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1 2005-06 Accomplishments

The main activities supported under this grant were research support (primarily for
travel) and salary support (primarily for Shepherd and Wilfong). We summarize below
the work completed and in progress during the year. Please contact Bruce Shepherd
(bruce.shepherd @mcgill.ca) to obtain any of the work in progress as manuscripts.

We describe the main work accomplished this year.

The main research output this year included: (1) work on degree-constrained net-
work flows (by Donovan, Shepherd, Vetta, Wilfong) which was accepted by STOC
2007, [25]. Shepherd will give a plenary talk on this topic at the upcoming CANADAM,
Banff May 28-31, 2007. Lucent (Shepherd-Wilfong) also applied for a patent based on
this work. (2) work on protected buy-at-bulk problems (by Antonakopoulos, Chekuri,
Shepherd, Zhang) resulting in a manuscript, April 2007 [6]. (3) work of Andrews and
Zhang on scheduling in wireless networks - see manuscript [2]. (4) work on flow-cut
gaps in series-parallel graphs (by Chekuri, Shepherd), in progress.

One paper supported by the previous grant also appeared in journal form for the first
time: Hardness of Robust Network Design, by C. Chekuri, G. Oriolo, M.G. Scutella,
B. Shepherd, Networks, vol. 50, no. 1, (2007), 50-54

2 Degree-constrained network flows

We consider the single-sink multicommodity network flow problem. We have a di-
rected network (graph) G = (V, A) with sink node t. Each node v € V wants to
route 7, units of flow to the sink; this is termed the demand of node v. Furthermore,
each node v € V has a fixed uniform capacity (by scaling we may take this capac-
ity to be 1 as we allow fractional r,, values). Our interest lies in examining bounded
degree or degree-constrained flows, that is, feasible flows whose support graphs have
bounded outdegree! at every node. Since we only examine node congestion problems
we assume our graphs have no parallel (that is, in the same direction) arcs or loops.
Consequently, the maximum outdegree of any node is less than n, where n is the num-
ber of nodes in the network. We classify such flows as follows. The class of network
flows with outdegree at most d is denoted by C4; we call such flows d-furcated. The
cases d € {1,2, 00} are of particular interest to us?. These flow classes are:

o C, (Fractional Flows): flow from a node v to the sink t may be routed fraction-
ally along any path; in particular, » may send flow on any number of outgoing
arcs.

o C, (Confluent Flows): flow from v to ¢t must be routed on a unigue path; in
particular, v sends flow on at most one outgoing arc.

o (; (Bifurcated Flows): flow may be sent from v on at most two outgoing arcs.

Note that we make no restriction on the indegree of a node.
2Note that by assumption, we have Coo = Cr—1
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Bounded degree flows are natural and elegant combinatorial objects in their own
right. Interest in them, however, is primarily motivated by certain distributed routing
protocols. For example, consider how confluent flows are produced by the open short-
est path first (OSPF) protocol. This protocol is essentially a distributed implementation
of Dijkstra’s algorithm. Consequently, for a specific network destination ¢, it populates
each router v’s next hop entry for ¢ with some neighbour u of v for which there is a
shortest path from v to ¢ through u. In this context “shortest” is determined with re-
spect to some costs on the links (arcs) and, in intra-domain networks, these costs may
be altered by the network operator to achieve better traffic flow through the network
(for example, in work by Thorup et al.). Hence, under these constraints the collective
flow destined for t is routed along a directed arborescence (rooted at t); that is, we have
a confluent flow.

In most intra-domain networks, however, flows with higher but bounded degrees are
allowed. For example, if there is more than one “shortest path” from v to t, operators
may place two or more next hops for ¢ in the routing table. Traffic to ¢ is then typically
split using a round-robin approach. This motivates the present work. We wish to
develop some of the network flow theory underlying the basic question: what happens
if we allow multiple next hops per destination in our routing tables? In particular, how
does network performance improve as the permissible outdegree increases? To answer
this question we must adopt some performance measure to compare our various traffic
flows. A variety of such measures could be used; we follow a common approach
of where the performance measure applied is worst case congestion of a node. The
congestion of a node is its load divided by its capacity, where the load of a node v is
just the total flow value through v (this includes the demand of v itself). Hence, in a
uniform capacity network we wish to minimise the maximum load of a node.*

2.1 Our Results and Previous Work

Our goal is to assess the cost, in terms of congestion, of restricting network flows to
only route on a bounded number of arcs out of any node. Specifically, what is the cost of
routing using the confluent or d-furcated flow constraint? As in [11], [10], we consider
uniform node capacity (equivalently, uncapacitated) networks exclusively. Suppose
that G contains a fractional flow satisfying all the demands in which no node has load
more than 1. One may then ask, is there a d-furcated flow that routes all the demands
and has low congestion at every node?

