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INTRODUCTION

Breast tomosynthesis is a tomographic imaging technique, and it has the potential advan-
tage to overcome a major limitation of conventional mammography through recovering, to a
large degree, the loss of 3D information about the breast in conventional, 2D mammography.
In the last several years, there has been renewed interest in developing breast tomosynthesis
for detection of breast cancer [1,2]. Although considerable progress has been made, im-
provements to several areas of breast tomosynthesis technology are still needed before it
becomes suitable for routine clinical use. In essence, breast tomosynthesis can be considered
as a dedicated computed tomography with limited view for breast imaging, and it thus re-
quires the development of special reconstruction algorithms for recovering 3D breast images
from tomosynthesis data. In addition, various physical factors in breast tomosynthesis can
strongly a�ect the resulting image quality, and the issue of patient radiation dose in breast
tomosynthesis is of a concern. The overall objective of this project is to investigate and
develop reconstruction algorithms for obtaining breast images of practical use, to investigate
and evaluate systematically the e�ects of various physical factors on image quality in breast
tomosynthesis, and to use and evaluate (empirical) techniques for e�ectively compensating
for the e�ects on breast tomosynthesis images and for possibly reducing imaging radiation
dose in breast tomosynthesis. It is fully expected that the research will contribute to the
e�ort in the �eld to develop and improve breast tomosynthesis for its clinical use. This
report summarizes the progress of this Predoctoral Traineeship Award project made by the
recipient during the past one year.
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BODY

1 Training Accomplishments

At the time of this report, the recipient, Dan Xia, of the Predoctoral Traineeship Award has
taken 22 out of 22 required courses towards his Ph.D. degree in medical physics. The courses
include physics of medical imaging, physics of radiation therapy, mathematics for medical
physicists, image processing, statistics, anatomy of the body, radiation biology and teaching
assistant training.

2 Research Accomplishments

2.1 Investigation of reconstruction algorithms for breast tomosynthesis

In tomosynthesis, data are acquired only at a small number of projection views over a limited
angular range. Therefore, tomosynthesis data are highly sparse as compared to data acquired
in conventional computed tomography (CT). Consequently, existing analytical algorithms for
accurate reconstruction of CT images are generally not suitable for yielding useful images
from tomosynthesis data. For example, the e�ect of �ltering may not completely be canceled
out due to the limited number of views and limited angular range, resulting in prominent
artifacts in reconstructed images. In contrast, iterative algorithms can generally produce
images with less artifacts than can the analytic algorithms. In the project, we are inves-
tigating and developing a total variation (TV) based iterative algorithm for reconstructing
accurate images from incomplete projection data [3]. We have investigated the following
issues: (1) Performance of the TV-based algorithm when applied to tomosynthesis data gen-
erated from discrete images. In this case, one has a discrete matrix system, which allows
ideal reconstructions of the underlying discrete images. The result in this study provides the
upper bound on the performance of the TV-based and any other reconstruction algorithm.
(2) Convergence conditions of the TV-based algorithm under di�erent data conditions and
di�erent constraint parameters. This investigation is critical for any iterative algorithm to
be practically useful. We have successfully addressed issue (1) and are working actively on
issue (2).

2.2 Investigation of scanning con�gurations in breast tomosynthesis

Currently, breast tomosynthesis acquires data at about 12 to 20 projection views over a
limited angular range around 20 to 50 degrees. Typically, a circular source trajectory is
adopted for collection of cone-beam projections. It remains, however, largely unexplored
as to what the optimal scanning con�gurations are. In the last several months, we have
conducted initial investigation on image reconstruction from data acquired (1) at a small
number of views and (2) over a limited angular range. In the studies, data were collected
from di�erent phantoms, including a breast phantom developed in Ref. [4], at di�erent
numbers of views.

We �rst generated cone-beam data at 15, 20, 40, and 60 projection views over 2π. The
reason for the angular range is 2π is that the study results would not be a�ected by the issue
of the limited angular range. From these data sets, we have used the TV-based algorithm
to reconstruct images. For comparison, we have also conducted preliminary reconstructions
by using the expectation-maximization (EM) algorithm and the algebraic reconstruction
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technique (ART). Although we are currently in the process of analyzing these reconstruc-
tion results, the initial evaluation appears to indicate that the TV-based algorithm is more
accurate than the EM and ART algorithms in reconstructing images from few-view data.

We subsequently studied image reconstruction from data acquired over a limited angular
range. Speci�cally, we have selected angular ranges of π/4, π/2, and π and collected data
at 15, 20, 40, and 60 views over each of these angular ranges. From the collected data,
we reconstructed images by use of the TV-based algorithm. For comparison, the EM and
ART algorithms were also used for reconstructing images from these data sets. Our initial
analysis of these results suggests [5] that (1) when the angular range decreases, image quality
obtained with these algorithms decreases, and (2) the TV-based algorithm generally yields
images with less artifacts than do the EM and ART algorithms. We are still in the process
of conducting additional studies on this problem.

2.3 Investigation of the physical factors in tomosynthesis imaging

Various physical factors can signi�cantly a�ect image quality in breast tomosynthesis. These
factors include data noise, non-uniform image spatial resolution, scatter, and detector re-
sponses. We have begun to perform research on investigating and correcting for the e�ect of
physical factors on image quality. In our preliminary studies, we have evaluated the e�ects
of two physical factors, (1) cone-beam data noise and (2) non-uniform image resolution.

In an attempt to separate the issues of few-view and limited angular range from data noise,
we have �rst performed a thorough noise study for image reconstruction from projection
data collected at a large number of views over 2π. The result of this study will provide a
theoretical guidance to the investigation of the noise properties in tomosynthesis in which
data are acquired at a small number of views over a limited angular range. In this study,
we speci�cally focus on investigating how data noise are propagated into the reconstructed
images. Both analytic and numerical analyses were carried out, and the results indicate that
variances of reconstructed images are spatially varying and that the levels of variances in
di�erent regions are not a�ecting signi�cantly each other [6]. Because the study was based
upon analytic result, it was computationally possible to accomplish this initial study. On
the other hand, noise studies involve the iterative algorithms such as the TV-based, EM,
and ART algorithms are much more demanding computationally. We have just begun to
perform the image noise studies by using the iterative algorithms.

In current breast tomosynthesis, the spatial resolution within a transverse plane is much
�ner than that along the longitudinal direction, and image representation with non-isotropic
spatial resolution is used in iterative algorithms for reducing computational time. Such an
image representation can lead to signi�cant artifacts in iterative reconstruction. In the last
couple of months, we have been investigating the e�ect of non-isotropic image representation
on iterative reconstruction accuracy of breast tomosynthesis images. We have reconstructed
images by use of TV-based, EM, and ART algorithms for image representations with di�erent
ratios of the in-plane and longitudinal resolution. Our results demonstrate that non-isotropic
image representation can lead to signi�cant artifacts in reconstructed images. The appear-
ance and severity of the artifacts depend not only upon the ratio between the in-plane and
longitudinal resolution but also upon the iterative algorithms. The TV-based algorithm
seems to be less susceptible to the e�ect than the EM and ART algorithms. Through the
selection of algorithm parameters, the artifacts can be reduced [7].
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KEY RESEARCH ACCOMPLISHMENTS

• We have implemented the modi�cation to the TV-based algorithm tailored to breast
tomosynthesis.

• We have also implemented and tested the EM and ART algorithms.

• We have conducted an investigation of the upper bound on the performance of TV-based
algorithm for image reconstruction from tomosynthesis data.

• We have conducted a preliminary investigation of the convergence property of the TV-
based algorithm under di�erent data conditions and di�erent constraint parameters in
reconstruction of tomosynthesis images.

• We have carried out preliminary investigations of the scanning con�gurations in breast
tomosynthesis imaging by using di�erent numbers of views over di�erent angular ranges.

• We have performed a preliminary study on the e�ect of some physical factors on breast
tomosynthesis. The physical factors were considered in the study include data noise
and non-isotropic spatial resolution.
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REPORTABLE OUTCOMES

Peer-reviewed Journal Articles

1. D. Xia, L. Yu, E. Y. Sidky, Y. Zou, N. Zuo, and X. Pan: Noise properties of chord-
image reconstruction, IEEE Trans. Med. Imaging, (in press), 2007.

Conference Proceeding Articles

1. D. Xia, E. Y. Sidky, L. Yu, and X. Pan: Noise properties in helical cone-beam CT
images, Proc. MIC, M14-420, 2006.

Conference Presentations and Abstracts

1. D. Xia, E. Sidky, J. Bian, I. Reisner, R. Nishikawa, and X. Pan: Image representa-
tion with non-isotropic spatial resolution on iterative reconstruction accuracy in breast
tomosynthesis, submitted to RSNA annual meeting, 2007.

2. D. Xia, J. Bian, I. Reisner, E. Sidky, R. Nishikawa, and X. Pan: Investigation of
scanning and reconstruction approach for tomosynthesis breast imaging, submitted to
AAPM annual meeting, 2007.

3. D. Xia, E. Y. Sidky, L. Yu, and X. Pan: Noise properties in helical cone-beam CT
images, presented at IEEE Medical Image Conference, 2006.

Honors and Awards

• Student traveling award, IEEE Medical Imaging Conference, 2006

• Student Travel Contingency Grant, SPIE Medical Imaging Conference, 2007
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CONCLUSIONS

The recipient of the Predoctoral Traineeship Award has �nished the required courses
towards his Ph.D. degree. These trainings have proven useful for the recipient to achieve the
proposed research goals.

