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INTRODUCTION

Breast tomosynthesis is a tomographic imaging technique, and it has the potential advan-
tage to overcome a major limitation of conventional mammography through recovering, to a
large degree, the loss of 3D information about the breast in conventional, 2D mammography.
In the last several years, there has been renewed interest in developing breast tomosynthesis
for detection of breast cancer [1,2]. Although considerable progress has been made, im-
provements to several areas of breast tomosynthesis technology are still needed before it
becomes suitable for routine clinical use. In essence, breast tomosynthesis can be considered
as a dedicated computed tomography with limited view for breast imaging, and it thus re-
quires the development of special reconstruction algorithms for recovering 3D breast images
from tomosynthesis data. In addition, various physical factors in breast tomosynthesis can
strongly affect the resulting image quality, and the issue of patient radiation dose in breast
tomosynthesis is of a concern. The overall objective of this project is to investigate and
develop reconstruction algorithms for obtaining breast images of practical use, to investigate
and evaluate systematically the effects of various physical factors on image quality in breast
tomosynthesis, and to use and evaluate (empirical) techniques for effectively compensating
for the effects on breast tomosynthesis images and for possibly reducing imaging radiation
dose in breast tomosynthesis. It is fully expected that the research will contribute to the
effort in the field to develop and improve breast tomosynthesis for its clinical use. This
report summarizes the progress of this Predoctoral Traineeship Award project made by the
recipient during the past one year.



BODY

1 Training Accomplishments

At the time of this report, the recipient, Dan Xia, of the Predoctoral Traineeship Award has
taken 22 out of 22 required courses towards his Ph.D. degree in medical physics. The courses
include physics of medical imaging, physics of radiation therapy, mathematics for medical
physicists, image processing, statistics, anatomy of the body, radiation biology and teaching
assistant training.

2 Research Accomplishments

2.1 Investigation of reconstruction algorithms for breast tomosynthesis

In tomosynthesis, data are acquired only at a small number of projection views over a limited
angular range. Therefore, tomosynthesis data are highly sparse as compared to data acquired
in conventional computed tomography (CT). Consequently, existing analytical algorithms for
accurate reconstruction of CT images are generally not suitable for yielding useful images
from tomosynthesis data. For example, the effect of filtering may not completely be canceled
out due to the limited number of views and limited angular range, resulting in prominent
artifacts in reconstructed images. In contrast, iterative algorithms can generally produce
images with less artifacts than can the analytic algorithms. In the project, we are inves-
tigating and developing a total variation (TV) based iterative algorithm for reconstructing
accurate images from incomplete projection data [3]. We have investigated the following
issues: (1) Performance of the TV-based algorithm when applied to tomosynthesis data gen-
erated from discrete images. In this case, one has a discrete matrix system, which allows
ideal reconstructions of the underlying discrete images. The result in this study provides the
upper bound on the performance of the TV-based and any other reconstruction algorithm.
(2) Convergence conditions of the TV-based algorithm under different data conditions and
different constraint parameters. This investigation is critical for any iterative algorithm to
be practically useful. We have successfully addressed issue (1) and are working actively on
issue (2).

2.2 Investigation of scanning configurations in breast tomosynthesis

Currently, breast tomosynthesis acquires data at about 12 to 20 projection views over a
limited angular range around 20 to 50 degrees. Typically, a circular source trajectory is
adopted for collection of cone-beam projections. It remains, however, largely unexplored
as to what the optimal scanning configurations are. In the last several months, we have
conducted initial investigation on image reconstruction from data acquired (1) at a small
number of views and (2) over a limited angular range. In the studies, data were collected
from different phantoms, including a breast phantom developed in Ref. [4], at different
numbers of views.

We first generated cone-beam data at 15, 20, 40, and 60 projection views over 27. The
reason for the angular range is 27 is that the study results would not be affected by the issue
of the limited angular range. From these data sets, we have used the TV-based algorithm
to reconstruct images. For comparison, we have also conducted preliminary reconstructions
by using the expectation-maximization (EM) algorithm and the algebraic reconstruction



technique (ART). Although we are currently in the process of analyzing these reconstruc-
tion results, the initial evaluation appears to indicate that the TV-based algorithm is more
accurate than the EM and ART algorithms in reconstructing images from few-view data.

We subsequently studied image reconstruction from data acquired over a limited angular
range. Specifically, we have selected angular ranges of 7/4, 7/2, and 7 and collected data
at 15, 20, 40, and 60 views over each of these angular ranges. From the collected data,
we reconstructed images by use of the TV-based algorithm. For comparison, the EM and
ART algorithms were also used for reconstructing images from these data sets. Our initial
analysis of these results suggests [5] that (1) when the angular range decreases, image quality
obtained with these algorithms decreases, and (2) the TV-based algorithm generally yields
images with less artifacts than do the EM and ART algorithms. We are still in the process
of conducting additional studies on this problem.

2.3 Investigation of the physical factors in tomosynthesis imaging

Various physical factors can significantly affect image quality in breast tomosynthesis. These
factors include data noise, non-uniform image spatial resolution, scatter, and detector re-
sponses. We have begun to perform research on investigating and correcting for the effect of
physical factors on image quality. In our preliminary studies, we have evaluated the effects
of two physical factors, (1) cone-beam data noise and (2) non-uniform image resolution.

In an attempt to separate the issues of few-view and limited angular range from data noise,
we have first performed a thorough noise study for image reconstruction from projection
data collected at a large number of views over 2w. The result of this study will provide a
theoretical guidance to the investigation of the noise properties in tomosynthesis in which
data are acquired at a small number of views over a limited angular range. In this study,
we specifically focus on investigating how data noise are propagated into the reconstructed
images. Both analytic and numerical analyses were carried out, and the results indicate that
variances of reconstructed images are spatially varying and that the levels of variances in
different regions are not affecting significantly each other [6]. Because the study was based
upon analytic result, it was computationally possible to accomplish this initial study. On
the other hand, noise studies involve the iterative algorithms such as the TV-based, EM,
and ART algorithms are much more demanding computationally. We have just begun to
perform the image noise studies by using the iterative algorithms.

In current breast tomosynthesis, the spatial resolution within a transverse plane is much
finer than that along the longitudinal direction, and image representation with non-isotropic
spatial resolution is used in iterative algorithms for reducing computational time. Such an
image representation can lead to significant artifacts in iterative reconstruction. In the last
couple of months, we have been investigating the effect of non-isotropic image representation
on iterative reconstruction accuracy of breast tomosynthesis images. We have reconstructed
images by use of TV-based, EM, and ART algorithms for image representations with different
ratios of the in-plane and longitudinal resolution. Our results demonstrate that non-isotropic
image representation can lead to significant artifacts in reconstructed images. The appear-
ance and severity of the artifacts depend not only upon the ratio between the in-plane and
longitudinal resolution but also upon the iterative algorithms. The TV-based algorithm
seems to be less susceptible to the effect than the EM and ART algorithms. Through the
selection of algorithm parameters, the artifacts can be reduced [7].



KEY RESEARCH ACCOMPLISHMENTS

e We have implemented the modification to the TV-based algorithm tailored to breast
tomosynthesis.

e We have also implemented and tested the EM and ART algorithms.

e We have conducted an investigation of the upper bound on the performance of TV-based
algorithm for image reconstruction from tomosynthesis data.

e We have conducted a preliminary investigation of the convergence property of the TV-
based algorithm under different data conditions and different constraint parameters in
reconstruction of tomosynthesis images.

e We have carried out preliminary investigations of the scanning configurations in breast
tomosynthesis imaging by using different numbers of views over different angular ranges.

e We have performed a preliminary study on the effect of some physical factors on breast
tomosynthesis. The physical factors were considered in the study include data noise
and non-isotropic spatial resolution.



REPORTABLE OUTCOMES

Peer-reviewed Journal Articles

1. D. Xia, L. Yu, E. Y. Sidky, Y. Zou, N. Zuo, and X. Pan: Noise properties of chord-
image reconstruction, IEEE Trans. Med. Imaging, (in press), 2007.

Conference Proceeding Articles

1. D. Xia, E. Y. Sidky, L. Yu, and X. Pan: Noise properties in helical cone-beam C'T
images, Proc. MIC, M14-420, 2006.

Conference Presentations and Abstracts

1. D. Xia, E. Sidky, J. Bian, I. Reisner, R. Nishikawa, and X. Pan: Image representa-
tion with non-isotropic spatial resolution on iterative reconstruction accuracy in breast
tomosynthesis, submitted to RSNA annual meeting, 2007.

