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This set of slides on Human Factors Experimental Design and Analysis is 
designed to provide reference material to human factors engineers on 
research design and analysis techniques. This material is organized around 
the concept of a researcher’s handbook that is available on a desktop 
computer and can provide an overview of critical experimental design 
concepts and methods for the human factors engineer as well as provide key 
references to the scientific literature related to these techniques.

It is assumed that users of this material are researchers in human factors 
engineering and ergonomics who have background in statistics and
experimental design. These slides and accompanying notes provide
reference material to help the researcher choose the appropriate
experimental design and analysis. This reference material is not designed as 
a simple look-up for statistical procedures. Rather, it is designed to provide
an overview and roadmap to techniques with reference to the statistical 
literature that provides details of procedures that should be reviewed before 
using them.
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This is the outline of topics covered in the Overview to the reference material 
on applied experimental design. The purpose, presentation style, and 
organization of the topics are discussed in this overview.

Each of the subsequent major topic presentations in this reference material 
begins with an numbered outline of the subtopics covered. The detailed 
information content for every major topic follows this numbering system to 
facilitate user reference.

OverviewOverviewOverview

0.1. Purpose of Reference Material0.1. Purpose of Reference Material
0.1.1. Applied Experimental Design0.1.1. Applied Experimental Design
0.1.2. Human Factors Engineering Methods0.1.2. Human Factors Engineering Methods

0.2. Presentation Approach0.2. Presentation Approach
0.2.1. Format of Reference Material0.2.1. Format of Reference Material
0.2.2. Experimental Design References0.2.2. Experimental Design References

0.3. Organization of Reference Topics0.3. Organization of Reference Topics
0.3.1. Introduction to Experimental Design0.3.1. Introduction to Experimental Design
0.3.2. Supplemental Data Collection and Analysis0.3.2. Supplemental Data Collection and Analysis
0.3.3. Basic Analysis of Variance Designs0.3.3. Basic Analysis of Variance Designs
0.3.4. 0.3.4. Advanced Experimental DesignsAdvanced Experimental Designs
0.3.5. Empirical Model Building0.3.5. Empirical Model Building
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0.1. Purpose of Reference Material0.1. Purpose of Reference Material0.1. Purpose of Reference Material

•• 0.1.1. Applied Experimental Design0.1.1. Applied Experimental Design
•• 0.1.2. Human Factors Engineering Methods0.1.2. Human Factors Engineering Methods

This is an example of the outline slide that introduces each topic subsection. 
As this outline suggests, the purpose of this reference material is to provide 
an overview of various applied experimental design procedures that are 
useful in human factors engineering. The implications of applied
experimental design and its relationship to human factors methods are 
described in this subsection.



Human Factors Experimental Design and Analysis Reference

4

0.1.1. Applied Experimental Design0.1.1. Applied Experimental Design0.1.1. Applied Experimental Design

•• Research Methods Research Methods NOTNOT StatisticsStatistics
–– No Statistical DerivationsNo Statistical Derivations
–– Use of Algorithms and ProceduresUse of Algorithms and Procedures
–– Basic and Advanced Design AlternativesBasic and Advanced Design Alternatives

•• Emphasis on Research DesignEmphasis on Research Design
–– Choosing the Most Efficient AlternativeChoosing the Most Efficient Alternative
–– Design Implications and TradeoffsDesign Implications and Tradeoffs

•• Statistical AnalysisStatistical Analysis
–– Show only Underlying AnalysisShow only Underlying Analysis
–– Assume Use of Statistical PackagesAssume Use of Statistical Packages
–– Examples of SAS ApplicationsExamples of SAS Applications

The emphasis of this reference material is on applied experimental design 
research methods and not on mathematical statistics. In lieu of statistical 
derivations, procedural steps and algorithms are presented for various 
experimental design calculations and representations such as statistical 
models, expected mean square, computational formulae, etc.

The reference material is designed to aid the human factors researcher in 
choosing the most efficient experimental design among a variety of available 
alternatives. Consequently, the various alternatives are outlined, and the 
tradeoffs among these alternatives are presented.

Examples of statistical analyses are provided for only the major procedures. 
It is assumed that most researchers will use a statistical analysis package to 
analyze their data. Consequently, most analyses shown in the reference 
material are presented in an appendix report by Slater and Williges (2006) 
that provides the program statements and output pages from the SAS 
application package.
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0.1.2. Human Factors Engineering Methods0.1.2. Human Factors Engineering Methods0.1.2. Human Factors Engineering Methods

Human Factors Engineering
Interface Design
Training Design

Design Methods Evaluation Methods

Research Methods

Human factors engineering involves both the human interface design of 
complex systems and the complimentary training of users of those systems. 
Successful human interface and training design requires understanding and 
mastery of various research, design, and evaluation methods. Applied 
experimental design is useful in each of these three major categories of 
methods.
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0.1.2.1. Research Methods0.1.2.1. Research Methods0.1.2.1. Research Methods

•• Human Factors Engineering ResearchHuman Factors Engineering Research
–– Human Performance ResearchHuman Performance Research
–– Knowledge Base for Human Interface DesignKnowledge Base for Human Interface Design

•• Key Components of Behavioral ResearchKey Components of Behavioral Research
–– Data Collected from Human SubjectsData Collected from Human Subjects
–– Same or Different Subjects ObservedSame or Different Subjects Observed
–– Capabilities and Limitations of Human OperatorCapabilities and Limitations of Human Operator

Experimental designs are central to human factors engineering research. 
This research deals primarily with human performance research that focuses 
on cognitive, motor, and biomechanical aspects of the human. Human 
factors engineering research provides the scientific knowledge base for 
human interface design in complex systems, and this research is based 
largely on experimental designs.

Human factors engineering research is characterized by three key
components. First, the data are related to aspects of human performance 
and are collected from human subjects. Second, either the same sample of 
subjects is observed in a variety of treatment combinations or an 
independent sample of subjects is observed in each treatment combination. 
And, third, the research is focused on developing a scientific database of 
human operator capabilities and limitations in complex systems.
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0.1.2.2. User Interface Design Methods0.1.2.2. User Interface Design Methods0.1.2.2. User Interface Design Methods

Initial Design

Conceptual
Design

Design
Specifications

Prototype Design

Prototype
Interface

Formative
Evaluation

Final Design

Operational
Interface

Summative
Evaluation

Adapted from Kies, Williges, and Rosson (1998) by Permission

User-centered interface design is an iterative design process that is focused 
on the user of the system as shown by the two-headed arrows and the 
feedback loop in this figure that was modified from Kies, Williges, and 
Rosson (1998). In their article, they discuss appropriate ethnographic and 
experimental design methods for iterative design in each of three major 
phases of design of computer-supported cooperative work systems.

A variety of methods have been developed to support this design process. 
Essentially, these methods deal first with initial interface design to provide a 
conceptual design and specific design specifications. Next a prototype 
design of the interface is developed and actual users are tested somewhat 
informally though formative evaluation procedures in an iterative fashion. 
Following successful prototype design, the final operational interface design 
is developed and tested through a final, summative evaluation. Additional 
design iterations and major design revisions could be conducted as shown 
by the feedback loops in the figure. Rigorous experimental design 
procedures are most often used during summative evaluation in the user-
centered design process.
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0.1.2.3. Training System Design Methods0.1.2.3. Training System Design Methods0.1.2.3. Training System Design Methods

Specification of
Training Requirement

Development of
Training Program

Evaluation of
Training Effectiveness

Training
Objectives

GraduatesTrainingTrainees

Training
Needs

Training
Method

Training
Content

Formative
Evaluation

Summative
Evaluation

Most complex systems require human operator training in order to achieve 
the best system performance. The design of these training systems is also 
an iterative process that involves user testing. As shown in this figure, the 
three major stages of training system design include specification of training 
requirements, development of the training program, and evaluation of 
training effectiveness as discussed by Goldstein and Ford (2002). 
Experimental designs are used primarily in the summative evaluations of 
graduates of the resulting training system in order to evaluate the efficacy of 
training.



Human Factors Experimental Design and Analysis Reference

9

0.1.2.4. Usability Evaluation Methods0.1.2.4. Usability Evaluation Methods0.1.2.4. Usability Evaluation Methods

Ethnographic Methods
Study of Work

Contextual Inquiry
Scenario Design

Interaction Analysis

End-User Methods
Verbal Protocols
Critical Incidents

Participatory Design
Usability Testing

Controlled Testing Methods
Psychophysical Scaling

Efficient Experimental Designs
Empirical Model Building

Sequential Experimentation

A variety of methods are available to support human factors engineering 
evaluation activities. As shown on this slide, these methods can be grouped 
into end-user, ethnographic, and controlled testing methods.

End-user methods involve the user of the system in the evaluation process. 
Verbal protocols and critical incidents are discussed in more detail as 
techniques to support supplemental data in experimental design. 
Participatory design involves end-user participation and evaluation 
throughout the design process (Schuler and Namioka, 1993). Usability 
testing methods are focused specifically on issues related to improving user 
performance of the system primarily during formative evaluation in the 
iterative design process. Hartson, Andre, and Williges (2003) provide a 
detailed breakdown of usability testing methods into expert, user, model, and 
location of usability evaluation methods across a variety of criteria.

Kies, Williges, and Rosson (1998) discuss appropriate ethnographic and 
experimental design methods for formative and summative evaluation of 
socio-technical systems. Experimental designs are examples of controlled 
testing methods. Efficient experimental designs, empirical model building, 
and sequential experimentation are most useful in complex system research 
and design.
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0.2. Presentation Approach0.2. Presentation Approach0.2. Presentation Approach

•• 0.2.1. Format of Reference Material0.2.1. Format of Reference Material
•• 0.2.2. Experimental Design References0.2.2. Experimental Design References

The presentation used in this reference material is focused on a researcher’s 
handbook approach. Both the format of the material and the scientific 
references are directed toward material to support the human factors 
engineer who is planning, conducting, analyzing, and reporting results of 
experiments.
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0.2.1 Format of Reference Material0.2.1 Format of Reference Material0.2.1 Format of Reference Material

•• PowerPoint Slides FormatPowerPoint Slides Format
–– Outline Format of Topic CoverageOutline Format of Topic Coverage
–– Brief Description of Key Points in NotesBrief Description of Key Points in Notes

•• PDF Document PresentationPDF Document Presentation
–– Interactive Desktop UseInteractive Desktop Use
–– Index of TopicsIndex of Topics

•• Examples of SAS Statistical AnalysesExamples of SAS Statistical Analyses
–– Keyed to Examples in SlidesKeyed to Examples in Slides
–– Program and Analysis OutputProgram and Analysis Output

•• References to Extended CoverageReferences to Extended Coverage
–– Emphasis on Behavioral Research TextbooksEmphasis on Behavioral Research Textbooks

The reference material was prepared in a PowerPoint slide format. Each 
page of the reference shows a slide with the material presented in an outline 
format. Notes are provided under each slide to provide a brief description of 
the outline and to emphasize the major points of each slide. All of the 
reference material is delivered in PDF format to facilitate cross-platform, 
desktop computer use by the human factors engineer. Bookmarks are 
provided to a subject index in the PDF file.

Throughout the reference material, formulae are presented for statistical 
computations and examples are provided for the major computations. 
Additionally, these examples were calculated on a statistical package using 
SAS as an example. The data inputs, procedures statements, and 
computational outputs of SAS are provided in an appendix (Slater and 
Williges 2006) that is hyper-linked to the reference slides so that researchers 
can view detailed examples of using a statistical package for computations. 
Each example in the Slater and Williges (2006) appendix is also linked 
directly to the SAS editor.

References to the scientific literature are provided throughout. References 
are also provided for behavioral science textbooks on experimental design 
that can be used for supplemental reading on a more detailed coverage of 
each topic covered. The complete citation for each reference is listed at the 
end of the PDF file.
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0.2.2 Experimental Design References0.2.2 Experimental Design References0.2.2 Experimental Design References

•• Supplemental ReadingsSupplemental Readings
–– Organized by TopicsOrganized by Topics

•• References to JournalsReferences to Journals
–– Human Factors Engineering MethodsHuman Factors Engineering Methods

•• References to TextbooksReferences to Textbooks
–– Behavioral Research MethodsBehavioral Research Methods
–– Basic Statistical AnalysesBasic Statistical Analyses
–– General Experimental DesignGeneral Experimental Design
–– Advanced Experimental DesignAdvanced Experimental Design

Each topic in the reference material lists supplemental readings. These 
supplemental readings provide more detailed coverage for a better 
understanding of each topic. Reference to key methodological articles in the 
human factors journals and textbooks are provided. In addition, references 
on behavioral research methods, basic statistical analyses, and experimental 
design textbooks are provided as appropriate.
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0.3. Organization of Reference Topics0.3. Organization of Reference Topics0.3. Organization of Reference Topics

•• 0.3.1. Introduction to Experimental Design0.3.1. Introduction to Experimental Design
•• 0.3.2. Supplemental Data Collection and Analysis0.3.2. Supplemental Data Collection and Analysis
•• 0.3.3. Basic Analysis of Variance Designs0.3.3. Basic Analysis of Variance Designs
•• 0.3.4. Advanced ANOVA Designs0.3.4. Advanced ANOVA Designs
•• 0.3.5. Empirical Model Building0.3.5. Empirical Model Building

The reference material is organized around five major sections. These 
sections cover general considerations in experimental design, supplemental 
data collection and analysis, basic analysis of variance experimental design, 
advanced experimental design, and empirical model building.

Section 1 covers topics related to critical aspects of the experimental design 
process used by human factors engineers. Section 2 covers methods of data 
collection and analysis of supplemental data that are often collected in 
addition to the major data collected through experimental designs. Section 3 
addresses concepts of basic analysis of variance (ANOVA) designs used by 
human factors researchers for collecting data on human subjects performing 
tasks in complex systems environments. Section 4 covers advanced
experimental design topics that are useful to human factors engineers who 
must deal with procedural constraints in data collection and large-scale data 
collection efforts. Finally, Section 5 describes empirical model building 
procedures used to predict human performance in complex systems.
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0.3.1. Introduction to Experimental Design0.3.1. Introduction to Experimental Design0.3.1. Introduction to Experimental Design

•• Research Design ProcessResearch Design Process
–– Stages of ResearchStages of Research
–– Critical Research MethodsCritical Research Methods
–– Research ReportsResearch Reports

•• Experimental Design AlternativesExperimental Design Alternatives
–– Threats to ValidityThreats to Validity
–– Types of Experimental DesignsTypes of Experimental Designs

•• Basic Statistical Concepts and AnalysesBasic Statistical Concepts and Analyses
–– ProbabilityProbability
–– Sampling DistributionsSampling Distributions
–– Statistical EstimationStatistical Estimation
–– Hypothesis TestingHypothesis Testing

The introduction section to experimental design covers three major topics. 
These topics include the research design process used by the human factors 
engineer, experimental design alternatives (i.e., quasi-, and randomized 
experimental designs), and basic statistical concepts and analyses needed 
for experimental design. These three topics are covered in Section 1 of the 
reference material.
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0.3.2. Supplemental Data Collection and Analysis0.3.2. Supplemental Data Collection and Analysis0.3.2. Supplemental Data Collection and Analysis

•• Supplemental Data Collection MethodsSupplemental Data Collection Methods
–– Self ReportsSelf Reports
–– QuestionnaireQuestionnaire
–– Rating ScalesRating Scales

•• Nonparametric AnalysisNonparametric Analysis
–– Frequency Data AnalysisFrequency Data Analysis
–– Ordinal Data AnalysisOrdinal Data Analysis

Supplemental data collection and analysis involves additional data collected 
on human subjects to aid in the understanding of the results obtained from 
the experimental design. Two topics are covered in this section. First, an 
overview of supplemental data collection methods is discussed with an 
emphasis on rating scales. Second, a summary of the most common data 
analysis procedures for supplemental data consisting of frequencies and 
rank orders are presented. Both of these topics are also covered in Section 2 
of the reference material.



Human Factors Experimental Design and Analysis Reference

16

0.3.3 Basic Analysis of Variance Designs0.3.3 Basic Analysis of Variance Designs0.3.3 Basic Analysis of Variance Designs

•• Analysis of Variance (ANOVA) ClassificationAnalysis of Variance (ANOVA) Classification
–– Basic TermsBasic Terms
–– Design AlternativesDesign Alternatives
–– ANOVA Summary Table ComponentsANOVA Summary Table Components

•• BetweenBetween--Subjects DesignSubjects Design
–– One, TwoOne, Two--, and n, and n--Factor DesignsFactor Designs

•• Analysis of Comparisons and InteractionsAnalysis of Comparisons and Interactions
–– PairedPaired--ComparisonsComparisons
–– Evaluating InteractionsEvaluating Interactions

•• WithinWithin--Subjects DesignSubjects Design
•• MixedMixed--Factors DesignFactors Design

Factorial analysis of variance designs are the major experimental designs 
used by human factors engineers. The reference section on basic ANOVA 
covers five major topics including analysis of variance design classification, 
between-subjects or completely randomized designs in which a different 
group of subjects is used in each treatment condition, post hoc analysis of 
paired comparisons and interactions, within-subjects or repeated measures 
designs in which the same subject is used in all treatment conditions, and 
mixed-factors or split-plot designs in which some treatment conditions are 
between-subjects conditions and some are within-subjects conditions. Each 
of these topics is covered in Section 3 of the reference material.
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0.3.4. Advanced ANOVA Designs0.3.4. Advanced ANOVA Designs0.3.4. Advanced ANOVA Designs

•• Basic ANOVA ExtensionsBasic ANOVA Extensions
•• Hierarchical DesignsHierarchical Designs
•• Blocking DesignsBlocking Designs

–– Modular RepresentationModular Representation
–– Blocking 2Blocking 2kk DesignsDesigns

•• FractionalFractional--Factorial DesignsFactorial Designs
–– 22kk--pp Fractional ReplicatesFractional Replicates
–– Latin Square DesignsLatin Square Designs

•• Analysis of Covariance (ANCOVA)Analysis of Covariance (ANCOVA)
–– Correlation and Simple RegressionCorrelation and Simple Regression
–– ANCOVA ComputationsANCOVA Computations

This section of the reference material covers major advanced experimental 
design and analysis procedures used by human factors engineers to handle 
certain experimental constraints encountered in research. These advanced 
designs are built on basic ANOVA and regression analysis. Topics covered 
in the advanced experimental design section include extensions of basic 
ANOVA, hierarchical or nested designs, blocking designs, fractional-factorial 
designs, and fundamentals of simple regression analysis used in the 
analysis of covariance. These five topics are covered in Section 4 of the 
reference material.
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0.3.5 Empirical Model Building0.3.5 Empirical Model Building0.3.5 Empirical Model Building

•• Quantitative ModelsQuantitative Models
•• Multiple RegressionMultiple Regression

–– Multiple Linear RegressionMultiple Linear Regression
–– SecondSecond--Order Polynomial RegressionOrder Polynomial Regression

•• CentralCentral--Composite Designs (CCD)Composite Designs (CCD)
–– CCD SpecificationsCCD Specifications
–– CCD AnalysesCCD Analyses

•• Sequential ExperimentationSequential Experimentation
–– Response Surface MethodologyResponse Surface Methodology
–– Sequential Research Paradigm and GuidelinesSequential Research Paradigm and Guidelines

The final section of the reference material covers empirical model building 
procedures. Four major topics are covered. The section begins with a 
discussion of quantitative models in research that are used to predict human 
performance. Next empirical model building using polynomial regression with 
central-composite designs are described. Finally, sequential experimentation 
that involves a series of small related experiments covering an extremely 
large data space are described as a paradigm for conducting systematic 
research on complex human factors problems. All of these topics are 
covered in Section 5 of the reference material.

Due to the building block approach used in presenting the topics covered in 
this reference material, some questions raised in earlier sections are 
answered in later sections. The user should user the interactive aspects of 
this reference to locate expanded discussion of some topics throughout the 
presentation.



Human Factors Experimental Design and Analysis Reference

19

By way of introduction, Section 1 summarizes some major components that 
are fundamental to experimental design and analysis. This section covers:

Topic 1 - the research design process;
Topic 2 - major categories of experimental design alternatives; and
Topic 3 - a brief review of basic statistical concepts and analyses used in 
experimental design.

Section 1.
Introduction to Experimental Design

Section 1.Section 1.
Introduction to Experimental DesignIntroduction to Experimental Design

Topic 1. Research Design ProcessTopic 1. Research Design Process
Topic 2. Experimental DesignsTopic 2. Experimental Designs
Topic 3. Basic Statistical ConceptsTopic 3. Basic Statistical Concepts
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This topic is an introduction to experimental design that deals with the overall 
research design process. First, the various stages of research are presented 
in a flow diagram. Next six critical aspects of this process are highlighted 
beginning with the Research Problem through Research Reports.

As with all subsequent topics covered in the reference material, this topic 
concludes with a summary followed by suggestions for supplemental 
readings for in-depth coverage of the material covered in this topic. Due to 
space restrictions, the complete citation for each supplemental reading is not 
presented on the summary slide. However, the complete citation is 
presented in the References section that is bookmarked in the PDF file.

Topic 1. Research Design ProcessTopic 1. Research Design ProcessTopic 1. Research Design Process

1.1. Stages of Research1.1. Stages of Research
1.2. Research Problem1.2. Research Problem
1.3. Research Approach1.3. Research Approach
1.4. Critical Research Methods1.4. Critical Research Methods
1.5. Research Design Alternatives1.5. Research Design Alternatives
1.6. Analyzing Results1.6. Analyzing Results
1.7. Research Reports1.7. Research Reports
1.8. Summary1.8. Summary
1.9. Supplemental Readings1.9. Supplemental Readings
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1.1. Stages of Research1.1. Stages of Research1.1. Stages of Research

Reprinted from Williges (1995) by Permission

STAGE 1
DEFINE

STAGE 2
PLAN

STAGE 3
CONDUCT

STAGE 5
INTERPRET

STAGE 4
ANALYZE

Develop
Idea

Review
Literature

State
Problem

Develop
Hypotheses

Define
Variables

Design
Experiment

Define
Controls

Develop
Apparatus

Define
Procedures

Select
Subjects

Pretest
Experiment

Collect
Data

Reduce
Data

Calculate
Statistics

Estimate
Parameters

Test
Hypotheses

Draw
Inferences

Generalize
Results

Report
Experiment

Williges (1995) presented a research process with five inter-related stages 
as depicted in this slide. (This figure is reprinted by permission of Person 
Education, Inc., Upper Saddle River, New Jersey.) His five stages include 
defining, planning, conducting, analyzing, and interpreting. Often, an 
experimenter only thinks of research design and analysis and fails to 
consider all five stages of the research process. Note that this process is a 
closed-loop flow of several considerations leading to successful research.

Several important research procedures related to the Williges (1995) five-
stage research process are subsequently covered in this topic to highlight 
major issues that can cause problems in the research enterprise. These 
procedures begin with the definition stage of research.
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1.2. Research Problem1.2. Research Problem1.2. Research Problem

•• Research IdeasResearch Ideas
–– Martin's PhobiasMartin's Phobias
–– ObservationsObservations
–– Problem DefinitionProblem Definition
–– Research HypothesesResearch Hypotheses

•• Scientific LiteratureScientific Literature
–– "Treeing""Treeing"
–– SourcesSources

–– Scientific JournalsScientific Journals
–– Conference ProceedingsConference Proceedings
–– Technical ReportsTechnical Reports
–– BooksBooks

•• Abstracts and ReferencesAbstracts and References

Martin (2004) humorously discusses many common apprehensions that new 
researchers have in conducting research, but remember that the possibility 
of exactly replicating existing research is quite remote. One should try to 
state the research problem in one paragraph, and then state the hypothesis 
to be tested through data collection.

An efficient way of searching the scientific literature is a technique called 
“treeing”. The researcher reads a recent article related to the research 
problem and then reviews the articles in its reference list. Always be sure 
that you read any reference that you cite to insure accuracy. Do not rely on 
secondary references. Online searches and electronic publishing can 
facilitate searching the scientific literature.

Two things to consider in reference sources are the scientific rigor and the 
age of the material. Scientific journals have an editorial review board to 
enhance rigor, but the review and publishing process may take years. 
Conference proceedings include the most recent research, but are often only 
reviewed on the basis of an abstract. Technical reports are reports published 
by individual laboratories usually without external review. Many books have 
review chapters that summarize older literature in a research area. A 
researcher should be compulsive and write notes or an abstract on each 
article read as well as the complete reference citation.



Human Factors Experimental Design and Analysis Reference

23

1.3. Research Approach1.3. Research Approach1.3. Research Approach

•• Research ProcessResearch Process
–– Systematic ObservationsSystematic Observations

–– Defined CircumstancesDefined Circumstances
–– Observable BehaviorsObservable Behaviors

–– Inferred RelationshipsInferred Relationships
•• Critical CriteriaCritical Criteria

–– RepeatableRepeatable
–– ObjectiveObjective
–– QuantitativeQuantitative
–– GeneralizableGeneralizable

The scientific method uses experimental designs that require systematic 
observation during data collection. So, one defines the specific
circumstances under which observations are made. Extraneous variables 
are controlled to avoid confounding effects and to facilitate interpretation. 
Human behavior is observed in an unbiased, objective fashion that avoids 
experimenter opinions. The emphasis is placed on collecting quantified data 
so that inferential statistical analysis can be conducted on the resulting data 
set. From these results, one can infer causative relationships.

Besides insuring that the observations are repeatable, objective, and 
quantitative, the researcher should include as many relevant variables as 
possible in the investigation so that the results will generalize to real world 
applications. When all possible variables are operating, there is less control 
and more random error is added to the experiment. When designing an 
experiment, one must trade off which variables are controlled and which 
variables are not controlled to facilitate generalization. This often results in 
including several variables in one experiment and increases the data 
collection effort. 
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1.4. Critical Research Methods1.4. Critical Research Methods1.4. Critical Research Methods

•• 1.4.1. Variables1.4.1. Variables
•• 1.4.2. Procedures1.4.2. Procedures
•• 1.4.3. Protection of Human Subjects1.4.3. Protection of Human Subjects
•• 1.4.4. Equipment1.4.4. Equipment
•• 1.4.4. 1.4.4. PretestingPretesting

Research methods include topics such as variables, procedures, protecting 
human subjects, equipment, and pretesting. These four topics are critical 
because each can often result in major problems in the research process. 
Each is reviewed separately. Martin (2004) provides a more comprehensive 
discussion of these topics as well as other methods to consider in designing 
human subject research. 
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1.4.1. Variables1.4.1. Variables1.4.1. Variables

•• TypesTypes
–– UnivariateUnivariate vs. Multivariate Proceduresvs. Multivariate Procedures
–– Independent (X) vs. Dependent (Y) VariablesIndependent (X) vs. Dependent (Y) Variables
–– Subject VariablesSubject Variables
–– Confounding VariablesConfounding Variables

•• Experimental ControlsExperimental Controls
–– Control ConditionsControl Conditions
–– Experimental DesignsExperimental Designs

There are several types of variables used in discussing experimental 
designs. Univariate means consideration of one variable while multivariate 
means consideration of more than one variable. An independent variable (X 
variable) is a variable that the experimenter manipulates and is independent 
of the performance of subjects participating in the experiment. A dependent 
variable (Y variable) is one that depends upon the performance of the 
subjects in the experiment and constitutes the data collected in the 
experiment (e.g., errors, completion time, or accuracy). Subject variables are 
things such as prior experience that one tries to control through 
randomization or selection. Confounding variables are other variables that 
occur in the experiment that can affect the experiment but have nothing to do 
with the focus of the study.

Specific experimental designs are often chosen to control confounding 
variables. In most human factors research studies, one conducts 
multivariable experiments involving several independent variables 
simultaneously. However, human factors researchers usually conduct 
univariate statistical analyses on each dependent variable separately. 
Consequently, univariate data analyses rather than multivariate analyses are 
emphasized in this reference material.
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1.4.2. Procedures1.4.2. Procedures1.4.2. Procedures

•• CharacteristicsCharacteristics
–– StandardizedStandardized
–– Constant Across SubjectsConstant Across Subjects

•• Major ConsiderationsMajor Considerations
–– Experimental TaskExperimental Task
–– Instructions and TrainingInstructions and Training
–– Selection of SubjectsSelection of Subjects
–– Data CollectionData Collection
–– Primary Data AnalysesPrimary Data Analyses
–– Treatment of Human SubjectsTreatment of Human Subjects

The keys to setting up procedures in an experiment are standardization and 
consistency in procedures across subjects. The task to be completed should 
be the same for each subject. Instructions and training should be written out 
and recorded for each subject so that everyone gets the same information. 
For example, recorded instructions should be played while the subjects are 
reading them so that they are forced to go from the beginning to the end at a 
constant rate. The selection of subjects should be representative of the 
subjects in the population of interest. Data collection should be 
systematically stored for accurate future reference. One should keep back 
ups for all data collection. And, the primary data analysis should be planned 
before data collection begins.

Treatment of human subjects is very important, because all human factors 
experiments are conducted using human subjects. Subjects should not be 
endangered physically or mentally during their participation. Since subjects 
are volunteers, they have the right to withdraw from the experiment at any 
time.
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1.4.3. Protection of Human Subjects1.4.3. Protection of Human Subjects1.4.3. Protection of Human Subjects

•• Major ConcernsMajor Concerns
–– Subject RiskSubject Risk
–– Right to WithdrawRight to Withdraw
–– PaymentPayment
–– ConfidentialityConfidentiality

•• Institutional Review Board (IRB) ApprovalInstitutional Review Board (IRB) Approval
–– Expedited vs. Full IRB ReviewExpedited vs. Full IRB Review

•• Components of IRB Review PackageComponents of IRB Review Package
–– IRB Submittal FormIRB Submittal Form
–– Description of Research ProceduresDescription of Research Procedures
–– SubjectSubject’’s Informed Consent Forms Informed Consent Form

Major concerns in the protection of human subjects include subject risk, the 
right to withdraw, payment plans, and maintenance of confidentiality. For 
example, refer to subjects by number rather than name in data collection 
sheets to insure anonymity. Subjects in human factors experiments are often 
paid for their participation. If so, the researcher should be careful that 
payment does not interfere with the subject’s right to withdraw.

Often an Institutional Review Board (IRB) assesses the level of subject risk 
during an experiment. If so, one must have IRB approval to proceed with the 
experiment. Two types of review are expedited and full IRB review. Most 
human factors research requires only expedited IRB review, because 
subjects are at low risk. If, however, minors are used as subjects or invasive 
procedures such as blood testing is involved in the human factors research, 
full IRB review is required. The standard IRB review components include an 
IRB submittal form, description of research procedures, and the subject’s 
informed consent form.
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1.4.4. Equipment1.4.4. Equipment1.4.4. Equipment

•• Ordering EquipmentOrdering Equipment
•• Types of EquipmentTypes of Equipment

–– Commercial EquipmentCommercial Equipment
–– Modified EquipmentModified Equipment

•• Equipment Operation and MaintenanceEquipment Operation and Maintenance
•• Equipment ChecklistEquipment Checklist
•• Equipment DriftEquipment Drift
•• Backup EquipmentBackup Equipment

Sometimes equipment must be ordered and can delay the start of an 
experiment if ordering time is not considered. Both commercial and modified 
equipment is used in human factors research. The equipment must be set up 
the same way each time and must be maintained to avoid failure in the 
middle of data collection. An equipment checklist should be used to enforce 
consistency.

One must be careful of equipment drift where equipment settings or 
resolution could change over time as the equipment is used repeatedly. 
Analog equipment is more sensitive to equipment drift than digital 
equipment. So, sufficient warm-up period should be allowed for analog 
equipment before commencing data collection. If possible, the researcher 
should have backup equipment to avoid delays resulting from equipment 
failure.



Human Factors Experimental Design and Analysis Reference

29

1.4.5. Pretesting1.4.5. 1.4.5. PretestingPretesting

•• Key ActivityKey Activity
•• PurposePurpose

–– Level of Independent VariableLevel of Independent Variable
–– InstructionsInstructions
–– Equipment OperationEquipment Operation
–– Completion TimeCompletion Time
–– Data RecordingData Recording

•• ProcedureProcedure
–– Art vs. ScienceArt vs. Science
–– Number of SubjectsNumber of Subjects
–– Experimental DesignExperimental Design

•• Discuss Research Plan with ColleaguesDiscuss Research Plan with Colleagues

Pretesting is the most important aspect of setting up an experiment, but it is 
often overlooked or minimized. The purpose of pretesting is to check the 
levels of the independent variables to determine if they are appropriate. 
Instructions must be tested, because subjects may interpret instructions 
differently from the experimenter’s intention. Equipment operation and 
completion time should also be pretested, because each subject will work at 
a different pace. Pretest data recording so that it is reliable and unbiased to 
insure that no data will be lost.

Pretesting is more of an art than a science. It takes experience and 
knowledge of the problem area. The pretesting procedure is really not set. 
The number of pretest subjects varies for each experiment. One subject is 
definitely not enough, so at least several subjects should be used. There are 
no formal experimental designs for pretesting. Usually one picks a treatment 
combination where a large difference is expected to check if these 
differences exist and if adjustments are needed. Finally, it is quite helpful to 
discuss plans with research colleagues who have experience with collecting 
data in a similar environment. They can provide good advice and insights on 
the pending experiment.
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1.5. Research Design Alternatives1.5. Research Design Alternatives1.5. Research Design Alternatives

•• Types of Experimental DesignsTypes of Experimental Designs
–– QuasiQuasi--Experimental DesignsExperimental Designs
–– Randomized Experimental DesignsRandomized Experimental Designs

•• Randomized Experimental Design AlternativesRandomized Experimental Design Alternatives
–– TwoTwo--Group DesignsGroup Designs
–– Basic ANOVA DesignsBasic ANOVA Designs
–– Advanced Experimental DesignAdvanced Experimental Design

Experimental designs provide plans for the systematic collection of data 
under managed conditions as compared to making only passive 
observations. Cook and Campbell (1979) describe two general categories of 
experimental designs, quasi-experimental designs and randomized 
experimental designs. The distinction between them is determined by the 
existence of experimental control and random assignment of subjects. 
Quasi-experimental designs may or may not specify control conditions to 
manipulate in an experiment and do not have random assignment of
subjects to treatment conditions. Randomized experimental designs have 
controls built into the design and also have random assignment of subjects 
to treatment conditions.

This reference material concentrates on randomized experimental designs, 
because they provide the most valid data for causative inferences and the 
most generalizable results. These experimental designs extend from two-
group designs, to basic factorial ANOVA designs, to advanced experimental 
designs. Most human factors researchers use basic factorial experimental 
designs due to the nature of their research problems.
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1.6. Analyzing Results1.6. Analyzing Results1.6. Analyzing Results

•• Data CollectionData Collection
–– Systematic ProcedureSystematic Procedure
–– Check Data RecordingCheck Data Recording

•• Data ReductionData Reduction
–– Raw DataRaw Data
–– Collapsing DataCollapsing Data

•• Data ObservationData Observation
–– Data PlotsData Plots
–– Descriptive StatisticsDescriptive Statistics
–– OutliersOutliers

•• Statistical AnalysesStatistical Analyses
–– Parametric vs. Nonparametric AnalysesParametric vs. Nonparametric Analyses
–– Primary vs. Supplemental AnalysesPrimary vs. Supplemental Analyses

The experimenter should think about the major analyses before data 
collection to help in choosing the most appropriate design. Have some 
checks and balances built into data collection to insure accuracy. Usually 
some data reduction is necessary before conducting statistical analyses. 
Always keep your raw data at least until the report is written. One can always 
collapse data, but one cannot return to raw data after collapsing if secondary 
analyses should require using raw data.

Before conducting any statistical analysis, plot the data to determine if the 
expected differences seem to exist and the data are coded correctly. 
Looking at the results before analysis helps in interpreting the statistical 
analysis. Use descriptive statistic like means or variance in data plots. A 
good rule is never discard a data point unless one has clear documentation 
that it is an outlier and not a true reflection of subject variability.

Parametric analyses have certain parameters that define the statistical 
analysis and have certain assumptions about the type and distribution of 
scores that are not needed in less powerful nonparametric analyses. Primary 
analyses are the major analyses that were planned before data were 
collected. Supplemental analyses aid in interpretation and are often based 
on nonparametric analysis of demographic data or ratings.
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1.7. Research Reports1.7. Research Reports1.7. Research Reports

•• 1.7.1. Scientific Publications1.7.1. Scientific Publications
•• 1.7.2. Major Components of Reports1.7.2. Major Components of Reports
•• 1.7.3. Additional Considerations1.7.3. Additional Considerations

No piece of research is really complete until it is reported. Researchers have 
an obligation to their scientific colleagues to report their findings. A written 
report is most common, but reporting can also be an oral presentation. 
Several types of scientific publications are used, but each of them have 
major components in common while differing in other special sections and 
considerations.
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1.7.1. Scientific Publications1.7.1. Scientific Publications1.7.1. Scientific Publications

•• Variety of Human Factors PublicationsVariety of Human Factors Publications
–– Technical ReportsTechnical Reports
–– Journal ArticlesJournal Articles
–– Proceedings PapersProceedings Papers
–– Books and Book ChaptersBooks and Book Chapters

•• Publication CharacteristicsPublication Characteristics
–– DifferencesDifferences

–– LengthLength
–– Editorial ReviewEditorial Review
–– Manual of StyleManual of Style

–– SimilaritiesSimilarities
–– Scientific PublicationScientific Publication
–– Major ComponentsMajor Components

There are a variety of human factors publications. Technical reports are 
reports that are completed in the individual laboratory and submitted to 
research sponsors. Journal articles are publications that add to the archival 
scientific literature either in printed or electronic format. Proceedings papers 
are presented at scientific meetings like the HFES conference and are 
commonly published in CD-ROM format. Books and book chapters are part 
of the basic scientific literature.

Types of publications differ in length. Usually proceedings papers are the 
shortest in length while technical reports are the longest. Generally, journal 
articles receive the most rigorous editorial review. Publications also differ in 
style. A technical report might have an executive summary that is not often 
seen in a journal article. Style elements depend on the publication. However, 
all scientific publications usually have four similar major components 
including an introduction, method, results, and discussion section.
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1.7.1. Scientific Publications (Cont'd)1.7.1. Scientific Publications (Cont'd)1.7.1. Scientific Publications (Cont'd)

•• General CharacteristicsGeneral Characteristics
–– Objective ReportingObjective Reporting
–– Researcher OpinionsResearcher Opinions
–– Often Restricted LengthOften Restricted Length
–– Active VoiceActive Voice
–– Third Person NarrativeThird Person Narrative

•• General Flow of Scientific ReportsGeneral Flow of Scientific Reports
–– Story MetaphorStory Metaphor
–– Major ComponentsMajor Components

–– IntroductionIntroduction
–– MethodMethod
–– ResultsResults
–– DiscussionDiscussion

Scientific publication is characterized by objective reporting, and 
researchers’ opinions are restricted to designated sections. The results 
section is the objective reporting of results and data analysis. The discussion 
section presents the researcher’s opinions and interpretation of the results. 
There is often a restriction on length of the publication. Active voice is used 
to make it more interesting instead of a passive voice. Historically, the third 
person is used as opposed to first person. However, some journals are now 
allowing the use of first person narrative.

The general flow of the scientific report follows a story metaphor. Each 
section of the report helps tell the scientific story. There are four major 
components. Each section has a unique purpose, but these sections are 
integrated. The introduction tells readers the purpose of the research, its 
context in the scientific literature, and why they should read the report. The 
method tells readers how the data were collected and what constraints were 
set up to conduct the research. The results summarize the objective data 
and statistical analyses. In the discussion, the author explains and interprets 
the results. Additionally, the discussion ends the scientific story be returning 
to the purpose as stated in the introduction. Before writing a scientific story, 
one should outline the story line to insure integration of the report 
components.
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1.7.2. Major Components of Reports1.7.2. Major Components of Reports1.7.2. Major Components of Reports

•• 1.7.2.1. Introduction1.7.2.1. Introduction
•• 1.7.2.2. Method1.7.2.2. Method
•• 1.7.2.3. Results1.7.2.3. Results
•• 1.7.2.4. Discussion1.7.2.4. Discussion

The next four slides summarize some of the major topics and key 
considerations of the introduction, method, results, and discussion sections, 
respectively, of scientific reports.
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1.7.2.1. Introduction1.7.2.1. Introduction1.7.2.1. Introduction

•• Key TopicsKey Topics
–– Statement of ProblemStatement of Problem
–– Literature ReviewLiterature Review
–– Purpose of ResearchPurpose of Research
–– Research HypothesesResearch Hypotheses

•• Style ConsiderationsStyle Considerations
–– Author (Date)Author (Date)
–– Use of "et al."Use of "et al."
–– SubheadingsSubheadings

The introduction section should capture the reader’s attention and state the 
problem in the context of the scientific literature. The purpose sometimes 
incorporates a hypothesis statement. Some type of literature review is also 
provided in this section. There are conventions for citing this literature. In the 
human factors literature, one usually makes literature citations by first stating 
the last name of the author followed by the publication date in parentheses. 
If there are several authors the “et al.” statement can be used to eliminate 
repeating a list of authors after the first citation of all authors.

Subheadings can be used as a way of providing a road map for the reader. It 
is an easy way to guide the reader through the introduction from the 
literature review, to the purpose of the research, to the specific hypotheses 
being tested. Most journals allow several subheadings, and some journals 
allow the use of numbered subheadings to aid the reader. 
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1.7.2.2. Method1.7.2.2. Method1.7.2.2. Method

•• Key TopicsKey Topics
–– SubjectsSubjects
–– InstructionsInstructions
–– ProceduresProcedures
–– EquipmentEquipment
–– TaskTask
–– Experimental DesignExperimental Design

•• Style ConsiderationsStyle Considerations
–– Ordering of TopicsOrdering of Topics
–– SubheadingsSubheadings
–– Level of DetailLevel of Detail

The method section should provide the reader with enough information to 
replicate the study. If there is not space for a detailed description, at least the 
critical aspects of the method should be presented. Some key topics on the 
method section are subjects, instructions, procedures, equipment, tasks, and 
experimental design.

The ordering of various topics in the method section is different for each 
report. Look for a good logical order for telling a scientific story. If one has to 
use words such as “to be discussed later” or “as stated earlier”, they are 
indications that the order is incorrect. The report should flow naturally. 
Subheadings can help guide the reader through the various components of 
the method section. The level of detail will depend on the study and space 
restrictions presented in publication guidelines.
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1.7.2.3. Results1.7.2.3. Results1.7.2.3. Results

•• Key TopicsKey Topics
–– Dependent VariablesDependent Variables
–– Data ResultsData Results
–– Statistical AnalysesStatistical Analyses

–– Primary AnalysesPrimary Analyses
–– Secondary AnalysesSecondary Analyses

•• Style ConsiderationsStyle Considerations
–– Organization is CriticalOrganization is Critical

–– Integration NOT ListingIntegration NOT Listing
–– Group by Dependent VariablesGroup by Dependent Variables
–– Tables and FiguresTables and Figures

The results section should tell the reader what the dependent variables are, 
the measures taken while collecting the data, and the actual results. It 
should also include a summary of statistical analyses. The results are 
different from the statistical analyses. The results are stated descriptively in 
terms of means and variances of the treatment conditions; whereas, 
statistical analyses provide the tests of differences among the results. The 
actual differences stated in quantitative values (e.g., means) should be 
provided for all statistical tests to aid in the interpretation of the results. 
Statistical analyses can be divided into primary and secondary analyses. 
The primary analyses are those conducted on the dependent variables 
collected in the experiment, and the secondary analyses are conducted on 
follow-up data and questionnaires. 

Organization of the results section is critical. Integrate the results into logical 
groupings. Just listing results can make this section boring and confusing to 
the reader. A common way to group results is by dependent variables. 
Another way to organize is around primary results and secondary results. 
Tables and figures should be used to make it easier for the reader to 
understand the results. The text should enhance, not repeat, the figure or 
table information. Remember, some publications restrict the number of 
tables and figures that can be used. 
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1.7.2.4. Discussion1.7.2.4. Discussion1.7.2.4. Discussion

•• Key TopicsKey Topics
–– Interpretation of ResultsInterpretation of Results

–– Purpose of StudyPurpose of Study
–– Research HypothesesResearch Hypotheses
–– HF Methods/Theory ImplicationsHF Methods/Theory Implications
–– HF Design ImplicationsHF Design Implications

–– Alternative ExplanationsAlternative Explanations
–– Relationship to Existing LiteratureRelationship to Existing Literature
–– Future Research ImplicationsFuture Research Implications
–– Summary and ConclusionsSummary and Conclusions

•• Style ConsiderationsStyle Considerations
–– IntegrationIntegration
–– Relate to IntroductionRelate to Introduction
–– Provide WrapProvide Wrap--upup

The discussion section should include experimenter interpretation of the 
results. Interpretations can be supported by the existing scientific literature, 
and references should be made where appropriate. Refer back to the 
purpose, problem, method, and results for implications. Also include 
alternative explanations of the results. These can lead to future research 
implications. Stating some conclusions at the end can be an effective way to 
wrap up the discussion section. In human factors research, a conclusion 
may also result in the statement of design guidelines based on the results of 
the experiment.

Usually one should keep the results and discussion sections separate. In a 
very complex experiment one might find a combined results and discussion 
section appropriate for improved communication to the reader. Remember 
that combining results and discussion also combines objective results with 
experimenter opinions. Style is based on how best to integrate the 
discussion. Subheadings can be used to aid in this integration. The scientific 
story is always a closed-loop story that should refer back to the purpose as 
stated in the introduction. Consequently, one should provide a wrap-up 
paragraph or sentence to avoid an abrupt ending. 
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1.7.3. Additional Considerations1.7.3. Additional Considerations1.7.3. Additional Considerations

•• Ethics of AuthorshipEthics of Authorship
•• Other Relevant ComponentsOther Relevant Components

–– Cover PageCover Page
–– Table of ContentsTable of Contents
–– List of TablesList of Tables
–– List of FiguresList of Figures
–– AbstractAbstract
–– Executive SummaryExecutive Summary
–– AcknowledgementsAcknowledgements
–– ReferencesReferences

•• Manual of StyleManual of Style

The ethics of authorship are difficult. Usually authorship depends upon 
contributions to the actual scientific report writing, and the order of 
authorship reflects the level of written contribution. However, this does not 
always hold. There is no simple answer for authorship, and every researcher 
should develop personal guidelines for this decision.

Other components of scientific reports may include a cover page, table of 
contents, list of tables, list of figures, abstract, executive summary, 
acknowledgements, and references depending on publication guidelines. For 
example, an abstract is quite useful in drawing attention to the report and in 
referencing it. Executive summaries are a four or five page summary of a 
long and detailed report. One should always try to include an 
acknowledgement section. This section recognizes others such as sponsors, 
software programmers, etc. who helped in the research but did not actually 
write the report. Finally, the reference list is important so that readers can 
refer to the other related articles.

The appropriate manual of style should always be considered in preparing a 
scientific publication. Human factors researchers generally use the American 
Psychological Association (APA) Manual of Style that is discussed by Martin 
(2004).
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1.8. Summary - Martin's Critical Questions1.8. Summary 1.8. Summary -- Martin's Critical QuestionsMartin's Critical Questions

•• Does my experiment satisfy ethical concerns?Does my experiment satisfy ethical concerns?
•• How many subjects do I need?How many subjects do I need?
•• Should I run subjects individually or in groups?Should I run subjects individually or in groups?
•• How long will my experiment take?How long will my experiment take?
•• Do I need to set subject restrictions?Do I need to set subject restrictions?
•• Should I set any a priori criteria for eliminating Should I set any a priori criteria for eliminating 

subjects?subjects?
•• Can I operationally define all my variables?Can I operationally define all my variables?
•• Have I arranged for any equipment or materials Have I arranged for any equipment or materials 

needed?needed?
•• Do I know how I will analyze my data?Do I know how I will analyze my data?
•• How will I interpret the possible outcomes of my How will I interpret the possible outcomes of my 

experiment?experiment?

Martin (2004) on pp. 233-242 discusses each of these critical questions to 
ask oneself before data collection. Experimenters should develop a similar 
checklist before collecting data that is tailored to their research problem 
area.
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1.8. Summary - Keep a Notebook!1.8. Summary 1.8. Summary -- Keep a Notebook!Keep a Notebook!

•• Research IdeasResearch Ideas
•• Research Literature SummaryResearch Literature Summary
•• Checklist of ProceduresChecklist of Procedures
•• Notes on Data CollectionNotes on Data Collection
•• Research ImplicationsResearch Implications

Keep a research notebook! This is one of the most important aspects of 
research, like, pretesting, that is often overlooked. Several items might be 
included in a researcher’s notebook. It might include research ideas that 
could lead to future related experiments. A research literature summary 
should be kept including the complete reference citation. Notes may also be 
used to develop a checklist of procedures before data collection.

The experimenter should make notes during data collection to document 
possible outliers and unusual circumstances such as equipment failures that 
could affect the results. While collecting data, the researcher should keep 
notes on possible outcomes and implications for interpreting the results. One 
should be compulsive in keeping notes on items that may be difficult to 
remember. Taking notes throughout the research process can facilitate 
writing the subsequent research report.
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1.8. Summary - Research Process1.8. Summary 1.8. Summary -- Research ProcessResearch Process

STAGE 1
DEFINE

STAGE 2
PLAN

STAGE 3
CONDUCT

STAGE 5
INTERPRET

STAGE 4
ANALYZE

Develop
Idea

Review
Literature

State
Problem

Develop
Hypotheses

Define
Variables

Design
Experiment

Define
Controls

Develop
Apparatus

Define
Procedures

Select
Subjects

Pretest
Experiment

Collect
Data

Reduce
Data

Calculate
Statistics

Estimate
Parameters

Test
Hypotheses

Draw
Inferences

Generalize
Results

Report
Experiment

Reprinted from Williges (1995) by Permission

By way of summarizing the research process, refer once again to the five 
stage research process diagram developed by Williges (1995). (This figure is 
reprinted by permission of Person Education, Inc., Upper Saddle River, New 
Jersey.) Notice that it is a closed-loop process involving many considerations 
besides the critical items covered in this topic. New research implications 
from the results of one experiment can lead to restarting the research 
process on a related problem.
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1.9. Supplemental Readings1.9. Supplemental Readings1.9. Supplemental Readings

REFERENCEREFERENCE
GlinerGliner & Morgan (2000)& Morgan (2000)
Martin (2004)Martin (2004)
Williges (1995)Williges (1995)

SECTIONSECTION
Chapter 4, 22Chapter 4, 22
Chapters 1Chapters 1--8, 118, 11--1313
Entire ArticleEntire Article

The Martin (2004) reference is specifically directed toward conducting 
research on human subjects. It is a highly entertaining treatment of the basic 
components involved in conducting research and is highly recommended for 
human factors researchers who have had little or no experience in collecting 
data from human subjects. The Williges (1995) book chapter expands on the 
various concepts depicted in the research process flow diagram of the five 
stages of research as presented in this reference material. Gliner and 
Morgan (2000) discuss, the choice of research questions and variables, the 
appropriate treatment of human subjects, and ethical issues related to 
authorship.
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This topic is an introduction to experimental design. It begins with an 
overview of various conditions that can threaten the validity of the results of 
experiments and then offers a general notation for designating designs. Two 
general experimental design alternatives are presented, and the case is 
developed for always choosing randomized experimental designs, if 
possible.

Topic 2. Experimental DesignsTopic 2. Experimental DesignsTopic 2. Experimental Designs

2.1. Introduction2.1. Introduction
2.1.1. Threats to Validity2.1.1. Threats to Validity
2.1.2. Quantitative Research Approach2.1.2. Quantitative Research Approach

2.2. Experimental Design Alternatives2.2. Experimental Design Alternatives
2.2.1. Experimental Design Notation2.2.1. Experimental Design Notation
2.2.2. Quasi2.2.2. Quasi--Experimental DesignsExperimental Designs
2.2.3. Randomized Experimental Designs2.2.3. Randomized Experimental Designs

2.3. Summary2.3. Summary
2.4. Supplemental Readings2.4. Supplemental Readings



Human Factors Experimental Design and Analysis Reference

46

2.1. Introduction2.1. Introduction2.1. Introduction

•• Characteristics of Human Factors ExperimentCharacteristics of Human Factors Experiment
–– Based on Small Group of SubjectsBased on Small Group of Subjects
–– Random Assignment to Treatment ConditionsRandom Assignment to Treatment Conditions
–– Controls Present in ExperimentControls Present in Experiment

•• Two Major ConstraintsTwo Major Constraints
–– Unavailability of SubjectsUnavailability of Subjects

–– Single Subject InvestigationsSingle Subject Investigations
–– NonNon--Random Assignment of SubjectsRandom Assignment of Subjects

–– Training ResearchTraining Research
•• ImplicationsImplications

–– Confounding PossibleConfounding Possible
–– Interpretation and Generalization LimitedInterpretation and Generalization Limited

Human factors experiments generally are characterized by having a small 
group of subjects, random assignment of subjects to treatment conditions 
tested in the experiment, and control of other factors (i.e., instructions, 
testing times, etc.) that might influence the data.

Two common constraints that often occur in human factors experiments are 
unavailability of a large sample of subjects and the inability to randomly 
assign subjects to treatment conditions due to real world settings. For 
example, subjects for a training research experiment cannot be randomly 
assigned to treatment conditions since they are already assigned to classes 
that cannot be divided. These constraints lead to confounding which can limit 
interpretation and generalization. This reference material provides some 
design alternatives to deal with these two constraints.
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2.1. Introduction2.1. Introduction2.1. Introduction

•• 2.1.1. Threats to Validity2.1.1. Threats to Validity
•• 2.1.2. Quantitative Research Approach2.1.2. Quantitative Research Approach

Various factors can limit interpretation of data from experimental designs, 
and steps can be taken to help control these threats to validity. These 
controls require manipulation of conditions through experimental designs 
yielding quantitative results rather than passive observations.
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2.1.1. Threats to Validity2.1.1. Threats to Validity2.1.1. Threats to Validity

•• Cook and Campbell (1979) ThreatsCook and Campbell (1979) Threats
–– Statistical Conclusion ValidityStatistical Conclusion Validity

–– Power Analysis, Practical SignificancePower Analysis, Practical Significance
–– Internal ValidityInternal Validity

–– Main Effects of Extraneous Variables Are Main Effects of Extraneous Variables Are 
UnconfoundedUnconfounded With TreatmentWith Treatment

–– External ValidityExternal Validity
–– Interactions with TreatmentInteractions with Treatment
–– GeneralizabilityGeneralizability of Resultsof Results

–– Construct ValidityConstruct Validity
–– Effect Only Related to TreatmentEffect Only Related to Treatment
–– Placebo and Hawthorne EffectsPlacebo and Hawthorne Effects

Cook and Campbell (1979) describe four specific threats to the validity of 
interpretation of data collected from experiments in Chapter 2. Shadish, 
Cook, and Campbell (2002) provide an extended discussion of how these 
threats to validity affect causal inferences based on research results in 
Chapters 2 and 3.

Statistical conclusion validity deals with the power of the test and the 
practical significance of the test. Statistical power is the ability to find a true 
difference if a true difference exists. Experimenters strive to use the most 
powerful tests possible for their research. Generally, a randomized 
experimental design provides data for the most powerful test. Just because a 
result is statistically significant, it may have no practical significance in terms 
of interpreting the results in real-world applications. Human factors 
researchers are usually interested in statistical differences that also have 
practical significance.

Internal validity deals with keeping main effects of the experiment separate 
from other confounding factors that may affect interpretation. External 
validity is the interaction of these confounding factors with the factors 
manipulated in the experiment. That interaction may affect the 
generalizability of the results. Construct validity is compromised when 
another factor such as previous testing is really causing the difference, not 
the construct being tested. Of these four types of threats to validity the two 
most important in designing an experiment are internal and external threats.
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2.1.1. Threats to Validity (Cont’d)2.1.1. Threats to Validity (Cont2.1.1. Threats to Validity (Cont’’d)d)

•• Internal Validity EffectsInternal Validity Effects
–– HistoryHistory
–– MaturationMaturation
–– TestingTesting
–– InstrumentationInstrumentation
–– Statistical RegressionStatistical Regression
–– SelectionSelection
–– MortalityMortality

•• External Validity EffectsExternal Validity Effects
–– Interaction of TestingInteraction of Testing
–– Interaction of SelectionInteraction of Selection
–– Interaction of Experimental ArrangementInteraction of Experimental Arrangement
–– Multiple Treatment InteractionsMultiple Treatment Interactions

Cook and Campbell (1979) describe six internal threats that can confound 
results. For example, mortality occurs if a subject drops out of the 
experiment before completion. Certain groups of people could become bored 
or frustrated with the test and drop out. Other internal threats are history, 
maturation, testing, instrumentation, and statistical regression. See pages 
50-58 of Cook and Campbell (1979) for a detailed discussion of these 
internal threats.

External validity threats are the interactions of the internal validity threats 
with the treatment conditions of interest. Interactions of testing, selecting, 
and experimental arrangement are common examples of external threats.  
Experimenters should consider the possible internal and external threats 
when choosing an experimental design in order to improve interpretations 
and generalizability.
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2.1.2 Quantitative Research Approach2.1.2 Quantitative Research Approach2.1.2 Quantitative Research Approach

•• GlinerGliner and Morgan (2000) Classificationand Morgan (2000) Classification
–– DescriptiveDescriptive
–– AssociationalAssociational
–– ComparativeComparative
–– QuasiQuasi--ExperimentalExperimental
–– Randomized ExperimentalRandomized Experimental

•• Emphasis on Experimental DesignsEmphasis on Experimental Designs
–– Manipulation of ConditionsManipulation of Conditions
–– Statistical ComparisonsStatistical Comparisons
–– Causative InferencesCausative Inferences

Gliner and Morgan (2000) in Chapter 5 classify research into five different 
quantitative approaches that explore relationships among variables. These 
approaches vary in purpose and criteria required in using each approach. 
Descriptive and associational approaches are not concerned with causative 
inferences. The comparative approach is concerned primarily with
differences between groups. Both the quasi-experimental and the 
randomized experimental approaches are concerned with causality.

Since human factors researchers are primary concerned with comparing 
conditions to make causative inferences, they usually employ some type of 
experimental design in conducting their research. These designs are used to 
manipulate variables of interest, collect quantitative data for statistical 
analysis, and control confounding variables as much as possible that might 
confound causative interpretations.
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2.2. Experimental Design Alternatives2.2. Experimental Design Alternatives2.2. Experimental Design Alternatives

•• 2.2.1. Experimental Design Notation2.2.1. Experimental Design Notation
•• 2.2.2. Quasi2.2.2. Quasi--Experimental DesignsExperimental Designs
•• 2.2.3. Randomized Experimental Designs2.2.3. Randomized Experimental Designs

Cook and Campbell (1979) wrote the definitive treatment on quasi-
experimental designs. Their design notation is used to compare two general 
classes of experimental designs: quasi-experimental designs and 
randomized experimental designs. Various considerations are presented for 
both types of experimental design in order to demonstrate the strength of 
randomized designs that are preferred in human factors research.
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2.2.1. Experimental Design Notation2.2.1. Experimental Design Notation2.2.1. Experimental Design Notation

•• Cook and Campbell (1979) NotationCook and Campbell (1979) Notation
–– X = Treatment ConditionsX = Treatment Conditions
–– O = Observation or MeasurementO = Observation or Measurement
–– R = Random Assignment to Separate GroupsR = Random Assignment to Separate Groups
–– Parallel RowsParallel Rows

–– UndashedUndashed = Equated by Random Assignment= Equated by Random Assignment
–– Dashed = Not Equated by Random Dashed = Not Equated by Random 

AssignmentAssignment
–– Vertical Arrangement = Simultaneous Vertical Arrangement = Simultaneous 

PresentationPresentation
–– LeftLeft--ToTo--Right = Temporal OrderRight = Temporal Order

•• Example:  OExample:  O11 X   OX   O22 OO33

Cook and Campbell (1979) use the following notation for laying out 
experimental designs. An “X” is a treatment condition, or an independent 
variable. An “O” is an observation, measurement, or a dependant variable. 
The “R” designates random assignment of subjects to separate groups.

Various treatment combinations are presented in parallel rows. If there are 
no dashes between the rows, then subjects are randomly assigned. If there 
are dashes between the rows, then the subjects are not equated by random 
assignments. Everything that appears in the same column is presented 
simultaneously. Temporal order goes from left to right.

This notation is used to describe the designs listed throughout the remainder 
of this topic. For example, designation of a treatment condition in a training 
experiment might be:
O1 X   O2 O3

where O1 is a pretest measure before training followed by administration of 
the experimental training condition, X, then performance on the first practice 
trial, O2, and finally performance on the second practice trial, O3.
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2.2.2. Quasi-Experimental Designs2.2.2. Quasi2.2.2. Quasi--Experimental DesignsExperimental Designs

•• Design CharacteristicDesign Characteristic
–– Group of Subjects Rather Than Single SubjectGroup of Subjects Rather Than Single Subject
–– NonNon--Random Assignment of SubjectsRandom Assignment of Subjects

•• Two Major Design CategoriesTwo Major Design Categories
–– Nonequivalent Control Group DesignsNonequivalent Control Group Designs
–– Interrupted Time Series DesignsInterrupted Time Series Designs

•• Overview of Basic Designs and AlternativesOverview of Basic Designs and Alternatives
•• Data Analyses Often ComplicatedData Analyses Often Complicated

–– See Cook and Campbell (1979)See Cook and Campbell (1979)
–– Gain ScoresGain Scores
–– Time Series AnalysesTime Series Analyses

Quasi-experimental designs usually use a sample of subjects rather than a 
single subject, include a treatment condition, and may include control 
conditions. The key characteristic of a quasi-experimental design, however, 
is the non-random assignment of subjects to treatment conditions. If one 
could randomly assign subjects to treatment conditions, then one would 
have a randomized experimental design.

The two major categories of quasi-experimental designs are nonequivalent 
control group and interrupted time series designs. If one uses a non-
equivalent control group design, one would often use gain scores in the 
analysis. If one chooses an interrupted time series design, one would use a 
time series analysis. Only a few examples of quasi-experimental designs 
presented by Cook and Campbell (1979) and Shadish, Cook, and Campbell 
(2002) that are useful in human factors research are presented in this 
reference. No discussion of detailed data analysis techniques for any of 
these design examples will be provided since the emphasis of this reference 
material is on true experimental designs.
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•• OneOne--Shot, Case StudyShot, Case Study
–– DesignDesign

–– X   OX   O
–– ConsiderationsConsiderations

–– No ControlsNo Controls
–– All Threats to Validity ExistAll Threats to Validity Exist
–– Naturalistic ObservationsNaturalistic Observations
–– Situation SpecificSituation Specific
–– Special PopulationsSpecial Populations
–– Provides Only Preliminary InformationProvides Only Preliminary Information

2.2.2.1. Single Group Designs2.2.2.1. Single Group Designs2.2.2.1. Single Group Designs

Shadish, Cook, and Campbell (2002) in their Chapter 4 consider 
experimental designs that lack pretest observations or do not have a control 
condition as a separate group of quasi-experimental designs. Gliner and 
Morgan (2000) consider these single group designs as weak quasi-
experimental designs because many internal and external threats to validity 
exist.

A classic single group design is commonly known as the case study or the 
one shot design. All of the internal and external threats to validity exist. This 
design is usually characterized by naturalistic or direct observation, O, in a 
very specific situation, X. A case study is used when experimental variables 
cannot be manipulated in the real world. In human factors research, a case 
study involving field operation can provide preliminary data for designing a 
subsequent randomized experiment. 
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•• Pretest, Posttest DesignPretest, Posttest Design
–– DesignDesign

–– OO11 X   OX   O22

–– ConsiderationsConsiderations
–– All External Threats and Some Internal All External Threats and Some Internal 

Threats to Validity ExistThreats to Validity Exist
–– Difficult to Interpret Because No Control Difficult to Interpret Because No Control 

Group ExistsGroup Exists

2.2.2.1. Single Group Designs (Cont’d)2.2.2.1. Single Group Designs (Cont2.2.2.1. Single Group Designs (Cont’’d)d)

Another type of single group quasi-experimental design is the pretest, 
posttest design. First, baseline data, O1, are collected before a treatment 
condition, X. Then, more data, O2, are collected after the treatment is given. 
For example, such a design might be used in field studies dealing with 
motion sickness. The before and after treatment data are compared to 
document the treatment effect. Since there is no control condition, it is 
difficult to determine whether the difference is due to the treatment or just 
practice. 
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•• Baseline DesignBaseline Design
–– DesignDesign

–– OO11 OO22 X   OX   O33 OO44 (X)  O(X)  O55 OO66

–– ConsiderationsConsiderations
–– Transition Steady StateTransition Steady State
–– Easy to InterpretEasy to Interpret
–– Ordering EffectsOrdering Effects
–– Capitalizes on Small EffectsCapitalizes on Small Effects
–– SingleSingle--Case Designs (Barlow & Case Designs (Barlow & HersenHersen, 1984), 1984)

2.2.2.1. Single Group Designs (Cont’d)2.2.2.1. Single Group Designs (Cont2.2.2.1. Single Group Designs (Cont’’d)d)

A baseline design is another type of single group design. In this research 
design several observations, O1 and O2, are made before the treatment, X, 
followed by several observations, O3 and O4, after the treatment. Then there 
may also be a period where nothing happens shown by “(X)” followed by 
more observations, O5 and O6.

A baseline study allows one to analyze transitions from steady state 
performance. One hopes to see a break, or a jump, in performance after the 
treatment occurs. This design is often used to control ordering effects. Since 
there is no control condition, one must infer the control condition by way of 
multiple observations on a single group. The Barlow and Hersen (1984) text 
on single-case designs shows various alternative baseline designs that may
be useful to human factors researchers who need to conduct single-case 
studies. 
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•• Basic Design:  Untreated Control Group with Basic Design:  Untreated Control Group with 
Pretest and PosttestPretest and Posttest
–– DesignDesign

–– OO11 X   OX   O22

–– -- -- -- -- -- -- -- --
–– OO11 OO22

–– Ideal OutcomeIdeal Outcome

2.2.2.2. Nonequivalent Control Group Designs2.2.2.2. Nonequivalent Control Group Designs2.2.2.2. Nonequivalent Control Group Designs

The basic nonequivalent control group design is called untreated control 
group with pretest and posttest, because the control group only has a pretest 
observation, O1 and a posttest observation, O2, with no treatment, X, as 
shown on the slide. The key difference between this design and a
randomized experimental design is non-random assignment of subjects as 
indicated by the dashed line shown on this slide.

The ideal outcome according to Cook and Campbell (1979) is performance 
improvement from pretest to posttest only in the experimental condition and 
not in the control condition as shown on the slide. If this result does not 
occur, interpretation is difficult since the non-significant effect could 
represent internal threats resulting from non-random assignment of subjects. 
In general, quasi-experimental designs yield straightforward interpretations if 
the expected outcome occurs, but non-expected outcomes may be difficult to 
interpret.
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•• Untreated Control Group with Proxy PretestUntreated Control Group with Proxy Pretest
–– DesignDesign

–– OOA1A1 X   OX   OB2B2

–– -- -- -- -- -- -- -- -- -- --
–– OOA1A1 OOB2B2

–– ConsiderationsConsiderations
–– A and B are Different Tests, But CorrelatedA and B are Different Tests, But Correlated
–– Cannot Use Equivalent Versions of PosttestCannot Use Equivalent Versions of Posttest
–– Pretest Measure May Already ExistPretest Measure May Already Exist
–– Proxy Pretest, A, May Have Low Correlation to BProxy Pretest, A, May Have Low Correlation to B

2.2.2.2. Nonequivalent Control Group Designs 
(Cont’d)

2.2.2.2. Nonequivalent Control Group Designs 2.2.2.2. Nonequivalent Control Group Designs 
(Cont(Cont’’d)d)

A variation to the basic nonequivalent control group design is the untreated 
control group with a proxy pretest, OA1. This alternative is useful when 
equivalent tests cannot be generated for pre-testing and post-testing. As 
shown on the slide, each group gets both tests A (0A1) and B (0B2). Although 
tests A and B are different, they are correlated. If the two tests were not 
significantly correlated, then test A might not be an appropriate pretest for 
Test B.
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•• Nonequivalent Dependent Variable DesignNonequivalent Dependent Variable Design
–– DesignDesign

–– OO1A1A X    OX    O2A2A

–– -- -- -- -- -- -- -- -- -- -- --
–– OO1B1B (X)   O(X)   O2B2B

–– ConsiderationsConsiderations
–– Different Measures on a Different Measures on a Single Group of SubjectsSingle Group of Subjects
–– Assumes B is Not Affected by Treatment, XAssumes B is Not Affected by Treatment, X
–– Can Be Extended to Additional Tests, C ... NCan Be Extended to Additional Tests, C ... N
–– Tests Must be Conceptually RelatedTests Must be Conceptually Related
–– Can Use with Other DesignsCan Use with Other Designs

2.2.2.2. Nonequivalent Control Group Designs 
(Cont’d)

2.2.2.2. Nonequivalent Control Group Designs 2.2.2.2. Nonequivalent Control Group Designs 
(Cont(Cont’’d)d)

Another alternative to the basic quasi-experimental design is to use a 
nonequivalent dependent variable design. Two different conceptually related 
tests A and B, such as verbal comprehension and reading speed, are 
obtained from only one group of subjects in both the pretest and the posttest. 
Only test A should be affected by the treatment condition X; whereas test B 
should not be as denoted by “(X)” on the slide.

This is a useful alternative when subject availability is limited and not 
randomly assigned as denoted by the dashed line on the slide. 
Nonequivalent dependent variables also can be used in conjunction with 
other quasi-experimental designs to control for retesting effects.
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•• Reversed Treatment with Pretest/PosttestReversed Treatment with Pretest/Posttest
–– DesignDesign

–– OO11 X+   OX+   O22

–– -- -- -- -- -- -- -- -- --
–– OO11 XX-- OO22

–– ConsiderationsConsiderations
–– Construct Must Have Opposite EffectsConstruct Must Have Opposite Effects
–– Compelling Results if as PredictedCompelling Results if as Predicted

2.2.2.2. Nonequivalent Control Group Designs 
(Cont’d)

2.2.2.2. Nonequivalent Control Group Designs 2.2.2.2. Nonequivalent Control Group Designs 
(Cont(Cont’’d)d)

A reversed treatment with pretest/posttest is a third alternative to the basic 
quasi-experimental design. With this alternative, two different treatments are 
tested that have predicted opposite performance effects (i.e., X+ and X-).

If 02 performance improves as compared 01 in one condition (X+) and 
deteriorates in the other condition (X-) as predicted, then the results are 
compelling. However, if the results are not as predicted, the outcome can be 
due either to no treatment effect or to validity threats resulting from non-
random assignment of subjects to the two conditions as indicted by the 
dashed line on the slide.
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2.2.2.2. Nonequivalent Control Group Designs 
(Cont’d)

2.2.2.2. Nonequivalent Control Group Designs 2.2.2.2. Nonequivalent Control Group Designs 
(Cont(Cont’’d)d)

•• Cohort DesignsCohort Designs
–– DesignDesign

–– OO11

–– = = = = = == = = = = =
–– X   OX   O22

–– ConsiderationsConsiderations
–– = = = Equals = = = Equals NonrandomlyNonrandomly Assigned Cohort Assigned Cohort 

GroupsGroups
–– Cohorts Are Groups of Subjects That Follow Cohorts Are Groups of Subjects That Follow 

Each Other in TimeEach Other in Time
–– Cohorts Must Be ComparableCohorts Must Be Comparable
–– Useful With Different Training ClassesUseful With Different Training Classes

Cohort designs use non-randomly assigned cohort groups. Cohort groups 
are nonrandom groups of subjects that have many similarities and are 
comparable, but follow each other in time. For example, different training 
classes of basic military recruits are cohorts, because selection criteria result 
in many similarities among recruits.

Cohort designs are particularly useful in training experiments where subjects 
cannot be randomly selected for different treatment conditions but must be 
assigned by classes that follow each other in time. As shown on the slide the 
first cohort group is observed, O1, and provides the pretest score for a 
second cohort group that follows the first group and receives a treatment, X, 
followed by a posttest, O2.
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2.2.2.3. Regression-Discontinuity Designs2.2.2.3. Regression2.2.2.3. Regression--Discontinuity DesignsDiscontinuity Designs

•• RegressionRegression--Discontinuity DesignDiscontinuity Design
–– DesignDesign

–– OO11(C)   X   O(C)   X   O22

–– ------------------------------------
–– OO11(C)        O(C)        O22

–– ConsiderationsConsiderations
–– OO11 is a Continuous Pretest Measureis a Continuous Pretest Measure
–– X Presentation Depends on Cutoff Value (C) of OX Presentation Depends on Cutoff Value (C) of O11

–– OO11 and Oand O22 Must be Highly CorrelatedMust be Highly Correlated
–– Assumes Linear SlopesAssumes Linear Slopes

Shadish, Cook, and Campbell (2002) devote an entire chapter, Chapter 7, to 
regression discontinuity designs as quasi-experimental designs that are 
completely separate from nonequivalent control group designs due to the 
unique establishment of the control group by the researcher. The control 
group is created based on a cutoff value (C) of the continuous pretest 
measure, O1, set by the experimenter. The treatment, X, is only presented to 
subjects who score above the C value of O1. If subjects score at or below the 
C value on O1, they become members of the control group and do not 
receive the treatment.

The O1 and O2 observations are highly correlated resulting in a linear 
increase when they are plotted together for both the treatment and non-
treatment group of subjects. The effect of the treatment, however, should 
result in a jump, or discontinuity, in the linear increase between O1 and O2
only for the treatment group and not the control group. The amount of 
discontinuity is interpreted as the treatment effect.
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2.2.2.4. Interrupted Time Series Designs2.2.2.4. Interrupted Time Series Designs2.2.2.4. Interrupted Time Series Designs

•• Basic Design:  Simple Interrupted Time Basic Design:  Simple Interrupted Time 
SeriesSeries
–– DesignDesign

–– OO11 OO22 OO33 OO44 X  OX  O55 OO66 OO77 OO88

–– ConsiderationsConsiderations
–– Treatment, X, Interrupts Series of Treatment, X, Interrupts Series of 

Observations, O'sObservations, O's
–– Need Only One GroupNeed Only One Group
–– Could Use Archival DataCould Use Archival Data
–– Directly Measures Maturation EffectsDirectly Measures Maturation Effects

An interrupted time series design is another major class of quasi-
experimental designs that are used when many observations can be taken 
over a period of time on a group of subjects. These observations may exist 
as archival data that are collected on a regular basis. The more observations 
that can be collected before and after the treatment, the more stable and 
robust the effects. As shown on this slide, the treatment, X, is presented to 
one group of subjects at a certain point in the pretest observation sequence 
(i.e., O1 to O4) to “interrupt” the time series of posttest observations (i.e., O5
to O8).

In the human factors literature there are very few examples of interrupted 
time series designs. Consequently, only two alternatives to the basic 
interrupted times series design are presented to show various possible 
quasi-experimental design alternatives. See Cook and Campbell (1979), 
Chapter 5, and Shadish, Cook, and Campbell (2002), Chapter 6, for a 
complete discussion of the various alternatives.
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•• Nonequivalent, NoNonequivalent, No--Treatment Control Treatment Control 
Group, Interrupted Time SeriesGroup, Interrupted Time Series
–– DesignDesign

–– OO11 OO22 OO33 X  OX  O44 OO55 OO66

–– -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
–– OO11 OO22 OO33 OO44 OO55 OO66

–– ConsiderationsConsiderations
–– Good Control for History EffectsGood Control for History Effects
–– Groups Not Directly ComparableGroups Not Directly Comparable
–– Cannot Generalize Beyond Times ObservedCannot Generalize Beyond Times Observed

2.2.2.4. Interrupted Time Series Designs (Cont’d)2.2.2.4. Interrupted Time Series Designs (Cont2.2.2.4. Interrupted Time Series Designs (Cont’’d)d)

The basic interrupted time series used in quasi-experiments is the non-
equivalent, no treatment control group design. Each group consists of non-
randomly assigned subjects as denoted by the dashed horizontal line. The 
first group receives the treatment, X, during the observation series, O1 to O6; 
and the second group serves as the control that does not receive the 
treatment during the observation series.

This design is the time series equivalent to the basic quasi-experimental 
design. Comparison between the two groups is made in terms of measures 
related to the slopes and intercepts of regression analyses. Box and Jenkins 
(1976) in Chapter 7 and Cook and Campbell (1979) in Chapter 6 provide 
details on conducting time series analyses.
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•• Nonequivalent Dependent Variables, Nonequivalent Dependent Variables, 
Interrupted Time SeriesInterrupted Time Series
–– DesignDesign

–– OO1A1A OO2A2A OO3A3A X    OX    O4A4A OO5A5A OO6A6A

–– OO1B1B OO2B2B OO3B3B (X)  O(X)  O4B4B OO5B5B OO6B6B

–– ConsiderationsConsiderations
–– One Group of Subjects, Two Dependent One Group of Subjects, Two Dependent 

VariablesVariables
–– "A" Affected by Treatment, "B" Not Affected "A" Affected by Treatment, "B" Not Affected 

by Treatmentby Treatment
–– Construct ValidityConstruct Validity
–– Knowledge of Dependent Variable Effects Knowledge of Dependent Variable Effects 

NecessaryNecessary

2.2.2.4. Interrupted Time Series Designs (Cont’d)2.2.2.4. Interrupted Time Series Designs (Cont2.2.2.4. Interrupted Time Series Designs (Cont’’d)d)

The time series equivalent to the non-equivalent dependent variable quasi-
experimental design alternative is shown in this slide. Note that this design 
uses only one group of subjects who are measured repeatedly on both A 
and B. The treatment affects only measure A. Measure B serves as the 
control measure, because it is not affected by the treatment as shown by 
“(X)” on the slide. The two metrics OA and OB must be conceptually related 
(i.e., measures of two verbal and motor skills) for construct validity even 
though only one is affected by the treatment.
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•• Switching Replications, Interrupted Time SeriesSwitching Replications, Interrupted Time Series
–– DesignDesign

–– OO11 OO22 OO33 X  OX  O44 OO55 OO66 OO77 OO88 OO99

–– -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
–– OO11 OO22 OO33 OO44 OO55 OO66 X  OX  O77 OO88 OO99

–– ConsiderationsConsiderations
–– Analyze as Two Separate Nonequivalent Analyze as Two Separate Nonequivalent 

Control GroupsControl Groups
–– OO11...O...O66

–– OO44...O...O99

–– Each Group Serves as a Control for the OtherEach Group Serves as a Control for the Other
–– External Validity Enhanced With Two External Validity Enhanced With Two 

ComparisonsComparisons

2.2.2.4. Interrupted Time Series Designs (Cont’d)2.2.2.4. Interrupted Time Series Designs (Cont2.2.2.4. Interrupted Time Series Designs (Cont’’d)d)

The final interrupted time series alternative is the switching replications 
quasi-experimental design shown in this slide. Two groups of non-randomly 
assigned subjects are used. Each receives the treatment, X, but at different 
points in the time series. Consequently, two pairs of time series are 
compared as in the basic interrupted time series design.

The first pair of time series involves observations O1 to O6, and the second 
pair of time series involves observations O4 to O6 as shown on the slide. In 
one case, one group is the treatment condition but, in the other case, it 
becomes the control condition, thereby switching replications. This design 
alternative provides some external validity in terms of which group is the 
control and which is the experimental condition.
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2.2.3. Randomized Experimental Designs2.2.3. Randomized Experimental Designs2.2.3. Randomized Experimental Designs

•• DefinitionDefinition
–– Randomized experimental designs allow one to Randomized experimental designs allow one to 

make statistical inferences about population make statistical inferences about population 
parameters based on sample statistics providing parameters based on sample statistics providing 
underlying assumptions are met. These designs underlying assumptions are met. These designs 
control for various threats to validity.control for various threats to validity.

–– Key CharacteristicsKey Characteristics
–– Random Assignment of SubjectsRandom Assignment of Subjects
–– Statistical InferenceStatistical Inference
–– Controls Threats to ValidityControls Threats to Validity

A randomized experimental design includes control conditions and random 
assignment of subjects. These designs provide controls for various threats to 
validity and allow statistical inferences about population parameters based 
on sample statistics providing that certain assumptions are met. Conversely, 
quasi-experimental designs are hampered by internal and external threats to 
validity, because they do not have random assignment of subjects. 
Consequently, randomized experimental designs always provide the best 
design alternative and should be used whenever possible in human factors 
research.
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2.2.3. Randomized Experimental Designs (Cont’d)2.2.3. Randomized Experimental Designs (Cont2.2.3. Randomized Experimental Designs (Cont’’d)d)

•• Types of ControlTypes of Control
–– Independent, Dependent, and Nuisance Independent, Dependent, and Nuisance 

VariablesVariables
–– Replication under Identical ConditionsReplication under Identical Conditions
–– Equal Sample SizeEqual Sample Size
–– Error Reduction Among SubjectsError Reduction Among Subjects

–– Homogeneous SubjectsHomogeneous Subjects
–– Balancing Across SubgroupsBalancing Across Subgroups
–– Remove CovarianceRemove Covariance
–– RandomizationRandomization

•• Designs in Human FactorsDesigns in Human Factors
–– Analysis of Variance (ANOVA)Analysis of Variance (ANOVA)

Randomized experimental designs have several major characteristics. They 
are specified in terms of independent and dependent variables and provide 
controls for nuisance variables such as different experimenters, testing 
times, etc. Randomized experimental designs have replications under 
identical conditions for every subject. Equal sample sizes are used for 
robustness to violations of assumptions of statistical tests.

A way to control for variability among subjects is to have a homogeneous 
group of subjects. For example, balancing across experience level by 
experimental design can control for some of the subject variation. Randomly 
assigning subjects to treatment conditions is key to controlling subject 
variability and provides the major distinction between randomized and quasi-
experimental designs.

The randomized experimental designs most often in human factors research 
are ANOVA designs. The reason that ANOVA is the mostly used is that 
human factors research deals with many factors that occur simultaneously, 
and each factor has more than one level. The structure of the ANOVA 
design allows the researcher the ability to test a family of hypotheses on one 
data set. Consequently, the emphasis of this reference material is focused 
on basic and advanced ANOVA designs.
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2.3. Summary2.3. Summary2.3. Summary

•• Experimental Design AlternativesExperimental Design Alternatives
–– QuasiQuasi--Experimental DesignsExperimental Designs
–– Randomized Experimental DesignsRandomized Experimental Designs

•• ImplicationsImplications
–– True Experimental Designs Control All Four True Experimental Designs Control All Four 

Threats to ValidityThreats to Validity
–– Internal and External Threats are Most CriticalInternal and External Threats are Most Critical
–– Emphasis on Randomized Experimental DesignsEmphasis on Randomized Experimental Designs

By way of summary, there are two categories of experimental designs: 
quasi-experimental and randomized experimental designs that can provide 
quantitative data for statistical analyses leading to casual inferences. The 
major distinction between these two categories of experimental design is the 
ability to use random assignment of subjects to treatment conditions. If 
random assignment is not possible, then the researcher can only use a 
quasi-experimental design.

In terms of overall implications, randomized experimental designs can 
provide controls for all four threats to validity discussed by Cook and 
Campbell (1979). In choosing an experimental design alternative, one should 
concentrate on internal and external threats that may be present. 
Randomized experimental designs provide the best control for internal and 
external threats to validity. Consequently, the focus of this reference material 
will be on randomized experimental designs with an emphasis on ANOVA. 
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2.4. Supplemental Readings2.4. Supplemental Readings2.4. Supplemental Readings

REFERENCEREFERENCE
Barlow & Barlow & HersenHersen (1984)(1984)
Box & Jenkins (1976)Box & Jenkins (1976)
Cook & Campbell (1979)Cook & Campbell (1979)
GlinerGliner & Morgan (2000)& Morgan (2000)
Martin (2004)Martin (2004)
ShadishShadish, Cook, & Campbell (2002), Cook, & Campbell (2002)

SECTIONSECTION
Chapters 5Chapters 5--88
Chapters 4, 6, & 7Chapters 4, 6, & 7
Chapters 1Chapters 1--66
Chapters 5Chapters 5--88
Chapters 7, 8, & 10Chapters 7, 8, & 10
Chapters 1Chapters 1--77

Barlow and Hersen (1984) provide an extensive discussion of alternative 
baseline experiments. Cook and Campbell (1979) provide the classic 
textbook on quasi-experimental designs as well as provide an overview of 
gain score and time series analysis. Shadish, Cook, and Campbell (2002) 
provide an update to the classic Cook and Campbell (1979) text. Box and 
Jenkins (1976) provide comprehensive time series analysis procedures. 
Finally, both Gliner and Morgan (2000) and Martin (2004) provide a general 
overview of quasi-experimental and randomized experimental designs.
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The purpose of this topic is to summarize basic statistical concepts that are 
fundamental to experimental design. This reference material is not a tutorial 
on basic statistics. Rather, the material highlights and summarizes key 
statistical concepts. It is assumed that users of this reference material 
already have a background in introductory descriptive and inferential 
statistics. Consequently, this topic is designed as a review of basic concepts 
without providing detailed descriptions or mathematical derivations. Users 
should refer to a textbook on introductory statistics for details on the 
concepts summarized in this topic if they are not familiar with them.

The concepts of sampling distributions, the F-distribution, and statistical 
hypothesis testing are critical to understanding the experimental design 
topics covered in this reference. The user should review these topics 
carefully as well as refer to the supplemental readings for additional details 
on various topics.

Topic 3. Basic Statistical ConceptsTopic 3. Basic Statistical ConceptsTopic 3. Basic Statistical Concepts

3.1. Probability3.1. Probability
3.2. Random Sampling3.2. Random Sampling
3.3. Sampling Distributions3.3. Sampling Distributions
3.4. Statistical Estimation3.4. Statistical Estimation
3.5. Statistical Hypothesis Testing3.5. Statistical Hypothesis Testing
3.6. Two Sample t3.6. Two Sample t--TestsTests
3.7. Summary3.7. Summary
3.8. Supplemental Readings3.8. Supplemental Readings
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3.1. Probability3.1. Probability3.1. Probability

•• 3.1.1. Compositional Techniques3.1.1. Compositional Techniques
•• 3.1.2. Counting Techniques3.1.2. Counting Techniques

There are two techniques for determining mathematical and empirical values 
of probabilities, compositional and counting. The major components of each 
are reviewed since both are useful in experimental design.
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3.1. Probability (Cont’d)3.1. Probability (Cont3.1. Probability (Cont’’d)d)

•• Meaning of ProbabilityMeaning of Probability
–– MathematicalMathematical

–– Formal Postulates of Equally Likely and Formal Postulates of Equally Likely and 
Randomly Randomly Drawn Events, p(E)Drawn Events, p(E)

–– SubjectiveSubjective
–– Individual Meaning and InterpretationIndividual Meaning and Interpretation

–– EmpiricalEmpirical
–– Based on Relative FrequenciesBased on Relative Frequencies

p(E) = n/Np(E) = n/N
where,  n = sample points of interestwhere,  n = sample points of interest

N = total sample pointsN = total sample points

Probability is the basic structure of statistical analysis. There are three major 
definitions of probability, mathematical, subjective, and empirical. The 
mathematical definition provides formal postulates of equally likely and 
randomly drawn events, p(E). Subjective probability is the individual meaning 
and interpretation that one intuitively evaluates such as the probability of 
rain. Bayesian statistics, which are beyond the scope of this self-study 
material, deal with subjective probabilities mathematically.

In research design, the concentration is primarily on empirical probabilities 
and sample statistics. Empirical probability is based on relative frequencies, 
p(E) = n/N. The value of n equals total number of sample points; whereas N 
equals the total number of population points.
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3.1.1. Compositional Techniques3.1.1. Compositional Techniques3.1.1. Compositional Techniques

•• IntroductionIntroduction
–– Set Theory Set Theory -- Compound EventsCompound Events
–– Laws of ProbabilityLaws of Probability
–– Relationships Used in Relationships Used in NonparametricsNonparametrics

•• Compound Event RelationshipsCompound Event Relationships

–– A = Event AA = Event A
–– B = Event BB = Event B
–– AA∩∩B = Intersection = Joint Occurrence of Events A and B B = Intersection = Joint Occurrence of Events A and B 
–– AA∪∪B = Union = Events A and B alone plus their IntersectionB = Union = Events A and B alone plus their Intersection

A∪ B

A B

A∩ B

Compositional techniques are based on formal postulates of set theory that 
describe relationships of compound events that can be used to form the 
basic laws of probability. For example, the Venn diagram shown on this slide 
depicts the event space defined by event A and event B.

When more than one event is considered, relationships or compound 
operations between the events can be defined. Two fundamental 
relationships between events A and B are defined on this slide, the 
intersection and the union. The intersection is the overlap or joint occurrence 
of events A and B. The union includes all elements that belong to event A 
alone, event B alone, and the intersection of events A and B. Both the 
probability of an intersection and the probability of a union are important to 
experimental design. Several relationships based on these compound events 
are used in nonparametric statistical analyses. 
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3.1.1. Compositional Techniques (Cont'd)3.1.1. Compositional Techniques (Cont'd)3.1.1. Compositional Techniques (Cont'd)

•• Laws of ProbabilityLaws of Probability
–– Additive LawAdditive Law

–– Probability of a UnionProbability of a Union
–– Definition FormDefinition Form

p(Ap(A∪∪BB) = p(A) + p(B) ) = p(A) + p(B) -- p(Ap(A∩∩BB))
–– Multiplicative LawMultiplicative Law

–– Probability of an IntersectionProbability of an Intersection
–– Definition FormDefinition Form

p(Ap(A∩∩B) = B) = p(A)p(B|Ap(A)p(B|A) ) --oror-- p(B)p(A|Bp(B)p(A|B))

The mathematical laws of probability define the probabilities of the two basic 
relationships of compound events. The additive law defines the probability of 
a union which is equal to the probability of event A plus the probability of 
event B minus the probability of the intersection of events A and B. The 
multiplicative law defines the probability of an intersection, or joint probability 
of events A and B, as the probability of event A times the conditional 
probability of event A given event B occurs, or vice versa.
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3.1.1. Compositional Techniques (Cont'd)3.1.1. Compositional Techniques (Cont'd)3.1.1. Compositional Techniques (Cont'd)

•• Event RelationshipsEvent Relationships
–– ComplementComplement

–– ConditionalConditional

–– IndependenceIndependence

–– Mutually ExclusiveMutually Exclusive

p(A) = 1 – p(A)

p(A ∩ B) = 0

p(A ∩ B) = p(A) p(B)

p(A|B) = p(A ∩ B)
p(B) p(B|A) = p(A ∩ B)

p(A)

This slide defines four probability relationships based on operations of 
events A and B. Considering a single event A, one can define the
complement of A as the probability of all elements or occurrences that are 
not event A.

Considering two events A and B, one can define several relationships based 
upon the joint probabilities of events A and B. Conditional probability is the 
probability of event A occurring given that event B is present and vice versa. 
If events A and B are independent, the occurrence of event A does not 
depend upon the occurrence of event B. Independence can be defined as a 
joint probability equal to the probability of event A times the probability of 
event B. Finally, if events A and B are mutually exclusive, events A and B 
have no elements in common (i.e., no overlap exists in the Venn diagram of 
the compound event), and the joint probability of events A and B is zero.
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3.1.2. Counting Techniques3.1.2. Counting Techniques3.1.2. Counting Techniques

•• IntroductionIntroduction
–– Techniques for Simplified CountingTechniques for Simplified Counting
–– Used for Empirical Probability EstimatesUsed for Empirical Probability Estimates

•• The "The "mnmn" Multiplication Rule" Multiplication Rule
–– Total Events in Combinations of Several GroupsTotal Events in Combinations of Several Groups
–– Tree DiagramsTree Diagrams
–– ExamplesExamples

–– 1. How many outcomes can occur when three fair                  1. How many outcomes can occur when three fair                  
coins are tossed?coins are tossed?

(2)(2)(2) = 8 Outcomes(2)(2)(2) = 8 Outcomes
–– 2. If 3 of the numbers 6, 7, 8, and 9 are chosen without 2. If 3 of the numbers 6, 7, 8, and 9 are chosen without 

repetition, how many 3repetition, how many 3--digit numbers can be formed?digit numbers can be formed?
(4)(3)(2) = 24 Numbers(4)(3)(2) = 24 Numbers

To calculate probabilities, one needs to determine the number of possible 
distinctly different outcomes. Recall that p(E) = n/N where n is the total 
number of events of interest and N is the total number of all events. One 
could list every different outcome in simple cases to determine n and N, but 
this is not appropriate for large data spaces. Counting techniques employ 
rules or formulae for efficiently determining the frequency of outcomes.

Although counting or tree diagrams can be used to determine the possible 
outcomes of a series of events, the “mn” rule can be used instead where “m”
is the number of alternative outcomes for the first event and “n” is the 
number of outcomes for the second event in the series. The rule shows the 
multiplicative relationship between the number of alternative outcomes in 
each event. Obviously, the “mn” rule can be extended to a series of more 
than two events.

Two examples using the “mn” rule are shown on this slide each involving a 
series of three events. In the first example, each coin toss has 2 outcomes 
yielding 8 possible outcomes in a series of 3 tosses. In the second example, 
the solution is attained by determining how many ways there are to fill the 
“hundreds” position, then the “tens” position, and finally the “units” position in 
the resulting set of 3-digit numbers.
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3.1.2. Counting Techniques (Cont'd)3.1.2. Counting Techniques (Cont'd)3.1.2. Counting Techniques (Cont'd)

•• PermutationsPermutations
–– DefinitionDefinition: : OrderedOrdered Arrangement of EventsArrangement of Events
–– FormulaFormula

–– ExamplesExamples
–– 1. Previous 31. Previous 3--digit number problem.digit number problem.

–– 2. If 3 numbers are chosen from 50 possible numbers, 2. If 3 numbers are chosen from 50 possible numbers, 
how many different orders of numbers can be chosen?how many different orders of numbers can be chosen?

Pr
n = n(n – 1)(n – 2) ... (n – r + 1)

– or –
Pr

n = n!
(n – r)!

P3
50 = 50!

47! = (50)(49)(48) = 117,600

1!P3
4 = 4! = (4)(3)(2) = 24

Permutations deal with ordered arrangements of events. The key word in a 
permutation is order. For example, in defining a two-digit number order is 
considered which means that the number 12 is different than 21. The 
general formula for calculating the number of permutations of “n” things 
taken “r” at a time is presented on this slide along with two examples.

First, consider that the 3-digit number example given on the previous slide to 
illustrate the “mn” rule is really a permutation since order is important in 
counting the number of alternatives in that particular example. The second 
example demonstrates the efficiency of using the permutation formula to 
determine the number of possible outcomes rather than listing all 117,600 
possible outcomes.
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3.1.2. Counting Techniques (Cont'd)3.1.2. Counting Techniques (Cont'd)3.1.2. Counting Techniques (Cont'd)

•• CombinationsCombinations
–– DefinitionDefinition: Order of Events Not Considered: Order of Events Not Considered
–– FormulaFormula

–– ExamplesExamples
–– 1. How many ways can you form a 31. How many ways can you form a 3--person committee person committee 

from 5 candidates?from 5 candidates?

–– 2. How many ways can you form a 72. How many ways can you form a 7--person committee person committee 
from 6 men and 8 women?from 6 men and 8 women?

Cr
n = Pr

n

r! = n!
r!(n – r)!

C7
14 = 14!

(7!)(7!) = 3,432

C3
5 = 5!

(3!)(2!) = (5)(4)
(2)(1) = 10

When order is not important the counting rule for combinations is used. If 
order is not important the combination of 12 and 21 are not unique outcomes 
since they each represent the same combination of the two digits, 1 and 2. 
So when “n” things are taken “r” at a time, there are fewer combinations than 
permutations. The number of combinations is equal to the number of 
permutations of “n” things taken “r” at a time divided by “r” factorial.

Two examples of using the combinations counting rule is provided on this 
slide. In the first example, the order of choosing a particular person for the 
committee is not important; one is counting the number of combinations, not 
permutations, of 5 people chosen 3 at a time. In the second example, one is 
not interested in how many men and women are chosen for the 7-person 
committee from the total of 14 eligible people. So, the outcome actually 
translates to the number of combinations of 14 people taken 7 at a time.
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3.1.2. Counting Techniques (Cont'd)3.1.2. Counting Techniques (Cont'd)3.1.2. Counting Techniques (Cont'd)

•• Complex ExamplesComplex Examples
–– 1. Given 6 men and 8 women, how many ways 1. Given 6 men and 8 women, how many ways 

can you select a committee composed of can you select a committee composed of 
exactly 2 men and 5 women?exactly 2 men and 5 women?

–– 2. Given 6 men and 8 women, what is the 2. Given 6 men and 8 women, what is the 
probability of selecting a 7probability of selecting a 7--person committee person committee 
composed of exactly 2 men and 5 women?composed of exactly 2 men and 5 women?

C2
6 = 6!

2!(4)! = (6)(5)
(2)(1) = 15

C5
8 = 8!

5!(3)! = (8)(7)(6)
(3)(2)(1) = 56

Committees = (15)(56) = 840

p(C) = 840/ 3432 = 0.24

In more complex situations the counting rules can be used in combination. 
The first example on this slide combines two calculations for combinations 
and then the “mn” rule to obtain the total number of possible committees. 
First one determines the 15 combinations of men (choosing 2 of 6). Then 
one determines the 56 combinations of women (choosing 5 of 8). Finally, 
one determines through the “mn” rule that a total of 840 committees can be 
formed by the 15 combinations of men and 56 combinations of women. This 
is a good example of choosing the right set of counting techniques to 
determine the total number of alternatives without listing and counting all 
possible outcomes.

The second example on this slide demonstrates the use of counting 
techniques to determine an empirical probability. The probability of the 
committee, p(C), equals n/N. The value for n equals 840 committees 
composed of exactly 2 men and 5 women as calculated in the first example 
on this slide. The value for N equals all 3,432 possible 7-person committees 
as calculated in the second example of the previous slide. Consequently, the 
probability equals 0.24.
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3.2. Random Sampling3.2. Random Sampling3.2. Random Sampling

•• Populations vs. SamplesPopulations vs. Samples
–– Parameters = Characteristics of PopulationsParameters = Characteristics of Populations
–– Statistics = Characteristics of SamplesStatistics = Characteristics of Samples

•• Random SamplingRandom Sampling
–– (1) All elements in the population have an equal (1) All elements in the population have an equal 

and constant chance of being drawn on all and constant chance of being drawn on all 
draws.draws.

–– (2) All possible samples have an equal chance of (2) All possible samples have an equal chance of 
being drawn.being drawn.

–– (3) Ensures constant and independent (3) Ensures constant and independent 
probabilities.probabilities.

Sampling is a key component of experimental design. Data collected from 
samples are used to infer conclusions about populations. These samples are 
drawn randomly during data collection to avoid bias in the inferential 
process. Parameters are characteristics of populations. Greek letters will be 
used to list parameters. Statistics are characteristics of samples. Roman 
letters will be used to list statistics.

Three key characteristics of random samples are shown on this slide. For 
purposes of experimental design, random sampling of subjects assigned to 
treatment combinations has the restriction that an equal number of subjects 
will be assigned to each treatment condition in the experiment in order to 
keep sample size equal.
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3.3. Sampling Distributions3.3. Sampling Distributions3.3. Sampling Distributions

•• 3.3.1. Binomial Distribution3.3.1. Binomial Distribution
•• 3.3.2. Normal Distribution3.3.2. Normal Distribution
•• 3.3.3. Student's t Distribution3.3.3. Student's t Distribution
•• 3.3.4. Chi3.3.4. Chi--Squared DistributionSquared Distribution
•• 3.3.5. F Distribution3.3.5. F Distribution

The probability distribution of a particular statistic is called the sampling 
distribution. By way of review, the following slides show general 
characteristics of the binomial, normal, student’s t, chi-squared, and F 
distributions. The binomial is a discrete sampling distribution while the others 
are continuous. The sampling distribution used the most in human factors 
experiments is the F distribution, because it is used in ANOVA. 
Consequently, the F distribution will be described in more detail when 
discussing ANOVA.
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3.3. Sampling Distributions (Cont’d)3.3. Sampling Distributions (Cont3.3. Sampling Distributions (Cont’’d)d)

•• DefinitionDefinition::
–– A sampling distribution is a probability A sampling distribution is a probability 

distribution that represents the likelihood of all distribution that represents the likelihood of all 
the various values of a particular statistic for a the various values of a particular statistic for a 
particular sample size, n.particular sample size, n.

–– Mathematical Description Mathematical Description -- Appendix A in Appendix A in WinerWiner, , 
et al. (1991)et al. (1991)

•• Common Sampling DistributionsCommon Sampling Distributions
–– Binomial DistributionBinomial Distribution
–– Normal DistributionNormal Distribution
–– Student's t DistributionStudent's t Distribution
–– ChiChi--Squared DistributionSquared Distribution
–– F DistributionF Distribution

The distribution of values of a statistic calculated from samples is 
characterized by a sampling distribution. A sampling distribution is a 
probability distribution that represents the likelihood of all the various values 
of a particular statistic for a particular sample size, n. There are three critical 
elements in this definition. First, a sampling distribution is a cumulative 
probability density function, f (X). The area under this describing function 
sums to 1.0. Consequently, the probability of any particular value of X can be 
determined by integrating the area under the curve of a continuous 
probability density function. Second, a sampling distribution is unique for a 
particular statistic, which means that one would have separate sampling 
distributions for the mean, standard deviation, or variance. Most often a 
sampling distribution for means is used in experimental design. The third 
characteristic is that a sampling distribution is based on a particular sample 
size. Depending on sample size, n, the shape of the sampling distribution 
may vary significantly. One must know how sample size affects the sampling 
distribution.

The five sampling distributions listed on the bottom of this slide are most 
often used in experimental design. The binomial is a discrete probability 
distribution; whereas, the other four are continuous.
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3.3. Sampling Distributions (Cont’d)3.3. Sampling Distributions (Cont3.3. Sampling Distributions (Cont’’d)d)

•• ExampleExample: Using a set of the five values, 4, 5, 6, 7, : Using a set of the five values, 4, 5, 6, 7, 
and 8, show the sampling distribution of the mean and 8, show the sampling distribution of the mean 
for a sample size of 3. (for a sample size of 3. (HeuckerothHeuckeroth, 2004), 2004)

All Possible
Samples (n = 3)

4 + 5 + 6
4 + 5 + 7
4 + 5 + 8
4 + 6 + 7
4 + 6 + 8
5 + 6 + 7
4 + 7 + 8
5 + 6 + 8
5 + 7 + 8
6 + 7 + 8

Sample
Means

15/3 = 5.0
16/3 = 5.3
17/3 = 5.6
17/3 = 5.6
18/3 = 6.0
18/3 = 6.0
19/3 = 6.3
19/3 = 6.3
20/3 = 6.6
21/3 = 7.0

Probability
Distribution

5.0 = 0.10
5.3 = 0.10
5.6 = 0.20

6.0 = 0.20

6.3 = 0.20

6.6 = 0.10
7.0 = 0.10

Consider the simple example of constructing a sampling distribution as 
provided by Heuckeroth (2004) which aptly demonstrates the three critical 
elements involved. First, one must define all possible samples of 3 values 
that can be drawn from the five values. This is simply the number of 
combinations of 5 things taken 3 at a time or 10 possible samples as shown 
in the left column on this slide. Second, the 10 samples have a total of only 7 
different means as shown in the center column. Finally, the probability of 
obtaining each of the 7 different mean values is calculated as shown in the 
right column. Plotting the values of each mean against the probability of 
obtaining that mean is the resulting sampling distribution. Obviously, this 
sampling distribution would be different if the number of possible values, the 
sample size, or the statistic calculated changed. Conceptually, however, 
every sampling distribution whether discrete or continuous has these three 
critical elements.

The five most common sampling distributions used in experimental design 
include the binomial, normal, student’s t, chi-square, and F distribution. Each 
is reviewed separately. Conover (1999) provides a discussion of the discrete 
binomial sampling distribution in Chapter 1 and its various uses in Chapter 3. 
Winer, Brown, and Michels (1991) provide an overview of the continuous 
probability distributions in Chapter 2 as well as mathematical descriptions in 
Appendix A.
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3.3.1. Binomial Distribution3.3.1. Binomial Distribution3.3.1. Binomial Distribution

•• Discrete Probability DistributionDiscrete Probability Distribution
•• Binomial ExperimentBinomial Experiment

–– Based on Two Possible Mutually Exclusive Based on Two Possible Mutually Exclusive 
Outcomes (e.g., "Success" and "Failure") whereOutcomes (e.g., "Success" and "Failure") where

p = Probability of Outcome 1p = Probability of Outcome 1
q = Probability of Outcome 2 = (1 q = Probability of Outcome 2 = (1 -- p)p)
n = Number of Independent Trialsn = Number of Independent Trials
k = Number of "Outcome 1" in "n" Trialsk = Number of "Outcome 1" in "n" Trials

•• Binomial Theorem, (p + q)Binomial Theorem, (p + q)nn

(p + q)n = pn + npn – 1q + n(n – 1)
2! pn – 2q2 + ... + qn

Ck
n pkqn – k = n!

k!(n – k)! pkqn – k

Where the probability of any term is defined by:

The binomial distribution is a discrete probability distribution. Many 
nonparametric statistical analyses use the binominal distribution during 
hypothesis tests that evaluate frequencies of discrete categories. The 
binomial distribution has two possible and mutually exclusive outcomes often 
known as “success” and “failure”. In a binominal experiment of “n”
independent trials, “k” is defined as the number of successes. The probability 
of various outcomes in a binominal experiment is defined by the binomial 
theorem as shown on this slide where each term, or possible outcome, is a 
combination of “n“ things taken “k” at a time.
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3.3.1. Binomial Distribution (Cont'd)3.3.1. Binomial Distribution (Cont'd)3.3.1. Binomial Distribution (Cont'd)

•• ExampleExample: Find the probability of 2 heads in : Find the probability of 2 heads in 
3 tosses of a fair coin.3 tosses of a fair coin.
  Outcome  Probability Y 
 H,H,H  p3  3 
 H,H,T  p2q 2 
 H,T,H  p2q 2 
 H,T,T  pq2  1 
 T,H,H,  p2q 2 
 T,H,T  pq2  1 
 T,T,H  pq2  1 
 T,T,T  q3  0
Y=k     p(Y=k)    
3 p3  =  (1/2) 3  =  1/8  
2 3p2q =  3p2(1/2)  =  3/8  
1 3pq2  =  3(1/2)(1/2) 2  =  3/8  
0 q3  =  (1/2) 3  =  1/8

Ck
n pkqn – k = 3!

2!(3 – 2)! p2q = 3(1/2)2(1/2) = 3/8

Consider a simplistic binomial experiment consisting of 3 tosses of a fair coin 
where heads is considered “success” and tails is considered “failure”. The 
probability of getting 3 heads, 2 heads, 1 head, or 0 heads is simply the 
relative frequency of each alternative divided by 8, the total number of 
possible outcomes. Alternatively, the probability can be calculated directly 
using the binomial theorem. As shown on the bottom of this slide, the 
binomial theorem is used to determine the probability of obtaining 2 heads in 
3 tosses. Note this is a question of combinations, because the order in which 
2 heads occurs in the 3 tosses is irrelevant.

Obviously, as the total number of tosses increases the determination of 
probabilities in this binomial experiment is much easier to compute using the 
binomial theorem formula than by directly listing and counting all possible 
outcomes. Consider, for example, counting all possible outcomes of 100 coin 
tosses instead of just the 3 coin tosses shown on this slide. However, by 
enumerating and counting all outcomes in this small (i.e., n = 3) binomial 
experiment, the validity of the computational formula based on the binomial 
theorem is readily apparent.
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3.3.1. Binomial Distribution (Cont'd)3.3.1. Binomial Distribution (Cont'd)3.3.1. Binomial Distribution (Cont'd)

•• Parameters of the Binomial DistributionParameters of the Binomial Distribution
–– Probability of YProbability of Y

–– Two Parameters, n and pTwo Parameters, n and p
–– µµ = = npnp
–– σσ22 = = npqnpq

•• Shape of the Binomial Distribution, Shape of the Binomial Distribution, p(Yp(Y) for n = 4) for n = 4

p(Y = k) = Ck
n pkqn – k = n!

k!(n – k)! pkqn – k

0 1 2 3 4

Symmetrical (p = q = 0.50) Asymmetrical (p ≠ q)

p(Y) p(Y)

Y Y
0 1 2 3 4

The binomial distribution is defined as the probability of Y, success, in terms 
of two parameters, n and p. These parameters can be used to find the mean 
and variance. If p and q (i.e. 1-p) are equal, then there is a symmetric 
distribution. If p and q are not equal, there is an asymmetrical distribution. 
The direction of asymmetry depends on whether p or q is larger. In the 
asymmetrical example shown on the slide for 4 trials, the probability of 
success, p, is smaller than failure, q.
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3.3.2. Normal Distribution3.3.2. Normal Distribution3.3.2. Normal Distribution

•• Karl F. Gauss Karl F. Gauss -- Theory of ErrorsTheory of Errors
–– Very Large, Infinite PopulationVery Large, Infinite Population
–– Continuous Probability DistributionContinuous Probability Distribution

•• CharacteristicsCharacteristics
–– Bell ShapedBell Shaped
–– Mean = Median = ModeMean = Median = Mode
–– Representative of Many Performance EffectsRepresentative of Many Performance Effects
–– Linear Transformations Are Normally DistributedLinear Transformations Are Normally Distributed
–– Basis for Other Sampling DistributionsBasis for Other Sampling Distributions

•• CentralCentral--Limit TheoremLimit Theorem
–– Sampling distribution of the means of large random Sampling distribution of the means of large random 

samples with finite variance will be approximately samples with finite variance will be approximately 
normally distributed regardless of the form of the normally distributed regardless of the form of the 
populationpopulation

The most common continuous probability sampling distribution is the normal 
distribution. It was defined by Karl Gauss, while studying the theory of errors. 
The bell or symmetrical shape implies that the three descriptive statistics of 
central tendency, mean, median, and mode, are all equal. The normal 
distribution is frequently used because it is representative of many 
performance effects. Linear transformations of any set of normally distributed 
scores are also normally distributed and will not change the shape of the 
distribution. The normal distribution also becomes the basis for other 
sampling distributions used in experimental design that assume a normal 
distribution of variables.

One important aspect of the normal distribution is the central limit theorem. 
This theorem states that the sampling distribution of means of large random 
samples with finite variance will be approximately normally distributed 
regardless of the form of the underlying population. Consequently, the 
normal distribution becomes a robust sampling distribution for inferential 
statistical comparisons on a wide variety of data collected in experiments.



Human Factors Experimental Design and Analysis Reference

89

3.3.2. Normal Distribution (Cont'd)3.3.2. Normal Distribution (Cont'd)3.3.2. Normal Distribution (Cont'd)

•• Sampling DistributionSampling Distribution
–– Standard Normal Density FunctionStandard Normal Density Function

•• Unit Normal Distribution = N(0,1)Unit Normal Distribution = N(0,1)

–– Standardized Scores, ZStandardized Scores, Z

z = Y - µ
σ Y

    where  σ Y = σn

f(z ) = 1
2π

e- ( z ) 2

2

-3 -2 -1 0 1 2 3

Z

f(Z)

The probability density function for the normal distribution is defined by the 
equation shown on this slide. The three parameters of the normal sampling 
distribution, N(µ, σ), are sample size, N, population mean, µ, and population 
standard deviation, σ. The shape of the normal distribution is always 
symmetrical, but the peakedness depends on the population standard 
deviation. As the population standard deviation decreases the normal 
distribution becomes more leptokurtic or peaked. As the population standard 
deviation increases, the normal distribution becomes more platykurtic or flat.

A special form of the normal distribution is the unit normal distribution which 
is based on standardized scores, Z scores. The Z scores are calculated 
according to the formula shown on the slide. The Z scores have a mean of 0 
and a standard deviation of 1, thereby providing the designation parameters 
of N(0,1). The unit normal distribution is commonly referred to as the Z 
distribution, and its shape is shown on this slide.
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3.3.2. Normal Distribution (Cont'd)3.3.2. Normal Distribution (Cont'd)3.3.2. Normal Distribution (Cont'd)

•• Table of Unit Normal DistributionTable of Unit Normal Distribution
–– Area Under CurveArea Under Curve
–– Total Area Sums to 1.0Total Area Sums to 1.0
–– Probability of Obtaining Certain Z ValueProbability of Obtaining Certain Z Value
–– OneOne--Tailed vs. TwoTailed vs. Two--Tailed ValuesTailed Values

–– Critical ValuesCritical Values
–– ±±1.96s = 95%1.96s = 95%
–– ±±2.58s = 99%2.58s = 99%

The table of the unit normal distribution states the area under the curve at 
various standard deviations. Since this is a probability density function, the 
total area sums to 1. Two critical values used in hypothesis testing are the 
number of standard deviations of the unit normal distribution that contain 
95% (i.e. plus and minus 1.96 standard deviations) and 99% (i.e. plus and 
minus 2.58 standard deviations) of the area.

One-tailed tests have all the remaining area of the distribution under one end 
of the distribution; whereas two-tailed tests have the remaining area equally 
divided at both ends of the distribution. This slide shows the two-tailed value 
of the unit normal distribution at the 95% and 99% confidence level. A one-
tailed test which assumes a difference in only one direction is less 
conservative (i.e. easier to obtain significance), because the Z value would 
be smaller than the two-tailed test at any confidence level. Typically the 
more conservative two-tailed tests are used in experimental design for 
hypothesis testing, because the difference obtained from the data can be 
either greater or smaller than the expected value .
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3.3.3. Student's t Distribution3.3.3. Student's t Distribution3.3.3. Student's t Distribution

•• William S. William S. GossetGosset
–– "Student" Pseudonym"Student" Pseudonym
–– Sampling Distribution for Small Sample SizesSampling Distribution for Small Sample Sizes

•• Student's t StatisticStudent's t Statistic

•• Value of Student's t Statistic Determined ByValue of Student's t Statistic Determined By
–– Sample MeanSample Mean
–– Sample Standard DeviationSample Standard Deviation
–– Sample SizeSample Size

t = Y - µ
s Y

where  s Y = s
n where  s =

(Yi - Y)2Σ
i = 1

n

n - 1

A variant of the normal distribution is the Student’s t distribution. William 
Gosset developed this distribution under the pseudonym of Student. The
student’s t is a sampling distribution based on small sample sizes. The 
difference between the t-distribution and the normal distribution is that the 
standard error is based on the sample standard deviation not the population 
standard deviation. The student’s t statistic is determined by the sample 
mean, sample standard deviation, and the sample size.
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3.3.3. Student's t Distribution (Cont'd)3.3.3. Student's t Distribution (Cont'd)3.3.3. Student's t Distribution (Cont'd)

•• Probability Density FunctionProbability Density Function

•• Sampling DistributionSampling Distribution

f(X) = c

(1 + t2

ν )
(ν + 1)

2

      where , c = Constant               
                         ν = Degrees of Freedom 

t

f(t) t(1)

t(30)

The formula for the probability density function as well as the shape of the 
sampling distribution is shown in this slide. The shape of the t distribution is 
always symmetrical and is more leptokurtic than the normal distribution until 
sample size becomes large.
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3.3.3. Student's t Distribution (Cont'd)3.3.3. Student's t Distribution (Cont'd)3.3.3. Student's t Distribution (Cont'd)

•• Tabled Values Depends Upon Degrees of Tabled Values Depends Upon Degrees of 
FreedomFreedom

•• Relationship to TwoRelationship to Two--Tailed Unit Normal Tailed Unit Normal 
DistributionDistribution

–– Z = tZ = t∞∞
–– Not Much Different when n > 30Not Much Different when n > 30
–– Human Factors Research = Small SamplesHuman Factors Research = Small Samples
–– Usually Use "t" Rather Than "Z" Tabled ValueUsually Use "t" Rather Than "Z" Tabled Value

Tabled Values  
 

p Value  Z t∞� t30  t10  t5  t1  

 

95%  1.96  1.96  2.04  2.23  2.57  12.71  
99%  2.58  2.58  2.75  3.17  4.03  63.66

This slide compares critical values of the t distribution with the unit normal, Z, 
distribution. The tabled values depend upon degrees of freedom. As sample 
size, n, increases, the t distribution approaches the normal distribution. Once 
sample size, n, gets above 30, there is only a slight difference between the t 
and Z values. Because human factors research usually deals with small 
sample sizes, the t rather than the Z distribution is used primarily. Again this 
is the conservative approach, because the t-tabled value is larger than the Z-
tabled value.
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3.3.4. Chi-Squared Distribution3.3.4. Chi3.3.4. Chi--Squared DistributionSquared Distribution

•• Definition Form of Definition Form of χχ22 StatisticStatistic
–– Single CaseSingle Case

–– General Case with k Degrees of FreedomGeneral Case with k Degrees of Freedom

•• Variance Form of Variance Form of χχ22 Statistic from Sample Statistic from Sample 
EstimateEstimate

•• Relationship to Normal DistributionRelationship to Normal Distribution
–– χχ22

(1) (1) = Z= Z22

χ (1)
 2  = (Y - µ) 2

σ 2

χ (n-1)
2 =  

(Y i - Y) 2Σ
i = 1

n

σ 2 =  (n-1)s 2

σ2

χ (k)
2 = 

(Y i - µ) 2Σ
i = 1

k

σ 2

Another sampling distribution often used in experimental design is the chi-
squared distribution. The chi-squared statistic is defined as the squared 
difference of the observed value, Y, from the population mean, µ, divided by 
the population variance, σ2.

This slide shows the definitional formula for both a 1 degree of freedom chi-
square and a k degree of freedom chi-square statistic. The variance form of 
the chi-squared statistic is important because it is used in defining the F 
statistic in ANOVA. Finally, a chi-square statistic with 1 degree of freedom is 
equal to the unit normal statistic squared.
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3.3.4. Chi-Squared Distribution (Cont'd)3.3.4. Chi3.3.4. Chi--Squared Distribution (Cont'd)Squared Distribution (Cont'd)

•• Probability Density FunctionProbability Density Function

•• Sampling DistributionSampling Distribution

f(X) = c( χ2) ν-2 e- χ2

x

f(x)
k=2
k=15
k=25

The formula for the chi-square probability density function is shown on this 
slide along with the shape of the resulting sampling distribution. Note the 
shape changes depending on the number of degrees of freedom, ν, of the 
chi-square statistic. The chi-squared sampling distribution is positively 
skewed (i.e., tailing to the right rather than the left,) and it becomes more 
symmetrical as the degrees of freedom increase.
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3.3.5. F Distribution3.3.5. F Distribution3.3.5. F Distribution

•• Sir Ronald FisherSir Ronald Fisher
•• Definition of FDefinition of F: Ratio of two independent : Ratio of two independent χχ2 2 

variables each divided by their appropriate variables each divided by their appropriate dfdf..

•• Two independent sample variancesTwo independent sample variances where swhere s11
22≥≥ss22

22

•• AssumptionsAssumptions
–– Parent populations are normal.Parent populations are normal.
–– Samples are drawn independently.Samples are drawn independently.
–– Population variances are equal.Population variances are equal.

F = χ (ν 1)
 2  / ν 1

χ (ν 2)
 2  / ν 2

F = s 1
 2

s 2
 2    where s 2  = σ

 2 χ (ν)
 2

ν

The F-ratio was first derived and developed by Sir Ronald Fisher. The F 
statistic is defined as the ratio of two independent chi-square variables each 
divided by their appropriate degrees of freedom as shown on the slide. The 
F statistic is used in ANOVA experimental designs and is estimated by two 
sample variances. Looking at the variance form of a chi-square statistic, the 
ratio of two sample variances forms a legitimate F-ratio if the population 
variance, σ, for both estimates is equal.

There are three major assumptions of an F distribution. The parent 
populations are assumed normal because, by definition, the F-ratio is a ratio 
of two chi-square variables that are drawn from a normal population. The 
assumption that the samples are drawn independently also comes from the 
definition of a chi-square statistic. The assumption that two samples have 
equal population variance is based on the variance formula for a chi-square 
statistic and results in the ratio of two sample variances as shown on this 
slide. Consequently, the F statistic can be simply stated as the ratio of two 
independent sample variances.
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3.3.5. F Distribution (Cont’d)3.3.5. F Distribution (Cont3.3.5. F Distribution (Cont’’d)d)

•• Shape of the F Sampling DistributionShape of the F Sampling Distribution

F

f(F)
F(2,30)
F(4,20)
F(1,∞)

Any F statistic has two sets of degrees of freedom associated with it, the 
degrees of freedom for the variance in the numerator, and the degrees of 
freedom for the variance in the denominator. The shape of the sampling 
distribution of the F statistic is really a family of distributions that depend 
upon the degrees of freedom of the numerator and denominator of the F-
ratio.

The three stylized shapes of the F sampling distribution shown on this slide 
for various degrees of freedom on the numerator and denominator illustrate 
that the F sampling distribution is highly positively skewed when only a few 
degrees of freedom exist. As the degrees of freedom increase, the F 
distribution becomes bell shaped like the unit normal distribution.
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3.3.5. F Distribution (Cont’d)3.3.5. F Distribution (Cont3.3.5. F Distribution (Cont’’d)d)

•• Relationship to Other DistributionsRelationship to Other Distributions
–– Normal DistributionNormal Distribution

–– Student t DistributionStudent t Distribution

–– ChiChi--Squared Distribution  Squared Distribution  

F (1,ν 2) = t (ν)  2      when ν 2 = ν

F (1, ∞) = Z 2

F (ν 1, ∞) = χ (ν)2 / ν when ν 1 = ν

Since the F statistic is a ratio of two independent chi square statistics and 
the sampling distribution starts out highly positively skewed and approaches 
the normal distribution as degrees of freedom increase, the F sampling 
distribution is directly related to the chi square, student’s t, and unit normal 
distribution. There is a direct relationship of the values in the F table with the 
tabled values of the normal, student’s t, and chi-squared distributions as 
shown in the formulae listed on this slide.
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3.4. Statistical Estimation3.4. Statistical Estimation3.4. Statistical Estimation

•• 3.4.1. Estimators3.4.1. Estimators
•• 3.4.2. Point Estimation3.4.2. Point Estimation
•• 3.4.3. Interval Estimation3.4.3. Interval Estimation
•• 3.4.4. Summary of Statistical Estimation3.4.4. Summary of Statistical Estimation

A major component of inferential statistics is the estimation of population 
parameters (i.e., means and variances) from sample statistics. In this 
section, the general characteristics of good estimators, the calculation of 
various point estimates useful in experimental design, and interval estimation 
calculation are reviewed.
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3.4.1. Estimators3.4.1. Estimators3.4.1. Estimators

•• DefinitionDefinition: Statistical estimation is the : Statistical estimation is the 
procedure for determining population procedure for determining population 
parameters from sample values.parameters from sample values.

–– Point EstimatesPoint Estimates
–– Interval EstimatesInterval Estimates

•• Properties of EstimatorsProperties of Estimators
–– UnbiasedUnbiased

–– Expected ValueExpected Value: Estimator is not consistently : Estimator is not consistently 
greater or less than population value.greater or less than population value.

–– E(YE(Yii) = ) = ∑∑ [[YYiip(Yp(Yii)])]

Statistical estimation is the procedure for determining population parameters 
from sample values. In other words, researchers try to estimate a certain 
numerical characteristic of the population of interest in their research. There 
are two ways to do this. A point estimate is a single number. An interval 
estimate is a probability statement that the point estimate will fall somewhere 
between a specified upper and lower limit. Consequently, one can either 
provide one number or a range of numbers when calculating a parameter 
estimate.

There are several mathematical properties of estimators that can be used to 
determine the “goodness” of the estimator. The first is an unbiased 
estimator, which means that the estimator is not consistently greater or less 
than the population value. The expected value of a statistic, as defined by 
the formula on the slide, is an unbiased estimate of the population value.
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3.4.1. Estimators (Cont’d)3.4.1. Estimators (Cont3.4.1. Estimators (Cont’’d)d)

–– ConsistentConsistent
–– Probability of estimator being close to parameter Probability of estimator being close to parameter 

increases with sample size.increases with sample size.
–– EfficientEfficient

–– If one estimator is always closer to the population If one estimator is always closer to the population 
value than another estimator, it is more efficient.value than another estimator, it is more efficient.

–– SufficientSufficient
–– Estimator contains all the information relevant to the Estimator contains all the information relevant to the 

parameter.parameter.
–– Least SquaresLeast Squares

–– Sum of squares of the the deviation of the estimator Sum of squares of the the deviation of the estimator 
from the parameter is a minimum.from the parameter is a minimum.

–– Maximum LikelihoodMaximum Likelihood
–– Value of the estimator makes the obtained set of data Value of the estimator makes the obtained set of data 

most likely.most likely.

Other properties of good estimators include consistent, efficient, sufficient, 
least squares, and maximum likelihood. The definitions of each of these 
properties are listed on the slide. The least squares property is important in 
experimental design. A least squares criterion means that the sum of 
squares of the deviation of an estimator from the parameter is a minimum. 
Of all the common mathematical properties of an estimator, unbiased and 
least squares properties are of major concern in experimental design.
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3.4.2. Point Estimation3.4.2. Point Estimation3.4.2. Point Estimation

PopulationPopulation
ParameterParameter

UnbiasedUnbiased
EstimateEstimate

µ Y = 
YiΣ

i=1

n

n

σ2 s2 = 
(Yi - Y)2Σ

i=1

n

n - 1

σ s = 
(Yi - Y)2Σ

i=1

n

n - 1

σY = σn sY = s
n

Mean

Variance

Standard
Deviation

Standard
Error

This slide summarizes some common point estimators used in experimental 
design. The population parameter for the mean, variance, standard 
deviation, and standard error (i.e., the standard deviation of the sampling 
distribution) are listed in the left column. The formula for the unbiased 
sample estimate of each population parameter is shown in the right column. 
Note that population parameters are stated in Greek symbols and sample 
point estimates are stated in Roman characters.
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3.4.3. Interval Estimation3.4.3. Interval Estimation3.4.3. Interval Estimation

•• Interval Estimation = Interval Estimation = Confidence IntervalsConfidence Intervals
•• DefinitionDefinition: A confidence interval is an estimate of a : A confidence interval is an estimate of a 

population parameter given by two numbers such that population parameter given by two numbers such that 
the population parameter lies between them with a the population parameter lies between them with a 
certain degree of certainty.certain degree of certainty.
–– Probability StatementProbability Statement
–– Number of Standard Deviations AboveNumber of Standard Deviations Above--andand--Below Below 

Point EstimatePoint Estimate
–– Based on Sampling DistributionBased on Sampling Distribution

–– Large Sample = Large Sample = σσ Known = Known = Normal DistributionNormal Distribution
–– Small Sample = Small Sample = σσ Unknown = Unknown = Student's t Student's t 

DistributionDistribution

Interval estimation is often referred to as determining confidence intervals. 
As defined on the slide, a confidence interval is an estimate of a population 
parameter given by two numbers such that the population parameter lies 
between them with a certain degree of accuracy. The certain degree of 
accuracy is the range of confidence with a lower and upper limit. First one 
must come up with a probability statement for the interval. An example of 
this is “95% confident or 99% confident.”

The number of standard deviations above and below a population parameter 
is used to define the interval. To calculate this interval one needs to use the 
appropriate sampling distribution. If one uses a large sample and the 
standard deviation of the population is known, then one will use the normal 
distribution. If one uses a small sample and the population is unknown then 
one will use the t distribution. A sample size of 30 is a common cut-off 
between large and small samples.
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3.4.3. Interval Estimation (Cont'd)3.4.3. Interval Estimation (Cont'd)3.4.3. Interval Estimation (Cont'd)

•• General Form (General Form (Large SampleLarge Sample))
–– Standard Score FormStandard Score Form

–– General FormatGeneral Format

•• 95% Confidence Interval of Mean95% Confidence Interval of Mean

•• 99% Confidence Interval of Mean99% Confidence Interval of Mean

Y - (ZL)(σY) ≤ µ ≤ Y + (ZU)(σY)

Y ± 1.96σY

C[Y - (1.96)(σY) ≤ µ ≤ Y + (1.96)(σY)] = .95

Y ± 2.58σY

C[Y - (2.58)(σY) ≤ µ ≤ Y + (2.58)(σY)] = .99

ZL ≤
- µ
σY

≤ ZUY

The general form of the confidence interval of the population mean, µ, for a 
large sample is based on Z scores. In terms of stating the confidence interval 
of µ from the sample mean, the general format and the format for the 95% 
and 99% confidence intervals are shown on this slide. Notice the change in 
the formulas between the 95% and 99% confidence intervals is primarily the 
number of standard deviations of the unit normal distribution to account for 
95% and 99% of the area under the curve, respectively.
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3.4.3. Interval Estimation (Cont'd)3.4.3. Interval Estimation (Cont'd)3.4.3. Interval Estimation (Cont'd)

•• Statement of Confidence IntervalStatement of Confidence Interval
–– Chances are 95 in 100 that Chances are 95 in 100 that µµ will fall betweenwill fall between

–– has a .95 probability of including has a .95 probability of including µµ
–– includes 95% of all casesincludes 95% of all cases

•• Example ProblemExample Problem: Find the 99% confidence interval : Find the 99% confidence interval 
for the true mean of the population when you know for the true mean of the population when you know 
the sample mean is 60 based on 81 observations the sample mean is 60 based on 81 observations 
and and σσ equals 18.equals 18.

C[54.84 ≤ µ ≤ 65.16] = .99

Y ± 2.58σY

σY = 18
81

= 2

Y ± 1.96σY

Y ± 1.96σY

Y ± 1.96σY

When one states a confidence interval, the experimenter makes a statement 
of probability. This slide shows three alternate ways of stating the same 95% 
confidence interval.

An example of calculating the confidence interval for the population mean is 
also shown on this slide. Since the sample mean is based on a large sample 
of 81 observations, the unit normal is the appropriate sampling distribution. 
The point estimate for the population mean, µ, is the sample mean, 60. The 
99% confidence interval for the population mean is somewhere between 
54.84 and 65.16 which is a range around the point estimate.
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3.4.3. Interval Estimation (Cont'd)3.4.3. Interval Estimation (Cont'd)3.4.3. Interval Estimation (Cont'd)

•• Student's t Distribution (Student's t Distribution (Small SampleSmall Sample))
–– ApproachApproach

–– Small Samples and Population Variance UnknownSmall Samples and Population Variance Unknown
–– Standard Error of Sampling Distribution,Standard Error of Sampling Distribution,
–– Degrees of Freedom, Degrees of Freedom, dfdf

–– dfdf = n= n--11
–– OneOne-- vs. Twovs. Two--Tailed TestsTailed Tests

–– 95% Confidence Interval of Mean95% Confidence Interval of Mean

–– 99% Confidence Interval of Mean99% Confidence Interval of Mean

C[Y - (t.025(n-1))(sY) ≤ µ ≤ Y + (t.025(n-1))(sY)] = .95
Y ± t.025(n-1)(sX)

C[Y - (t.005(n-1))(sY) ≤ µ ≤ Y + (t.005(n-1))(sY)] = .99
Y ± t.005(n-1)(sY)

The student’s t distribution is used as the sampling distribution for estimating 
confidence intervals based on small samples and unknown population 
variance. First, the standard error of the sampling distribution is calculated. 
To make the estimate unbiased the experimenter has to use n-1 degrees of 
freedom. When calculating the student’s t confidence interval one should use 
two-tailed tabled values showing half the allowable error at the upper and 
lower end of the confidence interval, respectively. The general formulas for 
95% and 99% confidence intervals are shown on the slide. Note that a t 
table is usually presented in terms of one-tailed values. Consequently, a t 
value of .025 is used for the 95% confidence interval, and a t value of .005 is 
used for the 99% confidence interval in the one-tailed, t table. 
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3.4.3 Interval Estimation (Cont’d)3.4.3 Interval Estimation (Cont3.4.3 Interval Estimation (Cont’’d)d)

•• Example ProblemExample Problem: : The reaction time (RT) of 6 The reaction time (RT) of 6 
subjects detecting a signal was measured. The subjects detecting a signal was measured. The 
mean RT was .657 seconds and the standard mean RT was .657 seconds and the standard 
deviation was .0706 seconds. What is the 95% deviation was .0706 seconds. What is the 95% 
confidence interval of the true mean RT?confidence interval of the true mean RT?

Observed Reaction Time
in Seconds

S1 = 0.56

S2 = 0.77
S3 = 0.69

S4 = 0.62

S5 = 0.64
S6 = 0.66

Y = 0.657

C[0.583 ≤ µ ≤ 0.731] = .95

t.025(5) = 2.571

= .0706
6

= 0.0288sY

(Click in this red rectangle to see SAS calculations for this example.)

An example of calculating a small sample confidence interval of the mean 
based on the student’s t sampling distribution is shown on this slide. The 
observed reaction time (RT) for each of the 6 subjects detecting a signal is 
shown on the left side of this slide. The mean RT was 0.657 seconds, the 
standard deviation was 0.0706 seconds, and the standard error was 0.0288 
seconds as shown on the right side of this slide.

To find the 95% confidence interval of the true mean RT, one first finds the 
point estimate, then calculates the standard error, and finally finds the .025 t-
value of 5 degrees of freedom from the sampling distribution. Since the t-
value of 2.571 is larger than the unit normal value of 1.96, the confidence 
interval of the small sample estimate is larger than the large sample 
counterpart. Confidence intervals using the t distribution are always larger 
and, consequently more conservative, than the large sample confidence 
intervals using the Z distribution.
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3.4.4. Summary of Statistical Estimation3.4.4. Summary of Statistical Estimation3.4.4. Summary of Statistical Estimation

•• Point EstimatesPoint Estimates
–– Unbiased Property is CriticalUnbiased Property is Critical

•• Interval EstimatesInterval Estimates
–– Choice of Sampling DistributionChoice of Sampling Distribution

–– n > 30, Use Unit Normal Distributionn > 30, Use Unit Normal Distribution
–– n < 30, Use Student's t Distributionn < 30, Use Student's t Distribution
–– Usually Use Student's t DistributionUsually Use Student's t Distribution

–– Standard Error of Sampling DistributionStandard Error of Sampling Distribution
•• Can Generalize Technique to Other Can Generalize Technique to Other 

Population ValuesPopulation Values

By way of summary, statistical estimation can be considered in terms of both 
point and interval estimation. Unbiased estimates are most critical in point 
estimation. Point estimates of the sample mean, variance, standard 
deviation, and the standard deviation of the sampling distribution (i.e., the 
standard error), are most often used in experimental design.

For interval estimation the choice of the appropriate sampling distribution is 
the key. If the sample size is greater than 30, one would use the unit normal 
distribution for estimating the population mean. If the sample size is less 
than 30, one would use the student’s t distribution. In human factors 
research, experimenters are primarily interested in estimating the confidence 
interval of the population mean using the student’s t distribution because 
small samples are typically used.
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3.5. Statistical Hypothesis Testing3.5. Statistical Hypothesis Testing3.5. Statistical Hypothesis Testing

•• 3.5.1. Components of Hypothesis Testing3.5.1. Components of Hypothesis Testing
•• 3.5.2. Single3.5.2. Single--Sample tSample t--TestTest
•• 3.5.3. Relationship to Statistical Estimation3.5.3. Relationship to Statistical Estimation

Statistical hypothesis testing is the primary inferential analysis conducted on 
data collected in human factors research. In this subsection, the basic 
components of a statistical hypothesis test are reviewed, and then these 
components are used in a single sample hypothesis test. In summary, the 
relationship between statistical hypothesis testing and statistical estimation is 
reviewed.
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3.5.1. Components of Hypothesis Testing3.5.1. Components of Hypothesis Testing3.5.1. Components of Hypothesis Testing

•• Step 1Step 1.  Assume a given mathematical model (i.e., sampling .  Assume a given mathematical model (i.e., sampling 
distribution).distribution).

•• Step 2Step 2.  Determine if the various assumptions are met and the .  Determine if the various assumptions are met and the 
sampling distribution chosen is appropriate.sampling distribution chosen is appropriate.

•• Step 3Step 3.  State the null hypothesis to be tested and the.  State the null hypothesis to be tested and the
alternative hypothesis.alternative hypothesis.

•• Step 4Step 4.  Assume the null hypothesis to be true and develop a .  Assume the null hypothesis to be true and develop a 
statement concerning the chance likelihood of various statement concerning the chance likelihood of various 
outcomes according to sampling theory (i.e., usually outcomes according to sampling theory (i.e., usually 
.05, .01, or .001)..05, .01, or .001).

•• Step 5Step 5.  Examine the data and determine if the null hypothesis .  Examine the data and determine if the null hypothesis 
can be rejected. Compare the observed statistic based can be rejected. Compare the observed statistic based 
on the data with a tabled value obtained from the on the data with a tabled value obtained from the 
sampling distribution.sampling distribution.

•• Step 6Step 6.  Formulate a specific decision rule concerning the .  Formulate a specific decision rule concerning the 
acceptance or rejection of the null hypothesis.acceptance or rejection of the null hypothesis.

The basic components of every statistical hypothesis test can be
summarized into the six steps shown on this slide. Step 1 is to select an 
appropriate mathematical model or sampling distribution. In human factors 
research experimenters primarily use the F distribution in ANOVA. Step 2 is 
to determine if the various assumptions of the sampling distribution are met 
and the sampling distribution chosen is appropriate. Step 3 is to state the 
null hypothesis (H0), which is a statement that there is no significant 
difference among the treatments tested as well as the implied alternative 
hypothesis (Hi) when the null hypothesis is not true. In Step 4 one assumes 
the null hypothesis is true and specifies a small probability of error (α) that 
one is willing to accept. The usual scientifically accepted values of alpha 
error are 0.05, 0.01, and 0.001. Step 5 is the comparison of the actual data 
collected in the experiment to the known value obtained from the sampling 
distribution if the null hypothesis were true. Step 6 is the formulation of a 
decision rule (D.R.) for accepting or rejecting the null hypothesis on the basis 
of the sample data collected in the research.
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5.5.1.1. Null and Alternative Hypotheses5.5.1.1. Null and Alternative Hypotheses5.5.1.1. Null and Alternative Hypotheses

•• Specific Value of Population MeanSpecific Value of Population Mean

•• Two Population MeansTwo Population Means

•• Several Population MeansSeveral Population Means

H 0 : µ = 50
H1 : µ ≠ 50

H 0 : µ 1 - µ 2 = 0     or     µ 1 = µ 2

H1 : µ 1 - µ 2 ≠ 0     or     µ 1 ≠ µ 2

H 0 : µ 1 = µ 2 = µ 3 = . . . µ n

H1 : µ 1 ≠ µ2 ≠ µ 3 ≠ . . . µ n

Depending upon the specific statistical hypothesis test that one is 
conducting, the null hypothesis statement of “no difference” can be 
expressed in terms of a specific population value, a comparison between two 
population means, or a comparison among several population means. This 
slide shows example of all three situations. Note that both the null 
hypothesis, H0, and the alternative hypothesis, H1, are always stated, 
explicitly or implicitly. Since experimenters primarily use two-tailed 
hypothesis tests in human factors research, the examples of alternative 
hypotheses shown on this slide are two-tailed statements of “not equal to”
rather than “greater than” or “less than”.
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3.5.1.2. Format for Hypothesis Test3.5.1.2. Format for Hypothesis Test3.5.1.2. Format for Hypothesis Test

•• HH00: Null Hypothesis To Be Tested: Null Hypothesis To Be Tested
•• HH11: Alternative Hypothesis: Alternative Hypothesis
•• αα: Level of Significance: Level of Significance
•• Decision RuleDecision Rule: I will reject H: I will reject H00 if my if my 

observed statistic has a chance likelihood observed statistic has a chance likelihood 
of less than of less than αα when I assume Hwhen I assume H00 to be true.to be true.

-- OR OR --
•• D.R.D.R.: I reject H: I reject HOO if the observed statistic is if the observed statistic is 

greater than the tabled value.greater than the tabled value.

Every statistical hypothesis test can be stated in the standard format shown 
on this slide. This format includes four components. First one states the null 
hypothesis, H0, to be tested. Second, one states the alternative hypothesis, 
H1, usually as a two-tailed test. Third, one states the level of significance, α, 
set by the experimenter. And, fourth one states the decision rule (D.R.) for 
rejecting the null hypothesis. The simplest way of stating the D.R. is saying 
that the null will be rejected if the observed statistic calculated from the data 
collected in the experiment is greater than the tabled value drawn from the 
appropriate sampling distribution. Although this format is implicit and usually 
not stated in every statistical hypothesis test, it will be used throughout this 
reference for emphasis. 
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3.5.1.3. Types of Errors3.5.1.3. Types of Errors3.5.1.3. Types of Errors

H0 True H0 False

Fail to Reject H0

Reject H0

Type I
α Error

α

Correct
Power
1 - β

Correct
Confidence

1 - α

Type II
β Error

β

In the true state of nature the null hypothesis is either true or false. The 
resulting 2x2 contingency table of possible decision outcomes is shown on 
this slide. There are two ways of making errors and two ways of being 
correct. If the null hypothesis is true but one rejects it, a Type I or alpha error 
occurs with a probability of α. The experimenter directly sets α error at some 
small level such as 0.05, 0.01, or 0.001 before conducting the hypothesis 
test. If the null hypothesis is false and the experimenter fails to reject it, then 
a Type II or beta error occurs with a probability of β.

One would be correct if the null hypothesis is true and the experimenter fails 
to reject it. This is called the level of confidence of a test and has a 
probability of 1-α. In statistical hypothesis testing, one strives to have a high 
level of confidence in the test by setting α error (i.e., level of significance) 
low. One would be correct if the null hypothesis is false and it is rejected. 
This is called the power of a test, and it has a probability of 1-β. One strives 
to conduct the most powerful test as possible while maintaining a high level 
of confidence that a true difference exists.
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3.5.1.3. Types of Errors (Cont'd)3.5.1.3. Types of Errors (Cont'd)3.5.1.3. Types of Errors (Cont'd)

Ho True

Ho False

f(Z)

f(Z)

(Region of Nonrejection)

Critical Tabled Value

(Region of Rejection)

1 - α

1 - β

α

β

This is a graphical representation using the unit normal sampling distribution 
of the 2x2 contingency table shown in the previous slide. The upper 
probability distribution occurs when the null hypothesis is true, and the lower 
distribution represents a situation when the null hypothesis is false. The 
experimenter chooses the level of significance of the statistical test by 
choosing a level of alpha error. This is depicted by moving the vertical line 
shown in the figure to the left or right.

One wants to have the largest degree of confidence and the greatest 
statistical power in a hypothesis test. But, this requires a tradeoff. In order to 
have a high level of confidence (1-α), the experimenter must choose a low 
probability of α error. Note that α error is set directly by the experimenter, but 
it indirectly changes β error and power (1-β) of the statistical test. If one 
reduces the confidence then one increases the power, and vice versa.

During statistical hypothesis testing, the experimenter makes a simple 
decision based on the evidence in the sample data to either reject or fail to 
reject the null hypothesis. Rather than accept the null hypothesis, one should 
fail to reject it. This is done in order to avoid a Type II error shown on this 
slide.
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3.5.1.4. Statistical Power3.5.1.4. Statistical Power3.5.1.4. Statistical Power

•• DefinitionDefinition: Probability of rejecting the null : Probability of rejecting the null 
hypothesis when the null hypothesis is hypothesis when the null hypothesis is 
false.false.

•• Experimenter Sets Experimenter Sets αα Directly Directly 
•• Power Indirectly Affected byPower Indirectly Affected by

–– αα LevelLevel
–– Population VariancePopulation Variance
–– Sample SizeSample Size

•• Statistical Power CalculationsStatistical Power Calculations
–– αα Level and Estimate of Variance KnownLevel and Estimate of Variance Known
–– Solve for Sample Size RequiredSolve for Sample Size Required

Statistical power is the probability of correctly rejecting the null hypothesis 
when it is false and is affected by α error, the population variance, and the 
sample size. The researcher can influence the statistical power of a 
hypothesis test when choosing both α and sample size. As the experimenter 
chooses a smaller α error, the power (1-β) of the hypothesis test also 
decreases since β error indirectly increases. By changing sample size, n, the 
experimenter can indirectly change the power. In general, the larger the 
sample size, the more powerful the hypothesis test becomes.