During the �rst year, we have implemented and investigated the TV-based algorithm for
image reconstruction in breast tomosynthesis. We �rst evaluated the performance of the
algorithm under ideal conditions and its convergence properties. We have subsequently con-
ducted numerical studies to investigate the image reconstruction by use of the TV-based
algorithm and the existing EM and ART algorithms for di�erent imaging con�gurations in
breast tomosynthesis. Our results suggest that, in general, the TV-based algorithm pro-
vide tomosynthesis images with quality higher than EM and ART algorithms in terms of
the metrics such as root-mean-square error and image resolution. Furthermore, we have
investigated the e�ect of some physical factors, such as data noise and non-isotropic spatial
resolution, on tomosynthesis images. Overall, we have achieved the goals for the �rst year
and laid down the foundation for the research in the next two years. Our aims in the next
two years include, based upon what we have learned from the results described above, fur-
ther investigating and streamlining the TV-based algorithm in terms of convergence, speed,
and rubostness. Careful, comparative evaluation studies of reconstruction algorithms will
be conducted under more realistic physical conditions. In particular, we will expand our
data-generation programs to include non-linear partial volume, beam-hardening, and scatter
e�ects in our data. We will implement existing algorithms to correct for the scatter e�ect
before image reconstruction. Additionally, we will generalize reconstruction algorithms, in-
cluding the TV-based, EM, and ART algorithms to incorporate these factors so that they
can be compensated for during reconstruction iterations. We will look into the results from
current studies in other groups in our department on the e�ect of detector response, which
is expect to be spatially varying, on data acquisition. If it is signi�cant, we will include the
detector response into the data-generation program and reconstruction algorithms. We will
also perform tomosynthesis experiments to collect real data of physical breast phantoms for
additional evaluation of the scanning con�gurations and reconstruction algorithms. Finally,
we will select real-patient data for testing and assessing the reconstruction algorithm.

6



REFERENCES

1. J. T. Dobbins III and D. J. Godfrey: Digital x-ray tomosynthesis: current state of the
art and clinical potential, Phys. Med. Biol., 48, R65-R106, 2003.

2. M. Bissonnette, M. Hansroul, E. Masson, S. Savard, S. Cadieux, P. Warmoes, D. Gravel,
J. Agopyan, B. Polischuk, W. Haerer, T. Mertelmeier, J. Y. Lo, Y. Chen, J. T. Dobbins
III, J. L. Jesneck, and S. Singh: Digital breast tomosynthesis using an amorphous
selenium �at panel detector, Proc. SPIE, 5745, pp. 529, 2005.

3. E. Sidky, C.-M. Kao, and X. Pan: Accurate image reconstruction from few-views and
limited-angle data in divergent-beam CT, J. X-ray Sci. Tech. 14, pp. 119-139, 2006.

4. I. Reiser, E. Sidky, R. Nishikawa, and X. Pan: Development of an analytic breast
phantom for quantitative comparaison of reconstruction algorithms for digital breast
tomosynthesis, Proceedings of 8th international workshop, IWDM, pp. 190-196, 2006.

5. D. Xia, J. Bian, I. Reisner, E. Sidky, R. Nishikawa, and X. Pan: Investigation of
scanning and reconstruction approach for tomosynthesis breast imaging, submitted to
AAPM annual meeting, 2007.

6. D. Xia, L. Yu, E. Y. Sidky, Y. Zou, N. Zuo, and X. Pan: Noise properties of chord-image
reconstruction, IEEE Trans. Med. Imaging, (in press), 2007.

7. D. Xia, E. Sidky, J. Bian, I. Reisner, R. Nishikawa, and X. Pan: Image representa-
tion with non-isotropic spatial resolution on iterative reconstruction accuracy in breast
tomosynthesis, submitted to RSNA annual meeting, 2007.

7



APPENDICES

• Appendix A: D. Xia, E. Sidky, J. Bian, I. Reisner, R. Nishikawa, and X. Pan: Image
representation with non-isotropic spatial resolution on iterative reconstruction accuracy
in breast tomosynthesis, submitted to RSNA annual meeting, 2007.

• Appendix B: D. Xia, J. Bian, I. Reisner, E. Sidky, R. Nishikawa, and X. Pan: In-
vestigation of scanning and reconstruction approach for tomosynthesis breast imaging,
submitted to AAPM annual meeting, 2007.

• Appendix C:D. Xia, L. Yu, E. Y. Sidky, Y. Zou, N. Zuo, and X. Pan: Noise properties
of chord-image reconstruction, IEEE Trans. Med. Imaging, (in press), 2007.

8



Image representation with non-isotropic spatial resolution on 
iterative reconstruction accuracy in breast tomosynthesis

Dan Xia, Emil Sidky, Junguo Bian, Ingrid Reiser, Robert Nishikawa, Xiaochuan Pan

 Department of Radiology, The University of Chicago
5841 S Maryland Avenue, Chicago, IL 60637

Clinical Relevance/Application:
Breast tomosynthesis has received renewed interest because it can provide 3D 
information about the breast. This work concerns iterative reconstruction of accurate 
breast tomosynthesis images. 

Purpose:  
In current breast tomosynthesis, image representation with non-isotropic spatial 
resolution is used for reducing computational time. This can, however, lead to artifacts in 
iterative reconstruction of breast tomosynthesis images. In the work, we investigate the 
effect of non-isotropic image representation on the reconstruction accuracy. Based upon 
the investigation, we devise schemes for reducing artifacts in iterative reconstruction.

Materials and Method: 
In the work, we focus on investigating the effect of non-isotropic image representation on 
reconstruction accuracy of iterative algorithms. The iterative algorithms under study 
include the total-variation (TV) based, expectation maximization (EM), and algebraic 
reconstruction technique (ART) algorithms. Tomosynthesis data are generated at 12 and 
20 views over 50 degrees from phantoms, including a breast phantom. We have 
reconstructed images by using image representations with different degrees of non-
isotropic spatial resolution. Specifically, in each image representation, the ratio between 
the in-plane and longitudinal resolution for an image voxel is selected to be a value less 
than 1.  

Results: 
We have reconstructed images by use of TV-based, EM, and ART algorithms for image 
representations with different ratios of in-plane and longitudinal resolution. Our results 
demonstrate that non-isotropic image representation can lead to significant artifacts in 
reconstructed images. The appearance and severity of the artifacts depend not only upon 
the ratio between the in-plane and longitudinal resolution but also upon the iterative 
algorithms. The TV-based algorithm seems to be less susceptible to the effect than the 
EM and ART algorithms. Through the selection of algorithm parameters, the artifacts can 
be reduced.

Conclusion: 
The non-isotropic image representation can significantly affect reconstruction accuracy 
obtained with iterative algorithms in breast tomosynthesis. 



Investigation of scanning and reconstruction approach for
tomosynthesis breast imaging

D. Xia, J. Bian, I. Reisner, E. Sidky, R. Nishikawa, X. Pan

 Department of Radiology, The University of Chicago
5841 S Maryland Avenue, Chicago, IL 60637

Purpose:  
Investigation and application of scanning and reconstruction approaches to tomosynthesis 
breast imaging.

Materials and Method: 
Tomographic imaging such as tomosynthesis has the advantages to overcome the major 
limitation of conventional mammography. The loss of information in 2D projection 
imaging can be recovered in tomographic imaging. In tomosynthesis, the acquired data 
are highly sparse as compared to CT data. Therefore, image reconstruction in 
tomosynthesis is challenging. Moreover, it remains largely unexplored as to what the 
optimal scanning configurations are. Recently, we have developed a TV-based iterative 
algorithm for accurate images from sparse or incomplete projection data. In this work, we 
will investigate image reconstruction by use of the TV-based algorithm. Moreover, using 
this algorithm and other algorithms, we investigate the optimal scanning geometries in 
tomosynthesis breast imaging. Specifically, we have investigated scanning configurations 
in terms of number of projection views and the range of scanning angle.

Results: 
We have conducted numerical studies to investigate image reconstruction and scanning 
parameters by use of the TV-based algorithm and other algorithms. From numerical and 
physical phantom, we have acquired projection data from physical phantoms for different 
scanning configurations. From these data sets, we reconstruct images by using the TV-
based algorithm. For comparison, other algorithms, including the FBP algorithm. Using 
various evaluation indices, we characterize the reconstructed image quality and, from 
which, we evaluate the performance of the reconstruction algorithms and scanning 
configurations.

Conclusion: 
In this work, we have investigated different scanning configurations and reconstruction 
algorithms, including the TV-based algorithm, in tomosynthesis breast imaging. Both 
computer-simulation data and real physical phantom data were used. Our results suggest 
that, in general, the TV-based algorithm can provide higher image quality for 
tomosynthesis imaging than other algorithms and that increasing the scanning angular 
range can considerably improve image quality.



Noise Properties of Chord-image Reconstruction
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Abstract

Recently, there has been much progress in algorithm development for image reconstruction in cone-beam

computed tomography (CT). Current algorithms, including the chord-based algorithms, now accept minimal data

sets for obtaining images on volume regions-of-interest (ROIs) thereby potentially allowing for reduction of x-

ray dose in diagnostic CT. As these developments are relatively new, little effort has been directed at investigating

the response of the resulting algorithm implementations tophysical factors such as data noise. In this work, we

perform an investigation on the noise properties of ROI images reconstructed by using chord-based algorithms

for different scanning configurations. We find that, for the cases under study, the chord-based algorithms yield

images with comparable quality. Additionally, it is observed that, in many situations, large data sets contain

extraneous data that may not reduce the ROI-image variances.

