboring pairs. We are able to extend the phase memory of the spin pairs by

decoupling the pairs from each other, without decoupling the interaction between

spins within a pair. The control sequence consists of a simple amplitude modulated

RF field, with the modulation frequency set to the desired dipolar coupling strength.
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3.2 Theory of the modulation scheme

Our model system is an assembly of identical spin pairs with (strong) dipolar coupling
WD and weaker couplings between spins on different pairs. In a strong external mag-

netic field aligned along i the truncated secular dipolar Hamiltonian for this system

is given by

h h 2

H="12 + 2 D aD (3.1)

where h'l 2coi"z - alj -- y a , and wo is the coupling between spin-a on

0,0 Z2 Z3 cria-3  %,;%I WDpair i and spin-/3 on pair j.

The goal is to introduce a modulated RF field such that the effective Hamiltonian

is restricted to just the isolated spin pairs (the first term in Eq. 3.1). Our solution

may be understood by viewing the RF field in the interaction frame of this cou-

pling. In the fully symmetric case the state al + aU evolves as (a1 + ar) COS (Lat) +

(sin t so we chose a RF that has an amplitude modulation fre-
quency wm, = 3wM/2 and is given (in the lab frame) by

Hmod2(t) = cos ( t) x
2 2/

ei(wot/2) j a' (Z 01 ei(wot/2) Zi a. (3.2)

where wo is the Larmor frequency of the spins. The cosine amplitude modulation

produces frequency sidebands at w0 ± 3ws/2. Amplitude modulated pulses have

previously been used in NMR for simultaneously irradiating multiple transitions in

quadrupolar spin systems [49] to create multiple quantum coherences in the regime

where the RF power is significantly smaller than the strength of the quadrupolar

coupling.

We illustrate a simple physical picture of the averaging process using a 3-spin case.

Consider the Hamiltonian (in the rotating frame) of a three-spin system, in which
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spins 1 and 2 are strongly coupled and spin 3 is weakly coupled to spins 1 and 2

(wS >» w), under the RF modulation

H - h!h 12 + -•- (h13 + h23) +
4 4HS

-- w- 0cos W t ora 1 + 0 2• + a 3) (3.3)

The time-dependent Hamiltonian in the interaction frame of the (1,2) pair interaction

is given by

H1(t) =e(wSt)h12/4 (H - -Dh 12) e+ (Ds)h12/4 (3.4)

The zeroth order average Hamiltonian [51] of this interaction frame Hamiltonian over

a period T = 4ir/3ws is

H(0) 1 +3 +

2 - + (3.5)

The system can then be transformed into a second interaction frame via

U' = exp i•l (011+0 a2) (3.6)

Now, in this second averaging frame of /(O) (Eq. 3.6),the first term, i.e. the residual

dipolar couplings to spin 3, averages to zero over a cycle T' = 41r/wl. Hence the second

averaging of the couplings to spin 3 is efficient when wL >» 4w', and the effective total

system dynamics are generated by the (1,2) dipolar coupling (the Hamiltonian of the

first frame transformation). This picture provides the motivation for our approach,

but the overall dynamics are more complicated than that suggested by the zeroth-

order average shown above. If WD is not significantly stronger than wl, the higher

order terms of the Magnus expansion become more important. In addition, if the

strength of the 1-3 and 2-3 couplings are different, additional two and three body

terms appear in the Hamiltonian.
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Figure 3-1: Two pairs of strongly coupled spin-½ systems with each pair decomposed into
its singlet and triplet manifolds (in the rotating frame). The triplet manifolds
are weakly coupled to each other while the singlet manifolds do not interact.

Further insight may be obtained by considering the energy level structure of an iso-

lated dipole-coupled pair of spin-1/2 nuclei. This has four energy levels, with three

triplet levels corresponding to a composite I = 1 system and a non-magnetic singlet

with I = 0 [?]. A weakly coupled set of spin pairs will largely preserve this structure,

but transitions between the singlet and triplet will no longer be forbidden due to the

coupling between spins on different pairs. Let w' represent the average strength of

the weaker couplings. Figure 1 illustrates how the spin pairs are decoupled from each

other under the amplitude modulated (AM) RF irradiation. If wm = 3w'1/2, the AM

irradiation simultaneously drives transitions 100) -* 01) + 110) and 101) + 110) +-* 111)

of the triplet manifold. The rate at which these transitions are driven depend on

the strength of the modulation field, wl. If w, > wu), the two triplet manifolds are

decoupled from each other and the pairs are isolated from each other. However, if

the RF power is increased further such that w, >_ wS, the triplet sub-space structure

gets destroyed as the strong coupling between the spins within the pair is decoupled.

Thus, our scheme works in the regime where wm. 3wSD/2 and wLs > W, > w'. Not

surprisingly these are exactly the same conditions as obtained in the previous section.

Intuitively, the RF modulation allows us to move into an interaction frame that is

moving with the magnetization of the dipole coupled spin pair. The experiment bears

some similarities to the spin-1 decoupling experiments originally proposed by Pines

and coworkers [53, 54]. In fact they suggest that their method could be used to

decouple a heteronuclear spin from a pair of identical spins. However, the scheme
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presented here goes further, and permits a coherent evolution of the isolated spin

pair while decoupling the pairs from each other.

It is also useful to move into the interaction frame of the RF modulation. The zeroth-

order average Hamiltonian [811 of an isolated spin pair in the interaction frame of the

RF modulation is

/ (0) h S 1 2

d~I IdD X X Y oz +
3h8 (4Wl 2

where the average has again been performed over one period of the amplitude mod-

ulation (t = 27r/wmn = 47r/3ws). Starting from the equilibrium state where the spins

are along the external magnetic field, a collective 7r/2 rotation of the spins places a
spin pair in the initial state al + Oa. This state commutes with the first term of the

interaction Hamiltonian shown above, and the effective evolution is only due to the
second term aorl-2 -_ 0'yla2.2 The set of operators, (aI + or, aa1 1+or , + 1 -2oIc)

form a subalgebra under the commutator that is isomorphic to the Cartesian subal-

gebra (a", a,, or). Thus the strongly coupled spins oscillate between the single spinstaea+a 12 O2 + ao2.
state or, + and the two spin state a + Y ua . If the first term of the Hamiltonian

in Eq. 3.7 were absent, this scheme would map onto a nearest neighbor interaction,

and as long as the initial state of the spin pairs was within this subspace, leakage out
of the subspace would be substantially suppressed. However, in the current scheme,

the initial state should be both within the subspace and commute with the first term

of Eq. 3.7. For an ensemble of spin pairs, only the collective a., state satisfies these

conditions.

3.3 Experimental Results

Gypsum (CaSO4 2 H2 0) was taken as a prototypical system for a weakly interacting

ensemble of identical spin pairs. The protons in the waters of crystallization comprise
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the strongly coupled spins. The coupling between protons on different water molecules

is significantly smaller than that between protons in the same molecule. A unit cell of

gypsum has four water molecules, with two pairs in two inequivalent sites. When the

external magnetic field is applied along the [010] orientation, the dipolar splitting at

the inequivalent water sites coincide and a Pake doublet is observed (see Fig. 3-2) in

a one-pulse experiment [56]. In this orientation the strong dipolar coupling between

protons in the water molecule is wS /27 = 14.8 kHz, and the mean coupling between

protons on different water molecules is w'/27r = 5.5 kHz.

The experiments were carried out at room temperature at 7.1 T (1H 300 MHz) using

a Bruker Avance spectrometer on a 1 mm3 single crystal of gypsum in the [010]

orientation. The length of the 7r/2 pulse used was 1.67 pis. The experiment was

repeated as the duration of the AM RF was varied from 100 js to 2.9 ms with an

increment of 5.5 Ms. The signal was Fourier transformed with respect to the length of

the modulation pulse to yield the spectrum shown in Fig. 3-2(b). Fig. 3-2(c) shows

the observed -o ao, terms plotted against the length of the modulation pulse [57]. A

dramatic narrowing of the spectral line is observed in the experiment. The effective

T 2 of the spins under the modulation is 11.1 ms which corresponds to a linewidth of

29 Hz. This is a factor of 572 times smaller than the 16.6 kHz width of a single line

of the Pake doublet.

In order to demonstrate that the spin pair continues to undergo a coherent evolution,

we performed a second series of experiments to specifically filter out and separate the

4 ± ax2 and the l+ aZa2 terms. The two experiments are shown in Figure 3-3.

Figure 3-5(a) shows the coherence transfer under the dipolar Hamiltonian while Fig. 3-

5(b) shows the coherence transfer under the action of the modulation sequence. Under

the dipolar coupling the interactions with distant spins rapidly generate higher order

spin correlations, and there is a strong damping of the oscillation between the single

spin and the two-spin terms. However, under the modulation sequence this oscillation

is seen to extend out significantly farther. Thus the observed line-narrowing is not a

form of spin-locking of the single spin terms, as occurs under strong RF irradiation,
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(a) X Y X R Y Mo) X X y
Y x Y X.Y y x y x y
Y, y R XY Y Y X

H -- iA--AA 150 9S r H FIAAA I
H HAA•AVVV

Figure 3-3: (a) pulse sequence used to read out the a' + U2 terms. Following the modu-
lation pulse, a 7r/2 pulse is applied to rotate the u. terms to a.. During the
150 its interval (much shorter than T1 ) all terms other than the a, decay. A
7r/2 pulse is then used to monitor a.. (b) pulse sequence used to read out the
aYaO÷,+U 2 term. Following the modulation two back to back 7r/2 pulses act
as a double quantum filter to suppress the single spin a, terms. A four step
phase cycle is necessary to implement the filter.

but is due to the selective decoupling of the weaker interactions between spins on

different pairs.

3.4 Conclusions

In conclusion, we have demonstrated that it is possible to restrict the evolution of

a dipolar coupled spin network to a much smaller subspace of the system Hilbert

space. This restriction allows us to significantly extend the phase coherence times for

selected states. The scheme developed works for a system consisting of an ensemble

of spin pairs, where the coupling between spins in the same pair is stronger than the

coupling between spins on different pairs.
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(a) (b)

1 i :
o 0.25 a,-.2

'D 0

100 300 500 700 100 300 500 700
evolution time (vs) evolution time (US)

a) 7(d)
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evolution time (gIs) evolution time (gis)
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Figure 3-5: The solid line shows the u• + o• and the dashed line shows the a~ua2+ auz
terms. Under the modulation sequence, the terms oscillate 90 deg out-of-
phase with each other. The RF amplitude w1 is varied from 2wSD/4 to 7w•/4
in steps of w•/4. When the value of w1 is no longer in the optimum range,
the amplitude of the signal is significantly attenuated.
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CHAPTER 4

SENSITIVITY OF HIGHLY CORRELATED

MULTIPLE-SPIN STATES TO THE

PRESENCE OF RARE SPINS

4.1 Introduction

Solid-state spin-based NMR QIPs are a useful test-bed for the coherent control of

modest Hilbert spaces. Using existing solid-state NMR techniques, one can study

the dynamics and control of many-spin states. Here we explore our ability to control

many spins in the presence of small number of spin defects. In the following sub-

section, we give a brief overview of the solid-state NMR techniques used to create

and detect these many-spin states.

All the spins in a rigid spin lattice strongly interact with one another through their

dipolar fields. In high magnetic fields and following a 7r/2 pulse, the evolution of

the spin system is dominated by the secular dipolar Haxniltonian. This interaction

creates highly correlated multiple-spin states causing the measured signal (Free In-

duction Decay - FID) to decay. The observable magnetization in NMR (as measured

by the FID) comprises of the single-spin single quantum'states. These single-spin sin-

gle quantum states are transformed into unobservable multiple-spin single quantum

states under the action of the dipolar Hamiltonian. By encoding the higher order
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coherences of the multiple-spin states in a non-commuting basis of the secular dipolar

Hamiltonian, Cho et al. [9] have studied the growth of these coherent multiple spin

correlations during the FID. Solid-state NMR provides a ideal test-bed to investigate

not only the growth of these large, correlated quantum states but also the dynamics

and control of such states.

4.1.1 Creation and detection of highly correlated multiple-

quantum states

In a strong magnetic field, (Bo:), a N-spin 1 system has 2N stationary states. These

states can be classified according to the magnetic quantum number M_.

m = E nj = (N+½-N )/2 (4.1)
2

where m~j is the eigenvalue of the jth spin in the system. m,j can take the values of
either 4 N+i and N _ are the number of spins pointing up and down respectively.

2 2

The energy eigenvalue corresponding to m is E, = --yhBom. In the case of non-

degenerate states, there are on the order of 2 2N-1 possible transitions between any

two energy levels. The difference in the M. values between the two levels is known

as the coherence number.

When the state of the spin system is expressed in its eigenbasis as a density matrix,

the presence of a non-zero matrix element (< z1 I p I zj >) indicates the presence

of a n-quantum coherence where n = m(zj) - m(zi) (the difference between the

magnetic quantum numbers of the two basis states zi and z3). This in turn indicates

the presence of a superposition of the basis states zi and zj in the state of the spin

system.

In theory, one can create multiple-quantum states by exciting the thermal equilibrium

spin state (p(O)) using the double quantum (DQ) Hamiltonian given by:

HDQ = 'jkD•t + I --Iu } (4.2)
j<k
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Figure 4-1: Energy level diagram of a N spin-12 system. The eigenvalue of [,can take
any value from L to -!E. The number of levels for each allowed eigenvalue
is (m+N ). Thus the number of allowed single-quantum tastosices
exponentially with N and are thus unresolvable in large spin-systems.
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Though this particular form of spin interaction is not provided by nature, it can be en-

gineered using standard multiple-pulse cycles based on coherent averaging techniques

[58]. These multiple-pulse cycles implement an effective DQ Hamiltonian (HLDQ) over

the period of the pulse cycles.

Preparation Evolution Mixing Detection

T I2 I 
1

------ ------ ------ --.--- -----. .... ... .... ... ... ...................... i
p (0) P (T1) p (Tl+± 2) preadout

Figure 4-2: The basic form of a multiple-quantum NMR experiment [63] - (i) Prepara-
tion: Creating the highly correlated multiple-quantum states. (ii) Evolution:
Evolving these states under any desired Hamiltonian. (iii) Mixing: Trans-
forming the higher order coherences to observable single-spin single quantum
coherences. (iv) Detection: Measuring the observable single-spin single quan-
tum magnetization

A basic multiple-quantum NMR experiment is shown in Fig. 4-2. The DQ Hamil-

tonian is effective during Ti and creates highly correlated multiple-spin states in the

preparation stage. These states give rise to a distribution of higher order coherences,

which are encoded as phase factors (0) using a collective rotation about the z-axis

p( T1 ) = e-- jie---- r p(O) eH-DQ re1-,biJI (4.3)

In the evolution stage during T2 , we evolve the system under any desired Hamiltonian.

By time-reversing the DQ Hamiltonian evolution in the mixing stage, higher order

coherences are transformed to observable single-spin single quantum terms.

p et e" Q' p(Ti + Ti) )
adot =e (+- 2 )e r vQ o(4.4)

S(t) = Tr{(Z It) preadoti} (4.5)
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To extract the coherence order distribution in p(T-1 + -2 ), the signal (S(t)) observed

in the detection stage is Fourier transformed with respect to €.

Several pulse sequences have been developed to create and detect multiple-quantumn

coherences f59, 60, 61]. However, time-reversal schemes during preparation and detec-

tion are most widely used since they enhance the intensity of the multiple-quantum

NMR experiments by refocusing the dipolar interaction [62, 63, 64].

While the advent of a n-quantum coherence in the coherence order distribution guar-

antees the creation of a n-spin state, it does not arise solely from such a spin state.

Thus the distribution of the sizes of the highly correlated spin clusters for various

excitation times under the DQ Hamiltonian is not known. However, as the excita-

tion time period - -1 increases, higher order spin coherences emerge, indicating an

increase in the effective size of these spin clusters. Even without precise knowledge

of the size of the spin cluster, one can gain some insight on the many-spin dynamics

by manipulating the existing multiple-quantum techniques. These techniques have

been used extensively to study many body spin dynamics in dipolar coupled solids

[65, 66, 67, 68]. It has also been used to probe spatial relationships between spins

in large macromolecules, determine the size of spin clusters and in spin counting

experiments [59, 60, 69, 70].

4.1.2 Decay of highly correlated multiple-spin states in CaF2

The cubic lattice of 100% abundant ` 9F spin-1/2 nuclei (denoted as I in the rest of

this section) in a single crystal of CaF2 have been used to study the decay of highly

correlated multiple-spin states. Cho et al. report the effective T2 under the dipolar

Hamiltonian and under a time-suspension (C-48) sequence. See Figs. 4-3 and 4-4.

The measurement was repeated for various periods of preparation under the grade-

raising operator (DQ Hamiltonian). For a given coherence number, larger preparation

3The experimental data on CaF2 has been extracted with permission from the doctoral
thesis "Exploring large coherent spin systems with solid-state NMR", by H. Cho, submitted to the
Department of NSE, MIT, February 2005.
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periods incorporate more spins leading to larger clusters of correlated spins. We see

in the figures that for both the dipolar evolution and the time-suspension sequence, as

the number of spins in the cluster increase, the variation in T2 with coherence number

vanishes. Also, we note that the T2 grows more slowly with spin number than simple

theory predicts.

16

14 Preparation time ('r1 )

o 43.4 ps
12 - 86.8 pis

A• 130.2 pS

A •0 173.6 gs
10 X 217jisL 

* 260.4 pS
) 

303.8 I
E 8-

o+
6-1 x X x ((

01

o 6
xx

0 10 1 20 25

Coherence Number

Figure 4-3: Effective decay times of various coherence orders due to the action of the
secular dipolar Hamiltonian. Highly correlated spin-19 F states in. CaF2 are
created by exciting the thermal spin-1 9F state using the DQ Hamiltonian.
The effective decay times of the coherences for the various excitation times
(r1 ) are plotted.
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Figure 4-4: Effective decay times of various coherence orders of the the highly correlated
spin-19F states in CaF 2 . In this case, the secular dipolar Hamiltonian is
suppressed using a multiple-pulse C-48 sequence. The effective decay times of
the coherences for the various excitation times (71 ) under the DQ Hamiltonian
are plotted.

4.1.3 Effect of rare spins on the decay of the multiple-spin

states.

To understand this decay behavior, we take a closer look at the spin-system on which

these experiments were carried out. In a CaF2 single crystal, a spin-7/2 isotope of
43Ca is present in low (0.13%) concentrations. Thus in addition to the homonuclear
1 9F (HI') dipolar spin interactions, the internal Hamiltonian of the spin system in-

cludes the heteronuclear 1 _F-43 Ca (fIS) and the homonuclear 4 3Ca (Hss) dipolar

spin interactions. Denoting this rare spin species as S, the initial equilibrium thermal
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spin state and the on-resonance internal Hamiltonian are given by:

p(O) = I. + E+ SkZ
k

Hin = Hf,' + HS + HF (4.6)
- HD' + E + 4 D.Ifs TSA.

j<k jd, kcS

The multiple-pulse sequence that creates the effective DQ interaction averages out the

heteronuclear interaction (Hf1s) to the 0th order approximation. The efficiency with

which the HDs and HDs interactions are suppressed during this excitation period (r l )

affect the initial coherence order distribution of the created multiple-quantum spin-I

states. However, the inefficiencies of the multiple-quantum creation process should

not affect their subsequent decay which is the focus our discussion.

The C-48 sequence while averaging out the spin-I dipolar interaction, also averages

out the heteronuclear interaction. Since H` S- 0, we would expect that the presence

of S spins in the system will have no effect on the multiple-quantum spin-I states.

If we could instantaneously 'switch-off' the dipolar coupling between the I and the

S spins, our naive expectation would indeed hold true. However, this heteronuclear

interaction is not zero at any given time point during the C-48 sequence. It averages

to zero over the total cycle time of C-48 sequence. Thus we should not neglect the

presence of S spins in the system.