2. D. Xia, J. Bian, I. Reisner, E. Sidky, R. Nishikawa, and X. Pan: Investigation of
scanning and reconstruction approach for tomosynthesis breast imaging, submitted to
AAPM annual meeting, 2007.

3. D. Xia, E. Y. Sidky, L. Yu, and X. Pan: Noise properties in helical cone-beam CT
images, presented at IEEE Medical Image Conference, 2006.

Honors and Awards

e Student traveling award, IEEE Medical Imaging Conference, 2006
e Student Travel Contingency Grant, SPIE Medical Imaging Conference, 2007



CONCLUSIONS

The recipient of the Predoctoral Traineeship Award has finished the required courses
towards his Ph.D. degree. These trainings have proven useful for the recipient to achieve the
proposed research goals.

During the first year, we have implemented and investigated the TV-based algorithm for
image reconstruction in breast tomosynthesis. We first evaluated the performance of the
algorithm under ideal conditions and its convergence properties. We have subsequently con-
ducted numerical studies to investigate the image reconstruction by use of the TV-based
algorithm and the existing EM and ART algorithms for different imaging configurations in
breast tomosynthesis. Our results suggest that, in general, the TV-based algorithm pro-
vide tomosynthesis images with quality higher than EM and ART algorithms in terms of
the metrics such as root-mean-square error and image resolution. Furthermore, we have
investigated the effect of some physical factors, such as data noise and non-isotropic spatial
resolution, on tomosynthesis images. Overall, we have achieved the goals for the first year
and laid down the foundation for the research in the next two years. Our aims in the next
two years include, based upon what we have learned from the results described above, fur-
ther investigating and streamlining the TV-based algorithm in terms of convergence, speed,
and rubostness. Careful, comparative evaluation studies of reconstruction algorithms will
be conducted under more realistic physical conditions. In particular, we will expand our
data-generation programs to include non-linear partial volume, beam-hardening, and scatter
effects in our data. We will implement existing algorithms to correct for the scatter effect
before image reconstruction. Additionally, we will generalize reconstruction algorithms, in-
cluding the TV-based, EM, and ART algorithms to incorporate these factors so that they
can be compensated for during reconstruction iterations. We will look into the results from
current studies in other groups in our department on the effect of detector response, which
is expect to be spatially varying, on data acquisition. If it is significant, we will include the
detector response into the data-generation program and reconstruction algorithms. We will
also perform tomosynthesis experiments to collect real data of physical breast phantoms for
additional evaluation of the scanning configurations and reconstruction algorithms. Finally,
we will select real-patient data for testing and assessing the reconstruction algorithm.
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Image representation with non-isotropic spatial resolution on
iterative reconstruction accuracy in breast tomosynthesis

Dan Xia, Emil Sidky, Junguo Bian, Ingrid Reiser, Robert Nishikawa, Xiaochuan Pan

Department of Radiology, The University of Chicago
5841 S Maryland Avenue, Chicago, IL 60637

Clinical Relevance/Application:

Breast tomosynthesis has received renewed interest because it can provide 3D
information about the breast. This work concerns iterative reconstruction of accurate
breast tomosynthesis images.

Purpose:

In current breast tomosynthesis, image representation with non-isotropic spatial
resolution is used for reducing computational time. This can, however, lead to artifacts in
iterative reconstruction of breast tomosynthesis images. In the work, we investigate the
effect of non-isotropic image representation on the reconstruction accuracy. Based upon
the investigation, we devise schemes for reducing artifacts in iterative reconstruction.

Materials and Method:

In the work, we focus on investigating the effect of non-isotropic image representation on
reconstruction accuracy of iterative algorithms. The iterative algorithms under study
include the total-variation (TV) based, expectation maximization (EM), and algebraic
reconstruction technique (ART) algorithms. Tomosynthesis data are generated at 12 and
20 views over 50 degrees from phantoms, including a breast phantom. We have
reconstructed images by using image representations with different degrees of non-
isotropic spatial resolution. Specifically, in each image representation, the ratio between
the in-plane and longitudinal resolution for an image voxel is selected to be a value less
than 1.

Results:

We have reconstructed images by use of TV-based, EM, and ART algorithms for image
representations with different ratios of in-plane and longitudinal resolution. Our results
demonstrate that non-isotropic image representation can lead to significant artifacts in
reconstructed images. The appearance and severity of the artifacts depend not only upon
the ratio between the in-plane and longitudinal resolution but also upon the iterative
algorithms. The TV-based algorithm seems to be less susceptible to the effect than the
EM and ART algorithms. Through the selection of algorithm parameters, the artifacts can
be reduced.

Conclusion:
The non-isotropic image representation can significantly affect reconstruction accuracy
obtained with iterative algorithms in breast tomosynthesis.



Investigation of scanning and reconstruction approach for
tomosynthesis breast imaging

D. Xia, J. Bian, I. Reisner, E. Sidky, R. Nishikawa, X. Pan

Department of Radiology, The University of Chicago
5841 S Maryland Avenue, Chicago, IL 60637

Purpose:
Investigation and application of scanning and reconstruction approaches to tomosynthesis
breast imaging.

Materials and Method:

Tomographic imaging such as tomosynthesis has the advantages to overcome the major
limitation of conventional mammography. The loss of information in 2D projection
imaging can be recovered in tomographic imaging. In tomosynthesis, the acquired data
are highly sparse as compared to CT data. Therefore, image reconstruction in
tomosynthesis is challenging. Moreover, it remains largely unexplored as to what the
optimal scanning configurations are. Recently, we have developed a TV-based iterative
algorithm for accurate images from sparse or incomplete projection data. In this work, we
will investigate image reconstruction by use of the TV-based algorithm. Moreover, using
this algorithm and other algorithms, we investigate the optimal scanning geometries in
tomosynthesis breast imaging. Specifically, we have investigated scanning configurations
in terms of number of projection views and the range of scanning angle.

Results:

We have conducted numerical studies to investigate image reconstruction and scanning
parameters by use of the TV-based algorithm and other algorithms. From numerical and
physical phantom, we have acquired projection data from physical phantoms for different
scanning configurations. From these data sets, we reconstruct images by using the TV-
based algorithm. For comparison, other algorithms, including the FBP algorithm. Using
various evaluation indices, we characterize the reconstructed image quality and, from
which, we evaluate the performance of the reconstruction algorithms and scanning
configurations.

Conclusion:

In this work, we have investigated different scanning configurations and reconstruction
algorithms, including the TV-based algorithm, in tomosynthesis breast imaging. Both
computer-simulation data and real physical phantom data were used. Our results suggest
that, in general, the TV-based algorithm can provide higher image quality for
tomosynthesis imaging than other algorithms and that increasing the scanning angular
range can considerably improve image quality.



Noise Properties of Chord-image Reconstruction

Dan Xia, Lifeng Yu', Emil Y. Sidky', Yu Zou', Nianming Zud, and Xiaochuan Pari
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Abstract

Recently, there has been much progress in algorithm dewelopfor image reconstruction in cone-beam
computed tomography (CT). Current algorithms, includimg¢hord-based algorithms, now accept minimal data
sets for obtaining images on volume regions-of-intereQIfRthereby potentially allowing for reduction of x-
ray dose in diagnostic CT. As these developments are relatiew, little effort has been directed at investigating
the response of the resulting algorithm implementatiorshigsical factors such as data noise. In this work, we
perform an investigation on the noise properties of ROI iesagconstructed by using chord-based algorithms
for different scanning configurations. We find that, for tleses under study, the chord-based algorithms yield
images with comparable quality. Additionally, it is obsedvthat, in many situations, large data sets contain
extraneous data that may not reduce the ROI-image variances

Key Words: CT, Cone-beam CT, Reconstruction, Chord, Noise

1 Introduction

In recent years, exact algorithms have been developeddonstructing images [1] and for reconstructing images
on “m-lines” [2, 3, 4] from helical cone-beam data. Since 2005tksdave being published on algorithm devel-
opment for reconstructing images on chords for generadtaiies [5, 6, 7, 8]. Some of these algorithms can
reconstruct images within three dimensional (3D) regidnsterest (ROIs) from cone-beam data containing both
longitudinal and transverse truncations. The introdunctibthe M -line concept and reconstruction [5, 9] provides
additional flexibility for covering volume ROls.