Key Words: CT, Cone-beam CT, Reconstruction, Chord, Noise

1 Introduction

In recent years, exact algorithms have been developed for reconstructing images [1] and for reconstructing images

on “π-lines” [2, 3, 4] from helical cone-beam data. Since 2005, works have being published on algorithm devel-

opment for reconstructing images on chords for general trajectories [5, 6, 7, 8]. Some of these algorithms can

reconstruct images within three dimensional (3D) regions of interest (ROIs) from cone-beam data containing both

longitudinal and transverse truncations. The introduction of theM -line concept and reconstruction [5, 9] provides

additional flexibility for covering volume ROIs.

As these algorithm developments are relatively recent, little effort has been directed at investigating their noise

properties. With the algorithm development for ROI-image reconstruction, it has been tacitly assumed that the

reduction in necessary scanning angle and in projection data may lead to ROI images from less radiation exposure.

This conclusion may, however, depend on the noise properties of reconstruction algorithms. If ROI reconstruction

from the minimal (or reduced) data set leads to noisier ROI images than reconstruction of the same ROI from a

larger data set, it may be necessary to increase the x-ray source intensity for the ROI-data set to attain the same

image quality as those reconstructed from larger data sets.Such an increase can offset the fact that reduced or

minimum projection data are needed for ROI reconstruction.

The focus of this work is to investigate the noise propertiesof image reconstruction from minimal data set

and large data sets by use of chord-based algorithms. We demonstrate that the minimal data set can indeed

lead to actual reduction of radiation exposure for attaining comparable image quality, defined in terms of image

variance, as that obtained with a larger data set. In Sec. 2, we briefly summarize the chord-based reconstruction

algorithms: backprojection filtration (BPF) [2, 6], minimum data filtered backprojection (MDFBP) [4, 6], and

filtered backprojection (FBP) [6, 10] algorithms. In Sec. 3,we perform analysis and empirical studies on noise



properties of images reconstructed from parallel-beam fan-beam, and cone-beam data. Finally, discussion is given

in Sec. 4.

2 Chord-based Reconstruction Algorithms

We consider a continuous source trajectory specified by~r0(s) = (x(s), y(s), z(s)), wherex(s), y(s), andz(s)

denote thex-, y-, andz-components of~r0(s) in the fixed-coordinate system, ands is a curve parameter indi-

cating the position of the x-ray source on the trajectory. The projection data of the object functionf(~r) can be

mathematically expressed as

D(~r0(s), β̂) =

∫ ∞

0

dt f(~r0(s) + t β̂), (1)

where the unit vector̂β denotes the direction of a specific x-ray passing through thepoint~r. We also introduce two

additional coordinate systems{u, v, w} and{ud, vd} to describe the geometry in a general scan. They are fixed

on the rotating source point and the cone-beam projection ofthe source point, respectively, which are referred

to as the rotation-coordinate and detector-coordinate systems. Let̂eu(s), êv(s), andêw(s) denote the orthogonal

unit vectors of the rotation-coordinate system. The rotation-coordinate system can be chosen such thatêu(s)

andêw(s) are within thex-y plane and̂ev(s) is parallel to thez-axis. One can also choose the “well oriented”

coordinate system as the rotation-coordinate system [5], in which unit vector̂eu(s) is parallel to and unit vectors

êv(s) and êw(s) are perpendicular to the direction ofd~r0(s)
ds

. We assume that a detector plane is placed at a

distanceS from the source point and orients alongêw(s). The detector-coordinate system{ud, vd} is the cone-

beam projection of the 2D-coordinate system{u, v} onto the detector plane, and theud- andvd-axis are along

êu(s) andêv(s), respectively. In this situation, we also useP (ud, vd, s) to denote the cone-beam projection, thus

D(~r0(s), β̂) = P (ud, vd, s), when

β̂ =
1

A(ud, vd)
[ud êu(s) + vd êv(s) − S êw(s)] and A(ud, vd) =

√

u2
d + v2

d + S2. (2)

In a 2D case, it can be observed thatvd = 0. For notational convenience, we useA(ud) andP (ud, s) to denote

A(ud, 0) andP (ud, 0, s), respectively.

A chord is a line segment connecting two points~r0(sa) and~r0(sb) on the trajectory. Any point~r on the chord

can be expressed as

~r =
~r0(sa) + ~r0(sb)

2
+ xc êc, xc ∈ [−l, l], (3)

whereêc = ~r0(sb)−~r0(sa)
|~r0(sb)−~r0(sa)| denotes the direction of the chord, andl = 1

2 |~r0(sb) − ~r0(sa)| is one half of the chord

length. For a helical trajectory, the curve parameters is linearly related to the rotation angleλ, and in the current

work, we selects = λ. Whensa andsb are within one turn, the chord becomes the conventionalπ-line segment

[2, 11, 12]. The intersection between a chord and the object is referred as asupport segment. Let xc1 andxc2

represent the end points of a support segment. Because the trajectory under consideration never intersects the

object, we have[xc1, xc2] ⊂ [−l, l]. Therefore, one can use(xc, sa, sb) andfc(xc, sa, sb) to denote a point and

the corresponding image on the chord. We have previously developed three algorithms, which are referred to as

the BPF [2, 6, 10], MDFBP [4, 6], and FBP [6, 10] algorithms, respectively, for exact image reconstruction on a

chord of a general trajectory.



2.1 The BPF algorithm

The BPF algorithm [2, 6] reconstructs the image on a chord specified bysa andsb as

fc(xc, sa, sb) = f̂(xc, sa, sb) +
1

2π

P (ud0, vd0, sa)

b(xc)

[

√

(l − xB)(l − xA)

l − xc

+

√

(l + xA)(l + xB)

l + xc

]

, (4)

wherexc ∈ [xA, xB ], and parametersxA andxB are two points on the chord satisfying[xc1, xc2] ⊆ [xA, xB ] ⊂

[−l, l]. The functionb(xc) is defined asb(xc) =
√

(xB − xc)(xc − xA), andP (ud0, vd0, sa) denotes the projec-

tion along the chord specified bysa andsb. The filtered imagêf(xc, sa, sb) is given by

f̂(xc, sa, sb) =
1

2π2

1

b(xc)

∫

R

dx′
c

xc − x′
c

b(x′
c) g(x′

c, sa, sb), (5)

where the backprojection image on the chord can be written as

g(x′
c, sa, sb) = Πc(x

′
c)

∫ sb

sa

ds
sgn(−β̂ · êw)

|~r ′ − ~r0(s)|
2

{

−
d~r0(s)

ds
· β̂ P (ud, vd, s)

+

[

d~r0(s)

ds
· êu(s) +

ud

S(s)

d~r0(s)

ds
· êw(s)

]

A(ud, vd)
∂P (ud, vd, s)

∂ud

+

[

d~r0(s)

ds
· êv(s) +

vd

S(s)

d~r0(s)

ds
· êw(s)

]

A(ud, vd)
∂P (ud, vd, s)

∂vd

}

, (6)

and the rect functionΠc(x
′
c)=1 if x′

c ∈ [xA, xB] and 0 otherwise. It can be observed in Eq. (4) that the chord

image can be obtained exactly from knowledge of the backprojection imageg(x′
c, sa, sb) for x′

c ∈ [xA, xB ],

which we refer to as thereconstruction segment because it determines the actual reconstruction interval on the

chord. In particular, because the reconstruction segment[xA, xB] can be chosen as small as the support segment

[xc1, xc2], the chord image can be reconstructed from knowledge ofg(x′
c, sa, sb) only on the support segment.

This interesting property of the Hilbert transform forms the basis for exact image reconstruction on a chord from

projections containing longitudinal or transverse truncations [13].

2.2 The MDFBP algorithm

The BPF algorithm reconstructs the chord image by performing a 1D filtration (i.e., the integration overx′
c in Eq.

(4)) of the backprojection image (i.e., the integration over s in Eq. (6)). On the other hand, the MDFBP algorithm

[4, 6] reconstructs the chord image by performing a 1D data filtration (i.e., the integration overu′
c) prior to their

backprojection (i.e., the integration over s) onto the chord:

fc(xc, sa, sb) =
1

2π2

1

b(xc)

∫ sb

sa

ds[w2(1 − uc) + w1uc]

∫

R

du′
c

uc − u′
c

PΠ

+
1

2π

P (ud0, vd0, sa)

b(xc)

[

√

(l − xB)(l − xA)

l − xc

+

√

(l + xA)(l + xB)

l + xc

]

, (7)

where the modified data function is given by

PΠ = Πc(x
′
c)

b(x′
c)

w2(1 − u′
c) + w1u′

c

sgn(−β̂ · êw)

|~r′ − ~r0(s)|
2

{

−
d~r0(s)

ds
· β̂ P (ud, vd, s)

+

[

d~r0(s)

ds
· êu(s) +

ud

S(s)

d~r0(s)

ds
· êw(s)

]

A(ud, vd)
∂P (ud, vd, s)

∂ud

+

[

d~r0(s)

ds
· êv(s) +

vd

S(s)

d~r0(s)

ds
· êw(s)

]

A(ud, vd)
∂P (ud, vd, s)

∂vd

}

,



w1 = − [~r0(sa) − ~r0(s)] · êw, andw2 = − [~r0(sb) − ~r0(s)] · êw. For a source positions, the variablesuc andu′
c

denote the cone-beam projections ofxc andx′
c onto the detector and can be obtained, respectively, by replacingx

with xc andx′
c in

u =
w2(x + l)

w1(l − x) + w2(x + l)
. (8)

The rect functionΠc(x
′
c) in Eq. (8) indicates that the MDFBP algorithm can reconstruct a chord image from

knowledge of data only on the cone-beam projection of the reconstruction segment[xA, xB], which can be as

small as the support segment. Therefore, similar to the BPF algorithm, the MDFBP algorithm can also reconstruct

a chord image from data containing truncations [4, 6].