Therefore we are interested in the congestion gap, y(d), of a flow class Cg4, which
is the worst ratio, over any network and any set of demands, of the congestion of an
optimal flow in Cg4 to the congestion of an optimal flow in C. This question was first
considered by Chen, Rajaraman and Sundaram who showed there always exists a con-
fluent flow with congestion O(y/n). This was subsequently improved by Chen et al.
[10] who proved a congestion bound of O(log n) and gave an example to show that this
result is tight. (More precisely, they gave a bound of O(log k) where k is the number

3Congestion can also be defined in terms of congestion along a link. Note that for confluent flows, the
maximum load on an arc in the network must occur on some link into the destination t. Thus if all link and
node capacities are 1, then the worst case node and link congestion problems are identical.
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of nodes with outgoing arcs to the sink.) Hence the congestion gap (1) between frac-
tional flows and confluent flows is ©(log ) in an uncapacitated (i.e., uniform capacity)
network. Thus, the gap between flows in C; and flows in C, is unbounded but, evi-
dently, as the maximum outdegree of a flow is allowed to increase, the congestion gap
tends to one. However, it was not known whether obtaining a bounded congestion gap
required allowing an unbounded maximum degree. Perhaps surprisingly, we prove that
a bounded congestion gap can be obtained with bounded outdegrees. In fact, the con-
gestion gap is all but eliminated if we allow for bifurcated rather than confluent flows:
Given a fractional flow of congestion one, there is a bifurcated flow with congestion
at most two. Thus, our main result is that the congestion gap v(2) between flows in
C, and flows in C., is at most two in uncapacitated networks. We also show that this
bound is tight. Moreover, our techniques show the rate at which the congestion gap is
eliminated as d grows; the congestion gap (d) between d-furcated flows and fractional
flows is at most 1 + dil‘

Our proof is algorithmic and so provides a factor 2 (respectively, factor 1 + +17)
approximation algorithm for finding a minimum congestion bifurcated (respectively,
d-furcated) flow in a single-sink multicommodity flow problem. Finally, we show that
this problem is maxSNP-hard.

3 Protected Buy at Bulk

The telecommunications industry is the inspiration for numerous network optimization
problems. In this paper, we consider buy-at-bulk network design problems that arise
in the design and operation of modern optical core networks [15]. These networks are
characterized by the following two salient features: (i) very high capacity achieved via
DWDM (Dense Wavelength Division Multiplexing) based optical transmission tech-
nology and (ii) expensive equipment exhibiting economies of scale. In such networks,
each link carries enormous amounts of traffic and hence the failure of a link or a node
represents an unacceptable degradation of service. Therefore, fault tolerance is an in-
tegral part of the design. Although there are a variety of ways to ensure fault tolerance,
one of the most commonly used solutions in optical core networks is to set up, for each
commodity, so-called dedicated or 1+1 protection. This amounts to reserving a pair
of disjoint paths between the source and destination nodes of each commodity. The
popularity of the 1+1 model comes from its operational simplicity and high restora-
tion speed. Disjointness may be defined in several ways, according to requirements of
the commodity in question. For instance, the commonly used measures include “site-
disjointness”, where the two paths do not share any common nodes; edge-disjointness,
where the two paths do not share any common links; and cable or fiber-disjointness,
where the two paths must use distinct fibers/cables if they go through the same link.
In this context, a central problem faced by network operators and equipment vendors
is to build a cost-effective and bandwidth-efficient network that supports a multitude
of traffic at the desired level of protection. The network operators look to utilize their
network resources as efficiently as possible, and the equipment vendors seek to find
innovative cost advantages to obtain a competitive edge in bidding for contracts from
the network providers.
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We give a formal description of the optimization problem that abstracts the above
problem. The input consists of an undirected edge-weighted graph G = (V, E) and a
set of h node pairs syty, satg, ..., Spty representing different traffic demands. Each
pair has a non-negative demand value d(¢) that needs to be routed between s; and t; and
also specifies a protection requirement. In this paper we restrict our attention to the 1+1
model and, for simplicity, we assume each demand requires node-disjoint protection. A
feasible solution consists of a collection of path pairs (P, @1 ), . .., (Ph, @n), where P,
and (Q; are internally node-disjoint paths between s; and t; and each carries a reserved
bandwidth of d(i). If e is an edge of the network used by any of these paths, and
they induce a requirement of (say) b. units of bandwidth on e, then equipment that
can support this requirement has to be purchased. Now, let us discuss the cost model
f(be) for purchasing bandwidth. In this paper we focus on a simple cost model, namely
the single-cable cost model: bandwidth can be purchased in cables, i.e. units of fixed
capacity k, at a price that varies only by edge. Thus, if the cost of purchasing one
cable on edge e is ¢, then f(b.) = [%ﬂ ce. The objective is to minimize the total cost
>.. f(be) over all possible choices of (Py,Q1),-..,(Px,Qn). The single-cable cost
function closely models DWDM networks, where each optical fiber carries the same
number of wavelengths k and each edge e has a fixed cost ¢, for deploying an extra
fiber (see [15]).