As these algorithm developments are relatively recetig Bffort has been directed at investigating their noise
properties. With the algorithm development for ROI-imageanstruction, it has been tacitly assumed that the
reduction in necessary scanning angle and in projectiardat/ lead to ROl images from less radiation exposure.
This conclusion may, however, depend on the noise progetieconstruction algorithms. If ROl reconstruction
from the minimal (or reduced) data set leads to noisier R@iges than reconstruction of the same ROI from a
larger data set, it may be necessary to increase the x-ragesoensity for the ROI-data set to attain the same
image quality as those reconstructed from larger data Stsh an increase can offset the fact that reduced or
minimum projection data are needed for ROI reconstruction.

The focus of this work is to investigate the noise propemiegnage reconstruction from minimal data set
and large data sets by use of chord-based algorithms. Werddrate that the minimal data set can indeed
lead to actual reduction of radiation exposure for attagjrioamparable image quality, defined in terms of image
variance, as that obtained with a larger data set. In Sece Xrigfly summarize the chord-based reconstruction
algorithms: backprojection filtration (BPF) [2, 6], minimudata filtered backprojection (MDFBP) [4, 6], and
filtered backprojection (FBP) [6, 10] algorithms. In Secw& perform analysis and empirical studies on noise



properties of images reconstructed from parallel-beanrbfzam, and cone-beam data. Finally, discussion is given
in Sec. 4.

2 Chord-based Reconstruction Algorithms

We consider a continuous source trajectory specifiedhy) = (z(s), y(s), z(s)), wherez(s), y(s), andz(s)
denote ther-, y-, and z-components of}(s) in the fixed-coordinate system, ands a curve parameter indi-
cating the position of the x-ray source on the trajectorye Phojection data of the object functigifr) can be
mathematically expressed as

DGa(s)B) = [ "t fa(s) + 1 ). 1)

where the unit vectgs denotes the direction of a specific x-ray passing throughdiret . We also introduce two
additional coordinate syster{s, v, w} and{u4, v4} to describe the geometry in a general scan. They are fixed
on the rotating source point and the cone-beam projectidhefource point, respectively, which are referred
to as the rotation-coordinate and detector-coordinatesys Lete,(s), &(s), andé,(s) denote the orthogonal
unit vectors of the rotation-coordinate system. The rotatioordinate system can be chosen such &hét)
andé, (s) are within thez-y plane andg,(s) is parallel to thez-axis. One can also choose the “well oriented”
coordinate system as the rotation-coordinate systemr{&¥hich unit vectore,(s) is parallel to and unit vectors
é,(s) andé,(s) are perpendicular to the direction gfsi—s). We assume that a detector plane is placed at a
distanceS from the source point and orients aloég(s). The detector-coordinate systemyg, v4} is the cone-
beam projection of the 2D-coordinate systémv} onto the detector plane, and thg- anduv,-axis are along
é.(s) ande,(s), respectively. In this situation, we also uBéu,, v4, ) to denote the cone-beam projection, thus
D(7(s), 3) = P(ug,vq,s), when

G- L1 (g €.(s) +va&,(s) — S&u(s)] and A(ug,vq) = y/u2 + v2 + S2. ()
A(ud, Ud)
In a 2D case, it can be observed that= 0. For notational convenience, we ud¢uy) and P(ug4, s) to denote
A(ug,0) andP(ugq, 0, s), respectively.
A chord is a line segment connecting two poimtgs, ) and7(s,) on the trajectory. Any point on the chord
can be expressed as

F()(Sa) + F()(Sb)
2

7= + z. éca Te € [_lal]v (3)

whereé, = % denotes the direction of the chord, aind % |7o(sp) — 7o(sa)| is one half of the chord
length. For a helical trajectory, the curve parametisrlinearly related to the rotation angle and in the current
work, we seleck = A\. Whens, ands; are within one turn, the chord becomes the conventigrade segment

[2, 11, 12]. The intersection between a chord and the obgerferred as aupport segment. Let z.; andz o
represent the end points of a support segment. Becauseajbetdry under consideration never intersects the
object, we havéx., z.2] C [-[,!]. Therefore, one can uge., s., sp) and f.(z., s4, $p) to denote a point and
the corresponding image on the chord. We have previouslgldped three algorithms, which are referred to as
the BPF [2, 6, 10], MDFBP [4, 6], and FBP [6, 10] algorithmsspectively, for exact image reconstruction on a

chord of a general trajectory.



2.1 The BPF algorithm

The BPF algorithm [2, 6] reconstructs the image on a chordipd by s, ands; as

L Pludo, vao, ) [\/a—w)(l—m IRVAUEEVIUEEY] B

fo(es Says0) = fles s 30) + 50 =) s I+ o

wherez,. € [z4,2p], and parameters, andzp are two points on the chord satisfyifg.;, z.2] C [z4,25] C

[—1,1]. The functionb(z.) is defined a$(z.) = \/(zp — zc)(xc — 24), AN P (uqo, vao, s.) denotes the projec-
tion along the chord specified By, ands;. The filtered imaggf(:zzc, Sa, Sb) IS given by

5 1 1 dx!,
f('rcasaasb) = ﬁb(x ) /R b(CC::)g(CC::,Sa,Sb), (5)

Te — T,

where the backprojection image on the chord can be written as

i - s [ )
e )+%d7’§£>-ew(s>] A, v P 00)
() )+ s T )] o) P ©)

and the rect functiol.(z,)=1 if 2. € [x4, 2] and 0 otherwise. It can be observed in Eq. (4) that the chord
image can be obtained exactly from knowledge of the backptimn imagey(z., sq, sp) for 2. € [za, 28],
which we refer to as theeconstruction segment because it determines the actual reconstruction intervahe
chord. In particular, because the reconstruction segment: 5] can be chosen as small as the support segment
[xc1, 2e2], the chord image can be reconstructed from knowledgg©f, s., sp) only on the support segment.
This interesting property of the Hilbert transform forms thasis for exact image reconstruction on a chord from
projections containing longitudinal or transverse truitees [13].

2.2 The MDFBP algorithm

The BPF algorithm reconstructs the chord image by perfograifiD filtration (i.e., the integration ovef, in Eq.
(4)) of the backprojectionimage (i.e., the integrationrovi Eq. (6)). On the other hand, the MDFBP algorithm
[4, 6] reconstructs the chord image by performing a 1D datafibn (i.e., the integration ovet.) prior to their
backprojection (i.e., the integration over s) onto the dhor

1 1 5o du!,
felresom) = goagos [ dslun(l - o) v w2y
1 P(ugo,vda0,54) | VI —2B)l—24) /I +za)(l+2B)
2 b(x.) T |+ 2.
where the modified data function is given by
_ / b(ze) sgn(—0-&,) [ dio(s)
Pu = Mele) o= N o 7 — 7o (s)|? s PP v s)
dro(s) Ug df'o() OP(ug,vd, s)
+ [ ds Culs) S(s) ds ()| Alua, va) Ougq
dro(s) vg drop(s ) P(ug,vq, s )
+ [ ds &(s) + S(s) ds ud’vd Avg ’



wy = — [Fo(8a) — To(8)] - éw, @andwy = — [Fo(sp) — 7o(s)] - &,. FOr a source positios, the variables:. andu/,
denote the cone-beam projectionsrpfandz!, onto the detector and can be obtained, respectively, bacegz
with z. andz’, in

wa(x + 1)

uzwl(l—I)-l-wQ(I—Fl). ®)

The rect functioll.(z,) in Eq. (8) indicates that the MDFBP algorithm can reconsteuchord image from
knowledge of data only on the cone-beam projection of thensituction segmerit: 4, 2 5], which can be as
small as the support segment. Therefore, similar to the BiriFithm, the MDFBP algorithm can also reconstruct
a chord image from data containing truncations [4, 6].

2.3 The FBP algorithm

The chord-based FBP algorithm [6, 10] can be expressed as

1 [ A ° du! 1 o ., A
Jeaessonss) = g [ s [ ST e PR @D @
whereu, indicates the cone-beam projectionagf onto the detector and is determined by usingto replace
z in Eg. (8), andA denotes the distance from the source p@irits) to a point on the detector at which the
ray connecting” and(s) intersects the detector. As the filtering (i.e., the intégraoveru”) is carried out
over the projection of the straight line containing the chaimilar to other existing FBP-based algorithms, the
chord-based FBP algorithm cannot exactly reconstruct R@ges from data containing transverse truncations.