2.3 The FBP algorithm

The chord-based FBP algorithm [6, 10] can be expressed as

fc(xc, sa, sb) =
1

2π2

∫ sb

sa

ds
A

|~r − ~r0(s)|

∫ ∞

−∞

du′
c

uc − u′
c

1

|~r′ − ~r0(s)|

∂

∂q
D(~r0(q), β̂)

∣

∣

∣

∣

q=s

, (9)

whereuc indicates the cone-beam projection ofxc onto the detector and is determined by usingxc to replace

x in Eq. (8), andA denotes the distance from the source point~r0(s) to a point on the detector at which the

ray connecting~r and~r0(s) intersects the detector. As the filtering (i.e., the integration overu′
c) is carried out

over the projection of the straight line containing the chord, similar to other existing FBP-based algorithms, the

chord-based FBP algorithm cannot exactly reconstruct ROI images from data containing transverse truncations.

2.4 Data-sufficiency conditions

As shown in Eq. (9), a data-sufficiency condition for the FBP algorithm is: (a) data are available over the trajectory

segments ∈ [sa, sb], and (b) for eachs, data on the cone-beam projection of the chord are non-truncated. This

condition is similar to that for other FBP-based algorithms[1, 9, 14, 15, 16]. From Eqs. (4) and (7), a data-

sufficiency condition for the chord-based BPF and MDFBP algorithms is: (a) data are collected over the trajectory

segment[sa, sb], and (b) at eachs, data only on the cone-beam projection of the reconstruction segment[xA, xB ]

on the chord are available. It follows that, because the reconstruction segment[xA, xB] can be chosen as small as

the support segment[xc1, xc2], the BPF and MDFBP algorithms require, at eachs, data only on the cone-beam

projection of the support segment[xc1, xc2] (instead of the entire chord-line as the chord-based FBP algorithm

requires). Different selections of the reconstruction segment[xA, xB ] imply that different amounts of data at each

s can be used for reconstructing the chord image. Under the ideal continuous conditions, different selections of

[xA, xB] yield identical chord images. However, when data contain noise and other inconsistencies, and when

different selections of[xA, xB ] are used, the BPF and MDFBP algorithms in their discrete forms may yield

different chord images. This is an issue that will be investigated below.

3 Noise Properties of Chord-based Image Reconstruction

The BPF, MDFBP, and FBP algorithms described above can be applied to reconstructing chord images from

parallel-, fan-, and cone-beam data [17]. Algorithms analogous to the BPF algorithm that are capable of recon-

structing 2D ROI images from truncation data have also previously been proposed [8, 13, 18]. We study below the

noise properties of chord-based reconstruction by use of these algorithms in their discrete forms. As mentioned

above, the BPF and MDFBP algorithms can reconstruct the image on the reconstruction segment[xA, xB] as long

as it covers the support segment[xc1, xc2]. We analyze image-noise properties on reconstruction segments of

different lengths.



3.1 Analysis of image-noise properties

The chord-based algorithms invoke three major mathematical operations: differentiation, backprojection, and

filtration. To a large extent, the BPF, MDFBP, and FBP algorithms differ in the orders of invoking these operations.

Below, we focus on investigating the noise properties of differentiation, backprojection, and filtration in the BPF

algorithm. The approach taken in the investigation is readily applicable to analyzing the noise properties of

the MDFBP and FBP algorithms. In the presence of data noise, the measured projectionD(~r0(s), β̂) should

be interpreted as a stochastic process. (Throughout the paper, we use boldface and normal letters to denote

a stochastic process and its mean, respectively.) Because the backprojectiong(xc, sa, sb) and the final image

fc(xc, sa, sb) on a chord are computed fromD(~r0(s), β̂), they should also be considered as stochastic processes.

We focus in this section on investigating the chord-image variancefc(xc, sa, sb) by the investigation of noise

propagation through each step involved in the BPF reconstruction algorithm.

3.1.1 Noise properties of the differentiation/backprojection for parallel-beam data

Let P(ud, s) denote the parallel-beam projection on detector binud acquired at views. We assume the covariance

of the projection dataP(ud, s) to be uncorrelated, i.e.,

Cov{P(ud, s), P(u′
d, s

′)} = σ2(ud, s)δ(ud − u′
d)δ(s − s′), (10)

whereσ2(ud, s) denotes the variance of the projection data. The backprojection image on the chord is given by

[13]

g(xc, sa, sb) =

∫ π

2

−π

2

ds
∂

∂ud

P(ud, s), (11)

whereud = ~r · êu(s). The final image variances on a chord depend upon the covariance of the backprojection

image, which, using Eq. (11), can be written as

Cov{g(xc, sa, sb),g(x′
c, sa, sb)} =

∫ π

2

−π

2

ds

∫ π

2

−π

2

ds′ Cov{
∂

∂ud

P(ud, s),
∂

∂u′
d

P(u′
d, s

′)}. (12)

The evaluation of the backprojection-image covariance involves the data-derivative covariance, which can be

conveniently written as

Cov{
∂

∂ud

P(ud, s),
∂

∂u′
d

P(u′
d, s

′)} = a ω σ2(ud, s)δ(ud − u′
d)δ(s − s′) + Tpara(ud, u

′
d, s, s

′), (13)

where Var{P(ud, s)} = σ2(ud, s) denotes the known data variance, which can be a function ofud ands. The

second term Tpara(ud, u
′
d, s, s

′) represents the difference between the term on the left-handside and the first term

on the right-hand side of Eq. (13). Although the magnitude ofTpara(ud, u
′
d, s, s

′) can be larger than or comparable

to that of the first term in the right-hand side of Eq. (13), numerical results below show that its contribution to the

final image variance on a chord is negligibly small. Therefore, we consider only the first term in the derivation of

the chord-image variance below. The parametersa andω are introduced to account for the interpolation effect of

the discrete data derivative and discrete backprojection on the chord-image variance. Using the first term in Eq.

(13), we can rewrite Eq. (12) as

Cov{g(xc, sa, sb),g(x′
c, sa, sb)} ≈ a ω

∫ π

2

−π

2

ds σ2(ud, s)δ(ud − u′
d). (14)

We now consider two pointsxc andx′
c on the chord and letud andu′

d denote their parallel-beam or fan-beam



projections onto the detector. Clearly, for a source positions that satisfiess 6= sa or sb, one can conclude that

ud − u′
d = 0 if xc − x′

c = 0

ud − u′
d 6= 0 if xc − x′

c 6= 0. (15)

Thus, ifxc = x′
c, Cov{g(xc, sa, sb),g(xc, sa, sb)} = δ(0) a ω

∫ π

2

−π

2

dsσ2(ud, s) and, ifxc 6= x′
c, Cov{g(xc, sa, sb),g(x′

c, sa, sb)

0. Therefore, the covariance of the backprojection image forparallel-beam projections can be re-expressed as

Cov{g(xc, sa, sb),g(x′
c, sa, sb)} ≈ c(xc) δ(xc − x′

c), (16)

where

c(xc) = aω

∫ π

2

−π

2

ds σ2(ud, s). (17)

3.1.2 Noise properties of the differentiation/backprojection for fan-beam data

In the fan-beam case, we useP(ud, s) to denote the projection on detector binud acquired at views. Again, we

assumeP(ud, s) to be uncorrelated and satisfy Eq. (10). The backprojectionimage in Eq. (6) can be re-expressed

as

g(xc, sa, sb) =

∫ sb

sa

ds
1

|~r − ~r0(s)|2
P′(ud, s), (18)

whereud = S~r·̂eu(s)
(~r0(s)−~r)·̂ew(s) is the fan-beam projection ofxc onto the detector. The weighted-data derivative

P′(ud, s) is given by

P′(ud, s) = A2(ud)

∣

∣

∣

∣

d~r0(s)

ds

∣

∣

∣

∣

∂

∂ud

[

P(ud, s)

A(ud)

]

. (19)

Using Eq. (18), one can write the covariance of the backprojection image as

Cov{g(xc, sa, sb),g(x′
c, sa, sb)} =

∫ sb

sa

ds

∫ sb

sa

ds′
1

|~r − ~r0(s)|2
1

|~r − ~r0(s′)|2

× Cov{P′(ud, s), P′(u′
d, s

′)}, (20)

which depends upon the covariance ofP′(ud, s). Again, we can conveniently write the covariance ofP′(ud, s) as

Cov{P′(ud, s), P′(u′
d, s

′)} = a ω σ2(ud, s)A2(ud)

∣

∣

∣

∣

d~r0(s)

ds

∣

∣

∣

∣

2

δ(ud − u′
d)δ(s − s′)