Statistical power calculations can help the experimenter determine the 
sample size for the experiment. If one has an estimate of the population 
variance and has made a decision on the α value of the hypothesis test, the 
sample size needed for a given level of power can be determined. If cost and 
time are not major constraints in choosing sample size, one could use a 
power analysis to determine the appropriate sample size.
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3.5.2. Single-Sample t-Test3.5.2. Single3.5.2. Single--Sample tSample t--TestTest

•• Population Mean, Population Mean, µµ, Known, Known
–– HypothesisHypothesis: Is sample mean significantly : Is sample mean significantly 

different from the population mean? different from the population mean? 
•• Choice of Sampling DistributionChoice of Sampling Distribution

–– Small Sample Size in Human Factors ResearchSmall Sample Size in Human Factors Research
–– Usually Use Student's t DistributionUsually Use Student's t Distribution

–– Observed Value of tObserved Value of t
–– Calculated From Sample DataCalculated From Sample Data

–– Tabled Value of t Tabled Value of t 
–– Usually TwoUsually Two--Tailed TestTailed Test
–– Degrees of Freedom = (nDegrees of Freedom = (n--1)1)

A single sample hypothesis test is used to demonstrate the logic of a 
statistical hypothesis test. In this example, the experimenter is conducting a 
hypothesis test to determine if a sample mean is significantly different from a 
known population value, µ.

Choice of the appropriate sampling distribution is fundamental to any 
statistical hypothesis test. Since human factors researchers primarily use 
small samples, they usually use the t rather than the Z distribution when they 
have a choice between them. The actual statistical test consists simply of 
calculating the t-observed value based on the sample data and comparing it 
to the t-tabled value drawn from the t distribution with the appropriate 
degrees of freedom.
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3.5.2. Single-Sample t-Test (Cont’d)3.5.2. Single3.5.2. Single--Sample tSample t--Test (ContTest (Cont’’d)d)

•• Example ProblemExample Problem: : The experimenter wishes The experimenter wishes 
to compare the average scores on the final to compare the average scores on the final 
examination in a military course to a examination in a military course to a 
standard population value of 792 points for standard population value of 792 points for 
course mastery. Fortycourse mastery. Forty--nine trainees are nine trainees are 
randomly assigned to a particular section of randomly assigned to a particular section of 
the course. The experimenter is interested the course. The experimenter is interested 
in determining if the average score on their in determining if the average score on their 
final examination is significantly different final examination is significantly different 
from the known mastery value of 792 points from the known mastery value of 792 points 
at the .05 level of significance. at the .05 level of significance. 

(Click in this red rectangle to see SAS calculations for this example.)

An example problem of a single sample hypothesis test is given on this slide. 
One is trying to determine if the final examination of the sample is 
significantly different from 792 points that represents the known average for 
students who have mastered the course material. Notice this example is 
stated as a two-tailed test, because it is testing only that the sample is 
significantly different from a known value of 792 and not testing the direction 
of difference.
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•• Hypothetical Data SetHypothetical Data Set

881

49 Final Examination Scores

786
665
783
766
998
954

906
763
827
862
793
806
838

721
739
811
792
723
930
981

956
934
902
825
884
876
708

887
765
816
723
730
868
843

805
863
832
678
936
791
812

874
923
762
958
686
841
750

Y = 827.61             s = 84.19

3.5.2 Single Sample t-Test (Cont’d)3.5.2 Single Sample t3.5.2 Single Sample t--Test (ContTest (Cont’’d)d)

(Click in this red rectangle to see SAS calculations for this example.)

This is a listing of the 49 final examination scores obtained from the class. 
The average score on the final exam is 827.61 and the standard deviation is 
84.19.
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3.5.2. Single-Sample t-Test (Cont’d)3.5.2. Single3.5.2. Single--Sample tSample t--Test (ContTest (Cont’’d)d)

•• CalculationsCalculations

= 
827.61 - 792
84.19 / 49

= 2.96

t obs = Y - µ
s Y

t tab = 2..02  (40 df)

(Click in this red rectangle to see SAS calculations for this example.)

Although the sample size, 49, is large enough to use the unit normal 
sampling distribution, one could be conservative and use the t-distribution. 
The actual calculations of t-observed and t-tabled for the example problem 
are shown on this slide. When using standard tables to find the t value, only 
40 and 50 degrees of freedom are listed, not 48. Since the t distribution is 
not linear, one cannot use a linear interpolation of tabled values. The 
conservative approach is to use the lower of the two values around the 
actual degrees of freedom. In this case, the tabled value of 40 degrees of 
freedom would be used instead of 50. This makes it more difficult to reject 
the null hypothesis and is, therefore, more conservative.
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3.5.2. Single-Sample t-Test (Cont’d)3.5.2. Single3.5.2. Single--Sample tSample t--Test (ContTest (Cont’’d)d)

•• Standard Format of Hypothesis TestStandard Format of Hypothesis Test

α : .05

t obs = 2.96 t tab = 2.02

H 0 : µ = 792

H1 : µ ≠ 792

D.R. :  I reject H 0 if |tobs | > |t tab |

(Click in this red rectangle to see SAS calculations for this example.)

The hypothesis test can be summarized in standard format. Note that the 
alternative hypothesis is stated as a two-tailed test. Likewise, the decision 
rule uses absolute values for a two-tailed test (p = .025), and the observed 
and tabled values are stated as t-values from the t sampling distribution. The 
final decision for this example is to reject the null hypothesis since the 
observed value is greater than the tabled value.
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3.5.3. Relationship to Statistical Estimation3.5.3. Relationship to Statistical Estimation3.5.3. Relationship to Statistical Estimation

•• Direct RelationshipDirect Relationship
–– Reject HReject H00 if Population Value Falls Outside if Population Value Falls Outside 

Confidence Interval.Confidence Interval.
–– Fail to Reject HFail to Reject H00 if Population Value Falls Within if Population Value Falls Within 

Confidence Interval.Confidence Interval.
•• Example ProblemExample Problem

–– µµ = 792= 792
–– Sample Mean = 827.61Sample Mean = 827.61
–– 95% Confidence Interval95% Confidence Interval

–– C[803.43 C[803.43 ≤≤ µµ ≤≤ 851.79] = .95851.79] = .95
–– ConclusionConclusion: Reject Null Hypothesis: Reject Null Hypothesis

(Click in this red rectangle to see SAS calculations for this example.)

There is a direct relationship between statistical hypothesis testing and 
estimation. If the population value falls outside of the confidence interval 
estimated by the sample, then one rejects the null hypothesis. Otherwise, 
one fails to reject the null hypothesis. In this example, the population value of 
792 falls outside the 95% confidence interval, and the null hypothesis was 
rejected.
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3.6. Two Sample t-Tests3.6. Two Sample t3.6. Two Sample t--TestsTests

•• 3.6.1. Sampling Distribution3.6.1. Sampling Distribution
•• 3.6.2. Assumptions3.6.2. Assumptions
•• 3.6.3. Standard Format3.6.3. Standard Format
•• 3.6.4. Between3.6.4. Between--Subjects tSubjects t--TestTest
•• 3.6.5. Within3.6.5. Within--Subjects tSubjects t--TestTest
•• 3.6.6. Conclusion3.6.6. Conclusion

A test of significant difference between two sample means is probably the 
most common type of statistical hypothesis test. As in any hypothesis 
testing, the experimenter must choose the appropriate sampling distribution, 
consider the assumptions, and develop the standard testing format. A t-test 
is commonly used to compare two sample means, and the procedure for 
calculating the observed t-value differs depending upon whether the two 
samples are independent or related. Basic concepts of two sample t-tests 
are reviewed, and computational examples of between-subjects and within-
subjects t-tests are presented in this subsection.
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3.6.1. Sampling Distribution3.6.1. Sampling Distribution3.6.1. Sampling Distribution

•• Two Population CaseTwo Population Case
–– Difference Between Means, Difference Between Means, µµAA -- µµBB

•• Shape of Sampling DistributionShape of Sampling Distribution
–– Central Limit TheoremCentral Limit Theorem
–– Normal as Sample Size IncreasesNormal as Sample Size Increases
–– Use Student's t DistributionUse Student's t Distribution

•• StatisticsStatistics

YA YB YA - YB = D

s2YA s2YB
s2

YA - YB
= s2

D

where, s2
D =

s2
D

n and s2
D = Σ(D-D)2

n-1

Difference (D)Sample BSample A

The sampling distribution for two-sample hypothesis tests is a sampling 
distribution based on the difference between two means. Based on the 
central limit theorem, this sampling distribution will be normally distributed for 
large sample sizes. However, since human factors researchers primarily use 
small sample sizes, they usually use the t distribution instead of the normal 
distribution for tests of differences between two means. In addition to the 
mean and standard error of Sample A and B, the formula for the difference 
scores, D, between the two samples and the standard error of D are shown 
in the bottom portion of this slide. Hypothesis tests of differences between 
the means of two samples use all of these statistics.
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3.6.1. Sampling Distribution (Cont'd)3.6.1. Sampling Distribution (Cont'd)3.6.1. Sampling Distribution (Cont'd)

•• General FormulaeGeneral Formulae
–– Variance of Difference Between MeansVariance of Difference Between Means

–– Standard Error of Difference Between MeansStandard Error of Difference Between Means
–– Two Related (Correlated) SamplesTwo Related (Correlated) Samples

–– Two Independent SamplesTwo Independent Samples

s2
YA-YB = s

2

D = s2
Y

A
+ s2

Y
B
- 2rAB sY

A
sY

B

sYA-YB = sD = s2YA + s2YB - 2rAB sYAsYB

sYA-YB = s2YA + s2YB

When testing the significant difference between two means, one must 
calculate the variances of difference as well as the standard error of 
differences. The standard error is the standard deviation of the sampling 
distribution of differences between means. As shown on this slide, the 
standard error of differences is calculated differently depending on the 
relationship between the two samples. If the samples are related (i.e., a 
within-subjects design), then correlation between samples, rAB, is included in 
the formula. If the samples are independent (i.e., a between-subjects 
design), then the correlation aspects of the formula is 0 and does not 
appear.
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3.6.2. Assumptions3.6.2. Assumptions3.6.2. Assumptions

•• NormalityNormality
–– Samples Drawn from Normal DistributionsSamples Drawn from Normal Distributions

–– Robust to ViolationRobust to Violation
–– Equal Sample SizeEqual Sample Size
–– TwoTwo--Tailed TestTailed Test

•• Homogeneity of Variance, Homogeneity of Variance, σσ22
AA = = σσ22

BB

–– Ignore with Equal Sample SizeIgnore with Equal Sample Size
–– Preliminary FPreliminary F--Test when Test when nnAA ≠≠ nnBB

•• Sample RelationshipSample Relationship
–– Independent SamplesIndependent Samples
–– Related SamplesRelated Samples

•• Population Means are Equal, Population Means are Equal, µµAA = = µµBB

–– Null HypothesisNull Hypothesis

There are four critical assumptions that must be considered in two sample t-
tests. The first is that both samples are drawn from normal distributions. The 
t-test is robust to a violation of this assumption if one uses equal sample 
sizes and a two-tailed test. Robustness means that the sampling distribution 
can be used to determine the tabled value even though the assumption is 
not met. A second assumption is homogeneity of variance. This means that 
the population variance of one sample mean is equal to the population 
variance of the other sample. Again, a t-test is robust to violation of this 
assumption if the sample sizes are equal. If sample sizes are not equal, then 
one should use a preliminary F-test to test the homogeneity of variance 
assumption. The third assumption deals with the relationship of the two 
samples. If a different random sample of subjects is used for each sample 
(i.e., between-subjects samples), then the samples can be assumed to be 
independent. If the same subjects (i.e. within-subjects samples) or matched 
subjects are used, then the two samples are correlated. Formulae for t-
observed vary for between-subjects and within-subjects t-tests. The fourth 
assumption is that the population means are equal. This last assumption is 
really the null hypothesis that is being tested in the t-test itself.
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•• Test FormatTest Format
–– HH00: : µµAA = = µµBB

–– HH11: : µµAA ≠≠ µµBB

–– αα: .05, .01, or .001: .05, .01, or .001
–– D.R.: I reject HD.R.: I reject H00 if |if |ttObservedObserved| > || > |ttTabledTabled||

–– ttTabledTabled ((αα/2)/2) = (= (nnAA + + nnBB -- 2) 2) dfdf
–– ttObservedObserved = (Y= (YAA –– YYBB) / ) / ssYYAA--YYBB

•• Alternatives for the Alternatives for the ttObservedObserved StatisticStatistic
–– BetweenBetween--Subjects SamplesSubjects Samples

–– Homogeneity of VarianceHomogeneity of Variance
–– Heterogeneity of VarianceHeterogeneity of Variance

–– WithinWithin--Subjects SamplesSubjects Samples

3.6.3. Standard Format3.6.3. Standard Format3.6.3. Standard Format

The standard format for stating the null and alternative hypotheses, level of 
significance, and the decision rule for a two sample t-test is shown at the top 
of portion of this slide. Note that the four standard components of the test 
format are listed, and the specifics of each component are tailored to the 
particular hypothesis test being conducted.

For a two sample t-test, the null hypothesis states that the two population 
means are equal. The alternative hypothesis is a two-tailed test stating that 
the two means are “not equal” but not the direction of the difference. In order 
to maintain robustness to violations of assumptions, one usually uses two-
tailed tests. The particular α level is selected by the experimenter and 
generally depends on the consequences of falsely rejecting a true null 
hypothesis. The decision rule is to reject the null hypothesis if the t-observed 
value is greater than the t-tabled value. Since each of the two samples loses 
1 degree of freedom, the t-tabled value is based on losing 2 degrees of 
freedom. Note that the t-tabled value equals α/2 in a one-tailed t-table. The 
specific formula for calculating the t-observed value differs for between-
subjects and within-subjects samples. Each is described separately.
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3.6.4. Between-Subjects t-Test3.6.4. Between3.6.4. Between--Subjects tSubjects t--TestTest

•• CharacteristicsCharacteristics
–– Two Independent SamplesTwo Independent Samples
–– Homogeneity of Variance, Homogeneity of Variance, σσ22

AA = = σσ22
BB

•• ttTabledTabled = = nnAA + + nnBB -- 22
•• ttObservedObserved Computational FormulaeComputational Formulae

–– Definition FormulaDefinition Formula

–– Pooled FormulaPooled Formula

tObserved = YA - YB
sYA-YB

= YA - YB
s2A
nA

+ s2B
nB

tObserved = YA - YB

s2p( 1
nA

+ 1
nB

)

where, s2p = (nA - 1)s2A + (nB - 1)s2B
nA + nB - 2

The formulae on this slide represent the calculations for t-observed for a 
between-subjects t-test in which one has equal sample size and two-tailed 
tests. In this situation, homogeneity is usually not tested due to the 
robustness of the t-test. Both the definition and pooled formulae are shown 
on the slide. They are algebraically equivalent. So, either formula can be 
used to calculate the t-observed statistic from the data collected in the 
experiment.
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3.6.4. Between-Subjects t-Test (Cont’d)3.6.4. Between3.6.4. Between--Subjects tSubjects t--Test (ContTest (Cont’’d)d)

•• CharacteristicsCharacteristics
–– Two Independent SamplesTwo Independent Samples
–– Heterogeneity of Variance, Heterogeneity of Variance, σσ22

AA ≠≠ σσ22
BB

–– Preliminary FPreliminary F--Test when Test when nnAA ≠≠ nnBB

•• Hartley Hartley FFmaxmax Test for Homogeneity of VarianceTest for Homogeneity of Variance
–– HH00: : σσ22

AA = = σσ22
BB

–– HH11: : σσ22
AA ≠≠ σσ22

BB

–– αα: .20: .20
–– D.R.: I reject HD.R.: I reject H00 if if FFObservedObserved > > FFTabledTabled

–– FFObservedObserved = s= s22
LargerLarger / s/ s22

SmallerSmaller

–– FFTabledTabled = Hartley = Hartley FFmaxmax in in WinerWiner et al. (1991) et al. (1991) 
Table D.7 where n = Table D.7 where n = nnLargestLargest and k = 2and k = 2

When sample size is not equal, one often conducts a preliminary test for 
heterogeneity of variance. The Fmax test can be used in this situation (Winer, 
Brown & Michels, 1991, pp. 104-105). This slide shows the standard format 
for a preliminary test of the assumption of equal population variance. Note 
that this test is trying to accept the null hypothesis of no difference (i.e., 
homogeneity of variance). Consequently, one chooses a high α error (i.e. 
0.20) to guard against Type II, or β, error indirectly.

The F-observed value is determined by the ratio of the larger sample 
variance divided by the smaller sample variance. The Fmax tabled value is 
found in Table D.7 of Winer et al. (1991) by using the degrees of freedom of 
the largest sample size and k =2 for the comparison of the 2 variances used 
in the t-test. If there is a significant difference, then heterogeneity of variance 
exists, and the homogeneity of variance assumption is violated.
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3.6.4. Between-Subjects t-Test (Cont’d)3.6.4. Between3.6.4. Between--Subjects tSubjects t--Test (ContTest (Cont’’d)d)

•• Heterogeneity of VarianceHeterogeneity of Variance
–– ttObservedObserved Computational FormulaComputational Formula

–– ttTabledTabled = Cochran and Cox (1957) = Cochran and Cox (1957) tt’’AdjustedAdjusted FormulaFormula

tObserved = YA - YB
sYA-YB

= YA - YB
s2A
nA

+ s2B
nB

t’Adjusted = s2YAtA + s2YBtB

s2YA + s2YB

tA = tTabled with (nA - 1) df

tB = tTabled with (nB - 1) df

When heterogeneity exists the normal between-subjects t-test cannot be 
used because the observed t calculated from the two samples is not truly 
distributed according to the t distribution. One calculates the t-observed 
value as usual. But, Winer, et al. (1991, pp. 67-69) recommend that one can 
use the Cochran and Cox (1957, p. 101) t’ adjustment for the t-tabled value 
by using the formula shown on this slide.



Human Factors Experimental Design and Analysis Reference

130

•• Example ProblemExample Problem: : An experimenter wishes An experimenter wishes 
to compare performance of two different to compare performance of two different 
night vision displays used in nighttime night vision displays used in nighttime 
maneuvering. Eight squads used display A, maneuvering. Eight squads used display A, 
and eight different squads used Display B. and eight different squads used Display B. 
Each squad completed the same nighttime Each squad completed the same nighttime 
maneuver. The experimenter wants to maneuver. The experimenter wants to 
determine if there is a significant difference determine if there is a significant difference 
(p < 0.05) in mean time in minutes to (p < 0.05) in mean time in minutes to 
complete the nighttime maneuver between complete the nighttime maneuver between 
using the two night vision displays.using the two night vision displays.

3.6.4. Between-Subjects t-Test (Cont’d)3.6.4. Between3.6.4. Between--Subjects tSubjects t--Test (ContTest (Cont’’d)d)

(Click in this red rectangle to see SAS calculations for this example.)

This is a between-subjects design because 8 squads used night vision 
Display A, and 8 different squads used night vision Display B while 
performing the nighttime maneuver. Since the sample size is only 8, the t-
distribution is the appropriate sampling distribution for testing the difference 
between minutes to complete the nighttime maneuver while using the two 
night vision displays.

A two-tailed t-test is used since the experimenter is interested in any 
significant difference between the two night vision displays regardless of 
direction. The standard t table presents only one-tailed values. 
Consequently, the t-tabled value is set at α = 0.25 to yield a two-tailed test at 
the at p < 0.05.
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•• Hypothetical BetweenHypothetical Between--Subjects Data SetSubjects Data Set

s 1 = 59
s 2 = 65
s 3 = 52
s 4 = 45
s 5 = 63
s 6 = 42
s 7 = 53
s 8 = 47

Night Vision Display A Night Vision Display B
s 9 = 54
s 10 = 72
s 11 = 69
s 12 = 59
s 13 = 67
s 14 = 61
s 15 = 51
s 16 = 63

YA = 53.25 YB = 62.00
s2B = 52.86s2A = 71.64

nA = nB = 8
df = nA + nB - 2 = 14

3.6.4. Between-Subjects t-Test (Cont’d)3.6.4. Between3.6.4. Between--Subjects tSubjects t--Test (ContTest (Cont’’d)d)

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the basic layout of the two-group experiment that compares 
night vision displays A and B. Note that the eight different squads in each of 
the two treatment conditions are designated by a different subscript number 
yielding a total of 16 different squads used in this two group experiment. 
Sample size refers to the number of squads using each night vision display, 
not the total number of different squads. In this example an equal sample 
size (n) of 8 squads is used. One degree of freedom is lost in each of the two 
display conditions resulting in a t-test with 14 df as shown on the slide.

Since different subjects were used in each display condition and sample size 
is equal, this hypothesis test is a between-subjects t-test in which 
homogeneity of variance usually does not need to be tested beforehand. 
Note that the SAS analysis as shown in Slater and Williges (2006) appendix 
automatically conducts the preliminary test for homogeneity of variance. The 
SAS test shows that the difference between the sample variances (i.e., the 
square of the two sample standard deviations shown in the SAS output) of 
71.64 and 52.86 is not significant at the 80% level of significance (i.e., α = 
0.20). Hence, one can assume homogeneity of variance and a subsequent 
valid t-test between means.
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•• Calculation of Calculation of ttObservedObserved Using Pooled FormulaeUsing Pooled Formulae

s2p = (nA - 1)s2A + (nB - 1)s2B
nA + nB - 2

s2p = (7)(71.64) + (7)(52.86)
8 + 8 - 2 = 62.25

tObserved = YA - YB

s2p( 1
nA

+ 1
nB

)

tObserved = 53.25 - 62.00
62.25(18 +1

8)
= - 8.75 

3.94 = - 2.22

3.6.4. Between-Subjects t-Test (Cont’d)3.6.4. Between3.6.4. Between--Subjects tSubjects t--Test (ContTest (Cont’’d)d)

(Click in this red rectangle to see SAS calculations for this example.)

The calculations of the t-observed using the pooled formula are shown on 
this slide. Alternatively, the definitional formula could have been used to 
calculate t-observed. The SAS program for conducting this between-subjects 
t-test is shown in Slater and Williges (2006) appendix.
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•• Test FormatTest Format
–– HH00 : : µµAA = = µµBB

–– HH11 : : µµAA ≠≠ µµBB

–– αα = .05= .05
–– D.R.: I reject HD.R.: I reject H00 if |if |ttObservedObserved| > || > |ttTabledTabled||

–– ttObservedObserved = = --2.222.22
–– ttTabled(0.025)Tabled(0.025) = 14 = 14 dfdf = 2.14= 2.14
–– Therefore, Reject HTherefore, Reject H00

•• 95% Confidence Interval95% Confidence Interval
C[(YA-YB) - tα/2sYA-YB ≤ µA - µB ≤ (YA-YB) + tα/2sYA-YB] = .95

(YA-YB) ± tα/2sYA-YB = - 8.75 ± (2.14)(3.95) = - 8.75 ± 8.46
C[-17.21 ≤ µ

A - µB ≤ -0.29] = .95

3.6.4. Between-Subjects t-Test (Cont’d)3.6.4. Between3.6.4. Between--Subjects tSubjects t--Test (ContTest (Cont’’d)d)

(Click in this red rectangle to see SAS calculations for this example.)

The standard format for this example t-test is shown on the top portion of 
this slide. The null hypothesis states that the means are equal, and the two-
tailed alternative states that they are not equal. Note that the tabled value is 
based on 14 degrees of freedom (i.e. 8 + 8 - 2), and α = 0.25 in the t-table to 
make a two-tailed test of significance. The decision rule is to reject the null 
hypothesis if the t-observed value is greater than the t-tabled value. In this 
case the null hypothesis is rejected, and the experimenter concludes that 
using night vision display A resulted in significantly better squad 
maneuvering performance (i.e., lower mean maneuvering time) than using 
night vision display B.

The 95% confidence interval of the difference between the two means is 
shown on the bottom portion of this slide. Note that the range does not 
include zero, which would be the difference under the null hypothesis. 
Therefore, the null hypothesis is rejected just as in the statistical hypothesis 
test. All the hypothesis test tells the researcher is that the difference is 
statistically significant, not that it is practically significant. The experimenter 
must decide if an -8.75 minute statistically significant difference in mean 
squad maneuvering performance using the two displays is of any practical 
value in night vision display design.
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3.6.5. Within-Subjects t-Test3.6.5. Within3.6.5. Within--Subjects tSubjects t--TestTest

•• CharacteristicsCharacteristics
–– Same Subjects or Two Highly Correlated SamplesSame Subjects or Two Highly Correlated Samples
–– Homogeneity of Variance Homogeneity of Variance NOTNOT an Issuean Issue

•• ttTabledTabled ((αα/2)/2) = (n = (n -- 1) 1) dfdf where, n = Number of Pairswhere, n = Number of Pairs
•• ttObservedObserved Computational FormulaeComputational Formulae

–– Consider Relationship between SamplesConsider Relationship between Samples
–– Degree of Correlation, Degree of Correlation, rrABAB
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A within-subjects t-test is appropriate when the same subjects are observed 
either in both sample A and sample B or the subjects in each sample are 
closely matched on relevant characteristics. Consequently, the two samples 
being compared in the t-test are highly correlated. Within-subject t-tests also 
guarantee that the sample sizes are the same for the two samples. 
Consequently, there is no need to test the homogeneity of variance 
assumption. The t-tabled value has n-1 degrees of freedom, where n refers 
to the number of pairs of subjects or observations.

Since the two samples are related, it is necessary to consider the covariance 
between them when calculating the t-observed value from the data. The 
linear correlation coefficient, rAB, is used to reflect the degree of relationship 
between the two samples. The raw score formula for calculating rAB is shown 
on this slide and this formula is described in detail in Topic 19. Note that it 
includes every observation from sample A (i.e., YA),, and sample B (i.e., YB).
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3.6.5. Within-Subjects t-Test (Cont’d)3.6.5. Within3.6.5. Within--Subjects tSubjects t--Test (ContTest (Cont’’d)d)

•• ttObservedObserved Computational Formulae (ContComputational Formulae (Cont’’d)d)
–– Raw Score FormulaRaw Score Formula

–– Difference Score FormulaDifference Score Formula

tObserved = YA - YB
sYA-YB

= YA - YB
s2YA
nA

+ s2YB
nB

- 2rAB sYAsYB

tObserved = D
sD

= D
s2D
n

where, s2D =
(D - D)2Σ

i = 1

n

n - 1

The t-observed value must be calculated either by using the raw score 
formula that includes the correlation between the two treatments as shown 
on this slide, or the difference score formula. The difference score formula 
directly incorporates the correlation between the two samples since only 
difference scores, D, and not the separate sample scores are used in the 
calculation as shown on the slide.

The two formulae for calculating t-observed are algebraically equivalent. 
However, the difference score formulae requires less calculation since rAB is 
not calculated, and the result is less prone to rounding errors resulting from 
the calculation of rAB in the raw score formula.
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•• Example ProblemExample Problem: : An experimenter wishes An experimenter wishes 
to compare performance of two different to compare performance of two different 
night vision displays used in nighttime night vision displays used in nighttime 
maneuvering. Eight squads used both maneuvering. Eight squads used both 
Display A and Display B. Each squad Display A and Display B. Each squad 
completed the same nighttime maneuver completed the same nighttime maneuver 
twice. Half of the squads used Display A twice. Half of the squads used Display A 
first and half used Display B first to first and half used Display B first to 
counterbalance order of use. The counterbalance order of use. The 
experimenter wants to determine if there is experimenter wants to determine if there is 
a significant difference (p < 0.05) in mean a significant difference (p < 0.05) in mean 
time in minutes to complete the nighttime time in minutes to complete the nighttime 
maneuver between using the two night maneuver between using the two night 
vision displays.vision displays.

3.6.5. Within-Subjects t-Test (Cont’d)3.6.5. Within3.6.5. Within--Subjects tSubjects t--Test (ContTest (Cont’’d)d)

(Click in this red rectangle to see SAS calculations for this example.)

Assume the data presented in the between-subjects t-test example was 
collected from a within-subjects design. As described in this slide, the same 
8 squads would use both night vision displays A and B. Consequently, a total 
of only 8 squads were needed to conduct this within-subjects experiment as 
compared to 16 different squads needed in the between-subjects design 
counterpart.

Since each squad completes the nighttime maneuver twice, the order of 
using the two night vision displays must be counterbalanced to avoid 
confounding display effects with practice on the nighttime maneuver. The 
easiest way to accomplish counterbalancing is to use an even number of 
squads such as 8 in this example. In this case, one can randomly select 4 of 
the squads to use night vision Display A first and the other 4 to use night 
vision Display B first.
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•• Hypothetical WithinHypothetical Within--Subjects Data SetSubjects Data Set
Night Vision
Display B 

Night Vision
Display A 

D
s2D

= - 8.75
= 83.36

Difference
Score (D)

s 1 =  54
s 2 =  72
s 3 =  69
s 4 =  59
s 5 =  67
s 6 =  61
s 7 =  51
s 8 =  63

s 1 =  59
s 2 =  65
s 3 =  52
s 4 =  45
s 5 =  63
s 6 =  42
s 7 =  53
s 8 =  47

s 1 =    5
s 2 =   -7
s 3 = -17
s 4 = -14
s 5 =  - 4
s 6 = -19
s 7 =    2
s 8 = -16

tObserved = - 2.71 tTabled(0.025) = 7 df = 2.36

= D
s2D
n

- 8.75
83.36

8

=where, tObserved

YPD = 53.75 YSD = 62.00

3.6.5. Within-Subjects t-Test (Cont’d)3.6.5. Within3.6.5. Within--Subjects tSubjects t--Test (ContTest (Cont’’d)d)

(Click in this red rectangle to see SAS calculations for this example.)

The difference score formula was used to calculate the observed value of 
the t statistic as shown on the bottom portion of this slide. The tabled value 
of t is based on 7 degrees of freedom which is equal to n-1, where n equals 
the number of different squads (i.e., 8). Since the absolute t-observed value 
is greater than the absolute t-tabled value, there is a significant difference 
between the squad mean maneuvering performance using the two displays. 
The SAS program for calculating this within-subjects t-test is shown in Slater 
and Williges (2006) appendix. 

Even though the within-subjects t-test has a higher t-tabled value (i.e., lower 
degrees of freedom) than the previous between-subjects example (i.e., 2.36 
versus 2.14), the results are still significantly different. The main effect of 
subject (i.e. squad) variability is removed from the within-subjects test. This 
reduction usually more than offsets the lower degrees of freedom, thereby 
making a within-subjects design alternative generally more sensitive then its 
between-subjects counterpart. Procedures for reducing subject variability are 
important in human factors research.
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3.6.6. Conclusion3.6.6. Conclusion3.6.6. Conclusion

•• TwoTwo--Sample Hypothesis TestsSample Hypothesis Tests
–– Student's t Sampling DistributionStudent's t Sampling Distribution
–– Sample SizeSample Size
–– Homogeneity of VarianceHomogeneity of Variance
–– Relationship of SamplesRelationship of Samples

•• tt--Test for Difference Between Two MeansTest for Difference Between Two Means
–– Two BetweenTwo Between--Subjects SamplesSubjects Samples

–– nnAA = = nnBB

–– σσ 22
AA ≠≠ σσ22

BB

–– Two WithinTwo Within--Subjects SamplesSubjects Samples
–– Same SubjectsSame Subjects
–– Matched SubjectsMatched Subjects

In conclusion, one normally uses the student’s t test in human factors 
research due to small sample sizes that are less than thirty. If the samples 
are independent and sample size is equal, one does not need to consider 
homogeneity of variance unless the sample variances are markedly different. 
Calculation of the t-observed statistic depends on the relationship of the two 
samples. If the experimenter uses a between-subjects design, the samples 
are independent and homogeneity of variance should be tested if sample 
sizes are unequal. If the researcher uses a within-subjects design, the 
samples are related and the correlation between them must be considered. 
In both cases, the standard format for hypothesis testing is used.
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3.7. Summary3.7. Summary3.7. Summary

•• Basic ConceptsBasic Concepts
–– ProbabilityProbability
–– Samples and Sampling DistributionsSamples and Sampling Distributions

•• Statistical EstimationStatistical Estimation
–– Point EstimatesPoint Estimates
–– Interval EstimatesInterval Estimates

•• Statistical Hypothesis TestingStatistical Hypothesis Testing
–– Standard FormatStandard Format
–– One Sample TestsOne Sample Tests
–– Two Sample TestsTwo Sample Tests
–– Multiple Sample TestsMultiple Sample Tests

Experimental design uses all the basic statistical concepts reviewed in this 
section. Probability, samples, and sampling distributions make up the fabric 
of experimental design analysis. Point estimates are the basic statistics used 
in experimental design, and interval estimation is directly related to 
hypothesis testing. Statistical hypothesis testing is the primary inferential 
process used in experimental design. Every hypothesis test can be stated in 
a standard format that includes the null hypothesis, alternative hypothesis, 
alpha level, and decision rule. This section reviewed one-sample and two-
sample hypothesis testing. Two sample tests are the simplest designs used 
in one-way, between-subjects and within-subjects ANOVA. Most human 
factors research problems are more complicated and require multiple sample 
tests that are considered in basic ANOVA.
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3.8. Supplemental Readings3.8. Supplemental Readings3.8. Supplemental Readings

REFERENCEREFERENCE
Conover (1999)Conover (1999)
Hays (1994)Hays (1994)
Hicks & Turner (1999)Hicks & Turner (1999)
Keppel & Keppel & WickensWickens (2004)(2004)
Mason, Mason, GunstGunst, & Hess (2003), & Hess (2003)
Maxwell & Delaney (2000)Maxwell & Delaney (2000)
Montgomery (2001)Montgomery (2001)
Myers & Well (2003)Myers & Well (2003)
Walpole, Myers, Myers, & Ye (2002)Walpole, Myers, Myers, & Ye (2002)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapters 1Chapters 1--33
Chapters 1Chapters 1--99
Chapters 1Chapters 1--22
Chapters 2Chapters 2--66
Chapters 2Chapters 2--33
Chapters 2,4Chapters 2,4
Chapters 2Chapters 2--44
Chapters 2,4Chapters 2,4--77
Chapters 2Chapters 2--1010
Chapter 2,Chapter 2,
Appendix AAppendix A

Several texts dealing with basic statistical concepts are listed on this slide for 
supplemental reading and a more detailed discussion of the basic statistical 
concepts reviewed in this topic. The Walpole, Myers, Myers, and Ye (2002) 
is a comprehensive introductory statistics text written for scientists and 
engineers and provides a good mathematical treatment of the topic. Hays 
(1994) is a classic behavioral science statistics text that relates the basic 
statistical concepts to research using human subjects. Finally, Conover 
(1999) provides a discussion of probability theory, the discrete binomial 
sampling distribution, and the use of the binomial distribution in hypothesis 
testing.

The rest of the references shown on this slide are experimental design texts 
that will be referenced throughout this reference material. The appropriate 
chapters in these texts that review basic statistical concepts are listed for 
each text. Of these, the Keppel and Wickens (2004), Myers and Well (2003) 
and the Winer, Brown, and Michels (1991) books are classic experimental 
design texts in the behavioral sciences and provide both a conceptual and 
mathematical treatment of many of the basic statistical concepts reviewed in 
this topic.
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All supplemental data collection and analyses are designed to provide a 
richer interpretation of the results of primary performance data analyses from 
an experimental design. Before embarking on a discussion of basic and 
complex ANOVA designs, this section of the reference material provides:

Topic 4 - an overview of methods used to collect supplemental data;
Topic 5 - basic nonparametric methods for analyzing supplemental nominal 
data that is in the form of frequency counts; and
Topic 6 - basic nonparametric methods for analyzing supplemental ordinal 
data that is in the form of rank orders.
Topic 7 – summary and process for dealing with supplemental data

Section 2.
Supplemental Data Collection and Analysis

Section 2.Section 2.
Supplemental Data Collection and AnalysisSupplemental Data Collection and Analysis

Topic 4. Supplemental Data Collection MethodsTopic 4. Supplemental Data Collection Methods
Topic 5. Analysis of Nominal Scale DataTopic 5. Analysis of Nominal Scale Data
Topic 6. Analysis of Ordinal Scale DataTopic 6. Analysis of Ordinal Scale Data
Topic 7. Summary of Supplemental DataTopic 7. Summary of Supplemental Data
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This topic deals with supplemental data collection that augments data from 
experimental designs. Supplemental data are very important for 
understanding and interpreting research results. Try to make the
supplemental data as quantitative as possible, because it will be easier to 
analyze and incorporate into the results. Most supplemental data are 
analyzed by nonparametric analyses as opposed to parametric analyses 
used on the major dependent variables manipulated in the experimental 
design. Several types of supplemental data collection techniques can be 
used. This reference will concentrate on graphical rating scales that are most 
often used to collect quantitative supplemental data in human factors 
research.

Topic 4. Supplemental Data Collection 
Methods

Topic 4. Supplemental Data Collection Topic 4. Supplemental Data Collection 
MethodsMethods

4.1. Background4.1. Background
4.2. Nonparametric Procedures4.2. Nonparametric Procedures
4.3. Subjective Measures4.3. Subjective Measures
4.4. Graphical Rating Scales4.4. Graphical Rating Scales
4.5. Summary4.5. Summary
4.6. Supplemental Readings4.6. Supplemental Readings
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4.1. Background4.1. Background4.1. Background

•• 4.1.1. Types of Dependent Variables4.1.1. Types of Dependent Variables
•• 4.1.2. Analysis Procedures4.1.2. Analysis Procedures

Before discussing rating scales in detail, one needs to consider the types of 
dependent variables and the analysis procedures used with supplemental 
data.
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4.1.1. Types of Dependent Variables4.1.1. Types of Dependent Variables4.1.1. Types of Dependent Variables

•• Measures of Human PerformanceMeasures of Human Performance
–– Task PerformanceTask Performance
–– Training MeasuresTraining Measures

•• System State MeasuresSystem State Measures
•• Industrial Engineering MeasuresIndustrial Engineering Measures

–– Activity/Work SamplingActivity/Work Sampling
–– Time and Motion StudyTime and Motion Study

•• Physiological MeasuresPhysiological Measures
•• Cognitive MeasuresCognitive Measures
•• Subjective MeasuresSubjective Measures

This slide shows the variety of dependent measure of interest to human 
factors researchers. Experimental designs usually investigate human 
performance metrics, but they can also evaluate measures of system states, 
industrial engineering measures of work activity, physiological, and cognitive 
metrics. Most supplemental data collection and analysis deal with subjective 
measures that are collected as objectively as possible.
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4.1.1. Types of Dependent Variables (Cont'd)4.1.1. Types of Dependent Variables (Cont'd)4.1.1. Types of Dependent Variables (Cont'd)

•• Human Factors EmphasisHuman Factors Emphasis
–– HumanHuman--Machine InterfaceMachine Interface
–– Human PerformanceHuman Performance

•• Supplemental DataSupplemental Data
–– User AcceptanceUser Acceptance
–– User Opinions/AttitudesUser Opinions/Attitudes

•• Quantitative Subjective MethodsQuantitative Subjective Methods
–– Systematic Data CollectionSystematic Data Collection
–– Statistical Analysis ProceduresStatistical Analysis Procedures

Human factors research is focused primarily on human-machine interface 
design and human performance evaluation. Both user acceptance and user 
opinions are key aspects of supplemental data to augment performance 
evaluation. These data are subjective in the sense that the human subjects 
are requested to provide data in the form of opinions, satisfaction, 
suggestions, etc. in addition to their primary task performance in the 
experiment. However, researchers want these subjective measures to be 
collected systematically and to be as quantitative as possible so that 
statistical analysis procedures can be used to analyze the results.
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4.1.2. Analysis Procedures4.1.2. Analysis Procedures4.1.2. Analysis Procedures

•• Primary AnalysesPrimary Analyses
–– Types of Performance MeasuresTypes of Performance Measures
–– Parametric AnalysesParametric Analyses

•• Supplemental AnalysesSupplemental Analyses
–– Types of MeasuresTypes of Measures

–– Self ReportsSelf Reports
–– Observational MeasuresObservational Measures

–– Nonparametric AnalysesNonparametric Analyses

This slide characterizes the difference between primary and supplemental 
data analyses. Experimental designs provide the data for the primary 
analyses. These analyses use parametric techniques such as ANOVA to test 
statistical hypotheses based on interval data. On the other hand, 
supplemental analyses use primarily nonparametric techniques based on 
frequency counts and rank orderings based on observations and self-
reports.
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4.2. Nonparametric Procedures4.2. Nonparametric Procedures4.2. Nonparametric Procedures

•• 4.2.1. Scales of Measurement4.2.1. Scales of Measurement
•• 4.2.2. Classification Scheme4.2.2. Classification Scheme

Nonparametric analyses depend upon the scale of measurement that is 
present in the supplemental data. Characteristics of various scales of 
measurement are reviewed, and a classification scheme for alternative 
nonparametric analyses based on this measurement scale is presented. 
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4.2. Nonparametric Procedures (Cont’d)4.2. Nonparametric Procedures (Cont4.2. Nonparametric Procedures (Cont’’d)d)

•• DefinitionDefinition: Nonparametric statistics do not have : Nonparametric statistics do not have 
underlying assumptions (e.g., normal distribution, underlying assumptions (e.g., normal distribution, 
equal variance) and use mathematical procedures equal variance) and use mathematical procedures 
appropriate for nominal and ordinal data. appropriate for nominal and ordinal data. 

•• Parametric vs. Nonparametric ProceduresParametric vs. Nonparametric Procedures
–– Underlying AssumptionsUnderlying Assumptions
–– Scale of MeasurementScale of Measurement

•• Power Efficiency of Statistical TestsPower Efficiency of Statistical Tests
–– DefinitionDefinition: Power efficiency is the required : Power efficiency is the required 

increase in sample size of Test B, Nincrease in sample size of Test B, NBB, to make it , to make it 
as powerful as Test A when the sample size of as powerful as Test A when the sample size of 
Test A, NTest A, NAA, and the level of significance is held , and the level of significance is held 
constant.constant.

Parametric statistics have basic assumptions and perform statistical tests on 
parameters using numeric procedures appropriate for interval or ratio scale 
qualities. Many of the supplemental data do not have these qualities. So, the 
experimenter must use nonparametric analysis. The two basic differences 
between parametric and nonparametric procedures are the underlying 
assumptions and the scale of measurement underlying the data.

Since nonparametric analyses do not have the assumptions and do not have 
the numeric characteristics of data used in parametric analyses, they are not 
as powerful as their parametric analysis counterpart. Power efficiency shows 
this effect by stating the percent increase in sample size needed to make a 
nonparametric test as powerful as a parametric test for the same level of 
significance.
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4.2. Nonparametric Procedures (Cont'd)4.2. Nonparametric Procedures (Cont'd)4.2. Nonparametric Procedures (Cont'd)

•• Disadvantages of Nonparametric ProceduresDisadvantages of Nonparametric Procedures
–– Relative Statistical Power EfficiencyRelative Statistical Power Efficiency
–– Knowledge of ProceduresKnowledge of Procedures
–– Analysis of Interaction EffectsAnalysis of Interaction Effects

•• Advantages of Nonparametric ProceduresAdvantages of Nonparametric Procedures
–– Only Appropriate AnalysisOnly Appropriate Analysis
–– Usually Fewer AssumptionsUsually Fewer Assumptions
–– Ease of CalculationEase of Calculation
–– Requires Lower Scale of MeasurementRequires Lower Scale of Measurement

The major advantages and disadvantages of nonparametric analysis are 
listed on this slide. The primary disadvantage of a nonparametric test is that 
it has lower power efficiency. In addition, many researchers do not know the 
various nonparametric techniques and when to use them. Finally, it is often 
difficult to analyze interactions directly in a nonparametric analysis requiring 
additional subsequent analysis to isolate significant interaction effects.

On the other hand, nonparametric procedures offer several advantages. 
Sometimes a nonparametric test is the only appropriate test for 
supplemental data. Usually fewer assumptions are required to conduct a 
valid nonparametric analysis. Most nonparametric procedures are easy to 
calculate manually in lieu of using computerized statistical packages. Finally, 
nonparametric analyses are designed to analyze frequency counts or rank 
order data that often compromise supplemental data instead of the interval 
data needed for parametric analysis. 
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4.2.1. Scales of Measurement4.2.1. Scales of Measurement4.2.1. Scales of Measurement

•• DefinitionDefinition: Assignment of numbers to observations is : Assignment of numbers to observations is 
isomorphic to some numerical structure incorporating isomorphic to some numerical structure incorporating 
numeric procedures performed on those numbers.numeric procedures performed on those numbers.

•• Four Scales of MeasurementFour Scales of Measurement
–– Nominal (Categorical) ScaleNominal (Categorical) Scale

–– Frequency Counts of ClassificationsFrequency Counts of Classifications
–– Ordinal ScaleOrdinal Scale

–– Rank Ordering of NumbersRank Ordering of Numbers
–– Interval ScaleInterval Scale

–– Distances (Differences) Between Numbers Have Distances (Differences) Between Numbers Have 
MeaningMeaning

–– Ratio ScaleRatio Scale
–– True Zero ValueTrue Zero Value

This slide provides a definition of a measurement scale. There are four 
scales of measurements according to Stevens (1951). A nominal scale or 
categorical scale involves just frequency counts of classifications. An ordinal 
scale is the rank ordering of numbers across intervals, but the intervals are 
not necessarily equal. Interval scale exists when the distances or differences 
between intervals have meaning. Finally, a ratio scale has the characteristics 
of all the other scales in addition to a true zero value. 
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4.2.1. Scales of Measurement (Cont'd)4.2.1. Scales of Measurement (Cont'd)4.2.1. Scales of Measurement (Cont'd)

•• Summary of Defining RelationshipsSummary of Defining Relationships

•• ImplicationsImplications
–– Appropriate Use of Numeric ProceduresAppropriate Use of Numeric Procedures

–– NonparametricsNonparametrics Needed for Nominal and Ordinal Needed for Nominal and Ordinal 
ScalesScales

–– Most Parametric Procedures Require Interval ScalesMost Parametric Procedures Require Interval Scales
–– Few Behavioral Data Are Ratio ScaleFew Behavioral Data Are Ratio Scale

–– Interpretation of Results May Not Be ValidInterpretation of Results May Not Be Valid

Relations  Nominal Ordinal  Interval  Ratio 
1. Equivalence  X X X X 
2. Greater Than   X X X 
3. Known Ratio of Any    X X 
 Two Intervals  
4. Known Ratio of Any     X 
 Two Scale Values

The top portion of this slide summarizes the characteristics of the various 
scales of measurement in ascending order. Parametric analysis requires at 
least an interval scale. So, nonparametric analysis is needed for nominal and 
ordinal scale data.

The major implication of different measurement scales is interpretation, not 
analysis. If the data do not exhibit the characteristics of the measurement 
scale used in the analysis, then the interpretation may not be valid. Often the 
choice of analysis is straightforward in human factors research. For example, 
measures such as accuracy, speed and time are evaluated by a parametric 
analysis because interval scale interpretations are made. If, on the other 
hand, the data just exist as frequency counts or rank orders, then the 
experimenter should consider using a nonparametric analysis for valid 
interpretation. Sometimes the choice is not straightforward. For example, 
rating scale evaluations use either parametric or nonparametric analyses 
depending on the assumed underlying qualities of ordinal and interval 
characteristics that are built into the scale. 
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4.2.2. Classification Scheme4.2.2. Classification Scheme4.2.2. Classification Scheme

•• Siegel and Castellan (1988) ReferenceSiegel and Castellan (1988) Reference
•• ApproachApproach

–– Description of ProceduresDescription of Procedures
–– Steps in Calculating StatisticSteps in Calculating Statistic
–– Statistical Hypothesis TestingStatistical Hypothesis Testing

•• Nonparametric Classification SchemeNonparametric Classification Scheme
–– Scale of MeasurementScale of Measurement

–– Nominal, Ordinal, or Interval DataNominal, Ordinal, or Interval Data
–– Sample CharacteristicsSample Characteristics

–– One, Two, or "k" SamplesOne, Two, or "k" Samples
–– Independent vs. Related SamplesIndependent vs. Related Samples

The Siegel and Castellan (1988) approach and classification scheme for 
nonparametric analysis is often used by human factors researchers. They 
describe the nonparametric procedure, then the steps in calculating the 
statistic, and finally the procedure for hypothesis testing. Their discussion is 
classified by the scale of measurement, the number of samples in the data 
set, and independent or related sample relationships (i.e., between-subjects 
or within-subjects experiments). 
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4.2.2. Classification Scheme (Cont’d)4.2.2. Classification Scheme (Cont4.2.2. Classification Scheme (Cont’’d)d)

•• Primary Use in Human Factors ResearchPrimary Use in Human Factors Research
–– Supplemental Data AnalysisSupplemental Data Analysis

–– Rating/Ranking ScalesRating/Ranking Scales
–– QuestionnairesQuestionnaires
–– Demographic DataDemographic Data

–– Survey ResultsSurvey Results
•• ApproachApproach

–– Sample of Frequently Used ProceduresSample of Frequently Used Procedures
–– Discussion of Nonparametric MethodsDiscussion of Nonparametric Methods

–– Procedures for Nominal DataProcedures for Nominal Data
–– Procedures for Ordinal DataProcedures for Ordinal Data

–– Classification of Subjective MeasuresClassification of Subjective Measures

In human factors research, nonparametric analyses are primarily used for 
analyzing supplemental data that are in the form of rating/ranking scales, 
questionnaires, demographic data, or survey results. This reference material 
reviews a sample of some of the frequently used procedures for nominal and 
ordinal subjective measures.
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4.3. Subjective Measures4.3. Subjective Measures4.3. Subjective Measures

•• 4.3.1. Self Reports4.3.1. Self Reports
•• 4.3.2. Questionnaires4.3.2. Questionnaires
•• 4.3.3. Psychometric Scaling4.3.3. Psychometric Scaling

There are several ways to generate subjective measures that are 
quantitative. The three alternatives shown on this slide (i.e., self reports, 
questionnaires, and psychometric scaling) are used quite often in human 
performance and cognitive research. Important considerations for each 
alternative are described separately.
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4.3. Subjective Measures (Cont’d)4.3. Subjective Measures (Cont4.3. Subjective Measures (Cont’’d)d)

•• Subjective DataSubjective Data: Observations and Opinions: Observations and Opinions
•• Classification of ObservationsClassification of Observations

–– Self ObservationsSelf Observations
–– Observation of OthersObservation of Others
–– Observation of EventsObservation of Events

•• Qualitative vs. Quantitative MethodsQualitative vs. Quantitative Methods
•• Goal for Analysis: Goal for Analysis: QuantifyQuantify

–– Frequency CountsFrequency Counts
–– Psychometric ProceduresPsychometric Procedures

•• Objective Analysis of Subjective DataObjective Analysis of Subjective Data
–– Avoid Subjective AnalysisAvoid Subjective Analysis
–– Avoid Bias by Careful DesignAvoid Bias by Careful Design

Subjective data are observations and opinions used in supplemental 
analyses related to an experiment. Observational data can be classified as 
self-observations made by the individual participating in the experiment, 
observations made by the experimenter, or observations of events occurring 
during the experiment.

The key consideration is to make the subjective data as objective as 
possible by using standard data collection procedures that result in 
quantifiable results. Just because the subject in the experiment or the 
experimenter generates the data subjectively does not mean that the 
subsequent analysis cannot be objective. Be careful not to make a 
subjective analysis of subjective data.
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4.3. Subjective Measures (Cont'd)4.3. Subjective Measures (Cont'd)4.3. Subjective Measures (Cont'd)

•• Examples of Inappropriate Subjective Examples of Inappropriate Subjective 
Analysis (Pew, 1993)Analysis (Pew, 1993)
–– 1. Display designers represent users during   1. Display designers represent users during   

evaluation.evaluation.
–– 2. Final test and evaluation of a system is based 2. Final test and evaluation of a system is based 

solely on verbal protocol data.solely on verbal protocol data.
–– 3. Opinions are solicited without the opportunity 3. Opinions are solicited without the opportunity 

to experience evaluation conditions.to experience evaluation conditions.
–– 4. After test pilots fly a new display, they 4. After test pilots fly a new display, they 

exchange views before making a single exchange views before making a single 
recommendation.recommendation.

This slide lists four common examples of subjective analysis described by 
Pew (1993). These examples underscore that subjective data must come 
from the actual user rather than the designer; the final test and evaluation of 
a system should not be based solely on subjective data; the user must have 
an opportunity to experience the conditions to be evaluated before providing 
opinions; and care must be taken to collect the subjective data 
independently for each subject.
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4.3.1. Self Reports4.3.1. Self Reports4.3.1. Self Reports

•• User Perception of Interface UsabilityUser Perception of Interface Usability
•• User RecommendationsUser Recommendations
•• Avoid Interference with User PerformanceAvoid Interference with User Performance
•• Quantify When PossibleQuantify When Possible
•• Variety of TechniquesVariety of Techniques

–– DiariesDiaries
–– Verbal ProtocolsVerbal Protocols
–– Critical IncidentsCritical Incidents

Self reports are user perceptions of the interface and their recommendations 
for improvements. Care must be taken to insure that user self-reports are 
gathered in a way to avoid interfering with actual task performance, and self-
reports should be quantified whenever possible.

The bottom of this slide lists three common approaches to collecting self-
reports in human factors research. A straightforward and informal way of 
collecting self-report data is to require participants to keep a diary of their 
perceptions throughout the experiment. Verbal protocols and critical 
incidents, however, are formal procedures for collecting self-report data and 
are discussed separately in this reference.
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4.3.1.1. Verbal Protocols4.3.1.1. Verbal Protocols4.3.1.1. Verbal Protocols

•• Protocol Analysis (Ericsson and Simon, 1984)Protocol Analysis (Ericsson and Simon, 1984)
–– Verbal Reports As DataVerbal Reports As Data
–– Cognitive ModelCognitive Model
–– Reports from Short Term MemoryReports from Short Term Memory

•• Types of Verbal ProtocolTypes of Verbal Protocol
–– Concurrent Concurrent -- "Thinking Aloud""Thinking Aloud"
–– RetrospectiveRetrospective

•• Resulting DataResulting Data
–– Verbal StatementsVerbal Statements
–– Derived Measures Derived Measures -- BayesBayes TheoremTheorem
–– Transition DiagramsTransition Diagrams

•• ConsiderationsConsiderations
–– Training on VerbalizationTraining on Verbalization
–– Possible Interference with TaskPossible Interference with Task

Ericsson and Simon (1984) described a technique called verbal protocol 
analysis in which verbal reports can be viewed as data that are recalled from 
the user’s short-term memory. Their technique is often used in human 
factors research especially in human-computer interface design. Verbal 
protocol data can be collected concurrently while subjects perform a task or 
retrospectively after the task is completed possibly by viewing a videotape of 
their performance and describing what they were doing during each step of 
the task. The major problem with concurrent verbal protocols is interference 
with primary task performance, and the major problem with retrospective 
verbal protocols is forgetting. The resulting data are in the form of a verbal 
statement from the person. Many times the subsequent analysis is no more 
than sorting the information into meaningful categories and analyzing the 
frequency of response across categories. Ericsson and Simon (1984) also 
described derived measures based on Bayes Theorem and the use of 
transition diagrams as a more formal way of analyzing verbal protocols.

There are two primary considerations that an experimenter must address in 
using verbal protocols for self-reports. First, the experimenter must provide 
some training for the subject on verbalization. Second, the researcher must 
guard against possible interference with the task being performed.
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4.3.1.2. Critical Incidents4.3.1.2. Critical Incidents4.3.1.2. Critical Incidents

•• Critical Incident Procedure (Critical Incident Procedure (FlanagenFlanagen, 1954), 1954)
–– Used to Determine Causes of Aircraft AccidentsUsed to Determine Causes of Aircraft Accidents
–– Pilots Reported "Near Misses"Pilots Reported "Near Misses"
–– Extended to Report both "Good" and "Poor" ExtremesExtended to Report both "Good" and "Poor" Extremes

•• Steps in Obtaining Critical IncidentsSteps in Obtaining Critical Incidents
–– 1. Determine general aim of the activity observed.1. Determine general aim of the activity observed.
–– 2. Specify criteria for effective/ineffective behavior.2. Specify criteria for effective/ineffective behavior.

–– a. Situations observeda. Situations observed
–– b. Relationship to aim of the activityb. Relationship to aim of the activity
–– c. Importance of the behaviorc. Importance of the behavior
–– d. Who makes the observationd. Who makes the observation

–– 3. Collect the data with standard format for incident.3. Collect the data with standard format for incident.
•• Analyze Frequency and Severity of Critical IncidentsAnalyze Frequency and Severity of Critical Incidents

Flanagen (1954) described a critical incident method of self-report developed 
by human factors specialists as a way to investigate causes of aircraft 
accidents. This method was used to obtain self reports from pilots after 
experiencing critical incidents during flying that could have resulted in 
catastrophic accidents. This procedure can be extended to look at the 
extremes of both the best and worst performance in order to find the good 
design aspects to keep and the bad design aspects that should be
eliminated.

The middle portion of this slide summarizes the steps taken to obtain critical 
incidents. Collecting data in a standard format facilitates subsequent 
analysis of the self report. The resulting critical incidents are grouped into 
homogeneous categories and analyzed in terms of both frequency and 
perceived severity of the incident.
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4.3.2. Questionnaires4.3.2. Questionnaires4.3.2. Questionnaires

•• Structured Questions for Interface UserStructured Questions for Interface User
•• Usually Follows Interface UseUsually Follows Interface Use
•• SelfSelf--Administered vs. Structured InterviewAdministered vs. Structured Interview
•• Questionnaire Design Considerations (Pew, 1993)Questionnaire Design Considerations (Pew, 1993)

–– PretestingPretesting Is Essential!Is Essential!
–– Respondent SamplingRespondent Sampling
–– Question DesignQuestion Design

–– RelevancyRelevancy
–– Possible AnswersPossible Answers
–– Wording of QuestionWording of Question

–– Type of QuestionnaireType of Questionnaire
–– ClosedClosed--Form vs. OpenForm vs. Open--EndedEnded

The most common self-report procedure used in collecting supplemental 
data is a questionnaire. The questionnaire is usually presented after the task 
is completed, but sometimes it is presented before an experiment to collect 
demographic data during subject selection. Questionnaires can be self-
administered with a completion form or the data can be collected through a 
structured interview.

Pew (1993) discussed three major design aspects of questionnaires that 
need careful consideration when using them for supplemental data in 
experiments. Pretesting the questions is essential! Questionnaires usually 
need to be revised in order to provide the proper coverage. Poorly designed 
questions in terms of relevance, inappropriate answers, and ambiguous 
wording can yield ambiguous and unreliable results.

There are two types of questions, closed-form or open-ended. Closed-form 
questions provide a structured choice of possible answers; whereas, open-
ended questions do not restrict the possible answer alternatives. Both types 
of questions can be used in collecting supplemental data.
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4.3.2. Questionnaires (Cont'd)4.3.2. Questionnaires (Cont'd)4.3.2. Questionnaires (Cont'd)

•• ClosedClosed--Form QuestionsForm Questions
–– ExamplesExamples

–– Checklist, Sorting, Rank Order, Rating Scale, Checklist, Sorting, Rank Order, Rating Scale, 
Multiple Choice, Yes/NoMultiple Choice, Yes/No

–– Advantages/DisadvantagesAdvantages/Disadvantages
–– Easy to AnalyzeEasy to Analyze
–– Cannot Identify New IdeasCannot Identify New Ideas

•• OpenOpen--Ended QuestionsEnded Questions
–– ExamplesExamples

–– Describe, FillDescribe, Fill--InIn--TheThe--Blank, Give OpinionBlank, Give Opinion
–– Advantages/DisadvantagesAdvantages/Disadvantages

–– Rich Source of DataRich Source of Data
–– Difficult to AnalyzeDifficult to Analyze

•• Use ClosedUse Closed--Form When PossibleForm When Possible

Closed-form questions are exemplified by checklists, rank ordering, sorting, 
yes/no answers, multiple choice answers, and rating scales. They provide a 
pre-specified choice of specific answers that facilitate analysis, but they do 
not allow for the expression of new ideas.

Open-ended questions are characterized by making general descriptions, fill 
in the blank, or stating opinions. Open-ended questions are unstructured and 
request general views that may be more difficult to summarize but yield a 
broader range of responses to gain new insights and ideas. Open-ended 
questions can be conditional when combined with rating scales by asking the 
user for clarification of only extreme rating responses.

Usually a questionnaire designed for supplemental data collection is closed-
form and explores specific issues related to the experiment. Often one final 
open-ended question is provided to obtain the participants’ overall 
impressions and suggestions. To facilitate subsequent analysis, closed-form 
questions that have been carefully designed and pretested are preferred.
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4.3.2. Questionnaires (Cont'd)4.3.2. Questionnaires (Cont'd)4.3.2. Questionnaires (Cont'd)

•• Pew's (1993) Checklist of Poor QuestionsPew's (1993) Checklist of Poor Questions
–– Produces a narrow range of answersProduces a narrow range of answers
–– Will be misunderstood by part of the sampleWill be misunderstood by part of the sample
–– Question is too vagueQuestion is too vague
–– Requires information the respondent does not Requires information the respondent does not 

knowknow
–– Requires information the respondent does not Requires information the respondent does not 

rememberremember
–– Asks a leading questionAsks a leading question
–– Question is too technicalQuestion is too technical
–– Question is too colloquialQuestion is too colloquial

This slide summarizes Pew’s (1993) checklist of poor questions that can be 
used in questionnaire design and pretesting.
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4.3.3. Psychometric Scaling4.3.3. Psychometric Scaling4.3.3. Psychometric Scaling

•• Psychometric Scaling MethodsPsychometric Scaling Methods
–– Paired ComparisonsPaired Comparisons
–– RankingsRankings
–– SortingSorting
–– RatingsRatings

•• Provides a Standard Quantitative FormatProvides a Standard Quantitative Format
•• Facilitates Data AnalysisFacilitates Data Analysis
•• Concentrates on Rating MethodsConcentrates on Rating Methods

Psychometric scaling methods include paired comparisons, rankings, 
sorting, and ratings. They use closed-form questions, provide a quantitative 
format, and require measurement properties that often go beyond nominal 
scale metrics. These techniques facilitate subsequent analysis of self-
reports. Rating methods are the most common psychometric scales used in 
human factors research. This reference concentrates on some specific rating 
methods that are often used in human factors research.
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4.4. Graphic Rating Scales4.4. Graphic Rating Scales4.4. Graphic Rating Scales

•• 4.4.1. 4.4.1. LikertLikert Rating ScalesRating Scales
•• 4.4.2. Bipolar Adjective Scales4.4.2. Bipolar Adjective Scales
•• 4.4.3. Rating Scale Validity and Reliability4.4.3. Rating Scale Validity and Reliability
•• 4.4.4. Examples of Rating Scales4.4.4. Examples of Rating Scales

This subsection provides an overview of two of the most common types of 
rating scales used in human factors and ergonomics research, Likert scales 
and bipolar adjective scales. Validity and reliability are important issues in 
rating scale construction. This subsection ends with two examples of rating 
scales used for supplemental data collection in support of experimental 
design.
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4.4. Graphic Rating Scales (Cont’d)4.4. Graphic Rating Scales (Cont4.4. Graphic Rating Scales (Cont’’d)d)

•• User Sentiments/Attitudes/OpinionsUser Sentiments/Attitudes/Opinions
•• DefinitionDefinition: Unbroken line or boxes with labeled : Unbroken line or boxes with labeled 

divisions representing a characteristic, divisions representing a characteristic, 
behavior, or dimension to be rated.behavior, or dimension to be rated.

•• Variations in Graphic Rating ScalesVariations in Graphic Rating Scales
–– Scale Orientation Scale Orientation -- Vertical or HorizontalVertical or Horizontal
–– Number of Categories Number of Categories -- Usually 5 to 9Usually 5 to 9
–– Order of Scale Order of Scale -- Positive or NegativePositive or Negative
–– Center Point Center Point -- Present or AbsentPresent or Absent
–– Labels (Anchors) Labels (Anchors) -- Words and/or NumbersWords and/or Numbers

•• Various Scale Development ProceduresVarious Scale Development Procedures

Rating scales are the most popular way to collect supplemental data for 
human factors experiments because the results yield numbers that are 
amenable to quantitative analysis. Ratings can be used to measure a 
subject’s sentiments, attitudes, or opinions. Most scales used in human 
factors and ergonomics research are some form of a graphical rating scale.

Graphic ratings are unbroken line or boxes with labeled divisions 
representing a characteristic, behavior, or dimension to be rated. The major 
demarcations on the scale are anchored with numbers and/or verbal labels. 
The subjects merely mark their answer directly on the scale. There are 
common formatting variations of graphical rating scales such as scale 
orientation, number of categories, order of scale, center point, and labels. 
Meister (1985) describes several characteristics of these parameters that 
need to be considered when designing and using ratings. The two major 
considerations of rating scales are the number of subdivisions and the 
labeling of scale anchors. Human factors researchers commonly use a 
horizontal scale with 3-to-9 categories designated by numbers along with 
verbal labels.
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4.4.1. Likert Rating Scales4.4.1. 4.4.1. LikertLikert Rating ScalesRating Scales

•• BackgroundBackground
–– Attitude Scale Developed by Attitude Scale Developed by LikertLikert (1932)(1932)
–– Statement and Five Point Numerical Rating ScaleStatement and Five Point Numerical Rating Scale
–– Continuous, Horizontal Scale with Labeled AnchorsContinuous, Horizontal Scale with Labeled Anchors
–– Equal Intervals between CategoriesEqual Intervals between Categories
–– Scale Usually Developed by Expert JudgmentScale Usually Developed by Expert Judgment
–– Most Common Rating Scale in Human FactorsMost Common Rating Scale in Human Factors

•• ExampleExample

1
Strongly
Approve

3
Undecided

5
Strongly

Disapprove

2
Approve

4
Disapprove

1. Positive feedback should be provided to improve task performance.

Likert (1932) developed a graphical rating scale that is probably the most 
frequently used rating in human factors research today. As shown on this 
slide, this scale consists of a statement followed by a horizontal scale with 
five categories. Below each number is a verbal label going from “Strongly 
Approve” to “Strongly Disapprove”. Many of the scales that one sees in 
research today are variations of the original Likert scale and are referenced 
as “Likert-type” scales.

Some researchers argue that the Likert scale is set up with equal distances 
between the numbers, and therefore it represents interval scale data 
amenable to parametric analysis. Alternatively, one could argue that the 
difference between the adjectives may not be the same psychologically, and 
a nonparametric analysis should be used assuming ordinal data, at best.

Instructions and well planned procedures are critical in order to obtain 
consistent results using Likert-type ratings. The subject should be instructed 
to circle the number directly to avoid checking an answer somewhere 
between two numbers that the experimenter must then interpret as 4, 4.5, or 
5, for example.
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4.4.2. Bipolar Adjective Scales4.4.2. Bipolar Adjective Scales4.4.2. Bipolar Adjective Scales

•• BackgroundBackground
–– Rating of Interface Concept (e.g. Usability)Rating of Interface Concept (e.g. Usability)
–– Rating Scale Anchored by Bipolar AdjectivesRating Scale Anchored by Bipolar Adjectives
–– Ratings Grouped by Common FactorsRatings Grouped by Common Factors
–– Factors and Grouped Ratings Provide MeaningFactors and Grouped Ratings Provide Meaning

•• Semantic Differential FactorsSemantic Differential Factors
–– Osgood (1962) Three FactorsOsgood (1962) Three Factors

–– EvaluationEvaluation: pleasant: pleasant--unpleasant, positiveunpleasant, positive--negative,  negative,  
fairfair--unfair, goodunfair, good--bad, valuablebad, valuable--worthless, etc.worthless, etc.

–– PotencyPotency: strong: strong--weak, heavyweak, heavy--light, largelight, large--small,  small,  
ruggedrugged--delicate, severedelicate, severe--lenient, etc.lenient, etc.

–– ActivityActivity: active: active--passive, tensepassive, tense--relaxed, quickrelaxed, quick--slow, slow, 
busybusy--lazy, hotlazy, hot--cold, excitablecold, excitable--calm, etc.calm, etc.

–– NunnallyNunnally (1967) Factor(1967) Factor
–– UnderstandabilityUnderstandability: simple: simple--complex, usualcomplex, usual--unusualunusual

clearclear--confusing, familiarconfusing, familiar--unfamiliar, etc.unfamiliar, etc.

Another type of rating scale consisting of several bipolar adjectives (e.g. 
agree-disagree, good-bad) is also used as a way of obtaining supplemental 
data instead of the Likert-type scale that uses just one bipolar adjective, i.e. 
approve-disapprove.

The resulting set of bipolar adjectives can be grouped into common factors 
that are meaningful.  Osgood (1962) recommended three semantic 
differential factors that usually occur. They consist of evaluation, potency, 
and activity groupings of bipolar adjectives as shown on this slide. 
Alternatively, Nunnally (1967) suggested understandability as another factor 
grouping for bipolar adjectives. To build a rating scale of bipolar adjectives, 
one merely chooses a bipolar set from each dimension that is appropriate for 
the specific evaluation.
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4.4.3. Rating Scale Reliability and Validity4.4.3. Rating Scale Reliability and Validity4.4.3. Rating Scale Reliability and Validity

•• Reliability (Reliability (GlinerGliner and Morgan, 2000)and Morgan, 2000)
–– TestTest--RetestRetest
–– Parallel FormsParallel Forms
–– Internal ConsistencyInternal Consistency
–– InterInter--RaterRater

•• Validity (Validity (GlinerGliner and Morgan, 2000) and Morgan, 2000) 
–– FaceFace
–– ContentContent
–– CriterionCriterion--RelatedRelated
–– ConstructConstruct

When a rating scale is used to collect supplemental data in only one study, 
various reliability and validity correlation coefficients are usually not 
calculated. See Gliner and Morgan (2000) for calculation details since they 
are beyond the scope of this reference material.

Reliability is the consistency of response. Measurements of reliability might 
include consistency when the same individual responds a second time (i.e. 
test-retest), consistency in parallel forms of the scale, internal consistency 
among items measuring the same concept (i.e., split-half reliability, Kuder-
Richardson 20, and Cronbach’s α), and inter-rater consistency when two or 
more observers (i.e., experts) rate subjects in the experiment. Often just the 
correlation among multiple raters is calculated to determine consistency 
among raters of supplemental data.

Validity determines if the rating scale really measures what it is supposed to 
measure. Conceptually, various dimensions of measurement validity are 
considered that can include determining if appearance of material has 
relevance to the rater (i.e. face validity), determining if the actual content of 
the rating scale is relevant to the concept being evaluated, validating the 
scale against an external criterion, and determining how well a rating scale 
actually measures an underlying construct such as usability.
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4.4.4. Examples of Rating Scales4.4.4. Examples of Rating Scales4.4.4. Examples of Rating Scales

•• Coleman, Williges, and Coleman, Williges, and WixonWixon (1985) Ratings (1985) Ratings 
of Software Interfacesof Software Interfaces
–– Evaluation of Text EditingEvaluation of Text Editing

–– List Editing FunctionsList Editing Functions
–– Global Ratings of "Importance" and "Goodness"Global Ratings of "Importance" and "Goodness"
–– List Adjectives to Describe FunctionsList Adjectives to Describe Functions

–– Sixteen Text Editing FunctionsSixteen Text Editing Functions
Travel Search
View Delete
Insert Copy
Move Replace
Customize Request
Recover Initiate
Terminate Write
Include Format

Two examples are provided for using rating scales as a means of collecting 
subjective data in human factors research. Both examples deal with 
problems related to human-computer software interface design. The first 
example shows the bipolar adjective scales developed by Coleman, Williges, 
and Wixon (1985) to measure the “importance” and “goodness” of various 
text editing functions. They evaluated the 16 editing functions shown on this 
slide. In addition to evaluating the effects of these functions on text editing 
performance in terms of speed and errors, they also looked at the 
supplemental data on subjects’ evaluations of goodness and importance of 
these functions. In the process, they attempted to develop a general rating 
scale to evaluate text editors.
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4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)

•• Coleman, et al. (1985) Rating Scale DevelopmentColeman, et al. (1985) Rating Scale Development
–– Descriptive AdjectivesDescriptive Adjectives

–– 86 Initial Adjectives86 Initial Adjectives
–– 28 Principal Components28 Principal Components
–– Rated on 7Rated on 7--Point Scale of "Importance"Point Scale of "Importance"
–– 17 Highest Rated 17 Highest Rated ““ImportanceImportance”” AdjectivesAdjectives

–– Rating Scale CharacteristicsRating Scale Characteristics
–– SevenSeven--Point Point LikertLikert--Type ScaleType Scale
–– Anchored by Bipolar AdjectivesAnchored by Bipolar Adjectives

•• Evaluation of Editing FunctionsEvaluation of Editing Functions
–– All 17 Bipolar Adjective Rated with "Goodness"All 17 Bipolar Adjective Rated with "Goodness"
–– Provides More Detailed Description of "Goodness"Provides More Detailed Description of "Goodness"

Coleman et al. (1985) used 86 bipolar adjectives that could group into 28 
different groups. Then they developed a 7-point, Likert-type rating scale of 
importance and isolated the top rated 17 “importance” bipolar adjectives. 
Each of the resulting 17 scale items they selected appeared as a 7-point 
Likert-type scale that was anchored by bipolar adjectives. All 17 bipolar 
adjectives were also used to provide “goodness” ratings.
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4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)

•• Rank Orders of Coleman, et al. (1985) Rating ScalesRank Orders of Coleman, et al. (1985) Rating Scales

"Importance" "Goodness"
Dependable-Undependable Pleasing-Irritating
Useful-Useless Friendly-Unfriendly
Fast-Slow Complete-Incomplete
Consistent-Inconsistent Cooperative-Uncooperative
Complete-Incomplete Dependable-Undependable
Maintainable-Unmaintainable Simple-Complicated
Adaptive-Unadaptive Consistent-Inconsistent
Friendly-Unfriendly Natural-Unnatural
Interpretable-Uninterpretable Intelligent-Unintelligent
Simple-Complicated Interpretable-Uninterpretable
Intelligent-Unintelligent Fast-Slow
Concise-Redundant Adaptive-Unadaptive
Uncluttered -Cluttered Useful-Useless
Cooperative-Uncooperative Concise-Redundant
Safe-Unsafe Uncluttered -Cluttered
Natural-Unnatural Safe-Unsafe
Pleasing-Irritating Maintainable-Unmaintainable

This slide summarizes the 17 bipolar adjectives used in the 7-point, Likert-
type scales by Coleman et al. (1985) to evaluate importance and goodness 
of various text editing functions. Note that the rank orders of the ratings 
using the 17 bipolar adjectives depend upon whether one is assessing 
importance or goodness. Consequently, these rank orders can be used to 
help interpret what importance and goodness ratings of text editing functions 
mean. For example, “dependable”, “useful”, and “fast” are the three highest 
rated adjectives in evaluating importance; whereas “pleasing”, “friendly”, and 
“complete” are the three highest rated adjectives for evaluating goodness.
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4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)

•• Questionnaire for User Interface Satisfaction Questionnaire for User Interface Satisfaction 
(QUIS)(QUIS)
–– General Rating Scale for Computer InterfacesGeneral Rating Scale for Computer Interfaces
–– Version 5.0 (Chin, Diehl, and Norman, 1988)Version 5.0 (Chin, Diehl, and Norman, 1988)

–– 27 Satisfaction Ratings using Bipolar Adjectives27 Satisfaction Ratings using Bipolar Adjectives
–– Five Scale DimensionsFive Scale Dimensions
–– 1010--Point Point LikertLikert ScaleScale

–– Example of Rating Scale ItemExample of Rating Scale Item

Messages on screen which prompt user for input

0
Confusing

9
Clear

2 3 5 6 871 4

The second example of a rating scale is the Questionnaire for User Interface 
Satisfaction (QUIS) by Chin, Diehl, and Norman (1988). This scale was 
developed as a general satisfaction rating scale for computer interfaces. 
Researchers potentially can make comparisons across many studies and 
families of computer interfaces using a standard metric of user satisfaction 
using QUIS.

Chin, et al. (1988) described Version 5.0 of QUIS in a proceedings paper at 
a technical conference; however, subsequent versions are only commercially 
available. They used 27 satisfaction ratings grouped into 5 interface 
dimensions. Each of the 27 ratings is made on a 10-point Likert-type scale. 
The bottom of this slide shows an example of one of these 27 scale items.
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4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)

•• Scales of Version 5.0 of QUISScales of Version 5.0 of QUIS
• OVERALL REACTIONS TO SOFTWARE

terrible ... wonderful
difficult ... easy
inadequate power ... adequate power
dull ... stimulating
rigid ... flexible

• SCREEN
Characters on the computer screen

hard to read ... easy to read
Highlighting on the screen simplifies task

not at all ... very much
Organization of information on screen

confusing ... very clear
Sequence of screens

confusing ... very clear

The next four slides show the five dimensions of Version 5.0 of QUIS. This 
slide lists the first two dimensions of the QUIS. The first dimension is the 
overall reaction to the software and consists of 5 bipolar adjective ratings. 
The second dimension is the screen evaluation based on 4 ratings.
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4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)

•• Scales of Version 5.0 of QUIS (Cont'd)Scales of Version 5.0 of QUIS (Cont'd)

• TERMINOLOGY AND SYSTEMS INFORMATION
Use of terms throughout system

inconsistent ... consistent
Computer terminology is related to task you are doing

never ... always
Position of message on screen

confusing ... clear
Messages on screen which prompt user for input

confusing ... clear
Computer keeps you informed about what it is doing

never ... always
Error messages

unhelpful ... helpful

This slide summarizes the 6 ratings used to evaluate the terminology and the 
systems information of Version 5.0 of QUIS.
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4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)

•• Scales of Version 5.0 of QUIS (Cont'd)Scales of Version 5.0 of QUIS (Cont'd)

• LEARNING
Learning to operate the system

difficult ... easy
Exploring new features by trial and error

difficult ... easy
Remembering names and use of commands

difficult ... easy
Tasks can be performed in a straightforward manner

never ... always
Help messages on the screen

unhelpful ... helpful
Supplemental reference materials

confusing ... clear

The fourth dimension of Version 5.0 of QUIS relates to learning the interface 
and consists of 6 ratings shown on this slide.
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4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)4.4.4. Examples of Rating Scales (Cont'd)

•• Scales of Version 5.0 of QUIS (Cont'd)Scales of Version 5.0 of QUIS (Cont'd)

• SYSTEM CAPABILITY
System speed

too slow ... fast enough
System reliability

unreliable ... reliable
System tends to be

noisy ... quiet
Correcting your mistakes

difficult ... easy
Experienced and inexperienced users' needs are taken into
consideration

never ... always

The fifth dimension of Version 5.0 of QUIS deals with the system capability 
and is evaluated by the 5 ratings shown on this slide.
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4.5. Summary4.5. Summary4.5. Summary

•• Supplemental Data on User OpinionsSupplemental Data on User Opinions
–– Aid to Interpretation of Performance EffectsAid to Interpretation of Performance Effects
–– GoalGoal: Quantify Subjective Measures: Quantify Subjective Measures
–– MethodsMethods: Self: Self--Reports, Questionnaires, RatingsReports, Questionnaires, Ratings

•• Development of Rating ScalesDevelopment of Rating Scales
–– Rating Scale Development ProceduresRating Scale Development Procedures
–– Rating Scale ValidityRating Scale Validity
–– Rating Scale ReliabilityRating Scale Reliability

•• Analysis of Rating Scale ResultsAnalysis of Rating Scale Results
–– Differences Among ItemsDifferences Among Items
–– Differences Among ConditionsDifferences Among Conditions
–– Parametric vs. Nonparametric AnalysesParametric vs. Nonparametric Analyses

By way of summary, remember that the goal of supplemental data collection 
is to aid interpretation of the overall performance effects evaluated through 
experimental design. To facilitate this process, one should try to quantify the 
subjective measures as much as possible.

Three often used methods for collecting supplemental data in human factors 
and ergonomics research are self-reports, questionnaires, and rating scales. 
Of these three the one most amenable to subsequent quantitative analysis is 
the rating scale. If the same rating scale is going to be used across a series 
of research efforts, then the researcher should consider using a systematic 
development process to determine both the validity and reliability of the 
rating scale.

The analysis of supplemental data includes both the analysis of responses to 
different items or ratings and the analysis of summary ratings across 
dimensions for different treatment conditions in an experiment. Since most 
supplemental data has only nominal or ordinal properties, at best, the 
analyses use nonparametric procedures. 
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4.6. Supplemental Readings4.6. Supplemental Readings4.6. Supplemental Readings

REFERENCEREFERENCE
Chin, Diehl, & Norman (1988)Chin, Diehl, & Norman (1988)
Coleman, Williges, & Coleman, Williges, & WixonWixon (1985)(1985)
Ericsson & Simon (1984)Ericsson & Simon (1984)
GlinerGliner and Morgan (2000)and Morgan (2000)
LikertLikert (1932)(1932)
Meister (1985)Meister (1985)
Osgood (1962)Osgood (1962)
Pew (1993)Pew (1993)
Siegel & Castellan (1988)Siegel & Castellan (1988)

SECTIONSECTION
Entire ArticleEntire Article
Entire ArticleEntire Article
Chapters 1, 6, 7Chapters 1, 6, 7
Chapters 9, 20Chapters 9, 20
Entire ReportEntire Report
Chapters 9Chapters 9--1111
Entire ArticleEntire Article
Entire ReportEntire Report
Chapter 3Chapter 3

Meister (1985) discusses general issues related to rating scales, and Pew 
(1993) discusses general issues in the collection of subjective data designed 
specifically for human factors and ergonomics research. The chapter 
suggested in Siegel and Castellan (1988) provides a description of 
measurement scales and an introduction to nonparametric analysis. Gliner
and Morgan (2000) provide details on scales of measurement as well as 
reliability and validity of measurements for rating scales. The other 
references give the details of specific techniques that are reviewed in this 
topic for collecting supplemental data.
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This topic deals with an overview of major supplemental data analysis 
alternatives that can be used with nominal scale data. Only a sample of 
nonparametric analyses covering the most common techniques used in 
human factors and ergonomics research is presented in this topic. Siegel 
and Castellan (1988) provide a detailed discussion of all of these techniques, 
and their formulae and notation are used throughout this topic for easy 
reference. The nonparametric techniques in this reference are organized 
around between-subjects and within-subjects techniques to facilitate an easy 
choice of nonparametric analysis procedures for nominal data.

Topic 5. Analysis of Nominal Scale DataTopic 5. Analysis of Nominal Scale DataTopic 5. Analysis of Nominal Scale Data

5.1. Background5.1. Background
5.2. Between5.2. Between--Subjects TestsSubjects Tests

5.2.1. Chi5.2.1. Chi--Square Goodness of Fit TestSquare Goodness of Fit Test
5.2.2. Chi5.2.2. Chi--Square Test of IndependenceSquare Test of Independence

5.3. Within5.3. Within--Subjects TestsSubjects Tests
5.3.1. 5.3.1. McNemarMcNemar Change TestChange Test
5.3.2. Cochran Q Test5.3.2. Cochran Q Test

5.4. Summary5.4. Summary
5.5. Supplemental Readings5.5. Supplemental Readings
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5.1. Background5.1. Background5.1. Background

•• Data SetData Set
–– Nominal (Categorical) DataNominal (Categorical) Data
–– Usually Frequency CountsUsually Frequency Counts

•• Test BasisTest Basis
–– Comparison to Known DistributionComparison to Known Distribution
–– Test of IndependenceTest of Independence

•• Independent vs. Related SamplesIndependent vs. Related Samples
–– BetweenBetween--Subjects TestsSubjects Tests
–– WithinWithin--Subjects TestsSubjects Tests

If supplemental data are only nominal scale, one has categorical data that is 
usually in the form of frequency counts within a category. The test of 
statistical significance is either a comparison of the supplemental data to 
some known distribution or a test of independence among the different 
categories. The choice of test alternative depends on whether the data are 
between-subjects or within-subjects observations.
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5.2. Between-Subjects Tests5.2. Between5.2. Between--Subjects TestsSubjects Tests

•• 5.2.1. Chi5.2.1. Chi--Square Goodness of Fit TestSquare Goodness of Fit Test
•• 5.2.2. Chi5.2.2. Chi--Square Test of IndependenceSquare Test of Independence

This subsection summarizes two between-subjects nonparametric tests for 
categorical data. Both the goodness of fit test and the test of independence 
among two or more categories use the chi-square sampling distribution. So, 
both are referred to as chi-square tests.
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5.2. Between-Subjects Tests (Cont’d)5.2. Between5.2. Between--Subjects Tests (ContSubjects Tests (Cont’’d)d)

•• Pearson Pearson χχ22 StatisticStatistic

•• AssumptionsAssumptions
–– Large nLarge n
–– Independent SamplesIndependent Samples

•• Statistical Hypothesis Test FormatStatistical Hypothesis Test Format
–– HH00: O = E: O = E
–– HH11: O : O ≠≠ EE
–– αα = .05, .01, .001= .05, .01, .001
–– D.R.: I reject HD.R.: I reject H00 if if χχ22

ObservedObserved > > χχ22
TabledTabled

χ2 = (Oi – Ei)
2

Ei
Σi = 1

k

where, k = number of categories
Oi = observed number of cases in ith category
Ei = expected number of cases in ith category

The Pearson Chi-Square statistic for discrete categorical data is used to 
approximate the continuous chi-square sampling distribution assuming large 
and independent samples (Hays and Winkler, 1971, p. 784; Hays, 1994, p. 
862). The formula for the Pearson statistic is shown on the slide. It is simply 
the sum of the observed value (O) minus the expected value (E) squared 
divided by E. The value of O is the frequency count in each category of the 
actual supplemental data, but the E value depends upon the type of 
hypothesis test the researcher is conducting. Procedures for calculating E for 
both a goodness of fit test and a test for independence will be described in 
this reference material.

The standard hypothesis-testing format can be used for either test. This 
format is shown at the bottom of this slide in terms of O and E using the 
Pearson Chi-Square statistic.
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5.2.1. Chi-Square Goodness of Fit Test5.2.1. Chi5.2.1. Chi--Square Goodness of Fit TestSquare Goodness of Fit Test

•• BackgroundBackground
–– Expected Frequency (E) Defined by Known Expected Frequency (E) Defined by Known 

DistributionDistribution
–– Observed Frequency (O) Defined by Sample Observed Frequency (O) Defined by Sample 

DataData
•• Required Sample SizeRequired Sample Size

–– Rule of ThumbRule of Thumb: E : E ≥≥ 5 for Each Category5 for Each Category
–– Combine Categories When Combine Categories When dfdf > 1> 1
–– Yate'sYate's Correction When Correction When dfdf = 1= 1

–– Binomial TestBinomial Test

Ei = 1
χObserved

2 = (|O – E| – .5)2

Σ
k

A goodness of fit test compares the observed value, O, resulting from the 
supplemental data collection to known population values of categories, E, in 
order to calculate the Pearson Chi-Square statistic. A rule of thumb is that 
the E in each of the categories should be greater than or equal to 5 in order 
for the Pearson chi-square to approximate the chi-square distribution 
adequately. If E is less than 5 one can combine categories, if meaningful, to 
provide an E equal to or greater than 5.

If E is still not equal to or greater than 5 when the goodness of fit test 
reduces to only 2 categories, (i.e., one degree of freedom), Hays and 
Winkler (1971, p. 788) suggest that one can use a Yate’s correction as 
shown on this slide when the degrees of freedom are equal to 1. This 
correction, however, could be quite conservative (Delucchi, 1993, p. 304). 
Alternatively, Siegel and Castellan (1988. p. 50) recommend using a 
binomial test instead of a Pearson Chi-Square when E is less than 5.
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5.2.1. Chi-Square Goodness of Fit Test (Cont’d)5.2.1. Chi5.2.1. Chi--Square Goodness of Fit Test (ContSquare Goodness of Fit Test (Cont’’d)d)

•• Example ProblemExample Problem: The relative frequency of the age of : The relative frequency of the age of 
automobile drivers in the U.S. is known. A sample of 50 automobile drivers in the U.S. is known. A sample of 50 
drivers is chosen, and demographic data on age is recorded. drivers is chosen, and demographic data on age is recorded. 
Does the age of this sample differ from the distribution of the Does the age of this sample differ from the distribution of the 
U.S. population of drivers (p < 0.01)?U.S. population of drivers (p < 0.01)?

χObserved
2 =

(10 – 9.5)2

9.5 +
(3 – 5.5) 2

5.5 +
(6 – 7.5) 2

7.5 +

(25 – 13.5)2

13.5 + (5 – 8) 2

8 + (1 – 6)2

6 = 16.55*

χTabled
2 = (6 – 1) = 5 df = 15.09

Age of Driver U.S. Population Expected (E) Observed (O)
18-25 0.19 9.5 10
26-35 0.11 5.5 3
36-45 0.15 7.5 6
46-55 0.27 13.5 25
56-65 0.16 8 5
>65 0.12 6 1

1.00 50 50

(Click in this red rectangle to see SAS calculations for this example.)

A hypothetical example of a chi-squared goodness of fit test is shown on this 
slide. The U.S. driving population is converted to the expected frequency, E, 
based on a sample size of 50. The values of E are tested against the 
observed frequencies in each driver age category, O, using a chi-squared 
test of significance. Since all values of E in this example are greater than 
five, one can probably use the Pearson Chi-Square statistic without 
correction.

The resulting chi-square observed is compared to a tabled value with 5 
degrees of freedom (i.e, 6 categories) resulting in a significant difference (p < 
0.01). Therefore, age distribution of the sample of 50 drivers used in this 
study is significantly different from the age distribution of drivers in the U.S. 
population.
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5.2.2. Chi-Square Test of Independence5.2.2. Chi5.2.2. Chi--Square Test of IndependenceSquare Test of Independence

•• BackgroundBackground
–– Assesses Statistical Independence Among Assesses Statistical Independence Among 

CategoriesCategories
–– Observation Classified in Two Qualitative Ways, Observation Classified in Two Qualitative Ways, 

A and BA and B
–– A and B Each Have 2 or More LevelsA and B Each Have 2 or More Levels
–– Mutually Exclusive and Exhaustive Mutually Exclusive and Exhaustive 

CategoriesCategories
–– BetweenBetween--Subjects ClassificationSubjects Classification
–– Observations Represent Joint Occurrence of Observations Represent Joint Occurrence of 

A and BA and B

A chi-squared test for independence is a useful significance test for 
comparing frequencies classified in two qualitative ways, A and B. Each 
observation can be classified in terms of A and B, where both A and B have 
two or more levels. The classifications are mutually exclusive and exhaustive 
categories that result in contingency tables of the frequency of occurrence of 
between-subjects observations.

The resulting significance test is based on the joint occurrence of the levels 
A and B in the cells of the resulting contingency table of the various AB 
combinations. This test also uses the Pearson Chi-Square statistic and 
determines the expected frequency, E, based on the assumption of
statistical independence between A and B. 
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5.2.2. Chi-Square Test of Independence (Cont’d)5.2.2. Chi5.2.2. Chi--Square Test of Independence (ContSquare Test of Independence (Cont’’d)d)

•• 2x2 Contingency Table of the Joint 2x2 Contingency Table of the Joint 
Occurrence of A and BOccurrence of A and B

nΣA1

B2

ΣA2

ΣB1

ΣB2

A2A1

B1

A1B2

A1B1 A2B1

A2B2

Contingency Table

1.00p(A1)

B2

A2A1

B1 p(A1∩B1)

Joint Probability Table

p(A2)

p(B2)

p(B1)p(A2∩B1)

p(A1∩B2) p(A2∩B2)

This slide shows a 2x2 contingency table beside its corresponding joint 
probability table. The sum of the cells of the column in the contingency 
column is the sum of A1 or A2. The same goes for the rows of the table in 
terms of B1 or B2. One can estimate the probability of these frequency 
counts in each cell, which is the four joint probabilities of A and B shown on 
this slide.
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•• Expected Frequency in Cells of Contingency TableExpected Frequency in Cells of Contingency Table
–– E = E = nn••p(Yp(Y))

–– where, p(Y) = p(Awhere, p(Y) = p(A∩∩B) andB) and
–– p(Ap(A∩∩B) = p(A)p(B) = IndependenceB) = p(A)p(B) = Independence

•• Pearson Pearson χχ22

p(A) = AiΣ
n and p(B) = BiΣ

n

Therefore, Eij = n AiΣ
n

BjΣ
n

Eij =
( AiΣ )( BjΣ )

n

5.2.2. Chi-Square Test of Independence (Cont’d)5.2.2. Chi5.2.2. Chi--Square Test of Independence (ContSquare Test of Independence (Cont’’d)d)

χ2 = (Oij – Eij)
2

Eij
and df =Σ

j
Σ

i

Where A = number of columns and B = number of rows

(A-1)(B-1)

Under the assumption of independence, these joint probabilities of A and B 
equal the p(A) times p(B). The formula shown in the center of this slide 
shows that the expected frequency (Eij) of every cell in a contingency table 
can be estimated based on the assumption of independence. The resulting 
values of E are then used in the Pearson Chi-Square formula shown on the 
bottom of this slide for calculating chi-square observed in a test of 
independence.
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5.2.2. Chi-Square Test of Independence (Cont’d)5.2.2. Chi5.2.2. Chi--Square Test of Independence (ContSquare Test of Independence (Cont’’d)d)

•• Alternate Form of Pearson Alternate Form of Pearson χχ2 for 2x2 2 for 2x2 
Contingency TableContingency Table

χObserved
2 = n(ad – bc)2

(a + b)(c + d)(a + c)(b + d)

n

B2

A2A1

B1

Contingency Table

a + b

c + d

b + da + c

a

c

b

d

χObserved
2 = n(|ad – bc| – n/2)2

(a + b)(c + d)(a + c)(b + d)

Yate's Correction When Any E ij < 5

Siegel and Castellan (1988, pp.116-117) provide formulae for calculating the 
Pearson Chi-Square directly from observed frequencies without having to 
calculate the joint probability in a 2x2 contingency table. This slide shows the 
alternate formula for the general Pearson Chi-Square statistic as well as the 
Yates correction when any cell frequency in a contingency table is equal to 
or less than 5.
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5.2.2. Chi-Square Test of Independence (Cont’d)5.2.2. Chi5.2.2. Chi--Square Test of Independence (ContSquare Test of Independence (Cont’’d)d)

•• Example ProblemExample Problem: Every user in a random sample of 80 users : Every user in a random sample of 80 users 
classified themselves as either high (Hi) or low (Lo) in classified themselves as either high (Hi) or low (Lo) in 
computer experience. All users practiced using an computer experience. All users practiced using an 
experimental text editor for 10 hours and were then asked to experimental text editor for 10 hours and were then asked to 
state whether they were satisfied (Yes) or not satisfied (No) state whether they were satisfied (Yes) or not satisfied (No) 
with the text editor. Is their satisfaction evaluation with the text editor. Is their satisfaction evaluation 
independent of their computer experience (p < 0.05)?independent of their computer experience (p < 0.05)?

No

Lo

Hi

Expected Frequency, E ij

Yes

17.5

22.5

17.5

22.5

Where, E11 = (40)(35)
80 = 17.5

80

11

No

Lo

Hi

Observed Frequency, O ij

40

45

35

29

Yes

24

16

40

(Click in this red rectangle to see SAS calculations for this example.)

This is an example of the chi-squared test for independence. Each of the 80 
subjects who used the experimental text editor rated their computer 
experience as either high or low. The researcher is interested in determining 
whether or not computer experience influences user satisfaction with the 
experimental editor being evaluated. This is a between-subjects test since 
each subject was classified into only one level of experience.

The observed data shown in the left-hand table on the slide are frequency 
counts. Consequently, the appropriate test for the hypothesis in question is a 
chi-square test of independence. The expected values, E, based on 
independence are shown in the right-hand table on this slide.
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5.2.2. Chi-Square Test of Independence (Cont’d)5.2.2. Chi5.2.2. Chi--Square Test of Independence (ContSquare Test of Independence (Cont’’d)d)

•• Statistical Hypothesis TestStatistical Hypothesis Test
–– HH00: O = E: O = E
–– HH11: O : O ≠≠ EE
–– αα = .05= .05
–– D.R.: I reject HD.R.: I reject HOO if if χχ22

ObservedObserved > > χχ22
TabledTabled

•• Summary of ChiSummary of Chi--Square Contingency TablesSquare Contingency Tables
–– Calculate Calculate EEijij Based on IndependenceBased on Independence
–– Can Be Extended Beyond 2x2 Contingency TablesCan Be Extended Beyond 2x2 Contingency Tables

χObs
2 =

(Oij – Eij)
2

Eij
Σ

j
Σ

i

= (24 – 17.5) 2

17.5 + ... + (29 – 22.5) 2

22.5 = 8.58

χTab
2 = [df = (2 – 1)(2 – 1) = 1] = 3.84

(Click in this red rectangle to see SAS calculations for this example.)

The observed and expected frequencies are used to calculate the observed 
Pearson Chi-Square statistic shown on this slide. The standard format can 
be used to summarize the hypothesis test. Since the chi-square observed is 
larger than the chi-squared tabled value, one can conclude that there is a 
significant difference which means that user computer experience and text 
editor preference are not independent. So, satisfaction with the experimental 
text editor depends on the user’s computer experience.

To calculate any test of independence, one uses the Pearson Chi-Square 
and calculates the expected frequency based on the assumption of
independence. The 2x2 contingency table shown in this example can be 
generalized to larger contingency tables.
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5.2.2. Chi-Square Test of Independence (Cont’d)5.2.2. Chi5.2.2. Chi--Square Test of Independence (ContSquare Test of Independence (Cont’’d)d)

•• RxCRxC Contingency TablesContingency Tables
–– Sample Size: n>20 and Sample Size: n>20 and EEijij>5>5
–– ProcedureProcedure

–– Calculate Calculate EEijij by Appropriate Marginal Totals, by Appropriate Marginal Totals, 
RRii and and CCjj where where EEijij = = RRiiCCjj /n/n

–– Observed Pearson Observed Pearson χχ22

–– Isolate Significant EffectsIsolate Significant Effects
–– Partition Partition RxCRxC Contingency Table into Series Contingency Table into Series 

of 2x2 Tables Each Having 1 of 2x2 Tables Each Having 1 dfdf
–– Additive 2x2 TablesAdditive 2x2 Tables
–– Partition by MeaningfulnessPartition by Meaningfulness

χObserved
2 = (Oij – Eij)

2

Eij
and df = (r – 1)(c – 1)Σ

j = 1

c

Σ
i = 1

r

Expanded 2x2 contingency tables are stated in terms of RxC tables where R 
is the number of categories represented in the rows of the contingency table 
and C is the number of categories represented in the columns of the 
contingency table. In these larger contingency tables, one can use the 
Pearson Chi-Square statistic shown on this slide and the chi-square 
sampling distribution if the sample size is greater than 20 and the expected 
values are greater than 5.

Any significance found in the expanded RxC contingency table merely states 
that some of the joint frequencies are not independent, but it does not 
specify exactly where this lack of independence occurs. To isolate the 
significant effects one can partition the overall RxC contingency table into a 
series of smaller 2x2 contingency tables, each having 1 degree of freedom, 
for subsequent analysis. The choice of meaningful 2x2 partitions then helps 
isolate significant effects. 
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5.2.2. Chi-Square Test of Independence (Cont’d)5.2.2. Chi5.2.2. Chi--Square Test of Independence (ContSquare Test of Independence (Cont’’d)d)

•• Example of Example of RxCRxC Contingency TableContingency Table
–– Example ProblemExample Problem: Previous example with 80 : Previous example with 80 

subjects divided into "Hi", "Med", and "Lo" subjects divided into "Hi", "Med", and "Lo" 
computer experiencecomputer experience

–– Overall Test of SignificanceOverall Test of Significance

80

No

Med

Hi

Results

13

36

Yes

24 (17)

Lo

40 40

31

10 (17)

8 (7.5) 7 (7.5)

8 (15.5) 23 (15.5)
n

3x2 Contingency Table

R2

R1O11 (E 11 )

C1 C2

R3

O12 (E 12 )

O21 (E 21 ) O22 (E 22 )

O31 (E 31 ) O32 (E 32 )

where E 11 =R 1C1/n ... E ij=R iCj/n
χ2

Obs = (24-17) 2
/17 + ... + (23-15.5)

2
/15.5 = 13.09

χ2
Tab = (3-1)(2-1) = 2 df = 5.99 (p < 0.05)

(Click in this red rectangle to see SAS calculations for this example.)

This example expands computer experience into 3 levels, High, Medium, 
and Low, as compared to the original example that used only 2 levels of 
computer experience, High and Low. In this example, each of the 80 
subjects who used the experimental text editor rated their computer 
experience as high, medium, or low instead of just high or low experience in 
the previous example. 

Consequently, one now has a 3x2 contingency table of user computer 
experience and text editor satisfaction. The calculations shown on this slide 
demonstrate an overall significance in the 3x2 contingency table. Again, one 
concludes that satisfaction with the experimental text editor depends upon 
computer experience. But, the differences between the three levels of 
computer experience on text editor satisfaction cannot be isolated by this 
overall test of significance because more than two levels of experience were 
evaluated. So, one must conduct subsequent 2x2 contingency table tests to 
isolate the locus of significance.
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5.2.2. Chi-Square Test of Independence (Cont’d)5.2.2. Chi5.2.2. Chi--Square Test of Independence (ContSquare Test of Independence (Cont’’d)d)

•• Isolating Significant EffectsIsolating Significant Effects
–– Partition into (rPartition into (r--1)(c1)(c--1), 1 1), 1 dfdf, 2x2 Contingency , 2x2 Contingency 

TablesTables
–– Two Additive 2x2 Partitions of The Example 3x2 Two Additive 2x2 Partitions of The Example 3x2 

Contingency Table, [1] and [2]Contingency Table, [1] and [2]

R2

R1O11  (E 11 )

nC1 C2

O12  (E 12 )

O21  (E 21 ) O22  (E 22 )
[1]

n

R1+ R 2

O11  + O 21

C1 C2

R3

O12  + O 22

(E 11  + E 21 ) (E12  + E 22 )

O31  (E 31 ) O32  (E 32 )

[2]

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows a breakdown of the original 3x2 contingency table into two 
subsequent 2x2 contingency table tests. The first compares just High and 
Medium computer experience, and the second compares the additive effect 
of High and Medium experience to Low computer experience.
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5.2.2. Chi-Square Test of Independence (Cont’d)5.2.2. Chi5.2.2. Chi--Square Test of Independence (ContSquare Test of Independence (Cont’’d)d)

•• Significance of Two Additive 2x2 PartitionsSignificance of Two Additive 2x2 Partitions
–– Partition [1]Partition [1]

–– Partition [2]Partition [2]

No

Med

Hi

15

34

Yes

24 (22.2)

4932 17

10 (11.8)

8 (9.8) 7 (5.2)

χ2
Obs = 0.146+0.275+0.331+0.623

= 1.37
χ2

Tab = 1df = 3.84 (p < 0.05)

No

Lo

Hi + Med

31

49

Yes

32 (24.5)

8040 40

17 (24.5)

8 (15.5) 23 (15.5)

χ2
Obs = 2.296+2.296+3.629+3.629

= 11.85
χ2

Tab = 1df = 3.84 (p < 0.05)

(Click in this red rectangle to see SAS calculations for this example.)

The calculations shown on this slide show no significant difference between 
High and Medium computer experience on text editor satisfaction, but the 
second 2x2 partition shows a significant difference. The second 2x2 
contingency table combines High and Medium computer experience and 
compares this combination to Low computer experience. Consequently, the 
locus of difference in text editor satisfaction is between users with Low 
computer experience and users with more computer experience (i.e., 
Medium or High computer experience).

Although it is possible to determine the locus of the significant difference in 
larger contingency tables, to do so requires additional analyses based on 
meaningful partitions by the experimenter of the original contingency table. 
Consequently, evaluating the significant dependencies of the two
classifications is not straightforward in chi-square tests of independence 
involving large contingency tables.
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5.3. Within-Subjects Tests5.3. Within5.3. Within--Subjects TestsSubjects Tests

•• 5.3.1. 5.3.1. McNemarMcNemar Change TestChange Test
•• 5.3.2. Cochran Q Test5.3.2. Cochran Q Test

The two nonparametric tests for frequency data discussed are appropriate 
for within-subjects data. The McNemar Change Test is used for two 
categories, and the Cochran Q Test is used for more than two categories.
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5.3.1. McNemar Change Test5.3.1. 5.3.1. McNemarMcNemar Change TestChange Test

•• BackgroundBackground
–– Test of "Before" and "After" ChangesTest of "Before" and "After" Changes
–– WithinWithin--Subjects ChangeSubjects Change

•• Fourfold OutcomesFourfold Outcomes

–– (A + D) = Number of Changes(A + D) = Number of Changes
–– Expect (A + D)/2 Positive and Negative Changes Expect (A + D)/2 Positive and Negative Changes 

Under HUnder H00

-

+

After

A

C

B

D
Before

+-

The McNemar Change Test is used primarily to evaluate changes in a 
subject’s preference before and after use. Consequently, this is a within-
subjects test based on two categories resulting in the 2x2 frequency table 
shown on this slide. Any change in preference is shown in cells A and D of 
the fourfold table. In cell A, the user goes from a positive preference before 
use to a negative preference after use; whereas, in cell D, the user goes 
from a negative preference beforehand to a positive preference after use. 
Consequently, A and D are the observed frequency of changes, and the 
average of A and D is the expected number of positive and negative 
changes.
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5.3.1. McNemar Change Test (Cont'd)5.3.1. 5.3.1. McNemarMcNemar Change Test (Cont'd)Change Test (Cont'd)

•• Estimate of Pearson Estimate of Pearson χχ22

•• Yate'sYate's Correction for ContinuityCorrection for Continuity
–– Preferred Formula for Preferred Formula for McNemarMcNemar Change TestChange Test

•• Use Binomial Test if (A + D)/2 < 5Use Binomial Test if (A + D)/2 < 5
–– Assume p = q = .50Assume p = q = .50

χObserved
2 = (A – D)2

A + D with df = 1

χObserved
2 = [A – (A + D)/2]2

(A + D)/2 + [D – (A + D)/2]2

(A + D)/2

χObserved
2 = (|A – D| – 1)2

A + D with df = 1

The formula for the Pearson Chi-Square statistic based on observed and 
expected changes reduces to just A and D frequencies as shown on the top 
of this slide. Siegel and Castellan (1988, p. 76) recommend two alternatives 
to the McNemar test. First, the Yate’s correction for continuity is the 
preferred formula for the McNemar test in order to provide a better 
approximation to the chi-square distribution. Second, the binomial test 
assuming equal probabilities instead of the McNemar test should be used if 
the expected frequency is less than 5 because the Pearson Chi-Square may 
not be distributed as chi-square in this circumstance.
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5.3.1. McNemar Change Test (Cont'd)5.3.1. 5.3.1. McNemarMcNemar Change Test (Cont'd)Change Test (Cont'd)

•• Example ProblemExample Problem: 50 people stated their preference for : 50 people stated their preference for 
Hearing Protectors A and B before and after using both Hearing Protectors A and B before and after using both 
protector on the job for one week at a time. Order of use was protector on the job for one week at a time. Order of use was 
counterbalanced. Given the following data, did trial use of the counterbalanced. Given the following data, did trial use of the 
hearing protectors change their preference (p < 0.05)?hearing protectors change their preference (p < 0.05)?

B

A

After Using

26

5

13

6
Before
Using

AB

χObserved
2 = (|A – D| – 1)2

A + D = (|26 – 6| – 1)2

26 + 6 = 11.28

χTabled
2 = 1 df = 3.84 (p < .05)

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows an example of using the McNemar Change Test to evaluate 
hearing protector preference. The experimenter wants to know if there is a 
significant difference in user preference before and after using each of two 
protectors. Since each user evaluates both hearing protectors, this requires 
a within-subjects test. The calculation of the Pearson Chi-Square using the 
Yate’s correction is shown on this slide. Based on these results, there was a 
significant change in preference after use.
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5.3.2. Cochran Q Test5.3.2. Cochran Q Test5.3.2. Cochran Q Test

•• BackgroundBackground
–– Extension of Extension of McNemarMcNemar Change Test to k Change Test to k ≥≥ 3 Matched Sets 3 Matched Sets 

of Frequenciesof Frequencies
–– Same Subjects or Matched SubjectsSame Subjects or Matched Subjects

•• UseUse
–– Compare Responses of "n" Subjects on "k" Conditions or Compare Responses of "n" Subjects on "k" Conditions or 

ItemsItems
–– Dichotomous Response: "Success"=1 and "Failure"=0Dichotomous Response: "Success"=1 and "Failure"=0

•• Estimate of Pearson Estimate of Pearson χχ2 with (k2 with (k--1) 1) dfdf

Q =
(k – 1) k Gj

2 – GjΣ
j = 1

k 2

Σ
j= 1

k

k LiΣ
i= 1

n
– Li

2Σ
i = 1

n and df = (k – 1)

where,
Gj = total number of "successes" in jth column
Li = total number of "successes" in ith row

If there are more than two related samples, k, the McNemar test can be 
extended to the Cochran Q test for 3 or more related samples. Usually 
related samples means the same subject is used in every condition; 
however, the Cochran Q test is also appropriate for closely matched 
subjects. Siegel and Castellan (1988, p. 173)) provide the formula shown on 
this slide for the observed Q statistic that is compared to the chi-square table 
value of k-1 degrees of freedom.
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5.3.2. Cochran Q Test (Cont'd)5.3.2. Cochran Q Test (Cont'd)5.3.2. Cochran Q Test (Cont'd)

•• Example ProblemExample Problem: 15 experienced photo interpreters viewed : 15 experienced photo interpreters viewed 
a series of photographs under three enhancement a series of photographs under three enhancement 
procedures and rated each procedure as "acceptable procedures and rated each procedure as "acceptable -- 1" or 1" or 
"unacceptable "unacceptable -- 0". Are the three procedures rated equally 0". Are the three procedures rated equally 
acceptable (p < 0.001)?acceptable (p < 0.001)?

Subject Procedure 1 Procedure 2 Procedure 3 Li Li
2

1 0 1 0 1 1
2 1 1 1 3 9
3 0 1 1 2 4
4 0 1 1 2 4
5 0 1 1 2 4
6 0 1 1 2 4
7 1 1 1 3 9
8 0 1 1 2 4
9 0 0 1 1 1
10 0 1 1 2 4
11 1 1 1 3 9
12 0 1 1 2 4
13 1 1 1 3 9
14 0 1 1 2 4

Total G1= 4 G2= 14 G3= 14 ΣLi= 32 ΣLi
2= 74

15 0 1 1 2 4

(Click in this red rectangle to see SAS calculations for this example.)

This is an example of using the Cochran Q test for evaluating the 
acceptability ratings of 15 photo interpreters of a series of photos using 3 
different enhancement procedures. This is a within-subjects design since the 
same 15 photo interpreters evaluated each of the 3 photo enhancement 
procedures.
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5.3.2. Cochran Q Test (Cont'd)5.3.2. Cochran Q Test (Cont'd)5.3.2. Cochran Q Test (Cont'd)

•• CalculationsCalculations

•• Paired ComparisonsPaired Comparisons
–– Reduces to Reduces to McNemarMcNemar Change TestChange Test

Q =
(k – 1) k Gj

2 – GjΣ
j = 1

k 2

Σ
j = 1

k

k LiΣ
i = 1

n

– Li
2Σ

i =1

n

Q = (3 – 1) 3(42
+ 14

2
+ 14

2 )– 32 2

3(32) – 74 = 18.18

χTabled
2 = (3 – 1) = 2 df = 13.82 (p < .001)

(Click in this red rectangle to see SAS calculations for this example.)

The calculations shown in this slide are based on the results shown on the 
previous data slide. After calculating the Q statistic, it is compared to a 
tabled chi-square of 2 degrees of freedom. Since the Q value is greater than 
the table value, one concludes that there is a significant difference of 
acceptability among the 3 photo enhancement procedures. In order to 
determine the locus of this difference, a series of subsequent McNemar
Change Tests can be conducted on the paired comparisons of the 3
enhancement procedures.
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5.4. Summary5.4. Summary5.4. Summary

•• Nominal DataNominal Data
–– Dichotomous Data = 0 and 1Dichotomous Data = 0 and 1
–– Frequency Counts in CategoriesFrequency Counts in Categories

•• Sampling DistributionSampling Distribution
–– Discrete Discrete -- Binomial DistributionBinomial Distribution
–– Continuous Continuous -- Pearson Pearson χχ22

•• Variety of TestsVariety of Tests
–– BetweenBetween--Subjects vs. WithinSubjects vs. Within--SubjectsSubjects
–– Number of Categories, kNumber of Categories, k
–– Goodness of FitGoodness of Fit

By way of summary, the four nonparametric procedures covered in this topic 
are representative of the most common procedures used in human factors 
and ergonomics research for analyzing nominal scale supplemental data. 
These data consist primarily of dichotomous data or frequency counts in 
categories. The Pearson chi-square statistic and the Yate’s correction for 
continuity are used for these tests to approximate the continuous chi-square 
sampling distribution. To calculate the Pearson chi-square, one needs the 
observed value, O, from the data and an expected value, E, that is 
determined by the particular test used. A discrete binomial test can be used 
when E is less than 5.

To choose the appropriate nominal data test, the experimenter first 
determines whether a between-subjects or within-subjects design is used. 
Next, the experimenter determines whether 2 or more categories, k, are to 
be included in the hypothesis test. A special case of two sample tests is the 
goodness of fit test in which the experimenter is comparing a single sample 
of nominal data to known population values.
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5.5. Supplemental Readings5.5. Supplemental Readings5.5. Supplemental Readings

REFERENCEREFERENCE
Conover (1999)Conover (1999)
Hays (1994)Hays (1994)
Hays and Winkler (1971)Hays and Winkler (1971)
Siegel and Castellan (1988)Siegel and Castellan (1988)

SECTIONSECTION
Chapters 3Chapters 3--44
Chapters 9, 18Chapters 9, 18
Chapter 12Chapter 12
Chapters 4Chapters 4--88

Hays and Winkler (1971) and Hays (1994) provide an introductory overview 
of the Pearson Chi-Square, goodness of fit tests, and tests of independence. 
Siegel and Castellan (1988) is the classic nonparametric text used in 
behavioral research and human factors. All the formulae and tables as well 
as a more detailed discussion of the four nominal data analyses presented in 
this topic can be found in Siegel and Castellan (1988). Conover (1999) is 
another general reference on nonparametric analyses that provides further 
elaboration of the techniques covered in this reference topic.
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This topic deals with an overview of four nonparametric analysis alternatives 
that can be used with ordinal scale supplemental data. The four procedures 
described in this reference material are often used in human factors and 
ergonomics research. Once again, Siegel and Castellan (1988) provide a 
detailed discussion of each of these techniques, and their formulae and 
notation are used throughout this topic for easy reference. Similar to the 
approach followed in the discussion on nominal data analysis, the 
presentation of this topic is organized around between-subjects and within-
subjects techniques to facilitate choice of nonparametric analysis procedures 
for ordinal data.

Topic 6. Analysis of Ordinal Scale DataTopic 6. Analysis of Ordinal Scale DataTopic 6. Analysis of Ordinal Scale Data

6.1. Background6.1. Background
6.2. Between6.2. Between--Subjects TestsSubjects Tests

6.2.1. 6.2.1. KolmogorovKolmogorov--Smirnov TestsSmirnov Tests
6.2.2. 6.2.2. KruskalKruskal--Wallis OneWallis One--Way ANOVAWay ANOVA

6.3. Within6.3. Within--Subjects TestsSubjects Tests
6.3.1. 6.3.1. WilcoxonWilcoxon Signed Ranks TestSigned Ranks Test
6.3.2. Friedman Two6.3.2. Friedman Two--Way ANOVAWay ANOVA

6.4. Summary6.4. Summary
6.5. Supplemental Readings6.5. Supplemental Readings
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6.1. Background6.1. Background6.1. Background

•• Data SetData Set
–– Numerical Value Used to Order DataNumerical Value Used to Order Data
–– Cumulative Frequency DistributionsCumulative Frequency Distributions
–– Rank Ordering of InformationRank Ordering of Information

•• Test AlternativesTest Alternatives
–– Independent vs. Related SamplesIndependent vs. Related Samples
–– One, Two, or "k" CategoriesOne, Two, or "k" Categories

•• ApproachApproach
–– Sample of Test AlternativesSample of Test Alternatives

Ordinal data sets are numerical data in the form of cumulative frequencies or 
rank orders. Consequently, these data have order characteristics as well as 
frequency counts, or nominal characteristics. Ordinal data usually occur as 
cumulative frequency distributions or rank orders.

The choice of the appropriate ordinal nonparametric test depends upon 
whether the researcher has between-subjects or within-subjects samples 
and whether the researcher is testing one, two, or k categories. The four 
ordinal data analysis procedures discussed in this section cover a sample of 
the most common nonparametric procedures for between-subjects and 
within-subjects alternatives for a different number of categories.
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6.2. Between-Subjects Tests6.2. Between6.2. Between--Subjects TestsSubjects Tests

•• 6.2.1. 6.2.1. KolmogorovKolmogorov--Smirnov TestsSmirnov Tests
•• 6.2.2. 6.2.2. KruskalKruskal--Wallis OneWallis One--Way ANOVAWay ANOVA

Two of the most popular between-subjects tests of ordinal data in human 
factors are the Kolmogorov-Smirnov test and the Kruskal-Wallis One-Way 
ANOVA test. Choice between these two tests depends upon the number of 
categories being evaluated.
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6.2.1. Kolmogorov-Smirnov Tests6.2.1. 6.2.1. KolmogorovKolmogorov--Smirnov TestsSmirnov Tests

•• BackgroundBackground
–– Two Independent SamplesTwo Independent Samples
–– Compares Samples on Similarity of DistributionsCompares Samples on Similarity of Distributions
–– Ordering of Data to Form Cumulative DistributionsOrdering of Data to Form Cumulative Distributions
–– Choose Intervals for Cumulative FrequenciesChoose Intervals for Cumulative Frequencies
–– Evaluate Evaluate Largest Difference Largest Difference Between DistributionsBetween Distributions

•• Test ProcedureTest Procedure
–– Choose as Many Intervals as FeasibleChoose as Many Intervals as Feasible
–– Generate Cumulative Frequency DistributionGenerate Cumulative Frequency Distribution
–– Determine Largest Difference Between Samples, DDetermine Largest Difference Between Samples, D

•• Test AlternativesTest Alternatives
–– One vs. Two SamplesOne vs. Two Samples
–– Small (nSmall (n≤≤25) vs. Large (n>25) Samples25) vs. Large (n>25) Samples
–– OneOne-- vs. Twovs. Two--Tailed TestsTailed Tests

The Kolmogorov-Smirnov test was designed for two independent samples. It 
compares the similarities among the cumulative frequency distributions of 
samples. The test is based on the largest difference between the two 
cumulative distributions. The cumulative frequency distributions are based 
on meaningful intervals chosen by the experimenter. Various alternatives of 
the Kolmogorov-Smirnov test include one vs. two sample tests, small vs. 
large samples, and one tailed vs. two tailed tests.
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6.2.1. Kolmogorov-Smirnov Tests (Cont'd)6.2.1. 6.2.1. KolmogorovKolmogorov--Smirnov Tests (Cont'd)Smirnov Tests (Cont'd)

•• One Sample One Sample -- Goodness of Fit TestGoodness of Fit Test
–– Observed ValueObserved Value

–– Maximum Deviation, Maximum Deviation, DDMaxMax

–– DDMaxMax = max|F= max|F00(X(Xii) ) -- SSnn(X(Xii)|)|
–– where, i = 1, 2, ..., nwhere, i = 1, 2, ..., n
–– FF00(X(Xii) = theoretical cumulative frequency ) = theoretical cumulative frequency 

distributiondistribution
–– SSnn(X(Xii) = observed cumulative frequency distribution ) = observed cumulative frequency distribution 

of sample size, nof sample size, n
–– Tabled ValueTabled Value

–– Table F (Siegel & Castellan, 1988)Table F (Siegel & Castellan, 1988)
–– Based on Sample Size, nBased on Sample Size, n

A one sample test is goodness of fit test compares the sample cumulative 
frequency distribution to a known distribution. The observed value is the 
maximum absolute difference between the two cumulative frequency
distributions as shown on this slide as defined by Siegel and Castellan 
(1988, p. 52). The tabled value is based on sample size and is presented in 
Table F in Siegel and Castellan (1988, p. 330).
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6.2.1. Kolmogorov-Smirnov Tests (Cont'd)6.2.1. 6.2.1. KolmogorovKolmogorov--Smirnov Tests (Cont'd)Smirnov Tests (Cont'd)

•• Two Samples Two Samples -- Largest Difference Statistic, DLargest Difference Statistic, Dm,nm,n

–– Both Sample Sizes "m" and "n" Both Sample Sizes "m" and "n" ≤≤ 2525
–– TwoTwo--Tailed TestTailed Test

–– Observed Value: DObserved Value: Dm,n m,n = = max|Smax|Smm(X(X) ) -- SSnn(X(X)|)|
–– Tabled Value: Table LTabled Value: Table LIIII (Siegel & Castellan, 1988)(Siegel & Castellan, 1988)

–– OneOne--Tailed TestTailed Test
–– Observed Value: DObserved Value: Dm,n m,n = = max[Smax[Smm(X(X) ) -- SSnn(X(X)])]
–– Tabled Value: Table LTabled Value: Table LII (Siegel & Castellan, 1988)(Siegel & Castellan, 1988)

–– Either Sample Size "m" or "n" > 25Either Sample Size "m" or "n" > 25
–– TwoTwo--Tailed TestTailed Test

–– Observed Value: Observed Value: DDm,nm,n = = max|Smax|Smm(X(X) ) -- SSnn(X(X)|)|
–– Tabled Value: Table LTabled Value: Table LIIIIII (Siegel & Castellan, 1988)(Siegel & Castellan, 1988)

–– OneOne--Tailed TestTailed Test
–– Goodman Goodman χχ2:2:
–– Tabled Value: Tabled Value: dfdf = 2= 2

χ2 = 4Dm,n
2 mn

m + n
where Dm,n

2 = max Sm X – Sn X 2

The two-sample Kolmogorov-Smirnov test compares the observed largest 
difference, Dm,n, between cumulative frequency distributions of two 
independent samples where each sample can have different sample sizes, 
m and n, respectively. The observed value formulae for one-tailed versus 
two-tailed tests and small samples versus large samples are presented by 
Siegel and Castellan (1988, pp. 145-148). Depending upon sample size and 
choice of a one-tailed versus two-tailed test, the tabled values can be found 
in Siegel and Castellan (1988, pp. 348-352) Tables LI, LII, or LIII as 
referenced on the slide.

If either of the two sample sizes is greater than 25, and the researcher is 
conducting a one-tailed test, then the Goodman chi-square approximation 
can be used to calculate the observed value according to the formula shown 
on this slide. This observed value is then compared to a tabled value from 
the chi-square sampling distribution based on 2 degrees of freedom.
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6.2.1. Kolmogorov-Smirnov Tests (Cont'd)6.2.1. 6.2.1. KolmogorovKolmogorov--Smirnov Tests (Cont'd)Smirnov Tests (Cont'd)

•• Example ProblemExample Problem: 25 professional photographers and 30 : 25 professional photographers and 30 
nonprofessional photographers rated the "acceptability" of 25 nonprofessional photographers rated the "acceptability" of 25 
photographs taken by an experimental camera on a 7photographs taken by an experimental camera on a 7--point point LikertLikert
Scale. Median acceptability ratings of 25 photographs were Scale. Median acceptability ratings of 25 photographs were 
determined for each individual. Did the nonprofessionals give determined for each individual. Did the nonprofessionals give 
significantly higher median ratings of acceptability (p < 0.01)?significantly higher median ratings of acceptability (p < 0.01)?

Median Rating Professional Non-Professional
of Acceptability Photographers Photographers
1 9 1
2 6 3
3 1 2
4 2 5
5 4 8
6 2 7
7 1 4

Total 25 30

(Click in this red rectangle to see SAS calculations for this example.)

The example problem shown on this page is a one-tailed significance test 
based on two independent samples of cumulative frequency distributions of 
the 7 intervals of median acceptability ratings. Two preliminary analyses are 
required on each raw data set obtained from the 25 professional and 30 
nonprofessional photographers. First, the median of the 7-point acceptability 
rating must be calculated across the 25 photographs for each subject in the 
two groups. Second, the frequency of each of the seven median rating 
values (i.e. 1 to 7) across subjects in each group determines the cumulative 
frequency distributions shown on this slide. Slater and Williges (2006) show 
the two raw data sets and median ratings for the data used in this example. 

Only the data presented on this slide is needed to conduct the Kolmogorov-
Smirnov Test. The two sample sizes of professional and non-professional 
photographers are different, and one of them is greater than 25.
Consequently, the Goodman chi-square can be used to calculate the 
observed value in the subsequent hypothesis test using the chi-square 
sampling distribution.
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6.2.1. Kolmogorov-Smirnov Tests (Cont'd)6.2.1. 6.2.1. KolmogorovKolmogorov--Smirnov Tests (Cont'd)Smirnov Tests (Cont'd)

•• Example Problem (Cont'd)Example Problem (Cont'd)
–– Cumulative Frequency DistributionsCumulative Frequency Distributions

–– Observed ValueObserved Value

–– Tabled Value: Tabled Value: χχ2 = 9.21 (2 2 = 9.21 (2 dfdf, p < 0.01), p < 0.01)
–– ConclusionConclusion: Significantly Higher Acceptability : Significantly Higher Acceptability 

Ratings by Nonprofessional PhotographersRatings by Nonprofessional Photographers

Media Rating of Acceptability
Sample 1 2 3 4 5 6 7
S25 (X) 9/25 15/25 16/25 18/25 22/25 24/25 25/25
S30 (X) 1/30 4/30 6/30 11/30 19/30 26/30 30/30
[S25 (X)- S30 (X)] .327 .467 .440 .353 .247 .093 .000

D25,30
2 = max S25 X – S30 X 2 = (.467)2

χ2 = 4Dm,n
2 mn

m + n = 4(.467)2(25)(30)
25 + 30 = 11.89

(Click in this red rectangle to see SAS calculations for this example.)

Note that the top portion of this slide shows that the largest difference 
between the cumulative frequency distributions of acceptability ratings of the 
25 professional and 30 nonprofessional photographers occurs at 
acceptability rating level 2 (i.e., 0.467). This interval is used to calculate the 
Goodman chi-square as shown on the middle portion of this slide. Since the 
observed value is greater than the tabled value, one concludes that the 
nonprofessional photographers had higher acceptability ratings than the 
professional photographers.
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6.2.2. Kruskal-Wallis One-Way ANOVA6.2.2. 6.2.2. KruskalKruskal--Wallis OneWallis One--Way ANOVAWay ANOVA

•• BackgroundBackground
–– Assumes Only Ordinal PropertiesAssumes Only Ordinal Properties
–– Comparisons Among k Comparisons Among k ≥≥ 3 Independent Samples3 Independent Samples
–– Samples Drawn from Same Population or Samples Drawn from Same Population or 

Populations with the Same MedianPopulations with the Same Median
•• Test ProcedureTest Procedure

–– Rank Order Rank Order ALLALL ScoresScores
–– Calculate Observed Statistic, KWCalculate Observed Statistic, KW
–– Evaluate Multiple ComparisonsEvaluate Multiple Comparisons

•• Test AlternativesTest Alternatives
–– KruskalKruskal--Wallis StatisticWallis Statistic
–– Correction for TiesCorrection for Ties
–– Post Hoc Paired ComparisonsPost Hoc Paired Comparisons

The Kruskal-Wallis test extends the Kolmogorov-Smirnov test to more than 
two independent samples (i.e., k>2). Since this analysis deals with 3 or more 
categories or levels of one factor, it is referred to as a one-way test of the 
factor of interest. The data used in the analysis have only ordinal properties.

Note that to conduct the Kruskal-Wallis statistic (KW) a rank order across all 
the scores in the entire data set is made before calculating the KW observed 
statistic. The KW calculation can be corrected for tied ranks. If a significant 
difference occurs, post hoc paired comparisons must be conducted to isolate 
the significant effect among the k samples since k is always greater than 2.
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6.2.2. Kruskal-Wallis One-Way ANOVA (Cont’d)6.2.2. 6.2.2. KruskalKruskal--Wallis OneWallis One--Way ANOVA (ContWay ANOVA (Cont’’d)d)

•• Observed ValueObserved Value
–– KruskalKruskal--Wallis Statistic, KWWallis Statistic, KW

–– Correction for Ties, KWCorrection for Ties, KWTT

KW = 12
N N + 1 njRj

2Σ
j =1

k

– 3 N + 1

where, k = number of samples or groups
nj = number of cases in jth group
N = total number of observations
Rj = average of ranks in jth group

KWT = KW

1 –
ti

3 – tiΣ
i = 1

g

N3 – N
where, g = number of groupings of different tied ranks

ti = number of tied ranks in the ith grouping
N = total number of observations

Both the general formula and the correction for ties for calculating the KW 
observed statistic as presented by Siegel and Castellan (1988, p. 207-210) 
are shown on this slide. Usually there is very little difference between the two 
calculations unless there are many tied ranks.
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6.2.2. Kruskal-Wallis One-Way ANOVA (Cont’d)6.2.2. 6.2.2. KruskalKruskal--Wallis OneWallis One--Way ANOVA (ContWay ANOVA (Cont’’d)d)

•• Tabled ValuesTabled Values
–– Table O (Siegel & Castellan, 1988)Table O (Siegel & Castellan, 1988)

–– k = 3 when nk = 3 when n11 nn22 and nand n33 ≤≤ 55
–– χχ2 Table with 2 Table with dfdf = (k= (k--1)1)

–– k > 3 or k > 3 or nnjj > 5> 5
•• Post Hoc Paired ComparisonsPost Hoc Paired Comparisons

–– Critical Difference between any Two Groups, U and VCritical Difference between any Two Groups, U and V

–– Z Value Z Value -- Tables A and ATables A and AIIII (Siegel & Castellan, 1988)(Siegel & Castellan, 1988)

RU – RV ≥ Zα/k(k – 1)
N(N + 1)

12
1
nU

+ 1
nV

The tabled value for the Kruskal-Wallis test is shown on the top portion of 
this slide. Table O from Siegel and Castellan (1988, p.356) can be used with 
3 categories and small samples. If the number of categories is greater than 3 
or the sample size is greater than 5, one can use the chi-squared table with 
k-1 degrees of freedom.

Since the Kruskal-Wallis test is used for 3 or more categories, a significant 
hypothesis test only tells the experimenter that at least one of the paired 
comparisons between categories is significant. One can use the unit normal 
sampling distribution to conduct subsequent paired comparisons to isolate 
the significant effect(s). The critical absolute difference formula for these 
paired comparisons according to Siegel and Castellan (1988, p. 213) is 
shown on the bottom of this slide where Tables A and AII in Siegel and 
Castellan (1988, pp. 319-320) can be used to determine the Z tabled value 
listed in the formula.
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6.2.2. Kruskal-Wallis One-Way ANOVA (Cont’d)6.2.2. 6.2.2. KruskalKruskal--Wallis OneWallis One--Way ANOVA (ContWay ANOVA (Cont’’d)d)

•• Example ProblemExample Problem: A between: A between--subjects design       subjects design       
(n =6) was used to compare original learning by (n =6) was used to compare original learning by 
lecture, text, and multimedia instruction. Every lecture, text, and multimedia instruction. Every 
trainee rated their overall satisfaction with the trainee rated their overall satisfaction with the 
training on a 9training on a 9--point scale. Did satisfaction differ point scale. Did satisfaction differ 
across the three methods of training (p < .05)?across the three methods of training (p < .05)?

Satisfaction Ratings
Lecture Multimedia Text
7 7 3
4 9 6
5 9 5
6 6 4
7 8 2
3 9 1

Ranked Data
Lecture Multimedia Text
13 13 3.5
5.5 17 10
7.5 17 7.5
10 10 5.5
13 15 2
3.5 17 1

Rj 8.75 14.83 4.92
_

(Click in this red rectangle to see SAS calculations for this example.)

Data from a hypothetical example problem comparing supplemental 
satisfaction ratings with three training techniques is shown on this slide. The 
Kruskal-Wallis One-Way ANOVA is appropriate for analyzing these 
satisfaction ratings, because a different group of subjects received each 
training method and 3 methods were compared.

Note that on the right hand portion of data table the overall rank order of all 
18 satisfaction ratings across all three 3 training techniques is shown. Tied 
ranks are also shown. This resulting overall rank ordering is the raw data set 
used in the Kruskal-Wallis test.
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6.2.2. Kruskal-Wallis One-Way ANOVA (Cont’d)6.2.2. 6.2.2. KruskalKruskal--Wallis OneWallis One--Way ANOVA (ContWay ANOVA (Cont’’d)d)

•• Tabled ValueTabled Value
–– χχ2 = 5.99 with 2 2 = 5.99 with 2 dfdf (p < 0.05)(p < 0.05)

•• ConclusionConclusion: Significant Difference: Significant Difference

KWT = KW

1 –
ti

3 – tiΣ
i = 1

g

N3 – N
= 10.52

1 – 3(23– 2) + 3(33– 3)
(183 – 18)

= 10.69

KW = 12
N N + 1 njR j

2Σ
j = 1

k

– 3 N + 1

= 12
18(18+1) [6(8.75)2+6(14.83) 2+ 6(4.92)2 ]–3(18+1)

= 10.52

(Click in this red rectangle to see SAS calculations for this example.)

Two calculations for the observed KW statistic are shown on this slide. First 
the KW statistic is calculated assuming no tied ranks and, second, the 
correction for tied ranks is calculated since there are many ties in the 
dataset. Note that both calculations only differ slightly (10.52 and 10.69) and 
show a significant difference in satisfaction ratings among training 
techniques. Subsequent Z tests are needed to isolate these differences 
among the 3 training techniques.
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6.3. Within-Subjects Tests6.3. Within6.3. Within--Subjects TestsSubjects Tests

•• 6.3.1.Wilcoxon Signed Ranks Test6.3.1.Wilcoxon Signed Ranks Test
•• 6.3.2. Friedman Two6.3.2. Friedman Two--Way ANOVAWay ANOVA

When the same subjects respond to every treatment category, within-
subjects tests are needed. Two within-subjects tests are presented that are 
appropriate for ordinal data. The Wilcoxon Signed Ranks test which is used 
for two categories and the Friedman Two-Way ANOVA which is used for 
more than two categories.
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6.3.1. Wilcoxon Signed Ranks Test6.3.1. 6.3.1. WilcoxonWilcoxon Signed Ranks TestSigned Ranks Test

•• BackgroundBackground
–– Two WithinTwo Within--Subjects or Matched SamplesSubjects or Matched Samples
–– Signed Rank Ordering of Paired DifferencesSigned Rank Ordering of Paired Differences
–– Evaluate Sum of Evaluate Sum of Positive DifferencesPositive Differences

•• Test ProcedureTest Procedure
–– Determine difference, Determine difference, ddii, Between Matched , Between Matched 

Pairs, XPairs, Xii and Yand Yii

–– Rank Rank ddii's's Without Respect to SignWithout Respect to Sign
–– Add "+" or "Add "+" or "--" Sign to Ranks of " Sign to Ranks of ddii's's
–– Determine N, Number of Nonzero Determine N, Number of Nonzero ddii's's
–– Calculate T+, Calculate T+, Sum Ranks with Positive SignSum Ranks with Positive Sign

•• Test AlternativesTest Alternatives
–– Small vs. Large SampleSmall vs. Large Sample

The Wilcoxon test uses two within-subjects or matched subject samples. The 
test uses information about both the magnitude (i.e., rank order) as well as 
the direction of difference. The positive and negative differences between 
the two samples are determined and the test statistic is based on the sum of 
the rank order of only the positive differences. Hence, the name Signed 
Rank Test.

Procedurally, one first finds the differences between each pair of samples 
while maintaining the positive and negative relationships (i.e. the signed 
differences). Then one rank orders all differences without respect to sign 
where 1 is assigned to the smallest difference and so forth. Next one 
determines N, the number of nonzero differences. Finally, one calculates the 
T+ statistic, which is the sum of the ranks with a positive sign. Test 
alternatives vary depending on whether one has small or large tests.
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6.3.1. Wilcoxon Signed Ranks Test (Cont’d)6.3.1. 6.3.1. WilcoxonWilcoxon Signed Ranks Test (ContSigned Ranks Test (Cont’’d)d)

•• Small Sample (n Small Sample (n ≤≤ 15)15)
–– Observed StatisticObserved Statistic

–– T+ = Sum of Ranks with Positive T+ = Sum of Ranks with Positive ddii's's
–– Tabled Value: Table H (Siegel & Castellan, 1988)Tabled Value: Table H (Siegel & Castellan, 1988)

•• Large Sample (n>15)Large Sample (n>15)
–– Tabled Value: Unit Normal TableTabled Value: Unit Normal Table
–– Observed StatisticObserved Statistic

–– Untied RanksUntied Ranks

–– Tied RanksTied Ranks

Z = T+ – N(N – 1)/4

N(N + 1)(2N + 1)/24 – 1
2

1
2 t j(t j – 1)(t j + 1)Σ

j = 1

g

where, g = number of groupings of different tied ranks
t j = number of tied ranks in grouping j

Z = T+ – N(N – 1)/4
N(N + 1)(2N + 1)/24

For small samples of 15 or less, one would use the T+ statistic (i.e., the sum 
of all positive ranks) as the observed statistic. The table value of T+ is 
provided in Table H in Siegel and Castellan (1988, pp. 332-334).

For samples larger than 15, the unit normal sampling distribution can be 
used to determine the tabled value. The Z observed formula for both untied 
and tied positive ranks according to Siegel and Castellan (1988, pp. 91, 94) 
is presented on this slide.
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6.3.1. Wilcoxon Signed Ranks Test (Cont’d)6.3.1. 6.3.1. WilcoxonWilcoxon Signed Ranks Test (ContSigned Ranks Test (Cont’’d)d)

•• Example ProblemExample Problem: Two electronic communication methods, video : Two electronic communication methods, video 
conferencing and instant messaging, were evaluated by each of conferencing and instant messaging, were evaluated by each of 
11 soldiers in a battlefield information setting on four 9 point11 soldiers in a battlefield information setting on four 9 point
LikertLikert--Type Scales in terms of ease of use, effectiveness, Type Scales in terms of ease of use, effectiveness, 
timeliness, and convenience. Are the two communication timeliness, and convenience. Are the two communication 
methods significantly different in terms of overall acceptabilitmethods significantly different in terms of overall acceptability as y as 
measured by the sum of these four ratings (p < 0.05)?measured by the sum of these four ratings (p < 0.05)?

•• N = 11N = 11
•• T+ = (2+6+8+11+7+5+9+10) = 58T+ = (2+6+8+11+7+5+9+10) = 58
•• Table H (Siegel & Castellan, 1988) = p < 0.0244 (TwoTable H (Siegel & Castellan, 1988) = p < 0.0244 (Two--Tailed)Tailed)

Soldiers Conferencing Messaging Rank of d
1
2
3
4
5
6
7
8
9
10
11

29
17
8
21
33
30
25
24
15
10
34

26
11
12
8
5
19
20
10
19
12
18

d
3
6
-4
13
28
11
5
14
-4
-2
16

2
6
-3.5
8
11
7
5
9
-3.5
-1
10

(Click in this red rectangle to see SAS calculations for this example.)

This is an example using a Wilcoxon Signed Ranks Test. The example 
problem shown on this slide provides the sum of 4 acceptability ratings 
obtained from 11 soldiers after they use each of two types of electronic 
communication devices. The significant difference of acceptability between 
the two communication methods can be determined by the Wilcoxon Signed 
Ranks Test for small samples.

Signed acceptability differences between the two communication systems 
are shown in the “d” column of the slide. The T+ statistic, based on sum of 
all positive ranks shown in the right most column of the slide, provides the 
observed value that is compared to the tabled value found in Table H from 
Siegel and Castellan (1988, p. 333). One can conclude that the overall 
acceptability rating as measured by the sum of the four sub-ratings is 
significantly different for the two electronic communication methods at the 
0.05 level of significance.
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•• SubSub--Ratings of AcceptabilityRatings of Acceptability

6.3.1 Wilcoxon Signed Ranks Test (Cont’d)6.3.1 6.3.1 WilcoxonWilcoxon Signed Ranks Test (ContSigned Ranks Test (Cont’’d)d)

Soldier Ease of Use Effectiveness Timeliness Convenience Sum
1 8 7 8 6 29
2 4 3 6 4 17
3 2 1 3 2 8
4 5 2 6 8 21
5 9 8 7 9 33
6 7 6 8 9 30
7 6 4 9 6 25
8 5 6 7 6 24
9 4 1 4 6 15
10 3 2 4 1 10
11 9 8 9 8 34

Video Conferencing

Soldier Ease of Use Effectiveness Timeliness Convenience Sum
1 7 8 5 6 26
2 4 5 1 1 11
3 3 5 3 1 12
4 2 2 2 2 8
5 2 1 1 1 5
6 5 6 4 4 19
7 5 3 5 7 20
8 4 2 2 2 10
9 4 3 6 6 19
10 1 2 4 5 12
11 6 4 3 5 18

Instant Messaging

(Click in this red rectangle to see SAS calculations for this example.)

Note the Wilcoxon Signed Ranks Test used in this example was based on 
the “overall acceptability” as measured by the sum of the 4 sub-ratings 
shown on this slide. Consequently, conclusions can only be made in terms of 
overall acceptability of the video conferencing and instant messaging 
communication systems.

Additional analyses would be required if one were interested in drawing 
separate conclusions about ease of use, effectiveness, timeliness, and 
convenience. Four additional Wilcoxon Signed Ranks Tests could be 
conducted, one on each of the separate sub-rating scale results shown on 
this slide to isolate components of the significant overall acceptability rating 
of the 11 soldiers.
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6.3.2. Friedman Two-Way ANOVA6.3.2. Friedman Two6.3.2. Friedman Two--Way ANOVAWay ANOVA

•• BackgroundBackground
–– Assumes Ordinal DataAssumes Ordinal Data
–– k k ≥≥ 3 Levels of Within3 Levels of Within--Subjects or Matched SamplesSubjects or Matched Samples
–– Evaluates Ranking of "k" Levels Across SubjectsEvaluates Ranking of "k" Levels Across Subjects

•• Test ProcedureTest Procedure
–– Cast Data by Subjects (N Rows) and Conditions (k Cast Data by Subjects (N Rows) and Conditions (k 

Columns)Columns)
–– Rank Data for Rank Data for Each Subject Each Subject From 1 to kFrom 1 to k
–– Determine Sum of Ranks for Each Column, Determine Sum of Ranks for Each Column, RRjj

–– Calculate Observed Statistic, FCalculate Observed Statistic, Frr

–– Conduct Multiple Comparison TestsConduct Multiple Comparison Tests
•• Test AlternativesTest Alternatives

–– Untied vs. Tied RanksUntied vs. Tied Ranks
–– Paired Comparison TestsPaired Comparison Tests

The Friedman Two-Way ANOVA is appropriate for ordinal data representing 
more than 2 categories collected from within-subjects or matched samples. 
The data set is organized by subjects in “N” rows, and by levels in “k”
columns. Hence, this test is referred to as a two-way test.