Observe that, even in the single-cable setting, the buy-at-bulk problem captures as
special cases some well-known NP-hard connectivity problems, such as the minimum-
cost Steiner tree and the minimum-cost Steiner forest problems. Moreover, Andrews
[1] has shown that even the single-cable problem without protection constraints is hard
to approximate to within an Q(log'/*~* n) factor; this separates the approximability of
the buy-at-bulk problem from those of connectivity problems. In the connectivity set-
ting, survivability and protection constraints have long been studied and include clas-
sical problems. Jain [33] devised the important iterative rounding method that yields
a 2-approximation algorithm for the survivable network design problem (SNDP), in
which the goal is to find a minimum-cost subgraph that satisfies given edge connec-
tivity requirements between each pair of nodes in a graph. In [28] this technique was
extended to handle node connectivity, when the requirements are restricted to be in the
set {0,1,2}.

Buy-at-bulk network design without protection has received substantial attention in
the past decade, including some recent work on super-constant lower bounds in the sim-
plest setting [1] and poly-logarithmic upper bounds in the most general non-uniform
setting [13, 14]). On the contrary, the variant with protection has not been so far consid-
ered in the literature on approximation algorithms. One reason for this is the difficulty
of the buy-at-bulk problem, even without protection constraints. Although the first
approximation algorithm for the multiple-cable setting appeared in 1997 [7], the algo-
rithm was based on a technique that was not sufficiently flexible. It is only recently that
alternative algorithms [9, 13] were developed that not only handled the non-uniform
cost functions, but also provided new algorithmic approaches and insights. Further, for
SNDP, the iterative rounding method of Jain [33] and the earlier primal-dual approach
[39] strongly rely on the structural properties on the underlying linear program, which
do not hold for the buy-at-bulk problem.

Our primary motivation to study this problem arose while developing a sequence
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of optical network design tools at Bell Labs. We realized the ubiquity of the 141 model
in practice, the lack of theoretical understanding of protected buy-at-bulk network de-
sign and a dearth of useful heuristic methods for the problem. Most algorithms used
in practice are based on simple ad hoc methods combining greedy algorithms, local
improvement and some enumeration. We hope this paper serves as a starting point in
addressing the challenges from the theoretical point of view, as well as in providing
insights that lead to more sophisticated and effective heuristics.

Results. We give approximation algorithms for buy-at-bulk network design in the 1+1
protection model for the single-cable setting. Observe that the 1+1 edge-disjoint pro-
tection problem can be reduced in a straightforward fashion to the 1+1 node-disjoint
protection problem. In fact, for the edge-disjoint case the arguments can be substan-
tially simplified; however, our focus here is on the node version, as it is also of greater
practical significance.

Our first result is for the single-sink problem. This is the special case of the problem
where all the pairs have one terminal node in common. In other words, the pairs are
sty, stg, ..., sty and s is the common sink. Note that this problem is APX-hard. We
present an O(1) approximation algorithm for it and also establish an O(1) integrality
gap for a natural linear programming relaxation.