To get a more intuitive understanding, we consider a model spin system comprising

of a single S spin (labeled as S$) and an abundant number of I spins with a internal

Hamiltonian given by

Hin = Hf,' + Hf1s= H,' + EDI-rS 1  (4.7)

Applying the DQ Hamiltonian on the equilibrium thermal spin state, we create our

initial multiple-quantum spin-I states. The corresponding density matrix p(r1 ) is
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Figure 4-5: The model system (on the right), consists of one S spin (labeled as S 1 )
interacting with an abundant number of I spins. The C-48 sequence averages
out the homonuclear interaction between the I spins during 7 2 . During this
time interval (r 2 ), Si is correlated with the multiple-quantum spin-I states
present in p(1-i). But if the S1 spin state remains constant during %•, the
heteronuclear interaction is also averaged out under the action of the C-48
sequence. Thus S, is no longer correlated to the spin-I states at the end of r 2.
However if S flips at any point during this interval, it will remain correlated
with the spin-I states even at the end of r 2.

allowed to evolve under the C-48 sequence over a time period r2.

P'(Ti) Trs, [e_"RQ p(O) ] (4.8)

p'(T 1 + T 2 ) = Trs1 [U (-t'( )US, ( )P(T2)U'IS (2)Ut-IS( A pI(T1)
2 2 2-

(4.9)

Since the C-48 sequence averages out the HuLs interaction, the density matrix (ob-

tained following a partial trace of the Sl spin) p'(T 1 +r 2 ) undergoes zero net evolution

over the period T2 (as shown in Eq. 4.9). Now if the S1 spin flips in the middle of T 2 ,

the density matrix (obtained after tracing out SI) is no longer preserved.

-is 1 T2  s1 irUIS1 (T 2  2 t 7 I(2p (7r1 + T2) = Trs,[U-'S'(-)u () ()p(7)UrS , ( )U ,( )Uf Ts
2 w 2 2 2

$ P(TO) (4.10)

This holds true independent of when the spin flips during the course of the time
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interval. See Fig. 4-5. In a solid-state spin system, energy conserving spin-flips can

occur due to the flip-flop term of the homonuclear dipolar interaction.

I (C-48 Sequence)

p (D1 ) D[HD+ I/ 2  DI i SDI e _ ___i

e e

•0 \0•
I........................... .......................... I

T;2

Figure 4-6: The model system (on the right), consists of one S spin (labeled as SI)
interacting with an abundant number of I spins and a few neighboring S
spins. We assume that these S spins interact only with the S spin. The
homonuclear interaction between the I spins is averaged out during r2 using
the C-48 sequence. The Hamiltonians HIS' and HSS1 do not commute. Thus
the multiple-quantum spin I states present in p(-rjI evolve under their action
during 7-2 .

To incorporate these spin-flip effects, we upgrade our model system to include a few

neighboring S spins that interact with the S spin. To simplify our arguments, we

assume that these S spins do not interact with each other or with the I spins. These

assumptions do not affect the conclusion we derive from the following arguments.

The internal Hamiltonian of our model system is given by Eq. 4.11.

A= H +D' HSs' + HIfs' (4.11)

-- 1-(S; S1 ±- - ZD-'IjzS-z

-Dj1 j 1

Under the dipolar interaction H ss1, the total spin-S magnetization is conserved, not

the state of the individual spin- S1. Therefore, the Hamiltonians Hss' and HIS'

do not commute and the net evolution during the first half of 72 can no longer be
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refocused during the second half. See Fig. 4-6.

p'(T1 + T2 ) = Trsý [UssI-s1 (T2)USS+IS, (T2)()ufSS1 ±St (T2)Utssl-S1(72) )

When the coherence order distribution of spin-I states is extracted from p'(T1 + T2 ),

we will see a decay of the higher order coherences. Thus in this simple model, a single

spin-S (SI) interacting with neighboring S spins act as a spin defect for the highly

correlated spin I states.

Going back to the coherence decay experiments under the secular dipolar Hamilto-

nian, neglecting arbitrary errors in experimental implementation, HJD and HIIS aver-

age to zero. However, the finite time period over which the heteronuclear decoupling

takes place ensures that energy-conserving spin flips between neighboring S spins will

lead to multiple-quantum spin-I transitions which are not refocused during the time-

reversal of the DQ Hamiltonian - thus leading to a coherence order decay. Therefore,

we need to refocus the homonuclear interaction (Hss) since it facilitates these energy-

conserving spin flips via the flip-flop component of its Hamiltonian. Moreover, the

HDJS interaction needs to be averaged out on a time-scale which is fast with respect

to the spin-S homonuclear dipolar coupling strength.

The C-48 sequence applied on the 19F spins suppresses only the homonuclear 19F

interactions and the heteronuclear '9F-43Ca interactions. Thus the 43Ca spins act as

centers of decoherence for the highly correlated multiple-spin states of the abundant

"1F spins. We need to design new control sequences that address these rare spin

homonuclear interactions and thus refocus the full internal Hamiltonian of the spin

system. The decay rates of the highly correlated abundant spin states measured under

this complete refocusing scenario will provide a more accurate measure of control of

such states.
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4.1.4 Sensitivity the of highly correlated multiple-spin states

to the presence of rare spins

Quantifying the effect of these rare spins on the spin system dynamics is quite chal-

lenging - techniques that involve direct observation of these rare spins are experi-

mentally unviable due to low S/N ratios. 'Spy detection' techniques [72] allows us to

circumvent this problem by letting us take advantage of the higher bulk sensitivity

(due to higher concentration) of the abundant spins in the system. This technique

utilizes a particular spin species as a probe to monitor the behavior of a neighboring

spin species. Spy techniques have been used to study spin diffusion in a single crystal

of ferrocene. Ernst et al. proposed an indirect measurement of diffusion among the

abundant spins (1H) using the rare spins ("3C) as a probe.

For our sensitivity measurements, we excite the abundant spins in the system using

the DQ Hamiltonian. This creates highly correlated multiple-spin states while pre-

serving thermal F magnetization of the rare spins. We then isolate the effect of the

rare spins on the dynamics of these abundant spin clusters. This involves designing

a control sequence that selectively turns on the dipolar interaction between the rare

spins and clusters of the abundant spins. Since all the spins (both abundant and rare)

interact at all times through their dipolar couplings and chemical shifts, we must si-

multaneously suspend all the homonuclear spin interactions. To quantify a change

in response, we also need a reference experiment against which we can measure this

change. We design another control sequence, which in addition to suspending all the

above interactions, turns off the interactions between the abundant spin clusters and

the rare spins. We measure the relative intensities of the multiple quantum coherence

of the abundant spins in both cases. Comparison of the intensities allow us to quantify

the sensitivity of the abundant spin clusters to the rare spin defects. In the rest of this

chapter, we refer to these two multiple-pulse control sequences as the heteronuclear

recoupling (HR-96) sequence and the time-suspension (TS-96) sequence respectively.

In the next section, we give a brief overview of average hamiltonian theory which was

used to design these control sequences.
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Figure 4-7: Sketch of the experiments designed to detect rare spins ( S ) using the highly
correlated multiple-spin states of the abundant spins ( I ) as a 'probe'. It
involves contrasting the effect of the two control sequences (in (a) and (b))
on the intensity of the multiple quantum coherence of these correlated spin I
states.

4.2 Overview of average Hamiltonian theory

The concept of average hamiltonian theory has been used to design a wide range of

pulse experiments. If a spin system is evolved under a periodic and cyclic sequence of

RF pulses and delays (i.e., free evolution under the internal Hamiltonian), at periodic

observation points it acts as if it was exposed to a time-independent average internal

Hamiltonian. The time period between successive observations must however be much

smaller then the spin lattice relaxation times. In between these observation times,

the spin system passes through a complex array of states depending on the applied

RF pulses. The average Hamiltonian defines the state of the system at successive
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observation times also known as the cycle time ( t, ) of the sequence. One of the

important features of this theory is that it provides a simplified means of designing

pulse sequences in solid state spin systems where calculations using density matrices

are not possible.

If the sequence of RF pulses is cyclic ( Urf(tc) = ±1), periodic ( Hf(t) = Hf (t +

Nt,) ), the average Hamiltonian H is given by the Magnus expansion (written as

Eq. 4.12). The 0 th order average Hamiltonian is given by Eq. 4.13 and the 1Pt order

average is given by Eq. 4.14.

H I=TO + 71 + F2 + FT + .(4.12)

1 ft'
g° = 1 j Hi,,(t)dt (4.13)

-- -i ftt2Ht2 IH (tl), Hi~t(t 2)]dtjdt2  (4.14)

where H-Iit(t), also know as the toggling frame internal Hamiltonian, is given by

Hi(t = UýFlHintURF (4.15)

UpF which is the unitary RF operator determined by the applied pulse sequence, is

given by the Dyson time-ordering functional as expressed in Eq. 4.16. Each term U,

refers to the propagator corresponding to the ith RF pulse of the pulse sequence.

URF = Te-i fo HRF(t)dt ....U4U 3 U 2 U1  (4.16)

Since the RF field is of finite strength, the evolution of the internal Hamiltonian during

the duration of the pulse should be taken into account. The convergence of the series

has been discussed by Maricq [73]. If the cycle time of the pulse sequence is short

compared to the T2 characterizing the homogenous broadening due to the interaction

being averaged, the RF fields applied during experiments are strong enough that
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calculation of the first two terms of the Magnus expansion (as given by Eqs. 4.13

and 4.14) provide a good approximation of the average Hamiltonian H. Furthermore,

designing the RF cycle to be symmetric gives the added advantage that all the odd

order terms identically go to zero [74, 75]. This appealing property has been used

repeatedly to design line narrowing sequences.

4.3 The C-48 time-suspension sequence

Time-suspension sequences have been widely used in NMR for purposes of imaging in

solid-state samples [76, 77, 78]. Designing multiple-pulse cycles, that improve the line-

narrowing efficiency by compensating for pulse errors while averaging out the dipolar

spin interactions, has been the goal of NMR physicists since coherent averaging tech-

niques were proposed [58, 75]. Other uses of time suspension sequences include the

study of spin diffusion and molecular motion through relaxation experiments [79, 80].

Table 4.1: The average Hamiltonian for various time-suspension sequences

Average Hamiltonian terms Second-averaged MREV-8 16 pulse cycle 24 pulse cycle

HD 0 0 0
--1

HD 0 0 0

HD #0 #0 0
--1

HDO 0 0 $ 0

Ho 0 0 0

If a homonuclear spin system is off-resonance, the internal Hamiltonian can be written

as Hint = Ho + HD, where Ho and HD are given by Eq. 4.17

Ho = hAW'ZIiz

HD = E Dk{ziH k _4( +- +•j ) (417

j<k
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The WAHUHA sequence, the second-averaged MREV-8 and other 16 and 24 pulse

supercycles based on the MREV-8 sequence, average out some or all of these homo nu-

clear spin interactions with varying degrees of efficiency [81, 82]. The average internal

Hamiltonians under these time-suspension sequences are listed in Table 4.1. By fo-

cussing on the state of the offset Hamiltonian in the toggling frame, Burum and Rhim

used a simple notation to describe multiple-pulse cycles. For e.g., the toggling frame

offset Hamiltonian during a solid-echo pulse pair cycle: T-- (7r/2),-- r- (r/2)y- 7-

can be written as (Iz, -Iy, -I,). Denoting the three orthogonal directions in the spin

space as a, b and c, this solid-echo pulse sequence can be rewritten as (abc). Using

this notation, the three time-suspension sequences can be written as follows:

"* Second averaged MREV-8: (abc)(cba),(abic)(cba),.

"* The 16-pulse cycle: (abc)(cba)p(•bi))(-ba)p(abc)(iUbK)p(ib-c)(cba)p

"* The 24-pulse cycle:(abc) (cab) (cba)p(-ac-b)(bac)(cia)p(abi) (cabcb (bci)P(i (ba-)(•-a)p

where the sub-script p indicates that the RF pulse pair are phase toggled.

In [83], Cory et al. proposed a sequence that averaged the dipolar Hamiltonian and

the dipolar-offset cross term to zero up to the 1st order. The C-48 sequence is made

up of three-pulse sequences -A, a, B, b, C, c, ...H, h. See Figs. 4-8 and 4-9. Various

permutations and combinations of two of these three-pulse sequences lead to the

formation of dipolar-decoupled 7r pulse cycles, e.g., (Aa),(Bb),(Cc),(Dd),(Ee)...Eight

of these dipolar-decoupled 7r pulse cycles are combined to form a 'super cycle' that

averages out to zero all the terms in Table 4.1. The complete C-48 sequence can be

written as: (Aa)(Bb)(Cc)(Dd)(Ee)(Ff)(Gg)(Hh).
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Figure 4-8: The schematic diagram of the three-pulse sequences used to design the C-48
sequence, where the horizontal striping indicates an y-pulse, vertical striping
an x-pulse. All the pulses induce rotations by ir/2. (or the negatives thereof
if the pulses are below the bold reference lines)
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4.4 The design criteria for the new time-suspension

and heteronuclear recoupling sequences

In a heteronuclear spin system, the internal Hamiltonian is modified to include both

the homonuclear as well as the heteronuclear spin interactions.

Ho hAw Ij, + hAws :SZ ,,

k

Hi.= H, + H SH + HIDs

ZDik{Izu -_(1+, ')} + 1 1+j<k 4j<k 4iý S

+ E Djs{Ik3sf } (4.18)
jd, kcS

Djs is the heteronuclear dipolar coupling constant between the jrh spin-I and the

kth spin-S. The homonuclear dipolar constants for the jth and kth spins of spin-I (or

spin-S) is defined by DII (or DSs respectively). In general, the dipolar constant can

be defined as

D-0 Ith ( 1 - 3cos 293 k ) (4.19)

where -y, and -y are the gyromagnetic ratios, -T7k is the distance between jth spin-

a and kth spin-Q, and Oik is the angle between the external magnetic field and the

internuclear vector ?jk.

In designing the new time-suspension sequence, the objective was to average out all

the homonuclear and heteronuclear interactions as expressed in Eq. 4.18. Note that

if the C-48 sequence is applied to one of nuclear spin species, for e.g. spin-I, the S

spins will evolve under the spin-S offset and dipolar terms (the 2nd term of Ho and

HD respectively in Eq. 4.18). However, since the spin-I offset term goes to zero to

the 0th order, the heteronuclear dipolar interaction between the I and S spins (i.e.,

the 3rd term of HD in Eq. 4.18) also goes to zero. Applying the C-48 sequence to
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both I and S spins will average out all the homonuclear interactions. However, it will

lead to a resultant heteronuclear strong coupling (I.S) interaction.

The dipolar spin interactions have varying strengths. We assume that for our model

system, the average strength of the dipolar spin interactions (in descending order)

can be written as: D1 >» DIS > Dss. Note that for many typical solid-state

samples, these are the correct assumptions. Since the spin-I average homonuclear

dipolar interaction is the strongest, it needs to be averaged out faster than the other

interactions. Using the three-pulse sequences - A, a, B, .. .h (shown in Figs. 4-8 and

4-9) as building blocks, we construct two 96-pulse sequences for the S spins. The

multiple-pulse cycles of the TS-96 and HR-96 sequences average out the spin-S dipolar

and offset interactions. At the same time, the multiple-pulse cycle of the HR-96

sequence selectively reintroduces the heteronuclear dipolar interaction. To average out

the spin-I dipolar and offset interactions, we apply two back-to-back C-48 sequences

to the I spins. Both pulse sequences consist of 16 six-pulse sub-cycles. Each six-pulse

sub-cycle averages the homonuclear dipolar Hamiltonian (for both I and S spins) to

zero. The details of the composition are written in Table 4.2. In the case of the TS-

96 sequence, the complete averaging out of all interactions require 16 sub-cycles (96

pulses). The RF sequence applied during sub-cycles 9:16 is the same as that applied

during sub-cycles 1:8 except that all 48 pulses in the first eight sub-cycles are phase

shifted by r. For e.g. in Table 4.2, i denotes a pulse-sequence in which the three

applied RF pulses of the pulse-sequence a are phase shifted by 7r. In the case of the

HR-96 sequence, all undesired interactions are averaged out at the end of sub-cycle

number 8 i.e., after every 48 pulses. Thus in sub-cycles 9:16, the sequence applied in

sub-cycle 1:8 is repeated. This was done to ensure that both sequences had the same

cycle time.
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Table 4.2: Composition of the sub-cycles of the TS-96 and HR-96 sequences

Sub-cycles numbers n TS-96 HR-96

I S I S

1 Aa aE Aa bE

2 Bb fB Bb fA

3 Cc dG Cc dG

4 Dd hD Dd hC

5 Ee bF Ee aF

6 Ff eA Ff eB

7 Gg cH Gg cH

8 Hh gC Hh gD

9 AaaE Aa bE

10 Bb fB Bb fA

11 Cc dG Cc dG

12 Dd h7D Dd hC

13 Ee bF Ee aF

14 Ff eA Ff eB

15 Gg cH Gg cH

16 Hh gC Hh gD
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4.5 The properties of the TS-96 and the HR-96

sequences

The average Hamiltonian properties of TS-96 and HR-96 are listed in Table 4.3.

The HR-96 sequence scales down the heteronuclear interaction by a factor of . For
9.

detailed calculation of the average Hamiltonian terms, please refer to the Appendix.

As mentioned before, average Hamiltonian theory allows one to follow the complex

Table 4.3: The average Hamiltonian properties of the TS-96 and the HR-96 sequence
taking into account finite pulse width effects

Terms of Average Hamiltonian TS-96 HR-96

-H(between I spins) 00
HD(between S spins) 0 0

-- 1

Dn(between I and S spins) 0
9

-Hto(for I spins) 0 0

-Ho(for S spins) 0 0

path that the spin system takes when multiple pulse sequences are applied. In other

words, one can calculate the rate at which the various product operators that span

the interaction space average out over the whole duration of the sequence. This is

especially useful considering that some of the interactions are much stronger than

the others. Ideally, one would like to average out all the interactions as quickly as

possible. However, considering the complexity of the problem, our approach has been

to preferentially average out all the stronger interactions faster than the weaker ones.

In Table 4.4 we show the rate at which the various interactions average to zero with

out taking into account the finite strength of the applied RF pulses. In Table 4.5

we show the same taking into account these finite pulse width effects. Note that all

undesired interactions average out within 8 sub-cycles for both sequences in the 01h

order approximation. However for the TS-96 sequence, we require 16 sub-cycles to

average out some of the undesired interactions to the 1"t order approximation.
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Table 4.4: Sub-cycles at which the various interactions average to zero for the TS-96 and
the HR-96 sequences without taking into account finite pulse width effects

Terms of the Average Hamiltonian Number of sub-cycles

TS-96 HR-96

HD(between I spins) 1 1
Hn(between S spins) 1 1

-HDm(between I and S spins) 8 -

H (for I spins) 8 8

H10(for S spins) 8 8

Table 4.5: Sub-cycles at which the various interactions average to zero for the TS-96 and
the HR-96 sequences taking into account finite pulse width effects

Terms of the Average Hamiltonian Sub-cycle num- Sub-cycle num-
ber of the TS-96 ber of the HR-96

-DO
HD(between I spins) 1 1
-aO
HD(between S spins) 8 2

--o
HD(between I and S spins) 8

HD(between I spins) 2 2

HD(between S spins) 16 4

HD(between I and S spins) 16 -

-Ho(for I spins) 8 8

-io(for S spins) 8 8
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- Time Decouple - Heteronuclear Decouple

(a) = Suspension (b) = Recoupling
- Sequence = Sequence

13 C (TS-96) Detection (HR-96) DetectionC~~ (HR96 Detection~-______

Figure 4-12: The schematic of the experiment that measures the effective T2 of the 13C
in adamantane under (a) TS-96 sequence and (b) HR-96 sequence. Before
applying the two sequences, we use a ir/2 pulse to flip the I3C spins on to
the transverse plane. The 13 C magnetization is measured while decoupling
the 1H spins.