Procedurally, one rank orders the data for each subject separately from 1 to 
k for each column. Then one determines the sum of the ranks for each 
column, Rj. Next one calculates the observed statistic, Fr, using either the 
formula for tied or untied ranks. Finally, one conducts multiple comparison 
tests to isolate significant effects.
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6.3.2. Friedman Two-Way ANOVA (Cont’d)6.3.2. Friedman Two6.3.2. Friedman Two--Way ANOVA (ContWay ANOVA (Cont’’d)d)

•• Observed Statistic, FObserved Statistic, Frr
–– Untied RanksUntied Ranks

–– Tied RanksTied Ranks

Fr = 12
Nk(k + 1) Rj

2Σ
j =1

k
– 3N(k + 1)

Fr =
12 Rj

2Σ
j = 1

k
– 3N2k(k + 1)2

Nk(k + 1) +
Nk – Σ

i= 1

N
ti .j

3Σ
j =1

gi

(k – 1)
where, gi = number of sets of tied ranks in ith group

ti. j = size of jth set of tied ranks in ith group

This slide shows the formulae presented by Siegel and Castellan (1988, pp. 
177, 179) for calculating the Fr observed statistic for either tied or untied 
ranks. Usually there is little difference in the result of each formula unless 
there are many tied ranks. Note both formulae are based on the number of 
subject, N, the number of columns (conditions), k, and the sum of the ranks 
for each column, Rj.
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6.3.2. Friedman Two-Way ANOVA (Cont’d)6.3.2. Friedman Two6.3.2. Friedman Two--Way ANOVA (ContWay ANOVA (Cont’’d)d)

•• Tabled ValuesTabled Values
–– Small Sample (kSmall Sample (k≤≤5 and N in Table)5 and N in Table)

–– Table M (Siegel & Castellan, 1988)Table M (Siegel & Castellan, 1988)
–– Large Sample (k>5 or N not in Table)Large Sample (k>5 or N not in Table)

–– χχ22 with (kwith (k--1) 1) dfdf
•• Post Hoc Paired ComparisonsPost Hoc Paired Comparisons

–– Critical Difference between any Two Groups, U and VCritical Difference between any Two Groups, U and V
–– Total of Each RankingTotal of Each Ranking

–– Average of Each RankingAverage of Each Ranking

–– Z Value Z Value –– Tables A and ATables A and AIIII (Siegel & Castellan, 1988)(Siegel & Castellan, 1988)

RU – RV ≥ Zα /k(k – 1)
Nk(k + 1)

6

RU – RV ≥ Zα /k(k – 1)
k(k + 1)

6N

Siegel and Castellan (1988, p. 353) provide tabled values for small sample 
sizes in Table M. The chi-square sampling distribution can be used for 
samples greater than five.

If the resulting Friedman test is significant, the experimenter knows that at 
least one of the paired comparisons between treatment levels is significant. 
Post hoc paired-comparisons are needed to isolate these differences. 
Subsequent post hoc comparisons can be conducted that are based on the 
unit normal sampling distribution. The critical absolute difference formulae 
for these paired comparisons for either totals or means according to Siegel 
and Castellan (1988, p. 180) is shown on the bottom of this slide where 
Tables A and AII in Siegel and Castellan (1988, pp. 319-320) can be used to 
determine the Z tabled value listed in the formulae.
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6.3.2. Friedman Two-Way ANOVA (Cont’d)6.3.2. Friedman Two6.3.2. Friedman Two--Way ANOVA (ContWay ANOVA (Cont’’d)d)

•• Example ProblemExample Problem: Five Subjects performed a benchmark task : Five Subjects performed a benchmark task 
using a new CAD program. After completing the task, users using a new CAD program. After completing the task, users 
rated their satisfaction using QUIS, and median ratings were rated their satisfaction using QUIS, and median ratings were 
calculated for each of the four parts of the scale, i.e., I. calculated for each of the four parts of the scale, i.e., I. 
Screen, II. Terminology, III. Learning, and IV. Capability. Did Screen, II. Terminology, III. Learning, and IV. Capability. Did 
median satisfaction differ across the parts (p < 0.05)?median satisfaction differ across the parts (p < 0.05)?

•• FFrr = [12/(5)(4)(4+1)][7= [12/(5)(4)(4+1)][722+17+1722+16+1622+10+1022] ] -- (3)(5)(4+1) = 8.28(3)(5)(4+1) = 8.28
•• Table M (N=5, k=4, p < 0.05) = 7.8 Table M (N=5, k=4, p < 0.05) = 7.8 

Median Ratings of CAD Usability
Parts of QUIS

Subjects I II III IV
1 2 6 7 3

Rankings for F r Calculations
Parts of QUIS

Subjects I II III IV
1 1 3 4 2

2 4 8 9 3 2 2 3 4 1

5 5 7 4 6 5 2 4 1 3
Rj 7 17 16 10

3 1 9 6 2 3 1 4 3 2
4 0 5 8 1 4 1 3 4 2

(Click in this red rectangle to see SAS calculations for this example.)

In this example, the satisfaction of 5 subjects was evaluated on each of the 4 
parts of the QUIS scale after using a CAD system. The Friedman Test can 
be used to determine if the subjects’ median ratings of satisfaction as shown 
in the left hand side of the data set on this slide differs significantly across 
the 4 parts of QUIS.

Note that a rank order of the median ratings is made for each subject 
separately across the 4 parts of QUIS as shown in the right hand side of the 
data set shown on the slide. These rank orderings are used to calculate the 
observed value, Fr, that is then compared to the tabled value. As shown on 
the slide, there is a significant difference in user satisfaction ratings across 
various parts of QUIS since the observed value, 8.28, is greater than the 
tabled value, 7.8. Subsequent post hoc paired-comparison tests are needed 
to isolate these differences. 
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6.4. Summary6.4. Summary6.4. Summary

•• Ordinal DataOrdinal Data
•• ConsiderationsConsiderations

–– Independent vs. Related SamplesIndependent vs. Related Samples
–– Two Categories vs. k>2 CategoriesTwo Categories vs. k>2 Categories

•• Design AlternativesDesign Alternatives
–– BetweenBetween--Subjects DesignsSubjects Designs

–– KolmogorovKolmogorov--Smirnov TestSmirnov Test
–– KruskalKruskal--Wallis OneWallis One--Way ANOVAWay ANOVA

–– WithinWithin--Subjects DesignsSubjects Designs
–– WilcoxonWilcoxon Signed Ranks TestSigned Ranks Test
–– Friedman TwoFriedman Two--Way ANOVAWay ANOVA

By way of summary, the four procedures described in this reference topic 
are used to test significant differences in supplemental data that have ordinal 
characteristics. Ordered data usually appear as cumulative frequencies or 
rank orders. Remember that researchers must first determine if they are 
comparing just 2 categories or more than 2 categories in choosing the 
appropriate significant test. Next researchers need to know if they have 
between-subjects or within-subjects data.

As shown on this slide, the resulting choice of testing procedure is rather 
straightforward. The design alternatives for between-subjects data are either 
the Kolmogorov-Smirnov test (2 categories), or the Kruskal-Wallis One-Way 
ANOVA test (more than 2 categories). The alternatives for within-subjects 
data are either the Wilcoxon Signed Ranks test (2 categories) or the 
Friedman Two-Way ANOVA (more than 2 categories).
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6.5. Supplemental Readings6.5. Supplemental Readings6.5. Supplemental Readings

REFERENCEREFERENCE
Conover (1999)Conover (1999)
Hays and Winkler (1971)Hays and Winkler (1971)
Siegel and Castellan (1988)Siegel and Castellan (1988)

SECTIONSECTION
Chapters 3, 6Chapters 3, 6
Chapter 12Chapter 12
Chapters 4Chapters 4--8 8 

Hays and Winkler (1971) provide an introductory overview of rank order 
tests. Siegel and Castellan (1988) provides the most complete coverage of 
the ordinal data procedures covered in this topic. All the formulae and a 
more detailed discussion of the 4 ordinal data analysis procedures and 
tables presented in this topic can be found in Siegel and Castellan (1988). 
Conover (1999) is another general reference on nonparametric analyses that 
provides further elaboration of the techniques covered in this reference topic.
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This topic summarizes the major points discussed in Section 2 dealing with 
supplemental data. First, supplemental data collection procedures dealing 
with self reports, questionnaires, and rating scales are reviewed. Second, 
supplemental data analysis techniques using common nominal and ordinal 
scale nonparametric procedures are reviewed. Third, a three-step process 
for dealing with supplemental data in experimental design is presented. 
Finally, an overall summary of this process and appropriate supplemental 
readings provided in Section 2 of this reference material are listed. 

Topic 7. Summary of Supplemental DataTopic 7. Summary of Supplemental DataTopic 7. Summary of Supplemental Data

7.1. Supplemental Data Collection7.1. Supplemental Data Collection
7.1.1. Self Reports and Questionnaires7.1.1. Self Reports and Questionnaires
7.1.2. Rankings and Rating Scales7.1.2. Rankings and Rating Scales

7.2. Supplemental Data Analysis7.2. Supplemental Data Analysis
7.2.1. Nominal Scale Data Analysis7.2.1. Nominal Scale Data Analysis
7.2.2. Ordinal Scale Data Analysis7.2.2. Ordinal Scale Data Analysis

7.3. Supplemental Data Process7.3. Supplemental Data Process
7.4. Summary7.4. Summary
7.5. Supplemental Readings7.5. Supplemental Readings
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7.1. Supplemental Data Collection7.1. Supplemental Data Collection7.1. Supplemental Data Collection

•• 7.1.1. Self Reports and Questionnaires7.1.1. Self Reports and Questionnaires
•• 7.1.2. Rankings and Rating Scales7.1.2. Rankings and Rating Scales

Supplemental data collection consists of subjective opinions and
demographic data collected in addition to the main dependent variables 
measured in the experimental design in order to aid in the interpretation of 
the main results of the experiment. The experimenter should attempt to 
collect objective supplemental data that is quantitative to facilitate 
subsequent analysis and interpretation. Both self reports and questionnaires 
are forms of supplemental data obtained from subjects participating in the 
experiment. In addition, various forms of rankings and ratings can be used.
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7.1.1. Self Reports and Questionnaires7.1.1. Self Reports and Questionnaires7.1.1. Self Reports and Questionnaires

•• AlternativesAlternatives
–– Self ReportsSelf Reports

–– Verbal ProtocolsVerbal Protocols
–– Critical IncidentsCritical Incidents

–– Overall Comments and SuggestionsOverall Comments and Suggestions
–– ClosedClosed--Ended QuestionnairesEnded Questionnaires

•• Suggested ApproachSuggested Approach
–– ClosedClosed--Ended Questionnaire with SuggestionsEnded Questionnaire with Suggestions
–– Structured Verbal Protocols or Critical IncidentsStructured Verbal Protocols or Critical Incidents

•• Pretest Wording of Questions and Pretest Wording of Questions and 
InstructionsInstructions

•• Nominal Scale MeasurementsNominal Scale Measurements

Details on self reports and questionnaires are presented in Topic 4 of this 
reference material. Several alternative methods such as verbal protocols, 
critical incidents, and closed end questionnaires are suitable for subsequent 
quantitative analysis of the supplemental data. Overall comments and 
suggestions provided by subjects in an experiment are usually tabulated. 
Researchers often use a closed-ended questionnaire followed by an open-
ended question for overall comments from subjects as the major form of 
supplemental data collection from subjects in a human factors experiment. 
When detailed self-reports from subjects are needed throughout the 
experiment, human factors researcher often use structured verbal protocols 
and critical incidents methods to collect these data.

Pretesting the wording and instructions is critical before using any self report 
or questionnaire in an experiment in order to avoid confusion and unreliable 
results during data collection. Since self reports and questionnaires result in 
frequency counts and tabulations, nonparametric analyses of these nominal 
scale measurements are appropriate.
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7.1.2. Rankings and Rating Scales7.1.2. Rankings and Rating Scales7.1.2. Rankings and Rating Scales

•• AlternativesAlternatives
–– Rank Ordering AlternativesRank Ordering Alternatives
–– Graphical Rating ScalesGraphical Rating Scales

•• Suggested ApproachSuggested Approach
–– Standardized Rating ScalesStandardized Rating Scales
–– LikertLikert--Type Rating ScalesType Rating Scales

•• Pretest Wording of Rating ScalesPretest Wording of Rating Scales
•• Ordinal versus Interval Scale MeasurementsOrdinal versus Interval Scale Measurements

Often the experimenter asks subjects to rank order preferences or use a 
graphical rating scales as a systematic means of obtaining supplemental 
data from the subjects. Standardized rating scales and Likert-type rating 
scales as described in Topic 4 are most often used by human factors 
researchers. Pretesting the wording used in rating scales and rankings are 
critical to collecting reliable and valid supplemental data.

Ratings and rank orders provide ordinal scale measurements that are 
amenable to subsequent nonparametric statistical analysis. Although some 
human factors researchers assume that Likert-type rating scales have the 
properties of interval scale measurement and use a parametric statistical 
analysis on those data, this is usually not appropriate.
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7.2. Supplemental Data Analysis7.2. Supplemental Data Analysis7.2. Supplemental Data Analysis

•• 7.2.1. Nominal Scale Data Analysis7.2.1. Nominal Scale Data Analysis
•• 7.2.2. Ordinal Scale Data Analysis7.2.2. Ordinal Scale Data Analysis

Topic 4 in this reference material provides an overview of the properties of 
various scales of measurement. Since supplemental data usually does not 
have properties of interval and ratio scale measurements, parametric data 
analyses are not appropriate. Consequently, human factors and ergonomic 
researchers usually use various nonparametric statistical analyses for 
supplemental data characterized by either nominal or ordinal scales of 
measurement.
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7.2.1. Nominal Scale Data Analysis7.2.1. Nominal Scale Data Analysis7.2.1. Nominal Scale Data Analysis

•• Data SetData Set
–– Demographic DataDemographic Data
–– Categorical DataCategorical Data
–– Frequency CountsFrequency Counts

•• Data AnalysisData Analysis
–– BetweenBetween--Subjects or WithinSubjects or Within--SubjectsSubjects
–– 1 to 1 to ““kk”” CategoriesCategories
–– Techniques in Topic 5Techniques in Topic 5

Topic 5 in this reference material describes a variety of nonparametric 
analysis procedures appropriate for nominal scale measurement. Nominal 
scale supplemental data is characterized by frequency counts within 
categories resulting from demographic data such as age and level of 
experience of users or frequency counts of various questionnaire
alternatives.

The choice of nonparametric analysis alternative depends upon whether the 
data set consists of between-subjects or within-subject data and the number 
of categories being compared. Topic 5 classifies and describes some of 
common nonparametric analyses for nominal scale supplemental data 
collected in human factors research by type of data set and number of 
categories to facilitate easy reference by users of this reference material.
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7.2.2. Ordinal Scale Data Analysis7.2.2. Ordinal Scale Data Analysis7.2.2. Ordinal Scale Data Analysis

•• Data SetData Set
–– Cumulative FrequenciesCumulative Frequencies
–– RatingsRatings
–– Rank OrdersRank Orders

•• Data AnalysisData Analysis
–– BetweenBetween--Subjects or WithinSubjects or Within--SubjectsSubjects
–– 1 to 1 to ““kk”” CategoriesCategories
–– Techniques in Topic 6Techniques in Topic 6

Topic 6 in this reference material describes a variety of nonparametric 
analysis procedures appropriate for ordinal scale measurement. Ordinal 
scale supplemental data is characterized by frequency counts within 
categories resulting from demographic data such as cumulative frequencies 
of ordered categories, graphical numerical rating scales, and rank orders.

The choice of nonparametric analysis alternative depends upon whether the 
data set consists of between-subjects or within-subject data and the number 
of categories being compared. Topic 6 classifies and describes some of 
common nonparametric analyses of ordinal scale supplemental data
collected in human factors research by the type of data set and the number 
of categories to facilitate easy reference by users of this reference material.
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7.3. Supplemental Data Process7.3. Supplemental Data Process7.3. Supplemental Data Process

•• Step 1. Choose Data Collection ProcedureStep 1. Choose Data Collection Procedure
–– Self Report and Questionnaire ConstructionSelf Report and Questionnaire Construction
–– LikertLikert--Type Rating Scale ConstructionType Rating Scale Construction
–– PretestingPretesting EssentialEssential

•• Step 2. Determine Data Analysis ProcedureStep 2. Determine Data Analysis Procedure
–– BetweenBetween--Subjects or WithinSubjects or Within--Subjects DataSubjects Data
–– 1 to 1 to ““kk”” CategoriesCategories
–– Appropriate Nonparametric AnalysisAppropriate Nonparametric Analysis

–– Frequency Counts from QuestionnairesFrequency Counts from Questionnaires
–– Rank Orders from Rating ScalesRank Orders from Rating Scales

The experimenter needs to consider an overall process in choosing the data 
collection and data analysis procedure for dealing with supplemental data. A 
three-step process is presented on this slide and the next two slides. This 
process begins with choosing the appropriate data collection procedure in 
Step 1. In order to provide quantitative data for subsequent data analysis, 
structured self report techniques, closed-ended questionnaires, and/or 
Likert-type rating scales as described in Topic 4 are often used in human 
factors and ergonomics research. Careful design and pretesting these data 
collection techniques are essential in order to obtain valid and reliable 
supplemental data.

Once the supplemental data are collected, the experimenter chooses the 
appropriate data analysis procedure in Step 2. The choice of the appropriate 
data analysis depends on three conditions – between-subjects or within-
subjects data, number of categories evaluated, and scale of measurement 
as described in Topic 4. Since supplemental data usually includes only 
nominal or ordinal scales of measurement, nonparametric statistical 
analyses are used. Choosing the appropriate nonparametric analysis 
depends upon the use nominal and ordinal scale measurements as detailed 
in Steps 2a and 2b in the next two slides.
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7.3. Supplemental Data Process (Cont’d)7.3. Supplemental Data Process (Cont7.3. Supplemental Data Process (Cont’’d)d)

•• Step 2a. Choose Appropriate Data Analysis for Step 2a. Choose Appropriate Data Analysis for 
Nominal Scale MeasurementsNominal Scale Measurements
–– BetweenBetween--Subjects DataSubjects Data

–– 1 Category1 Category
–– ChiChi--Square Goodness of Fit TestSquare Goodness of Fit Test

–– ““kk”” ≥≥ 2 Categories2 Categories
–– ChiChi--Square Test of IndependenceSquare Test of Independence

–– WithinWithin--Subjects DataSubjects Data
–– 2 Categories2 Categories

–– McNemarMcNemar Change TestChange Test
–– ““kk”” ≥≥ 3 Categories3 Categories

–– Cochran Q TestCochran Q Test

Step 2a provides a procedure for choosing the appropriate nonparametric 
analysis if the supplemental data involve nominal scale measurements. The 
choice depends upon the data set and number of categories compared. The 
Chi-Square Goodness of Fit Test is used to compare one category of data of 
various levels each obtained from independent samples of subjects (i.e., 
between-subjects data) to a known standard. The Chi-Square Test of 
Independence is used to compare two or more categories each with various 
levels obtained from independent samples. The McNemar Change Test uses 
repeated measures (i.e., within-subjects data) to evaluate differences or 
before/after changes between two categories. The Cochran Q Test extends 
the McNemar Change Test to within-subjects data that involve three or more 
categories. Details on calculations and examples of using each of these four 
nonparametric tests listed on this slide are provided in Topic 5.
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7.3. Supplemental Data Process (Cont’d)7.3. Supplemental Data Process (Cont7.3. Supplemental Data Process (Cont’’d)d)

•• Step 2b. Choose Appropriate Data Analysis for Step 2b. Choose Appropriate Data Analysis for 
Ordinal Scale MeasurementsOrdinal Scale Measurements
–– BetweenBetween--Subjects DataSubjects Data

–– 1 or 2 Categories1 or 2 Categories
–– KolmogorovKolmogorov--Smirnov TestsSmirnov Tests

–– ““kk”” ≥≥ 3 Categories3 Categories
–– KruskalKruskal--Wallis OneWallis One--Way ANOVAWay ANOVA

–– WithinWithin--Subjects DataSubjects Data
–– 2 Categories2 Categories

–– WilcoxonWilcoxon Signed Ranks TestSigned Ranks Test
–– ““kk”” ≥≥ 3 Categories3 Categories

–– Friedman TwoFriedman Two--Way ANOVAWay ANOVA
•• Step 3. Interpret Supplemental DataStep 3. Interpret Supplemental Data

Step 2b provides a procedure for choosing the appropriate nonparametric 
analysis if the supplemental data involve ordinal scale measurements. The 
choice depends upon the data set and number of categories compared. 
Kolmogorov-Smirnov Tests of cumulative frequency distributions are used 
for between-subjects data to compare either one category of data to a 
standard or two categories of data. The Kruskal-Wallis One-Way ANOVA is 
used for analysis of three or more between-subjects categories. The 
Wilcoxon Signed Rank Test is used to evaluate differences between two 
categories of within-subjects data. The Friedman Two-Way ANOVA 
evaluates repeated measures data across three or more categories. Details 
on calculations and examples of using each of these four nonparametric 
tests listed on this slide are provided in Topic 6.

Step 3 deals with supplemental data interpretation. First, the results of the 
statistical analysis of the supplemental data need to be interpreted. Second, 
and most importantly, the supplemental data results need to be used by the 
experimenter to clarify the interpretations of the main analyses of the 
experiment. The appropriate main analyses for the overall experimental 
design chosen by the experimenter are described in the remaining sections 
of this reference material.
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7.4. Summary7.4. Summary7.4. Summary

•• Characteristics of Supplemental DataCharacteristics of Supplemental Data
–– Self ReportsSelf Reports
–– SubjectSubject’’s Opinionss Opinions
–– Demographic DataDemographic Data
–– Frequency Counts or RankingsFrequency Counts or Rankings

•• Supplemental Data Collection ProceduresSupplemental Data Collection Procedures
–– ClosedClosed-- and Openand Open--Ended QuestionnairesEnded Questionnaires
–– LikertLikert--Type Rating ScalesType Rating Scales

•• Supplemental Data AnalysisSupplemental Data Analysis
–– Nominal and Ordinal Nonparametric AnalysesNominal and Ordinal Nonparametric Analyses

•• Interpretation of Primary DataInterpretation of Primary Data

By way of summary, Section 2 deals with supplemental data collected in 
support of the primary data collected in the experiment. Supplemental data 
consist of subject’s opinions and self reports, demographic data, frequency 
tabulations, and ratings. Experimenters should use carefully designed 
subjective data collection methods that provide quantitative data, if possible.

Usually a combination of self report methods including closed-ended and 
open-ended questionnaires, and Likert-type rating scales are used in human 
factors and ergonomics experiments. The experimenter must be careful to 
pretest these methods for clarity of wording and instruction before collecting 
the supplemental data. Most supplemental data consist of frequency, rating, 
and rankings that have only nominal or ordinal scale characteristics. 
Consequently, nonparametric rather than parametric statistical analyses are 
usually used to analyze these data. The experimenter should always 
remember the purpose of the supplemental data and use them to aid in the 
interpretation of the primary data collected in the experiment.
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7.5. Supplemental Readings7.5. Supplemental Readings7.5. Supplemental Readings

REFERENCEREFERENCE
Conover (1999)Conover (1999)
Hays and Winkler (1971)Hays and Winkler (1971)
Meister (1985)Meister (1985)
Siegel and Castellan (1988)Siegel and Castellan (1988)

SECTIONSECTION
Chapters 3, 4, 6Chapters 3, 4, 6
Chapter 12Chapter 12
Chapters 9Chapters 9--1111
Chapters 3Chapters 3--8 8 

The Meister (1985) reference provides a general overview of various 
techniques used to collect supplemental data in human factors and 
ergonomics research. The Siegel and Castellan (1988) reference provides a 
detailed discussion of the nonparametric analysis techniques appropriate for 
nominal and ordinal scale data as described in Topics 5 and 6, respectively. 
Conover (1999) and Hays and Winkler (1971) are other general references 
on nonparametric analyses that provides further elaboration of the 
techniques covered in Section 4 of this reference material.
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Section 3 covers fundamental experimental design and analysis procedures 
used in basic ANOVA. These designs are the most often used techniques in 
human factors and ergonomics research. This section covers the following 
topics:

Topic 8 – introduction to ANOVA;
Topic 9 – ANOVA summary table components;
Topic 10 – between-subjects ANOVA designs;
Topic 11 – analysis of comparisons and interactions;
Topic 12 – within-subjects ANOVA designs;
Topic 13 – mixed-factors ANOVA designs; and
Topic 14 – summary of basic ANOVA.

Section 3.
Basic Analysis of Variance (ANOVA) 

Designs

Section 3.Section 3.
Basic Analysis of Variance (ANOVA) Basic Analysis of Variance (ANOVA) 

DesignsDesigns

Topic 8. Introduction to ANOVATopic 8. Introduction to ANOVA
Topic 9. ANOVA Summary TableTopic 9. ANOVA Summary Table
Topic 10. BetweenTopic 10. Between--Subjects ANOVA DesignsSubjects ANOVA Designs
Topic 11. Analysis of Comparisons and InteractionsTopic 11. Analysis of Comparisons and Interactions
Topic 12. WithinTopic 12. Within--Subjects ANOVA DesignsSubjects ANOVA Designs
Topic 13. MixedTopic 13. Mixed--Factors ANOVA DesignsFactors ANOVA Designs
Topic 14. Summary of Basic ANOVATopic 14. Summary of Basic ANOVA
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This topic introduces ANOVA designs by discussing their advantages, basic 
terms, and the three major categories of ANOVA designs used in human 
factors research. Next, procedures for specifying the underlying statistical 
model that describes the components of any ANOVA design are presented. 
The introduction ends with a discussion and example for using ANOVA for 
statistical hypothesis testing of the difference between two treatment means.

Topic 8. Introduction to ANOVATopic 8. Introduction to ANOVATopic 8. Introduction to ANOVA

8.1. Advantages of ANOVA Designs8.1. Advantages of ANOVA Designs
8.2. Basic Terms8.2. Basic Terms
8.3. ANOVA Design Alternatives8.3. ANOVA Design Alternatives
8.4. ANOVA Statistical Models8.4. ANOVA Statistical Models
8.5. ANOVA Hypothesis Testing8.5. ANOVA Hypothesis Testing
8.6. Summary8.6. Summary
8.7. Supplemental Readings8.7. Supplemental Readings
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8.1. Advantages of ANOVA Designs8.1. Advantages of ANOVA Designs8.1. Advantages of ANOVA Designs

•• Conceptualizing Research HypothesesConceptualizing Research Hypotheses
•• Composite Statistical TestComposite Statistical Test
•• Evaluate of InteractionsEvaluate of Interactions
•• Baseline for GeneralizationsBaseline for Generalizations

This slide lists the four major advantages of ANOVA. The researcher is 
forced to organize and conceptualize research hypotheses of interest when 
choosing the number of independent variables to include in the ANOVA 
design. As a means of guarding against inflated Type I error resulting from 
repeated hypothesis tests on the same data set, the ANOVA provides a 
composite test of significance of main effects and interactions of all the 
independent variables included in the design. The interaction, or differential 
effect, of one independent variable on others can be evaluated along with 
the main effects of each variable in a factorial ANOVA design. Since several 
independent variables can be investigated simultaneously in multifactor 
ANOVA designs, the researcher has a broader baseline for making 
generalization to real-world problems based on the results obtained from 
ANOVA designs. Because of these advantages, ANOVA is the most often 
used experimental design alternative in human factors and ergonomics 
research.
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8.2. Basic Terms8.2. Basic Terms8.2. Basic Terms

•• FactorFactor
•• Factor LevelFactor Level
•• Crossed Factor Crossed Factor 
•• Nested FactorNested Factor
•• InteractionInteraction
•• Factorial DesignFactorial Design
•• CellCell

Williges (1995) defined seven key terms used to describe ANOVA designs. 
These terms form the basic vocabulary needed to specify and describe 
ANOVA designs used in human factors research. A factor is an independent 
variable manipulated in the design (e.g., display type). Subjects always 
appear as a factor along with other factors of interest in human factors 
experiments. A specific value of a factor is known as the factor level, and all 
factors must have a minimum of two levels (e.g., plasma and liquid crystal 
displays). Factors are crossed if all the levels of one factor appear with all 
the levels of another factor (e.g., every subject receives every treatment). 
Factors are nested if only one level of a factor appears at each level of 
another factor (e.g., each subject receives only one treatment). An 
interaction is a differential effect of one factor on another such that the levels 
of one factor are significantly different only at a particular level of the other 
factor. Factors must be crossed in order to interact. If factors are nested, no 
interaction can be evaluated.

A factorial design is a design in which all the levels of one factor appear with 
all the levels of another factor. Hence, the factors of interest are crossed. A 
unique treatment combination of a specific value of the various levels of 
factors in a factorial design is referred to as a cell of the design. Factorial 
designs are used in human factors research to assess interactions among 
the factors of interest in addition to the main effects of these factors.
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8.2. Basic Terms (Cont'd)8.2. Basic Terms (Cont'd)8.2. Basic Terms (Cont'd)

Factor A

Factor B

A1

B1

A2 A3

S1
S2
S3
S4

S5
S6
S7
S8

S9
S10
S11
S12

S13
S14
S15
S16

S17
S18
S19
S20

S21
S22
S23
S24

B2

This is an illustration of a 3x2 factorial design that can be described by using 
the basic ANOVA terms. By convention, factors are designated as capital 
letters, and levels of a factor are designated as subscripted numbers of the 
capital letter. There are three levels of factor A and two levels of factor B. 
Since factors A and B are crossed, each level of factor A appears at each 
level of factor B resulting in six cells or treatment combinations in the 
complete factorial design. An equal cell size, n, of four is used.

A third factor implicit in this design is subjects, S. There are 24 levels of 
factor S shown in the design. Subjects are nested, not crossed, with factors 
A and B since only four different subjects appear in each of the six cells of 
the factorial design. Note that each subject experiences only one 
combination of levels of A and B, but all the levels of A and B are crossed in 
the factorial design. Consequently, this is a 3x2 factorial design in which 
subjects are nested in both factors A and B.

Since subjects will always be a factor in human factors experiments, one 
must know whether subjects are crossed or nested with each of the factors 
of interest. This determines the sample size, n, in each cell of the design as 
well as the total number of different subjects needed for the experiment. In 
this 3x2 factorial design, four different subjects experienced each 
combination of Factor A and B levels yielding a total of 24 different subjects 
participated in the experiment.
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8.2. Basic Terms (Cont'd)8.2. Basic Terms (Cont'd)8.2. Basic Terms (Cont'd)

Basic TermsBasic Terms NotationNotation

FactorFactor A, B, SA, B, S
Factor LevelFactor Level AA33, B, B22
Crossed FactorCrossed Factor A and BA and B
Nested FactorNested Factor S/ABS/AB
InteractionInteraction AxBAxB
Factorial DesignFactorial Design 3x23x2
CellCell AA11BB11 ... A... A33BB22

This slide illustrates how the seven basic ANOVA terms are used in the 3x2 
factorial design example shown on the previous slide. Factors of interest are 
listed with the capital letters, A and B, and the subject factor is listed as S. 
Factor A has three levels and Factor B has 2 levels. Specific levels of a 
factor appear as numbered subscripts of capital letters for that factor (e.g., 
A3). Both A and B are crossed factors. Subjects factor, S, is nested in both A 
and B and is designated by a slash, S/AB. Only one interaction, AxB, can be 
tested in this design. Note that the other possible two-way interactions (i.e., 
AxS and BxS) and the three-way interaction (i.e., AxBxS) do not exist in this 
design because subjects are not crossed with either A or B. The factorial 
design is designated by the number of levels of the crossed factors of 
interest, 3x2. A cell of the factorial design is designated by each of the six 
unique treatment combinations of the various levels of Factor A and B or 
A1B1 … A3B2.
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8.3. ANOVA Design Alternatives8.3. ANOVA Design Alternatives8.3. ANOVA Design Alternatives

•• BetweenBetween--Subjects DesignSubjects Design
–– Subjects are NestedSubjects are Nested
–– Completely Randomized DesignCompletely Randomized Design

•• WithinWithin--Subjects DesignSubjects Design
–– Subjects are CrossedSubjects are Crossed
–– Repeated Measures DesignRepeated Measures Design

•• MixedMixed--Factors DesignFactors Design
–– Subjects are Crossed and Nested with at least Subjects are Crossed and Nested with at least 

One FactorOne Factor
–– SplitSplit--Plot DesignPlot Design

How subjects are crossed and nested with the factors of interest in an 
experiment determines the design category. There are three basic design 
alternatives in behavioral research. If subjects are nested within all factors of 
interest in the experiment, this is a between-subjects design or a completely 
randomized design because subjects are randomly assigned to treatment 
conditions. If subjects are crossed with all factors of interest, this is referred 
to as a within-subjects design or repeated measures design because every 
subject experiences every treatment combination. If subjects are nested 
within some factors of interest and crossed with others, this is called a 
mixed-factors design or split-plot design from agricultural applications where 
factors were split within plots of land.

Often the experimenter can choose a between-subjects, within-subjects, or 
mixed-factors ANOVA design and must then trade off the advantages and 
disadvantages of each design alternative. Sometimes factors exist only as 
crossed with subjects (e.g., practice trials) or nested with subjects (e.g., 
training method) in the real world and no choice of design is possible. Due to 
the nature of variables investigated in human factors research, the 
experimenter often chooses a mixed-factors ANOVA design alternative.
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8.3. ANOVA Design Alternatives (Cont'd)8.3. ANOVA Design Alternatives (Cont'd)8.3. ANOVA Design Alternatives (Cont'd)

•• BetweenBetween--Subjects DesignSubjects Design

Factor A

Factor B

A1

B1

A2 A3

S1
S2
S3
S4

S5
S6
S7
S8

S9
S10
S11
S12

S13
S14
S15
S16

S17
S18
S19
S20

S21
S22
S23
S24

B2

Returning to the 3x2 factorial design presented when discussing basic terms 
of ANOVA in 7.2, one knows this is a between-subjects design because the 
subjects are nested in both A and B. Four subjects (i.e. n = 4) receive each 
of the six treatment combinations in this factorial design. Since each subject 
experiences only one treatment combination in a between-subjects design, a 
total of 24 different subjects are needed for this experiment. 
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8.3. ANOVA Design Alternatives (Cont'd)8.3. ANOVA Design Alternatives (Cont'd)8.3. ANOVA Design Alternatives (Cont'd)

•• WithinWithin--Subjects DesignSubjects Design

Factor A

Factor B

A1

B1

A2 A3

S1
S2
S3
S4

S1
S2
S3
S4

S1
S2
S3
S4

S1
S2
S3
S4

S1
S2
S3
S4

S1
S2
S3
S4

B2

This slide shows the 3x2 factorial design cast as a within-subjects design 
with n=4. One knows this is a within-subjects design because the subjects 
are crossed with both A and B. Consequently, each subject appears in every 
cell, and only four different subjects are needed for the experiment. When 
using a within-subjects design, the experimenter must balance the order in 
which each subject receives the six treatment combinations to avoid 
confounding practice effects with the treatment conditions.
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8.3. ANOVA Design Alternatives (Cont'd)8.3. ANOVA Design Alternatives (Cont'd)8.3. ANOVA Design Alternatives (Cont'd)

•• MixedMixed--Factors DesignFactors Design

Factor A

Factor B

A1

B1

A2 A3

S1
S2
S3
S4

S5
S6
S7
S8

S9
S10
S11
S12

S1
S2
S3
S4

S5
S6
S7
S8

S9
S10
S11
S12

B2

This slide shows the 3x2 factorial design cast as a mixed-factors design with 
n=4. By looking at the subscripts of S in each cell, one can determine that 
subjects are nested within Factor A and crossed with Factor B. Each subject 
experiences only one level of Factor A but both levels of Factor B. 
Consequently, each subject receives two treatment combinations (i.e., a 
level of Factor A with each of the two levels of Factor B). A total of 12 
different subjects are needed for the experiment.

If the 3x2 mixed-factors design were changed such that subjects were 
crossed with Factor A and nested in Factor B, the subscripts of S would 
change accordingly. Four subjects (i.e., S1 … S4) in B1 and four different 
subjects (i.e., S5 … S8) in B2 would each receive the three levels of Factor A 
in combination with only one level of Factor B. Consequently, a total of eight 
different subjects would be needed for this experiment. Once again, the 
experimenter needs to balance the presentation order of the within-subjects 
factor levels to avoid confounding practice effects with treatments.
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8.4. ANOVA Statistical Models8.4. ANOVA Statistical Models8.4. ANOVA Statistical Models

•• 8.4.1. Specification Procedures8.4.1. Specification Procedures
•• 8.4.2. Examples8.4.2. Examples

Every ANOVA design can be specified in terms of a statistical model that 
defines the various components that can affect an observation, Y, in the 
experimental design. This subsection describes the procedures for 
specifying ANOVA statistical models and provides an example of statistical 
models for two-factor between-subjects, within-subjects, and mixed-factors 
ANOVA designs.
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8.4. ANOVA Statistical Models (Cont’d)8.4. ANOVA Statistical Models (Cont8.4. ANOVA Statistical Models (Cont’’d)d)

•• DefinitionDefinition: A mathematical statement : A mathematical statement 
expressing the linear sum of all possible expressing the linear sum of all possible 
components of variation in a specific components of variation in a specific 
experiment.experiment.

Y = Y = µµ + Main Effects + Subjects + Interactions + + Main Effects + Subjects + Interactions + εε
•• ComponentsComponents

–– Observation, YObservation, Y
–– Population Mean, Population Mean, µµ
–– Factor Main EffectsFactor Main Effects
–– Subject EffectSubject Effect
–– Interaction EffectsInteraction Effects
–– Random Error, Random Error, εε

The ANOVA statistical model is a mathematical statement that lists all the 
possible components of variation in a specific experiment (Keppel and 
Wickens, 2004 and Montgomery, 2005). Winer, Brown and Michels (1991) 
refer to statistical models as structural models. The resulting statistical model 
is simply a linear sum or combination of sources of variation that can affect 
any observed score, Y, obtained from subjects in the experiment. The major 
components of an observation in a human factors experiment are: (1) the 
population mean from which the sample is drawn; (2) the factors and 
interactions of interest to the experiment; (3) the subject effects; and (4) 
random error. All subsequent analyses using deviation scores are based on 
the statistical model. Before conducting an experiment, the experimenter 
should specify the ANOVA statistical model to insure that all factors and 
interactions of interest are included in the experimental design.

An alternative approach to partitioning variation through the ANOVA 
statistical model is the general linear model based on regression. Keppel and 
Wickens (2004, pp. 132-158) describe the use of general linear models in 
ANOVA that are used in many computer-based statistical analysis 
procedures. Tatsuoka (1993, pp. 3-42) compares the general linear model to 
the variance component models of ANOVA. Statistical models of variance 
components facilitate computational procedures based on equal sample size 
and are used in this reference material to describe general models of various 
ANOVA designs.
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8.4.1. Specification Procedures8.4.1. Specification Procedures8.4.1. Specification Procedures

•• Specification of Statistical ModelsSpecification of Statistical Models
–– Step 1Step 1: Specify an observation as a linear : Specify an observation as a linear 

combination of the population mean, main effects, combination of the population mean, main effects, 
subjects, interactions, random error wheresubjects, interactions, random error where

–– Observation = YObservation = Y
–– Population Mean = Population Mean = µµ
–– Random Error = Random Error = εε

–– Step 2Step 2: Specify main effects, subjects, and : Specify main effects, subjects, and 
interactions whereinteractions where

–– Greek letters refer to each factorGreek letters refer to each factor
–– Subjects = Subjects = γγ

Y = µ + main effects + subjects + interactions + ε

Y = µ + α + β + γ + αβ + ε

There are straightforward procedures for specifying ANOVA statistical 
models. One specifies an observation, Y, as being equal to a linear 
combination of the population mean, main effects, interactions, and random 
error. Greek letters are used to define each component. To simplify reading 
the statistical model, it begins with the population mean, µ, and ends with 
random error, ε. All the factor main effects, subjects, and possible 
interactions are listed between µ and ε. Greek letters beginning with alpha, 
α, are used to specify each factor and gamma, γ, is reserved to specify the 
subject effect in the experiment. The equation shown at the bottom of this 
slide in Step 2 represents a two-factor, between-subjects design where only 
Factors A and B can interact.
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8.4.1. Specification Procedures (Cont'd)8.4.1. Specification Procedures (Cont'd)8.4.1. Specification Procedures (Cont'd)

•• Specification of Statistical Models (Cont'd)Specification of Statistical Models (Cont'd)
–– Step 3Step 3: Denote the levels of each effect by a : Denote the levels of each effect by a 

Roman subscript beginning with letter "i" where Roman subscript beginning with letter "i" where 
–– Observation, Y, includes all subscriptsObservation, Y, includes all subscripts
–– Levels of each factor have a different Levels of each factor have a different 

subscriptsubscript
–– Parentheses surround levels of nested effectsParentheses surround levels of nested effects
–– Random error, Random error, εε, is nested in all other effects, is nested in all other effects

Y ijkl = µ + α i + β j + γ k(ij) + αβ ij + ε l(ijk)

Lowercase Roman letters beginning with “i” are used to denote specific 
levels of each component. The observation, Y, includes all subscripts. Each 
factor is denoted with a different subscript, and the nesting among factors is 
designated by parentheses. Usually factors of interest are crossed in 
factorial designs, and only subjects and random error show nesting. Random 
error is always nested within all other effects by definition. Consequently, the 
subscripts for all effects are put in parentheses for the subscript designating 
random error. For example, the resulting statistical model for a two-factor, 
between-subjects design is shown at the bottom of this slide. Notice that the 
subscripts “ij” are put in parentheses for subjects, γ, to designate that 
subjects are nested in Factors A and B and cannot interact with those 
factors.

The key to determining whether the ANOVA design is a between-subjects, 
within-subjects, or mixed-factors design is to designate the nesting of 
subjects, γ, appropriately. To illustrate this concept, two-factor ANOVA 
design examples are provided for each of these three categories of the 
experimental design separately.
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8.4.2. Examples8.4.2. Examples8.4.2. Examples

•• TwoTwo--Factor, BetweenFactor, Between--Subjects DesignSubjects Design
–– Step 1:Step 1:

Y = Y = µµ + main effects + subjects + interactions + + main effects + subjects + interactions + εε
–– Step 2:Step 2:

Y = Y = µ + α + β + γ + αβ + εµ + α + β + γ + αβ + ε
–– Step 3:Step 3:

Y ijkl = µ + α i + β j + γ k(ij) + αβ ij + ε l(ijk)

The two-factor between-subjects design is shown on this slide. Since 
subjects are nested within all other effects, there can be no interaction of S 
with A, B, or random error. Keppel and Wickens (2004) and Montgomery 
(2005) do not list subject effects in their statistical models of randomized 
designs, but the nested subject effect is always listed in the statistical 
models in this reference material to clearly distinguish between-subjects 
designs. Only A and B can interact because they are crossed in this design. 
Consequently, the statistical model for this between-subjects design contains 
the population mean (µ), the main effect of A (α), the main effect of B (β), the 
main effect of subjects (γ), the AxB interaction (αβ), and random error (ε) as 
shown in Step 2.

The final step is to add subscripts to the statistical models to designate 
crossed and nested effects in the design. The observation, Y, is influenced 
by all effects in the statistical model and includes the subscripts “ijkl”. Factor 
A begins with the “i” subscript, and Factor B continues with the “j” subscript. 
Both A and B have no nesting. For S the subscript is “k”, but since it is 
nested in both A and B, this nesting is designated by placing ij in 
parentheses, or k(ij). The AxB interaction represents both A and B effects 
and has the subscript “ij”. Random error is nesting in all effects, and its 
subscript is l(ijk).

The final statistical model for this design is shown in Step 3. Note the 
subscripts for gamma show this is a between-subjects design because S is 
nested in both Factors A and B.
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8.4.2. Examples (Cont'd)8.4.2. Examples (Cont'd)8.4.2. Examples (Cont'd)

•• TwoTwo--Factor, WithinFactor, Within--Subjects DesignSubjects Design
–– Step 1:Step 1:

Y = Y = µµ + main effects + subjects + interactions + + main effects + subjects + interactions + εε
–– Step 2:Step 2:

Y = Y = µ + α + β + γ + αβ + αγ + βγ + αβγ + εµ + α + β + γ + αβ + αγ + βγ + αβγ + ε
–– Step 3:Step 3:

Y ijkl = µ + α i + β j + γ k + αβ ij + αγ ik + βγ jk + αβγ ijk + ε l(ijk)

The two-factor, within-subjects design is shown on this slide. The same three 
steps are followed for specifying the ANOVA statistical model. Since A, B, 
and S are completely crossed in this repeated measures design, no nesting 
is designated in the subscripts. Note that S just has the subscript “k” without 
any parentheses to show that it is not nested. Consequently, the statistical 
model of the within-subjects version of a two-factor design must also include 
the three possible interactions with subjects (i.e. αγik for AxS, βγjk for BxS, 
and αβγijk for AxBxS).
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8.4.2. Examples (Cont'd)8.4.2. Examples (Cont'd)8.4.2. Examples (Cont'd)

•• TwoTwo--Factor, MixedFactor, Mixed--Factors Design whereFactors Design where
A = BetweenA = Between--Subjects, B = WithinSubjects, B = Within--SubjectsSubjects
–– Step 1:Step 1:

Y = Y = µµ + main effects + subjects + interactions + + main effects + subjects + interactions + εε
–– Step 2:Step 2:

Y = Y = µ + α + β + γ + αβ + βγ + εµ + α + β + γ + αβ + βγ + ε
–– Step 3:Step 3:

Y ijkl = µ + α i + β j + γ k(i) + αβ ij + βγ jk(i) + ε l(ijk)

A two-factor, mixed-factors design is shown on this slide. Factor A is a 
between-subjects variable, and B is a within-subjects variable. 
Consequently, γ, or S, shows this nesting by using the subscript “k(i)”. In this 
two-factor ANOVA design, S cannot interact with A. So, no αγ effect is 
shown in the statistical model.

If this two-factor design was reversed to make A a within-subjects factor and 
B a between-subjects factor, the resulting ANOVA statistical model would 
change accordingly. Gamma would have the subscript “k(j)”, βγ would be 
replaced by αγ with the subscripts “ik(j)”. 
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8.4.2. Examples (Cont'd)8.4.2. Examples (Cont'd)8.4.2. Examples (Cont'd)

•• Summary of TwoSummary of Two--Factor DesignsFactor Designs
–– BetweenBetween--Subjects DesignSubjects Design

–– WithinWithin--Subjects DesignSubjects Design

–– MixedMixed--Factors DesignFactors Design

Y ijkl = µ + α i + β j + γ k(i) + αβ ij + βγ jk(i) + ε l(ijk)

Y ijkl = µ + α i + β j + γ k + αβ ij + αγ ik + βγ jk + αβγ ijk + ε l(ijk)

Y ijkl = µ + α i + β j + γ k(ij) + αβ ij + ε l(ijk)

This slide summarizes the statistical models for the three alternative two-
factor ANOVA designs. Note that the designs differ in the number of effects 
between the population mean and random error that can be estimated in the 
subsequent ANOVA. The final statistical model for Yijkl shows that there are 
four effects that can be estimated in the between-subjects design, seven 
effects that can be estimated in the within-subjects design, and five effects 
that can be estimated in the mixed-factors design.

The key to specifying the ANOVA statistical model in human factors 
research is to determine how subjects will be assigned to treatment 
conditions. These crossed and nested relationships of subjects with the 
factors of interest in the experiment determine the number of effects in the 
resulting statistical model as well as the subscripting designations. In 
addition, the relationships dictate the number of different subjects required in 
an experiment to run an analysis based on an equal sample size of some 
value of n.
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8.5. ANOVA Hypothesis Testing8.5. ANOVA Hypothesis Testing8.5. ANOVA Hypothesis Testing

•• 8.5.1. Format of F8.5.1. Format of F--TestTest
•• 8.5.2. Assumptions of the F8.5.2. Assumptions of the F--TestTest
•• 8.5.3. Two8.5.3. Two--Level DesignLevel Design

Before discussing the details of conducting hypothesis tests on the various 
components of an ANOVA statistical model, this subsection summarizes the 
basic format and assumptions of any ANOVA hypothesis test based on the F 
sampling distribution. The general logic followed in conducting a F-test is 
demonstrated in a simple, one-factor, two-level design.
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8.5.1. Format of F-Test8.5.1. Format of F8.5.1. Format of F--TestTest

•• 8.5.1.1. Theoretical F8.5.1.1. Theoretical F
•• 8.5.1.2. Hypotheses8.5.1.2. Hypotheses
•• 8.5.1.3. Complete Format8.5.1.3. Complete Format

The F-test is a statistical hypothesis test using the F sampling distribution 
and the F statistic. The theoretical F value under the null hypothesis and the 
standard format for statistical hypothesis testing in ANOVA is described in 
this subsection.
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8.5.1.1. Theoretical F8.5.1.1. Theoretical F8.5.1.1. Theoretical F

when σ treatments
 2  = 0

F = σ treatments
 2  + σ error

 2

σ error
 2  = 1

The F-statistic used in ANOVA is the ratio of two sample variances. One 
must decide which variance is used in the numerator and denominator of the 
F-ratio. As shown in this slide, theoretically the sample variance affected by 
the treatment effect and error is used in the numerator, and a sample 
variance affected only by error is used in the denominator. If a treatment 
effect does not exist, the variance due to treatments is 0.

In a statistical hypothesis test in ANOVA, one assumes under the null 
hypothesis that the treatment effect in the numerator does not exist. 
Consequently, the theoretical F value reduces to a ratio of two estimates of 
error variance and F equals 1. Occasionally, it is possible to obtain 
empirically an F-ratio that is less than 1 when the treatment does not exist 
and variation in random error is such that the estimate in the numerator is 
smaller than the denominator. If there is a treatment effect in the numerator, 
then the F value will be greater than 1. 

This is the basic premise of any hypothesis test using an F-statistic. 
Consequently, a researcher must determine which estimate of sample 
variance is put in the numerator and which estimate is put in the 
denominator in order to conduct a hypothesis test in ANOVA. Commonly, 
this is referred to as choosing the appropriate error term for an F-test.
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8.5.1.2. Hypotheses8.5.1.2. Hypotheses8.5.1.2. Hypotheses

OR

H 0 : µ 1 = µ 2 = µ 3 = . . . µ n

H 0 : σ treatments
2 = 0

H 1: σ treatments
2 ≠ 0

H1 : µ 1 ≠ µ 2 ≠ µ 3 ≠ . . . µ n

In ANOVA, there are two or more levels of each factor, and the experimenter 
usually makes a composite test of differences across several means in a 
hypothesis test. The top portion of this slide shows the null and alternative 
hypotheses for a test among several means. The differences across means 
of factor levels determine the treatment effect of that factor. In ANOVA, one 
could alternatively state the null and alternative hypothesis in terms of the 
variance due to treatments as shown in the lower portion of this slide. This 
variance form is most commonly used in ANOVA, and the specific factor 
(i.e., A, B) or an interaction (i.e. AxB) is substituted for treatments.
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8.5.1.3. Complete Format8.5.1.3. Complete Format8.5.1.3. Complete Format

α : .05, .01, or .001

H 0 : σ treatments
2 = 0

H 1: σ treatments
2 ≠ 0

F observed = s 1
2

s 2
2

D.R. : I will reject H 0 if F observed > F tabled

F tabled (based on ν 1 and ν 2)

The standard format used for an F-test is shown on the slide. As in any 
statistical hypothesis test, this format includes the null hypothesis (H0), the 
alternative hypothesis (H1), the amount of Type I error (α) that one is willing 
to accept, and the decision rule. The decision rule in ANOVA can be simply 
stated that one will reject the null hypothesis if the observed F-statistic is 
greater than the tabled value of F. The observed F-statistic is calculated from 
the data collected in the experiment using the sample variance form of F. 
The tabled value of F is determined by the F sampling distribution based on 
the degrees of freedom of the numerator (ν1) and the denominator (ν2) of the 
F-ratio.
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8.5.2. Assumptions of the F-Test8.5.2. Assumptions of the F8.5.2. Assumptions of the F--TestTest

•• Basic AssumptionsBasic Assumptions
–– AdditivityAdditivity of Componentsof Components
–– Independence of ObservationsIndependence of Observations
–– Normal Distribution of PopulationsNormal Distribution of Populations
–– Homogeneity of VarianceHomogeneity of Variance
–– Null HypothesisNull Hypothesis

•• Additional AssumptionsAdditional Assumptions
–– Type of ANOVA DesignType of ANOVA Design

The basic assumptions of the F-test are shown on the top portion of this 
slide. The additivity assumption relates to the statistical model which states 
that an observation is based on several additive parts consisting of the 
population mean, treatment effects, subject effects, and random error. The 
assumptions of independence of observations, normal distribution of scores, 
and homogeneity of variance are based on the definition of an F statistic as 
the ratio of two independent chi-squares having equal population variance. 
The null hypothesis is that the variance due to treatments is equal to zero 
and is the basis of the F-test itself.

There are some additional assumptions that depend upon the specific type 
of ANOVA design used. For example, within-subjects designs assume 
homogeneity of covariance, and quasi-F tests have an additivity assumption. 
These additional assumptions are discussed under the topics covering these 
specific design alternatives.
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8.5.2. Assumptions of the F-Test (Cont’d)8.5.2. Assumptions of the F8.5.2. Assumptions of the F--Test (ContTest (Cont’’d)d)

•• Violation of AssumptionsViolation of Assumptions
–– Robustness of Analysis of VarianceRobustness of Analysis of Variance
–– F < 1 throughout ANOVAF < 1 throughout ANOVA
–– Data Transformations for NormalityData Transformations for Normality
–– Homogeneity of Variance TestsHomogeneity of Variance Tests

•• Alternative Tests for Homogeneity of VarianceAlternative Tests for Homogeneity of Variance
–– Hartley FHartley F--Max TestMax Test
–– Cochran TestCochran Test
–– Bartlett's ChiBartlett's Chi--Square TestSquare Test
–– ScheffeScheffe TestTest

If the F-test assumptions are violated, then the F- distribution may not be the 
appropriate sampling distribution. A characteristic of ANOVA is that it is 
robust to violations of assumptions of the F-test as long as sample size, n, is 
equal. For example, Norton (1952) demonstrated robustness of the F-
distribution to non-normality and heterogeneity of variance when equal 
sample size was used (referenced by Lindquist, 1956, pp. 78-86). 
Consequently, one should always strive to attain equal sample size across 
cells. If, however, one finds that most of the F ratios in an ANOVA are less 
than 1, this could be an indication of a marked violation of assumptions.

Transforming data to meet assumptions such as normality can be done. For 
example, latency data in human factors research is often positively skewed, 
and a log transformation can be used to normalize the data. The 
disadvantage of transformations is that the subsequent analysis is only valid 
for the transformed data and must be interpreted as such.

Violation of the homogeneity of variance assumption is critical when sample 
size is not equal. Four different alternatives for testing homogeneity of 
variance are described by Winer, Brown, and Michels (1991) on pp. 100-
110. The Hartley F-Max Test is straightforward and often used. The ratio of 
the largest cell variance divided by the smallest cell variance in the data set 
provides the maximum value of F and is used in the F-Max Test as the 
observed value of F.
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8.5.2. Assumptions of the F-Test (Cont'd)8.5.2. Assumptions of the F8.5.2. Assumptions of the F--Test (Cont'd)Test (Cont'd)

•• Hartley FHartley F--Max TestMax Test
–– HHOO: : σσ22

11 = = σσ22
22 = ... = = ... = σσ22

nn

–– HHii: : σσ22
11 ≠≠ σσ22

22 ≠≠ ... ... ≠≠ σσ22
nn

–– αα: .20: .20
–– D.R.: I reject HD.R.: I reject HOO if if FFmaxmax > > FFtabtab

–– FFmaxmax = s= s22
Largest Largest /s/s22

SmallestSmallest

–– FFtabtab = Table D.7 (= Table D.7 (WinerWiner et al., 1991)            et al., 1991)            
where n = where n = nnLargestLargest

•• Heterogeneity of VarianceHeterogeneity of Variance
–– Box Approximation to F (Box Approximation to F (WinerWiner, et al., 1991), et al., 1991)

This slide shows the standard format for the Hartley F-Max Test. The null 
hypothesis states that the population variances are equal (homogeneity). 
The alternative hypothesis is that the population variances are not equal 
(heterogeneity). The decision rule is to reject the null hypothesis if the F-max 
statistic is greater than the F tabled value shown in Table D.7 of Winer, 
Brown, and Michels (1991). Usually, the F-Max Test is conducted at higher α
error (i.e. α = .20) to guard against Type II error in accepting the null 
hypothesis (i.e., homogeneity of variance).

If the F-Max Test is significant, the homogeneity of variance assumption is 
violated and there is heterogeneity of variance. In this case the F distribution 
is not appropriate, and the Box approximation to F can be used (Winer, 
Brown, and Michels, 1991).
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8.5.3. Two-Level Design8.5.3. Two8.5.3. Two--Level DesignLevel Design

•• 8.5.3.1. Components of Deviation Score8.5.3.1. Components of Deviation Score
•• 8.5.3.2. Estimation of Population Variance8.5.3.2. Estimation of Population Variance
•• 8.5.3.3. Hypothesis Test8.5.3.3. Hypothesis Test

This subsection describes a simple F-test between two levels of one factor to 
demonstrate that ANOVA is really a test of differences between sample 
means even though the F-statistic is a ratio of sample variances. Deviation 
scores (i.e., the difference between an observation and its mean) that 
partition the variability of individual scores about the grand mean and two 
ways of estimating population variance are needed to demonstrate the 
overall logic of ANOVA hypothesis testing.
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•• OneOne--Factor, BetweenFactor, Between--Subjects Data SetSubjects Data Set

Y11 = 59
Y12 = 65
Y13 = 52
Y14 = 45
Y15 = 63
Y16 = 42
Y17 = 53
Y18 = 47

Night Vision Display A Night Vision Display B
Y21 = 54
Y22 = 72
Y23 = 69
Y24 = 59
Y25 = 67
Y26 = 61
Y27 = 51
Y28 = 63_______ _______

Y2. = 496
2. = 62.00Y

Y1. = 426
1. = 53.25Y

Grand Total  Y.. = 922
Grand Mean .. = 57.625Y

Y ijk = µ + α i + γ j(i) + ε k(ij)

8.5.3. Two-Level Design (Cont’d)8.5.3. Two8.5.3. Two--Level Design (ContLevel Design (Cont’’d)d)

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the basic layout of a two-group, between-subjects 
experiment that compared performance using night vision displays A and B 
by 8 different squads of soldiers. This experiment was described in the 
between-subjects t-test reviewed in Topic 3. As shown in the statistical 
model on the slide, this experiment can also be considered to be a simple 
one-factor, between-subjects ANOVA design in which the factor, Night 
Vision Display, has two levels, Display A and Display B.

The data set shows each of the 16 performance scores, Yij, where the 
subscript “i” refers to night vision display level, and subscript “j” refers to the 
8 different squads of soldiers using each night vision display. Summing 
across levels of a factor is denoted by dotting the level designation of that 
factor in an observation. To compute a specific mean, the dotted sum is 
divided by the number of scores summed. For example, the total score for 
each night vision display type is denoted by dotting the “j” subscript (i.e., Y1.
and Y2.). These two treatment means are determined by Y1./n and Y2./n, 
respectively. Likewise, the grand total of all 16 scores is shown by dotting 
both the “ij” subscripts (i.e., Y..), and the grand mean of the 16 scores is 
determined by Y../an.
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8.5.3.1. Components of Deviation Score8.5.3.1. Components of Deviation Score8.5.3.1. Components of Deviation Score

•• Deviation ScoresDeviation Scores
–– Total = WithinTotal = Within--Group + BetweenGroup + Between--GroupGroup

–– (54 (54 -- 57.625) = (54 57.625) = (54 -- 62) + (62 62) + (62 -- 57.625)57.625)
–– ((--3.625) = (3.625) = (--8) + (4.375) 8) + (4.375) 

•• Sum of SquaresSum of Squares

_                 _         _    _
(Yij - Y..) = (Y ij - Yi.) + (Y i. - Y..)

SS
Total

= SS
Within-Group

+ SS
Between-Group

2
..

a

1i
.i

2
.i

a

1i

n

1j
ij

2
..

a

1i

n

1j
ij )YY(n)YY()YY( −∑+−∑ ∑=−∑ ∑

== == =

(Click in this red rectangle to see SAS calculations for this example.)

The total deviation of any score from the grand mean is the total of two 
additive parts made up of the within-group deviation and the between-group 
deviations, respectively. Within-group deviation is the difference between the 
observed value or score and its group mean. Between-group deviation is the 
difference between the group mean and the grand mean. The first observed 
value in the Night Vision Display B group, 54, is used on this slide as an 
example to demonstrate these deviation score relationships.

Deviation score relationships for an individual score also hold for sum of 
squared deviations around the mean (Myers 1979, pp. 76-83). 
Consequently, the SSTotal equals SSWithin-Group plus SSBetween-Groups. The 
formulae for calculating each of these sum of squares is shown on this slide 
in standard summation notation. These SS relationships are used to 
calculate the F-statistic in ANOVA.
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8.5.3.2. Estimation of Population Variance8.5.3.2. Estimation of Population Variance8.5.3.2. Estimation of Population Variance

•• 1. Pooled Estimate of Population Variance1. Pooled Estimate of Population Variance
–– Mean SquareMean Square

–– Treatment Means Do Not Affect EstimateTreatment Means Do Not Affect Estimate
•• 2. Sampling Distribution of Means2. Sampling Distribution of Means

–– Mean SquareMean Square

–– Treatment Means Do Affect EstimateTreatment Means Do Affect Estimate

)1n(a/)YY(MS 2
.i

a

1i

n

1j
ijA/S −−∑ ∑=

= =

)1a/()YY(nMS 2
..

a

1i
.iA −−∑=

=

(Click in this red rectangle to see SAS calculations for this example.)

Mean square is another term for variance and is equal to a sum of squares 
(SS) divided by its degrees of freedom (df). Two independent estimates of 
population variance are calculated in an F-statistic using SS and df. The first 
estimate of population variance is calculated from the within-group SS in 
which the sum of squares is pooled across groups and is referred to as 
MSS/A since this is a between-subjects design. Since the deviations of 
individual scores from their group mean are calculated separately and then 
pooled across groups, the treatment means do not affect this pooled 
estimate of population variance.

The second estimate shown on this slide is referred to as MSA and is 
calculated from between-group SS. In this case, the population variance is 
estimated from the sampling distribution of means. Since group mean 
deviations are calculated from the grand mean, the treatment means do 
affect this estimate of population variance.
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8.5.3.3. Hypothesis Test8.5.3.3. Hypothesis Test8.5.3.3. Hypothesis Test

•• F RatioF Ratio

•• Test Of Test Of Differences Among MeansDifferences Among Means
•• FormatFormat

E(MS A) = nσ α
 2 + σ γ

 2 + σ ε
 2

E(MS S/A) = σ γ
 2 + σ ε

 2

F A = MS A
MS S/A

α = .05, .01, or .001
D.R. :  I reject H 0 if F observed > F tabled

H i : σ A
2 ≠ 0

F observed = MS A
MS S/A

F tabled = (a - 1) and a(n - 1) df,

H 0 : σ A
2 = 0

(Click in this red rectangle to see SAS calculations for this example.)

The top portion of this slide shows the theoretical components that can affect 
the estimates of population variance calculated by MSA and MSS/A. Since 
MSA is affected by treatment means, it has a theoretical treatment 
component (α) in addition to the subjects (γ) and random error (ε) 
components. On the other hand, MSS/A is affected theoretically only by the 
subject (γ) and random error (ε) components. Consequently, to obtain a 
theoretical F = 1 under the null hypothesis, one would use the ratio of MSA
divided by MSS/A. If the resulting F-test is significant, then there is a 
significant difference between treatment means.

The standard format for performing any F-test is shown on the bottom 
portion of this slide. The experimenter calculates the observed value of F 
and compares it to the tabled values from the F-statistic sampling 
distribution. The same logic used to determine the numerator and
denominator of the observed F-ratio in a one-factor design is followed in 
complex ANOVA designs that include several factors whether they are 
between-subjects, within-subjects, or mixed-factors designs.
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8.5.3.3. Hypothesis Test (Cont’d)8.5.3.3. Hypothesis Test (Cont8.5.3.3. Hypothesis Test (Cont’’d)d)

•• Night Vision Display ExampleNight Vision Display Example
–– MSMSAA = 306.25= 306.25
–– MSMSS/AS/A = 62.25= 62.25
–– FFAA = 306.25/62.25 = 4.92= 306.25/62.25 = 4.92

•• Standard FormatStandard Format
–– HH00: : σσ22

AA = 0= 0
–– HH11: : σσ22

AA ≠≠ 00
–– αα = .05= .05
–– D.R.: I reject HD.R.: I reject H00 if if FFObservedObserved > > FFTabledTabled

–– where where FFObservedObserved = 4.92 and F= 4.92 and F(1,14)(1,14) = 4.60= 4.60
•• tt--Test ResultTest Result

–– ttObservedObserved = 2.22  (t= 2.22  (t22
ObservedObserved = 4.92)= 4.92)

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the results of using the formulae presented for MSA and 
MSS/A to calculate the actual values for the two mean squares as well as the 
resulting F-ratio for the data set of the night vision example. Slater and 
Williges (2006) present the SAS program for calculating the complete two-
level, one-way ANOVA.

The standard format for testing mean performance differences between the 
two types of night vision displays is shown in the middle portion of this slide. 
Note that the tabled value of the F-ratio shows the degrees of freedom of the 
numerator and denominator of the F-ratio in parenthesis. Since the observed 
value of the F-ratio is greater than the tabled value of the F-ratio, one 
concludes that there is a significant difference between the two night vision 
displays at the 0.05% level of significance.

The bottom portion of this slide shows the results of the between-subjects t-
test conducted on the night vision display as discussed in Topic 3. Recall 
that (tν)2 = F1,ν as demonstrated in the results of this example that are 
presented on the slide. So, a two-level, one-factor ANOVA is equivalent to a 
t-test of the difference between the means of two groups.



Human Factors Experimental Design and Analysis Reference

272

8.6 Summary8.6 Summary8.6 Summary

•• ANOVA FundamentalsANOVA Fundamentals
–– AdvantagesAdvantages
–– Basic TermsBasic Terms
–– Three ANOVA Design CategoriesThree ANOVA Design Categories

•• ANOVA Statistical ModelsANOVA Statistical Models
•• Logic of ANOVA Hypothesis TestingLogic of ANOVA Hypothesis Testing

By way of summary, this introductory topic on ANOVA presented the three 
main concepts shown on this slide. For the human factors and ergonomics 
researcher, ANOVA designs have the advantage of including many factors 
simultaneously in one experiment to evaluate the main effects and 
interactions among them. Basic terms were presented that provide the 
essential vocabulary for describing any ANOVA design. In human factors 
research, ANOVA designs can be categorized as either between-subjects, 
within-subjects, or mixed-factors designs depending the crossing and nesting 
of subjects with factors of interest.

The basic fabric of every ANOVA design is defined by the statistical model. 
The ANOVA statistical model states that every observation in a human 
factors experiment is conceptually a linear combination of the population 
mean, treatments, subjects, interactions, and random error effects. Steps for 
specifying statistical models were provided. The researcher must be able to 
specify the statistical model in order to define the experimental design and 
specify the effects that can be evaluated in the experiment.

Finally, the overall logic for conducting ANOVA hypothesis testing on 
difference between means was presented. An example of using this logic in 
a simple two-level, one-factor ANOVA design showed the standard format 
for any ANOVA hypothesis testing. 
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8.7. Supplemental Readings8.7. Supplemental Readings8.7. Supplemental Readings

REFERENCEREFERENCE
Hicks & Turner (1999)Hicks & Turner (1999)
Keppel & Keppel & WickensWickens (2004)(2004)
Mason, Mason, GunstGunst, & Hess (2003), & Hess (2003)
Maxwell & Maxwell & DulaneyDulaney (2000)(2000)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapter 3Chapter 3
Chapters 2, 7, 14Chapters 2, 7, 14
Chapter 4Chapter 4
Chapter 3Chapter 3
Chapter 3 Chapter 3 

All these texts provide general introductions to ANOVA designs and a 
detailed description of the logic involved in ANOVA hypothesis testing. In 
addition, Keppel and Wickens (2004) provide an overview of the use of linear 
models in ANOVA in Chapter 7 as opposed to the variance component 
statistical models discussed in this chapter. Winer, Brown, and Michels
(1991) provide a detailed description of testing for homogeneity of variance 
in ANOVA on pages 100-110. 
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This topic provides an overview of the computational aspects of any 
between-subjects, within-subjects, and mixed-factors ANOVA design used in 
human factors research. The subsections are organized around the five 
major components of the ANOVA Summary Table used for listing the results 
of an ANOVA. Rather than derive formulae for calculating each component, 
computational procedures and algorithms are provided.

First, each component of the summary table is discussed separately. Then 
conventions for stating the complete ANOVA Summary Table are presented 
for each of the three major categories of ANOVA experimental designs used 
in human factors research. References to supplemental readings on ANOVA 
Summary Table details are provided for the major experimental design texts 
appropriate for human factors research.

Topic 9. ANOVA Summary Table ComponentsTopic 9. ANOVA Summary Table ComponentsTopic 9. ANOVA Summary Table Components

9.1. Introduction9.1. Introduction
9.2. Sources of Variation9.2. Sources of Variation
9.3. Degrees of Freedom (9.3. Degrees of Freedom (dfdf))
9.4. Sum of Squares (SS)9.4. Sum of Squares (SS)
9.5. Mean Squares (MS)9.5. Mean Squares (MS)
9.6. F9.6. F--RatiosRatios
9.7. Complete ANOVA Summary Table9.7. Complete ANOVA Summary Table
9.8. ANOVA Design Construction9.8. ANOVA Design Construction
9.9. Summary9.9. Summary
9.10. Supplemental Readings9.10. Supplemental Readings
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9.1. Introduction9.1. Introduction9.1. Introduction

•• ANOVA ComputationsANOVA Computations
•• ANOVA Summary Table ComponentsANOVA Summary Table Components

–– Sources of VariationSources of Variation
–– Degrees of Freedom (Degrees of Freedom (dfdf))
–– Sum of Squares (SS)Sum of Squares (SS)
–– Mean Squares (MS)Mean Squares (MS)
–– FF--RatiosRatios

•• Computational ProceduresComputational Procedures

Due to the computational complexity of ANOVA, most human factors
researchers use statistical analysis packages for conducting the ANOVA on 
complex designs. But, the researcher needs to understand the ANOVA 
computations in order to check the accuracy of the statistical analysis 
program output. This topic provides an overview of the various analysis 
components of ANOVA for any factorial design used in human factors and 
ergonomics research.

The five major components of an ANOVA Summary Table are presented in 
the center portion of this slide. Each component is discussed separately, 
analogous to describing the pieces of a puzzle. The complete ANOVA 
Summary Table is presented for between-subjects, within-subjects and 
mixed-factors designs to summarize the relationship of these components in 
statistical hypothesis testing. Actual computations of the ANOVA are 
presented in Topic 9 following this general discussion of computational 
procedures.

Topic 8 provided the general logic of an ANOVA hypothesis test using 
deviation scores and definitional formulae. Rather than deriving formulae for 
each possible design separately, this topic presents general rules, 
procedures, and algorithms that provide the same results as derivation, but 
are easier to use and generalize across ANOVA designs.
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9.2. Sources of Variation9.2. Sources of Variation9.2. Sources of Variation

•• DefinitionDefinition: A list of all the possible effects : A list of all the possible effects 
in an ANOVA design that can be estimated.in an ANOVA design that can be estimated.
–– Provides a listing of sources of variationProvides a listing of sources of variation
–– Varies according to type of designVaries according to type of design
–– Based on statistical modelsBased on statistical models

The first component in an ANOVA Summary Table is a listing of sources of 
variation. The Source listing provides all the treatment components of the 
experimental design that can be estimated from the data set and are 
involved in subsequent ANOVA calculations. The possible sources vary 
according to the particular ANOVA experimental design and are based 
directly on the statistical model for that design. Sources for between-
subjects, within-subjects, and mixed-factors designs are presented 
separately using a two-factor ANOVA design as an example.
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9.2. Sources of Variation (Cont'd)9.2. Sources of Variation (Cont'd)9.2. Sources of Variation (Cont'd)

•• BetweenBetween--Subjects DesignSubjects Design
–– Statistical ModelStatistical Model

–– YYijklijkl = = µµ + + ααii + + ββjj + + γγk(ijk(ij)) + + αβαβijij + + εεl(ijkl(ijk))

–– Sources of VariationSources of Variation
–– AA
–– BB
–– S/ABS/AB
–– AxBAxB

The statistical model for a two-factor, between subjects ANOVA design is 
shown in the top portion of this slide. All the treatment components in this 
design are listed between the population mean, µ, and random error, ε, in 
the statistical model. Specifically in this example, there are 4 treatment 
components.

Based on the nesting of effects listed in the statistical model, one can 
determine the appropriate listing of the sources of variation calculated in this 
ANOVA design. The resulting sources of variation for this particular design 
as stated in standard notation are A, B, S/AB, and AxB. Note that subjects 
are nested in both factors A and B since this is a between-subjects 
experimental design.
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9.2. Sources of Variation (Cont'd)9.2. Sources of Variation (Cont'd)9.2. Sources of Variation (Cont'd)

•• WithinWithin--Subjects DesignSubjects Design
–– Statistical ModelStatistical Model

–– YYijklijkl = = µµ + + ααii + + ββjj + + γγkk + + αβαβijij + + αγαγkjkj + + βγβγjkjk + + αβγαβγijkijk + + εεl(ijkl(ijk))

–– Sources of VariationSources of Variation
–– AA
–– BB
–– SS
–– AxBAxB
–– AxSAxS
–– BxSBxS
–– AxBxSAxBxS

The statistical model for the within-subjects version of the two-factor ANOVA 
design is shown on the top portion of this slide. Since subjects are crossed 
with all factors of interest, everything can interact resulting in seven sources 
of treatment variation. The sources of variation for this design are A, B, S, 
AxB, AxS, BxS, AxBxS. There are three main effects, three two-way 
interactions, and one three-way interaction that are calculated in the ANOVA 
for this design.
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9.2. Sources of Variation (Cont'd)9.2. Sources of Variation (Cont'd)9.2. Sources of Variation (Cont'd)

•• MixedMixed--Factors DesignFactors Design
–– Statistical ModelStatistical Model

–– YYijklijkl = = µµ + + ααii + + ββjj + + γγk(i)k(i) + + αβαβijij + + βγβγjk(ijk(i)) + + εεl(ijkl(ijk))

–– Sources of VariationSources of Variation
–– AA
–– BB
–– S/AS/A
–– AxBAxB
–– BxSBxS/A/A

A mixed-factors version of the two-factor design is illustrated on this slide. 
Based on the nesting shown for γ in the statistical model Subjects are nested 
in Factor A and crossed with Factor B. This ANOVA design results in 5 
sources of variation that are evaluated in the subsequent ANOVA. The 
sources of variation for this design are A, B, S/A, AxB, and BxS/A.

These three examples of a two-factor ANOVA design demonstrate that the 
possible sources of variation in the ANOVA Summary Table vary depending 
upon whether the design is a between-subjects, within-subjects, or mixed-
factors design. In all cases, however, the sources of variation can be 
determined directly from the statistical model for the design. All three design 
alternatives include the three sources of overall interest to the experiment 
(e.g., Factor A, Factor B, and the AxB interaction) and differ only in effects 
due to subjects. Obviously, this procedure for determining the Source listing 
generalizes to any number of factors of interest included in the ANOVA 
experimental design.
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9.3. Degrees of Freedom (df)9.3. Degrees of Freedom (9.3. Degrees of Freedom (dfdf))

•• 9.3.1. Rules for Determining 9.3.1. Rules for Determining dfdf
•• 9.3.2. 9.3.2. dfdf ExamplesExamples

The second component of an ANOVA Summary Table lists the degrees of 
freedom associated with each source of variation in the experiment. This 
subsection lists some simple rules for determining df and provides examples 
of applying these rules to between-subjects, within-subjects, and mixed-
factors, two-way ANOVA designs.
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9.3.1 Rules for Determining df9.3.1 Rules for Determining 9.3.1 Rules for Determining dfdf

•• DefinitionDefinition: The number of scores that are free to : The number of scores that are free to 
vary within a source of variation.vary within a source of variation.

•• RulesRules
–– Step 1Step 1. Degrees of freedom of . Degrees of freedom of unnestedunnested factors and factors and 

subjects equal one less than the number of levels of the subjects equal one less than the number of levels of the 
factor.factor.

–– Step 2Step 2. Degrees of freedom of nested factors and subjects . Degrees of freedom of nested factors and subjects 
equal one less than the number of levels of the nested equal one less than the number of levels of the nested 
factor times the levels of the factor(s) in which it is nested. factor times the levels of the factor(s) in which it is nested. 

–– Step 3Step 3. Degrees of freedom of interactions equal the . Degrees of freedom of interactions equal the 
product of the individual degrees of freedom of each product of the individual degrees of freedom of each 
factor and subject term forming the interaction.factor and subject term forming the interaction.

–– Step 4Step 4. The total degrees of freedom equal one less than . The total degrees of freedom equal one less than 
the total number of observations in the experiment.the total number of observations in the experiment.

Degrees of freedom are the number of scores that are free to vary within the 
various sources of the design. In general, every time you calculate a statistic 
you lose one degree of freedom. For example, if a dataset is composed of 
24 numbers, the mean can be equal to any value if one number is fixed and 
the other 23 numbers are free to vary. Consequently, the df for the grand 
mean is one less than the total number of observations or 23 as stated in 
Step 4 on the slide.

The lower portion of this slide provides four simple steps for determining the 
df of any source of variation in ANOVA assuming sample size, n, is equal in 
each cell of the design. These four steps are patterned after Keppel and 
Wickens (2004, p.215). The first step deals with unnested sources, and the 
second step deals with nested sources. The third step pertains to 
interactions. Finally, the fourth step specifies the total df in an ANOVA 
design.

Since df are additive in ANOVA, the sum of the df for all sources in an 
experiment should equal the total df in a design. This provides a simple 
check that all sources of variation are included in the ANOVA Summary 
Table.
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9.3.2. df Examples9.3.2. 9.3.2. dfdf ExamplesExamples

•• 3x2 Between3x2 Between--Subjects Design, n=4Subjects Design, n=4

SourcesSources Degrees of FreedomDegrees of Freedom
AA (a(a--1) = 21) = 2
BB (b(b--1) = 11) = 1
S/ABS/AB ab(nab(n--1) = (3)(2)(3) = 181) = (3)(2)(3) = 18
AxBAxB (a(a--1)(b1)(b--1) = (2)(1) = 21) = (2)(1) = 2
TotalTotal abnabn--1 = (3)(2)(4) = 231 = (3)(2)(4) = 23

Consider a two-factor ANOVA design in which Factor A has 3 levels (i.e., 
a=3), Factor B has 2 levels (i.e. b=2), and 4 subjects are observed in each 
cell of the factorial design (i.e., n=4).

The df for the between-subjects alternative for this 3x2 factorial design is 
shown on this slide. The df for Factors A and B are determined by Step 1 in 
the rules for determining df. Since subjects are completely nested in this 
design, the df for S/AB are determined by Step 2. The AxB interaction is 
determined by Step 3. Finally, the total degrees of freedom in this two-factor 
design is 23 as determined by Step 4 of the rules for determining df.

Note that the df of all the Sources sum to the total df in the design. Always 
calculate the df for each source directly and do not determine any of them by 
subtraction. Comparison of the sum of all sources to the calculated total df
provides a simple check that all the sources of variation are included and no 
mistake was made in determining the df for one or more of these sources.
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9.3.2. df Examples (Cont'd)9.3.2. 9.3.2. dfdf Examples (Cont'd)Examples (Cont'd)

•• 3x2 Within3x2 Within--Subjects Design, n=4Subjects Design, n=4

SourcesSources Degrees of FreedomDegrees of Freedom
AA (a(a--1) = 21) = 2
BB (b(b--1) = 11) = 1
SS (n(n--1) = 31) = 3
AxBAxB (a(a--1)(b1)(b--1) = (2)(1) = 21) = (2)(1) = 2
AxSAxS (a(a--1)(n1)(n--1) = (2)(3) = 61) = (2)(3) = 6
BxSBxS (b(b--1)(n1)(n--1) = (1)(3) = 31) = (1)(3) = 3
AxBxSAxBxS (a(a--1)(b1)(b--1)(n1)(n--1) = (2)(1)(3) = 61) = (2)(1)(3) = 6
TotalTotal abnabn--1 = (3)(2)(4) = 231 = (3)(2)(4) = 23

The df for the within-subjects design alternative for the 3x2 factorial design is 
shown on this slide. Since there is no nesting in this design, Rule 2 for 
determining df does not apply. Note that the total df still equals 23, and the df
for all sources of variation in the experiment sums to 23.
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9.3.2. df Examples (Cont'd)9.3.2. 9.3.2. dfdf Examples (Cont'd)Examples (Cont'd)

•• 3x2 Mixed3x2 Mixed--Factors Design, n=4Factors Design, n=4

SourcesSources Degrees of FreedomDegrees of Freedom
AA (a(a--1) = 21) = 2
BB (b(b--1) = 11) = 1
S/AS/A a(na(n--1) = (3)(3) = 91) = (3)(3) = 9
AxBAxB (a(a--1)(b1)(b--1) = (2)(1) = 21) = (2)(1) = 2
BxSBxS/A/A a(ba(b--1)(n1)(n--1) = (3)(1)(3) = 9 1) = (3)(1)(3) = 9 
TotalTotal abnabn--1 = (3)(2)(4) = 231 = (3)(2)(4) = 23

The df for a 3x2 mixed-factors design is shown on this slide. The four rules 
for determining df still apply regardless of the partial nesting of subjects in 
the experiment. Note that the df for S/A are determined by Rule 2. Subjects 
are only nested in A and the df are affected by the levels of A, but the levels 
of Factor B are not involved in determining the interaction. Also note that 
mixed factor designs have interactions involving nesting (e.g. BxS/A). Rule 3 
for determining the df of interactions still apply. One simply uses the degrees 
of freedom for each factor component of the interaction (e.g. 1x9=9)

Consider all three of these 3x2 design examples. The sources change due to 
the crossed versus nesting relations between Subjects and both Factors A 
and B. The total df in all three experiments is 23, and the df for the three 
effects of interest to the experiment remain the same (e.g. A=2, B=1, and 
AxB=2).
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9.4. Sum of Squares (SS)9.4. Sum of Squares (SS)9.4. Sum of Squares (SS)

•• DefinitionDefinition: The sum of squared deviations : The sum of squared deviations 
around the mean is the actual observed around the mean is the actual observed 
deviation of each source.deviation of each source.

•• Definition FormDefinition Form

•• Computational FormComputational Form

•• SS computational formulae are specific for SS computational formulae are specific for 
each source of variability.each source of variability.

SS = Σ (Yi - Y)2

SS =  ΣY i
2 - [(ΣYi)2 / n]

Sum of Squares (SS) is the third component of an ANOVA Summary Table. 
The SS is really the sum of the squared deviations around the mean which is 
based on the actual observed deviation of each score from its appropriate 
cell mean.

The computational form for the SS uses raw scores to avoid calculations of 
an intermediate mean as shown on this slide. Sum of squares computational 
formulae are specific for each source of variability. Rather than state the 
definitional formula for the SS of each source of variation and then convert 
each definitional formula into its computational form, an algorithm is provided 
in Topic 9 that specifies the various computational formulae directly. Since 
calculations of SS are the major analytical component of ANOVA, details on 
this procedure will be discussed in Topic 9 when a complete ANOVA 
computational example is discussed. Consequently, formulae are not 
provided for each source of variation in this topic but are only designated as 
sums of squares with the appropriate subscripts (e.g., SSA, SSB, and SSAXB) 
in this topic.
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9.5. Mean Squares (MS)9.5. Mean Squares (MS)9.5. Mean Squares (MS)

•• 9.5.1. Expected Mean Squares, E(MS)9.5.1. Expected Mean Squares, E(MS)
•• 9.5.2. Algorithm for Stating E(MS)9.5.2. Algorithm for Stating E(MS)
•• 9.5.3. E(MS) Examples9.5.3. E(MS) Examples

Mean squares (MS) provide the fourth component of the ANOVA Summary 
Table and represent variance calculations that are used in constructing F 
ratios. In order to determine the appropriate MS to use in the denominator of 
any F ratio, one must consider the theoretical sources of variance that are 
represented in a MS. These theoretical components are called expected 
mean squares, E(MS). This subsection, discusses factors that determine 
E(MS), describes an algorithm for casting E(MS), and provides examples of 
E(MS) in the three major categories of human factors ANOVA designs. 
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9.5.1. Expected Mean Squares, E(MS)9.5.1. Expected Mean Squares, E(MS)9.5.1. Expected Mean Squares, E(MS)

•• Mean Squares (MS)Mean Squares (MS)
–– DefinitionDefinition: The variance of a set of scores.: The variance of a set of scores.

MS = SS/MS = SS/dfdf
•• Expected Mean Squares, E(MS)Expected Mean Squares, E(MS)

–– Theoretical source of varianceTheoretical source of variance
–– Determined by algebra of expectationDetermined by algebra of expectation
–– Based upon:Based upon:

–– Statistical modelStatistical model
–– Type of variableType of variable

As shown in the top portion of this slide the MS or variance of a set of scores 
is nothing more than the SS of the scores divided by the df. In an ANOVA 
Summary Table, one can easily calculate the MS for any source of variation 
by dividing its SS by its df.

The theoretical sources of variance, or the E(MS), that comprise a MS are 
determined through the algebra of expectation. Two parameters, the 
statistical model and the type of variable manipulated in the experiment, 
determine the components of an E(MS). The statistical model of the design 
lists all the components of variation that are present in an observed score. 
The type of variable determines the effect of a factor on the observation.
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9.5.1. Expected Mean Squares, E(MS) (Cont'd)9.5.1. Expected Mean Squares, E(MS) (Cont'd)9.5.1. Expected Mean Squares, E(MS) (Cont'd)

•• Type of VariableType of Variable
–– FixedFixed--Effects VariableEffects Variable

–– Includes all levels of interestIncludes all levels of interest
–– Systematic selection of factor levelsSystematic selection of factor levels
–– Manipulated factors considered fixed effectsManipulated factors considered fixed effects

–– RandomRandom--Effects VariableEffects Variable
–– Samples of factor levelsSamples of factor levels
–– Random selection of factor levelsRandom selection of factor levels
–– Subjects considered random effectsSubjects considered random effects

Any variable in an experiment can be classified as either a fixed-effects 
variable or a random-effects variable. A fixed-effects variable means that the 
experimenter has systematically selected all of the factor levels that exist for 
that factor. The random-effects variable means that the experimenter has 
made only a random selection of possible levels of a variable.

In human factors experiments, factors of interest are considered fixed-effects 
variables because the experimenter includes all factor levels of interest to 
the experiment. Generalizations of results of the experiment are, in turn, 
restricted to those levels of the factor. Subjects, on the other hand, is 
considered a random-effects variable because the experimenter makes a 
random selection of possible subjects to participate in the experiment. The 
results of the experiment generalize to the population of subjects from which 
the random sample was drawn. Random selection must occur to have a truly 
random-effects variable. Consequently, manipulated factors in an 
experiment are considered fixed-effects variables and subjects are 
considered a random-effects variable when constructing E(MS).
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9.5.2. Algorithm for Stating E(MS)9.5.2. Algorithm for Stating E(MS)9.5.2. Algorithm for Stating E(MS)

•• Step 1Step 1. Write the appropriate statistical model.. Write the appropriate statistical model.
•• Step 2Step 2. For each random. For each random--effect variable, circle the subscript effect variable, circle the subscript 

wherever the subscript appears in the model.wherever the subscript appears in the model.
•• Step 3Step 3. To determine the components of the E(MS) for each . To determine the components of the E(MS) for each 

effect, include:  effect, include:  
–– the effect; andthe effect; and
–– other components having the subscript(s) of the effect other components having the subscript(s) of the effect 

where all other subscripts are either circled (random where all other subscripts are either circled (random 
effect) or in parentheses (nested).effect) or in parentheses (nested).

•• Step 4Step 4. Begin to list the E(MS) for each effect as a linear . Begin to list the E(MS) for each effect as a linear 
combination of the combination of the σσ22 for each component. Note that the for each component. Note that the 
subscript for each subscript for each σσ22 is the Greek symbol(s) of the is the Greek symbol(s) of the 
component. component. 

•• Step 5Step 5. To complete the E(MS) listing, multiply each . To complete the E(MS) listing, multiply each σσ22 in the in the 
resulting linear combination by the number of levels of the resulting linear combination by the number of levels of the 
factor(s) not involved in defining the component term.factor(s) not involved in defining the component term.

The weighted components of an E(MS) are derived through the algebra of 
expectations, and this derivation can become tedious. See Winer, Brown, 
and Michels (1991, pp. 89-100) for a discussion of these mathematical 
procedures. Alternatively, an algorithm can be used for stating the E(MS) in 
lieu of actual derivation through the algebra of expectation. In addition, 
Montgomery (2005, pp. 501-505) and Myers and Well (2003, pp. 392-394) 
and Winer, Brown, and Michels (1991, pp. 369-374) present alternative rules 
for generating E(MS) that provide essentially the same results. Subsequent 
slides demonstrate the use of this algorithm for a two-factor between-
subjects design and show the resulting E(MS) for both a two-factor within-
subjects and mixed-factors design.
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9.5.3. E(MS) Examples9.5.3. E(MS) Examples9.5.3. E(MS) Examples

•• Step 1Step 1. Write the appropriate statistical . Write the appropriate statistical 
model.model.

•• Step 2Step 2. For each random. For each random--effect variable, effect variable, 
circle the subscript wherever the subscript circle the subscript wherever the subscript 
appears in the model.appears in the model.

Y ijkl = µ + α i + β j + γ k(ij) + αβ ij + ε l(ijk)

Y ijkl = µ + α i + β j + γ k(ij) + αβ ij + ε l(ijk)

A two-factor, between-subjects design is used as an example to 
demonstrate the 5-step algorithm for casting E(MS). In Step 1, the complete 
between-subjects statistical model is listed. In Step 2, the subscripts of the 
two random-effects factors, γ and ε, are circled whenever they appear in the 
statistical model. Both α and β are fixed-effects factors, and their subscripts 
are not circled.
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9.5.3. E(MS) Examples (Cont'd)9.5.3. E(MS) Examples (Cont'd)9.5.3. E(MS) Examples (Cont'd)

•• Step 3Step 3. To determine the components of the . To determine the components of the 
E(MS) for each effect, include:  E(MS) for each effect, include:  
–– the effectthe effect
–– other components having the subscript(s) of the other components having the subscript(s) of the 

effect where all other subscripts are either effect where all other subscripts are either 
circled or in parentheses.circled or in parentheses.

A:A: αα γγ εε
B:B: ββ γγ εε
AxBAxB:        :        αβαβ γγ εε
S/AB:S/AB: γγ ε ε 

Y ijkl = µ + α i + β j + γ k(ij) + αβ ij + ε l(ijk)

As shown on this slide, Step 3 provides an initial listing of components that 
are included in the E(MS) of each source of variance listed in the ANOVA 
Summary Table. First, the component of the statistical model representing 
the source is listed. Next, other components that include the subscript of that 
source are included provided all other subscripts are either circled or in 
parentheses. For example, αβij is not a component of A since the subscripts 
“ij” are not circled or in parentheses. Notice that the source effect, the 
subjects effect, and the random error effect are the only contributors to the 
E(MS) for each source of variance in this between-subjects design. 
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9.5.3. E(MS) Examples (Cont'd)9.5.3. E(MS) Examples (Cont'd)9.5.3. E(MS) Examples (Cont'd)

•• Step 4Step 4. Begin to list the E(MS) for each . Begin to list the E(MS) for each 
effect as a linear combination of the effect as a linear combination of the σσ22 for for 
each component. Note that the subscript for each component. Note that the subscript for 
each each σσ22 is the Greek symbol(s) of the is the Greek symbol(s) of the 
component.  component.  

E(MSE(MSAA) = ) = σσ22
αα + + σσ22

γγ + + σσ22
εε

E(MSE(MSBB) = ) = σσ22
ββ + + σσ22

γγ + + σσ22
εε

E(MSE(MSAxBAxB) = ) = σσ22
αβαβ + + σσ22

γγ + + σσ22
εε

E(MSE(MSS/ABS/AB) = ) = σσ22
γγ + + σσ22

εε

Step 4 of the algorithm for casting E(MS) merely takes the components from 
Step 3 and lists each of them as a subscript of a variance contributor, σ2, in 
a linear combination.
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9.5.3. E(MS) Examples (Cont'd)9.5.3. E(MS) Examples (Cont'd)9.5.3. E(MS) Examples (Cont'd)

•• Step 5Step 5. To complete the E(MS) listing, . To complete the E(MS) listing, 
multiply each multiply each σσ22 in the resulting linear in the resulting linear 
combination by the number of levels of the combination by the number of levels of the 
factor(s) factor(s) notnot involved in defining the involved in defining the 
component termcomponent term

YYijklijkl = = µµ + + ααii + + ββjj + + γγk(ijk(ij)) + + αβαβijij + + εεl(ijkl(ijk))

E(MSE(MSAA) = bn) = bnσσ22
αα + + σσ22

γγ + + σσ22
εε

E(MSE(MSBB) = an) = anσσ22
ββ + + σσ22

γγ + + σσ22
εε

E(MSE(MSAxBAxB) = n) = nσσ22
αβαβ + + σσ22

γγ + + σσ22
εε

E(MSE(MSS/ABS/AB) = ) = σσ22
γγ + + σσ22

εε

The final step in the algorithm is the determination of weightings for each 
contributor in the E(MS). These weightings are simply the number of levels 
of all the factors NOT included as a subscript of that effect in the statistical 
model. This always results in a weighting of 1 for ε since it always includes 
every subscript. The final representation of E(MS) for each source of 
variance in this between-subjects design is shown in the bottom portion of 
this slide.



Human Factors Experimental Design and Analysis Reference

294

9.5.3. E(MS) Examples (Cont'd)9.5.3. E(MS) Examples (Cont'd)9.5.3. E(MS) Examples (Cont'd)

Between-Subjects Design

Yijkl = µ + αi + βj + γk(ij) + αβij + εl(ijk)

E(MS A) =   bnσα2 + σγ2 + σε2

E(MS B) = an σβ 2 + σγ 2 + σε2

E(MS AxB) = n σαβ2 + σγ2 + σε2

E(MS S/AB) = σγ2 + σε2

This slide provides a summary of the 5 step algorithm used to cast the 
E(MS) for each source of variance in the ANOVA Summary Table of this 
two-factor, between-subjects design in which both factors A and B are fixed-
effect factors and the subject effect is a random-effects variable. Remember 
this algorithm is not a mathematical derivation. Rather, it simply provides 
rules for stating the resulting E(MS) for any ANOVA design.
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9.5.3. E(MS) Examples (Cont'd)9.5.3. E(MS) Examples (Cont'd)9.5.3. E(MS) Examples (Cont'd)

Within-Subject Design

Yijkl = µ + αi + βj + γk + αβij + αγ ik + βγjk + αβγ ijk + εl(ijk)

E(MS A) = bnσα2 + bσαγ2 + σε2

E(MS B) = an σβ 2 + aσβγ 2 + σε2

E(MS S) = ab σγ2 + σε2

E(MS AxB) = n σαβ2 + σαβγ2 + σε2

E(MS AxS ) = b σαγ2 + σε2

E(MS BxS ) = a σβγ 2 + σε2

E(MS AxBxS ) = σαβγ2 + σε2

This slide summarizes the results of using the 5 step algorithm to cast the 
E(MS) of the within-subjects design alternative for a two-factor ANOVA 
design when factors A and B are both fixed-effects variables and subjects 
are considered random-effects.
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9.5.3. E(MS) Examples (Cont'd)9.5.3. E(MS) Examples (Cont'd)9.5.3. E(MS) Examples (Cont'd)

Mixed-Factors Design

Yijkl = µ + αi + βj + γk(i) + αβij + βγjk(i) + εl(ijk)

E(MS A) = bnσα2 + bσγ2 + σε2

E(MS B) = an σβ 2 + σβγ 2 + σε2

E(MS S/A) = b σγ2 + σε2

E(MS AxB) = n σαβ2 + σβγ2 + σε2

E(MS BxS/A ) = σβγ 2 + σε2

This slide summarizes the results of using the 5 step algorithm to cast the 
E(MS) of a mixed-factors design alternative for a two-factor ANOVA design 
where Subjects are nested in Factor A and crossed with Factor B as shown 
in the statistical model. Again, factors A and B are both fixed-effects 
variables, and subjects are considered random-effects in casting the E(MS).
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9.6. F-Ratios9.6. F9.6. F--RatiosRatios

•• 9.6.1. Rules for Determining F9.6.1. Rules for Determining F--RatiosRatios
•• 9.6.2. F9.6.2. F--Ratio ExamplesRatio Examples

This final piece of the ANOVA Summary Table puzzle is the listing of the 
possible F-ratios that can be tested in the experimental design. These F-
ratios represent the observed values calculated from the results of the 
experiment that are used in statistical hypothesis testing. In this subsection, 
rules for constructing these F-ratios are presented and between-subjects, 
within-subjects, and mixed-factors examples are provided for a two-factor 
ANOVA design.



Human Factors Experimental Design and Analysis Reference

298

9.6. F-Ratios (Cont’d)9.6. F9.6. F--Ratios (ContRatios (Cont’’d)d)

•• Theoretical Components of FTheoretical Components of F

•• Statistical Hypothesis TestingStatistical Hypothesis Testing

•• Constructing FConstructing F--RatiosRatios
–– Choosing Appropriate Error TermChoosing Appropriate Error Term
–– Use of E(MS)Use of E(MS)

F = σ treatments
 2  + σ error

 2

σ error
 2

H 0 : σ treatments
 2  = 0

F theoretical = 1

In ANOVA hypothesis testing, the F-ratio is based on two sample variances, 
and the estimate of the treatment effect is placed in the numerator. As 
shown on this slide, an F-ratio is theoretically composed of variance due to 
treatments plus variance due to error components in the numerator and only 
variance due to error components in the denominator. Recall that the 
variance due to treatments is 0 under the null hypothesis. Consequently, a 
theoretical F-value equals 1 when the null hypothesis is true.

The MS chosen for the numerator is the treatment effect. Then, the MS 
chosen for the denominator should represent only the error variance 
components that are theoretically present in the numerator. Consequently, 
constructing an F-ratio for hypothesis testing is reduced to choosing the 
appropriate “error term” for the denominator. The choice of the appropriate 
error term is based on E(MS) because they specify the components of 
variance present in a particular MS.
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9.6.1. Rules for Determining F-Ratios9.6.1. Rules for Determining F9.6.1. Rules for Determining F--RatiosRatios

•• Step 1Step 1. List the E(MS) for the numerator for . List the E(MS) for the numerator for 
each Feach F--ratioratio

•• Step 2Step 2. Find the effect whose E(MS) . Find the effect whose E(MS) 
includes all the components of the E(MS) of includes all the components of the E(MS) of 
the numerator except the treatment the numerator except the treatment 
variance of interest. variance of interest. 

•• Step 3Step 3. Use this latter effect as the mean . Use this latter effect as the mean 
square for the denominator of the Fsquare for the denominator of the F--ratio.ratio.

By way of summary, this slide lists three steps for constructing F-ratios 
based on E(MS). One simply chooses a denominator for the F-ratio where 
the E(MS) has all the components of the numerator except the treatment 
effect. If an appropriate denominator, or error term, does not exist for an 
effect, then that effect cannot be tested using a standard F-test.
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9.6.2. F-Ratio Examples9.6.2. F9.6.2. F--Ratio ExamplesRatio Examples

Between-Subjects Design

Yijkl = µ + αi + βj + γk(ij) + αβij + εl(ijk)

E(MS A) =   bn σα2 + σγ2 + σε2

E(MS B) = anσβ 2 + σγ 2 + σε2

E(MS AxB) = n σαβ2 + σγ2 + σε2

E(MS S/AB) = σγ2 + σε2

FA = bnσα2 + σγ2 + σε2 / σγ2 + σε2 = MS A / MS S/AB

FB = an σβ 2 + σγ 2 + σε2 / σγ2 + σε2 = MS B / MS S/AB

FAxB = nσαβ2 + σγ2 + σε2 / σγ2 + σε2 = MS AxB / MS S/AB

This slide illustrates the use of the three steps for constructing F-ratios in a 
two-factor, between-subjects ANOVA design. Note that only the main effect 
of Factors A and B as well as the AxB interaction can be tested. In all three 
hypothesis tests, the E(MS) of the numerator show that MSS/AB should be 
used as the error term, or denominator, of the F-ratio. In addition, the S/AB 
effect cannot be tested because no error term exists since none of the 
E(MS) in the design includes just σε

2. Consequently, MSS/AB is only used as 
an error term in the between-subjects design.
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9.6.2. F-Ratio Examples (Cont'd)9.6.2. F9.6.2. F--Ratio Examples (Cont'd)Ratio Examples (Cont'd)

Within-Subject Design

Yijkl = µ + αi + βj + γk + αβij + αγik + βγjk + αβγ ijk + εl(ijk)

E(MS A) = bn σα2 + bσαγ2 + σε2

E(MS B) = an σβ 2 + aσβγ 2 + σε2

E(MS S) = ab σγ2 + σε2

E(MS AxB) = nσαβ2 + σαβγ2 + σε2

E(MS AxS ) = bσαγ2 + σε2

E(MS BxS ) = a σβγ 2 + σε2

E(MS AxBxS ) = σαβγ2 + σε2

FA = bnσα2 + bσαγ2 + σε2 / bσαγ2 + σε2 = MS A / MS AxS

FB = an σβ 2 + a σβγ 2 + σε2 / aσβγ 2 + σε2 = MS B / MS BxS

FAxB = nσαβ2 + σαβγ2 + σε2 / σαβγ2 + σε2 = MS AxB / MS AxBxS

This slide illustrates using the 3 step procedure for constructing F-ratios in a 
two-factor, within-subjects ANOVA design. Again only the main effect of 
Factors A and B and the AxB interaction can be tested. In this design, 
however, the error terms are different. For FA, the appropriate denominator 
based on E(MS) is MSAxS. For FB, the denominator is MSBxS. And, for FAxB, 
the denominator is MSAxBxS. There are no appropriate F-ratios to test the S, 
AxS, BxS, and AxBxS effects in the within-subjects design.
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9.6.2. F-Ratio Examples (Cont'd)9.6.2. F9.6.2. F--Ratio Examples (Cont'd)Ratio Examples (Cont'd)

Mixed-Factors Design

Yijkl = µ + αi + βj + γk(i) + αβij + βγjk(i) + εl(ijk)

E(MS A) = bnσα2 + bσγ2 + σε2

E(MS B) = an σβ 2 + σβγ 2 + σε2

E(MS S/A) = bσγ2 + σε2

E(MS AxB) = n σαβ2 + σβγ2 + σε2

E(MS BxS/A ) = σβγ 2 + σε2

FA = bnσα2 + bσγ2 + σε2 / bσγ2 + σε2 = MS A / MS S/A

FB = anσβ 2 + σβγ 2 + σε2 / σβγ 2 + σε2 = MS B / MS BxS/A

FAxB = nσαβ2 + σβγ2 + σε2 / σβγ2 + σε2 = MS AxB / MS BxS/A

This slide illustrates using the 3 step procedure for constructing F-ratios in a 
two-way, mixed-factors ANOVA design. Again only the main effect of 
Factors A and B and the AxB interaction can be tested. In this design, 
however, the error terms are different. MSS/A is used as the error term in FA. 
But, MSBxS/A is used as the error term for both FB and FAxB. There are no 
appropriate error terms to test the S/A or BxS/A effects, and they only exist 
as error terms in this mixed-factors design.

Whether one collects the data using a two-factor between-subjects, within-
subjects, or mixed-factors design, one can always test the A main effect, the 
B main effect, and the AxB interaction. The only difference between each of 
these three design alternatives is the error term used in the denominator of 
the F-ratio. Expected mean squares allow one to determine the appropriate 
error term in each case.
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9.7. Complete ANOVA Summary Table9.7. Complete ANOVA Summary Table9.7. Complete ANOVA Summary Table

•• 9.7.1. Summary Table Components9.7.1. Summary Table Components
•• 9.7.2. Summary Table Examples9.7.2. Summary Table Examples

This subsection puts all the components together into a complete ANOVA 
Summary Table. First, some general conventions for stating Summary 
Tables of human factors experiments are presented. Next, examples of the 
two-factor, between-subjects, within-subjects, and mixed-factors design 
alternatives are provided.
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9.7.1. Summary Table Components9.7.1. Summary Table Components9.7.1. Summary Table Components

•• ComponentsComponents
–– SourceSource
–– dfdf
–– SSSS
–– MSMS
–– FF

•• GroupingGrouping
–– Between versus WithinBetween versus Within
–– Effects and Error TermEffects and Error Term

The results of an ANOVA are presented in a standard Summary Table 
format. Every ANOVA Summary Table includes five column headings listed 
in the order shown under the Components portion of this slide. The statistical 
model provides the row listing of the main effects and interactions included 
under Source. The degrees of freedom depend upon the number of levels of 
each factor in the experiment as well as the number of subjects observed in 
each cell of the design. Before conducting any statistical analysis, the 
experimenter should list the sources and degrees of freedom of the design in 
order to facilitate checking the empirical results of an ANOVA conducted with 
a statistical analysis package.

By convention, the sources listing of rows are grouped into between-subjects 
and within-subjects effects. In addition, all the effects that use the same error 
term to form the F-ratio are grouped together with the error term listed last in 
the grouping. These conventions facilitate reading and checking the ANOVA 
Summary Table entries. Examples for stating a two-factor ANOVA design in 
this general format are provided for between-subjects, within-subjects, and 
mixed-factors design alternatives.
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9.7.2. Summary Table Examples9.7.2. Summary Table Examples9.7.2. Summary Table Examples

Between-Subjects Design
____________________________________________________________

Source df SS MS F
____________________________________________________________

A a-1 SSA MSA MSA/MS S/AB

B b-1 SSB MSB MSB/MS S/AB

AxB (a-1)(b-1) SSAXB MSAXB MSAxB/MS S/AB

S/AB ab(n-1)    SSS/AB MSS/AB
_________           ______

Total abn-1 SSTotal

____________________________________________________________

This slide shows an example of general format of the ANOVA Summary 
Table for a two-factor, between-subjects design. Notice that the A, B, and 
AxB effects are listed before S/AB because S/AB is the error term for each 
of these effects. Since both the df and SS are additive, a total is provided for 
these two columns. The MS is simply the SS divided by df for each particular 
source. Finally, the F-ratio is determined by E(MS) in order to determine the 
appropriate error MS to use in the denominator. The three F-ratios for the 
between-subjects design all use the same error term, MSS/AB. There is no F-
ratio for S/AB because no error term exists for this effect.
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9.7.2. Summary Table Examples (Cont'd)9.7.2. Summary Table Examples (Cont'd)9.7.2. Summary Table Examples (Cont'd)

Within-Subjects Design
____________________________________________________________

Source df SS MS F
____________________________________________________________

Between
S n-1 SSS

Within
A a-1 SSA MSA MSA/MS AxS

AxS (a-1)(n-1)    SSAxS MSAxS

B b-1 SSB MSB MSB/MS BxS
BxS (b-1)(n-1)    SSBxS MSBxS

AxB (a-1)(b-1)            SS AxB MSAxB MSAxB/MS AxBxS
AxBxS (a-1)(b-1)(n-1)       SS AxBxS MSAxBxS

___________       ________

Total abn-1     SSTotal____________________________________________________________

This slide shows an example of general format of the ANOVA Summary 
Table for a two-factor, within-subjects design. Notice that subjects, S, is 
listed first as a between-subjects effect. Since there is no error term for S, 
the S effect is not tested, but the df and SS are usually listed to check totals.

All three tested effects in this design are within-subjects effects. Notice that 
A, B, and AxB are grouped separately with their appropriate error term 
based on E(MS). So, each of the three F-ratios in the within-subjects design 
alternative has a different MS denominator that reflects their different error 
terms.
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9.7.2. Summary Table Examples (Cont'd)9.7.2. Summary Table Examples (Cont'd)9.7.2. Summary Table Examples (Cont'd)

Mixed-Factors Design
____________________________________________________________

Source df SS MS F
____________________________________________________________

Between

A a-1 SSA MSA MSA/MS S/A
S/A a(n-1) SSS/A MSS/A

Within

B b-1 SSB MSB MSB/MS BxS/A
AxB (a-1)(b-1) SSAxB MSAxB MSAxB/MS BxS/A

BxS/A          a(b-1)(n-1)       SSBxS/A MSBxS/A
___________       ________

Total abn-1 SSTotal
____________________________________________________________

This slide shows an example of general format of the ANOVA Summary 
Table for a two-factor, mixed-factors design. Notice that both between-
subjects and within-subjects effects are tested in this design alternative. One 
can easily tell that A is the between-subjects factor and B is the within-
subjects factor in this design. Factor A is grouped with its error term, S/A, as 
between-subjects effects, and both B and AxB are grouped with their error 
term, BxS/A, as within-subjects effects.

Notice that A, B, and AxB are the only three effects that can be tested in 
either the between-subjects, within-subjects, or mixed-factors alternative of 
this two-factor ANOVA design. However, the three alternatives differ in terms 
of the error terms used in the F-ratios. The grouping conventions for 
specifying ANOVA Summary Tables help to highlight and check these 
differences.
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9.8. ANOVA Design Construction9.8.9.8. ANOVA Design ConstructionANOVA Design Construction

•• Determine the Number of FactorsDetermine the Number of Factors
•• Determine the Levels of Each FactorDetermine the Levels of Each Factor
•• Specify the Type of Factor (Fixed or Random)Specify the Type of Factor (Fixed or Random)
•• Specify the Relationship of the Factors Specify the Relationship of the Factors 

(Crossed or Nested)(Crossed or Nested)
•• Classify the Design (Between, Within, or Classify the Design (Between, Within, or 

Mixed)Mixed)
•• State the Statistical ModelState the Statistical Model
•• List E(MS)List E(MS)
•• Determine the F RatioDetermine the F Ratio
•• List the ANOVA Summary TableList the ANOVA Summary Table

The major steps involved in constructing any ANOVA experimental design 
are listed on this slide in order of consideration. The number of factors and 
levels of each factor determine the configuration of the factorial design. The 
relationship of the factors determine the design classification, statistical 
model, and E(MS), possible F-ratios. Once these steps are completed, the 
experimenter can specify the general format of the ANOVA Summary Table.

All of these tasks need to be completed before collecting any data in an 
experiment to be sure that the planned design will provide the necessary 
data to evaluate the hypotheses of interest in the research. The general 
format of the ANOVA Summary Table allows for straightforward checks of 
subsequent numerical output of statistical analyses of the data collected in 
the experiment.
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9.9. Summary9.9. Summary9.9. Summary

•• ANOVA Summary Table PresentationANOVA Summary Table Presentation
–– Analysis SummaryAnalysis Summary
–– Five Major ComponentsFive Major Components
–– Rules and AlgorithmsRules and Algorithms
–– Grouping ConventionsGrouping Conventions

•• ANOVA Summary Table DeterminantsANOVA Summary Table Determinants
–– Statistical ModelStatistical Model
–– E(MS)E(MS)

•• ANOVA CalculationsANOVA Calculations

A Summary Table is the standard way of presenting the results of ANOVA 
calculations. The five major components of the Summary Table include the 
Sources, df, SS, MS, and F-ratios. Rules and algorithms rather than 
derivations were presented as a means of facilitating specification and 
calculation of the components. Standard conventions were discussed for 
grouping and presenting sources in ANOVA Summary Tables used in 
human factors research.

The statistical model of an ANOVA design is the major determinant of the 
Summary Table because it specifies all the sources of variance that can be 
calculated and defines the crossed and nested relationships among factors 
that determine between-subjects, within-subjects, and mixed-factors 
designs. The researcher must understand the concept of E(MS) in order to 
determine the appropriate error term to use in the denominator of F-ratios for 
various design alternatives.

The experimenter should list the sources and degrees of freedom of the 
design before calculating an ANOVA as a simple check for computation 
errors. An algorithm for generating SS formulae will be described in Topic 9 
that the researcher can use to make all the numerical calculations in an 
ANOVA Summary Table. However, statistical analysis packages are usually 
used for these computations in most experiments. The use of SAS for 
conducting ANOVA analyses is described in Slater and Williges (2006).
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9.10. Supplemental Readings9.10. Supplemental Readings9.10. Supplemental Readings

REFERENCEREFERENCE
Hicks & Turner (1999)Hicks & Turner (1999)
Keppel & Keppel & WickensWickens (2004)(2004)
Mason, Mason, GunstGunst, & Hess (2003), & Hess (2003)
Montgomery (2005)Montgomery (2005)
Myers and Well (2003)Myers and Well (2003)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapter 6Chapter 6
Chapters 2Chapters 2--33
Chapters 4, 6Chapters 4, 6
Chapter 13Chapter 13
Chapters 8, 14Chapters 8, 14
Chapters 3, 5 Chapters 3, 5 

Both Keppel and Wickens (2004) and Winer, Brown, and Michels (1991) 
provide general descriptions of various components of the ANOVA Summary 
Table in detail. In addition, all six references listed on this slide describe 
various rules and algorithms for determining df and E(MS).
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This topic covers the construction and computational details of the first of the 
three major categories of ANOVA designs used in human factors and 
ergonomics research. Between-subjects designs are discussed in terms of 
one-factor, two-factor, and n-factor designs. The procedures for determining 
sum of squares computational formulae for any ANOVA are presented in the 
discussion of one-factor designs. The concept of an interaction is presented 
in two-factor designs. Generalizations for constructing and analyzing any 
between-subjects ANOVA design are summarized under n-factor designs. 
Computational examples are provided for both a one-way and a two-way 
between-subjects design.

A summary listing of all the ANOVA procedural rules and algorithms for 
conducting any ANOVA analysis in human factors research is provided at 
the end of this topic. References to supplemental readings on between-
subjects designs are provided for the major experimental design texts 
appropriate for human factors research.

Topic 10. Between-Subjects ANOVA DesignsTopic 10. BetweenTopic 10. Between--Subjects ANOVA DesignsSubjects ANOVA Designs

10.1. One10.1. One--Factor, BetweenFactor, Between--Subjects DesignSubjects Design
10.1.1. One10.1.1. One--Factor Design ExampleFactor Design Example
10.1.2. Sum of Squares Calculations10.1.2. Sum of Squares Calculations
10.1.3. Summary Table and Test Format10.1.3. Summary Table and Test Format

10.2. Two10.2. Two--Factor, BetweenFactor, Between--Subjects DesignSubjects Design
10.2.1. Design Configuration10.2.1. Design Configuration
10.2.2. 10.2.2. AxBAxB InteractionInteraction
10.2.3. Calculations10.2.3. Calculations
10.2.4. Two10.2.4. Two--Factor Design ExampleFactor Design Example

10.3. n10.3. n--Factor, BetweenFactor, Between--Subjects DesignSubjects Design
10.4. Summary10.4. Summary
10.5. Supplemental Readings10.5. Supplemental Readings
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10.1. One-Factor, Between-Subjects Design10.1. One10.1. One--Factor, BetweenFactor, Between--Subjects DesignSubjects Design

•• 10.1.1. One10.1.1. One--Factor Design ExampleFactor Design Example
•• 10.1.2. Sum of Squares Calculations10.1.2. Sum of Squares Calculations
•• 10.1.3. Summary Table and Test Format10.1.3. Summary Table and Test Format

Between-subjects designs use a different group of randomly assigned 
subjects in each treatment combination. The treatments in these completely 
randomized designs can consist of any number of factors and any number of 
levels of each factor. The simplest between-subjects design has only one 
factor with two-levels. As shown in Topic 8, the analysis of this simple design 
reduces to a standard t-test of two means.

In order to describe the SS computations in ANOVA, this subsection uses a 
one-factor, between-subjects design with three levels in which the overall 
difference among three treatment means is assessed. If a significant 
difference is found in the F-test, at least one of the paired differences among 
the three treatment means is significant. A general algorithm for generating 
SS computational formulae and a numerical example using these 
computational formulae are provided. 
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10.1.1. One-Factor Design Example10.1.1. One10.1.1. One--Factor Design ExampleFactor Design Example

•• Example ProblemExample Problem: : The effect of various The effect of various 
aspects of information in military command aspects of information in military command 
and control situations was evaluated in and control situations was evaluated in 
terms of a commanderterms of a commander’’s situation s situation 
awareness. Situation awareness was awareness. Situation awareness was 
measured for each of four different measured for each of four different 
commanders who received information commanders who received information 
characterized as unreliable, ambiguous, or characterized as unreliable, ambiguous, or 
conflicting. Each commander received only conflicting. Each commander received only 
one of the three types of information. Do one of the three types of information. Do 
these three aspects of information have a these three aspects of information have a 
significant effect on a commandersignificant effect on a commander’’s s 
situation awareness (p < 0.05)?situation awareness (p < 0.05)?

(Click in this red rectangle to see SAS calculations for this example.)

This example problem is a between-subjects design because 4 different 
commanders are used in each treatment condition resulting in 12 different 
subjects in the complete experiment. The one factor, information, 
investigated in this experiment has three levels: unreliable, ambiguous, and 
conflicting. Hence the experiment to evaluate level of a commander’s 
situation awareness uses essentially a one-factor, three-level, between-
subjects design.

This reference material demonstrates the hand calculations for conducting 
the ANOVA on data obtained from this example problem. Due to the effort 
involved in calculating the SS in complex ANOVA design, most human 
factors researchers use statistical analysis packages for conducting 
ANOVAs to facilitate analysis effort and reduce computational errors. Slater 
and Williges (2006) appendix provides the results of this ANOVA using the 
SAS computer package.
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10.1.1. One-Factor Design Example (Cont’d)10.1.1. One10.1.1. One--Factor Design Example (ContFactor Design Example (Cont’’d)d)

Y11 = 42
Y12 = 41
Y13 = 37
Y14 = 40
_______

Y1. = 160

1. = 40Y

Y21 = 43
Y22 = 49
Y23 = 52
Y24 = 48
_______

Y2. = 192

2. = 48Y

A1 A2 A3

Y31 = 32
Y32 = 40
Y33 = 41
Y34 = 39
_______

Y3. = 152

3. = 38Y

Grand Total  Y.. = 504

Grand Mean .. = 42Y

Y ijk = µ + α i + γ j(i) + ε k(ij)

Factor A
(Information)

(Unreliable) (Ambiguous) (Conflicting)

(Click in this red rectangle to see SAS calculations for this example.)

Hypothetical data obtained from the situational awareness experiment are 
shown on this slide in the dotted notation to indicate sums and bars for mean 
values. The statistical model for the one-factor, between-subjects design is 
shown on the top of the slide. Note that the actual name of Factor A and the 
names of the 3 levels of the Factor A are listed in parenthesis on this slide.
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10.1.2. Sum of Squares Calculations10.1.2. Sum of Squares Calculations10.1.2. Sum of Squares Calculations

•• 10.1.2.1. Simplified Design Notation10.1.2.1. Simplified Design Notation
•• 10.1.2.2. SS Computational Formulae Algorithm10.1.2.2. SS Computational Formulae Algorithm
•• 10.1.2.3. SS Numerical Computations10.1.2.3. SS Numerical Computations

(Click in this red rectangle to see SAS calculations for this example.)

In order to conduct the ANOVA on the example data, the experimenter must 
calculate the SS associated with each of the Sources of Variation. This 
subsection describes a simplified design notation that facilitates stating 
computational formulae for complex ANOVA designs. An algorithm is 
provided for generating SS computational formulae based on this simplified 
notation, and calculations of the SS for the one-way, between-subjects 
example problem are presented to demonstrate use of this algorithm.
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10.1.2. Sum of Squares Calculations (Cont’d)10.1.2. Sum of Squares Calculations (Cont10.1.2. Sum of Squares Calculations (Cont’’d)d)

•• Definitional FormDefinitional Form

•• Computational Form Computational Form 

dfS/A = a(n-1) = an - a

dfA = a - 1

)n/Y(YSS
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(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the general formula for both the definitional and 
computational forms for the sum of the squared deviations around the mean 
for a single group of scores showing the index of summation, n, (Myers, 
1979, pp. 15-16). In addition, the formulae for calculating the SSS/A and SSA
in the two-group example problem are also provided in both forms on this 
slide. Myers (1979, pp. 76-83) shows the derivation of the computational 
form from the definitional form and demonstrates the isometric relationship 
between the summation indexes “a” and “n” of the SS computational 
components and the expanded df of S/A and A.

Although both forms of the SS formulae are algebraically equivalent, note 
that the definitional form includes means, and the computational form 
includes only sums. To avoid rounding errors and to enhance ease of 
calculation, the computational form is usually preferred.

Since the scores in the one-factor example problem represent different 
levels of Factor A and different subjects, S, double summation signs are 
required with indexes “a” and “n”, respectively, to specify the sum of 
individual observations in the experiment using standard Y notation as 
described in Chapter 2 of Myers (1979). As the number of factors increases 
in complex ANOVA designs, the number of summation signs also increases 
in the SS formulae, and the standard Y notation becomes more 
cumbersome.
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10.1.2.1. Simplified Design Notation10.1.2.1. Simplified Design Notation10.1.2.1. Simplified Design Notation

Factor A

A 1 A 2 A 3

AS11 = 42 AS21 = 43 AS31 = 32

AS12 = 41 AS22 = 49 AS32 = 40

AS13 = 37 AS23 = 52 AS33 = 41

AS14 = 40 AS24 = 48 AS34  = 39
________ ________ ________

A1. = 160  A2. = 192     A3. = 152

T.. = 504

SSS/A =  ΣASij
2 - (ΣAi.2 / n)

SSA = (ΣAi.2 / n) - (T..2 / an)

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows a simplified design notation similar to the notation used by 
Keppel and Wickens (2004, pp.26-30) that avoids use of multiple summation 
signs required in the standard Y notation. Each individual Y observation is 
specified in terms of the effects represented by the subscripts. In the one-
factor example problem, each observation represents a particular level of 
Factor A and a particular subject. Rather than designate the observation as 
Y, it is designated as AS with the appropriate subscripts. Totals for each 
level of Factor A are designated just by the particular level of A and the 
subscript for S is dotted to designate summing across all levels of S. The 
grand total of all scores is represented by T and dotted across all subscripts. 
This notation can be extended to multifactor designs by simply adding more 
letters to the individual observation to represent each additional factor. 
Various group totals are represented by the appropriate letters and dotted 
subscripts.

The data matrix for the example problem is restated using this simplified 
notation. In addition, the SS computational formulae can all be stated with 
the use of a single summation sign as shown on the bottom portion of this 
slide. The summation sign designates the sum of the squared raw score or 
group total represented by the simplified notation. All ANOVA designs and 
computational formulae referred to in this reference material will use this 
simplified notation.
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10.1.2.2. SS Computational Formulae Algorithm10.1.2.2. SS Computational Formulae Algorithm10.1.2.2. SS Computational Formulae Algorithm

•• Step 1Step 1. Write the expression for the degrees of . Write the expression for the degrees of 
freedom of each source of variation and expand it.freedom of each source of variation and expand it.

•• Step 2Step 2. Substitute squared capital letters for each . Substitute squared capital letters for each 
term in the expanded degrees of freedom term in the expanded degrees of freedom 
expression and substitute Texpression and substitute T22 (the grand total (the grand total 
squared) for 1.squared) for 1.

•• Step 3Step 3. Sum all totals across the . Sum all totals across the index(esindex(es) of the ) of the 
variable(s) denoted by capital letters, and dot the variable(s) denoted by capital letters, and dot the 
other other index(esindex(es). For T merely dot all indexes.). For T merely dot all indexes.

•• Step 4Step 4. Divide each expression by the number of . Divide each expression by the number of 
levels of the dotted levels of the dotted index(esindex(es).).

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows a 4 step algorithm patterned after Keppel and Wickens
(2004, pp. 216-218) for generating SS computational formulae using the 
simplified design notation. This algorithm is based on the demonstrated 
isomorphic relationship of SS formulae components to degrees of freedom. 
The next two slides provide an example of using each of these four steps in 
specifying the SS computational formulae for the one-factor, between 
subjects design.
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10.1.2.2. SS Computational Formulae Algorithm10.1.2.2. SS Computational Formulae Algorithm10.1.2.2. SS Computational Formulae Algorithm

•• Step 1Step 1. Write the expression for the degrees of . Write the expression for the degrees of 
freedom of each source of variation and expand it.freedom of each source of variation and expand it.

•• Step 2Step 2. Substitute squared capital letters for each . Substitute squared capital letters for each 
term in the expanded degrees of freedom term in the expanded degrees of freedom 
expression and substitute Texpression and substitute T22 (the grand total (the grand total 
squared) for 1.squared) for 1.

A S/A Total
Step 1. a - 1 an - a an - 1

A S/A Total
Step 2. A2 - T2 AS2 - A2 AS2 - T2

(Click in this red rectangle to see SAS calculations for this example.)

Step 1 is a simple expansion of the degrees of freedom for each source. 
Remember that “n” is equal to the number of observations in a cell, 
assuming equal sample size, and not necessarily the number of different 
subjects appearing in the experiment. For example, “n” in a between-
subjects design refers to a different group of “n” subjects in each cell. 
Likewise, “n” refers to the same subjects that appear in every cell of a within-
subjects design, and “n” refers to a combination of the same and different 
subjects that appear in a mixed-factors design.

Step 2 substitutes capital letters used in the simplified design notation for the 
lowercase letters shown in Step 1. Note that the grand total of all scores, T, 
is substituted for 1 wherever is appears in Step 1. Each of the resulting 
capital letter combinations is squared.
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10.1.2.2. SS Computational Formulae Algorithm10.1.2.2. SS Computational Formulae Algorithm10.1.2.2. SS Computational Formulae Algorithm

•• Step 3Step 3. Sum all totals across the . Sum all totals across the index(esindex(es) of the ) of the 
variable(s) denoted by capital letters, and dot the variable(s) denoted by capital letters, and dot the 
other other index(esindex(es). For T merely dot all indexes.). For T merely dot all indexes.

•• Step 4Step 4. Divide each expression by the number of . Divide each expression by the number of 
levels of the dotted levels of the dotted index(esindex(es).).

A S/A Total
Step 3. ΣA i.2 - T.. 2 ΣAS ij2 - ΣA i.2 ΣAS ij2 - T.. 2

Step 4. (ΣA i.2/n) - (T.. 2/an) ΣAS ij2 - (ΣA i.2/n) ΣAS ij2 - (T.. 2/an)

SSA = (ΣA i.2/n) - (T.. 2/an)

SSS/A = ΣAS ij2 - (ΣA i.2/n)

SSTotal = ΣAS ij2 - (T.. 2/an)

A S/A Total

(Click in this red rectangle to see SAS calculations for this example.)

Step 3 adds the subscripts to the squared values resulting from Step 2 
shown on the previous slide. The appropriate subscript starting with “i” is 
added for each capital letter combination and dots are provided for each 
letter not included in the combination.

Step 4 simply divides the letter combination in Step 3 by the levels of each 
dotted index. This provides the final SS computational formula for each 
source of variation in the design in the simplified design notation. The three 
SS computational formulae for the one-factor, between-subjects design is 
shown on the bottom portion of this slide. Note the ASij

2 designates the 
square of each raw score in the one-way design. These raw scores are 
squared and then summed. The other letter combinations that are written in 
parenthesis to designate various squared totals that are summed and then 
divided by appropriate weights.
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10.1.2.3. SS Numerical Computations10.1.2.3. SS Numerical Computations10.1.2.3. SS Numerical Computations

•• SS CalculationsSS Calculations
SSA = (ΣA i.2/n) - (T.. 2/an)

SSS/A = ΣAS ij2 - (ΣA i.2/n)

SSTotal = ΣAS ij2 - (T.. 2/an)

SSA = 21,392 - 21,168 = 224

SSS/A = 21,498 -21,392 = 106

SSTotal = 21,498 - 21,168 = 330

(ΣA i.2/n) = [(160) 2 + (192) 2 + (152) 2] / 4 = 21,392

(T.. 2/an) = (504) 2 / (3)(4) = 21,168

ΣAS ij2 = (42) 2 + (41) 2 + (37) 2 + (40) 2 + (43) 2 + (49) 2 + (52) 2

+ (48) 2 + (32) 2 + (40) 2 + (41) 2 + (39) 2 = 21,498

(Click in this red rectangle to see SAS calculations for this example.)

Actual SS calculations for the one-factor example problem data are shown 
on this slide. Note that only three possible components are used in each of 
the three SS formulae shown on the top portion of the slide. The center 
portion of the slide shows the calculation of each of these three components 
based on the simplified notation data matrix for the example problem. The 
final SS values for the three sources in the example problem are shown on 
the bottom of this slide.

Remember that sum of squares are additive so that SSA plus SSS/A equal 
SSTotal (i.e., 224+106 = 330). Always calculate SSTotal separately and 
compare it to the sum of SSA and SSS/A as an easy check for possible 
calculation errors. If the totals are not equal either some sources(s) in the 
design were not included or there is an error in calculating one or more of 
the SS sources. If any of the SS calculations result in a negative number 
there is an error, because SS values are always positive by definition.
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10.1.3. Summary Table and Test Format10.1.3. Summary Table and Test Format10.1.3. Summary Table and Test Format

H 0 : σ A
2 = 0

H i : σ A
2 ≠ 0

α = .05
D.R. : I reject H 0 if F observed > F (2, 9)

Hypothesis Test Format

F observed = 9.51,   F (2, 9) = 4.26

_______________________________________________________

Source df SS MS F
_______________________________________________________

A 2                    224             112.00              9.51*

S/A 9 106 11.78

Total 11                    330
_______________________________________________________
*p < .05

(Click in this red rectangle to see SAS calculations for this example.)

The top portion of this slide shows the final Summary Table for the ANOVA 
conducted on the example problem data from the one-factor, between-
subjects design. The SS are divided by their degrees of freedom to obtain 
the MS value. The F-ratio for testing Factor A is calculated by dividing MSA
by MSS/A as specified by E(MS).

The standard format for testing the significant difference among the three 
means is presented in the bottom portion of this slide. Since FObserved is 
greater than FTabled there is a significant difference between means at the 
0.05 level of significance. This level of significance is noted by the asterisk 
value in the ANOVA Summary Table. This hypothesis test determines that 
the main effect of Factor A is significant which means that at least one pair 
of means is significantly different. Since there are 3 levels of Factor A, there 
are 3 possible paired differences between means. The overall F-test on 
Factor A does not specify which paired differences are significant, and 
additional post hoc analyses are needed to isolate these differences. 
Procedures for conducting these post hoc tests are presented in Topic 10. 
From the overall F-test, the experimenter only knows that at least the largest 
paired difference is significant.
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10.1.3. Summary Table and Test Format (Cont’d)10.1.3. Summary Table and Test Format (Cont10.1.3. Summary Table and Test Format (Cont’’d)d)

H 0 : σ I
2 = 0

H i : σ I
2 ≠ 0

α = .05
D.R. : I reject H 0 if F observed > F (2, 9)

Hypothesis Test Format

F observed = 9.51,   F (2, 9) = 4.26

_______________________________________________________

Source df SS MS F
_______________________________________________________

Information (I) 2                 224               112.00             9.51*

Subjects/I 9 106 11.78

Total 11                 330
_______________________________________________________
*p < 0.05

(Click in this red rectangle to see SAS calculations for this example.)

This slide simply restates the previous slide in the context of the example 
problem related to a commander’s spatial ability. Rather than use Factor A, it 
is more meaningful to list a short, real factor name and a unique one-letter 
abbreviation, if possible. Hence Factor A is listed as Information (I) in the 
Summary Table. Based on the results of this ANOVA, the experimenter can 
conclude that characteristics of information (i.e., unreliable, ambiguous, and 
confusing) did have a significant effect on a commander’s mean level of 
spatial ability (p < 0.05).
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10.2. Two-Factor, Between-Subjects Design10.2. Two10.2. Two--Factor, BetweenFactor, Between--Subjects DesignSubjects Design

•• 10.2.1. Design Configuration10.2.1. Design Configuration
•• 10.2.2. 10.2.2. AxBAxB InteractionInteraction
•• 10.2.3. Calculations10.2.3. Calculations
•• 10.2.4. Two10.2.4. Two--Factor Design ExampleFactor Design Example

This subsection extends the one-factor design discussion to calculating a 
two-factor, between-subjects ANOVA. The simplified design notation is 
extended to include both Factors A and B, and the concept of an interaction 
between A and B is described. All appropriate computational formulae for 
this two-factor design are specified using the SS algorithm. Finally, an 
example problem of a two-factor, between-subjects ANOVA is presented.
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10.2.1. Design Configuration10.2.1. Design Configuration10.2.1. Design Configuration

Yijkl = µ + αi + βj + γk(ij) + αβij + εl(ijk)

Factor B

B1 B2 B3

ABS111 ABS121 ABS131
ABS112 ABS122 ABS132A1 ABS113 ABS123 ABS133 A1..
ABS114 ABS124 ABS134
[AB11 .] [AB12 .] [AB13 .]

Factor A
ABS211 ABS221 ABS231
ABS212 ABS222 ABS232A2 ABS213 ABS223 ABS233 A2..
ABS214 ABS224 ABS234
[AB21 .] [AB22 .] [AB23 .]

B.1. B.2. B.3. [T...]

S1
S2
S3
S4

S21
S22
S23
S24

S5
S6
S7
S8

S17
S18
S19
S20

S13
S14
S15
S16

S9
S10
S11
S12

This slide shows the general form of a 2x3, two-factor design in the 
simplified design notation. Note that each individual observation in a two-
factor design is designated by ABS. The first subscript is for the level of A, 
the second is for the level of B, and the third is the level of subjects. Since 
subjects are nested within Factors A and B in the between-subjects design, 
there are 24 levels of different subjects as shown on the slide. The simplified 
notation, however, just designates the 4 subjects in each cell as the 
subscripts for S. The totals for each level of Factor A are designated by Ai.., 
the totals for Factor B are designated by B.j., the totals in each of the 6 cells 
of the 2x3 design are designated by ABij., and the grand total of all the 
scores is designated by T….
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10.2.1. Design Configuration (Cont'd)10.2.1. Design Configuration (Cont'd)10.2.1. Design Configuration (Cont'd)

•• FF--RatiosRatios
Yijkl = µ + αi + βj + γk(ij) + αβij + εl(ijk)

E(MS A) =   bnσα2 + σγ2 + σε2

E(MS B) = an σβ 2 + σγ 2 + σε2

E(MS AXB) = n σαβ2 + σγ2 + σε2

E(MS S/AB) = σγ2 + σε2

FA = bnσα2 + σγ2 + σε2 / σγ2 + σε2 = MS A / MS S/AB

FB = an σβ 2 + σγ 2 + σε2 / σγ2 + σε2 = MS B / MS S/AB

FAxB = nσαβ2 + σγ2 + σε2 / σγ2 + σε2 = MS AxB / MS S/AB

The top of slide states the statistical model for the two-factor, between-
subjects design showing Subjects, γ, nested in both Factors A and B. The 
expected mean square based on the E(MS) algorithm assuming A and B are 
fixed-effects variables and S is a random-effects variable are listed in the 
center portion of this slide. Based on the E(MS) and the rules for 
constructing F-ratios, the three possible F-ratios for this two-factor design 
are listed at the bottom of this slide. Note that MSS/AB is the error term in all 
three F-tests. In summary, the two-factor ANOVA design allows the 
experimenter to test the main effects of Factors A and B and the AxB
interaction.
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10.2.2. AxB Interaction10.2.2. 10.2.2. AxBAxB InteractionInteraction

No Interaction

Classic Interaction Typical Interaction

A factorial experiment allows the experimenter to assess main effects and 
interactions independently. Recall that an interaction is the differential effect 
of one factor on another factor. This slide shows stylized plots of hypothetical 
data resulting in either no interaction, a classic interaction, or the more 
typical interaction. No interaction exists when the outcomes across levels of 
one factor are identical at each level of the other factor as depicted in the 
plot of parallel lines on the top of this slide.

The classic “X” interaction between A and B is shown on the bottom left plot 
where a1 is less than a2 at level b1, there is no difference at b2, and a1 is 
greater than a2 at b3. The more typical interaction depicted in the bottom 
right plot shows that a1 and a2 are only different at b3.

Note that tests of main effects and interactions are independent. For 
example, the no interaction plot shows differences in both main effects, the 
classic interaction plot depicts no main effects, and the typical interaction 
effect shows a possible main effect of only factor A.
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10.2.3. Calculations10.2.3. Calculations10.2.3. Calculations

•• Sum of Squares FormulaeSum of Squares Formulae

Yijkl = µ + αi + βj + γk(ij) + αβij + εl(ijk)

SSA = (ΣAi..2/bn) - (T... 2/abn)

SSB = (ΣB.j.2/an) - (T... 2/abn)

SSAxB = (ΣABij.2/n) - (ΣAi..2/bn) - (ΣB. j.2/an) +  (T... 2/abn)

SSS/AB = ΣABSijk2 - (ΣABij.2/n)

SSTotal =  ΣABSijk2 - (T...2/abn)

The SS computational formulae for the 2x3 between-subjects design based 
on the SS algorithm are listed on this slide. Note that these formulae are 
based on only five different computational components.
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10.2.3. Calculations (Cont'd)10.2.3. Calculations (Cont'd)10.2.3. Calculations (Cont'd)

•• ANOVA Summary TableANOVA Summary Table
___________________________________________________________

Source df SS MS F
___________________________________________________________

A a-1 SSA MSA MSA/MS S/AB

B b-1 SSB MSB MSB/MS S/AB

AxB (a-1)(b-1) SSAxB MSAxB MSAxB/MS S/AB

S/AB ab(n-1)    SSS/AB MSS/AB
___________       ______

Total abn-1 SStotal
___________________________________________________________

The general form of the two-factor, between-subjects design ANOVA 
Summary Table is presented on this slide using standard conventions. Note 
that the error term, S/AB, is listed below A, B, and AxB.
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10.2.4. Two-Factor Design Example10.2.4. Two10.2.4. Two--Factor Design ExampleFactor Design Example

•• Example ProblemExample Problem: : Readability of printed Readability of printed 
text on a computer screen was evaluated in text on a computer screen was evaluated in 
terms of two fonts (Helvetica and Old terms of two fonts (Helvetica and Old 
English) and number of words displayed English) and number of words displayed 
per line (10, 20, or 30 words per line). Four per line (10, 20, or 30 words per line). Four 
different subjects read one particular different subjects read one particular 
combination of these two factors, and combination of these two factors, and 
reading comprehension was tested. Did reading comprehension was tested. Did 
either of these two factors or the interaction either of these two factors or the interaction 
between them have a significant effect on between them have a significant effect on 
reading comprehension (p < 0.01)?reading comprehension (p < 0.01)?

(Click in this red rectangle to see SAS calculations for this example.)

This example two-factor problem can be defined as a 2x3 design because 
Factor A (Font) has two levels (Helvetica and Old English) and Factor B 
(Words/Line) has three levels (10, 20, and 30 words/line). It is a between-
subjects design since 4 different subjects appeared in each of the 6 cells of 
the design.

Hypothetical data and ANOVA calculations are provided for this example 
problem on subsequent slides. Alternatively, Slater and Williges (2006) 
appendix provides the SAS procedure and results of this example problem 
using a statistical package.
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10.2.4. Two-Factor Design Example (Cont’d)10.2.4. Two10.2.4. Two--Factor Design Example (ContFactor Design Example (Cont’’d)d)

•• Data MatrixData Matrix
Words/Line
(Factor B)

10 (B1) 20 (B2) 30 (B3)
46 49 50
50 52 47Helvetica

(A1) 49 54 49 A1.. = 593
47 48 52

192 203 198Font
(Factor A) 47 39 35

46 44 42Old English
(A2)

50 38 39 A2.. = 509
44 45 40

187 166 156

B.1. = 379 B.2. = 369 B.3. = 354

T... = 1102

AB21. =

AB11. = AB12. = AB13. =

AB23. =AB22. =

(Click in this red rectangle to see SAS calculations for this example.)

A hypothetical data matrix for a 2x3 between-subjects design is shown on 
this slide. Since the value of n is 4, the experimenter needs a total of 24 
different subjects.
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10.2.4. Two-Factor Design Example (Cont'd)10.2.4. Two10.2.4. Two--Factor Design Example (Cont'd)Factor Design Example (Cont'd)

•• Sum of SquaresSum of Squares
ΣA i..2/bn = [(593) 2 + (509) 2] / (3)(4) = 50,894.17

ΣB. j.2/an = [(379) 2 + (369) 2 + (354) 2] / (2)(4) = 50,639.75

ΣAB ij.2/n = [(192) 2 + ... + (156) 2] / (4) = 51,034.50

ΣABS ijk2 = (46) 2 + ... + (40) 2 = 51,162

T... 2/abn = (1102) 2 / (2)(3)(4) = 50,600.17

SSA = 50,894.17 - 50,600.17 = 294.00

SSB = 50,639.75 - 50,600.17 = 39.58

SSAxB = 51,034.50 - 50,894.17 - 50,639.75 + 50,600.17 = 100.75

SSS/AB = 51,162 - 51,034.50 = 127.50

SSTotal = 51,162 - 50,600.17 = 561.83

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the actual calculations of the sum of squares based on the 
SS computational formulae. The five components of the various formulae are 
listed on the top portion of this slide, and the SS of the various sources of the 
two-factor design are shown on the bottom portion of this slide.
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10.2.4. Two-Factor Design Example (Cont'd)10.2.4. Two10.2.4. Two--Factor Design Example (Cont'd)Factor Design Example (Cont'd)

•• Hypothesis TestsHypothesis Tests
H0 :  σA2 = 0
Hi :  σA2 ≠ 0
α = .01
D.R. :  I reject  H o if Fobserved  > F (1,18)

Fobserved = 41.53,   F (1,18) = 8.29

H0 :  σB2 = 0
Hi :  σB2 ≠ 0
α = .01
D.R. :  I reject  H o if Fobserved  > F (2,18)

Fobserved = 2.80,   F (2,18) = 6.01

H0 :  σAxB 2 = 0
Hi :  σAxB 2 ≠ 0
α = .01
D.R. :  I reject  H o if Fobserved  > F (2,18)

Fobserved = 7.12,   F (2,18) = 6.01

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the standard format testing the main effects of Factors A 
and B and the AxB interaction. Note that Factor A and the AxB interaction 
are significant at the 0.01 level. These tests form the basis of significance 
shown in the previous ANOVA Summary Table.
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10.2.4. Two-Factor Design Example (Cont'd)10.2.4. Two10.2.4. Two--Factor Design Example (Cont'd)Factor Design Example (Cont'd)

•• ANOVA Summary TableANOVA Summary Table
_______________________________________________________

Source df SS MS F
_______________________________________________________

Font (F) 1 294.00 294.00 41.53 **

Words/Line (W) 2 39.58 19.79 2.80

FxW 2 100.75 50.38 7.12 *

Subjects/FW 18 127.50 7.08
___             ______

Total 23 561.83
_______________________________________________________

*p < 0.01 **p < 0.001

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the complete ANOVA Summary Table in terms of the actual 
factors investigated in the example problem. This is a more meaningful way 
of presenting the results to the reader rather than using A and B 
designations for the factors. The SAS results discussed by Slater and 
Williges (2006) for this problem provide the exact p-value of significance 
rather than just p < 0.01.

Note that Font is significant at the 0.001 level and the FxW interaction is 
significant at the 0.01 level when compared to the F tabled value (i.e. F(1,18) = 
15.38 and F(2,18) = 6.01, respectively) as detailed in the hypothesis tests 
shown on the previous slide. Since there are only two fonts manipulated in 
the experiment, the researcher can conclude that overall the Helvetica font 
resulted in higher reading comprehension than the Old English font. The 
significant FxW interaction, however, needs further analysis in order to 
isolate the interaction effect. One could plot the interaction to determine the 
most likely simple effects that subsequently need to be supported by post 
hoc analyses on the interaction data. These analysis alternatives are 
discussed in Topic 11.
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10.2.4. Two-Factor Design Example (Cont'd)10.2.4. Two10.2.4. Two--Factor Design Example (Cont'd)Factor Design Example (Cont'd)

•• AxBAxB InteractionInteraction

This figure shows the interaction of font type and words per line on reading 
comprehension. Even though on the average the Helvetica font results in 
significantly higher reading comprehension than the Old English font, the 
effect differs (interacts) depending upon the value of words/line (p < 0.01).