+ Tfan(ud, u
′
d, s, s

′), (21)

where Var{P(ud, s)} = σ2(ud, s) denotes the known data variance, which can be a function ofud ands. The

second term Tfan(ud, u
′
d, s, s

′) represents the difference between the term on the left-handside and the first term

in the right-hand side of Eq. (21). As numerical results below indicate, it turns out that Tfan(ud, u
′
d, s, s

′) will

also have a negligible contribution to the chord-image variance. Therefore, we consider only the first term in the

derivation of the chord-image variance below. Again, the parametersa andω are introduced to account for the

interpolation effect of the discrete data derivative and discrete backprojection on the chord-image variance. Using

the first term in Eq. (21), we can rewrite Eq. (20) as

Cov{g(xc, sa, sb),g(x′
c, sa, sb)} ≈ a ω

∫ sb

sa

ds
σ2(ud, s)A

2(ud)

|~r − ~r0(s)|4

∣

∣

∣

∣

d~r0(s)

ds

∣

∣

∣

∣

2

δ(ud − u′
d). (22)



Similar to the parallel-beam case described above, using Eq. (15), one can conclude that

Cov{g(xc, sa, sb),g(x′
c, sa, sb)} ≈ c(xc) δ(xc − x′

c), (23)

where

c(xc) = a ω

∫ sb

sa

ds
A2(ud)

|~r − ~r0(s)|4

∣

∣

∣

∣

d~r0(s)

ds

∣

∣

∣

∣

2

σ2(ud, s). (24)

3.1.3 Noise properties of the differentiation/backprojection for cone-beam data

In the cone-beam case, letP(ud, vd, s) denote the projection at views on a detector bin specified by(ud, vd).

In the so-called “well oriented” rotation-coordinate system [5], unit vector̂eu(s) is parallel to and unit vectors

êv(s) andêw(s) are orthogonal, to the tangential directiond~r0(s)
ds

of the source trajectory. Letud andvd denote

the coordinates alonĝeu(s) andêv(s). It can be shown [5] that the backprojection image depends only upon the

data derivative alongud. Therefore, the reconstruction formula for the cone-beam backprojection image can be

obtained from that for the fan-beam backprojection image inEq. (18) by simply replacingP (ud, s) andA(ud)

with P (ud, vd, s) andA(ud, vd), respectively, in Eq. (19). Subsequently, one can show thatthe covariance of the

cone-beam backprojection imageg(xc, sa, sb) also satisfies Eqs. (23) and (24).

3.1.4 Estimation of parametersa and ω in discrete form

The parametera is introduced to account for the interpolation effect of thediscrete data-derivative on the chord-

image variance. We consider a two-point derivative, which was used in our numerical studies. LetPi denote the

discrete data, wherei = 1, 2, ..., I, andI indicates the total number of data points. We assume that data Pi are

uncorrelated and use Var{Pi} to denote their variances. The two-point data derivative isdefined as

P̄i =
1

2
[Pi+1 − Pi−1]. (25)

Therefore, the variance of the discrete data derivativeP̄i can be written as

Var{P̄i} =
1

2

Var{Pi+1} + Var{Pi−1}

2
(26)

When data variances are identical, Eq. (26) becomes

Var{P̄i} =
1

2
Var{Pi}. (27)

Therefore, in our studies, we selecta = 1
2 , which is the coefficient in Eq. (27).

The parameterω was introduced to account for the interpolation effect of discrete backprojection on the chord-

image variances. The estimated value ofω depends obviously upon the specific interpolation scheme used in

the discrete backprojection. We illustrate below our estimation ofω when a two-point interpolation is used for

the discrete backprojection in the parallel- and fan-beam cases. One can readily obtain estimates ofω when

other interpolation schemes are used. At a backprojection view s, we useP′
i to denote the discrete weighed-data

derivatives. For a givenud satisfyingi ≤ ud ≤ (i + 1), we express the interpolated weighted-data derivative as

P′
ud

= (1 − γ)P′
i + γP′

i+1, (28)

whereγ = ud − i. Furthermore, we can write the variance ofP′
ud

as

Var{P′
ud
} ≈ [(1 − γ)2 + γ2]Var{P′

i} (29)



For the seek of simplifying the estimation ofω, we have ignored the correlation betweenP′
i andP′

i+1 and assumed

that Var{P′
i} ≈ Var{P′

i+1}. We selectω as the average over all of the possibleγ’s, which can be computed as

ω =

∫ 1

0

[(1 − γ)2 + γ2]dγ =
2

3
. (30)

Finally, substitution ofa = 1
2 andω = 2

3 into Eqs. (17) and (24), we obtain the variancesc(xc) of the backpro-

jection images on the chords for the parallel-beam and fan-beam projections, respectively, as

c(xc) =
1

3

∫ π

2

−π

2

ds σ2(ud, s), (31)

c(xc) =
1

3

∫ sb

sa

ds
A2(ud)

|~r − ~r0(s)|4

∣

∣

∣

∣

d~r0(s)

ds

∣

∣

∣

∣

2

σ2(ud, s). (32)

3.1.5 Noise property of the weighted Hilbert transform overa finite interval

The weighted Hilbert transform constitutes an important step in the chord-based BPF, MDFBP, and FBP algo-

rithms. Consequently, the noise properties of these algorithms depend upon that of the weighted Hilbert trans-

form, which we study below. Let̂f(xc, sa, sb) denote the weighted Hilbert transform of the backprojection image

g(xc, sa, sb):

f̂(xc, sa, sb) =
1

b(xc)

∫ xB

xA

dx′
c

xc − x′
c

b(x′
c) g(x′

c, sa, sb). (33)

We assume thatg(x′
c, sa, sb) is band-limited toνm. Therefore, the Hilbert transform kernel1

xc
can be replaced by

h(xc) = −πj

∫ νm

−νm

dν sgn[ν]e2πjνxc =
2sin2(πνmxc)

xc

. (34)

In the presence of noise, the weighted Hilbert transformf̂(xc, sa, sb) should be interpreted as a stochastic process,

which is denoted in boldface. The variance off̂(xc, sa, sb) can be written as

Var{f̂(xc, sa, sb)} =
1

b2(xc)

∫ xB

xA

dx′
c

∫ xB

xA

dx′′
c b(x′

c) b(x′′
c ) (35)

× h(xc − x′
c)h(xc − x′′

c ) Cov{g(x′
c, sa, sb),g(x′′

c , sa, sb)}.

As Eqs. (16) and (23) show, the backprojection imageg(xc, sa, sb) can be treated as an approximated uncorrelated

stochastic process. Using the result in Eq. (16) or (23), we can write Eq. (35) as

Var{f̂(xc, sa, sb)} =
1

b2(xc)

∫ xB

xA

dx′
c c(x′

c)h2(xc − x′
c) b2(x′

c). (36)

In our numerical studies in Secs. 3.2.1 and 3.3.1, we have used νm = 1
2∆c

, where∆c denote the sample interval

of g(xc, sa, sb).

3.1.6 Noise properties of chord images

Using Eq. (4), one can write the variance of the reconstructed chord image as

Var{fc(xc, sa, sb)} ≈ Var{f̂(xc, sa, sb)} (37)

+
Var{P(ud0, vd0, sa)}

4π2b2(xc)

[

√

(l − xB)(xA + l)

l − xc

+

√

(l + xA)(l + xB)

l + xc

]2

.
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Figure 1: (a) Phantom in the numerical studies. (b) Parallel-beam configuration. (c) Fan-beam configuration. The
solid line segment with the endpointsxA andxB represents the reconstruction segment. The thick segment with
endpointsxc1 andxc2 indicate the support segment. It should be noted that[xA, xB ] ⊇ [xc1, xc2]. The rectangular
ROI is decomposed into a set of (dashed) line segments.

Circular parallel-beam Circular fan-beam Helical cone-beam
scan scan scan

Number of views per turn 1024 512 300
Angular range [−π

2 , π
2 ] [−π, π] [−π, π]

Detector bins 256 256 128 × 128
Detector bin size (mm) 1.1 1.6 3.1×3.1

SDD (mm) - 200 200
SID (mm) - 200 200

Helical pitch (mm) - - 90

Table 1: Parameters for circular parallel-beam, circular fan-beam, and helical cone-beam scanning configurations
which are used in our simulation studies. SDD is the source-to-detector distance and SID denotes the source-to-
isocenter distance.

Substituting Eq. (36) into Eq. (37) yields

Var{fc(xc, sa, sb)} ≈
1

b2(xc)

∫ xB

xA

dx′
c c(x′

c)h2(xc − x′
c) b2(x′

c) (38)

+
Var{P(ud0, vd0, sa)}

4π2b2(xc)

[

√

(l − xB)(xA + l)

l − xc

+

√

(l + xA)(l + xB)

l + xc

]2

,

which provides a formula for computing the chord-image variance.