4.6 Experimental Results

Adamnantane (CGoH, 6) was taken as a prototypical system with an ensemble of abun-

dant ('H spins) and rare spins (the natural abundance '3 C spins). Adamantane

undergoes rapid molecular reorientation above 160K [84]. This rapid isotropic molec-

ular rotation averages all the intramolecular magnetic interactions to zero [84, 85].

The largest interaction in the spin system is the intermolecular homonuclear 'H dipo-

lar coupling which leads to a static proton line-width of 13,800 Hz (full-width at half

maximum). The average "3 C dipolar coupling strength is approximately 50Hz [861

while the 13C-1H hetero nuclear coupling .was measured to be 500Hz [87]. The T1

relaxation times for 'H and ' 3 C spins are approximately 0.5 s and 30s respectively.

The experiments were carried out at room temperature at 9.4 T ('H 400 MHz) using

a Bruker Avance spectrometer on a 5 mm 3 powdered sample of adamantane.

4.6.1 Effective T2 relaxation times of 13C spins under the TS-

96 and the HR-96 sequences.

First we tested the efficiency of the the TS-96 and the HR-96 control sequences. We

used their line narrowing capabilities as measure of their efficiency. As shown in

section 1.4, the TS-96 sequence suspends all spin interactions. Thus the line narrow-

ing efficiency of this sequence should be much superior than other time suspension

sequences like the C-48 sequence. To compare the line-narrowing efficiencies of the
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Figure 4-13: The 13C signal intensity plotted after every 96- pulse cycle of the the TS-96
(0) and the HR-96 (o) sequences. The cycle time period of 1728 its.

different sequences, we measure the effective T2 of 13C spins for each sequence.

As shown by the schematic in Fig. 4-12, we run a set of 2-D experiments which

measures the "C magnetization after every 6 pulse sub-cycle of the 96 pulse sequence.

To simulate a stroboscopic measurement, the amplitude of the 5 1h point of the free

induction decay (FID) for each experiment is plotted. See Fig. 4-14. The 7r/2 pulse

length for 13C was 3.8 /ps. The optimized 1H 7r/2 pulse length was 4.8 ps. The

spacing between two consecutive pulses was set at 6 ps for both sequences leading to

a 6 pulse sub-cycle time of 108 /Is. The effective T2 in the case of the TS-96 sequence

and the HR-96 sequence were measured to be 4.02 ms and 974 ps respectively. Note

that in the case of the TS-96 sequence, the signal intensity does not go to zero at

longer evolution times due to a spin-locking effect. Thus the calculated linewidths in

the two cases are 75 Hz and 300 Hz respectively. We also carried out a 13C observe

experiment with 1H decoupling using the C-48 sequence (similar to the experiments

outlined in Fig. 4-12). The effective T2 was measured to be of the order of 1 ms.

These results prove that for heteronuclear spin systems, the TS-96 sequence has more

efficient line-narrowing capabilities as compared to the C-48 sequence.
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Figure 4-14: The 1 3 C sigi~al intensity plotted after every 6 pulse sub-cycle of the (a) TS-
96 and (b) HR-96 sequences. The sampling rate in both cases is 108 As.
The points marked by E in (a) and * in (b) indicate the signal intensity
after the full 96-pulse sequence. The system was evolved up to 4 cycles of
the 96-pulse sequences with a cycle time period of 1728 Mis.
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4.6.2 Sensitivity of 1H multiple quantum coherence to the

presence of "3C spins

We create the 1H multiple quantum coherence in adamantane by evolving the initial

zeeman state 'H spins under an average double quantum (DQ) Hamiltonian - H"Q.

A collective rotation by 0 about the z-axis is applied to this evolved state where 0 is

uniformly sampled out to a multiple of 27r. The resulting data is Fourier transformed

with respect to 4 to obtain the coherence number distribution. The evolution under

HQ creates even order coherences in the z-basis. A 16-pulse DQ selective sequence -

comprising of two cycles of 8 pulse sequences that compensate for pulse imperfections

and resonance offsets, was used (See Fig. 4-15). To carry out the phase encoding, all

the pulses in the 16 pulse experiment were phase-shifted by 0 [10].

In Fig. 4-16, the maximum coherence encoded was ±64 with AO=27r/128. The phase

incrementation was carried out to 47r. The 13 C 7r/2 pulse length was 3.8 tts. The

optimized 1H 7r/2 pulse length for the DQ selective sequence was 4.3 its. The smallest

delay between the pulses, A, was set to 2 ps, resulting in a cycle time of 151.2 /is.

1H I_(UDQ)o I1 iUDQi I Detection

EE= :~ _EF a
- * * * M -:r -:: - q == =-- -- ,• m.un

=F: F =;= .. .. .

Figure 4-15: The schematic of the experiment that creates 1H multiple quantum coher-
ences in adamantane. The 16 pulse sequence in the shaded box is used to
generate the effective DQ Hamiltonian. The smaller spacing between the
pulses is given by A while the larger spacing is given by the sum of 2A and
the 7r/2 pulse length. Thus the cycle time of the sequence is t, = 24(A +7r/2
pulse length). The vertical striping indicates an x-pulse. All the pulses in-
duce rotations by 7r/2. (or the negatives thereof if the pulses are below the
bold reference lines)
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Figure 4-16: The 1H multiple quantum coherence in adamantane. The system was
evolved under the DQ Hamiltonian for a period of 604.8 As.

We then carry out the experiments outlined in Fig. 4-7. The cycle times of the TS-96

and the HR-96 sequences were set to 1.4 ms. At the end of one cycle of the TS-96

and HR-96 sequences, we can observe up to 32 coherences - though the magnitudes

of the coherences in the case of the HR-96 sequence are substantially lower. See Fig.

4-17(a). At the end of two cycles, this difference becomes more pronounced. While in

the case of TS-96 sequence we observe up to 24 coherences, we do not observe beyond

8 coherences for the HR-96 sequence. For sake of complete comparison, we applied

two back-to-back C-48 sequence with the same total cycle time. For both one and

two loops of this 96 pulse super-cycle of the C-48 sequence, the coherence intensities

are slightly higher than those obtained for the HR-96 sequence. We compare the

net change in intensity of the coherence orders after one loop of the TS-96 and the

HR-96 sequences. We observe that as the coherence order increases, the net change in

intensity also increases. Thus the sensitivity of the multiple-spin state to the presence

of "3C spins increase with the number of correlated 'H spins in the multiple-spin state.

We discuss our results in more details in the next section.
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Figure 4-17: Coherence order distribution after evolution under the TS-96 (solid line),
two back-to-back C-48 (dashed line) and the HR-96 (dotted line) sequences.
The cycle time was l.4ms for all three sequences. Thus, the time period of
evolution (r 2 ) were 1.4 ms (for the top figure) and 2.8 ms (for the bottom
figure).
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Figure 4-18: The net difference in signal intensity for the various coherence orders after
one cycle of the TS-96 and HR-96 sequences.

4.7 Conclusions and future work

In this.chapter, we made an attempt to understand the decay behavior of the highly

correlated multiple-quantum spin- 19 F states observed in CaF2 . We used adamantane

as a test-bed to study the effect of the rare spins on the correlated multi-spin dynamics

for a variety of reasons. Unlike the spin-7/2 4 3Ca spins, all the spins in adamantane

are spin-1/2. Thus designing the multiple-pulse sequences were much simpler since

we could ignore the quadrapolar spin interactions associated with a spin-7/2 system.

Furthermore, the absence of intramolecular interactions, the weaker dipolar interac-

tions and the low T1 times are factors that contribute to the suitability of adamantane

for these multiple-quantum experiments.

For our sensitivity measurements, we developed two multiple-pulse cycles - while

the TS-96 sequence suppresses all the spin interactions in a heteronuclear system

(comprising of two-spin species), the HR-96 sequence selectively reintroduces only

the heteronuclear interaction between the spin species. Existing time-suspension se-
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quences were designed to address interactions (chemical shift offsets and/or dipolar

interactions) of a single-spin species in a spin system. Thus compared to these ex-

isting sequences, the TS-96 sequence has superior line-narrowing capabilities in such

heteronuclear spin systems. Many solid-state spin systems that are studied in NMR

comprise of two-spin species. Therefore this sequence could prove useful for line-

narrowing experiments on similar systems.

The rate at which the various interactions average out should affect the line-narrowing

capabilities (effective T2 times) of the sequences. In adamantane, both the TS-96 and

the HR-96 sequences average out the homonuclear spin-l3 C interactions in addition

to the homonuclear spin-'H interactions. Comparing the rates at which these inter-

actions are averaged out by the two sequences, we see that the homonuclear dipolar

spin-13C interactions are averaged out 4 times faster by the former sequence. Inspite

of that, the measured effective T2 for the spin- 13C was 4 times higher for the TS-96

sequence (as seen in Fig. 4-13). This suggests that the effective T2 is highly sensitive

to the heteronuclear dipolar interaction. However, this effective T2 is still considerably

less than the T1. This could be due to the fact that this heteronuclear interaction is

not being averaged out fast enough.

However compared to the C-48 sequence, the heteronuclear averaging capability of

the TS-96 sequence is vastly superior. While the C-48 sequence averages out the

heteronuclear interaction to the 0 th order without taking into account the finite pulse

width effects, the TS-96 sequence averages out this interaction to the It order while

taking into account the finite pulse width effects. These factors partially contribute

to the higher intensity of the coherence order distribution for the TS-96 sequence.

This noticeable improvement in signal intensity for the TS-96 sequence over that of

two back-to-back C-48 sequences can be seen in Fig. 4-17.

In CaF 2, the measured coherence decay patterns were very similar under both cases

-(i) evolution under the internal Hamiltonian and (ii) suppression of the spin- 19F

homonuclear and heteronuclear interactions. The decay behavior in the first case is

primarily due to the fact that the multiple-quantum transitions under the action of the
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19F (secular) homonuclear dipolar Hamiltonian are not refocused to observable mag-

netization. To explain the decay behavior in the second case, we hypothesized that

even though the 19F-43Ca interaction is decoupled, the presence of rare 43Ca spins give
rise to decoherence effects. Due to the finite time period over which the heteronuclear

interactions are averaged out, the 9̀F spin clusters are correlated to neighboring 43Ca

spins at any instant during this decoupling period. The 'Ca homonuclear interaction

further increases the number of correlated 43Ca spins in the cluster. These interac-

tions are not refocused to observable magnetization leading to a decay in coherence

orders. The decay data in both cases showed three broad features:

"* As the size of spin correlations grew (with increasing coherence numbers and/or

excitation periods under the DQ Hamiltonian), the decay rates became faster.

"• As the excitation period under the DQ Hamiltonian increased, the decay times

under different coherence orders became more uniform.

"* The relative change (reduction) in the decay times decrease with increasing

excitation times under the DQ Hamiltonian.

To test our hypothesis, we demonstrated the sensitivity of the highly correlated

multiple-spin states of abundant spins (1H) to the presence of rare spins (1 3 C) on

our test-bed system. We used the multiple-pulse sequences to selectively create cor-

relations between the 13C spins and multiple-spin states of the 'H spins. We observe

that the sensitivity increases with increasing coherence order of the multiple-spin

states for a given excitation period under the DQ Hamiltonian. As the coherence

number increases, the number of the correlated 1H spins (i.e., the spin cluster size)

increase. Since the number of 13C spins present in the cluster also increases with

increasing cluster size, the highly-correlated states corresponding to the larger spin

clusters are more sensitive to the presence of the "3C spins (as seen in Fig. 4-18).

In light of the above experimental observations on adamantane, some 'plausible' ex-

planations for the distinct features of the coherence decay data in CaF 2 are as follows:
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We can envision each defect spin as introducing a phase error to the correlated spin

states in its neighborhood. When the spin cluster size is small, there are very few de-

fect spins within a cluster. All the spins in a correlated spin state see the same phase

errors. Thus the rate of decoherence of the correlated states in the cluster depends on

the coherence order of the states - the higher order coherences dephase faster than

the lower order ones. However as the preparation time (TI) becomes longer, the size of

the spin clusters increases and so does the number of defect spins in a cluster. Higher

number of defects leads to a higher decoherence rate for the correlated spin states in

the cluster. At the same time, the phase errors introduced by these numerous defect

spins (at the site of any abundant spin) become increasingly uncorrelated. Thus the

decay rate of the correlated states no longer strongly depends on the coherence num-

ber of these states. It depends on the spin number i.e., the number of spins in the

cluster [88]. At short preparation times, the "9 F spin cluster size is small and there are

few 43Ca spins in a cluster. The decay rates strongly depend on the coherence number

of the correlated spin states. An analogous behavior is experimentally observed for

1H spin correlations and the defect 13C spins in adamantane as seen in Fig. 4-18. For

the preparation time of 1.4ms, while the lower order coherences mostly comprise of

small spin clusters, the higher order spin coherences (_Ž 14) comprise of only large

spin clusters and thus see more defect spins. Therefore one observes a flattening of the

curve for these higher coherence orders (in Fig. 4-18) suggesting that the increasingly

uncorrelated phase errors lead to a saturation of decay rates beyond a certain cluster

size. It would be interesting to see how the sensitivity of the correlated states varies

with coherence order for various preparation times.

In any multiple-pulse experiment, RF inhomogeneity, phase transients and finite RF

pulse widths can contribute to errors in the experimental data. To negate the finite

pulse width effects, we took them into consideration for our average Hamiltonian

calculations for the multiple-pulse cycles. Many of the the higher order terms of

the average Hamiltonian are scaled by (a power of) the RF pulse strength. Thus

the shorter the RF pulse, lower will be the effect of these interaction (error) terms
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on the spin dynamics. All the above factors can lead to errors in the experimental

implementation. At the same time, we made certain assumptions which if disregarded

can lead to modifications in our initial analysis. We assumed that the inefficiencies

of the multiple-quantum state creation process do not affect their subsequent decay.

However, it can be shown that imperfect DQ Hamiltonian refocusing can contribute

to a coherence order decay.

To conclude, our work provide some insight on the complex dynamics of highly cor-

related spin states in the presence of spin defects. In the process, we have also

developed two multiple-pulse sequences which may have wider applications in NMR.

As future work, we can further our study on the control of many spins in the presence

of defect spins. One interesting control experiment is to evolve the highly correlated

spin-system selectively under a heteronuclear interaction and then time-reverse the

evolution. Thus by selectively correlating and then un-correlating the defect spins

from the abundant spin system using multiple-pulse techniques, we can further inves-

tigate our ability of coherently controlling the defect spin interactions. We can also

carry out the above sensitivity measurements on CaF 2. It might be hard to predict

the performance the TS-96 and the HR-96 sequences since they were designed for

spin-1/2 systems. However working in the spin-±1/2 manifold of the spin-7/2 43Ca

spin system, it would be interesting to see the results.
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APPENDIX A

ZEROTH ORDER AVERAGE

HAMILTONIAN CALCULATIONS FOR THE

TS-96 AND THE HR-96 SEQUENCES

The zeroth order average Hamiltonian terms are scaled by a factor which is equal to

the inverse of the cycle time (t, = 288T) of the sequences.

Table A.1: The 0 1h order heteronuclear average Hamiltonian values for the TS-96 (top)
and the HR-96 (bottom) sequences

Sub-cycles numbers TS-96 0 th order average Hamiltonian

I S

1 - 2 (Aa)(Bb) (aE)(f B) (-8T - ---_ + 2Ž)IISý
Wf W,.f

3- 4 (Cc)(Dd) (dG)(hD) (12T + 12 -3" )ISý
w,-f W, f

5 - 6 (Ee)(Ff) (bF)(eA) (-ST - 8_ + -L-JI S.
Wrf Wr/f

7- 8 (Gg)(Hh) (cH)(gC) (12T + '2 -3L )I.S."W) f W3r 11

Sub-cycles numbers HR-96 0 th order average Hamiltonian

I S

1 - 2 (Aa)(Bb) (bE)(f A) (167 + 16 - 4)I, S.
Wry Of

3- 4 (Cc)(Dd) (dG)(hC) (16T -1-6 - 4 )I SWr-f Wr.f Z

5 - 6 (Ee)(Ff) (aF)(eB) (16T + -16- -47 )IzSz
Wf W.rf

7- 8 (Gg)(Hh) (cH)(gD) (16T + -- - 4 )I,
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Abstract

Quantum computation requires the ability to efficiently control quantum information in the
presence of noise. In this thesis, NMR quantum information processors (QIPs) are used to
study noise processes that compromise coherent control, to develop useful techniques for
detecting noise, and to explore effective noise-protection schemes.

A quantum simulation of the quantum sawtooth map in the perturbative parameter
regime is used to study the effects of experimental noise on quantum localization, a highly
sensitive quantum interference phenomenon that depends on the coherence of the localized
state. Experimental data and numerical simulations show that the decoherent noise known
to act on the system is relatively inconsequential in this implementation of the map, and
that incoherent noise is the biggest challenge to implementing localization.

While many incoherent processes appear decoherent, there are important differences.
The distribution functions underlying incoherent processes are either static or slowly vary-
ing and so the errors introduced by these distributions are refocusable. The influence of
incoherent noise is further explored in an experimentally implemented entangling operation,
where incoherence can be difficult to separate from decoherence. By studying the fidelity
decay under the cyclic entangling map, the effects of incoherence are easily distinguished
from decoherence in experimental data.

Decoherence free subspaces (DFSs) provide some of the most efficient schemes of avoid-
ing decoherence from noise sources with underlying symmetries. To achieve an internal
Hamiltonian structure that naturally fits a DFS encoding over a well-defined Hilbert space,
we employ liquid crystal solvents to partially align a four-proton spin system, reintroducing
the spin-spin dipolar couplings. In these experiments, enhanced coherent control is achieved
by encoding logical qubits in a DFS. Robust control sequences enable high fidelity control
in the DFS even when the system Hamiltonian is known with some uncertainty.
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Chapter 1

Introduction

Quantum systems have unique properties that are not observed in the classical, macroscopic

world. Information stored in a quantum system - "quantum information" - has inherent

manifestations of these unique properties and therefore has capabilities that are unparal-

leled in traditional computing devices. A quantum computer harnesses the computational

power of quantum systems, exploiting coherent superposition states, entanglement, and

other quantum resources, to achieve an advantage over classical computers in solving certain

problems, such as factoring large numbers and searching unsorted lists [42,95]. The feasi-

bility of quantum computation relies on the possibility of quantum error encodings [96,1001,

which enable arbitrarily precise quantum computation in the presence of noise [59].

In perhaps its most important function, a quantum computer can be programmed to

simulate the dynamics of other quantum systems 136, 71]. Efficient quantum algorithms

have been found for simulating a variety of complex quantum systems [1, 2, 40, 69, 93]. In

this capacity, quantum computers could provide meaningful insight into the dynamics of

large quantum systems which cannot be efficiently simulated on classical computers. In

the second chapter of this thesis, an experimental implementation of one such algorithm [7]

which efficiently simulates the dynamics of the quantum sawtooth map is presented.

The criteria [30] necessary for utilizing the full power of quantum computation have not

currently been realized in any device. However, quantum information processors (QIPs)

provide an experimentally accessible means for exploring coherent quantum control and

for implementing quantum algorithms. This thesis describes a number of experiments per-

formed with nuclear magnetic resonance (NMR) QIPs. The ideas explored in these ex-

17



periments have application in ongoing efforts to engineer precise coherent control in larger

systems, toward a scalable quantum computer. The QIPs used here operate with a small

number of quantum bits (qubits) in highly mixed states, and they are subject to significant

noise.

1.1 Quantum information processors

Experimental implementations of quantum information processing have developed in a num-

ber of technologies including liquid state NMR, which allows precise coherent control of small

networks of weakly coupled nuclear spins. Liquid state NMR experiments mimic pure state

quantum dynamics by utilizing isomorphic pseudopure states [20,41]. This approach has

been used to successfully implement a variety of quantum information concepts including

quantum error correction [11, 23], the Deutsch-Jozsa algorithm [50], the quantum Fourier

transform [117], Shor's factoring algorithm [108], quantum process tomography [115], noise-

less subsystems [38,110], decoherence free subspaces [37,49], various simulations of quantum

dynamics [17,98,107,116], and studies of quantum entanglement [9,105] including experi-

ments with up to twelve qubits [81].