As shown in this figure, it appears that font type makes no difference in 
reading comprehension when only 10 words/line appear. The advantage of 
the Helvetica font in terms of reading comprehension seems to occur when 
20 and 30 words/line are used. But, this apparent interaction effect needs to 
be verified analytically before making this interpretation. Various post hoc 
statistical analyses of interactions are discussed in Topic 10. The 
experimenter should always be careful to conduct post hoc statistical 
analyses to isolate the interaction effect rather than draw conclusions based 
solely on visual interpretations of the interaction graph. 
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10.3. n-Factor, Between-Subjects Design10.3. n10.3. n--Factor, BetweenFactor, Between--Subjects DesignSubjects Design

•• 10.3.1. Three10.3.1. Three--Factor DesignFactor Design
•• 10.3.2. Generalizations10.3.2. Generalizations

The procedures discussed for one-factor and two-factor between-subjects 
designs can be extended to higher-order factorial designs. This subsection 
first extends these procedures to a three-factor design and then generalizes 
them to n-factor between-subjects designs.
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10.3.1. Three-Factor Design10.3.1. Three10.3.1. Three--Factor DesignFactor Design

Yijklm = µ + αi + βj + δk + γl(ijk) + αβij + αδik + βδjk + αβδijk + εm(ijkl)

Source df E(MS) F

A a-1 bcnσα2 + σγ2 + σε2       MSA/MS S/ABC

B b-1 acnσβ2 + σγ2 + σε2       MSB/MS S/ABC

C c-1 abnσδ2 + σγ2 + σε2       MSC/MS S/ABC

AxB (a-1)(b-1) cnσαβ2 + σγ2 + σε2       MSAxB/MS S/ABC

AxC (a-1)(c-1) bnσαδ2 + σγ2 + σε2       MSAxC /MS S/ABC

BxC (b-1)(c-1) anσβδ2 + σγ2 + σε2       MSBxC /MS S/ABC

AxBxC (a-1)(b-1)(c-1)        nσαβδ2 + σγ2 + σε2      MSAxBxC /MS S/ABC

S/ABC abc(n-1) σγ2 + σε2

This slide summarizes the statistical model, sources, degrees of freedom, 
E(MS), and F-ratios for a three-factor, between-subjects designs. All of these 
components were determined by the previously stated procedural rules and 
algorithms for ANOVA designs. Note that S/ABC is the error term for testing 
the three main effects, the three two-way interactions, and the single three-
way interaction in this design.
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10.3.1. Three-Factor Design (Cont'd)10.3.1. Three10.3.1. Three--Factor Design (Cont'd)Factor Design (Cont'd)

•• Sum of Squares CalculationsSum of Squares Calculations
–– Rules for Computational Formulae ApplyRules for Computational Formulae Apply
–– Data Matrices Require AdjustmentData Matrices Require Adjustment

•• Example Example -- BxCBxC InteractionInteraction
–– Computational FormulaComputational Formula

–– Requires Requires BxCBxC Data MatrixData Matrix

dfBxC = (b-1)(c-1)

= bc - b - c + 1

SSBxC =  (ΣBC. jk.2/an) - (ΣB. j.. 2/acn) - (ΣC.. k.2/abn) + (T.... 2/abcn)

The SS calculations for a three-factor design follow the same procedures as 
used in one- and two-factor designs. The same algorithm is used to generate 
the computational formulae.

Obtaining the necessary totals to calculate interactions requires adjustment 
to the overall data matrix. For example, the SS formula for the BxC
interaction is shown on this slide. Note that BC.jk. totals are needed in this 
formula. Consequently, the overall ABCSIJKL data matrix needs to be 
collapsed to a BxC interaction data matrix that sums across the levels of 
factor A and subjects in order to obtain the various BC.jk. totals.
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10.3.2. Generalizations10.3.2. Generalizations10.3.2. Generalizations

•• Can include any number of factors of Can include any number of factors of 
interest.interest.

•• All rules, procedures, and algorithms apply.All rules, procedures, and algorithms apply.
•• All factors of interest are crossed and can All factors of interest are crossed and can 

interact.interact.
•• Subjects are nested within all factors of Subjects are nested within all factors of 

interest.interest.
•• The subject effect is the error term for all FThe subject effect is the error term for all F--

tests.tests.
–– Assumes subjects are randomAssumes subjects are random--effects.effects.
–– Assumes factors of interest are fixedAssumes factors of interest are fixed--effects.effects.

This slide provides the generalization of rules, procedures, and algorithms to 
any n-factor, between-subjects design. As the number of factors increases, 
more cells exist in the design requiring a larger number of different subjects 
to participate in the experiment. In addition, the number of interactions 
increases dramatically in factorial designs. For example, in a six-factor 
design there are six main effects and numerous 2-,3-,4-,5-,and 6-way 
interactions. In most human factors research, one is primarily interested in 
main effects and two-way interactions. Consequently, higher-order factorial 
designs are inefficient even though they can be easily constructed and 
analyzed.

Note that in any between-subjects design, the subject effect is the error term 
for all F-tests assuming the subjects effect is a random-effect variable and all 
the factors of interest are fixed-effects variables. If any of the factors of 
interest are truly random-effects variables, then the experimenter must 
specify the E(MS) to determine the appropriate error term for the resulting 
between-subjects design.
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10.4. Summary10.4. Summary10.4. Summary

•• Sum of Squares (SS) CalculationsSum of Squares (SS) Calculations
–– Calculation FormulaeCalculation Formulae
–– Simplified Design NotationSimplified Design Notation

•• BetweenBetween--Subjects Design AlternativesSubjects Design Alternatives
–– OneOne--Factor DesignsFactor Designs
–– TwoTwo--Factor DesignsFactor Designs
–– NN--Factor DesignsFactor Designs

•• GeneralizationsGeneralizations

By way of summary, this topic covered three major concepts in ANOVA. 
First, a general algorithm is provided for constructing SS computational 
formulae based on a simplified design notation. These computational 
formulae can be generalized to any ANOVA design. Once the researcher 
understands the procedures for calculating SS, all the components are 
present for conducting the complete ANOVA.

Next, the major discussion in this topic is devoted to between-subjects 
ANOVA designs whether they be one-factor, two-factor, or n-factor designs. 
Computational examples are provided for both one-factor and two-factor 
between-subjects designs that can be easily extended to any n-factor 
design. Generalizations are provided that can be applied to any between-
subjects design regardless of the number of factors included in the 
experiment.
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10.5. Supplemental Readings10.5. Supplemental Readings10.5. Supplemental Readings

REFERENCEREFERENCE
Hicks & Turner (1999)Hicks & Turner (1999)
Keppel & Keppel & WickensWickens (2004)(2004)

Mason, Mason, GunstGunst, & Hess (2003), & Hess (2003)
Maxwell & Maxwell & DulaneyDulaney (2000)(2000)
Montgomery (2005)Montgomery (2005)
Myers and Well (2003)Myers and Well (2003)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapters 3, 5, 10Chapters 3, 5, 10
Chapters 3, 7, 10Chapters 3, 7, 10--11, 11, 

2121--22, 2622, 26
Chapter 6Chapter 6
Chapters 3, 7Chapters 3, 7--88
Chapters 3, 5Chapters 3, 5--66
Chapters 8, 11Chapters 8, 11--1212
Chapters 3, 5Chapters 3, 5--6 6 

The between-subjects design is the fundamental completely randomized 
ANOVA design and is covered in all experimental design textbooks
addressing ANOVA. Appropriate chapters in common experimental design 
textbooks used by human factors researchers are listed on this slide. The 
chapters in Keppel and Wickens (2004) most closely follow the 
computational procedures covered in this topic.
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This topic covers analytical techniques that can be used to isolate the form 
or nature of the main effects and interactions that are significant in the 
overall ANOVA. Basically these procedures deal with multiple paired 
comparisons of various treatment means. First, this topic covers
comparisons and provides examples of both planned and unplanned 
comparison procedures. Second, special analytical procedures in addition to 
paired comparisons are covered, and example computations are provided for 
the analysis of interactions. Although these procedures are demonstrated 
using between-subjects designs, these same techniques are appropriate for 
within-subjects and mixed-factors designs. References to supplemental 
readings on comparisons are provided for additional readings in the major 
experimental design texts appropriate for human factors research.

Topic 11. Analysis of Comparisons and 
Interactions

Topic 11. Analysis of Comparisons and Topic 11. Analysis of Comparisons and 
InteractionsInteractions

11.1. Multiple Comparisons11.1. Multiple Comparisons
11.1.1. Linear Comparisons11.1.1. Linear Comparisons
11.1.2. Inflated Type I Error11.1.2. Inflated Type I Error
11.1.3. Planned Comparisons11.1.3. Planned Comparisons
11.1.4. Unplanned Comparisons11.1.4. Unplanned Comparisons

11.2. Evaluating Interactions11.2. Evaluating Interactions
11.2.1. Example Problem11.2.1. Example Problem
11.2.2. Graphing Procedures11.2.2. Graphing Procedures
11.2.3. Simple Effects Test11.2.3. Simple Effects Test
11.2.4. Trend Analysis11.2.4. Trend Analysis
11.2.5. Paired Comparisons11.2.5. Paired Comparisons
11.2.6. Interaction Evaluation Process11.2.6. Interaction Evaluation Process

11.3. Summary11.3. Summary
11.4. Supplemental Readings11.4. Supplemental Readings
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11.1. Multiple Comparisons11.1. Multiple Comparisons11.1. Multiple Comparisons

•• 11.1.1. Linear Comparisons11.1.1. Linear Comparisons
•• 11.1.2. Inflated Type I Error11.1.2. Inflated Type I Error
•• 11.1.3. Planned Comparisons11.1.3. Planned Comparisons
•• 11.1.4. Unplanned Comparisons11.1.4. Unplanned Comparisons

Paired comparisons between treatment means are also referred to as 
contrasts in the statistical literature. These contrasts are linear comparisons 
that can be either planned a priori or unplanned comparisons that are 
conducted post hoc based on the results of the overall ANOVA. Since 
several paired comparisons are conducted on the same dataset, α error can 
inflate dramatically. Various analytical procedures have been developed to 
control for α error inflation in both planned and unplanned comparisons.
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11.1. Multiple Comparisons (Cont’d)11.1. Multiple Comparisons (Cont11.1. Multiple Comparisons (Cont’’d)d)

•• 2x4 Between2x4 Between--Subjects ANOVA DesignSubjects ANOVA Design
–– Overall FOverall F--TestsTests
–– Interpret Significant DifferencesInterpret Significant Differences
–– Evaluate Paired Comparisons of MeansEvaluate Paired Comparisons of Means

•• Factor AFactor A
–– 2 Levels = 2 Levels = 1 Paired Comparison1 Paired Comparison

•• Factor BFactor B
–– 4 Levels = 4 Levels = 6 Paired Comparisons6 Paired Comparisons

•• AxBAxB InteractionInteraction
–– 8 Treatment Combinations = 8 Treatment Combinations = 28 Paired Comparisons28 Paired Comparisons
–– Differential EffectsDifferential Effects

This slide shows the variety of paired comparisons that are present in a 2x4 
factorial design. The ANOVA F-tests on the two main effects and the AxB
interaction only show significant overall effects meaning that at least one of 
the paired comparisons is significantly different.

Factor A only has one paired comparison, because only two levels exist. 
Consequently, if the F-test for the main effect of Factor A is significant, no 
additional analysis is needed. The interpretation of a significant B main effect 
and the AxB interactions is not as simple since more than one paired 
comparison exists.

The total number of paired comparisons for any main effect or interaction 
can be determined by the combination counting rule. For example, the 
number of paired comparisons for Factor B equals the number of 
combinations of 4 means taken 2 at a time or 6 paired comparisons; 
whereas, the number of paired comparisons of the AxB interaction equals 
the number of combinations of 8 means taken 2 at a time or 28 paired 
comparisons. Since both the main effect of Factor B and the AxB interaction 
involve more than one paired comparison, additional analyses on the paired 
comparisons are needed to isolate the locus of the significant main effect 
and interaction.
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11.1.1. Linear Comparisons11.1.1. Linear Comparisons11.1.1. Linear Comparisons

•• DefinitionDefinition: A comparison is a difference between : A comparison is a difference between 
two means with the appropriate sign.two means with the appropriate sign.

•• Planned vs. Unplanned ComparisonsPlanned vs. Unplanned Comparisons
–– Planned ComparisonsPlanned Comparisons: A test for differences : A test for differences 

conducted instead of the overall Fconducted instead of the overall F--testtest
–– Unplanned ComparisonsUnplanned Comparisons: A post: A post--hoc test to hoc test to 

answer specific questions once an overall answer specific questions once an overall 
difference is determined by the Fdifference is determined by the F--testtest

•• Paired vs. Complex ComparisonsPaired vs. Complex Comparisons
–– Paired ComparisonPaired Comparison: A weighted combination of : A weighted combination of 

two means.two means.
–– Complex ComparisonComplex Comparison: A weighted combination : A weighted combination 

of several means.of several means.

Any linear comparison is defined as the algebraic difference between two 
means. These contrasts can be planned or unplanned prior to conducting 
the experiment and they can be a simple comparison of paired treatment 
means or complex comparisons of weighted combinations of several
treatment means. In ANOVA, the experimenter is primarily interested in 
unplanned, paired comparisons to isolate significant main effects and 
interactions found in the overall ANOVA.
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11.1.1. Linear Comparisons (Cont’d)11.1.1. Linear Comparisons (Cont11.1.1. Linear Comparisons (Cont’’d)d)

•• General FormGeneral Form

•• RestrictionRestriction: Sum of weights equal zero: Sum of weights equal zero

•• Paired ComparisonPaired Comparison

•• Complex ComparisonComplex Comparison

_ _ _
D = (c 1)(A1.) + (c 2)(A2.) + (c 3)(A3.)

_               _                _
D = (1)(A 1.) + (-1)(A 2.) + (0)(A 3.)

Σ cj = 0

D = (c1)(Y1) + (c2)(Y2) + ... + (cj )(Yj )

_ _ _
D = (c 1)(A1.) + (c 2)(A2.) + (c 3)(A3.)

_ _ _
D = (1/2)(A 1.) + (1/2)(A 2.) + (-1)(A 3.)

- OR -
_ _ _

D = (1)(A 1.) + (1)(A 2.) + (-2)(A 3.)

All linear comparisons or differences, D, of treatment means can be stated 
as weighted linear combinations with the restriction that the sum of the 
weights equals zero. This restriction is needed in order to keep any 
difference independent of the grand mean.

This slide shows an example of using a weighted combination to specify 
both paired and complex comparisons based on three treatment means in a 
one-way ANOVA where, for example, levels 1 and 2 may be experimental
conditions and level 3 is the control condition. The paired comparison shown 
on the slide is the difference between levels 1 and 2 of Factor A since the 
weight of level 3 is 0. The complex comparison example shows the
difference between the average of two treatment conditions, levels 1 and 2, 
and the mean of the control condition, level 3. Note that weights for complex 
comparisons are usually stated as integers as shown on the bottom of this 
slide to avoid rounding errors (i.e., 1, 1, and -2).
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11.1.1. Linear Comparisons (Cont’d)11.1.1. Linear Comparisons (Cont11.1.1. Linear Comparisons (Cont’’d)d)

•• Orthogonal ComparisonsOrthogonal Comparisons: Sum of the cross : Sum of the cross 
products of weights equals zeroproducts of weights equals zero

•• Treatment VariationTreatment Variation

Σ cjc'j = 0

Two comparisons are defined as orthogonal if the sum of the cross products 
of the weights that comprise each difference, D, equals 0. If two 
comparisons are orthogonal, each comparison consists of independent 
sources of variation as shown in the Venn diagram. If the treatments are 
non-orthogonal, there is some overlap of the sum of squares as shown in the 
cross-hatched area of the Venn diagram on the right side of the slide. One 
uses both orthogonal and non-orthogonal comparisons in experimental 
design.
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11.1.1. Linear Comparisons (Cont’d)11.1.1. Linear Comparisons (Cont11.1.1. Linear Comparisons (Cont’’d)d)

•• GeneralizationsGeneralizations
–– Each comparison accounts for one degree of Each comparison accounts for one degree of 

freedom.freedom.
–– In a set of k treatment means with k In a set of k treatment means with k –– 1 degrees 1 degrees 

of freedom, there are k of freedom, there are k –– 1 orthogonal 1 orthogonal 
comparisons.comparisons.

–– It is possible to have more than one set of It is possible to have more than one set of 
orthogonal comparisons.orthogonal comparisons.

–– Variations attributed to each comparison in an Variations attributed to each comparison in an 
orthogonal set are additive.orthogonal set are additive.

–– All the All the pairwisepairwise comparisons between means in comparisons between means in 
post hoc contrasts are post hoc contrasts are notnot orthogonal.orthogonal.

This slides summarizes characteristics of linear comparisons used in 
experimental design. Note that each comparison has 1 degree of freedom 
because a linear comparison is the difference between two means.
Consequently there are k – 1 orthogonal comparisons among k treatment 
means, and several sets of orthogonal comparisons are possible. The sum 
of squares within an orthogonal set of comparisons are additive since the 
comparisons are independent contrasts.

When all possible paired comparisons are used to isolate main effects and 
interactions of k treatments, these contrasts are not orthogonal because the 
number of comparisons in the set is greater than k – 1. Consequently, an 
experimenter primarily uses unplanned, non-orthogonal, paired comparisons 
to analyze main effects and interactions in ANOVA.
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11.1.2. Inflated Type I Error11.1.2. Inflated Type I Error11.1.2. Inflated Type I Error

•• Type I ErrorType I Error: : αα error across a set of error across a set of 
comparison increases as the number of comparison increases as the number of 
comparisons increasescomparisons increases

•• Protection Level (Protection Level (ααpp )): : αα error rate per error rate per 
comparison across a total number of comparison across a total number of 
comparisons, ccomparisons, c

αp = 1 - (1 - α)c

αp ≈ c(α)

When several comparisons are made on the same set of data, the 
experimenter must be aware of inflated α error for each individual 
comparison. The protection level is the probability of at least one Type I error 
in a set of c independent comparisons. As this slide shows, the binominal 
formula specifies this inflated α error which can be approximated simply by 
c(α). Winer et al. (1991, pp. 153-158) and Maxwell and Delaney (2000, pp. 
171-174) provide details on the probability of inflation of α error on sets of 
comparisons considered both experiment wise (i.e., comparisons across the 
entire experiment) and family wise (i.e., comparisons to isolate main effects 
and interactions) in ANOVA.
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11.1.2. Inflated Type I Error (Cont'd)11.1.2. Inflated Type I Error (Cont'd)11.1.2. Inflated Type I Error (Cont'd)

•• Examples of Inflated Type I ErrorExamples of Inflated Type I Error

Protection Level
Number of α on Single

Comparisons Comparison 1-(1- α)c c(α)
1 .05 .0500 .05
2 .05 .0975 .10
3 .05 .1426 .15
4 .05 .1826 .20

This slide shows various examples of inflated Type I error of hypotheses 
tested at the 0.05 level of significance. When 4 independent comparisons 
are conducted on the same data set, the probability of finding at least one 
significant difference by chance inflates from the original 0.05 to 0.20. Note 
that the c(α) approximation is close to the binomial solution. 
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11.1.3. Planned Comparisons11.1.3. Planned Comparisons11.1.3. Planned Comparisons

•• 11.1.3.1. Planned F11.1.3.1. Planned F--TestTest
•• 11.1.3.2. Critical Difference11.1.3.2. Critical Difference
•• 11.1.3.3. Planned 11.1.3.3. Planned BonferroniBonferroni t Test (Dunn Test)t Test (Dunn Test)

Although human factors researchers are primarily interested in unplanned 
comparisons to evaluate main effects and interactions in ANOVA, there are 
occasions when a set of comparisons is planned a priori. This subtopic 
demonstrates component SS calculations for conducting planned 
comparisons, a general form for conducting these comparisons expressed 
as critical differences, and the Bonferroni t test as one technique for 
controlling inflated α error across a set of planned comparisons.
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11.1.3.1. Planned F-Test11.1.3.1. Planned F11.1.3.1. Planned F--TestTest

•• Component Sum of SquaresComponent Sum of Squares
–– Treatment Means (Equal Sample Size)Treatment Means (Equal Sample Size)

–– Treatment Totals (Equal Sample Size)Treatment Totals (Equal Sample Size)

•• Format of Hypothesis TestFormat of Hypothesis Test

_ _ _
SScomponent = n(c 1A1. + c2A2. + ... + c kAk.)2 / (c12 + c22 + ... + c k2)

SScomponent = (c 1A1. + c2A2. + ... + c kAk.)2 / n(c12 + c22 + ... + c k2)

H0:  Σcjµj = 0,  where Σcj = 0

Hi:  Σcjµj ≠ 0

α:  .05, .01, or .001

D.R.:  I reject H0 if Fobserved > F tabled

Fobserved = SS component / MS error

Ftabled = 1, df error

The top portion of this slide shows the general SS formulae for planned, 
weighted linear comparisons of treatments with equal sample size, n. Both 
the SS component formulae based on treatment means and totals are 
provided. They are equivalent.

The general format for conducting a statistical hypothesis test on a planned 
comparison is shown on the bottom portion of this slide. Note that an F-test 
is used based on the MSerror of the main effect or interaction relevant to the 
planned comparison. A comparison has only 1 degree of freedom, hence the 
FObserved value is equivalent to just SSComponent divided by MSError.
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11.1.3.1. Planned F-Test (Cont'd)11.1.3.1. Planned F11.1.3.1. Planned F--Test (Cont'd)Test (Cont'd)

•• Example ProblemExample Problem: The average number of : The average number of 
seconds for 12 soldiers to locate a position seconds for 12 soldiers to locate a position 
on a standard black and white navigational on a standard black and white navigational 
map was compared to 12 other soldiers map was compared to 12 other soldiers 
using an experimental colored map, and 12 using an experimental colored map, and 12 
other soldiers using an experimental 3other soldiers using an experimental 3--D D 
map. Four tests of significant differences in map. Four tests of significant differences in 
location time were planned: standard location time were planned: standard 
versus color, standard versus 3versus color, standard versus 3--D, color D, color 
versus 3versus 3--D, and standard versus the D, and standard versus the 
average of color and 3average of color and 3--D maps. Which D maps. Which 
differences were significant (p < 0.05)?differences were significant (p < 0.05)?

(Click in this red rectangle to see SAS calculations for this example.)

This slide describes four planned comparisons based on a one-way, 
between-subjects experimental design that has three treatment levels. 
Notice that the first three comparisons are simple, paired planned 
comparisons; whereas the fourth comparison is a complex, planned
comparison. Since these comparisons were planned a priori, an overall F-
test is not necessary. The one-way ANOVA, however, provides the MSError
value needed in each of the four contrasts tested at the 0.05 level of 
significance.

This reference material demonstrates the hand calculations for these four 
comparisons. The Slater and Williges (2006) appendix provide the SAS 
results for these contrasts using a statistical package.
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11.1.3.1. Planned F-Test (Cont'd)11.1.3.1. Planned F11.1.3.1. Planned F--Test (Cont'd)Test (Cont'd)

Data MatrixData Matrix

Color
5
3
4

Black & White 3D
5
7
9

6
4.3
3

Location Times

7
2
5

11
6
5

4
5.5
3

3
7
6

4
6
8

5
3.8
5.2

4
6
2

9
10
4

4
4
5

(Click in this red rectangle to see SAS calculations for this example.)

This slide summarizes a hypothetical data set of location times in seconds 
for the three map display comparisons in the example problem described on 
the previous slide. Each map was used by 12 different soldiers resulting in a 
total of 36 soldiers who participated in the experiment.
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11.1.3.1. Planned F-Test (Cont'd)11.1.3.1. Planned F11.1.3.1. Planned F--Test (Cont'd)Test (Cont'd)

•• Example of FExample of F--Test on Planned ComparisonsTest on Planned Comparisons
–– ProblemProblem

–– Design:Design:

–– Results:Results:

–– Comparisons: Comparisons: 

Control group (A1.) plus two experimental
groups (A2. and A3.)

n = 12, A 1. = 54.00, A 2. = 52.80, A 3. = 84.00,
MSS/A = 3.24

_ _
D1 = A1. - A2.

_ _
D2 = A1. - A3.

_ _
D3 = A2. - A3.

_ _ _
D4 = A1. - (A 2. + A 3.) / 2

(Click in this red rectangle to see SAS calculations for this example.)

This example problem can be considered as a simple one-way ANOVA 
between-subjects design in which the standard map is the control condition 
and both the color and 3-D maps are the experimental conditions. 
Hypothetical results are shown in the middle portion of this slide in terms of 
treatment totals. The four planned comparisons are stated at the bottom of 
the slide. The first three are simple, paired comparisons, and the fourth is a 
complex comparison.
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11.1.3.1. Planned F-Test (Cont'd)11.1.3.1. Planned F11.1.3.1. Planned F--Test (Cont'd)Test (Cont'd)

•• Example of FExample of F--Test on Planned ComparisonsTest on Planned Comparisons
–– Weighted Linear CombinationsWeighted Linear Combinations

–– Component SS (Based on Treatment Totals)Component SS (Based on Treatment Totals)

_                 _                _
D1 = (1)(A 1.) + (-1)(A 2.) + (0)(A 3.)

_ _ _
D2 = (1)(A 1.) + (0)(A 2.) + (-1)(A 3.)

_ _ _
D3 = (0)(A 1.) + (1)(A 2.) + (-1)(A 3.)

_ _                 _
D4 = (2)(A 1.) + (-1)(A 2.) + (-1)(A 3.)

SS1 = [(1)(54)+(-1)(52.8)+(0)(84)]2 /12[(1) 2+(-1) 2+(0) 2] = 0.06
SS2 = [(1)(54)+(0)(52.8)+(-1)(84)]2 /12[(1) 2+(0) 2+(-1) 2] = 37.50
SS3 = [(0)(54)+(1)(52.8)+(-1)(84)]2 /12[(0) 2+(1) 2+(-1) 2] = 40.56
SS4 = [(2)(54)+(-1)(52.8)+(-1)(84)]2 /12[(2) 2+(-1) 2+(-1) 2] = 11.52

(Click in this red rectangle to see SAS calculations for this example.)

The weighted linear comparisons using integer weights are listed for each of 
the four planned contrasts in the top portion of this slide. Note that the sum 
of the weights equal 0 for each of the four comparisons. As a group, these 
comparisons are not orthogonal because the four degrees of freedom of the 
contrasts are more than the two degrees of freedom of the main effect of the 
three treatments. By calculating the sum of the cross products of pairs of 
contrasts, one can determine that D3 and D4 are orthogonal contrasts. The 
other pairs of planned comparisons consider overlapping sources of 
information.

The bottom portion of the slide shows the component SS calculations based 
on treatment totals for each of the four planned comparisons. These SS 
values are used in the subsequent F-test on each planned comparison.
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11.1.3.1. Planned F-Test (Cont'd)11.1.3.1. Planned F11.1.3.1. Planned F--Test (Cont'd)Test (Cont'd)

•• Example of FExample of F--Test on Planned ComparisonsTest on Planned Comparisons
–– FF--Observed ValuesObserved Values

–– Hypothesis TestsHypothesis Tests

F1 = 0.06 / 3.24 = 0.02

F2 = 37.50 / 3.24 = 11.54 *

F3 = 40.56 / 3.24 = 12.52 *

F4 = 11.52 / 3.24 = 3.56

Ho:  Σcjµj = 0,  where Σcj = 0

Hi:  Σcjµj ≠ 0

α:  .05

D.R.:  I reject H o if Fobserved > F (1, 33) = 4.17

(Click in this red rectangle to see SAS calculations for this example.)

The F-ratios for each of the four planned contrasts are shown on the top 
portion of this slide, and the standard format for testing each hypothesis is 
shown the bottom portion. Since the FTabled value is 4.17 for each 
comparison, only D2 and D3 are significant at the 0.05 level. Consequently, 
the difference between the black and white navigational display mean and 
the 3-D navigational display mean is significant (i.e., D2), and the difference 
between the color display mean and 3-D display mean (i.e., D3) is significant.

Remember that the F-test with one degree of freedom is identical to the t 
test. Slater and Williges (2006) show the results of t-tests on these contrasts 
using SAS.
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11.1.3.2. Critical Difference11.1.3.2. Critical Difference11.1.3.2. Critical Difference

•• DefinitionDefinition: The difference between pairs of means : The difference between pairs of means 
(or totals) necessary to achieve significance (i.e., (or totals) necessary to achieve significance (i.e., 
when when FFObservedObserved = = FFTabledTabled))

•• Critical Difference for F Test on Treatment TotalsCritical Difference for F Test on Treatment Totals

•• Critical Difference for F Test on Treatment MeansCritical Difference for F Test on Treatment Means

•• Example Problem (Totals)Example Problem (Totals)
CDF = [   ] [   ]F(1, df error) 2(MSerror)/n

CDF =  [  ] [   ]F(1, df error) 2n(MSerror)

CDF =  [ ] [ ] = |17.99|

D1 = (54.00) - (52.80) =  1.20

D2 = (54.00) - (84.00) =  -30.00 *

D3 = (52.80) - (84.00) =  -31.20 *

4.17 (2)(12)(3.24)

(Click in this red rectangle to see SAS calculations for this example.)

An alternate way of calculating paired comparisons is to state the critical 
difference in terms of means or totals between two treatments that is 
necessary to achieve statistical significance. The critical difference formula, 
CDF, for the F-tests on comparisons is shown on this slide for both treatment 
means and totals assuming equal sample size. For the paired comparisons 
in the example problem, the critical difference for treatment totals is 17.99 as 
shown on the slide.

To test for significance, the experimenter only needs to calculate the 
difference between a pair of treatment means or totals and determine if the 
absolute value is equal to or greater than the critical difference. If so, the 
paired comparison is significant. Note that both D2 and D3 are significant as 
determined by the component SS calculation. The critical difference 
calculation is much easier, and this approach is used in discussing all 
subsequent paired comparison alternatives. To distinguish among these 
various paired comparison alternatives, each critical difference (CD) is given 
a unique subscript to designate that analytical alternative. For example, CDF
shown on this slide designates a comparison based on the F-statistic 
sampling distribution. 
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11.1.3.3. Planned Bonferroni t Test (DunnTest)11.1.3.3. Planned 11.1.3.3. Planned BonferroniBonferroni t Test (t Test (DunnTestDunnTest))

•• Distributes Distributes αα Error Among All Planned ComparisonsError Among All Planned Comparisons

•• Critical DifferenceCritical Difference
–– TotalsTotals

–– MeansMeans

•• Example (Totals)Example (Totals)

αerror = α/c
where c = number of planned paired comparisons.
(Can use equal or unequal distribution of αerror .)

CDB = [2.54 ] [ ] = 22.40(2)(12)(3.24)

where t' equals the Dunn tabled value

CDB = [t'(c, df error )] [ ]2n(MSerror)

CDB = [t'(c, df error )] [ ]2(MSerror)/n

(Click in this red rectangle to see SAS calculations for this example.)

The F-test used on the planned comparisons for this example did not control 
for inflated α error. One way to provide a control is to use a Bonferroni t test 
or a Dunn test. It takes the overall α error and divides it by the number of 
comparisons. The Bonferroni t test uses the table value, t’ as presented in 
Appendix Table D.16 in Winer et al. (1991). The critical difference formula 
based on either means or the totals are shown in the middle portion of this 
slide.

Since the experimenter controls for inflated Type I error across all 
comparisons when using the Bonferroni t, the difference between a pair of 
treatments must be larger than with the F-test that uses an overall α value. 
For this example problem the CDB shown on this slide is larger than the CDF
shown on the previous slide (i.e., 22.40 versus 17.99).
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11.1.4. Unplanned Comparisons11.1.4. Unplanned Comparisons11.1.4. Unplanned Comparisons

•• 11.1.4.1. Least Significant Difference Test11.1.4.1. Least Significant Difference Test
•• 11.1.4.2. 11.1.4.2. BonferroniBonferroni t Test (Dunn Test)t Test (Dunn Test)
•• 11.1.4.3. 11.1.4.3. ScheffeScheffe ́́ Multiple Contrast ProcedureMultiple Contrast Procedure
•• 11.1.4.4. 11.1.4.4. Tukey'sTukey's Honestly Significant Honestly Significant 

Difference (HSD) TestDifference (HSD) Test
•• 11.1.4.5. 11.1.4.5. DunnettDunnett TestTest
•• 11.1.4.6. Newman11.1.4.6. Newman--KeulsKeuls Sequential Range TestSequential Range Test
•• 11.1.4.7. Choice of Procedure11.1.4.7. Choice of Procedure

For unplanned, multiple comparisons several different alternatives are 
available to control for inflated α error. Many of these alternatives are 
discussed in detail by Winer, et al. (1991) in Chapter 3, pp.153-197, and 
Maxwell and Delaney (2000) in Chapters 5 and 6. The basis of control and 
the critical difference formulae of six alternative paired comparison 
procedures often used in human factors research are summarized in this 
subsection along with a discussion of the appropriate choice of procedure to 
use for a particular experiment.
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11.1.4. Unplanned Comparisons (Cont’d)11.1.4. Unplanned Comparisons (Cont11.1.4. Unplanned Comparisons (Cont’’d)d)

•• UseUse
–– Post Hoc Analyses for Additional Data InvestigationPost Hoc Analyses for Additional Data Investigation
–– Isolate Significant Main Effects and Interactions of Isolate Significant Main Effects and Interactions of 

Overall ANOVAOverall ANOVA
•• ApproachApproach

–– Critical Difference Formulae for Means and TotalsCritical Difference Formulae for Means and Totals
–– Uses Error Term from Overall AnalysisUses Error Term from Overall Analysis
–– Common ExampleCommon Example: Single Factor, Between: Single Factor, Between--Subjects Subjects 

DesignDesign

Unplanned comparisons are used primarily in human factors research as a 
means of investigating significant effects found in the overall ANOVA to 
isolate the locus of main effects and interactions. Since these involve post 
hoc analyses, all these comparisons are unplanned.

The critical difference formulae for both means and totals are provided for 
each of the alternative unplanned comparison procedures. An MSError term 
appears in each critical difference formulae. The appropriate overall ANOVA 
error term for the main effect or interaction being evaluated is used as the 
MSError in the critical difference formula. To facilitate comparisons among 
alternative procedures and to provide a computational example, each 
unplanned comparison procedure uses the results of a significant main effect 
of a one-way, between-subjects ANOVA design.
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11.1.4. Unplanned Comparisons (Cont’d)11.1.4. Unplanned Comparisons (Cont11.1.4. Unplanned Comparisons (Cont’’d)d)

•• Example ProblemExample Problem: : ProprioceptiveProprioceptive, visual, , visual, 
sound, and voice modes of presenting sound, and voice modes of presenting 
information were evaluated by 24 soldiers. information were evaluated by 24 soldiers. 
One of these four modes of information was One of these four modes of information was 
randomly assigned to 6 soldiers using randomly assigned to 6 soldiers using 
wearable computers during training wearable computers during training 
maneuvers. There was an overall significant maneuvers. There was an overall significant 
mode difference in minutes to complete the mode difference in minutes to complete the 
training maneuver (p < 0.05). Which training maneuver (p < 0.05). Which 
communication modes were significantly communication modes were significantly 
different from each other?different from each other?

(Click in this red rectangle to see SAS calculations for this example.)

This slide describes a one-factor, between-subjects ANOVA design that is 
used as the example problem for each unplanned comparison procedure 
described in this reference material. Note that this design has four levels. 
The SAS procedures for conducting each of the unplanned comparison 
procedures are described in the Slater and Williges (2006) appendix.
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11.1.4. Unplanned Comparisons (Cont’d)11.1.4. Unplanned Comparisons (Cont11.1.4. Unplanned Comparisons (Cont’’d)d)

•• Data MatrixData Matrix

Visual
(A2)

10
13
14
14

Proprioceptive
(A1)

Sound
(A4)

Voice
(A3)

15
17

13
14
12
18
16
19

15
15
16
17
16
18

10
10
13
14
12
15

83

Mean 13.83

92

15.33

97

16.17

74

12.33

Mode of Presentation (A)

Total

(Click in this red rectangle to see SAS calculations for this example.)

This slide provides a hypothetical data set for the example problem 
described on the previous page. This data set is used to illustrate each 
unplanned comparison procedure. Since this is a between-subjects design, 
six different soldiers (i.e., n = 6) were observed in each of the four modes of 
presentation to yield a total of 24 soldiers used in the experiment.
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11.1.4. Unplanned Comparisons (Cont’d)11.1.4. Unplanned Comparisons (Cont11.1.4. Unplanned Comparisons (Cont’’d)d)

•• Common ExampleCommon Example: Single Factor, Between: Single Factor, Between--
Subjects Design Subjects Design 

ANOVA Summary Table

Source df SS MS F

A 3 51.50 17.17 3.64*

S/A 20 94.33 4.72

Total 23 145.83

*(p < 0.05) where, F(3,20) = 3.10

(Click in this red rectangle to see SAS calculations for this example.)

This slide presents the ANOVA Summary Table for the overall analysis 
conducted on the example problem data. There are four levels of 
Communication Mode (Factor A), and n is equal to six, which gives a total of 
23 degrees of freedom across the 24 observations. Since Factor A is 
significant, at least one of the paired differences among the four levels of 
Factor A must be significant. Subsequent paired comparisons are needed to 
determine specifically which differences are significant. These resulting 
paired comparisons are non-orthogonal, and they are unplanned since they 
are conducted only after establishing the overall significant main effect.
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11.1.4. Unplanned Comparisons (Cont’d)11.1.4. Unplanned Comparisons (Cont11.1.4. Unplanned Comparisons (Cont’’d)d)

•• Common ExampleCommon Example: Single Factor, Between: Single Factor, Between--
Subjects Design Subjects Design 

Differences of Ordered Treatments Means

Increasing Order
1           2         3           4    

Treatments, (A i) A 2 A 1 A 4 A 3
Means, (Ā i)                   12.33    13.83    15.33    16.17 

a 2 ---- 1.50 3.00 3.83
Increasing a 1 ---- 1.50 2.33

Order a 4 ---- 0.83
a 3 ----

(Click in this red rectangle to see SAS calculations for this example.)

This slide depicts a table of ordered differences between pairs of the four 
treatment means in the example problem going from smallest to largest 
mean. Six paired differences are possible from the combination of four 
treatments. Any difference in paired means shown in this table that is larger 
than the critical difference calculated from the analytical procedure chosen is 
significant. Based on the overall F test, the experimenter knows the largest 
difference, 3.83 (or the difference between a2 and a3), is significant but any 
other significant differences must be determined through subsequent 
unplanned comparisons. 
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11.1.4.1. Least Significant Difference Test11.1.4.1. Least Significant Difference Test11.1.4.1. Least Significant Difference Test

•• Critical Difference FormulaeCritical Difference Formulae
–– TotalsTotals

–– MeansMeans

•• Example Problem Example Problem 
–– Calculation (Treatment Means, p < 0.05)Calculation (Treatment Means, p < 0.05)

 CDF = F(1, df error) 2 n (MSerror)

 CDF = F(1, df error) 2 (MSerror) / n

CD F = 4.35 (2)(4.72) / 6 = 2.62

(Click in this red rectangle to see SAS calculations for this example.)

The Least Significant Difference (LSD) test is really a t-test that makes no 
correction for α error. This is the least stringent of the paired comparison 
procedures and, consequently, results in the largest number of significant 
differences.

Using the critical difference formula for means presented on this slide for the 
LSD test, a difference of 2.62 between any pair of means is significant. 
Consequently, the differences between means a2 and a3 and means a2 and 
a4 are significant at the 0.05 level.
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11.1.4.2. Bonferroni t Test (Dunn Test)11.1.4.2. 11.1.4.2. BonferroniBonferroni t Test (Dunn Test)t Test (Dunn Test)

•• Critical Difference FormulaeCritical Difference Formulae
–– TotalsTotals

–– MeansMeans

•• Example Problem Example Problem 
–– Calculation (Treatment Means, p < 0.05)Calculation (Treatment Means, p < 0.05)

 CDB = t'(c, df error) 2 n (MSerror)

CDB = 2.93 (2)(4.72) / 6 = 3.67

CDB = t'(c, df error) 2 (MSerror) / n

where, t' equals the Dunn tabled value and c
equals the number of unplanned comparisons

(Click in this red rectangle to see SAS calculations for this example.)

The Bonferroni t Test is the same test that was discussed for planned 
comparisons. Recall that α error is distributed across all comparisons, c. In 
this example c = 6, the number of unplanned, post hoc paired comparisons. 
The tabled t’ value (i.e. t’(6,20) = 2.93) is from the Bonferroni table presented 
in Appendix Table D.15 in Winer et al. (1991).

Based on the critical difference between means formula presented on this 
slide for the Bonferonni t test, a difference of 3.66 between any pair of 
means is significant. Consequently, only the difference between means a2
and a3 is significant at the 0.05 level.
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11.1.4.3. Scheffé Multiple Contrast Procedure11.1.4.3. 11.1.4.3. ScheffeScheffe ́́ Multiple Contrast ProcedureMultiple Contrast Procedure

•• Critical Difference FormulaeCritical Difference Formulae
–– TotalsTotals

–– MeansMeans

•• Example Problem Example Problem 
–– Calculation (Treatment Means, p < 0.05)Calculation (Treatment Means, p < 0.05)

 CDS = (t – 1) FTabled 2 n (MSerror)

 
CDS = (t – 1)FTabled 2 (MSerror) / n

where, t equals the number of treatment groups, and
FTabled equals the value used in the overall F – test.

 
CD S = (4–1)(3.10) (2)(4.72) / 6 = 3.82

(Click in this red rectangle to see SAS calculations for this example.)

Scheffé multiple contrast test can be used for complex comparisons as well 
as paired comparisons using the t sampling distribution. Consequently Type 
I error is distributed over a larger range of comparisons and results in a more 
conservative test than just considering paired comparisons.

Based on the critical difference between means formula presented on this 
slide for the Scheffé test, a difference of 3.82 between any pair of means is 
significant. Consequently, only the difference between means a2 and a3 is 
significant at the 0.05 level.
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11.1.4.4. Tukey's HSD Test11.1.4.4. 11.1.4.4. Tukey'sTukey's HSD TestHSD Test

•• Critical Difference FormulaeCritical Difference Formulae
–– TotalsTotals

–– MeansMeans

•• Example Problem Example Problem 
–– Calculation (Treatment Means, p < 0.05)Calculation (Treatment Means, p < 0.05)

 
CDT = q( rmax , dferror ) (MSerror) / n

where, q equals the value of the Studentized Range
statistic and rmax equals the number of treatments.

 CDT = q( rmax , dferror ) n (MSerror)

CD T = 3.96 (4.72) / 6 = 3.51

(Click in this red rectangle to see SAS calculations for this example.)

Tukey’s Honestly Significant Difference (HSD) test also allows simple and 
complex comparisons to be used, but it uses a different sampling distribution 
than the Scheffé test. The Tukey test uses the Studentized Range statistic, 
q, which is based on the maximum range, rmax, of mean differences. The 
value of rmax is the total number of treatments involved the paired 
comparisons. The tabled value of q (i.e., q(4.20) = 3.96) is presented in 
Appendix Table D.4 in Winer, et al. (1991).

Based on the critical difference between means formula presented on this 
slide for Tukey’s HSD test, a difference of 3.51 between any pair of means is 
significant. Consequently, only the difference between means a2 and a3 is 
significant at the 0.05 level.



Human Factors Experimental Design and Analysis Reference

370

11.1.4.5. Dunnett Test11.1.4.5. 11.1.4.5. DunnettDunnett TestTest

•• Critical Difference FormulaeCritical Difference Formulae
–– TotalsTotals

–– MeansMeans

•• Example Problem Example Problem 
–– Calculation (Treatment Means, p < 0.05)Calculation (Treatment Means, p < 0.05)

 CDD = d( k, dferror ) 2 n (MSerror)

where d equals the two-tailed Dunnett tabled value
and k equals the number of treatments including the control.
(Used when comparing a control group to other groups.)

CDD = [ d(k, dferror ) ] [ ]2(MSerror)/n

CDD = 2.54 (2)(4.72) / 6 = 3.18

(Click in this red rectangle to see SAS calculations for this example.)

The Dunnett test assumes one of the levels is a control condition and the 
other levels are experimental conditions. This test is appropriate only when 
there is a control group. The visual display (a3) is considered the control 
condition in this example. Only paired comparisons of each experimental 
condition to the control condition are made thereby resulting in a smaller set 
of comparisons for distributing α error. These comparisons use the two-tailed 
Dunnett tabled value of d (i.e., d(4, 20) = 2.54) found in Appendix Table D.6 in 
Winer et al. (1991).

Based on the critical difference formula presented on this slide for the 
Dunnett test, a difference of 3.18 between any pair of means is significant. 
Consequently, only the difference between means a2 and a3 is significant at 
the 0.05 level assuming one of those treatments is a control condition.
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11.1.4.6. Newman-Keuls Sequential Range Test11.1.4.6. Newman11.1.4.6. Newman--KeulsKeuls Sequential Range TestSequential Range Test

•• Critical Difference FormulaeCritical Difference Formulae
–– TotalsTotals

–– MeansMeans

CDN-K  = [ q(r,  dferror ) ] [  ]n(MSerror)

CDN-K = [ q(r, dferror ) ] [ ]
where q = the Studentized Range statistic and

r = the specific range of interest such that:
r = j - i + 1

where j = the rank order of the larger mean and
i = the rank order of the smaller mean

(MSerror)/n

(Click in this red rectangle to see SAS calculations for this example.)

The Newman-Keuls test is a compromise paired comparison test that 
selectively controls for inflated Type I error by considering the ordered range 
of differences among treatments. It distributes the correction for α error 
depending on how far apart the means are when they are rank ordered. If 
the comparison consists of a pair of means that are farther apart in the rank 
order, there is more correction than a pair of means that are close together 
in the rank order.

The critical difference formulae for totals and means are shown on the slide. 
This test uses the Studentized Range statistic, q, tabled value presented in 
Appendix Table D.4 in Winer, et al. (1991). Note that the Tukey test also 
used the q statistic at only one value, rmax. The Newman-Keuls test, 
however, uses a series of values that are based on the sequential range, r, 
of the paired comparison in order to determine the tabled value of q. The 
paired difference of means closest together has a range of 2 (i.e., 2-1+1), 
and the paired difference of the means farthest apart in the range has a 
value of r. Hence the range goes from 2 to r where r equals the total number 
of different means in the paired comparisons.
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11.1.4.6. Newman-Keuls Test (Cont’d)11.1.4.6. Newman11.1.4.6. Newman--KeulsKeuls Test (ContTest (Cont’’d)d)

•• Example Problem Example Problem 
–– Calculation (Treatment Means, p < 0.05)Calculation (Treatment Means, p < 0.05)

 CDN – K = q( r, dferror ) (MSerror) / n

Range (r)                 
2 3 4

2.95 3.58 3.96

CDN-K = 2.62 3.17 3.51

q( r, dferror ) = q( r, 20) =

(MSerror) / n = (4.72) / 6 = 0.887

1. q Statistic Weighting

2. Error Weighting

3. Mean Critical Difference, CDN-K

(Click in this red rectangle to see SAS calculations for this example.)

This slide provides the calculations for the three values of critical differences 
between means based on q values that range from 2, 3, and 4 for all the 
paired comparisons among the 4 means in the example problem. Note that 
the weighting of error, 0.887, is constant at each range, r. The various critical 
differences between means are obtained by multiplying each of the q values 
listed in Appendix Table D.4 in Winer et al. (1991) for ranges 2, 3, and 4 (i.e., 
2.95, 3.58. and 3.96, respectively) by 0.887. The resulting three critical 
differences between pairs of means, CDN-K, are 2.62, 3.17, and 3.51 for this 
example on the bottom line of this slide.
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11.1.4.6. Newman-Keuls Test (Cont’d)11.1.4.6. Newman11.1.4.6. Newman--KeulsKeuls Test (ContTest (Cont’’d)d)

•• Example Problem (Cont'd)Example Problem (Cont'd)

Newman-Keuls Analysis on Ordered Pairs of  Treatments Means

Increasing Order
1           2           3           4    

Treatments, (a i) A2 A1 A4 A3
Means, (Ā i)                   12.33    13.83    15.33    16.17 r CDN-K

a 2 ---- 1.50 3.00 3.83 4 3.51
Increasing a 1 ---- 1.50 2.33 3 3.17

Order a 4 ---- 0.83 2 2.62
a 3 ----

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the increasing rank order of the four means in the example 
problem. The resulting table of mean differences shows each of the resulting 
six pairs of differences according to its sequential range, r. Note that three 
paired differences are at range 2 (i.e., 1.50, 1.50, and 0.83, two paired 
differences at range 3 (i.e., 3.00, 2.33), and one paired difference at range 4 
(i.e., 3.83). The experimenter must evaluate each difference in terms of its 
range using the appropriate CDN-K value.

In the Newman-Keuls test, the experimenter compares the resulting 
difference in each pair of means to the critical difference calculated for its 
particular range in order to determine significance. The three critical 
differences, CDN-K, for this example problem as calculated on the previous 
slide are listed in the right most column of this slide. As shown in the ellipse 
on this slide, only the mean difference of 3.83 at r = 4 is greater than its 
respective CDN-K of 3.51. The mean differences of 3.00 and 2.33 are not 
greater then their appropriate critical difference of 3.17 nor are 1.50, 1.50, 
and 0.83 greater than the critical difference 2.62. Consequently, only the 
difference between means a2 and a3 is significant at the 0.05 level according 
to the Newman-Keuls test.
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11.1.4.7. Choice of Procedure11.1.4.7. Choice of Procedure11.1.4.7. Choice of Procedure

Comparison of Critical Differences of Unplanned,
Paired-Comparison Procedures

Range (r)
Procedure 2 3 4

LSD (Multiple t Test) 2.62 2.62 2.62

Newman-Keuls Test 2.62 3.17 3.51

Dunnett Test 3.18 3.18 3.18

Tukey’s HSD Test 3.51 3.51 3.51

Bonferroni t Test 3.67 3.67 3.67

Scheffe ́ Test 3.82 3.82 3.82

This slide compares the critical differences needed to obtain significance 
between pairs of means in the example problem over each of the three 
ranges for each of the paired comparison procedures described in this 
subsection. Note that the Newman-Keuls procedure is the only alternative 
where the critical difference changes based on range.

A test with a higher critical difference is more stringent in obtaining statistical 
significance than a test with a lower critical difference. Consequently, the 
Scheffé test, which distributes α error across all possible simple and 
complex comparisons, is the most stringent, and the LSD test which makes 
no correction for inflated α error is the least stringent in controlling for an 
inflated Type I error. The Newman-Keuls test is equivalent to the LSD test 
for paired comparisons at range 2 and is equivalent to Tukey’s HSD test at 
range 4.
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11.1.4.7. Choice of Procedure (Cont'd)11.1.4.7. Choice of Procedure (Cont'd)11.1.4.7. Choice of Procedure (Cont'd)

•• ConsiderationsConsiderations
–– Type of ComparisonType of Comparison
–– Inflation of Inflation of αα ErrorError
–– Rationale of ProcedureRationale of Procedure
–– No Single Procedure is Appropriate for All No Single Procedure is Appropriate for All 

ComparisonsComparisons
•• Choice of Multiple Comparison ProcedureChoice of Multiple Comparison Procedure

–– No Correction No Correction -- LSDLSD
–– Unplanned Paired Comparisons Correction Unplanned Paired Comparisons Correction --

NewmanNewman--KeulsKeuls or or BonferroniBonferroni tt
–– Comparison to Control Condition Comparison to Control Condition -- DunnettDunnett
–– Complex Comparisons Complex Comparisons -- ScheffeScheffe ́́ or or TukeyTukey’’ss HSDHSD

The experimenter needs to consider the type of comparison, the control for 
inflated Type I error, and the rationale of various test alternatives before 
making a decision as to which analytical procedure to use when making 
comparisons. Consequently, no single procedure is appropriate for all 
comparisons, and the experimenter needs to understand the available 
alternatives.

If the experimenter is interested in finding all possible paired comparisons 
that may exist in a significant ANOVA main effect or interaction and is not 
concerned with inflated α error due to the overall test of significance, then an 
LSD or multiple t-tests can be conducted. If control for Type I error inflation 
is a concern, then the Newman-Keuls and the Bonferroni t tests are 
appropriate for unplanned, paired comparisons. The Bonferroni t test is more 
stringent by making one overall correction across all comparisons, whereas 
the Newman-Keuls test distributes stringency depending on the range of 
paired differences.  If comparisons are only made between a control 
condition and experimental conditions, then the Dunnett test is appropriate. If 
both simple and complex comparisons are being conducted both the Scheffé
and Tukey’s HSD tests are appropriate.
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11.2. Evaluating Interactions11.2. Evaluating Interactions11.2. Evaluating Interactions

•• 11.2.1. Example Problem11.2.1. Example Problem
•• 11.2.2. Graphing Procedures11.2.2. Graphing Procedures
•• 11.2.3. Simple Effects Test11.2.3. Simple Effects Test
•• 11.2.4. Trend Analysis11.2.4. Trend Analysis
•• 11.2.5. Paired Comparisons11.2.5. Paired Comparisons
•• 11.2.6. Interaction Evaluation Process11.2.6. Interaction Evaluation Process

Isolating a significant interaction in ANOVA also requires post hoc analysis. 
An example problem is provided to demonstrate these analysis alternatives. 
Both graphical and analytical procedures are appropriate. Three major 
computational procedures involving simple effects tests, trend analysis, and 
paired comparisons are described in this subsection.
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11.2.1. Example Problem11.2.1. Example Problem11.2.1. Example Problem

•• Example ProblemExample Problem: Distributed and co: Distributed and co--
located teams evaluated four zoom located teams evaluated four zoom 
percentages (0, 50, 100, 150%) of computer percentages (0, 50, 100, 150%) of computer 
displays. An overall ANOVA resulted in a displays. An overall ANOVA resulted in a 
significant interaction (p < 0.05) between significant interaction (p < 0.05) between 
location of team and percent of display location of team and percent of display 
zoom in terms of the percentage of threat zoom in terms of the percentage of threat 
evaluations made correctly. Based on the evaluations made correctly. Based on the 
mean values in this betweenmean values in this between--subjects subjects 
design, where is the locus of the interaction design, where is the locus of the interaction 
in terms of improving team communication in terms of improving team communication 
and collaboration?and collaboration?

(Click in this red rectangle to see SAS calculations for this example.)

This slide describes a 2x4 between-subjects design that resulted in a 
significant interaction. Improved percent of threat evaluations resulted as a 
function of the interaction between Location of Teams and Percent Zoom of 
a computer information display used to improve team coordination. Based on 
these results, the experimenter is interested in determining the exact effect 
of the significant interaction.
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11.2.1. Example Problem (Cont’d)11.2.1. Example Problem (Cont11.2.1. Example Problem (Cont’’d)d)

•• Hypothetical Data Set for TwoHypothetical Data Set for Two--Factor DesignFactor Design

Zoom Percentage
(Factor B)

0%
(B1)

50%
(B2)

100%
(B3)

150%
(B4)

Team
(Factor A)

Distributed
(A1)

Co-Located
(A2)

95
89
92

79
75
77

82
83
79

90
82
80

90
87
96

91
90
98

92
95
95

88
95
93

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the data set for for the 2x4 example problem described on 
the previous slide. Factor A has two levels of team location and Factor B has 
4 levels of percent zoom of the computer displays. Since this is a between-
subjects factorial design, a total of 24 teams of threat evaluators are used 
across the 8 cells comprising the AxB interaction in the experiment.
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11.2.1. Example Problem (Cont’d)11.2.1. Example Problem (Cont11.2.1. Example Problem (Cont’’d)d)

•• AxBAxB Interaction of a BetweenInteraction of a Between--Subjects DesignSubjects Design

ANOV A Summary Table

Source df SS MS F

A 1 477.04 477.04 37.66*
B 3 128.12 42.71 3.37

AxB 3 245.13 81.71 6.45*
S/AB 16 202.67 12.67

Total 23 1052.96

* p < .01

(Click in this red rectangle to see SAS calculations for this example.)

The ANOVA Summary Table for the 2x4 example problem is presented on 
this slide in general form. Factor A (Location of Teams) has two levels, 
distributed and co-located teams. Factor B (Percent Zoom of Computer 
Display) has four levels, 0, 50, 100, and 150% zoom. The error term for all F-
tests in this two-way, between-subjects design is MSS/AB. Both Factor A and 
the AxB interaction are significant. Further analyses are needed to find the 
locus of the AxB interaction.
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11.2.1. Example Problem (Cont'd)11.2.1. Example Problem (Cont'd)11.2.1. Example Problem (Cont'd)

•• AxBAxB InteractionInteraction
–– n = 3    n = 3    ((NoteNote:  3 x 8 = 24 observations):  3 x 8 = 24 observations)
–– MSMSerrorerror = MS= MSS/AB S/AB = 12.67= 12.67
–– dfdferrorerror = = dfdfSS/AB /AB = 16= 16
–– ABABijij. . TotalsTotals

ABAB11.11. = 231= 231 ABAB21.21. = 279 = 279 
ABAB12.12. = 244 = 244 ABAB22.22. = 282 = 282 
ABAB13.  13.  = 252 = 252 ABAB23.  23.  = 276 = 276 
ABAB14.  14.  = 276 = 276 ABAB24.24. = 273 = 273 

•• Interaction = Differential EffectInteraction = Differential Effect
•• Interpretation of InteractionInterpretation of Interaction

–– Graphical ProceduresGraphical Procedures
–– Numerical ProceduresNumerical Procedures

(Click in this red rectangle to see SAS calculations for this example.)

If one assumes equal sample size, the sample size, n, for any interaction 
times the number of treatments in the interaction, t, equals the total number 
of observations in the experiment, N. Consequently, n in this experiment 
equals 3. The MS Error and the dfError for evaluating the interaction are 
obtained from the error term used in the overall ANOVA. They are 12.67 and 
16, respectively, as presented in the previous slide.

The totals of the three scores for each of the eight treatment combinations in 
the AxB interaction are presented in the middle of this slide. It appears that 
there is an increase in scores as B changes across the first level of A and 
that there is relatively little change in scores as B changes across the 
second level of A. But, additional graphical and numerical analyses are 
needed to confirm this interaction effect.
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11.2.2. Graphing Procedures11.2.2. Graphing Procedures11.2.2. Graphing Procedures

B1 B2 B4B3

A1

A2

Factor A

Factor B

Means of the eight treatment conditions totals of the AxB interaction data 
listed on the previous slide are presented on a graph to aid in interpretation 
of the interaction effect. The two levels of Factor A are plotted as separate 
lines across the four levels of Factor B. The plot is presented in black and 
white as used in most human factors publications. The broken vertical line 
on the ordinate indicates that scores could be below 50. If the entire scale 
from 0 to 100 was shown on the graph, the interaction difference would 
appear smaller, but a great deal of blank space would appear in the graph.
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11.2.2. Graphing Procedures (Cont'd)11.2.2. Graphing Procedures (Cont'd)11.2.2. Graphing Procedures (Cont'd)

•• Graphing ConventionsGraphing Conventions
–– Dependent Variable on the OrdinateDependent Variable on the Ordinate
–– Line Graphs for Continuous Independent VariablesLine Graphs for Continuous Independent Variables
–– Bar Graphs for Discrete Independent VariablesBar Graphs for Discrete Independent Variables
–– Unique Coding for Factor LevelsUnique Coding for Factor Levels
–– Legends Within Graph AxesLegends Within Graph Axes

•• Other Graphing ProceduresOther Graphing Procedures
–– Pictorial Representation (Pictorial Representation (TuffteTuffte 1983, 1990, 1997)1983, 1990, 1997)
–– Graphing/Charting Application ProgramsGraphing/Charting Application Programs
–– ComputerComputer--Based PresentationBased Presentation

Some graphing conventions are listed on this slide pertain to two-
dimensional, black and white slides often used in human factors and 
ergonomics research. The dependent variable is listed in the ordinate, and 
one independent variable is listed on the abscissa. The other independent 
variable(s) in the interaction are plotted in the graph, and the levels are 
represented either as lines are bars.  Line graphs are used for continuous 
variables, whereas bar graphs are used for discrete variables. A unique 
coding such as solid, dashed, and dotted lines are used to designate factor 
levels. The legend defining these various levels should remain within the 
graph.

Other graphing procedures like perspective bar graphs and color coding are 
often used. Tuffte (1983, 1990, and 1997) provides a variety of innovative 
pictorial and graphical representations of data to improve interpretation. 
Modern computer graphing and plotting techniques provide many 
alternatives to the researcher to improve communication of the interaction 
effect to the reader.
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11.2.2. Graphing Procedures11.2.2. Graphing Procedures11.2.2. Graphing Procedures

Co-Located
Distributed

0
Percent of Computer Display Zoom

50 100 150

Location of Teams

Percent
Correct
Threat

Evaluations

This slide shows a re-plot of the AxB interaction using the standard graphing 
procedures summarized in the previous slide and stating the factors and 
levels in terms of the actual experiment. The dependent variable used in the 
experiment is listed as the ordinate. Line graphs are used because percent 
of display zoom is a continuous variable. The two levels of Location of 
Teams are plotted as dashed and solid lines and defined in the figure legend 
contained within the graph boundary.

Statistically significant differences cannot be inferred from the graph directly. 
Additional analytical procedures are necessary to isolate all the significant 
effects. First, one might conduct a simple effects test that restricts significant 
differences across the four levels of Display Zoom (Factor B) to just 
distributed teams (A1) and then to just co-located teams (A2). Second, there 
seems to be a linear increase across display zoom in distributed teams that 
can be verified by a trend analysis. Finally, the difference between 
distributed and co-located team performance at the 0% zoom display level 
can be tested for statistical significance using paired comparisons. Each of 
these analytical techniques is described separately.
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11.2.3. Simple Effects Test11.2.3. Simple Effects Test11.2.3. Simple Effects Test

•• Simple EffectsSimple Effects: Determine significant change : Determine significant change 
in one factor at each level of the other factor.in one factor at each level of the other factor.
–– ExampleExample

–– Factor B at AFactor B at A11

–– Factor B at AFactor B at A22

–– ApproachApproach
–– 1. Determine Appropriate Simple Effects Test1. Determine Appropriate Simple Effects Test
–– 2. Calculate SS, 2. Calculate SS, dfdf, MS, and F for Simple Effects, MS, and F for Simple Effects
–– 3. Use 3. Use AxBAxB Interaction Error Term for Simple Interaction Error Term for Simple 

Effects FEffects F--TestTest

(Click in this red rectangle to see SAS calculations for this example.)

One way to isolate overall interaction effects is to test for significant 
differences across one factor at a particular level of the other factor. This is 
referred to as a simple effects test. The two examples presented on the slide 
are, first, the changes across levels of Factor B at the A1 level of Factor A 
and, second, the changes across levels of Factor B at the A2 level of Factor 
A.

The three general steps involved in a simple-effects test are listed on the 
bottom of this slide. First, the experimenter must determine whether the 
simple effect is tested across Factor A at each level of Factor B or vice 
versa. Second, the calculations of the appropriate simple effects tests are 
made. Third, the overall error term of the interaction is used as a pooled 
error term for all simple effects tests.
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11.2.3. Simple Effects Test (Cont'd)11.2.3. Simple Effects Test (Cont'd)11.2.3. Simple Effects Test (Cont'd)

•• Data Matrix for Data Matrix for AxBAxB InteractionInteraction

•• SS Calculations of B for ASS Calculations of B for Aii

Factor A
A1 A2

B1 (AB11 .= 231) (AB21 .= 279) B.1.= 510
Factor B2 (AB12 .= 244) (AB22 .= 282) B.2.= 526

B B3 (AB13 .= 252) (AB23 .= 276) B.3.= 528
B4 (AB14 .= 276) (AB24 .= 273) B.4.= 549

A1..= 1003 A2..= 1110 [T...= 2113]

SSB at A 2 = (∑AB 2j.2/n) - (A 2..2/bn)
SSB at A 2 = [(279) 2 + (282) 2 + (276) 2 + (273) 2/(3)]

- [(1110) 2/(4)(3)] = 15.00

SSB at A 1 = (∑AB 1j.2/n) - (A 1..2/bn)
SSB at A 1 = [(231) 2 + (244) 2 + (252) 2 + (276) 2/(3)]

- [(1003) 2/(4)(3)] = 358.25

SSB at A i = (∑AB ij.2/n) - (∑A i..2/bn)

(Click in this red rectangle to see SAS calculations for this example.)

The data for the AxB interaction in the example problem are shown in the top 
portion of this slide. The bottom portion of the slide lists the general formulae 
for calculating the SS of a simple effect. This is simply using data at each 
level of Factor A independently to compute a SSB; i.e., compute SSB at level 
A1 and ignore data at level A2, then repeat using data at only level A2 and 
ignore data at level A1. Using this formula for calculation, the SSB for A1 = 
358.25 and the SSB for A2 = 15.00 for the example data.
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11.2.3. Simple Effects Test (Cont'd)11.2.3. Simple Effects Test (Cont'd)11.2.3. Simple Effects Test (Cont'd)

ANOVA Summary Table For Simple Effects

Source df SS MS F

B at Level A1 3 358.25 119.42 9.42*

B at Level A2 3 15.00 5.00 <1.00

S/AB       16 202.67 12.67

*p < 0.05

Note:  SSB at A1 + SSB at A2 = SSB/A = SSB + SSAxB = 373.25

(Click in this red rectangle to see SAS calculations for this example.)

The ANOVA Summary Table shown on this slide provides the F-tests based 
on the error term used for the overall AxB interaction test of significance (i.e., 
pooled error term). The simple-effect test of Factor B for a2 shows that none 
of these paired differences are significant at the 0.05 level. Only the simple 
effect of Factor B for A1 is significant. This means that at least one pair of the 
four levels of B are significantly different at the A1 level of Factor A, but the 
exact differences cannot be determined by the simple effects test. 
Subsequent paired comparisons of the four levels of Factor B at A1 need to 
be conducted to isolate these differences.

In terms of the factors manipulated in the example problem, the simple-
effects analysis summarized on this slide means that computer display zoom 
fails to affect co-located team performance. However, display zoom does 
significantly affect distributed team performance at the 0.05 level. The last 
line of this slide notes that the total of the SS for the two simple-effects tests 
(373.25) is equal to SSB plus SSAxB in the Summary Table of the overall 
ANOVA on a previous slide in this example.
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11.2.4. Trend Analysis11.2.4. Trend Analysis11.2.4. Trend Analysis

•• TrendsTrends: The nature of the relationship : The nature of the relationship 
between treatment condition magnitudes, t, between treatment condition magnitudes, t, 
and the dependent variable magnitudes, Y.and the dependent variable magnitudes, Y.
–– Assumes Quantitative Independent VariablesAssumes Quantitative Independent Variables
–– Equally Spaced Factor Levels, kEqually Spaced Factor Levels, k
–– Relationship Expressed as PolynomialsRelationship Expressed as Polynomials

–– Y = bY = b00 + b+ b11t + bt + b22tt22 + b+ b33tt33 + ... + b+ ... + bkk--11ttkk--1 1 

–– bb00 = Constant= Constant
–– bb11t = Linear Componentt = Linear Component
–– bb22tt22 = Quadratic Component= Quadratic Component
–– bb33tt33 = Cubic Component= Cubic Component
–– bbkk--11ttkk--11 = k= k--1 Component1 Component

(Click in this red rectangle to see SAS calculations for this example.)

Trend analysis evaluates the quantitative relationship among treatment 
means. It is a special case analysis for quantitative factors that are usually 
manipulated as equally spaced levels in the experiment. Myers (1979, pp. 
441-445), however, shows a computational procedure for conducting a trend 
analysis when the levels are not equally spaced and transformations to 
obtain equal spacing are not appropriate. The quantitative relationship of the 
dependent variable, Y, is also expressed as a weighted orthogonal 
polynomial of various linear and curvilinear components, t. Trend analysis 
can be used to interpret both main effects and interactions.

In the example problem of the AxB interaction, the simple-effects test 
demonstrated that computer display zoom significantly affected threat 
evaluation performance of distributed teams. The graph of this interaction 
seems to show a linear increase in performance as the four quantitative and 
equally spaced levels of computer display zoom decrease (i.e., 0, 50, 100, 
and 150% zoom). A subsequent trend analysis on this simple effect would 
confirm if there is a significant linear increasing trend.
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11.2.4. Trend Analysis (Cont'd)11.2.4. Trend Analysis (Cont'd)11.2.4. Trend Analysis (Cont'd)

•• Order of TrendOrder of Trend
–– Highest Order Trend One Less Than Number of LevelsHighest Order Trend One Less Than Number of Levels
–– Linear or Quadratic Trends Fit Most Human Factors DataLinear or Quadratic Trends Fit Most Human Factors Data

•• Numerical Value of a Trend Comparison for Totals, Numerical Value of a Trend Comparison for Totals, TTjj
–– CCTrendTrend = = ΣΣccijijTTjj ((ΣΣccijij = 0,  = 0,  ΣΣccijijcci'ji'j = 0)= 0)
–– Where Where ccijij = Tabled Orthogonal Polynomial Coefficients= Tabled Orthogonal Polynomial Coefficients

•• Orthogonal Polynomials Have Independent TermsOrthogonal Polynomials Have Independent Terms
–– SSSSTrendTrend = = SSSSLinearLinear + + SSSSQuadraticQuadratic + + SSSSCubicCubic + ... + SS+ ... + SSkk--1 1 

•• Sum of Squares Calculations Based on Treatment TotalsSum of Squares Calculations Based on Treatment Totals

•• FFObservedObserved = = SSSSTrendTrend / / MSMSErrorError
•• FFTabledTabled = 1, = 1, dfdfErrorError

SSTrends = Ci
2

nΣcij
2

(Click in this red rectangle to see SAS calculations for this example.)

In general, the highest trend that can be evaluated is one less than the 
number of equally-spaced levels of the quantitative factor. Linear and 
quadratic trends tend to fit most human factors datasets thereby requiring a 
minimum of three levels of a factor.

Orthogonal polynomials are used in trend comparisons to keep the SS 
associated with each trend additive. The sum of the weights and the sum of 
the cross products of the weights must equal zero to keep the trend effects 
orthogonal and independent of the grand mean. Orthogonal coefficient 
weights used to test for linear, quadratic, cubic, etc. trends are provided in 
Table D.10 in Winer et al. (1991). The numerical value of a comparison of 
trends is calculated using the sum of the appropriate orthogonal polynomial 
coefficient weighting times the total score for all observations for each 
treatment level. The formula for calculating the SS of a trend is shown at the 
bottom of this slide. The SS of a trend is divided by MSError to yield an 
FObserved value which is compared to the FTabled value to test for the trend 
effect. 
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11.2.4. Trend Analysis (Cont'd)11.2.4. Trend Analysis (Cont'd)11.2.4. Trend Analysis (Cont'd)

•• Calculation of Trends for BxaCalculation of Trends for Bxa11 Simple EffectSimple Effect
Orthogonal Trend Coefficients

Treatment Totals
Tj = B1 B2 B3 B4

(231) (244) (252) (276)
Trend
Linear -3 -1 1 3
Quadratic 1 -1 -1 1
Cubic -1 3 -3 1

Linear Trend of B at A1
C2Linear = [(-3)(231) +(-1)(244) + (1)(252) + (3)(276)] 2 = 20,449
nΣc1j2 = 3[(-3) 2 + (-1) 2 + (1) 2 + (3) 2] = 60
SSLinear = C 2Linear /nΣcij2 = 20,449/60 = 340.82
FLinear = SS Linear /MS Error = 340.82/12.67 = 26.90
FTabled = (1, 16) = 4.49

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the linear trend analysis on the significant simple effect of 
the AxB interaction example. This trend analysis accesses the linear 
decrease across Factor B at the first level of Factor A. Since there are four 
levels of Factor B, linear, quadratic, and cubic trends can be accessed 
across the levels of Factor B. The orthogonal polynomial weighting 
coefficients from Table D.10 of Winer et al. (1991) are shown on the slide.

The bottom portion of this slide shows the linear trend analysis of the simple 
effect. The SS for this linear trend is 340.82 yielding an observed F ratio 
equal to 26.90 for the linear trend. Since the observed F value is greater 
than the tabled value of F(1,16) = 4.49, there is a significant linear trend. 
Consequently, distributed teams demonstrated a linear increase in threat 
evaluation performance as computer display zoom decreased.



Human Factors Experimental Design and Analysis Reference

390

11.2.4. Trend Analysis (Cont'd)11.2.4. Trend Analysis (Cont'd)11.2.4. Trend Analysis (Cont'd)

•• Summary of Trend Analysis for Summary of Trend Analysis for AxBAxB InteractionInteraction

Lowest Order Trend of B at A1
Tj = B1 B2 B3 B4

(231) (244) (252) (276)
SSLinear = 340.82 SSQuadratic = 10.08 SSCubic = 7.35
FLinear = 26.90* FQuadratic = <1.00 FCubic = <1.00

Lowest Order Trend of B at A2
Tj = B1 B2 B3 B4

(279) (282) (276) (273)
SSLinear = 9.60 SSQuadratic = 3.00 SSCubic = 2.40
FLinear = <1.00 FQuadratic = <1.00 FCubic = <1.00

*p < .05

Note:  SS B for Ai = SS Linear + SS Quadratic + SS Cubic

(Click in this red rectangle to see SAS calculations for this example.)

This slide summarizes the six possible trend analyses that can be conducted 
on the simple effects of the example AxB interaction. Note that only the 
linear trend of Factor B for the A1 level of Factor A as shown on the previous 
slide is significant at the 0.05 level of significance. Since the trends are 
orthogonal, the sum of the SSLinear, SSQuadratic, and SSCubic is equal to the SS 
of the simple-effects test.

Trend analysis is useful for the researcher to describe the quantitative 
relationship of interaction simple effects and main effects in ANOVA that 
involve equally spaced levels of quantitative factors. Paired comparisons of 
treatment levels, however, are still needed to determine any significant 
differences among the treatment levels.
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11.2.5. Paired Comparisons11.2.5. Paired Comparisons11.2.5. Paired Comparisons

•• 11.2.5.1. Sequential Range Test11.2.5.1. Sequential Range Test
•• 11.2.5.2. 11.2.5.2. UnconfoundedUnconfounded ComparisonsComparisons

Unplanned paired comparisons are most often used to isolate interaction 
effects. Paired comparisons can be used to analyze simple effects of 
interactions, and they can be used directly on the overall interaction 
treatments. This subsection demonstrates the use of the Newman-Keuls test 
on all paired comparisons present among the interaction treatments as well 
as the use of unconfounded comparisons that pertain only to interaction 
effects.
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11.2.5.1. Sequential Range Test11.2.5.1. Sequential Range Test11.2.5.1. Sequential Range Test

Newman-Keuls Analysis on Ordered Pairs of Treatment Totals

Increasing Rank Order

1 2 3 4 5 6 7 8
---------------------------------------------------------------------------------------
Treatment AB11. AB12. AB13. AB24. AB14. AB23. AB21. AB22.
Totals 231 244 252 273 276 276 279 282 r CDN-K
---------------------------------------------------------------------------------------

1 --- 13 21 42 45 45 48 51 8 23.42
2 --- 8 29 32 32 35 38 7 22.66

Rank 3 --- 21 24 24 27 30 6 21.80
4 --- 3 3 6 9 5 20.70

Order 5 --- 0 3 6 4 19.36
6 --- 3 6 3 17.45
7 --- 3 2 14.34

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the results of a Newman-Keuls Sequential Range test 
conducted on the 28 possible paired comparisons of the eight treatment 
totals in the 2x4 interaction of the example problem. Every difference that is 
circled on the slide is a significant difference at the 0.05 levels of statistical 
significance. Not all of these differences directly relate to the interpretation of 
the interaction. Consequently, the experimenter must refer to the graph of 
the interaction to determine which differences are useful in interpreting the 
interaction. For example, the type of team location has no effect on threat 
evaluation at 150% computer display zoom (i.e. A1B4 – A2B4), but there is a 
significant difference in threat evaluation preference between co-located and 
distributed teams using the 0% zoom level of computer displays (i.e., A1B1 –
A2B1).
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11.2.5.2. Unconfounded Comparisons11.2.5.2. 11.2.5.2. UnconfoundedUnconfounded ComparisonsComparisons

•• UnconfoundedUnconfounded Comparisons in an InteractionComparisons in an Interaction

•• Calculation of Calculation of UnconfoundedUnconfounded Comparisons (UC)Comparisons (UC)
–– Post (1981) FormulaPost (1981) Formula

• Definition:  Unconfounded comparisons are needed to
interpret an interaction (e.g.,  A 1B1 and A1B2);
whereas, confounded interactions have no direct
bearing on the interaction (e.g.,  A 1B1 and A2B2).

UC = (8/2)(6-2) = 16

UC = (x/2)(s-f)

where, x = product of levels of all factors in the interaction
s = sum of levels of all factors in the interaction
f = number of factors in the interaction

(Click in this red rectangle to see SAS calculations for this example.)

The subset of paired comparisons that relate directly to interactions is called 
unconfounded comparisons. These unconfounded comparisons always have 
one level of one of the factors in common across the paired comparison 
(e.g., A1B1 – A1B2). Paired comparisons that have different levels of factors 
in the paired comparison (e.g., A1B1 – A2B2) have no bearing on the 
differential effect of the interaction and are called confounded comparisons.

By using the Post (1981) formula shown on this slide, only 16 of the 28 
paired comparison conducted in the previous Newman-Keuls test are 
unconfounded comparisons. Consequently, some researchers feel that a 
Newman-Keuls test may not be appropriate for the post hoc analysis of an 
interaction because many of the paired comparisons are confounded. In fact, 
the SAS computerized procedure does not allow the Newman-Keuls test for 
post hoc analysis of interactions, but Slater and Williges (2006) demonstrate 
a SAS procedure for conducting a Newman-Kuels analysis on an interaction 
if the experimenter chooses to do so.
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11.2.5.2. Unconfounded Comparisons (Cont'd)11.2.5.2. 11.2.5.2. UnconfoundedUnconfounded Comparisons (Cont'd)Comparisons (Cont'd)

•• 28 Paired Comparisons in the 28 Paired Comparisons in the AxBAxB InteractionInteraction
16 Unconfounded Comparisons

12 Confounded Comparisons
(A1B1) - (A 2B2) (A1B2) - (A 2B3) (A1B3) - (A 2B 4)
(A1B1) - (A 2B3) (A1B2) - (A 2B4) (A1B4) - (A 2B1)
(A1B1) - (A 2B4) (A1B3) - (A 2B1) (A1B4) - (A 2B2)
(A1B2) - (A 2B1) (A1B3) - (A 2B2) (A1B4) - (A 2B3)

(A1B2 ) - (A1 B1) (A2B1 ) - (A2 B4)
(A1B3 ) - (A1 B1) (A2B2 ) - (A2 B3)

(A1B4 ) - (A1 B1)
(A2B2 ) - (A2 B4)(A1B3 ) - (A1 B2)
(A2B3 ) - (A2 B4)

(A1B4 ) - (A1 B2) (A2B1 ) - (A1 B1)
(A1B4 ) - (A1 B3) (A2B2 ) - (A1 B2)
(A2B2 ) - (A2 B1) (A2B3 ) - (A1 B3)
(A2B1 ) - (A2 B3) (A1B4 ) - (A2 B4)

(Click in this red rectangle to see SAS calculations for this example.)

This slide lists the 16 unconfounded and 12 confounded paired comparisons 
of the AxB interaction in the example problem. The experimenter uses only 
the 16 unconfounded paired comparisons in interpreting the interaction.
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11.2.5.2. Unconfounded Comparisons (Cont'd)11.2.5.2. 11.2.5.2. UnconfoundedUnconfounded Comparisons (Cont'd)Comparisons (Cont'd)

•• LSD Tests of Interaction Paired ComparisonsLSD Tests of Interaction Paired Comparisons
–– All Paired ComparisonsAll Paired Comparisons
–– UnconfoundedUnconfounded Paired ComparisonsPaired Comparisons

•• UnconfoundedUnconfounded Comparison AdjustmentsComparison Adjustments
–– Adjust c in Bonferroni t Test to Number of Adjust c in Bonferroni t Test to Number of 

UnconfoundedUnconfounded ComparisonsComparisons
–– Adjust t in Adjust t in ScheffeScheffe ́́ Test by the Test by the CicchettiCicchetti (1972) (1972) 

TableTable
–– Adjust Adjust rrmaxmax in Tukey HSD Test by the in Tukey HSD Test by the CicchettiCicchetti

(1972) Table(1972) Table

(Click in this red rectangle to see SAS calculations for this example.)

Most overall post hoc tests of paired comparisons consider both confounded 
and unconfounded paired comparisons when evaluating interactions as 
demonstrated with the Newman-Keuls test of the AxB interaction example. 
Such tests over control for inflated α error when confounded comparisons 
are included. The LSD test, however, makes no correction for inflated α error 
on either all paired comparisons or unconfounded comparisons involved in 
the interaction.

Some post hoc paired-comparison tests, however, can be adjusted for 
unconfounded comparisons. For example, the c used in the Bonferroni t Test 
could equal the number of unconfounded comparisons not the number of all 
possible paired comparisons in the interaction. In addition, the Scheffé Test 
and the Tukey HSD Test can be adjusted for unconfounded comparisons 
using the Cicchetti (1972) table.
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11.2.5.2. Unconfounded Comparisons (Cont'd)11.2.5.2. 11.2.5.2. UnconfoundedUnconfounded Comparisons (Cont'd)Comparisons (Cont'd)

•• Example: LSD Test of ComparisonsExample: LSD Test of Comparisons
–– Critical Difference Formula Critical Difference Formula –– TotalsTotals

–– Critical Difference for All 28 Paired ComparisonsCritical Difference for All 28 Paired Comparisons

–– Critical Difference for 16 Critical Difference for 16 UnconfoundedUnconfounded ComparisonsComparisons
CD F = 4.49 (2)(3)(12.67) = 18.48

CDF = F(1, df error) 2 n (MSerror)

Unconfounded Comparisons
CD F = 4.49 (2)(3)(12.67) = 18.48

(A1 B 2) - (A1B 1) = 13 (A2B1) - (A2B4) = 6
(A1 B 3 ) - (A1B 1) = 21 (A2B2) - (A2B3) = 3

(A1 B 4) - (A1B 1) = 45
(A2B2) - (A2B4) = 9(A1 B 3) - (A1B 2) = 8
(A2B3) - (A2B4) = 3

(A1 B 4) - (A1B 2) = 32 (A2B1) - (A1B1) = 48
(A1 B 4) - (A1B 3) = 24 (A2B2) - (A1B2) = 38
(A2 B 2) - (A2B 1) = 3 (A2B3) - (A1B3) = 24
(A2 B 1) - (A2B 3) = 3 (A1B4) - (A2B4) = 3

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the critical difference required between treatment totals to 
obtain a significant difference between treatment pairs in the AxB interaction 
example when using the LSD test. Note that the critical difference (18.48) is 
the same for all 28 paired comparisons and the 16 unconfounded
comparisons involved in the interaction since no correction is made for 
inflated α error in the LSD procedure. Consequently, this is the least 
conservative test for isolating an overall significant interaction effect. The 
seven unconfounded paired comparisons of treatments involved in the 
interaction effect are boxed in the lower portion of this slide.
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11.2.5.2. Unconfounded Comparisons (Cont'd)11.2.5.2. 11.2.5.2. UnconfoundedUnconfounded Comparisons (Cont'd)Comparisons (Cont'd)

•• Example: Adjusted Bonferroni t TestExample: Adjusted Bonferroni t Test
–– Critical Difference Formula Critical Difference Formula -- TotalsTotals

–– Critical Difference for All 28 Paired ComparisonsCritical Difference for All 28 Paired Comparisons

–– Critical Difference for 16 Critical Difference for 16 UnconfoundedUnconfounded ComparisonsComparisons
CDB = [3.74][ (2)(3)(12.67) ] = 32.61

CDB = [t'(c, df error )] [ ]2n(MSerror)

CDB = [3.443][ (2)(3)(12.67) ] = 30.02

Unconfounded Comparisons
(A1 B 2) - (A1B 1) = 13 (A2B1) - (A2B4) = 6
(A1 B 3 ) - (A1B 1) = 21 (A2B2) - (A2B3) = 3

(A1 B 4) - (A1B 1) = 45
(A2B2) - (A2B4) = 9(A1 B 3) - (A1B 2) = 8
(A2B3) - (A2B4) = 3

(A1 B 4) - (A1B 2) = 32 (A2B1) - (A1B1) = 48
(A1 B 4) - (A1B 3) = 24 (A2B2) - (A1B2) = 38
(A2 B 2) - (A2B 1) = 3 (A2B3) - (A1B3) = 24
(A2 B 1) - (A2B 3) = 3 (A1B4) - (A2B4) = 3

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the effect of adjusting the Bonferroni t test for 
unconfounded comparisons on the AxB interaction example. As shown on 
the slide, the critical difference for all paired comparisons would be 32.61, 
whereas the critical difference for just unconfounded comparisons would be 
only 30.02. The difference between the A1B4 and A1B2 treatments (i.e., 32) 
would not be significant if the Bonferroni t test was not adjusted for 
unconfounded comparisons. The resulting four significant unconfounded
comparisons are boxed in the lower portion of this slide.

Note that three unconfounded comparisons (i.e., A1B3 – A1B1, A1B4 – A1B3, 
and A2B3 – A1B3, ) found significant in the more lax LSD procedure shown on 
the previous slide would not be significant if the adjusted Bonferroni t test for 
unconfounded critical differences is used. Consequently, the experimenter 
must decide on the appropriate level of α error protection needed in isolating 
the interaction effect.
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11.2.6. Interaction Evaluation Process11.2.6. Interaction Evaluation Process11.2.6. Interaction Evaluation Process

•• Step 1. Evaluate Interaction GraphicallyStep 1. Evaluate Interaction Graphically
–– Observe Possibly Differential EffectsObserve Possibly Differential Effects
–– Plan Subsequent Post Hoc AnalysisPlan Subsequent Post Hoc Analysis

•• Step 2. Evaluate Interaction Analytically Step 2. Evaluate Interaction Analytically 
–– SimpleSimple--Effects TestEffects Test
–– Trend AnalysisTrend Analysis
–– Unplanned Paired ComparisonsUnplanned Paired Comparisons

•• Step 3. Interpret Impact of Interaction on Step 3. Interpret Impact of Interaction on 
Significant Main EffectsSignificant Main Effects

Evaluation of significant interactions in ANOVA involves both graphical and 
analytical procedures in a three step process. In Step 1, the experimenter 
should begin by graphing the interaction data to observe possible differential 
effect of the interaction and plan analytical procedures to isolate interaction 
effect.

Every significant interaction requires a subsequent post hoc analysis 
conducted in Step 2. Several analytical procedures can be used. Some 
researchers first conduct a simple effects test to determine which level of 
one variable exhibits difference across the other variable. In cases involving 
equally spaced quantitative variables, trend analyses can be used to provide 
a quantitative interpretation of the simple effects. In most cases, however, 
the experimenter conducts unplanned paired comparisons to isolate the 
exact locus of the interaction.

In Step 3, the experimenter needs to interpret the impact of interactions on 
significant main effects. In the interaction example in this subsection, both 
Factor A and the AxB interaction were significant. One could state that co-
located teams perform threat evaluation better than distributed teams, but 
this difference occurs when computer display zoom is less than 100% 
because distributed teams show a linear increase in threat evaluation as a 
function of increasing display zoom.
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11.3. Summary11.3. Summary11.3. Summary

•• Isolating ANOVA Main Effects and InteractionsIsolating ANOVA Main Effects and Interactions
–– Overall Test of SignificanceOverall Test of Significance
–– Post Hoc AnalysesPost Hoc Analyses

•• Unplanned Paired ComparisonsUnplanned Paired Comparisons
–– Inflated Inflated αα ErrorError
–– Variety of AlternativesVariety of Alternatives
–– Choice of AlternativesChoice of Alternatives

•• Interaction AnalysisInteraction Analysis
–– Graphical ProcedureGraphical Procedure
–– Analytical ProceduresAnalytical Procedures
–– Evaluation ProcessEvaluation Process

By way of summary, this topic covered a variety of techniques that can be 
used to isolate main effects and interactions that are statistically significant in 
the overall ANOVA. The overall test confirms that at least one pair of means 
is significantly different, but post hoc analyses are needed to determine 
exactly which mean differences are significant in a main effect that has more 
than two levels or in an interaction effect.

Paired comparisons of treatment means are the most often used post hoc 
analysis of significant main effects and interactions. A variety of paired 
comparison procedures are available depending on the strategy chosen to 
control for inflated Type I error that occurs when multiple contrasts are 
performed on the same set of data.

Isolating the differential effect of an interaction involves both graphing and 
analytical procedures. Simple effects tests, trend analyses, and paired 
comparisons are appropriate analytical procedures. But, the primary analysis 
involves paired comparisons of the unconfounded contrasts of interaction 
treatments. The experimenter should always take care to support graphical 
representations of interactions with analytical procedures. Once the locus of 
the interaction is determined analytically, it should be interpreted in 
connection with any significant main effects.
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11.4. Supplemental Readings11.4. Supplemental Readings11.4. Supplemental Readings

REFERENCEREFERENCE
Hicks & Turner (1999)Hicks & Turner (1999)
Keppel & Keppel & WickensWickens (2004)(2004)
Mason, Mason, GunstGunst, & Hess (2003), & Hess (2003)
Maxwell & Delaney (2000)Maxwell & Delaney (2000)
Montgomery (2005)Montgomery (2005)
Myers and Well (2003)Myers and Well (2003)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapters 3, 5Chapters 3, 5
Chapters 4Chapters 4--6, 126, 12--1313
Chapters 5Chapters 5--77
Chapters 5Chapters 5--66
Chapter 3Chapter 3
Chapters 9Chapters 9--1010
Chapters 3, 5Chapters 3, 5--6 6 

Appropriate chapters in common experimental design textbooks used by 
human factors researchers are listed on this slide. Maxwell and Delaney 
(2000) provide a detailed discussion of various multiple comparison 
procedures and trend analysis in Chapters 5 and 6, respectively. The 
chapters in Keppel and Wickens (2004) and Winer et al. (1991) provide 
detailed discussions of linear comparisons, simple-effects tests, trend 
analysis, and alternative tests for paired comparisons.
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This topic covers within-subjects ANOVA designs in which each subject 
receives every treatment condition in the human factors experiment. Basic 
configurations of one- and two-factor designs as well as generalizations to n-
factor repeated measures designs are covered. The advantages of within-
subjects designs are summarized as compared to between-subjects 
designs.

Additional considerations in using repeated measures are discussed 
including the homogeneity of covariance assumption, balancing techniques 
for controlling possible confounding effects of treatment orders, and the 
effect of differential transfer. References to supplemental readings on these 
issues as well as details on the design and analysis of within-subjects 
designs are provided in the major experimental design texts appropriate for 
human factors research.

Topic 12. Within-Subjects ANOVA DesignsTopic 12. WithinTopic 12. Within--Subjects ANOVA DesignsSubjects ANOVA Designs

12.1. Within12.1. Within--Subjects Design ConfigurationsSubjects Design Configurations
12.1.1. Single12.1.1. Single--Factor DesignFactor Design
12.1.2. Two12.1.2. Two--Factor DesignFactor Design
12.1.3. n12.1.3. n--Factor DesignFactor Design

12.2. Homogeneity of Covariance12.2. Homogeneity of Covariance
12.3. Balancing Order of Treatments12.3. Balancing Order of Treatments

12.3.1. Balancing Alternatives12.3.1. Balancing Alternatives
12.3.2. Balanced Latin Square12.3.2. Balanced Latin Square
12.3.3. Testing Order Effects12.3.3. Testing Order Effects

12.4. Differential Transfer12.4. Differential Transfer
12.5. Within12.5. Within--Subjects Design AdvantagesSubjects Design Advantages
12.6. Summary12.6. Summary
12.7. Supplemental Readings12.7. Supplemental Readings
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12.1. Within-Subjects Design Configurations12.1. Within12.1. Within--Subjects Design ConfigurationsSubjects Design Configurations

•• 12.1.1. Single12.1.1. Single--Factor DesignFactor Design
•• 12.1.2. Two12.1.2. Two--Factor DesignFactor Design
•• 12.1.3. n12.1.3. n--Factor DesignFactor Design

Within-subject design and analysis configurations are presented in this
subsection using the simplified notation as well as the general rules, 
procedures, and algorithms for generating ANOVA designs as discussed for 
both one- and two-factor, between-subjects designs. Computational 
examples are provided for both one- and two-way, within-subjects designs. 
The SAS analyses for these examples are presented in Slater and Williges 
(2006) appendix. Based on the discussion of basic designs, generalizations 
are summarized for any n-factor within-subjects design.
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12.1.1. Single-Factor Design12.1.1. Single12.1.1. Single--Factor DesignFactor Design

Yijk = µ + αi + γj + αγ ij +  εk(ij)

E(MS A) = n σα2 + σαγ2 + σε2

E(MS S) = a σγ2 + σε2

E(MS AxS) = σαγ2 + σε2_________________________________________________________

Source df SS MS F
_________________________________________________________

Between

S n-1 SSS

Within

A a-1 SSA MSA MSA/MS AxS
AxS (a-1)(n-1)    SSAxS MSAxS

Total an-1     SStotal
_________________________________________________________

The fundamental within-subjects design involves only one factor in which 
each subject receives every level of that factor. The statistical model and 
expected mean squares are presented on the top portion of this slide. Note 
that subjects, S, are crossed with Factor A resulting in an AxS interaction.

The general form of the ANOVA Summary Table is presented in the lower 
portion of this slide. Based on the E(MS) for this design, the error term for 
testing the Factor A main effect is MSAxS. There is no legitimate (unbiased) 
error term for testing the differences among subjects. Thus, the variability 
due to subjects is merely removed from the error term as a means of making 
the design more sensitive for testing Factor A. The df and SS for subjects 
are normally presented in the ANOVA Summary Table for completeness 
even though they are not used in any F-test.
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12.1.1. Single-Factor Design (Cont'd)12.1.1. Single12.1.1. Single--Factor Design (Cont'd)Factor Design (Cont'd)

Factor A

A1 A2 A3 A 4

S1 AS11 AS21 AS31 AS41
Subjects S2 AS12 AS22 AS32 AS42

S S3 AS13 AS23 AS33 AS43
S4 AS14 AS24 AS34 AS44

(A1.) (A2.) (A3.) (A4.)

(S. 1)
(S. 2)
(S. 3)
(S. 4)

[T..]

SSA = (∑A i.2/n) - (T.. 2/an)

SSS = (∑S. j2/a) - (T.. 2/an)

SSAxS = ∑AS ij2 - (∑A i.2/n) - (∑S. j2/a) + (T.. 2/an)

SSTotal = ∑AS ij2 - (T.. 2/an)

This slide shows the general layout of the data set for a one-way, within-
subjects ANOVA design. Note that there are four different subjects shown in 
this layout, and each subject receives all four levels of Factor A.

The SS computational formulae for this design are shown on the bottom 
portion of this slide in the simplified dot notation. These formulae can be 
generated using the algorithm for SS formulae.  Notice that the various 
formulae are composed of various combinations of the four computational 
components listed in the data set.
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12.1.1. Single-Factor Design (Cont'd)12.1.1. Single12.1.1. Single--Factor Design (Cont'd)Factor Design (Cont'd)

•• Example ProblemExample Problem: Four enhancements : Four enhancements 
using automated information to help using automated information to help 
soldiers work with battlefield information soldiers work with battlefield information 
were evaluated. Four soldiers used each of were evaluated. Four soldiers used each of 
the four presentation enhancements the four presentation enhancements 
(context dependent displays, intelligent (context dependent displays, intelligent 
tutors, multiple viewpoints, and groupware) tutors, multiple viewpoints, and groupware) 
to evaluate reconnaissance information for to evaluate reconnaissance information for 
35 different threats. Were the display 35 different threats. Were the display 
enhancements significantly different          enhancements significantly different          
(p < 0.001) in terms of the number of threats (p < 0.001) in terms of the number of threats 
detected?detected?

(Click in this red rectangle to see SAS calculations for this example.)

This slide presents an example problem that illustrates a one-way, within-
subjects design. Since each soldier used each of the four automated 
information enhancements, this a repeated measures design. The Slater and 
Williges (2006) appendix provides the SAS analysis of this problem.
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12.1.1. Single-Factor Design (Cont'd)12.1.1. Single12.1.1. Single--Factor Design (Cont'd)Factor Design (Cont'd)

Enhancements
(Factor A)

Context
Dependent

S1 14
Subjects S2 9

(S) S3 19
S4 19

(A1.= 61)

Intelligent
Tutor

18
15
21
18

(A2.= 72)

Multiple
Viewpoints

18
17
26
21

(A3.= 82)

Groupware

20
19
30
27

(A4.= 96)

(S.1 = 70)
(S.2 = 60)
(S.3 = 96)
(S.4 = 85)

[T.. = 311]

(∑A i.2/n) = [(61) 2 + (72) 2 + (82) 2 + (96) 2] / 4 = 6211.25

(∑S.j 2/a) = [(70)2 + (60) 2 + (96)2 + (85)2] / 4 = 6235.25

(T.. 2/an) = [(311) 2] / (4)(4) = 6045.06

∑ASij2 = (14) 2 + ... + (27) 2 = 6433.00

(Click in this red rectangle to see SAS calculations for this example.)

The data set for the example problem is shown on this slide. Both real-world 
descriptors and simplified notation designations are listed on the slide. 
Calculations of the four computational components of the SS are shown on 
the bottom portion of this slide.
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12.1.1. Single-Factor Design (Cont'd)12.1.1. Single12.1.1. Single--Factor Design (Cont'd)Factor Design (Cont'd)

•• Numerical ExampleNumerical Example

FA = (55.39) / (3.51) = 15.78

MSA = (166.19) / (3) = 55.39

MSAxS = (31.56) / (9) = 3.51

SSA = (6211.25) - (6045.06) = 166.19

SSS = (6235.25) - (6045.06) = 190.19

SSAxS = (6433.00) - (6211.25) - (6235.25) + (6045.06) = 31.56

SSTotal = (6433.00) - (6045.06) = 387.94

(Click in this red rectangle to see SAS calculations for this example.)

This slide summarizes the calculations of the SS, MS, and F ratio in the 
example problem. These calculations are based on the data set and 
component values shown on the previous slide.
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12.1.1. Single-Factor Design (Cont'd)12.1.1. Single12.1.1. Single--Factor Design (Cont'd)Factor Design (Cont'd)

•• ANOVA Summary TableANOVA Summary Table

__________________________________________________________

Source df SS MS F
__________________________________________________________

Between

Subjects (S) 3 190.19

Within

Enhancements (E) 3 166.19 55.39 15. 78*

ExS 9 31.56 3.51

Total 15 387.94
__________________________________________________________

*p < 0.001

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the ANOVA Summary Table of the one-factor, within-
subjects design. Note that in the Summary Table for the example problem 
the Enhancement factor is stated as in the example problem rather than in 
the simplified notation. The total df are equal to 1 less than the 16 
observations in the entire experiment, and SSTotal equals the sum of all the 
SS components in the within-subjects design. Note that Enhancements is 
significant (p < 0.001) when compared to the tabled value, F(3, 9) = 13.90). 
This means that at least one of the automated information enhancements is 
different from the others at the 0.001 level of significance. Subsequent, post-
hoc, paired comparisons of the four types of information enhancements are 
needed to determine exactly which pairs are significantly different.
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12.1.2. Two-Factor Design 12.1.2. Two12.1.2. Two--Factor Design Factor Design 

Yijkl = µ + αi + βj + γk + αβij + αγ ik + βγjk + αβγ ijk + εl(ijk)

Factor B
B1 B2 B3

ABS113 ABS123 ABS133
ABS114 ABS124 ABS134A1
ABS115 ABS125 ABS135

B.1.

ABS116 ABS126 ABS136
[AB11 .] [AB12 .] [AB13 .]

Factor A

ABS213 ABS223 ABS233
ABS214 ABS224 ABS234A2
ABS215 ABS225 ABS235

B.2.

ABS216 ABS226 ABS236
[AB21 .] [AB22 .] [AB23 .]

A2.. 

A1..

[T...]

ABS111 ABS121 ABS131

S3
S4
S5
S6

S1
S2 ABS112 ABS122 ABS132

ABS211 ABS221 ABS231
ABS212 ABS222 ABS232

B.3.

S3
S4
S5
S6

S1
S2

The statistical model listed at the top of this slide shows that subjects are 
crossed with both Factor A and Factor B to form a within-subjects design. 
This slide also shows the general layout of a two-factor, within-subjects 
design data set that is specified in the simplified notation. Sample size is six 
for the design shown on the slide, and the same six subjects are listed for 
levels A1 and A2 to designate a within-subjects design layout. In fact, each of 
these six subjects experiences all six treatment combinations in the 2x3 
factorial design. Consequently, the sum for Subjects, S..k, is summed over 
the six observations of each subject in the design.
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12.1.2. Two-Factor Design (Cont'd)12.1.2. Two12.1.2. Two--Factor Design (Cont'd)Factor Design (Cont'd)

•• SS Computational FormulaeSS Computational Formulae

SSS = (∑S.. k2/ab) - (T... 2/abn)

SSA = (∑A i..2/bn) - (T... 2/abn)

SSAxS = (∑AS i.k2/b) - (∑A i..2/bn) - (∑S.. k2/ab) + (T... 2/abn)

SSB = (∑B. j.2/an) - (T... 2/abn)

SSBxS = (∑BS. jk2/a) - (∑B. j.2/an) - (∑S.. k2/ab) + (T... 2/abn)

SSAxB = (∑AB ij.2/n) - (∑A i..2/bn) - (∑B. j.2/an) + (T... 2/abn)

SSAxBxS = ∑ABS ijk2 - (∑AB ij.2/n) - (∑AS i.k2/b) - (∑BS. jk2/a) +

(∑Ai..2/bn) + (∑B. j.2/an) + (∑S.. k2/ab) - (T... 2/abn)

SSTotal = ∑ABS ijk2 - (T... 2/abn)

The complete SS computational formulae for the two-way, within-factor 
ANOVA design are listed on this slide. These formulae can be determined by 
using the SS algorithm.

Notice that there are eight different component scores that make up these 
SS formulae. The S..k, the ASi.k and the BS.jk values are not shown on the 
previous data layout slide and need to be calculated in addition to the four 
values listed on the previous slide in order to calculate the eight components 
used in the SS calculations for this design.
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12.1.2. Two-Factor Design (Cont'd)12.1.2. Two12.1.2. Two--Factor Design (Cont'd)Factor Design (Cont'd)

•• Expected Mean SquaresExpected Mean Squares

Yijkl = µ + αi + βj + γk + αβij + αγ ik + βγjk + αβγ ijk + εl(ijk)

E(MS A) = bnσα2 + bσαγ2 + σε2

E(MS B) = an σβ 2 + aσβγ 2 + σε2

E(MS S) = ab σγ2 + σε2

E(MS AxB) = nσαβ2 + σαβγ2 + σε2

E(MS AxS) = bσαγ2 + σε2

E(MS BxS) = a σβγ 2 + σε2

E(MS AxBxS) = σαβγ2 + σε2

The expected mean squares for a two-factor, within-subjects design are 
listed on this slide as determined by the E(MS) algorithm. Notice that the A 
and B main effects and the AxB interaction are divided by their respective 
interaction with subjects, S, to form a legitimate F-ratio. Based on the E(MS) 
designation, there is no legitimate (unbiased) error term to test the subject 
effect.
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12.1.2. Two-Factor Design (Cont'd)12.1.2. Two12.1.2. Two--Factor Design (Cont'd)Factor Design (Cont'd)

•• ANOVA Summary TableANOVA Summary Table
___________________________________________________________

Source df SS MS F
___________________________________________________________
Between

S n-1 SSS

Within
A a-1 SSA MSA MSA/MS AxS

AxS (a-1)(n-1)    SSAxS MSAxS

B b-1 SSB MSB MSB/MS BxS
BxS (b-1)(n-1)    SSBxS MSBxS

AxB (a-1)(b-1)              SSAxB MSAxB MSAxB/MS AxBxS
AxBxS (a-1)(b-1)(n-1)          SSAxBxS MSAxBxS

Total abn-1     SStotal
___________________________________________________________

The complete ANOVA Summary Table for the two-factor, within-subjects 
design is shown on this slide. Only Factor A, Factor B, and the AxB
interaction can be tested. Each of these effects is grouped with its error term 
and listed as a within-subjects effect. The main effect of subjects, S, is listed 
as a between-subjects effect for completeness and as a way of checking for 
computational errors when totaling df and SS.
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12.1.2. Two-Factor Design (Cont'd)12.1.2. Two12.1.2. Two--Factor Design (Cont'd)Factor Design (Cont'd)

•• Example ProblemExample Problem: Three alternative visual : Three alternative visual 
displays (3 dimensional graphs, color displays (3 dimensional graphs, color 
coded diagrams, and flowcharts) were coded diagrams, and flowcharts) were 
developed to augment intelligence developed to augment intelligence 
information gathered over a 12information gathered over a 12--hour period. hour period. 
Six intelligence officers evaluated the Six intelligence officers evaluated the 
information using each visual display either information using each visual display either 
as redundant to or as a substitute for the as redundant to or as a substitute for the 
standard written intelligence information. standard written intelligence information. 
Are the information presentations Are the information presentations 
significantly different (p < 0.05)?significantly different (p < 0.05)?

(Click in this red rectangle to see SAS calculations for this example.)

A 2x3 within-subjects design is described on this slide as an example 
problem. Note that each of the six intelligence officers experienced each of 
the six treatment combinations resulting from the factorial combination of the 
two levels of display use (i.e. complimentary or substitute) and three levels of 
alternative visual displays of written intelligence information (i.e. 3D graphs, 
color-coded diagrams, and flowcharts). This reference material summarizes 
the calculations for the experiment; whereas the Slater and Williges (2006) 
appendix provide the SAS analysis for this example problem.
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12.1.2. Two-Factor Design (Cont'd)12.1.2. Two12.1.2. Two--Factor Design (Cont'd)Factor Design (Cont'd)

Complimentary

Substitute

Display Use
(Factor A)

3D Color-Coded Flowchart

Display Alternative
(Factor B)

47
46
50
44
50
44

39
44
38
45
43
41

35
42
39
40
42
41

46
50
49
47
51
45

49
52
54
48
54
48

50
47
49
52
53
47

A1..= 891

[AB11.= 288] [AB12.= 305] [AB13.= 298]

[AB21.= 281] [AB22.= 250] [AB23.= 239]

A2..= 770

B.1.= 569 B.2.= 555 B.3.= 537 [T...= 1661]

S3
S4
S5
S6

S1
S2

S3
S4
S5
S6

S1
S2

(Click in this red rectangle to see SAS calculations for this example.)

Hypothetical data are listed on this slide showing both the real-world 
designations of the factors and levels in the example problem as well as 
various totals listed in the simplified notation. Each of the six data points in 
each cell of the data set layout is an ABSijk entry that represents one of the 
36 data points in the experiment. In addition to the totals listed on the slide, 
S..k, ASi.k, and BS.jk totals are also needed for SS calculations.
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12.1.2. Two-Factor Design (Cont'd)12.1.2. Two12.1.2. Two--Factor Design (Cont'd)Factor Design (Cont'd)

•• ANOVA Summary TableANOVA Summary Table
____________________________________________________________

Source
____________________________________________________________

Between

Within

Total

Subjects (S)

AxU
AxUxS

df SS MS F

35 800.31

5 86.47 17.29

2
10 76.78

139.56
7.68

69.78

Alternative (A)
AxS

2
10

42.89
31.44

21.41
3.14

6.82*

Use (U)
UxS

1
5 16.47

406.69
3.29

406.69 123.45***

9.09**

____________________________________________________________
*p < 0.05 **p < 0.01 ***p < 0.001

(Click in this red rectangle to see SAS calculations for this example.)

The complete ANOVA Summary Table for the two-factor, within-subjects 
design example problem is provided on this slide in standard format. Note 
that both the df and SS for all the effects in this design sum to the totals. In
addition, the effects are grouped with their appropriate error terms for easy 
reference.

The main effect of the two display uses (U), the main effect of the three 
display alternatives (A), and the display use by display alternative (AxU) 
interaction are each significant at the 0.05 level when compared to the tabled 
F values. Since display use only has two levels, the experimenter can 
conclude that complimentary displays rather than substitution displays for 
written intelligence information resulted in significantly better intelligence. 
Further post-hoc analyses are needed to isolate differences among the three 
display alternatives and the AxU interaction.
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12.1.3. n-Factor Design12.1.3. n12.1.3. n--Factor DesignFactor Design

•• GeneralizationsGeneralizations
–– Can include any number of factors of interest.Can include any number of factors of interest.
–– All rules, procedures, and algorithms apply.All rules, procedures, and algorithms apply.
–– All factors of interest are crossed and can All factors of interest are crossed and can 

interact.interact.
–– Subjects are crossed with all factors of interest Subjects are crossed with all factors of interest 

and can interact with them.and can interact with them.
–– The interaction of the effect with subjects is the The interaction of the effect with subjects is the 

error term for the Ferror term for the F--test for each effect.test for each effect.
–– Assumes subjects are randomAssumes subjects are random--effects.effects.
–– Assumes factors of interest are fixedAssumes factors of interest are fixed--effects.effects.

This slide provides generalizations for constructing and analyzing any n-
factor, factorial within-subjects design with equal sample size. If the 
researcher assumes that the Subjects factor is the only random-effect 
variable and all factors of interest in the experiment are fixed-effects, then 
the error term for testing the effects of interest is simply the interaction of the 
effect with subjects.
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12.2. Homogeneity of Covariance12.2. Homogeneity of Covariance12.2. Homogeneity of Covariance

•• Assumption of Homogeneity of CovarianceAssumption of Homogeneity of Covariance: : 
Covariance between pairs of treatment conditions Covariance between pairs of treatment conditions 
is equal.is equal.

–– Heterogeneity Possible with More Than Two LevelsHeterogeneity Possible with More Than Two Levels
–– Calculate Calculate IntercorrelationIntercorrelation MatrixMatrix
–– Positive BiasPositive Bias: : αα Error IncreasesError Increases

•• Metrics from Population VarianceMetrics from Population Variance--Covariance Covariance 
Matrix, Matrix, ΣΣXX

–– Compound SymmetryCompound Symmetry: Equal Variances and : Equal Variances and CovariancesCovariances + + 
CircularityCircularity

–– CircularityCircularity: Sum of any two treatment variances minus : Sum of any two treatment variances minus 
their their covariancescovariances is a constant.is a constant.

–– SphericitySphericity: Normalized Orthogonal Transformation to : Normalized Orthogonal Transformation to 
OrthonormalOrthonormal VarianceVariance--Covariance Matrix, Covariance Matrix, ΣΣYY

–– Departure from CircularityDeparture from Circularity (Box, 1954): (Box, 1954): εε

Since repeated observations are made on each subject in within-subjects 
designs, covariance exists among treatment levels. Within-subjects designs 
assume homogeneity of variance of within-treatment conditions as well as 
homogeneity of covariance among treatments in order for the observed F-
ratio to be distributed according to the F sampling distribution. If more than 
two levels of repeated measures exist, there is the possibility of 
heterogeneity of covariance in within-subjects designs. Covariance among 
repeated treatments can be specified by unequal correlation between them. 
Violation of the assumption of homogeneity of covariance results in a 
positive bias in the F-test which yields an increase in Type I error.

Winer et al. (1991, pp. 237-282 and pp. 509-526) provide an excellent 
mathematical discussion of the homogeneity of covariance assumption and 
corrections for heterogeneity of covariance when it exists. Various terms 
based on the population variance-covariance matrix as shown on the bottom 
of this slide are used to assess heterogeneity of covariance. Compound 
symmetry expresses homogeneity of variance and covariance, but this 
criterion is usually relaxed to just estimates of circularity. Consequently, 
adjusted F-tabled values corrected for deviations from circularity, ε, based on 
sample data are often used when a violation of the homogeneity of 
covariance assumption is of concern to the experimenter.
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12.2. Homogeneity of Covariance (Cont'd)12.2. Homogeneity of Covariance (Cont'd)12.2. Homogeneity of Covariance (Cont'd)

•• Practical SolutionPractical Solution: Set : Set αα at Higher Level of at Higher Level of 
SignificanceSignificance
–– May Be OvercorrectingMay Be Overcorrecting

•• Exact SolutionExact Solution: Multivariate Solution: Multivariate Solution
–– Multivariate Analysis of Variance (MANOVA)Multivariate Analysis of Variance (MANOVA)
–– HotellingHotelling’’ss TT22

•• Compromise SolutionCompromise Solution: Adjust Tabled F: Adjust Tabled F
–– Estimate Deviation From Circularity, Estimate Deviation From Circularity, εε
–– Most Common SolutionMost Common Solution

There are three alternatives to consider when heterogeneity of covariance 
exits in the within-subjects data set. First, the experimenter can choose to 
test the within-subjects design at a higher level of significance (0.01 instead 
of 0.05) to guard against inflated α error when using the F sampling 
distribution. But, this approach could be too stringent if the real intent is to 
test at a lower α level.

Second an exact solution to the ANOVA that includes the degree of 
covariance among treatment conditions can be calculated using multivariate 
analysis of variance (MANOVA). In Chapters 13 and 14, Maxwell and 
Delaney (2000) discuss the use of MANOVA as a multivariate procedure to 
provide an exact solution for repeated measures designs. Winer et al. (1991, 
pp. 278-281) discusses the use of a multivariate Hoetelling’s T2 as an exact 
solution for one-way designs.

The third alternative is a compromise solution that uses the standard 
univariate ANOVA computations but adjusts the tabled F value based on the 
lack of circularity. This approach is summarized in this reference material 
because it is the approach commonly used in human factors research.
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12.2. Homogeneity of Covariance (Cont'd)12.2. Homogeneity of Covariance (Cont'd)12.2. Homogeneity of Covariance (Cont'd)

•• Range of Deviation From Circularity, Range of Deviation From Circularity, εε
–– 1/(k1/(k--1) = 1) = εε ≤≤ 1 where,1 where,

–– k = Number of Treatment Levelsk = Number of Treatment Levels
–– 1 = Circularity Assumption Met1 = Circularity Assumption Met

•• GeisserGeisser--Greenhouse (1958) Maximum CorrectionGreenhouse (1958) Maximum Correction
–– Adjusted F TableAdjusted F Table

–– F(1, nF(1, n--1)1)
•• Box Correction for Repeated Measures (Box, 1954)Box Correction for Repeated Measures (Box, 1954)

–– Adjusted F TableAdjusted F Table
–– F[(kF[(k--1)1)εε, (n, (n--1)(k1)(k--1)1)εε]]

–– ImhofImhof (1962) Table for Small Sample Size (n<9)(1962) Table for Small Sample Size (n<9)

•• Huynh and Huynh and FeldtFeldt (1976) Estimate of (1976) Estimate of εε from Sample Datafrom Sample Data
–– Statistical Packages for Correction ComputationsStatistical Packages for Correction Computations

•• No Correction for Unplanned ComparisonsNo Correction for Unplanned Comparisons

Adjustments to the standard F table are based on the amount of deviation 
from circularity, ε, that exists in the data set. The formula at the top of this 
slide provides the possible range of deviation. Geisser and Greenhouse 
(1958) consider only the maximum deviation from circularity for an 
adjustment to the F table. Their approach always results in an overcorrection 
for repeated measures unless heterogeneity of covariance is the maximum.

Box (1954) provided an adjusted F tabled value based on the value of ε as 
shown in the middle of this slide. Alternatively, the Imhof (1962) Table is 
available in the appendix of Winer et al. (1991) as Table D.18 that can be 
used for the Box correction when sample size is less than 9. To use the Box 
correction, the experimenter needs to estimate ε from the sample data. The 
Huynh and Feldt (1976) value is the most commonly used estimate of ε and 
is a correction based on the Collier, Baker, Manville, and Hayes (1967) 
formula to estimate ε based on sample data. Note that this computation 
becomes complex as shown in Winer et al. (1991, pp. 253), and statistical 
packages are usually used for this calculation. This correction is used for 
testing main effects and interactions in ANOVA, but subsequent unplanned, 
post hoc comparisons are made without correction.
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12.2. Homogeneity of Covariance (Cont'd)12.2. Homogeneity of Covariance (Cont'd)12.2. Homogeneity of Covariance (Cont'd)

•• Strategy for Testing Main Effects and InteractionsStrategy for Testing Main Effects and Interactions

Significant
?

No Yes

Step 1. Uncorrected F-Test

Fail To Reject
Ho

Significant
?

NoYes

Step 2. Geisser-Greenhouse Correction

Reject
Ho

Fail To Reject
Ho

Significant
?

NoYes

Step 3. Huynh-Feldt Correction

Reject
Ho

If the experimenter suspects marked deviations from circularity, several 
choices are available for heterogeneity of covariance. The maximum 
correction, Geisser-Greenhouse, can be adopted as a conservative 
approach. Alternatively, the Huynh-Feldt correction can be used as a more 
exact solution based on sample data estimates of ε.

This slide diagrams a general strategy using various corrections that the 
experimenter might use in correcting within-subjects design ANOVAs that 
violate the homogeneity of covariance assumption similar to the approach 
described by Myers and Wells (2003, p. 359). First an uncorrected F-test is 
conducted which may have a positive bias. If the result is not significant, 
analysis stops. If the result is significant, then it is retested using the 
Geisser-Greenhouse maximum protection for deviation from circularity. If the 
test is significant, further analysis stops and the experimenter rejects the null 
hypothesis. If the Geisser-Greenhouse correction is not significant, then the 
experimenter uses the Huynh-Feldt correction based on sample estimate of 
circularity deviations.
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12.2. Homogeneity of Covariance (Cont'd)12.2. Homogeneity of Covariance (Cont'd)12.2. Homogeneity of Covariance (Cont'd)

•• OneOne--Factor, WithinFactor, Within--Subjects Design Subjects Design 
ExampleExample

_______________________________________________________________

Source df SS MS
_______________________________________________________________

Between

Subjects (S) 3 190.19

Within

Enhancements (E) 3 166.19 55.39

F

15.80
ExS 9 31.56 3.51

Total 15 387.94
_______________________________________________________________

p

0.0006

G-G p

0.0053

H-F p

0.0006

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the Geisser-Greenhouse and Huynh-Feldt corrections for 
the one-factor, within-subjects design, example problem as calculated by 
SAS and described in the Slater and Williges (2006) appendix. Following the 
F-test strategy diagrammed in the previous slide, the experimenter would 
calculate both corrections and conclude the main effect of Enhancements is 
significant at the 0.001 level of significance based on the Huynh-Feldt
correction. Note that the Geisser-Greenhouse maximum correction (p = 
0.0053) is more severe than the Huynh-Feldt correction (p = 0.0006).
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12.2. Homogeneity of Covariance (Cont'd)12.2. Homogeneity of Covariance (Cont'd)12.2. Homogeneity of Covariance (Cont'd)

•• TwoTwo--Factor, WithinFactor, Within--Subjects Design ExampleSubjects Design Example
_________________________________________________________________

Source
_________________________________________________________________

Between

Within

Total

Subjects (S)

AxU
AxUxS

df SS

35 800.31

5 86.47

2
10 76.78

139.56

Alternative (A)
AxS

2
10

42.89
31.44

Use (U)
UxS

1
5 16.47

406.69

MS

17.29

7.68
69.78

21.41
3.14

3.29
406.69

F

6.82

123.45

9.09

_________________________________________________________________

p

0.0135

0.0001

0.0056

G-G p

0.0303

0.0001

0.0062

H-F p

0.0202

0.0001

0.0056

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows both Geisser-Greenhouse and Huynh-Feldt corrections for 
heterogeneity of covariance for the two-factor, within-subjects design 
example problem. These corrected p-values were calculated by SAS as 
described in the Slater and Williges (2006) appendix. Note that the 
correction is made for the F-test on both main effects and the AxU
interaction. As shown in the previous one-way example, the Geisser-
Greenhouse correction is the maximum correction for heterogeneity of 
covariance and results in a lower significance level than the Huynh-Feldt
correction. Note that factor Use does not have a correction for sphericity
because that factor has only two levels.  In any event, all three F-tests are 
significant at the 0.05 level of significance.
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12.3. Balancing Order of Treatments12.3. Balancing Order of Treatments12.3. Balancing Order of Treatments

•• 12.3.1. Balancing Alternatives12.3.1. Balancing Alternatives
•• 12.3.2. Balanced Latin Square12.3.2. Balanced Latin Square
•• 12.3.3. Testing Order Effects12.3.3. Testing Order Effects

A major procedural component of any within-subjects ANOVA design is to 
choose a technique for balancing the presentation order across subjects for 
the within-subjects treatments so that practice order is not confounded with 
the treatment effects. Cotton (1998) discusses the importance of balancing 
treatment orders to control carryover effects and describes various design 
alternatives for balancing and testing carryover effects in repeated measures 
experiments. Various procedures for balancing presentation orders in 
factorial ANOVA designs are presented in this subsection.
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12.3. Balancing Order of Treatments (Cont’d)12.3. Balancing Order of Treatments (Cont12.3. Balancing Order of Treatments (Cont’’d)d)

•• Totally Confounded Presentation Order of Totally Confounded Presentation Order of 
““tt”” Levels of TreatmentsLevels of Treatments
–– Every Subject Receives the Same Order of Every Subject Receives the Same Order of 

TreatmentsTreatments
•• ExampleExample: One: One--Factor, WithinFactor, Within--Subjects Subjects 

Design with Three LevelsDesign with Three Levels
Subjects

1
Presentation

2
Order

3 A3

A2

A1

S2

A3

A2

A1

S1

A3

A2

A1

S3

To illustrate the importance of balancing, this slide shows an ordering in 
which presentation order is totally confounded with the three levels of 
treatments in a one-way, within-subjects design. Note that level A1 is always 
presented first followed by A2 then A3 for each of the three subjects in the 
experiment. Practice and treatments are totally confounded. Consequently, 
the experimenter cannot determine if any significant differences in Fact A are 
due to treatment or practice effects. Obviously, this type of balancing across 
subjects should always be avoided, unless the within-subjects factor of 
interest is practice (i.e., three practice trials) and balancing of presentation 
order is not necessary.
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12.3.1. Balancing Alternatives12.3.1. Balancing Alternatives12.3.1. Balancing Alternatives

•• Completely Counterbalanced Presentation Completely Counterbalanced Presentation 
Order of Order of ““tt”” Levels of TreatmentsLevels of Treatments
–– Possible Presentation Orders = t!Possible Presentation Orders = t!
–– Requires a Minimum of t! SubjectsRequires a Minimum of t! Subjects

•• ExampleExample: One: One--Factor, WithinFactor, Within--Subjects Subjects 
Design with ThreeDesign with Three--LevelsLevels
–– t! = 3x2x1 = 6 Subjectst! = 3x2x1 = 6 Subjects

Subjects
S1 S2 S3 S4 S5 S6

1 A1 A3 A2 A1 A2 A3
Presentation

2 A2 A1 A3 A3 A1 A2
Order

3 A3 A2 A1 A2 A3 A1

The best balancing alternative is to completely counterbalance all possible 
presentation orders of treatment levels across subjects. There are t! (t 
factorial) ways of presenting “t” treatment levels. So, a completely 
counterbalanced within-subjects experimental design requires a minimum of 
t! subjects.

For example, the three-level, within-subjects design shown on this slide has 
three factorial (3!) or six possible orders of the three treatment levels 
requiring a minimum of six subjects for complete counterbalancing. 
Consequently, the experimenter should choose multiples of six subjects 
when determining sample size for this experiment.
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12.3.1. Balancing Alternatives (Cont’d)12.3.1. Balancing Alternatives (Cont12.3.1. Balancing Alternatives (Cont’’d)d)

•• Random Assignment of Random Assignment of ““tt”” Levels of Levels of 
Treatments across SubjectsTreatments across Subjects
–– Total Treatment Orders too Large for Available Total Treatment Orders too Large for Available 

SubjectsSubjects
–– Use Random Number Table for AssignmentUse Random Number Table for Assignment

•• ExampleExample: 3x4x5 Within: 3x4x5 Within--Subjects DesignSubjects Design
–– AAiiBBjjCCkk Treatment Combinations = t = 60Treatment Combinations = t = 60
–– Total Counterbalancing = 60! Treatment OrdersTotal Counterbalancing = 60! Treatment Orders
–– Total Counterbalancing Not FeasibleTotal Counterbalancing Not Feasible
–– Choose Appropriate Sample Size (n)Choose Appropriate Sample Size (n)
–– Random Order of Random Order of ““tt”” Treatments Assigned to Treatments Assigned to 

Each of Each of ““nn”” SubjectsSubjects

In most human factors experiments the resulting number of treatment 
conditions is too large to allow complete counterbalancing. When the number 
of treatment orders is extremely large, the experimenter must resort to 
random assignment of treatment orders to subjects in the within-subjects 
design as a means of controlling order effects. In this situation, a random 
number table is used to determine the treatment order for each subject.

Consider the extremely large 3x4x5 within-subjects design shown on this 
slide. There are 60 different treatments in this factorial design that each 
subject receives in the experiment. The number of possible treatment orders 
is 60!. Obviously, counterbalancing is not feasible across subject, and 
random assignment of treatment order across the appropriate sample size of 
subjects is the only feasible approach. Most human factors experiments, 
however, result in a total number of treatment conditions that can be partially 
balanced as a compromise between the complete counterbalancing and 
random assignment alternatives.
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12.3.1. Balancing Alternatives (Cont'd)12.3.1. Balancing Alternatives (Cont'd)12.3.1. Balancing Alternatives (Cont'd)

•• Partially Counterbalanced DesignPartially Counterbalanced Design
–– Compromise ApproachCompromise Approach

•• ExampleExample: Four: Four--Level, WithinLevel, Within--Subjects DesignSubjects Design
–– t! = 4! = 24 Subjects for Complete Counterbalancingt! = 4! = 24 Subjects for Complete Counterbalancing
–– Partial Counterbalancing with Four SubjectsPartial Counterbalancing with Four Subjects

Subjects

1

Presentation 2

Order 3

4

A3

A2

A1

S1

A4

A4

A3

A2

S2

A1

A1

A4

A3

S3

A2

A2

A1

A4

S4

A3

This slide shows one example of a partially counterbalanced design. In this 
four-level, within-subjects design, there are 4! or a total of 24 possible orders 
of the four treatment conditions. This requires a minimum of 24 subjects for 
complete counterbalancing where all possible orders of treatment
presentations would occur. The partial counterbalancing shown on this slide 
only requires four subjects. Across the four subjects, note that each of the 
four levels of the within-subjects factor are presented once in each of the 
four presentation positions. Using multiples of four subjects to select the 
sample size would maintain the partial counterbalancing. Note, however, that 
the sequence of preceding and following treatments conditions is held 
constant and not balanced in this partially counterbalanced scheme (e.g., A2
always follows A1).

The partial counterbalancing shown on this slide is based on a Latin square 
design that is described in detail in Topic 18 in this reference material. 
Keppel and Wickens (2004, pp. 383-393) provide a general discussion of the 
design and analysis of Latin squares for balancing the carryover of order 
effects in within-subjects designs.
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12.3.2. Balanced Latin Square12.3.2. Balanced Latin Square12.3.2. Balanced Latin Square

•• Balanced Latin Square Design Alternative for Balanced Latin Square Design Alternative for 
Ordering Ordering ““tt”” Treatments across SubjectsTreatments across Subjects
–– Partial Counterbalancing of Sequence EffectsPartial Counterbalancing of Sequence Effects
–– Requires Requires ““tt”” SubjectsSubjects

•• ExampleExample: Four: Four--Level, WithinLevel, Within--Subjects DesignSubjects Design

Subjects

1

Presentation 2

Order 3

4

A4

A2

A1

S1

A3

A1

A3

A2

S2

A4

A2

A4

A3

S3

A1

A3

A1

A4

S4

A2

A special case of Latin squares called a balanced Latin square balances 
presentation order effects and some sequence effects. A balanced Latin 
square design is the most often used procedure in human factors research 
for balancing the order and sequence effects across the treatment effects in 
within-subjects designs. This procedure uses the same number of Subjects 
(S) as the Treatments (T) and Presentation Order (O) to construct the Latin 
square. The general format for presenting the balanced Latin square is to list 
S as the columns, O as the rows, and T as the entries within the Latin 
square.

This slide provides an example of a balanced Latin square scheme for a 
four-level, within-subjects design. Note that each treatment appears once in 
each presentation order, and each treatment precedes and follows the other 
treatments once across subjects. Such a partial counterbalancing scheme of 
order and some sequence effects allows presentation order to be 
independent of treatments in a within-subjects design. It also places 
restrictions on the choice of sample size (n) for the within-subjects design. 
Namely, the experimenter would choose multiples of four subjects in order to 
use a balanced Latin square in this four levels example. Although the 
number of subjects is the same as in the previous partial counterbalancing 
example, the balanced Latin square procedure provides more control over 
sequence order effects.
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12.3.2. Balanced Latin Square (Cont’d)12.3.2. Balanced Latin Square (Cont12.3.2. Balanced Latin Square (Cont’’d)d)

•• Rules for Constructing a Balanced Latin Rules for Constructing a Balanced Latin 
SquareSquare
–– To construct the first column of treatments with To construct the first column of treatments with 

““tt”” levels, alternate treatments 1, t, tlevels, alternate treatments 1, t, t--1, etc. with 1, etc. with 
treatments 2,3,4, etc. (i.e., 1, 2, t, 3, ttreatments 2,3,4, etc. (i.e., 1, 2, t, 3, t--1, 4, etc.)1, 4, etc.)

–– Add 1 to the additional tAdd 1 to the additional t--1 columns and 1 columns and 
substitute 1 for any treatment level equal to t+1.substitute 1 for any treatment level equal to t+1.

–– One Latin Square One Latin Square is required for is required for eveneven numbered numbered 
treatments.treatments.

–– Two Latin Squares Two Latin Squares are required for are required for odd odd 
numbered treatments, where the second Latin numbered treatments, where the second Latin 
Square is formed by reversing the sequence Square is formed by reversing the sequence 
within each column of the first Latin Square.within each column of the first Latin Square.

This slides lists the rules for constructing a balanced Latin square design 
consisting of “t” treatment levels based on procedures presented by Wiiliams
(1949, 1950). Essentially, a balanced Latin square can be constructed by 
ordering the first column and then adding 1 to each treatment level in 
succeeding columns. The order of the first column is determined by 
alternating 1, t, t-1, etc. with treatment levels 2, 3, 4, etc. For example, if the 
number of treatment levels is four (i.e., t = 4) in the within-subjects design, 
the first column of the balanced Latin square is 1, 2, 4, 3. Note that only one 
Latin square is needed when there is an even number of treatment levels, 
and two Latin squares are needed when there is an odd number of treatment 
levels.
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12.3.2. Balanced Latin Square (Cont’d)12.3.2. Balanced Latin Square (Cont12.3.2. Balanced Latin Square (Cont’’d)d)

•• Even Number of TreatmentsEven Number of Treatments
•• ExampleExample: 2x3 Within: 2x3 Within--Subjects Design Subjects Design 

–– Total of 6 Total of 6 AAiiBBjj Treatment Combinations = tTreatment Combinations = t
–– Total Treatment Orders = t! = 6! = 720 OrdersTotal Treatment Orders = t! = 6! = 720 Orders
–– Single 6x6 Balanced Latin Square AlternativeSingle 6x6 Balanced Latin Square Alternative
–– Columns = SubjectsColumns = Subjects
–– Rows = Presentation OrderRows = Presentation Order

1 1 2 3 4 5 6
2 2 3 4 5 6 1
t 6 1 2 3 4 5
3 3 4 5 6 1 2
t-1 5 6 1 2 3 4
4 4 5 6 1 2 3

First
Column S1 S2 S3 S4 S5 S6

Subjects

This slide provides an example of using the rules for generating a balanced 
Latin square when the resulting number of treatments is an even number. In 
the 2x3 within-subjects design example, each subject receives a total of six 
treatments (i.e., t = 6) consisting of the factorial combination of AiBj levels. 
There is a total of 720 (i.e., 6!) possible orders of these six combinations. So, 
complete counterbalancing is not feasible because it would require 720 
subjects in the experiment. However, a balanced Latin square order of 
presentation of the resulting six treatment combinations across 6 subjects is 
a feasible alternative.

Application of the rules for generating this 6x6 balanced Latin square is 
shown on the bottom of this slide. Note that this balanced Latin square can 
be used to determine the order of the AiBj treatment combinations in the two-
factor, within-subjects design that each of the six subjects receives. The 
experimenter should use multiples of six subjects when choosing sample 
size for this example experiment in order to use a balanced Latin square for 
determining treatment presentation order in the within-subjects design 
example.



Human Factors Experimental Design and Analysis Reference

431

12.3.2. Balanced Latin Square (Cont’d)12.3.2. Balanced Latin Square (Cont12.3.2. Balanced Latin Square (Cont’’d)d)

•• Odd Number of TreatmentsOdd Number of Treatments
•• ExampleExample: Seven: Seven--Level, WithinLevel, Within--Subjects Design Subjects Design 

–– Total Treatment Orders = t! = 7! = 5,040 OrdersTotal Treatment Orders = t! = 7! = 5,040 Orders
–– Two 7x7 Balanced Latin Squares AlternativeTwo 7x7 Balanced Latin Squares Alternative
–– Minimum of 14 SubjectsMinimum of 14 Subjects
–– Columns = SubjectsColumns = Subjects
–– Rows = Presentation OrderRows = Presentation Order

1 1 2 3 4 5 6 7 5 6 7 1 2 3 4
2 2 3 4 5 6 7 1 4 5 6 7 1 2 3
t 7 1 2 3 4 5 6 6 7 1 2 3 4 5
3 3 4 5 6 7 1 2 3 4 5 6 7 1 2
t-1 6 7 1 2 3 4 5 7 1 2 3 4 5 6
4 4 5 6 7 1 2 3 2 3 4 5 6 7 1
t-2 5 6 7 1 2 3 4 1 2 3 4 5 6 7

Subjects
S8 S9 S10 S11 S12 S13 S14S1 S2 S3 S4 S5 S6 S7

First
Column

This slide provides an example of using the rules for generating a balanced 
Latin square based on an odd number of treatment levels. In the seven-level, 
within-subjects design example, two 7x7 balanced Latin squares are 
generated in which the second balanced Latin square is the inverse of the 
first. The resulting balancing is such that each treatment level appears twice 
in each presentation order, and each treatment precedes and follows every 
other treatment twice across the 14 subjects participating in the experiment.
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12.3.3. Testing Order Effects12.3.3. Testing Order Effects12.3.3. Testing Order Effects

•• ExampleExample: One: One--Way, WithinWay, Within--Subjects Design Subjects Design 
with Four Levelswith Four Levels

•• Balanced Latin SquareBalanced Latin Square

Subjects (S)

S1 S2 S3 S4

O1 A1 A2 A3 A4

Presentation O2 A2 A3 A4 A1

Order (O) O3 A4 A1 A2 A3

O4 A3 A4 A1 A2

(Click in this red rectangle to see SAS calculations for this example.)

A balanced Latin square is used to keep possible order effects, if they exist, 
independent of the treatments effects of interest. The experimenter can 
conduct a subsequent ANOVA on the balanced Latin square to test for 
possible significant order effects if desired. To illustrate this procedure, the 
balanced Latin square shown on this slide is used for ordering treatments 
across 4 subjects in the one-way, within-subjects design example of 
battlefield information enhancement procedures that was presented at the 
beginning of this topic. The SAS procedures for conducting the ANOVA on a 
balanced Latin square is presented in the Slater and Williges (2006) 
appendix.
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12.3.3. Testing Order Effects (Cont'd)12.3.3. Testing Order Effects (Cont'd)12.3.3. Testing Order Effects (Cont'd)

•• Assignment Data MatrixAssignment Data Matrix

Subjects (S)
S1 S2 S3 S4

O1 14 15 26 27 82

Presentation O2 18 17 30 19 84

Order (O) O3 20 9 21 21 71

O4 18 19 19 18 74

70 60 96 85 [311]

A1 A2 A3 A4

61 72 82 96

Factor A Treatments (A)

(Click in this red rectangle to see SAS calculations for this example.)

The data from the example of a one-way, within-subjects design in Section 
11.1.1 of this topic are presented on this slide using the balanced Latin 
square layout shown on the previous slide. Note that the totals for the four 
levels of Factor A (i.e., information enhancement procedures), subjects, and 
presentation order are calculated in order to conduct the subsequent 
ANOVA on these main effects. No interactions can be assessed in this 
design, because these three factors are not crossed.
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12.3.3. Testing Order Effects (Cont'd)12.3.3. Testing Order Effects (Cont'd)12.3.3. Testing Order Effects (Cont'd)

•• Computational FormulaeComputational Formulae

Source df SS

Total (T) [a2-1] ∑ASO ijk2 - (T... 2/a2)

Factor A (A) (a-1) (∑Ai..2/a) - (T... 2/a2)

Subjects (S) (a-1) (∑S. j.2/a) - (T... 2/a2)

Order (O) (a-1) (∑O.. k2/a) - (T... 2/a2)

Residual (R) (a-1)(a-2) SST - SS A - SS S - SS O

--OR--

∑ASO ijk2 - (∑A i..2/a) - (∑S. j.2/a)
- (∑O.. k2/a) + 2(T... 2/a2)

(Click in this red rectangle to see SAS calculations for this example.)

The usual algorithm for constructing SS formulae can be used to determine 
the total SS and the SS for the main effects of Factor A, Subjects, and 
Order. Since all three main effects have the same number of levels, the 
number of treatment levels of Factor A (i.e., a) is used to designate the df
and the denominators in the SS formulae for every effect.

The error term used in the ANOVA is a pooled error term of all other 
variance besides the three main effects tested in the ANOVA. This error 
term is appropriately called Residual. The SS for Residual is simply 
calculated by subtraction or by using the formula presented on this slide.
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12.3.3. Testing Order Effects (Cont'd)12.3.3. Testing Order Effects (Cont'd)12.3.3. Testing Order Effects (Cont'd)

•• ComputationsComputations

∑ASO ijk2 = (14)2+ ... + (18)2 = 6433

(∑Ai..2/a) = [(61) 2 + (72) 2 + (82) 2 + (96) 2]/4 = 6211.25

(∑S. j.2/a) = [(70) 2 + (60) 2 + (96) 2 + (85) 2]/4 = 6235.25

(∑O.. k2/a) = [(82) 2 + (84) 2 + (71) 2 + (74) 2]/4 = 6074.25

(T... 2/a2) = (311) 2/16 = 6045.06
SST = 6433 – 6045.06 = 387.94

SSA = 6211.25 – 6045.06 = 166.19

SSS = 6235.25 – 6045.06 = 190.19

SSO = 6074.25 – 6045.06 = 29.19

SSR = 387.94 – 166.18 – 190.18 – 29.19 = 2.37

(Click in this red rectangle to see SAS calculations for this example.)

Calculations of the five component values that make up the SS values are 
shown on the top of this slide. The resulting SS computations for the ANOVA 
on the balanced Latin square design example are presented on the bottom 
portion of this slide.
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12.3.3. Testing Order Effects (Cont'd)12.3.3. Testing Order Effects (Cont'd)12.3.3. Testing Order Effects (Cont'd)

•• ANOVA Summary TableANOVA Summary Table
_______________________________________________________

Source df SS MS F
_______________________________________________________

Enhancements (E) 3 166.19 55.39 140.02*

Subjects (S) 3 190.19 63.39 162.53

Order (O) 3 29.19 9.73 24.94
Residual (R) 6 2.37 0.39

Total (T) 15 387.94
_______________________________________________________

*p < 0.001

*

*

(Click in this red rectangle to see SAS calculations for this example.)

An ANOVA Summary Table on the balanced Latin square design used to 
balance presentation order effects in the example of a one-way, within-
subjects design is presented on this slide. The main effect of Order is tested 
in this ANOVA. Note that the SS for Enhancements, Subjects, and Total are 
the same as the ANOVA of the original one-way, within-subjects design 
shown in Section 11.1.1. of this topic. Since Residual is used as a pooled 
error term in this analysis, the resulting MS and F ratios are different from 
the original ANOVA that used the AxS interaction as the error term.

The main effects of Enhancements, Subjects, and Order are all significant at 
the 0.001 level when compared to the tabled F (F(3,6) = 23.70). Even though 
Order, O, is significant, is independent of the Enhancement, E, effect due to 
the use of the balanced Latin square and does not affect the F-test on E. 
Consequently, researchers usually do not test for presentation order effects 
and simply rely on the partial counterbalancing to protect the treatment effect 
from being confounded by presentation order. Note also that 24 subjects 
would be needed to completely counterbalance this design as compared to 
only four subjects used in the balanced Latin square alternative. Hence, the 
balanced Latin square procedure is an efficient compromise approach for 
partially balancing the effect of order while maintaining a small sample size.
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12.4. Differential Transfer12.4. Differential Transfer12.4. Differential Transfer

•• DefinitionDefinition: Carryover effect is not equal : Carryover effect is not equal 
across all sequence orders of treatmentsacross all sequence orders of treatments

•• EffectEffect
–– Counterbalancing Does Not Eliminate EffectCounterbalancing Does Not Eliminate Effect
–– Must Avoid WithinMust Avoid Within--Subjects Designs If PresentSubjects Designs If Present

•• PrecautionsPrecautions
–– Beware of Motor Skills TasksBeware of Motor Skills Tasks
–– Pretest Sequence OrdersPretest Sequence Orders

Counterbalancing is used to guard against confounding repeated measures 
carryover effects with the true treatment effect in within-subjects designs. 
Counterbalancing assumes equal carryover effects across alternative orders. 
When carryover effects are not equal, this situation is referred to as 
differential transfer (Poulton 1969). In extreme differential transfer situations, 
carryover only occurs when one particular level precedes another and no 
carryover occurs across other levels. If such differential transfer exists, it 
cannot be eliminated through counterbalancing. So, the experimenter should 
avoid using a within-subjects design and use a between-subjects design 
instead when marked differential transfer exists.

The experimenter should take two precautions if differential transfer is 
suspected. First, one should be cautious using a within-subjects design with 
motor skills tasks, because differential transfer frequently exists. For 
example, Roscoe and Williges (1975) suggested differential transfer may 
have affected the results of a within-subjects evaluation of aircraft attitude 
indicators in a flight experiment. Second, sequence order can be tested if 
extreme differential transfer is suspected. The treatment effects when they 
appear in the first position can be compared to other positions as a check on 
differential transfer. In any event a between-subjects design instead of a 
within-subjects design is the only alternative to avoid extreme differential 
transfer confounding.
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12.5. Within-Subjects Design Advantages12.5. Within12.5. Within--Subjects Design AdvantagesSubjects Design Advantages

•• Uses Fewer SubjectsUses Fewer Subjects
•• Refines The Error TermRefines The Error Term

Between-Subjects Design

Source df

Treatment (T) 4

Error (S/T) 45

Total 49

Within-Subjects Design

Source df

Between-Subjects

Subjects (S) 9

Within-Subjects

Treatment (T) 4

TxS 36

Total 49

Within-subject ANOVA designs must be used when the factor of interest 
exists only as repeated measures. For example, practice trials and time on 
task are considered within-subjects variables. The experimenter, however, 
often considers using a within-subjects design to investigate other factors as 
a way of reducing the number of different subjects needed in the experiment. 
For example in the between-subjects and within-subjects design alternatives 
shown on this slide, both have a total of 50 observations. The between-
subjects design requires 50 different subjects; whereas, the within-subjects 
design alternative requires only ten different subjects that receive all five 
levels of treatments where treatment order is balanced by two Balanced 
Latin Squares.

Within-subject designs are generally more powerful in testing an effect than 
a between-subjects design, because the main effect of between subject 
differences is removed from the error term. Difference among subjects is 
often the largest source of variation in a human factors experiment . The 
design comparison listed on this slides shows that T is tested by the TxS
interaction (36 df) in the within-subjects design and the main effect of S (9 df) 
is removed from the error term. Alternatively, T is tested by S/T (45 df) in the 
between-subjects design. The large variability among subjects usually 
offsets the reduced df in the error term to make the within-subjects design 
more sensitive than its between-subjects counterpart.
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12.5. Within-Subjects Design Advantages (Cont'd)12.5. Within12.5. Within--Subjects Design Advantages (Cont'd)Subjects Design Advantages (Cont'd)

•• More Sensitive F TestMore Sensitive F Test

**p < 0.001

Between

Subjects (S)

Within

Enhancements (E)
ExS

Total

15. 80**

3

3

9

15

190.19

166.19

31.56

387.94

Source Fdf SS

Within-Subjects Design

Enhancements (E)
S/E

Total

2. 99*3

12

15

166.19

221.75

387.94

Source Fdf SS

Between-Subjects Design

*p > 0.05

(Click in this red rectangle to see SAS calculations for this example.)