2.4 Data-sufficiency conditions

As shown in Eg. (9), a data-sufficiency condition for the FBR&thm is: (a) data are available over the trajectory
segment € [s,, sp], and (b) for eacls, data on the cone-beam projection of the chord are non-tedc This
condition is similar to that for other FBP-based algorithihs9, 14, 15, 16]. From Egs. (4) and (7), a data-
sufficiency condition for the chord-based BPF and MDFBP dllgms is: (a) data are collected over the trajectory
segments,, s,|, and (b) at each, data only on the cone-beam projection of the reconstmsggmeniz 4, z 5]

on the chord are available. It follows that, because thengttoction segmenit 4, z 5] can be chosen as small as
the support segmeffit.;, z.2], the BPF and MDFBP algorithms require, at eacldata only on the cone-beam
projection of the support segmelnt.;, z.2| (instead of the entire chord-line as the chord-based FBé¥ittign
requires). Different selections of the reconstructiomsent[z 4, = 5] imply that different amounts of data at each
s can be used for reconstructing the chord image. Under tha @mtinuous conditions, different selections of
[z4,zp] yield identical chord images. However, when data contaisenand other inconsistencies, and when
different selections ofxz 4, zp] are used, the BPF and MDFBP algorithms in their discrete $ommay yield
different chord images. This is an issue that will be invggtiéd below.

3 Noise Properties of Chord-based Image Reconstruction

The BPF, MDFBP, and FBP algorithms described above can bkedpp reconstructing chord images from
parallel-, fan-, and cone-beam data [17]. Algorithms agaiss to the BPF algorithm that are capable of recon-
structing 2D ROl images from truncation data have also presty been proposed [8, 13, 18]. We study below the
noise properties of chord-based reconstruction by useesktlalgorithms in their discrete forms. As mentioned
above, the BPF and MDFBP algorithms can reconstruct theemagdhe reconstruction segment;, 2] as long

as it covers the support segmént,, z.2]. We analyze image-noise properties on reconstruction setgnof
different lengths.



3.1 Analysis of image-noise properties

The chord-based algorithms invoke three major mathemasjparations: differentiation, backprojection, and
filtration. To a large extent, the BPF, MDFBP, and FBP aldwnis differ in the orders of invoking these operations.
Below, we focus on investigating the noise properties dedéntiation, backprojection, and filtration in the BPF
algorithm. The approach taken in the investigation is fgaalplicable to analyzing the noise properties of
the MDFBP and FBP algorithms. In the presence of data ndigenteasured projectiaB (7 (s), 3) should

be interpreted as a stochastic process. (Throughout ther,pap use boldface and normal letters to denote
a stochastic process and its mean, respectively.) Bechadeatckprojectiorg(z., s., sp) and the final image
f.(z., sq, sp) on a chord are computed froB(7(s), B), they should also be considered as stochastic processes.
We focus in this section on investigating the chord-imageaveef,.(z., sq, sp) by the investigation of noise

propagation through each step involved in the BPF recoctitrualgorithm.

3.1.1 Noise properties of the differentiation/backprojetion for parallel-beam data

Let P(ug4, s) denote the parallel-beam projection on detectorgiacquired at views. We assume the covariance
of the projection dat®(ug, s) to be uncorrelated, i.e.,

CoV{P(ug, s), P(uly,s')} = ag(ud, 5)0(ug — uly)d(s — 8, (20)

whereo?(ug4, s) denotes the variance of the projection data. The backgiofeicnage on the chord is given by
[13]

T 9
g(ze, Sa, 8p) = /% ds a—u(iP(ud,s)7 (12)
whereuy = 7- &,(s). The final image variances on a chord depend upon the coearizfrthe backprojection
image, which, using Eq. (11), can be written as

jus
2

Covlg(ae s s1). 8+t s sn)} = [ ds [ s’ CovllPlus, ). 5Pl )} (12
_ -z Uq u

z d

The evaluation of the backprojection-image covariancelires the data-derivative covariance, which can be
conveniently written as

i,P(ufi, =aw 02(ud, $)8(ug — uy)d(s — ') + Tpara (ua, uly, s, 8", (13)

0
COV{B—UdP(Ud, S), au
d

where VafP(ug4, s)} = o%(uq, s) denotes the known data variance, which can be a functian, @nds. The
second term J,.q (ua, ul, s, s") represents the difference between the term on the left-sidedand the first term
on the right-hand side of Eq. (13). Although the magnitudgnf, (uq, v, s, s") can be larger than or comparable
to that of the first term in the right-hand side of Eq. (13), ruital results below show that its contribution to the
final image variance on a chord is negligibly small. Therefave consider only the first term in the derivation of
the chord-image variance below. The parameteandw are introduced to account for the interpolation effect of
the discrete data derivative and discrete backprojectiothe chord-image variance. Using the first term in Eq.
(13), we can rewrite Eq. (12) as

Cov{g(we, Sa, Sb), &(TL., Say 5p)} ~ aw/2 ds 02(ud, 8)0(ug — uly). (14)

s
2

We now consider two points. andz’, on the chord and let, andu’/, denote their parallel-beam or fan-beam
c d



projections onto the detector. Clearly, for a source pmsiithat satisfies # s, or s;, one can conclude that

ug—uy = 0 if z.—2.=0

ug—uy # 0 if z.—al #0. (15)

Thus, ifz. = =, Co{g(x., Sa, b), &(Zc, Sa, sp)} = 5(0) aw f_%l dsa?®(ug, s) and, ifz, # z..,, Co{g(z., 54, sp), g(x,

0. Therefore, the covariance of the backprojection imag@#oallel-beam projections can be re-expressed as

COV{g(:ZjC, Sa, Sb)v g(I/C, Sa Sb)} ~ C(Ic) 5(xc - I/c)v (16)

where

w3

c(z.) = aw[ ds o*(ug, 8). a7)

jus
2

3.1.2 Noise properties of the differentiation/backprojetion for fan-beam data

In the fan-beam case, we uBéu, s) to denote the projection on detector hip acquired at views. Again, we
assumé(ug, s) to be uncorrelated and satisfy Eq. (10). The backprojeati@ye in Eq. (6) can be re-expressed
as

Sp 1
9(c, Sa; 8) = / ds WP/(Ud’ s), (18)
whereu, = Wff%% is the fan-beam projection af. onto the detector. The weighted-data derivative
P'(ugq, s) is given by
dro(s)| 0 [P(ua,s)
P = A% (ug) |—2 | — | 22 19
(1) = 42(ug) |5 2 | Pl (19

Using Eq. (18), one can write the covariance of the backptigje image as

1 1
C C as I /7 as = d d
ov{g(@c, Sa, S1), (¢, Sa, 56) } / S/ S 7 — 70 (s)2 |F — 7o (s) 2
x  CoV{P'(ug, s), P (ul, s')}, (20)

which depends upon the covariancePfuq, s). Again, we can conveniently write the covarianceéPtfug, s) as

2

00 | 5 g — ) (s — ')

ds
+ Tfan(udaufbsasl)a (21)

Co{P'(ug,s),P'(ul,s")} = awaQ(ud,s)AQ(ud)

where VafP(ug4, s)} = o%(uq, s) denotes the known data variance, which can be a functian, @nds. The
second term T, (uq, 1y, s, ') represents the difference between the term on the left-bidedand the first term

in the right-hand side of Eq. (21). As numerical results eiladicate, it turns out that f,,, (uq, u, s, s’) will

also have a negligible contribution to the chord-imagearase. Therefore, we consider only the first term in the
derivation of the chord-image variance below. Again, theapweters: andw are introduced to account for the
interpolation effect of the discrete data derivative arstite backprojection on the chord-image variance. Using
the first term in Eqg. (21), we can rewrite Eq. (20) as

Sb 2 A2
COV((Te 50y 50), 8(T, Sas50)} = aw / ds”fi“"” (ta)
Sa r

s Sas Sb)



Similar to the parallel-beam case described above, usingl5y, one can conclude that

COV{g(iUc, Sa; Sb)7 g(xlca Sas Sb)} A C(ZCC) 5(1’0 - xlc)a (23)
where )
* A*(ua)  |dio(s)|” -
c(ze) = aw/sa ds T roG)F | ds o (ud, 8)- (24)

3.1.3 Noise properties of the differentiation/backprojetion for cone-beam data

In the cone-beam case, Bfu4, v4, s) denote the projection at viewon a detector bin specified byiq, vq).
In the so-called “well oriented” rotation-coordinate ®st[5], unit vectore,(s) is parallel to and unit vectors
é,(s) andé,(s) are orthogonal, to the tangential directié@? of the source trajectory. Let; andv,; denote
the coordinates along, (s) andé,(s). It can be shown [5] that the backprojection image depentsupon the
data derivative along,. Therefore, the reconstruction formula for the cone-beankprojection image can be
obtained from that for the fan-beam backprojection imagEdn (18) by simply replacind®(u,, s) and A(ug)
with P(ugq,vq, s) andA(ugq, vq), respectively, in Eq. (19). Subsequently, one can showtligatovariance of the
cone-beam backprojection imagér., s., s») also satisfies Egs. (23) and (24).