A number of approaches have been developed for reducing the effects of noise in QIPs,

advancing the state of the art in these devices. Strongly modulating pulses (SMPs) are

numerically optimized rf control fields which implement precise, spin-selective control, av-

eraging out all unwanted time evolution in the system while minimizing the effects of deco-

herence [37]. Gradient ascent pulse engineering (GRAPE) has also been used to design nu-

merically optimized pulse sequences which implement precise unitary operators [54]. In ad-

dition, quantum error-correcting codes [96, 100], noiseless subsystems [58,122], decoherence

free subspaces [32,70,122], dynamical decoupling [109, 111-113], composite pulses [24,68],

and robust pulses [88], have all been developed for protecting quantum information against

noise and decoherence. The noise protection scheme most appropriate for a given system is

generally determined by the noise model, since each scheme is best suited for certain types

of noise. In Chapter Three of this thesis, a discussion of incoherent noise is presented, along

with a method for identifying its presence in a QIP, so that the appropriate noise protection

scheme may be chosen.
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1.2 Toward more qubits and larger systems

While liquid state NMR systems provide a useful testbed for quantum computation and

continue to yield meaningful progress, they are fundamentally limited in their scalabil-

ity - their potential to efficiently incorporate more qubits. As the number of qubits in a

liquid state NMR QIP increases, the signal decreases exponentially [114]. Many of the pro-

posed scalable approaches to nuclear spin-based quantum computing envision solid state

implementations [21, 52, 55, 62, 94, 101]. Solids are composed of large networks of dipolar-

coupled nuclear spins, and a principal challenge in these systems is controlling the multispin

dynamics. While methods for coherent control of solid state nuclear spin systems have pro-

gressed [4,5,89], incorporating all the desired capabilities of a quantum computer remains

a challenge.

Liquid crystal solvent NMR QIPs [72, 120] provide an intermediate ground between

liquid and solid state implementations. Molecules dissolved in liquid crystalline material

contain networks of dipolar-coupled spins that, to a good approximation, are uncoupled

from their environment 134]. The network of spins is effectively limited to single molecules,

and each spin in a molecule may have a unique resonance frequency, thus the multispin

dynamics are more easily controlled than in solids. While liquid crystal solvent NMR QIPs

are not scalable, they do present the possibility of modestly increasing the size of exper-

imentally accessible Hilbert spaces, since interactions are mediated by strong long-range

dipolar couplings and are not limited to bond-mediated scalar couplings as in liquids. Liq-

uid crystals offer a more tractable setting for studying dipolar-coupled spin networks, while

maintaining sufficient complexity to provide meaningful contributions to scalable systems.

The second section of this thesis has three parts: Chapter Four introduces fundamentals

of liquid crystal solvent NMR QIPs, Chapter Five describes an implementation of two logical

qubits using this technology, and Chapter Six suggests a future direction of these studies

and how they might contribute to progress in the broader efforts of the quantum computing

community.
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Chapter 2

Localization in the quantum

sawtooth map

The development of quantum computers promises a new approach for exploring quantum

mechanics in complex systems. In the future, we hope to use quantum computation to

emulate quantum behavior in Hilbert spaces that are larger than can be simulated on a

classical computer. Today we have access to QIPs that are prototypes of quantum comput-

ers (QCs). These devices operate over small and limited Hilbert spaces, and with significant

noise. However, even with these limitations they can be used to explore questions of quan-

tum mechanics that start to reflect the power we expect of future QCs. Even when QIPs

operate on highly mixed states, as is the case for liquid state NMR implementations, we

can distill properties that are consistent with the desired quantum phenomena. Here we

will explore one such example, localization under the quantum sawtooth map. Localization

is a uniquely quantum phenomenon and thus a natural target of quantum computation.

Dynamical localization occurs in classically chaotic quantum maps, in which the quan-

tum state initially diffuses at the classical rate due to repeated quasi-random perturbations,

but then stabilizes to a fixed probability distribution and remains coherently localized un-

der subsequent perturbations [161. In the case of perturbative localization, the probability

distribution is localized with no initial period of diffusion. In both cases, the exponen-

tially peaked, static probability distribution distinctly contrasts with the classical, diffusive

behavior. Efficient algorithms have been developed for simulating the dynamics of local-

ization in the kicked rotator model [39], the quantum sawtooth map [7], and the kicked
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Harper model [66] on a QIP. Although localization can in principle be observed in an ideal

emulation using as few as three qubits [6], the sensitivity of this phenomenon to noise ef-

fects [6,7,65-67,84,99] poses a rigorous challenge in the task of creating and maintaining a

localized state on a noisy QIP.

In our experiment, we explored localization on a small (3-qubit) QIP based on liquid

state NMR [48]. The aim of the study was to implement the sawtooth map on our QIP,

to do so in such a way that we observe properties of localization which are clearly distinct

from the classical behavior, and to use this example emulation as a test of the precision of

our implementation as well as to motivate the continued refinement of this implementation.

Since liquid state NMR QIP relies on a large spatially distributed ensemble of quantum

systems, we have to be careful in selecting the measures that we use for observing localiza-

tion. The errors in our implementation of the sawtooth map will vary over the ensemble

due to, the inhomogeneity of the rf control field. There will be regions of the ensemble

where the fidelity of implementation of the sawtooth map is sufficient that we observe lo-

calization, while for other regions the errors will be large enough to prevent localization.

In the experiment we observe the sum of these effects, and thus we expect to see a peak in

the probability distribution in the basis of localization that is representative of those parts

of the ensemble that are localized, accompanied by a background offset in the probability

distribution in the basis of localization resulting from those parts of the ensemble that are

not localized.

A description of the sawtooth map is given in Sec. 2.1, followed by an explanation of

the experimental implementation of the map in Sec. 2.2. A discussion of the noise effects

expected in the experiment are presented in Sec. 2.3, along with a discussion of their

effects on the localization phenomenon. In Sec. 2.4 the experimental results are reported

and shown to demonstrate properties which are consistent with localization. The results

are further compared with numerical simulations of the experiment which show that the

imperfections in the data are well accounted for by the error model identified in previous

work [10,88, 1151. Finally, in Sec. 2.5, numerical studies of the error model are applied to

measure the relative degree of delocalization caused by the specific noise mechanisms.
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2.1 The sawtooth map

The sawtooth map is a periodically kicked system with period T and kick strength k, whose

classical dynamics are dictated by a single parameter K = kT. One iteration of the classical

sawtooth map is compactly described by the equations

J= + k(1 - r) (2.1)

0 = O+TJ

where 9 is the angular position variable and J is the angular momentum variable. The

cylindrical phase space, which results from the periodicity of the position variable (0 < 0 <

27r), can be represented on a torus by truncating the momentum space to length 27rL/T

and applying a periodic boundary condition. In the quantum regime, one iteration of the

sawtooth map is represented by the unitary time evolution operator

Usaw(0, T) = exp (-iTj2 /2) exp (ik(O - 7r)2 /2) (2.2)

where J and 0 are conjugate action quantum mechanical operators. The state of the

quantum system is represented by a density matrix ý expressed in the momentum basis. A

detailed description and insightful discussion of the sawtooth map can be found in reference

[6].

In a simulation of the quantum sawtooth map on an nq qubit quantum information

processor, the momentum basis states of the emulated system are represented by N =- 21q

computational basis states, therefore N = 27rL/T. The momentum basis states are labeled

by their eigenvalues -N/2 < j < N/2, such that I j) = J 1j). The position basis states

10,i) have eigenvalues Om = (27rm/N), such that 0 10,) = 0m lOre), where 0 < m < N. The

overlap between conjugate basis states is given by

(Om j) = N exp [N ri + N)] (2.3)

Quantum localization. In the classical phase space, when K < -4 or K > 0, the

sawtooth map induces chaotic motion, which is seen by considering a classical ensemble of

trajectories, where each element of the ensemble has a fixed initial momentum (J = 0) and
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a randomized initial position (0). The chaotic motion arises due to the presence of the term

k (9 - 7r) in Eq. 2.1, which gives a kick to the momentum at each iteration of the map. In

chaotic parameter regimes, the strength of the sequence of kicks can be approximated as a

quasi-random sequence, leading to diffusive broadening along the momentum dimension of

the classical phase space, as shown in Fig. 2-1. As a result, the breadth of the distribution,

as measured by its second moment, grows linearly with the number of map iterations, n,

according to

((AJ)2 ) ; Dn, (2.4)

where D z (7r2/3)k 2 is the classical diffusion coefficient. As the map is iterated, momentum

diffusion continues indefinitely, and the probability distribution approaches uniformity over

the bounded toroidal phase space.

The quantum system demonstrates a strikingly different behavior. Like the classical

map, the quantum sawtooth map initially causes diffusive broadening in the momentum

basis according to the classical diffusion coefficient D. However, after n* ; D iterations

of the quantum map, diffusion is suppressed due to quantum interference, and for all sub-

sequent iterations, the quantum state maintains roughly the same exponentially localized

profile over the momentum basis. This surprising interference effect requires the coherence

of the quantum state. The square root of the quantum standard deviation C((Ai);) rep-

resents the number of states that are significantly populated in the system, and is essentially

static after n* iterations, representing the onset of localization. Therefore, the localization

length

1= (A))=V F (2.5)

serves as a useful parameter for characterizing a localized state. The inverse participation

ratio (IPR) is another useful quantity for describing localized states [7]. However, the IPR

of a localized state is approximately half of the localization length, and the IPR has a

minimum value of 1. Therefore the IPR is not useful in the parameter regime discussed

here, where I < 2.

The heuristic approximation n* ztý D 1 1 [8] yields a theoretical prediction of the

localization length based on the kick strength I • (ir2/3)k 2 . Quantum localization occurs

when the localization length is less than the total breadth of the phase space N. However,

the degree to which a physical system becomes localized may be reduced by noise effects,
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as this unique quantum phenomenon is quite sensitive to decoherence and other types of

errors [65,67,84,99]. This sensitivity poses a rigorous challenge when trying to create and

maintain a localized state on a noisy QIP.

The implementation of the quantum sawtooth map reported here takes L = 7, K = 1.5,

N = 8, which corresponds to the classically chaotic regime, with a diffusion coefficient of

D ,i (7r2/3)k 2 
- 0.24. The theoretical approximation that n* :zý D predicts that the system

will be localized after one iteration of the map (n* < 1). This effect is known as perturbative

localization, where the system is localized without the initial diffusive behavior. The results

of numerical simulations plotted in Fig. 2-1 confirm this prediction, as the breadth of the

probability distribution is essentially static after a single iteration of the quantum map.

Quantum Classical
• -0- iter 0. iterO

0.8 -a- iter 5 ,,, iter 5
Siter 10/,'. iter 10

0.6 .--v,- iter 40 "v iter 40

2o0.4-

. . . ......... . .. i t,

Momentum

Figure 2-1: The momentum distribution after 0, 5, 10, and 40 iterations of the classical
(red, filled markers) and quantum (blue, unfilled markers) sawtooth maps (L = 7, K = 1.5,
N = 8). The classical distribution represents 20,000 realizations of the map, with initial
momenta j = 0 and random initial positions uniformly distributed over the phase space.
The initial quantum state is the j = 0 momentum eigenstate. In the quantum case, the
momentum is discrete, and each data point represents the population of the indicated
momentum state. In the classical case, the momentum is continuous, and each data point
represents the probability of momentum being in the range of the indicated value ±1/2. The
classical map is chaotic, which leads to the observed diffusive broadening. In the quantum
map, since the localization length is less than 1, the state remains exponentially localized
after a single iteration. The breadth of the momentum distribution is essentially static in
the quantum case, and only the j = 0 momentum state is significantly populated.
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2.2 Implementation details

An algorithm for the quantum sawtooth map can be generated by expressing the matrix

elements of the map in the momentum basis:

(jj UQa. [j') = E (ji exp (-iTJ2/2) 10,) (0.1 exp (ik(6 - 7r)2/2) Vj)
m

= exp (-iTj2 /2) (ji1m) exp (ik(,m -_r)2/2) (GrnJj')
trn

(JI UJUýFTUeUQFT j') (2.6)

where UQFT is the familiar Quantum Fourier Transform (QFT) which has the action of

toggling between the position and momentum basis representations, and the diagonal free

evolution and kick operators, Uj and Ue, are defined

(jI Uj jj') = exp (-iTj2/2) (jlj') (2.7)

(OGI Uve 1'm) = exp (ik(0. - 7r)2/2) (0m10'm) (2.8)

This form of the quantum sawtooth map (Usaw = UJ 1
--UjUFTUeUQFT) reveals the un-

derlying structure of the map: After the system is initialized to a momentum basis state,

the first operation in the quantum sawtooth map, the QFT, transforms the system to

the position basis representation, where the diagonal kick operator Ue applies an impulse

force. The inverse of the QFT is applied next, returning the system to the momentum

basis representation, where the diagonal free evolution operator Uj is applied. These four

steps (UQFT, U9, UT , Uj) constitute a single iteration of the quantum sawtooth map.

After iterating the map, the localized probability distribution corresponds to the diagonal

elements of the density matrix, Wj - (ji P Ij). Realizing that the only effect of the free

evolution operator is to apply a phase to the coefficient of each momentum basis state, Uj

can be neglected in the final iteration of the map, since a phase does not alter the measured

probabilities in that basis.

Quantum circuits. A quantum circuit for the QFT is derived in [82] and shown in

Fig. 2-2(b). Prior implementations and experimental analysis of the QFT are described

in [115,117]. Circuits for Uj and U9 are conveniently found in realizing that any diagonal
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(a) Diagonal operator circuit

Z~n) / H

(b) Quantum Fourier Transform (QFT) circuit

Figure 2-2: Quantum circuits for implementing the quantum sawtooth map. For both
circuits, Z(x) on qubit I indicates the Z-rotation, exp(-iXa,/2). ZZ(X) on qubits I and k
indicates the two-qubit operation exp(-ixa ak). H indicates the Hadamard operator (a' +
o,)/v'2), and the two-qubit operation at the end of the QFT is the swap gate. (Top) The
circuit for implementing any diagonal unitary operator. This circuit can be parameterized
for either the diagonal free evolution operator Uj or the diagonal kick operator Ue using

-1 = 2'-'(a + 7/3) and lk -= 2 '+k-30, where the aj, ae, 3j and /3e derived in the text.
(Bottom) The QFT and its inverse are both used to implement the quantum sawtooth map.
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operator can be decomposed into a series of single-qubit Z-rotations and two-qubit ZZ-

interactions. The quantum sawtooth map is emulated by programming the gates in Fig. 2-

2(a) to implement Uj and Ue. Parameterization of the circuit follows from a decomposition

of the basis number operator M im) = m jm), where 0 < m < N, into a sum of products of

spin operators

i fin) = (I - U)21-2 In), (2.9)
It Iqq

where al indicates the Pauli operator a, acting on the Ith qubit. For example 0 z~tnq) =

z® 1 ... & 1, and MI/ 10...0) = 2nf 110..0).

In general,

exp (-ia!x!) exp (ia ( l - 0) 21-) (2.10)

expexp (iao2L1 
(2.11)

=11

flq

exp~~ o _i!2) exp (+ia• (j•~-)•taz~ t2

exp -zz) (2.12)

l<3

where cx indicates terms proportional to identity have been dropped since they have no
observable effect on the quantum state. By identifying 0• 2~rM•/N, we can write the

diagonal kick operator
Ue = exp (ik( -2 r)2/2) = exp (- (2j-1) - 2-(2.13)

cx exp (±l•-2 (Mr2 _ ))(2.14)

cx ex p ± i ±o 13e- o 4 ' -

(j=l 1 =1

n 
q

exp -if3 2'j- or I ro' (2.12)

(( IU9=exp -o _) 2 8( (2.13)
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where we have defined

o - 2kir2 /N (2.16)

Oo - -2kir 2 /N 2 . (2.17)

Equation 2.15 indicates that Ue is implemented by nq single-qubit Z-rotations and 3n 2

two-qubit ZZ-interactions. Each operation is parameterized by the values in the exponents

of equation 2.15.

The parameters for implementing the diagonal free evolution operator can be found in

a similar manner by recognizing that j = Mý! - N/2, and therefore

Uj = exp (-iTj2/2) = exp (f (Mý/ - )2) (2.18)

0Cexp (-iT (]ý2 - M)(2.19)(( 2
o( exp +i (aj + ( q23-1 ))3j) al2-2 )

\j=l 1~

exp i/3j (2.20)

where we have defined

aj = -TN/2 - -rL (2.21)

/3j _= T. (2.22)

This circuit for the quantum sawtooth map is computationally efficient, in that the number

of fundamental quantum gates required to implement the algorithm depends polynomially

on the number of qubits [7].

NMR QIPs. In NMR quantum information processing, nuclear spins polarized by a

strong external magnetic field serve as qubits. The molecule used in this experiment, dia-

grammed in Fig. 2-3, is tris(trimethylsilyl)silane-acetylene dissolved in deuterated chloro-

form. The carbon nuclei in the acetylene branch are carbon-13 enriched, and the methyl

carbons are of natural isotopic abundance. The two carbon-13 nuclei and the hydrogen

nucleus in the acetylene branch are used as qubits. The full internal Hamiltonian has the
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Si(CHa) 3

Si(C H3)3 Sia- 
-

Si(CH3)3

Figure 2-3: A diagram of the tris(trimethylsilyl)silane-acetylene molecule used to simulate
the quantum sawtooth map in a liquid state NMR QIP. The hydrogen nucleus in the
acetylene branch is labeled qubit 1 in the experiment; the two carbon-13 nuclei in the
acetylene branch are labeled qubits 2 and 3.

form

arn 0= + E + 1' (2.23)
i=1 j<k

where i/i is the resonance frequency of the ith spin, and Jjk is the frequency of scalar

coupling between spins j and k. Note that Jjk is not related to the quantum operator

J. The hydrogen nucleus is labeled qubit number 1, making it the most significant bit

in the computational state vector. The carbon qubits are labeled as indicated in Fig. 2-

3. Experiments are performed in a 9.4 Tesla magnetic field, where the Carbon qubits are

separated by 1.201 kHz. The scalar couplings are J 12 = 235.7 Hz, J 2 3 = 132.6 Hz, and

J13 = 42.9 Hz. Because the spin system is in a highly mixed state at room temperature,

the system was prepared in a pseudopure state [20] by the technique described in [104].

Three readout sequences were needed to measure the eight diagonal elements of the density

matrix, which correspond to the distribution of momentum basis states.

Pulse sequences. The average gate fidelity [371 of each unitary control sequence was

optimized over the full Hilbert space. The input state preparation pulse sequence, which

is non-unitary, was optimized based on the state correlation [37] between the simulated

input state &j, and the ideal input state Aideal = 1100) (1001. The average fidelity (or state

correlation) of each implemented pulse sequence, as calculated by numerical simulation, is

listed in Table 2.1. The NMR pulse sequence for one full iteration of the quantum sawtooth

map is shown in Fig. 2-4.
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Table 2.1: Pulse sequences designed for the quantum sawtooth map experiment. Fidelities
are calculated by numerical simulations which, account for rf inhomogeneity, neglecting
decoherence effects.

Map Duration (ms) I Fidelity

Input State Preparation 50 Corr = 0.99
QFT 6 0.99

QFT Inverse 6 0.99
J Diagonal 50 0.99
0 Diagonal 20 0.99
Readout 1 0.01 1.00
Readout 2 62 0.98
Readout 3 72 0.98

H, ']li [I..L. liii i i i i I i I i

I I

0 0.02 0.04 0.06 0.08
time (seconds)

Figure 2-4: The hydrogen (H) and carbon (C) rf control fields versus time for the full
quantum sawtooth map pulse sequence. Red versus blue pulses are 90 degrees out of phase;
pulses above versus below the horizontal axis are 180 degrees out of phase. The nutation
frequency of each hydrogen (carbon) pulse is 46.7 kHz (17.5 kHz).
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2.3 Numerical simulation

Through numerical simulation of the experiment, it is possible to predict the behavior of

the system under the optimized control sequence in the presence of various types of noise

known to influence the QIP. Errors affecting the implementation of the quantum sawtooth

map are conveniently classified in three categories [10,88,115] - coherent errors, decoherent

errors, and incoherent errors - which can be generally used to categorize the errors affecting

any QIP. Each type of error delocalizes the system in a different manner.