This slide provides the ANOVA Summary Table of the example problem of 
the one-factor, within-subjects design and its between-subjects design 
counterpart using the same hypothetical data set. Note that the within-
subjects design used only four different subject; whereas, its between-
subjects alternative would require a total of 16 different subjects (i.e., four 
different subjects in each of the four levels of Enhancements). The within-
subjects design alternative results in a significant difference among 
Enhancements (p < 0.001), but the between-subjects alternative fails to find 
a significant difference (p > 0.05). Even though the between-subjects design 
alternative has more degrees of freedom in the error term than the within-
subjects design (i.e. 15 df versus 9 df), the pooled SSError of the between-
subjects alternative (221.75) is much larger than the SSError of the within-
subjects alternative (31.56) that removes the SS of the main effect of 
subjects (190.19) from the error term. Hence, the within-subjects design 
alternative requires fewer subjects and provides a more sensitive F-test than 
its between-subjects design counterpart.



Human Factors Experimental Design and Analysis Reference

440

12.6. Summary12.6. Summary12.6. Summary

•• WithinWithin--Subjects ANOVA Design Configuration Subjects ANOVA Design Configuration 
and Analysisand Analysis
–– Subjects Crossed with Factors of InterestSubjects Crossed with Factors of Interest
–– ANOVA Rules, Algorithms, and Procedures ApplyANOVA Rules, Algorithms, and Procedures Apply
–– Error Terms Include Interactions with SubjectsError Terms Include Interactions with Subjects

•• Additional ConsiderationsAdditional Considerations
–– Homogeneity of Covariance AssumptionHomogeneity of Covariance Assumption
–– Balancing Presentation OrderBalancing Presentation Order
–– Differential TransferDifferential Transfer

•• Overall AdvantagesOverall Advantages
–– Fewer SubjectsFewer Subjects
–– Increased SensitivityIncreased Sensitivity

By way of summary, this topic covered within-subjects ANOVA design 
configurations and analyses that require subjects to be crossed with all the 
factors of interest in the experiment. If the researcher chooses a within-
subjects design, all the ANOVA rules, algorithms and procedures apply. 
Assuming all factors of interest are fixed-effects factor, the interaction of 
factor(s) with subjects is the appropriate error term for tests of significance in 
these repeated measures designs.

Additionally, the experimenter must consider the assumption of homogeneity 
of covariance and make adjustments to the F table if marked deviations from 
circularity are expected. Since every subject receives every treatment in a 
within-subjects design, the researcher also needs to balance presentation 
order through complete counterbalancing, partially balanced Latin squares, 
or random assignment procedures. Balanced Latin square procedures are 
most useful in human factors research and have implications for choice of 
sample size. Marked carryover effects as demonstrated be differential 
transfer may preclude the use of within-subjects designs.

Overall, the within-subjects design is more sensitive and requires fewer 
subjects than its between-subjects counterpart. Some variables such as 
practice only exist as repeated measures. Others such as type of training 
cannot be manipulated as a within-subjects factor. Many factors, however, 
can be investigated as either within-subjects or between-subjects factors.
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12.7. Supplemental Readings12.7. Supplemental Readings12.7. Supplemental Readings

REFERENCEREFERENCE
Cotton (1998)Cotton (1998)
Keppel & Keppel & WickensWickens (2004)(2004)
Maxwell & Delaney (2000)Maxwell & Delaney (2000)
Myers & Well (2003)Myers & Well (2003)
PoultonPoulton (1969)(1969)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapters 1, 2, 5, 13Chapters 1, 2, 5, 13
Chapters 16Chapters 16--18, 2318, 23
Chapters 11Chapters 11--1414
Chapter 13Chapter 13
Entire ArticleEntire Article
Chapters 4, 7 Chapters 4, 7 

Within-subject designs are commonly used in behavioral science research. 
Appropriate chapters in common experimental design textbooks used by 
human factors researchers are listed on this slide. All of these texts cover 
univariate approaches to within-subjects designs similar to the presentation 
in this reference material. The most extensive discussion to multivariate 
approaches to within-subjects designs is covered in the supplemental 
reading by Maxwell and Dulaney (2000). In Chapter 5, Cotton (1998) 
describes SAS general linear model (GLM) analytical procedures for testing 
the overall order effect as well as other various carryover effects across 
orders in factorial ANOVA designs. Additionally, the Cotton (1998) reference 
discusses special purpose crossover design alternatives, and the Poulton
(1969) article discusses differential transfer.
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This topic covers the basic configuration and analytical procedures used in 
mixed-factors ANOVA designs which comprise the third major category of
ANOVA designs. Mixed-factors designs are composed of both between-
subjects and within-subjects factors. This type of ANOVA design is often 
referred to as split-plot designs in the scientific literature.

These designs are used quite frequently in human factors and ergonomic 
research due to the nature of the independent variables being investigated in 
the experiment. Consider a training research study that investigates training 
methods and practice trials. The researcher must manipulate the training 
condition variable as a between-subjects variable because subjects cannot 
return to a beginning level of knowledge when provided with alternative 
training. On the other hand, practice trials in this training experiment must be 
manipulated as a within-subjects factor since each subject receives multiple 
trials. Consequently, a mixed-factors design is needed.

This topic also provides a list of considerations that the research should 
address when using mixed-factors designs and ends with a list of 
recommended supplemental readings in experimental design textbooks 
dealing with mixed-factors designs.

Topic 13. Mixed-Factors ANOVA DesignsTopic 13. MixedTopic 13. Mixed--Factors ANOVA DesignsFactors ANOVA Designs

13.1. Mixed13.1. Mixed--Factors Design ConfigurationsFactors Design Configurations
13.1.1. Two13.1.1. Two--Factor DesignFactor Design
13.1.2. Two13.1.2. Two--Factor Design ExampleFactor Design Example
13.1.3. Three13.1.3. Three--Factor DesignFactor Design
13.1.4. n13.1.4. n--Factor DesignFactor Design

13.2. Mixed13.2. Mixed--Factors Design ConsiderationsFactors Design Considerations
13.3. Summary13.3. Summary
13.4. Supplemental Readings13.4. Supplemental Readings
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13.1. Mixed-Factors Design Configurations13.1. Mixed13.1. Mixed--Factors Design ConfigurationsFactors Design Configurations

•• 13.1.1 Two13.1.1 Two--Factor DesignFactor Design
•• 13.1.2. Two13.1.2. Two--Factor Design ExampleFactor Design Example
•• 13.1.3. Three13.1.3. Three--Factor DesignFactor Design
•• 13.1.4. n13.1.4. n--Factor DesignFactor Design

A mixed-factors ANOVA design, by definition, must have a minimum of one 
between-subjects factor and one within-subjects factor. Consequently, a two-
factor design is the smallest possible mixed-factors design. After a two-factor 
design is described in terms of the simplified notation, a computational 
example is provided. Both three-factor and generalizations to n-factor 
designs are described to emphasize that all the general procedures, rules, 
and algorithms for ANOVA designs using the simplified notation also apply to 
any factorial mixed-factors design.
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13.1.1. Two-Factor Design13.1.1. Two13.1.1. Two--Factor DesignFactor Design

Factor B
B1 B2 B3

S1 ABS111 ABS121 ABS131
S2 ABS112 ABS122 ABS132

A1 S3 ABS113 ABS123 ABS133 A1..S4 ABS114 ABS124 ABS134

[AB11 .] [AB12 .] [AB13 .]
Factor A

S5 ABS115 ABS125 ABS135
S6 ABS116 ABS126 ABS136

[AB21 .] [AB22 .] [AB23 .]
B.1. B.2. B.3. [T...]

S7 ABS211 ABS221 ABS231
S8 ABS212 ABS222 ABS232

A2 S9 ABS213 ABS223 ABS233 A2..S10 ABS214 ABS224 ABS234
S11 ABS215 ABS225 ABS235
S12 ABS216 ABS226 ABS236

Yijkl = µ + αi + βj + γk(i) + αβij + βγjk(i) + εl(ijk)

AS1.1
AS1.2
AS1.3
AS1.4
AS1.5
AS1.6

AS2.1
AS2.2
AS2.3
AS2.4
AS2.5
AS2.6

This slide lists the statistical model and the data matrix layout in the 
simplified notation for the basic two-way, mixed-factors ANOVA design. Note 
that the statistical model lists subjects being nested in Factor A and crossed 
with Factor B. Consequently, the data matrix shows that when n = 6, the six 
levels of subjects in A1 are different than the six levels of subjects in A2
resulting in a total of 12 different subjects required for participation in the 
experiment. Each of these 12 subjects receives all three levels of the within-
subjects factor, Factor B. The choice of six subjects per cell is appropriate in 
order to completely counterbalance the three levels of the within-subjects 
Factor B.

If the statistical model were changed such that subjects were crossed with 
Factor A and nested in Factor B, then a total of 18 different subjects would 
be required if cell size remained 6. And, subject designation in the data 
matrix would be changed accordingly.
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13.1.1. Two-Factor Design (Cont'd) 13.1.1. Two13.1.1. Two--Factor Design (Cont'd) Factor Design (Cont'd) 

•• Sum of SquaresSum of Squares

SSA = (∑A i..2/bn) - (T... 2/abn)

SSS/A = (∑AS i.k2/b) - (∑A i..2/bn)

SSB = (∑B. j.2/an) - (T... 2/abn)

SSBxA = (∑AB ij.2/n) - (∑A i..2/bn) - (∑B. j.2/an) + (T... 2/abn)

SSBxS/A = ∑ABS ijk2 - (∑AB ij.2/n) - (∑AS i.k2/b) + (∑A i..2/bn)

SSTotal = ∑ABS ijk2 - (T... 2/abn)

(∑Ai..2/bn)

(∑B. j.2/an)

(∑ABij.2/n)

(∑AS i.k2/b)

∑ABSijk2

(T... 2/abn)

The experimenter can use the SS algorithm for generating the SS formulae 
for mixed-factors designs. The top portion of this slide shows the various SS 
computational formulae for a two-way, mixed-factors design using the 
simplified notation. Note that the formulae are made up of various 
combinations of the six component values listed at the bottom of this slide. 
Each of these component values are listed on the previous slide.
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13.1.1. Two-Factor Design (Cont'd) 13.1.1. Two13.1.1. Two--Factor Design (Cont'd) Factor Design (Cont'd) 

•• F TestsF Tests

Yijkl = µ + αi + βj + γk(i) + αβij + βγjk(i) + εl(ijk)

E(MS A) = bn σα2 + bσγ2 + σε2

E(MS B) = anσβ 2 + σβγ 2 + σε2

E(MS S/A) = bσγ2 + σε2

E(MS BxA) = n σαβ2 + σβγ2 + σε2

E(MS BxS/A) = σβγ 2 + σε2

FA = MS A / MS S/A

FB = MS B / MS BxS/A

FBxA = MS BxA / MS BxS/A

The experimenter can use the algorithm for specifying the expected mean 
squares based on the statistical model of the two-way, mixed-factors design. 
The resulting E(MS) for this design are listed on this slide.

By using the rules for generating F ratios, one can determine that MSS/A is 
the appropriate error term for testing Factor A, and MSBxS/A is the appropriate 
error term for testing both Factor B and the AxB interaction. These three 
resulting F ratios are shown on the bottom portion of this slide.
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13.1.1. Two-Factor Design (Cont'd)13.1.1. Two13.1.1. Two--Factor Design (Cont'd)Factor Design (Cont'd)

•• ANOVA Summary TableANOVA Summary Table
___________________________________________________________

Source df SS MS F
___________________________________________________________

Between

A a-1 SSA MSA MSA/MS S/A
S/A a(n-1) SSS/A MSS/A

Within

B b-1 SSB MSB MSB/MS BxS/A
BxA (a-1)(b-1) SSBxA MSBxA MSBxA/MS BxS/A
BxS/A         a(b-1)(n-1)       SSBxS/A MSBxS/A

Total abn-1 SStotal
___________________________________________________________

The general format for specifying the ANOVA Summary Table is shown on 
this slide for the two-factor design. Both between-subjects and within-
subjects effects are listed for mixed-factors designs. Note that Factor A is 
the between-subjects factor and Factor B is the within-subjects factor as 
previously specified in the statistical model. The error terms are grouped with 
the effects being tested. Based on the E(MS) shown on the previous page, 
the S/A error term is grouped with A as a between-subjects effect, and the 
BxS/A error term is grouped with both B and BxA as a within-subjects 
effects.
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•• Example ProblemExample Problem: The decrement in target : The decrement in target 
detection across 1detection across 1--hour monitoring hour monitoring 
sessions was measured every 20 minutes sessions was measured every 20 minutes 
for five soldiers who monitored displays for five soldiers who monitored displays 
where the ratio of targets to nonwhere the ratio of targets to non--targets targets 
was either 9/1 or 1/9. Are there any was either 9/1 or 1/9. Are there any 
significant effects (p < 0.05) in the percent significant effects (p < 0.05) in the percent 
of defined targets detected in this of defined targets detected in this 
experiment?experiment?

13.1.2. Two-Factor Design Example 13.1.2. Two13.1.2. Two--Factor Design Example Factor Design Example 

(Click in this red rectangle to see SAS calculations for this example.)

This slide describes a two-way, mixed-factors example problem that has a 
sample size of 5 (i.e., n = 5). The ratio of targets to non-targets is treated as 
a between-subjects factor and has two levels, 9/1 or 1/9. The three 
successive 20-minute monitoring sessions are, by definition, levels of a 
within-subjects factor because each subject must participate in each of the 
three successive sessions during the 1-hour monitoring period. The Slater 
and Williges (2006) appendix describe the SAS analysis for this example 
problem of a mixed-factors design. 
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13.1.2. Two-Factor Design Example (Cont’d)13.1.2. Two13.1.2. Two--Factor Design Example (ContFactor Design Example (Cont’’d)d)

Time Monitoring
(Factor B)

A1..= 1281

[T... = 2650]

A2..= 1369

AS1.1 = 267
AS1.2 = 254
AS1.3 = 251
AS1.4 = 252
AS1.5 = 257

AS2.1 = 270
AS2.2 = 277
AS2.3 = 284
AS2.4 = 274
AS2.5 = 264

S1
S2

1/9 S3
S4

S/N Ratio
(Factor A)

S5

S6
S7

9/1 S8
S9
S10

0-20 min.
95
89
92
86

[452]
90

[458]

90
87
96
94
91

B.1.= 910

20-40 min.
90
82
80
89

[433]
92

[453]

88
95
93
90
87

B.2.= 886

40-60 min.
82
83
79
77

[396]
75

[458]

92
95
95
90
86

B.3.= 854

(Click in this red rectangle to see SAS calculations for this example.)

Hypothetical target detection percentage data for the example problem are 
presented in the data matrix shown on this slide. The simplified notation is 
used to show various totals used in the subsequent SS calculations. Note 
that the 30 detection probabilities shown across the six cells of the design 
are designated as various ABSijk scores and the cell totals shown in brackets 
are various ABij. totals.

Note that the three levels of the within-subjects factor, Time Monitoring, 
cannot be counterbalanced because the three 20-minute sessions can only 
occur successively. Consequently, a sample size (i.e., n = 5) was chosen by 
the experimenter without concern for counterbalancing. If counterbalancing 
were possible, then a sample size of six would be more appropriate in order 
to completely counterbalance the three levels of the within-subjects factor in 
the mixed-factors design.
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13.1.2. Two-Factor Design Example (Cont'd) 13.1.2. Two13.1.2. Two--Factor Design Example (Cont'd) Factor Design Example (Cont'd) 

•• Component ComputationsComponent Computations

(∑Ai..2/bn) = [(1281) 2 + (1369) 2] / (3)(5) = 234341.47

(∑B. j.2/an) = [(910) 2 + (886)2+ (854)2 ] / (2)(5) = 234241.20

(∑ABij.2/n) = [(452)2 + ... + (458)2] / (5) = 234669.20

(∑AS i.k2/b) = [(267) 2 + ... + (264) 2] / (3) = 234472.00

∑ABSijk2 = (95)2 + ... + (86)2 = 235022.00

(T... 2/abn) = (2650) 2 / (3)(2)(5) = 234083.33

(Click in this red rectangle to see SAS calculations for this example.)

The six component computations of the example data that are used in the 
SS calculations for this mixed-factors design example are shown on this 
slide.
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13.1.2. Two-Factor Design Example (Cont'd)13.1.2. Two13.1.2. Two--Factor Design Example (Cont'd)Factor Design Example (Cont'd)

•• SS ComputationsSS Computations

SSA = (234341.47) - (234083.33) = 258.14

SSS/A = (234472.00) - (234341.47) = 130.53

SSB = (234241.2) - (234083.33) = 157.87

SSBxA = (234669.2) - (234341.47) - (234241.20)  
+ (234083.33) = 169.86

SSBxS/A = (235022.00) - (234669.2) - (234472.00) 
+ (234341.47) = 222.27

SSTotal = (235022.00) - (234083.33) = 938.67

(Click in this red rectangle to see SAS calculations for this example.)

The experimenter can use the components scores calculated on the
previous slide to determine the various SS values from the SS formulae 
stated in the simplified notation for the mixed-factors design example.
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13.1.2. Two-Factor Design Example (Cont'd) 13.1.2. Two13.1.2. Two--Factor Design Example (Cont'd) Factor Design Example (Cont'd) 

•• ANOVA Summary TableANOVA Summary Table
_______________________________________________________

Source df SS MS F
_______________________________________________________

Between

Ratio (R) 1 258.14 258.14 15.82
S/R 130.53 16.32

Within

Time (T) 2 157.87 78.94 5.68*
TxR 2 169.86 84.93 6.11*
TxS/R       16 222.27 13.89

Total 29 938.67
_______________________________________________________

**
8

*p < 0.05 **p < 0.01

(Click in this red rectangle to see SAS calculations for this example.)

The complete Summary Table for the mixed-factors design example is 
shown on this slide. The Summary Table is presented in the standard format 
using designations for the actual factors manipulated in the experiment 
rather than generic Factor A and B designations.

Note that two of the F-ratios indicate significant differences at the 0.05 level 
and one indicates significance at the 0.01 when compared to F tabled 
values. Since Ratio only has two levels, the experimenter can conclude that 
soldiers detected significantly more targets overall in the 9/1 ratio condition 
than in the 1/9 ratio condition. Additional post hoc comparisons are needed 
to isolate the main effect of Time and the RxT interaction. Looking at the cell 
means in the data set, it appears that decrease in detection probability 
across the successive 20-minute monitoring periods appear to be restricted 
to the 1/9 ratio condition that is characteristic of classical vigilance 
decrements in human factors research. In fact, Williges (1969) reported 
similar results in an actual monitoring experiment and interpreted these 
results in terms of signal detection theory.
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13.1.3. Three-Factor Design13.1.3. Three13.1.3. Three--Factor DesignFactor Design

Yijklm = µ + αi + βj + δk + γl(ij) + αβij +αδik + βδjk + δγkl(ij) + αβδijk + εm(ijkl)___________________________________________________________

Source df SS MS F
___________________________________________________________

Between
A a-1 SSA MSA MSA/MS S/AB
B b-1 SSB MSB MSB/MS S/AB

AxB (a-1)(b-1) SSAxB MSAxB MSAxB/MS S/AB
S/AB ab(n-1) SSS/AB MSS/AB

Within
C c-1 SSC MSC MSC/MS CxS/AB

AxC (a-1)(c-1) SSAxC MSAxC MSAxC/MS CxS/AB
BxC (b-1)(c-1) SSBxC MSBxC MSBxC/MS CxS/AB

AxBxC (a-1)(b-1)(c-1)      SS AxBxC MSAxBxC MSAxBxC/MS CxS/AB
CxS/AB      ab(c-1)(n-1)         SS CxS/AB MSCxS/AB

Total abcn-1 SStotal
___________________________________________________________

All the general procedures, rules, and algorithms apply to higher-order, 
mixed-factors designs. Always begin by stating the statistical model of the 
design. This slide shows the ANOVA Summary Table of a three-way, mixed-
factors design that includes two between-subjects factors, A and B, and one 
within-subjects factor, C. The statistical model shows this designation in the 
nesting relationship for subjects, γ.

Notice that the between-subjects effects are grouped with their single error 
term, S/AB. Likewise, the within-subjects effects are grouped with their 
single error term, CxS/AB.
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13.1.3. Three-Factor Design (Cont’d)13.1.3. Three13.1.3. Three--Factor Design (ContFactor Design (Cont’’d)d)

Yijklm = µ + αi + βj + δk + γl(i) + αβij+ αδik+ βδjk + δγkl(i) + αβδijk + εm(ijkl)
______________________________________________________________

Source df SS MS F

B b-1 SSB MSB
AxB (a-1)(b-1) SSAxB MSAxB

MSB/MS BxS/A
MSAxB/MS BxS/A

______________________________________________________________
Between

A a-1 SSA MSA MSA/MS S/A
S/A a(n-1) SSS/A MSS/A

Within

BxC (b-1)(c-1) SSBxC
AxBxC (a-1)(b-1)(c-1)         SSAxBxC

MSBxC/MS BxCxS/A
MSAxBxC/MS BxCxS/A

BxCxS/A   a(b-1)(c-1)(n-1)        SSBxCxS/A

MSBxC
MSAxBxC
MSBxCxS/A

Total abcn-1 SStotal______________________________________________________________

C c-1 SS C MSC/MS CxS/A
AxC (a-1)(c-1) SSAxC MSAxC/MS CxS/A

CxS/A          a(c-1)(n-1)           SSCxS/A

MSC
MSAxC
MSCxS/A

BxS/A         a(b-1)(n-1)           SSBxS/A MSBxS/A

+ βγjl(i) βδγjkl(i)+ 

This slide shows the ANOVA Summary Table of an alternative three-way, 
mixed-factors design that includes only one between-subjects factor, A, and 
two within-subjects factor, B and C. The statistical model shows this 
designation in the nesting relationship for subjects, γ. Again, the 
experimenter should always begin by stating the statistical model of the 
design in order to determine all the effects that can be estimated.

Notice that the single between-subjects effect, A, is grouped with its error 
term, S/A. Likewise, the within-subjects effects are grouped with their error 
terms. One can determine that there are three possible within-subjects error 
terms, BxS/A, CxS/A, and BxCxS/A, based on the E(MS) designations for 
this mixed-factors design. The three groupings of effects with their error term 
are shown on this slide.

The same main effects, two-way interactions, and the three-way interaction 
tested in the previous three-way design example are tested in this design, 
but different error terms are used due to the crossed and nesting relationship 
of factors. The experimenter can always determine the appropriate 
relationship for any mixed-factors design by following the general ANOVA 
procedures, rules, and algorithms.
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13.1.4. n-Factor Design13.1.4. n13.1.4. n--Factor DesignFactor Design

•• GeneralizationsGeneralizations
–– Can include any number of factors of interest.Can include any number of factors of interest.
–– All rules, procedures, and algorithms apply.All rules, procedures, and algorithms apply.
–– All factors of interest are crossed and can interact.All factors of interest are crossed and can interact.
–– Subjects are nested within all betweenSubjects are nested within all between--subjects factors of subjects factors of 

interest, and this subject effect is the error term for all interest, and this subject effect is the error term for all 
betweenbetween--subjects Fsubjects F--tests.tests.

–– The subject effect is crossed with all withinThe subject effect is crossed with all within--subjects subjects 
factors of interest and can interact with them.factors of interest and can interact with them.

–– The interaction of the withinThe interaction of the within--subjects effect with the subjects effect with the 
subject effect is the error term for all F tests on the withinsubject effect is the error term for all F tests on the within--
subjects effect as well as its interactions with the subjects effect as well as its interactions with the 
betweenbetween--subjects effects.subjects effects.

–– Assumes subjects are randomAssumes subjects are random--effectseffects
–– Assumes factors of interest are fixedAssumes factors of interest are fixed--effectseffects

This slide provides generalizations for any mixed-factors design that has 
equal sample size and all the factors of interest are crossed and considered 
fixed-effects variables. The experimenter should begin by stating the 
statistical model of the mixed-factors design and then follow all the ANOVA 
rules and algorithms for stating the sources of variation, SS formulae, E(MS) 
values, and possible F-ratios.

Notice that the error terms of the between-subjects effects are simply 
subjects nested within those effects. Likewise, the error terms for within-
subjects effects are the interactions of those effects with the nested subject 
effect. The regular grouping procedures for between-subjects and within-
subjects effects are used in specifying the resulting ANOVA Summary Table.
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13.2. Mixed-Factors Design Considerations13.2. Mixed13.2. Mixed--Factors Design ConsiderationsFactors Design Considerations

•• BetweenBetween--Subjects versus WithinSubjects versus Within--SubjectsSubjects
–– Naturally Occurring FactorsNaturally Occurring Factors
–– Baseline PerformanceBaseline Performance

•• Balancing WithinBalancing Within--Subjects FactorsSubjects Factors
–– Balancing ProceduresBalancing Procedures
–– Sample Size, nSample Size, n

•• Locus of Significant EffectsLocus of Significant Effects
–– Main EffectsMain Effects
–– InteractionsInteractions

The experimenter must decide which factors are manipulated as between-
subjects factors and which factors are treated as within-subjects factors 
when using a mixed-factors design. Usually this decision is determined by 
the natural occurrence of the factors. For example, Williges, Johnston, and 
Briggs (1967) used a three-way mixed-factors transfer of training design to 
investigate verbal communication in teamwork. Exposure to the various 
communication conditions during training and transfer required between-
subjects manipulation, but the practice trials factor was naturally a within-
subjects factor. If independent variables are manipulated as within-subjects 
factors, care must be taken that human performance is not affected by 
repeated measures and these factors are measured at the same baseline of 
performance as would occur with between-subjects effects.

The within-subjects factors in a mixed-factors design must be balanced to 
control order and sequence effects as discussed in Topic 12 dealing with 
within-subjects designs. Usually, a Balanced Latin Square is the most 
efficient balancing procedure requiring the minimum number of subjects. The 
overall results of F-tests in mixed-factors designs involving more than two-
levels of a factor require additional post hoc tests as described in Topic 11 in 
order to isolate the locus of main effects and interactions.
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13.3. Summary13.3. Summary13.3. Summary

•• MixedMixed--Factors Design ConfigurationFactors Design Configuration
–– Basic TwoBasic Two--Way, MixedWay, Mixed--Factors DesignFactors Design
–– HigherHigher--Order DesignsOrder Designs

•• Design ConsiderationsDesign Considerations
–– Choice of FactorsChoice of Factors
–– Analytical ProceduresAnalytical Procedures
–– Error Term GeneralizationsError Term Generalizations
–– Post Hoc AnalysesPost Hoc Analyses

Mixed-factors designs are one of the most useful ANOVA designs for human 
factors, because researchers often need to consider variables 
simultaneously that naturally appear as between-subjects and within-
subjects variables in the same experiment. The basic mixed-factors design 
involves two factors (i.e., one between-subjects factor and one within-
subjects factor). The experimenter can generate any higher-order, mixed-
factors, factorial design with more than two factors involving any combination 
of between-subjects and within-subjects factors.

The experimenter must decide which variables are manipulated as between-
subjects variables and which variables are manipulated as within-subjects 
variables in a mixed-factors design. The nature of the real-world variable is 
the overriding parameter in making this decision. Gender, for example, 
would always be a between-subjects factor. Carryover effects that could 
change baseline performance must be considered with all within-subjects 
factors. All data analysis procedures used in mixed-factors designs such as 
calculating the overall ANOVA, choosing error terms for F-tests, and 
conducting post hoc analyses on main effects and interactions follow the 
same rules and algorithms used for between-subjects and within-subjects 
ANOVA designs once the appropriate mixed-factors statistical model is 
stated.
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13.4. Supplemental Readings13.4. Supplemental Readings13.4. Supplemental Readings

REFERENCEREFERENCE
Hicks & Turner (1999)Hicks & Turner (1999)
Keppel & Keppel & WickensWickens (2004)(2004)
Mason, Mason, GunstGunst, & Hess (2003), & Hess (2003)
Montgomery (2005)Montgomery (2005)
Myers and Well (2003)Myers and Well (2003)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapter 11Chapter 11
Chapters 19Chapters 19--20, 2320, 23
Chapters 11, 13Chapters 11, 13
Chapter 14Chapter 14
Chapter 14Chapter 14
Chapters 5Chapters 5--6 6 

Appropriate chapters dealing with mixed-factors or split-plot designs in 
common experimental design textbooks used by human factors researchers 
are listed on this slide. The chapters in Keppel and Wickens (2004) and 
Winer et al. (1991) most closely follow the procedures covered in this topic.
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This topic provides a brief summary review and roadmap of basic ANOVA in 
terms of fundamental considerations, ANOVA design classification, 
generalizations, steps in the overall ANOVA design and data interpretation 
process. Details on these issues are provided in the topics referenced. This 
topic ends with a summary of recommended supplemental readings in 
experimental design textbooks dealing with basic ANOVA.

Topic 14. Summary of Basic ANOVATopic 14. Summary of Basic ANOVATopic 14. Summary of Basic ANOVA

14.1. Basic Considerations14.1. Basic Considerations
14.2. ANOVA Rules and Algorithms14.2. ANOVA Rules and Algorithms
14.3. Design Classification14.3. Design Classification
14.4. n14.4. n--Factor Design GeneralizationsFactor Design Generalizations
14.5. ANOVA Design Process14.5. ANOVA Design Process
14.6. Summary14.6. Summary
14.7. Supplemental Readings14.7. Supplemental Readings
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14.1. Basic Considerations14.1. Basic Considerations14.1. Basic Considerations

•• Basic TermsBasic Terms
•• AssumptionsAssumptions
•• Statistical ModelStatistical Model
•• Expected Mean SquaresExpected Mean Squares
•• Statistical Hypothesis TestingStatistical Hypothesis Testing
•• ANOVA Summary TableANOVA Summary Table
•• Simplified Design NotationSimplified Design Notation
•• ANOVA ComputationsANOVA Computations
•• Supplemental AnalysesSupplemental Analyses

Every ANOVA design can be described using a standard terminology
including factors, factor level, crossed and nested factors, factorial design, 
treatment cell, interaction and factors can be identified as fixed or random. 
Knowing these terms and the basic assumptions of homogeneity of variance 
and normally distributed variables as described in Topic 8 are central to 
understanding ANOVA. The additional assumption of homogeneity of
covariance must be considered for within-subjects designs as described in 
Topic 12. Usually an equal sample size is used in human factors research to 
provide robustness against basic assumption violations.

Using standard rules, procedures and algorithms, the researcher begins by 
stating the statistical model of the ANOVA design in order to determine the 
effects of interest that can be estimated from the experiment. Subsequently, 
the error terms to be used in statistical hypothesis testing using F-ratios are 
determined through the expected mean squares. The results of any ANOVA 
can be summarized in a Summary Table that provides sources of variation, 
degrees of freedom, sum of squares, mean squares, and F-ratios. 
Conventions are followed for grouping effects in ANOVA Summary Tables, 
and every F-test can be specified in a standard format as presented in Topic
9. A simplified notation and an algorithm for calculating the SS in ANOVA 
are presented in Topic 10. Based on the results of the overall ANOVA, the 
experimenter may conduct a series of post hoc supplemental comparisons to 
isolate significant main effects and interaction effects as presented in Topic 
11. 
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14.2. ANOVA Rules and Algorithms14.2. ANOVA Rules and Algorithms14.2. ANOVA Rules and Algorithms

•• 14.2.1. Specification of Statistical Models14.2.1. Specification of Statistical Models
•• 14.2.2. Rules for Degrees of Freedom14.2.2. Rules for Degrees of Freedom
•• 14.2.3. SS Computational Formulae Algorithm14.2.3. SS Computational Formulae Algorithm
•• 14.2.4. Algorithm for Stating E(MS)14.2.4. Algorithm for Stating E(MS)
•• 14.2.5. Steps for Determining F14.2.5. Steps for Determining F--RatiosRatios

This is a summary of all the algorithms for equal sample size, factorial, 
ANOVA designs. These are listed in order in which one would use them in 
calculating a summary table. First state the statistical model. Then calculate 
the degrees of freedom. Next calculate the sum of squares using the 
algorithm. Then calculate the mean squares using the algorithm for 
specifying expected mean squares. Finally go through the steps for 
determining the F ratios.

Even though computer-based statistical analysis programs are usually used 
in ANOVA, human factors researchers should always state the sources, 
degrees of freedom, and error terms for their ANOVA beforehand to avoid 
conducting an inappropriate ANOVA using the statistical package. These 
procedural rules facilitate this specification. Details on the uses of these 
algorithms are presented in Topics 8 and 9 of this reference material.
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14.2.1. Specification of Statistical Models14.2.1. Specification of Statistical Models14.2.1. Specification of Statistical Models

•• Step 1Step 1. Specify an observation as a linear combination of the . Specify an observation as a linear combination of the 
population mean, main effects, subjects, interactions, and population mean, main effects, subjects, interactions, and 
random error whererandom error where

–– Observation = YObservation = Y
–– Population Mean = Population Mean = µµ
–– Random Error = Random Error = εε

•• Step 2Step 2. Specify main effects, subjects, and interactions where. Specify main effects, subjects, and interactions where
–– Greek letters refer to each factorGreek letters refer to each factor
–– Subjects = Subjects = γγ

•• Step 3Step 3. Denote the levels of each effect by a Roman subscript  . Denote the levels of each effect by a Roman subscript  
beginning with  letter "i" where beginning with  letter "i" where 

–– Observation, Y, includes all subscriptsObservation, Y, includes all subscripts
–– Levels of each factor have a different subscriptLevels of each factor have a different subscript
–– Parentheses surround levels of nested effectsParentheses surround levels of nested effects
–– Random error, Random error, εε, is nested in all other effects, is nested in all other effects

This slide summarizes the steps to follow in stating the statistical model of an 
ANOVA design. Details on using this procedure for specifying the statistical 
model of an ANOVA design and examples are provided in Topic 9 of this 
reference material.
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14.2.2. Rules for Degrees of Freedom14.2.2. Rules for Degrees of Freedom14.2.2. Rules for Degrees of Freedom

•• Step 1Step 1. Degrees of freedom of . Degrees of freedom of unnestedunnested factors and subjects factors and subjects 
equal one less than the number of levels of the factor.equal one less than the number of levels of the factor.

•• Step 2Step 2. Degrees of freedom of nested factors and subjects . Degrees of freedom of nested factors and subjects 
equal one less than the number of levels of the nested factor equal one less than the number of levels of the nested factor 
times the levels of the factor(s) in which it is nested. times the levels of the factor(s) in which it is nested. 

•• Step 3Step 3. Degrees of freedom of interactions equal the product . Degrees of freedom of interactions equal the product 
of the individual degrees of freedom of each factor and of the individual degrees of freedom of each factor and 
subject term forming the interaction.subject term forming the interaction.

•• Step 4Step 4. The total degrees of freedom equal one less than the . The total degrees of freedom equal one less than the 
total number of observations in the experiment.total number of observations in the experiment.

This slide summarizes the steps to follow in stating the degrees of freedom 
of an ANOVA design. Details on using these rules for specifying the df of an 
ANOVA design and examples are provided in Topic 9 of this reference 
material.
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14.2.3. SS Computational Formulae Algorithm14.2.3. SS Computational Formulae Algorithm14.2.3. SS Computational Formulae Algorithm

•• Step 1Step 1. Write the expression for the degrees of freedom of . Write the expression for the degrees of freedom of 
each source of variation and algebraically expand it.each source of variation and algebraically expand it.

•• Step 2Step 2. Substitute squared capital letters for each term in the . Substitute squared capital letters for each term in the 
expanded degrees of freedom expression and substitute Texpanded degrees of freedom expression and substitute T22

(the grand total squared) for 1.(the grand total squared) for 1.
•• Step 3Step 3. Sum all totals across the . Sum all totals across the index(esindex(es) of the variable(s) ) of the variable(s) 

denoted by capital letters, and dot the other denoted by capital letters, and dot the other index(esindex(es). For T ). For T 
merely dot all indexes.merely dot all indexes.

•• Step 4Step 4. Divide each expression by the number of levels of the . Divide each expression by the number of levels of the 
dotted dotted index(esindex(es).).

This slide summarizes the steps to follow in stating the SS computational 
formulae for an ANOVA design that is based on the simplified notation 
presented in Topic 10. Details on using this algorithm for calculating the SS 
of an ANOVA design and examples are provided in Topics 10, 12, and 13 of 
this reference material.
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14.2.4. Algorithm for Stating E(MS)14.2.4. Algorithm for Stating E(MS)14.2.4. Algorithm for Stating E(MS)

•• Step 1Step 1. Write the appropriate statistical model.. Write the appropriate statistical model.
•• Step 2Step 2. For each random. For each random--effect variable, circle the subscript effect variable, circle the subscript 

wherever the subscript appears in the model.wherever the subscript appears in the model.
•• Step 3Step 3. To determine the components of the E(MS) for each . To determine the components of the E(MS) for each 

effect, include: effect, include: 
–– the effect; andthe effect; and
–– other components having the subscript(s) of the effect other components having the subscript(s) of the effect 

where all other subscripts are either circled (random where all other subscripts are either circled (random 
variables) or in parentheses (nested within variables).variables) or in parentheses (nested within variables).

•• Step 4Step 4. Begin to list the E(MS) for each effect as a linear . Begin to list the E(MS) for each effect as a linear 
combination of the combination of the σσ22 for each component. Note that the for each component. Note that the 
subscript for each subscript for each σσ22 is the Greek symbol(s) of the is the Greek symbol(s) of the 
component. component. 

•• Step 5Step 5. To complete the E(MS) listing, multiply each . To complete the E(MS) listing, multiply each σσ22 in the in the 
resulting linear combination by the number of levels of the resulting linear combination by the number of levels of the 
factor(s) not involved in defining the component term.factor(s) not involved in defining the component term.

This slide summarizes the steps to follow for stating the E(MS) of an ANOVA 
design. Details on using this algorithm for specifying the E(MS) of an 
ANOVA design and examples are provided in Topic 9 of this reference 
material.
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14.2.5. Steps for Determining F-Ratios14.2.5. Steps for Determining F14.2.5. Steps for Determining F--RatiosRatios

•• Step 1Step 1. List the E(MS) for the numerator for each F. List the E(MS) for the numerator for each F--ratioratio
•• Step 2Step 2. Find the effect whose E(MS) includes all the . Find the effect whose E(MS) includes all the 

components of the E(MS) of the numerator except the components of the E(MS) of the numerator except the 
treatment variance of interest. treatment variance of interest. 

•• Step 3Step 3. Use this latter effect as the mean square for the . Use this latter effect as the mean square for the 
denominator of the Fdenominator of the F--ratio.ratio.

This slide summarizes the steps to follow for determining the F-ratios of an 
ANOVA design. Details on using this procedure for determining the possible 
F-ratios of an ANOVA design and examples are provided in Topic 9 of this 
reference material.
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14.3. Design Classification14.3. Design Classification14.3. Design Classification

•• BetweenBetween--Subjects DesignSubjects Design
–– Subjects Are NestedSubjects Are Nested
–– Pooled Error TermPooled Error Term

•• WithinWithin--Subjects DesignSubjects Design
–– Subjects Are CrossedSubjects Are Crossed
–– Balancing Treatment OrdersBalancing Treatment Orders
–– Homogeneity of CovarianceHomogeneity of Covariance
–– Differential TransferDifferential Transfer

•• MixedMixed--Factors DesignFactors Design
–– Subjects Are Crossed And NestedSubjects Are Crossed And Nested
–– Balancing WithinBalancing Within--Subjects ComponentSubjects Component

In human factors research involving human subjects, basic ANOVA designs 
are characterized into three general categories depending on the assignment 
of subject to treatment conditions. Each category of design has special 
considerations unique to that type of design. Between-subjects designs, as 
discussed in Topic 10, are completely randomized designs in which subjects 
are nested in treatment conditions. The nested subject effect becomes the 
pooled error term to test all main effects and interactions.

Subjects are crossed with all factors of interest in within-subjects designs as 
discussed in Topic 12. The main effect of Subjects is removed from the error 
term which generally results in more sensitive statistical hypothesis testing. 
Since there are repeated measures of subjects across treatment conditions, 
balancing the order of treatment presentation must be considered to avoid 
confounding treatments with order of presentation. The additional 
assumption of homogeneity of covariance among treatment means and the 
possibility of differential transfer must be considered in within-subjects 
designs.

Mixed-factors ANOVA designs are discussed in Topic 13 and have both 
between-subjects and within-subjects factors. Balancing the within-subjects 
treatment combinations is necessary to avoid confounding with the 
presentation order of repeated measures. As in within-subjects designs, a 
Balanced Latin Square is often used in mixed-factors designs to balance 
order effects.
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•• TwoTwo--Factor, BetweenFactor, Between--Subjects ANOVA DesignSubjects ANOVA Design

14.3. Design Classification (Cont’d)14.3. Design Classification (Cont14.3. Design Classification (Cont’’d)d)

__________________________________________________________

Source df SS MS F
__________________________________________________________

A a-1 SSA MSA MSA/MS S/AB

B b-1 SSB MSB MSB/MS S/AB

AxB (a-1)(b-1) SSAxB MSAxB MSAxB/MS S/AB

S/AB ab(n-1)    SSS/AB MSS/AB
___________       ______

Total abn-1 SStotal
__________________________________________________________

Yijkl = µ + αi + βj + γk(ij) + αβij + εl(ijk)

This slide presents the statistical model and general format for the ANOVA 
Summary Table for a two-factor, between-subjects design example. Details 
on the design and the data analysis procedures for between-subjects 
ANOVA designs are presented in Topics 9 and 10 in this reference material. 
Note that the γ term in the statistical model shows that subjects are nested in
both factors A and B, and S/AB is used as the pooled error term for testing 
the significant main effects of A and B as well as the AxB interaction.
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•• TwoTwo--Factor, WithinFactor, Within--Subjects ANOVA DesignSubjects ANOVA Design

14.3. Design Classification (Cont’d)14.3. Design Classification (Cont14.3. Design Classification (Cont’’d)d)

____________________________________________________________

Source df SS MS F
____________________________________________________________

Between
S n-1 SSS

Within
A a-1 SSA MSA MSA/MS AxS

AxS (a-1)(n-1)    SSAxS MSAxS

B b-1 SSB MSB MSB/MS BxS
BxS (b-1)(n-1)    SSBxS MSBxS

AxB (a-1)(b-1)              SSAxB MSAxB MSAxB/MS AxBxS
AxBxS (a-1)(b-1)(n-1)          SSAxBxS MSAxBxS

Total abn-1     SStotal____________________________________________________________

Yijkl = µ + αi + βj + γk + αβij + αγ ik + βγjk + αβγ ijk + εl(ijk)

This slide presents the statistical model and general format for the ANOVA 
Summary Table for a two-factor, within-subjects design example. Details on 
the design and the data analysis procedures for within-subjects ANOVA 
designs are presented in Topics 9 and 12 in this reference material. Note 
that the γ term in the statistical model shows that subjects are crossed with 
both factors A and B. The main effect of subjects, S, is removed from the 
error term as a between-subjects component, and the interactions of S with 
A, B, and AxB are used to test those effects, respectively, as within-subjects 
components.

Balancing of presentation order needs to be considered for all the abij
treatment combinations in this repeated measures design example. The 
choice of complete counterbalancing, a partially Balanced Latin Square, or 
random assignment of treatment orders across subjects has implications for 
the number of subjects, n, used in the experiment.
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14.3. Design Classification (Cont’d)14.3. Design Classification (Cont14.3. Design Classification (Cont’’d)d)

•• TwoTwo--Factor, MixedFactor, Mixed--Factors ANOVA DesignFactors ANOVA Design

____________________________________________________________

Source df SS MS F
____________________________________________________________

Between

A a-1 SSA MSA MSA/MS S/A
S/A a(n-1) SSS/A MSS/A

Within

B b-1 SSB MSB MSB/MS BxS/A
BxA (a-1)(b-1) SSBxA MSBxA MSBxA/MS BxS/A

BxS/A          a(b-1)(n-1)       SSBxS/A MSBxS/A

Total abn-1 SStotal
____________________________________________________________

Yijkl = µ + αi + βj + γk(i) + αβij + βγjk(i) + εl(ijk)

This slide presents the statistical model and general format for the ANOVA 
Summary Table for a two-way, mixed-factors design example. Details on the 
design and the data analysis procedures for mixed-factors ANOVA designs 
are presented in Topics 9 and 13 in this reference material. Note that the γ
term in the statistical model shows that subjects are nested in Factor A and 
crossed with Factor B. Factor A is tested with S/A error term as a between-
subjects component. Both factor B and the AxB interaction are tested by the 
BxS/A interaction error term as within-subjects components.

Balancing of presentation order needs to be considered for all the levels of 
Factor B in this repeated measures design example. The choice of complete 
counterbalancing, a partially Balanced Latin Square, or random assignment 
of treatment orders across subjects has implications for the number of 
subjects, n, used in the experiment just as in the previous within-subjects 
design example.
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14.4. n-Factor Design Generalizations14.4. n14.4. n--Factor Design GeneralizationsFactor Design Generalizations

•• nn--Factor ANOVA Design GeneralizationsFactor ANOVA Design Generalizations
–– Can include any number of fixedCan include any number of fixed--effects factors of effects factors of 

interest.interest.
–– All rules, procedures, and algorithms apply.All rules, procedures, and algorithms apply.
–– All factors of interest are crossed and can interact.All factors of interest are crossed and can interact.
–– The subject effect is crossed with all withinThe subject effect is crossed with all within--subjects subjects 

factors of interest and can interact with them.factors of interest and can interact with them.
–– Subjects are randomSubjects are random--effects, and sample size is equal.effects, and sample size is equal.
–– Assuming factors of interest are fixedAssuming factors of interest are fixed--effects,effects,

–– Subjects are nested within all betweenSubjects are nested within all between--subjects factors subjects factors 
of interest, and this subject effect is the error term for of interest, and this subject effect is the error term for 
all betweenall between--subjects Fsubjects F--tests.tests.

–– The interaction of the withinThe interaction of the within--subjects effect with the subjects effect with the 
subject effect is the error term for all F tests on the subject effect is the error term for all F tests on the 
withinwithin--subjects effect as well as its interactions with subjects effect as well as its interactions with 
the betweenthe between--subjects effects.subjects effects.

Generalizations can be stated for basic ANOVA designs and analyses used 
in human factors and ergonomics research regardless of the number of 
factors included in the experiment. This slide summarizes generalizations for 
any n-factor design. Specific generalizations for between-subjects, within-
subjects, and mixed-factors are presented separately in Topics 10, 12, and 
13, respectively, in this reference material.
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14.5. ANOVA Design Process14.5. ANOVA Design Process14.5. ANOVA Design Process

•• Step 1. List Factors and Factor LevelsStep 1. List Factors and Factor Levels
–– BetweenBetween--Subjects versus WithinSubjects versus Within--Subjects FactorsSubjects Factors
–– Possible InteractionsPossible Interactions
–– Number of Factor LevelsNumber of Factor Levels
–– PretestingPretesting

•• Step 2. Select Appropriate ANOVA DesignStep 2. Select Appropriate ANOVA Design
–– Design ClassificationDesign Classification
–– Statistical ModelStatistical Model
–– Possible FPossible F-- RatiosRatios
–– Summary Table SpecificationSummary Table Specification

The experimenter needs to consider the overall process in choosing an 
ANOVA design rather than just the fundamental mechanics of ANOVA
design and analysis. A six-step process is presented on this slide and the 
next two slides. This process begins by listing the factors of interest to the 
research in Step 1. These factors need to be defined as either between-
subjects factors or within-subjects factors. If factors are included in the same 
factorial ANOVA, they can possibly interact with each other. The various 
levels of each factor need to be specified, and this process often requires 
pretesting before making a final decision on the factors and factor levels to 
be investigated in a reasonably sized factorial ANOVA design.

Once the factors and factor levels of interest are selected, the experimenter 
selects the appropriate ANOVA design in Step 2. The design is specified as 
a between-subjects, within-subjects, or mixed-factors ANOVA design. A 
statistical model should be specified for this design based on the crossing or 
nesting of factors with subjects. This statistical model specifies all the effects 
that can be estimated from the data collected in the experiment. The 
experimenter should determine if all the effects of interest can be tested for 
significance by listing all the possible F-tests in the design. Finally, the 
experimenter should list an ANOVA Summary Table that includes at least 
the Sources, df, and F-tests in general terms to determine if the design is 
adequate.
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14.5. ANOVA Design Process (Cont’d)14.5. ANOVA Design Process (Cont14.5. ANOVA Design Process (Cont’’d)d)

•• Step 3. Determine Appropriate Sample Size, nStep 3. Determine Appropriate Sample Size, n
–– Subject AvailabilitySubject Availability
–– Resulting Treatment ConditionsResulting Treatment Conditions
–– Balancing Practice EffectsBalancing Practice Effects

•• Step 4. Establish Data Collection ProcedureStep 4. Establish Data Collection Procedure
–– InstructionsInstructions
–– PracticePractice
–– Data RecordingData Recording

•• Step 5. Develop Data Analysis PlanStep 5. Develop Data Analysis Plan
–– Primary AnalysisPrimary Analysis
–– Secondary AnalysisSecondary Analysis

Once a candidate factorial design is chosen, the experimenter determines 
the appropriate sample size, n, for the experiment in Step 3. A large number 
of between-subjects factors requires many subjects, and subject availability 
needs to be assessed. If within-subjects factors are included in the design, 
they define the number of treatments each subject receives and has 
implications for how long each subject needs to participate. In addition, a 
procedure for balancing presentation order must be chosen for the repeated 
measure. Complete counterbalancing and Balanced Latin Square 
procedures have implication for minimum sample size as discussed in Topic 
12.

Actual data collection occurs in Step 4. Care must be taken to provide 
adequate instructions and practice on the experimental task. The researcher 
should provide a procedure that insures proper data recording for 
subsequent statistical analysis.

The plan for actual statistical analysis is developed in Step 5. Primary 
ANOVA procedures are discussed in Topics 10, 12, and 13 to provide 
overall F-tests of main effects and interactions in between-subjects, within-
subjects, and mixed-factors designs, respectively. Subsequent post hoc 
tests used to isolate significant main effects and interactions are described in 
Topic 11.
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14.5. ANOVA Design Process (Cont’d)14.5. ANOVA Design Process (Cont14.5. ANOVA Design Process (Cont’’d)d)

•• Step 6. Interpret ANOVA ResultsStep 6. Interpret ANOVA Results
–– Graphing TechniquesGraphing Techniques
–– Main EffectsMain Effects

–– Post Hoc ComparisonsPost Hoc Comparisons
–– InteractionsInteractions

–– Simple EffectsSimple Effects
–– Trend AnalysesTrend Analyses
–– Post Hoc ComparisonsPost Hoc Comparisons

–– Supplemental Data AnalysisSupplemental Data Analysis
–– Verbal DescriptionVerbal Description

Interpretation of the results of an experiment is the key concern of the 
human factors researcher. Statistical analysis of basic ANOVA designs is 
merely a tool to aid in interpretation. The experimenter should always graph 
the results of main effects and interactions to assist in possible 
interpretations of significant effects. But, additional post hoc analyses are 
needed to verify these interpretations if more than two levels of any factor 
are observed in the experiment. Various post hoc analysis comparison 
techniques are covered in Topic 11. Simple effects tests, trend analyses, 
and post hoc comparisons to isolate interaction effects are also covered in 
Topic 11 in this reference material.

The experimenter often draws upon supplemental data analysis to facilitate 
interpretation of the significant main effects and interactions found in the 
basic ANOVA design. Collection procedures and nonparametric data
analysis procedures for these supplemental data are presented in Section 2 
of this reference material.

Once all the primary, post hoc, and supplementary data analyses are 
completed, the experimenter can provide a complete verbal description of 
the results. Precise and succinct presentations that provide clear 
descriptions of results are needed for successful communication to the 
scientific community at large.
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14.6. Summary14.6. Summary14.6. Summary

•• General Approach to Basic ANOVAGeneral Approach to Basic ANOVA
–– TerminologyTerminology
–– Simplified NotationSimplified Notation

•• Experimental Design Process for Basic ANOVAExperimental Design Process for Basic ANOVA
–– Design Classification and Statistical ModelDesign Classification and Statistical Model
–– Design ConsiderationsDesign Considerations

•• Data Analysis for Basic ANOVAData Analysis for Basic ANOVA
–– ANOVA AssumptionsANOVA Assumptions
–– Computational Procedures, Rules, and AlgorithmsComputational Procedures, Rules, and Algorithms
–– ANOVA Summary TableANOVA Summary Table
–– Post Hoc Analysis of Main Effects and InteractionsPost Hoc Analysis of Main Effects and Interactions

By way of a summary for this section, this reference material provides a 
general approach to experimental design and analysis of basic ANOVA that 
can be used by human factors and ergonomics researchers. The approach 
to ANOVA is described using a fundamental terminology and simplified 
design notation throughout this section.

Basic procedures, rules, and algorithms exist for generating any ANOVA 
design and conducting subsequent data analysis. In human factors research, 
the experimenter has a choice of using between-subjects, within-subjects, or 
mixed-factors designs. The advantages and disadvantages of design 
alternative and the nature of the real world variable must be considered in 
choosing one of these three design alternatives.

Once a design is chosen, appropriate ANOVA assumptions for that design 
category need to be considered. Interpretation of results is the key to any 
successful experiment. Primary analyses, post hoc analyses, supplemental 
analyses, and data graphing are all important to making clear interpretations 
of results.
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14.7. Supplemental Readings14.7. Supplemental Readings14.7. Supplemental Readings

REFERENCEREFERENCE
Cotton (1998)Cotton (1998)
Hicks & Turner (1999)Hicks & Turner (1999)
Keppel & Keppel & WickensWickens (2004)(2004)

Mason, Mason, GunstGunst, & Hess (2003), & Hess (2003)
Maxwell and Delaney (2000)Maxwell and Delaney (2000)
Montgomery (2005)Montgomery (2005)
Myers and Well (2003)Myers and Well (2003)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapters 1, 2, 5, 13Chapters 1, 2, 5, 13
Chapters 3, 5Chapters 3, 5--6, 106, 10--1111
Chapters 2Chapters 2--7, 107, 10--14, 14, 

1616--24, 2624, 26
Chapters 4Chapters 4--7, 11, 137, 11, 13
Chapters 3, 5Chapters 3, 5--8, 118, 11--1414
Chapters 3, 5Chapters 3, 5--6, 136, 13--1414
Chapters 8Chapters 8--1414
Chapters 3Chapters 3--7 7 

A summary of chapters dealing with basic ANOVA topics in common 
experimental design textbooks used by human factors researchers are listed 
on this slide. The chapters in Keppel and Wickens (2004) and Winer et al. 
(1991) most closely follow the procedures covered in this topic.
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Section 4 covers a variety of techniques that build upon basic ANOVA and 
allow the experimenter to investigate special circumstances in human factors 
and ergonomics research. This section covers the following topics:

Topic 15 – introduction to advanced ANOVA designs, quasi-F ratios, and 
randomized blocks designs;
Topic 16 – partial and complete hierarchical ANOVA designs;
Topic 17 – simple and complex blocking ANOVA designs;
Topic 18 – fractional-factorial ANOVA designs and Latin square designs;
Topic 19 – review of correlation, simple regression, and analysis of 
covariance; and
Topic 20 – summary of advanced ANOVA designs.

Section 4.
Advanced ANOVA Designs

Section 4.Section 4.
Advanced ANOVA DesignsAdvanced ANOVA Designs

Topic 15. Introduction to Advanced ANOVATopic 15. Introduction to Advanced ANOVA
Topic 16. Hierarchical ANOVA DesignsTopic 16. Hierarchical ANOVA Designs
Topic 17. Blocking ANOVA DesignsTopic 17. Blocking ANOVA Designs
Topic 18. FractionalTopic 18. Fractional--Factorial ANOVA DesignsFactorial ANOVA Designs
Topic 19. Analysis of Covariance (ANCOVA)Topic 19. Analysis of Covariance (ANCOVA)
Topic 20. Summary of Advanced ANOVATopic 20. Summary of Advanced ANOVA
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Advanced ANOVA design topics use the basic ANOVA procedures, rules, 
and algorithms described in Section 3 of this reference material. Two 
examples of extending basic ANOVA (i.e., quasi-F ratios and randomized 
blocks designs) are presented in detail. In addition, this introduction provides 
an overview of several special purpose ANOVA design and analysis
procedures that satisfy various constraints present in human factors and 
ergonomics research. Detailed discussions of these procedures are 
presented in subsequent topics in Section 4.

Topic 15. Introduction to Advanced ANOVATopic 15. Introduction to Advanced ANOVATopic 15. Introduction to Advanced ANOVA

15.1. Basic ANOVA Extensions15.1. Basic ANOVA Extensions
15.1.1. Quasi15.1.1. Quasi--F RatiosF Ratios
15.1.2. Randomized Blocks Design15.1.2. Randomized Blocks Design

15.2. Advanced ANOVA Design and Analysis15.2. Advanced ANOVA Design and Analysis
15.3. Summary15.3. Summary
15.4. Supplemental Readings15.4. Supplemental Readings
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15.1. Basic ANOVA Extensions15.1. Basic ANOVA Extensions15.1. Basic ANOVA Extensions

•• 15.1.1. Quasi15.1.1. Quasi--F RatiosF Ratios
•• 15.1.2. Randomized Blocks Design15.1.2. Randomized Blocks Design

Two extensions to basic ANOVA are discussed in this topic. First, quasi-F 
procedures are described to estimate legitimate F-ratios when random-
effects variables of interest are considered in ANOVA experimental designs. 
Second, randomized blocks ANOVA designs are described as a means of 
increasing the sensitivity of between-subjects ANOVA designs by refining 
the error term.
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15.1.1. Quasi- F Ratios15.1.1. Quasi15.1.1. Quasi-- F RatiosF Ratios

•• Error Terms of FError Terms of F--RatiosRatios
•• Random Effects Variable ExampleRandom Effects Variable Example

• F Ratios

FA = (MS A)/? FB = (MS B)/? FAxB = (MS AxB)/(MS AxBxS)

Random)• E(MS) for Two-Factor, Within-Subjects Design (A, B, and S

Yijkl = µ + αi + βj + γk + αβij + αγ ik + βγjk + αβγ ijk + εl(ijk)

E(MS A) = bnσα2 + nσαβ2 + bσαγ2 + σαβγ2 + σε2

E(MS B) = an σβ2 + nσαβ2 + aσβγ 2 + σαβγ2 + σε2

E(MS S) = ab σγ2 + bσαγ2 + aσβγ2 + σαβγ2 + σε2

E(MS AxB) = n σαβ2 + σαβγ2 + σε2

E(MS AxS) = b σαγ2 + σαβγ2 + σε2

E(MS BxS) = a σβγ2 + σαβγ2 + σε2

E(MS AxBxS) = σαβγ2 + σε2

Quasi-F ratios are used when no error term exists to test an effect of interest 
in an ANOVA design. Subsequently, an error term is constructed by 
combining effects to estimate a legitimate F-ratio. This situation can occur 
when effects of interest in an ANOVA design are considered random-effects 
rather than fixed-effects variables.

Consider the two-factor, within-subjects design shown on this slide. Factors 
A, B and subjects are all random-effects variables. The E(MS) for this design 
can be generate by the algorithm described in Topic 9 and shown in the 
center of the slide. Note that the only legitimate F test in this design is the 
AxB interaction based on the E(MS), and no error term exists for either the A 
or B main effects. Quasi-F ratios can be constructed to test the significance 
of each of the two main effects by combining mean squares in the error term.

Two steps are needed in quasi-F tests to estimate the standard F test. 
Quasi-F tests require both the construction of the observed F-ratio and the 
Satterthwaite (1946) correction for the degrees of freedom used in 
determining the tabled value of F.
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15.1.1. Quasi-F Ratios (Cont’d)15.1.1. Quasi15.1.1. Quasi--F Ratios (ContF Ratios (Cont’’d)d)

•• Constructing QuasiConstructing Quasi--F Test of the Main F Test of the Main 
Effect of AEffect of A
–– NumeratorNumerator

–– DenominatorDenominator

–– QuasiQuasi--F RatioF Ratio

E(MS A) = bnσα2 + nσαβ2 + bσαγ2 + σαβγ2 + σε2

E(MS denominator ) = n σαβ2 + bσαγ2 + σαβγ2 + σε2

[nσαβ2 + σαβγ2 + σε2] + [bσαγ2 + σαβγ2 + σε2] - [σαβγ2 + σε2]

E(MS denominator ) = E(MS AxB) + E(MS AxS) - E(MS AxBxS)

F'A = (MS A) / [(MS AxB) + (MS AxS) - (MS AxBxS)]

F'' A = [(MS A) + (MS AxBxS)] / [(MS AxB) + (MS AxS)]

This slide shows the quasi-F ratio for testing Factor A. It is constructed by 
combining various E(MS) in the denominator in order to obtain only the A 
effect, bnσα

2, in the numerator of the F ratio with the other effects cancelled 
out by the denominator according to the E(MS) of the two-factor, random-
effects design. The resulting Quasi-F ratio, FA′, has three mean squares (i.e., 
MSAxB + MSAxS + MSAxBxS) in the denominator rather than just one mean 
square in basic, fixed-effects ANOVA designs. Note that one of the three 
mean squares, MSAxBxS, is subtracted from the other two, which allows the 
opportunity of obtaining a negative total mean square value in the 
denominator. To avoid this possibility, MSAxBxS is added to the numerator to 
form a quasi-F ratio referred to as FA″. Usually a F″ is used instead of a F′
when constructing quasi-F ratios to avoid a negative F value even though 
there is a slight risk of an inflated α error resulting from the higher observed 
F-ratio in F”.
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15.1.1. Quasi-F Ratios (Cont’d)15.1.1. Quasi15.1.1. Quasi--F Ratios (ContF Ratios (Cont’’d)d)

•• SatterthwaiteSatterthwaite (1946) (1946) FFTabledTabled Value CorrectionValue Correction

F' = (a) / (c + d - b)

dfnumerator = dfa

dfdenominator = (c + d - b) 2 / [(c2/dfc) + (d 2/dfd) + (b 2/dfb)]

F'' = (a + b) / (c +d)

dfnumerator = (a + b) 2 / [(a 2/dfa) + (b 2/dfb)]

dfdenominator = (c + d) 2 / [(c2/dfc) + (d 2/dfd)]

• Correction for df tabled Values

Satterthwaite (1946) provided a correction for the tabled value of F sampling
distributed when quasi-F ratios are used to estimate the standard F ratio. 
The correction is determined by changing the degrees of freedom for the 
numerator and denominator in the standard F table according to the 
formulae given on this slide for both F′ and F″.

Note that “a”, “b”, “c”, and “d” given in these formulae refer to the value of the 
various MS components of F′ and F″. Specifically, a = MSA, b = MSAxB, c = 
MSAxS, and d = MSAxBxS in the example described on the previous slide.
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15.1.2. Randomized Blocks Design15.1.2. Randomized Blocks Design15.1.2. Randomized Blocks Design

•• Difficulty of BetweenDifficulty of Between--Subjects DesignSubjects Design
–– Individual Differences Within GroupsIndividual Differences Within Groups
–– Subjects not MatchedSubjects not Matched

•• Randomized Blocks ANOVA DesignsRandomized Blocks ANOVA Designs
–– Control through Experimental DesignControl through Experimental Design
–– Classification VariableClassification Variable

•• Analysis of Covariance AlternativeAnalysis of Covariance Alternative
–– Control through Analytical ProcedureControl through Analytical Procedure
–– Topic 19Topic 19

The major difficulty in using a between-subjects design in human factors and 
ergonomics research is that a pooled error term is used resulting in an 
insensitive F test as compared to an alternative within-subjects design. This 
pooled error term combines the individual differences of subjects within a 
group. Since subjects are not generally matched across groups these 
individual differences are often one of the largest sources of variation in a 
human factors experiment.

To minimize individual difference effects, subjects can be categorized 
beforehand into different levels, or blocks, on a classification variable that is 
known to correlate with the dependent variable. Classification variables such 
as gender, experience, and aptitude are often used in human factors 
research. Subsequently, an equal number of subjects in each classification 
(i.e., block) is randomly assigned to each treatment condition in the design, 
hence forming a “randomized blocks” experimental design. The block effect 
is removed from the error term in the between-subjects ANOVA thereby 
making the F test on the between-subjects factor more sensitive.
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15.1.2. Randomized Blocks Design (Cont’d)15.1.2. Randomized Blocks Design (Cont15.1.2. Randomized Blocks Design (Cont’’d)d)

•• 15.1.2.1. Constructing Randomized Blocks15.1.2.1. Constructing Randomized Blocks
•• 15.1.2.2. Design Comparison15.1.2.2. Design Comparison
•• 15.1.2.3. Extensions of Randomized Blocks15.1.2.3. Extensions of Randomized Blocks

First, a two step procedure for generating a randomized blocks design is 
described. Second, a comparison between the randomized block ANOVA 
design and its between-subjects ANOVA design counterpart is presented to 
demonstrate the differences in sensitivity between the two ANOVA design 
alternatives. Finally, possible extensions of randomized block designs are 
discussed.
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15.1.2.1. Constructing Randomized Blocks15.1.2.1. Constructing Randomized Blocks15.1.2.1. Constructing Randomized Blocks

•• Two Step ConstructionTwo Step Construction
–– Step 1Step 1. Subjects are classified into different . Subjects are classified into different 

levels (blocks) on some variable (e.g., sex, IQ, levels (blocks) on some variable (e.g., sex, IQ, 
pretest, etc.) that is correlated with the pretest, etc.) that is correlated with the 
dependent variable before the experiment is dependent variable before the experiment is 
conducted.conducted.

–– Step 2Step 2. An equal number of subjects from each . An equal number of subjects from each 
level of the blocking variable is randomly level of the blocking variable is randomly 
assigned to the treatment conditions of interest.assigned to the treatment conditions of interest.

Every randomized blocks design is constructed by a two step procedure. 
First, subjects are classified into blocks before they are assigned to a 
treatment condition in the between-subjects design. The classification 
variable must be significantly correlated with the dependent variable in order 
for the blocking to be effective. Often the classification value is known (e.g., 
gender) or exists in records (e.g., educational background). If classification is 
not known beforehand, subjects need to be pretested on the classification 
variable (e.g., IQ test, verbal aptitude, spatial aptitude, etc.) before 
assignment. This pre-testing requires additional time and cost in conducting 
the experiment.

Second, an equal number of subjects in each level of the classification 
variable is randomly assigned to each cell in the between-subjects design. 
Often it may be necessary to pretest more subjects than the minimum 
number of subjects needed to obtain equal sample size, because the 
subjects volunteering for the experiment usually are not equally represented 
at each level of the blocking variable.
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15.1.2.2. Design Comparison15.1.2.2. Design Comparison15.1.2.2. Design Comparison

b2

b1
Blocks

n = 10n = 10n = 10

n = 10n = 10n = 10

a3a2a1

Factor A

Randomized Blocks Design

n = 20n = 20n = 20

a3a2a1

Factor A

Between-Subjects Design

This slide compares a schematic of a three-level, one-factor, between-
subjects design to a schematic of its counterpart randomized blocks design 
that has a blocking variable (e.g., gender) with two levels (males and 
females). Note both between-subjects design alternatives require a total of 
60 subjects in the experiment.

In the between-subjects design, 20 subjects are randomly assigned to each 
of the three levels of Factor A. In the randomized blocks counterpart, 10 
males and 10 females are assigned to each of the three levels of Factor A to 
yield a total of 20 different subjects in each level of Factor A. Consequently, 
30 males and 30 females are needed for random assignment in the 
randomized block design, but gender does not need to be equally 
represented in the between-subject design counterpart. Consequently, 
subject recruitment is less complicated in the between-subjects design.

Note that the randomized block design essentially just adds a second factor, 
Blocks, to the between-subjects design. The effect of the blocking variable is 
usually of no research interest to the experiment and is used only as a way 
of classifying subjects to control for individual differences in order to make 
the between-subjects design more sensitive. Hence, blocking variables are 
usually categorical variables not manipulated variables of experimental 
interest.
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15.1.2.2. Design Comparison (Cont’d)15.1.2.2. Design Comparison (Cont15.1.2.2. Design Comparison (Cont’’d)d)

Between-Subjects Design        Randomized Blocks Design

Source df Source df

         A   2        A   2

   S/A 57      Blocks (B)   1

Total 59    AxB   2

  S/AB 54

  Total 59

This slide compares the Sources and degrees of freedom (df) of the one-
factor, between-subjects design with its randomized blocks design 
counterpart. Both designs have 59 total df, and all ANOVA calculations for 
the main effect of Factor A (2 df) are the same. The Blocks (1 df) main effect 
and the Factor A by Blocks (2 df) interaction are removed from the error term 
in the randomized blocks design. The df for these two effects are subtracted 
from the pooled error term. Calculations for Blocks and the Factor A by 
Blocks interaction follow the standard rules, procedures, and algorithms 
presented in Section 3.

Note that the error term for Factor A (2 df) is S/A (57 df) in the between-
subjects design and is S/AB (54 df) in the randomized blocks design. As long 
as the Blocking variable is significantly correlated with the dependent 
variable, the F-test for Factor A is more sensitive in the randomized blocks 
design than in the between-subjects design even though it has fewer df in 
the denominator since a significant amount of variability is removed from the 
error term.
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15.1.2.3. Extensions of Randomized Blocks15.1.2.3. Extensions of Randomized Blocks15.1.2.3. Extensions of Randomized Blocks

•• Optimal Number of Blocks (Optimal Number of Blocks (FeldtFeldt, 1958), 1958)
•• Alternative Blocking DesignsAlternative Blocking Designs

–– HigherHigher--Order, BetweenOrder, Between--Subjects DesignsSubjects Designs
–– More Than One Blocking VariableMore Than One Blocking Variable
–– PostPost--Hoc Blocking vs. Analysis of CovarianceHoc Blocking vs. Analysis of Covariance

•• ConclusionsConclusions
–– Increase in PrecisionIncrease in Precision
–– Increase in Time and CostIncrease in Time and Cost

–– Determine CorrelationDetermine Correlation
–– PrePre--test Subjectstest Subjects
–– Number of SubjectsNumber of Subjects

Randomized blocks designs can be extended in several ways. Guidelines for 
choosing the optimal number of blocks are presented in a table by Feldt
(1958) and depend on the degree of correlation between the blocking 
variable and the dependent variable, the number of treatment levels of 
interest, and the total number of available subjects for the experiment. 
Randomized blocks designs can be easily extended to higher-order factorial 
designs and more than one blocking variable can be included. A blocking 
variable can be added post hoc after completion of data collection, but it is 
unlikely that the experimenter can maintain equal sample size thereby 
reducing sensitivity. Consequently, post-hoc blocking is usually not used and 
analysis of covariance as described in Topic 19 is used instead.

The pros and cons of using randomized blocks designs must be considered 
carefully. If a known blocking variable exists in the literature, it can be used 
effectively to increase the precision of the between-subjects design. But, 
blocking requires additional effort in determining an appropriate blocking 
variable that correlates with the dependent variable, possibly by pretesting
the subjects, and by probably needing to recruit more than the minimum 
number of subjects in order to maintain equal sample size.
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15.2. Advanced ANOVA Design and Analysis15.2. Advanced ANOVA Design and Analysis15.2. Advanced ANOVA Design and Analysis

•• ANOVA Design ConstraintsANOVA Design Constraints
–– Nested Factors Of InterestNested Factors Of Interest
–– Control Of Nuisance VariablesControl Of Nuisance Variables
–– Limited Data CollectionLimited Data Collection

•• Advanced ANOVA Design AlternativesAdvanced ANOVA Design Alternatives
–– Hierarchical Designs Hierarchical Designs –– Topic 16Topic 16
–– Blocking Designs Blocking Designs –– Topic 17Topic 17
–– FractionalFractional--Factorial Designs Factorial Designs –– Topic 18Topic 18
–– Latin Square Designs Latin Square Designs –– Topic 18Topic 18

•• Regression Analysis in ExperimentationRegression Analysis in Experimentation
–– Review of Correlation and Simple RegressionReview of Correlation and Simple Regression
–– Analysis of Covariance (ANCOVA) Analysis of Covariance (ANCOVA) –– Topic 19Topic 19

The remaining topics in Section 4 are devoted to other advanced ANOVA 
design and analysis procedures. Advanced ANOVA designs address various 
experimental design constraints. Topic 16 covers hierarchical designs that 
allow investigation of factors of interest that are nested. Blocking designs 
that control for nuisance variables that could confound the results of the 
experiment are discussed in Topic 17. Fractional-factorial designs and Latin 
square designs that allow the experimenter to conduct experiments when a 
complete higher-order factorial ANOVA design cannot be used are described 
in Topic 18.

Topic 19 introduces the use of regression analysis by reviewing correlation 
and simple regression. An application of simple regression is discussed in 
terms of analysis of covariance (ANCOVA) that can be used as an 
alternative to using randomized blocks in between-subjects ANOVA designs 
as discussed in this topic. Further applications of regression analysis are 
described in Section 5 in terms of building empirical models through 
experimentation.
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15.3 Summary15.3 Summary15.3 Summary

•• Constraints and Confounding in ExperimentsConstraints and Confounding in Experiments
•• Basic ANOVA ExtensionsBasic ANOVA Extensions

–– QuasiQuasi--F RatiosF Ratios
–– Randomized Blocks ANOVA DesignsRandomized Blocks ANOVA Designs
–– Analysis of CovarianceAnalysis of Covariance

•• Advanced ANOVA DesignsAdvanced ANOVA Designs
–– Hierarchical DesignsHierarchical Designs
–– Blocking DesignsBlocking Designs
–– Fractional Factorial DesignsFractional Factorial Designs
–– Latin Square DesignsLatin Square Designs

By way of summary, this introductory topic on advanced ANOVA addresses 
some real-world constraints that must be considered in experimental design. 
Two basic ANOVA extensions are covered in detail. First, the experimenter 
may need to construct quasi-F ratios in the ANOVA when variables of 
interest exist in the real world as random-effect factors and no legitimate 
error term exists. Second, the experimenter may increase the sensitivity of a 
between-subjects ANOVA design by removing subject variability from the 
error term if subjects can be categorized by a factor known to be correlated 
with the dependent variable. In such circumstances a randomized block 
ANOVA design is appropriate. Alternatively, an analysis of covariance as 
described in Topic 19 can be considered.

Other experimental design constraints are described in additional advanced 
ANOVA topics in Section 4 dealing with hierarchical designs, simple and 
compound blocking designs, 2k fractional-factorial designs, and Latin square 
designs. These advanced ANOVA designs handle situations in which the 
factors of interest are nested, multiple sessions or multiple experimenters 
are required for data collection, and only a fraction of the full factorial design 
can be investigated due to budget and time constraints.
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15.4. Supplemental Readings15.4. Supplemental Readings15.4. Supplemental Readings

REFERENCEREFERENCE
Mason, Mason, GunstGunst, & Hess (2003), & Hess (2003)
Keppel & Keppel & WickensWickens (2004)(2004)
Montgomery (2005)Montgomery (2005)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapter 9Chapter 9
Chapters 11, 24Chapters 11, 24
Chapter 4Chapter 4
Chapters 3, 5 Chapters 3, 5 

The chapters in the texts listed on this slide discuss quasi-F ratios and 
randomized block designs.
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Hierarchical designs are ANOVA designs that include nested factors of 
interest. This topic describes both the basic layout and the ANOVA 
computations involved in this class of experimental designs. These basic 
procedures can be generalized to higher-order hierarchical designs. This 
topic ends with a general summary of the considerations of using
hierarchical designs in human factors and ergonomics research. Suggested 
readings on hierarchical designs in standard experimental design texts are 
also provided.

Topic 16. Hierarchical ANOVA DesignsTopic 16. Hierarchical ANOVA DesignsTopic 16. Hierarchical ANOVA Designs

16.1. Basic Hierarchical Designs16.1. Basic Hierarchical Designs
16.1.1. Between16.1.1. Between--Subjects DesignsSubjects Designs
16.1.2. Within16.1.2. Within--Subjects DesignsSubjects Designs
16.1.3. Mixed16.1.3. Mixed--Factors DesignsFactors Designs

16.2. Hierarchical Design Examples16.2. Hierarchical Design Examples
16.2.1. Complete Hierarchical Design16.2.1. Complete Hierarchical Design
16.2.2. Partial Hierarchical Design16.2.2. Partial Hierarchical Design

16.3. Summary16.3. Summary
16.4. Supplemental Readings16.4. Supplemental Readings
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16.1. Basic Hierarchical Designs16.1. Basic Hierarchical Designs16.1. Basic Hierarchical Designs

•• DefinitionDefinition: A factorial design in which : A factorial design in which 
factors of interest are nested.factors of interest are nested.

•• Complete vs. Partial Hierarchical DesignsComplete vs. Partial Hierarchical Designs

–– CompleteComplete:: All factors of interest are nestedAll factors of interest are nested

–– PartialPartial:: Some factors of interest are crossed Some factors of interest are crossed 
and some factors are nestedand some factors are nested

•• ThreeThree--Factor, Hierarchical Design ExampleFactor, Hierarchical Design Example

Basic ANOVA designs cover situations in which all the factors of interest are 
crossed and only subjects are nested within factors. At times, some of the 
factors of interest may be nested thereby forming a hierarchical design. 
When all factors in the experimental design are nested, the design is 
referred to as a complete hierarchical design. When some factors are 
crossed and some are nested, the design is called a partial hierarchical 
design. A common three-factor design is used throughout this topic to 
distinguish the various hierarchical design alternatives and computational 
procedures.



Human Factors Experimental Design and Analysis Reference

494

16.1. Basic Hierarchical Designs (Cont'd)16.1. Basic Hierarchical Designs (Cont'd)16.1. Basic Hierarchical Designs (Cont'd)

This slide shows a diagram of a three-factor, complete hierarchical design 
where sample size is 10. A total of 80 observations are in this hierarchical 
design experiment, which can be conducted as a between-subjects, within-
subjects, or mixed-factors design. Note that two levels of Factor B are 
nested in each level of Factor A, and two levels of Factor C are nested in 
each of the AB combinations to yield a total of 8 treatment combinations (i.e. 
cells) in this complete hierarchical design. If this design were a completely 
crossed factorial design, there would be 64 cells in the 2x4x8 factorial as 
compared to 8 cells in the three-factor, complete hierarchical design.

Remember when factors are nested, they cannot interact. Therefore, only 
main effects and no interactions can be evaluated in a complete hierarchical 
design. In addition, some of the main effects only exist as nested effects in a 
hierarchical design. In this three-factor, complete hierarchical design, one 
can estimate Factor A, Factor B nested within A (i.e., B/A) and Factor C 
nested within both Factors A and B (i.e., C/AB).
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16.1. Basic Hierarchical Designs (Cont'd)16.1. Basic Hierarchical Designs (Cont'd)16.1. Basic Hierarchical Designs (Cont'd)

This slide shows a three-factor partial hierarchical design that also has 80 
observations across the 8 cells of the design with n = 10. Note that two 
levels of Factor B are nested within each level of Factor A. But, Factor C is 
crossed with both Factors A and B. The main effects in this design exist as 
A, B/A, and C. Due to the factor nesting relationship, only the CxA and the 
CxB/A two-way interactions exist. Again this partial hierarchical design can 
be conducted as a between-subjects, within-subject, or mixed factors design 
depending on the crossing and nesting of subjects with the factors of interest 
in the experiment.
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16.1. Basic Hierarchical Designs (Cont’d)16.1. Basic Hierarchical Designs (Cont16.1. Basic Hierarchical Designs (Cont’’d)d)

•• 16.1.1. Between16.1.1. Between--Subjects DesignsSubjects Designs
•• 16.1.2. Within16.1.2. Within--Subjects DesignsSubjects Designs
•• 16.1.3. Mixed16.1.3. Mixed--Factors DesignsFactors Designs

All the rules, procedures, and algorithms described in basic ANOVA 
completely crossed factorial designs as described in Section 3 apply to 
hierarchical designs. Depending on the assignment of subjects to treatment 
conditions the hierarchical design can be conducted as a between-subjects, 
within-subjects, or mixed factors design. Each of these three design 
categories are considered separately for both the three-factor complete and 
partial hierarchical design examples.
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16.1.1. Between-Subjects Designs16.1.1. Between16.1.1. Between--Subjects DesignsSubjects Designs

Between-Subjects, Complete Hierarchical Design

Yijklm = µ + αi + βj(i) + δk(ij) + γl(ijk) + εm(ijkl)

Source df E(MS)

A a-1 =   1 bcnσα2 + σγ2 + σε2

B/A a(b-1) =   2 cnσβ2 + σγ2 + σε2

C/AB ab(c-1) =   4 nσδ2 + σγ2 + σε2

S/ABC abc(n-1) = 72 σγ2 + σε2
Total abcn-1 = 79

First, consider the complete hierarchical design as a between-subjects 
design. Ten different subjects would be observed in each cell of the design 
matrix shown on page 494, or a total of 80 different subjects are needed for 
this between-subjects experiment. The statistical model is depicted on the 
top of this slide showing the nesting relationships in parenthesis of Factor B 
(β), Factor C (δ), and Subjects (γ). Because of this nesting relationship, only 
main effects and no interactions appear in the statistical model and the 
resulting listing of Sources.

It is important to note that the degrees of freedom of nested factors are 
determined by the number of levels nested not the total number of different 
levels of that factor appearing in the experiment. Hence, b = 2 not 4, and c = 
2 not 8 just as n = 10 not 80 for subjects. The standard rules for determining 
degrees of freedom can be used to specify the df of each effect as shown in 
the slide.

The expected mean squares follow the same algorithm as used in basic 
ANOVA. Based on the resulting E(MS) listing shown on this slide, S/ABC is 
the appropriate error term for testing the three main effects in this between-
subjects, complete hierarchical design.
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16.1.1. Between-Subjects Designs (Cont'd)16.1.1. Between16.1.1. Between--Subjects Designs (Cont'd)Subjects Designs (Cont'd)

Between-Subjects, Partial Hierarchical Design

Yijklm = µ + αi + βj(i) + δk + γl(ijk) + αδik + βδkj(i) + εm(ijkl)

Source df E(MS)

A a-1 =   1 bcnσα2 + σγ2 + σε2

B/A a(b-1) =   2 cnσβ2 + σγ2 + σε2

C c-1 =   1 abnσδ2 + σγ2 + σε2

CxA (a-1)(c-1) =   1 bnσαδ2 + σγ2 + σε2

CxB/A a(b-1)(c-1) =   2 nσβδ2 + σγ2 + σε2

S/ABC abc(n-1) = 72 σγ2 + σε2

Total abcn-1 = 79

This slide depicts the statistical model, Sources, df, and E(MS) of the 
between-subjects version of the partial hierarchical design in which only B is 
nested within A (i.e., B/A). Again, ten different subjects would be observed in 
each cell of the design matrix shown on page 495, or a total of 80 different 
subjects are needed for this between-subjects experiment. Note that b =2 
not 4 when determining the df of any B/A effects in the design. Due to the 
nesting relationship, both the CxA and the CxB/A two-way interactions can 
be evaluated in this design as compared to the complete hierarchical design 
alternative where no interactions can be evaluated. As in all between-
subjects designs, the E(MS) listing demonstrates that S/ABC is the 
appropriate error term to test every effect assuming all factors of interest are 
fixed-effect factors.
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16.1.2. Within-Subjects Designs16.1.2. Within16.1.2. Within--Subjects DesignsSubjects Designs

Within-Subjects, Complete Hierarchical Design

Yijklm = µ + αi + βj(i) + δk(ij) + γl + αγil + βγj(i)l + δγk(ij)l + εm(ijkl)

Source df E(MS)

Between
S n-1 =   9 abcσγ2 + σε2

Within
A a-1 =   1 bcnσα2 + bcσαγ2 + σε2

AxS (a-1)(n-1) =   9 bcσαγ2 + σε2

B/A a(b-1) =   2 cnσβ 2 + cσβγ 2 + σε2

B/AxS a(b-1)(n-1) = 18 cσβγ 2 + σε2

C/AB ab(c-1) =   4 nσδ2 + σδγ2 + σε2

C/ABxS ab(c-1)(n-1)  = 36 σδγ2 + σε2
Total abcn-1 = 79

The statistical model, Source, df, and E(MS) listings for the within-subjects 
version of the complete hierarchical design are shown on this slide. Note that 
the same ten subjects appear in all eight cells of the design shown on page 
494 and are crossed with all the three factors of interest in the experiment. 
According to the E(MS) listing, the A, B/A, and C main effects are tested by 
their interaction with subjects. However, the subject main effect (S) is not 
tested as in a basic ANOVA within-subjects design.
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16.1.2. Within-Subjects Designs (Cont'd)16.1.2. Within16.1.2. Within--Subjects Designs (Cont'd)Subjects Designs (Cont'd)

Within-Subject, Partial Hierarchical Design

Yijklm = µ + αi + βj(i) + δk + γl + αδik + αγ il + δγkl + βδj(i)k
+ βγj(i)l + αδγikl + βδγj(i)kl + εm(ijkl)

Source df E(MS)
Between
S n-1 =   9 abcσγ2 + σε2

Within
A a-1 =   1 bcnσα2 + bcσαγ2 + σε2
AxS (a-1)(n-1) =   9 bcσαγ2 + σε2
B/A a(b-1) =   2 cnσβ 2 + cσβγ 2 + σε2
B/AxS a(b-1)(n-1) = 18 cσβγ 2 + σε2
C c-1 =   1 abnσδ2 + abσδγ2 + σε2
CxS (c-1)(n-1) =   9 abσδγ2 + σε2
AxC (a-1)(c-1) =   1 bnσαδ2 + bσαδγ2 + σε2
AxCxS (a-1)(c-1)(n-1) =   9 bσαδγ2 + σε2
B/AxC a(b-1)(c-1) =   2 nσβδ2 + σβδγ2 + σε2
B/AxCxS a(b-1)(c-1)(n-1) = 18 σβδγ2 + σε2

Total abcn-1 = 79

The statistical model, Source, df, and E(MS) listings for the within-subjects 
version of the partial hierarchical design are shown on this slide. Again, the 
same ten subjects appear in all eight cells of this design on page 495 and 
are crossed with all the three factors of interest in the experiment. According 
to the E(MS) listing, the A, B/A, and C main effects and the AxC and B/AxC
two-way interactions are tested by their interaction with subjects while the 
subject main effect (S) is not tested as in a basic ANOVA within-subjects 
design.
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16.1.3. Mixed-Factors Designs16.1.3. Mixed16.1.3. Mixed--Factors DesignsFactors Designs

Mixed-Factor, Partial Hierarchical Design

Yijklm = µ + αi + βj(i) + δk + γl(ij) + αδik + βδj(i)k + δγkl(ij) + εm(ijkl)

Source df E(MS)

Between
A a-1 =    1 bcnσα2 + cσγ2 + σε2

B/A a(b-1) =    2 cnσβ2 + cσγ2 + σε2

S/AB ab(n-1) =  36 cσγ2 + σε2
Within

C c-1 =    1 abnσδ2 + σδγ2 + σε2

AxC (a-1)(c-1) =    1 bnσαδ2 + σδγ2 + σε2

B/AxC a(b-1)(c-1) =    2 nσβδ2 + σδγ2 + σε2

CxS/AB ab(c-1)(n-1) = 36 σδγ2 + σε2
Total abcn-1 =  79

Mixed-factors hierarchical designs can only exist as partial hierarchical 
designs because, by definition, some factors are crossed and some factors 
are nested with subjects. In the mixed-factors, partial hierarchical design 
used in this slide, Factors A and B/A are between-subjects factors, and 
Factor C is a within-subjects factor.

The statistical model, Source, df, and E(MS) listings for this mixed-factors 
version of a three-factor partial hierarchical design are shown on this slide. 
Since there are ten subjects per cell, a total of 40 different subjects are 
needed for the four between-subjects treatment combinations in this 
experimental design as shown on page 495. According to the E(MS) listing, 
the A and B/A between-subjects effects are tested by S/AB and the C, AxC, 
and CxB/A effects are tested by the CxS/AB interaction as in a basic 
ANOVA mixed-factors design.
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16.1.3. Mixed-Factors Design (Cont'd)16.1.3. Mixed16.1.3. Mixed--Factors Design (Cont'd)Factors Design (Cont'd)

Mixed-Factor, Partial Hierarchical Design

+ εm(ijkl)Yijklm = µ + αi + βj(i) + δk + γl(k) + αδ ik + αγ il(k) + βδj(i)k + βγ j(i)l(k)

Source df E(MS)

Between
C c-1 =   1 abnσδ2 + ab σγ2 + σε

2

S/C c(n-1) =  18 abσγ2 + σε2
Within

A a-1 =    1 bcnσα2 + bσαγ2 + σε2

AxC (a-1)(c-1) =   1 bnσαδ2 + bσαγ2 + σε2

AxS/C c(a-1)(n-1) =  18 bσαγ2 + σε2

B/A a(b-1) =   2 cnσβ2 + σβγ2 + σε2

B/AxC a(b-1)(c-1) =   2 nσβδ2 + σβγ2 + σε2

B/AxS/C ac(b-1)(n-1) = 36 σβγ2 + σε2
Total abcn-1 =  79

In the mixed-factors, partial hierarchical design used in this slide, Factors A 
and B/A are within-subjects factors, and Factor C is a between-subjects 
factor. The statistical model, Source, df, and E(MS) listings for this mixed-
factors version of a three-factor partial hierarchical design are shown on this 
slide. Ten different subjects are needed for each of the two levels of Factor 
C, and each of these 20 subjects receive all four within-subjects treatment 
combinations in this experimental design as shown on page 495. According 
to the E(MS) listing, C is tested by S/C, A and AxC are tested by AxS/C, and 
B/A and B/AxC are tested by B/AxS/C as in a basic ANOVA mixed-factors 
design.
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16.2. Hierarchical Design Examples16.2. Hierarchical Design Examples16.2. Hierarchical Design Examples

•• 16.2.1. Complete Hierarchical Design16.2.1. Complete Hierarchical Design
•• 16.2.2. Partial Hierarchical Design16.2.2. Partial Hierarchical Design

Two example between-subjects, hierarchical problems are described in this 
subsection to demonstrate ANOVA calculations. First, a complete 
hierarchical design is discussed which is followed by a partial hierarchical 
design. Both examples use the three-factor design layouts of 80 
observations as presented in the previous subsection to facilitate 
comparisons.
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16.2.1. Complete Hierarchical Design16.2.1. Complete Hierarchical Design16.2.1. Complete Hierarchical Design

•• Example ProblemExample Problem: The military is testing a : The military is testing a 
computercomputer--based multimedia training based multimedia training 
procedure for commanders. The training procedure for commanders. The training 
procedure is presented to 80 commanders procedure is presented to 80 commanders 
from eight battalions. Two battalions were from eight battalions. Two battalions were 
chosen from each of two brigades within two chosen from each of two brigades within two 
divisions (infantry and cavalry). The hours to divisions (infantry and cavalry). The hours to 
complete the multimedia training on the use complete the multimedia training on the use 
of computerof computer--generated surveillance displays generated surveillance displays 
were recorded for 10 commanders per were recorded for 10 commanders per 
battalion. Is training completion time battalion. Is training completion time 
significantly different based on the three significantly different based on the three 
command levels? (p < 0.05)command levels? (p < 0.05)

(Click in this red rectangle to see SAS calculations for this example.)

This slide describes a between-subjects, complete hierarchical experimental 
design problem that has a sample size of 10 (i.e., n = 10). This example 
problem describes a complete hierarchical design, because battalions 
(Factor C) are nested within brigades (Factor B), and brigades are nested 
within divisions (Factor A). Consequently, the 10 battalion commanders 
represented in each of the eight battalions belong to only one brigade and 
one particular division resulting in only eight different cells in the experiment. 
The Slater and Williges (2006) appendix describes the SAS analysis for this 
example of a complete hierarchical experimental design problem.
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16.2.1. Complete Hierarchical Design (Cont’d)16.2.1. Complete Hierarchical Design (Cont16.2.1. Complete Hierarchical Design (Cont’’d)d)

2532363635192912

1339191733242634

2216142439271316

1133223234123223

2828332817262527

2040201223183731

1832192118332913

2530113610343316

2725241721233528

1515132339342917

Battalion 8Battalion 7Battalion 6Battalion 5Battalion 4Battalion 3Battalion 2Battalion 1

Brigade 4Brigade 3Brigade 2Brigade 1

Cavalry DivisionInfantry Division

Between-Subjects, Complete Hierarchical Design Example

(Click in this red rectangle to see SAS calculations for this example.)

Hypothetical example data representing a battalion commander’s time, in 
hours, to complete multimedia training using computer-generated 
surveillance displays are presented in the data matrix shown on this slide. 
Note that the data matrix shows the complete hierarchical relationship of 
battalions nested in brigades and divisions as well as brigades nested in 
divisions such that two battalion commanders are nested within each brigade 
and two brigades are nested within each division.
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16.2.1. Complete Hierarchical Design (Cont’d)16.2.1. Complete Hierarchical Design (Cont16.2.1. Complete Hierarchical Design (Cont’’d)d)

SSA = (ΣA2
i.../bcn) – (T2

..../abcn) 
SSB/A = (ΣAB2

ij../cn) – (ΣA2
i...)/bcn)

SSC/AB = (ΣABC2
ijk./n) – (ΣAB2

i.../cn)

SSS/ABC = ΣABCS2
ijkn – (ΣABC2

ijk,)/n)

SSTotal = ΣABCS2
ijkn – (T2

....)/abcn)

Sum of Squares Formulae

Between-Subjects, Complete Hierarchical Design Example

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the SS computational formulae for the between-subjects, 
complete hierarchical design example. The algorithm for determining SS 
computational formulae described in Topic 10 for basic ANOVA can be used 
to generate these formulae in simplified notation where Factor A represents 
divisions; Factor B represents brigades; and Factor C represents battalions.
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16.2.1. Complete Hierarchical Design (Cont’d)16.2.1. Complete Hierarchical Design (Cont16.2.1. Complete Hierarchical Design (Cont’’d)d)

Component Scores
(ΣA2

i.../bcn) = (10242 + 9212)/(2)(2)10) = 488824.4.25
(ΣAB2

ij../cn) = (5052 + 5192 +…+ 4942)/(2)(10) = 48863.55 
(ΣABC2

ijk./n) = (2172 + 2882 +...+ 2042)/10 = 49564.7
ΣABCS2

ijkn = 172 + 282 + 162 + 132 +...+ 252 = 54163.0
(T2

....)/abcn) = 17952/(2)(2)(2)(10) = 48757.8125

Sum of Squares Calculations
SSA = 48824.425 – 48757.8125 = 66.61
SSB/A = 48863.55 – 48824.425 = 39.125
SSC/AB = 49564.7 – 48863.55 = 701.15
SSS/ABC = 54163.0 – 49564.7 = 4598.3
SSTotal = 54163.0 – 48757.8125 = 5405.1875

Between-Subjects, Complete Hierarchical Design Example

(Click in this red rectangle to see SAS calculations for this example.)

The top portion of this slide uses the hypothetical data to calculate the 
values of each of the five components that make up the SS formulae 
provided on the previous slide. Note that a, b, and c each equal 2 to 
represent the number of nested levels in this complete hierarchical design.

The SS values for this example are determined by combining the various 
component scores algebraically according to the SS formulae given on the 
previous slide. The final calculations for A, B/A, C/AB, S/ABC, and Total SS 
are shown on the bottom portion of this slide.
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16.2.1. Complete Hierarchical Design (Cont’d)16.2.1. Complete Hierarchical Design (Cont16.2.1. Complete Hierarchical Design (Cont’’d)d)

•• ANOVA Summary TableANOVA Summary Table

Source df MS

Division (D) 1 
Brigade (Br)/D 2
Battalion (Ba)/DBr 4 
S/DBrBa 72
Total 79

SS

66.61
19.57

175.29 
63.87

66.61 
39.13

701.15
4598.30
5405.19

F

1.04
0.31
2.74* 

*p < 0.05

(Click in this red rectangle to see SAS calculations for this example.)

The ANOVA Summary Table for the complete hierarchical design example 
problem is shown on this slide. The Summary Table uses real-world 
abbreviations such that D = A, Br = B, and Ba = C in the computation 
formulae using simplified notation.

There is a significant difference (p < 0.05) in time to complete multimedia 
training on using computer-based surveillance displays among the battalion 
command level nested within brigades and divisions. Post hoc tests are 
needed to isolate the differences among the battalions. Due to the nesting 
relationships of the command levels, this significant effect could be due 
either to specific battalion command structures or the interaction of battalion, 
brigade, and division command levels.
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16.2.2. Partial Hierarchical Design16.2.2. Partial Hierarchical Design16.2.2. Partial Hierarchical Design

•• Example ProblemExample Problem: The military is testing two : The military is testing two 
communication systems used by commanders communication systems used by commanders 
of four brigades. Two brigades came from an of four brigades. Two brigades came from an 
infantry division and two from an armored infantry division and two from an armored 
division. A video conferencing or an instant division. A video conferencing or an instant 
messaging system was presented to 10 messaging system was presented to 10 
commanders in each brigade. Each commander commanders in each brigade. Each commander 
used only one of the communication systems. used only one of the communication systems. 
The commandersThe commanders’’ satisfaction ratings for the satisfaction ratings for the 
systems were recorded. Is there a significant systems were recorded. Is there a significant 
satisfaction difference (p < 0.05) between the satisfaction difference (p < 0.05) between the 
two communication systems and/or the nesting two communication systems and/or the nesting 
of commander levels?of commander levels?

(Click in this red rectangle to see SAS calculations for this example.)

This slide describes a between-subjects, partial hierarchical design involving 
three factors. Two of the four brigade commanders tested are nested within 
the two divisions. Command levels are crossed with the two communication 
systems. Since each brigade commander used either video conferencing or 
instant messaging, this is a between-subjects, partial hierarchical design with 
eight treatment combinations and sample size, n, equals 10.
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16.2.2. Partial Hierarchical Design (Cont’d)16.2.2. Partial Hierarchical Design (Cont16.2.2. Partial Hierarchical Design (Cont’’d)d)

35192912

29242623

39271316

34123223

17262527

23193721

18332913

10393316

21233528

39342917

Brigade 4Brigade 3Brigade 2Brigade 1

Video
Conferencing

Armored DivisionInfantry Division

Between-Subjects, Partial Hierarchical Design Example

(Click in this red rectangle to see SAS calculations for this example.)

Hypothetical example of satisfaction ratings of video conferencing 
communications for the ten commanders from the two brigades nested in the 
infantry division and the ten commanders from the two brigades nested 
within the armored division are listed on this slide. This represents the first 
half of the partial hierarchical design data matrix.
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16.2.2. Partial Hierarchical Design (Cont’d)16.2.2. Partial Hierarchical Design (Cont16.2.2. Partial Hierarchical Design (Cont’’d)d)

25323620

13391917

22161424

11332232

28283328

20402012

18321921

35301136

27252417

35151323

Instant
Messaging

Brigade 4Brigade 3Brigade 2Brigade 1
Armored DivisionInfantry Division

Between-Subjects, Partial Hierarchical Design Example

(Click in this red rectangle to see SAS calculations for this example.)

Hypothetical example data of satisfaction ratings of instant messaging 
communications for the ten commanders from the two brigades nested in the 
infantry division and the ten commanders from the two brigades nested 
within the armored division are listed on this slide. This represents the 
second half of the partial hierarchical design data matrix.
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16.2.2. Partial Hierarchical Design (Cont’d)16.2.2. Partial Hierarchical Design (Cont16.2.2. Partial Hierarchical Design (Cont’’d)d)

SSA = (ΣA2
i.../bcn) – (T2

..../abcn) 
SSB/A = (ΣAB2

ij../cn) – (ΣA2
i...)/bcn)

SSC = (ΣC2
..k./abn) – (T2

..../abcn)

SSS/ABC = ΣABCS2
ijkn – (ΣABC2

ijk,)/n)

SSTotal = ΣABCS2
ijkn – (T2

..../abcn)

Sum of Squares Formulae

Between-Subjects, Partial Hierarchical Design Example

(ΣAC2
i.k./bn) – (ΣA2

i...)/bcn) – (ΣC2
..k./abn) + (T2

..../abcn)SSCxA =

SS CxB/A = (ΣABC2
ijk./n) – (ΣAB2

ij..)/cn) –(ΣAC2
i.k./bn)+(A2

i.../bcn)

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the SS computational formulae for the between-subjects, 
complete hierarchical design example. The algorithm for determining SS 
computational formulae described in Topic 10 of this reference material can 
be used to generate these formulae in simplified notation where Factor A 
represents divisions; Factor B represents brigades; and Factor C represents 
communication system.
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16.2.2. Partial Hierarchical Design (Cont’d)16.2.2. Partial Hierarchical Design (Cont16.2.2. Partial Hierarchical Design (Cont’’d)d)

Between-Subjects, Partial Hierarchical Design Example

Component Scores

(ΣA2
i.../bcn) = (9252 + 10452)/(2)(2)(10) = 48691.25

(ΣC2
..k./abn) = (10052 + 9652)/(2)(2)(10) = 48531.25

(ΣAB2
ij../cn) = (4262 + 4992 + … + 4992)/(2)(10) = 48879.70

(ΣAC2
i.k./bn) = (4842 + 5212 + … + 5242)/(2)(10) = 48737.70

(ΣABC2
ijk./n) = (1962 + 2882 +...+ 2342)/(10) = 49339.80

ΣABCS2
ijkn = (172 + 282 +...+ 252) = 53874.00

(T2
..../abcn) = (19702)/(2)(2)(2)(10) = 48511.25

(Click in this red rectangle to see SAS calculations for this example.)

This slide uses the hypothetical data to calculate the values of each of the 
seven components that make up the SS formulae provided on the previous 
slide. Note that a, b, and c each equal 2 to represent the nesting relationship 
of command levels and the two communication system alternatives in this 
example.
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16.2.2. Partial Hierarchical Design (Cont’d)16.2.2. Partial Hierarchical Design (Cont16.2.2. Partial Hierarchical Design (Cont’’d)d)

Sum of Squares Calculations

SSA = 48691.25 – 48511.25 = 180.00

SSB/A = 48879.70 – 48691.25 = 188.45

SSC = 48531.25 – 48511.25 = 20.00

SSCxA = 48737.70 - 48691.25 - 48531.25 + 48511.25 = 26.45

SSCxB/A = 49339.80 - 48879.70 - 48737.70 +48691.25 = 413.65

SSS/ABC = 53874.00 – 49339.8 = 4534.20

SSTotal = 53874.00 – 48511.25 = 5362.75

Between-Subjects, Partial Hierarchical Design Example

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows that the SS values for this example are determined by 
combining the various component scores algebraically according to the SS 
formulae given on the previous two slides. The final calculations for A, B/A, 
C, CxA, CxB/A, S/ABC, and Total SS are shown.
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16.2.2. Partial Hierarchical Design (Cont’d)16.2.2. Partial Hierarchical Design (Cont16.2.2. Partial Hierarchical Design (Cont’’d)d)

•• ANOVA Summary TableANOVA Summary Table

Source df MS

Division (D) 1
Brigade (B)/D 2
Communication (C) 1
CxD 1
CxB/D 2
S/DBC 72

Total 79

SS F

2.86
1.50
0.32
0.42
3.28*

180.00
188.45
20.00
26.45

413.65
4534.20

5362.75

180.00
94.23
20.00
26.45

206.83
62.98

*p < 0.05

(Click in this red rectangle to see SAS calculations for this example.)

The ANOVA Summary Table for the partial hierarchical design example 
problem is shown on this slide. The Summary Table uses real-world 
abbreviation such that D = A, B = B, and C = C in the computation formulae 
using simplified notation.

There is a significant difference (p < 0.05) in the two-way interaction between 
communication systems and brigade commanders nested within divisions. 
Post hoc tests are needed to isolate the difference in this interaction. Due to 
the nesting relationships of the command levels, the brigade commander 
component in the interaction could be due to specific brigade commander 
differences or brigade by division differences or both since brigade level 
command is nested within infantry and armored divisions.
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16.3 Summary16.3 Summary16.3 Summary

•• Hierarchical Design ConstructionHierarchical Design Construction
–– Complete vs. Partial Hierarchical DesignsComplete vs. Partial Hierarchical Designs
–– Minimum of Two Factors for NestingMinimum of Two Factors for Nesting
–– Three ANOVA Design CategoriesThree ANOVA Design Categories

•• Hierarchical Design ANOVAHierarchical Design ANOVA
–– Rules, Algorithms, and ProceduresRules, Algorithms, and Procedures
–– Number of Nested Levels vs. Total Number of Number of Nested Levels vs. Total Number of 

LevelsLevels
•• Hierarchical Design ConsiderationsHierarchical Design Considerations

–– Reason for NestingReason for Nesting
–– Interpreting EffectsInterpreting Effects
–– Higher Order Hierarchical DesignsHigher Order Hierarchical Designs

This topic focused on the construction and analysis of hierarchical designs. 
In general, complete and partial hierarchical ANOVA designs are determined 
by the nesting relationships of the factors of interest. Remember that the 
experimenter must always use a minimum of two levels for nesting. If only 
one level of a factor is nested within another factor, the factors become 
confounded not nested. Complete hierarchical designs can be conducted as 
either between-subjects or within-subjects designs. Partial hierarchical 
designs can be conducted as between-subjects, within-subjects, or mixed-
factors designs.

All the rules, algorithms, and procedures from basic ANOVA apply to 
hierarchical designs. When calculating the various df and SS in the ANOVA, 
the number of levels of a nested factor always equal the number of levels 
nested not the total number of levels of that factor.

In summary, hierarchical designs are used primarily in human factors and 
ergonomics research when the factors of interest exist as nested factors in 
the real world and cannot be crossed. Due to the nesting relationship, 
interpretation of significant effects is problematic due to the confounding of 
main effects and interactions of nested factors. Higher-order hierarchical 
designs can easily be constructed but are usually not considered due to the 
difficulties of interpretation.
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16.4. Supplemental Readings16.4. Supplemental Readings16.4. Supplemental Readings

REFERENCEREFERENCE
Hicks & Turner (1999)Hicks & Turner (1999)
Keppel & Keppel & WickensWickens (2004)(2004)
Mason, Mason, GunstGunst, & Hess (2003), & Hess (2003)
Montgomery (2005)Montgomery (2005)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapter 7Chapter 7
Chapter 25Chapter 25
Chapter 11Chapter 11
Chapter 14Chapter 14
Chapter 5 Chapter 5 

All of the chapters in these texts provide a discussion of hierarchical designs 
used in ANOVA.
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This topic deals with ANOVA experimental designs that can be used to 
control nuisance variables that are confounded with the factors of interest in 
an experiment. These confounding factors may include the effect of repeated 
testing sessions or experimenter bias resulting from using several 
experimenters in data collection. Confounding is controlled through blocking 
designs where blocks represent the nuisance variable.

The goal of blocking is to avoid confounding the blocking effect with effects 
in a factorial ANOVA design that are of major interest to the experimenter. 
Through the use of modular representation, the exact nature of the block 
confounding with specific treatment effects of interest can be determined. 
The use of blocking is demonstrated with 2k factorial designs and extended 
to pseudo-factor blocking of factors with levels that are not prime numbers. 
This topic ends with a summary and a list of suggested supplemental 
readings on blocking in standard experimental design textbooks.

Topic 17. Blocking ANOVA DesignsTopic 17. Blocking ANOVA DesignsTopic 17. Blocking ANOVA Designs

17.1. Modular Representation17.1. Modular Representation
17.1.1. Modular Arithmetic17.1.1. Modular Arithmetic
17.1.2. Balanced Sets of Treatments17.1.2. Balanced Sets of Treatments
17.1.3. Component SS Formulae17.1.3. Component SS Formulae
17.1.4. Generalizations17.1.4. Generalizations

17.2. Blocking 217.2. Blocking 2kk DesignsDesigns
17.2.1. Simple Blocking of 217.2.1. Simple Blocking of 2kk DesignDesign
17.2.2. Complex Blocking of 217.2.2. Complex Blocking of 2kk DesignDesign
17.2.3. Computational Considerations17.2.3. Computational Considerations

17.3.17.3. PseudoPseudo--Factor BlockingFactor Blocking
17.4.17.4. SummarySummary
17.5. Supplemental Readings17.5. Supplemental Readings
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17.1. Modular Representation17.1. Modular Representation17.1. Modular Representation

•• Introduction to Modular RepresentationIntroduction to Modular Representation
–– Balanced Sets of Treatment ConditionsBalanced Sets of Treatment Conditions

•• Application to Blocking DesignsApplication to Blocking Designs
–– Choose Confounding With BlocksChoose Confounding With Blocks
–– Assignment of Treatment ConditionsAssignment of Treatment Conditions

•• Application to FractionalApplication to Fractional--Factorial DesignsFactorial Designs
–– Choose Choose Effect(sEffect(s) to be Lost) to be Lost
–– Determine Alias StructureDetermine Alias Structure
–– Choose Treatment ConditionsChoose Treatment Conditions
–– See Topic 18See Topic 18

Modular representation, which uses an alternative numbering system, 
provides the fabric for constructing balanced sets of treatment combinations 
across various effects in a factorial design. Modular representation can be 
used to determine the appropriate subset of data to collect to avoid 
confounding effects of primary interest to the experimenter. These balanced 
sets can be used to construct both blocking ANOVA designs and fractional-
factorial ANOVA designs.

This topic focuses on the use of modular representation to construct blocking 
designs. For example, a 2x2x2 factorial design may need to be divided into 
two days of data collection due to the size of the design. The experimenter 
can use modular representation to choose the four treatment conditions 
collected each day such that only the three-way interaction of the factorial 
design is confounded with data collection days (i.e., blocks).

Modular representation can also be used to choose only a fractional subset 
of a large experimental design for data collection when it is impractical to use 
a complete factorial design. This is called fractional factorial design or 
factional replicate of the full factorial design. Fractional replicates are not 
able to test some effects and confound other effects (i.e., the alias structure) 
in the full factorial design. Fractional factorials are discussed in Topic 18.
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17.1. Modular Representation (Cont’d)17.1. Modular Representation (Cont17.1. Modular Representation (Cont’’d)d)

•• 17.1.1. Modular Arithmetic17.1.1. Modular Arithmetic
•• 17.1.2. Balanced Sets of Treatments17.1.2. Balanced Sets of Treatments
•• 17.1.3. Component Sum of Squares17.1.3. Component Sum of Squares
•• 17.1.4. Generalizations17.1.4. Generalizations

The basic rules of modular arithmetic needed in applications of modular 
representation to experimental design are reviewed first. Next, modular 
representation is used to generate balanced sets of treatment conditions, 
and formulae are presented for calculating the component sum of squares 
for these balanced sets. Finally, modular representation is generalized to 2k, 
3k, and 5k factorial designs.
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17.1.1. Modular Arithmetic17.1.1. Modular Arithmetic17.1.1. Modular Arithmetic

•• Modulus, "I", of a Numbering SystemModulus, "I", of a Numbering System
–– Defines the possible values of a new numbering systemDefines the possible values of a new numbering system
–– Range of Values: 0 to IRange of Values: 0 to I--11

•• Conversion of Standard Numbers to Modular FormConversion of Standard Numbers to Modular Form
–– Divide integer by modulus, "I", and remainder equals the Divide integer by modulus, "I", and remainder equals the 

modular value.modular value.
–– When the integer is evenly divided by the modulus, the When the integer is evenly divided by the modulus, the 

modular value equals 0.modular value equals 0.
–– If the integer is smaller than the modulus, it maintains its If the integer is smaller than the modulus, it maintains its 

value in new modular form.value in new modular form.
•• Arithmetic OperationsArithmetic Operations

–– Rules of multiplication and addition apply.Rules of multiplication and addition apply.
–– Convert to modular form after calculations.Convert to modular form after calculations.

Modular arithmetic is used to convert a number in the standard base 10 
system to a new numbering system that has a different base. Each
numbering system can be defined in terms of a base value or modulus, I, 
where values range from 0 to I-1. To convert the standard number to the 
new numbering system, simply divide the old standard value by the new 
modulus and the remainder will be the new modulus value. If there is no 
remainder, then the new value is zero.

Arithmetic operations can be conducted in the new modular numbering 
system just as in the standard numbering system. All rules of arithmetic are 
applied to the numbers first and then converted back to the original modulus 
system.
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17.1.1. Modular Arithmetic (Cont'd)17.1.1. Modular Arithmetic (Cont'd)17.1.1. Modular Arithmetic (Cont'd)

•• Examples Of Modular ArithmeticExamples Of Modular Arithmetic
-- Modular ValuesModular Values

-- Conversion to Modular FormConversion to Modular Form
StandardStandard (Mod. 2)(Mod. 2) (Mod. 3)(Mod. 3) (Mod. 5)(Mod. 5)

44 00 11 44
1111 11 22 11
1818 00 00 33

-- Arithmetic OperationsArithmetic Operations

Given:    X 1 = 2  and X2 = 1 (Mod. 3)
X1 + X 2 = 2 + 1 = 0 (Mod. 3)
2X 1 = 2(2) = 1 (Mod. 3)
2X 1 + X 2 = (2)(2) + 1 = 2 (Mod. 3)

(Mod. 2) (Mod. 3) (Mod. 5)
0, 1 0, 1, 2 0, 1, 2, 3, 4

This slide shows examples of using modular arithmetic. Any number in the 
10-based numbering system can be converted to a new modular system by 
dividing by the modulus and using 0 for equal division or the remainder as 
the new value. Examples in the middle portion of this slide are provided for 
converting the numbers 4, 11, and 18 to modulus 2 (Mod. 2), modulus 3 
(Mod. 3) and modulus 5 (Mod. 5) systems. The bottom portion of this slide 
shows various addition and multiplication operations in a Mod. 3 system. Any 
arithmetic operation can be conducted, and the result is then converted to 
the modulus value.
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17.1.2. Balanced Sets of Treatments17.1.2. Balanced Sets of Treatments17.1.2. Balanced Sets of Treatments

•• ConstraintsConstraints
–– Factors are fixedFactors are fixed--effectseffects
–– Factor levels are prime numbersFactor levels are prime numbers

•• Representation of Treatment ConditionsRepresentation of Treatment Conditions

Standard Representation Modular Representation

  a1   a2   a3   a0   a1   a2

    b1 a1b1  a2b1 a3b1     b0 (00) (10) (20)

    b2 a1b2 a2b2 a3b2     b1 (01) (11) (21)

    b3 a1b3 a2b3 a3b3     b2 (02) (12) (22)

Modular representation is used to construct balanced sets of treatments in 
blocking and fractional-factorial designs when the levels of the factor all have 
the same prime number and the factors are fixed-effects factors. The 
number of levels in these designs determine the modulus used. For 
example, 2k factorial designs use Mod. 2 representations and 3k factorial 
designs use Mod. 3 representations. This slide depicts the treatment levels 
of a 3x3 factorial design in standard representation on the left side of the 
slide and Mod. 3 representation on the right side of the slide. 
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17.1.2. Balanced Sets of Treatments (Cont’d)17.1.2. Balanced Sets of Treatments (Cont17.1.2. Balanced Sets of Treatments (Cont’’d)d)

•• Defining RelationshipsDefining Relationships

•• Used to Divide Used to Divide 
Treatment Treatment 
CombinationsCombinations

•• Balancing Constraints Balancing Constraints 
for Remaining Effectsfor Remaining Effects

Factor A
Factor B
AB Component of AxB Interaction
AB2 Component of AxB Interaction

x1 = 0, 1, 2 (Mod. 3)   

x2 = 0, 1, 2 (Mod. 3)   

x1 + x2 = 0, 1, 2 (Mod. 3)

x1 + 2x2 = 0, 1, 2 (Mod. 3)

Σαi = 0
Σβj = 0
Σαβij = Σαβij = 0
i                j

Defining relationships in modular notation can be used to divide a factorial 
design into balanced sets of treatment combinations. These sets represent 
blocks in blocking designs and each set represents a partial replicate in a 
fractional-factorial design.

This slides provides a demonstration of using various Mod. 3 defining 
relationships for the various 2 df components of a 3x3 factorial design. Each 
2 df component of this design can be defined by one of the four defining 
relationships given at the top of this slide where X1 is the level of Factor A, 
X2 is the level of Factor B, and X1 + X2 and X1 + 2X2 define the two 2 df
orthogonal components of the AxB interaction in Mod. 3. Three of the nine 
treatment conditions in the 3x3 factorial design represent each of the values 
0,1, 2 (Mod. 3) in each of the four defining relationships representing the 2 df
components of the complete factorial design.

The resulting sets of treatment combinations are confounded with the 
specific value of the defining relationship, but are balanced across the values 
of remaining effects in the factorial design. Consequently, they define three 
groups of three balanced sets of treatment conditions that are balanced, 
rather than confounded, across the remaining 2 df component effects of 
Factor A, Factor B, and the AxB interaction as defined in the bottom portion 
of this slide. 
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17.1.2. Balanced Sets of Treatments (Cont’d)17.1.2. Balanced Sets of Treatments (Cont17.1.2. Balanced Sets of Treatments (Cont’’d)d)

Confounding Factor A

Defining Relationship:  x 1 = 0, 1, 2 (Mod. 3)

x1 = 0 x1 = 1 x1 = 2

00 10 20
01 11 21
02 12 22
A0 A1 A2

Confounding Factor B

Defining Relationship:  x 2 = 0, 1, 2 (Mod. 3)

x2 = 0 x2 = 1 x2 = 2

00 01 02
10 11 12
20 21 22
B0 B1 B2

Two different sets of three balanced treatment conditions are shown on this 
slide. First, the defining relationship shown on the top portion of the slide 
separates the sets only by levels of Factor A by stating x1 = 0, 1, 2 (Mod. 3). 
This confounds the three levels of Factor A with the three sets of three 
treatment conditions shown on the top of this slide, and the remaining effects 
are balanced across these three sets. Note that Factor A is totally 
confounded with the three sets of treatment conditions because level 0 of 
Factor A only appears in the first set, level 1 only appears in the second set, 
and level 2 only appears in the third set. But, Factor B and the AxB
interaction are balanced across the three sets.

Likewise, Factor B is totally confounded with the three sets of treatment 
conditions shown in the bottom portion of the slide which uses x2 = 0, 1, 2 
(Mod. 3) as the defining relationship. But, Factor A and the AxB interaction 
are balanced across the three sets.
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17.1.2. Balanced Sets of Treatments (Cont’d)17.1.2. Balanced Sets of Treatments (Cont17.1.2. Balanced Sets of Treatments (Cont’’d)d)

Confounding AB Component of AxB Interaction

Defining Relationship:      x1 + x 2 = 0, 1, 2 (Mod. 3)

x1 + x 2 = 0 x1 + x 2 = 1 x1 + x 2 = 2

00 01 02
12 10 11
21 22 20

AB0 AB 1 AB2

Confounding AB 2 Component of AxB Interaction

Defining Relationship:      x1 + 2x 2 = 0, 1, 2 (Mod. 3)

x1 + 2x 2 = 0 x1 + 2x 2 = 1 x1 + 2x 2 = 2

00 02 01
11 10 12
22 21 20

AB20 AB21 AB22

This slide lists the confounding of each of the two orthogonal 2 df
components of the AxB interaction with the three sets of balanced 
treatments. The defining relationship shown in top portion of the slide 
confounds the AB component of the AxB interaction, and the defining 
relationship shown in the bottom portion of the slide shows the confounding 
of the AB2 component of the AxB interaction. The AB and AB2 components 
are nothing more than two orthogonal components of the AXB interaction. 
Note that Factors A and B are balanced across both alternatives because all 
three levels of each factor appear in the three treatments in each of the three 
balanced sets.

Consequently, the defining relationship determines what is confounded with 
the balanced sets of treatments. These balanced sets become the blocks in 
ANOVA blocking designs, and the defining relationship specifies the effect in 
the factorial design that is confounded with blocks. Obviously, the 
experimenter would not choose either of the defining relations on the 
previous slide that confound main effects of either Factor A or B with blocks 
in this 3x3 factorial design. Rather, confounding one-half of the AxB
interaction by choosing either the AB or AB2 component shown on this slide 
would be a better choice for blocking the example 3x3 factorial design.



Human Factors Experimental Design and Analysis Reference

527

17.1.3. Component SS Formulae17.1.3. Component SS Formulae17.1.3. Component SS Formulae

•• FormulaeFormulae

•• Characteristics of Component SSCharacteristics of Component SS
–– There are 2 There are 2 dfdf for each component of 3for each component of 3kk designsdesigns
–– Component SS are orthogonalComponent SS are orthogonal

SSA = [{(A 0)2 + (A 1)2 + (A 2)2}/bn] - [{(A 0) + (A 1) + (A 2)}2/abn]

SSB = [{(B 0)2 + (B 1)2 + (B 2)2}/an] - [{(B 0) + (B 1) + (B 2)}2/abn]

SSAB = [{(AB 0)2+(AB 1)2+(AB 2)2}/3n] - [(AB 0+AB1+AB2)2/abn]

SSAB2 = [{(AB 20)2+(AB 21)2+(AB 22)2}/3n] - [(AB 20+AB21+AB22)2/abn]

SSTotal = SS A + SS B + SS AB + SS AB2

SSAxB = SS AB + SS AB2

The top of this slide shows the formulae that can be used to calculate the 
four alternative component SS in the 3x3 design described in the previous 
slides. Each of these components has 2 df. Each of the sum of squares for 
the components are orthogonal and sum to the Total SS. The SS of the AB 
and AB2 components sum to the AxB interaction SS because they represent 
orthogonal 2 df components of the AxB interaction that has 4 df.
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17.1.3. Component SS Formulae (Cont’d)17.1.3. Component SS Formulae (Cont17.1.3. Component SS Formulae (Cont’’d)d)

•• TwoTwo--Factor Design: a = 3, b = 3, and n = 2Factor Design: a = 3, b = 3, and n = 2
–– Data MatrixData Matrix

a0 a1 a2

     b0   8 15 25   B0=150
28 32 42

     b1 10 16 18   B1=  88
16 18 10

     b2 20 15 25   B2=130
22   8 40

   A0=104    A1=104    A2=160    T... = 368

This slide shows a hypothetical data matrix (n = 2) of the 3x3 example 
design. The SS for the AxB interaction can be divided into the two 
orthogonal components AB and AB2.
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17.1.3. Component SS Formulae (Cont’d)17.1.3. Component SS Formulae (Cont17.1.3. Component SS Formulae (Cont’’d)d)

•  SSAB Component

x1 + x2 = 0 x1 + x2 = 1 x1 + x2 = 2

(00) = 36 (01) = 26 (02) = 42
(12) = 23 (10) = 47 (11) = 34
(21) = 28 (22) = 65 (20) = 67
AB0 = 87 AB1=138 AB2=143

SSAB = [{(AB0)2+(AB1)2+(AB 2)2}/3n] - [(AB 0+AB1+AB2)2/abn]

   = [{(87) 2+(138) 2+(143) 2}/(3)(2)] - [(87+138+143) 2/(3)(3)(2)]

SSAB = 320.111

•  AxB Interaction Matrix

       a0 a1 a2
b0 (00) = 36 (10) = 47 (20) = 67
b1 (01) = 26 (11) = 34 (21) = 28
b2 (02) = 42 (12) = 23 (22) = 65

SSAxB = 358.222

The top of this slide lists the ABij totals used to calculate the AXB interaction 
in the basic ANOVA computational formula. Using these totals and the totals 
provided on the previous slide results in the SSAxB = 358.22.

The middle portion of this slide divides the nine treatment combinations into 
three balanced sets using the AB component of the AxB interaction as the 
defining relationship, and shows that these three component totals are 87, 
138, and 143, respectively. 

The bottom portion of this slide shows the calculation of the SS for AB 
component using the example data. By using the component SS formula, 
one determines that SSAB = 320.111. Note this value is less than SSAxB (i.e., 
358.222) because the AB component represents only 2 df of the total 4 df in 
the AxB interaction.
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17.1.3. Component SS Formulae (Cont’d)17.1.3. Component SS Formulae (Cont17.1.3. Component SS Formulae (Cont’’d)d)

•  SSAxB = SSAB + SSAB2

358.222 = 320.111 + 38.111

SSAB2 = [{(AB20)2+(AB21)2+(AB22)2}/3n] - [(AB20+AB21+AB22)2/abn]

     = [{(135)2+(117) 2+(116) 2}/(3)(2)] - [(135+117+116) 2/(3)(3)(2)]

SSAB2 = 38.111

•  SSAB2 Component

x1 + 2x2 = 0 x1 + 2x2 = 1 x1 + 2x2 = 2

(00) = 36 (02) = 42 (01) = 26
(11) = 34 (10) = 47 (12) = 23
(22) = 65 (21) = 28 (20) = 67
AB20=135 AB21=117 AB22=116

The top and middle portions of this slide divide the nine treatment 
combinations into three balanced sets using the AB2 component of the AxB
interaction as the defining relationship, and shows that these three 
component totals are 135, 117, and 116, respectively. By using the 
component SS formula, one determines that SSAB

2 = 38.111. Note this value 
is less than SSAxB (i.e., 358.222) because the AB component represents only 
2 df of the total 4 df in the AxB interaction.

The bottom portion of this slide demonstrates that the two orthogonal 
components of the two-way interaction (i.e., AB and AB2) sum to the SS 
originally calculated for the AxB interaction (i.e., 358.222) since the two 
components are orthogonal. The experimenter has no way of knowing 
beforehand which of these two components will be larger only that they are 
orthogonal 2 df component sets of treatment conditions.
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17.1.4. Generalizations17.1.4. Generalizations17.1.4. Generalizations

•• Use Primarily 2Use Primarily 2kk, 3, 3kk, and 5, and 5kk DesignsDesigns
•• Orthogonal Interaction Components of 3Orthogonal Interaction Components of 3kk and 5and 5kk DesignsDesigns

–– RuleRule:: Orthogonal components for the various interactions are  Orthogonal components for the various interactions are  
determined by maintaining Factor A at a weighting of one and determined by maintaining Factor A at a weighting of one and 
exhausting all the nonexhausting all the non--zero  modular weightings of the other zero  modular weightings of the other 
factor(s).factor(s).

–– Example of A Example of A ×× B B ×× C interaction of 3C interaction of 333 designdesign::
ABC, ABABC, AB22C, ABCC, ABC22, AB, AB22CC22 components with 2 components with 2 dfdf eacheach

–– Example of A Example of A ×× B interaction of 5B interaction of 522 designdesign::
AB, ABAB, AB22, AB, AB33, AB, AB44 components with 4 components with 4 dfdf eacheach

•• Defining Relationships of Interaction Components Defining Relationships of Interaction Components 
–– RuleRule:: Superscripts of interaction components are used  as the Superscripts of interaction components are used  as the 

weightings in the defining relationships.weightings in the defining relationships.
–– Example of ABExample of AB33CC44 component of 5component of 533 designdesign::

XX11 + 3X+ 3X22 + 4X+ 4X33 = 0, 1, 2, 3, 4 (Mod 5)= 0, 1, 2, 3, 4 (Mod 5)

Blocking and fractional factorial designs can be constructed with 2k, 3k, and 
5k designs. In practice, 2k designs are primarily used in human factors and 
ergonomics research to facilitate interpretation. Each main effect and 
interaction in a 2k factorial design has 1 df. Consequently, the entire 
interaction is confounded in blocking and fractional-factorial designs, 
whereas only components of the interaction are confounded in 3k and 5k

factorial designs.

Orthogonal components of 3k and 5k designs, however, can be easily 
constructed by following the rule described in the center portion of this slide. 
Note that the superscripts of the various 3k and 5k components denote the 
weightings in the defining relationship and not the factor raised to a power. 
An example of using the AB3C4 component of the AxBxC interaction as a 
defining relationship in a 25 factorial design is shown at the bottom of this 
slide.
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17.1.4. Generalizations (Cont'd)17.1.4. Generalizations (Cont'd)17.1.4. Generalizations (Cont'd)

Overall and Component Sources for a 33 Design

Source df

A 2
B 2
C 2
AxB 4
  (AB)   (2)
  (AB2)   (2)
AxC 4
  (AC)   (2)
  (AC 2)     (2)
BxC 4
  (BC)   (2)
  (BC 2)   (2)
AxBxC 8
  (ABC)   (2)
  (AB2C)   (2)
  (ABC 2)   (2)
  (AB2C2 )   (2)

This slide shows an example of using the rule for specifying orthogonal 
interaction components of interactions in a 33 factorial design. Each of the 
three main effects have 2 df. The 2 df components for the two-way 
interactions and the three-way interaction are shown in parenthesis on the 
slide. Any of these 2 df components can be used to specify a defining 
relationship that separates the 27 treatment conditions of the full factorial 
design into 3 components of 9 treatment combinations each.
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17.2. Blocking 2k Designs17.2. Blocking 217.2. Blocking 2kk DesignsDesigns

•• Modular RepresentationModular Representation
–– Specifies BlocksSpecifies Blocks
–– Defines Confounding RelationshipDefines Confounding Relationship

•• Nuisance Variables in Large Factorial Nuisance Variables in Large Factorial 
ANOVA DesignsANOVA Designs
–– BetweenBetween--Subjects DesignSubjects Design: Multiple : Multiple 

ExperimentersExperimenters
–– WithinWithin--Subjects DesignSubjects Design: Multiple Data Collection : Multiple Data Collection 

SessionsSessions
•• 22kk Design ApplicationsDesign Applications

–– Confounds Complete Effect with BlocksConfounds Complete Effect with Blocks
–– Blocking in Multiples of 2Blocking in Multiples of 2

The remainder of this topic discusses the use of modular representation as a 
means of constructing blocks or subsets of a 2k factorial design such that a 
nuisance variable that exists in the experiment is confounded with only a 
subset of the full factorial design components. For example, due to 
availability of experimenters it may be necessary to use more than one 
experimenter for data collection in a large factorial between-subjects design. 
Consequently, a nuisance variable due to any differences among 
experimenters will be confounded with a portion of the factorial design. The 
researcher determines the required blocking arrangement before data 
collection to minimize the confounding of the nuisance variable on the 
experiment of interest. Controlling confounding with data collection session 
effects in large within-subject factorial designs can also be handled through 
blocking procedures.

The procedures for blocking experimental designs are restricted to 2k

factorial designs in this topic. Since each effect in a 2k factorial design has 1 
df, the effect chosen as the defining relationship is totally confounded with 
blocks not just part of the effect. This facilitates the choice of a defining 
relationship. Obviously, blocking in 2k factorial designs begins with two 
blocks and proceeds in multiples of two blocks.
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17.2. Blocking 2k Designs (Cont’d)17.2. Blocking 217.2. Blocking 2kk Designs (ContDesigns (Cont’’d)d)

•• 17.2.1. Simple Blocking of 217.2.1. Simple Blocking of 2kk DesignDesign
•• 17.2.2. Complex Blocking of 217.2.2. Complex Blocking of 2kk DesignDesign
•• 17.2.3. Computational Considerations17.2.3. Computational Considerations

Blocking of 2k factorial designs is described in terms of simple and complex 
blocking procedures. Simple blocking of 2k designs requires only one 
defining relationship resulting in two blocks. Complex blocking of 2k designs 
requires more than one defining relationship yielding multiples of two blocks. 
This subsection ends with examples of ANOVA computations using simple 
and complex blocking procedures.
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17.2.1. Simple Blocking of 2k Design17.2.1. Simple Blocking of 217.2.1. Simple Blocking of 2kk DesignDesign

•• 22kk Factorial Design Divided into 2 BlocksFactorial Design Divided into 2 Blocks
•• ConstraintConstraint

–– Complete Factorial Design Must Be BlockedComplete Factorial Design Must Be Blocked
–– One Component of Factorial Design Confounded One Component of Factorial Design Confounded 

with Blockswith Blocks
•• Defining RelationshipDefining Relationship

–– Use Modular Representation to Determine Use Modular Representation to Determine 
Treatment Conditions Assigned to Each BlockTreatment Conditions Assigned to Each Block

–– Single Defining Relationship Sufficient for Single Defining Relationship Sufficient for 
BlockingBlocking

A simple blocking of a 2k design divides the treatment conditions into two 
blocks. Any simple blocking design has the constraint that the complete 
factorial design is blocked such that half of the factorial design is 
represented in one block and the remainder is represented in the other 
block. Only one defining relationship is needed to construct the two blocks, 
and the effect chosen for the defining relationship is totally confounded with 
the blocking nuisance variable. Consequently, the researcher usually 
chooses the effect of least interest to the experiment as the defining 
relationship.
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17.2.1. Simple Blocking of 2k Design (Cont'd)17.2.1. Simple Blocking of 217.2.1. Simple Blocking of 2kk Design (Cont'd)Design (Cont'd)

•• ExampleExample:: 2244 WithinWithin--Subject DesignSubject Design
–– Factors:Factors: Target Speed (A)Target Speed (A)

Target Size (B)Target Size (B)
Noise Level (C)Noise Level (C)
Display Resolution (D)Display Resolution (D)

–– n = 11n = 11
–– 50 Detection Trials at Each of 16 Treatment 50 Detection Trials at Each of 16 Treatment 

CombinationsCombinations
–– 2 Sessions of 8 Treatment Combinations2 Sessions of 8 Treatment Combinations
–– Confound AConfound A××BB××CC××D Interaction with SessionsD Interaction with Sessions

•• Defining RelationshipDefining Relationship
–– xx11 + x+ x22 + x+ x33 + x+ x44 = 0, 1 (Mod. 2)= 0, 1 (Mod. 2)

This slide describes an example of a 24 within-subjects design where each of 
the 11 subjects receives all 16 treatment combinations in the factorial 
design. Since 50 target detection trials are presented at each treatment 
combination, each subject receives a total of 800 target detection trials to 
complete the experiment. The experimenter decides to divide the experiment 
into two sessions of 400 trials each to avoid subject fatigue.

The four-way interaction is probably of least interest to the experimenter, so 
it is confounded with blocks (i.e., sessions) by using the defining relationship 
given at the bottom of this slide. Note that careful decision must be given to 
choosing the defining relationship because that effect becomes confounded 
with blocks and cannot be evaluated separately from blocks in the 
subsequent data analysis.
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17.2.1. Simple Blocking of 2k Design (Cont'd)17.2.1. Simple Blocking of 217.2.1. Simple Blocking of 2kk Design (Cont'd)Design (Cont'd)

Simple Blocking 2Simple Blocking 244 DesignDesign
C1:  x1 + x2 + x3 + x 4 = 0,1 (Mod. 2)

Session 1 Session 2

x1 + x 2 + x 3 + x 4 = 0 x1 + x 2 + x 3 + x 4 = 1
0000 0001
1100 0010
1010 0100
1001 1000
0110 0111
0101 1011
0011 1101
1111 1110

ABCD 0 ABCD 1

This slide shows the eight treatment conditions of the factorial design in 
Mod. 2 notations that satisfy the O and 1 values, respectively, of the defining 
relationship (C1) shown at the top for Session 1 and 2.
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17.2.1. Simple Blocking of 2k Design (Cont'd)17.2.1. Simple Blocking of 217.2.1. Simple Blocking of 2kk Design (Cont'd)Design (Cont'd)

ANOVA Summary Table of a Blocked, Within-Subject Design
                                 C 1:  x 1 + x 2 + x 3 + x 4 = 0, 1 (Mod. 2)

Source df
Between-Subjects

Subjects (S) 10
Within-Subject

Blocks (AxBxCxD) 1
Blocks x S (AxBxCxDxS) 10
A 1
AxS 10
B 1
BxS 10
C 1
CxS 10
D 1
DxS 10
AxB 1
AxBxS 10
AxC 1
AxBxS 10
AxD 1
AxDxS 10
BxC 1
BxCxS 10
BxD 1
BxDxS 10
CxD 1
CxDxS 10
AxBxC 1
AxBxCxS 10
AxBxD 1
AxBxDxS 10
AxCxD 1
AxCxDxS 10
BxCxD 1
BxCxDxS 10

Total 175

The complete ANOVA summary table for this blocked 24 factorial design is 
shown on this slide. The Blocks main effect is Testing Session and is tested 
by the BlocksxSubjects interaction. Note the AxBxCxD interaction is listed in 
parenthesis after Blocks and the AxBxCxDxS interaction is listed in 
parenthesis after the BlocksxSubjects interaction because these effects are 
totally confounded with each other. If the Blocks effect is significant in the 
ANOVA, the experimenter cannot determine if the effect is due to
Experimental Session (i.e. the blocking nuisance variable) or the AxBxCxD
interaction due to the confounding. But, all other effects in the 24 factorial 
design remain unconfounded with Experimental Session. Again, this 
underscores the notion that the effect of least interest in the experiment 
should be chosen as the defining relationship because there can be no 
unconfounded test of this effect in the blocked ANOVA design. Usually the 
highest-order interaction is of least interest in a factorial design and chosen 
for the defining relationship.
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17.2.2. Complex Blocking of 2k Design17.2.2. Complex Blocking of 217.2.2. Complex Blocking of 2kk DesignDesign

•• ConstraintConstraint
–– Requires More Blocks Than Simple BlockingRequires More Blocks Than Simple Blocking
–– Additional Blocks Confound More EffectsAdditional Blocks Confound More Effects

•• ApproachApproach
–– Use Second Defining RelationshipUse Second Defining Relationship
–– Divide Existing Blocks into Additional BlocksDivide Existing Blocks into Additional Blocks
–– Determine Generalized InteractionsDetermine Generalized Interactions

•• Generalized InteractionsGeneralized Interactions
–– Four Blocks in 2Four Blocks in 2kk DesignsDesigns

–– CC11

–– CC22

–– CC11 + C+ C22 (Generalized Interaction)(Generalized Interaction)

Complex blocking is required if more than two blocks are needed for a 2k

design. Blocking increases in multiples of two in 2k designs meaning the next 
levels of blocks is four, followed by eight, etc. Due to the concomitant 
increase in confounding effects with blocks, only four blocks are usually 
considered in complex blocking of 2k designs. To construct these four 
blocks, a second defining relationship (C2) must be used to divide each of 
the original two blocks determined by the first defining relationship (C1) into 
two additional blocks.

The resulting main effect of the four blocks has 3 df in the subsequent 
ANOVA with three 1df effects confounded with blocks. Two of these 
confounded effects are defined by C1 and C2. The third confounded effect is 
called the generalized interaction and is determined by adding C1 and C2
relationships together in Mod. 2. The resulting three confounded effects each 
have 1 df and represent the 3 df of the blocks main effect.
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•• Example: 2Example: 244 WithinWithin--Subject DesignSubject Design
–– Same Experiment Used in Simple BlockingSame Experiment Used in Simple Blocking
–– Need 4 Sessions of 4 Treatment Combinations Instead of 2 Need 4 Sessions of 4 Treatment Combinations Instead of 2 

Sessions of 8 Treatment CombinationsSessions of 8 Treatment Combinations
–– Confound AConfound A××BB××CC××D and AD and A××B Interactions with SessionsB Interactions with Sessions

•• Defining RelationshipsDefining Relationships

•• CautionCaution
–– Always Calculate Generalized Interaction to Avoid Always Calculate Generalized Interaction to Avoid 

Confounding Effects of interest with BlocksConfounding Effects of interest with Blocks
–– ExampleExample

17.2.2. Complex Blocking of 2k Design (Cont'd)17.2.2. Complex Blocking of 217.2.2. Complex Blocking of 2kk Design (Cont'd)Design (Cont'd)

C1:  x1 + x2 + x3 + x4 = 0, 1 (Mod. 2)
C2:  x1 + x2 = 0, 1 (Mod. 2)
C1 + C2:  x3 + x4 = 0, 1 (Mod. 2)

C1:  x1 + x2 + x3 + x4 = 0, 1 (Mod. 2)
C2:  x1 + x2 + x3 = 0, 1 (Mod. 2)
C1 + C2:  x4 = 0, 1 (Mod. 2)

This slide extends the example of a 24 within-subjects design used in simple 
blocking where each of the 11 subjects receives all 16 treatment
combinations in the factorial design. Rather than have two blocks of eight 
treatment condition, four blocks of four treatment conditions are required to 
conduct the experiment over four sessions in this complex blocking example.

As shown in the center portion of the slide, the two defining relationships and 
the resulting generalized interaction were chosen such that the AxBxCxD, 
AxB, and CxD interactions are confounded with the four testing sessions 
(i.e., Blocks).

The experimenter must take care to always calculate beforehand the 
generalized interaction, or third confounded effect, to avoid confounding 
effects of interest with blocks. As shown in the bottom portion of this slide, if 
the highest-order interaction, AxBxCxD, and a third-order interaction, AxBxC, 
were chosen as the two defining relationships C1 and C2, then the main 
effect of Factor D would also be confounded with Blocks. 
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17.2.2. Complex Blocking of 2k Design (Cont'd)17.2.2. Complex Blocking of 217.2.2. Complex Blocking of 2kk Design (Cont'd)Design (Cont'd)

Complex Blocking of 24 Design

C1:  x1 + x 2 + x 3 + x 4 = 0,1 (Mod. 2)   and   C2:  x1 + x 2 = 0,1 (Mod. 2)

x1 + x 2 + x 3 + x 4 = 0 x1 + x 2 + x 3 + x 4 = 1
0000 0001
1100 0010
1010 0100
1001 1000
0110 0111
0101 1011
0011 1101
1111 1110

ABCD 0 ABCD 1

x1 + x 2 = 0 x1 + x 2 = 1 x1 + x 2 = 0 x1 + x 2 = 1
0000 1010 0001 0100
1100 1001 0010 1000
0011 0110 1101 0111
1111 0101 1110 1011
AB0 AB1 AB0 AB1

This slide shows the mechanics of dividing each of the two blocks from 
simple blocking (C1) into two additional blocks of four treatment conditions in 
complex blocking by using C2 to satisfy 0 and 1 values in Mod. 2. The four 
different treatment conditions of the complete 24 factorial design for each of 
the resulting four sessions (i.e., Blocks) are listed at the bottom of this slide 
in Mod. 2 notation.
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17.2.2. Complex Blocking of 2k Design (Cont'd)17.2.2. Complex Blocking of 217.2.2. Complex Blocking of 2kk Design (Cont'd)Design (Cont'd)

ANOVA Summary Table of a Blocked,Within-Subject Design
C1 :  x 1  + x 2  + x 3  + x 4  = 0, 1 (Mod. 2)

C2 :  x 1  + x 2  = 0, 1 (Mod. 2)
C1  + C 2 :  x 3  + x 4  = 0, 1 (Mod. 2)

Source df
Between-Subjects

Subjects (S) 10
Within-Subject

Blocks (AxBxCxD, AxB, CxD) 3
Blocks x S (AxBxCxDxS, AxBxS, CxDxS) 30
A 1
AxS 10
B 1
BxS 10
C 1
CxS 10
D 1
DxS 10
AxC 1
AxCxS 10
AxD 1
AxDxS 10
BxC 1
BxCxS 10
BxD 1
BxDxS 10
AxBxC 1
AxBxCxS 10
AxBxD 1
AxBxDxS 10
AxCxD 1
AxCxDxS 10
BxCxD 1
BxCxDxS 10

Total 175

The complete ANOVA summary table for a complex blocked 24 factorial 
design is shown on this slide. The two defining relationships and the 
generalized interaction are stated at the top of this slide. These three C1, C2, 
and C1 + C2 effects are the three interactions confounded with blocks as 
shown in parenthesis after blocks. The interaction of each of these three 
effects and subjects are confounded with BlocksxSubjects and are listed in 
parenthesis.
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17.2.3. Computational Considerations17.2.3. Computational Considerations17.2.3. Computational Considerations

•• Complete Effects are Confounded with Complete Effects are Confounded with 
Blocks in 2Blocks in 2kk..

•• No Computational Corrections are Needed.No Computational Corrections are Needed.
•• Use Appropriate Error Term from Complete Use Appropriate Error Term from Complete 

Factorial Design.Factorial Design.
•• Reformat ANOVA Summary Table to Show Reformat ANOVA Summary Table to Show 

Block Effects in Parenthesis.Block Effects in Parenthesis.