Our second result is an O(log® h) approximation for the multi-commodity problem.
In particular, we show that that an « approximation for the single-sink problem via a
natural LP relaxation yields an O(alog® h) approximation for the multi-commodity
problem, and combine this with our result above.

At present, the table below summarizes the known results on buy-at-bulk network
design.

4 Flow-Cut Gap for Series Parallel Graphs

Partly motivated by their recent work with Khanna on throughput mazimization (see
appendix) Chekuri and Shepherd have been studying whether planar graphs have a
constant flow-cut gap. That is, does there exist a constant C' > 1 such that the fol-
lowing holds. For any instance GG, H of supply/demand graphs is it the case that if
the cut condition for H holds in G, then one can fractionally route é amount of flow
simultaneously in G for each demand edge f € E(H). Even the case of series-parallel
graphs, the result was nontrivial to establish [30]. This previous work relies on metric
embeddings. In contrast, Chekuri and Shepherd are examining the primal formulation

Single sink Multi-Commodity |
Uniform 0(1) [29] O(logn) [7]
Q1) Qlog*~*n) (1)
NonUniform | O(logh) [35] O(log* h) [13)
Qloglogn) [24] | (log?? “n) (1)

Table 1: Approximability of unprotected buy-at-bulk network design.
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where one simultaenously seeks a routing in G with good integrality properties.
This work is in progress.

Workshop/Conference Travel
Matthew Andrews:

1. Workshop on: Adversarial modeling and analysis of communication networks,
Bertinoro, Italy, Nov. 2006.

Chandra Chekuri:

1. 38th Symposium on the Theory of Computing (STOC 2006), Seattle, WA, May
21-23, 2006.

Lisa Zhang:

1. Workshop on: Adversarial modeling and analysis of communication networks,
Bertinoro, Italy, Nov. 2006.

2. International Math. Programming Symposium, Rio de Janeiro, Brazil, July 30-
August 4, 2006.
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Background and Findings on Related Problems in Previ-
ous Year’s Work.

Integrality Gaps and Approximation Algorithms for Maximum Throughput
Problems

In a throughput problem we are given a graph G and terminals s;, t;,1=1,2...  k,
and we wish to find a maximum routable subset of {1,2, ..., k}. The notion of “routabil-
ity” depends on the application at hand. For instance, in the edge-disjoint paths prob-
lem (EDP) a subset S is routable, if there is a collection of edge-disjoint paths P; :
1 € S, such that each P; joins s;, t;. EDP is one of the most fundamental problems in
combinatorial optimization. Apart from its applications in VLSI design and network
design, it is also intrinsic to many approaches for solving other applied problems such
as scheduling. For instance, Shepherd and Matthew Andrews created a scheduling
system within Lucent, based on EDP.

In [31] it was shown that in directed graphs it is hard to approximate (in polytime,
if P not equal to NP) the optimum to within a factor of m°~¢ for any € > 0, and
hence EDP is terribly difficult with respect to polytime approximations. Their reduction
however breaks down if small edge congestions are allowed, and also breaks down for
undirected graphs. In fact, the gap for undirected graphs is only known to lie in the
range 2 tom°>".

In [16], we show the first positive results in this direction by showing that the all-
or-nothing multicommodity flow problem problem does admit a poly-logarithmic (i.e.,
polynomial in the variable log(n)) approximation for general graphs — please refer
to the paper: http://cm.bell-1labs.com/cm/ms/who/bshep/pub.html.
(The all-or-nothing flow problem is the throughput problem where a subset is routable,
if the 5; — t; pairs admit a multicommodity flow. Note that unlike EDP, determining
whether a subset is routable is easy for this problem, thus the hard part is the subset
selection aspect.) The techniques in this paper used recent results of Ricke on oblivious
routing as well as some interesting graph theoretic clustering results in 2-connected
graphs.