In the presence of coherent errors, the system evolves under a unitary process other

than the ideal quantum sawtooth map. Due to their unitary nature, coherent errors are

reversible. The coherent errors modeled in numerical simulations arise in the experiment

due to strong coupling between the carbon qubits, as well as the action of the internal

Hamiltonian during rf pulses. Coherent errors delocalize the system by introducing unitary

transitions between momentum states.

Decoherent errors cause the individual members of the ensemble (and hence the ob-

served ensemble average) to evolve in a non-unitary fashion. Decoherent evolution can be

modeled as a coupling between the system and an external environment and can usually be

represented by a completely positive linear map, expressed as an N 2 x N 2 superoperator

acting on a columnized N 2 x 1 state vector 1p), according to

IPot) = S IPi.) • (2.24)

Decoherent errors are accounted for in numerical simulations by allowing the system to

evolve under an approximate relaxation superoperator [35], which is completely diagonal

in the generalized Pauli basis. In this diagonal form, each non-zero entry in the relaxation

superoperator represents the decoherence rate of a generalized Pauli basis operator; the

specific values used in simulations are based on measurements of all TIs in the three qubit

system as well as the single species T2s.

Given the time scale of one full iteration of the quantum sawtooth map (10-1s) com-

pared to the system's typical decoherence rates (1 s-1), decoherence in this system is in

the moderately dissipative regime, which has been shown to cause delocalization in the

quantum sawtooth map [65]. The non-unitary, dissipative action of decoherence along with

the mixing action of the control sequence causes an essentially uniform damping of the
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measured probability distribution, accompanied by a uniform background offset that con-

serves probability. The background offset in probability appears in the density matrix as an

increased identity component, which represents a loss of system purity and a corresponding

increase in the von Neumann entropy of the system. In this way, the effect of decoherence

is to mimic the diffusive, chaotic dynamics of the classical system described in Sec. 2.1.

Incoherent errors occur when the various members of the experimental ensemble ex-

perience a distribution of unitary time evolution operators. Incoherent evolution can be

generally expressed as an operator sum

u p(k)Vkp, V' (2.25)
k

where p(k) is the probability that a member of the ensemble will undergo unitary time evo-

lution under Uk. Under incoherent errors, the individual members of the ensemble evolve

coherently, but the ensemble-averaged time evolution of the system is non-unitary. The

dominant incoherent errors in the experiment arise due to the inhomogeneity of the rf field

over the spatial extent of the liquid state NMR sample. When an rf pulse is applied during

the experiment, the members of the ensemble experience a distribution of rf powers, and

only a fraction of the ensemble actually experiences precisely the nominal (ideal) rf power.

In numerical simulations, we can approximate the effects of the continuous distribution of

carbon rf powers by simulating a previously measured distribution of nine discrete bins of

rf power, plotted in Fig. 2-5. Bin 6 represents the largest portion of the ensemble and cor-

responds to the nominal rf power, while the other eight bins result from the inhomogeneity

of the rf control field. In the experiment, there are two dimensions of incoherence: one for

both the proton and carbon rf-control fields. In numerical simulations presented in Sections

2.4 and 2.5, the continuous distribution of carbon and hydrogen rf power correlations is

approximated by a discrete two-dimensional (9 x 9) rf probability distribution function.

Simulating only the one-dimensional distribution of carbon rf power in Fig. 2-5 is

sufficient for gaining a qualitative understanding of the effects of incoherent noise in the

experiment. Figure 2-6 shows the results of numerical simulations of the experimentally

implemented control sequence for each bin of rf power; the simulations include decoherence

effects. Due to the incoherence, the local errors are different for each bin. Consequently,

in regions of the ensemble where the rf power is near the nominal rf power (see Bins 6
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Figure 2-5: The nine point distribution of carbon rf powers measured in previous ex-
periments and used to simulate the experimentally implemented control sequence for the
quantum sawtooth map. The carbon rf power is in units of the nominal carbon nutation
frequency, 17.5 kHz. The numerals labeling each point in the distribution indicate the
associated bin of incoherence in Fig 2-6.

through 8), the fidelity of implementation of the sawtooth map is sufficient that we observe

localization. For other regions which constitute a smaller percentage of the ensemble (e.g.

Bin 1), the errors are large enough to prevent localization and the momentum distribution

is broad. Hence we see that in the experiment, when we observe the weighted average of

these distributions, the (more abundant) localized portions of the ensemble will appear as

a peak in the j = 0 momentum state, and the delocalized portions of the ensemble will

contribute an approximately uniform background offset across the momentum distribution.

Another important insight gained from analyzing distributions plotted in Fig. 2-6 is

that the bins where the rf power is near ideal are relatively unaffected by decoherence.

Consequently, we expect incoherence rather than decoherence to be the principle source of

noise compromising our ability to observe localization over the ensemble. This is discussed

in more depth in Sec. 2.5.
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Figure 2-6: Momentum profiles for different regions of the ensemble generated by numer-
ical simulations of the experiment which account for T1 and T2 decoherence. Each plot
represents the momentum profile resulting from a numerical simulation of the control se-
quence (zero through four iterations) with the carbon rf power indicated in Fig. 2-5. Bin
6 represents the nominal rf power, which has the highest fidelity when compared to the
ideal quantum sawtooth map. The distributions simulated near the nominal rf power ap-
pear to be localized, while those far from the nominal rf power are quickly delocalized.
In experiments, the average over the incoherence is observed (weighted by the probability
distribution in Fig. 2-5).

35



-a- ideal ~x__
0.8 -0" simulation 0 F bar 11S4 experiment 0.8r

•0.4 L0.4

0.2 0.2

3 2 1 0 1 2 3 3 2 1 0 1 2 3Momentum State j Momentum State j
(a) input state (b) I iteration

1 1

0.8 Fe bar I 0.8 e!-or ba i.

0.8

0.4

0.2 0.2

3 2 1 0 1 2 3 3 2 1 0 1 2 3Momentum State j Momentum State j
(c) 2 iterations (d) 3 iterations

Figure 2-7: The momentum distribution after 0 through 3 iterations of the quantum saw-
tooth map (L = 7, K = 1.5, N = 8) for the experiment (triangles), a numerical simulation
of the experiment which is not affected by noise (squares), and finally a numerical simulation
of the experiment which includes coherent errors, decoherence effects, and incoherent errors
due to rf inhomogeneity in both the carbon and hydrogen control fields (circles). Error
bars are drawn to scale for each iteration. The population of the initial state (j = 0) dom-
inates the distribution through 3 iterations of the experiment, and the width of the central
peak is essentially unchanged. However, experimental noise clearly causes the ensemble-
averaged state to delocalize through the appearance of a baseline offset over the momentum
distribution.

2.4 Experimental results

In Fig. 2-7, the experimentally measured probability distributions after zero through three

iterations of the quantum sawtooth map are plotted along with the ideal distributions and

the distributions obtained by numerical simulations of the experiment which account for

decoherence and the full two-dimensional distribution of rf powers. The experimental data

reveals that the interior region of the momentum distribution does not broaden, as in a

diffusive regime, but rather, the peak maintains roughly the same breadth, as predicted by

simulations. Meanwhile, the increasing background probability offset reveals the presence

of imperfections in the implemented map, representing those regions of the ensemble which
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are not localized due to incoherence. These qualitative features of the experimental data

are reflected in the quantitative measures of localization discussed later.

Discrepancies between the ideal and experimentally observed behavior are caused by

experimental noise and decoherence influencing the implementation of quantum sawtooth

map, in addition to imperfections in the experimentally prepared input state and in the

readout steps. Figure 2-7 reveals, on a qualitative level, that these discrepancies are well

accounted for by the noise model used in numerical simulations. The relative contribution

of the distinct noise mechanisms to the experimentally observed delocalization of the state

is discussed further Sec. 2.5.

In light of the incoherent variations of localization properties of the map over the en-

semble, we wish to select a measure that can be interpreted as the extent to which some

portion of the ensemble demonstrates quantum localization. By measuring the full width

at half maximum (FWHM) of the probability distribution in successive iterations, we can

observe the presence of any dynamical broadening of the distribution, without regard to

the background probability offset caused by incoherence, as discussed in Sec. 2.3. Fig.

2-8 shows a plot of the FWHM for each probability distribution plotted in Fig. 2-7. The

FWHM data reveals the dynamical properties of the experimentally measured distribution

as distinct from the classical behavior. The relative flatness of the experimentally measured

FWHM curve through three iterations of the map is consistent with quantum localization

in an incoherent ensemble. Numerical simulations show the progression in peak width from

the ideal simulation (most narrow) to simulations where decoherence and incoherence are

included in the simulation. The numerical simulation which accounts for decoherence but

not incoherence corresponds to the momentum distributions plotted in Bin 6 of Fig. 2-6.

2.5 Discussion

By using numerical simulations to isolate the various types of errors known to influence

the experiment, it is possible to measure the relative significance of each type of error by

examining the degree to which it leads to delocalization in the system. Figure 2-9 shows the

degree to which each type of error causes delocalization in the resulting state, as measured

by the second moment of the corresponding probability distribution, thus distinguishing

the relative importance of the distinct noise mechanisms in the experiment. The data also
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Figure 2-8: The full width at half maximum of the momentum distribution after zero
through four iterations of the sawtooth map in various implementations: a numerical simu-
lation of the exact classical map (diamonds), a numerical simulation of the exact quantum
map (circles), the experimentally implemented map (squares), a numerical simulation of
the experimentally implemented map which accounts for decoherence without incoherence
(triangles down), a numerical simulation of the experimentally implemented map which
accounts for decoherence with incoherence (triangles up). The FWHM reveals that despite
the noise affecting the QIP, the distribution mimics the ideal quantum behavior, and does
not broaden in a diffusive manner as in the classical case.
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Figure 2-9: The second moment of the probability distribution determined from numerical
simulations of the experiment including the error models discussed in the text, compared to
the ideal data and the experimental data. This plot demonstrates the relative importance
of the individual noise mechanisms as they contribute to the experimentally observed delo-
calization process. As more errors are included in numerical simulations, the system shows
stronger delocalization and more closely emulates the experimental data.
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reveals the extent to which the breadth of the distribution is affected by errors in the initial

state preparation. Evidently, the coherent errors are essentially inconsequential over at least

three iterations of the map. The slope of second moment versus time plot is most strongly
affected by incoherent errors, and thus incoherence is determined to be the dominant noise

mechanism limiting the degree to which localization is achieved by experimental control,

which is consistent with the observations of Sec. 2.3.

Additional insight on the delocalizing effects of experimental noise and decoherence can
be gained by examining the superoperators and the corresponding Kraus operators for each

type of numerical simulation. A superoperator of dimension N 2 X N 2 which describes a
completely positive quantum process can be equivalently expressed as an operator sum,

which involves at most N Kraus operators of dimension N x N [60]. That is to say that

for a general quantum process as in Eq. 2.24,

Ipo0) = S Ipi.) (2.26)

there is an equivalent representation of the form

Pout AkpinAt (2.27)
k

where Ak is the kth Kraus operator, which has a magnitude of IjAk 11. Methods for conversion

to and analysis of the Kraus form are given in [47] and [115]. The Kraus form for an ideal

implementation of a unitary process would consist of a single Kraus operator which is the
corresponding unitary operator describing the process. Therefore, in an implementation

where the errors are small, we expect the Kraus operator of largest magnitude to resemble
the ideal unitary operator. The numerically simulated superoperators expressed in the
momentum basis, along with the largest magnitude Kraus operators, plotted in Fig. 2-

10, give a qualitative picture of the differences between a quantum process that leads to

localization (in the ideal simulations) and a quantum process that causes some degree of

delocalization (in the simulations which include errors). Off-diagonal elements in the unitary

or Kraus operator cause transitions between momentum states; diagonal elements alter the
magnitude and phase of each momentum state without causing transitions. The qualitative

result of the simulated noise is to reduce the bandedness (i.e. the relative magnitude of the
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Figure 2-10: The magnitude of each element of the superoperators and most significant
Kraus operators for numerical simulations of the quantum sawtooth map experiment which
include different types of errors (top to bottom): (1) no errors, (2) coherent errors, (3)
coherent errors and decoherent errors due to relaxation, (4) coherent errors and incoher-
ent errors due to rf inhomogeneity, (5) coherent, incoherent, and decoherent errors. The
elements are scaled from zero (black) to one (white). The errors in the implementation
of the sawtooth map affect the handedness of each Kraus operator (and similarly of each
superoperator).
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diagonal and near-diagonal elements compared to the off-diagonal elements) of the operator,

thus reducing the degree to which a state is localized under the map. The simulated

operators for 1 and 2 iterations are progressively less banded as more errors are included in

the simulation, which further attests to the sensitivity of localization to experimental noise

effects. As explained in Sec. 2.3, Fig. 2-10 again shows qualitatively that rf inhomogeneity

has a greater delocalizing effect than decoherence in this implementation of the quantum

sawtooth map.

2.6 Conclusions

The quantum sawtooth map has been emulated on a three qubit liquid state nuclear mag-

netic resonance quantum information processor in the perturbative localization parameter

regime of the map (K = 1.5, L = 7, N = 8). Observing the dynamic behavior of the width

of the peak in the momentum probability distribution reveals behavior which is consistent

with coherent quantum localization. Due to incoherent noise, this localized peak is superim-

posed with a uniform background offset over the probability distribution which represents

those parts of the ensemble which are not localized due to local unitary errors which vary

over the ensemble.

Numerical simulations of the experiment reveal that the decoherent noise known to act

on the system is relatively inconsequential in this implementation of the map, in terms of

its effect on localization when compared with incoherence. This study serves as a test of the

capabilities of coherent control and serves to motivate the refinement of our implementation.

Specifically, we see that incoherence is the biggest challenge in implementing localization,

a highly sensitive quantum coherence-dependent phenomenon. Given the sensitivity of

localization to various types and strengths of errors, the degree to which localization can be

created and maintained in a QIP serves as a benchmark of practical relevance for assessing

the overall degree of coherent control and for identifying which noise mechanisms most

significantly reduce the degree of coherent control achieved in the device.
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Chapter 3

Signatures of incoherence

Incoherent noise encodes quantum information into the classical degrees of freedom of an

ensemble by a distribution of unitary errors. An incoherent process is tied to a time-

independent or slowly varying classical probability distribution of Hamiltonians. Evolution

under such a process is naturally described as an operator sum, given in superoperator

notation by

8(t) = IJp(z)ei'r(z)t 0 e-'d(z)tdz (3-1)

where p(z) is the classical probability distribution of Hamiltonians J(z). A variety of tools

have been developed to counteract incoherent noise in quantum information processors.

Optimal control theory minimizes the errors caused by uncertainty in the system Hamnilto-

nian [25,85]. Dynamical decoupling and bang-bang control actively suppress incoherence by

periodically refocusing part of the evolution [109,111-113]. Strongly modulating pulses [88]

and composite pulses [68] have also been used to refocus incoherent noise. Such techniques

exploit the reversibility of incoherent errors and are particularly valuable since they do not

require access to a larger Hilbert space, as do decoherence free subspaces [32,70,122], noise-

less subsystems [58, 1221 and other quantum error encodings [96,100]. Decoherent noise by

contrast does require the full power of quantum error-correcting codes, so distinguishing

the presence of incoherence is important in choosing an error-correction scheme.

Incoherence, which is typically studied for single-qubit errors in SU(2), causes a loss

of purity in the ensemble-averaged state while preserving the purity of the individual en-

semble members. Decoherence is a distinct process that irreversibly reduces the purity of
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the individual ensemble members. In small Hilbert spaces, incoherence is easily detected

and controlled either by time reversal of the control field or through creation of echoes.

Some classic examples include the rotary echo [53,91], the Hahn echo [461, the Carr-Purcell

and CPMG echo sequences [15, 78]. In these examples, incoherent errors are completely

refocused by an inverted incoherent process, and the resulting increase in purity over the

ensemble causes an observable echo. Identifying and controlling incoherence is more difficult

in Hilbert spaces that support entanglement and in particular, in the presence of an en-

tangling operation. An entangling operation propagates incoherent errors to non-separable

states, causing a loss of purity that is not recovered by an inverted incoherent process, so

the incoherence mimics a decoherent process.

Here we present an example of incoherence influencing an entangling operation in a three-

qubit liquid state NMR QIP, and we show how the incoherence appears as a distinct process

from decoherence in the measurement of fidelity decay under imperfect motion reversal.

Fidelity decay [86] has previously been shown to be a useful tool for efficiently characterizing

errors in a QIP [33]. In the method suggested here, the task of measuring fidelity decay

is simplified by studying fidelity decay under a cyclic operation, which removes the need

to invert the ideal evolution and admits analysis by Average Hamiltonian Theory [44]. We

show that in our experiment incoherence causes recurrences in fidelity that could not arise

from a decoherent process. The signature of incoherence observed in experimental data is

also analyzed by numerical simulations of the NMR experiment.

3.1 Identifying incoherence by fidelity decay

The fidelity between two quantum states p and , is defined

F = (&3 P), (3.2)

where Ip) is the density matrix represented as a state vector in Liouville space. Given an

ideal unitary map S, a perturbation 15 and an initial state po, the fidelity decay after n

iterations of imperfect motion reversal is

S(poj (,_)n (?) IPO). (3.3)
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Here we consider the case where (es) is a noisy implementation of S, and therefore

implementing the ideal inverse map S-l is impractical. However, if we choose S to be

cyclic, then for some number of iterations nc, we have (= 9'lc = I 1. Now if we

constrain the fidelity decay to be measured only after iterations that are an integer multiple

of nc, we have

F. = (p01 PS 1P0), (3-4)

thus simplifying the fidelity decay expression and measurement.

In our experiment, we are interested in distinguishing incoherence and decoherence in a

fidelity decay. Here we derive an expression for the fidelity decay of an ensemble-averaged

state evolving under these two types of noise using a simple noise model. For both types

of noise, the measurement ensemble 61, is parameterized by the classical variable z. For

decoherent noise, the state fidelity decays exponentially before saturating at 1/N where N

is the Hilbert space dimension, a well-known result for decoherent noise [51]. For incoherent

noise, we will show that the fidelity decay expression has two terms: one term that decreases

as the map is iterated, and an additional term that may periodically increase, allowing for

fidelity recurrences.

Let S and P^, represent unitary processes over a Hilbert space of dimension N. The

ideal map S acting n times on the initial state po returns the state n' fPO) = 1pn), while

the perturbed map returns the state (P/S)n IPO) = 1ý.). P, is a perturbation of the form

exp (-ii7 jV), where V is an hermitian operator in the N dimensional Hilbert space and 77

is the strength of the noise for a particular member of the ensemble e,. We take (iz) 2 = 0,

where (.), = f (.)p(z)dz, and p(z) is the probability of measuring the ensemble member

labeled z. The fidelity decay after n iterations is the overlap of the ensemble average state

(tn)z and the ideal state pn

F.= (~IKp.1 Y IPO)) Z (Pi' (1ýn)). (3.5)

3.1.1 Decoherent noise

Decoherence describes a process whereby information is irreversibly lost to an environment.

To model decoherent noise, we consider 77z to be random for a given member of the ensemble
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on every iteration of the map. The random process is modeled by individually averaging

the evolution of each member of the measurement ensemble 4, over a stochastic ensemble

61 that samples the distribution of random 17- values. The distribution of random i_, values

satisfies (7.). = 0. The stochastic ensemble 6, is averaged before the measurement ensemble

We rewrite the input state p0 = kR' + xao, where (11Io) = 0, X2 = (N - 1)/N 2 and

trace(ur) = N guarantee the normalization and purity of p0. Now .n [ao) = la"), where the

unitarity of S guarantees (anj11) = 0. Our normalization conditions include (anla,) = N.