3.2 Numerical studies of noise properties in parallel-beamreconstruction

Using the parallel-beam configuration in Fig. 1b and the parameters given in Table 1, we calculated noiseless

projections for the numerical phantom in Fig. 1a. We have used an object-independent Gaussian noise model and

an object-dependent Poisson-noise model in the numerical studies. For each noise model, we generated 10,000

sets of noisy data by using noiseless data as the means. The standard deviationσ0 of Gaussian noise used is 1.6%

of the maximum value in the noiseless data, whereas the standard deviation for the Poisson noise is the noiseless

data scaled to yield a total photon count of5 × 105 for each view. We investigated four reconstruction segments

with different lengthsLAB = |xB − xA|: 7.8 cm, 10.0 cm, 14.1 cm, and 20.0 cm, all of which are locatedat

x = 4.06 cm. It can be observed in Fig. 1b that the length of the supportsegment, 5.5 cm in length, is shorter than

the four reconstruction segments considered. Therefore, the image on this chord can be reconstructed exactly by

use of data determined by these reconstruction segments. One can also conclude from Fig. 1b that the minimum

data required by the first three reconstruction segments, which are shorter than the maximum dimension (about

15.6 cm) of the object support, are truncated.



3.2.1 Noise properties in reconstruction from truncated parallel-beam data

From the 10,000 sets of data containing Gaussian noise, we used Eqs. (4), (5), and (6) to reconstruct 10,000

noisy fc(xc, sa, sb), f̂ (xc, sa, sb), andg(xc, sa, sb), respectively, on the four reconstruction segments described

above. Based upon these noisy reconstructions, we subsequently computed their corresponding empirical vari-

ances, which are shown in the upper row of Fig. 2. We compare the empirical results to the analytical results

obtained by use of Eqs. (16), (36) and (38). The functionc(xc) is determined by usingσ(ud, s) = σ0 in Eq. (31),

whereσ0 is 1.6% of the maximum value in noiseless data. The analytical results are displayed in the lower row

of Fig. 2. Similarly, using Eqs. (4), (5), and (6), we reconstructed 10,000 sets of noisyg(xc, sa, sb), f̂(xc, sa, sb),

andfc(xc, sa, sb) on the four segments from 10,000 sets of data containing Poisson noise. The computed empir-

ical variances from these noisy images are displayed in the upper row of Fig. 3. Using the noiseless data as the

Poisson-noise varianceσ2(ud, s) in Eq. (17), one can readily determinec(xc); and using the determinedc(xc) in

Eqs. (16), (36) and (38), one can compute analytical image variances, which are displayed in the lower row of

Fig. 3. The results show that the analytical and empirical results agree well with each other, suggesting that Eq.

(38) provides an adequate estimation of the chord-image variance.

It can also be observed in Figs. 2c and 3c that, the shorter thereconstruction segment, the higher the chord-

image variances. This is only because the second term in (38)increases asLAB (i.e., (xA − xc)(xc − xB))

decreases. However, the difference of the chord-image variances in the central part of the support segment is quite

small among these reconstruction segments. The implication of this result is that there may be a significant gain

in terms of dose reduction by using a short reconstruction segment, because data required to reconstruct an image

on this reconstruction segment is less than that required byusing a longer reconstruction segment, thus resulting

in a reduced illumination coverage to the object. For similar x-ray intensities, which is directly related to the

data-noise level, the reconstruction using a short reconstruction segment appears to yield image variance within

the support segment that is comparable to that obtained witha longer reconstruction segment.

We have also performed numerical studies of the noise properties of the reconstructed ROI-images by use of the

BPF and MDFBP algorithms from truncated data. Using the numerical phantom in Fig. 1 and each of Gaussian-

and Poisson-noise models described above, we generated 500noisy, truncated data sets for image reconstruction

on reconstruction segments of a lengthLAB=10.0 cm, as shown in Fig. 1a, which completely cover the ROI.

We subsequently reconstructed 500 noisy images by using theBPF and MDFBP algorithms. We display in Fig.

4 noisy ROI images reconstructed using the BPF and MDFBP algorithms from data containing Gaussian noise

(upper row) and Poisson noise (lower row).

Using the reconstructed 500 sets of Gaussian-noise images and 500 sets of Poisson-noise images, we computed

empirical variances of the ROI images, which are shown in theupper row and lower row of Fig. 5, respectively.

We display in the third column of Fig. 5 the variance profiles on the dashed lines indicated in the variance images.

Results in Fig. 5 support the conclusion that both BPF and MDFBP algorithms yield images with comparable

variance levels.

3.2.2 Noise properties in reconstruction from non-truncated parallel-beam data

As discussed above, the FBP algorithm cannot reconstruct exactly images from truncated data. Therefore, we

study below the noise properties of the FBP algorithm from parallel-beam data without truncations. For the

purpose of comparison, we have also included reconstruction results of the BPF and MDFBP algorithms from

the same non-truncated data. Using the numerical phantom inFig. 1 and each of the Gaussian- and Poisson-

noise models, we generated 500 noisy data sets from which 500noisy images were obtained by use of each

of the BPF, MDFBP, and FBP algorithms. Using these noisy images, we computed empirical variance images,

which are shown in the upper and lower rows of Fig. 6, respectively, for the Gaussian- and Poisson-noise models.

We also display in Fig. 7 the variance profiles on the dashed lines (i.e., on a chord) indicated on the variance

images in Fig. 6. The profile results were obtained by use of the BPF (solid), MDFBP (dashed), and FBP (dotted)
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Figure 2: Empirical (top row) and analytical (middle row) variances of (a)g(xc, sa, sb), (b) f̂(xc, sa, sb), and
(c) fc(xc, sa, sb) obtained on four reconstruction segments from parallel-beam data containing Gaussian noise.
The difference between empirical variances and analyticalvariances is also shown in the bottom row, which
demonstrates the analytical variances agree well with the empirical variances. The lengths of these segments are
indicated in the box in upper-right corners of the plots.
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Figure 3: Empirical (top row) and analytical (middle row) variances of (a)g(xc, sa, sb), (b) f̂(xc, sa, sb), and
(c) fc(xc, sa, sb) obtained on four reconstruction segments from parallel-beam data containing Poisson noise.
The difference between empirical variances and analyticalvariances is also shown in the bottom row, which
demonstrates the analytical variances agree well with the empirical variances. The lengths of these segments are
indicated in the box in upper-right corners of the plots.
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Figure 4: ROI-images obtained by use of the BPF algorithm (a)and MDFBP algorithm (b) from truncated parallel-
beam data containing Gaussian noise (upper row) and Poissonnoise (lower row).
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Figure 5: Empirical ROI-image variances obtained by use of the BPF (a) and MDFBP (b) algorithms from trun-
cated parallel-beam data containing Gaussian noise (upperrow) and Poisson noise (lower row), respectively. (c)
Variance profiles on the dashed lines indicated in columns (a) and (b) obtained with the BPF (solid) and MDFBP
(dashed) algorithms, respectively. For the purpose of displaying the details in the central (i.e., low variance) re-
gions, we have applied a logarithmic scale to the variance images. The display windows are [-0.86, 0.50] and
[-1.28, 0.20] for Gaussian noise and Poisson noise, respectively.
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Figure 6: Empirical variance images obtained by use of the BPF (a), MDFBP (b), and FBP (c) algorithms from
non-truncated parallel-beam data containing Gaussian noise (upper row) and Poisson noise (lower row). For the
purpose of displaying the details in the central (i.e., low variance) regions, we have applied a logarithmic scale to
the variance images. The display windows are [-1.3, 0.30] and [-1.3, 0.40] for Gaussian noise and Poisson noise,
respectively.

algorithms for the Gaussian-noise model (a) and Poisson-noise model (b). It can be observed that image variances

obtained with the three algorithms are similar and that the only difference comes at the extreme ends of the shown

reconstruction segments. The BPF and MDFBP algorithms showa significant increase in the image variance at

both ends of the profile. The reason for this is that the reconstruction segment was taken to be the width of the

image array, and the pre-factor for the finite Hilbert transform in Eqs. (4) and (7) has a singularity at the ends of the

reconstruction segment. In practical situations this pre-factor is of little consequence because the reconstruction

segment can be selected larger to avoid the singular behavior; furthermore, because the singularity goes as the -1/2

power, its effect is evident only very close to the endpointsof the reconstruction segment.

3.3 Numerical studies of noise properties in fan-beam reconstruction

Using the fan-beam configuration in Fig. 1c and the parameters listed in Table 1, we calculated fan-beam, noiseless

data for the numerical phantom in Fig. 1a. We have also used anobject-independent Gaussian-noise model and an

object-dependent Poisson-noise model in this numerical study. The standard deviationσ0 of Gaussian noise used

is 2.3% of the maximum value in noiseless fan-beam data, whereas the standard deviation for the Poisson noise is

the noiseless data scaled to yield a total photon count of5×105 for each view. For each noise model, 10,000 sets of

noisy data were generated by use of the corresponding noiseless data as the means. We investigated reconstruction

segments of four different lengthsLAB =7.8 cm, 10.0 cm, 14.1 cm, and 20.0 cm. All of the segments are located

at x = 4.06 cm. It can be observed in Fig. 1c that the length of the supportsegment is 5.5 cm, which is shorter

than the four reconstruction segments. Therefore, the image on this chord can be reconstructed exactly by use

of data determined by these reconstruction segments. One can also conclude from Fig. 1c that data determined

by the first three reconstruction segments, which are shorter than the maximum dimension (about 15.6 cm) of the

object support, are truncated.
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Figure 7: Variance profiles on the dashed lines indicated in variances images shown in Fig. 6. They were obtained
for the Gaussian (a) and Poisson (b) noise models by use of theBPF (solid), MDFBP (dashed), and FBP (dotted)
algorithms, respectively.