3.1.4 Estimation of parametersz and w in discrete form

The parameted is introduced to account for the interpolation effect of th&crete data-derivative on the chord-
image variance. We consider a two-point derivative, whiets wsed in our numerical studies. IRtdenote the
discrete data, where= 1,2, ..., I, and! indicates the total number of data points. We assume thatRjatre
uncorrelated and use Vi, } to denote their variances. The two-point data derivatiiefined as

1
P, = §[Pi+1 —Pi1]. (25)

Therefore, the variance of the discrete data derivajvean be written as

1 Var{PiH} + Var{Pl-,l}

Var{P;} = 26

ar(P,} = . (26)
When data variances are identical, Eq. (26) becomes
- 1

Var{P;} = §Var{Pi}. (27)

Therefore, in our studies, we select % which is the coefficient in Eq. (27).

The parameter was introduced to account for the interpolation effect stdete backprojection on the chord-
image variances. The estimated valuawflepends obviously upon the specific interpolation schered us
the discrete backprojection. We illustrate below our eation of w when a two-point interpolation is used for
the discrete backprojection in the parallel- and fan-beases. One can readily obtain estimatesvofthen
other interpolation schemes are used. At a backprojectaw v, we useP; to denote the discrete weighed-data
derivatives. For a given, satisfyingi < ug < (i + 1), we express the interpolated weighted-data derivative as

P, = (1 =7)P; +P; 1, (28)
wherey = uq — 1. Furthermore, we can write the variancePQfd as

Var{P,,,} ~ [(1 —)* +v*Var{P} (29)



For the seek of simplifying the estimationwof we have ignored the correlation betwd®randP,, ; and assumed
that Vaf P;} ~ Var{P,_,}. We selectv as the average over all of the possile, which can be computed as

1
o= [ =P+ =5 (30)

Finally, substitution ofi = % andw = % into Egs. (17) and (24), we obtain the varianegs.) of the backpro-
jection images on the chords for the parallel-beam and &avbprojections, respectively, as

c(z.) = %[i dso?(ug, s), (31)
1o A%(ug) | dip(s)]?
clre) =3 / e | ds | 7 ) (32)

3.1.5 Noise property of the weighted Hilbert transform overa finite interval

The weighted Hilbert transform constitutes an importaapsh the chord-based BPF, MDFBP, and FBP algo-
rithms. Consequently, the noise properties of these dlgos depend upon that of the weighted Hilbert trans-
form, which we study below. qu(xc, sa, Sp) denote the weighted Hilbert transform of the backprojeciinage

g(Ica Saa Sb):

£ 1 or dx/c / /
f(SCC,Sa,Sb) = b(l’ ) T — 2 b('rc) g(IcaSaaSb)' (33)
c TA c c

We assume that(z”,, s,, sp) is band-limited ta/,,,. Therefore, the Hilbert transform kernméj can be replaced by
h(ze) = —j / " du sgry]@Tivee — 28It (v 7). (34)

— Le

Vm

In the presence of noise, the weighted Hilbert transff)(rm, a4, Sp) Should be interpreted as a stochastic process,
which is denoted in boldface. The variancef’(xfc, 4, Sp) Can be written as

~ B B
c TA TA
X h(ze—xl) h(x. — 22) Cov{g(x., Sa, sb), 8(T, Sa, Sb) }-

As Egs. (16) and (23) show, the backprojectionimgge., s, s;) can be treated as an approximated uncorrelated
stochastic process. Using the result in Eqg. (16) or (23),aveverite Eq. (35) as

1

Var{f(zc, sq, 55)} = ¥2(z.)

| datelal) (o~ al) (e, (36)

TA
In our numerical studies in Secs. 3.2.1 and 3.3.1, we hawkwyse= Tic' whereA. denote the sample interval
Of g(IC7 Sav Sb)'

3.1.6 Noise properties of chord images

Using Eq. (4), one can write the variance of the reconstducierd image as

Var{f.(zc, Sq, )} = Var{f(xc, SasSp)} (37)

Var{P(uao, v, 50)} [ VI=20)@a+1) | /T Fza)l+25) ?
47262 () | I+ z.
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Figure 1: (a) Phantom in the numerical studies. (b) Parbkam configuration. (c) Fan-beam configuration. The
solid line segment with the endpointg andz g represents the reconstruction segment. The thick segmtmt w
endpointse.; andz.o indicate the support segment. It should be noted[thatzz] O [z.1, z.2]. The rectangular
ROl is decomposed into a set of (dashed) line segments.

Circular parallel-beam), Circular fan-beam| Helical cone-bean

scan scan scan
Number of views per turr 1024 512 300

Angular range -5, 5] [—7, 7] [—7, 7]

Detector bins 256 256 128 x 128

Detector bin size (mm) 1.1 1.6 3.1x3.1
SDD (mm) - 200 200
SID (mm) - 200 200
Helical pitch (mm) - - 90

Table 1: Parameters for circular parallel-beam, circidarlheam, and helical cone-beam scanning configurations
which are used in our simulation studies. SDD is the sousegetector distance and SID denotes the source-to-
isocenter distance.

Substituting Eq. (36) into Eq. (37) yields

Var(f. (ze, s, 5)} % / " ! o) W (e — 21) b2 (a) (38)

A

NErRETIE
l+ x.

Var{P(u40, vao, 5a) } l\/(z —2p)(wa+1)
47262 () | -z

which provides a formula for computing the chord-imageaaci.

3.2 Numerical studies of noise properties in parallel-beameconstruction

Using the parallel-beam configuration in Fig. 1b and the patars given in Table 1, we calculated noiseless
projections for the numerical phantom in Fig. 1a. We havel @seobject-independent Gaussian noise model and
an object-dependent Poisson-noise model in the numetigdies. For each noise model, we generated 10,000
sets of noisy data by using noiseless data as the means.afuast deviation of Gaussian noise used is 1.6%
of the maximum value in the noiseless data, whereas theatdua@viation for the Poisson noise is the noiseless
data scaled to yield a total photon countsok 10° for each view. We investigated four reconstruction segment
with different lengthsL 4z = |z5 — x4]: 7.8 cm, 10.0 cm, 14.1 cm, and 20.0 cm, all of which are located

x = 4.06 cm. It can be observed in Fig. 1b that the length of the sugggnent, 5.5 cm in length, is shorter than
the four reconstruction segments considered. Therefoedmage on this chord can be reconstructed exactly by
use of data determined by these reconstruction segmenésca@nalso conclude from Fig. 1b that the minimum
data required by the first three reconstruction segmentgvdre shorter than the maximum dimension (about
15.6 cm) of the object support, are truncated.



3.2.1 Noise properties in reconstruction from truncated paallel-beam data

From the 10,000 sets of data containing Gaussian noise, aek Egs. (4), (5), and (6) to reconstruct 10,000
noisy f.(z., sa, $b), f‘(xc, Sa, Sb), andg(z., sq, Sp), respectively, on the four reconstruction segments desdri
above. Based upon these noisy reconstructions, we suliggoemputed their corresponding empirical vari-
ances, which are shown in the upper row of Fig. 2. We compaethpirical results to the analytical results
obtained by use of Egs. (16), (36) and (38). The functian ) is determined by using(u4, s) = o¢ in Eq. (31),
whereo is 1.6% of the maximum value in noiseless data. The analygésalts are displayed in the lower row
of Fig. 2. Similarly, using Egs. (4), (5), and (6), we recaonsted 10,000 sets of noig(x., s4, $p), f(xc, Say Sb)s
andf.(z., sq, sp) on the four segments from 10,000 sets of data containing®wisoise. The computed empir-
ical variances from these noisy images are displayed in piperurow of Fig. 3. Using the noiseless data as the
Poisson-noise variane€ (uq, s) in Eq. (17), one can readily determingr..); and using the determinedz..) in
Egs. (16), (36) and (38), one can compute analytical imaganees, which are displayed in the lower row of
Fig. 3. The results show that the analytical and empiricaliite agree well with each other, suggesting that Eq.
(38) provides an adequate estimation of the chord-imagance.