After the first iteration of the decoherent process

IMi =K 1PO)) + + X)5; Ka))

+x(aoi I al) +ool l=oiD)) (3.6)

N$

where we have decomposed/5z Iai) into a component parallel to the ideal state Jul) and an

orthogonal component Ioa,01) such that (aliaro0) = 0 and a021 + M2 1 = 1. The value pol

is related to the strength of the noise such that for small errors q-, we have (p0i) 8 = 0.

Averaging over the stochastic ensemble 6', we have

1

I?-) I ll[) + X (ao1)s jai). (3.7)

If we allow the measurement ensemble 40 and the stochastic ensemble 6, to sample the

same distribution p(z), then we can define a01 - (aol)8 = (aox),. In this case, averaging

fil over 60 has no effect, and (,•1)• - Pi. For the decoherent model, the fidelity after one

iteration of the perturbed map is

( 1± NX2a 1 (N-+
F(D) = (PiI(DOI)) = N o= ( + N- a0 (3.8)

Now reiterating the process, the state after two iterations is

IA2) = (fA ki)) = +l) + Xao1 (a12 1'a2) + P12 ay12O)) (3.9)
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and

(D) = <P 2 + -1 (N- 1)
F2Pj\PZ N + N a~~]-(3.10)

Since 0 < ajcj+l < 1, the general expression for the fidelity decay under decoherent dynamnics

F(D (.1p, 1 (N -1) -
FND) ( PL1 ( N -1) 1 aj+l (3.11)

j=0

is an exponentially decreasing function that saturates at 1/N, as expected for a decoherent

map.

3.1.2 Incoherent noise

Incoherence describes a process whereby information is reversibly encoded in the classical

degrees of freedom of an ensemble by a static or slowly varying distribution of Hamiltonians.

To model incoherent dynamics for a particular member of the measurement ensemble e,

we consider 17, to be a static value for each iteration of the map. In this case there is no

stochastic ensemble; the local dynamics are deterministic and reversible. After one iteration

of the incoherent map the state of an individual ensemble member is given by

1I1y) = -11) + x(ao0 j'a) + -to01 a0o1)), (3.12)

and so the ensemble-averaged state

1

=i))z I1) ± x (aoi)z jai) . (3.13)

has a fidelity of

(NI-i1 (N-i)

N + N a01 (3-14)
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which is equivalent to the value F(D) measured in the decoherent case. The second iteration

of the incoherent process returns the state

P-) N 1 = ) + xP. (ao0 jiK) + la I0o0)
1 I11) + xaol (a12 1a2) + A12 IC,12)) + XIPoi (b12 Ia2) + V12 IU.v1 2)) (3.15)

where we have decomposed Pz ak,01) into a component parallel to the ideal state IU2 ) and

an orthogonal component ja..12) such that (a2Iau12 ) = 0 and bR2 + v22 = 1. Unlike the

decoherent process, the incoherent process preserves the full luo 1 ) component after the

first iteration. The second iteration of the map may then transform some portion of this

component into the ideal state I12). The possibility of fully "refocusing" errors in the

incoherent case is the essential difference between decoherent and incoherent dynamics, and

this difference is what leads to observable signatures of incoherence. Collecting terms, we

have

j2) I") + X (aola12 + - 1 b12) aO2 ) + X (PI0112 Iav12 ) + ao 1 2 a12 ))

1- f1) + X (A2 10o2) ± 172 lar2)), (3.16)

and in general we can write ý, as a pure state

10.) = PS IPo) = In)+x(A. Ia.) +±r. Ia.r), (3.17)

where (a.Iu.r) = 0 and A2 + F1v = 1. Now after averaging over 61, the fidelity is given by

F2) 1 N - 1
2= - + -N ((ao1a12)z- + (mzolb1 2 )j) (3.18)

_= ± N -1 ((An-ian-ln), + (rn-lbn-l,n)).j (3.19)N N

The first term in parenthesis (An,-an-l,n)z is similar to the term 11j=__- j,j+l in the ex-

pression for F(D), as they both cause the fidelity to decrease on each map iteration since

0 < an--,n < 1. However, the second term in parenthesis (Fn-lb•- 1 ,n)z may be nonzero

and positive, allowing for an increase, or recurrence, in fidelity (Fn() > F(1)1) in some cases.

As an example, consider the Carr-Purcell echo experiment where B0 field inhomogeneities
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are fully refocused by 7r pulses. However, the recurrence in fidelity decay is more general

than a simple echo experiment in which incoherence is inverted by local SU(2) operations.

Recurrence in fidelity decay allows errors to be refocused from any part of Hilbert space

through the repeated action of the perturbed map.

There is also a third type of noise that is not explicitly included in the model for

incoherent or decoherent noise. Coherent noise causes non-ideal unitary errors that are

uniform over the ensemble and do not cause a loss of purity in the individual ensemble

members or in the ensemble-averaged state. In the noise models above, coherent errors

could be incorporated by taking (m?)z • 0. Like incoherent noise, coherent noise can cause

recurrences in fidelity decay. However, there is little motivation to distinguish them in this

setting since the two types of noise can be treated with the same techniques, which do not

require access to a larger Hilbert space.

Recurrences in a fidelity decay are a unique signature of microscopically reversible dy-

namics. For the case that S is an entangling operation, incoherent errors will cause a loss

in the purity of the ensemble that is not recovered by single-qubit operations, and therefore

is difficult to distinguish from the effects of decoherence. Fidelity decay under imperfect

motion reversal provides an efficient means for observing signatures of incoherence even in

the presence of an entangling operation.

3.2 Experiment

Quantum Circuit. Figure 3-1 shows the quantum circuit used to study incoherence in an

entangling operation. This circuit is an example of a case where incoherence causes errors

in the output state that are not easily distinguished from the effects of decoherence. The

first three gates in the circuit create the GHZ state (1000) + 1111)) /v/. Next, an entangling

operation on qubits two and three is repeated 4n times. The final three gates convert the

resulting entangled state to a separable computational basis state. For odd values of n the

final state is 1001), and for even values of n the final state is 1000). Incoherent noise in the

repeated entangling operation will propagate through the Hilbert space, creating entangled

components in the final state. These errors cause a loss of purity that mimics decoherence

since they are not refocused by inverting the incoherence on the output state.
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Figure 3-1: The quantum circuit for exploring incoherence in an entangling operation on
a QIP. H represents the single-qubit Hadamard operation (0, + ao)/v'2, the two-qubit
gate represents a controlled-not operation, whidh flips the target qubit when the control
qubit is in the I1) state. The first three gates create a maximally entangled GHZ state
(1000) + 1111)) /v2, which is followed by 4n iterations of a two-qubit entangling operation.
The final three gates convert the resulting entangled state to the computational basis state
1000) for even values of n and 1001) for odd values of n. Incoherence in an entangling
operation mimics decoherence by causing a loss of purity that is not refocused in the output
state by inverting the incoherence. In our experiment, we observe signatures of incoherence
in the two-qubit entangling operation by measuring the fidelity decay of the output state
for n=O through 30.

NMR QIP. In NMR quantum information processing, nuclear spins polarized by a strong

external magnetic field serve as qubits. The molecule used in this experiment, diagrammed

in Fig. 3-2, is tris(trimethylsilyl)silane-acetylene dissolved in deuterated chloroform. The

carbon nuclei in the acetylene branch are isotopically enriched 13C, while the methyl carbons

are of natural isotopic abundance. The two carbon-13 nuclei and the hydrogen nucleus in

the acetylene branch are used as qubits. The full internal Hamiltonian of the nuclear spin

system has the form

g •r Jrv3 +± -' (3.20)
j=1 j<k

where vj is the resonance frequency of the jth spin, and Jjk is the frequency of scalar coupling

between spins j and k. The hydrogen nucleus is labeled qubit number 1, making it the

most significant bit in the computational state vector. The repeated entangling operation

is applied to the carbon qubits, which are labeled as indicated in Fig. 3-2. Experiments are

performed in a 9.4 Tesla magnetic field, where the Carbon qubits are separated by 1.201

kHz. The scalar couplings are J 12 = 235.7 Hz, J 23 = 132.6 Hz, and J13 = 42.9 Hz.

The initial pseudopure state [20] was created by the technique described in [104] using

hard rf pulses and gradient fields. The input state preparation pulse sequence, which is
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Figure 3-2: A diagram of the tris(trimethylsilyl)silane-acetylene molecule used to implement
the quantum circuit in Fig. 3-1 in a liquid state NMR QIP. The two-qubit entangling
operation is applied to the two 13C spins in the acetylene branch, labeled qubits 2 and 3.
The primary source of incoherence in the experimentally implemented entangling operation
is the inhomogeneity of the carbon rf control field.

non-unitary, was optimized based on the state correlation [37] between the numerically

simulated input state and the ideal input state. The average gate fidelities [37] of the

sequences corresponding to the three sections of the circuit were optimized over the full

Hilbert space. In the experiment, representative measurements of the fidelity are taken. A

single 7r/2 readout pulse on the hydrogen spin was used to measure the o,, 6a2a, ,ana d

aZ Z Zi'r components of the output density matrix, for n = 1 through n = 30.

3.3 Numerical simulation

The NMR experiment was numerically simulated on a classical computer. The dominant

incoherent noise in the experiment arises due to the inhomogeneity of the rf control field over

the spatial extent of the liquid state NMR sample. When an rf pulse is applied during the

experiment, the members of the ensemble experience a distribution of rf powers, and only a

fraction of the ensemble actually experiences precisely the nominal (ideal) rf power. While

the control fields for both the hydrogen and carbon qubits are known to be inhomogeneous,

the inhomogeneity of the carbon control field is the dominant source of incoherent errors

in the entangling operation. Consequently, our numerical simulations include incoherence

for each carbon pulse as a distribution of rf control field strengths. The discrete nine-point

distribution used in simulations is plotted in Fig. 3-3. The natural decoherence of the

nuclear spin system is simulated by an approximate relaxation superoperator [35], which

is completely diagonal in the generalized Pauli basis. In this diagonal form, each non-zero
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Figure 3-3: The distribution of carbon rf powers measured in previous experiments and
used in numerical simulations of the NMR implementation of the circuit in Fig. 3-1. The
rf power is in units of the nominal rf nutation frequency (17.5 kHz).

entry in the relaxation superoperator represents the decoherence rate of a generalized Pauli

basis operator; the specific values used in simulations are based on measurements of all Tls

and the single species T2s.

In numerical simulations, we are interested in the unique features of fidelity decay caused

by incoherence. This is accomplished by separating out those parts of the evolution that

are uniform over the ensemble. We isolate the effects of incoherence by simulating the rf

inhomogeneity in two regimes of dynamics. In the incoherent model, rf inhomogeneity is

simulated as it actually occurs in the experiment, as a static distribution of local unitary

noise. The output state in this regime is ((PS') Ip,)_). In this model, the full state

of each ensemble member is preserved between iterations, which leads to recurrences in

fidelity as discussed in Sec. 3.1.2. In the decoherent model, rf inhomogeneity is simulated

fictitiously as a stochastic effect, as discussed in Sec. 3.1.1. The output state in this regime

is ((PS' ) po). In this model, averaging the state after each iteration preserves only an

average state that is uniform over the ensemble. Differences between the two models arise

purely from incoherence. We emphasize that rf inhomogeneity is known to be a static effect,

and the fictitious stochastic model is used only to isolate the signatures of incoherence. We

also note that the relaxation superoperator, a well-understood source of decoherent noise,
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Figure 3-4: The fidelity decay from a numerical simulation of the experiment, where rf
inhomogeneity (RFI) is simulated using two different models. RFI is simulated as a static
distribution in the incoherent model, while RFI is fictitiously simulated as a stochastic effect
in the decoherent model . This fiction allows us to isolate signatures of incoherence. In the
incoherent model, fidelity recurrences (which appear as oscillations in the plot) are observed
because the purity of the ensemble members is preserved and the repeated action of the
entangling map refocuses some of the errors. There are no significant recurrences ill the
decoherent model because the individual members of the ensemble lose purity, the errors
are not refocused, and the fidelity decays steadily and saturates. Comparison of the two
plots shows that the fidelity decay recurrences are caused by incoherent noise.

is simulated identically in both models.

The results of numerical simulations are plotted in Fig. 3-4. Although incoherence in

entangling operations creates a loss of purity that mimics decoherence, fidelity decay under

imperfect reversal of such a process reveals distinguishable properties of the incoherence.

The first point in the two fidelity decays are identical, as predicted in Sec. 3.1.2. However,

differences in the two models are manifest already in the second point of the fidelity decay,

as the fidelity increases only in the incoherent model. Over 120 entangling operations,

the numerically simulated fidelity decay for the incoherent case shows rapid oscillations, or

recurrences, which are only possible for microscopically reversible dynamics, as discussed in
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Section 3.1.2. The decoherent simulation shows a non-oscillatory decay and saturation at

a value of the inverse of the dimension of the Hilbert space 1/N. Differences between the

fidelity decays collected in the two regimes reveal a signature of incoherent noise which is

also observed in experimental data.

3.4 Results and discussion

Experimental data resulting from an implementation of the optimized control sequences are

compared to results of numerical simulations of the experiment for the two models of rf

inhomogeneity previously discussed. Rf inhomogeneity is simulated as a static distribution

in the incoherent model, while rf inhomogeneity is fictitiously simulated as a stochastic

effect in the decoherent model . The fictitious model of a stochastic distribution of rf

powers isolates the effects of incoherence from evolution that is uniform over the ensemble.

Figure 3-5 shows the sum of the measured magnitudes of four state components (a 1 , a 1 
y

2

a and aZazau) obtained by experiment and by numerical simulations. Under the ideal

unitary evolution, the value of the plotted sum is 0.5. The experimentally observed value

decreases for about 24 iterations of the entangling operation, and then begins to oscillate

and later becomes nearly constant. The incoherent model reproduces the important features

of the experimental data. The value simulated by the incoherent model oscillates over many

iterations, and finally settles to a nearly constant value. By contrast the value simulated

by the decoherent model decreases rapidly and steadily, never oscillates, and saturates to

zero. This comparison demonstrates that incoherence in the entangling operation appears

with distinct signatures in the experimental data.

Some insight is gained by comparing the the individually measured state components of

the density matrix (o1, Oa, 2 o 3 and ozf or 2za) in the frequency domain by Fourier trans-

forming the data, as plotted in Fig. 3-6. In each set of axes, the frequency is represented

on the horizontal axis in units of oscillation periods per entangling operation. The highest

observable (Nyquist) frequency is 1/8, since the state was measured after every four entan-

gling operations. Comparing the experimental data with the two types of simulation, we

see again that the incoherent model of rf inhomogeneity accurately reproduces key features

of the experimental data which are not reproduced by the decoherent model. The dominant

signal in all twelve plots is the zero frequency peak, which is caused by the initial decline
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Figure 3-5: The sum of the absolute value of the density matrix components measured
in the experiment and in numerical simulations. This measurement is a representative
measure of state fidelity for the map under consideration. Rf inhomogeneity is numerically
simulated using an incoherent model and a fictitious decoherent model as discussed in the
text. For the ideal map with no noise, the sum of the density matrix components is a
constant value of 0.5. Experimental noise and decoherence cause the measured value to
initially decrease. However, as the map is iterated, the measured value increases and begins
to oscillate. This behavior is well-reproduced by the incoherent model, while the decoherent
model does not predict the oscillatory behavior. This plot shows that incoherence in the
entangling operation appears with distinct signatures in the experimental data.
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Figure 3-6: The Fourier transform of each experimentally measured component of the den-
sity matrix (middle row), compared to numerical simulations of the experiment using two
models of rf inhomogeneity discussed in the text. The horizontal axis represents frequency
in units of oscillation periods per entangling operation, with values ranging from 0 (left) to
1/8 (right). Resolved high frequency components, which represent fidelity recurrences, are
observed in the experimental data and in numerical simulations of the incoherent model,
but not in numerical simulations of the decoherent model. The dominant high frequency
components are observed in the three-body termu- alo2az3 at the Nyquist frequency. This plot
shows that incoherence in the experimentally implemented entangling operation appears as
high frequency components in the Fourier transform of a state fidelity measurement.
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in fidelity observed for all three plots in Fig. 3-5. The zero frequency peak is somewhat

broader in the decoherent model, which reflects the rapid decay to zero of that data in

the time-domain. The important features in the time-domain data, namely the oscillatory

fidelity recurrences, are represented in the high frequencies of the Fourier domain. The os-

cillatory behavior in the experimental data and in the incoherent model simulations in Fig.

3-5 appear as resolved high frequency components of the individual state measurements in

Fig. 3-6. The largest high frequency component occurs in the a 2 O_3 measurement at the

Nyquist frequency.

Incoherence in an entangling operation causes a loss of purity over the ensemble that is

not recovered by an inverted incoherent process, and therefore is difficult to distinguish from

decoherence. However, incoherence due to inhomogeneity in the rf control field during the

implemented entangling operation appears as a distinct process in our experimental data in

the form of fidelity recurrences. Numerical simulations are used to identify the recurrences

as a purely incoherent effect. Incoherent errors are isolated in numerical simulations by

separating out those parts of the evolution that are identical over the ensemble in a fictitious

decoherent model, and we see that the decoherent process does not give rise to fidelity

recurrences.

3.5 Conclusions

We have shown that incoherence can lead to recurrences in a fidelity decay, whereas deco-

herence cannot lead to such behavior, which provides an efficient framework for identifying

signatures of incoherence. In our experiment, a two-qubit entangling operation was repeated

120 times on a three-qubit GHZ state in a liquid state NMR QIP, and fidelity recurrences

in the experimental data were created by incoherence due to inhomogeneity of the rf con-

trol field. The experiment was numerically simulated modeling rf inhomogeneity in two

regimes: as a static distribution of Hamiltonians and fictitiously as a stochastic distribution

of Hamiltonians. The stochastic model mimics a decoherent process, allowing us to isolate

the incoherent effects of rf inhomogeneity. The comparison identifies the experimentally

observed recurrences as an incoherent process. The approach for detecting incoherence de-

scribed here will be a valuable resource in QIPs operating in larger Hilbert spaces with

entangled states over many qubits, where the effects of incoherence and decoherence are
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difficult yet important to distinguish.
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Chapter 4

Liquid crystal solvent NMR QIPs

Some materials exhibit a liquid crystal phase, or mesophase, which has properties of both

liquid and solid phases. Liquid crystals are like liquids in that the constituent molecules

undergo rapid translational diffusion, and they are like solids in that the molecules demon-

strate some amount of long-range ordering. The particular nature of the microscopic order-

ing varies among materials, but the most commonly observed type of ordering is the nematic

mesophase. Nematic materials are typically made of long, rod-like organic molecules which,

in nematic mesophase temperature regimes, prefer to self-align as illustrated in Figure 4-1.

When a sample of nematic mesophase material is subject to a uniform external magnetic

field, the field acts as a director for the aligned particles, and the material adopts molecular

orientational preferences which are uniform over the sample [29, 34].

4.1 NMR with liquid crystal solvents

The NMR spectrum of a typical nematic liquid crystal material is very broad and has little

structure. These characteristics arise due to the presence of many non-equivalent dipolar-

coupled protons in the liquid crystal material. By contrast when a smaller, rigid molecule is

dissolved in a liquid crystal, the solute adopts the orientational ordering of the solvent, and

a resolved NMR spectrum is observed. The resolved peaks of the solute spectrum appear

with a broad baseline due to the liquid crystal material, as seen in Figure 4-2(a). The figure

shows the proton spectrum of o-chloronitrobenzene (CNB) partially oriented by the liquid

crystal solvent ZLI-1132 at 600 MHz. The resolved peaks axe from the four protons of CNB,

and the baseline modulation arises from the many non-equivalent dipolar-coupled protons
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Figure 4-1: Illustration of the order properties of a nematic liquid crystal phase, showing ori-
entational but not positional ordering. The material is composed of long, rod-like molecules
that become self-aligned at certain temperatures. When the nematic phase is subject to
an external magnetic field, the field acts as a director for the molecular alignment. Solutes
dissolved in a nematic liquid crystal adopt preferred orientations that restrict thermal rota-
tion, causing nuclear spins within the molecule to retain non-zero dipolar interactions which
are not present in an isotropic liquid. The intramolecular dipolar couplings are useful for
NMR quantum information processing.

of ZLI-1132.