Since complete effects in 2k factorial designs are confounded with blocks, 
standard statistical analysis packages can be used to conduct the ANOVA 
without computational correction on any effect of interest.  The SS of the 
effects confounded with blocks are merely added together to determine the 
Blocks SS, and the ANOVA Summary Table is reformatted accordingly.  The 
same error terms used for between-subjects and within-subjects ANOVA 
designs are used for the blocked designs.
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17.2.3.  Computational Considerations (Cont'd)17.2.3.  Computational Considerations (Cont'd)17.2.3.  Computational Considerations (Cont'd)

Between-Subjects Design

Source df

Between-Subjects
Blocks (AxBxC) (g-1)
A (a-1)
B (b-1)
C (c-1)
AxB (a-1)(b-1)
AxC (a-1)(c-1)
BxC (b-1)(c-1)
S/ABC abc(n-1)

Total abcn-1

Within-Subject Design

Source df

Between-Subjects
Subjects (S) (n-1)

Within-Subject
Blocks (AxBxC) (g-1)
Blocks x S (AxBxCxS) (g-1)(n-1)
A (a-1)
AxS (a-1)(n-1)
B (b-1)
BxS (b-1)(n-1)
C (c-1)
CxS (c-1)(n-1)
AxB (a-1)(b-1)
AxBxS (a-1)(b-1)(n-1)
AxC (a-1)(c-1)
AxCxS (a-1)(c-1)(n-1)
BxC (b-1)(c-1)
BxCxS (b-1)(c-1)(n-1)

Total abcn-1

By way of example, this slide shows a comparison of a between-subjects 
and a within-subjects 23 factorial design that is conducted in two blocks using 
the AxBxC interaction as the defining relationship for simple blocking.  Note 
that both designs show the AxBxC interaction confounded with blocks, and 
calculation of this interaction effect can be used to calculate the Block SS.

The error used to test the Block effect, however, differs depending on the 
type of design.  The between-subjects design uses the usual S/ABC effect 
as the error term for effects including Blocks, and the within-subjects design 
alternative uses the interaction with blocks (i.e., AxBxCxS) as the error term 
for testing Blocks.
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17.2.3.  Computational Considerations (Cont'd)17.2.3.  Computational Considerations (Cont'd)17.2.3.  Computational Considerations (Cont'd)

•• 17.2.3.1. Simple Blocking Example17.2.3.1. Simple Blocking Example
•• 17.2.3.2. Complex Blocking Example17.2.3.2. Complex Blocking Example

Two examples are provided in this subsection to demonstrate the ANOVA 
computations of within-subjects simple and complex blocking designs.  The 
Slater and Williges (2006) appendix provides the SAS analysis procedures 
for conducting the subsequent ANOVA on each example problem.
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17.2.3.1. Simple Blocking Example17.2.3.1. Simple Blocking Example17.2.3.1. Simple Blocking Example

•• Example ProblemExample Problem:  Testing was conducted on a :  Testing was conducted on a 
new computerized target detection system.  The new computerized target detection system.  The 
detection system evaluates four different detection system evaluates four different 
dimensions (i.e., target speed, target size, noise dimensions (i.e., target speed, target size, noise 
level, and display resolution) each with two level, and display resolution) each with two 
settings.  Five soldiers have been recruited to settings.  Five soldiers have been recruited to 
participate in the testing of the new system.  For participate in the testing of the new system.  For 
each of the 16 dimension combinations, 100 each of the 16 dimension combinations, 100 
detection trials per soldier are completed and a detection trials per soldier are completed and a 
percentage is computed.  Because of the number percentage is computed.  Because of the number 
of trials (1600 trials per soldier), the testing of trials (1600 trials per soldier), the testing 
procedure is too lengthy to complete in one day, so procedure is too lengthy to complete in one day, so 
it will be conducted in two sessions over two days.  it will be conducted in two sessions over two days.  
Do the settings have an effect on the percentage of Do the settings have an effect on the percentage of 
targets detected? (p < 0.01)  Also, is there an effect targets detected? (p < 0.01)  Also, is there an effect 
due to the blocking of the data collection into two due to the blocking of the data collection into two 
sessions?sessions?

(Click in this red rectangle to see SAS calculations for this example.)

This example describes the same 24 within-subjects target detection problem 
used in simple blocking, but only uses a sample size of five. The blocking 
requirement is to divide the data collection of the full factorial design into two 
equal sessions consisting of eight different treatment conditions of 100 trials 
each.
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17.2.3.1. Simple Blocking Example (Cont'd)17.2.3.1. Simple Blocking Example (Cont'd)17.2.3.1. Simple Blocking Example (Cont'd)

Target Speed (A), Target Size (B), Noise Level (C), Display ResoTarget Speed (A), Target Size (B), Noise Level (C), Display Resolution (D)lution (D)

C1 :  x1 + x2 + x3 + x4 = 0,1 (Mod. 2)

Session 1 Session 2

x1 + x 2 + x 3 + x 4 = 0 x1 + x 2 + x 3 + x 4 = 1
0000 0001
1100 0010
1010 0100
1001 1000
0110 0111
0101 1011
0011 1101
1111 1110

ABCD 0 ABCD 1

(Click in this red rectangle to see SAS calculations for this example.)

The fourth-order interaction (AxBxCxD) is used as the defining relation, C1. 
This slide shows the resulting eight treatment combinations in Mod. 2 
notation for each session. 
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17.2.3.1. Simple Blocking Example (Cont'd)17.2.3.1. Simple Blocking Example (Cont'd)17.2.3.1. Simple Blocking Example (Cont'd)

0.250.400.760.190.440.660.460.37
0.310.500.870.270.080.890.370.66
0.080.640.900.140.390.380.140.45
0.270.890.670.430.220.480.230.23
0.140.780.700.020.280.750.090.50
11110011010101101001101011000000

Session 1 (ABCD0)

0.540.590.570.770.770.560.100.41
0.590.610.620.410.670.110.210.33
0.770.710.400.680.430.330.160.27
0.810.590.390.680.550.410.600.77
0.990.310.050.990.740.320.050.11
11101101101101111000010000100001

Session 2 (ABCD1)

Target Speed (A), Target Size (B), Noise Level (C), Display ResoTarget Speed (A), Target Size (B), Noise Level (C), Display Resolution (D)lution (D)

(Click in this red rectangle to see SAS calculations for this example.)

The set of probability of detection scores across 100 trials for each soldier in 
the full within-subjects, factorial design is shown on this slide. The eight 
conditions each soldier experienced in Session 1 are shown on the top 
portion in Mod. 2 notation, and the eight conditions each soldier experienced 
in Session 2 are shown in the bottom portion in Mod. 2 notation. This division 
of the 16 treatment combinations follows the blocking represented in the 
previous slide.
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17.2.3.1. Simple Blocking Example (Cont'd)17.2.3.1. Simple Blocking Example (Cont'd)17.2.3.1. Simple Blocking Example (Cont'd)

Source df
Between-Subjects

Subjects (S) 4
Within-Subject

Session (AxBxCxD) 1
SessionxS (AxBxCxDxS) 4
Target Speed (A) 1
AxS 4
Target Size (B) 1
BxS 4
Noise Level (C) 1
CxS 4
Display Resolution (D) 1
DxS 4
AxB 1
AxBxS 4
AxC 1
AxCxS 4
AxD 1
AxDxS 4
BxC 1
BxCxS 4
BxD 1
BxDxS 4
CxD 1
CxDxS 4
AxBxC 1
AxBxCxS 4
AxBxD 1
AxBxDxS 4
AxCxD 1
AxCxDxS 4
BxCxD 1
BxCxDxS 4

Total 79

FMSSS

4.75

0.05

0.20

0.22

6.96

2.65

4.57

56.33*

3.52

7.80

0.05

0.34

1.29

21.89*

6.69

0.0168

0.1232
0.0259
0.0022
0.0402
0.0022
0.0113
0.0101
0.0453
0.1022
0.0147
0.1232
0.0464
0.0806
0.0176
1.2450
0.0221
0.0361
0.0103
0.2184
0.0275
0.0018
0.0331
0.0092
0.0275
0.0312
0.0243
0.4234
0.0633
0.6734
0.0308

0.0672

0.1232
0.1038
0.0022
0.1608
0.0022
0.0451
0.0101
0.1814
0.1022
0.0588
0.1232
0.1857
0.0806
0.7059
1.2450
0.0884
0.0361
0.0410
0.2184
0.1119
0.0018
0.1323
0.0092
0.1102
0.0312
0.0971
0.4234
0.2532
0.6734
0.1231
4.9133

ANOVA Summary Table

*p < 0.01

(Click in this red rectangle to see SAS calculations for this example.)

The ANOVA on the complete 24 within-subjects design can be conducted on 
this data set using standard procedures. The session effect is merely the 
AxBxCxD interaction and is tested by the AxBxCxDxS interaction.

The complete ANOVA computations for this simple blocking problem using 
SAS is presented in the Slater and Williges (2006) appendix, and the 
resulting ANOVA Summary Table is shown on this slide. The abbreviations 
for the four independent variables are listed as A, B, C, and D to make them 
compatible with the previous slides for this example. Normally, a meaningful 
abbreviation is chosen for each factor.
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•• Example ProblemExample Problem: Testing was conducted on a new : Testing was conducted on a new 
computerized target detection system. The detection computerized target detection system. The detection 
system evaluates four different dimensions (i.e., system evaluates four different dimensions (i.e., 
target speed, target size, noise level, and display target speed, target size, noise level, and display 
resolution) each with two settings. Five soldiers have resolution) each with two settings. Five soldiers have 
been recruited to participate in the testing of the new been recruited to participate in the testing of the new 
system. For each of the 16 dimension combinations, system. For each of the 16 dimension combinations, 
100 detection trials per soldier are completed and a 100 detection trials per soldier are completed and a 
percentage is computed. Because of the number of percentage is computed. Because of the number of 
trials (1600 trials per soldier), the testing procedure is trials (1600 trials per soldier), the testing procedure is 
too lengthy to complete in one day, so it will be too lengthy to complete in one day, so it will be 
conducted in four sessions over four days. Do the conducted in four sessions over four days. Do the 
settings have an effect on the percentage of targets settings have an effect on the percentage of targets 
detected? (p < 0.01) Also, is there an effect due to the detected? (p < 0.01) Also, is there an effect due to the 
blocking of the data collection into four sessions?blocking of the data collection into four sessions?

17.2.3.2. Complex Blocking Example17.2.3.2. Complex Blocking Example17.2.3.2. Complex Blocking Example

(Click in this red rectangle to see SAS calculations for this example.)

This example describes the same 24 within-subjects target detection problem 
used in complex blocking, but only uses a sample size of five. The blocking 
requirement is to divide the data collection of the full factorial design into four 
equal sessions consisting of four different treatment conditions of 100 trials 
each.
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17.2.3.2. Complex Blocking Example (Cont'd)17.2.3.2. Complex Blocking Example (Cont'd)17.2.3.2. Complex Blocking Example (Cont'd)

C1:  x1 + x 2 + x 3 + x 4 = 0,1 (Mod. 2)   and   C2:  x1 + x 2 = 0,1 (Mod. 2)

x1 + x 2 + x 3 + x 4 = 0 x1 + x 2 + x 3 + x 4 = 1
0000 0001
1100 0010
1010 0100
1001 1000
0110 0111
0101 1011
0011 1101
1111 1110

ABCD 0 ABCD 1

x1 + x 2 = 0 x1 + x 2 = 1 x1 + x 2 = 0 x1 + x 2 = 1
0000 1010 0001 0100
1100 1001 0010 1000
0011 0110 1101 0111
1111 0101 1110 1011
AB0 AB1 AB0 AB1

Target Speed (A), Target Size (B), Noise Level (C), Display ResoTarget Speed (A), Target Size (B), Noise Level (C), Display Resolution (D)lution (D)

(Click in this red rectangle to see SAS calculations for this example.)

The fourth-order interaction (AxBxCxD) is used as the first defining 
relationship, C1, and a two-way interaction (AxB) is used as the second 
defining relationship, C2. Consequently, the generalized interaction (i.e., C1 + 
C2) is CxD. This slide shows the resulting four treatment combinations in 
Mod. 2 notation for each of the four data collection sessions.
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17.2.3.2. Complex Blocking Example (Cont'd)17.2.3.2. Complex Blocking Example (Cont'd)17.2.3.2. Complex Blocking Example (Cont'd)

0.250.400.460.37
0.310.500.370.66
0.080.640.140.45
0.270.890.230.23
0.140.780.090.50
1111001111000000

Session 1 (ABCD0 and AB0)

0.540.590.100.41
0.590.610.210.33
0.770.710.160.27
0.810.590.600.77
0.990.310.050.11
1110110100100001

Session 3 (ABCD1 and AB0)

Target Speed (A), Target Size (B), Noise Level (C), Display ResoTarget Speed (A), Target Size (B), Noise Level (C), Display Resolution (D)lution (D)

0.760.190.440.66
0.870.270.080.89
0.900.140.390.38
0.670.430.220.48
0.700.020.280.75
0101011010011010

Session 2 (ABCD0 and AB1)

0.570.770.770.56
0.620.410.670.11
0.400.680.430.33
0.390.680.550.41
0.050.990.740.32
1011011110000100

Session 4 (ABCD1 and AB1)

(Click in this red rectangle to see SAS calculations for this example.)

The complete set of probability of detection scores across 100 trials for each 
soldier in the full within-subjects, factorial design is shown on this slide. The 
data are grouped by the four conditions in Mod. 2 notation that each soldier 
received in each of the four sessions. This division of the 16 treatment 
combinations follows the blocking represented in the previous slide.
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17.2.3.2. Complex Blocking Example (Cont'd)17.2.3.2. Complex Blocking Example (Cont'd)17.2.3.2. Complex Blocking Example (Cont'd)

Source df
Between-Subjects
Subjects (S) 4

Within-Subject
Session (AxBxCxD, AxB, CxD) 3
SessionxS (AxBxCxDxS, AxBxS, CxDxS) 12
Target Speed (A) 1
AxS 4
Target Size (B) 1
BxS 4
Noise Level (C) 1
CxS 4
Display Resolution (D) 1
DxS 4
AxC 1
AxCxS 4
AxD 1
AxDxS 4
BxC 1
BxCxS 4
BxD 1
BxDxS 4
AxBxC 1
AxBxCxS 4
AxBxD 1
AxBxDxS 4
AxCxD 1
AxCxDxS 4
BxCxD 1
BxCxDxS 4

Total 79

F

2.35

0.05

0.20

0.22

6.96

4.57

56.33*

3.52

7.80

0.34

1.29

6.69

21.89*

MS

0.0168

0.0828
0.0351
0.0022
0.0402
0.0022
0.0113
0.0101
0.0454
0.1022
0.0147
0.0806
0.0176
1.2450
0.0221
0.0361
0.0103
0.2184
0.0278
0.0092
0.0275
0.0312
0.0242
0.4234
0.0633
0.6734
0.0308

SS

0.0672

0.2483
0.4217
0.0022
0.1608
0.0022
0.0451
0.0101
0.1814
0.1022
0.0588
0.0806
0.0706
1.2450
0.0884
0.0361
0.0410
0.2184
0.1119
0.0092
0.1102
0.0312
0.0971
0.4234
0.2532
0.6734
0.1231
4.9133

ANOVA Summary Table

*p < 0.01

(Click in this red rectangle to see SAS calculations for this example.)

The ANOVA on the complete 24 within-subjects design can be conducted on 
this data set using standard procedures. The session main effect with 3df 
can be calculated separately instead of adding together the AxBxCxD, AxB, 
and CxD interactions that are confounded with sessions. Likewise, the 
SessionsxS interaction is used as the error term for testing Sessions and 
can be calculated with 12df instead of the AxBxCxDxS, AxBxS, and CxDxS
interactions in this within-subjects design. The complete ANOVA 
computations for this simple blocking problem using SAS is presented in the 
Slater and Williges (2006) appendix, and the resulting ANOVA Summary 
Table is shown on this slide. The abbreviations for the four independent 
variables are listed as A, B, C, and D to make them compatible with the 
previous slides for this example. Normally, a meaningful abbreviation is 
chosen for each factor.
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17.3. Pseudo-Factor Blocking17.3. Pseudo17.3. Pseudo--Factor BlockingFactor Blocking

•• UseUse
–– Blocking When Levels are Not Prime NumbersBlocking When Levels are Not Prime Numbers
–– Levels of Design Composed of Combination of Levels of Design Composed of Combination of 

PseudoPseudo--Factors with Prime Number LevelsFactors with Prime Number Levels
•• Example of 4Example of 422 DesignDesign

–– 4 4 ×× 4 Design of Factors A and B4 Design of Factors A and B
–– 4 Levels of A Composed of Pseudo4 Levels of A Composed of Pseudo--Factors C Factors C 

and D each with 2 Levelsand D each with 2 Levels
–– 4 Levels of B Composed of Pseudo4 Levels of B Composed of Pseudo--Factors E Factors E 

and F each with 2 Levelsand F each with 2 Levels
–– 4 4 ×× 4 Design Equals 2 4 Design Equals 2 ×× 2 2 ×× 2 2 ×× 2 Pseudo2 Pseudo--Factor Factor 

DesignDesign

Pseudo-factors can be used to construct blocks in certain situations when 
the levels of the actual design are composed of a combination of factors 
consisting of prime number levels. The factors in this combination are called 
pseudo-factors. An example of a 4x4 factorial design with factors A and B is 
shown on this slide. These 16 treatment combinations can be blocked as a 
24 factorial design in which Factor A is designated as pseudo-factors C and 
D with 2 levels each, and Factor B is designated as pseudo-factors E and F 
with two factors each.
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17.3. Pseudo-Factor Blocking (Cont'd)17.3. Pseudo17.3. Pseudo--Factor Blocking (Cont'd)Factor Blocking (Cont'd)

•• Four Step ApproachFour Step Approach
–– Step 1Step 1: Recode 4: Recode 4××4 design as a 24 design as a 2××22××22××2 pseudo2 pseudo--

factor design.factor design.
–– Step 2Step 2: Block the pseudo: Block the pseudo--factor design with factor design with 

CC××DD××EE××F as the defining relationship.F as the defining relationship.
–– Step 3Step 3: Conduct the ANOVA on the 4x4 design.: Conduct the ANOVA on the 4x4 design.
–– Step 4Step 4: Adjust the ANOVA Summary Table of the : Adjust the ANOVA Summary Table of the 

44××4 design according to the pseudo4 design according to the pseudo--factor factor 
blocking.blocking.

This slide summarizes a four-step approach for blocking the 4x4 design into 
two blocks of eight treatment conditions. First, the design is recoded as 
pseudo-factors. Second, the pseudo-factors are blocked using the highest-
order interaction as the defining relationship. Third, the ANOVA is conducted 
on the 4x4 design. And, fourth, the ANOVA Summary Table is adjusted by 
using the 24 pseudo-factor blocking design.
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17.3. Pseudo-Factor Blocking (Cont'd)17.3. Pseudo17.3. Pseudo--Factor Blocking (Cont'd)Factor Blocking (Cont'd)

The design matrix shown on this slide is the result of the first two steps in 
pseudo-factor blocking of the original 4x4 factorial design shown as the rows 
and columns of the 16 cell design matrix. The C, D, E, and F pseudo-factor 
designation is shown in Mod. 2 notation for each of the 16 cells in the design 
matrix. By using the CxDxExF interaction of the pseudo-factors as the 
defining relationship, the original 4x4 factorial design is divided into two 
blocks of 8 treatment combinations each according to the designation shown 
in this slide.
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17.3. Pseudo-Factor Blocking (Cont'd)17.3. Pseudo17.3. Pseudo--Factor Blocking (Cont'd)Factor Blocking (Cont'd)

ANOVA Summary Table of 4×4 Between-Subjects Design
with Pseudo-Factor Blocking

Source df

Blocks (CxDxExF) 1
A 3

(C) (1)
(D) (1)
(CxD) (1)

B 3
(E) (1)
(F) (1)
(ExF) (1)

AxB' 8
(CxE) (1)
(CxF) (1)
(DxE) (1)
(DxF) (1)
(CxExF) (1)
(DxExF) (1)
(CxDxE) (1)
(CxDxF) (1)

S/ABC 16(n-1)
Total 16n-1

In Steps 3 and 4 of the pseudo-factor blocking process, the ANOVA is 
conducted on the 4x4 factorial design, and the final ANOVA Summary Table 
is restated according to the pseudo-factor blocking. The 4x4 ANOVA 
Summary Table shown on this slide shows the pseudo-factor relationship in 
parenthesis for the 4x4 between-subjects experimental design. Note that 
Blocks is confounded with the four-way interaction of the pseudo-factors.

The main effects of Factors A and B each have 3 df that represent the main 
effects of the two pseudo-factors and their interaction. The AxB interaction 
has only 8 df rather than 9 df since 1 df is confounded with blocks. 
Consequently, it is listed as AxB’ to designate an incomplete interaction 
effect. Note that the main effects of A and B are unconfounded and only 1 df
of the AxB interaction is confounded with blocks. The key is to choose only 
one pseudo-factor effect that is confounded with the AxB interaction as the 
defining relationship in order to minimize the blocking effect on the original 
4x4 factorial design and keep the A and B effects unconfounded when 
constructing blocks using pseudo-factors.
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17.4. Summary17.4. Summary17.4. Summary

•• Blocking Design ConsiderationsBlocking Design Considerations
–– Control of Nuisance VariablesControl of Nuisance Variables
–– Balanced Sets of Treatments in BlocksBalanced Sets of Treatments in Blocks
–– Number of BlocksNumber of Blocks
–– Effects Confounded with Blocks in 2Effects Confounded with Blocks in 2kk DesignsDesigns
–– Choice of Defining RelationshipChoice of Defining Relationship

•• Additional Blocking ProceduresAdditional Blocking Procedures
–– Blocking 3Blocking 3kk DesignsDesigns
–– MixedMixed--Level BlockingLevel Blocking

•• Preplanning for Blocking DesignsPreplanning for Blocking Designs

Blocking in ANOVA is used when a nuisance variable such as data collection 
days is not crossed with the factorial design and causes confounding.  
Experimental constraints and the choice of the factorial design determine the 
number of blocks that can be used.  Modular representation facilitates 
determination of balanced sets of treatments within blocks.  These balanced 
treatments represent entire main effects and interactions in 2k factorial 
designs, and the experimenter should consider using this type of design if 
blocking a nuisance variable is required.  Defining relationships specify 
which effects in the factorial design are confounded with blocks and should 
be considered carefully to avoid confounding effects of interest with the 
nuisance variable.

Incomplete blocking procedures can be extended to pseudo-blocking and 
mixed-level blocking. Blocking can be extended to 3k designs by using Mod. 
3 notation if the experimenter is willing to confound components of effects.  
Mixed-level blocking can be used in designs like a 2x2x2x3 factorial design.  
If the three-level factor cannot be reduced to two levels to make a 24 design, 
the design is a 23x3 design.  The experimenter can block the 23 portion and 
then cross it with the three-level factor.  Winer et al. (1991, pp. 647-660) 
provide a complete description of 3k blocking and mixed-level blocking 
procedures.  Careful preplanning on the part of the experimenter is needed 
to design successful ANOVA experiments that block the nuisance variable 
appropriately.
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17.5. Supplemental Readings17.5. Supplemental Readings17.5. Supplemental Readings

REFERENCEREFERENCE
Hicks & Turner (1999)Hicks & Turner (1999)
Mason, Mason, GunstGunst, & Hess (2003), & Hess (2003)
Montgomery (2005)Montgomery (2005)
Myers and Montgomery (2002)Myers and Montgomery (2002)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapter 12Chapter 12
Chapter 9Chapter 9
Chapter 7Chapter 7
Chapter 3Chapter 3
Chapter 8 Chapter 8 

All these texts provide a discussion of blocking designs used in ANOVA.  
Winer, et al. (1991) provide a detailed description of modular arithmetic and 
the modular representation used in this topic to construct simple and 
complex blocking designs. 
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When large-scale factorial designs are used in human factors and 
ergonomics research, a variety of time, money, and equipment availability 
constraints may make the complete factorial design unfeasible and data 
collection must be restricted to a portion of the design. Obviously, some 
effects in the full factorial design cannot be evaluated, and some effects will 
be confounded with others if data are not collected on the entire design. The 
experimenter must select a subset of the complete design that probably will 
yield the most useful data.

Fractional-factorial designs are ANOVA designs in which only a fractional 
portion of the complete factorial design is observed. Fractional replications of 
2k, 3k, and 5k designs can be constructed through modular representation. 
Most often 2k-p fractional replicates are used in human factors research to 
avoid subsequent confounding of partial effects present in 3k and 5k designs. 
When the experimenter is only interested in testing the main effects of three 
factors of interest, a special category of fractional-factorial designs called 
Latin square designs can be used to specify the subset of treatment 
conditions to observe. Consequently, this topic describes both 2k-p fractional 
replicates and Latin square designs. A summary of these procedures and 
suggested additional readings are provided at the end of this topic.

Topic 18. Fractional-Factorial ANOVA DesignsTopic 18. FractionalTopic 18. Fractional--Factorial ANOVA DesignsFactorial ANOVA Designs

18.1. 218.1. 2kk--pp Fractional ReplicatesFractional Replicates
18.1.1. Design Construction18.1.1. Design Construction
18.1.2. Computational Considerations18.1.2. Computational Considerations
18.1.3. Design Resolution18.1.3. Design Resolution

18.2. Latin Square ANOVA Designs18.2. Latin Square ANOVA Designs
18.2.1. Design Construction18.2.1. Design Construction
18.2.2. Computational Considerations18.2.2. Computational Considerations
18.2.3. Design Constraints 18.2.3. Design Constraints 

18.3. Summary18.3. Summary
18.4. Supplemental Readings18.4. Supplemental Readings
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18.1. 2k-p Fractional Replicates18.1. 218.1. 2kk--pp Fractional ReplicatesFractional Replicates

•• 18.1.1. Design Construction18.1.1. Design Construction
•• 18.1.2. Computational Considerations18.1.2. Computational Considerations
•• 18.1.3. Design Resolution18.1.3. Design Resolution

Fractional replicates of 2k ANOVA designs are referred to as 2k-p designs. 
This subsection describes the construction of these designs using Mod. 2 
representation as described in Chapter 9 by Winer, et al. (1991), 
computational procedures for conducting an ANOVA on the results obtained 
from 2k-p designs, and the concept of design resolution which is important in 
selecting the appropriate 2k-p fractional replicate.
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18.1. 2k-p Fractional Replicates (Cont’d)18.1. 218.1. 2kk--pp Fractional Replicates (ContFractional Replicates (Cont’’d)d)

•• DescriptionDescription
–– Fractional ReplicateFractional Replicate:: Subset of Complete Subset of Complete 

Factorial Design Chosen by Modular Factorial Design Chosen by Modular 
RepresentationRepresentation

–– Identity Relationship (I)Identity Relationship (I):: Effect Used to Construct Effect Used to Construct 
the Fractional Replicate and Held Constantthe Fractional Replicate and Held Constant

–– AliasesAliases:: Effects Totally Confounded in Fractional Effects Totally Confounded in Fractional 
ReplicateReplicate

•• AssumptionAssumption
–– Interaction Aliases Do Not Exist or Are NegligibleInteraction Aliases Do Not Exist or Are Negligible

•• Information ImpactInformation Impact
–– Loss of Identity Relationship EffectLoss of Identity Relationship Effect
–– Confounded Effects in Alias StructureConfounded Effects in Alias Structure

There are three characteristics of fractional replicates. First, they represent a 
subset of the complete factorial design. The same mechanics of modular 
representation used in blocking designs are used in fractional replicates, but 
only one block is chosen for data collection in the fractional replicate. 
Second, the identity relationship used to form the fractional replicate is the 
value of the defining relationship used for the chosen block. The identity 
relationship effect cannot be evaluated in the experiment because only one 
level of this effect is evaluated in the experiment. And, third, since data from 
only a fractional portion of the total design are collected, some of the effects 
in the complete factorial design are confounded with each other. The effects 
confounded with the effects being tested in the fractional replicate are 
referred to as aliases. Effects listed as aliases are assumed not to exist or to 
be negligible in order to interpret the effects of interest.

Since the complete factorial design is not used, the information impact needs 
to be considered during experimental design. The experimenter must pay 
careful attention to choosing the identity relationship and the resulting alias 
structure in constructing a fractional replicate in order to obtain the maximum 
research benefit from the fractional-factorial experiment since the effect in 
the alias structure cannot be evaluated and the effects in the alias structure 
are confounded.
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18.1. 2k-p Fractional Replicates (Cont’d)18.1. 218.1. 2kk--pp Fractional Replicates (ContFractional Replicates (Cont’’d)d)

•• UsesUses
–– Alternative to Large Factorial DesignsAlternative to Large Factorial Designs
–– Strategy for Systematic Data CollectionStrategy for Systematic Data Collection
–– Efficient Way to Conduct Preliminary TestingEfficient Way to Conduct Preliminary Testing
–– Component of Other DesignsComponent of Other Designs

•• 22kk--pp Fractional ReplicatesFractional Replicates
–– 22kk--11 OneOne--Half ReplicateHalf Replicate
–– 22kk--22 OneOne--Fourth ReplicateFourth Replicate

Fractional replicates are primarily used when the full factorial design is too 
large, and only a subset of the data can be collected. In addition, fractional 
replicates can be used as a systematic and efficient way to conduct pre-
testing. Fractional replicates are also used as components of other 
advanced experimental design such as central-composite designs described 
in Topic 22.

Mostly, factors with two levels are used in fractional-factorial designs 
because complete 1 df effects rather than partial components of effects are 
used in the identity relationship and the subsequent alias structure. Two of 
these 2k-p fractional replicates are discussed in this topic. A 2k-1 fractional-
factorial design is a one-half replicate of a complete 2k factorial design 
formed using only one identity relationship. A 2k-2 fractional-factorial design is 
a one-quarter replicate of a complete 2k factorial design formed using two 
identity relationships.
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18.1.1. Design Construction18.1.1. Design Construction18.1.1. Design Construction

•• 18.1.1.1. One18.1.1.1. One--Half ReplicateHalf Replicate
•• 18.1.1.2. One18.1.1.2. One--Fourth ReplicateFourth Replicate

This subsection describes the procedures for construction of one-half and 
one-fourth replicates of full 2k factorial designs. The procedures for forming 
one-half replicates are similar to simple blocking, and the procedures for 
forming one-quarter replicates are similar to complex blocking as described 
in Topic 17.
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18.1.1.1. One-Half Replicate18.1.1.1. One18.1.1.1. One--Half ReplicateHalf Replicate

•• ConstructionConstruction
–– Choose Identity Relationship (I)Choose Identity Relationship (I)

–– Similar to Defining Relationship in BlockingSimilar to Defining Relationship in Blocking
–– Choose Only One of the BlocksChoose Only One of the Blocks
–– Identity Relationship is LostIdentity Relationship is Lost

–– Determine AliasesDetermine Aliases
–– Add "I" in Modular Representation to Each TermAdd "I" in Modular Representation to Each Term
–– Exhaust All EffectsExhaust All Effects
–– Choose "I" Carefully to Avoid Unwanted Alias Choose "I" Carefully to Avoid Unwanted Alias 

StructuresStructures
•• ANOVA Summary TableANOVA Summary Table

–– List " I " and AliasesList " I " and Aliases

The identity relationship, I, is one level of an effect that is used to determine 
which half of the treatment conditions in the full 2k factorial design that will be 
observed in the one-half replicate. This is equivalent to using one level of the 
defining relationship in Mod. 2 used in simple blocking as a means of 
defining the one-half replicate of the 2k design. Since the identity relationship 
is held constant at one level, that effect cannot be tested in the subsequent 
ANOVA on the one-half replicate. In addition, the choice of the defining 
relationship also determines which effects in the full factorial design will be 
confounded with each other in the one-half replicate. One simply adds the 
defining relationship in Mod. 2 notation to each effect in the full factorial 
design to determine the confounding effect or alias structure in the one-half 
replicate. Consequently, the experiment must choose the defining
relationship carefully to insure that effects of research interest are not lost or 
aliased with other effects of interest in the full factorial design.

The resulting ANOVA summary table should list both the identity 
relationship, I, and the alias structure. This allows one to determine how all 
the effects in the complete 2k factorial design are distributed in the one-half 
replicate.
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18.1.1.1. One-Half Replicate (Cont'd)18.1.1.1. One18.1.1.1. One--Half Replicate (Cont'd)Half Replicate (Cont'd)

OneOne--Half Replicate 2Half Replicate 244 BetweenBetween--Subjects DesignSubjects Design
–– Identity RelationshipIdentity Relationship

I = AxBxCxD

 x1 + x2 + x3 + x4 = 0 (Mod. 2)
0000
1100
1010
1001
0110
0101
0011
1111

This slide shows an example of choosing the AxBxCxD interaction of a 24

factorial design as the defining relationship to split the 16 treatment 
combinations into a one-half replicate of 8 treatment combinations. Note that 
the 0 level in Mod. 2 is used as the value of the defining value in choosing 
the 8 treatment conditions shown on this slide in Mod. 2 notation. 
Alternatively, the 1 value in Mod. 2 could have been chosen instead to select 
the other one-half replicate still using AxBxCxD as the defining relationship. 
Either half-replicate can be used to define the 24-1 design where I = 
AxBxCxD.
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18.1.1.1. One-Half Replicate (Cont'd)18.1.1.1. One18.1.1.1. One--Half Replicate (Cont'd)Half Replicate (Cont'd)

OneOne--Half Replicate 2Half Replicate 244 BetweenBetween--Subjects DesignSubjects Design
–– Alias StructureAlias Structure

A     + (AxBxCxD) = (BxCxD)
B     + (AxBxCxD) = (AxCxD)
C     + (AxBxCxD) = (AxBxD)
D     + (AxBxCxD) = (AxBxC)

(AxB) + (AxBxCxD) =   (CxD)
(AxC) + (AxBxCxD) =   (BxD)
(AxD) + (AxBxCxD) =   (BxC)

Effect +  Identity (I) =   Alias

This slide shows the complete alias structure of the one-half replicate of the 
24 factorial design when I = AxBxCxD. The identity relationship is added in 
Mod. 2 to each of the effects in the 24 factorial design until all the effects are 
exhausted to determine the confounded effects in the one-half replicate. For 
example, the A main and the BxCxD interaction are totally confounded in this 
24-1 fractional-factorial design. Notice that each effect in a one-half replicate 
is confounded with one other effect. The effect assumed not to exist is called 
the alias.
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18.1.1.1. One-Half Replicate (Cont'd)18.1.1.1. One18.1.1.1. One--Half Replicate (Cont'd)Half Replicate (Cont'd)

OneOne--Half Replicate 2Half Replicate 244 BetweenBetween--Subjects DesignSubjects Design
–– ANOVA Summary TableANOVA Summary Table

I = AxBxCxD

Source df

A (BxCxD) 1
B (AxCxD) 1
C (AxBxD) 1
D (AxBxC) 1
AxB (CxD) 1
AxC (BxD) 1
AxD (BxC) 1
S/ABCD 8(n-1)
Total 8n-1

The resulting Sources and degrees of freedom for the example one-half 
replicate are shown on this slide. Note that the identity relationship is written 
at the top. The eight treatments in the one-half replicate provides tests of 
seven 1 df effects. The seven effects and their aliases as determined in the 
previous slide are listed under Sources. The error term for this between-
subjects design is S/ABCD.

Note that the identity relationship, the seven sources, and their aliases 
account for all 15 effects possible in the full 24 factorial design. There is no 
test of the AxBxCxD interaction since it is held constant. One must assume 
that the alias effects listed in parenthesis are negligible and that the resulting 
F-test represents the effect stated not its alias. For example, if the F-test on 
the first source listed is significant, the experimenter assumes that Factor A 
is significant, not the BxCxD interaction alias. In human factors research it is 
reasonable to assume that main effects rather than the three-way 
interactions exist. The last three treatment effects in the Source listing show 
confounding between two-way interactions. It is difficult to determine which 
should be listed as the effect and which should be the alias unless the 
experimenter has prior scientific literature information to support the choice. 
One would have to complete the factorial design to provide tests on each 
separate effect. At least this one-half replicate can evaluate the four main 
effects if the full 24 factorial design cannot be conducted.
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18.1.1.2. One-Fourth Replicate18.1.1.2. One18.1.1.2. One--Fourth ReplicateFourth Replicate

•• Identity RelationshipsIdentity Relationships
–– Two Defining Relationships and Generalized Two Defining Relationships and Generalized 

Interaction Are NeededInteraction Are Needed
–– I = CI = C11, C, C22, and C, and C11 + C+ C22

•• Alias StructureAlias Structure
–– Each Effect Has Three AliasesEach Effect Has Three Aliases

–– Add CAdd C11, C, C22, and C, and C11 + C+ C22 to Each Effectto Each Effect
•• ANOVA Summary TableANOVA Summary Table

–– State Identity RelationshipsState Identity Relationships
–– Place Three Aliases in ParenthesisPlace Three Aliases in Parenthesis

Two defining relationships are needed to define a one-fourth replicate of a 2k

factorial design using Mod. 2 notation. The first identity relationship, C1, 
divides the factorial design in half, and the second identity relationship, C2, 
divides each half into two parts to yield the one-fourth replicate. Each effect 
in the resulting 2k-2 design has three aliases since the complete identity 
relationship is defined as I = C1, C2, and C1 plus C2. Consequently, the 
resulting ANOVA Summary Table would list three aliases for each source.
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18.1.1.2. One-Fourth Replicate (Cont'd)18.1.1.2. One18.1.1.2. One--Fourth Replicate (Cont'd)Fourth Replicate (Cont'd)

OneOne--Fourth Replicate 2Fourth Replicate 255 BetweenBetween--Subjects DesignSubjects Design
–– Identity RelationshipIdentity Relationship

C1: x1 + x2 + x5 = 0 (Mod. 2)
C2: x3 + x4 + x5 = 0 (Mod. 2)

00000
00110
01101
01011
10101
10011
11000
11110

This slide presents an example of using two defining relationships to split the 
32 treatment combinations of the 25 factorial into a one-quarter replicate of 8 
treatment combinations. The first relationship, C1, uses the AxBxE
interaction and the second relationship, C2, uses the CxDxE interaction. Both 
C1 and C2 are set at the 0 value in Mod 2. to determine the resulting eight 
treatment conditions shown in Mod. 2 notation for this one-fourth replicate. 
This procedure is analogous to using one level of each defining relationship 
as in complex blocking to specify one of the four sets of eight treatments to 
be used as the one-fourth replicate of the complete 25 factorial design.
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18.1.1.2. One-Fourth Replicate (Cont'd)18.1.1.2. One18.1.1.2. One--Fourth Replicate (Cont'd)Fourth Replicate (Cont'd)

OneOne--Fourth Replicate 2Fourth Replicate 255 BetweenBetween--Subjects DesignSubjects Design
–– ANOVA Summary TableANOVA Summary Table

I = AxBxE, CxDxE, AxBxCxD
Source df

A (BxE, AxCxDxE, BxCxD) 1
B (AxE, BxCxDxE, AxCxD) 1
C (AxBxCxE, DxE, AxBxD) 1
D (AxBxDxE, CxE, AxBxC) 1
E (AxB, CxD, AxBxCxDxE) 1
AxC (BxCxE, AxDxE, BxD) 1
BxC (AxCxE, BxDxE, AxD) 1
S/ABCDE 8(n-1)
Total 8n-1

The resulting between-subjects Sources and degrees of freedom for the 
example one-fourth replicate are shown on this slide. Note that the identity
relationship is written at the top and includes three interactions, AxBxE, 
CxDxE, and AxBxCxD, that cannot be evaluated in this design. The eight 
treatments in the one-fourth replicate provide tests of seven 1 df effects.

The seven effects and their aliases are listed under Sources. The alias 
structure is determined by adding each of the three identity interactions to 
each effect in Mod. 2 notation to exhaust all effects. Again, effects in the 
identity relationship, sources tested, plus aliases equal all the effects in the 
complete 25 factorial design. The error term for this between-subjects design 
is S/ABCDE.

Note that this example one-fourth replicate only allows separate evaluation 
of each of the five main effects of the full 25 factorial design. Given the small 
number of treatment observation in the 25-2 design, this is the best 
resolution of effects from the full factorial design that can be achieved. 
Again, the experimenter must always determine the identity relationships 
and alias structure before choosing the fractional replicate to avoid 
inadvertent confounding of important effects in the experiment.
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18.1.2. Computational Considerations18.1.2. Computational Considerations18.1.2. Computational Considerations

•• Conduct ANOVA Only on Effects of InterestConduct ANOVA Only on Effects of Interest
•• Complete Factorial Design EquivalentsComplete Factorial Design Equivalents

–– OneOne--Half ReplicateHalf Replicate: Equivalent to 2: Equivalent to 2kk--11 Complete Complete 
Factorial DesignFactorial Design

–– OneOne--Fourth ReplicateFourth Replicate: Equivalent to 2: Equivalent to 2kk--22 Complete Complete 
Factorial DesignFactorial Design

•• Computational Procedure for EquivalentsComputational Procedure for Equivalents
–– Determine Complete Factorial EquivalentDetermine Complete Factorial Equivalent
–– Conduct ANOVA on Equivalent Factorial DesignConduct ANOVA on Equivalent Factorial Design
–– Assign Appropriate SS According to Alias Assign Appropriate SS According to Alias 

StructureStructure
–– Restate Sources by Effects of InterestRestate Sources by Effects of Interest

The most straightforward approach to conducting the ANOVA on fractional-
factorial designs is to use standard basic ANOVA rules, procedures, and 
algorithms to calculate and test the effects of interest. All identity 
relationships cannot be tested and aliases are ignored due to confounding.

Alternatively, one can consider using the complete factorial design 
equivalent for calculations. Remember that a one-half replicate of a 2k

design is equivalent to a complete 2k-1 factorial design, and a one-quarter 
replicate of a 2k design is equivalent to a 2k-2 factorial design. One could 
conduct the ANOVA on the equivalent full factorial design, assign the SS 
according to the alias structure, and restate the Sources as the effects of 
interest.
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18.1.2. Computational Considerations (Cont'd)18.1.2. Computational Considerations (Cont'd)18.1.2. Computational Considerations (Cont'd)

I = AxBxCxD

Complete 23 Factorial Design 1/2 Replicate of 24 Factorial

Source df Source df

A 1 A (BxCxD) 1
B 1 B (AxCxD) 1
C 1 C (AxBxD) 1
AxB 1 AxB (CxD) 1
AxC 1 AxC (BxD) 1
BxC 1 BxC (AxD) 1
AxBxC 1 AxBxC (D) 1
S/ABC 8(n-1) S/ABCD 8(n-1)

Total 8n-1 Total 8n-1

This slide demonstrates that a complete 23 factorial design is equivalent to a 
one-half replicate of a 24 factorial design (i.e., a 24-1 or 23 design). The 
Sources and df of a one-half replicate of a 24 design is shown on the right 
side of this slide. The four-way interaction is the identity relationship that 
forms the alias structure and this interaction cannot be estimated in the 
ANOVA. The Factor D main effect and the two- and three-way interactions 
including Factor D are listed as aliases. Note that the resulting effects of 
Factors A, B, and C are exactly the same as the Sources listed on the left 
side of the slide for the complete 23 factorial design.

Usually the experimenter would reverse the alias statement AxBxC (D) and 
list Factor D as the effect of interest by restating it as D (AxBxC) in the one-
fourth replicate ANOVA. Nevertheless, calculating either Factor D or the 
AxBxC interaction would yield the same SS value because these two effects 
are totally confounded in the one-fourth replicate.



Human Factors Experimental Design and Analysis Reference

574

•• Example ProblemExample Problem. Preliminary testing was . Preliminary testing was 
conducted on a new computerized target detection conducted on a new computerized target detection 
system. Two different settings of four different system. Two different settings of four different 
factors including target speed (A), target size (B), factors including target speed (A), target size (B), 
noise level (C), and display resolution (D) were noise level (C), and display resolution (D) were 
evaluated. Five different soldiers completed 100 evaluated. Five different soldiers completed 100 
detection trials in only one treatment combination detection trials in only one treatment combination 
of the four factors tested to calculate the percent of of the four factors tested to calculate the percent of 
targets detected. A onetargets detected. A one--half replicate of the full half replicate of the full 
factorial design was used to pretest main effects factorial design was used to pretest main effects 
and the existence of possible twoand the existence of possible two--way interactions. way interactions. 
Do the settings of any of the four main effects of Do the settings of any of the four main effects of 
target factors and twotarget factors and two--way interactions have a way interactions have a 
significant effect on the percent of targets significant effect on the percent of targets 
detected? (p < 0.01)detected? (p < 0.01)

18.1.2. Computational Considerations (Cont'd)18.1.2. Computational Considerations (Cont'd)18.1.2. Computational Considerations (Cont'd)

(Click in this red rectangle to see SAS calculations for this example.)

This example describes a one-half replicate of a 24 between-subjects target 
detection problem where the fractional-factorial design is used to conduct 
pre-testing. Since this is a between-subjects design, a total of 40 different 
soldiers are needed for preliminary testing. The Slater and Williges (2006) 
appendix provides the SAS program for conducting the ANOVA on this 
fractional-factorial example problem.
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18.1.2. Computational Considerations (Cont'd)18.1.2. Computational Considerations (Cont'd)18.1.2. Computational Considerations (Cont'd)

OneOne--Half Replicate of a 2Half Replicate of a 244 BetweenBetween--Subjects DesignSubjects Design
–– Alias StructureAlias Structure

A + (AxBxCxD) = BxCxD
B + (AxBxCxD) = AxCxD
C + (AxBxCxD) = AxBxD
D + (AxBxCxD) = AxBxC
(AxB) + (AxBxCxD) = CxD
(AxC) + (AxBxCxD) = BxD
(AxD) + (AxBxCxD) = BxC

I = AxBxCxD

(Click in this red rectangle to see SAS calculations for this example.)

This slide lists the complete alias structure of the one-half replicate of the 24

factorial design when the fourth-order interaction, AxBxCxD, is chosen as 
the identity relationship. Note that all four main effects are not confounded 
with each other in this design and can be tested separately. Three groups of 
two-way interactions are confounded. But, the possible existence of two-way 
interactions can also be evaluated in this preliminary test even though the 
exact relationship cannot be determined. Third- and fourth-order interactions 
are purposefully selected for the identity relationship and the alias structure 
since they are confounded or lost in this design in order to conduct pretest 
on possible main effects and two-way interactions.
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OneOne--Half Replicate of a 2Half Replicate of a 244 BetweenBetween--Subjects DesignSubjects Design
–– Treatment ConditionsTreatment Conditions

18.1.2. Computational Considerations (Cont'd)18.1.2. Computational Considerations (Cont'd)18.1.2. Computational Considerations (Cont'd)

I = AxBxCxD

x1 + x2 + x3 + x4 = 0 (Mod. 2)
0000
1100
1010
1001
0110
0101
0011
1111

(Click in this red rectangle to see SAS calculations for this example.)

The resulting eight treatment conditions of the one-half replicate are listed on 
this slide in Mod. 2 notation. The 0 level of the AxBxCxD interaction in Mod. 
2 notation is used as the defining relationship to generate the eight treatment 
combinations.
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0.250.460.660.440.190.760.400.37
0.310.370.890.080.270.870.500.66
0.080.140.380.390.140.900.640.45
0.270.230.480.220.430.670.890.23
0.140.090.750.280.020.700.780.50
11111100101010010110010100110000

D1D0D0D1D0D1D1D0

C1C0C1C0C1C0C1C0

B1B0B1B0

A1A0

18.1.2. Computational Considerations (Cont'd)18.1.2. Computational Considerations (Cont'd)18.1.2. Computational Considerations (Cont'd)

OneOne--Half Replicate of a 2Half Replicate of a 244 BetweenBetween--Subjects DesignSubjects Design
–– Percent of Targets DetectedPercent of Targets Detected

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the hypothetical data of the 24-1 fractional-factorial design. 
The two levels of each of the four factors, A, B, C, and D, are listed in the top 
four rows of this slide. The resulting eight treatment combinations shown on 
the previous slide are underlined and listed in Mod. 2 notation in a middle 
row on this slide. The percent of targets detected for each of the 40 different 
soldiers participating in this pretest are listed in the bottom five rows of this 
slide representing five soldiers tested in each of the eight treatment 
combinations of the between-subjects, one-half replicate design.
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I = AxBxCxD

Source df
Speed (A) [BxCxD] 1
Size (B) [AxCxD] 1
Noise (C) [AxBxD] 1

F
12.32 *

7.50 *
0.12

MS
0.2993
0.1823
0.0029

SS
0.2993
0.1823
0.0029

AxC [BxD] 1
BxC [AxD] 1
S/ABCD 32
Total 39

11.61 *
35.09 *

0.2822
0.8526
0.0243

0.2822
0.8526

Resolution (D) [AxBxC] 1 3.560.08650.0865

0.7776
2.5608

AxB [CxD] 1 3.190.07740.0774

18.1.2. Computational Considerations (Cont'd)18.1.2. Computational Considerations (Cont'd)18.1.2. Computational Considerations (Cont'd)

OneOne--Half Replicate of a 2Half Replicate of a 244 BetweenBetween--Subjects DesignSubjects Design
–– ANOVA Summary TableANOVA Summary Table

*p < 0.01

(Click in this red rectangle to see SAS calculations for this example.)

The complete ANOVA summary Table for the example 24-1 fractional-
factorial design is shown on this slide. The identity relationship is listed at the 
top of the slide, and aliases are listed in brackets besides each of the seven 
effects that are tested. Since this is a between-subjects design, each effect 
is tested by S/ABCD assuming Subjects are random and the four factors are 
fixed-effects factors.

Standard ANOVA procedures are used to calculate the ANOVA from the 
data set shown on the previous slide. A complete 23 factorial design could be 
conducted, and the values for the AxBxC interaction are restated as the 
main effect Resolution (D) due to the alias structure. Alternatively, just the 
seven effects, A, B, C, D, AxB, AxC, and BxC could be calculated 
separately.

The F-tests conducted in this pretest show that the main effects of Target 
Speed and Target Size significantly (p < 0.01) affect the percent of targets 
detected assuming three-way interactions do not exist. In addition, two of the 
two-factor interaction groupings, AxC [BxD] and BxC [AxD], are significant. 
In order to resolve the two-way interactions, the other half of the 24 factorial 
design must be conducted.
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18.1.3. Design Resolution18.1.3. Design Resolution18.1.3. Design Resolution

•• 18.1.3.1. Design Effects18.1.3.1. Design Effects
•• 18.1.3.2. Definitions of Resolution18.1.3.2. Definitions of Resolution
•• 18.1.3.3. Identity Relationship18.1.3.3. Identity Relationship
•• 18.1.3.4. Resolution III Design18.1.3.4. Resolution III Design
•• 18.1.3.5. Resolution IV Design18.1.3.5. Resolution IV Design
•• 18.1.3.6. Resolution V Design18.1.3.6. Resolution V Design
•• 18.1.3.7. Uses of Design Resolution18.1.3.7. Uses of Design Resolution

This subsection discusses the concept of design resolution that is present in 
fractional-factorial designs, and describes how design resolution can be used 
in choosing appropriate 2k-p fractional replicates.
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18.1.3.1. Design Effects18.1.3.1. Design Effects18.1.3.1. Design Effects

Example: 2Example: 233 BetweenBetween--Subject DesignSubject Design

•• Eight Treatment Combinations in Mod. 2 NotationEight Treatment Combinations in Mod. 2 Notation
•• Each Factor Recoded into Each Factor Recoded into –– 1 and +1 Levels1 and +1 Levels

ABC A B C
000 -1 -1 -1
100 +1 -1 -1
010 -1 +1 -1
001 -1 -1 +1
110 +1 +1 -1
011 -1 +1 +1
101 +1 -1 +1
111 +1 +1 +1

Fractional-factorial designs can be described in terms of all the effects that 
are present in factorial designs. In a 23 factorial design, there are a total of 
eight treatment combinations. These eight treatments are listed in Mod. 2 
notation in the left column on this slide. Alternatively, the 0 and 1 levels in 
Mod. 2 can be recoded as -1 and +1, respectively. This recoding for each 
factor is shown under the A, B, and C column designations on this slide.
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18.1.3.1. Design Effects (Cont'd)18.1.3.1. Design Effects (Cont'd)18.1.3.1. Design Effects (Cont'd)

•• Multiply Recoded Levels for Interaction EffectsMultiply Recoded Levels for Interaction Effects

•• EffectsEffects
–– All Seven Effects are BalancedAll Seven Effects are Balanced

–– All Seven Effects are Independent of Each OtherAll Seven Effects are Independent of Each Other

Example:  23 Between-Subject Design (Cont'd)
A B C AxB AxC BxC AxBxC
-1 -1 -1 +1 +1 +1 -1
+1 -1 -1 -1 -1 +1 +1
-1 +1 -1 -1 +1 -1 +1
-1 -1 +1 +1 -1 -1 +1
+1 +1 -1 +1 -1 -1 -1
-1 +1 +1 -1 -1 +1 -1
+1 -1 +1 -1 +1 -1 -1
+1 +1 +1 +1 +1 +1 +1

Balanced:  Σ cj = 0

Orthogonal:  Σ cjc'j = 0

The +/-1 levels of each factor are multiplied together to obtain the +/-1 levels 
of interaction effects in the factorial design as shown on the top part of this 
slide for the 23 factorial design. All seven effects in this factorial design are 
both balanced and independent of each other in terms of the +/-1 factor level 
weighting, c, according to the standard requirements as listed in the 
formulae at the bottom of this slide.
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18.1.3.1. Design Effects (Cont'd)18.1.3.1. Design Effects (Cont'd)18.1.3.1. Design Effects (Cont'd)

OneOne--Half Replicate of 2Half Replicate of 233 BetweenBetween--Subjects DesignSubjects Design
•• Define Treatment CombinationsDefine Treatment Combinations

•• Recode Treatments into Recode Treatments into –– 1 and +1 Levels1 and +1 Levels

I = AxBxC

x1 + x2 + x3 = 0 (Mod. 2)
000
110
011
101

ABC A B C
000 -1 -1 -1
110 +1 +1 -1
011 -1 +1 +1
101 +1 -1 +1

The top portion of this slide lists the four treatment conditions, in Mod. 2 
notation, in a one-half replicate of the 23 factorial design when the 0 level of 
the three-way interaction is used as the defining relationship. These four
treatment conditions are recoded into +/-1 levels of Factors A, B, and C in 
the lower portion of the slide.
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18.1.3.1. Design Effects (Cont'd)18.1.3.1. Design Effects (Cont'd)18.1.3.1. Design Effects (Cont'd)

OneOne--Half Replicate of 2Half Replicate of 233 BetweenBetween--Subjects DesignSubjects Design
•• Multiply Recoded Levels for InteractionMultiply Recoded Levels for Interaction

•• ConfoundingConfounding: Same Arrangement, But Reversed Signs: Same Arrangement, But Reversed Signs
•• ANOVA Summary Table ANOVA Summary Table 

A B C AxB AxC BxC AxBxC
-1 -1 -1 +1 +1 +1 -1
+1 +1 -1 +1 -1 -1 -1
-1 +1 +1 -1 -1 +1 -1
+1 -1 +1 -1 +1 -1 -1

Source df
A (BxC) 1
B (AxC) 1
C (AxB) 1
S/Treatments 4(n-1)
Total 4n-1

The top of this slide shows the seven effects of the 23 factorial design as 
represented in the four treatment conditions of the one-half replication shown 
on the previous slide. Again, the interaction weightings are determined by 
multiplying the +/-1 weightings of the factors involved.

Effects that are confounded have the same column arrangement of + and -
signs, but the +/-1 weightings are reversed. For example, the main effect of 
Factor A (with weighting arrangement -1, +1, -1, and +1) is confounded with 
the BxC interaction (with weighting arrangement +1, -1, +1, and -1). Notice 
the AxBxC interaction is held constant at the -1 level in all four treatments 
because it is the identity relationship. The Sources and degrees of freedom 
of the resulting ANOVA Summary Table shown at the bottom of this slide 
show the aliases of A, B, and C that reflect these confounded effects. 
Consequently, the +/-1 representations clearly show the confounding effects 
present in 2k-p fractional replicates. 
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18.1.3.2. Definitions of Resolution18.1.3.2. Definitions of Resolution18.1.3.2. Definitions of Resolution

•• Design ResolutionDesign Resolution:: The quality of information that The quality of information that 
can be obtained from an experiment as determined by can be obtained from an experiment as determined by 
the effects confounded in the alias structure.the effects confounded in the alias structure.
–– Resolution IIIResolution III:: All main effects are All main effects are unconfoundedunconfounded

with each other and can be evaluated assuming all with each other and can be evaluated assuming all 
interactions do not exist.interactions do not exist.

–– Resolution IVResolution IV:: All main effects and groups of twoAll main effects and groups of two--
way interactions are way interactions are unconfoundedunconfounded with each with each 
other and can be evaluated assuming all threeother and can be evaluated assuming all three--way way 
and higher interactions are zero.and higher interactions are zero.

–– Resolution VResolution V:: All main effects and twoAll main effects and two--way way 
interactions are interactions are unconfoundedunconfounded with each other and with each other and 
can be evaluated assuming all threecan be evaluated assuming all three--way and way and 
higher interactions are zero.higher interactions are zero.

Design resolution is the quality of information that can be obtained from a 
fractional replicate. All main effects are not confounded with each other in 
Resolution III designs. All main effects and groups of two-way interactions 
are unconfounded in Resolution IV designs. And, all main effects and two-
way interactions are not confounded with each other in Resolution V 
designs. So, as resolution increases the quality of unconfounded information 
increases in fractional replicates.

Obviously, the experimenter is interested in the highest resolution possible in 
an experimental design. In most human factors and ergonomics research, 
main effects and two-way interaction are of primary importance which 
requires a Resolution V design. At times, this is not possible. For example, 
the highest resolution possible in the one-half replicate shown in the previous 
slide is a Resolution III design due to the restricted number of resulting 
treatment conditions in the fractional-factorial design. Nonetheless, design 
resolution should always guide the experimenter in choosing a fractional 
replicate alternative.
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18.1.3.3. Identity Relationship18.1.3.3. Identity Relationship18.1.3.3. Identity Relationship

•• 22kk--pp Fractional ReplicatesFractional Replicates
–– Entire Effects Confounded and LostEntire Effects Confounded and Lost

•• RuleRule:: Design Resolution is Determined by the Design Resolution is Determined by the 
Smallest Interaction Present in the Identity Smallest Interaction Present in the Identity 
Relationship.Relationship.
–– ThreeThree--Way Interaction Equals Resolution III DesignWay Interaction Equals Resolution III Design
–– FourFour--Way Interaction Equals Resolution IV DesignWay Interaction Equals Resolution IV Design
–– FiveFive--Way Interaction Equals Resolution V DesignWay Interaction Equals Resolution V Design

•• HighHigh--Order 2Order 2kk--pp FractionalFractional--Factorial DesignsFactorial Designs
–– Han, Williges, & Williges (1997)Han, Williges, & Williges (1997)

Entire effects are confounded and lost in fractional replicates of 2k designs 
because each effect has only one degree of freedom. Resolution of 2k-p

fractional replicates are determined by the smallest interaction in the identity 
relationship. Therefore, the resolution number equals the smallest interaction 
present in the identity relationship. For example, a Resolution V fractional 
replicate has a five-way interaction as the lowest-order effect in the identity 
relationship. Hence, one can only construct a Resolution V fractional 
replicate with a minimum of five factors in the 2k factorial.

Often, however, more than five factors need to be considered simultaneously 
in human factors research. Han, Williges, and Williges (1997, page 746) 
provide the defining relationships of several Resolution III, IV, and V 
alternatives for 2k-p designs in Table 2 that can be used to conduct screening 
experiments on 5 to 20 factors simultaneously that require only 8, 16, or 32 
different treatment conditions.



Human Factors Experimental Design and Analysis Reference

586

18.1.3.4. Resolution III Design18.1.3.4. Resolution III Design18.1.3.4. Resolution III Design

OneOne--Fourth Replicate of 2Fourth Replicate of 255 BetweenBetween--Subjects DesignSubjects Design

I = AxBxE, CxDxE, AxBxCxD
Source df
A (BxE, AxCxDxE, BxCxD) 1
B (AxE, BxCxDxE, AxCxD) 1
C (AxBxCxE, DxE, AxBxD) 1
D (AxBxDxE, CxE, AxBxC) 1
E (AxB, CxD, AxBxCxDxE) 1
AxC (BxCxE, AxDxE, BxD) 1
BxC (AxCxE, BxDxE, AxD) 1
S/Treatments 8(n-1)
Total 8n-1

This slide shows a 25-2 fractional replicate. The smallest interaction in the 
identity relationship is a three-way interaction resulting in a Resolution III 
design that keeps all five main effects unconfounded as shown in the Source 
listing. This is the highest resolution possible in a one-fourth replicate of a 25

factorial design.
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18.1.3.5. Resolution IV Design18.1.3.5. Resolution IV Design18.1.3.5. Resolution IV Design

OneOne--Half Replicate of 2Half Replicate of 255 BetweenBetween--Subjects DesignSubjects Design

I = AxBxCxD
Source df
A (BxCxD) 1
B (AxCxD) 1
C (AxBxD) 1
D (AxBxC) 1
E (AxBxCxDxE) 1
AxB (CxD) 1
AxC (BxD) 1
AxD (BxC) 1
AxE (BxCxDxE) 1
BxE (AxCxDxE) 1
CxE (AxBxDxE) 1
DxE (AxBxCxE) 1
AxBxE (CxDxE) 1
AxCxE (BxDxE) 1
AxDxE (BxCxE) 1
S/Treatments 16(n-1)
Total 16(n)-1

This slide shows a 25-1 fractional replicate. The smallest interaction in the 
identity relationship is a four-way interaction resulting in a Resolution IV one-
half replicate that keeps all five main effects and groups of two-way 
interactions unconfounded from each other as shown in the Source listing.
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18.1.3.6. Resolution V Design18.1.3.6. Resolution V Design18.1.3.6. Resolution V Design

OneOne--Half Replicate of 2Half Replicate of 255 BetweenBetween--Subjects DesignSubjects Design
I = AxBxCxDxE

Source df
A (BxCxDxE) 1
B (AxCxDxE) 1
C (AxBxDxE) 1
D (AxBxCxE) 1
E (AxBxCxD) 1
AxB (CxDxE) 1
AxC (BxDxE) 1
AxD (BxCxE) 1
AxE (BxCxD) 1
BxC (AxDxE) 1
BxD (AxCxE) 1
BxE (AxCxD) 1
CxD (AxBxE) 1
CxE (AxBxD) 1
DxE (AxBxC) 1
S/Treatments 16(n-1)
Total 16(n)-1

This slide shows another example of a 25-1 fractional replicate. The smallest 
interaction in the identity relationship is a five-way interaction resulting in a 
Resolution V one-half replicate that keeps all five main effects and two-way 
interactions unconfounded from each other as shown in the Source listing. 
Obviously, this is a better one-half replicate than the alternative shown on 
the previous slide because it results in higher design resolution. 
Consequently, the experimenter must consider the identity relationship 
carefully before choosing a fractional replicate.
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18.1.3.7. Uses of Design Resolution18.1.3.7. Uses of Design Resolution18.1.3.7. Uses of Design Resolution

•• Set Level of ConfoundingSet Level of Confounding
–– Interpretation of ResultsInterpretation of Results
–– Screening ExperimentsScreening Experiments

•• Choice of FractionalChoice of Fractional--FactorialFactorial
ExampleExample:: OneOne--Half Replicate of 2Half Replicate of 244 BetweenBetween--Subjects DesignSubjects Design

I = AxBxC I = AxBxCxD
Source df Source df
A (BxC) 1 A (BxCxD) 1
B (AxC) 1 B (AxCxD) 1
C (AxB) 1 C (AxBxD) 1
D (AxBxCxD) 1 D (AxBxC) 1
AxD (BxCxD) 1 AxB (CxD) 1
BxD (AxCxD) 1 AxC (BxD) 1
CxD (AxBxD) 1 AxD (BxC) 1
S/Treatments 8(n-1) S/Treatments 8(n-1)
Total 8n-1 Total 8n-1

Design resolution can be used in several ways in 2k-p fractional-factorial 
designs. First, it can be used to set the level of confounding present in 
fractional replicates to facilitate interpretation of results and choice of 
designs for screening experiments. If, for example, the experimenter is 
primarily interested in main effects, then Resolution III designs can be used. 
If, on the other hand, the experimenter is interested in evaluating main 
effects and two-way interactions, a Resolution V design is needed.

Second, design resolution can be used to assist the experimenter in 
choosing the defining relationship for any fractional factorial design. The 
bottom of this slide compares two versions of a one-half replicate of a 24

factorial design. The left side is one possible Resolution III alternative that 
uses the AxBxC interaction as the identity relationship and the right side is a 
Resolution IV alternative using the fourth-order interaction as the identity 
relationship. The Resolution IV alternative is better because none of the four 
main effects includes two-way interactions as aliases. Consequently, the 
experimenter should always choose the highest resolution when selecting a 
fractional-factorial design alternative.
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18.1.3.7. Uses of Design Resolution (Cont'd)18.1.3.7. Uses of Design Resolution (Cont'd)18.1.3.7. Uses of Design Resolution (Cont'd)

•• Design EfficiencyDesign Efficiency
–– Swain (1990) RulesSwain (1990) Rules
–– Rule 1Rule 1:: Total Number of Main Effects and Interactions, Total Number of Main Effects and Interactions, 

Excluding Subjects and Interactions with Subjects, in a Excluding Subjects and Interactions with Subjects, in a 
Complete Factorial DesignComplete Factorial Design

–– Rule 2Rule 2:: Number of WNumber of W--Way InteractionsWay Interactions

NW = X!/(X-W)!W!, when X≥W

where, N W = Number of Interactions of W-Way
X = Number of Factors

W = Level of Interaction

N = 2 X - 1

where, N = Total Number of Main Effects
and Interactions

X = Number of Factors

Design resolution can also be used when assessing the design efficiency of 
large factorial designs. If the experimenter is interested in only main effects 
and two-way interactions (i.e., Resolution V effects), a 2k complete factorial 
design becomes inefficient in evaluating these effects as the number of 
factors, k, increases since data are collected to evaluate many third- and 
higher-order interactions in the complete factorial design. A fractional-
factorial design may be a more efficient alternative in terms of data collection 
requirements for these higher-order factorial designs. This slide provides two 
rules developed by Swain (1990) that specify the number of main effects and 
interactions as well as the number of any particular level interaction in a 
factorial design.



Human Factors Experimental Design and Analysis Reference

591

•• Design Efficiency (Cont'd)Design Efficiency (Cont'd)
–– ExamplesExamples

–– ImplicationsImplications
–– Human Factors Research GoalHuman Factors Research Goal:: Evaluate Main Effects and Evaluate Main Effects and 

TwoTwo--Way InteractionsWay Interactions
–– Resolution V DesignResolution V Design

–– Inefficiency of HigherInefficiency of Higher--Order Complete Factorial DesignsOrder Complete Factorial Designs
–– FractionalFractional--Factorials Can Increase EfficiencyFactorials Can Increase Efficiency

18.1.3.7. Uses of Design Resolution (Cont'd)18.1.3.7. Uses of Design Resolution (Cont'd)18.1.3.7. Uses of Design Resolution (Cont'd)

W-Way Interactions
X 1- 2- 3- 4- 5- 6- 7- N
1 1 - - - - - - 1
2 2 1 - - - - - 3
3 3 3 1 - - - - 7
4 4 6 4 1 - - - 15
5 5 10 10 5 1 - - 31
6 6 15 20 15 6 1 - 63
7 7 21 35 35 21 7 1 127

The table on this slide uses the two Swain (1990) rules presented on the 
previous slide to calculate the number of main effects, interactions, and total 
number of effects present in complete factorial designs having one to seven 
factors. The numbers within the box show the number of main effects and 
two-way interactions present in these complete factorial designs. Note that 
once the number of factors is five or greater, the higher-order interactions 
constitute the majority of the effects evaluated. For example, only 28 of the 
127 effects evaluated in a 27 factorial design are main effects and two-way 
interactions. If the human factors researcher is only interested in main 
effects and two-way interactions, a Resolution V fractional replicate may be 
a more efficient design alternative than a complete 27 factorial design in 
terms of data collection requirements and the number of effects of interest 
evaluated.
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18.2. Latin Square ANOVA Designs18.2. Latin Square ANOVA Designs18.2. Latin Square ANOVA Designs

•• 18.2.1. Design Construction18.2.1. Design Construction
•• 18.2.2. Computational Considerations18.2.2. Computational Considerations
•• 18.2.3. Design Constraints18.2.3. Design Constraints

The last subsection of this topic describes a special case of fractional-
factorial designs called Latin square designs that can be used to evaluate 
the main effects of three factors of interest when each factor has the same 
number of levels. The construction, computational considerations, and 
constraints of Latin square designs are discussed separately.
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18.2. Latin Square ANOVA Designs (Cont’d)18.2. Latin Square ANOVA Designs (Cont18.2. Latin Square ANOVA Designs (Cont’’d)d)

•• DefinitionDefinition: Three: Three--factor design in which the factor design in which the 
levels of A appear once in each row (B) and levels of A appear once in each row (B) and 
each column (C).each column (C).

•• ExampleExample: Three Level Latin Square: Three Level Latin Square

–– Incomplete Factorial Design (9 of 27 Treatments)Incomplete Factorial Design (9 of 27 Treatments)
–– Several Latin Squares possibleSeveral Latin Squares possible

C1 C2 C3

B1 A1 A2 A3

B2 A2 A3 A1

B3 A3 A1 A2

Every Latin square design is a three-factor design in which the levels of 
factor A appear once in each row (Factor B) and once in each column 
(Factor C). All three factors in the Latin square design have the same 
number of levels.

For example, a three-level Latin square is shown in the center of this slide. 
Each of the nine treatments is defined by the specific combination of levels 
subscripted for Factors A, B, and C, respectively. Note that these nine 
treatments only represent one-third of the 27 treatment combinations in the 
complete 33 factorial design. This example is just one of several 3x3 Latin
square designs that are possible. Each Latin square provides enough data to 
evaluate only the main effects of the three factors, not any of the interactions 
among them.
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18.2.1. Design Construction18.2.1. Design Construction18.2.1. Design Construction

•• 18.2.1.1. Standard Latin Squares18.2.1.1. Standard Latin Squares
•• 18.2.1.2. Balanced Latin Squares18.2.1.2. Balanced Latin Squares
•• 18.2.1.3. Relationship to Fractional Replicates18.2.1.3. Relationship to Fractional Replicates

Although many Latin squares are possible, two types of Latin squares, 
standard and balanced, have special characteristics. In addition, Latin 
square designs can be viewed as a special case of fractional-factorial 
designs.
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18.2.1.1. Standard Latin Squares18.2.1.1. Standard Latin Squares18.2.1.1. Standard Latin Squares

•• Standard Latin SquareStandard Latin Square

•• Nonstandard Latin SquareNonstandard Latin Square

A1 A2 A3 A4

A2 A3 A4 A1

A3 A4 A1 A2

A4 A1 A2 A3

A3 A2 A1 A4

A4 A3 A2 A1

A1 A4 A3 A2

A2 A1 A4 A3

A 4x4 Latin square shown on the upper part of this slide is called “standard”
because the first row and column of Factor A levels are in numerical order. 
Note that each level of Factor A appears in each row (Factor B levels) and 
column (Factor C levels) only once as required in any Latin square design. 
The nonstandard version of the 4x4 Latin square shown in the lower part of 
this slide is one in which the first row and column of Factor A levels are not 
in numerical order.
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18.2.1.2. Balanced Latin Squares18.2.1.2. Balanced Latin Squares18.2.1.2. Balanced Latin Squares

•• Odd Number of LevelsOdd Number of Levels

•• Even Number of LevelsEven Number of Levels

A1 A2 A3 A3 A1 A2

A2 A3 A1 + A2 A3 A1

A3 A1 A2 A1 A2 A3

A1 A2 A3 A4

A2 A3 A4 A1

A4 A1 A2 A3

A3 A4 A1 A2

The balanced Latin square is a special case of nonstandard Latin square 
designs in which each level of Factor A precedes and follows the other levels 
of Factor A an equal number of times. Rules for generating and analyzing 
balanced Latin squares are presented in Topic 12 as a means of partially 
counterbalancing treatment conditions (Factor A) across subjects (Factor B) 
and presentation order (Factor C) in within-subjects designs. 

If the number of levels of Factor A are odd, two Latin squares are needed for 
balancing as shown in the 3x3 Latin squares on the top of this slide. The first 
3x3 Latin square is standard and the second 3x3 Latin square is 
nonstandard that begins with the inverse of the first column and row. Every 
level will follow and precede every other level twice. If the number of levels 
of Factor A are even, only one nonstandard Latin square is needed such that 
every level of Factor A follows and precedes every level once across the 
design. A 4x4 balanced Latin square design is shown at the bottom of this 
slide.
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18.2.1.3. Relationship To Fractional Replicates18.2.1.3. Relationship To Fractional Replicates18.2.1.3. Relationship To Fractional Replicates

•• Standard Latin SquareStandard Latin Square
–– Data MatrixData Matrix

–– Total of Nine Treatment CombinationsTotal of Nine Treatment Combinations
•• OneOne--Third ReplicateThird Replicate

–– Use one 2df Component of AUse one 2df Component of A××BB××C Interaction in Mod. 3C Interaction in Mod. 3
–– Latin Square Equivalent to Using I = ABLatin Square Equivalent to Using I = AB22CC22 for the Onefor the One--

Third ReplicateThird Replicate
–– Yields Same 9 Treatment ConditionsYields Same 9 Treatment Conditions

C1 C2 C3

B1 A1 A2 A3

B2 A2 A3 A1

B3 A3 A1 A2

Latin square designs are special cases of fractional-factorial designs. The 
3x3 standard Latin square design shown on this slide has nine treatment 
conditions and is equivalent to a one-third replicate of a 33 factorial design. A 
two degree of freedom component of the AxBxC interaction can be used to 
form a one-third replicate If the AB2C2 component, in Mod. 3 notation, of the 
AxBxC interaction is used to generate a one-third replicate, the resulting nine 
treatment conditions would be the same as the nine treatment conditions of 
the 3x3 standard Latin square design shown on this slide. 
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18.2.2. Computational Considerations18.2.2. Computational Considerations18.2.2. Computational Considerations

•• 18.2.2.1. 18.2.2.1. AdditivityAdditivity AssumptionAssumption
•• 18.2.2.2. Between18.2.2.2. Between--Subjects DesignSubjects Design
•• 18.2.2.3. Within18.2.2.3. Within--Subjects DesignSubjects Design
•• 18.2.2.4. Latin Square Examples18.2.2.4. Latin Square Examples

Due to the reduced number of treatment conditions and the resulting 
confounding of effects, only the main effects of Factors A, B, and C can be 
tested in Latin square designs. An additivity assumption that assumes the 
presence of no interactions in the statistical model is needed to construct F-
ratios for these designs. Both between-subjects and within-subjects versions 
of Latin square computations are described along with a computational 
example using both versions of a Latin square design.
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18.2.2.1. Additivity Assumption18.2.2.1. 18.2.2.1. AdditivityAdditivity AssumptionAssumption

•• Complete Complete NonadditiveNonadditive Model (Model (WilkWilk and and 
KempthorneKempthorne, 1957), 1957)

•• Choice of Error TermChoice of Error Term
–– S/ABC Introduces a Positive BiasS/ABC Introduces a Positive Bias

–– Residual Introduces a Negative BiasResidual Introduces a Negative Bias

Yijkl = µ + αi + βj + δk + αβij + αδik + βδjk + αβδijk +  εl(ijk)

Source E(MS)
A anσα2 + nσβδ2 + [n(a-2)/a] σαβδ2 + σε2

B anσβ2 + nσαδ2 + [n(a-2)/a] σαβδ2 + σε2

C anσδ2 + nσαβ2 + [n(a-2)/a] σαβδ2 + σε2

Residual nσαβ2 + nσαδ2 + nσβδ2 + [n(a-2)/a] σαβδ2 + σε2

S/ABC σε2

FA = MS A /MS Residual < 1.00

FA = MS A /MS S/ABC > 1.00

The expected mean squares, E(MS), for the complete nonadditive statistical 
model of a Latin square design were derived by Wilk and Kempthorne (1957) 
and summarized in the top portion of this slide. Note that the nonadditive
model includes the interactions among Factors A, B, and C, in the E(MS) 
due to the confounding present in Latin square designs. The Residual source 
of variance is the remaining composite variance after the three main effects 
are calculated. The resulting E(MS) values for the three factors, A, B, C, and 
the Residual are listed for this design.

Given these E(MS) values, the choice of the appropriate error term for 
testing each of the three main effects is problematic. The standard between-
subjects design error term, S/ABC, introduces a positive bias in the F-test; 
whereas, the Residual error term introduces a negative bias in the F-test.
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18.2.2.1. Additivity Assumption (Cont'd)18.2.2.1. 18.2.2.1. AdditivityAdditivity Assumption (Cont'd)Assumption (Cont'd)

•• AdditivityAdditivity AssumptionAssumption: Interactions : Interactions Do Not Do Not Exist in Exist in 
ModelModel

–– Residual and S/ABC are Appropriate Error TermsResidual and S/ABC are Appropriate Error Terms
–– Use Residual if No Replication ExistsUse Residual if No Replication Exists
–– Use Standard Error Term, S/ABC, if availableUse Standard Error Term, S/ABC, if available
–– Pooled Error Term of S/ABC and Residual CombinedPooled Error Term of S/ABC and Residual Combined

–– Test Residual by S/ABC for Test Residual by S/ABC for AdditivityAdditivity AssumptionAssumption
–– Pool if Pool if NotNot Significant (p < 0.20)Significant (p < 0.20)

Source E(MS)
A anσα2 + σε2

B anσβ2 + σε2

C anσδ2 + σε2

Residual σε2

S/ABC σε2

The additivity assumption means no interactions exist among Factors A, B, 
and C. If no interactions are present in the statistical model, the E(MS) for 
the Latin square design presented on the previous slide reduce to the values 
listed on this slide, and either Residual or S/ABC would be an appropriate 
error term for testing each of the three main effects.

The Residual effect is used as the error term when replication does not exist. 
When a balanced Latin square is used for counterbalance within-subjects 
designs as described in Topic 12, the Residual is used as the error term to 
test the order main effect. The usual procedure, however, is to use the 
standard error term, S/ABC, when replication is present. Alternatively, the 
experimenter could use a pooling procedure by first testing Residual by 
S/ABC. This preliminary test is a test of the additivity assumption since only 
interaction effects can be present in the Residual component. If Residual is 
not significant, when tested at a high α level to guard against Type II error, 
then S/ABC and Residual can be combined into a pooled error term.
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18.2.2.2. Between-Subjects Design18.2.2.2. Between18.2.2.2. Between--Subjects DesignSubjects Design

•• DesignDesign

Yijklm = µ + αi + βj + δk + γl(ijk) +  εm(ijkl)

Source df

Treatments (T) [t-1]

A (a-1)

B (a-1)

C (a-1)

Residual (R) (a-1)(a-2)

S/T t(n-1)

Total tn-1

The statistical model under the additivity assumption for a between-subjects 
Latin square design is stated at the top of this slide. This slide also 
summarizes the sources and degrees of freedom for a between-subjects 
Latin square design. The Factor A, B, and C main effects and the Residual 
effect are merely listed under treatments, because the sum of squares of 
these sources add to the total treatment effect (T). The effect S/T is the 
standard S/ABC effect in a between-subjects design. Since all three factors 
in a Latin square design have the same number of levels, the degrees of 
freedom for each factor are simply listed as a-1 and the degrees of freedom 
of Residual can be listed as (a-1)(a-2).
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18.2.2.2. Between-Subjects Design (Cont'd)18.2.2.2. Between18.2.2.2. Between--Subjects Design (Cont'd)Subjects Design (Cont'd)

•• Sum of Squares Computational FormulaeSum of Squares Computational Formulae

SST = (∑ABC ijk.2/n) - (T.... 2/tn)

SSA = (∑A i... 2/an) - (T.... 2/tn)

SSB = (∑B. j..2/an) - (T.... 2/tn)

SSC = (∑C.. k.2/an) - (T.... 2/tn)

SSR = (∑ABC ijk.2/n) - (∑A i... 2/an) - (∑B. j.. 2/an) - (∑C.. k.2/an)
+ 2(T... 2/tn)

SSS/T = ∑ABCS ijkl2 - (∑ABC ijk.2/n)

SSTotal = ∑ABCS ijkl2 - (T.... 2/tn)

• Error Term :  MSS/T

The SS computational formulae shown on this slide for between-subjects 
Latin square designs follow the standard procedures in basic ANOVA with a 
slight modification for the Residual. The Residual effect is between-cell 
variation or SSTotal adjusted for the presence of the three main effect 
variations.
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18.2.2.3. Within-Subjects Design18.2.2.3. Within18.2.2.3. Within--Subjects DesignSubjects Design

•• DesignDesign
Yijklm = µ + αi + βj + δk + γl +  αγ il + βγjl + δγkl +εm(ijkl)

Source df

Between-Subjects
Subjects (S) (n-1)

Within-Subject
Treatments (T) [t-1]

A (a-1)
B (a-1)
C (a-1)
Residual (R) (a-1)(a-2)

TxS [(t-1)(n-1)]
AxS (a-1)(n-1)
BxS (a-1)(n-1)
CxS (a-1)(n-1)
RxS (a-1)(a-2)(n-1)

Total tn-1

The statistical model under the additivity assumption for a within-subjects 
Latin square design is stated at the top of this slide. This slide also 
summarizes the sources and degrees of freedom for a within-subjects Latin 
square design in which each of “n” subjects receives each of the treatment 
conditions in the Latin square design. The Factor A, B, and C main effects 
and the Residual (R) effect are merely listed under treatments, because the 
sum of squares of these sources add to the total treatment effect (T). 
Likewise, the interaction of these effects with subjects are listed under the 
TxS. Standard within-subject error terms can be used in F-tests of Factors 
A,B, C, and R. Namely, each of these effects is tested by its interaction with 
subjects (e.g., AxS is the error term for A).
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18.2.2.3. Within-Subject Designs (Cont'd)18.2.2.3. Within18.2.2.3. Within--Subject Designs (Cont'd)Subject Designs (Cont'd)

•• Sum of Squares Computational FormulaeSum of Squares Computational Formulae

• Error Terms :  Interactions With Subjects

SSS = (∑S... l2/a2) - (T.... 2/tn)
SST = (∑ABC ijk.2/n) - (T.... 2/tn)
SSA = (∑A i... 2/an) - (T.... 2/tn)
SSB = (∑B. j.. 2/an) - (T.... 2/tn)
SSC = (∑C.. k.2/an) - (T.... 2/tn)
SSR = (∑ABC ijk.2/n) - (∑A i... 2/an) - (∑B. j..2/an) - (∑C.. k.2/an)

+ 2(T... 2/tn)
SSTxS = ∑ABCS ijkl2 - (∑ABC ijk.2/n) - (∑S... l2/a2) + (T.... 2/tn)
SSAxS = (∑AS i.. l2/a) - (∑A i... 2/an) - (∑S... l2/a2) + (T.... 2/tn)
SSBxS = (∑BS. j.l2/a) - (∑B. j..2/an) - (∑S... l2/a2) + (T.... 2/tn)
SSCxS = (∑CS.. kl2/a) - (∑C.. k.2/an) - (∑S... l2/a2) + (T.... 2/tn)
SSRxS = SS TxS - SS AxS - SS BxS - SS CxS
SSTotal = ∑ABCS ijkl2 - (T.... 2/tn)

The SS computational formulae summarized on this page for within-subjects 
Latin square designs follow the standard procedures in basic ANOVA with a 
slight modification for the Residual effects, SSR and SSRxS. These Residual 
effects correct the overall treatment effect for the presence of the three main 
effects, A, B, and C.
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•• Example ProblemExample Problem. The main effects of three . The main effects of three 
characteristics of a hand held communication characteristics of a hand held communication 
device was evaluated by forward observers in device was evaluated by forward observers in 
Army training exercises. Four different levels Army training exercises. Four different levels 
each of Input Display Color Resolution (A), each of Input Display Color Resolution (A), 
Speaker Characteristics (B), and Keys Size (C), Speaker Characteristics (B), and Keys Size (C), 
of the devices were evaluated in a 4x4 standard of the devices were evaluated in a 4x4 standard 
Latin square design. The minutes to complete a Latin square design. The minutes to complete a 
communication were measured on four soldiers communication were measured on four soldiers 
in each treatment combination. Did any of the in each treatment combination. Did any of the 
three characteristics of the communication three characteristics of the communication 
devices have a significant effect on time to devices have a significant effect on time to 
communicate (p < 0.01)?communicate (p < 0.01)?

18.2.2.4. Latin Square Examples18.2.2.4. Latin Square Examples18.2.2.4. Latin Square Examples

(Click in this red rectangle to see SAS calculations for this example.)

This example describes a 4x4 standard Latin square design used to evaluate 
four levels each of three factors in the interface design of a hand held 
communication device. Since the experimenter is only interested in main 
effects, a Latin square design is appropriate. This evaluation can be 
conducted using either a between-subjects or a within-subjects design 
depending on how subjects are assigned to treatment conditions. 
Consequently, both solutions for this example problem are provided. The 
Slater and Williges (2006) appendix provides the SAS program for
conducting the ANOVA on both the between-subjects and the within-
subjects versions of this Latin square design.
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18.2.2.4. Latin Square Examples (Cont’d)18.2.2.4. Latin Square Examples (Cont18.2.2.4. Latin Square Examples (Cont’’d)d)

•• 4x4 Standard Latin Square Design Matrix4x4 Standard Latin Square Design Matrix

•• Total of 16 Treatment CombinationsTotal of 16 Treatment Combinations
•• Four Observations per TreatmentFour Observations per Treatment

–– 64 Subjects in Between64 Subjects in Between--Subjects DesignSubjects Design
–– 4 Subjects in Within4 Subjects in Within--Subjects DesignSubjects Design

C1 C2 C4

B1 A1 A2 A4

B2 A2 A3 A1

B3 A3 A4 A2

B4 A4 A1 A3

C3

A3

A4

A1

A2

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the 16 treatment combinations in a 4x4 standard Latin 
square design that is designated by the four levels of Factor C as columns 
and the four levels of Factor B as rows of the square. The four levels of 
Factor A are listed in numerical order in the first row and column of the Latin 
square. The square is completed by adding one to each level of the first 
column of Factor A such that each level of Factor A appears once in each 
row and column of the standard Latin square design.

This 4x4 Latin square defines the 16 combinations of the four display color 
resolutions (Factor A), the four key sizes used for input (Factor B), and the 
four types of speaker (Factor C) used in the hand held communication 
devices being evaluated. This design is replicated four times to yield four 
observations in each of the 16 cells of the design. If the design is a between-
subjects design, each of the 16 hand held communication devices is used by 
a different group of four soldiers requiring a total of 64 soldiers to complete 
the experiment. If the design is a within-subjects design, the same four 
soldiers use all 16 versions of the hand held communication device. Each 
soldier in the within-subjects design alternative would use the 16 hand held 
communication devices in a random order to minimize treatment order bias.
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18.2.2.4. Latin Square Examples (Cont’d)18.2.2.4. Latin Square Examples (Cont18.2.2.4. Latin Square Examples (Cont’’d)d)

•• Data Matrix for 4x4 Latin Square ExamplesData Matrix for 4x4 Latin Square Examples

2530224038294032
1518253836304428
2224303535354736
2015213938284530

A3B4C4A2B4C3A1B4C2A4B4C1A2B3C4A1B3C3A4B3C2A3B3C1

2838402835322518
3242393928283022
3549423733322620
2640352539302515

A1B2C4A4B2C3A3B2C2A2B2C1A4B1C4A3B1C3A2B1C2A1B1C1

(Click in this red rectangle to see SAS calculations for this example.)

This slide summarizes the results of four replications of the 16 treatment 
conditions in the 4x4 Latin square design. Each of the four numbers shown 
under each treatment combination is the time required to complete the 
communication task in minutes using a particular hand held communication 
device defined by a combination of the levels of Factors A, B, and C. The 
combination of levels for each hand held communication device represents 
the 16 treatment conditions defined by the 4x4 standard Latin square design 
shown on the previous slide.

If a between-subjects Latin square design was used, the 64 communication 
task completion times shown on this slide represent 64 different soldiers. If a 
within-subjects Latin square design was used, then the first number under 
each of the 16 treatment combinations is time required by soldier 1 to 
complete the communication task, followed by the listing of completion times 
required by soldiers 2, then 3, then 4.
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18.2.2.4. Latin Square Examples (Cont’d)18.2.2.4. Latin Square Examples (Cont18.2.2.4. Latin Square Examples (Cont’’d)d)

•• BetweenBetween--Subjects 4x4 Latin Square DesignSubjects 4x4 Latin Square Design
–– ANOVA Summary TableANOVA Summary Table

Source

Treatments (T)

Color Resolution (A)

Speakers (B)

Input Keys (C)

Residual (R)

S/T

Total

SS

[3436.11]

1602.17

1316.80

115.17

401.97

745.25

4181.36

df

[15]

3

3

3

6

48

63

F

[14.75*]

34.40*

28.27*

2.47

4.31*

*p < 0.01

MS

[229.07]

534.06

438.93

38.39

66.99

15.52

(Click in this red rectangle to see SAS calculations for this example.)

This slide depicts the ANOVA Summary Table for the analysis of the data 
shown on the previous page for a between-subjects alternative of the 4x4 
standard Latin square design used in data collection. The Slater and Williges 
(2006) appendix provides the SAS solution for this between-subjects design. 
The abbreviations for the three independent variables are listed as A, B, and 
C to make them compatible with the previous slides for this example. 
Normally, a meaningful abbreviation is chosen for each factor.

The S/T effect is used as the error term for each F-test. The main effects of 
display color resolution and type of speaker has a significant effect on 
communication completion time. Post hoc analyses are required to isolate 
these significant effects. Since the residual effect is significant, some type of 
interaction exists among the three main effects and this source of variation 
cannot be combined with S/T to form a pooled error term. A follow-on 
complete factorial design is needed to isolate significant interaction(s) 
present in this experiment.
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18.2.2.4. Latin Square Examples (Cont’d)18.2.2.4. Latin Square Examples (Cont18.2.2.4. Latin Square Examples (Cont’’d)d)

•• WithinWithin--Subjects 4x4 Latin Square DesignSubjects 4x4 Latin Square Design
–– ANOVA Summary TableANOVA Summary Table
Source

Between-Subjects
Subjects (S)

Within-Subject
Treatments (T)

Color Resolution (A)
Speakers (B)
Input Keys (C)
Residual (R)

TxS
AxS
BxS
CxS
RxS

Total

df

3

[15]
3
3
3
6

[45]
9
9
9

18
63

SS

144.92

[3436.11]
1602.17
1316.80
115.17
401.97

[600.33]
170.52
194.89
121.52
113.40

4181.36

MS

48.31

[229.07]
534.06
438.92
38.39
66.99

[13.34]
18.95
21.65
13.50
6.30

F

[17.17*]
28.19*
20.27*
2.84

10.63*

*p < 0.01

(Click in this red rectangle to see SAS calculations for this example.)

The slide shows the ANOVA Summary Table of the within-subjects design 
alternative of the 4x4 Latin square design using the example problem 
results. The Slater and Williges (2006) appendix provides the SAS solution 
for this within-subjects design. Again, the abbreviations for the three 
independent variables are listed as A, B, and C to make them compatible 
with the previous slides for this example. Normally, a meaningful 
abbreviation is chosen for each factor.

The interaction of Subjects (S) with treatment effects is used as the error 
term to test each effect. The main effects of display color resolution and type 
of speaker has a significant effect on communication completion time. Post 
hoc analyses are required to isolate these significant effects. Since the 
residual effect is significant, some type of interaction exists among the three 
main effects, and this source of variation cannot be combined with TxS to 
form a pooled error term. A follow-on complete factorial design is needed to 
isolate significant interaction(s) present in this experiment.
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18.2.3. Design Constraints18.2.3. Design Constraints18.2.3. Design Constraints

•• Major UsesMajor Uses
–– Special Case of Fractional Factorials to Test Special Case of Fractional Factorials to Test 

Main Effects of Three FactorsMain Effects of Three Factors
–– Balancing Treatment Order in WithinBalancing Treatment Order in Within--Subjects Subjects 

DesignsDesigns
•• Major LimitationsMajor Limitations

–– AdditivityAdditivity AssumptionAssumption
–– Equal Number of Levels in Each FactorEqual Number of Levels in Each Factor

•• GrecoGreco--Latin Square ExtensionLatin Square Extension

Latin square designs can be used as a special case of between-subjects and 
within-subjects, fractional-factorial designs to test only the main effects of 
three factors. In human factors research, balanced Latin square designs are 
also used to partially counterbalance the treatment order in within-subjects 
designs as described in Topic 12. The experimenter must assume additivity, 
or no interaction among the three factors, in order to construct unbiased F-
tests. In addition, an equal number of levels of each of the three factors is 
required to construct the Latin square design.

The basic Latin square design can be extended to consider more than three 
factors. Greco-Latin square designs consider four factors by combining two 
orthogonal Latin squares. This could be extended beyond four factors 
through hyper-Greco-Latin squares. However, there are only a limited 
number of these design alternatives due to the requirement for orthogonal 
Latin square components. Winer, et al. (1991, Chapter 9) provide a 
description of Greco-Latin square design and analysis procedures.
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18.3. Summary18.3. Summary18.3. Summary

•• FractionalFractional--Factorial Design AlternativesFactorial Design Alternatives
–– 22kk--pp Fractional ReplicatesFractional Replicates
–– Latin Square DesignsLatin Square Designs

•• Major ConsiderationsMajor Considerations
–– Equal Number of Levels of Each FactorEqual Number of Levels of Each Factor
–– Identity and Alias StructureIdentity and Alias Structure
–– Design ResolutionDesign Resolution

•• Major UsesMajor Uses
–– Experiment ConstraintsExperiment Constraints
–– Preliminary Testing ProcedurePreliminary Testing Procedure
–– Basis For Complex DesignsBasis For Complex Designs

Fractional-factorial designs are used in human factors and ergonomics 
research when only a fractional component of the full factorial design is 
investigated. One-half and one-fourth replicates of 2k factorials are the most 
often used fractional-factorial designs due to their straightforward 
confounding structure. When the experimenter is only interested in 
investigating main effects of three factors and the levels of each factor are 
equal, Latin square designs can be considered as the fractional replicate.

The experimenter must consider three major components of fractional 
factorials carefully. First, these designs require that each factor is observed 
at the same number of levels. Second, some information in the full factorial 
design has to be sacrificed in the fractional factorial. The identity relationship 
effect is completely lost and the alias structure specifies the confounded 
effects. Third, the experimenter must choose the appropriate design 
resolution to insure orthogonal evaluation of main effects and interactions of 
interest in the fractional replicate.

Fractional-factorial designs are useful in human factors research when time, 
equipment, and budgets constraints preclude use of complete factorial 
designs. In large experiments, a fractional replicate may provide an efficient 
method of pre-testing. Finally, fractional-factorial designs form components 
of complex designs used in empirical model building and sequential 
experimentation as discussed in Section 5.
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18.4. Supplemental Readings18.4. Supplemental Readings18.4. Supplemental Readings

REFERENCEREFERENCE
Hicks & Turner (1999)Hicks & Turner (1999)
Mason, Mason, GunstGunst, & Hess (2003), & Hess (2003)
Montgomery (2005)Montgomery (2005)
Myers and Montgomery (2002)Myers and Montgomery (2002)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapter 13Chapter 13
Chapters 7, 8, 9Chapters 7, 8, 9
Chapter 4, 8, 9Chapter 4, 8, 9
Chapter 4Chapter 4
Chapters 8, 9 Chapters 8, 9 

All these texts provide a discussion of fractional-factorial and Latin square 
designs used in ANOVA. Winer, et al. (1991) provide a detailed description 
of the modular representation approach used in this topic to construct 
fractional-factorial ANOVA designs and provide a complete description of 
design construction, analysis, and alternatives of Latin square designs used 
in behavioral research. 



Human Factors Experimental Design and Analysis Reference

613

This topic deals with an analytical technique for reducing the effect of a 
covariate to increase the sensitivity of the F-test on effects of interest to the 
experiment. The covariate is correlated with the dependent variable, and its 
effect is removed through simple linear regression. Consequently, both 
calculations of correlation and simple regression are described as the basic 
components of analysis of covariance (ANCOVA). Basic computations in 
ANCOVA and subsequent interpretations of results are described in this 
topic. Supplemental readings on correlation, simple regression, and 
ANCOVA are provided.

Topic 19. Analysis of Covariance (ANCOVA)Topic 19. Analysis of Covariance (ANCOVA)Topic 19. Analysis of Covariance (ANCOVA)

19.1. Introduction to ANCOVA19.1. Introduction to ANCOVA
19.2. Linear Correlation19.2. Linear Correlation

19.2.1. Correlation Coefficient, r19.2.1. Correlation Coefficient, r1212
19.2.2. Alternative Correlations19.2.2. Alternative Correlations

19.3. Simple Linear Regression19.3. Simple Linear Regression
19.3.1. Line of Best Fit19.3.1. Line of Best Fit
19.3.2. Goodness of Fit19.3.2. Goodness of Fit

19.4. ANCOVA Computations19.4. ANCOVA Computations
19.4.1. Basic ANCOVA Design19.4.1. Basic ANCOVA Design
19.4.2. Advanced ANCOVA19.4.2. Advanced ANCOVA
19.4.3. Interpreting ANCOVA19.4.3. Interpreting ANCOVA

19.5. Summary19.5. Summary
19.6. Supplemental Readings19.6. Supplemental Readings
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19.1 Introduction to ANCOVA19.1 Introduction to ANCOVA19.1 Introduction to ANCOVA

•• PrePre--Existing Systematic Group DifferencesExisting Systematic Group Differences
–– Control for Individual DifferencesControl for Individual Differences
–– Treatment Adjustments for CovariateTreatment Adjustments for Covariate
–– Post Hoc Analysis Adjustment for CovariatePost Hoc Analysis Adjustment for Covariate

•• Fundamental Components of ANCOVAFundamental Components of ANCOVA
–– CorrelationCorrelation between Dependent Variable and between Dependent Variable and 

Covariate of Individual DifferenceCovariate of Individual Difference
–– RegressionRegression to Adjust Treatment Means for to Adjust Treatment Means for 

CovariateCovariate

ANCOVA is a well-accepted analytical procedure used to adjust for pre-
existing systematic differences between groups. For example, in training 
research, different training methods may be evaluated in different classes 
such that each class receives a different training method. But, the students 
in one class may differ greatly in terms of verbal abilities of students in 
another class. ANCOVA can be used to adjust the various training groups for 
individual differences in class verbal aptitudes that are correlated with 
learning based on the different training procedures tested. Both the main 
ANCOVA analysis and post hoc analyses on significant effects are adjusted 
for the verbal abilities covariate to provide a more sensitive test of the 
training methods.

The ANCOVA procedure is based on the correlation between an individual 
difference component and the dependent variable. Regression procedures 
are then used to remove the covariate effect and a subsequent ANOVA is 
conducted on the adjusted treatment means.
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19.1 Introduction to ANCOVA (Cont’d)19.1 Introduction to ANCOVA (Cont19.1 Introduction to ANCOVA (Cont’’d)d)

•• Approaches to Reducing Error Variance in Approaches to Reducing Error Variance in 
BetweenBetween--Subjects DesignsSubjects Designs
–– Experimental DesignExperimental Design:: Randomized Block DesignRandomized Block Design
–– Data AnalysisData Analysis:: Analysis of CovarianceAnalysis of Covariance

•• Randomized Block Design versus ANCOVARandomized Block Design versus ANCOVA
–– Number of Subjects RequiredNumber of Subjects Required
–– Post Hoc Data Analysis ProcedurePost Hoc Data Analysis Procedure
–– Degree of CorrelationDegree of Correlation
–– Regression Analysis AdjustmentRegression Analysis Adjustment

ANCOVA is also a statistical procedure for refining error variance in a 
between-subjects design to provide a more sensitive F-test. The randomized 
block as discussed in Topic 15 is an experimental design alternative to the 
ANCOVA analytical approach. Randomized block designs control the effect 
of the covariate through experimental design; whereas, ANCOVA adjusts for 
the covariate effect statistically.

Both alternatives also have drawbacks. In the randomized block design, the 
experimenter usually needs to pretest more subjects than required to obtain 
equal sample sizes for the various levels of the covariate. In ANCOVA, 
interpretations are made on treatment means adjusted for the covariate 
rather than the actual treatment means. Randomized block designs are often 
preferred because no adjustment to the means and subsequent 
interpretations are required.

Both approaches take into account the effect of a covariate that is correlated 
with the dependent variable. To conduct the ANCOVA, both linear 
correlation and regression procedures need to be used for adjusting and 
analyzing the treatments of interest. Consequently, both the concepts of 
linear correlation and simple linear regression are reviewed in the next two 
subsections as a precursor to ANCOVA computations. 
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19.2. Linear Correlation, r1219.2. Linear Correlation, r19.2. Linear Correlation, r1212

•• DefinitionDefinition:: Quantitative description of the degree Quantitative description of the degree 
of linear relationship between two variables.of linear relationship between two variables.
–– PearsonPearson--Product Moment Correlation, rProduct Moment Correlation, r1212

–– Linear RelationshipLinear Relationship
–– Range: r = +1 to Range: r = +1 to ––11
–– ScatterplotScatterplot

Y
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Hi

Lo
Lo

r = +1
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r = -1
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    x 
       x 
         x 
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Correlation designated by r12 is the description of the linear relationship 
between two variables. If there is a perfect positive linear relationship, then 
r12 = 1. If there is a perfect negative linear relationship, r12 = -1. If r12 = 0, 
then there is no linear relationship between the two variables and the scatter 
plot between the two variables is circular as shown in the middle diagram on 
this slide. Consequently, the linear correlation between two variables ranges 
somewhere between +1 and -1.
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19.2. Linear Correlation, r12 (Cont’d)19.2. Linear Correlation, r19.2. Linear Correlation, r1212 (Cont(Cont’’d)d)

•• 19.2.1. Correlation Coefficient19.2.1. Correlation Coefficient
•• 19.2.2. Alternative Correlations19.2.2. Alternative Correlations

Although the Pearson product-moment correlation coefficient, r12, is the 
primary measure of linear correlation between two variables, various 
alternatives to r12 are available to handle special circumstances. Formulae 
for both the Pearson r12 and some of its alternatives are presented in this 
subsection.
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19.2.1. Correlation Coefficient19.2.1. Correlation Coefficient19.2.1. Correlation Coefficient

•• Pearson ProductPearson Product--Moment Correlation, rMoment Correlation, r1212
–– Definitional FormDefinitional Form

Note: X – X and Y – Y = FirstMoment

r12 =
zxzyΣ

n – 1

=
X – X

sX
Σ Y – Y

sY

n – 1

r12 = X – XΣ Y – Y
n – 1 sXsY

This slide shows the definitional formula for the Pearson r12. Pearson defined 
the sum of the product of Z scores for two variables, X and Y, divided by n-1 
degrees of freedom as the correlation r12. The Z scores are standardized 
scores are defined in Topic 3 on page 89 in this reference material. Note that 
the numerator of the final formula for r12 shown on this slide is also the sum 
of the product of the first moment around the X and Y means, respectively. 
Hence the name of r12 is the Pearson product-moment correlation 
coefficient. 
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19.2.1. Correlation Coefficient (Cont’d)19.2.1. Correlation Coefficient (Cont19.2.1. Correlation Coefficient (Cont’’d)d)

•• Interpretation of Pearson rInterpretation of Pearson r1212
–– Degree of Linear RelationshipDegree of Linear Relationship
–– Not Percent of VariationNot Percent of Variation

•• Not Necessarily CausativeNot Necessarily Causative
–– Correlation with Third VariableCorrelation with Third Variable

•• Choice of VariablesChoice of Variables
–– Dependent, Y, and Independent, X, VariablesDependent, Y, and Independent, X, Variables
–– IntercorrelationIntercorrelation MatrixMatrix

–– Dependent Variables, Y'sDependent Variables, Y's
–– Independent Variables, X'sIndependent Variables, X's

–– Prediction Via RegressionPrediction Via Regression
–– Y Predicted by XY Predicted by X

The correlation describes the linear relationship between two variables 
somewhere between ±1 and not the percent of variation between two 
variables, X and Y. The correlation value expresses only the degree of 
linearity and is not necessarily a causative relationship because both of the 
two variables correlated could be correlated with a third variable that 
represents the true causative relationship. Consequently, causative 
interpretations of correlations should be considered carefully.

Several types of correlations between two variables are used in
experimental design. A dependent variable is designated Y, and an 
independent variable is designated X. An intercorrelation matrix can be 
calculated among several dependent variable, Y’s, or several independent 
variables, X’s. Correlations can be used in regression to predict Y as a 
function of one or more X’s. Instead of doing hypothesis testing, the 
experimenter may want to build an empirical model where Y is predicted by 
X’s as described in Section 5.
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19.2.1. Correlation Coefficient (Cont’d)19.2.1. Correlation Coefficient (Cont19.2.1. Correlation Coefficient (Cont’’d)d)

•• 19.219.2..1.1. Computational Formulae1.1. Computational Formulae
•• 19.2.1.2. Tests of Significance19.2.1.2. Tests of Significance

This subsection describes various computational formulae and tests of 
significance for the basic Pearson product-moment correlation, r12.
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19.2.1.1 Computational Formulae19.2.1.1 Computational Formulae19.2.1.1 Computational Formulae

•• Covariance FormulaCovariance Formula

•• Deviation Score FormulaDeviation Score Formula

r12 = s2
XY

s2
Xs2

Y

where, s2
XY = X – X Y – YΣ

n – 1

r12 = xyΣ
x2Σ y2Σ

y2Σ = Y – Y 2Σ
x2Σ = X – X 2Σ

where, xyΣ = X – X Y – YΣ

This slide shows the covariance or deviation score formulae for calculating 
the Pearson product-moment correlation, r12. Note that the covariance 
between X and Y is shown in the numerator of the covariance formulae at 
the top of the slide. Deviation scores are the differences between a score 
and its mean. They are listed as lowercase x and y letters and are defined in 
terms of Σxy, Σx2, and Σy2 in the lower portion of this slide. The Σxy value is 
the sum of cross products of the X and Y deviations, the Σx2 value is the 
sum of squared deviations of X, and the Σy2 value is the sum of squared 
deviations of Y.
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19.2.1.1 Computational Formulae (Cont’d)19.2.1.1 Computational Formulae (Cont19.2.1.1 Computational Formulae (Cont’’d)d)

•• Raw Score FormulaRaw Score Formula

– or –

r12 =
XY – XΣ YΣ

nΣ

X2Σ – XΣ 2

n Y2Σ – YΣ 2

n

r12 = XY – XΣ YΣnΣ
X2nΣ – XΣ 2 Y2nΣ – YΣ 2

The two raw score formulae for r12 shown on this slide use no intermediate 
mean calculations. Both are algebraically equivalent, but the formula shown 
on the bottom of this slide is the most common version of the Pearson 
product-moment correlation coefficient. 
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19.2.1.1 Computational Formulae (Cont’d)19.2.1.1 Computational Formulae (Cont19.2.1.1 Computational Formulae (Cont’’d)d)

•• Example ProblemExample Problem: The Army is trying to : The Army is trying to 
update their anthropometric database. They update their anthropometric database. They 
are currently recording the height, weight, are currently recording the height, weight, 
age, and gender of new recruits that are age, and gender of new recruits that are 
enlisting. First they would like to determine enlisting. First they would like to determine 
the degree of linear relationship of height the degree of linear relationship of height 
and weight and if this relationship is and weight and if this relationship is 
significant (p < 0.05).significant (p < 0.05).

(Click in this red rectangle to see SAS calculations for this example.)

This example problem lists four variables (i.e., height, weight, age, and 
gender) that can be correlated to show the linear relationship between any 
two of them. Specifically, this problem asks for the value of linear correlation 
between height (X) and weight (Y) and if this correlation is statistically 
significant (p < 0.05).
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19.2.1.1 Computational Formulae (Cont’d)19.2.1.1 Computational Formulae (Cont19.2.1.1 Computational Formulae (Cont’’d)d)

Scores Raw Score Calculations

Height (X) Weight (Y) X2 Y2 XY
68 190 4624 36100 12920
62 133 3844 17689 8246
71 132 5041 17424 9372
76 211 5776 44521 16036
72 200 5184 40000 14400
67 154 4489 23716 10318
63 125 3969 15625 7875
75 158 5625 24964 11850
78 179 6084 32041 13962

70 188 4900 35344 13160
ΣX= 1109 Σ Y= 2603 ΣX2= 77179 Σ Y2= 436595 ΣXY= 181703

65 139 4225 19321 9035
70 188 4900 35344 13160
69 191 4761 36481 13179
70 155 4900 24025 10850
69 140 4761 19600 9660
64 120 4096 14400 7680

(Click in this red rectangle to see SAS calculations for this example.)

This slide presents hypothetical anthropometric data in terms of height (X) 
and weight (Y) of 16 soldiers. The raw score values for the sum of X and Y, 
the sum of squares of X and Y, and the sum of cross products XY are shown 
on this slide. The appendix by Slater and Williges (2006) provides the SAS 
program solutions for the various correlation examples provided in this 
reference material.
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19.2.1.1 Computational Formulae (Cont’d)19.2.1.1 Computational Formulae (Cont19.2.1.1 Computational Formulae (Cont’’d)d)

r12 =
XY – XΣ YΣnΣ

X2nΣ – XΣ 2 Y2nΣ – YΣ 2

r12 =
(16) (181703) – (1109) (2603)

(16) (77179) – (1109)
2

(16) (436595) – (2603)
2

= + 0.635

Raw Score Calculations

(Click in this red rectangle to see SAS calculations for this example.)

The correlation between the height and weight data of the 16 soldiers shown 
on the previous slide is calculated using the raw score formula for r12. The 
resulting correlation is +0.635. This shows a positive linear relationship 
between height and weight or that weight increases as height increases.
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19.2.1.1 Computational Formulae (Cont’d)19.2.1.1 Computational Formulae (Cont19.2.1.1 Computational Formulae (Cont’’d)d)

Raw Scores Deviation Score Calculations

Height (X) Weight (Y) x
2

y
2

xy
68 190 1.7 746.0 - 35.8
62 133 53.5 881.3 217.1
71 132 2.8 941.7 - 51.8
76 211 44.7 2334.1 323.1
72 200 7.2 1392.2 100.3
67 154 5.3 75.7 20.1
63 125 39.8 1420.3 237.9
75 158 32.3 22.0 - 26.7
78 179 75.5 266.1 141.7

70 188 0.5 640.7 17.4
Σ X= 1109 Σ Y= 2603 Σ x 2 = 311.4 Σ y 2 = 13119.4 Σ xy= 1282.6
X = 69.3 Y = 162.7

65 139 18.6 561.1 102.2
70 188 0.5 640.7 17.4
69 191 0.1 801.6 - 8.8
70 155 0.5 59.1 - 5.3
69 140 0.1 514.7 7.1
64 120 28.2 1822.2 226.8

x y
- 1.3 27.3
- 7.3 - 29.7

1.7 - 30.7
6.7 48.3
2.7 37.3

- 2.3 - 8.7
- 6.3 - 37.7

5.7 - 4.7
8.7 16.3

0.7 25.3

Σ x= 0 Σ y= 0

- 4.3 - 23.7
0.7 25.3

- 0.3 28.3
0.7 - 7.7

- 0.3 - 22.7
- 5.3 - 42.7

(Click in this red rectangle to see SAS calculations for this example.)

The x, y, and xy deviation scores are listed on this slide for the hypothetical 
soldier height and weight raw score data and group means for height and 
weight.
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19.2.1.1 Computational Formulae (Cont’d)19.2.1.1 Computational Formulae (Cont19.2.1.1 Computational Formulae (Cont’’d)d)

r12 =
1282.6

(311.4) (13119.4)
= + 0.635

r12 = xyΣ
x2Σ y2Σ

Deviation Score Calculations

(Click in this red rectangle to see SAS calculations for this example.)

The correlation of the deviation scores shown in the previous slide is 
calculated using the deviation score formula for r12. The resulting correlation 
between height and weight, +0.635, is the same as the value calculated by 
the raw score formula for r12. Consequently, the formulae are equivalent.
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19.2.1.2. Tests of Significance19.2.1.2. Tests of Significance19.2.1.2. Tests of Significance

Tabled = (n-2) df
tObserved

• Test Format
HO:  = 0
Hi:  
α:  0.05, 0.01, or 0.001
D.R.:  I reject HOif tObserved> tTabled

• Example Problem
• r = .635,  n = 16
• tTabled = 2.145 (14 df)
• tObserved

• Significant at α = .05

• t-Test of Significance
t

ρ
ρ ≠ 0

= .635 16 – 2
1 – (.635)2 = 3.072

= r n – 2
1 – r2

(Click in this red rectangle to see SAS calculations for this example.)

A t-test with n-2 degrees of freedom can be used to determine if a correlation 
is significantly different from 0. The formula for tObserved is presented at the 
top of the slide, and the standard test format is provided in the middle of the 
slide.

The t-test of the example problem correlation of 0.635 is summarized at the 
bottom on this slide. Since the observed value is 3.072 and the table value is 
2.145, the correlation is significant at the 0.05 level.
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19.2.1.2. Tests of Significance (Cont’d)19.2.1.2. Tests of Significance (Cont19.2.1.2. Tests of Significance (Cont’’d)d)

•• Unit Normal Test of Single Population CorrelationUnit Normal Test of Single Population Correlation
–– Fisher Fisher ZZrr Transformation of rTransformation of r1212

---- (Can Use Hays, 1994, Table VI) (Can Use Hays, 1994, Table VI) ----
–– ZZObservedObserved StatisticStatistic

Zr = ln 1 + r – ln 1 – r)
2

ZObserved =
Zr – Zρ

σZr

where,
Zr = Transformation of Observed Correlation
Zρ = Transformation of Population Correlation
σZr

= 1
n – 3

(Click in this red rectangle to see SAS calculations for this example.)

A second significance test of a correlation is to test it against a known 
population correlation value. A unit normal test based on the Fisher Zr
transformation can be used to test a correlation against a known population 
value. The Fisher Zr transformation formula based on natural logs is 
provided at the top of the slide. Alternatively, Table VI in Hays (1994) can be 
used to make the transformation. The resulting formula for the ZObserved value 
is presented at the bottom of this slide.
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•• Example ProblemExample Problem:: Is a correlation of .635 between height and Is a correlation of .635 between height and 
weight based on a sample size of 16 soldiers significantly weight based on a sample size of 16 soldiers significantly 
different from a population correlation of 0.700 (p < 0.05)?different from a population correlation of 0.700 (p < 0.05)?

•• Test FormatTest Format
HHOO: : ρρ = 0.70= 0.70
HHii: : ρρ ≠≠ 0.700.70
αα: 0.05: 0.05
D.R.: D.R.: I I reject Hreject HOO if if ZZObservedObserved > > ZZTabledTabled

19.2.1.2. Tests of Significance (Cont’d)19.2.1.2. Tests of Significance (Cont19.2.1.2. Tests of Significance (Cont’’d)d)

ZObserved = .7481 – .8673
.2773 = -0.43

where, Z.635 = .7481
Z.700 = .8673
σZr

= 1
16 – 3

= .2773

ZTabled = -1.96

(Click in this red rectangle to see SAS calculations for this example.)

In this example, the sample correlation between height and weight of 16 
soldiers is compared to a population correlation of 0.700 to test for a 
significance difference. The test format and ZObserved calculations are shown 
on this slide. Since the ZObserved value of -0.43 is less that the ZTabled value of 
-1.96, the sample correlation is not significantly different (p < 0.05) than the 
population correlation.
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19.2.1.2. Tests of Significance (Cont’d)19.2.1.2. Tests of Significance (Cont19.2.1.2. Tests of Significance (Cont’’d)d)

•• Unit Normal Test of Difference Between Two Unit Normal Test of Difference Between Two 
Correlations, rCorrelations, r11 and rand r22

–– Test FormatTest Format
HHOO: : ρρ11 = = ρρ22

HHii: : ρρ11 ≠≠ ρρ22

αα: 0.05, 0.01, or 0.001: 0.05, 0.01, or 0.001
D.R.: D.R.: II reject Hreject HOO if if ZZObservedObserved > > ZZTabledTabled

ZObserved = Z1 – Z2
σZ1 – Z2

Where,

Z
1

= Z
r

for r1 Z
2
= Z

r
for r2

σZ1 – Z2
= 1

n1 – 3 + 1
n2 – 3

and

(Click in this red rectangle to see SAS calculations for this example.)

The third significance test is to compare two correlations to test for a 
significant difference between them. Again, the Fisher Zr transformation can 
be used to make a Z-test. The test format and the ZObserved formula for this 
test are shown on the slide.



Human Factors Experimental Design and Analysis Reference

632

19.2.1.2. Tests of Significance (Cont’d)19.2.1.2. Tests of Significance (Cont19.2.1.2. Tests of Significance (Cont’’d)d)

•• Example ProblemExample Problem:: Is there a significant Is there a significant 
difference (p < 0.05) between the correlations of difference (p < 0.05) between the correlations of 
height and weight for six female, rheight and weight for six female, rF(12)F(12) = 0.648, = 0.648, 
and six male, rand six male, rM(12)M(12) = 0.615, soldiers?= 0.615, soldiers?

Height (X) Weight (Y)
68 190
62 133
71 132
76 211
72 200
67 154
63 125
75 158

Female Soldiers

r F(12) = 0.648

Height (X) Weight (Y)
78 179
65 139
70 188
69 191
70 155
69 140
64 120
70 188

Male Soldiers

r M(12) = 0.615

(Click in this red rectangle to see SAS calculations for this example.)

Example data for six female and six male soldiers are shown on this slide. 
The correlation of height and weight is 0.648 for female soldiers and is 0.615 
for male soldiers. Is the difference between these two correlations 
statistically significant at the 0.05 level?
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19.2.1.2. Tests of Significance (Cont’d)19.2.1.2. Tests of Significance (Cont19.2.1.2. Tests of Significance (Cont’’d)d)

–– Test FormatTest Format
HHOO: : ρρ11 = = ρρ22

HHii: : ρρ11 ≠≠ ρρ22

αα: 0.05: 0.05
D.R.: D.R.: II reject Hreject HOO if if ZZObservedObserved > > ZZTabledTabled

Z
Observed

=
0.7718 – 0.7153

0.3922

Z 1 = Z r for 0.648 Z 2 = Z r for 0.615

σ Z1– Z2
= 1

16 – 3
+ 1

16 – 3 0.3922

0.14

=

=

Z
Tabled

=  1.96

(Click in this red rectangle to see SAS calculations for this example.)

The results of the Z-test on the difference between the two example 
correlations are shown on this slide. Since the ZObserved value of 0.14 is not 
greater than the ZTabled value of 1.96, the experimenter concludes that the 
correlation of height and weight is not different for female and male soldiers.
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19.2.2. Alternative Correlations19.2.2. Alternative Correlations19.2.2. Alternative Correlations

•• 19.2.2.1. Point 19.2.2.1. Point BiserialBiserial Correlation, Correlation, rrpbipbi

•• 19.2.2.2. Phi Correlation, 19.2.2.2. Phi Correlation, rrφφ
•• 19.2.2.3. Spearman Correlation, 19.2.2.3. Spearman Correlation, rrρρ
•• 19.219.2..2.4. Partial Correlation, r2.4. Partial Correlation, r(1.3)(2.3)(1.3)(2.3)

•• 19.2.2.5. 19.2.2.5. SemipartialSemipartial Correlation, rCorrelation, r1(2.3)1(2.3)

Five alternative Pearson correlations are listed on this slide. The first three 
are nonparametric correlation coefficients. The point biserial coefficient is a 
correlation of a dichotomous variable with a continuous variable; the phi 
coefficient is a correlation between two dichotomous variables; and the 
Spearman rho coefficient is a correlation between two rank orders.

The last alternatives to the Pearson correlation are used when a third 
variable is considered in the correlation. The partial correlation removes the 
covariance of the third variable from both of the variables being correlated; 
whereas, the semipartial correlation removes the covariance of the third 
variable from only one of the two variables being correlated.
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19.2.2.1. Point Biserial Correlation, rpbi19.2.2.1. Point 19.2.2.1. Point BiserialBiserial Correlation, Correlation, rrpbipbi

•• DefinitionDefinition:: Correlation between one continuousCorrelation between one continuous
and one dichotomous (two category) and one dichotomous (two category) 
variablevariable

–– X = Continuous VariableX = Continuous Variable
–– Y = Dichotomous Variable (0, 1)Y = Dichotomous Variable (0, 1)

•• FormulaFormula

•• where,where,
ΣΣXX11 = sum of X values for n1 observations when Y = 1= sum of X values for n1 observations when Y = 1
ΣΣX = sum of X values for all n observationsX = sum of X values for all n observations
nn11 = number of observations when Y = 1= number of observations when Y = 1
nn00 = number of observations when Y = 0= number of observations when Y = 0
n = total number of observationsn = total number of observations

rpbi =
X1 – n1 XΣ

nΣ
n1n0

n X2Σ – XΣ 2

n

This slide shows the formula for the point biserial correlation where X is the 
continuous variable and Y is the dichotomous variable with only two values, 
0 or 1. 
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19.2.2.1. Point Biserial Correlation, rpbi (Cont’d)19.2.2.1. Point 19.2.2.1. Point BiserialBiserial Correlation, Correlation, rrpbipbi (Cont(Cont’’d)d)

•• Example ProblemExample Problem: What is the correlation : What is the correlation 
between the number of years of service of between the number of years of service of 
sixteen soldiers and their current status     sixteen soldiers and their current status     
(1 = enlisted and 0 = officers)?(1 = enlisted and 0 = officers)?

(Click in this red rectangle to see SAS calculations for this example.)

This is an example of a problem using the Army anthropometric data on a 
total of sixteen soldiers that requires a point biserial correlation between 
number of years of service (continuous) and their current status
(dichotomous).
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19.2.2.1. Point Biserial Correlation, rpbi (Cont’d)19.2.2.1. Point 19.2.2.1. Point BiserialBiserial Correlation, Correlation, rrpbipbi (Cont(Cont’’d)d)

Status
Number of

Years

1 20
1 24
1 27
0 29
1 30
1 31
1 33
1 34
0 35
1 36
0 37
0 38
0 39
0 40
0 42
0 44

(Click in this red rectangle to see SAS calculations for this example.)

This is the hypothetical Army anthropometric data for the problem described 
on the previous slide.
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19.2.2.1. Point Biserial Correlation, rpbi (Cont’d)19.2.2.1. Point 19.2.2.1. Point BiserialBiserial Correlation, Correlation, rrpbipbi (Cont(Cont’’d)d)

rpbi =
X1 – n1 XΣ

nΣ
n1n0

n X2Σ – XΣ 2

n

rpbi =
235 –

8(539)
16

8(8)
16 18807– 539 2

16

= - 0.6769

(Click in this red rectangle to see SAS calculations for this example.)

This slide uses the hypothetical data provided on the previous slide to 
conduct the point biserial correlation of 0.675.
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•• DefinitionDefinition:: Correlation between two dichotomous Correlation between two dichotomous 
variablesvariables

•• FormulaFormula

•• Test of SignificanceTest of Significance
–– χχ22

TabledTabled = 1 = 1 dfdf
–– χχ22

ObservedObserved = nr= nr22
φφ

19.2.2.2. Phi Correlation, rφ19.2.2.2. Phi Correlation, 19.2.2.2. Phi Correlation, rrφφ

X
0 1

Y
1

0 c d

ba

rφ = bc – ad
a + b a + c b + d c + d

This slide shows the formula for the phi correlation where both X and Y are 
dichotomous variables. A chi-squared test shown on the bottom of this slide 
can be used to test the significance of the phi correlation.
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19.2.2.2. Phi Correlation, rφ (Cont’d)19.2.2.2. Phi Correlation, 19.2.2.2. Phi Correlation, rrφφ (Cont(Cont’’d)d)

•• Example ProblemExample Problem: What is the correlation : What is the correlation 
between the 16 soldiersbetween the 16 soldiers’’ status and their status and their 
gender and is this correlation significant   gender and is this correlation significant   
(p < 0.05)?(p < 0.05)?

Status Gender
1 1

0 0

0 0

1 1

0 0

1 0

1 0

1 1

Status Gender
0 1

0 0

1 1

0 1

1 0

1 0

1 1

0 0

(Click in this red rectangle to see SAS calculations for this example.)

This is an example problem of using the phi correlation on the hypothetical 
Army anthropometric data where 0 = enlisted and 1 = officer for the status 
dichotomous variable, and 0 = female and 1= male for the gender 
dichotomous variable.
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19.2.2.2. Phi Correlation, rφ (Cont’d)19.2.2.2. Phi Correlation, 19.2.2.2. Phi Correlation, rrφφ (Cont(Cont’’d)d)

•• CalculationCalculation
a = 2a = 2
b = 5b = 5
c = 5c = 5
d = 4d = 4

Test of SignificanceTest of Significance

rφ=
(5)(5) – (2)(4)

(2+5)(2+5)(5+4)(5+4) = 0.2698

X2
Tabled = 1 df = 3.84

X2
Observed = nr2

φ = 16(0.26982) = 1.165 

Reject HO: X2
Observed > X2

Tabled

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the calculation of the phi correlation of the Army 
anthropometric data shown on the previous slide. As shown on the bottom 
portion of this slide the resulting phi correlation of 0.2698 is not significantly 
different than 0 based on a chi-squared test of significance (p < 0.05).
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19.2.2.3. Spearman Correlation, rρ19.2.2.3. Spearman Correlation, 19.2.2.3. Spearman Correlation, rrρρ

•• DefinitionDefinition:: Correlation between two rank ordersCorrelation between two rank orders
–– Assumes No Tied RanksAssumes No Tied Ranks
–– n = Number of Items Rankedn = Number of Items Ranked

•• FormulaFormula

where, D = (where, D = (XXRankRank –– YYRankRank))

•• Test of SignificanceTest of Significance
–– ttTabledTabled = (n= (n––2) 2) dfdf

rρ = 1 – 6 D2Σ
n n2 – 1

t Observed = rρ
n – 2
1 – rρ

2

The Spearman correlation is the correlation between two rank orders. The 
formula presented on this slide assumes no tied ranks and is based on the 
difference (D) between the ranked items (n). A t-test for evaluating the 
Spearman correlation is shown at the bottom of this slide.
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19.2.2.3. Spearman Correlation, rρ (Cont’d)19.2.2.3. Spearman Correlation, 19.2.2.3. Spearman Correlation, rrρρ (Cont(Cont’’d)d)

•• Tied RanksTied Ranks
–– No Adjustment Needed for Small Number of TiesNo Adjustment Needed for Small Number of Ties
–– Just Assign Average of Tied RanksJust Assign Average of Tied Ranks

•• Adjusted Formula for Tied Ranks, TAdjusted Formula for Tied Ranks, TXX and Tand TYY

TX and TY = ti
3 – tiΣ

i = 1

g

where, g = number of groupings of tied ranks.
ti = number of tied ranks in ith grouping.

rρ = (n3 – n) – 6ΣD2 – (TX + TY) / 2

n3 – n 2 – TX + TY n3 – n + TXTY

This slide shows an adjustment for tied ranks. However, no adjustment is 
needed for a small number of ties. In some cases the average of the tied 
ranks can be used for the rank order value. 
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19.2.2.3. Spearman Correlation, rρ (Cont’d)19.2.2.3. Spearman Correlation, 19.2.2.3. Spearman Correlation, rrρρ (Cont(Cont’’d)d)

•• Example ProblemExample Problem: The number of years of : The number of years of 
service and the remaining number of service and the remaining number of 
months the officersmonths the officers’’ believe they will be believe they will be 
stationed at their post were converted into stationed at their post were converted into 
rank orders. What is the correlation rank orders. What is the correlation 
between these two rank orders and is this between these two rank orders and is this 
correlation significant (p < 0.05)?correlation significant (p < 0.05)?

(Click in this red rectangle to see SAS calculations for this example.)

This is an example problem for using a Spearman correlation to evaluate the 
linear correlation between two rank orders when years of Army service and 
months remaining at current post for Army officers are converted to rank 
orders.
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19.2.2.3. Spearman Correlation, rρ (Cont’d)19.2.2.3. Spearman Correlation, 19.2.2.3. Spearman Correlation, rrρρ (Cont(Cont’’d)d)

•• Problem DataProblem Data
Years of 

Service (X)
Remaining 
Months (Y) X Rank Y Rank Difference Difference 2

8

4

5

1

2

3

13

16

7

6

14

15

10

9

11

12

49

4

4

9

9

9

36

64

4

16

9

9

9

25

16

16

7

2

2

- 3

- 3

- 3

6

8

- 2

- 4

3

3

- 3

- 5

- 4

- 4

8

4

5

1

2

3

13

16

7

6

14

15

10

9

11

12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the rank orders and difference scores of years of service 
(X) and months remaining on current duty station (Y) of the 16 soldiers used 
in the Spearman correlation example problem. No tied ranks appear in this 
example problem.
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19.2.2.3. Spearman Correlation, rρ (Cont’d)19.2.2.3. Spearman Correlation, 19.2.2.3. Spearman Correlation, rrρρ (Cont(Cont’’d)d)

•• CalculationCalculation

•• Significance TestSignificance Test

rρ = 1 – 6 (288)
16 (162–1)= 0.5765

tObserved= 0.5765 16 – 2
1 – 0.57652

= 19.06

tTabled = (16-2) = 14 df = 2.145

Reject HO: tObserved > tTabled

(Click in this red rectangle to see SAS calculations for this example.)

The Spearman correlation shown on the top portion of this slide is 0.5765 for 
the example data presented on the previous slide as calculated by the 
formula for untied ranks. The 0.5765 correlation is significant at the 0.05 
level, as shown on the bottom portion of this slide. Consequently, there is a 
positive linear relationship between the rank order of years of service and 
months remaining in current duty station.



Human Factors Experimental Design and Analysis Reference

647

19.2.2.4. Partial Correlation, r(1.3)(2.3)19.2.2.4. Partial Correlation, r19.2.2.4. Partial Correlation, r(1.3)(2.3)(1.3)(2.3)

•• IntroductionIntroduction
–– Correlation Affected by Third VariableCorrelation Affected by Third Variable
–– Removes Variance of Third Variable from BothRemoves Variance of Third Variable from Both
–– Example: Height (XExample: Height (X11) and Weight (X) and Weight (X22) are ) are 

correlated, but both are correlated with Age (Xcorrelated, but both are correlated with Age (X33).).
•• DefinitionDefinition:: rr(1.3)(2.3)(1.3)(2.3) = Correlation between X= Correlation between X11

and Xand X22 with Xwith X33 held constantheld constant
•• FormulaFormula

r(1.3)(2.3) = r12 – (r13)(r23)
(1 – r13

2 )(1 – r23
2 )

The correlation between two other variables can be affected by the 
correlation of each of these variables with a third variable. A partial 
correlation removes the covariance of the third variable from the correlation 
of the first two variables. For example, height (1) and weight (2) are 
correlated, but they are also correlated with age (3). The correlation between 
height and weight when the effect of age is removed is designated as the 
partial correlation, r(1.3)(2.3). The general formula for a partial correlation is 
shown at the bottom of the slide. Note that three correlations are used in 
calculating the partial correlation coefficient.
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19.2.2.4. Partial Correlation, r(1.3)(2.3) (Cont'd)19.2.2.4. Partial Correlation, r19.2.2.4. Partial Correlation, r(1.3)(2.3)(1.3)(2.3) (Cont'd)(Cont'd)

•• Test of SignificanceTest of Significance
–– Degrees of Freedom: (nDegrees of Freedom: (n--3) not (n3) not (n--2)2)

•• TT--TestTest
ttTabledTabled = (n= (n--3) 3) dfdf
ttObservedObserved

•• Test FormatTest Format
HH00: : ρρ = 0= 0
HHii: : ρρ ≠≠ 00
αα:: 0.050.05
D.R.: Reject HD.R.: Reject H00 if if ttObservedObserved > > ttTabledTabled

== rr
12.3(1.3)(2.3)

nn –– 33

11 –– rr
12.3(1.3)(2.3)

22

A t-test can be used to test the significance of partial correlations. The tabled 
value of the t-statistic is based on n-3 degrees of freedom because three 
correlations are considered in a partial correlation as shown in the formula 
on the previous slide. The observed value of the t-statistic is given in the 
middle portion of the slide, and the standard format for the t-test is shown in 
the bottom portion of the slide.
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Example ProblemExample Problem: Is there a significant (p < 0.05) correlation between : Is there a significant (p < 0.05) correlation between 
soldier height (Xsoldier height (X11) and weight (X) and weight (X22) when age (X) when age (X33) is held constant?) is held constant?

Height Weight Age
68 190 22
62 133 19
71 132 18
76 211 22
72 200 26
67 154 19
63 125 22
75 158 25
78 179 19
65 139 18
70 188 25
69 191 18
70 155 23
69 140 23
64 120 20
70 188 21

19.2.2.4. Partial Correlation, r(1.3)(2.3) (Cont'd)19.2.2.4. Partial Correlation, r19.2.2.4. Partial Correlation, r(1.3)(2.3)(1.3)(2.3) (Cont'd)(Cont'd)

(Click in this red rectangle to see SAS calculations for this example.)

Hypothetical Army anthropometric data on height, weight, and age of 16 
soldiers are presented on this slide to demonstrate an example calculation of 
a partial correlation between height (1) and weight (2) where the correlation 
effect of age (3) is removed.
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19.2.2.4. Partial Correlation, r(1.3)(2.3) (Cont'd)19.2.2.4. Partial Correlation, r19.2.2.4. Partial Correlation, r(1.3)(2.3)(1.3)(2.3) (Cont'd)(Cont'd)

•• Partial Correlation CalculationPartial Correlation Calculation

rr1212 = 0.63= 0.63
rr1313 = 0.23= 0.23
rr2323 = 0.35= 0.35

•• Test of SignificanceTest of Significance

TTabled = (n - 3 df) = 13 df = 2.160

TObserved = 0.59√13 / (1 – 0.592) = 2.635

TObserved > TTabled : Reject HO

r(1.3)(2.3) =
0.63 - (0.23) (0.35)

√ (1 - 0.232) - (1 - 0.352)
= 0.59

(Click in this red rectangle to see SAS calculations for this example.)

The calculations of the partial correlation are shown on the top of this page 
resulting in a partial correlation of 0.59 between soldier height and weight 
when the effect of age is removed. At the bottom of the slide, the results of 
the t-test show that this partial correlation is significant (p < 0.05).
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19.2.2.4. Partial Correlation, r(1.3)(2.3) (Cont'd)19.2.2.4. Partial Correlation, r19.2.2.4. Partial Correlation, r(1.3)(2.3)(1.3)(2.3) (Cont'd)(Cont'd)

•• Usual Effect: rUsual Effect: r(1.3)(2.3)(1.3)(2.3) < r< r1212
–– ExampleExample

rr1212 = 0.63, where r= 0.63, where r1313 = 0.23 and r= 0.23 and r2323 = 0.35= 0.35

•• Suppressor Variable: rSuppressor Variable: r(1.3)(2.3)(1.3)(2.3) > r> r1212
–– XX33 Has Zero Correlation with Either XHas Zero Correlation with Either X1 1 or Xor X22

–– ExampleExample
rr1212 = 0.63, where r= 0.63, where r1313 = 0.23 and r= 0.23 and r2323 = 0.00= 0.00

r(1.3)(2.3)

= .63 – (.23)(.35)
(1 – .05)(1 – .12)

= .54
.91 = 0.59

= .63 – (.23)(.00)
(1 – .05)(1 – .00)

= .63
.97 = 0.65

r(1.3)(2.3)

(Click in this red rectangle to see SAS calculations for this example.)

The usual result is that a partial correlation between two variables is less 
than the simple correlation between two variables when the third effect is not 
considered. In this example problem, the partial correlation of height and 
weight of 0.59 is less than the simple correlation between height and weight 
of 0.63.

If one of the two variables in the partial correlation has a zero correlation with 
the third variable, the third variable is called a suppressor variable. For 
example, age becomes a suppressor variable when the simple correlation 
between r23 is 0 as shown on the bottom portion of this slide. In this case, 
the partial correlation (0.65) is now greater than the simple correlation 
coefficient (0.63).
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•• IntroductionIntroduction
–– Correlation Affected By Third VariableCorrelation Affected By Third Variable
–– Removes Variance of Third Variable From Only Removes Variance of Third Variable From Only 

OneOne
–– Used in Conditional Test of Significance in Used in Conditional Test of Significance in 

Multiple Regression when Predictors are Multiple Regression when Predictors are 
CorrelatedCorrelated

•• DefinitionDefinition:: rr1(2.3)1(2.3) =  Correlation between X=  Correlation between X11
and Xand X22 after the variance that Xafter the variance that X33 has in has in 
common with Xcommon with X22 is removed from Xis removed from X22

•• FormulaFormula

19.2.2.5. Semipartial Correlation, r1(2.3)19.2.2.5. 19.2.2.5. SemipartialSemipartial Correlation, rCorrelation, r1(2.3)1(2.3)

r1(2.3) = r12 – (r13)(r23)
(1 – r23

2 )

A semipartial correlation is the linear relationship between variables when 
the relationship between a third variable is removed from only one of the two 
variables being correlated. In other words, it is the correlation between two 
variables where the unique contribution of the second variable is evaluated 
given a third variable is present. The computational formula is shown on this 
slide. 

Semipartial correlations are used in multiple regression problems where the
first variable is predicted by the second and third variables. Semipartial
regressions can be used to test significance of the unique contribution of 
each predictor in multiple linear regression when the predictors are 
correlated as discussed in Topic 22.
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19.2.2.5. Semipartial Correlation, r1(2.3) (Cont’d)19.2.2.5. 19.2.2.5. SemipartialSemipartial Correlation, rCorrelation, r1(2.3)1(2.3) (Cont(Cont’’d)d)

•• Example ProblemExample Problem: Soldier Height (X: Soldier Height (X11) is ) is 
predicted by both Weight (Xpredicted by both Weight (X22) and Age (X) and Age (X33). ). 
What is the unique contribution of Weight What is the unique contribution of Weight 
given Age is included in the data analyzed given Age is included in the data analyzed 
on the 16 soldiers?on the 16 soldiers?

r1(2.3) = r12 – (r13)(r23)
(1 – r23

2

r1(2.3) = 0.63 – (0.23) (0.35)
(1 – 0.352)

= 0.56= .54
.94

)

(Click in this red rectangle to see SAS calculations for this example.)

This slide provides an example of a semipartial correlation using the 
previous anthropometric data of height, weight, and age of 16 soldiers. 
Specifically, the correlation between height and weight is 0.63 when age is 
not considered in the prediction of height. But, the correlation between height 
and the unique contribution of weight given age is also included in predicting 
height is only 0.56. Consequently, some of the correlation between height 
and weight is due to the covariance of age with height.
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19.3. Simple Linear Regression19.3. Simple Linear Regression19.3. Simple Linear Regression

•• DefinitionDefinition:: Regression is the method by which Regression is the method by which 
a value of one variable, Y, can be predicted by a value of one variable, Y, can be predicted by 
knowing the value of another variable, X.knowing the value of another variable, X.
–– Assumes a Linear RelationshipAssumes a Linear Relationship
–– Correlation Exists Between X and YCorrelation Exists Between X and Y

•• General Linear ModelGeneral Linear Model

X

Y

b0

∆X

∆Y
Y = b0 + b1X

b0 = Y Intercept
where,

b1 = Slope = ∆Y /∆X

Regression is used to predict one variable (Y) as a function of another 
variable (X). Simple regression assumes a linear relationship between the 
two correlated variables. If the two variables were not correlated at all, the 
linear model would be horizontal. If the two variables were perfectly 
correlated, then all the XY data points would fall directly on the line 
describing the linear relationship. In reality, deviation from the predicted 
linear model can be used to assess the goodness of fit of the simple linear 
regression model.

As shown on this slide the simple linear regression of Y as a function of X 
can be written as Y = b0 + b1X with two parameters b0 and b1 where b0 is the 
Y intercept and b1 is the slope of the line. Sample data of Y and X values are 
collected to solve the two regression weights in the simple linear regression 
model.
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19.3. Simple Linear Regression (Cont’d)19.3. Simple Linear Regression (Cont19.3. Simple Linear Regression (Cont’’d)d)

•• 19.3.1. Line of Best Fit19.3.1. Line of Best Fit
•• 19.3.2. Goodness of Fit19.3.2. Goodness of Fit

Two general categories of calculations are conducted in simple regression. 
First, the line of best fit is determined based on the sample data. This 
involves solving the parameters b0 and b1 in the linear model for simple 
regression. Second, the goodness of fit of the simple linear regression is 
evaluated in order to assess the adequacy of the linear model. Techniques 
for conducting each of these two categories of computation are described 
separately in this subsection.
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•• 19.3.1.1. Method of Least Squares19.3.1.1. Method of Least Squares
•• 19.3.1.2. Calculation Example19.3.1.2. Calculation Example
•• 19.3.1.3. Standardized Regression19.3.1.3. Standardized Regression

19.3.1. Line of Best Fit19.3.1. Line of Best Fit19.3.1. Line of Best Fit

Calculating the line of best fit in simple linear regression uses the least 
squares criterion for solving the two parameters b0 and b1 in the regression 
line. Both raw score and standardized, Z, score solutions are discussed.
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19.3.1.1. Method of Least Squares19.3.1.1. Method of Least Squares19.3.1.1. Method of Least Squares

•• Observed vs. Predicted ScoresObserved vs. Predicted Scores
Y = Observed ScoreY = Observed Score
Y' = Predicted ScoreY' = Predicted Score

where, Y' =  bwhere, Y' =  b00 +  b+  b11XX
•• Error in PredictionError in Prediction

Y Y -- Y' = Y Y' = Y -- (b(b00 +  b+  b11X)X)
•• Least Squares CriterionLeast Squares Criterion

–– Determine Value of Determine Value of ““bb00" and "b" and "b11" such that the " such that the 
sum of sum of the squared difference between (Y the squared difference between (Y –– Y') Y') 
is a minimum.is a minimum.

Y – Y' 2Σ = Y – b0 + b1X
2 = minimumΣ

In simple regression the predicted score, Y’, is determined by the linear 
equation, Y’ = b0 + b1X. The difference between the observed score, Y, and 
the predicted score, Y’, is a measure of the error in regression. The least 
squares criterion keeps the sum of the squared differences between Y-Y’ at 
a minimum in solving the two parameters b0 and b1 in simple linear 
regression.
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19.3.1.1. Method of Least Squares (Cont'd)19.3.1.1. Method of Least Squares (Cont'd)19.3.1.1. Method of Least Squares (Cont'd)

•• Least Squares SolutionLeast Squares Solution:: Take partial derivatives Take partial derivatives 
with respect to with respect to ““bb00" and "b" and "b11"; set the derivatives "; set the derivatives 
equal to zero; and solve for equal to zero; and solve for ““bb00" and "b" and "b11".".

•• Simultaneous EquationsSimultaneous Equations

•• Value of Value of ““bb00""
•• Value of "bValue of "b11""

b0 = Y – b1X

Y = nb0+ b1 XΣΣ
XY = b0 X + b1 X2ΣΣΣ

b1 =
XYΣ – XΣ YΣ

n

X2Σ – XΣ 2

n

The least square criterion requires that partial derivatives of the regression 
line be calculated with respect to b0 and b1 resulting in the two simultaneous 
equations shown in parenthesis in this slide. Solving these two simultaneous 
equations for b0 and b1 provides the least squares criterion solution for the 
two parameters in simple linear regression. The solution of these two 
simultaneous equations provides the formulae for computing the values for 
b0 and b1 are shown on the bottom half of this slide.
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19.3.1.2. Calculation Example19.3.1.2. Calculation Example19.3.1.2. Calculation Example

•• Example ProblemExample Problem: The Army is currently : The Army is currently 
recording the height (X) and weight (Y) of recording the height (X) and weight (Y) of 
new recruits that are enlisting. To what new recruits that are enlisting. To what 
extent can weight of Army recruits be extent can weight of Army recruits be 
predicted by their height and is this predicted by their height and is this 
prediction significant (p < 0.01)?prediction significant (p < 0.01)?