It can also be observed in Figs. 2c and 3c that, the shorteettumstruction segment, the higher the chord-
image variances. This is only because the second term inirf88)ases ad. 45 (i.e., (x4 — x.)(z. — 2B))
decreases. However, the difference of the chord-imagervees in the central part of the support segmentis quite
small among these reconstruction segments. The implicafithis result is that there may be a significant gain
in terms of dose reduction by using a short reconstructigmsat, because data required to reconstruct an image
on this reconstruction segment is less than that requiragsing a longer reconstruction segment, thus resulting
in a reduced illumination coverage to the object. For similaay intensities, which is directly related to the
data-noise level, the reconstruction using a short recectidin segment appears to yield image variance within
the support segment that is comparable to that obtainedawdhger reconstruction segment.

We have also performed numerical studies of the noise ptiep@f the reconstructed ROI-images by use of the
BPF and MDFBP algorithms from truncated data. Using the migalphantom in Fig. 1 and each of Gaussian-
and Poisson-noise models described above, we generatatbE¥0truncated data sets for image reconstruction
on reconstruction segments of a lendthp=10.0 cm, as shown in Fig. 1a, which completely cover the ROI.
We subsequently reconstructed 500 noisy images by usingRireand MDFBP algorithms. We display in Fig.

4 noisy ROI images reconstructed using the BPF and MDFBPrithigos from data containing Gaussian noise
(upper row) and Poisson noise (lower row).

Using the reconstructed 500 sets of Gaussian-noise imagés) sets of Poisson-noise images, we computed
empirical variances of the ROl images, which are shown iruhger row and lower row of Fig. 5, respectively.
We display in the third column of Fig. 5 the variance profiledloe dashed lines indicated in the variance images.
Results in Fig. 5 support the conclusion that both BPF and BBRlgorithms yield images with comparable
variance levels.

3.2.2 Noise properties in reconstruction from non-truncaed parallel-beam data

As discussed above, the FBP algorithm cannot reconstractigxmages from truncated data. Therefore, we
study below the noise properties of the FBP algorithm fromal&l-beam data without truncations. For the

purpose of comparison, we have also included reconstructisults of the BPF and MDFBP algorithms from

the same non-truncated data. Using the numerical phantdfiginl and each of the Gaussian- and Poisson-
noise models, we generated 500 noisy data sets from whicmé§ images were obtained by use of each
of the BPF, MDFBP, and FBP algorithms. Using these noisy Esagve computed empirical variance images,
which are shown in the upper and lower rows of Fig. 6, respelgtifor the Gaussian- and Poisson-noise models.
We also display in Fig. 7 the variance profiles on the dashegbl{i.e., on a chord) indicated on the variance
images in Fig. 6. The profile results were obtained by use@BfAF (solid), MDFBP (dashed), and FBP (dotted)
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Figure 2: Empirical (top row) and analytical (middle row)riemces of (a)g(z., sq, $5), (D) f’(:cc, Sa,Sp), and

(c) f.(z., 54, sp) Obtained on four reconstruction segments from parallahbeata containing Gaussian noise.
The difference between empirical variances and analytiagbhnces is also shown in the bottom row, which
demonstrates the analytical variances agree well withiiygirécal variances. The lengths of these segments are

indicated in the box in upper-right corners of the plots.
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Figure 3: Empirical (top row) and analytical (middle row)rieaces of (a)g(z., sq, $5), (D) f’(:cc, Sa,Sp), and

(c) f.(x., sa, sp) Obtained on four reconstruction segments from parallehbelata containing Poisson noise.
The difference between empirical variances and analytiagbnces is also shown in the bottom row, which
demonstrates the analytical variances agree well withiiygircal variances. The lengths of these segments are

indicated in the box in upper-right corners of the plots.
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Figure 4: ROI-images obtained by use of the BPF algorithraid)MDFBP algorithm (b) from truncated parallel-
beam data containing Gaussian noise (upper row) and Paisssa (lower row).
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Figure 5: Empirical ROI-image variances obtained by usénefBPF (a) and MDFBP (b) algorithms from trun-

cated parallel-beam data containing Gaussian noise (upp@tand Poisson noise (lower row), respectively. (c)
Variance profiles on the dashed lines indicated in columnar{d (b) obtained with the BPF (solid) and MDFBP

(dashed) algorithms, respectively. For the purpose oflalyspg the details in the central (i.e., low variance) re-
gions, we have applied a logarithmic scale to the varian@gés. The display windows are [-0.86, 0.50] and
[-1.28, 0.20] for Gaussian noise and Poisson noise, raspbct
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Figure 6: Empirical variance images obtained by use of thE &, MDFBP (b), and FBP (c) algorithms from
non-truncated parallel-beam data containing Gaussiaer{apper row) and Poisson noise (lower row). For the
purpose of displaying the details in the central (i.e., lasiance) regions, we have applied a logarithmic scale to
the variance images. The display windows are [-1.3, 0.36][eh3, 0.40] for Gaussian noise and Poisson noise,
respectively.

algorithms for the Gaussian-noise model (a) and Poissisemaodel (b). It can be observed that image variances
obtained with the three algorithms are similar and that tilg difference comes at the extreme ends of the shown
reconstruction segments. The BPF and MDFBP algorithms ghsignificant increase in the image variance at
both ends of the profile. The reason for this is that the retcociion segment was taken to be the width of the
image array, and the pre-factor for the finite Hilbert transfin Egs. (4) and (7) has a singularity at the ends of the
reconstruction segment. In practical situations thisfpoter is of little consequence because the reconstruction
segment can be selected larger to avoid the singular behavithermore, because the singularity goes as the -1/2
power, its effect is evident only very close to the endpadafthe reconstruction segment.

3.3 Numerical studies of noise properties in fan-beam recatruction

Using the fan-beam configuration in Fig. 1c and the pararaésted in Table 1, we calculated fan-beam, noiseless
data for the numerical phantom in Fig. 1a. We have also usetject-independent Gaussian-noise model and an
object-dependent Poisson-noise model in this numerigdisiThe standard deviatiarn, of Gaussian noise used

is 2.3% of the maximum value in noiseless fan-beam data,easehe standard deviation for the Poisson noise is
the noiseless data scaled to yield a total photon counka®?® for each view. For each noise model, 10,000 sets of
noisy data were generated by use of the corresponding assséhta as the means. We investigated reconstruction
segments of four different lengtliss 5 =7.8 cm, 10.0 cm, 14.1 cm, and 20.0 cm. All of the segments aetéd

atz = 4.06 cm. It can be observed in Fig. 1c that the length of the suEgnent is 5.5 cm, which is shorter
than the four reconstruction segments. Therefore, the énaagthis chord can be reconstructed exactly by use
of data determined by these reconstruction segments. Onalsa conclude from Fig. 1c that data determined
by the first three reconstruction segments, which are shitwd@ the maximum dimension (about 15.6 cm) of the
object support, are truncated.
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Figure 7: Variance profiles on the dashed lines indicatea@irances images shown in Fig. 6. They were obtained
for the Gaussian (a) and Poisson (b) noise models by use 8RRgsolid), MDFBP (dashed), and FBP (dotted)
algorithms, respectively.