Ideas from the work on all-or-nothing flow inspired the authors to take a look at
EDP itself. Using schemes of Robertson, Seymour and Thomas, the authors have since
proved the following theorem in planar graphs. We call a set X well-linked in G, if
for any subset S with |S N X| < |X — S|, we have |§(S)| > |S N X|. We show that
if S is well-linked in a planar graph G, there is a constant C' (about 10, 000 at present
unfortunately) such that for any matching M of size |S|/C on S, we can find paths
connecting the endpoints of M, such that each edge lies in at most 2 of them. This
result implies (again using Racke’s results) that EDP can be approximated to within a
polylogarithmic factor where only y/n was previously best known. Alternatively, this
can be viewed as saying that the natural LP formulation for EDP has a polylogarithmic
integrality gap for planar graphs with all capacities at least 2. In contrast, if some
capacities are at most 1, then this gap may be Q(\/n), exponentially larger. Thus,
one goal for further work is to find cutting planes that tightens the integrality gap for
arbitrary capacities. We mention that recently J. Kleinberg has used our framework to
strengthen the planar result to the case of Eulerian planar graphs (not just all capacities
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at least 2). The techniques used, also show that there is a constant approximation for
product multicommodity flow in planar graphs, thus giving a new proof of an earlier
result of Klein, Plotkin and Rao for uniform multicommodity flow in planar graphs.
This work appears in [17].

Continuing work has recently involved exploring decomposition methods for high-
degree constant expansion graphs. Some progress has been made in particular on short-
ening of the proofs of Ricke’s celebrated result (however this thread is still under de-
velopment!) Most recently, the authors have found a direct decomposition into well-
linked sets that avoids the use of Racke’s decomposition. One interesting side-effect
is that it allows the authors to obtain similar polylog-approximation algorithms for the
node-disjoint versions of the problem. This is not possible by Ricke’s decomposition
since in that case (2(y/n) gaps are known in the node versions of oblivious routing [32].
This work is appearing in STOC 2005 in the paper Multicommodity flow, well-linked
terminals, and routing problems [23].

Robust Network Optimization

During Gianpaolo Oriolo’s visit to Bell Labs, the authors explored the problem of
robust network design.

Network designers have traditionally adopted the view that an accurate estimate for
point-to-point traffic is given a priori. With the increasing importance of flexible ser-
vices (such as VPNs or remote storage/computing), there has been increasing interest in
the design of networks for situations where traffic patterns are either not well known a
priori or changing rapidly. In these settings the network should be “dimensioned” (i.e.,
assigned capacity) to support not just one traffic matrix, but a larger class of matrices
determined by the application. This results in a robust optimization problem, where we
are given a universe U of demand matrices (normally specified as a convex region), and
the goal is to design a minimum cost network so that every demand matrix in I{ can be
supported. The simplest form of this problem where fractional capacities are allowed
was introduced by Ben-Ameur and Kerivin [8], but only recently was it shown to be
NP-hard [22] by Chekun, Oriolo, Scutella and Shepherd. The problem considered is
how to allocate fractional link capacities that are sufficient to support every demand,
i.e., so that there is a multicommodity flow for every demand matrix in the universe I{.
It is perhaps the fact that capacities are allowed to be fractional that makes this result
somewhat surprising.

The main complication in proving hardness is the fact that there is no max-flow
min-cut theorem for multicommodity flow. To overcome this, the authors introduce
a “trick” of considering a more simply analyzed class I/ of matrices they call single-
source hose demand matrices. This single source problem is defined as follows. There
is a given root node r with a specified marginal traffic value b,, and each other node
also has a marginal value b,. The authors normally consider that b,'s are 0, 1 and that
b, is some integer. A matrix d is then a single-source hose demand (i.e., it will be in
our universe i) if d;; = 0 unless 1 = 7 and EJ. dr; < by and each d,; < b;. We



Lucent Technologies 13

then ask for the minimum fractional capacity so that every such single-source demand
matrix can be routed.

There are some special cases of this single-source robust design problem of interest.
In the case where all b,’s are 1 and b, is also, then the optimal fractional capacity
allocation is obviously just a minimum spanning tree. If only some of the b,’s are 1,
then it is the fractional relaxation for the undirected Steiner tree problem. In the case,
where all b,’s are 1, and b, = n, then the optimal solution is a shortest path tree rooted
atr. So at the extreme values of b, = 1 orn, the problem is well-known to be polytime
computable.

The authors show that the problem becomes hard for values of b, = en where
c € [1/2,1), and suspect this continues to hold for every ¢ € (0,1). In this case,
[22] gives a reduction from checking whether a graph has the expander property. In
fact, based on results in [12] the authors show that (assuming a certain conjecture
in complexity theory), if b, = n/2, then for any ¢ > 0 it is hard to approximate the
network to within a factor of 2 — . Moreover, they exhibit a matching 2-approximation
algorithm in this special case.