3.3.1 Noise properties in reconstruction from truncated fan-beam data

From the 10,000 sets of data containing Gaussian noise, we used Eqs. (4), (5), and (6) to reconstruct 10,000

noisy fc(xc, sa, sb), f̂ (xc, sa, sb), andg(xc, sa, sb), respectively, on the four reconstruction segments described

above. Based upon these noisy reconstructions, we subsequently computed their corresponding empirical vari-

ances, which are shown in the upper row of Fig. 8. As for the analytic variance, one can determinec(xc) by using

σ(ud, s) = σ0 in Eq. (32), whereσ0 is 2.3% of the maximum value in noiseless fan-beam data. Using c(xc) in

Eqs. (23), (36) and (38), we computed analytically image variances, which are displayed in the lower row of Fig.

8. Similarly, using Eqs. (4), (5), and (6), we reconstructed10,000 sets of noisyfc(xc, sa, sb), f̂(xc, sa, sb), and

g(xc, sa, sb) on the four segments from 10,000 sets of fan-beam data containing Poisson noise. The computed

empirical variances from these noisy images are displayed in the upper row of Fig. 9. Furthermore, using the

noiseless fan-beam data as the Poisson-noise varianceσ2(ud, s) in Eq. (32), one can readily determinec(xc).

Using the determinedc(xc) in Eqs. (23), (36) and (38), we computed analytically image variances, which are

displayed in the lower row of Fig. 9. It can be observed that the analytic and empirical results agree well with

each other, suggesting that Eq. (38) provides an adequate analytic estimation of the chord-image variance for the

fan-beam case as well. It is interesting to note in Figs. 8a and 9a that the variances ofg(xc, sa, sb) is spatially

varying on the chord. Based upon Eq. (32), one can readily conclude that this spatial variation is caused by the

spatially variant factor A2(ud)
|~r−~r0(s)|4

.

Again, from these results, observations similar to those for the parallel-beam case can be made for the fan-beam

case. For example, as Figs. 8c and 9c show, the shorter the reconstruction segment, the higher the chord-image

variances. This is only because the second term in (38) increases asLAB (i.e., (xA − xc)(xc − xB)) decreases.

The implication of these results is that there may be a significant gain in terms of dose reduction by using a short

reconstruction segment, because data required to reconstruct an image on this reconstruction segment is less than

that required by using a longer reconstruction segment, which can result in reduction of illumination coverage of

the object.

We have also performed numerical studies of the noise properties of the reconstructed ROI-images by use

of the BPF and MDFBP algorithms from truncated data. Using the numerical phantom in Fig. 1 and each of

the Gaussian- and Poisson-noise models described above, wegenerated 500 noisy truncated data sets for image

reconstruction on reconstruction segments of a lengthLAB=10.0 cm, as shown in Fig. 1a, which cover the ROI

completely. We subsequently reconstruct 500 noisy images by using each of the BPF and MDFBP algorithms.
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Figure 8: Empirical (top row) and analytical (middle row) variances of (a)g(xc, sa, sb), (b) f̂(xc, sa, sb), and (c)
fc(xc, sa, sb) obtained on four reconstruction segments from fan-beam data containing Gaussian noise. The dif-
ference between empirical variances and analytical variances is also shown in the bottom row, which demonstrates
the analytical variances agree well with the empirical variances. The lengths of these segments are indicated in
the box in upper-right corners of the plots.



−10 0 10
0

15

30

pixel position (cm)

va
r

7.8 cm
10.0 cm
14.1 cm
20.0 cm

−10 0 10
0

0.7

1.4

pixel position (cm)

va
r

7.8 cm
10.0 cm
14.1 cm
20.0 cm

−10 0 10
0

0.7

1.4

pixel position (cm)

va
r

7.8 cm
10.0 cm
14.1 cm
20.0 cm

−10 0 10
0

15

30

pixel position (cm)

va
r

7.8 cm
10.0 cm
14.1 cm
20.0 cm

−10 0 10
0

0.7

1.4

pixel position (cm)

va
r

7.8 cm
10.0 cm
14.1 cm
20.0 cm

−10 0 10
0

0.7

1.4

pixel position (cm)

va
r

7.8 cm
10.0 cm
14.1 cm
20.0 cm

−10 0 10
−3

0

3

pixel position (cm)

∆v
ar

7.8 cm
10.0 cm
14.1 cm
20.0 cm

−10 0 10
−0.1

0

0.1

pixel position (cm)

∆v
ar

7.8 cm
10.0 cm
14.1 cm
20.0 cm

−10 0 10
−0.2

0

0.2

pixel position (cm)

∆v
ar

7.8 cm
10.0 cm
14.1 cm
20.0 cm

a b c

Figure 9: Empirical (top row) and analytical (middle row) variances of (a)g(xc, sa, sb), (b) f̂(xc, sa, sb), and (c)
fc(xc, sa, sb) obtained on four reconstruction segments from fan-beam data containing Poisson noise. The differ-
ence between empirical variances and analytical variancesis also shown in the bottom row, which demonstrates
the analytical variances agree well with the empirical variances. The lengths of these segments are indicated in
the box in upper-right corners of the plots.
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Figure 10: Empirical ROI-image variances obtained by use ofthe BPF (a) and MDFBP (b) algorithms from
truncated fan-beam data containing Gaussian noise (upper row) and Poisson noise (lower row), respectively. (c)
Variance profiles on the dashed lines indicated in columns (a) and (b) obtained with the BPF (solid) and MDFBP
(dashed) algorithms, respectively. For the purpose of displaying the details in the central (i.e., low variance)
regions, we have applied a logarithmic scale to the varianceimages. The display windows are [-0.76,0.29] and
[-0.75,-0.04] for Gaussian noise and Poisson noise, respectively.

Using the reconstructed 500 sets of Gaussian-noise images and 500 sets of Poisson-noise images, we computed

empirical variance images within the ROI, which are shown inthe upper row and lower row of Fig. 10, respectively.

Moreover, we display in the third column of Fig. 10 the variance profiles on the dashed lines indicated in the

variance images. Results in Fig. 10 support the conclusion that both BPF and MDFBP algorithms yield images

with comparable variance levels.

3.3.2 Noise properties in reconstruction from non-truncated fan-beam data

The FBP algorithm cannot reconstruct exactly images from truncated fan-beam data. Thus, we evaluate below the

noise properties of the FBP reconstruction from non-truncated fan-beam data. For the purpose of comparison, we

have also included reconstruction results of the BPF and MDFBP algorithms from the same data sets. Using the

numerical phantom and fan-beam configuration described above, we generated non-truncated fan-beam data at

512 views uniformly covering2π. Using the noiseless data as the means, we generated 500 setsof data containing

Gaussian noise and 500 sets of data containing Poisson noise. The standard deviation for the Gaussian noise is

2.3% of the maximum value of the noiseless data, whereas the standard deviation for the Poisson noise is the

noiseless data scaled to yield a total photon count of5 × 105 for each view. For a given chord specified by

sa andsb, one can reconstruct its image from data acquired over the right-side trajectory (i.e.,s ∈ [sa, sb]), as

shown in Fig. 11a. Conversely, one can also reconstruct the chord image from data acquired with both right-side

trajectory (i.e.,s ∈ [sa, sb]) and left-side trajectory (i.e.,s ∈ [sb, sa]), as shown in Fig. 11b. In chord-based image

reconstruction, we decompose image area into chords parallel to the vertical direction, and the source scans from

sa to sb and then fromsb to sa, as shown in Fig. 11.

For each chord in the set covering the image area, we first reconstructed the images by use of the BPF, MDFBP,

and FBP algorithms from data containing Gaussian noise acquired over the right-side trajectory specified by

s ∈ [sa, sb]. Subsequently, we computed empirically chord-image variances from these noisy reconstructions.

By assembling the chord-image variances, we obtain the variance images, which are shown in the upper row of
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Figure 11: (a) The right-side trajectory (solid) of the chord (thick) specified bysa andsb. (b) The right-side trajec-
tory (solid) and left-side trajectory (solid) of the chord (thick) specified bysa andsb. The scanning configuration
in (b) corresponds to a full, fan-beam scan.
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Figure 12: Empirical variance images obtained by use of the BPF (a), MDFBP (b), and FBP (c) algorithms from
non-truncated fan-beam data containing Gaussian (upper row) and Poisson (lower row) noise. For the purpose of
displaying the details in the central (i.e., low variance) regions, we have applied a logarithmic scale to the variance
images. The display window is [-1.0, 0.65] and [-2.02, 0.29]for Gaussian noise and Poisson noise, respectively.

Fig. 12, for the BPF, MDFBP and FBP algorithms, respectively. Similarly, from data containing Poisson noise,

we obtained the image variances, which are displayed in lower row of Fig. 12.

We show in column one of Fig. 13 the image variances on a chord specified bysa = −π/2 and sb =

π/2 obtained from data containing Gaussian noise (upper row) and Poisson noise (lower row), respectively. As

already seen above, the variance increases as the position along the chord near the source trajectory. There is

little difference between the three algorithms. Furthermore, these variance images have similar properties: the

chords on the right part have higher and more non-uniform image variance than those on the left part in the image

area. In column 2 of Fig. 13, we show the profiles on the middle points across the vertical chords (i.e., on the

middle horizontal lines in the variance images shown in Fig.12). The results reveal that some difference of

the MDFBP result from the BPF and FBP results in the peripheral region. This difference may be attributed to

the data weighting prior to the backprojection step, which differs from that in the BPF and FBP algorithms. We

should point out that this difference is only seen in the extreme periphery of the imaging area. For most practical

situations these three algorithms perform virtually identically in terms of image variance.