3.3.1 Noise properties in reconstruction from truncated fa-beam data

From the 10,000 sets of data containing Gaussian noise, aek Egs. (4), (5), and (6) to reconstruct 10,000
noisy f.(zc, sa, Sb), f(xc, Sa, Sb), andg(z., sq, Sp), respectively, on the four reconstruction segments desari
above. Based upon these noisy reconstructions, we suliggoemputed their corresponding empirical vari-
ances, which are shown in the upper row of Fig. 8. As for théyéinarariance, one can determingc..) by using
o(ug,8) = oo In EQ. (32), wherey is 2.3% of the maximum value in noiseless fan-beam data.dJsgin.) in
Egs. (23), (36) and (38), we computed analytically imagéaveres, which are displayed in the lower row of Fig.
8. Similarly, using Egs. (4), (5), and (6), we reconstruct®dD00 sets of noisf.(x., sa, Sp), f(:cc, Sa,Sp), @and
g(x., sq, sp) ON the four segments from 10,000 sets of fan-beam data camaPoisson noise. The computed
empirical variances from these noisy images are displayetd upper row of Fig. 9. Furthermore, using the
noiseless fan-beam data as the Poisson-noise varigifeg, s) in Eq. (32), one can readily determinér,.).
Using the determined(z.) in Egs. (23), (36) and (38), we computed analytically imaggances, which are
displayed in the lower row of Fig. 9. It can be observed thatahalytic and empirical results agree well with
each other, suggesting that Eq. (38) provides an adequaligiarestimation of the chord-image variance for the
fan-beam case as well. It is interesting to note in Figs. & %mthat the variances @f(z., s4, sp) is spatially
varying on the chord. Based upon Eq. (32), one can readilglade that this spatial variation is caused by the
spatially variant facton"rf‘_g% .

Again, from these results, observations similar to thoséh®parallel-beam case can be made for the fan-beam
case. For example, as Figs. 8c and 9c show, the shorter thiestegction segment, the higher the chord-image
variances. This is only because the second term in (38)asesead. 5 (i.e., (x4 — z.)(z. — zp)) decreases.
The implication of these results is that there may be a siganifigain in terms of dose reduction by using a short
reconstruction segment, because data required to reaohatrimage on this reconstruction segment is less than
that required by using a longer reconstruction segmenghwtan result in reduction of illumination coverage of
the object.

We have also performed numerical studies of the noise ptiepesf the reconstructed ROI-images by use
of the BPF and MDFBP algorithms from truncated data. Usirggrthmerical phantom in Fig. 1 and each of
the Gaussian- and Poisson-noise models described abowyeneeated 500 noisy truncated data sets for image
reconstruction on reconstruction segments of a lefigth=10.0 cm, as shown in Fig. 1a, which cover the ROI

completely. We subsequently reconstruct 500 noisy imagassing each of the BPF and MDFBP algorithms.
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Figure 8: Empirical (top row) and analytical (middle rowYyieaces of (ax(z., sS4, sp), (b) f(:vc, Sa, Sb), @and (C)
f.(z., sq, sp) Obtained on four reconstruction segments from fan-beam daitaining Gaussian noise. The dif-
ference between empirical variances and analytical veei&is also shown in the bottom row, which demonstrates
the analytical variances agree well with the empiricalaaces. The lengths of these segments are indicated in

the box in upper-right corners of the plots.
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Figure 9: Empirical (top row) and analytical (middle rowYyieaces of (ax(z., sS4, sp), (b) f(:vc, Sa, Sb), @and (C)
f.(z., sq, sp) Obtained on four reconstruction segments from fan-beamctaitaining Poisson noise. The differ-
ence between empirical variances and analytical variascadso shown in the bottom row, which demonstrates
the analytical variances agree well with the empiricalaaces. The lengths of these segments are indicated in

the box in upper-right corners of the plots.
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Figure 10: Empirical ROI-image variances obtained by uséhefBPF (a) and MDFBP (b) algorithms from

truncated fan-beam data containing Gaussian noise (uppgrand Poisson noise (lower row), respectively. (c)
Variance profiles on the dashed lines indicated in columhard (b) obtained with the BPF (solid) and MDFBP
(dashed) algorithms, respectively. For the purpose oflalygpy the details in the central (i.e., low variance)
regions, we have applied a logarithmic scale to the varigmeges. The display windows are [-0.76,0.29] and
[-0.75,-0.04] for Gaussian noise and Poisson noise, réspsc

Using the reconstructed 500 sets of Gaussian-noise imageSQD sets of Poisson-noise images, we computed
empirical variance images within the ROI, which are showth@upper row and lower row of Fig. 10, respectively.
Moreover, we display in the third column of Fig. 10 the vadarprofiles on the dashed lines indicated in the
variance images. Results in Fig. 10 support the conclusianlioth BPF and MDFBP algorithms yield images
with comparable variance levels.

3.3.2 Noise properties in reconstruction from non-truncaed fan-beam data

The FBP algorithm cannot reconstruct exactly images framdated fan-beam data. Thus, we evaluate below the
noise properties of the FBP reconstruction from non-tritegtéan-beam data. For the purpose of comparison, we
have also included reconstruction results of the BPF and B®&lgorithms from the same data sets. Using the
numerical phantom and fan-beam configuration describedeglvee generated non-truncated fan-beam data at
512 views uniformly coveringr. Using the noiseless data as the means, we generated 500dats containing
Gaussian noise and 500 sets of data containing Poisson ridigsestandard deviation for the Gaussian noise is
2.3% of the maximum value of the noiseless data, whereastdinéard deviation for the Poisson noise is the
noiseless data scaled to yield a total photon couri af 10° for each view. For a given chord specified by
s« andsy, one can reconstruct its image from data acquired over te-side trajectory (i.es € [sq, sp]), as
shown in Fig. 11a. Conversely, one can also reconstructtbeldimage from data acquired with both right-side
trajectory (i.e.s € [sq, sp]) and left-side trajectory (i.es, € [sp, S4]), @S Shown in Fig. 11b. In chord-based image
reconstruction, we decompose image area into chords glaxathe vertical direction, and the source scans from
sq 10 s, and then frons,, to s,, as shown in Fig. 11.

For each chord in the set covering the image area, we firshstewted the images by use of the BPF, MDFBP,
and FBP algorithms from data containing Gaussian noisei@tjover the right-side trajectory specified by
s € [sa,sp]. Subsequently, we computed empirically chord-image naga from these noisy reconstructions.
By assembling the chord-image variances, we obtain thamesiimages, which are shown in the upper row of
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Figure 11: (a) The right-side trajectory (solid) of the ath¢thick) specified by, ands,. (b) The right-side trajec-
tory (solid) and left-side trajectory (solid) of the chotti¢k) specified by, ands;. The scanning configuration
in (b) corresponds to a full, fan-beam scan.

a b c

Figure 12: Empirical variance images obtained by use of tAE B), MDFBP (b), and FBP (c) algorithms from
non-truncated fan-beam data containing Gaussian (upp@ratad Poisson (lower row) noise. For the purpose of
displaying the details in the central (i.e., low varian@gions, we have applied a logarithmic scale to the variance
images. The display window is [-1.0, 0.65] and [-2.02, 0 f29]Gaussian noise and Poisson nhoise, respectively.

Fig. 12, for the BPF, MDFBP and FBP algorithms, respectivSliynilarly, from data containing Poisson noise,
we obtained the image variances, which are displayed inrloove of Fig. 12.

We show in column one of Fig. 13 the image variances on a choedified bys, = —7n/2 ands, =
/2 obtained from data containing Gaussian noise (upper rod/)Parisson noise (lower row), respectively. As
already seen above, the variance increases as the podiiunthe chord near the source trajectory. There is
little difference between the three algorithms. Furtherenthese variance images have similar properties: the
chords on the right part have higher and more non-unifornganeriance than those on the left part in the image
area. In column 2 of Fig. 13, we show the profiles on the middi@ts across the vertical chords (i.e., on the
middle horizontal lines in the variance images shown in Fig). The results reveal that some difference of
the MDFBP result from the BPF and FBP results in the perighregion. This difference may be attributed to
the data weighting prior to the backprojection step, whiitfes from that in the BPF and FBP algorithms. We
should point out that this difference is only seen in theaxi periphery of the imaging area. For most practical
situations these three algorithms perform virtually idadty in terms of image variance.

We investigate further the general trend of the varianceadesing for chords on the left of the variance image.
The first impression of this behavior is that this trend isiobs, because the scanning trajectory is on the right
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Figure 13: Variance profiles along the central vertical (@)l &orizontal (b) lines in variance images shown
in Fig. 12, obtained by the BPF (solid), MDFBP (dashed), aB& Fdotted) algorithms from data containing
Gaussian noise (upper row) and Poisson noise (lower row).

side, chords on the left of the variance image are recortetiueith a longer scanning trajectory. It appears that
more data are used in reconstructing chords covering thedef of the variance image. This explanation is,
however, incorrect. First, there is a slight upturn in thearce for the chords on the extreme left of the variance
image, which runs counter to this trend. Second, it can beodstrated that the amount of data going into the
chord reconstruction does not necessarily increase asdimaisig trajectory increases. Based upon Eg. (32), one
can conclude that the true cause of the variance behavipaimly dependent weighting factdr/|# — 7 ()], in

the BPF, MDFBP, and FBP algorithms [19].