(Click in this red rectangle to see SAS calculations for this example.)

This slide states a simple linear regression problem in which the Army wants 
to predict soldier weight (Y) as a function of soldier height (X) and determine 
if this prediction is statistically significant at the 0.01 level of significance.  
The Slater and Williges (2006) appendix provides the SAS program solution 
to this simple regression example.
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19.3.1.2. Calculation Example (Cont’d)19.3.1.2. Calculation Example (Cont19.3.1.2. Calculation Example (Cont’’d)d)

Example Data
X Y X 2 Y2 XY
68 190 4624 36100 12920
62 133 3844 17689 8246
71 132 5041 17424 9372
76 211 5776 44521 16036
72 200 5184 40000 14400
67 154 4489 23716 10318
63 125 3969 15625 7875
75 158 5625 24964 11850
78 179 6084 32041 13962

70 188 4900 35344 13160
Σ X = 1109 Σ Y = 2603 ΣX2 = 77179 ΣY 2 = 436595 Σ XY= 181703

b0 = 162.69 – (4.12)(69.32) = – 122.76 b1 =
181703 –(1109) (2603)

16

77179 – (1109)2
16

= 4.12

Y ' = –122.76 + 4.12 X

65 139 4225 19321 9035
70 188 4900 35344 13160
69 191 4761 36481 13179
70 155 4900 24025 10850
69 140 4761 19600 9660
64 120 4096 14400 7680

rXY = 0.635

(Click in this red rectangle to see SAS calculations for this example.)

This slide presents the hypothetical data from 16 soldiers of their height (X) 
in inches and their weight (Y) in pounds. The resulting simple linear 
regression for predicting weight, Y’, as a function of height (X) is shown in 
the box at the bottom of this slide. The values for b0 and b1 were calculated 
using the formulae for a least squares solution presented in a previous slide. 
These calculations yield an intercept of -122.76 and a slope of 4.12 for the 
simple linear regression line. The correlation between the 16 X and Y scores 
in this sample is 0.635.
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•• Based on Standardized Scores, ZBased on Standardized Scores, Z

•• No Intercept in Standardized RegressionNo Intercept in Standardized Regression
–– Intercept Intercept ““bb00" = 0, because mean of X and Y = 0 in " = 0, because mean of X and Y = 0 in 

standardized scoresstandardized scores
•• Regression EquationRegression Equation

•• Relationship Between "bRelationship Between "b11" and "b*"" and "b*"

19.3.1.3. Standardized Regression19.3.1.3. Standardized Regression19.3.1.3. Standardized Regression

ZX = X – X
sX

and ZY = Y – Y
sY

b1 = sY
sX

b*

Y'Z = b* XZ

where, b* = rXY

An alternative to the raw score regression line is a standardized regression 
stated in terms of Z scores. If Z scores are used, the intercept is forced to 
zero and the b0 parameter drops out of the regression equation. As shown 
on this slide the value for b1 is stated as b* in standardized regression and is 
equal to the correlation between X and Y. For the example problem, the 
standardized regression equation is simply Y’ = 0.636XZ based on the 
correlation provided on the previous slide.
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19.3.2. Goodness of Fit19.3.2. Goodness of Fit19.3.2. Goodness of Fit

•• 19.3.2.1. Partitioning Variation19.3.2.1. Partitioning Variation
•• 19.3.2.2. Tests of Significance19.3.2.2. Tests of Significance
•• 19.3.2.3. Coefficient of Determination19.3.2.3. Coefficient of Determination

Goodness of fit of the regression equation is based on the partitioning of 
variation between the observed value of Y and the predicted value Y’. Both a 
test of significance and a coefficient of determination can be used to assess 
the goodness of fit of a regression equation as discussed in this subsection.
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19.3.2.1. Partitioning Variation19.3.2.1. Partitioning Variation19.3.2.1. Partitioning Variation

X

Y

•

•

Y'
Y

•• Additive Components of Y Score Deviation,Additive Components of Y Score Deviation,
–– Deviation Due to Regression,Deviation Due to Regression,
–– Deviation Due to Error of Estimation,Deviation Due to Error of Estimation,

•• Variation of Y ScoresVariation of Y Scores

Y – Y

Y – Y'

Y' – Y

Y – Y 2Σ = Y' – Y 2Σ + Y – Y' 2Σ

The deviation of a score Y from its mean can be divided into two additive 
parts when considering the predicted Y’ value in regression. First, there is 
the deviation due to regression which is the difference between Y’ and the 
mean. And, second, there is the deviation due to error in estimation which is 
the difference between Y and Y’. As shown on the bottom of this slide, the 
sum of squares (SS) of deviations can also be divided into these two additive 
parts. Namely, total SS can be divided into Regression SS and Error SS 
which can be used in an ANOVA to test the goodness of fit of regression.
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19.3.2.2. Tests of Significance19.3.2.2. Tests of Significance19.3.2.2. Tests of Significance

•• ANOVA on Simple Linear Regression ModelANOVA on Simple Linear Regression Model
–– Tests only bTests only b11 when Corrected for Meanwhen Corrected for Mean
–– Test of Linear Association Between X and YTest of Linear Association Between X and Y
–– FF(1, n(1, n--2)2) = = MSMSRegressionRegression / / MSMSErrorError = t= trr

22

–– MsMsRegessionRegession = Regression Model Variance= Regression Model Variance
–– MSMSErrorError = Deviation from Model Variance (s= Deviation from Model Variance (s22))

•• Format for Simple Regression ANOVAFormat for Simple Regression ANOVA
–– HH00: : ββ = 0= 0
–– HHii: : ββ ≠≠ 00
–– αα: 0.05, 0.01, or 0.001: 0.05, 0.01, or 0.001
–– D.R.: I reject HD.R.: I reject H00 if if FFObservedObserved > > FFTabledTabled

An ANOVA on regression tests the goodness of fit of the linear association 
between X and Y. In simple regression only the slope of the regression line, 
b1, is tested when the data are corrected for the sample mean in the 
ANOVA. The resulting F-ratio is simply MSRegression divided by MSError with 1 
and n-2 degrees of freedom. Since the F-test on b1 has only 1 degree of 
freedom, it is equivalent to a t2 test of regression. The standard format for 
testing the significance of regression is given in the bottom part of this slide.
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19.3.2.2. Tests of Significance (Cont'd)19.3.2.2. Tests of Significance (Cont'd)19.3.2.2. Tests of Significance (Cont'd)

ANOVA Summary Table (Corrected for Mean)ANOVA Summary Table (Corrected for Mean)

Source df Sum of Squares MS F

Regression (R) 1 MS R MS R/MS E

Error (E) n-2 MS E

Total n-1

Where Raw Score Equivalents, xyΣ = XYΣ –
XΣ YΣ
n

x 2Σ = X 2Σ –
XΣ 2

n

Y' – Y 2Σ = b1 xyΣ

Y – Y' 2Σ = y2Σ –b1 xyΣ

Y – Y 2Σ = y2Σ

y 2Σ = Y 2Σ –
YΣ 2

n

This slide shows the ANOVA summary table for a test of significance of 
simple regression. The SS of the deviation components of the raw scores 
are also listed in terms of b1 and sums of deviation scores that are defined at 
the bottom of the ANOVA Summary Table as described by Myers (1990, pp 
22-29).
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19.3.2.2. Tests of Significance (Cont'd)19.3.2.2. Tests of Significance (Cont'd)19.3.2.2. Tests of Significance (Cont'd)

ANOVA Summary Table (Corrected for Mean)ANOVA Summary Table (Corrected for Mean)

Source df Sum of Squares MS F

Regression (R) 1 5281.85 9.43*

Error (E) 14 559.83

Total 15

5281.85

7837.59

13119.44

*p < 0.01

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the complete ANOVA Summary Table that is calculated by 
the formulae shown on the previous slide for the example simple regression 
problem data. Regression is statistically significant (p < 0.01) which means 
that the regression line predicting soldier weight from soldier height has a 
significant linear relationship.
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19.3.2.2. Tests of Significance (Cont’d)19.3.2.2. Tests of Significance (Cont19.3.2.2. Tests of Significance (Cont’’d)d)

•• tt--Test on Individual Beta WeightsTest on Individual Beta Weights
–– tt--Test on bTest on bii, where                      , where                      
–– SSbibi = Standard Error of a Particular Beta Weight, b= Standard Error of a Particular Beta Weight, bii

–– tt--Test on bTest on b11 = t= t--Test on Test on rrXYXY in Simple Regressionin Simple Regression
•• Format for tFormat for t--Test using Test using rrXYXY in Simple Regressionin Simple Regression

–– HH00: : ββ11 = 0= 0
–– HHii: : ββ11 ≠≠ 00
–– αα: 0.05, 0.01, or 0.001: 0.05, 0.01, or 0.001
–– D.R.: I reject HD.R.: I reject H00 if if ttObservedObserved > > ttTabledTabled

Tabled = (n-2) df

tObserved

t

= r n – 2
1 – r2 = .635 16 – 2

1 – (.635)
2

= 3.072

= 2.145 (14 df)

tObserved = bi
sbi

(Click in this red rectangle to see SAS calculations for this example.)

A t-test could be used as an alternative to the Regression ANOVA since the 
test of a beta weight has only 1 degree of freedom. The tObserved value is 
simply the beta weight divided by its standard error. Alternatively, Hays 
(1994, p. 648) demonstrates that the test on b1 is equivalent to testing the 
significance of the correlation between X and Y in simple regression.

The format for t-test on b1 using rXY in simple regression is shown on the 
bottom portion of this slide. Note that the t-test on the data from the example 
problem is significant (p < 0.01) just as shown in the ANOVA of regression 
on the previous slide.
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19.3.2.2. Tests of Significance (Cont’d)19.3.2.2. Tests of Significance (Cont19.3.2.2. Tests of Significance (Cont’’d)d)

•• ttObservedObserved for bfor b00 Based on Standard Error EstimateBased on Standard Error Estimate
–– Estimate of Error Variance: sEstimate of Error Variance: sb0b0

22 = = ∑∑yy22(1/n + X(1/n + X22//∑∑xx22))
–– ExampleExample: : bb00 = = --122.76122.76

–– ssb0b0
22 = 8670.89 and s= 8670.89 and sb0b0 = 93.12= 93.12

–– ttObservedObserved = b= b00 / s/ sb0b0 = = --1.32 (p>0.01)1.32 (p>0.01)
•• ttObservedObserved for bfor b11 Based on Standard Error EstimateBased on Standard Error Estimate

–– Estimate of Error Variance: sEstimate of Error Variance: sb1b1
22 = (= (∑∑yy22) / () / (∑∑xx22))

–– ExampleExample: b: b11 = 4.12= 4.12
–– ssb1b1

22 = = 1.801.80 and and ssb1b1 = 1.34= 1.34
–– ttObservedObserved = b= b11 / s/ sb1b1 = 3.07 (p < 0.01)= 3.07 (p < 0.01)

–– ttObservedObserved for for rrXYXY = = ttObservedObserved for bfor b11 = 3.07= 3.07
–– FFRegressionRegression = (t= (tObservedObserved))22 = 9.43= 9.43

(Click in this red rectangle to see SAS calculations for this example.)

Myers (1990, pp 14-19) provides the formulae for the error variances of b0
and b1 shown on this slide. The standard error of these variances can be 
used in a t-test on the significance of both the intercept and the slope of 
simple regression, respectively. Both the intercept and slope are significant 
(p < 0.01) in the example problem.

Note that the bottom portion of this slide shows that the tObserved on b1 given 
on this slide (i.e., 3.07) is the same value as the t-test on the rXY shown on 
the previous slide. In addition, the square of this tObserved value is the same 
as the F-ratio in the Regression ANOVA Summary Table (i.e., 9.43).
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19.3.2.3. Coefficient of Determination19.3.2.3. Coefficient of Determination19.3.2.3. Coefficient of Determination

•• Multiple Correlation Coefficient: R = Multiple Correlation Coefficient: R = rrYYYY’’
•• Coefficient of Determination = RCoefficient of Determination = R22

–– DefinitionDefinition: Percent of total variation predicted by : Percent of total variation predicted by 
regression model.regression model.

•• Calculation of RCalculation of R22

–– Square of Multiple Correlation Coefficient, RSquare of Multiple Correlation Coefficient, R
RR22 = (r= (rYYYY’’))22

rrYYYY’’ = 0.6345= 0.6345
RR22 = (0.6345)= (0.6345)22 = 0.4026= 0.4026

–– ANOVA on RegressionANOVA on Regression
RR22 = = SSSSRegressionRegression / / SSSSTotalTotal
RR22 = 5281.85/13119.44 = 0.4026= 5281.85/13119.44 = 0.4026

–– ExampleExample: 40.26% of Total Variation Predicted by : 40.26% of Total Variation Predicted by 
Regression Model Regression Model 

(Click in this red rectangle to see SAS calculations for this example.)

Another way to determine the goodness of fit of a regression equation is to 
determine the percent of total variation predicted by the regression model. 
The multiple correlation coefficient, R, is the correlation between Y and Y’, 
the predicted value of Y (i.e., rYY’). The square of the multiple correlation 
coefficient is called the Coefficient of Determination (R2). Myers (1990, p. 37) 
defines R2 as the SSRegression/SSTotal or the percent of variation predicted by 
the regression model.

For the example problem data, rYY’ = 0.6345. The square of 0.6345 is 0.4026 
which is equal to R2 or SSRegression/SSTotal. Consequently, the simple 
regression of the sample problem accounts for 40.26% of the total variation 
in the regression model.
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19.4. ANCOVA Computations19.4. ANCOVA Computations19.4. ANCOVA Computations

•• ANCOVA StrategyANCOVA Strategy
–– Measure Subjects on a CovariateMeasure Subjects on a Covariate
–– Randomly Assign Subjects to ConditionsRandomly Assign Subjects to Conditions
–– Adjust Estimate of Error VarianceAdjust Estimate of Error Variance
–– Adjust Estimate of Treatment EffectsAdjust Estimate of Treatment Effects

•• Relationship to Simple Linear RegressionRelationship to Simple Linear Regression
–– Covariate (X) Regressed on Dependent Variable Covariate (X) Regressed on Dependent Variable 

(Y)(Y)
–– Error Variance Adjusted by Degree of Error Variance Adjusted by Degree of 

RegressionRegression
–– Treatments Evaluated as Residuals of Treatments Evaluated as Residuals of 

RegressionRegression

This slide summarizes the overall strategy for using ANCOVA as a means of 
removing the effect of a covariate from the treatment effects in a between-
subjects design. This strategy results in an adjusted estimate of error 
variance used to test adjusted treatment means. Essentially, the covariate 
(X) or measure of subject differences that is correlated with the dependent 
variable (Y) is evaluated through simple linear regression, and the variance 
due to regression is removed from the ANCOVA. The subsequent analyses 
of treatment effects are evaluated as residuals of regression using an error 
term adjusted for regression.



Human Factors Experimental Design and Analysis Reference

671

19.4. ANCOVA Computations (Cont’d)19.4. ANCOVA Computations (Cont19.4. ANCOVA Computations (Cont’’d)d)

•• Covariate, XCovariate, X
–– Characteristic of Subjects Correlated with Characteristic of Subjects Correlated with 

Dependent VariableDependent Variable
–– Measure of Individual DifferencesMeasure of Individual Differences
–– Usually a Classification Variable (e.g., Age, Usually a Classification Variable (e.g., Age, 

Experience, Aptitude, Attitude, etc.)Experience, Aptitude, Attitude, etc.)
•• Assumptions of ANCOVAAssumptions of ANCOVA

–– Random Distribution of Level of Covariate Across Random Distribution of Level of Covariate Across 
TreatmentsTreatments

–– Linear Regression Between Covariate and Linear Regression Between Covariate and 
Dependent VariableDependent Variable

–– Homogeneous Group Regression CoefficientsHomogeneous Group Regression Coefficients

Choice of the appropriate covariate (X) is critical to ANCOVA, and it must 
represent a characteristic of subjects that is significantly correlated with the 
dependent variable in order to remove a significant source of variance from 
the error term of the between-subjects design. A quantitative classification 
variable such as age, aptitude, or experience level of the subject is usually 
chosen as a covariate when it is known to be correlated with the dependent 
variable.

The three primary assumptions implicitly made in an ANCOVA are listed at 
the bottom of this slide. First, the distribution of the covariate effects across 
treatments is assumed to be random. Second, the significance of the simple 
linear regression between the dependent variable (Y) and the covariate (X) is 
assumed to be significant. And, third, the regression coefficients of each 
treatment level are assumed to be homogeneous across treatment levels.
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•• 19.4.1. Basic ANCOVA Design19.4.1. Basic ANCOVA Design
•• 19.4.2. Advanced ANCOVA19.4.2. Advanced ANCOVA
•• 19.4.3. Interpreting ANCOVA19.4.3. Interpreting ANCOVA

19.4. ANCOVA Computations (Cont’d)19.4. ANCOVA Computations (Cont19.4. ANCOVA Computations (Cont’’d)d)

Calculations of a basic ANCOVA design are described in this final 
subsection and extensions to advanced ANCOVA are discussed. In addition, 
a caution on interpreting ANCOVA results in terms of adjusted means is 
noted.
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19.4.1. Basic ANCOVA Design19.4.1. Basic ANCOVA Design19.4.1. Basic ANCOVA Design

•• Example ProblemExample Problem: An experiment was conducted : An experiment was conducted 
to study the effects of three different weight to study the effects of three different weight 
training methods used during basic training. One training methods used during basic training. One 
group of eight soldiers used basic weight training group of eight soldiers used basic weight training 
(A(A11), another group of eight soldiers received ), another group of eight soldiers received 
weight training and aerobic exercise (Aweight training and aerobic exercise (A22), and a ), and a 
third group of eight soldiers received weight third group of eight soldiers received weight 
training and diet control (Atraining and diet control (A33). The maximum lifting ). The maximum lifting 
weight (MLW) of the 24 soldiers was measured weight (MLW) of the 24 soldiers was measured 
after two months of training on one of the three after two months of training on one of the three 
methods. A covariate, the weight of each subject methods. A covariate, the weight of each subject 
was measured before measurement of MLW. Were was measured before measurement of MLW. Were 
the three different weight training methods the three different weight training methods 
significantly different (p < 0.05) in terms of MLW?significantly different (p < 0.05) in terms of MLW?

(Click in this red rectangle to see SAS calculations for this example.)

This slide describes a simple one-way, between-subjects design in which the 
effects of three different weight training procedures were evaluated on eight 
different soldiers in each training condition. The weight of each of the 24 
soldiers was used as the covariate in the experiment. The appendix by 
Slater and Williges (2006) provides the SAS solutions for this ANCOVA 
example.
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19.4.1. Basic ANCOVA Design (Cont’d)19.4.1. Basic ANCOVA Design (Cont19.4.1. Basic ANCOVA Design (Cont’’d)d)

OneOne--Way Completely Randomized DesignWay Completely Randomized Design
(X = Covariate and Y = Dependent Variable)(X = Covariate and Y = Dependent Variable)

a1 a2 a3

X Y X Y X Y
183 240 200 360 182 275
168 264 207 295 194 307
220 300 172 260 179 240
200 342 188 305 213 333
192 249 201 340 194 248
178 277 177 285 185 232
185 285 171 290 183 267
190 263 167 255 193 289

Means 189.50 277.50 185.38 298.75 190.38 273.88

ΣX or ΣY 1516 2220 1483 2390 1523 2191
ΣX2 or ΣY2 288986 623384 276637 723200 290769 608501
Σ(X)(Y) 422481 446085 419167

TX = 1516 + 1483 + 1523 = 4522
TY = 2220 + 2390 + 2191 = 6801

(Click in this red rectangle to see SAS calculations for this example.)

This slide provides a hypothetical data set for the simple, one-way, 
completely randomized design described on the previous slide. The three 
levels of A are the three methods of weight training evaluated in the 
experiment with a sample size (n) equal to 8 resulting in a total of 24 
different subjects in the between-subjects design. The X variable is a 
measure of the covariate, soldier’s weight. The Y values are the maximum 
lifting weight (MLW) dependent measures after two months of training.
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19.4.1. Basic ANCOVA Design (Cont’d)19.4.1. Basic ANCOVA Design (Cont19.4.1. Basic ANCOVA Design (Cont’’d)d)

ANOVA Summary TableANOVA Summary Table

Source df SS MS F

Training Group (A) 2 2889.25 1444.63 1.22

S/A 21 24962.38 1188.68

Total 23 27851.63

(Click in this red rectangle to see SAS calculations for this example.)

This is the standard ANOVA Summary Table for the previous slide of the 
MLW data (Y). Note that the main effect of Training Group (A) is not 
significant (p>.05). The effect of the covariate X (i.e., weight of the soldier) is 
not removed in this analysis and can contribute to the error term in this 
between-subjects design.
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19.4.1. Basic ANCOVA Design (Cont’d)19.4.1. Basic ANCOVA Design (Cont19.4.1. Basic ANCOVA Design (Cont’’d)d)

ANOVA of Simple Linear Regression ANOVA of Simple Linear Regression 
(Y Predicted By X)(Y Predicted By X)

Source df SS MS F

Regression (R) 1 9111.02 9111.02 10.70 **

Error (E) 22 18740.61 851.85

Total 23 27851.63

**p < 0.01

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the result of an ANOVA conducted on the simple linear 
regression predicting the Y dependent variable, MLW, as a function of the X 
covariate, weight of soldier. The regression model is significant (p < 0.01) 
which means that X and Y are correlated and a significant amount of 
covariance can be removed from the one-way, between-subjects design by 
removing the regression effect.
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19.4.1. Basic ANCOVA Design (Cont’d)19.4.1. Basic ANCOVA Design (Cont19.4.1. Basic ANCOVA Design (Cont’’d)d)

•• ANCOVA CalculationsANCOVA Calculations
–– Calculate and Discard SS RegressionCalculate and Discard SS Regression
–– Calculate Adjusted SS from Regression ErrorCalculate Adjusted SS from Regression Error

•• Sum of Squares and Sum of ProductsSum of Squares and Sum of Products

Source SS Covariate (X) SS Depend. Var. (Y) SP of (X)(Y)

A SSA(X) = 114.08 SSA(Y) = 2889.25 SPA(XY) = - 573.88

S/A SSS/A(X) = 4257.75 SSS/A(Y) = 24962.38 SPS/A(XY) = 6885.13

Total (T) SST(X) = 4371.83 SST(Y) = 27851.63 SPT(XY) = 6311.25

(Click in this red rectangle to see SAS calculations for this example.)

The ANCOVA calculations disregard, or remove, the SS due to regression 
and restrict the analysis to the SS in the deviation from regression (i.e., Error 
shown on the previous slide). This regression error is used to calculate an 
adjusted treatment effect and error term in the one-way ANOVA.

These adjustments are made by considering the SS of the X covariate, the Y 
dependent variable, and the XY sum of products (SP) of X and Y deviations 
from their respective means as shown on the bottom portion of this slide. 
The SS of X and Y must be positive by definition but the SP value can be 
negative as shown on this slide because it is a cross product not a squared 
value. Note the SS for Y is exactly the same as the values shown in the 
ANOVA Summary Table on Y in a previous slide.
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19.4.1. Basic ANCOVA Design (Cont’d)19.4.1. Basic ANCOVA Design (Cont19.4.1. Basic ANCOVA Design (Cont’’d)d)

SSS/A(adj.) = SSS/A(Y)

(SPS/A(XY))
2

SSS/A(X)

SSA(adj.) = SSA(Y) +

SSTotal (adj.) = SST(Y) – = SSRegression Error (E)

•• Adjusted SSAdjusted SSAA [[SSSSA(adjA(adj.).)]]
–– FormulaFormula

•• Adjusted SSAdjusted SSS/AS/A [SS[SSS/S/A(adjA(adj.).)]]
–– FormulaFormula

•• Adjusted Adjusted SSSSTotalTotal [[SSSSTotal(adjTotal(adj.).)]]
–– FormulaFormula

–
(SPT(XY))

2

SST(X)

(SPT(XY))
2

SST(X)

–

(SPS/A(XY))
2

SSS/A(X)

(Click in this red rectangle to see SAS calculations for this example.)

Myers (1979, pp 407-418) shows how the SS values on the previous page 
can be used to adjust SSA and SSS/A in the ANCOVA according to the 
formulae shown on this slide. The total of both of these adjusted SS values 
equals the SSRegression Error in the ANOVA on simple linear regression. 
Consequently, the ANCOVA on adjusted SS is restricted to the regression 
error SS.
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19.4.1. Basic ANCOVA Design (Cont’d)19.4.1. Basic ANCOVA Design (Cont19.4.1. Basic ANCOVA Design (Cont’’d)d)

ANCOVA Summary Table ANCOVA Summary Table 

Source df SS(adj.) MS(adj.) F

Training Group (A) 2 4912.03 2456.02 3.55*

S/A 20 13828.58 691.43

Total 22 18740.61

*p < 0.05

(Click in this red rectangle to see SAS calculations for this example.)

The ANCOVA Summary Table for the soldier weight training example data is 
shown on this slide. Now Factor A (Training Group) is significant (p < 0.05). 
So, adjusting for the covariate X in the ANCOVA provided a more sensitive 
test of Factor A than the ANOVA shown on a previous slide that failed to 
show significance.

Note that the total adjusted SS for Factor A and S/A is the same as the SS 
for Error in the ANOVA simple regression (i.e., 18740.61). Also notice that 
the degrees of freedom for S/A in the ANCOVA on this slide is 20; whereas, 
the degrees of freedom for S/A in the ANOVA on a previous slide is 21. The 
1 df difference in the ANOVA and the ANCOVA is the 1 df removed from the 
error term by the simple regression of the covariate considered in the 
ANCOVA.
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19.4.1. Basic ANCOVA Design (Cont’d)19.4.1. Basic ANCOVA Design (Cont19.4.1. Basic ANCOVA Design (Cont’’d)d)

Complete Breakdown of Sum of SquaresComplete Breakdown of Sum of Squares

Source df SS MS F

Regression (R) 1 9111.02

Error (E) (22) (18740.61)

A 2 4912.03 2456.02 3.55*

S/A 20 13828.58 691.43

Total 23 27851.63

9111.02 10.70 **

851.85

*p < 0.05 and **p < 0.01

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the complete ANCOVA Summary Table that occurs in the 
ANCOVA, showing both the significant (p < 0.01) regression effect and the 
breakdown of regression error used in the ANCOVA to determine the 
significant (p < 0.05) Factor A effect based on adjusted means. Post hoc 
testing is required to isolate the main effect of Factor A. Remember the 
means for Factor A must be interpreted as adjusted for the covariate effect 
not as the original means of Factor A evaluated in the ANOVA.
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•• Adjust Treatment Means for Chance Adjust Treatment Means for Chance 
Differences on Covariate, XDifferences on Covariate, X

•• FormulaFormula

•• ExampleExample

19.4.1. Basic ANCOVA Design (Cont’d)19.4.1. Basic ANCOVA Design (Cont19.4.1. Basic ANCOVA Design (Cont’’d)d)

YA1

' = 277.50 – 1.61(189.50 –188.42) = 275.76
YA2

' = 298.75 – 1.61(185.38 –188.42) = 303.64
YA3

' = 273.88 – 1.61(190.38 –188.42) = 270.72

YAi

' = YAi
– bS/A(XAi

– XT)

where,
YAi

' = the adjusted treatment mean for level ai

YAi
= the unadjusted treatment mean for level ai

XAi
= the group mean on the covariate for level ai

XT = the grand mean on the covariate

bS/A = SPS/A
SSS/A(X)

(Click in this red rectangle to see SAS calculations for this example.)

The top portion of this slide shows the formula for adjusting treatment means 
based on the covariate, X. Examples of using this formula for the three 
adjusted means in the soldier weight training problem are given in the bottom 
portion of this slide.



Human Factors Experimental Design and Analysis Reference

682

19.4.1. Basic ANCOVA Design (Cont’d)19.4.1. Basic ANCOVA Design (Cont19.4.1. Basic ANCOVA Design (Cont’’d)d)

•• Comparisons Among Adjusted MeansComparisons Among Adjusted Means
–– All Post Hoc Comparisons ApplyAll Post Hoc Comparisons Apply
–– Must Adjust Must Adjust MSMSErrorError

•• FormulaFormula

•• ExampleExample

MSError
' = MSS/A(adj.) + MSS/A(adj.)

MSA(X)
SSS/A(X)

where,
MSS/A(adj.) = adjusted error term from ANCOVA
MSA(X) = between–group MS based on the covariate
SSS/A(X) = within–group SS based on the covariate

MSError
' = 691.43 + 691.43 57.04

4257.75 = 700.69

(Click in this red rectangle to see SAS calculations for this example.)

All of the post hoc comparisons techniques described in Topic 11 can be 
used, but the mean square error must be adjusted for the X covariate, too. 
The formulae for this adjustment and its use with the example problem are 
shown on this slide.
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19.4.2. Advanced ANCOVA19.4.2. Advanced ANCOVA19.4.2. Advanced ANCOVA

•• Usually Use Statistical Packages for AnalysisUsually Use Statistical Packages for Analysis
•• BetweenBetween--Subjects FactorsSubjects Factors

–– Extend to Factorial, BetweenExtend to Factorial, Between--Subjects DesignsSubjects Designs
–– BetweenBetween--Subjects Factors in MixedSubjects Factors in Mixed--Factor DesignsFactor Designs

•• Number of CovariatesNumber of Covariates
–– Use of Multiple CovariatesUse of Multiple Covariates
–– Use of Multiple Linear RegressionUse of Multiple Linear Regression

•• Unequal Sample SizeUnequal Sample Size

Statistical analysis packages are usually used to calculate basic ANCOVA 
just as Slater and Williges (2006) demonstrated the use of SAS on the 
weight training example problem. Usually only basic ANCOVA with one 
covariate is used in human factors research, but several between-subjects 
factors or between-subjects factors in mixed-factor designs can be 
considered as long as all treatment means are adjusted for the X covariate. 
It is also possible to extend basic ANCOVA to include more than one 
covariate using multiple linear regression, but adjusting treatment means 
becomes more complex.

Although most human factors experiments have equal sample size to 
maintain statistical robustness, the ANCOVA can also be used in 
experiments using unequal sample sizes, if necessary. But, the 
computations are more complex and need to be weighted by the various 
sample sizes of the various treatment conditions.
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19.4.3. Interpretating ANCOVA19.4.3. 19.4.3. InterpretatingInterpretating ANCOVAANCOVA

•• Comparison of ANOVA to ANCOVAComparison of ANOVA to ANCOVA

•• Covariate MUST Be Considered When Interpreting Covariate MUST Be Considered When Interpreting 
Treatment EffectsTreatment Effects
–– Significance is Based on Adjusted Treatments MeansSignificance is Based on Adjusted Treatments Means

ANOVA ANCOVA
Source df SS F df SSadj. F
A 2 2889.25 1.22 2 4912.03 3.55*
S/A 21 24962.38 20 13828.58
Total 23 27851.63 22 18740.61

Ya1
= 277.50

Ya2
= 298.75

Ya3
= 273.88

Ya1

' = 275.76
Ya2

' = 303.64
Ya3

' = 270.72

A major restriction of the ANCOVA is that significant effects must be 
interpreted in terms of the means adjusted for the X covariate. Both the 
unadjusted means analyzed in the ANOVA and the adjusted means 
analyzed in the ANCOVA for the example soldier weight training problem are 
shown on this slide. The treatment means in the ANCOVA provide a larger 
spread of means when they are adjusted for the covariate as shown on this 
slide. Consequently, the significant differences among treatment means in 
the example problem are significant only when “they are adjusted for with 
different weights of the soldiers”.
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19.5. Summary19.5. Summary19.5. Summary

•• Analytical Control of Individual DifferencesAnalytical Control of Individual Differences
–– BetweenBetween--Subjects DesignSubjects Design
–– Measure Subjects on CovariateMeasure Subjects on Covariate
–– Alternative to Randomized Block DesignAlternative to Randomized Block Design

•• Components of ANCOVAComponents of ANCOVA
–– Linear CorrelationLinear Correlation
–– Simple RegressionSimple Regression

•• ANCOVA ComputationsANCOVA Computations
–– Regression on CovariateRegression on Covariate
–– Analysis of Regression Error or ResidualAnalysis of Regression Error or Residual
–– Adjusted MeansAdjusted Means
–– ExtensionsExtensions

ANCOVA provides an analytical procedure to control for individual 
differences among subjects in between-subjects designs. Subjects are 
measured on a covariate that is used to adjust treatment means rather than 
equally spread the levels of the covariate across treatment levels as done in 
a randomized block design.

To be successful in making the tests of significance more sensitive, the 
covariate chosen must be significantly correlated with the dependent variable 
resulting in a significant simple regression effect (1 df) that is removed from 
the analysis. Knowledge of linear correlation and simple linear regression 
concepts reviewed in this topic are prerequisites to ANCOVA. Subsequently, 
the ANCOVA uses regression error to adjust the treatment means and their 
error term. Significant results in ANCOVA must be interpreted in term of the 
means adjusted for the covariate rather than the unadjusted means in 
ANOVA. Although most applications of ANCOVA involve simple regression, 
these procedures can be extended to multiple covariates using multiple 
linear regression and can be extended to adjusting multiple between-
subjects factors using equal or unequal sample sizes.
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19.6. Supplemental Readings19.6. Supplemental Readings19.6. Supplemental Readings

REFERENCEREFERENCE
Draper and Smith (1981)Draper and Smith (1981)
Hays (1994)Hays (1994)
Hicks & Turner (1999)Hicks & Turner (1999)
Keppel & Keppel & WickensWickens (2004)(2004)
Mason, Mason, GunstGunst, & Hess (2003), & Hess (2003)
Maxwell & Maxwell & DulaneyDulaney (2000)(2000)
Montgomery (2005)Montgomery (2005)
Myers (1979)Myers (1979)
Myers (1990)Myers (1990)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapter 1Chapter 1
Chapters 14, 15, 17Chapters 14, 15, 17
Chapter 16Chapter 16
Chapter 15Chapter 15
Chapters 14, 15, 16Chapters 14, 15, 16
Chapter 9Chapter 9
Chapter 15Chapter 15
Chapter 16Chapter 16
Chapter 2Chapter 2
Chapter 10 Chapter 10 

All of these texts provide a discussion of ANCOVA. In addition, Hays (1994) 
provides a discussion of various correlation techniques and both Myers 
(1979) and Myers (1990) provide computational details on testing the 
goodness of fit in simple linear regression.
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To summarize the advanced ANOVA techniques described in Section 4, 
composite of design constraints and a process for addressing them is 
presented in this topic. The use of ANOVA in regression analysis that was 
introduced in Section 4 will be expanded in Section 5. This topic ends with a 
summary and a complete listing of supplemental readings covered in Section 
4.

Topic 20. Summary of Advanced ANOVATopic 20. Summary of Advanced ANOVATopic 20. Summary of Advanced ANOVA

20.1. ANOVA Design Constraints20.1. ANOVA Design Constraints
20.1.1. Random20.1.1. Random--Effects FactorsEffects Factors
20.1.2. Nested Factors20.1.2. Nested Factors
20.1.3. Control of Nuisance Factors20.1.3. Control of Nuisance Factors
20.1.4. Data Collection Limitations20.1.4. Data Collection Limitations
20.1.5. Control of Subject Variability20.1.5. Control of Subject Variability

20.2. Advanced ANOVA Design Process20.2. Advanced ANOVA Design Process
20.3. ANOVA of Regression Analysis20.3. ANOVA of Regression Analysis
20.4. Summary20.4. Summary
20.5. Supplemental Readings20.5. Supplemental Readings
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20.1. ANOVA Design Constraints20.1. ANOVA Design Constraints20.1. ANOVA Design Constraints

•• 20.1.1. Random20.1.1. Random--Effects FactorsEffects Factors
•• 20.1.2. Nested Factors20.1.2. Nested Factors
•• 20.1.3. Control of Nuisance Factors20.1.3. Control of Nuisance Factors
•• 20.1.4. Data Collection Limitations20.1.4. Data Collection Limitations
•• 20.1.5. Control of Subject Variability20.1.5. Control of Subject Variability

Advanced ANOVA designs primarily deal with experimental design 
constraints that require extensions of basic ANOVA design procedures. Five 
major experimental design constraints that often occur in the human factors 
and ergonomics research are covered in Section 4. These five constraints 
listed on this slide are discussed separately in this subsection.
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20.1.1 Random-Effects Factors20.1.1 Random20.1.1 Random--Effects FactorsEffects Factors

•• ANOVA Design ConstraintANOVA Design Constraint
–– Legitimate FLegitimate F--Test not AvailableTest not Available

•• QuasiQuasi--F Ratio Alternative (Topic 15)F Ratio Alternative (Topic 15)
–– ConstructionConstruction

–– Use E(MS) to Create an Approximate FUse E(MS) to Create an Approximate F--RatioRatio
–– AdvantageAdvantage

–– Allows Test of Main Effects and InteractionsAllows Test of Main Effects and Interactions
–– LimitationLimitation

–– Only an Approximate FOnly an Approximate F--RatioRatio

When some of the factors of interest to the experimenter exist only as 
random-effects variables, legitimate F-ratios may not exist to test these 
effects. Quasi-F ratios described in Topic 15 can be used if this constraint 
occurs.

Quasi-F ratios are based on E(MS) and required various MS quantities to be 
added and subtracted together. Since the resulting ratio only approximates 
an F-ratio, the tabled value of F is adjusted by the Satterwaithe correction for 
df. The quasi-F allows the experimenter to test various main effects and 
interactions of random effects factors if approximate F-ratios are acceptable 
to the experimenter. 
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20.1.2. Nested Factors20.1.2. Nested Factors20.1.2. Nested Factors

•• ANOVA Design ConstraintANOVA Design Constraint
–– Nested Factors of InterestNested Factors of Interest

•• Hierarchical Design Alternative (Topic 16)Hierarchical Design Alternative (Topic 16)
–– ConstructionConstruction

–– Partial vs. Complete NestingPartial vs. Complete Nesting
–– BetweenBetween--Subjects, WithinSubjects, Within--Subjects, MixedSubjects, Mixed--

Factors DesignsFactors Designs
–– AdvantageAdvantage

–– Use Standard Rules, Algorithms, ProceduresUse Standard Rules, Algorithms, Procedures
–– LimitationLimitation

–– No Interactions of Nested FactorsNo Interactions of Nested Factors
–– Interpreting ResultsInterpreting Results

At times, some or all the factors of interest in human factors research are 
nested rather than crossed. In this situation hierarchical ANOVA designs 
rather than basic, completely crossed factorial designs are needed as 
described in Topic 16.

Depending on the nesting relationships among factors, either partial or 
complete hierarchical designs need to be constructed. Using the standard 
rules, algorithms, and procedures of basic ANOVA, hierarchical designs can 
be constructed as between-subjects, within-subjects, or mixed-factors 
designs depending on the assignment of subjects to treatment conditions. 
Since nested factors cannot interact, certain interactions do not exist in 
hierarchical designs. In addition, the interpretation of main effects of nested 
factors becomes problematic.
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20.1.3. Control of Nuisance Factors20.1.3. Control of Nuisance Factors20.1.3. Control of Nuisance Factors

•• ANOVA Design ConstraintANOVA Design Constraint
–– Nuisance Variables (e.g., Multiple Data Collection Nuisance Variables (e.g., Multiple Data Collection 

Sessions, Multiple Experimenters) ConfoundingSessions, Multiple Experimenters) Confounding
•• Blocking Design Alternative (Topic 17)Blocking Design Alternative (Topic 17)

–– ConstructionConstruction
–– Modular RepresentationModular Representation
–– Simple vs. Complex BlockingSimple vs. Complex Blocking
–– Defining RelationshipDefining Relationship

–– AdvantageAdvantage
–– Limits Confounding Effect of Nuisance VariableLimits Confounding Effect of Nuisance Variable

–– LimitationLimitation
–– Equal Levels of Each FactorEqual Levels of Each Factor

In complex ANOVA designs requiring data collection across sessions or 
using more that one experimenter, the effects of multiple sessions and 
experimenters become confounded with the factors of interest to the 
experiment. The confounding of these so-called nuisance variables can be 
controlled through the use of blocking designs described in Topic 17.

A defining relationship described in modular notation can be used to specify 
the confounding of effects of interest with a nuisance variable in simple 
blocking. Multiple defining relationships and their generalized interactions are 
confounded in complex blocking. By using blocking procedures, the 
experimenter can keep main effects and two-way interactions unconfounded
with the nuisance variable. These blocking procedures, however, require that 
each factor in the blocked design have the same number of levels.
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20.1.4. Data Collection Limitations20.1.4. Data Collection Limitations20.1.4. Data Collection Limitations

•• ANOVA Design ConstraintANOVA Design Constraint
–– Cannot Use Full Factorial DesignCannot Use Full Factorial Design

•• 22kk--pp FractionalFractional--Factorial Design Alternative Factorial Design Alternative 
(Topic 18)(Topic 18)
–– ConstructionConstruction

–– Modular RepresentationModular Representation
–– Identity RelationshipIdentity Relationship
–– Alias StructureAlias Structure

–– AdvantageAdvantage
–– Design ResolutionDesign Resolution

–– LimitationLimitation
–– Equal Levels of Each FactorEqual Levels of Each Factor

Time and money constraints may not allow collection of all the necessary 
data in a full factorial design that involves a large number of factors. A 
fractional-factorial design can be considered as an alternative in these 
situations.

Topic 18 describes 2k-p fractional replicates as a useful fractional-factorial 
design for human factors research. Modular representation is used to 
construct the fractional-factorial designs such that the identity relationship 
defines the effect or effects that cannot be evaluated and the alias structure 
lists the confounded effects in the 2k-p fractional replicate. The experimenter 
can keep all main effects and two-way interactions unconfounded in the 2k

factorial design if the experimenter chooses a Resolution V fractional 
replicate. Fractional replicates require an equal number of levels of each 
factor. Besides 2k designs, fractional factorials can also be constructed for 3k

and 5k factorial designs using these procedures if the experimenter can 
accept partial effect confounding.
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20.1.4. Data Collection Limitations (Cont’d)20.1.4. Data Collection Limitations (Cont20.1.4. Data Collection Limitations (Cont’’d)d)

•• ANOVA Design ConstraintANOVA Design Constraint
–– Cannot Use Full Factorial DesignCannot Use Full Factorial Design

•• Latin Square Design Alternative (Topic 18)Latin Square Design Alternative (Topic 18)
–– ConstructionConstruction

–– AdditivityAdditivity AssumptionAssumption
–– AdvantageAdvantage

–– Provides Test of Main EffectsProvides Test of Main Effects
–– LimitationLimitation

–– ThreeThree--Factor DesignsFactor Designs
–– Cannot Evaluate InteractionsCannot Evaluate Interactions
–– Equal Levels of Each FactorEqual Levels of Each Factor

When a fractional-factorial design with three factors is required, a Latin 
square design is useful to evaluate just the main effects of the three factors. 
This special case of a fractional-factorial design is described in Topic 18.

All Latin square designs consist of three factors each with the same number 
of levels of each factor. The data matrix appears as a square matrix with 
rows and columns defined by the factor levels of two factors, and each level 
of the third factor appears once within the rows and columns of the data 
matrix. The experimenter assumes additivity of the three factors, meaning no 
interactions exist in order to use the residual as the error term in conducting 
F-tests. Only main effects of the three factors can be evaluated in Latin 
square designs.
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20.1.5. Control of Subject Variability20.1.5. Control of Subject Variability20.1.5. Control of Subject Variability

•• ANOVA Design ConstraintANOVA Design Constraint
–– Individual Differences in BetweenIndividual Differences in Between--Subjects Subjects 

DesignsDesigns
•• Randomized Blocks Design Alternative Randomized Blocks Design Alternative 

(Topic 15)(Topic 15)
–– ConstructionConstruction

–– BetweenBetween--Subjects ANOVA DesignsSubjects ANOVA Designs
–– Choose Correlated Classification VariableChoose Correlated Classification Variable

–– AdvantageAdvantage
–– More Sensitive Hypothesis TestingMore Sensitive Hypothesis Testing

–– LimitationLimitation
–– PretestingPretesting SubjectsSubjects

The difference between subjects is one the main source of variability in 
human factors research. This variability can make between-subjects designs 
less sensitive to testing effects of interest. Topic 15 describes a method for 
removing between subjects variability through a randomized blocks design.

Subject classification variables such as gender and experience that have 
known correlations with the dependent variable are usually chosen as the 
blocking variable in these designs. An equal number of subjects at each level 
of the classification variable are randomly assigned to each treatment 
condition in the between-subjects design of interest. Subsequently, the effect 
of the blocking variable is removed from the error term in the ANOVA to 
result in more sensitive F-tests on the factors of interest. These designs can 
be quite useful in removing sources of between subjects variability in 
between-subjects designs, but a randomized blocks design requires 
additional effort in pretesting subjects on the classification variable.
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20.1.5. Control of Subject Variability (Cont’d)20.1.5. Control of Subject Variability (Cont20.1.5. Control of Subject Variability (Cont’’d)d)

•• ANOVA Design ConstraintANOVA Design Constraint
–– Individual Differences in BetweenIndividual Differences in Between--Subjects Subjects 

DesignsDesigns
•• ANCOVA Design Alternative (Topic 19)ANCOVA Design Alternative (Topic 19)

–– ConstructionConstruction
–– BetweenBetween--Subjects DesignSubjects Design
–– Determine Covariate and Linear RegressionDetermine Covariate and Linear Regression

–– AdvantageAdvantage
–– Analytical Procedure on Regression ErrorAnalytical Procedure on Regression Error

–– LimitationLimitation
–– Interpretation Limited to Adjusted MeansInterpretation Limited to Adjusted Means

An alternative to the randomized block design is to remove individual 
differences in between-subjects designs analytically through ANCOVA. This 
analytical procedure is described in Topic 20.

The subject classification variable that covaries with the dependent variable 
in the experiment is evaluated using simple linear regression. The residual or 
regression error is then used in the ANCOVA to evaluate the effects of 
interest that are adjusted for the effect of the covariate. This analytical 
procedure is straightforward and provides a useful technique for removing 
individual difference effects from the experiment as long as the experimenter 
is willing to interpret the results in terms of means adjusted for the covariate.
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20.2. Advanced ANOVA Design Process20.2. Advanced ANOVA Design Process20.2. Advanced ANOVA Design Process

•• Step 1. Consider RealStep 1. Consider Real--World ConstraintsWorld Constraints
–– List Possible ConstraintsList Possible Constraints

•• Step 2. Consider ANOVA Design AlternativesStep 2. Consider ANOVA Design Alternatives
–– List Candidate Design AlternativesList Candidate Design Alternatives
–– Select Candidate AlternativesSelect Candidate Alternatives

•• Step 3. TradeStep 3. Trade--off ANOVA Design Alternativesoff ANOVA Design Alternatives
–– Consider Advantages of Possible Design Consider Advantages of Possible Design 

AlternativesAlternatives
–– Consider Limitations of Possible Design Consider Limitations of Possible Design 

AlternativesAlternatives
•• Step 4. Choose Appropriate ANOVA DesignStep 4. Choose Appropriate ANOVA Design

–– Implement Advanced ANOVA Design ProcedureImplement Advanced ANOVA Design Procedure

This slide summarizes the four step process that can be used to choose the 
appropriate advanced ANOVA procedure described in Section 4. In Step 1, 
the real-world constraints of the experiment must be listed. Once these 
constraints are known, candidate advanced ANOVA techniques are 
considered as noted in Step 2.

Viable alternatives resulting from Step 2 are evaluated in Step 3. For 
example, the use of randomized block designs and ANCOVA can be 
considered as a means of minimizing the effect of individual differences in 
between-subjects designs. After considering the various trade-offs in Step 3, 
the appropriate advanced ANOVA procedure is selected and implemented in 
Step 4.
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20.3. ANOVA of Regression Analysis20.3. ANOVA of Regression Analysis20.3. ANOVA of Regression Analysis

•• Consideration of Covariates in Experimental Consideration of Covariates in Experimental 
DesignDesign
–– CorrelationsCorrelations
–– Simple Linear RegressionSimple Linear Regression
–– ANCOVAANCOVA

•• ANOVA on RegressionANOVA on Regression
–– Deviation from RegressionDeviation from Regression

•• Functional RelationshipsFunctional Relationships
–– Performance PredictionPerformance Prediction
–– Performance ModelingPerformance Modeling

Topic 19 introduced the concept of considering covariates in experimental 
design. These covariates are correlated with the dependent variable of the 
experiment. Concepts of correlation and simple regression form the basis of 
ANCOVA procedures described in this topic. 

More importantly, information covered in Topic 19 demonstrated that the 
regression analysis can be analyzed by conducting an ANOVA on a general 
linear model. This ANOVA evaluates the significance of the regression 
model based on a least squares criterion by using the deviation from 
regression as the error. Subsequently, partial F-tests can be conducted on 
the parameters of the linear model. Simple regression is an empirical model 
that predicts performance as a function of one predictor.
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20.4 Summary20.4 Summary20.4 Summary

•• Advanced ANOVA TechniquesAdvanced ANOVA Techniques
–– Extensions of Basic ANOVAExtensions of Basic ANOVA
–– Special Purpose ProceduresSpecial Purpose Procedures
–– Address Design ConstraintsAddress Design Constraints
–– Advantages and DisadvantagesAdvantages and Disadvantages

•• Regression Analysis in ExperimentationRegression Analysis in Experimentation
–– Correlation and Simple Linear RegressionCorrelation and Simple Linear Regression
–– ANCOVAANCOVA
–– Regression ANOVARegression ANOVA
–– Section 5. Empirical Model BuildingSection 5. Empirical Model Building

By way of summary, this section on advanced experimental designs is 
simply an extension of basic ANOVA that addresses various real-world 
experimental design constraints. The advantages and disadvantages of 
several special purpose procedures are discussed in this section to aid the 
experimenter in choosing the appropriate design alternative.

Simple linear regression was introduced as a technique used in ANCOVA to 
remove the effects of individual difference that are correlated with the 
dependent variable in the experiment. An ANOVA can be conducted using 
the linear regression model. In Section 5, the use of regression analysis in 
experimentation is extended to experimental design techniques that are 
useful in building empirical models that predict performance as a function of 
several independent variables.
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20.5. Supplemental Readings20.5. Supplemental Readings20.5. Supplemental Readings

REFERENCEREFERENCE
Hays (1994)Hays (1994)
Hicks & Turner (1999)Hicks & Turner (1999)
Keppel & Keppel & WickensWickens (2004)(2004)
Mason, Mason, GunstGunst, & Hess (2003), & Hess (2003)
Maxwell & Maxwell & DulaneyDulaney (2000)(2000)
Montgomery (2005)Montgomery (2005)
Myers (1979)Myers (1979)
Myers (1990)Myers (1990)
Myers and Montgomery (2002)Myers and Montgomery (2002)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapters 14, 15, 17Chapters 14, 15, 17
Chapters 7, 12, 13, 16Chapters 7, 12, 13, 16
Chapters 11, 15, 24, 25Chapters 11, 15, 24, 25
Chapters 7Chapters 7--9, 11, 149, 11, 14--1616
Chapter 9Chapter 9
Chapters 4, 7Chapters 4, 7--9, 14, 159, 14, 15
Chapter 16Chapter 16
Chapter 2Chapter 2
Chapters 3, 4Chapters 3, 4
Chapters 3, 5, 8Chapters 3, 5, 8--1010

This slide provides a summary of supplemental reading chapters on all the 
topics presented in Section 4. Advanced ANOVA. The Hays (1994), Myers 
(1979), and Myers (1990) chapters primarily provide a basic review of 
correlation and simple regression. Montgomery (2005) is a non-behavioral 
science experimental design textbook, and the chapters in the remaining 
texts deal primarily with behavioral science research applications using 
various advanced ANOVA experimental designs.



Human Factors Experimental Design and Analysis Reference

700

Section 5 is the last section of the human factors reference material and 
incorporates material presented in the other sections. The emphasis in this 
section is on the use of experimental design and analysis procedures to build 
second-order, empirical models that predict human performance in complex 
systems applications. This section covers the following topics:

Topic 21 – an introduction to empirical models;
Topic 22 – multiple linear and polynomial regression;
Topic 23 – second-order empirical model building using central-composite 
designs;
Topic 24 – response surface exploration and sequential experimentation; 
and
Topic 25 – a summary of empirical models and overall conclusions.

Section 5.
Empirical Model Building

Section 5.Section 5.
Empirical Model BuildingEmpirical Model Building

Topic 21. Introduction to Empirical ModelsTopic 21. Introduction to Empirical Models
Topic 22. Multiple RegressionTopic 22. Multiple Regression
Topic 23. CentralTopic 23. Central--Composite Designs (CCD)Composite Designs (CCD)
Topic 24. Sequential ExperimentationTopic 24. Sequential Experimentation
Topic 25. Summary of Empirical ModelsTopic 25. Summary of Empirical Models
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This introduction provides an overview of quantitative models with an 
emphasis on empirical model building developed through efficient
experimental design. Empirical models are descriptive models of human 
behavior based on results obtained through one or more controlled 
experiments that can be used to predict human performance in complex 
systems. These empirical models can assist the human factors specialist in 
conducting design tradeoffs of critical interface parameters. A summary of 
the topics covered in Section 5 that support empirical model building is 
provided along with supplemental readings on the general topic of 
quantitative models.

Topic 21. Introduction to Empirical ModelsTopic 21. Introduction to Empirical ModelsTopic 21. Introduction to Empirical Models

21.1. Quantitative Models21.1. Quantitative Models
21.1.1. Mechanistic Models21.1.1. Mechanistic Models
21.1.2. Empirical Models21.1.2. Empirical Models

21.2. Model Building Experiments21.2. Model Building Experiments
21.3. Models in Human Factors21.3. Models in Human Factors
21.4. Summary21.4. Summary
21.5. Supplemental Readings21.5. Supplemental Readings
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21.1. Quantitative Models21.1. Quantitative Models21.1. Quantitative Models

•• Modeling Goals of Human FactorsModeling Goals of Human Factors
–– ScientificScientific: Build theoretical model to understand : Build theoretical model to understand 

human performance in complex systems.human performance in complex systems.
–– AppliedApplied: Build predictive model for interface design.: Build predictive model for interface design.

•• Modeling ApproachModeling Approach
–– Quantitative RepresentationQuantitative Representation
–– Define Functional RelationshipsDefine Functional Relationships
–– Extension to Hypothesis TestingExtension to Hypothesis Testing
–– Experimental Designs for Model BuildingExperimental Designs for Model Building

Quantitative modeling in human factors research can have scientific and 
applied goals. When the goal is primarily scientific, the human factors 
specialist is interested in building a theoretical model to aid in understanding 
human performance in complex systems. When the goal is applied, the 
human factors specialist is interested in building a model that predicts actual 
performance in a specific interface context. This section describes a 
statistical approach that results in empirical models.

Both goals of modeling can be represented quantitatively in terms of a 
prediction equation of human performance as a function of the weighted 
influence of critical independent variables. The resulting functional 
relationship is an extension of hypothesis testing which tests only the 
statistical significance of independent variables in an experiment. 
Experimental designs can be used as an efficient way of collecting the 
necessary and sufficient data to build quantitative models of human 
performance.
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21.1. Quantitative Models (Cont’d)21.1. Quantitative Models (Cont21.1. Quantitative Models (Cont’’d)d)

•• General FormGeneral Form
ηη = f(= f(ββ, X), X)

where,where,
ηη = Expected, Predicted Outcome i.e., E(Y)= Expected, Predicted Outcome i.e., E(Y)
ββ = Defining Parameters of the Situation= Defining Parameters of the Situation
X = Independent Variables Affecting OutcomesX = Independent Variables Affecting Outcomes

•• Human Factors ApplicationsHuman Factors Applications
where,where,
ηη = Operator's Expected, Predicted Performance= Operator's Expected, Predicted Performance
ββ = Task Parameters= Task Parameters
X = Independent Variables Including Human, X = Independent Variables Including Human, 

Machine, and EnvironmentMachine, and Environment

The general form of any quantitative model of the expected value of an 
outcome, Y, as a function of independent variables, Xs, is shown on this 
slide. In general, the predicted outcome, η, is a function of X weighted by 
specific defining variables of the situation, β.

In human factors research, η is the dependent variable or the predicted 
performance. The values of β are the parameters in the functional 
relationship that defines a particular task situation. These parameters, in 
turn, weight the various independent variables, Xs, that are aspects of the 
human, machine, and environment interface. 
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21.1. Quantitative Models (Cont'd)21.1. Quantitative Models (Cont'd)21.1. Quantitative Models (Cont'd)

•• Mechanistic ModelsMechanistic Models
–– DefinitionDefinition:: A theoretical model which describes A theoretical model which describes 

the true underlying function relationships the true underlying function relationships 
producing a response.producing a response.

–– Describes Real Mechanisms InvolvedDescribes Real Mechanisms Involved
–– Tells Tells WhyWhy Variables Affect ResponseVariables Affect Response

•• Empirical ModelsEmpirical Models
–– DefinitionDefinition:: A model which predicts the outcome A model which predicts the outcome 

response accurately without knowing the response accurately without knowing the 
underlying relationships.underlying relationships.

–– Real Mechanisms Not RequiredReal Mechanisms Not Required
–– Tells Tells HowHow Variables Affect PerformanceVariables Affect Performance

The independent variables in quantitative models can be described either in 
terms of a mechanistic model or an empirical model. The mechanistic model 
is the theoretical model which describes the true underlying relationships 
producing a response. The goal of this model is primarily to advance 
scientific understanding of why variables in the model affect performance 
based on the effect of underlying mechanisms such as the laws of physics.

Empirical models, on the other hand, predict the outcome response as a 
function of situational variables without knowing the true underlying 
relationships or mechanisms. This type of quantitative model predicts how 
much each variable affects performance, not why each affects performance. 
Often empirical models are used as a starting point to develop theoretical or 
mechanistic models.
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21.1. Quantitative Models (Cont’d)21.1. Quantitative Models (Cont21.1. Quantitative Models (Cont’’d)d)

•• 21.1.1. Mechanistic Models21.1.1. Mechanistic Models
•• 21.1.2. Empirical Models21.1.2. Empirical Models

This subsection provides some elaboration on the distinction of mechanistic 
and empirical models following the distinctions made by Box and Draper 
(1987) and Box, Hunter, and Hunter (2005). The emphasis of this reference 
material is on the development of empirical models that can be used in 
human factors and ergonomics interface design.
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21.1.1. Mechanistic Models21.1.1. Mechanistic Models21.1.1. Mechanistic Models

•• AdvantagesAdvantages
–– Contributes to Scientific UnderstandingContributes to Scientific Understanding
–– Built on Theoretical ConstructsBuilt on Theoretical Constructs
–– Small Number of Model ParametersSmall Number of Model Parameters
–– Possible to ExtrapolatePossible to Extrapolate

•• DisadvantagesDisadvantages
–– Requires Understanding of Underlying RelationshipsRequires Understanding of Underlying Relationships
–– Includes Simplifying AssumptionsIncludes Simplifying Assumptions
–– Restricted to Small Number of Input FactorsRestricted to Small Number of Input Factors
–– Mostly NonlinearMostly Nonlinear

The advantage of the mechanistic model is that it contributes to scientific 
understanding and is based on established scientific constructs. Box and 
Draper (1987) note that mechanistic models can be extrapolated across the 
range of input variables. They are also parsimonious since they include only 
a few parameters.

The major disadvantages of theoretical models are that the researcher must 
have a good understanding of the underlying relationships in order to build 
them, and mechanistic models cannot handle complex relationships
economically without simplifying assumptions. Therefore, applications may 
be limited to a specific, small number of input factors. In addition, 
mechanistic models are often nonlinear requiring more complex 
mathematical treatment.
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21.1.2. Empirical Models21.1.2. Empirical Models21.1.2. Empirical Models

•• AdvantagesAdvantages
–– Built on Real World ApplicationsBuilt on Real World Applications
–– Requires No Understanding of the Underlying Requires No Understanding of the Underlying 

RelationshipsRelationships
–– Usually Linear ModelsUsually Linear Models
–– Can Incorporate Several FactorsCan Incorporate Several Factors

•• DisadvantagesDisadvantages
–– Range of Prediction AccuracyRange of Prediction Accuracy
–– Goodness of FitGoodness of Fit
–– Limited Extrapolation to Mechanistic ModelsLimited Extrapolation to Mechanistic Models

Empirical models are built on data drawn from real-world applications and do 
not require a detailed understanding of the underlying relationships. Most 
empirical models are linear and based on least squares regression 
procedures. These procedures can handle complex relationships involving 
many factors in an economical way and are quite useful in human factors 
applications.

Prediction accuracy is limited to the range of the factor levels observed in 
generating the empirical model. So, careful attention must be given to 
sampling the appropriate range of interest and not using the empirical model 
for prediction beyond those ranges. Goodness of fit of the empirical model 
must be adjusted for the number of factors included to avoid inflated model 
validation. Currently, extrapolation procedures to evolve empirical models 
into mechanistic models are limited. Empirical models can aid in developing 
an understanding of underlying relationships and possibly lead to 
mechanistic model development. Box, Hunter, and Hunter (2005, pp. 518-
526) provide an example of this type of extrapolation in the chemical 
sciences. 
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21.2. Model Building Experiments21.2. Model Building Experiments21.2. Model Building Experiments

•• Mechanistic ModelsMechanistic Models
–– PurposePurpose: : WhyWhy Variables Affect PerformanceVariables Affect Performance
–– Model DevelopmentModel Development

–– Parameter EstimationParameter Estimation
–– Model DescriptionModel Description

–– Model TestingModel Testing
•• Screening VariablesScreening Variables

–– PurposePurpose: : WhichWhich Variables to InvestigateVariables to Investigate
–– Reduce List of Potential Factors to Most Reduce List of Potential Factors to Most 

Influential FactorsInfluential Factors
–– Economical Experimental DesignsEconomical Experimental Designs
–– Main Effects and TwoMain Effects and Two--Way InteractionsWay Interactions

The primary goal of Section 5 is to demonstrate the use of experimental 
designs to develop quantitative models through experimentation. In a more 
general sense, Box and Draper (2005, pp. 10-14) describe how 
experimentation can be used to evaluate mechanistic models, screen 
variables, and build empirical models.

Experiments can be used to facilitate parameter estimation and alternative 
forms for describing mechanistic models which describe why variables affect 
performance. Most often experiments are used to test the limits of 
mechanistic models and improve them.

Screening experiments are used to determine which variables need to be 
included in models. This is a necessary first step in building empirical models 
because the initial set of potential variables can be quite large and must be 
narrowed to a reduced set of the most influential variables. Economical data 
collection experimental design such as single observation factorial designs 
and fractional replicates can be used for this purpose. In human factors 
research, the focus of these experiments is to screen variables in terms of 
main effects and two-way interactions. Higher-order effects are usually of 
minor interest.
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21.2. Model Building Experiments (Cont’d)21.2. Model Building Experiments (Cont21.2. Model Building Experiments (Cont’’d)d)

•• Empirical ModelsEmpirical Models
–– PurposePurpose: : HowHow Variables Affect PerformanceVariables Affect Performance
–– Investigate EmpiricallyInvestigate Empirically--Based EffectsBased Effects

–– Advanced ANOVA DesignsAdvanced ANOVA Designs
–– Integrated DatabasesIntegrated Databases

–– Specify Functional RelationshipsSpecify Functional Relationships
–– Polynomial RegressionPolynomial Regression
–– CentralCentral--Composite Designs Composite Designs 

–– Model RefinementModel Refinement
–– Sequential ExperimentationSequential Experimentation
–– Response Surface MethodologyResponse Surface Methodology

Section 5 focuses on experimental designs that are useful in developing and 
using empirical models in human factors research. These empirical models 
specify functional relationships of how variables affect performance. 
Advanced ANOVA techniques are used to determine the database of 
empirical effects to model. Experiments are used to screen variables, and 
sequential experiments are used to build integrated databases.

Polynomial regression is used as a convenient form of empirical models to 
specify the functional relationship of how several factors affect performance. 
Efficient, second-order experimental designs such as central-composite 
designs are used to collect the data for inclusion in polynomial regression 
prediction equations. The resulting empirical models can be evaluated 
through ANOVA procedures.

Sequential experimentation is used to refine empirical models by conducting 
an integrated set of small experiments that can be combined into an 
integrated database. These procedures are drawn from response surface 
methodology techniques which allow description and exploration of 
performance effects specified by empirical models.
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21.3. Models in Human Factors21.3. Models in Human Factors21.3. Models in Human Factors

•• Quantitative Models in Human Factors and Quantitative Models in Human Factors and 
Ergonomics Research (Williges, 1987)Ergonomics Research (Williges, 1987)
–– Performance, Ergonomic, Computer Simulation, Performance, Ergonomic, Computer Simulation, 

and Statisticaland Statistical
•• Theoretical ModelsTheoretical Models

–– Human Performance Analogy (Human Performance Analogy (WickensWickens, 1992), 1992)
–– Information TheoryInformation Theory

–– Information ProcessingInformation Processing
–– Signal Detection TheorySignal Detection Theory

–– AttentionAttention
–– Control TheoryControl Theory

–– Manual ControlManual Control
–– BayesBayes TheoremTheorem

–– Decision MakingDecision Making

Williges (1987) describes quantitative models in human factors and 
ergonomics research used to predict user performance in human-computer 
interface design. These modeling efforts use a variety of approaches 
including observed performance to provide procedural representations, 
ergonomics-based data to provided anthropometric and biomechanical 
representations, computer simulations to provide task sequence 
representations, and statistical-based data to predict human performance.

There are some examples of mechanistic models in human factors, but 
these quantitative models are borrowed from other disciplines. The four 
examples of theoretical human performance models discussed by Wickens
(1992) shown on this slide are borrowed from engineering and probability 
theory. Information theory has been used to evaluate human information 
processing; signal detection theory has been used in modeling human 
attention in vigilance applications; closed-loop control theory has been used 
in modeling human manual control; and Bayes theorem has been used to 
model the integration of information in human decision making.
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21.3. Models in Human Factors (Cont’d)21.3. Models in Human Factors (Cont21.3. Models in Human Factors (Cont’’d)d)

•• Normative Models in Human FactorsNormative Models in Human Factors
–– Normative ModelsNormative Models: How People Ought to Behave: How People Ought to Behave
–– Major Use of Existing Theoretical ModelsMajor Use of Existing Theoretical Models
–– Usefulness of Normative ModelsUsefulness of Normative Models

–– Logical Structuring of TaskLogical Structuring of Task
–– Suggest Variables and MethodsSuggest Variables and Methods
–– Standards to Evaluate PerformanceStandards to Evaluate Performance
–– Common Metrics for Human and MachinesCommon Metrics for Human and Machines
–– Revise to Descriptive Models (e.g., HickRevise to Descriptive Models (e.g., Hick--Hyman Hyman 

Law, and Law, and Fitt'sFitt's Law)Law)

The four theoretical models listed on the previous slide are normative 
models of human performance, meaning that they specify how people ought 
to behave. They are not, necessarily, good descriptive models of how people 
actually behave. Most existing mechanistic models in human factors are 
normative rather than descriptive models of human performance.

Several important uses of normative models are listed on this slide. The 
parameters of normative models can be used to structure the interface and 
provide a list of variables to investigate through experiments as well as 
methods to investigate them. The normative value predicted by the 
theoretical model provides a standard of optimal performance for
comparison to actual human performance. It may be possible to revise the 
normative model into a true descriptive model within certain constraints. 
Hicks-Hyman Law (Wickens, 1992, pp. 317-18, and p.323) and Fitt’s Law 
(Wickens, 1992, pp. 446-449 and pp. 482-483) are two example of 
descriptive models based on Information Theory.
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21.3. Models in Human Factors (Cont’d)21.3. Models in Human Factors (Cont21.3. Models in Human Factors (Cont’’d)d)

•• Empirical ModelsEmpirical Models
–– Most of Human Factors ResearchMost of Human Factors Research
–– Descriptive ModelsDescriptive Models:: How People Actually How People Actually 

BehaveBehave
–– Attempts to Integrate Across StudiesAttempts to Integrate Across Studies
–– Prediction EquationsPrediction Equations

•• Predictive ModelsPredictive Models
–– Alternative to Hypothesis TestingAlternative to Hypothesis Testing
–– Predict Human Performance in SystemsPredict Human Performance in Systems
–– Determine Significant System ParametersDetermine Significant System Parameters
–– Tool in Complex System DesignTool in Complex System Design

Most quantitative models in human factors are models based on a body of 
empirical data gathered through a series of experiments that is focused on 
understanding how people actually behave in complex systems. These 
empirical models are usually specified in terms of predictions of human 
performance as a function of task parameters.

Predictive models of actual performance go beyond hypothesis testing of 
single parameters to evaluate the relative weightings of several parameters 
in predicting human performance. These relative weightings can be used for 
interface design tradeoffs and the determination of the most important 
system parameters to consider in design. So, properly developed and used 
empirical models can prove to be an important system design tool in human 
factors research.
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21.4. Summary21.4. Summary21.4. Summary

•• Empirical Model Building ApproachEmpirical Model Building Approach
–– Extension of Hypothesis TestingExtension of Hypothesis Testing
–– Descriptive Models of Functional RelationshipsDescriptive Models of Functional Relationships
–– Predict Human Performance in Complex SystemsPredict Human Performance in Complex Systems
–– Integrated Research DatabasesIntegrated Research Databases

•• Techniques Involved in Empirical Model Techniques Involved in Empirical Model 
BuildingBuilding
–– Polynomial Regression to Generate Models Polynomial Regression to Generate Models 

(Topic 22)(Topic 22)
–– CentralCentral--Composite Designs to Collect Data Composite Designs to Collect Data 

(Topic 23)(Topic 23)
–– Sequential Experimentation for Large Data Sequential Experimentation for Large Data 

Spaces (Topic 24)Spaces (Topic 24)

The focus of ANOVA designs is statistical hypothesis testing. All the topics in 
Section 5 use experiments to collect data for building empirical models that 
predict human performance in complex systems. These predictions can be 
used for interface design tradeoffs. The data from these experiments can 
also be combined into integrated databases describing complex systems.

The next three topics describe the details of techniques used in empirical 
model building. Topic 22 describes polynomial regression which is a general 
form of multiple regression used to specify the functional relationship of the 
empirical model. Topic 23 describes a useful second-order experimental 
design to collect the necessary and sufficient data for generating empirical 
models. And, finally, Topic 24 describes the concept of sequential 
experimentation in which an integrated set of small experiments are used to 
build empirical models that include a large number of factors. The results of 
these sequential experiments form an integrated database of research rather 
that a series of isolated experiments that cannot be related to each other.
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21.5. Supplemental Readings21.5. Supplemental Readings21.5. Supplemental Readings

REFERENCEREFERENCE
Box & Draper (1987)Box & Draper (1987)
Box, Hunter, & Hunter (1978)Box, Hunter, & Hunter (1978)
Box, Hunter, & Hunter (2005)Box, Hunter, & Hunter (2005)
Myers & Montgomery (2002)Myers & Montgomery (2002)
WickensWickens (1992)(1992)

SECTIONSECTION
Chapter 1Chapter 1
Chapters 9, 16Chapters 9, 16
Chapter 12Chapter 12
Chapter 1Chapter 1
Chapters 1, 2, 7, 9, 11  Chapters 1, 2, 7, 9, 11  

The two chapters by Box, Hunter, and Hunter (1978) provide the classic 
distinction between empirical and mechanistic models and the use of 
experimental designs and sequential experimentation in building quantitative 
models. Both the Box and Draper (1987) and the Box, Hunter, and Hunter 
(2005) texts listed on this slide provide a general overview of quantitative 
models in the form of mechanistic and empirical models. Chapter 1 of both 
Box and Draper (1987) and Myers and Montgomery (2002) introduce the 
concept of empirical model building through experimentation. The chapters 
by Wickens (1992) provide details on normative models used in human 
factors and ergonomics.
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Topic 22 provides an overview of multiple regression procedures used to 
generate empirical models that involve more than one factor. First, multiple 
linear regression is described to demonstrate the calculations involved when 
considering more than one factor in the empirical model. Next, second-order 
polynomial regression is discussed as the general form for stating empirical 
models in human factors research. A summary of these procedures as well 
as additional readings for details on multiple regression are provided at the 
end of this topic.

Topic 22. Multiple RegressionTopic 22. Multiple RegressionTopic 22. Multiple Regression

22.1. Multiple Regression Procedures22.1. Multiple Regression Procedures
22.2. Multiple Linear Regression22.2. Multiple Linear Regression

22.2.1. Line of Best Fit22.2.1. Line of Best Fit
22.2.2. Goodness of Fit22.2.2. Goodness of Fit
22.2.3. Multiple Regression Example22.2.3. Multiple Regression Example
22.2.4. Best Regression Equation22.2.4. Best Regression Equation
22.2.5. Best Equation Example22.2.5. Best Equation Example

22.3. Second22.3. Second--Order Polynomial RegressionOrder Polynomial Regression
22.3.1. Polynomial Regression Calculations22.3.1. Polynomial Regression Calculations
22.3.2. Polynomial Regression Example22.3.2. Polynomial Regression Example

22.4. Summary22.4. Summary
22.5. Supplemental Readings22.5. Supplemental Readings
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22.1. Multiple Regression Procedures22.1. Multiple Regression Procedures22.1. Multiple Regression Procedures

•• Extension of Simple RegressionExtension of Simple Regression
–– Multiple Predictors, XMultiple Predictors, Xii
–– Partial Regression Beta Weight, bPartial Regression Beta Weight, bii, for Each , for Each 

PredictorPredictor
•• Multiple Regression CalculationsMultiple Regression Calculations

–– Line of Best FitLine of Best Fit
–– Goodness of FitGoodness of Fit
–– Best EquationBest Equation

•• Polynomial FunctionPolynomial Function
–– Two Predictor ExampleTwo Predictor Example

YY′′ = b= b00 + b+ b11XX11 + b+ b22XX22 + b+ b33XX22
11 + b+ b44XX22

22 + b+ b55XX11XX22
–– Linear Beta WeightsLinear Beta Weights

Multiple regression is an extension of simple regression discussed in Topic 
19 by including more than one predictor, Xi, in the regression equation. Each 
predictor has its own beta weight called a partial regression weight in 
multiple regression.

There are three major areas of multiple regression calculations. The line of 
best fit involves the least square calculations on the partial regression 
weights in the multiple regression. The goodness of fit determines how well 
the multiple regression represents the data. And, the best equation 
determines the optimal number of predictors to include in the multiple 
regression.

Polynomial functions allow each Xi to represent more than linear effects. The 
regression equation shown at the bottom of this slide is an example of a 
polynomial function with two X’s. Note that the polynomial regression 
includes the linear effects, the cross-product effect, and the quadratic effects 
of X1 and X2. The beta weights, bi, are all linear weights in this polynomial 
regression equation.
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22.1. Multiple Regression Procedures (Cont’d)22.1. Multiple Regression Procedures (Cont22.1. Multiple Regression Procedures (Cont’’d)d)

•• Polynomial RegressionPolynomial Regression
–– General Form of Multiple RegressionGeneral Form of Multiple Regression
–– Handles a Variety of Underlying RelationshipsHandles a Variety of Underlying Relationships
–– Forms the Basis for Empirical ModelsForms the Basis for Empirical Models

•• Order of Polynomial Regression EquationOrder of Polynomial Regression Equation
–– Defined by Highest Order of EffectDefined by Highest Order of Effect IncludedIncluded
–– Order of EffectOrder of Effect: power of each X and/or : power of each X and/or 

multiplicative relationship of X'smultiplicative relationship of X's

X1 = First Order
X1X2 = Second Order
X21 = Second Order
X1X2X3 = Third Order
X31 = Third Order

Polynomial regression is the general form of multiple regression that includes 
linear and non-linear effects of predictors in the regression equation. These 
regression equations can be used to describe a variety of underlying 
relationships affecting operator performance in complex systems.
Consequently, polynomial regression forms the basis for stating empirical 
models that predict human performance.

A polynomial regression function is defined by the highest order used in the 
equation. Order is determined by the power of each predictor, X, and/or the 
multiplicative relationship of the Xs. Several examples of first-, second-, and 
third-order effects are shown on the bottom of this slide.
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22.1. Multiple Regression Procedures (Cont’d)22.1. Multiple Regression Procedures (Cont22.1. Multiple Regression Procedures (Cont’’d)d)

•• Complete Polynomial Regression EquationComplete Polynomial Regression Equation
–– Includes All Effects of a Given Order and BelowIncludes All Effects of a Given Order and Below

•• FirstFirst--Order Polynomial Regression EquationOrder Polynomial Regression Equation
–– Multiple Linear RegressionMultiple Linear Regression

•• SecondSecond--Order Polynomial Regression EquationOrder Polynomial Regression Equation
–– Useful Empirical Model in Human FactorsUseful Empirical Model in Human Factors

Y' =  b 0 + b1X1 + b2X2 + b3X3 + b4X1X2 + b5X1X3
+ b6X2X3 + b7X21 + b8X22 + b9X23

Y' = b 0 + b1X1 + b2X2 + b3X3

If all the highest-order effects and all the lower-order effects of a set of Xs 
are included in the polynomial, it is called complete. If not, the polynomial is 
called incomplete. For example, the first-order and second-order polynomials 
for three Xs shown on this slide are both complete.

There are two general types of multiple regression equations used in human 
factors. Multiple linear regression is actually a sub-set of polynomial 
regression in which all the predictors form a first-order polynomial as shown 
in the middle portion of this slide for three Xs. Multiple linear regression is 
the most common form of multiple regression used in behavioral research. 

Higher-order polynomials can represent curvilinear regression as shown by 
the second-order polynomial at the bottom of this slide for three Xs. The 
second-order effects of the linear-by-linear interaction effects (i.e., XiXj) 
weighted by the partial regression weights b4, b5, and b6 plot sloping planes; 
whereas, the pure quadratic effects weighted by the partial regression 
weights b7, b8, and b9 plot quadratic effects in the polynomial regression. 
Since two-way interactions which include linear-by-linear effects are 
important in human factors research, second-order empirical models are 
often used.
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22.1. Multiple Regression Procedures (Cont’d)22.1. Multiple Regression Procedures (Cont22.1. Multiple Regression Procedures (Cont’’d)d)

•• Data RequirementsData Requirements
–– One More Data Point Than Number of One More Data Point Than Number of 

Parameters FittedParameters Fitted
–– One More Level Than Highest Order of One More Level Than Highest Order of 

PolynomialPolynomial
•• Two Alternative Data ProceduresTwo Alternative Data Procedures

–– Happenstance DataHappenstance Data
–– Passive Data CollectionPassive Data Collection

–– Experimental DesignsExperimental Designs
–– Active Data CollectionActive Data Collection

Two minimum data requirements need to be considered in conducting 
multiple regression. First, one more data point is needed than the number of 
parameters in the equation. Second, one higher level needs to be observed 
than the highest-order effect of a predictor. For example, in the three factor, 
second-order polynomial regression shown on the previous slide, a minimum 
of eleven different data points involving three levels of each of the two 
factors is needed to determine the ten beta weights in the empirical model.

Data for multiple regression analysis can be collected by happenstance or 
through experimental designs. Happenstance data are obtained through 
passive data collection from either data archives that already exist or data 
that is observed when the levels of factors are not controlled. Alternatively, 
experimental designs can be used to control the levels of the factors in an 
active data collection procedure.
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22.1. Multiple Regression Procedures (Cont’d)22.1. Multiple Regression Procedures (Cont22.1. Multiple Regression Procedures (Cont’’d)d)

•• Problems With Happenstance Data (Box, Problems With Happenstance Data (Box, 
Hunter, and Hunter, 2005)Hunter, and Hunter, 2005)
–– Inconsistent DataInconsistent Data
–– Limited Range of VariablesLimited Range of Variables
–– SemiSemi--Confounding of EffectsConfounding of Effects
–– Nonsense CorrelationsNonsense Correlations
–– Serially Correlated ErrorsSerially Correlated Errors
–– Dynamic RelationshipsDynamic Relationships
–– FeedbackFeedback

•• Emphasis on Experimental Design DataEmphasis on Experimental Design Data
–– Active Data CollectionActive Data Collection
–– Empirical Models Based on Polynomial RegressionEmpirical Models Based on Polynomial Regression

Box, Hunter, and Hunter (2005, pp. 397-406) point out seven potential 
problems as shown on this slide that can occur in using happenstance data 
for generating empirical models based on the multiple regression of several 
variables using polynomial regression. All of these problems can be either 
avoided, or controlled, by using experimental designs to collect data for 
empirical model building. Consequently, special purpose experimental 
designs and sequential experimentation for building empirical models are 
stressed in Section 5.
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η = β0 +  β1X1 + β2X2 + ... + βmXm + εi
-or-

η = β0 + ΣβiXi + εi

Y' = b 0 + b1X1 + b2X2 + ... + b mXm + εi
-or-

Y' = b 0 + ΣbiXi + εi

22.2. Multiple Linear Regression22.2. Multiple Linear Regression22.2. Multiple Linear Regression

•• Multiple Linear Regression ModelMultiple Linear Regression Model
–– Population ModelPopulation Model

–– Sample ModelSample Model

•• Multiple Regression EquationsMultiple Regression Equations
–– Each Beta Weight Estimated from DataEach Beta Weight Estimated from Data
–– bb00 Analogous to Intercept in Simple RegressionAnalogous to Intercept in Simple Regression
–– bbii = Partial Regression Weights of Predictors= Partial Regression Weights of Predictors

Multiple linear regression is a subset of multiple regression in which only the 
linear effect of each of several factors are included in the regression model. 
The population and sample models of multiple linear regression are shown 
on the top portion of this slide. Sample data are used to determine the beta 
weights in the sample model which, in turn, provide the best estimates of the 
population regression model.

Calculation of the beta weights is the major computational procedure in 
solving the multiple regression. The b0 value is analogous to the intercept 
value in simple regression as described in Topic 19. The bi values are called 
partial regression weights and represent the empirically determined weights 
for each of the factors or predictors considered in the multiple linear 
regression model.
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22.2. Multiple Linear Regression (Cont’d)22.2. Multiple Linear Regression (Cont22.2. Multiple Linear Regression (Cont’’d)d)

•• 22.2.1. Line of Best Fit22.2.1. Line of Best Fit
•• 22.2.2. Goodness of Fit22.2.2. Goodness of Fit
•• 22.2.3. Multiple Regression Example22.2.3. Multiple Regression Example
•• 22.2.4 Best Regression Equation22.2.4 Best Regression Equation
•• 22.2.5. Best Equation Example22.2.5. Best Equation Example

This subsection describes the least squares solution for the line of best fit, 
metrics for assessing the goodness of fit, and several techniques for 
choosing the best subset of predictors in the multiple linear regression 
equation. An example using happenstance data is provided to demonstrate 
the use of these procedures in conducting a multiple linear regression and 
choosing the best regression equation.
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•• Least Squares Criterion, QLeast Squares Criterion, Q
Q = (Y Q = (Y -- Y')Y')22 is a Minimumis a Minimum

•• Three Predictor ExampleThree Predictor Example
–– Equation: Y' = bEquation: Y' = b00 + b+ b11XX11 + b+ b22XX22 + b+ b33XX33 + + eeii

–– Minimize QMinimize Q
Q = [Y Q = [Y -- (b(b00 + b+ b11XX11 + b+ b22XX22 + b+ b33XX33)])]22

•• "Normal" Equations"Normal" Equations
–– Set Partial Derivatives to 0Set Partial Derivatives to 0
–– Vector of Residuals is Normal to Vector of "X" VariablesVector of Residuals is Normal to Vector of "X" Variables
–– Simultaneous Equations for Three PredictorsSimultaneous Equations for Three Predictors

22.2.1. Line of Best Fit22.2.1. Line of Best Fit22.2.1. Line of Best Fit

nb0 + X1Σ b1 + X2Σ b2 + X3Σ b3 = YΣ
X1Σ b0 + X1

2Σ b1 + X1X2Σ b2 + X1X3Σ b3 = X1YΣ
X2Σ b0 + X2X1Σ b1 + X2

2Σ b2 + X2X3Σ b3 = X2YΣ
X3Σ b0 + X3X1Σ b1 + X3X2Σ b2 + X3

2Σ b3 = X3YΣ

The least squared criterion is used to determine the line of best fit in multiple 
regression. This criterion minimizes the sum of squared differences between 
the observed and predicted values of Y. An example of a multiple linear 
regression for Y’ with b0 and three predictors is shown in the middle of this 
slide. A least squares solution requires taking the difference between Y and 
the partial derivatives of the prediction equation with respect to each of the 
four unknowns and setting them equal to zero.

The resulting partial derivatives yield four simultaneous equations that can 
be solved to determine the values of the four parameters, b0 to b3 in a 
multiple regression with three predictors. These simultaneous equations are 
called “normal” equations because the vector of residuals is orthogonal or 
perpendicular (i.e., normal) to the vector of “X” variables according to the 
least squares criterion, Q.
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22.2.1. Line of Best Fit (Cont'd)22.2.1. Line of Best Fit (Cont'd)22.2.1. Line of Best Fit (Cont'd)

•• Matrix Algebra SolutionMatrix Algebra Solution
–– Simultaneous EquationsSimultaneous Equations

–– Solving the Simultaneous EquationsSolving the Simultaneous Equations
(X'X) b = (X'Y)
X'X – 1(X'X) b = X'X – 1(X'Y)
b = X'X – 1(X'Y)

Where, (X'X) = Sum of Squares Crossproduct (SSCP) Matrix
b = Partial Regression Weights Vector
(X'Y) = Crossproducts Vector

n X1Σ X2Σ X3Σ
X1Σ X1

2Σ X1X2Σ X1X3Σ
X2Σ X2X1Σ X2

2Σ X2X3Σ
X3Σ X3X1Σ X3X2Σ X3

2Σ

b0

b1

b2

b3

=

YΣ
X1YΣ
X2YΣ
X3YΣ

(X'X) b = (X'Y)

Matrix algebra is used to solve the normal equations in multiple regression. 
See Draper and Smith (1981, Chapter 2), Myers (1990, Appendix A), Winer, 
Brown, & Michels (1991, Appendix B) for a review of matrix algebra 
procedures used in regression. This slide shows the matrix algebra 
representation of the four simultaneous equations of normal equations 
presented on the previous slide. Note this set of simultaneous equations is 
simply represented in matrix notation by the product of the sum of squares 
crossproducts (SSCP) matrix, (X’X), and the b vector equals the 
crossproducts vector, X’Y.

The matrix algebra solution for these simultaneous equations is simply to 
multiply the X’X matrix by its inverse, (X’X)-1. As shown on the bottom portion 
of this slide, the beta weights equal the inverse of the X’X matrix times the 
crossproducts vector. Inverting the SSCP matrix can become tedious, and 
multiple regression solutions are usually conducted through computer 
analysis.
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•• CorrelationalCorrelational SolutionSolution
–– Standardized Multiple RegressionStandardized Multiple Regression

–– Least Squares "Normal" EquationsLeast Squares "Normal" Equations

–– Matrix Representation of "Normal" EquationsMatrix Representation of "Normal" Equations

–– Matrix Solution of "Normal" EquationsMatrix Solution of "Normal" Equations

22.2.1. Line of Best Fit (Cont'd)22.2.1. Line of Best Fit (Cont'd)22.2.1. Line of Best Fit (Cont'd)

b *1 + r12b *2 + r13b *3 = r1Y

r12b *1 + b *2 + r23b *3 = r2Y

r13b *1 + r23b *2 + b *3 = r3Y

(R)b * = Rc

1 r12 r13

r12 1 r23

r13 r23 1

b *1

b *2

b *3

=
r1Y
r2Y
r3Y

Y'Z = b *1X1Z
+ b *2X2Z

+ b *3X3Z

b * = R– 1 Rc

This slide summarizes the correlational solution for multiple regression in the 
special case were the Xi predictors are standardized. Note that in 
standardized multiple regression the predicted value is also the
standardized, or Z-score of Y, not the Y score. For standardized scores, the 
b0 value is equal to 0 and the other beta weights are designated as bi*. The 
normal equations and matrix algebra representations of these simultaneous 
equations can be stated in terms of correlations as shown in the middle 
portions of this slide.

As shown on the bottom of this slide, the matrix algebra solution for the 
standardized regression weights is simply the intercorrelation matrix, R, pre-
multiplied by the inverse of the intercorrelation matrix, R-1.
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22.2.1. Line of Best Fit (Cont'd)22.2.1. Line of Best Fit (Cont'd)22.2.1. Line of Best Fit (Cont'd)

•• Special CaseSpecial Case:: Orthogonal Regression WeightsOrthogonal Regression Weights

–– b*b*ii = Correlation of X= Correlation of Xii with Ywith Y
•• Conversion to NonConversion to Non--Standardized RegressionStandardized Regression

bi = sY
sXi

b *i

b0 = Y – b1X1 – b2X2 – ... – biXi

1 0 0
0 1 0
0 0 1

b *1

b *2

b *3

=
r1Y
r2Y
r3Y

b * = Rc

A special case of standardized regression occurs when the multiple 
predictors are independent of each other. Their intercorrelation equal 0 and 
the intercorrelation matrix becomes diagonal. As shown on the top portion of 
this slide, the standardized beta weights, b*i, simply equal the correlation of 
each predictor with Y.

The lower portion of this slide shows the conversion of non-standardized to 
standardized regression weights as well as the formula for determining b0 in 
non-standardized multiple regression. Both the standard deviations of the Y 
scores and the various Xi scores are needed to make this conversion.
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22.2.2. Goodness of Fit22.2.2. Goodness of Fit22.2.2. Goodness of Fit

•• ANOVA on Multiple RegressionANOVA on Multiple Regression
–– Partitioning SSPartitioning SS

–– Regression Separated Into bRegression Separated Into bii's's
–– Each bEach bii = 1 = 1 dfdf
–– tt--Test for each bTest for each bii

SSRegression = Y' – Y 2Σ
SSResidual = Y – Y' 2Σ
SSTotal = Y – Y 2Σ

Several procedures exist for determining the goodness of fit of multiple linear 
regression equations. An ANOVA of the regression equation can be
conducted to test the overall significance of the regression model and the 
individual partial regression weights can be tested for significance. Similar to 
simple regression, the total sum of squares is divided into two additive parts, 
regression and residual. The overall regression can then be tested by 
residual as the error term.

Regression can also be separated into the effects of individual partial 
regression weights, bi, to determine if any of the various predictors account 
for a significant amount of variation. Since each partial regression weight has 
one degree of freedom, a simple t-test can be used to test each bi.
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22.2.2. Goodness of Fit (Cont'd)22.2.2. Goodness of Fit (Cont'd)22.2.2. Goodness of Fit (Cont'd)

•• ANOVA Summary TableANOVA Summary Table

Source df SS MS F
Regression (m) SSReg MSReg MSReg /MS Res

b1 1 SSb1 SSb1 MSb1/MS Res
b2 1 SSb2 SSb2 MSb2/MS Res...
bi 1 SSbi SSbi MSbi/MS Res

Residual (n-m-1) SSRes MSRes
Total (n-1) SSTotal

This slide provides a general ANOVA Summary Table layout for conducting 
an ANOVA on multiple linear regression. An overall regression model of “m”
predictors can be subdivided into the partial regression weights considered 
in the overall model. If the partial regression weights are either independent 
or are tested considering all the other beta weights are present, the 
MSResidual can be used as the error term to test the significance each beta 
weight as well as the overall regression model.
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22.2.2. Goodness of Fit (Cont'd)22.2.2. Goodness of Fit (Cont'd)22.2.2. Goodness of Fit (Cont'd)

•• Computational ConsiderationsComputational Considerations
–– Orthogonal Partial Regression WeightsOrthogonal Partial Regression Weights

–– XXii's are Independent's are Independent
–– SS for bSS for bii's are Additive's are Additive

–– NonNon--Orthogonal Partial Regression WeightsOrthogonal Partial Regression Weights
–– XXii's are Correlated's are Correlated
–– SS for bSS for bii's are 's are NOTNOT AdditiveAdditive
–– Strategies for Calculating Additional SSStrategies for Calculating Additional SS

•• Calculations by Statistical PackagesCalculations by Statistical Packages

Intercorrelation of the predictors is a major computational consideration in 
testing the significance of the partial regression weights. If the predictors are 
independent, the sum of squares for the partial regression weights are 
additive and will equal the sum of squares regression. This would occur if the 
data used to generate the multiple linear regression were drawn from a 2k

factorial design. If the partial regression weights are non-orthogonal, 
however, their partial sums of squares are not additive. Correlations among 
the predictors can greatly affect the partial regression weights when the 
regression model is based on happenstance data from observational studies 
where levels of the factors are not controlled during data collection. 
Alternative strategies for testing partial regression weights need to be 
considered in conducting t-tests and F-tests on the beta weights in order to 
consider the partial correlation effects. Consequently, statistical analysis 
packages are usually used to conduct goodness of fit significance tests in 
multiple linear regression.
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22.2.2. Goodness of Fit (Cont'd)22.2.2. Goodness of Fit (Cont'd)22.2.2. Goodness of Fit (Cont'd)

•• Coefficient of Determination, RCoefficient of Determination, R22

–– Square of Multiple Correlation Coefficient, RSquare of Multiple Correlation Coefficient, R
–– Where R = Where R = rrYYYY''

–– Percent of Variation Predicted = 100RPercent of Variation Predicted = 100R22

•• RR22 ShrinkageShrinkage
–– Multiple R Based on New Sample, YMultiple R Based on New Sample, Y22, Drops, Drops
–– Ratio of Predictors, p, to Sample Size, nRatio of Predictors, p, to Sample Size, n
–– Validation of RValidation of R

–– CrossCross--validation, R = rvalidation, R = rY(2)YY(2)Y’’(1)(1)

–– Double CrossDouble Cross--Validation ProcedureValidation Procedure

Goodness of fit can be assessed by the multiple correlation coefficient, R, 
which is the correlation of the observed score with the predicted score of the 
multiple regression equation. The coefficient of determination is equal to R2

and is the percent of variation predicted by regression when multiplied by 
100.

The percent of variation predicted by the original multiple regression model is 
usually expected to drop (shrink) when the regression model is extended to 
a new data set (Pedhazur 1982, pp. 147-150) due to unique characteristics 
in small samples. The extent of shrinkage is a function of the number of 
predictors, p, and the sample size, n, used to develop the model. In general, 
shrinkage increases as the p/n ratio increases.

Validation procedures can be used to choose the best subset of predictors in 
regression in order to reduce shrinkage and increase the validity of the 
regression equation. In cross-validation the observed values of a new 
sample of data are correlated with the predicted regression model values 
from the original sample. In double cross-validation the predicted value 
based on one sample is correlated with the observed value from a second 
sample and vice versa.
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22.2.2. Goodness of Fit (Cont'd)22.2.2. Goodness of Fit (Cont'd)22.2.2. Goodness of Fit (Cont'd)

•• Adjusted Coefficient of Determination, RAdjusted Coefficient of Determination, Radjadj
22

–– Percent of Variation Expected with ShrinkagePercent of Variation Expected with Shrinkage
–– Estimate of Shrinkage (Estimate of Shrinkage (PedhauzerPedhauzer, 1982), 1982)

RRadjadj
22 = 1 = 1 –– [1 [1 –– RR22][(n ][(n –– 1)/(n 1)/(n –– p p –– 1)1)

where, n = sample sizewhere, n = sample size
p = number of parameters including bp = number of parameters including b00

–– Estimate of Shrinkage (SAS, 2004)Estimate of Shrinkage (SAS, 2004)
RRadjadj

22 = 1 = 1 –– [1 [1 –– RR22][(n ][(n –– i)/(ni)/(n –– p)p)
where, i = 1 if model includes intercept; if not i = 0where, i = 1 if model includes intercept; if not i = 0

–– Minor Difference when n > 50Minor Difference when n > 50

Rather than conducting cross-validation studies, an adjusted Coefficient of 
Determination, Radj

2, can be used to estimate regression shrinkage. This 
estimate is based on the number of predictors, p, in the regression model, 
and the sample size, n, used to generate the multiple regression equation. 
The formulae for two such estimates are shown on this slide. The difference 
in estimates is quite small among these formulae when sample size is 
greater than 50.
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22.2.3. Multiple Regression Example22.2.3. Multiple Regression Example22.2.3. Multiple Regression Example

•• Example ProblemExample Problem: The commander: The commander’’s combat s combat 
operation performance in a battalion level operation performance in a battalion level 
command and control center for the Army is command and control center for the Army is 
scored on a 100 point scale. Scores of fifteen scored on a 100 point scale. Scores of fifteen 
battalion commanders are predicted as a battalion commanders are predicted as a 
function of four command and control tasks. function of four command and control tasks. 
The predictors are the time to complete The predictors are the time to complete 
Recognition, Decision, Communication, and, Recognition, Decision, Communication, and, 
Evaluation tasks. What is the linear Evaluation tasks. What is the linear 
relationship of these four tasks on predicting relationship of these four tasks on predicting 
the performance score? Are any of these the performance score? Are any of these 
predictors significant (p < 0.05)?predictors significant (p < 0.05)?

(Click in this red rectangle to see SAS calculations for this example.)

The example problem described on this slide uses happenstance data based 
on an observational study. The various levels of the four command and 
control tasks as measured by time to complete each subtask are merely 
observed, not controlled. The observational data of 15 commanders are then 
used to calculate a multiple linear regression model predicting the 
commanders’ performance scores on a 100 point scale.
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22.2.3. Multiple Regression Example (Cont’d)22.2.3. Multiple Regression Example (Cont22.2.3. Multiple Regression Example (Cont’’d)d)

•• Example Problem Data SetExample Problem Data Set
Recognition
Task (Rec)

Decision
Task (Dec)

Communication
Task (Com)

Performance
Score (PS)

Evaluation
Task (Eval)

56
60
59
52
51
54
60
57
58
53
63
54
58
60
55

47
49
50
55
45
58
49
50
53
57
45
53
50
50
56

59
57
64
52
55
53
57
54
56
53
54
55
58
57
50

55
53
57
54
58
60
62
53
54
56
51
50
55
55
53

76
80
86
75
66
76
90
71
77
79
83
70
76
75
73

(Click in this red rectangle to see SAS calculations for this example.)

This slide presents the hypothetical data of the time each of the 15 
commanders took to finish the Recognition, Decision, Communication, and 
Evaluation subtasks as well as their overall performance score on the 
command and control exercise.
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22.2.3. Multiple Regression Example (Cont’d)22.2.3. Multiple Regression Example (Cont22.2.3. Multiple Regression Example (Cont’’d)d)

•• Least Squares Least Squares ““NormalNormal”” EquationsEquations

•• Matrix Representation of Matrix Representation of ““NormalNormal”” EquationsEquations

15 850 767 826
850 48334 43371 46788
767 43371 39453 42247
834 47332 42552 45959

b0

b1

b2

b3

=

1153
65532
58922
64234

834
47332
42552
46528

826 46788 42247 4562845959 b4
63592

[X’X][b] = [X’Y]

nb0 + X1Σ b1 + X2Σ b2 + X3Σ b3 = YΣ
X1Σ b0 + X1

2Σ b1 + X1X2Σ b2 + X1X3Σ b3 = X1YΣ
X2Σ b0 + X2X1Σ b1 + X2

2Σ b2 + X2X3Σ b3 = X2YΣ
X3Σ b0 + X3X1Σ b1 + X3X2Σ b2 + X3

2Σ b3 = X3YΣ
= X4YΣX4Σ b0

+ X4Σ b4

+ X1X4Σ b4

+ X2X4 b4

+ X3X4Σ b4

+ X4
2Σ b4

Σ

+ X4X1Σ b1 + X4X2Σ b2 + X4X3Σ b3

(Click in this red rectangle to see SAS calculations for this example.)

The top of this slide shows the normal equations for determining the least 
squares solution to the multiple linear regression equation with four 
predictors and an intercept value. The bottom portion of this slide shows 
these normal equations in matrix notation using the data from the previous 
slide to calculate the X’X matrix and the X’Y vector using SAS (2004) as 
described in the Slater and Williges (2006) appendix.
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22.2.3. Multiple Regression Example (Cont’d)22.2.3. Multiple Regression Example (Cont22.2.3. Multiple Regression Example (Cont’’d)d)

•• Matrix Solution of Simultaneous EquationsMatrix Solution of Simultaneous Equations

•• Multiple Linear Regression EquationMultiple Linear Regression Equation

•• Coefficient of DeterminationCoefficient of Determination
–– RR22 = 0.70= 0.70

97.0109 -0.5213 -0.5603 -0.3225
-0.5213 0.0086 0.0021 0.0017
-0.5603 0.0021 0.0063 -0.0009
-0.3776 -0.0031 0.0030 -0.0030

1153
65532
58922
64234

-0.3776
-0.0031
0.0030
0.0101

-0.3225 0.0017 -0.0009 0.0080-0.0030

b0

b1

b2

b3

=

b4
63592

PS = - 85.83 + 1.40Rec + 0.48Dec + 0.29Com + 0.78EvalPS = - 85.83 + 1.40Rec + 0.48Dec + 0.29Com + 0.78Eval

[b] = [X’X]-1[X’Y]
= -85.83
= 1.40
= 0.48
= 0.29
= 0.78

(Click in this red rectangle to see SAS calculations for this example.)

The matrix solution for the multiple linear regression equation based on the 
example problem data is presented on the top of this slide and was 
calculated by SAS (2004) and described in the Slater and Williges (2006) 
appendix. The resulting multiple linear regression model predicting overall 
performance score (PS) as a function of completion times of the four 
predictor subtasks is shown in the center of this slides. This equation 
accounts for 70% of the performance variation as determined by the 
Coefficient of Determination shown at the bottom of this slide.
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22.2.3. Multiple Regression Example (Cont’d)22.2.3. Multiple Regression Example (Cont22.2.3. Multiple Regression Example (Cont’’d)d)

•• ANOVA on Multiple RegressionANOVA on Multiple Regression

Source df SS MS F
Regression (4) 370.64 92.66

13.98*bRec 1 225.21
2.27bDec 1 36.62
0.51b

bEval 1 75.91 4.71
Residual 10 161.09
Total 14 531.73

Com 8.28

225.21
36.62

75.91
16.11

8.28

5.75*

1

*p < 0.05

(Click in this red rectangle to see SAS calculations for this example.)

The Summary Table for the ANOVA on regression is shown on this slide. 
The overall multiple linear regression model with four predictors is significant 
at the 0.05 level. Of the four predictors, however, only the target recognition 
subtask is a significant (p < 0.05) predictor of a commander’s command and 
control performance score. Note that the total of the sum of squares of the 
four partial regression weights is 346.02 and does not equal the sum of 
squares of regression (370.64) due to the covariance among the four 
predictors resulting from the happenstance data.

The F-tests on these partial regression weights is based on Type III SS 
calculated by SAS (2004) to test the unique contribution of each beta weight 
given that the other three beta weights exist in the model. These F-tests 
provide the same results as the square of the t-tests of significance on each 
partial regression weight as described in the Slater and Williges (2006) 
appendix.



Human Factors Experimental Design and Analysis Reference

737

22.2.4. Best Regression Equation22.2.4. Best Regression Equation22.2.4. Best Regression Equation

•• DilemmaDilemma
–– More Predictors, Better the FitMore Predictors, Better the Fit
–– More Predictors, Lower Reliability/StabilityMore Predictors, Lower Reliability/Stability

•• ApproachApproach
–– Select a Subset of X'sSelect a Subset of X's
–– Most Useful With Correlated X'sMost Useful With Correlated X's
–– Happenstance DataHappenstance Data

•• ProceduresProcedures
–– Classical Regression Selection ProceduresClassical Regression Selection Procedures

–– Backward SelectionBackward Selection
–– Forward SelectionForward Selection
–– Stepwise SelectionStepwise Selection

–– Modern Regression Criteria for All Possible RegressionsModern Regression Criteria for All Possible Regressions
–– RR22 and Rand R22

AdjAdj
–– PRESS StatisticPRESS Statistic
–– Mallows Mallows C(pC(p))

A linear regression model that includes all predictors investigated may not be 
the best model in terms of reliability and validity. Choosing the appropriate 
number of predictors to use in a final multiple linear regression model is a 
complicated task. As more predictors are added to a multiple regression, the 
percent of variation predicted increases. At the same time, the shrinkage 
increases and validity of the multiple regression decreases as the number of 
predictors increase. When happenstance data are used, the parameters are 
often correlated and the covariance among predictors also needs to be 
considered in choosing the best regression equation. Consequently, the 
experiment must choose the best subset of parameters to use in the multiple 
linear regression equation.

In this sub-section, several regression procedures are presented that can be
used to choose the best multiple linear regression equation. Classical 
regression techniques refer to backward, forward, and stepwise selection 
procedures. Modern regression procedures consider all possible regression 
equations and evaluate them in terms of tradeoffs using statistics such as 
the Adjusted Coefficient of Determination, R2

Adj, the PRESS statistic, and 
Mallows C(p) value.
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22.2.4. Best Regression Equation (Cont’d)22.2.4. Best Regression Equation (Cont22.2.4. Best Regression Equation (Cont’’d)d)

•• 22.2.4.1. Backward Selection22.2.4.1. Backward Selection
•• 22.2.4.2. Forward Selection22.2.4.2. Forward Selection
•• 22.2.4.3. Stepwise Selection22.2.4.3. Stepwise Selection
•• 22.2.4.4. All Possible Regressions22.2.4.4. All Possible Regressions

The backward, forward, and stepwise selection procedures and modern 
regression statistics for evaluating all possible regression equations are 
described in the following slides as alternatives for choosing the best 
possible multiple linear regression equation.
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22.2.4.1. Backward Selection22.2.4.1. Backward Selection22.2.4.1. Backward Selection

•• ApproachApproach
–– Calculate regression with all X'sCalculate regression with all X's
–– Conduct partial FConduct partial F--test on each variable test on each variable 

assuming it was last entered.assuming it was last entered.
–– Compare lowest FCompare lowest F--ratio, FL, to a preratio, FL, to a pre--selected selected 

level of significance, Flevel of significance, F00. Eliminate X if F. Eliminate X if FLL < F< F00..
–– Repeat steps 1Repeat steps 1--3 until F3 until FLL > F> F00. Accept regression . Accept regression 

equation at this point.equation at this point.

•• EvaluationEvaluation
–– Good procedure if interested in seeing Good procedure if interested in seeing 

regression equation with all predictors.regression equation with all predictors.
–– For a near singular X'X matrix, rounding errors For a near singular X'X matrix, rounding errors 

can give nonsense results.can give nonsense results.

The backward selection procedure begins with a multiple linear regression 
that includes all possible predictors and then conducts partial F-tests to 
remove one predictor at a time until only significant predictors remain in the 
regression equation. The calculations used with this procedure are 
summarized on the slide.

Backward selection is a useful technique if the experimenter wants to begin 
with a regression equation that includes all of the predictors. When two 
predictors have close to zero correlation, however, rounding errors can 
cause spurious results.
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22.2.4.2. Forward Selection22.2.4.2. Forward Selection22.2.4.2. Forward Selection

•• ApproachApproach
–– Opposite of Backward Elimination Procedure.Opposite of Backward Elimination Procedure.
–– Select X most highly correlated with Y and Select X most highly correlated with Y and 

calculate simple regression.calculate simple regression.
–– Determine partial correlation on remaining X's and Determine partial correlation on remaining X's and 

add the X with the highest correlation.add the X with the highest correlation.
–– Conduct partial FConduct partial F--test on the last X added to test on the last X added to 

determine if it accounts for a significant amount of determine if it accounts for a significant amount of 
variance.variance.

–– Terminate when partial FTerminate when partial F--test is not significant.test is not significant.
•• EvaluationEvaluation

–– Fairly economical.Fairly economical.
–– Avoids working with many X's at early stages of Avoids working with many X's at early stages of 

selection.selection.
–– Does not evaluate the effect a new X has on Does not evaluate the effect a new X has on 

previously entered X's.previously entered X's.

The forward selection procedure is the opposite of backward selection in that 
it begins with only the highest predictor correlated with performance in the 
regression equation and then adds one additional predictor at a time to the 
multiple linear regression equation. The specific procedural steps and partial 
F-tests associated with forward selection are summarized on this slide.

Forward selection is economical because it begins with a simple regression 
equation and then progresses to more complex multiple linear regression 
equations. When a new predictor is added, however, the effect of this 
predictor effect on previously entered predictors is not evaluated. Depending 
on the covariance among predictors, some previously added predictors may 
no longer contribute significantly to the multiple linear regression equation 
when used in combination with the newly added predictors.
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22.2.4.3. Stepwise Selection22.2.4.3. Stepwise Selection22.2.4.3. Stepwise Selection

•• ApproachApproach
–– Improved version of Forward Elimination Improved version of Forward Elimination 

Procedure.Procedure.
–– ReRe--evaluates all X's at each stage of addition.evaluates all X's at each stage of addition.
–– At each stage partial FAt each stage partial F--tests are conducted on tests are conducted on 

each X.each X.
–– NonsignificantNonsignificant X's are removed.X's are removed.
–– Continue until no X's are added or subtracted.Continue until no X's are added or subtracted.

•• EvaluationEvaluation
–– Well accepted procedure.Well accepted procedure.
–– Take care in evaluating residuals and Take care in evaluating residuals and 

intercorrelationsintercorrelations..
–– Most popular classical procedureMost popular classical procedure

The stepwise selection procedure is a variation of forward selection in which 
all predictors are evaluated at each selection stage. This procedure allows 
for both the addition and elimination of predictors to the multiple regression 
equation as described in the process summarized on this slide.

Stepwise selection is often the classical regression procedure of choice 
because it refines forward selection and also allows backward selection. One 
strategy is to use all three classical regression procedures and select the 
consensus result as the best multiple linear regression equation.
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22.2.4.4. All Possible Regressions22.2.4.4. All Possible Regressions22.2.4.4. All Possible Regressions

•• ApproachApproach
–– Calculate all possible regressions in which each Calculate all possible regressions in which each 

X appears or does not appearX appears or does not appear
–– Divide equations by number of predictorsDivide equations by number of predictors
–– Order by ROrder by R22 within each groupwithin each group
–– Examine pattern of candidate equations with Examine pattern of candidate equations with 

highest Rhighest R22 using Rusing R22
AdjAdj, PRESS, and Mallows , PRESS, and Mallows C(pC(p))

•• EvaluationEvaluation
–– Cumbersome as number of X's increaseCumbersome as number of X's increase

10 X's = (210 X's = (21010--1) = 1,023 Regression Equations1) = 1,023 Regression Equations
–– Feasible only with computer analysisFeasible only with computer analysis
–– Uses modern regression mathematical criteriaUses modern regression mathematical criteria

Modern regression procedures are based on conducting all possible multiple 
linear regression equations on the predictors and evaluating them using 
various statistical criteria. Usually the possible regression equations are 
grouped by the number of predictors and ordered by the Coefficient of 
Determination, R2. Candidate equations with high R2 in each group are then 
compared in terms of statistical criteria such as Radj

2, PRESS, and Mallows 
C(p) goodness of fit statistics as defined in previous slides.

This selection approach can become quite cumbersome without 
computerized statistical analysis packages. For example, if ten predictors 
are considered, there are 1,023 possible multiple linear regression equations 
to consider as the best regression equation.
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22.2.4.4. All Possible Regressions (Cont'd)22.2.4.4. All Possible Regressions (Cont'd)22.2.4.4. All Possible Regressions (Cont'd)

•• Predicted Residual SS (PRESS) StatisticPredicted Residual SS (PRESS) Statistic
–– Analysis of Model ValidationAnalysis of Model Validation
–– One Observation is Removed and New Regression One Observation is Removed and New Regression 

Model Calculated Based on nModel Calculated Based on n--1 Observations1 Observations
–– Replace and Iterative Elimination of Next ObservationReplace and Iterative Elimination of Next Observation
–– PRESS StatisticPRESS Statistic

PRESS = ∑(Yi – Ŷip)2

where i = the eliminated observation in a 
regression model with p predictors

–– Use of PRESS StatisticUse of PRESS Statistic
–– Detailed Analysis of Data Points for OutliersDetailed Analysis of Data Points for Outliers
–– Mathematical Criterion for Choosing Best Mathematical Criterion for Choosing Best 

Regression with Lowest PRESS Statistic Regression with Lowest PRESS Statistic 

Metrics can be used to evaluate the goodness of fit of multiple linear 
regression when all possible regression equations are considered. One 
useful metric that is based directly on model validation is the PRESS statistic 
as described by Draper and Smith (1988, p. 325-326) and Myers (1991, pp. 
170-178). The formula for the PRESS statistic is shown on the center of this 
slide and is based on the iterative elimination of one observation at a time in 
calculating a new regression equation using n-1 observations. The resulting 
PRESS statistic can be used to isolate data points that might be outliers in 
generating the regression model and can be used to choose the best 
regression model yielding the lowest PRESS value.
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22.2.4.4. All Possible Regressions (Cont'd)22.2.4.4. All Possible Regressions (Cont'd)22.2.4.4. All Possible Regressions (Cont'd)

•• Mallows Mallows C(pC(p))
–– Analysis of Residual MS for OverAnalysis of Residual MS for Over--FittingFitting
–– C(pC(p) Statistic) Statistic

C(p) = RSSp/s2 - (n – 2p)
where RSSp = Residual SS for all predictors

s2 = Residual SS for model of p predictors
n = number of observations
p = number of predictors in model 

including the intercept, b0
–– Minimum Minimum C(pC(p) = p) = p
–– Use of Use of C(pC(p) Statistic) Statistic

–– Analysis of ShrinkageAnalysis of Shrinkage
–– Mathematical Criterion for Choosing Best Mathematical Criterion for Choosing Best 

Regression with Regression with C(pC(p) First Approaches p) First Approaches p

Mallows C(p) statistic is another useful modern regression procedure for 
estimating regression model shrinkage due to over-fitting the number of 
predictors (Draper and Smith, 1988, p. 298-302). The formula for Mallows 
C(p) provided by Draper and Smith (1988, p.299) shown on the middle
portion of this slide is based on the residual sum of squares when all 
predictors are included in the regression model. The C(p) statistic describes 
the overall discrepancy (i.e. variance error and bias error) in a regression 
model. The value of Mallows C(p) that first approaches p, derived by 
changing the number of predictors, can be used to choose the best 
regression model.
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22.2.5. Best Equation Example22.2.5. Best Equation Example22.2.5. Best Equation Example

•• Example ProblemExample Problem: The commander: The commander’’s combat s combat 
operation performance in a battalion level operation performance in a battalion level 
command and control center for the Army is command and control center for the Army is 
scored on a 100 point scale. Scores of fifteen scored on a 100 point scale. Scores of fifteen 
battalion commanders are predicted as a battalion commanders are predicted as a 
function of four command and control tasks. function of four command and control tasks. 
The predictors are the time to complete The predictors are the time to complete 
Recognition, Decision, Communication, and, Recognition, Decision, Communication, and, 
Evaluation tasks. What is the best set of Evaluation tasks. What is the best set of 
significant linear predictors to use in the significant linear predictors to use in the 
prediction equation (p < 0.05)? prediction equation (p < 0.05)? 

(Click in this red rectangle to see SAS calculations for this example.)

This is the same example problem based on happenstance data used
previously in the multiple linear regression example. Rather than providing 
the multiple linear regression that includes all four predictors, this problem 
asks for the best possible set of the four predictors taking into account the 
possible covariance among predictors. See Slater and Williges (2006) for the 
SAS analyses related to this example problem.
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22.2.5. Best Equation Example (Cont’d)22.2.5. Best Equation Example (Cont22.2.5. Best Equation Example (Cont’’d)d)

•• Summary of Backward Selection ProcedureSummary of Backward Selection Procedure

Step
1
2

Predictor
Deleted

Com
Dec

Predictors
In Model

3
2

Lowest F
(p>.05)

0.51
1.87

Model
R2

0.68
0.63

Best Equation: PS = - 42.42 + 1.26Rec + 0.87Eval 

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the results of using the backward selection procedure for 
choosing the best regression equation to predict a commander’s overall 
performance score. The first predictor eliminated was the Communication 
subtask predictor, and the second predictor eliminated was the Decision 
subtask predictor. No additional predictors were deleted. Consequently, the 
best regression equation chosen by backward selection has two significant 
predictors (p < 0.05), the time to complete the Recognition and the 
Evaluation subtasks. The resulting multiple linear regression equation with 
least squares beta weight values is shown at the bottom of this slide.
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22.2.5. Best Equation Example (Cont’d)22.2.5. Best Equation Example (Cont22.2.5. Best Equation Example (Cont’’d)d)

•• Summary of Forward Selection ProcedureSummary of Forward Selection Procedure

Step
1
2

Predictor
Entered

Rec
Eval

Predictors
In Model

1
2

Highest F
(p < 0.05)

9.76
6.39

Model
R2

0.43
0.63

Best Equation: PS = - 42.42 + 1.26Rec + 0.87Eval 

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the results of using the forward selection procedure for 
choosing the best regression equation to predict a commander’s overall 
performance score. The first predictor added was the Recognition subtask 
predictor, and the second predictor added was the Evaluation subtask 
predictor. No additional predictors were added. Consequently, the best 
regression equation chosen by forward selection has two significant 
predictors (p < 0.05), the time to complete the Recognition and the 
Evaluation subtasks. The resulting multiple linear regression equation with 
least squares beta weight values is shown at the bottom of this slide.
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22.2.5. Best Equation Example (Cont’d)22.2.5. Best Equation Example (Cont22.2.5. Best Equation Example (Cont’’d)d)

•• Summary of Stepwise Selection ProcedureSummary of Stepwise Selection Procedure

Step
1
2

Predictor
Entered

Rec
Eval

Predictors
In Model

1
2

Highest F
(p < 0.05)

9.76
6.39

Model
R2

0.43
0.63

Best Equation: PS = - 42.42 + 1.26Rec + 0.87Eval 

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the results of using the stepwise selection procedure for 
choosing the best regression equation to predict a commander’s overall 
performance score. The first predictor added was the Recognition subtask 
predictor, and the second predictor added was the Evaluation subtask 
predictor. No additional predictors were added or deleted. Consequently, the 
best regression equation chosen by stepwise selection has two significant 
predictors (p < 0.05), the time to complete the Recognition and the 
Evaluation subtasks. The resulting multiple linear regression equation with 
least squares beta weight values is shown at the bottom of this slide.
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22.2.5. Best Equation Example (Cont’d)22.2.5. Best Equation Example (Cont22.2.5. Best Equation Example (Cont’’d)d)

•• Summary of All Possible Regression EquationsSummary of All Possible Regression Equations
Predictors in Model R-Square Variables in Model

1       0.42* Rec
1       0.19 Com
1       0.13 Eval
1      0.01 Dec
2      0.62* Rec Eval
2      0.48 Rec Dec
2      0.46 Rec Com
2      0.27 Com Eval
2       0.21 Dec Com
2       0.15 Dec Eval
3       0.68* Rec Dec Eval
3       0.63 Rec Com Eval
3       0.55 Rec DeC Com
3       0.27 Dec Com Eval
4       0.70** Rec Dec Com Eval

*Candidate Equations within Group of Predictors
**Best Equation: PS = - 85.83 + 1.40Rec + 0.48Dec + 0.30Com + 0.78Eval

(Click in this red rectangle to see SAS calculations for this example.)

The 15 possible regression equations are grouped by one, two, three, and 
four predictors on this slide. The regression equations within each grouping 
are ordered by R2. An asterisk denotes the candidate regression equations 
with the highest R2 value in each grouping. Note that the overall highest R2 is 
0.70 for the regression equation with four predictors. This would be chosen 
as the best equation on the basis of R2 and is the same as the multiple linear 
regression equation in the previous example. But, only the Recognition 
subtask predictor is a significant predictor (p < 0.05) in this equation. 
Consequently, other candidate regression equations need to be evaluated by 
modern regression criteria to determine the best equation.
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22.2.5. Best Equation Example (Cont’d)22.2.5. Best Equation Example (Cont22.2.5. Best Equation Example (Cont’’d)d)

•• PRESS Statistic Evaluation of All PRESS Statistic Evaluation of All 
Regression Candidates for Best EquationRegression Candidates for Best Equation

Predictor
Entered

Rec
Rec Eval

Rec Dec Eval
Re Dec Com Eval

Predictors
In Model

1
2
3
4

PRESS
Statistic
404.53
326.64*
413.81
504.76

Model
R2

0.43
0.63
0.68
0.70

*Best Equation: PS = - 42.42 + 1.26Rec + 0.87Eval 

Adjusted
R2

0.38
0.57
0.59
0.58

(Click in this red rectangle to see SAS calculations for this example.)

Further evaluations of the four candidate regression equations with the 
highest R2 within each predictor grouping are shown on this slide in terms of 
the Radj

2 and the PRESS statistic. Note that the regression equations with 
two, three, and four predictors have essentially the same adjusted R2 value 
(0.57. 0.58, and 0.59, respectively). But, the regression equation including 
the two predictors, time to complete the Recognition and Evaluation 
subtasks, resulted in the lowest PRESS statistic (326.64). Consequently the 
best regression equation based on the Radj

2 and the PRESS statistic is the 
equation shown on the bottom of this slide.
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22.2.5. Best Equation Example (Cont’d)22.2.5. Best Equation Example (Cont22.2.5. Best Equation Example (Cont’’d)d)

•• Mallows Mallows C(pC(p) Evaluation of All Regression ) Evaluation of All Regression 
Candidates for Best EquationCandidates for Best Equation

Predictor
Entered

Rec
Rec Eval

Rec Dec Eval
Re Dec Com Eval

Predictors
In Model

1
2
3
4

Mallows
C(p)
7.85
3.30*
3.51
5.00

Model
R2

0.43
0.63
0.68
0.70

*Best Equation: PS = - 42.42 + 1.26Rec + 0.87Eval 

Adjusted
R2

0.38
0.57
0.59
0.58

(Click in this red rectangle to see SAS calculations for this example.)

Further evaluations of the four candidate regression equations with the 
highest R2 within each predictor grouping are shown on this slide in terms of 
the Radj

2 and the Mallows C(p) criteria. As noted on the previous slide, the 
regression equations with two, three, and four predictors have essentially the 
same adjusted R2 value (0.57. 0.58, and 0.59, respectively). But, the 
regression equation including the two predictors, time to complete the 
Recognition and Evaluation subtasks, resulted in the Mallows C(p) value 
(3.30) first approaching p. Consequently, the best regression equation based 
on the Radj

2 and the Mallows C(p) statistic is the equation shown on the 
bottom of this slide.
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22.2.5. Best Equation Example (Cont’d)22.2.5. Best Equation Example (Cont22.2.5. Best Equation Example (Cont’’d)d)

•• Tradeoff of All Procedures and CriteriaTradeoff of All Procedures and Criteria
–– Same Result for All Classical Selection ProceduresSame Result for All Classical Selection Procedures
–– High RHigh R22 of Candidate Equations in All Regressionsof Candidate Equations in All Regressions
–– Low Shrinkage in RLow Shrinkage in R22

AdjAdj of Candidate Regressionsof Candidate Regressions
–– Lowest PRESS Statistic of Candidate RegressionsLowest PRESS Statistic of Candidate Regressions
–– Lowest Mallows Lowest Mallows C(pC(p) of Candidate Regressions) of Candidate Regressions

•• Best Regression Equation SelectedBest Regression Equation Selected

Mallows
C(p)
3.30

Model
R2

0.63

Best Equation: PS = - 42.42 + 1.26Rec + 0.87Eval 

Adjusted
R2

0.57

PRESS
Statistic
326.64

(Click in this red rectangle to see SAS calculations for this example.)

In summary, there are a variety of procedures and criteria that can be 
considered in choosing the best set of predictors to include in the multiple 
linear regression equation. Based on a tradeoff of these techniques, the best 
regression equation for this example problem is the two predictor equation 
shown at the bottom of this slide. All the classical selection procedures result 
in this equation. Based on an evaluation of candidate equations resulting 
from all possible regression equations including one to four predictors this 
two predictor regression equation has the lowest PRESS statistic, the 
Mallows C(p) value that first approaches p, a high Coefficient of 
Determination (0.63), and a low estimated shrinkage in the Coefficient of 
Determination (0.57). Consequently, the best regression equation for 
predicting a commander’s overall performance score is the one with the two 
significant predictors (p < 0.05), the time to complete the Recognition and 
the time to complete the Evaluation subtasks.
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22.3. Second-Order Polynomial Regression22.3. Second22.3. Second--Order Polynomial RegressionOrder Polynomial Regression

•• Interest in SecondInterest in Second--Order ModelsOrder Models
–– Interest in Linear and Quadratic Components of Interest in Linear and Quadratic Components of 

Main EffectsMain Effects
–– LinearLinear--byby--Linear Component of TwoLinear Component of Two--Way Way 

InteractionsInteractions
–– Discuss SecondDiscuss Second--Order Empirical ModelsOrder Empirical Models

•• SecondSecond--Order Polynomial RegressionOrder Polynomial Regression
–– Population ModelPopulation Model

–– SecondSecond--Order Polynomial Regression ExampleOrder Polynomial Regression Example

Y' =  b 0 + b1X1 + b2X2 + b3X3 
+ b7X1X2 + b8X1X3 + b9X2X3 

+ b4X21 + b5X22 
+ b6X23

ε+∑+∑β+∑β+β=Ν ++ ji1k2
2
i1kii0 xxBxx

In human factors research, a polynomial expression is a convenient way to 
represent a variety of underlying relationships and can form the basis of 
empirical models to predict human performance in complex systems. Usually 
only first-order and second-order empirical models are used because they 
cover most human behavior effects. Consequently, the human factors 
researcher should plan to collect enough data to generate up to a complete 
second-order polynomial empirical model plus some extra data to test model 
lack of fit due to the existence of higher-order effects.

The general form of a complete second-order polynomial regression model is 
shown on the bottom portion of this slide. The population model shows the 
linear, pure quadratic, and linear-by-linear effects of predictors. An example 
of a complete second-order polynomial regression which includes three 
factors is shown at the bottom of this slide.
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22.3. Second-Order Polynomial Regression (Cont’d)22.3. Second22.3. Second--Order Polynomial Regression (ContOrder Polynomial Regression (Cont’’d)d)

•• 22.3.1. Polynomial Regression Computations22.3.1. Polynomial Regression Computations
•• 22.3.2. Polynomial Regression Example22.3.2. Polynomial Regression Example

This subsection describes the general procedures for computing a second-
order polynomial regression and provides an example of conducting 
polynomial regression using data from a 2x3 factorial ANOVA design.



Human Factors Experimental Design and Analysis Reference

755

22.3.1. Polynomial Regression Computations22.3.1. Polynomial Regression Computations22.3.1. Polynomial Regression Computations

•• Multiple Regression CalculationsMultiple Regression Calculations
–– FirstFirst--Order PolynomialOrder Polynomial

–– Just Multiple Linear RegressionJust Multiple Linear Regression
–– HigherHigher--Order PolynomialsOrder Polynomials

–– Multiply or square X's to form appropriate valueMultiply or square X's to form appropriate value

–– Partial regression weights are not additive for all Partial regression weights are not additive for all 
secondsecond--order effectsorder effects

•• ANOVA on Polynomial RegressionANOVA on Polynomial Regression
–– Same Procedure as Multiple RegressionSame Procedure as Multiple Regression
–– Can Often Separate Effects of Can Often Separate Effects of SSSSResidualResidual

X4 = X1X2

X7 = X21

Two general analyses are conducted in polynomial regression using 
computerized statistical packages. First, the multiple regression analysis is 
conducted to determine the line of best fit. First-order polynomial regression 
analysis is the same as multiple linear regression analysis covered in the 
previous section. Higher-order polynomial regression analysis uses multiple 
linear regression analysis, but the Xs forming the higher-order terms are 
multiplied together or squared first in order to generate the X term used in 
the multiple linear regression as shown in the middle portion of this slide.

Second, an ANOVA is conducted on the polynomial regression to determine 
the goodness of fit. This procedure is the same as used in multiple linear 
regression demonstrated in the previous section. Often it is possible to 
separate the SSResidual into error and lack of fit for testing higher-order effects 
not included in the polynomial regression model. In SAS, for example, the 
response surface regression procedure can be used to test the goodness of 
fit of first-order and second-order effects and lack of fit in second-order 
polynomial regression models. 
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22.3.2. Polynomial Regression Example22.3.2. Polynomial Regression Example22.3.2. Polynomial Regression Example

•• Example ProblemExample Problem: A between: A between--subjects subjects 
experiment (n = 4) was conducted to build experiment (n = 4) was conducted to build 
an empirical model of soldier percent an empirical model of soldier percent 
reading comprehension of text presented on reading comprehension of text presented on 
computer displays as a function of possible computer displays as a function of possible 
firstfirst-- and secondand second--order effects involving two order effects involving two 
different sizes of computer monitors (17 and different sizes of computer monitors (17 and 
21 inch) and three different font sizes (12, 21 inch) and three different font sizes (12, 
16, and 18 point). What is the resulting 16, and 18 point). What is the resulting 
secondsecond--order model and were any firstorder model and were any first-- and and 
secondsecond--order parameters significant order parameters significant 
predictors (p < 0.01)?predictors (p < 0.01)?

(Click in this red rectangle to see SAS calculations for this example.)

This example problem is a between-subjects 2x3 factorial design that 
provides the data to generate the second-order polynomial regression model 
to predict percent reading comprehension as a function of two predictors, 
computer monitor size and font size. The SAS programs and descriptions of 
the computer analyses of this example problem are provided in the Slater 
and Williges (2006) appendix.
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22.3.2. Polynomial Regression Example (Cont’d)22.3.2. Polynomial Regression Example (Cont22.3.2. Polynomial Regression Example (Cont’’d)d)

•• Data Matrix for 2x3 Design ExampleData Matrix for 2x3 Design Example

Font Size (F)

12 Point 16 Point 18 Point
35 39 47
42 44 4617 Inch
39 38 50
40 45 44Monitor

Size (M)
50 49 46
47 52 5021 Inch 49 54 49
52 48 47

MF11 = 39.00 MF12 = 41.50 MF13 = 46.75

MF21 = 49.50

M1 = 42.42

M2 = 49.42

MF22 = 50.75 MF23 = 48.00

F1 = 44.25 F2 = 46.13 F3 = 47.38

(Click in this red rectangle to see SAS calculations for this example.)

This page provides the hypothetical data from the 2x3 factorial design 
described on the previous slide based on a sample size of four observations. 
The means for the two main effects and the two-way interaction are also 
listed on the slide.
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22.3.2. Polynomial Regression Example (Cont’d)22.3.2. Polynomial Regression Example (Cont22.3.2. Polynomial Regression Example (Cont’’d)d)

•• ANOVA Summary Table for 2x3 Design ExampleANOVA Summary Table for 2x3 Design Example
_______________________________________________________

Source df SS MS F
_______________________________________________________

Monitor (M) 1 294.00 294.00 41.53 **

Font (F) 2 39.58 19.79 2.80

MxF 2 100.75 50.38 7.12 *

Subjects/MF 18 127.50 7.08
___             ______

Total 23 561.83
_______________________________________________________

*p < 0.01 **p < 0.0001

(Click in this red rectangle to see SAS calculations for this example.)

This slide provides the ANOVA Summary Table of the between-subjects 2x3 
factorial design showing that both the main effect of computer monitor size 
and the monitor size by font size interaction are significant at the 0.01 level 
at least. The means for these effects are shown on the previous slide. As 
expected, mean percent reading comprehension was greater using the 21”
computer monitor (49.42) than when using the 17” computer monitor (42.42). 
Additional post hoc analyses are required to isolate the significant two-way 
interaction.



Human Factors Experimental Design and Analysis Reference

759

22.3.2. Polynomial Regression Example (Cont’d)22.3.2. Polynomial Regression Example (Cont22.3.2. Polynomial Regression Example (Cont’’d)d)

Source df

Linear (First-Order)

Quadratic (Second-Order)

Font (F) 2
(F) (1)
(F2) (1)

MxF 2
(MF) (1)
(MF2) (1)

Monitor (F) 1
(M) (1)

Component

Linear (First-Order)

Linear x Linear (Second-Order)
Linear x Quadratic (Third-Order)

•• Five Beta Weight Components in the 2x3 Five Beta Weight Components in the 2x3 
Design ExampleDesign Example

(Click in this red rectangle to see SAS calculations for this example.)

This example problem asks for the second-order empirical model that 
predicts percent reading comprehension as a function of computer display 
size and font size rather than the significant effects in the 2x3 factorial 
design. In order to develop a polynomial regression empirical model, the 
experimenter must first determine the various one degree of freedom beta 
weights that are present in the 2x3 factorial design data set.

The breakdown of the five possible beta weights is shown on this slide for 
the example 2x3 factorial design. Note that there are two first-order effects 
(M and F), two second-order effects (F2 and MF) and one third-order effect 
(MF2) in this 2x3 factorial design data set that can be used as predictors in 
the polynomial regression empirical model.
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22.3.2. Polynomial Regression Example (Cont’d)22.3.2. Polynomial Regression Example (Cont22.3.2. Polynomial Regression Example (Cont’’d)d)

•• Complete Empirical Model for the 2x3 Complete Empirical Model for the 2x3 
Design ExampleDesign Example

P = 536.43 – 25.94M – 80.52F + 2.95F2 + 4.22MF
– 0.15MF2

where, P = Percent Reading Comprehension
M = Monitor Size
F = Font Size

•• Coefficient of DeterminationCoefficient of Determination
–– RR22 = 0.77= 0.77

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the polynomial regression equation that includes all five 1 df
beta weights that can be fit using the 2x3 factorial design data. Seventy-
seven percent of the variation in the data can be accounted for by this 
empirical model.
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22.3.2. Polynomial Regression Example (Cont’d)22.3.2. Polynomial Regression Example (Cont22.3.2. Polynomial Regression Example (Cont’’d)d)

•• Regression ANOVA on the Complete Regression ANOVA on the Complete 
Empirical Model for the 2x3 Design ExampleEmpirical Model for the 2x3 Design Example

Source df SS MS F

M 1 294.00 294.00 41.53 **

F 1 39.36 39.36 5.56

F2 1 0.22 0.22 0.03

Regression Error (S/MF) 18 127.50 7.08

Total 23 561.83

*p < 0.01 **p < 0.0001

Regression Model (5) (434.33) (86.87)

MF 1 69.67 69.67 9.84 *

MF2 1 31.08 31.08 4.39

(12.27)**

(Click in this red rectangle to see SAS calculations for this example.)

This slide presents the ANOVA Summary Table for testing the significance 
of the overall regression model and each of the partial regression weights for 
the empirical model shown on the previous slide. The partial F-test on each 
beta weight assumes all the other predictors in the regression model are 
present. Consequently, the total of the sum of squares for all the partial 
regression weights equals the sum of squares of the regression model 
(434.33).

Regression error is used as the error term for each F-test. Since this is a 
complete model, the sum of squares due to regression error is the same as 
the sum of squares for S/MF used in the ANOVA of the 2x3 factorial design 
summarized in a previous slide. Note that the overall model, and the linear 
effect of monitor size (M), and the linear-by-linear component of the display 
size-by-font size interaction (MF) are significant predictors of percent reading 
comprehension at the 0.01 level of significance.
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22.3.2. Polynomial Regression Example (Cont’d)22.3.2. Polynomial Regression Example (Cont22.3.2. Polynomial Regression Example (Cont’’d)d)

•• SecondSecond--Order Empirical Model for the 2x3 Order Empirical Model for the 2x3 
Design ExampleDesign Example

P = – 89.12 + 6.99M + 6.23F + 0.03F2 – 0.34MF
where, P = Percent Reading Comprehension

M = Monitor Size
F = Font Size

•• Coefficient of DeterminationCoefficient of Determination
–– RR22 = 0.72= 0.72

(Click in this red rectangle to see SAS calculations for this example.)

The example problem asked for the second-order empirical model, not the 
complete model that could be determined by the 2x3 factorial design data. 
The requested second-order polynomial regression equation is shown on 
this slide. Note that it does not include the third-order partial regression 
weight due to the linear-by-quadratic component (MF2) of the two-way 
interaction of monitor size and font size. Only 72% of the variation is 
accounted for by this empirical model as compared to 77% of the variation 
accounted for by the complete polynomial equation shown on a previous 
slide.
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22.3.2. Polynomial Regression Example (Cont’d)22.3.2. Polynomial Regression Example (Cont22.3.2. Polynomial Regression Example (Cont’’d)d)

•• Regression ANOVA on the SecondRegression ANOVA on the Second--Order Order 
Empirical Model for the 2x3 Design ExampleEmpirical Model for the 2x3 Design Example

Source df SS MS F

M 1 294.00 294.00 35.21 **

F 1 39.36 39.36 4.71

F2 1 0.22 0.22 0.03

Regression Error (19) (158.58) (8.35)

Total 23 561.83

Regression Model (4) (403.25) (100.81)

MF 1 69.67 69.67 8.34 *

Refined Error (S/MF) 18 127.50 7.08
Lack of Fit (MF2) 1 31.08 31.08 4.39

(12.08) **

*p < 0.01 **p < 0.0001

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the ANOVA Summary Table for testing the significance of 
the overall regression model and each of the partial regression weights for 
the empirical model shown on the previous slide. The partial F-test on each 
beta weight assumes all the other predictors in the regression model are 
present. Therefore, the total of the sum of squares for all the four partial 
regression weights equals the sum of squares of the regression model 
(403.25). The fifth partial regression weight, MF2, is not included in the 
regression, but is listed as Lack of Fit (LOF) under error. Consequently, 
regression error is pooled and equals LOF plus the error used in the 
complete model (S/MF).

The pooled regression error is used as the error term for each F-test in the 
empirical model since LOF was not significant (p>0.01) when tested by 
Refined Error. Alternatively, the Refined Error could be used as the error 
term for all F-tests and would provide the F-ratios used in the complete 
model. Note that the overall model, the linear effect of monitor size (M), and 
the linear-by-linear component (MF) of the display size-by-font size 
interaction are significant predictors of percent reading comprehension at the 
0.01 level of significance.
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22.4. Summary22.4. Summary22.4. Summary

•• Empirical ModelsEmpirical Models
–– Happenstance DataHappenstance Data
–– Experimental Design DataExperimental Design Data

•• Multiple RegressionMultiple Regression
–– Polynomial RegressionPolynomial Regression

–– FirstFirst--Order Multiple Linear RegressionOrder Multiple Linear Regression
–– SecondSecond--Order Polynomial RegressionOrder Polynomial Regression

–– Best EquationBest Equation
–– Goodness of FitGoodness of Fit
–– Lack of FitLack of Fit

By way of summary, empirical models including multiple predictors can be 
generated through multiple regression by using either happenstance or 
experimental design data. Experiments provide more control and are more 
efficient in collecting data for empirical models in human factors.

Polynomial regression is the general form of multiple regression that can 
include both linear effects and higher-order effects. Polynomial regression 
analysis includes procedures for determining both the line of best fit and the 
goodness of fit of the regression equation. Multiple linear regression is the 
same as a first-order polynomial regression and uses the least squares 
criterion for determining the line of best fit. For most human factors 
applications, first- and second-order polynomials account for most aspects of 
human performance in complex systems.

Both classical and modern regression procedures can be used to determine 
the best multiple regression equation when the predictors are correlated as 
often occurs with happenstance data. Various statistics such as R2, RAdj

2, 
PRESS, and Mallows C(p), as well as tests of significance of both the 
regression model and the partial regression weights, are used to evaluate 
the goodness of fit of the multiple regression. Evaluation of regression lack 
of fit can be used to determine the possible need for higher-order effects in 
the empirical model.
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22.5. Supplemental Readings22.5. Supplemental Readings22.5. Supplemental Readings

REFERENCEREFERENCE
Box and Draper (1987)Box and Draper (1987)
Draper and Smith (1981)Draper and Smith (1981)
Montgomery (2005)Montgomery (2005)
Myers (1990)Myers (1990)
Myers & Montgomery (2002)Myers & Montgomery (2002)
WinerWiner, Brown, & , Brown, & MichelsMichels (1991)(1991)

SECTIONSECTION
Chapters 2Chapters 2--33
Chapters 2Chapters 2--55
Chapter 10Chapter 10
Chapters 3Chapters 3--5, App5, App--AA
Chapter 2Chapter 2
Appendix B Appendix B 

The first four texts listed on this slide provide a general discussion of multiple 
regression. The Draper and Smith (1981), Myers (1990), and Winer, et al. 
(1991) texts review matrix algebra as used in regression analysis. Box and 
Draper (1987) and Myers and Montgomery (2002) describe polynomial 
regression applications to empirical model building.
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Topic 23 describes experimental designs that can be used to collect data for 
building second-order empirical models. Specifically, this topic focuses on 
central-composite designs (CCD) that were developed to explore response 
surfaces using empirical models. The background, specification, analysis, 
and an example of a CCD along with a comparison to alternative second-
order experimental designs are discussed in this topic. Finally, a summary 
along with supplemental readings on CCD in current experimental design 
textbooks is provided.

Topic 23. Central-Composite Designs (CCD)Topic 23. CentralTopic 23. Central--Composite Designs (CCD)Composite Designs (CCD)

23.1. CCD Introduction23.1. CCD Introduction
23.2. CCD Specification23.2. CCD Specification

23.2.1. CCD Configuration23.2.1. CCD Configuration
23.2.2. Replication23.2.2. Replication
23.2.3. Value of 23.2.3. Value of αα

23.3. CCD Analysis23.3. CCD Analysis
23.4. CCD Examples23.4. CCD Examples
23.5. Alternative Second23.5. Alternative Second--Order DesignsOrder Designs
23.6. Summary23.6. Summary
23.7. Supplemental Readings23.7. Supplemental Readings
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23.1. CCD Introduction23.1. CCD Introduction23.1. CCD Introduction

•• BackgroundBackground
–– Developed by Box and Wilson (1951)Developed by Box and Wilson (1951)
–– Chemical Industry ApplicationsChemical Industry Applications
–– Response Surface ExplorationResponse Surface Exploration

–– Seeking Optimal PerformanceSeeking Optimal Performance
–– Surface DescriptionSurface Description

–– Design for SecondDesign for Second--Order Empirical ModelsOrder Empirical Models
–– Composite of Factorial and Augmented Data Composite of Factorial and Augmented Data 

Points around a Center Point Points around a Center Point 
–– Usually Five Levels of Each FactorUsually Five Levels of Each Factor
–– Advantages and LimitationsAdvantages and Limitations

The CCD was developed by Box and Wilson (1951) as part of response 
surface methodology for seeking optimum yield of chemical compounds. The 
CCD was specifically developed as an efficient data collection procedure for 
fitting second-order empirical models through sequential experiments. The 
design is a composite of 2k or 2k-p factorial points and augmented data points 
around a center point that usually yields five different levels of each factor in 
the experimental design. Hence, the design is named a central-composite 
design. The CCD has several mathematical advantages for developing and 
testing the adequacy of empirical models and some disadvantages for 
building global prediction equations. Williges and Simon (1971) provide a 
detailed discussion of several advantages and limitations of CCD for human 
factors and ergonomics research.
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23.1. CCD Introduction (Cont'd)23.1. CCD Introduction (Cont'd)23.1. CCD Introduction (Cont'd)

•• SecondSecond--Order Empirical ModelOrder Empirical Model
–– Polynomial Prediction EquationPolynomial Prediction Equation:: Functional Functional 

RelationshipsRelationships

–– How Much Should Each Factor Be Weighted?How Much Should Each Factor Be Weighted?
–– Regression AnalysisRegression Analysis

–– Design DecisionsDesign Decisions
–– TradeTrade--off Analysesoff Analyses

Y = b0 + b1X1 + b2X2 + b3X3 + b4X1X2 + b5X1X3
+ b6X2X3 + b7X21 + b8X22 + b9X23

Y = Probability of Target Detection
X1 = Target Size
X2 = Target Density
X3 = Target Velocity

Second-order models developed from CCD data are polynomial regression 
prediction equations that predict performance as a function of several 
quantitative predictors (i.e., factors). The target detection example shown on 
this slide is a second-order polynomial with three predictors of target size, 
density, and velocity. The empirical values of each partial regression weight, 
bi, are least squares criterion solutions to the polynomial regression using 
data from the CCD. The resulting prediction equation can be used to predict 
target detection, determine the relative weights of the predictors, and assist 
in design tradeoffs of parameters in complex systems instead of just testing 
the statistical significance of various effects defined by the three target 
detection factors. Not only does the CCD have the advantage of providing 
the necessary and sufficient data to fit a second-order empirical model, the 
CCD also provides additional data to test the adequacy of the fit of the 
empirical model.
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23.1. CCD Introduction (Cont'd)23.1. CCD Introduction (Cont'd)23.1. CCD Introduction (Cont'd)

•• CCD BlockingCCD Blocking

–– Control of Nuisance VariablesControl of Nuisance Variables
–– Flexibility to Collect Data in StagesFlexibility to Collect Data in Stages

–– Add or Drop VariablesAdd or Drop Variables
–– Test Order of PolynomialTest Order of Polynomial

                               

Block 1 Block 2 Block 3

Another important advantage of the CCD is that the data can be collected in 
blocks if the experimenter chooses to do so. For example, the three-factor 
CCD data points on this slide are divided into three orthogonal blocks. 
Blocking allows the experimenter to control nuisance variables, such as data 
collection days, by keeping any effect of the nuisance variable orthogonal to 
the empirical model. Blocking the CCD design also allows for data collection 
in stages for making decisions to add and drop factors included in the 
empirical model or for determining if more data are needed for a higher-order 
empirical model.
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23.1. CCD Introduction (Cont'd)23.1. CCD Introduction (Cont'd)23.1. CCD Introduction (Cont'd)

•• CCD Economy of Data CollectionCCD Economy of Data Collection

•• CCD LimitationsCCD Limitations
–– Assumes Quantitative VariablesAssumes Quantitative Variables
–– Global PredictionsGlobal Predictions

Number of Complete 3 k Factorial Central-Composite
Factors Design Design

2 9 9
3 27 15
4 81 25
5 243 27*
6 729 45*
7 2187 79*

* Using a one-half replicate in the factorial portion

A major advantage of the CCD is its economy in data collection for fitting and 
testing the adequacy of second-order empirical models. A minimum of three 
levels of each factor must be observed to fit a second-order empirical model. 
The top portion of this slide lists the unique data points of a CCD as 
compared to its 3k factorial design counterpart. When more than two factors 
are included in the empirical model, the CCD is more economical than the 3k

factorial design because the factorial design provides data to test higher-
order effects rather than just first- and second-order effects.