We investigate further the general trend of the variance decreasing for chords on the left of the variance image.

The first impression of this behavior is that this trend is obvious, because the scanning trajectory is on the right
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Figure 13: Variance profiles along the central vertical (a) and horizontal (b) lines in variance images shown
in Fig. 12, obtained by the BPF (solid), MDFBP (dashed), and FBP (dotted) algorithms from data containing
Gaussian noise (upper row) and Poisson noise (lower row).

side, chords on the left of the variance image are reconstructed with a longer scanning trajectory. It appears that

more data are used in reconstructing chords covering the left part of the variance image. This explanation is,

however, incorrect. First, there is a slight upturn in the variance for the chords on the extreme left of the variance

image, which runs counter to this trend. Second, it can be demonstrated that the amount of data going into the

chord reconstruction does not necessarily increase as the scanning trajectory increases. Based upon Eq. (32), one

can conclude that the true cause of the variance behavior is spatially dependent weighting factor,1/|~r−~r0(λ)|, in

the BPF, MDFBP, and FBP algorithms [19].

For a given chord specified bysa andsb, when full scan data are available, one can reconstruct two chord

images by use of data acquired with the right-side and left-side trajectories, as shown in Fig. 11 and then obtain

a final chord image by averaging the two chord images. We show,in Fig. 14, the variance images of the full scan

with accompanying profiles in Fig. 15.

3.4 Numerical studies of noise properties in cone-beam reconstruction

The BPF, MDFBP, and FBP algorithms can yield exact image reconstruction on a chord specified bysa and

sb as long as the support segment on the chord is illuminated by the x-ray beam at the projection viewss ∈

[sa, sb], because these algorithms require data only on the fan-beamprojections of the support segment. From the

perspective of the chord-based algorithms, the reconstruction of a chord image from cone-beam data is similar to

that of a chord image from fan-beam data. In the fan-beam case, the orientation of the fan-beam planes at different

views remain unchanged, whereas, in the cone-beam case witha non-planar trajectory, the orientation of the fan-

beam-illumination planes generally varies from view to view. As discussed in Sec. 3.1.3, the noise properties

of differentiation, backprojection and filtration in the cone-beam case are similar to that in the fan-beam case.

Therefore, we include below only the study results on the noise properties of the final chord-images reconstructed
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Figure 14: Variance images obtained by use of the BPF (a), MDFBP (b), and FBP (c) algorithms from full-scan
fan-beam data containing Gaussian (upper row) and Poisson (lower row) noise. For the purpose of displaying the
details in the central (i.e., low variance) regions, we haveapplied a logarithmic scale to the variance images. The
display windows are [-1.19, 0.31] and [-1.18, 0.20] for Gaussian noise and Poisson noise, respectively.
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Figure 15: Variance profiles along the central vertical (a) and horizontal (b) lines in variance images, which
are shown in Fig. 14, obtained by the BPF (solid), MDFBP (dashed), and FBP (dotted) algorithms from data
containing Gaussian noise (upper row) and Poisson noise (lower row).
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Figure 16: (a)π-line, 3π-line, and5π-line segments in a helical scan. (b) Surfaces generated in the imaging
volume by concatenatingπ-line segments specified bysa = −π andsb ∈ [−0.5π, 0.5π].

from cone-beam data.

3.4.1 Helical cone-beam configuration

In our investigation of the noise properties of image reconstruction from cone-beam data, we consider the helical

trajectory, which is the most widely used in clinical and industrial CT. For a helical scan, the source trajectory is

described mathematically as~r0(s) = (R cos s, R sin s, h
2π

s), whereR is the source to center-of-rotation distance,

andh indicates the helical pitch length. For a chord specified bysa andsb, if (n − 1)π ≤ |sb − sa| ≤ (n + 1)π,

wheren is a positive odd integer, the chord is also referred to as annπ-line segment [20, 21], as shown in Fig.

16a. In particular, whenn = 1 and thus0 ≤ |sb − sa| ≤ 2π, the chord is referred to as aπ-line segment [2, 11].

In this work we consider image reconstruction only onπ-line segments for the reason that the imaging volume

enclosed by the helix can be filled uniquely and completely byπ-line segments [11, 12]. Thus,π-line segments

can be used to form 3D images in a helical cone-beam scan.

We computed the noiseless data from a Shepp-Logan phantom byuse of the configuration parameters in Table

1. Using the noiseless data as the means, we subsequently generated 500 sets of data containing Gaussian noise

and 500 sets of data containing Poisson noise, respectively. The standard deviation of Gaussian noise is chosen to

be 0.7% of the maximum value of the noiseless data, whereas the standard deviation for the Poisson noise is the

noiseless data scaled to yield a total count of5 × 105 for each view.

3.4.2 Noise properties in reconstruction from helical cone-beam data

A curved surface in the helix volume can be formed by a set ofπ-line segments for which we fix one end-point

at sa and sweep the other endpoint over a rangesb ∈ [smin, smax]. We show in Fig. 16a a curved surface obtained

by concatenating a set ofπ-line segments specified bysa = −π andsb ∈ [−0.5π, 0.5π]. Using generated noisy

helical cone-beam data, we reconstructed noisy images on theπ-line surface by use of the BPF, MDFBP, and FBP

algorithms. From these noisy images we subsequently computed empirical image variances on theπ-line surface.

In Fig. 17, we display the image variances obtained with BPF,MDFBP and FBP algorithms from data containing

Gaussian noise and Poisson noise.

We also display in Figs. 18a and b image variances on theπ-line segment specified bysa = −π andsb = 0 in

the surface, obtained from data containing Gaussian noise and Poisson noise, respectively. The image variances

show similar characteristics to that of fan-beam image variances observed in Fig. 13. Namely, the variance image

on theπ-line surface in Fig. 17 has a structure that is similar to theright-side scan fan-beam results presented

in Sec. 3.3.1; the images onπ-line segments reconstructed from smaller helix segments tend to have higher and

more non-uniform variances. The similarity with the fan-beam case is not surprising because the geometrical
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Figure 17: Empirical variance images on theπ-line surface shown in Fig. 16b obtained by use of the BPF (a),
MDFBP (b), and FBP (c) algorithms from data containing Gaussian noise (upper row) and Poisson noise (lower
row), respectively. For the purpose of displaying the details in the central (i.e., low variance) regions, we have
applied a logarithmic scale to the variance images. The display windows are [-1.80, 0.30] and [-1.80, 0.60] for
Gaussian noise and Poisson noise, respectively.

arrangement of theπ-line with respect to its scanning trajectory is very similar to the relationship between the

chords and corresponding fan-beam scanning trajectory. The only difference is that there is an out-of-plane bend

to the helix segment.

Regarding the non-uniform shape of the variance, one can attribute the high variance in the image periphery

to the weighting factors multiplying the data derivatives before backprojection. As the algorithms are essentially

the same for chord-image reconstruction in fan- and cone-beam cases, this conclusion should come as no surprise.

In the 2D fan-beam case, the variance non-uniformity and level was reduced by equally weighting reconstructions

for both left and right side scans for each chord of the scanning circle. For the helical configuration, it is clear that

in a typical scan there will be some overscan for nearly all the chords comprising the volume. But the overscan

part of the trajectory does not form a closed loop so using theoverscan data to reduce image variance is not as

obvious as the case of the circular scan. Future work will focus on how to utilize the overscan data for non-closed

trajectories for the purpose of reducing the impact of data noise on chord-base ROI-image reconstruction.

4 Discussion

In this article, we have performed analytic and numerical investigation of the noise properties of chord-based

image reconstructions from parallel-, fan-, and cone-beamdata. One of the main points of the investigation

was to test whether or not the reduced illumination in designing a minimal data set for a particular ROI leads to a

significant reduction in exposure. The idea was to compare the statistical properties of the ROI image reconstructed

from noise realizations of the minimal data set with noise realizations of the full data set. Similar noise levels

were used in both data sets, which are equivalent to modelingsimilar incident x-ray beam intensities. Our study

indicates that the resulting image variance was almost the same for images reconstructed from both data sets.

Thus, the minimal data set for ROI reconstruction leads to a significant overall dose reduction, because the body

is exposed to lower amount of ionizing radiation in the reduced scan. For fan-beam and cone-beam imaging,

we explored the noise properties of the extreme periphery ofthe imaging region by investigating large fan- and
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Figure 18: Variances on the central vertical line segment, specified bysa = −π andsb = 0, obtained with the
BPF (solid), MDFBP (dashed), and FBP (dotted) algorithms from data containing Gaussian noise (a) and Poisson
noise (b).

cone-angles. Image variance non-uniformity was found to becaused by spatially dependent weighting factors in

the chord-based reconstruction algorithms. This work represents a study of the noise properties of chord-based

reconstruction and of the impact of physical factors on ROI imaging in fan-beam and cone-beam CT. In seeking

ways to reduce the impact of noise in volume imaging, we will investigate schemes to incorporate overscan

data. The analysis presented in this work can directly be applied to chord-based image reconstruction for general

trajectories. Finally, it is important to investigate the behavior of the ROI-reconstruction algorithms when other

important factors are included in the data model such as x-ray polychromaticity and non-linear partial volume

averaging.
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