The baseline due to the liquid crystal solvent can be removed by inserting a time sus-

pension sequence, such as the Cory-48 pulse sequence [22], before acquiring an FID. This

technique works because the dipolar coupling of the liquid crystal solvent spins, whose signal

we want to suppress, is much stronger than the dipolar coupling of the solute spins, whose

signal we want to observe (d,,pp >> dbs). By selecting a pulse sequence that refocuses

the solute spins (Td0 b << 1) but not the solvent spins (rdspp >> 1), the unwanted signal

is removed. In our experiments we found that one cycle of the Cory-48 pulse sequence,

using r = 30ps and a (7r/2) pulse time of 6.85ps, worked well. The results of the baseline

suppression technique for CNB dissolved in ZLI-1132 are shown in Figure 4-2(b).

After removing the baseline, we are left with a complicated spectrum of many resolved

transitions. The dominant features in the resolved spectrum arise due to the presence

of strong magnetic dipolar couplings among nuclear spins in the solute material. This

strong dipolar interaction is the principal difference between liquid and liquid crystal solvent

NMR. The secular homonuclear dipolar interaction between two spins (j and k) in a strong

magnetic field is given by

k=Djk (2aO_ - (4.1)
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Figure 4-2: 600 MHz proton spectrum of o-chloronitrobenzene (CNB) partially oriented by
the liquid crystal solvent ZLI-1132. (Top) The spectrum after a single (7r/2) pulse features a
broad baseline due to the liquid crystal solvent, which contains many nonequivalent strongly
dipolar-coupled protons. The resolved peaks are the four dipolar coupled protons of the
CNB solute material. The dipolar coupling among solvent protons is much stronger than
among solute protons. (Bottom) The spectrum after a (7r/2) pulse and one cycle of the
Cory-48 pulse time suspension sequence (r = 30ps, ir/2 pulse = 6.85ps). The baseline is
suppressed because the pulse sequence is parameterized to refocus the dipolar couplings
among solute protons but not among solvent protons.
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where Dik is the dipolar coupling strength (in units of Hz)

D) k- ( h'Ygk) (1 - 3cos2 /ik (4.2)

rjk = I ljk is the length of the internuclear vector, OjA is the angle between the internuclear

vector and the B0 field, pio is the permeability of free space, and h is Planck's constant

divided by 27r. The value of the expression in the first set of parenthesis in equation (4.2)

is determined by the type of nuclear species; for two protons (Ioh'yj-yk/87r2) = 120 kHz A3.
For an ensemble of rigid molecules, the internuclear distances are fixed by the structure

of the molecule, and the angular terms in the dipolar coupling strength axe averaged over

the distribution of molecular orientations in the ensemble

dik= (Mh-jk ) (1- 3cos 2 Ojk;) (4.3)

where the angular brackets denote the ensemble average. In both liquid and liquid crystal

solvents, the solute molecules move about with rapid, diffusive translational motion, which

averages the intermolecular dipolar couplings to zero. In addition to translational motion,

the molecules in a liquid are randomly rotating, averaging out the intramolecular dipolar

couplings as well. By contrast, a molecule dissolved in a liquid crystal has a preferred

orientation, so rotational motion is restricted, and intramolecular dipolar couplings are

retained, as the bracketed term in equation (4.3) averages to some non-zero value.

4.2 Dipolar coupling in a partially oriented system

Emsley and Lindon's text [34] gives a detailed derivation of the effective NMR dipolar

Hamiltonian for partially oriented systems. The observed nuclear dipolar couplings arise

from an ensemble average over the distribution of molecular orientations. The order pa-

rameter Sao provides a convenient framework for representing the ensemble averaging. In
general, the order parameter varies with temperature and depends heavily on the liquid

crystal solvent and the symmetry of the solute molecule. In order to express the observed

dipolar couplings in terms of the order parameter, we first define two Cartesian coordinate

systems. The lab frame coordinate axes are labeled x, y, and z, and the molecular frame

coordinate axes are labeled a, b, and c. The lab frame is defined by the external B0 field,
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Figure 4-3: Coordinate frames used in the expression of the order parameter. The molecule
is fixed in the molecular frame, whose axes are labeled a, b, and c. Thermal energy causes
the molecular frame to rotate with respect to the lab frame, whose axes are labeled x, y,
and z. The z-axis is parallel to the external B 0 field; the x- and c-axes are perpendicular
to the yz-plane. The internuclear vector <•k makes an angle Ojka with the molecular a-axis.
The molecular a-axis makes an angle 0(,, with the lab z-axis. The order parameter given
in equation (4.4) describes the distribution of molecular frame orientations in an ensemble
of molecules. Equation (4.5) relates the order parameter to the observed dipolar couplings
djk.

which is parallel to the z-axis. The molecular frame is defined by the orientation of the

molecule, as the molecule is fixed in the molecular frame. The indices a and 03 will be used

to represent a generic axis in the molecular frame. The order parameter is expressed

SaO = 1 (3 cos 0,, cos 00, - 6,0) (4.4)

where the angled brackets indicate the ensemble average, 6"0 is the Kronecker delta, and

fUý is the angle between the lab z axis and the molecular a axis. These angles and their rela-

tionship to the lab and molecular frames are illustrated in Figure 4-3 for a benzene molecule.

The effective dipolar couplings for a partially oriented system can now be expressed
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8,r 2rk , _SaO (COSOjk,,COSOjk,) (4.5)

where Ojka is the angle between the internuclear vector ik and the molecular a-axis, il-
lustrated in Figure 4-3. In a liquid, all elements of San are zero, and there is no dipolar

coupling.

The order parameter is a traceless rank-two tensor, so the diagonal elements are often
expressed as two independent terms Saa and (Sbb - S,,). Also, because Sa, is symmetric,

the off-diagonal terms can be reduced to three independent terms Sab, Sa, and Sb,. In this

representation, the dipolar couplings are given by

Dik = oh-.yjk "[S. <con2 k. + (Sbb - S,) (cos 2 Ojkb - cos2 ojkc>

+ 2Sab (cos Ojka cos 9 jkb) + 2Sc (cos Ojka cos Ojkc)

+ 2Sk (cos Ojkb cos OjkC)]. (4.6)

which is often used in literature and texts. The order parameter is a convenient representa-

tion of the ensemble average orientation because it characterizes the molecular orientation
in the molecular frame. The molecular frame can be chosen to exploit symmetries in the

molecule, which reduces the number of independent parameters necessary to characterize

molecular motion in the molecular frame. Consequently, the order parameter can often be

reduced to fewer than five independent terms. For example, the symmetry of the benzene

molecule reduces the order parameter to a single nonzero term S,.. The proton NMR spec-

trum of benzene partially oriented by the liquid crystal ZLI-1132 is shown in Figure 4-4.
The symmetry of the spectrum is a result of the benzene molecule's symmetry.

Now the internal Hamiltonian of the solute spin system can be written

= ± ~ (13k ± 2 ,jk)C(7 + ~-(jjk d k) (k)~ (4.7)
J j<k j<k

where vj is the resonance frequency of the jth spin, dik is the dipolar coupling strength

(modified by S,,) between spins j and k, and Jjk is the corresponding scalar coupling

strength. In liquid crystal solvent systems, dipolar coupling strengths can reach a few

kilohertz. For a given pair of spins the dipolar coupling is typically one to two orders of
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Figure 4-4: 600 MHz proton spectrum of benzene partially oriented by the liquid crystal
solvent ZLI-1132. The symmetry of the NMR spectrum is a result of the symmetry of
the benzene molecule. The order parameter for this system has one independent parameter
which uniformly scales the dipolar couplings among all six protons and therefore determines
the spectral breadth.

magnitude larger than the scalar coupling.

For ordered systems, the chemical shift difference between two nuclear spins A-jk =

vj - vk I is often smaller than or comparable to the dipolar coupling strength dik, so we have

ALjk ; d3,. This contrasts with the liquid state, where typically djk = 0 and Avk >> Jjk.

The effect is that the nuclear Zeeman energy levels in the partially ordered system are

mixed by the anisotropic coupling terms of the internal Hamiltonian. The peak heights

and positions in the resulting NMR spectrum are affected by the mixing, and the physical

parameters of the internal Hamiltonian are not trivially extracted from the NMR spectrum,

as they usually can be in liquid state systems.

4.3 Liquid crystal solvent NMR QIPs

The solute material in a liquid crystal solvent system can be used for NMR quantum

information processing to some advantage over liquid state systems [120]. One primary

advantage is a direct result of the large dipolar couplings in partially oriented systems. The

computing speed of an NMR quantum processor is related to the inverse of the nuclear

spin coupling strength, and therefore the computing speed of a liquid crystal solvent NMR

QIP (LNQ) is much faster than that of a liquid state system. Another advantage is the

greater availability of molecules bearing large networks of strongly coupled nuclear spins.

In order to perform conditional quantum logic gates, the nuclear spins in an NMR QIP
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must exchange information. Nuclei in the liquid state exchange information by through-

bond scalar couplings, so nuclei that are not directly bonded must exchange information

indirectly, traversing multiple bonds. Dipolar coupling is a spatial effect, and in a partially

ordered system, even distant nuclei that are not directly bonded can directly exchange

information, simplifying multiple-qubit quantum logic gates. In addition, the coherence

times of nuclear spins in an LNQ can be hundreds of milliseconds long, providing sufficient

time to perform many quantum logic operations before the system decoheres.

From liquids to solids There are additional reasons, other than their performance, for

developing coherent control in LNQs. The future direction of NMR quantum information

processing (discussed in Chapter Six), aspires to implement coherent control in large Hilbert

spaces using solid state devices. However, adapting the tools of liquid state NMR QIPs

to these systems is not a trivial task. Figure 4.3 shows how LNQs fit into the broad

picture of NMR quantum information processing as a bridge from liquid to solid state

implementations. The left and middle columns of the figure illustrate liquid crystal as

a mesophase. of matter, in the middle of a liquid and solid phase. The third column of

Figure 4.3 shows that the nuclear spin dynamics of an LNQ are in a meso-regime between

liquid state and solid state dynamics. Liquid state dynamics are typically dominated by

the Zeeman interaction (Avjk >> Jjk, dik = 0), whereas solid state dynamics are typically

dominated by the dipolar interaction (Avjk << djk). Materials dissolved in a liquid crystal

are typically in a regime between these two extrema (Avjk ; djk). From this perspective,

LNQs provide a natural setting for translating liquid state methodologies to dipolar coupled

systems and for addressing some of the other important challenges in solid state NMR

quantum information processing.

Challenges Just as the advantages of LNQs arise due to the presence of strong dipolar

couplings, so do the some of the challenges. LNQs provide moderately large networks of

dipolar-coupled nuclear spins, and a significant challenge in these systems is to characterize

and coherently control the dipolar interaction. Multiple pulse techniques and magic angle

spinning have both been used with great success to effectively average out the dipolar

Hamiltonian 143, 77]. Other work has demonstrated coherent control in dipolar coupled

systems [4, 5, 73, 89]. However, as the number of spins increases, the size of the Hilbert
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Figure 4-5: Comparison of three regimes of NMR QIP, showing liquid crystal solvent NMR
QIPs as a bridge between liquid and solid state implementations. Liquid state NMR QIPs
explore coherent control with a small number of weakly coupled nuclear spins. Solids host
large networks of strongly dipolar-coupled nuclear spins, an attractive setting for imple-
menting coherent control of large Hilbert spaces. Liquid crystal solvent systems provide
a middle-ground, where the dynamics approach solid state conditions, and the available
Hilbert spaces are larger than those available in the liquid state. LNQs provide a natu-
ral setting for addressing some of the important challenges in solid state NMR quantum
information processing.
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space grows exponentially, and pushing coherent control techniques to large Hilbert space

implementations remains a significant challenge. Another effect of increasing the number

of dipolar coupled spins in an LNQ is the added difficulty of analyzing the NMR spectrum

and parameterizing the internal Hamiltonian [34, 102, 103].

An additional challenge arises due to the relatively small differences in nuclear spin

resonance frequencies in an LNQ. For a molecule in a liquid crystal solvent, chemically

distinct nuclear spins are distinguishable by their resonance frequencies Vj. However, the

chemical shift differences Avj--- = - vkj may be very small, and the time required to

distinguish among the spins is proportional to 1/AvjA. Consequently, control sequences

which distinguish among the spins are long in time, negating the enhancement in comput-

ing speed enabled by strong dipolar couplings and augmenting the effects of decoherence.

This challenge is addressed in Chapter Five of this thesis by encoding logical qubits in a

decoherence free subspace (DFS). Logical qubit rotations are implemented by the dipolar

interaction and need not distinguish the resonance frequencies of the nuclear spins, which

allows shorter control sequences [31]. In addition, by storing quantum information in a

DFS, the effects of decoherence are minimized, as the state of the logical qubits is immune

to certain types of noise [32,70, 122].

Prior work with LNQs The potential advantages of an LNQ were first demonstrated

in an implementation of the Grover search algorithm using partially oriented chloroform

[1201. Since then, more complex systems have been explored. LNQs have been used to

implement adiabatic quantum algorithms [791, entangled states [76], universal coherent

control [721, quantum information processing with spins greater than 1/2 [27, 28, 56, 97],

and demonstrations with up to seven nuclear spins [641. Recent work [731 has shown the

success of strongly modulating pulses [37] for coherent control of dipolar-coupled nuclear

spins in an LNQ.

In previous studies of LNQs involving multiple homonuclear spins-1/2, the physical

parameters of the internal Hamiltonian (djk, vj, and Jjk) were not measured. Instead,

a two-dimensional NMR method, HET-Z-COSY [26], identified connectivities among the

eigenstates of the internal Hamiltonian, and these states were used as the computational

basis of the LNQ. In some of these studies, transition selective pulses were used to implement

the desired unitary evolution [26,72]. More recent work has combined the HET-Z-COSY
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method with spectral fitting procedures to determine a "guess" Hamiltonian [73], but the

physical parameters of the Hamiltonian are not determined. In Chapter Five of this thesis we

demonstrate control sequences that are robust to variations in Hamiltonian parameters, and

high fidelity control of two logical qubits is achieved even when the Hamiltonian parameters

are known with some uncertainty.
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Chapter 5

Enhanced control by logical qubit

encoding

The successful transition from quantum information processing to quantum computation

will require the ability to efficiently control qubits in the presence of noise. Decoherence free

subspaces (DFSs) are some of the most efficient schemes of avoiding decoherence from noise

sources with underlying symmetries [32,70,122]. There have been considerable experimental

demonstrations of coherent control in DFSs including demonstrations of multiple qubit

control [13, 37, 38, 45, 49, 57, 61, 63, 80, 831. However most examples were not the natural

encodings, in that the dominant noise source was not of the proper symmetry, and the

control method did not simply match the available control elements. Here we explore a DFS

encoding of strongly dipolar-coupled spins where the logical encoding quite naturally fits the

internal Hamiltonian structure. This work builds on the extensive theoretical investigations

of DFS encoding for systems with time-dependent exchange couplings [3,31,119, 1211. To

achieve similar internal Hamiltonian structure we employ liquid crystal solvents to partially

align the spin system and to reintroduce the spin-spin dipolar coupling [34].

5.1 System model

Liquid crystals in a strong external magnetic field are partially ordered. This partial order-

ing restricts the thermal motion of molecules dissolved in the liquid crystal material, and

consequently, the solute molecules have a preferred orientation, and the orientationally-
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dependent intramolecular dipolar interactions

Ddik - a -az a.a) (5.1)
j<k

a _k _(5.2)1-3cO& 3 .2

do not average to zero. However the translational motion of solute molecules is not re-

stricted, and intermolecular dipolar couplings do average to zero. The resulting internal

Hamiltonian for a liquid crystal solvent system is

-ý= z rjo + Z -(Jjk +2dik) ujzu~k+ 'r(J,,,- dik) (rior + Ora) (53Z r) (5.3)
j j<k j<k

where vj is the resonance frequency of the jth spin, dik is the dipolar coupling strength

between spins j and k, Jjl is the corresponding scalar coupling strength, and the sums are

restricted to spins within the molecule. In liquid crystal solvent systems, dipolar coupling

strengths can reach multiple kHz, and for a given pair of spins the dipolar coupling is

typically one to two orders of magnitude larger than the scalar coupling. The resonance

frequencies and scalar couplings can be directly measured using multiple pulse sequences

that average out the dipolar interaction, such as the MREV-8 sequence [74, 75,90]. The

intramolecular dipolar coupling strengths for a partially ordered system are a result of the

structure of the molecule as modified by the order parameters of the system [29,34].

We are interested in the control of two logical qubits that are encoded to protect against

collective a. noise. The logical subspace SL for this encoding is the zero-quantum subspace

of the Zeeman energy eigenstates

I00)L = 10101) (5.4)

1014 = 10110) (5.5)

1104 = 11001) (5.6)

I11)L= 11010). (5.7)
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We describe the system in terms of the following set of logical subspace Pauli operators

LI 1 l o1 2 + 2 L2 = 1,( 3 04 r3 o4

X 2 x x Y Y 2 xx
LI1 (or.2 1 2 L2 1 3 4 3 4Liy 2-(uva - axa) ay =-(---a az axa)

Y 2 Y x X Y Y 2 Y
oLl = 1  2  

oL2 -o 3  a 4

z z z z z z

along with the identity term and the nine bipartite terms such as OLI_ 21 Recently we have
•x ay .•eety ehv

reported on liquid state NMR experiments to demonstrate coherent control for a Bell state

with this encoding [49]. We have discussed leakage out of the logical subspace under the

control operations [12], and we have described a convenient subsystem pseudopure state [13].

The liquid crystal system extends these studies by offering a new symmetry for the internal

spin Hamiltonian that led us to expect that the logical encoding will be a more natural and

efficient subspace for manipulating quantum information. The dipolar Hamiltonian has a

portion that transforms as the exchange operator which has been shown to be particularly

convenient for subsystem encodings [3,31,119,121].

The goal of this work is to demonstrate three results: (1) improved quantum infor-

mation processing by using logical qubits, (2) an implementation of a DFS with dipolar-

coupled spins, and (3) high fidelity control even when we have limited knowledge of the

system Hamiltonian. The spin system used in these studies is the four protons of o-

chloronitrobenzene (CNB) dissolved in Merck ZLI-1132 liquid crystal at 600 MHz field

and a temperature of 300 K. The proton spins are strongly coupled to each other, and all

of the resonances are not resolved in the 1-D NMR spectrum shown in Figure 5-1. The

order parameters for CNB aligned in a liquid crystal solvent have not been measured previ-

ously so we do not have this information on which to determine the internal Hamiltonian.

We have made the following simple measurements to obtain reasonable estimates of the

internal Hamiltonian: (1) a 1-D MREV-8 spectrum shown in Figure 5-1, and (2) 2-D cor-

relation spectra between the chemical shifts under MREV-8 line narrowing and the full

internal Hamiltonian. The MREV-8 spectrum indicates the chemical shifts, and the 2-D

measurement provides a means of assigning the largest dipolar couplings to the appropriate

chemical shifts. We measured the chemical shifts (in units of Hz) vi = 115, v2 = -234,

v3 = 204, and v 4 = -86 relative to an arbitrary transmitter frequency, and an incom-

plete set of approximate dipolar couplings (in units of Hz) d 1 2 = -729, d 2 3 = -503, and
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Figure 5-1: 600 MHz proton spectrum of o-chloronitrobenzene (CNB) partially oriented
by the liquid crystal solvent ZLI-1132, where the signal due to solvent protons has been
suppressed by inserting a single cycle of the Cory-48 pulse sequence before the acquisition.
The inset spectrum, collected stroboscopically under the MREV-8 sequence (r = 15pis, 7r/2
pulse = 6.85ps), shows the four spins uncoupled with chemical shifts scaled by approximately
0.50. The spectrum after a single (7r/2) pulse (not shown) features a broad baseline due
to the liquid crystal solvent, which contains many nonequivalent strongly dipolar-coupled
protons. The baseline is suppressed in the spectra shown above because the Cory-48 pulse
sequence was parameterized (r = 30iis, 7r/2 pulse = 6.85ps) to refocus the weaker couplings
among solute protons but not the much stronger couplings among solvent protons.

d3 4 = -1875. Although this limited description gives a very incomplete picture of the total

system dynamics it is sufficient for our purposes.