For a given chord specified by, ands,, when full scan data are available, one can reconstruct heodc
images by use of data acquired with the right-side and ld&-sajectories, as shown in Fig. 11 and then obtain
a final chord image by averaging the two chord images. We sihdvig. 14, the variance images of the full scan
with accompanying profiles in Fig. 15.

3.4 Numerical studies of noise properties in cone-beam renstruction

The BPF, MDFBP, and FBP algorithms can yield exact imagernsttaction on a chord specified Iy and

sp as long as the support segment on the chord is illuminatedhdytray beam at the projection viewse

[sa, sb], because these algorithms require data only on the fan-pegettions of the support segment. From the
perspective of the chord-based algorithms, the recort&irucf a chord image from cone-beam data is similar to
that of a chord image from fan-beam data. In the fan-beam taserientation of the fan-beam planes at different
views remain unchanged, whereas, in the cone-beam casa with-planar trajectory, the orientation of the fan-
beam-illumination planes generally varies from view towieAs discussed in Sec. 3.1.3, the noise properties
of differentiation, backprojection and filtration in therembeam case are similar to that in the fan-beam case.
Therefore, we include below only the study results on theaproperties of the final chord-images reconstructed
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Figure 14: Variance images obtained by use of the BPF (a), B®{b), and FBP (c) algorithms from full-scan
fan-beam data containing Gaussian (upper row) and Poitsear(row) noise. For the purpose of displaying the
details in the central (i.e., low variance) regions, we heglied a logarithmic scale to the variance images. The
display windows are [-1.19, 0.31] and [-1.18, 0.20] for Gaas noise and Poisson noise, respectively.
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Figure 15: Variance profiles along the central vertical (@) &orizontal (b) lines in variance images, which
are shown in Fig. 14, obtained by the BPF (solid), MDFBP (dd$hand FBP (dotted) algorithms from data
containing Gaussian noise (upper row) and Poisson noige(lmw).
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Figure 16: (a)r-line, 3w-line, and57-line segments in a helical scan. (b) Surfaces generatdukifintaging
volume by concatenating-line segments specified By, = —m ands;, € [—0.5, 0.57].

from cone-beam data.

3.4.1 Helical cone-beam configuration

In our investigation of the noise properties of image retrmiesion from cone-beam data, we consider the helical
trajectory, which is the most widely used in clinical andusttial CT. For a helical scan, the source trajectory is
described mathematically &s(s) = (Rcos s, Rsin s, %s), whereR is the source to center-of-rotation distance,
andh indicates the helical pitch length. For a chord specified bgnds;, if (n — 1)m < [sp, — sq| < (n + 1),
wheren is a positive odd integer, the chord is also referred to agmafine segment [20, 21], as shown in Fig.
16a. In particular, when = 1 and thud) < |s;, — s,| < 2, the chord is referred to asmaline segment [2, 11].
In this work we consider image reconstruction onlyotine segments for the reason that the imaging volume
enclosed by the helix can be filled uniquely and completelyrBine segments [11, 12]. Thus;line segments
can be used to form 3D images in a helical cone-beam scan.

We computed the noiseless data from a Shepp-Logan phantosetnyf the configuration parameters in Table
1. Using the noiseless data as the means, we subsequenghaterh500 sets of data containing Gaussian noise
and 500 sets of data containing Poisson noise, respectiMetystandard deviation of Gaussian noise is chosen to
be 0.7% of the maximum value of the noiseless data, whereastéihdard deviation for the Poisson noise is the

noiseless data scaled to yield a total courii of 10° for each view.

3.4.2 Noise properties in reconstruction from helical condoeam data

A curved surface in the helix volume can be formed by a set-liie segments for which we fix one end-point
at s, and sweep the other endpoint over a range [smin, sSmax- We show in Fig. 16a a curved surface obtained
by concatenating a set atline segments specified by, = —7 ands; € [—0.57,0.57]. Using generated noisy
helical cone-beam data, we reconstructed noisy image<orilihe surface by use of the BPF, MDFBP, and FBP
algorithms. From these noisy images we subsequently cadmumpirical image variances on thdine surface.
In Fig. 17, we display the image variances obtained with BEBFBP and FBP algorithms from data containing
Gaussian noise and Poisson noise.

We also display in Figs. 18a and b image variances orriliee segment specified by, = —7 ands, = 01in
the surface, obtained from data containing Gaussian naddaisson noise, respectively. The image variances
show similar characteristics to that of fan-beam imageavenes observed in Fig. 13. Namely, the variance image
on ther-line surface in Fig. 17 has a structure that is similar toright-side scan fan-beam results presented
in Sec. 3.3.1; the images anline segments reconstructed from smaller helix segments to have higher and
more non-uniform variances. The similarity with the faratrecase is not surprising because the geometrical
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Figure 17: Empirical variance images on thdine surface shown in Fig. 16b obtained by use of the BPF (a),
MDFBP (b), and FBP (c) algorithms from data containing Gaurssaoise (upper row) and Poisson noise (lower
row), respectively. For the purpose of displaying the detaithe central (i.e., low variance) regions, we have
applied a logarithmic scale to the variance images. Thdalispindows are [-1.80, 0.30] and [-1.80, 0.60] for
Gaussian noise and Poisson noise, respectively.

arrangement of the-line with respect to its scanning trajectory is very simiia the relationship between the
chords and corresponding fan-beam scanning trajectosy.only difference is that there is an out-of-plane bend
to the helix segment.

Regarding the non-uniform shape of the variance, one cahwd the high variance in the image periphery
to the weighting factors multiplying the data derivativeddye backprojection. As the algorithms are essentially
the same for chord-image reconstruction in fan- and comerlmses, this conclusion should come as no surprise.
In the 2D fan-beam case, the variance non-uniformity anel as reduced by equally weighting reconstructions
for both left and right side scans for each chord of the saanaircle. For the helical configuration, it is clear that
in a typical scan there will be some overscan for nearly &ldhords comprising the volume. But the overscan
part of the trajectory does not form a closed loop so usingtleEscan data to reduce image variance is not as
obvious as the case of the circular scan. Future work will$amzn how to utilize the overscan data for non-closed
trajectories for the purpose of reducing the impact of daiaesnon chord-base ROI-image reconstruction.

4 Discussion

In this article, we have performed analytic and numericakstigation of the noise properties of chord-based
image reconstructions from parallel-, fan-, and cone-bédata. One of the main points of the investigation
was to test whether or not the reduced illumination in daeigga minimal data set for a particular ROl leads to a
significant reduction in exposure. The idea was to comparstttistical properties of the ROl image reconstructed
from noise realizations of the minimal data set with noisgirations of the full data set. Similar noise levels
were used in both data sets, which are equivalent to modsiinidar incident x-ray beam intensities. Our study
indicates that the resulting image variance was almostdhgesor images reconstructed from both data sets.
Thus, the minimal data set for ROI reconstruction leads tigificant overall dose reduction, because the body
is exposed to lower amount of ionizing radiation in the restiscan. For fan-beam and cone-beam imaging,
we explored the noise properties of the extreme periphetiimfmaging region by investigating large fan- and
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Figure 18: Variances on the central vertical line segmepdcisied bys, = —m ands; = 0, obtained with the

BPF (solid), MDFBP (dashed), and FBP (dotted) algorithmomfdata containing Gaussian noise (a) and Poisson
noise (b).

cone-angles. Image variance non-uniformity was found toaused by spatially dependent weighting factors in
the chord-based reconstruction algorithms. This workesgnts a study of the noise properties of chord-based
reconstruction and of the impact of physical factors on R@dging in fan-beam and cone-beam CT. In seeking
ways to reduce the impact of noise in volume imaging, we wailleistigate schemes to incorporate overscan
data. The analysis presented in this work can directly béiexp chord-based image reconstruction for general
trajectories. Finally, it is important to investigate thehlavior of the ROI-reconstruction algorithms when other
important factors are included in the data model such ag/podychromaticity and non-linear partial volume
averaging.
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