5.2 Experiment

We encoded the four spin system into two logical qubits where d1 2 provided the control

elements to rotate the first logical qubit, d34 similarly controlled the second logical qubit

and d23 controlled the interactions between qubits. To achieve the desired control fidelity we

found pulse sequences via the GRAPE algorithm [541. Pulses were optimized for robustness

to scalar couplings, the unknown dipolar couplings (d13 , d14 , d24 ), and rf inhomogeneity.

The three unknown dipolar couplings were set to a distribution of values centered about a

"best guess" (in units of Hz) d13 = 116, d14 = -64, and d24 = -170. Although the most

accurately known parameters in the internal Hamiltonian are the chemical shifts, we did

not rely on them for control of the logical qubits. There is a final complication in that the

three specified dipolar couplings (d12 , d23 , d34) are not precisely determined. We designed

the control sequences to be robust against small (±100 Hz) variations of each of these.
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The experimental goal was to create a pseudo-pure state over the logical qubits and then

to entangle them in the form of a Bell state. We directly created the pseudo-pure state

over the logical qubits via temporal averaging. This was accomplished in two steps. Under

MREV-8 decoupling we prepared the states

L1 L2 1 2 3 4 (5.8)
az + a*z =0*z - a0 z az - a0 z( 5 8

L2 3 4rz --aZ - oaz (5.9)

relying on the differences in the chemical shifts of the four spins. To complete the pseudo-

pure state preparation we used a numerically optimized GRAPE pulse to implement

L2 U•p L1 L2.

a 2  or, a,. (5.10)

The entangling operator we attempted to implement in the logical space is

1 0 -i 0

S 0 -i 0 -15.11)ut= 722 0 i 0 -- 1(.1

-1 0 -i 0

which takes the input state vector 100)L to the logical Bell state (100)L -- [11)L) /v/2. A

numerically optimized (GRAPE) pulse was found which performs this unitary operation

over the logical subspace with high fidelity. The fidelity of the pulse, accounting for coherent

errors and the uncertainty in Hamiltonian parameters, is 0.99. In addition to the preparation

and entangling pulses, we found fourteen readout pulses that transform every operator in

the logical space into observables. The full experiment is outlined in Fig. 5-2.

Information stored in a DFS respects a direct sum representation over the full Hilbert

space. Ideal control operations over the logical qubits have the structure S - SL ( SR, where

SL is the logical subspace of interest, and SR is the remainder of the space. We attempted

to prepare the initial state pin = 100)L (OOIL D OR, where OR is an explicit representation

that the state has no component in SR. The entangling operation over the full Hilbert space

should also respect this symmetry Unt-Lt U D URt where we have complete flexibility

in our choice of uR The challenge of course is that if the direct sum representation is
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Figure 5-2: The procedure and experimental results of creating a Bell state over two log-
ical qubits encoded in the four dipolar-coupled protons of the CNB molecule. MREV-8
sequences along with a numerically optimized preparation pulse are used to create the
pseudopure input state 100)L over the logical subspace. A numerically optimized entangling
operation pulse converts the input state to the logical Bell state (1004) + I11)L)/v/'. A set
of 14 numerically optimized readout pulses were used to reconstruct the density matrices
shown above. The experimentally measured logical input and Bell states have correlations
of 0.90 and 0.84 (respectively) with the numerically simulated states shown above.

76



not maintained, the logical information can be corrupted or can leak out of the logical

subspace [12, 106,118].

Uprep and Uent were optimized over the range of dipolar couplings and rf inhomogeneity

described above. The goodness function maximized by the GRAPE optimization algorithm

was the logical subspace fidelity, which includes a penalty for pulses that permit leakage.

The logical subspace fidelity expression is derived in Appendix A. Unt was chosen arbi-

trarily. Finally, the readout pulses necessarily operated over the entire Hilbert space. They

were simply designed to efficiently transform selected logical operators into observables and

to be robust over the dispersion of coupling constants and rf inhomogeneity.

The reconstructed density matrices over the logical degrees of freedom are shown in Fig.

5-2. As expected, most of the observed errors arise from the initial state preparation and

the readout sequences. The normalized state correlations over the logical subspace are:

Corr (Pinm, exp 90 (5.12)

Corr (ptel, pBel) = 0.84 (5.13)

The normalized correlations between the experimentally measured states and the ideal

states are of course lower since they include more of the errors due to state preparation and

readout

Corr (PlOO),p" P) = 0.83 (5.14)

Corr (PIBeLL)L, ----- 0.76 (5.15)

5.3 Analysis

To further explore the robust nature of our control over the logical subspace we have sim-

ulated the average state correlations that would be expected as the dipolar frequencies are

varied. This information is shown in Figure 5-3. The loss in correlation is most pronounced

for the step of creating the pseudopure state in the logical subspace. The entangling op-

eration suffers only a small additional loss in correlation. Finally we compare our control

over the encoded logical qubits to that we have over the individual spins. Figure 5-4 shows

data from numerical simulations of the logical qubit entangling pulse implemented in the

77



0.

0
S 0 .6 .......... .... ...
a)

09

0.2 ..... ............. ...... ......... -......... ... ......... ...... .

0 2 4 6
Number of couplings varied

Figure 5-3: Correlation of the numerically simulated and experimentally measured density
matrices for the logical input state (black) and the logical output state (green). The cor-
relations shown are averaged over a dispersion of simulated Hamiltonian parameters. The
horizontal axis indicates the number of dipolar couplings that are varied in the Hamilto-
nian dispersion. The individual coupling strengths are known with some uncertainty that
is approximated by a dispersion centered at djk having a full width at half maximum =
200 Hz. Three points of each dispersion are sampled (dik and djk ± 100 Hz), taking only
those combinations of coupling strengths that have the same sum. As more couplings are
varied, the correlations decrease only slightly since the pulse sequences were engineered to
be robust to these variations, and the loss in correlation is most pronounced for the input
state.

78



rf incoh0.9-• H disp

both
0.8-

-,0.7-

•0.6

S0.5

S0.4

m0.3

0.2

0.1

0 Logical 12 13 14 23 24 34
Qubits entangled

Figure 5-4: Fidelity of two-qubit entangling operation pulses numerically simulated under
various conditions, comparing control of two logical qubits versus all pairs of spin qubits.
The horizontal axis indicates the pair of qubits entangled. Bar color indicates the condi-
tions of the simulation: (yellow, left) rf inhomogeneity is included in the simulation, (red,
middle) a dispersion of Hamiltonians are simulated with no rf inhomogeneity, (blue, right)
a dispersion of Hamiltonians are simulated with rf inhomogeneity. All fidelities are atten-
uated by exp (-tpulse/T2). For logical qubits, the estimated decoherence time of the zero
quantum subspace is used (T2=80 ms), and for spin qubits, the longest estimated single
spin decoherence time is used (T2=40 ms). The fidelity under each set of conditions is
significantly better in the case of logical qubits than for any pair of spin qubits.

experiment, compared to numerical simulations of the best spin qubit entangling pulses

found by the same pulse optimization methods, optimizing over the full Hilbert space. The

fidelity under each set of simulated conditions is significantly better in the case of logical

qubits than for any pair of spin qubits.

5.4 Conclusions

In conclusion, we have shown that improved coherent control is achieved by encoding logical

qubits in our system of four dipolar-coupled protons. Control in this system was demon-

strated experimentally by creating a pseudopure state in the DFS and applying a unitary

transformation to create a logical Bell state. Some of the system Hamiltonian parame-

ters are imprecisely known, and high fidelity control was achieved by engineering pulse
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sequences that are robust to these uncertainties. The structure of the system Hamiltonian

for molecules dissolved in liquid crystal solvents provides a natural setting for experimental

studies of logical qubit encodings. In the future, liquid crystal solvent NMR QIPs could be

used to explore more complex logical encodings in larger Hilbert spaces.
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Chapter 6

Future direction

The long-term goals of quantum computing research include the realization of scalable,

fault-tolerant coherent control. This goal is motivated by the idea that quantum computers

will offer exciting and unique possibilities that are not available from classical computers. In

the near term, existing implementations will move toward this goal by incorporating more

complexities and broader capabilities. Specifically, efforts are focused on the development of

QIPs that have access to larger Hilbert spaces. Many of these ongoing experimental efforts

utilize nuclear and electron spin networks in solids, where spin addressability can present

an additional challenge.

Facing these challenges, a logical approach is to utilize and adapt the tools that have

enabled control in smaller, less complicated systems. In this regard, liquid crystal solvent

NMR QIPs (LNQs) provide a fertile ground for progress. LNQs provide modestly large

Hilbert spaces for studying complex system dynamics and quantum control with limited

addressability. As discussed in Chapter Four, the natural system dynamics of an LNQ are

in a middle-regime, between liquid and solid state dynamics, where the tools of liquid state

NMR QIP can be applied to challenges related to scalable systems.

6.1 Larger Hilbert spaces

In liquid state NMR QIP, the Hilbert space is defined by nuclear spins in an ensemble

of molecules. Because each molecule is approximately isolated from its environment, a

molecule with a small number of scalar-coupled nuclear spins creates a well-defined Hilbert

space, which enables precise coherent control. In solids, nuclear spin coupling is not limited
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Figure 6-1: Diagram of the 4-hydroxyphenanthrene molecule which could be used as a 16
qubit heteronuclear LNQ. 13 C labeled spins are highlighted in red. Such a system will be
useful for developing control techniques in large Hilbert spaces and for exploring control in
dipolar-coupled nuclear spin systems.

to nearest neighbor interactions, and each spin is coupled to many other spins by the dipolar

interaction. Experiments have identified interacting spin clusters containing as many as 100

spins [18,191. While these large spin clusters present the advantages of a large Hilbert space,

approximating a well-defined, isolated Hilbert space for quantum computing is a significant

challenge in these systems. Liquid crystals will enable studies in moderately large networks

of dipolar-coupled spins that are small enough that the dynamics are tractable. Figure 6-1

shows a molecule that could be used for such work. Future work with molecules such as 4-

hydroxyphenanthrene could help identify methods for approximating a well-defined Hilbert

space within a large network of dipolar-coupled spins.

6.2 Limited addressability

In liquid state NMR QIP, the difference in spin resonance frequency between two spins

Avjk is typically on the order of kHz, while the coupling strengths Jjk are typically one

to two orders of magnitude smaller. In this regime, each spin-qubit is addressable by its

resonance frequency, and arbitrary single-qubit manipulations are implemented by numer-

ically optimized rf control sequences [371. Ii solids, AVjk is orders of magnitude less than

the dipolar coupling strength djk, and individual spins are often indistinguishable, making

single spin-qubit manipulations virtually impossible.
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The solution to this problem is to encode single qubits in the state of many nuclear spins,

which allows single qubit manipulations to be accomplished by controlling the interaction

among the spins rather than by addressing individual spin resonance frequencies [3,31]. As

demonstrated in Chapter Five, liquid crystals provide a natural setting for exploring coher-

ent control of logical qubits. Figure 6-2 demonstrates that liquid crystals are in a regime

of addressability between liquids and solids. In a liquid crystal, individual transitions are

resolved in the spectrum, but individual spins are not efficiently manipulated, since the

coupling strengths are comparable to and often greater than the differences in resonance

frequencies Avij. Future studies with LNQs will progress to larger spin systems, incor-

porating more complex logical encodings involving more than two spins per logical qubit,

which provides protection from a larger class of noise generators.

6.3 Complex dynamics

In liquid state NMR QIPs, dipolar couplings among nuclear spins are averaged out naturally

by the thermal motion of the molecules, and nuclear spins interact through scalar coupling.

The interaction is often in the weak coupling regime where the coupling term Jjkuj • a" is

well approximated by JjkaOrzO. In such a regime, simulating a strongly mixing anisotropic

Hamiltonian can require many transformations and long coupling times. In LNQs, strong

dipolar couplings provide a natural setting for simulating and controlling a wider variety

of Hamiltonians. As an example, the dipolar Hamiltonian can be transformed to study

evolution under XY-Heisenberg couplings [14].

Many promising approaches to scalable control involve nuclear spins in the solid state,

some of which incorporate electron spins via the hyperfine interaction [21,52,55,62,94, 101].

In these systems, it will be necessary to control and precisely manipulate large anisotropic

coupling terms in the system Hamiltonian. LNQs provide a means for exploring control

methods for such applications.

6.4 Conclusions

The challenge of building a quantum computer is a significant motivation to study and

control complex quantum systems. Experimental methods have been developed to enable

precise coherent control in liquid state NMR QIPs, and adapting these methods to solid
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Figure 6-2: NMR spectra showing different regimes of Hamiltonians. (Top) A spectrum
typical of liquid state NMR QIPs, showing three groups of peaks from three labeled 13C
nuclei in crotonic acid. Each group of peaks is split due to scalar coupling among the
spins. The couplings are orders of magnitude smaller than the chemical shift differences.
(Middle) A spectrum typical of liquid crystal solvent NMR QIPs, showing many resolved
peaks over a broad spectral range from the four protons of o-chloronitrobenzne. Each
proton is strongly dipolar coupled to the three other protons. The couplings are similar
in magnitude to the chemical shift differences, and individual spins are not identifiable in
the spectrum. (Bottom) An NMR spectrum typical of solid state systems that have been
proposed for QIPs [21, 55, 62, 94, 1011, showing many 29Si nuclear spins, strongly coupled
through the dipolar interaction in a rigid crystal lattice. Though there are many spins
and many transitions in the system, a single peak, broadened by dipolar interactions, is
observed.
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state systems will lead to QIPs with greater capabilities. Liquid crystal solvent NMR QIPs

provide a setting for this task, where the system dynamics are tractable but complex enough

to present meaningful challenges and opportunities for significant progress.
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Appendix A

Fidelity of logical qubit control

A.1 Measures of control

In an experiment, the control sequence optimized to implement Uideal is modificd by ex-

perimental noise. Under a noisy implementation, the resulting state can be expressed by a

Kraus decomposition of the experimentally implemented process

PeXp = Z A, nAt•" (A.1)
A1

where the AA must satisfy

Z AAt = IL, (A.2)

Expression (A.1) may represent a unitary operator sum for an incoherent process or any

other completely positive quantum process. The experimentally implemented quantum

process can also be fully described in a Liouville space representation by the superoperator

SXP, where

In the superoperator notation, states are represented by columnized density matrices 1p)

that are formed by stacking the columns of p from left to right, and state evolution is

expressed

lpe.p) = Sp IA.p)- (A.4)
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The superoperator describing a unitary process U is given by S = U® U, where the overbar

denotes complex conjugation.

Typically, three measures of control are of interest in quantum computation. The cor-

relation between two quantum states

C(Pideal, Pexp) = trace(pidealPexp) (A.5)
trace(p deat)trace(pp)A.5

indicates the overlap of the two states in Hilbert space. The attenuated correlation between

two quantum states

itrace( 

(A)A(pideal, pexp, Pin) = C(pideal, pep)v tra(A.6)n

includes a penalty for loss of state purity. Finally, the fidelity of the implemented quantum

process is defined

F = A(Pideal, Pexp, Pin), (A.7)

the average attenuated correlation over a complete set of input basis states (average denoted

by overbar). There are multiple equivalent expressions for the fidelity. For example, as

derived in [37],

F = Itrace (UdeaiA/,)/N 2, (A.8)

where N is the Hilbert space dimension. Following from equation (A.8), when the imple-

mented process is unitary, the fidelity is given by

F = trace(UtUeUp)/N (A.9)

When Uideal is represented in the Liouville space Sid.a = Uideal 0 Uideal (overbar denotes

complex conjugation), the fidelity is given by

F = trace(StxpSideal)/N 2  (A. 10)
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A.2 Control in the logical subspace

When implementing control in a logical subspace, measures of control need to be modified.

The system Hamiltonian is defined over the full Hilbert space S -= SL D SR, where SL is

the logical subspace of interest, and SR is the remainder of the space. An operator 6& in S

has a component in SL which is extracted by the projection operation
NL

(7L = 1: ILj) (Lj 1f'1Ly ) (LyI (A.11)

jj1=l

where the jLj) form a complete set of NL basis vectors in SL. The component of (7 in SR

is given similarly by
NR

OqR = I Rt) (Rt I eIRt,) (Rt,' (A.12)

tt'=l

where the IRt) form a complete set of NR basis vectors in SR.

It is assumed that the initial state resides in SL, such that Pin = pL ED OR, where OR

is an explicit representation that the state has no component in SR. The ideal unitary

evolution has the form Uideal iUdai -Udal, which implies that there is no leakage into

SR. This means that no instantaneous state has elements in SR, and the final state after
ideal evolution Pideal = UidealPinUt L (- OR also resides in SL.

Errors in the implementation Of Uideal may cause leakage into SR. In this case, the

logical component of the Kraus operators representing the noisy process AA are sufficient

for describing the component of the resulting state in the logical space. Given that pi,
pL (D OR, the component of Pexp in SL is

L V LL ALt

Pou A.. fi t A (A. 13)

The set of operators AL contains information about errors in the logical subspace and is

affected by leakage to SR Consetuently, we are only interested in the fidelity of AL, the

process which affects the evolution of the component of the state in SL. The fidelity of the

process A L is given by
Lt

FL trace (UidealAt ) /NL. (A.14)

FL has the three necessary qualities of a good measure of control in the logical subspace: (1)
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there is a penalty for leakage out of the logical subspace, (2) there is no penalty for errors

restricted to the space SR, and (3) FL is equivalent to the full space fidelity when errors are

restricted to the logical subspace. We now prove that FL is equivalent to the fidelity of the

full Hilbert space operator A., as in equation (A.8), but where the trace sum is restricted

to SL. That is to say that the quantity in equation (A.14) is equivalent to the attenuated

correlation averaged over a complete set of input basis states in the logical subspace. We

begin with an explicit expression of equation (A.8) with the restricted trace sum

Uf 2
F - I traceL ( UdealA,) /NL (A.15)

-N N 2
d (LjlUf AILj) / (A.16)

We now insert three operators which correspond to identity in the full space S

I/ NL, N2

F = E I (Ljlk) (kf Uideal 1k') (k'f A,, Ik") /kjLj) /NL (A.17)
A \ =1 {k}=1

Given that (LjIk) = 0 unless jk) ESL and (k"ILj) = 0 unless 1k") ESL, the sums over k and

V are restricted to elements in SL, and we rewrite the expression

/NL N2
F = E 1 j (LEILj') (Ly I Utideal [k') (k'I At, IL£',) (Ly' ILj)) /NL (A.18)

Pu \{j}=l k1=1

Finally, because the ideal unitary Uideal does not create leakage of states from SL to SR,

the elements of (L, I UR Ik') will be zero unless Ik') cSL. Now

F = L (L1 (L, I Uif&.1 ILj,,,) (Lj,,, I At, IL,,) (Ly, ILj))NL (A.19)
, (01=1

and by (A.11), this is equal to

NL 2

F Ljj,•idealA jLj) /NL (A.20)
A. \ j=l

which is equivalent to (A.14).
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In our numerical optimization scheme in Chapter Five, we optimize over an incoherent

process and a dispersion of Hamiltonians, where the dynamics for each member of the

ensemble are unitary, and the operators in the sum of equation (A.13) may be expressed

Am = Vp/,U,,, where >-epo, = 1. In this case, our fidelity is given by

F = p trace T'ULt tL • 2
rac ideal U- U) /NL (A.21)
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