As shown on the bottom of this slide a CCD is not without limitations. First, 
all the factors included in the CCD are assumed to be quantitative in order to 
set the precise levels defined by the CCD configuration. Second, if the 
empirical model is used for global prediction across the entire effective range 
of each factor, the spacing between levels in the CCD may not provide 
adequate coverage for determining reliable global empirical models.



Human Factors Experimental Design and Analysis Reference

771

23.2. CCD Specification23.2. CCD Specification23.2. CCD Specification

•• 23.2.1. CCD Configuration23.2.1. CCD Configuration
•• 23.2.2. Replication23.2.2. Replication
•• 23.2.3. Value of 23.2.3. Value of αα

This sub-section is devoted to describing the complete specification of a
CCD. The coded design configuration, choices in design replication, and 
calculation of the α coded value are described separately.
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•• DefinitionDefinition:: Composite of 2Composite of 2kk (or 2(or 2kk--pp) factorial ) factorial 
design plus 2k augmented (star) points plus design plus 2k augmented (star) points plus 
center point(s).              center point(s).              
–– Use Fractional Replicate With More Than Four Use Fractional Replicate With More Than Four 

FactorsFactors
•• Five Levels of Each FactorFive Levels of Each Factor

•• Unique Data Points: 2Unique Data Points: 2kk (or 2(or 2kk--pp) + 2k + 1) + 2k + 1

-α,  -1,   0,   +1,   + α,
where,

     -α and + α Represent Augmented Points
     -1 and +1 Represent Factorial Portion
      0 Represents Center Point

23.2.1. CCD Configuration23.2.1. CCD Configuration23.2.1. CCD Configuration

The definition of a CCD is provided at the top of this slide. Basically a CCD is 
a composite of a 2k factorial design and star points radiating from a center 
point. A Resolution V fractional replicate of the 2k design portion of the CCD 
is used when five or more factors are considered in the empirical model.

The CCD is specified in general terms by using five coded values as shown 
in the center of this slide. The ± α represents the star portion, the ± 1 values 
represent the factorial portion, and 0 represents the center point of the CCD. 
Linear transformations are made between these coded values and real-world 
values of actual factors used in the CCD experiment.

The factorial portion of the CCD has 2k or 2k-p data points, the star portion of 
the CCD has each level of ±α appearing at the 0 level of the other factors 
yielding 2k data points, and the center point of the CCD is defined by the 0 
level of all factors. In general, the total number of unique data points in any 
CCD is shown on the bottom of this slide. For example, a three-factor CCD 
would have 15 unique data points (i.e. 23 + 2*3 + 1).
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23.2.1. CCD Configuration (Cont'd)23.2.1. CCD Configuration (Cont'd)23.2.1. CCD Configuration (Cont'd)

Three-Factor, Central-Composite Design

Factorial Portion (2k) = 8 Data Points

Augmented Points (2k) = 6 Data Points

Center Point = 1 Data Point

This slide depicts a geometric representation of the 15 unique data points in 
the example three-factor CCD described on the previous slide. Note that 14 
of the data points radiate around the center point shown as a white circle. 
The factorial portion of the CCD forms a cube, and the data points of this 
portion of the design are shown as black circles. The data points of the star 
portion of the CCD are shown as white circles radiating from the center of 
each of the six surfaces of the cube.
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23.2.1. CCD Configuration (Cont'd)23.2.1. CCD Configuration (Cont'd)23.2.1. CCD Configuration (Cont'd)

Three-Factor, Central-Composite Design

Treatments X 1 X 2 X 3

1 +1 +1 +1
2 +1 +1 -1
3 +1 -1 +1
4 +1 -1 -1
5 -1 +1 +1
6 -1 +1 -1
7 -1 -1 +1
8 -1 -1 -1
9 + α 0 0

10 -α 0 0
11 0 + α 0
12 0 -α 0
13 0 0 + α
14 0 0 -α
15 0 0 0

This slide specifies the 15 data points of the three-factor CCD shown 
geometrically in the previous slide in terms of the coded values of each of 
the three factors for each of the 15 data points. The first eight data points are 
defined by the 23 factorial design in terms of combinations of the ± 1 coded 
levels of each factor. The next six data points show the treatment 
combinations of the star portion of the CCD. Note that these data points are 
the ± α coded levels of one factor in combination with the 0 coded levels of 
the other two factors. The last data point is the center point shown as the 0 
coded level of each of the three factors.

Three steps are required to translate these coded values into treatment 
combinations specified by the real world factor levels. First, determine the 
number of data points as shown on this slide. Second, specify the coded 
value of α. Third, translate the coded design into the real-world values of the 
factors being investigated using a linear transformation.
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23.2.2. Replication23.2.2. Replication23.2.2. Replication

•• Original CentralOriginal Central--Composite DesignsComposite Designs
–– Replicate only the Center Point, 0.Replicate only the Center Point, 0.

•• Results in Design EfficiencyResults in Design Efficiency
–– Number of Replications Depends Upon Number of Replications Depends Upon 

Mathematical Relationships.Mathematical Relationships.

•• Behavioral Research ApplicationsBehavioral Research Applications
–– Equal Replication Across Entire DesignEqual Replication Across Entire Design

–– Variability in BetweenVariability in Between--Subjects DesignsSubjects Designs

–– Required in WithinRequired in Within--Subjects DesignsSubjects Designs

–– Global Prediction EquationsGlobal Prediction Equations

Replication to estimate error variance in CCD usually occurs only at the 
center point of the design to minimize data collection. The exact number of 
center point replications required can depend upon the various 
characteristics of the design as described by Myers and Montgomery (2002).

Clark and Williges (1973) recommended using equal replication across each 
data point in the CCD as done in experimental designs described in previous 
topics in this reference material. If the CCD is a between-subjects design, 
variability may differ across data points and a pooled estimate of error 
variance may be more accurate than just error estimated at the center of the 
design. If the CCD is a within-subjects design, every subject must receive 
every treatment condition that results in equal replication across the design 
by definition.

Even though equal replication is not as economical in terms of data 
collection as the original CCD that has only center point replication, the 
additional data collection may be warranted when generating an empirical 
model for global prediction of human performance where the range across 
levels may be large. Consequently, only CCDs with equal replication across 
data points are described in this reference material.
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23.2.3. Value of α23.2.3. Value of 23.2.3. Value of αα

•• Mathematical CriteriaMathematical Criteria
–– RotatabilityRotatability
–– BlockingBlocking
–– Orthogonal Beta WeightsOrthogonal Beta Weights
–– SphericalSpherical
–– CuboidalCuboidal

•• RotatabilityRotatability
–– DefinitionDefinition:: Variance of predicted response is Variance of predicted response is 

the same at all points equidistant from center.the same at all points equidistant from center.
–– General EquationGeneral Equation

–– ExampleExample:: ThreeThree--Factor CCDFactor CCD
α = (2 3)1/4 = 8 1/4 = 1.682

α = F 1/4
where, F equals data points in 2 k or 2k-p Factorial

Rotatability, blocking, orthogonal beta weights, spherical, and cuboidal are 
the five major criteria used in choosing the coded value of α in a CCD. 
Details on calculating and choosing alternative criteria are discussed by Box 
and Draper (1987) in chapters 14 and 15 and by Myers and Montgomery 
(2002) in chapters 7 and 8. Additionally, Williges (1981) describes the 
calculation of α for behavioral research applications using equal replications 
across data points in the CCD. A three-factor CCD example is used 
throughout this subsection for comparing the different coded values of α
based on various mathematical criteria.

Rotatability means that the predicted response is the same at all points 
equidistant from the center. The general equation using rotabability as the 
mathematical criterion in determining the coded value of α is shown in the 
middle of this slide and depends on the number of data points in the factorial 
portion of the CCD. For the three-factor CCD example, α equals 1.682 as 
shown on the bottom of this slide.
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•• BlockingBlocking
–– DefinitionDefinition:: The contribution to Total SS in each The contribution to Total SS in each 

block must be proportional to the number of block must be proportional to the number of 
observations in each block to keep blocks observations in each block to keep blocks 
orthogonal to beta weights.orthogonal to beta weights.

–– ApproachApproach
–– Factorial Portion Split into Two Blocks by Using Factorial Portion Split into Two Blocks by Using 

Highest Order Interaction as Defining RelationHighest Order Interaction as Defining Relation
–– (2k + 1) Portion Becomes Third Block(2k + 1) Portion Becomes Third Block

–– General Equation (Equal Replications)General Equation (Equal Replications)

–– ExampleExample:: ThreeThree--Factor CCDFactor CCD

23.2.3. Value of α (Cont'd)23.2.3. Value of 23.2.3. Value of αα (Cont'd)(Cont'd)

α = [(2k + 1)/2] 1/2

α = [(2x3 + 1)/2]1/2 = 1.871

Blocking is used to collect data in stages (e.g., data collection sessions) or 
control for a nuisance variable (e.g., different experimenters) in the CCD. 
Block effects are kept orthogonal to the first- and second-order partial 
regression weights in polynomial regression by keeping the total sum of 
squares in each block proportional to the number of observations in the 
block. Usually the factorial portion of the CCD is divided into two blocks 
using a fractional factorial, and the third block is formed by using the star 
portion plus the center point of the CCD.

The general formula for α in a blocked CCD based on equal replications 
across the design is presented in the middle portion of this slide and is 
simply based on the number of factors, k, in the CCD that determine the 
number of data points in the third block (i.e., 2k + 1). For the three factor 
CCD example, α equals 1.871 as shown on the bottom of this slide.
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23.2.3. Value of α (Cont'd)23.2.3. Value of 23.2.3. Value of αα (Cont'd)(Cont'd)

Blocking

                               

Block 1 Block 2 Block 3

(+1,-1,+1) (-1,+1,-1) (-1.87,0,0)
(+1,+1,-1) (-1,-1,+1) (0,-1.87,0)
(-1,+1,+1) (+1,-1,-1) (0,0,-1.87)
(-1,-1,-1) (+1,+1,+1) (+1.87,0,0)

(0,+1.87,0)
(0,0,+1.87)

(0,0,0)

This slide depicts the coded values of the data points for each of the three 
orthogonal blocks in the three-factor CCD example. Note that the number of 
data points in the third block has seven treatment combinations (i.e., 2k + 1), 
whereas the two one-half replicates in the 23 factorial design used in the first 
two blocks each has four treatment combinations.
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23.2.3. Value of α (Cont'd)23.2.3. Value of 23.2.3. Value of αα (Cont'd)(Cont'd)

•• Orthogonal Beta WeightsOrthogonal Beta Weights
–– DefinitionDefinition:: FirstFirst-- and secondand second--order beta weights in  order beta weights in  

polynomial regression are orthogonal.polynomial regression are orthogonal.
–– Approach:  Reduce X'X Matrix to a Diagonal MatrixApproach:  Reduce X'X Matrix to a Diagonal Matrix
–– General Equation (Equal Replication)General Equation (Equal Replication)

–– ExampleExample:: ThreeThree--Factor CCDFactor CCD

α = [(QxF)/4]1/4

where, Q = [(F + 2k + 1)1/2 - F1/2 ]2

Q = [(8 + 2x3 + 1)1/2 - 81/2 ]2 = 1.092

α = [(1.092)(8)/4]1/4 = 1.216

If the experimenter wants to keep all first- and second-order, coded-value 
partial regression weights orthogonal in the empirical model, then the coded 
value of α must be adjusted to reduce the X’X matrix to a diagonal matrix 
when solving the complete second-order polynomial regression model. The 
general formula for the adjusted α value is presented in the center of this 
slide when equal replications are used across the CCD. For the three-factor 
example, an α equal to 1.216 is used in the orthogonal, coded-value CCD as 
shown on the bottom of this slide.
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23.2.3. Value of α (Cont'd)23.2.3. Value of 23.2.3. Value of αα (Cont'd)(Cont'd)

•• Spherical DesignsSpherical Designs
–– DefinitionDefinition:: All nonAll non--center data points of the center data points of the 

CCD are an equal radius distance from the CCD are an equal radius distance from the 
center point.center point.

–– General EquationGeneral Equation

α = k1/2

where k = number of Factors in CCD

–– Example:Example: ThreeThree--Factor CCDFactor CCD

α = 31/2 = 1.732

The rotatable, orthogonal, and blocking alternatives each have the α value 
extending beyond the ± 1 values of the factorial portion of the CCD, thereby 
forming a near spherical data collection region. To form a true spherical 
region, the radius of all non-center points must be equidistance from the 
center point of the CCD. As shown on this slide this occurs when α is equal 
to the square root of the number of factors, k, in the CCD. Consequently, α
equals 1.732 in the three-factor CCD example as shown on the bottom of 
this slide.
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23.2.3. Value of α (Cont'd)23.2.3. Value of 23.2.3. Value of αα (Cont'd)(Cont'd)

•• CuboidalCuboidal DesignsDesigns
–– DefinitionDefinition:: Axial portion of CCD observed on the Axial portion of CCD observed on the 

face of the factorial portion of the design.face of the factorial portion of the design.

–– ApproachApproach: Maintains : Maintains αα at 1.00 Coded Valueat 1.00 Coded Value

–– Each Factor Has Only Three Levels: Each Factor Has Only Three Levels: ––1, 0, +11, 0, +1

–– General EquationGeneral Equation

α = 1.00
–– ExampleExample:: ThreeThree--Factor CCDFactor CCD

α = 1.00

If the region of interest is cuboidal as designated by the 2k factorial portion of 
the CCD, then the α value can be adjusted by setting the coded value of α
equal to 1 so that it appears at the center of each face and does not protrude 
beyond the face of the 2k factorial portion. A cuboidal CCD is often referred 
to simply as a “face-centered CCD” and only has three possible coded levels 
for each factor (i.e., -1, 0, and +1). Consequently, the coded value of α is 
always 1 regardless of the number of factors in the CCD.
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23.2.3. Value of α (Cont'd)23.2.3. Value of 23.2.3. Value of αα (Cont'd)(Cont'd)

Factorial Portion Axial Portion Center Point

Cuboidal CCD
α = 1

Spherical CCD
α > 1

This slide depicts the difference between the cuboidal and spherical design 
alternatives graphically for a three-factor CCD. The 23 factorial design 
portion of the CCD forms a cube with the center point in the middle of the 
cube. When the axial point has a coded value of 1, it appears on the center 
of each of the six faces of the cube in the cuboidal design, hence a face-
centered CCD.

In the spherical CCD alternative, each axial point is greater than 1 and 
protrudes beyond the center of each face. Consequently, the data points of 
the 23 factorial portion and 6 axial points fall on the surface, or near the 
surface, of a ball. When α is greater than 1, the CCD Is designated a 
spherical, rotatable, orthogonal, or blocked CCD depending on the coded 
values of α.
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23.2.3. Value of α (Cont'd)23.2.3. Value of 23.2.3. Value of αα (Cont'd)(Cont'd)

•• Replication Only At Center PointReplication Only At Center Point
–– Center Points Do Not Affect Center Points Do Not Affect RotatabilityRotatability
–– Can Vary Number of Center Point To Obtain:Can Vary Number of Center Point To Obtain:

–– RotatableRotatable Designs With Uniform PrecisionDesigns With Uniform Precision
–– RotatableRotatable and Orthogonal Designsand Orthogonal Designs
–– Blocked and Near Blocked and Near RotatableRotatable DesignsDesigns

•• Choice of Criteria for Choice of Criteria for αα
–– No Generally Accepted GuidelinesNo Generally Accepted Guidelines
–– General ConsiderationsGeneral Considerations

–– Spherical and Spherical and RotatableRotatable Designs for ExplorationDesigns for Exploration
–– Blocking Designs When NeededBlocking Designs When Needed
–– Use FaceUse Face--Centered Designs When Three LevelsCentered Designs When Three Levels
–– Orthogonal Designs for Ease of InterpretationOrthogonal Designs for Ease of Interpretation

If the experimenter chooses to replicate only at the center point of the CCD, 
the number of center points can be varied to provide uniform precision 
across the rotatable design, orthogonal designs that are rotatable, and 
blocked designs that are near rotatable. When the CCD has equal replication 
across the data points, the rotatability criterion is not assured for an 
orthogonal and blocked CCD. These design alternatives are summarized in 
Table 1 by Williges (1981, p. 70).

The real choice of α depends on the mathematical criterion the experimenter 
wishes to emphasize. There are no strict rules for choosing an α criterion 
and only general guidelines exist as listed on the bottom of this slide. 
Spherical and rotatable designs are useful when exploring unknown 
surfaces. For example, Myers and Montgomery (2002, p. 335) recommend 
that the use of a true spherical design is preferred when the region of 
interest is spherical. With special experimental design purposes such as 
staged data collection, existence of a nuisance variable, or the inability to 
collect five levels of each factor, then alternatives such as a blocking or face-
centered CCD needs to be considered. If the resulting second-order 
empirical model is used to assess the relative importance of the partial 
regression weights in predicting performance, then an orthogonal CCD is 
needed and determines the coded value of α.
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23.2.3. Value of α (Cont'd)23.2.3. Value of 23.2.3. Value of αα (Cont'd)(Cont'd)

Values of Values of αα for Centralfor Central--Composite Designs Composite Designs 
With Equal ReplicationWith Equal Replication

Factors Value of α Unique
(K) Data Points
2 9
3 15
4 25
5* 27
6* 45
7*

Rotatable
1.414
1.681
2.000
2.000
2.378
2.828

Orthogonal
1.000
1.216
1.414
1.546
1.724
1.885

Blocked
1.581
1.871
2.121
2.345
2.550
2.739

Cuboidal
1.000
1.000
1.000
1.000
1.000
1.000 79

* One-Half Replicate Used in Factorial Portion of Central-Composite Design

Spherical
1.414
1.732
2.000
2.236
2.449
2.646

This slide summarizes the various coded values of α based on the formulae 
presented in the previous slides for a two- to seven-factor CCD that has 
equal replication across the design. The examples provided on previous 
slides were based on a three-factor CCD. By definition, the coded value of α
for a cuboidal CCD is always 1. All the other coded values of α are greater 
than 1 for any rotatable, orthogonal, blocked, and spherical CCD. 
Consequently, the coded value of α depends on the specific criterion chosen 
and the number of factors included in the experimental design. The right 
most column provides the unique data points used in calculating the various 
α values presented in the table. Formulae and values of α based on 
replication only at the center point are provided by Box and Draper (1987) 
and Myers and Montgomery (2002).



Human Factors Experimental Design and Analysis Reference

785

23.3. CCD Analysis23.3. CCD Analysis23.3. CCD Analysis

•• Polynomial RegressionPolynomial Regression
•• ANOVA of RegressionANOVA of Regression

–– Residual Based on Type of DesignResidual Based on Type of Design

Sources
Regression

b1
b2
b3
...
bn

Residual
Blocks
Subjects
Lack of Fit
Error

An advantage of the CCD is that the ANOVA of regression is more sensitive 
than a standard multiple regression analysis of the partial regression weights 
because the sum of squares of residual error can be decomposed into 
additive subsets. The possible subsets depend upon the specific CCD used 
for data collection.

This slide shows the major subsets of residual error that can be determined 
in a blocked, within-subject CCD in which the block main effect, the subject 
main effect, lack of fit (LOF), and refined error subsets can be calculated. 
The LOF effect represents additional partial regression weights that can be 
used in the regression model. A significant LOF suggests additional partial 
regression weights can be added to the empirical model that account for a 
significant amount of variance. The regression partial regression weights, 
blocks, subjects, and LOF effects can each be tested for significance by 
using refined error that provides a better estimate of pure error than the 
pooled residual error term used in standard multiple regression.
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23.3. CCD Analysis (Cont’d)23.3. CCD Analysis (Cont23.3. CCD Analysis (Cont’’d)d)

•• ApproachApproach
–– Common CCD ExampleCommon CCD Example

–– Three FactorsThree Factors
–– Four SubjectsFour Subjects
–– BlockingBlocking
–– 60 Total Observations in CCD Design Data 60 Total Observations in CCD Design Data 

MatrixMatrix
–– FirstFirst--Order Polynomial RegressionOrder Polynomial Regression
–– ANOVA Summary TableANOVA Summary Table
–– ANOVA CalculationsANOVA Calculations

•• Design AlternativesDesign Alternatives
–– Subject AssignmentSubject Assignment

A common example of a three-factor, blocked CCD with four observations at 
each data point yielding a total of 60 observations in the experiment is used 
to demonstrate the ANOVA on a first-order polynomial regression model. 
The specific human performance experimental design alternative depends 
upon the assignment of subjects to treatment conditions.
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23.3. CCD Analysis (Cont’d)23.3. CCD Analysis (Cont23.3. CCD Analysis (Cont’’d)d)

•• 23.3.1. Between23.3.1. Between--Subjects CCDSubjects CCD
•• 23.3.2. Within23.3.2. Within--Subjects CCDSubjects CCD
•• 23.3.3. Mixed23.3.3. Mixed--Factors CCDFactors CCD

In this sub-section, between-subjects, within-subjects and mixed-factors 
CCD alternatives are described using the general three-factor CCD 
described on the previous slide. Details about these polynomial regression 
procedures used in behavioral research are presented in Williges (1981, pp. 
71-79).
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23.3.1. Between-Subjects CCD23.3.1. Between23.3.1. Between--Subjects CCDSubjects CCD

Data Matrix

Subjects Treatment X1 X2 X3

S1  -   S4 1 +1 +1 +1
S5   -   S8 2 -1 +1 +1
S9   - S12 3 +1 -1 +1
S13  - S16 4 -1 -1 +1
S17  - S20 5 +1 +1 -1
S21  - S24 6 -1 +1 -1
S25  - S28 7 +1 -1 -1
S29  - S32 8 -1 -1 -1
S33  - S36 9 0 0 0
S37  - S40 10 -α 0 0
S41  - S44 11 +α 0 0
S45  - S48 12 0 -α 0
S49  - S52 13 0 +α 0
S53  - S56 14 0 0 -α
S57  - S60 15 0 0 +α

The fifteen treatment conditions for the three-factor, between-subjects CCD 
are shown on this slide. Since n = 4 in this design, a different group of four 
subjects is observed at each treatment combination resulting in a total of 60 
different subjects participating in the experiment. Since the CCD is blocked, 
α equals 1.871 as noted in a previous slide.
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23.3.1. Between-Subjects CCD (Cont'd)23.3.1. Between23.3.1. Between--Subjects CCD (Cont'd)Subjects CCD (Cont'd)

•• ANOVA Summary TableANOVA Summary Table

•• ANOVA CalculationsANOVA Calculations
–– Calculate Polynomial RegressionCalculate Polynomial Regression
–– Refine Residual by Using ANOVA to DetermineRefine Residual by Using ANOVA to Determine

–– BlocksBlocks
–– Error (Subjects/Treatments)Error (Subjects/Treatments)
–– Obtain LOF by SubtractionObtain LOF by Subtraction

Source df F
Regression (3)

b1 1 MSb1 /MS Error
b2 1 MSb2 /MS Error
b3 1 MSb3 /MS Error

Residual (56)
Blocks 2 MSB/MSError
LOF 9 MSLOF /MS Error
Error 45

Total 59

This slide shows the ANOVA summary table for the three-factor, between-
subjects CCD shown on the previous slide. There are 3 degrees of freedom 
for the Regression and 56 for the Residual, combining to a total of 59 
degrees of freedom (i.e., 60 total observations minus 1). Since this is a first-
order model, only three partial regression weights are included to yield the 3 
degrees of freedom for regression.

The 59 degrees of freedom for Residual are separated into 2 for Blocks (i.e. 
three blocks in the CCD), 9 for Lack of Fit (LOF), and 45 for Replication. The 
9 degrees of freedom for LOF are determined by subtracting the degrees of 
freedom of the first-order model partial regression weights and the blocks 
effect from the total number of treatments minus 1 (i.e. 15 – 3 – 2 – 1 = 9). 
The Error effect is the same as subjects nested within treatments in any 
between-subjects design and its degrees of freedom are determined by the
number of treatments times n – 1 (i.e., 15(4 – 1) = 45). 

The sum of squares for the main effect of Blocks and Error use standard 
ANOVA procedures described in Sections 3 and 4 of this reference material, 
and LOF is obtained by subtraction from total sum of squares. The mean 
square for Replication can be used as the error term for all F-tests as shown 
on the slide. Alternatively, the mean square for Residual can be used as a 
pooled error term for testing the regression model.
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23.3.2. Within-Subjects CCD23.3.2. Within23.3.2. Within--Subjects CCDSubjects CCD

Data Matrix

Subjects Treatment X1 X2 X3

S1 - S4 1 +1 +1 +1
2 -1 +1 +1
3 +1 -1 +1
4 -1 -1 +1
5 +1 +1 -1
6 -1 +1 -1
7 +1 -1 -1
8 -1 -1 -1
9 0 0 0

10 -α 0 0
11 +α 0 0
12 0 -α 0
13 0 +α 0
14 0 0 -α
15 0 0 +α

The fifteen treatment conditions for the three-factor, within-subjects CCD are 
shown on this slide. Since n = 4 and subjects are crossed with treatment 
conditions in a within-subjects design, only a total of four different subjects 
are needed for this experiment. Each of these four subjects participates in 
each of the 15 treatment combinations to yield a total of 60 observations in 
the complete experiment. Again, the CCD is blocked and α equals 1.871 as 
noted in a previous slide.
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23.3.2. Within-Subjects CCD (Cont'd)23.3.2. Within23.3.2. Within--Subjects CCD (Cont'd)Subjects CCD (Cont'd)

•• ANOVA Summary TableANOVA Summary Table

•• ANOVA CalculationsANOVA Calculations
–– Refine Residual by Using ANOVA to DetermineRefine Residual by Using ANOVA to Determine

–– BlocksBlocks
–– SubjectsSubjects
–– Error (Subjects x Treatments)Error (Subjects x Treatments)
–– Obtain LOF by SubtractionObtain LOF by Subtraction

Source df F
Regression (3)

b1 1 MSb1/MSError
b2 1 MSb2/MSError
b3 1 MSb3/MSError

Residual (56)
Blocks 2 MSB/MSError
Subjects 3 MSS/MSError
LOF 9 MSLOF/MSError
Error 42

Total 59

This slide depicts the ANOVA summary table for the within-subjects CCD 
alternative described on the previous slide. Note that Residual now includes 
the main effect of Subjects. The three degrees of freedom of Subjects is 
subtracted from Error as compared to the between-subjects CCD alternative. 
The Error effect is the same as the Subjects x Treatments interaction in any 
within-subjects design with degrees of freedom equal to (t – 1)(n – 1) or (15 
– 1)(4 – 1) = 42.

Calculation of sum of squares, mean squares, and choice of error terms for 
F-tests on effects are the same as those discussed for the between-subjects 
CCD alternative. The only changes are the inclusion of the Subjects main 
effect and the calculation of Error as the Subjects x Treatments interaction.
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23.3.3. Mixed-Factors CCD23.3.3. Mixed23.3.3. Mixed--Factors CCDFactors CCD

Data Matrix
                                                                      Within                  Between

Subjects Treatment X1 X2 X3

S1 - S 4 1 +1 +1 +1
2 -1 +1 +1
3 +1 -1 +1
4                    -1                     -1                    +1

S5 - S 8 5 +1 +1 -1
6 -1 +1 -1
7 +1 -1 -1
8                    -1                     -1                     -1

S9 - S 12 9 0 0 0
10 -α 0 0
11 +α 0 0
12 0 -α 0
13                     0                    +α                    0

S13  - S 16 14                     0                     0                    -α
S17  - S 20 15                     0                     0                    +α

The fifteen treatment conditions for the three-factor, mixed-factors CCD are 
shown on this slide. Factors 1 and 2 are within-subjects factors and Factor 3 
is a between-subjects factor. Consequently, a different group of four subjects 
is observed at each of the five levels of Factor 3 to provide an n = 4 in each 
treatment combination.

Since a CCD is not a crossed factorial design, the mixed-factors 
arrangement results in a differing number of treatment conditions that each 
subject receives depending on the level of the between-subjects factor the 
subject is assigned. As shown on this slide, subjects 1 to 8 each receive four 
treatment combinations, subjects 9 to 12 receive five treatment 
combinations, and subjects 13 to 20 receive only one treatment combination 
to result in the 60 observations for the entire CCD experiment. To block the 
CCD, α equals 1.871 just as in the other two versions of this design.
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23.3.3. Mixed-Factors CCD (Cont'd)23.3.3. Mixed23.3.3. Mixed--Factors CCD (Cont'd)Factors CCD (Cont'd)

•• ANOVA Summary TableANOVA Summary Table

•• ANOVA CalculationsANOVA Calculations
–– Calculate Polynomial RegressionCalculate Polynomial Regression
–– Refine Residual by Using ANOVA Refine Residual by Using ANOVA 

–– Follow Same Procedure as BetweenFollow Same Procedure as Between--Subjects DesignSubjects Design
–– Assume No Interaction of Subjects with WithinAssume No Interaction of Subjects with Within--Subject Subject 

EffectsEffects

Source df F
Regression (3)

b1 1 MSb1/MS Error
b2 1 MSb2/MS Error
b3 1 MSb3/MS Error

Residual (56)
Blocks 2 MSB/MS Error
LOF 9 MSLOF /MS Error
Error 45

Total 59

The regression ANOVA Summary Table is shown on the top of this slide for 
the mixed-factor CCD described on the previous slide. Since some subjects 
only receive one treatment combination, no subject main effect can be 
estimated and the regression ANOVA is the same as that used in the 
between-subjects CCD alternative summarized in a previous slide. To use 
Error as the refined error term in F-tests, the experimenter assumes 
Subjects do not interact with the within-subjects treatments.

Due to unbalanced assignment of treatment conditions in a mixed-factors 
CCD, this design is used only when absolutely necessary when required by 
the nature of the factors of interest. If a choice of designs is possible, either 
a between-subjects or a within-subjects CCD alternative is preferred.
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23.4. CCD Examples23.4. CCD Examples23.4. CCD Examples

Human Factors Research Applications Using Human Factors Research Applications Using CCDsCCDs

Speech Recognition 
(4 Factors) 

Within-SubjectsOrthogonalSpine, Williges, & 
Maynard (1984)

Computer Data 
Entry (4 Factors)

Between-SubjectsOrthogonal*Williges & 
Williges (1982)

Surveillance System 
(5 Factors)

Within-SubjectsRotatableMills & Williges 
(1973)

Video Cartographic 
Symbols (4 Factors)

Within-SubjectsBlocked across 
Days

Williges & North 
(1973)

Transfer of Training  
(3 Factors)

Between-SubjectsBlocked across 
Experimenters

Williges & Baron 
(1973)

Research TopicType of DesignCCD α ValueReference

*Used 22 Dependent Variables

This slide summarizes references to five applications of central-composite 
designs to human factors research. Across these examples, coded values 
for α were chosen to provide blocked, rotatable, or orthogonal second-order 
models using both between-subjects and within-subjects design alternatives. 
Details on these central-composite design and analysis examples are 
provided in each reference.

Note that the Williges and Williges (1982) study collected data on 22 
dependent variables representing user satisfaction ratings, work sampling 
procedures, and embedded performance metrics that were subsequently 
collapsed into three categories using a principal components analysis. Three 
empirical models were generated based on each of the three multivariate 
classes of dependent variables representing operator waiting, planning, and 
production activities.

These early examples were quite successful in generating empirical models 
of human performance with small sample sizes using a CCD. The resulting 
polynomial regressions provided high multiple correlation coefficients, R, that 
were stable under cross validation (Williges and North, 1973) and within Radj
prediction (Williges and Mills, 1973).
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23.4. CCD Examples (Cont’d)23.4. CCD Examples (Cont23.4. CCD Examples (Cont’’d)d)

•• 23.4.1. Between23.4.1. Between--Subjects ExampleSubjects Example
•• 23.4.2. Within23.4.2. Within--Subjects ExampleSubjects Example

Two examples of a CCD are provided in this sub-section to summarize the 
construction and analysis of the CCD. First, a between-subjects CCD is 
presented followed by its within-subjects CCD alternative.
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23.4.1. Between-Subjects Example23.4.1. Between23.4.1. Between--Subjects ExampleSubjects Example

•• Example ProblemExample Problem: A computer: A computer--generated generated 
Army surveillance display is tested to predict Army surveillance display is tested to predict 
the effects of three target characteristics on the effects of three target characteristics on 
the probability of target detection. The three the probability of target detection. The three 
parameters of interest are target size, target parameters of interest are target size, target 
density, and target velocity. Fortydensity, and target velocity. Forty--five five 
soldiers were tested in a betweensoldiers were tested in a between--subjects, subjects, 
orthogonal, centralorthogonal, central--composite design. Is the composite design. Is the 
complete orthogonal, secondcomplete orthogonal, second--order empirical order empirical 
model significant (p < 0.05)? Which model significant (p < 0.05)? Which 
predictors are significant, and do significant predictors are significant, and do significant 
higherhigher--order predictors exist (p < 0.05)?order predictors exist (p < 0.05)?

(Click in this red rectangle to see SAS calculations for this example.)

This example demonstrates the use of an orthogonal, between-subjects, 
three-factor CCD with equal replications used to generate a complete 
second-order empirical model predicting the probability of target detection as 
a function of target size, density, and velocity. Consequently, 45 different 
soldiers are needed to collect data on the 15 treatment conditions of the 
three-factor CCD to provide three replications at each treatment combination 
(i.e., n = 3). The problem requires testing the significance (p < 0.05) of the 
overall second-order model, the individual partial regression weights in the 
model, and the lack of fit of the empirical model. The SAS programs and 
resulting analyses for this problem are presented in the Slater and Williges 
(2006) appendix.
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23.4.1. Between-Subjects Example (Cont’d)23.4.1. Between23.4.1. Between--Subjects Example (ContSubjects Example (Cont’’d)d)

•• BetweenBetween--Subjects, Orthogonal CCD Data SetSubjects, Orthogonal CCD Data Set
Treatments

(T) Size (S) Density (D)
Probability of Detection (P)

Where n = 3Velocity (V)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

+1
+1
-1
-1
-1
-1
+1
+1

-1.216
0
0

+1.216
0
0
0

-1
+1
+1
-1
+1
-1
-1
+1
0

-1.216
0
0

+1.216
0
0

+1
-1
+1
-1
-1
+1
-1
+1
0
0

-1.216
0
0

+1.216
0

0.70, 0.82, 0.78
0.63, 0.44. 0.52
0.65, 0.67, 0.86
0.30, 0.45, 0.26
0.49, 0.58, 0.47
0.48, 0.56, 0.35
0.53, 0.74, 0.63
0.85, 0.98, 0.81
0.36, 0.47, 0.55
0.53, 0.74. 0.60
0.58, 0.35, 0.25
0.77, 0.93, 0.81
0.62, 0.93, 0.68
0.86, 0.94, 0.96
0.75, 0.73, 0.62

Coded Values of Target

(Click in this red rectangle to see SAS calculations for this example.)

The slide shows the hypothetical data of the three replications for each of the 
fifteen data points in the three-factor CCD example problem described on 
the previous slide. The coded values of the three factors used in the CCD 
are listed for each of the fifteen treatment conditions. Note that the α values 
equal ±1.216 in order to determine orthogonal partial regression weights for 
the second-order model as described in Section 23.2.3.
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23.4.1. Between-Subjects Example (Cont’d)23.4.1. Between23.4.1. Between--Subjects Example (ContSubjects Example (Cont’’d)d)

Coded ANOVA Summary Table: Probability of Target Detection (P)

Source df SS MS F

Regression (9) (1.2582) (0.1398) (11.26)***
Target Size (S) 1 0.4129 0.4129 33.25***
Target Density (D) 1 0.0972 0.0972 7.83**
Target Velocity (V) 1 0.5866 0.5866 47.25***
SxD 1 0.0693 0.0693 5.58*
SxV 1 0.0077 0.0077 0.62
DxV 1 0.0345 0.0345 2.78
S 2 1 0.0253 0.0253 2.03
D 2 1 0.0054 0.0054 0.43
V 2 1 0.0192 0.0192 1.55

Residual (35) (0.4346) (0.0124)
Lack of Fit 5 0.1131 0.0226 2.11
Error 30 0.3215 0.0107

Total 44 1.6927

*p < 0.05 **p < 0.01 ***p < 0.001

(Click in this red rectangle to see SAS calculations for this example.)

This slide shows the Summary Table of the ANOVA on regression using 
coded values. There are 9 degrees of freedom for Regression representing 
the total of the individual partial regression weights for the complete three-
factor, second-order model. The sum of squares of the partial regression 
weights sum to the Regression sum of squares because an orthogonal CCD 
was used in data collection. The Residual effect can be divided into Lack of 
Fit and Error. The degrees of freedom for Lack of Fit represent five additional 
parameters that could be included in the empirical model, and the sum of 
squares value is determined by subtraction once the Error effect is 
determined. The degrees of freedom for the Error effect equals t(n – 1), and 
the sum of squares for Error is the same as the Subjects/Treatments in a 
between-subjects design.

The F-tests for Regression and the partial regression weights use pooled 
Residual as the error term. The regression model and four partial regression 
weights are significant (p < 0.05). The F-test on Lack of Fit uses the Error 
effect as the error term and is not significant at the 0.05 level. Consequently, 
the second-order model is adequate, and higher-order effects are not 
required. Alternatively, the Error effect could be used in the denominator for 
each F-test as a refined estimate of pure error.



Human Factors Experimental Design and Analysis Reference

799

23.4.1. Between-Subjects Example (Cont’d)23.4.1. Between23.4.1. Between--Subjects Example (ContSubjects Example (Cont’’d)d)

•• Orthogonal, SecondOrthogonal, Second--Order, Order, Coded ValuesCoded Values
Empirical ModelEmpirical Model

Probability of Target Detection (P)

P = 0.7100 + 0.1121(S)*** + 0.0544(D)** + 0.1336(V)*** 
- 0.0538(SxD)* + 0.0179(SxV) + 0.0379(DxV)
- 0.0440(S2) - 0.0203(D2) - 0.0383(V2)

R2 = .74

(Click in this red rectangle to see SAS calculations for this example.)

This slide lists the complete second-order empirical model predicting 
detection probability as a function of three target characteristics represented 
in terms of coded values in the example problem. Based on the regression 
ANOVA summarized on the previous slide, the three linear effects of target 
size, density, and velocity as well as the linear-by-linear interaction of target 
size and density are significant predictors of target detection probability (p < 
0.05). Since this empirical model is orthogonal, the relative influence of the 
predictors can be evaluated in terms of the values of the regression weights. 
For example, target size and velocity each predict twice as much variability 
as either target density or the linear component of target size-by-density 
interaction predictors.

The Coefficient of Determination shown at the bottom of this slide states that 
74% of the variation in predicting target detection probability is accounted for 
by the complete second-order model represented by the Regression effect.



Human Factors Experimental Design and Analysis Reference

800

23.4.1. Between-Subjects Example (Cont’d)23.4.1. Between23.4.1. Between--Subjects Example (ContSubjects Example (Cont’’d)d)

Coded Values

Target Velocity
(Kilometers per Hour)

Target Density
(Targets per Hour)

Target Size
(Height in Pixels)

8

11

11

-1.216

32302010

21201612

25241812

+1.216+10-1

•• Raw Score Linear TransformationRaw Score Linear Transformation

(Click in this red rectangle to see SAS calculations for this example.)

The empirical model shown on the previous slide for the example problem is 
based on coded levels for the three predictors. The experimenter needs to 
make a linear transformation between these coded levels and real-world 
levels of the predictors in order to determine an empirical model specified in 
raw scores. To make this transformation, the experimenter chooses the real 
world values representing the ±1 coded values and the center of that range 
equals the 0 coded value. The range of the real world values between the 0 
and the ±1 coded values is adjusted by linear transformation to provide the 
real world values of the ±α coded values. 

This slide summarizes the linear transformation between coded values and 
raw scores for the five levels of target size, density, and velocity used in the 
CCD. Target size is specified in terms of height and ranges from 11 to 25 
pixels. Target density is specified in terms of the number of targets 
appearing per hour and ranges from 11 to 21 targets. Target velocity ranges 
from 8 to 32 kilometers per hour. The experimenter must choose the range 
of the real-world factor that represents a reasonable operating range of each 
factor for prediction purposes because the resulting empirical model may not 
be reliable beyond those ranges. 
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23.4.1. Between-Subjects Example (Cont’d)23.4.1. Between23.4.1. Between--Subjects Example (ContSubjects Example (Cont’’d)d)

•• SecondSecond--Order, Order, Raw ScoresRaw Scores Empirical ModelEmpirical Model

Probability of Target Detection (P)

P = -1.1899 + 0.0946(S)*** + 0.0696(D)** + 0.0079(V)*** 
- 0.0022(SxD)* + 0.0003(SxV) + 0.0009(DxV)
- 0.0013(S2) - 0.0011(D2) - 0.0004(V2)

R2 = .74

(Click in this red rectangle to see SAS calculations for this example.)

The second-order empirical model shown on this slide is based on a 
polynomial regression analysis based on the real-world levels of the three 
predictors as shown on the linear transformation in the previous slide. The 
Slater and Williges (2006) appendix provides the details on the SAS analysis 
of these raw scores.

This raw score model is more meaningful for conducting tradeoff predictions 
among the three factors of interest because the actual factor levels can be 
used for each of the predictors in the model. The partial regression weights 
of these raw score values are not orthogonal due to the varying ranges of 
raw score values and rounding errors in the linear transformation. 
Consequently, the coded levels are used to evaluate the relative strength of 
the partial regression weights, and the raw score model is used for actual 
predictions.
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23.4.2. Within-Subjects Example23.4.2. Within23.4.2. Within--Subjects ExampleSubjects Example

•• Example ProblemExample Problem: A computer: A computer--generated generated 
Army surveillance display is tested to predict Army surveillance display is tested to predict 
the effects of three target characteristics on the effects of three target characteristics on 
the probability of target detection. The three the probability of target detection. The three 
parameters of interest are target size, target parameters of interest are target size, target 
density, and target velocity. Three soldiers density, and target velocity. Three soldiers 
were tested in a withinwere tested in a within--subjects, centralsubjects, central--
composite design that was blocked across composite design that was blocked across 
three testing days. Is the complete secondthree testing days. Is the complete second--
order empirical model significant (p < 0.05)? order empirical model significant (p < 0.05)? 
Which predictors are significant and do Which predictors are significant and do 
significant highersignificant higher--order predictors exist       order predictors exist       
(p < 0.05)?(p < 0.05)?

(Click in this red rectangle to see SAS calculations for this example.)

The second CCD example problem is a within-subjects version of the 
previous example. In addition, the CCD is blocked across three testing days. 
Note that only three soldiers are needed in this within-subjects design as 
compared to the forty-five different soldiers required for the previous 
between-subjects alternative. The Slater and Williges (2006) appendix 
provides the SAS solution for this example problem.
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23.4.2. Within-Subjects Example (Cont’d)23.4.2. Within23.4.2. Within--Subjects Example (ContSubjects Example (Cont’’d)d)

•• WithinWithin--Subjects, Blocked CCD Data SetSubjects, Blocked CCD Data Set
Testing
Day (T) Size (S) Density (D)

Probability of Detection (P)
Where n = 3Velocity (V)

1
1
1
1
2
2
2
2
3
3
3
3
3
3
3

+1
+1
-1
-1
-1
-1
+1
+1

-1.871
0
0

+1.871
0
0
0

-1
+1
+1
-1
+1
-1
-1
+1
0

-1.871
0
0

+1.871
0
0

+1
-1
+1
-1
-1
+1
-1
+1
0
0

-1.871
0
0

+1.871
0

0.70, 0.82, 0.78
0.63, 0.44. 0.52
0.65, 0.67, 0.86
0.30, 0.45, 0.26
0.49, 0.58, 0.47
0.48, 0.56, 0.35
0.53, 0.74, 0.63
0.85, 0.98, 0.81
0.36, 0.47, 0.55
0.53, 0.74. 0.60
0.58, 0.35, 0.25
0.77, 0.93, 0.81
0.62, 0.93, 0.68
0.86, 0.94, 0.96
0.75, 0.73, 0.62

Coded Values of Target

(Click in this red rectangle to see SAS calculations for this example.)

This slide lists the coded levels for the within-subjects CCD. Note that the α
levels equal 1.871 to provide orthogonal blocking of this three-factor CCD. 
The left most column of the slide shows the three different data collection 
days used as blocks. One-half of the treatment conditions in the 23 factorial 
portion of the CCD were collected on the first day, the other four conditions 
of the 23 factorial were collected the second day, the remaining seven 
treatments representing the axial portion and center point of the CCD were 
collected on day three. The three columns of hypothetical data listed under 
Probability of Detection represent the data of each of the three soldiers who 
participated in the experiment.
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23.4.2. Within-Subjects Example (Cont’d)23.4.2. Within23.4.2. Within--Subjects Example (ContSubjects Example (Cont’’d)d)

Coded-Values ANOVA Summary Table: Probability of Target Detection (P)

Source df SS MS F

Regression (9) (1.2993) (0.1444) (12.84)***
Target Size (S) 1 0.4349 0.4349 38.69***
Target Density (D) 1 0.0910 0.0910 8.09**
Target Velocity (V) 1 0.6542 0.6542 58.20***
SxD 1 0.0693 0.0693 6.17*
SxV 1 0.0077 0.0077 0.69
DxV 1 0.0345 0.0345 3.07
S 2 1 0.0053 0.0053 0.47
D 2 1 0.0005 0.0005 0.05
V 2 1 0.0037 0.0037 0.33

Residual (35) (0.3934) (0.0112)
Lack of Fit 3 0.0228 0.0076 0.83

Error 28 0.2568 0.0092
Total 44 1.6927

*p < 0.05

Testing Days 2 0.0492 0.0246 2.67
Subjects 2 0.0646 0.0323 3.51*

**p < 0.01 ***p < 0.001

(Click in this red rectangle to see SAS calculations for this example.)

The Summary Table for the ANOVA on regression is shown on this slide. 
Regression degrees of freedom are the sum of the degrees of freedom 
associated with the nine partial regression weights in the second-order 
model, but the sums of squares of these partial regression weights are not 
orthogonal and do not equal Regression sum of squares. The F-tests on all 
of these effects are tested by the Residual mean square and show that the 
regression model and the four partial regression weights each predict a 
significant amount of probability of target detection variance (p < 0.05).

Residual is subdivided into four additive parts with their associated degrees 
of freedom. The sum of squares of the main effects of Subjects, Testing 
Days (Blocks), and Error (i.e., Subjects x Treatments interaction) is 
subtracted from Residual to obtain the sum of squares for Lack of Fit. The F-
tests on all four of these effects uses the Error mean square as the 
denominator in the F-ratio. Since there is a significant Subjects effect (p < 
0.05), the experimenter could choose not to pool effects and use Error rather 
than Residual as the error term in all F-tests.
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23.4.2. Within-Subjects Example (Cont’d)23.4.2. Within23.4.2. Within--Subjects Example (ContSubjects Example (Cont’’d)d)

•• Blocked, SecondBlocked, Second--Order, Order, Coded ValuesCoded Values
Empirical ModelEmpirical Model

Probability of Target Detection (P)

P = 0.6670 + 0.0983(S)*** + 0.0450(D)** + 0.1206(V)*** 
- 0.0538(SxD)* + 0.0179(SxV) + 0.0379(DxV)
- 0.0147(S2) - 0.0047(D2) - 0.0124(V2)

R2 = .77

(Click in this red rectangle to see SAS calculations for this example.)

The resulting coded-value, complete second-order empirical for the within-
subjects CCD example is shown on this slide. Since this model is not based 
on an orthogonal second-order design, the values of the partial regression 
weights differ slightly from the previous between-subjects CCD example. In 
both cases, however, the regression model and the same four partial 
regression weights are significant (p < 0.05) and the Coefficient of 
Determination is the same. Raw score levels of the three target parameters 
as defined by linear transformations of the coded values should be used to 
generate a raw score empirical model for prediction purposes.
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23.5. Alternative Second-Order Designs23.5. Alternative Second23.5. Alternative Second--Order DesignsOrder Designs

•• Requirements of SecondRequirements of Second--Order DesignsOrder Designs
–– Minimum of Three LevelsMinimum of Three Levels
–– Ability to Test Lack of FitAbility to Test Lack of Fit

•• Major SecondMajor Second--Order Design AlternativesOrder Design Alternatives
–– Saturated DesignsSaturated Designs

–– Small Small CCDsCCDs
–– ThreeThree--Level Design AlternativesLevel Design Alternatives

–– 33kk Factorial DesignsFactorial Designs
–– FaceFace--Centered Centered CCDsCCDs
–– BoxBox--BehnkenBehnken DesignsDesigns

–– More than Two FactorsMore than Two Factors
–– Based on Incomplete Blocking Designs Based on Incomplete Blocking Designs 

Although the CCD is the primary design of choice in solving second-order 
empirical models, there are alternatives. These alternative designs must 
include a minimum of three levels of each factor and provide the capability to 
test lack of fit for the possibility of higher-order effects.

Two general types of second-order design alternatives exist. A saturated 
design such as a small CCD requires a relatively small number of runs and 
is described by Box and Draper (1987, pp. 520-522) and Myers and 
Montgomery (2002, pp. 378-384). Although these designs minimize the 
number of runs required to solve second-order models, they often require 
five levels of each factor as used in a standard CCD.

Three major design alternatives are considered when only three levels of 
each factor are investigated. These alternatives are 3k factorial designs, 
face-centered CCDs, and Box-Behnken designs as developed by Box and 
Behnken (1960). The Box-Behnken designs require a minimum of three 
factors and are based on incomplete blocking of either a 22 or 23 factorial 
structure of the design. See Myers and Montgomery (2002, pp. 343-350) for 
a detailed description of Box-Behnken design alternatives.
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23.5. Alternative Second-Order Designs23.5. Alternative Second23.5. Alternative Second--Order DesignsOrder Designs

•• ThreeThree--Factor Design AlternativesFactor Design Alternatives

X2

Face-Centered CCD
X1

X3

X2

Box-Behnken Design
X1

X3

X2

33 Factorial Design
X1

X3

This slide illustrates a comparison of data points in a three-factor design for 
the face-centered CCD, the 3k factorial design, and the Box-Behnken design 
alternatives. All three observe only three levels of each factor. Unique data 
points are depicted as small circles on the slide. The face-centered CCD has 
15 data points, the 33 factorial design has 27 data points, and the Box-
Behnken has 13 data points. Note that the distribution of data points in the 
face-centered CCD is cubical and the distribution of the data points in the 
Box-Behnken design is spherical.
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23.5. Alternative Second-Order Designs23.5. Alternative Second23.5. Alternative Second--Order DesignsOrder Designs

•• Comparison of SecondComparison of Second--Order DesignsOrder Designs

•• Advantages of CCD DesignsAdvantages of CCD Designs
–– Expandable to Five Levels of Each FactorExpandable to Five Levels of Each Factor
–– Amenable to Sequential ExperimentationAmenable to Sequential Experimentation

Number Of 3k Factorial Central-Composite
Factors Designs Designs

2 9 9
3 27 15
4 81 25
5 243 27*
6 729 45*
7 2187 79*

* Using a One-Half Replicate in the 2k Factorial Portion

Box-Behnken
Designs

---
13
25
41
49**
57**

** Using 23 Factorial Structure for Incomplete Blocks Portion

This slide compares the number of unique data points in the major three-
level experimental design alternatives for generating second-order models 
based on two through seven quantitative factors. Note that the 3k factorial 
design alternative quickly becomes uneconomical since it primarily provides 
data to evaluate effects greater than second order. The CCD and the Box-
Behnken design alternatives are somewhat comparable in terms of minimum
data points required with the CCD requiring fewer data points for 
investigating five factors but more data points for investigating seven factors.

In general, the CCD is most often used to generate second-order empirical 
models because it can easily expand to investigating five levels of each 
factor without increasing the number of data points required and the blocking 
versions of the CCD are readily amenable to sequential experimentation 
(Williges, 2006). Consequently, this reference material is restricted to a 
discussion of using the CCD for collecting data to generate second-order 
empirical models.
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23.6. Summary23.6. Summary23.6. Summary

•• SecondSecond--Order Empirical ModelsOrder Empirical Models
•• CCD ConstructionCCD Construction

–– ConfigurationConfiguration
–– Choice of Choice of αα
–– ReplicationReplication

•• CCD AnalysisCCD Analysis
–– Polynomial RegressionPolynomial Regression
–– Model TestingModel Testing
–– Residual BreakdownResidual Breakdown

By way of summary, this topic describes the use of the CCD as the 
experimental design for collecting data to solve second-order models of 
human performance in complex systems. Due to economy of data collection 
and flexibility in design configuration, the CCD is the experimental design of 
choice for empirical model building.

The CCD is constructed as a composite of a 2k or 2k-p factorial portion with 
an axial portion and a center point. The coded values of the axial points are 
defined as ±α in coded form. The exact value of α depends on mathematical 
criteria to define a rotatable, orthogonal, blocked, spherical, or faced-
centered CCD. Usually replication occurs only at the center point to increase 
data collection economy. The CCD can be used as between-subjects, within-
subjects, or mixed-factors design with equal replication across data points 
for collecting data in human factors and ergonomics research.

The primary analysis of a CCD is a polynomial regression to represent 
complete second-order empirical models. A subsequent ANOVA can be 
conducted on the polynomial regression to test the significance of the 
regression model and the individual partial regression weights using residual 
as error. Depending upon the specific CCD used, residual can be separated 
into subjects, blocks, lack of fit, and error components.
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23.7. Supplemental Readings23.7. Supplemental Readings23.7. Supplemental Readings

REFERENCEREFERENCE
Box and Draper (1987)Box and Draper (1987)
Montgomery (2005)Montgomery (2005)
Myers & Montgomery (2002)Myers & Montgomery (2002)
Williges (1981)Williges (1981)

SECTIONSECTION
Chapters 14, 15Chapters 14, 15
Chapter 11Chapter 11
Chapters 7, 8Chapters 7, 8
Entire Chapter Entire Chapter 

The chapters by Box and Draper (1987), Montgomery (2005), and Myers 
and Montgomery (2002) provide a general overview of the CCD as well as 
detailed discussions of design construction. The Williges (1981) article 
provides details on the construction and use of the CCD in behavioral 
research.
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Topic 24 incorporates the previous topics into an overall strategy for 
conducting research on complex systems often addressed in human factors 
and ergonomics research. Due to the nature of complex research, the 
experimenter can conduct a series of small interrelated experiments rather 
than one large complex study.

This topic describes general strategies for conducting complex experiments 
and specifically draws upon considerations made in response surface 
methodology for conducting a series of small, interrelated studies. A general 
paradigm for conducting sequential research is presented along with a 
detailed example of using this paradigm in human factors research. This 
research resulted in a set of guidelines for sequential experimentation.

The topic concludes with a description of combining sequential experiments 
into a common database that incorporates the results of several 
experiments. This database can be interrogated to generate integrated 
empirical models across experiments. The techniques of sequential research 
are summarized at the end of this topic along with supplemental reading 
references for details on these procedures.

Topic 24. Sequential ExperimentationTopic 24. Sequential ExperimentationTopic 24. Sequential Experimentation

24.1. Strategies for Experimentation24.1. Strategies for Experimentation
24.2. Response Surface Methodology (RSM)24.2. Response Surface Methodology (RSM)

24.2.1. Steps in RSM24.2.1. Steps in RSM
24.2.2. Method of Steepest Ascent24.2.2. Method of Steepest Ascent

24.3. Sequential Research24.3. Sequential Research
24.3.1. Sequential Research Paradigm24.3.1. Sequential Research Paradigm
24.3.2. Sequential Research Example24.3.2. Sequential Research Example
24.3.3. Guidelines for Sequential Research24.3.3. Guidelines for Sequential Research

24.4. Integrated Research Database24.4. Integrated Research Database
24.5. Summary24.5. Summary
24.6. Supplemental Readings24.6. Supplemental Readings
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24.1. Strategies for Experimentation24.1. Strategies for Experimentation24.1. Strategies for Experimentation

•• Complex Research ProblemComplex Research Problem
–– Large Experiment ApproachLarge Experiment Approach

–– Time ConsumingTime Consuming
–– CostlyCostly
–– Limited UseLimited Use

–– Integrated Research ParadigmIntegrated Research Paradigm
–– Subjective and Objective MethodsSubjective and Objective Methods
–– Series of Small, Separate StudiesSeries of Small, Separate Studies
–– Integrated DatabaseIntegrated Database

•• ApproachApproach
–– Overall Strategy for ExperimentationOverall Strategy for Experimentation
–– Sequential ExperimentationSequential Experimentation

Many human factors research problems exist in complex systems where 
human performance is affected by a large number of independent variables 
that would require a large experimental design. Using one large experiment 
can quickly become quite time consuming and costly resulting in unwieldy 
data collection. In addition, the design is of limited value if the researcher is 
primarily interested in investigating only first-order and second-order effects.

Alternatively, an integrated research paradigm can be chosen that uses both 
objective and subjective methods to select the independent variables of 
interest and investigate this subset through a series of small studies. The 
results can be combined into an integrated database. This topic describes 
approaches taken to develop an integrated research procedure that results 
in sequential experimentation in contrast to conducting one large experiment.
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24.1. Strategies for Experimentation (Cont’d)24.1. Strategies for Experimentation (Cont24.1. Strategies for Experimentation (Cont’’d)d)

•• Simon (1977a, b) Strategy For ExperimentationSimon (1977a, b) Strategy For Experimentation
–– Major PhasesMajor Phases

–– Define the ProblemDefine the Problem
–– Identify Critical VariablesIdentify Critical Variables
–– Approximate Response SurfacesApproximate Response Surfaces
–– Refine EquationRefine Equation
–– Verify ResultsVerify Results

–– Key AspectsKey Aspects
–– Emphasize Screening ExperimentsEmphasize Screening Experiments
–– Use Fractional FactorialsUse Fractional Factorials
–– Minimize ReplicationsMinimize Replications

Simon (1977a, b) was one of the first human factors researchers to address 
methods for conducting complex experimentation. As shown on this slide, he 
recommended five major phases of complex experimentation. Key to his 
approach was the use of small screening experiments that emphasize 
investigation of first- and second-order effects with a minimum amount of 
replication in each experiment.
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24.1. Strategies for Experimentation (Cont’d)24.1. Strategies for Experimentation (Cont24.1. Strategies for Experimentation (Cont’’d)d)

•• Mills (1979) Strategy For ExperimentationMills (1979) Strategy For Experimentation
–– Define Experimental SpaceDefine Experimental Space

–– Dependent VariablesDependent Variables: Performance measures: Performance measures
–– Independent VariablesIndependent Variables: Controlled conditions : Controlled conditions 

occurring in one particular experimentoccurring in one particular experiment
–– ConstantsConstants: Experimental conditions held : Experimental conditions held 

constant across a series of experimentsconstant across a series of experiments
–– ParametersParameters:: Controlled conditions occurring Controlled conditions occurring 

in every experiment in a seriesin every experiment in a series
•• Experimental DesignsExperimental Designs

–– Small 2Small 2kk Factorial DesignsFactorial Designs
–– CentralCentral--Composite DesignsComposite Designs

Mills (1979), another human factors researcher, emphasized careful 
definition of the research space before beginning complex experiments. As 
shown on this slide, his listing of dependent variables, independent variables 
and constants follow standard experimental design procedures. But, his 
inclusion of parameters is an important additional consideration. As stated 
on this slide, a parameter is an independent variable that is so central to the 
research problem that it is included in each experiment in a series of small 2k 

factorial designs and central-composite designs used in sequential 
experimentation.
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24.1. Strategies for Experimentation (Cont’d)24.1. Strategies for Experimentation (Cont24.1. Strategies for Experimentation (Cont’’d)d)

•• Diamond (1981) Strategy For ExperimentationDiamond (1981) Strategy For Experimentation
–– Overall StrategyOverall Strategy

–– Define Specific Objectives of StudyDefine Specific Objectives of Study
–– Define Total Experimental SpaceDefine Total Experimental Space
–– Define Responses of InterestDefine Responses of Interest

–– Initial Experiments:Initial Experiments: Specify Significant VariablesSpecify Significant Variables
–– Independent Variables and Range of InterestIndependent Variables and Range of Interest

–– Subsequent Experiments:Subsequent Experiments: Estimate RelationshipsEstimate Relationships
–– TwoTwo--Level ExperimentsLevel Experiments

–– Final Experiments: Final Experiments: Estimate curvature and maximaEstimate curvature and maxima
–– Multilevel ExperimentsMultilevel Experiments

The Diamond (1981) textbook recommended an overall strategy of complex 
experimentation that included defining the research objective, the total 
experimental space, and the range of response interest. Again, his approach 
uses a series of sequential experiments incorporated into the three phases 
shown on this slide. He emphasized the use of 2k-p fractional-factorial 
designs as a means of minimizing treatment conditions when estimating 
relationships. Multilevel designs were suggested only for the final 
experiments.
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24.2. Response Surface Methodology (RSM)24.2. Response Surface Methodology (RSM)24.2. Response Surface Methodology (RSM)

•• BackgroundBackground
–– Box and Wilson (1951)Box and Wilson (1951)
–– Procedures in Box and Draper (1987) and Myers Procedures in Box and Draper (1987) and Myers 

and Montgomery (2002)and Montgomery (2002)
•• Major Components of Response Surface Major Components of Response Surface 

Methodology (Williges, 2006)Methodology (Williges, 2006)
–– Empirical Model Building using Polynomial Empirical Model Building using Polynomial 

RegressionRegression
–– Orthogonal FirstOrthogonal First--Order Experimental DesignsOrder Experimental Designs
–– Efficient SecondEfficient Second--Order Experimental DesignsOrder Experimental Designs
–– Surface ExplorationSurface Exploration

Probably the first comprehensive approach to building empirical models 
through sequential experimentation was addressed by Box and Wilson 
(1951) in their discussion of response surface methodology (RSM). These 
procedures were originally developed for industrial process control to seek 
optimum yield of chemical reactions. Textbooks by both Box and Draper 
(1987) and Myers and Montgomery (2002) provide the details of RSM. 
Williges (2006) summarized the four major components of RSM that are 
particularly useful to human factors and ergonomics research as listed on 
the bottom of this slide.
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24.2. RSM (Cont’d)24.2. RSM (Cont24.2. RSM (Cont’’d)d)

•• GoalsGoals
–– Describe X's Around Region of MaximumDescribe X's Around Region of Maximum

–– TradeTrade--offs When Each X Cannot Be Maximumoffs When Each X Cannot Be Maximum
–– Shape May Suggest Underlying ProcessShape May Suggest Underlying Process
–– Often Use Graphical ProceduresOften Use Graphical Procedures

–– Seek a Point of Optimum ResponseSeek a Point of Optimum Response
–– Least ErrorsLeast Errors
–– Fastest ResponseFastest Response

–– Continuous Process ImprovementContinuous Process Improvement
–– Evolutionary Operation (Box, 1957)Evolutionary Operation (Box, 1957)

The major goals of RSM are summarized on this slide. Statistical and 
plotting techniques in RSM are used to describe the region of the response 
surface around the optimum and to find a point of optimum response, if it 
exists. In human factors applications, an optimum response is defined using 
human performance metrics such as the least number of errors or the fastest 
response time.

One extension of these RSM goals is to use RSM procedures for continuous 
process improvement through evolutionary operation (EVOP) developed by 
Box (1957). Myers and Montgomery (2002) in Chapter 14 provide details 
and examples of EVOP related procedures.



Human Factors Experimental Design and Analysis Reference

818

24.2. RSM (Cont’d)24.2. RSM (Cont24.2. RSM (Cont’’d)d)

•• 24.2.1. Steps in RSM24.2.1. Steps in RSM
•• 24.2.2. Method of Steepest Ascent24.2.2. Method of Steepest Ascent

This subsection describes the general steps in RSM and provides details on 
one particular RSM technique, the method of steepest ascent, which 
illustrates the sequential data collection philosophy of RSM.
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24.2.1. Steps In RSM24.2.1. Steps In RSM24.2.1. Steps In RSM

•• Step Step 1: Conduct Initial 21: Conduct Initial 2kk Factorial DesignFactorial Design
–– Fit FirstFit First--Order Polynomial RegressionOrder Polynomial Regression
–– Test for LOFTest for LOF

•• Step Step 2: Direction of Steepest Ascent2: Direction of Steepest Ascent
–– Change Value of XChange Value of Xii Proportional to Coded bProportional to Coded bii WeightsWeights
–– Evaluate Actual Test Point to Predicted ResponseEvaluate Actual Test Point to Predicted Response

•• Step Step 3: Iterate 23: Iterate 2kk Factorial Designs UntilFactorial Designs Until
–– FirstFirst--Order Equation Fits But bOrder Equation Fits But bii's are Small (Plateau)'s are Small (Plateau)
–– LOF is Significant for FirstLOF is Significant for First--Order EquationOrder Equation

•• Step Step 4: Conduct Second4: Conduct Second--Order Design (CentralOrder Design (Central--
Composite Design)Composite Design)

•• Step Step 5: Evaluate Quadratic Surface5: Evaluate Quadratic Surface
–– Determine Optimum by Partial DerivativesDetermine Optimum by Partial Derivatives
–– Graph Canonical Forms (Peaks, Ridges, Saddle)Graph Canonical Forms (Peaks, Ridges, Saddle)

Although RSM is a compilation of several techniques, the overall approach 
involves sequential data collection through a series of experiments. See 
Chapters 9 through 12 in Box and Draper (1987), Chapters 11 and 12 in 
Box, Hunter, and Hunter (2005), Chapter 11 in Montgomery (2005), and 
Chapter 6 in Myers and Montgomery (2002) for details on RSM procedures.

This slide summarizes the five major sequential steps in RSM. Data 
collection begins with first-order designs to investigate the influence of major 
factors affecting the response surface. The method of steepest ascent is 
used to explore the slopes on major factors rapidly to approach an optimum. 
First-order designs are used until there is a significant lack of fit suggesting 
the need for second-order effects. Central-composite designs are the major 
second-order designs used in RSM to describe the region of optimum 
performance. The final step in RSM is the evaluation of the region of 
optimum performance through analytical and graphing procedures. These 
procedures are used to isolate an optimum point, a series of optimum points 
(i.e., ridge), or a plane of optimality (i.e., saddle) on the response surface.
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24.2.2. Method of Steepest Ascent24.2.2. Method of Steepest Ascent24.2.2. Method of Steepest Ascent

•• BackgroundBackground
–– Process ImprovementProcess Improvement
–– Optimum Response Located by a Series of Optimum Response Located by a Series of 

FirstFirst--Order ExperimentsOrder Experiments
–– All Factors Used in Initial ExperimentAll Factors Used in Initial Experiment
–– Polynomial Regression Approximations of Polynomial Regression Approximations of 

Response SurfaceResponse Surface
•• ApproachApproach

–– FirstFirst--Order Designs to Determine a Local SlopeOrder Designs to Determine a Local Slope
–– Steepest Ascent to Approach a MaximumSteepest Ascent to Approach a Maximum
–– Basis for SecondBasis for Second--Order Designs to Represent Order Designs to Represent 

Region of MaximumRegion of Maximum

As shown on the previous slide, the method of steepest ascent is a major 
step in evaluating first-order designs used in RSM. Box and Draper (1987) in 
Chapter 6 and Myers and Montgomery (2005) in Chapter 5 provide a
detailed discussion of this method.

Essentially, all of the factors of interest are used in this method to form a 
first-order polynomial regression that describes a hyper-plane region of the 
response surface. The slope of the first-order surface is rapidly ascended by 
changing the values of the factor levels in additional runs or in another 
experiment relative to the first-order partial regression weights of the 
previous experiment. This procedure is iterated until the partial regression 
weights of the first-order model are relatively constant or a significant lack of 
fit is achieved. This signifies approaching the maximum. Second-order 
designs are then used to represent the region of the maximum.
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24.2.2. Method of Steepest Ascent (Cont’d)24.2.2. Method of Steepest Ascent (Cont24.2.2. Method of Steepest Ascent (Cont’’d)d)

•• Series of FirstSeries of First--Order ExperimentsOrder Experiments
•• Steps in Method of Steepest Ascent (Myers Steps in Method of Steepest Ascent (Myers 

and Montgomery, 2005)and Montgomery, 2005)
–– Step 1Step 1: Fit Orthogonal First: Fit Orthogonal First--Order ModelOrder Model
–– Step 2Step 2: Compute Path of Steepest Ascent: Compute Path of Steepest Ascent
–– Step 3Step 3: Conduct Runs on Path: Conduct Runs on Path
–– Step 4Step 4: Determine Base for Second Experiment: Determine Base for Second Experiment
–– Step 5Step 5: Conduct Second Experiment using a : Conduct Second Experiment using a 

FirstFirst--Order ModelOrder Model

This slide summarizes the specific steps used in the method of steepest 
ascent as described by Myers and Montgomery (2005, p. 204). The key to 
this technique is the use of a series of small interrelated, first-order 
experiments or data runs rather than one large higher-order experiment.
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24.3 Sequential Research24.3 Sequential Research24.3 Sequential Research

•• BackgroundBackground
–– Strategy for Complex Research ExperimentationStrategy for Complex Research Experimentation
–– Rubric of RSMRubric of RSM
–– Building Empirical ModelsBuilding Empirical Models

•• Resource AllocationResource Allocation
–– Time and Budget ConstraintsTime and Budget Constraints
–– The 25% Rule (Box, Hunter, and Hunter, 1978)The 25% Rule (Box, Hunter, and Hunter, 1978)

•• Features of Sequential ExperimentationFeatures of Sequential Experimentation
–– Structured Research StrategyStructured Research Strategy
–– Optimal StoppingOptimal Stopping
–– Opportunity for Research IntegrationOpportunity for Research Integration
–– Increased GeneralizationIncreased Generalization

Sequential experimentation, as characterized by RSM, is a useful strategy 
for conducting systematic research in a large data space. The series of small 
interrelated experiments can be combined and then used to build empirical 
models that predict human performance in a complex system and to conduct 
design tradeoffs for optimum interface design. Time and budget constraints 
must be allocated across this series of experiments. As a guideline, Box, 
Hunter, and Hunter (1978, p. 304) suggested that no more than 25% of 
budgeted resources be allocated to the first experiment in the series so that 
changes in strategy and research direction can still be made in subsequent 
experiments in the series.

Using a structured strategy for planning and conducting sequential 
experimentation is a primary key to success. Such a strategy must provide 
multiple opportunities for stopping and changing research direction as well 
as a procedure for integrating data across experiments with confidence. The 
result of sequential research and integration can provide a marked increase 
in generalization since several factors and levels of factors have been 
investigated across these related experiments.
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24.3 Sequential Research (Cont’d)24.3 Sequential Research (Cont24.3 Sequential Research (Cont’’d)d)

•• Sequential Research Strategy ComponentsSequential Research Strategy Components
–– AssumptionAssumption:: Only Main Effects and TwoOnly Main Effects and Two--WayWay

Interactions are of Primary InterestInteractions are of Primary Interest
–– Selection of Data PointsSelection of Data Points

–– Factors and Factor LevelsFactors and Factor Levels
–– System ParametersSystem Parameters
–– Common Data PointCommon Data Point

–– Standard Experimental ProceduresStandard Experimental Procedures
–– Efficient Experimental DesignsEfficient Experimental Designs

–– 22kk and 2and 2kk--pp FirstFirst--Order DesignsOrder Designs
–– SecondSecond--Order, CentralOrder, Central--Composite DesignsComposite Designs

The remainder of this topic is devoted to a description of using sequential 
research to build empirical models of human performance in complex 
systems. This slide lists the four major components of this sequential 
research strategy. First, the experimenter assumes that only main effects 
and two-way interactions are of primary interest and need to be represented 
in the empirical model. The model is tested for lack of fit due to potential 
higher-order effects, but usually the model is not specified beyond a 
complete second-order model.

Second, a great deal of planning, screening, and pre-testing is devoted to 
selecting factors and levels of interest, system parameters, and a common 
data point observed in each study to test comparability of data for database 
integration. Third, standard experimental procedures for instructions, tasks, 
and data recording are followed to facilitate comparability across 
experiments.

Finally, sequential research features the use of small, economical, first- and 
second-order experimental designs. These designs are characterized by 2k

and 2k-p ANOVA designs and central-composite designs.
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24.3 Sequential Research (Cont’d)24.3 Sequential Research (Cont24.3 Sequential Research (Cont’’d)d)

•• 24.3.1. Sequential Research Paradigm24.3.1. Sequential Research Paradigm
•• 24.3.2. Examples of Sequential Research24.3.2. Examples of Sequential Research
•• 24.3.3. Guidelines for Sequential Research24.3.3. Guidelines for Sequential Research

This subsection describes the use of sequential research in human factors 
and ergonomics. First, a general sequential research paradigm is presented 
followed by a detailed presentation of a human factors example using this 
paradigm. Finally, general guidelines for conducting sequential research are 
presented based on this example application.
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24.3.1. Sequential Research Paradigm24.3.1. Sequential Research Paradigm24.3.1. Sequential Research Paradigm

•• Williges and Williges (1989) ParadigmWilliges and Williges (1989) Paradigm
–– Step 1Step 1: Selection of Independent Variables: Selection of Independent Variables

–– Define Experimental SpaceDefine Experimental Space
–– Conduct Screening StudiesConduct Screening Studies
–– Refine Experimental SpaceRefine Experimental Space

–– Step 2Step 2: Description of Independent Variables: Description of Independent Variables
–– Subset Independent VariablesSubset Independent Variables
–– Develop Experimental ProceduresDevelop Experimental Procedures
–– Conduct Sequential ExperimentsConduct Sequential Experiments
–– Determine Data Bridging RequirementsDetermine Data Bridging Requirements

–– Step 3Step 3: Optimization of Independent Variables: Optimization of Independent Variables
–– Optimize Interface DesignOptimize Interface Design

Williges and Williges (1989) proposed a paradigm for sequential research in 
human factors that involves the three-step approach shown on this slide. 
Step 1 includes both experimental design and non-experimental design 
techniques to select the subset of independent variables for subsequent 
sequential experimentation. Step 2 involves the actual series of sequential 
experiments used to build the second-order empirical model that predicts 
human performance as a function of the independent variables of interest. 
Finally, Step 3 includes procedures for using the empirical model developed 
in Step 2 to optimize the interface design.
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24.3.2 Sequential Research Example24.3.2 Sequential Research Example24.3.2 Sequential Research Example

•• Williges, Williges, and Han (1993)Williges, Williges, and Han (1993)
–– Attempt to Implement the Williges and Williges Attempt to Implement the Williges and Williges 

(1989) Sequential Research Paradigm(1989) Sequential Research Paradigm
–– TelephoneTelephone--Based Computer Interface DesignBased Computer Interface Design

•• TelephoneTelephone--Based Information TaskBased Information Task
–– Message RetrievalMessage Retrieval
–– Message TranscriptionMessage Transcription

•• Task ConfigurationTask Configuration
–– Hierarchical Database of InformationHierarchical Database of Information
–– Touchtone Telephone InputTouchtone Telephone Input
–– Synthesized Speech OutputSynthesized Speech Output

Williges, Williges, and Han (1993) used the Williges and Williges (1989) 
sequential research paradigm to investigate a telephone-based computer 
interface design. This interface was used by individuals to receive and 
transcribe information about items in a hypothetical department store. The 
store information was constructed in a hierarchical database that could be 
searched by touchtone telephone input while receiving synthesized speech 
output.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• TelephoneTelephone--Based Interface Design ParametersBased Interface Design Parameters
Speech Quality User Assistance
 Speech Rate (4) HELP Systems (5)

Amplitude (1) Embedded Training (1)
Harmonic Structure (14) Other User Aids (4)
Prosodics (3) User Dialogue Control
Regional Accent (1) Speech Quality (2)
Exception Dictionary (1) Speech Pacing (5)

System Dialogue Design Sequence of Events (2)
Speech Displays User Characteristics

Vocabulary Design (4) Experience (4)
Syntactical Structure (4) Demographics (5)
Semantic Structure (2) Task Characteristics
Information Coding (1) Response Time (1)
Speech Rate (1) Database Structure (4)

Keypad Input Task Complexity (6)
Input Disambiguation (2) Competing Task (1)
Input Echoing Level (1) Environmental Factors
Menu Design (3) Competing Speech (1)
Command Style (4) Noise (1)

Error Handling Background Music (1)
Error Detection (1)
Error Recovery (4)

This slide lists 94 potential factors that can be considered in the design of 
the telephone-based interface. The numbers in parenthesis list the number 
of factors defined by the heading description. For example, there were 14 
potential factors to consider in designing the harmonic structure of the 
speech output system.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Step 1: Selection of Independent VariablesStep 1: Selection of Independent Variables
–– Initial Selection of FactorsInitial Selection of Factors

–– Nonexperimental Design TechniquesNonexperimental Design Techniques
–– BrainstormingBrainstorming
–– Literature ReviewLiterature Review
–– PrototypingPrototyping
–– Feasibility and Relevance AnalysisFeasibility and Relevance Analysis
–– Subjective RatingsSubjective Ratings

–– Decision CriteriaDecision Criteria
–– Conducting Screening StudiesConducting Screening Studies

–– Choice of FactorsChoice of Factors
–– Consider InteractionsConsider Interactions
–– Resolution IV DesignsResolution IV Designs

–– 16 Factor Design (32 Versus 65,536 Observations)16 Factor Design (32 Versus 65,536 Observations)

Step 1 in the Williges and Williges (1989) paradigm summarized on a 
previous slide dealt with selecting the major independent variables that 
would be investigated through sequential experimentation. Both non-
experimental and experimental procedures were used to select these 
independent variables. Merkle, Beaudet, Williges, Herlong, and Williges 
(1988) used the set of non-experimental procedures listed on this slide to 
reduce the 94 independent variables listed on the previous slide to a 
candidate subset of 16 factors.

A screening study was used as an experimental design procedure to select 
the final set of independent variables. Beaudet and Williges (1988) described 
a Resolution IV, 216-11 fractional-factorial screening study consisting of 32 
treatment combinations involving 16 factors. The results of their screening 
study further reduced the independent variables to a subset of 10 significant 
factors requiring further investigation. As noted at the bottom of this slide, a 
full 216 factorial design would require over 64,000 treatment observations 
which are not feasible. Consequently, only highly economical design 
alternatives that resolve main effects and two-way interactions should be 
considered for screening experiments. 
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Ten Factors in Sequential ExperimentationTen Factors in Sequential Experimentation

Coded Values
Independent Variable Study -1.4 -1 0 +1 +1.4

X1 Speech Rate (SR) 1,2,3,4 120  138  180  222  240
X2 Input Timeout (IT) 1,2,3,4 2 3 6 9 10
X3 Background Music (BM)1,4 36.1 40.5 50.8 61.1 65.4
X4 Age of User (AU) 1,4 15 22 38 54 60
X5 Menu Structure (MS) 2,4 26 82
X6 Feedback (FB) 2,4 No Yes
X7 User Guide (UG) 2,4 No Yes
X8 No. of Messages (NM) 3,4 1 2
X9 Gender of User (GU) 3,4 Female Male
X10 Type of Voice (TV) 3,4 Betty Paul

Reprinted from Williges, Williges, and Han (1993) by Permission

This slide summarizes the final subset of the 10 independent variables 
investigated through sequential research procedures. The series of 
experiments used in this example involved four separate data collection 
studies. Note that Speech Rate and Input Timeout factors (i.e., X1 and X2, 
respectively) are considered parameters because they were manipulated in 
all four sequential research studies.

The first four factors were manipulated at five levels across the sequential 
experiments; whereas, the other six factors were only manipulated at two 
levels. Both coded values and real-world levels of the 10 factors are shown 
on the slide.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Step 2: Description of Independent VariablesStep 2: Description of Independent Variables
–– Series of Small ExperimentsSeries of Small Experiments

–– 22kk Factorial DesignsFactorial Designs
–– 22kk––pp Resolution V FractionalResolution V Fractional--Factorial DesignsFactorial Designs
–– CentralCentral--Composite DesignsComposite Designs

–– Empirical Model BuildingEmpirical Model Building
–– Polynomial RegressionPolynomial Regression

–– Data Bridging Across ExperimentsData Bridging Across Experiments
–– Integrated Empirical ModelIntegrated Empirical Model

Step 2 of the Williges and Williges (1989) paradigm as shown on a previous 
slide deals with describing inter-relationships among the 10 factors selected 
in Step 1. Step 2 is the actual set of sequential research studies. This 
sequence is a series of small experiments that provide separate, meaningful 
results and can generate empirical models based on polynomial regression 
that, at least, represent main effects and two-way interactions of the factors 
manipulated in each experiment. Generally, 2k factorial designs, 2k-p

fractional factorial designs of Resolution V, and central-composite designs 
are the main candidates for this series of small studies. These separate 
experiments investigate meaningful groupings of independent variables and 
stand alone as experiments that can generate empirical models of the 
subset of factors investigated.

Data bridging is a key component of the Step 2 sequential research process. 
Only additional data points needed to resolve all the two-way interactions 
among the factors of interest are collected in data bridging. Consequently, 
data bridging usually consists of a small collection of additional observations 
rather than a completely balanced experimental design. These additional 
data points can be combined with the data collected in the preceding set of 
small experiments to form the database for building an integrated empirical 
model that can include all the main factors of interest.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Sequential ExperimentsSequential Experiments
–– Ten Independent VariablesTen Independent Variables

–– Continuous: XContinuous: X11, X, X22, X, X33, X, X44

–– Dichotomous: XDichotomous: X55, X, X66, X, X77, X, X88, X, X99, X, X1010

–– Parameters: XParameters: X11, X, X22

–– Four Sequential ExperimentsFour Sequential Experiments
–– Experiment I: XExperiment I: X11, X, X22, X, X33, X, X44

–– Experiment II: XExperiment II: X11, X, X22, X, X55, X, X66, X, X77

–– Experiment III: XExperiment III: X11, X, X22, X, X88, X, X99, X, X1010

–– Experiment IV: Additional InteractionsExperiment IV: Additional Interactions

This slide summarizes the series of sequential studies in the example 
problem that were conducted in Step 2 of the Williges and Williges (1989) 
paradigm. The 10 factors in the example problem consisted of four 
continuous factors and six dichotomous factors. Two of these ten factors, X1
and X2, were parameters investigated in each experiment in the sequence.

A sequence of four separate data collections was conducted. As shown on 
the slide, Experiment I involved factors X1, X2, X3, and X4; Experiment II 
investigated factors X1 and X2 with factors X5, X6, and X7; Experiment III 
evaluated factors X1 and X2 with factors X8, X9, and X10; and Experiment IV 
manipulated all ten factors in the data bridging.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Experiment I: CentralExperiment I: Central--Composite DesignComposite Design

–– Where XWhere X55, X, X66, X, X77, X, X88, X, X99, and X, and X1010 = +1 Level= +1 Level

X1 X2 X3 X4 X1 X2 X3 X4
+1 +1 +1 +1 -1 -1 +1 +1
+1 +1 +1 -1 -1 -1 +1 -1
+1 +1 -1 +1 -1 -1 -1 +1
+1 +1 -1 -1 -1 -1 -1 -1
+1 -1 +1 +1 +1.414 0 0 0
+1 -1 +1 -1 -1.414 0 0 0
+1 -1 -1 +1 0 +1.414 0 0
+1 -1 -1 -1 0 -1.414 0 0
-1 +1 +1 +1 0 0 +1.414 0
-1 +1 +1 -1 0 0 -1.414 0
-1 +1 -1 +1 0 0 0 +1.414
-1 +1 -1 -1 0 0 0 -1.414

0 0 0 0

Experiment I in the example problem was a four factor, central-composite 
design (CCD). The coded values of the 25 treatment combinations of the 
CCD are shown on this slide. An α value of 1.414 was used to provide an 
orthogonal CCD as described in Topic 23. The remaining six factors of 
interest that were not manipulated in this experiment were held constant at 
the +1 coded level as noted at the bottom of this slide.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Experiment II: 2Experiment II: 255--11 Factional ReplicateFactional Replicate

–– Where XWhere X33, X, X44, X, X88, X, X99, and X, and X1010 = +1 Level= +1 Level

X1 X2 X5 X6 X7
-1.414 -1.414 -1 -1 +1
-1.414 -1.414 -1 +1 -1
-1.414 -1.414 +1 -1 -1
-1.414 -1.414 +1 +1 +1
-1.414 +1.414 -1 -1 -1
-1.414 +1.414 -1 +1 +1
-1.414 +1.414 +1 -1 +1
-1.414 +1.414 +1 +1 -1
+1.414 -1.414 -1 -1 -1
+1.414 -1.414 -1 +1 +1
+1.414 -1.414 +1 -1 +1
+1.414 -1.414 +1 +1 -1
+1.414 +1.414 -1 -1 +1
+1.414 +1.414 -1 +1 -1
+1.414 +1.414 +1 -1 -1
+1.414 +1.414 +1 +1 +1

Experiment II in the example problem was a Resolution V, 25-1 fractional-
factorial design. The coded values of the five factors in this design are 
shown on this slide. Note that the ±1.414 levels of X1 and X2 were chosen 
even though any two of the five levels of these two factors could have been 
used. The remaining five factors of interest that were not manipulated in this 
experiment were held constant at the +1 coded level as noted at the bottom 
of this slide.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Experiment II: 2Experiment II: 255--11 Fractional Replicate (Cont'd)Fractional Replicate (Cont'd)
–– Resolution V DesignResolution V Design

–– Identity RelationshipIdentity Relationship
–– I = XI = X11XX22XX55XX66XX77

–– Alias StructureAlias Structure

X1 (X2X5X6X7) X1X6 (X2X5X7)
X2 (X1X5X6X7) X1X7 (X2X5X6)
X5 (X1X2X6X7) X2X5 (X1X6X7)
X6 (X1X2X5X7) X2X6 (X1X5X7)
X7 (X1X2X5X6) X2X7 (X1X5X6)
X1X2 (X5X6X7) X5X6 (X1X2X7)
X1X5 (X2X6X7) X5X7 (X1X2X6)

X6X7 (X1X2X5)

The design used in Experiment II is a one-half replicate of a 25 factorial 
design. The identity relationship used in the one-half replicate is shown on 
this slide and uses the five-way interaction as described in Topic 18. This 
identity relationship was chosen to form a Resolution V design that keeps 
the main effects and two-way interactions of the five factors orthogonal from 
each other so that the resulting empirical model based on the results of this 
experiment could represent unconfounded partial regression weights of the 
main effects and two-way interactions. The resulting alias structure for this 
design is shown at the bottom of this slide.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Experiment III: 2Experiment III: 255--11 Fractional ReplicateFractional Replicate

–– Where XWhere X33, X, X44, X, X55, X, X66, and X, and X77 = +1 Level= +1 Level

X1 X2 X8 X9 X10
-1 -1 -1 -1 +1
-1 -1 -1 +1 -1
-1 -1 +1 -1 -1
-1 -1 +1 +1 +1
-1 +1 -1 -1 -1
-1 +1 -1 +1 +1
-1 +1 +1 -1 +1
-1 +1 +1 +1 -1

+1 -1 -1 -1 -1
+1 -1 -1 +1 +1
+1 -1 +1 -1 +1
+1 -1 +1 +1 -1
+1 +1 -1 -1 +1
+1 +1 -1 +1 -1
+1 +1 +1 -1 -1
+1 +1 +1 +1 +1

Experiment III in the example problem also used a Resolution V, 25-1

fractional-factorial design. The same alias structure shown on the previous
slide for Experiment II was also used in this experiment.

The coded values of the five factors in this design are shown on this slide. 
Note that the ±1 levels of X1 and X2 were chosen even though any two of the 
five levels of these two factors could have been used. The remaining five 
factors of interest that were not manipulated in this experiment were held 
constant at the +1 coded level as noted at the bottom of this slide.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Experiment IV: Data BridgingExperiment IV: Data Bridging
–– Data Bridging Procedure (Han, Williges, and Data Bridging Procedure (Han, Williges, and 

Williges, 1997)Williges, 1997)
–– Data IntegrationData Integration
–– Data Point SelectionData Point Selection
–– Check for Check for MulticollinearityMulticollinearity

–– 16 Unresolved Two16 Unresolved Two--Way InteractionsWay Interactions
XX33XX55, X, X33XX66, X, X33XX77, X, X33XX88, X, X33XX1010, X, X44XX55, X, X44XX66, X, X44XX77, , 
XX44XX88, X, X44XX1010, X, X55XX88, X, X55XX1010, X, X66XX88, X, X66XX1010, X, X77XX88, and , and 
XX77XX1010

–– Data Collection RequirementData Collection Requirement
–– One Data Point for Each InteractionOne Data Point for Each Interaction
–– 2288 Alternatives for Each Data PointAlternatives for Each Data Point

The fourth experiment in the example problem is not really an experiment in 
terms of using an experimental design. Rather, it is just a collection of 
additional data points needed to resolve all two-way interactions across the 
entire set of 10 factors. Han, Williges, and Williges (1997, pp 572-575) 
describe the details of the procedures for determining treatment
combinations needed in data bridging that involve the three considerations of 
data integration, data point selection, and a check for multicollinearity when 
the regressors are truly not independent.

Data integration requires a determination of effects that still need to be 
evaluated when combining the data across previous experiments in the 
research sequence. As listed on this slide, there are 16 two-way interactions 
in the example problem that were not investigated in the previous three 
experiments in the research sequence. For each of these interactions, the 
experimenter must collect one more data point in order to evaluate the 
interaction. Since there are 8 other factors each at two levels, there are 28

alternatives for choosing each additional data point.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Experiment IV: Data Bridging (ContExperiment IV: Data Bridging (Cont’’d)d)
–– Mathematical Selection CriterionMathematical Selection Criterion

–– Maximize Determinant of XMaximize Determinant of X’’X MatrixX Matrix
–– Reduce Degree of Reduce Degree of MulticollinearityMulticollinearity

–– Reduced to Six Required Data PointsReduced to Six Required Data Points
Factor Levels of Six Additional Treatment Conditions

X1

-1
+1
+1
-1
+1
-1

X2

+1
-1
+1
-1
-1
+1

X3

+1
+1
+1
+1
+1
+1

X4

-1
+1
+1
-1
-1
+1

X5

-1
-1
+1
-1
+1
-1

X6

+1
+1
+1
+1
+1
+1

X7

+1
+1
+1
-1
+1
-1

X8

+1
+1
+1
+1
+1
+1

X9

+1
+1
-1
+1
+1
+1

X10

-1
-1
-1
-1
-1
-1

Data
Point

1
2
3
4
5
6

Reprinted from Williges, Williges, and Han (1993) by Permission

Han, Williges, and Williges (1997) described a mathematical selection and 
evaluation procedure based on the mathematical criterion of maximizing the 
determinate of the X’X matrix and checking for multicollinearity as described 
by Myers (1990) in Chapter 8. By following this procedure, the data bridging 
was reduced to six additional data points. The coded values of the 10 factors 
for these six additional data points are listed at the bottom of this slide.



Human Factors Experimental Design and Analysis Reference

838

24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Integrated Empirical ModelsIntegrated Empirical Models

TST = 52.81 + 17.27(IT) + 8.27(MS) + 4.49(ITxMS) - 4.47(UG)
+ 2.83(MSxUG) + 2.77(BM) + 2.15(AU) + 1.66(ITxBM)
- 1.55(ITxUG) - 1.20(SR)

UAK = 1.02 - 0.34(MS) + 0.28(AU) + 0.23(MSxUG) + 0.21(AUxUG)
+ 0.13(BM) + 0.12(NM) - 0.11(UG) - 0.07(ITxUG)

TA = 3.16 - 0.40(BM) - 0.21(BM 2) - 0.15(SR) - 0.15(AU )
- 0.02(ITxGU)

TST = Total Search Time
UAK = User Added Key Presses
TA = Transcription Accuracy

SR = Speech Rate MS = Menu Structure
IT = Input Timeout UG = User Guide
BM = Background Music NM = Number of Messages
AU = Age of User GU = Gender of User

The final aspect of Step 2 of the Williges and Williges (1989) paradigm that 
was shown on a previous slide is to build integrated empirical models based 
on all the data collected in the sequential studies. This slide summarizes 
three integrated models of all 10 factors in the example problem that 
separately represent the three major dependent variables, Total Search 
Time (TST), User Added Key Presses (UAK), and Transcription Accuracy 
(TA). Only significant (p < 0.05) first-order and second-order effects are 
included in these empirical models.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Step 3. Optimization of Independent VariablesStep 3. Optimization of Independent Variables
–– Response Surface Methodology ProceduresResponse Surface Methodology Procedures

–– Plotting Response SurfacePlotting Response Surface
–– Ridge Regression AnalysisRidge Regression Analysis
–– Canonical Analysis and Partial DerivativesCanonical Analysis and Partial Derivatives

–– Modern Regression ProceduresModern Regression Procedures
–– Best Integrated Empirical ModelBest Integrated Empirical Model

–– Mallows Mallows C(pC(p) and PRESS Statistic) and PRESS Statistic
–– Discrete VariablesDiscrete Variables

–– Mixed Integer ProgrammingMixed Integer Programming

The final step, Step 3, of the Williges and Williges (1989) paradigm deals 
with optimizing performance across the sequential experiments to determine 
the best combination of independent variables to define the interface. Both 
Response Surface Methodology (RSM) and modern regression procedures 
can be used to aid in optimization.

As shown on the top of this slide, various RSM procedures such as plots of 
response surfaces, ridge regression, and canonical analysis can be used to 
provide a good description of the region of optimality. In addition, partial 
derivatives of the integrated empirical model can be considered as a means 
of defining the optimal level of factor combinations.

Modern regression procedures using Mallows C(p) and the PRESS statistic 
can be used to select the best integrated model when covariance exists 
among the partial regression weights. Often in human factors research, 
some of the factors are a combination of continuous and discrete variables, 
and mixed integer programming may need to be considered for optimization 
purposes.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Optimization ProceduresOptimization Procedures
–– Nonlinear Search on Continuous VariablesNonlinear Search on Continuous Variables
–– All Combinations of Dichotomous VariablesAll Combinations of Dichotomous Variables
–– Summary of Optimum Interface ConfigurationSummary of Optimum Interface Configuration

Dependent
Variables SR IT BM AU MS UG NM FB GU TV

TST 1.4 -1.4 -1.4 -1 -1 1 ** ** ** **
UAK ** -1.4 -1.4 -1 1 1 -1 ** ** **
TA -1.4 -1.4 -0.9 -1 ** ** ** ** ** **

** Any Value Within The Design Region SR = Speech Rate
IT = Input Timeout
BM = Background Music

TST = Total Search Time AU = Age of User
UAK = User Added Key Presses MS = Menu Structure
TA = Transcription Accuracy UG = User Guide

NM = Number of Messages
FB = Feedback
GU = Gender of User
TV = Type of Voice

Ten Independent Variables

Williges, Williges, and Han (1993) used a nonlinear search of the continuous 
variables and all combinations of the dichotomous variables. This yielded the 
best approach in determining the optimal performance in the example 
problem. This slide shows the results of these procedures to optimize the 
three integrated empirical models shown on a previous slide. The optimal 
level for the 10 factors on each of the three major dependent variables is 
shown on this slide. Note that any level can be used with some of the 
variables.

These treatment combinations can be used to specify the optimal telephone-
based interface configuration of the 10 independent variables investigated. 
Since each of the three dependent variables results in a slightly different 
optimum configuration, the experimenter must trade off these dependent 
variables to optimize the telephone-based interface.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Quantitative Design GuidelinesQuantitative Design Guidelines
–– Optimum Interface ConfigurationOptimum Interface Configuration
–– Interface Design TradeoffsInterface Design Tradeoffs

–– Functional RelationshipsFunctional Relationships
–– Alternative ConfigurationsAlternative Configurations

–– Quantitative Design ImpactQuantitative Design Impact
–– Functional RelationshipFunctional Relationship
–– Magnitude of EffectMagnitude of Effect
–– Direction of InfluenceDirection of Influence

•• Qualitative Design GuidelinesQualitative Design Guidelines
–– Verbal DescriptionsVerbal Descriptions
–– Interface Design RulesInterface Design Rules

Empirical models can be used in human factors research to provide both 
quantitative and qualitative interface design guidelines. Since empirical 
models are quantitative prediction equations, most applications are 
quantitative in nature. As noted on this slide, the optimum interface 
configuration can be defined and design tradeoffs can be evaluated. In 
addition, design impacts of changing various factor levels can be evaluated 
based on the empirical model itself. Considerations such as predicting 
performance based on the functional relationship, determining the relative 
magnitude of orthogonal partial regression weights, and understanding the 
direction of influence of the various factors can aid in the human factors 
interface design process.

Qualitative interface design guidelines based on research data are also of 
major interest to the human factors researcher. These verbal descriptions 
need to be developed based on the relationships specified in the empirical 
models resulting from sequential research, and they can provide interface 
design rules. These rules are validated through accepted use and follow-on 
research.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

Qualitative Design GuidelinesQualitative Design Guidelines
(Reprinted from Williges, Williges, & Han, 1992, by Permission)(Reprinted from Williges, Williges, & Han, 1992, by Permission)

1. Auditory menus should be short with few menu alternatives.

2. Methods to reduce the presentation time of auditory menus
should be provided. This may include allowing the user to
Interrupt speech displays or menus or to stack input commands.

3. The time between the presentation of auditory menu alternatives
should be minimal and should not exceed 2 seconds.

4. For auditory databases that do not change frequently, a flat
database structure should be used for immediate access. Each
item should be assigned an access code, and a user guide to
these codes should be distributed.

5. After completion of each auditory search, the system should
return the user to the top of the menu hierarchy before another
search can be initiated.

As an example of generating qualitative design guidelines, Williges, Williges, 
and Han (1992) provide ten interface design guidelines for the telephone-
based interface that are based on the empirical models generated in the 
example problem through sequential experimentation. The first five 
guidelines are presented on this slide. (Reprinted with permission from 
Human Factors. Copyright 1992 by the Human Factors and Ergonomics 
Society. All rights reserved.)
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

6. Throughout the search process a simple method should be
provided to allow the user to return to the top of an auditory
menu structure.

7. An auditory information system should minimize the effects of
noise or background music on the intelligibility of the auditory
displays.

8. If an auditory information system will be used by older adults,
the auditory displays should be designed to maximize speech
intelligibility to offset the reduction in speech intelligibility with
age.

9. If an auditory information system will be used by older adults,
waiting periods for menu selections should be increased to
account for the increase in choice reaction time.

10. The rate of rule-based synthesized speech should be set at a
mid-level such as 180 words per minute.

Qualitative Design GuidelinesQualitative Design Guidelines
(Reprinted from Williges, Williges, & Han, 1992, by Permission)(Reprinted from Williges, Williges, & Han, 1992, by Permission)

This slide summarizes the second five qualitative interface design guidelines 
specified by Williges, Williges, and Han (1992). (Reprinted with permission 
from Human Factors. Copyright 1992 by the Human Factors and 
Ergonomics Society. All rights reserved.)

No rules are available for specifying these verbal descriptions and interface 
design rules. They ultimately depend on the experience and understanding 
of the experimenter to make valid interpretations of the empirical results and 
to specify qualitative design guidelines that provide useful interface design 
rules. Nonetheless, these qualitative design guidelines are a necessary 
component of human factors and ergonomics use of sequential 
experimentation and should always be part of the sequential research 
process.
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24.3.2 Sequential Research Example (Cont’d)24.3.2 Sequential Research Example (Cont24.3.2 Sequential Research Example (Cont’’d)d)

•• Evaluation of Sequential ExperimentsEvaluation of Sequential Experiments
–– Economy of Sequential ResearchEconomy of Sequential Research

–– Single ExperimentSingle Experiment
–– 5544 ×× 2266 = = 40,000 Unique Data Points40,000 Unique Data Points

–– Four Sequential ExperimentsFour Sequential Experiments
–– 25 + 225 + 255––11 + 2+ 255––11 + 6 = + 6 = 63 Unique Data Points63 Unique Data Points

–– Staging of Data CollectionStaging of Data Collection
–– Feasible Size of ExperimentsFeasible Size of Experiments
–– Multiple Stopping PointsMultiple Stopping Points

–– Combined Data SetCombined Data Set
–– Integrated Empirical ModelIntegrated Empirical Model
–– Interface Design TradeoffsInterface Design Tradeoffs
–– Increased GeneralityIncreased Generality

Williges, Williges, and Han (1993) evaluated their sequential research 
example in terms of economy of data collection, staging of data collection, 
and use of the combined data set. Sequential research was extremely 
economical in terms of investigating the various levels of the 10 factors. A 
total of 40,000 unique data points would be required in one large factorial 
experiment as compared to only 63 unique data points in the four sequential 
experiments.

Obviously, conducting one large experiment is not feasible and staging the 
data collection through sequential research makes the investigation of this 
example complex research problem feasible. Research staging results in 
small experiments that are both feasible and meaningful. This staging also 
allows several opportunities to terminate data collection or change directions, 
if necessary.

Combining data across the sequential experiments allowed the development 
of an integrated empirical model that can be used to make design tradeoffs 
to result in an optimum interface design configuration. The overall generality 
of these results can be enhanced through the use of both quantitative and 
qualitative design guidelines.
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24.3.3 Guidelines for Sequential Research24.3.3 Guidelines for Sequential Research24.3.3 Guidelines for Sequential Research

•• Williges, Williges, and Han (1993)Williges, Williges, and Han (1993)
–– Sequential Research PlanSequential Research Plan

–– AssumptionAssumption
–– ParametersParameters
–– Common Data PointCommon Data Point
–– Stopping CriteriaStopping Criteria
–– Data Collection StrategyData Collection Strategy
–– Amount of DataAmount of Data
–– ReplicationReplication
–– Benchmark TaskBenchmark Task
–– Experimental ProceduresExperimental Procedures
–– Data RecordingData Recording

Based on their experience with sequential research as described in the 
previous example problem dealing with the telephone-based interface, 
Williges, Williges, and Han (1993, pp. 23-27) provided several design 
guidelines for researchers to consider when using sequential 
experimentation. As shown on this slide, they expanded the original Williges 
and Williges (1989) sequential research paradigm by adding a planning 
component at the beginning of sequential research and planning continues 
interactively throughout each additional stage of the process.

Williges, Williges, and Han (1993) presented sequential research planning 
guidelines that cover the ten topics shown on this slide. These ten guidelines 
can be used as a checklist for experimenters who are planning a series of 
sequential experiments. 
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24.3.3 Guidelines for Sequential Research (Cont’d)24.3.3 Guidelines for Sequential Research (Cont24.3.3 Guidelines for Sequential Research (Cont’’d)d)

•• Williges, Williges, and Han (1993) (ContWilliges, Williges, and Han (1993) (Cont’’d)d)
–– Selection of Independent VariablesSelection of Independent Variables

–– List of FactorsList of Factors
–– Literature ReviewLiterature Review
–– Selection CriteriaSelection Criteria

–– Analytical MethodsAnalytical Methods
–– PrototypingPrototyping
–– Initial SelectionInitial Selection
–– Screening StudiesScreening Studies

–– Description of Independent VariablesDescription of Independent Variables
–– Discrete VariablesDiscrete Variables

–– Factor LevelsFactor Levels
–– Complete FactorialsComplete Factorials
–– Fractional FactorialsFractional Factorials

The remaining guidelines presented by Williges, Williges, and Han (1993) 
relate to selecting, describing, and optimizing independent variables 
according to the Williges and Williges (1989) paradigm. The top of this slide 
summarizes their guideline topics for selecting independent variables to 
include in sequential research. The main guideline considerations deal with 
the list of factors, analytical methods, prototyping, initial screening, and 
screening studies involved in selecting independent variables. The bottom of 
this slide lists guideline considerations in describing discrete variables used 
in sequential experimentation.
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24.3.3 Guidelines for Sequential Research (Cont’d)24.3.3 Guidelines for Sequential Research (Cont24.3.3 Guidelines for Sequential Research (Cont’’d)d)

•• Williges, Williges, and Han (1993) (ContWilliges, Williges, and Han (1993) (Cont’’d)d)
–– Continuous VariablesContinuous Variables

–– Coded ValuesCoded Values
–– Spherical DesignsSpherical Designs
–– CuboidalCuboidal DesignsDesigns

–– Data BridgingData Bridging
–– Selection CriteriaSelection Criteria
–– MulticollinearityMulticollinearity

–– Integrated Empirical ModelsIntegrated Empirical Models
–– Polynomial RegressionPolynomial Regression
–– PredictorsPredictors
–– ExperimentsExperiments
–– Lack of FitLack of Fit
–– New InteractionsNew Interactions

This slide continues with the Williges, Williges, and Han (1993) list of 
guidelines for describing independent variables in sequential research. 
Besides presenting guidelines for discrete variables as noted on the previous 
slide, this slide lists their major guideline topics for continuous variables, data 
bridging, and integrated empirical models that need to be considered in this 
stage of the sequential research process.
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24.3.3 Guidelines for Sequential Research (Cont’d)24.3.3 Guidelines for Sequential Research (Cont24.3.3 Guidelines for Sequential Research (Cont’’d)d)

•• Williges, Williges, and Han (1993) (ContWilliges, Williges, and Han (1993) (Cont’’d)d)
–– Optimization of Independent VariablesOptimization of Independent Variables

–– Discrete VariablesDiscrete Variables
–– Continuous VariablesContinuous Variables
–– Combination of VariablesCombination of Variables
–– Range of InterestRange of Interest

This slide lists the Williges, Williges, and Han (1993) guideline topics to 
consider in the final stage of the sequential research process. They provide 
guidelines for dealing with discrete variables, continuous variables, a 
combination of both variables, and the range of interest across variables 
during the optimization stage of the Williges and Williges (1989) paradigm.
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24.4. Integrated Research Database24.4. Integrated Research Database24.4. Integrated Research Database

•• Components of Integrated DatabaseComponents of Integrated Database
–– Compilation of Outcome Data from Sequential Compilation of Outcome Data from Sequential 

ExperimentsExperiments
–– Record of Factor LevelsRecord of Factor Levels

–– Manipulated and Held Constant in Manipulated and Held Constant in EachEach
Sequential ExperimentSequential Experiment

–– Common Data Point in Each ExperimentCommon Data Point in Each Experiment
•• Williges, Williges, and Han (1993) ExampleWilliges, Williges, and Han (1993) Example

–– TelephoneTelephone--Based Interface DesignBased Interface Design
–– Ten Factors across Four ExperimentsTen Factors across Four Experiments

–– Outcomes of 63 Unique Data PointsOutcomes of 63 Unique Data Points
–– Integrated Empirical Model for Ten FactorsIntegrated Empirical Model for Ten Factors

One of the major outputs of sequential experimentation is the resulting 
integrated database that combines the results of each experiment in the 
sequential series. The top of this slide lists two key components of an 
integrated database. First, the experimenter must record the levels of each 
factor manipulated in each experiment and must record the level of each 
factor held constant in each experiment. Consequently, the resulting 
integrated database lists the dependent variables outcome and the level of 
every factor for each observation. Second, a common data point should also 
be observed in each experiment to determine if the results of separate 
experiments are compatible and can be combined into the integrated 
database.

The previous example of sequential research conducted by Williges, 
Williges, and Han (1993) on the telephone-based interface design problem 
resulted in an integrated database of outcomes representing 63 unique data 
points collected across a series of four small experiments. This integrated 
database was used to generate empirical models representing the first-order 
and second-order effects of ten factors. 
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24.4. Integrated Research Database (Cont’d)24.4. Integrated Research Database (Cont24.4. Integrated Research Database (Cont’’d)d)

•• Snow and Williges (1998) ExampleSnow and Williges (1998) Example
–– Perceived Presence in Virtual EnvironmentsPerceived Presence in Virtual Environments
–– Eleven Factors across Three ExperimentsEleven Factors across Three Experiments

–– Outcomes of 52 Unique Data PointsOutcomes of 52 Unique Data Points
–– Factors 1 to 3Factors 1 to 3: 3x2x3 Factorial Design: 3x2x3 Factorial Design
–– Factors 4 to 8Factors 4 to 8: 2: 255--11 FractionalFractional--Factorial Factorial 

Design (Resolution V)Design (Resolution V)
–– Factors 9 to 11Factors 9 to 11: 3x2x3 Factorial Design: 3x2x3 Factorial Design

–– Common Data PointCommon Data Point
–– Third Experiment IncompatibleThird Experiment Incompatible

–– Integrated Empirical Model of Eight FactorsIntegrated Empirical Model of Eight Factors
–– Standardized Regression for Relative Standardized Regression for Relative 

ComparisonComparison

Snow and Williges (1998) provided another human factors example of 
generating an integrated database resulting from sequential experimentation 
on eleven factors affecting operator’s perceived presence in a virtual 
environment. As shown on the center of this slide, outcomes on a total of 52 
unique data points were collected across three separate, sequential 
experiments.

Subsequent investigation of the common data point in the three experiments 
showed that the results of the third experiment were significantly lower than 
the first two experiments. Therefore, the results of the third experiment were 
deemed incompatible with the other two experiments and were not included 
in the integrated database. Consequently, the integrated empirical model 
generated by Snow and Williges (1998) was restricted to the eight factors 
investigated in the first two sequential experiments. They then developed a 
standardized polynomial regression equation so that relative contributions of 
these factors could be evaluated.
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24.4. Integrated Research Database (Cont’d)24.4. Integrated Research Database (Cont24.4. Integrated Research Database (Cont’’d)d)

•• Use of Integrated Research DatabaseUse of Integrated Research Database
–– Efficient Investigation of Large Data SpaceEfficient Investigation of Large Data Space
–– Systematic Research of Topic AreaSystematic Research of Topic Area
–– Composite Database of Small ExperimentsComposite Database of Small Experiments
–– Compilation of Data across LaboratoriesCompilation of Data across Laboratories
–– Facilitates Response Surface ExplorationFacilitates Response Surface Exploration
–– Integrated Empirical ModelsIntegrated Empirical Models
–– Increased Increased GeneralizabilityGeneralizability

This slide lists the various characteristics and potential uses of integrated 
research databases. The results are collected through efficient investigations 
of large data spaces and are based on well-planned, systematic studies.

The database is a composite of small sequential experiments usually 
conducted in the same laboratory by the same investigators. Alternatively, 
the data could be compiled across laboratories provided appropriate checks 
are made for comparability of results and common tasks are used.

The integrated database facilitates exploration of the entire response surface 
by including more factors simultaneously than possible in any individual 
experiment in the sequential series. The resulting integrated models are 
more generalizable because they include more factors and a wider range of 
levels across factors.
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24.5 Summary24.5 Summary24.5 Summary

•• Purpose of Sequential ExperimentationPurpose of Sequential Experimentation
–– Investigate Large Data Space with Series of Small Investigate Large Data Space with Series of Small 

ExperimentsExperiments
–– Build Integrated, SecondBuild Integrated, Second--Order Empirical ModelsOrder Empirical Models

•• Primary Constraints (Williges, Williges, and Primary Constraints (Williges, Williges, and 
Han, 1993)Han, 1993)
–– Define All Independent Variables at OutsetDefine All Independent Variables at Outset
–– Define ParametersDefine Parameters
–– Maintain Constant Procedures/Dependent Variable Maintain Constant Procedures/Dependent Variable 
–– Record Levels Manipulated and Held ConstantRecord Levels Manipulated and Held Constant
–– Define Common Data PointDefine Common Data Point
–– Investigate FirstInvestigate First-- and Secondand Second--Order EffectsOrder Effects

Topic 24 deals with techniques for conducting sequential experimentation to 
investigate large experimental spaces through a series of small experiments. 
Many procedures used in response surface methodology are useful in 
sequential experimentation. The primary purpose of sequential research is to 
build integrated database that can be used to generate second-order 
empirical models.

Many complex system problems in human factors and ergonomic research 
are amenable to sequential research. Williges, Williges, and Han (1993) 
recommended the six primary constraints shown on this slide needed to be 
considered in designing and conducting human factors applications of 
sequential experimentation. They also provided a series of guidelines for 
planning sequential research and selecting, describing, and optimizing 
factors investigated through sequential experimentation.
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24.6. Supplemental Readings24.6. Supplemental Readings24.6. Supplemental Readings

REFERENCEREFERENCE
Box, Hunter, & Hunter (1978)Box, Hunter, & Hunter (1978)
Box, Hunter, & Hunter (2005)Box, Hunter, & Hunter (2005)
Box and Draper (1987)Box and Draper (1987)
Han, Williges, & Williges (1997)Han, Williges, & Williges (1997)
Montgomery (2005)Montgomery (2005)
Myers (1990)Myers (1990)
Myers & Montgomery (2002)Myers & Montgomery (2002)
Williges, Williges, & Han (1993)Williges, Williges, & Han (1993)

SECTIONSECTION
Chapter 15Chapter 15
Chapters 11, 12Chapters 11, 12
Chapters 6, 9Chapters 6, 9--1212
Entire ArticleEntire Article
Chapter 11Chapter 11
Chapter 8Chapter 8
Chapters 5, 6, 14Chapters 5, 6, 14
Entire Chapter Entire Chapter 

The supplemental readings by Han, Williges, and Williges (1997) and 
Williges, Williges, and Han (1993) provide a detailed discussion of 
techniques, examples, and guidelines for using sequential experimentation in 
human factors research. The remaining supplemental readings provide 
details on response surface methodology and the embedded use of 
sequential research in these procedures.
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To summarize the empirical model building techniques described in Section 
5, the purpose and characteristics of empirical model building experiments 
are reviewed, the major components of empirical models are listed, and a 
sequential experimentation process for human factors research is provided. 
This topic ends with some overall conclusions, a summary, and a composite 
list of supplemental readings covered in Section 5.

Topic 25. Summary of Empirical ModelsTopic 25. Summary of Empirical ModelsTopic 25. Summary of Empirical Models

25.1. Model Building Experiments25.1. Model Building Experiments
25.2. Components of Empirical Models25.2. Components of Empirical Models
25.3. Sequential Experimentation Process25.3. Sequential Experimentation Process
25.4. Overall Conclusions25.4. Overall Conclusions
25.5. Summary25.5. Summary
25.6. Supplemental Readings25.6. Supplemental Readings
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25.1. Model Building Experiments25.1. Model Building Experiments25.1. Model Building Experiments

•• PurposePurpose
–– Functional Relationship of Quantitative VariablesFunctional Relationship of Quantitative Variables
–– Data for Complete SecondData for Complete Second--Order Empirical ModelsOrder Empirical Models
–– Interrogation of Complex Data SpacesInterrogation of Complex Data Spaces
–– Determining Optimal PerformanceDetermining Optimal Performance

•• Characteristics of Model Building Characteristics of Model Building 
ExperimentsExperiments
–– Series of Small ExperimentsSeries of Small Experiments
–– Minimize ReplicationMinimize Replication
–– Multiple Stopping PointsMultiple Stopping Points
–– Integration Across ExperimentsIntegration Across Experiments

The purpose of conducting empirical model building research in human 
factors and ergonomics is to develop prediction equations of human 
performance in complex systems based on the functional relationships 
among quantitative interface variables. These experiments need to provide 
the necessary and sufficient data to solve complete second-order models 
expressed in terms of polynomial regression. Model building experiments 
can also be used to interrogate complex data spaces to determine levels of 
optimal performance through response surface methodology and sequential 
experimentation. In addition, Middlebrooks and Williges (2002) also 
described the use of an augmented fractional-factorial design for general 
interrogation of network simulations through the use of first-order empirical 
models.

Empirical model building experiments are characterized by the four major 
characteristics listed at the bottom of this slide. Usually a series of small 
experiments is used to describe a complex data space. These experiments 
address meaningful investigations in their own right, use a minimum of 
replication, and have decision rules for stopping further investigation. These 
small experiments can be combined into a composite database to build 
integrated empirical models.
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25.2. Components of Empirical Models25.2. Components of Empirical Models25.2. Components of Empirical Models

•• Three Major Components of Empirical Three Major Components of Empirical 
Model BuildingModel Building
–– Data CollectionData Collection
–– Polynomial RegressionPolynomial Regression
–– Integrated DatabasesIntegrated Databases

•• Component 1: FirstComponent 1: First-- and Secondand Second--Order Order 
Experimental DesignsExperimental Designs
–– FirstFirst--Order Experimental DesignsOrder Experimental Designs

–– 22kk Factorial DesignsFactorial Designs
–– Resolution V, 2Resolution V, 2kk--pp FractionalFractional--Factorial DesignsFactorial Designs

–– SecondSecond--Order Experimental DesignsOrder Experimental Designs
–– CentralCentral--Composite DesignsComposite Designs

There are three major components of empirical model building. This slide 
summarizes the first of these three components, and the remaining two 
components are shown on the next slide.

Component 1 involves the choice of experimental designs used to collect the 
data needed for building the empirical model. Both first-order and second-
order experimental designs are used in building complete second-order 
empirical models. First-order designs include 2k factorial designs and 2k-p

fractional factorial designs described in Topic 18. A Resolution V fractional 
replication is used to keep main effects and two-way interactions orthogonal 
to each other in building a second-order empirical model. Second-order 
experimental designs investigate main effects, two-way interactions, and the 
pure quadratic effects of factors included in the empirical model. Central-
composite designs as described in Topic 23 are quite useful in collecting 
data for complete second-order empirical models because these designs 
also collect a small amount of additional data that can be used to evaluate 
lack of fit of the second-order model.
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25.2. Components of Empirical Models (Cont’d)25.2. Components of Empirical Models (Cont25.2. Components of Empirical Models (Cont’’d)d)

•• Component 2: Polynomial RegressionComponent 2: Polynomial Regression
–– Multiple Regression ProcedureMultiple Regression Procedure
–– Partial Regression WeightsPartial Regression Weights
–– ANOVA on RegressionANOVA on Regression

•• Component 3: Integrated Empirical ModelsComponent 3: Integrated Empirical Models
–– Response Surface MethodologyResponse Surface Methodology
–– Sequential ExperimentsSequential Experiments
–– Integrated DatabaseIntegrated Database

Component 2 deals with using polynomial regression to build second-order 
empirical models based on the data collected in Component 1. Multiple 
regression procedures are discussed in Topic 22. Multiple linear regression 
represents only first-order effects. Polynomial regression is the general form 
of multiple regression that allows first-, second-, and higher-order effects to 
be represented in the empirical model. A subsequent ANOVA can be
conducted on the polynomial regression to determine the significance of the 
partial regression weights and the adequacy of fit of the resulting empirical 
model.

Component 3 provides an extension of empirical model building based on 
sequential experiments as described in Topic 23. By using techniques of 
response surface methodology and sequential experimentation, the
experimenter can build an integrated database that combines data across a 
series of small, interrelated experiments. This integrated database can then 
be used to build integrated empirical models containing more factors than 
one can investigate in any single experiment in the series.
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25.3 Sequential Experimentation Process25.3 Sequential Experimentation Process25.3 Sequential Experimentation Process

•• Han, Williges, and Williges (1997) ParadigmHan, Williges, and Williges (1997) Paradigm
•• Stage 1. Planning Sequential ExperimentationStage 1. Planning Sequential Experimentation

–– Define The SystemDefine The System
–– Experimental Region of InterestExperimental Region of Interest
–– Assumptions of Empirical ModelAssumptions of Empirical Model

–– Determine Experimental Constraints/RequirementsDetermine Experimental Constraints/Requirements
–– Data Collection StrategyData Collection Strategy
–– Amount of DataAmount of Data
–– ReplicationReplication
–– Stopping CriteriaStopping Criteria
–– Benchmark TaskBenchmark Task
–– Experimental ProcedureExperimental Procedure
–– System ParameterSystem Parameter
–– Common Design PointCommon Design Point

–– Develop Data Recording ToolDevelop Data Recording Tool

Sequential experimentation as described in Topic 24 is a critical part of the 
empirical model building repertoire of procedures. Han, Williges, and Williges 
(1997) provided an extensive flowchart paradigm accompanied by an 
example of using their paradigm for conducting sequential experimentation in 
a human factors problem related to a passenger seat design used in a 
transportation system. Their paradigm lists four major stages with major and 
minor considerations in each stage. These various considerations are listed 
in this subsection as an initial guide for the human factors and ergonomics 
researcher who is considering sequential research while investigating 
complex systems.

Stage 1 is concerned with the overall plan of sequential experimentation. As 
shown on this slide, Han, Williges, and Williges (1997) recommend three 
major planning considerations dealing with defining the boundaries of the 
experimental space of interest, determining experimental procedural 
constraints and requirements, and developing a comprehensive recording 
tool that can be used across the series of experiments for investigating all 
the factors of interest.
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25.3 Sequential Experimentation Process (Cont’d)25.3 Sequential Experimentation Process (Cont25.3 Sequential Experimentation Process (Cont’’d)d)

•• Stage 2. Selecting Independent VariablesStage 2. Selecting Independent Variables
–– Identify Initial Independent VariablesIdentify Initial Independent Variables

–– Direct ObservationDirect Observation
–– Literature ReviewLiterature Review
–– BrainstormingBrainstorming
–– Feasibility and Relevance AnalysisFeasibility and Relevance Analysis
–– PrototypingPrototyping
–– Subjective RatingsSubjective Ratings

–– Determine Variable Reduction CriteriaDetermine Variable Reduction Criteria
–– Conduct Screening StudiesConduct Screening Studies

–– Saturated DesignsSaturated Designs
–– Group Screening DesignsGroup Screening Designs
–– 22kk--pp Fractional Factorial DesignsFractional Factorial Designs

–– Determine Reduced Set of Independent VariablesDetermine Reduced Set of Independent Variables

Major and minor considerations for Stage 2 of the Han, Williges, and Williges 
(1997) paradigm are shown on this slide. A variety of non-experimental and 
experimental techniques are useful during the four major considerations 
including the initial identification of potential variables of interest, stating 
criteria for reducing the initial set of potential factors, conducting screening 
studies to further reduce the number of factors to be investigated, and the 
final determination of the factors to investigate through sequential 
experimentation.
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25.3 Sequential Experimentation Process (Cont’d)25.3 Sequential Experimentation Process (Cont25.3 Sequential Experimentation Process (Cont’’d)d)

•• Stage 3. Describing Independent VariablesStage 3. Describing Independent Variables
–– Determine Independent Variable GroupsDetermine Independent Variable Groups

–– Type of VariableType of Variable
–– Expected InteractionsExpected Interactions
–– System ParametersSystem Parameters

–– Select Experimental DesignsSelect Experimental Designs
–– CentralCentral--Composite DesignComposite Design
–– Factorial DesignFactorial Design
–– FractionalFractional--Factorial DesignFactorial Design

–– Conduct Sequential ExperimentsConduct Sequential Experiments
–– Significant EffectsSignificant Effects
–– Combined Data SetCombined Data Set

–– Evaluate Comparability of Data SetsEvaluate Comparability of Data Sets
–– Adjust FactorsAdjust Factors

Stage 3 of the Han, Williges, and Williges (1997) paradigm is the major data 
collection and analysis phase of their sequential experimentation approach. 
Four of the eight major considerations in their paradigm flowchart are listed 
on this slide along with minor considerations within each major topic.

Major variables to be investigated need to be grouped into meaningful 
subsets forming a series of interrelated experiments for subsequent 
sequential experimentation. These subsets of variables are investigated in 
small, related experiments using economical experimental designs. The 
series of experiments is conducted in a meaningful sequence to allow 
integration into a combined database. Comparability of data across 
experiments is assessed by evaluating common data points across 
experiments, and factor adjustments are made, if necessary.
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25.3 Sequential Experimentation Process (Cont’d)25.3 Sequential Experimentation Process (Cont25.3 Sequential Experimentation Process (Cont’’d)d)

•• Stage 3. Describing Independent Variables Stage 3. Describing Independent Variables 
(Cont(Cont’’d)d)
–– Identify Unresolved InteractionsIdentify Unresolved Interactions

–– Data Bridging ProcedureData Bridging Procedure
–– Select Additional Design PointsSelect Additional Design Points

–– Maximize XMaximize X’’X MatrixX Matrix
–– Generate Design PointGenerate Design Point
–– Evaluate Evaluate MulticollinearityMulticollinearity

–– Conduct Additional ExperimentsConduct Additional Experiments
–– Significant InteractionSignificant Interaction
–– Mallows Mallows C(pC(p))
–– PRESS StatisticPRESS Statistic
–– Lack of FitLack of Fit

–– Build Final Empirical ModelBuild Final Empirical Model

The final four major considerations in Stage 3 of the Han, Williges, and 
Williges (1997) flowchart are listed on this slide. All four of these 
considerations are related to data bridging across previous experiments in 
sequential research series in order to build an integrated database for 
generating second-order models. An integrated empirical model based on 
the integrated database including all experiments in the sequence and data 
bridging runs is the final major consideration in the Stage 3 description 
phase.
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25.3 Sequential Experimentation Process (Cont’d)25.3 Sequential Experimentation Process (Cont25.3 Sequential Experimentation Process (Cont’’d)d)

•• Stage 4. Optimizing Independent VariablesStage 4. Optimizing Independent Variables
–– Select Optimization TechniqueSelect Optimization Technique

–– Response Surface MethodologyResponse Surface Methodology
–– Ridge AnalysisRidge Analysis
–– Integer ProgrammingInteger Programming

–– Conduct AnalysisConduct Analysis
–– Obtain Optimum ValuesObtain Optimum Values
–– Obtain Prediction Variance at OptimumObtain Prediction Variance at Optimum

–– Overlaying ResponsesOverlaying Responses
–– Linear ProgrammingLinear Programming
–– Minimize Overall DistanceMinimize Overall Distance

–– Determine Overall Optimum ValueDetermine Overall Optimum Value
•• Paradigm ExtensionsParadigm Extensions

Stage 4 of the Han, Williges, and Williges (1997) paradigm is the final stage 
and deals with optimizing the interface design. Five major considerations are 
listed on this slide for interface optimization using empirical models resulting 
from the integrated database in Step 3.

The Han, Williges, and Williges (1997) paradigm should be used in 
conjunction with the Williges, Williges, and Han (1993) guidelines as 
discussed in Topic 24 for conducting sequential experimentation. As human 
factors and ergonomic researchers have more experience with using 
sequential research procedures, this initial paradigm and guidelines for 
sequential experimentation will need to be expanded.
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25.4. Overall Conclusions25.4. Overall Conclusions25.4. Overall Conclusions

•• Experimental Design and Analysis ReferenceExperimental Design and Analysis Reference
–– Applied Human Factors and Ergonomics ResearchApplied Human Factors and Ergonomics Research

–– Sequential Research on Complex ProblemsSequential Research on Complex Problems
–– Toolkit of Integrated ProceduresToolkit of Integrated Procedures

–– Improved Experimentation and MethodologyImproved Experimentation and Methodology
•• ComputerComputer--Assisted Tool RequirementsAssisted Tool Requirements

–– Interactive Use on Desktop ComputersInteractive Use on Desktop Computers
–– Linked to Facilitate AccessLinked to Facilitate Access
–– Hyperlinked to Interactive Statistical SoftwareHyperlinked to Interactive Statistical Software

–– Experimental Design Procedures and ProcessesExperimental Design Procedures and Processes
–– Reference to Statistical LiteratureReference to Statistical Literature

In terms of overall conclusions, this experimental design and analysis 
reference material is focused on applied human factors and ergonomics 
research in complex systems. It is fitting that this reference material ends 
with sequential experimentation because it underscores the nature of human 
factors research. Often more than a single experiment is required to 
investigate interface problems in complex systems. Sequential 
experimentation requires that the researcher has knowledge of a variety of 
basic and advanced experimental design and analysis techniques that can 
be combined to investigate applied, real-world problems. New and improved 
experimental design procedures, however, are still needed to investigate 
these complex problems.

This reference material is best provided as a computer-based tool resident 
on the human factors researcher’s desktop computer. The complexity of the 
material requires extensive linking to facilitate rapid access and review. In 
addition, hyper-linking the reference material to statistical packages such as 
SAS (2004) allows the researcher immediate access to interactive statistical 
analysis of data and a better understanding of these various procedures. 
This reference material emphasizes the applied research process and uses 
a building block approach to experimental design to facilitate application and 
tradeoff of these techniques to complex problems. Finally, the researcher 
needs to refer to the statistical literature for a deeper understanding of these 
techniques before choosing to use them.
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25.5. Summary25.5. Summary25.5. Summary

•• Key Components of Empirical ModelsKey Components of Empirical Models
–– Main Effects and TwoMain Effects and Two--Way InteractionsWay Interactions
–– Basic Building BlocksBasic Building Blocks

–– 22kk and 2and 2kk--pp ANOVA DesignsANOVA Designs
–– CentralCentral--Composite DesignsComposite Designs

–– Sequential ExperimentationSequential Experimentation
–– Integrated Data SetsIntegrated Data Sets

•• New Experimentation FocusNew Experimentation Focus
–– Describing Functional RelationshipsDescribing Functional Relationships
–– Tool for Interface DesignTool for Interface Design

By way of summary, the top portion of this slide lists four key components of 
empirical models as discussed in Section 5. The focus of empirical models 
used in human factors is on predicting the influence of the main effects and 
two-way interactions on human performance. Second-order empirical models 
that are needed to describe these effects can be built by using a series of 
small 2k factorial designs, 2k-p fractional replicates, and central-composite 
designs. These designs can be used in a series of small, sequential 
experiments. The data can be combined across these interrelated 
experiments to generate an integrated database that includes many factors 
of interest in complex research problems that involve more factors than can 
be feasibly investigated in one large experiment.

Empirical model building provides a new focus for experimentation in human 
factors and ergonomics research. Rather than just testing the significance of 
factors, empirical model building investigates functional relationships among 
factors to predict human performance. These prediction equations, 
subsequently, can be used for interface design tradeoffs.
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25.6. Supplemental Readings25.6. Supplemental Readings25.6. Supplemental Readings

REFERENCEREFERENCE
Box, Hunter, & Hunter (1978)Box, Hunter, & Hunter (1978)
Box, Hunter, & Hunter (2005)Box, Hunter, & Hunter (2005)
Box and Draper (1987)Box and Draper (1987)

Draper & Smith (1981)Draper & Smith (1981)
Han, Williges, & Williges (1997)Han, Williges, & Williges (1997)
Montgomery (2005)Montgomery (2005)
Myers (1990)Myers (1990)
Myers & Montgomery (2002)Myers & Montgomery (2002)
WickensWickens (1992)(1992)
Williges (1981)Williges (1981)
Williges, Williges, & Han (1993)Williges, Williges, & Han (1993)

SECTIONSECTION
Chapters 9, 15Chapters 9, 15--1616
Chapters 11, 12Chapters 11, 12
Chapters 1Chapters 1--3, 6, 93, 6, 9--12, 12, 

1414--1515
Chapters 2Chapters 2--55
Entire ArticleEntire Article
Chapters 10Chapters 10--1111
Chapters 3Chapters 3--5, 8, App. A5, 8, App. A
Chapters 1Chapters 1--2, 52, 5--8, 148, 14
Chapters 1Chapters 1--2, 7, 9, 112, 7, 9, 11
Entire ChapterEntire Chapter
Entire Chapter Entire Chapter 

This slide provides a summary of supplemental readings on topics presented 
in Section 5. Empirical Model Building. Han, Williges, and Williges (1997), 
Williges (1981), and Williges, Williges, and Han (1993) provide details on 
empirical model building in human factors research. Box and Draper (1987) 
and Myers and Montgomery (2002) provide a comprehensive coverage in 
the statistical literature of empirical model building methods. The remaining 
references deal with specific topics covered in Section 5 dealing with 
modeling, multiple regression, central-composite designs, and sequential 
experimentation.
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Alpha error, 113-114  
Alternative hypothesis, 111 
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ANCOVA advanced procedures, 683 
ANCOVA assumptions, 671 
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ANOVA rules and algorithms, 461-466 
ANOVA sources of variation, 276-279 
ANOVA statistical models, 250-257 
ANOVA sum of squares, 285 
ANOVA summary table readings, 310 
ANOVA summary table, 304-307 
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Backward selection procedure, 739 
Balanced Latin Square design, 428-436 
Balanced sets of treatments, 523-526 
Balancing order of treatments, 423-427 
Baseline design, 56 
Basic ANOVA readings, 273 
Basic statistics readings, 140 
Beta error, 113-114  
Between-subjects ANOVA designs readings, 341 
Between-subjects design, 246-247 
Binomial distribution, 85-87 
Bipolar adjective scales, 167 
Blocking 2k ANOVA designs, 533-553 
Blocking design considerations, 558 
Blocking design readings, 559 
Bonferroni t test (Dunn test), 367 
Box-Behnken design, 806-808 
 
Case study, 54 
CCD background, 767 
CCD definition, 772 
CCD readings, 810 
CCD replication, 775 
CCD value of α, 776-784 
CCD, between-subjects alternative, 788-789 
CCD, between-subjects example, 796-801 
CCD, blocked, 777-778 
CCD, cuboidal, 781 
CCD, mixed-factors alternative, 792-793 
CCD, orthogonal, 779 
CCD, rotatable, 776 
CCD, spherical, 780 
CCD, within-subjects alternative, 790-791 
CCD, within-subjects example, 802-805 
Cell, 243-245 
Central limit theorem, 88 
Chi-square distribution, 94-95 
Chi-square test of independence, 185-194 
Choice of multiple comparison procedure, 374 
Circularity, 417 
Cochran and Cox t’, 129 
Cochran Q test, 199-201 
Coefficient of Determination, 669 
Cohort designs, 61 
Combinations, 79 
Complement, 76 
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Complete hierarchical designs, 494 & 504-508 
Complex blocking of 2k designs, 539-542 & 550-553 
Complex comparison, 346 
Component SS formulae, 527-530 
Compositional techniques, 74-76 
Conditional probability, 76 
Confidence intervals, 103-107 
Contingency table (2x2), 186-188 
Contingency table (RxC), 191 
Control of nuisance factors, 691 
Control of subject variability, 694-695 
Correlation, covariance formula, 621 
Correlation, deviation score formula, 621 
Correlation, raw score formula, 622 
Correlation, t-test of significance, 628 
Correlation, Z-test between two correlations, 631-633 
Correlation, Z-test of population value, 630 
Counting techniques, 77-80 
Critical difference, 358 
Critical incidents, 159 
Crossed factors, 243-245 
 
Data bridging, 836-837 & 861 
Data collection limitations, 692-693 
Defining relationship, 535 
Dependent variable, 25 
Design effects, 580-583 
Design efficiency, 590-591 
Design resolution, 584-585 
Deviation scores, 268 
Difference score formula, 135, 144-145 
Differential transfer, 437 
Dunnett Test, 370 
 
Empirical model components, 856-857 
Empirical models, 704, 707 
Empirical probability, 73 
Estimation of population variance, 269 
Estimators, 100-101 
Evaluation of interactions readings, 400 
Expected mean squares, 287-296 
Expected value, 100 
Experimental design readings, 70 
External validity, 49 
 
F distribution, 96-98 
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Factor level, 243-245 
Factor, 243-245 
Factorial design, 243-245 
Fisher Z transformation, 629 
Fixed-effects variable, 288 
Forward selection procedure, 740 
Fractional replicates, 562 
Fractional-factorial design computations, 572-578 
Fractional-factorial design readings, 612 
Fractional-factorial design, one-fourth replicate, 569-571 
Fractional-factorial design, one-half replicate, 565-568 
Fractional-factorial designs, 560 
Friedman two-way ANOVA, 222-225 
F-test assumptions, 263-265 
F-test format, 262 
F-test hypotheses, 261 
 
Geisser-Greenhouse correction, 419-422 
Generalized interaction, 539 
Goodman chi-square, 209 
Goodness of fit test, chi-square, 183-185 
Goodness of fit test, Kolmogorov-Smirnov, 208 
Graphic rating scales, 165 
Graphing procedures, 381-383 
Greco-Latin square design, 610 
 
Happenstance data, 719-720 
Hartley Fmax test, 128 
Hierarchical design definitions, 493-495 
Hierarchical design examples, 503-515 
Hierarchical design readings, 517 
Hierarchical design, between-subjects, 497-498 
Hierarchical design, mixed-factors, 501-502 
Hierarchical design, within-subjects, 499-500 
Homogeneity of covariance, 417-422 
Homogeneity of variance, 128 
Huynh-Feldt correction, 419-422 
Hypothesis test format, 112 
Hypothesis testing components, 110 
 
Identity relationship, 562 
Independence, 76 
Independent variable, 25 
Inflated Type I error, 349-350 
Institutional Review Board (IRB), 27 
Integrated research database, 849-851 
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Interaction evaluation process, 398 
Interaction, 327 
Internal validity, 49 
Interrupted time series designs, 63-66 
Intersection, 74 
Interval estimation, 103-107 
Interval scale, 150-151 
 
Joint probability, 75 
 
Kolmogorov-Smirnov tests, 207-211 
Kruskal-Wallis one-way ANOVA, 212-216 
 
Latin square design definition, 593 
Latin square design examples, 606-609 
Latin square design readings, 612 
Latin square design, balanced, 596 
Latin square design, between-subjects, 601-602 
Latin square design, standard, 595 
Latin square design, within-subjects, 603-604 
Laws of probability, 75 
Least Significant Difference (LSD) test, 366 
Least squares criterion, 101 
Level of confidence, 113-114 
Level of significance, 113-114  
Likert rating scales, 166 
Linear comparisons, 345-348 
Linear correlation, 616 
Literature review, 22 
 
Mallows C(p), 744 
McNemar change test, 196-198 
Mechanistic models, 704, 706 
Method of least squares, 657 
Method of steepest ascent, 820-821 
Mixed-factors ANOVA design readings, 458 
Mixed-factors design, 246 & 249 
Model building experiments, 855 
Modular arithmetic, 521-522  
Multiple comparison readings, 400 
Multiple comparisons, 343-344 
Multiple linear regression ANOVA, 727-728 
Multiple linear regression best equation, 737-752 
Multiple linear regression correlational solution, 725 
Multiple linear regression example problem, 732 -736 
Multiple linear regression matrix solution, 724 



Human Factors Experimental Design and Analysis Reference 

 879

Multiple linear regression normal equations, 723 
Multiple linear regression shrinkage, 730-731 
Multiple linear regression, 721-752 
Multiple regression procedures, 716-720 
Multiple regression readings, 765 
Multiplicative law, 75 
 
Nested factors, 243-245 
Nested factors of interest, 690 
Newman-Keuls Sequential Range Test, 371-373 
Nominal data analysis readings, 203 
Nominal data, between-subjects, 181-194 
Nominal data, within-subject, 195-201 
Nominal scale, 150-151 
Nonequivalent control group designs, 57-61 
Nonequivalent dependent variables design, 59, 65 
Nonparametric procedures, 148 
Normal distribution, 88-90 
Normative models, 711 
Null hypothesis, 111 
 
Ordinal data analysis readings, 227 
Ordinal data, between-subjects, 206-216 
Ordinal data, within-subject, 217-225 
Ordinal scale, 150-151 
Orthogonal comparison, 347 
Orthogonal interaction components, 531-532 
 
Parameters, 814 
Partial correlation, 647-651 
Partial hierarchical designs, 495 & 509-515 
Partitioning variation, 663 
Pearson chi-square statistic, 182 
Pearson product-moment correlation, 618 
Permutations, 78 
Phi correlation, 639-641 
Planned comparison F-test, 352-357 
Point biserial correlation, 635-638 
Point estimation, 102 
Polynomial function, 716 
Polynomial regression computations, 755 
Polynomial regression example, 756-763 
Polynomial regression, 717 
Polynomial regression, second order, 753 
Pooled t-test, 127 
Predictive models, 712 
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PRESS statistic, 743 
Pretesting, 29 
Pretest-posttest design, 55 
Probability, 73 
Pseudo-factor blocking, 554-557 
 
Qualitative design guidelines, 842-843 
Quantitative design guidelines, 841 
Quantitative models readings, 714 
Quantitative models, 703 
Quasi-experimental designs, 53-66 
Quasi-F ratio readings, 491 
Quasi-F ratio, 480-482 
Questionnaires, 160-162 
QUIS scale, 172-176 
 
Random sampling, 81 
Random-effects factors, 689 
Random-effects variable, 288 
Randomized blocks construction, 485 
Randomized blocks design readings, 491 
Randomized blocks design, 483-488 
Randomized experimental designs, 67-68 
Rating scale reliability/validity, 168 
Ratio scale, 150-151 
Regression-discontinuity designs, 62 
Research notebook, 42 
Research process readings, 44 
Research reports, 35-40 
Resolution III design, 586 
Resolution IV design, 587 
Resolution V design, 588 
Reverse treatment, pretest/posttest design, 60 
Robustness, 125 
RSM components, 816 
RSM goals, 817 
RSM steps, 819 
Rules for constructing Balanced Latin Squares, 429-431 
Rules for determining ANOVA df, 281-284 
Rules for determining F-ratios, 299-302 
 
Sampling distribution, 83-84 
Satterthwaite correction, 482 
Scales of measurement, 150-151 
Scheffé Multiple Contrast Procedure, 368 
Self reports, 157 
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Semantic differential, 167 
Semipartial correlation, 652-653 
Sequential experimentation process, 858-862 
Sequential experimentation readings, 853 
Sequential research example, 826-844 
Sequential research guidelines, 845-848 
Sequential research paradigm, 825 
Sequential research, 822-823 
Simple blocking of 2k designs, 535-538 & 546-549  
Simple effects test, 384-386 
Simple linear regression, 654 
Simple regression, ANOVA, 664-666 
Simple regression, example, 659-660 
Simple regression, least squares solution, 658 
Simple regression, t-test, 667-668 
Spearman correlation, 642-646 
Sphericity, 417 
SS computational formulae algorithm, 318-321 
Stages of research, 21 
Standard error between means, 124 
Standard error of mean, 102 
Standardized regression, 661 
Standardized scores, 89 
Statistical power, 115 
Stepwise selection procedure, 741 
Strategies for experimentation, 812-815 
Student’s t distribution, 91-93 
Subjective measures, 154-156 
Sum of squares calculations, 316 
Supplemental data process, 235-237 
Supplemental data readings, 178 
Switching replications design, 66 
 
Testing order effects, 432-436 
Theoretical F, 260 
Theoretical models, 710 
Threats to validity, 48-49 
Trend analysis, 387-390 
t-test assumptions, 125 
t-test, between-subjects, 127-133 
t-test, single sample, 116-121 
t-test, two samples, 122-139 
t-test, within-subjects, 134-137 
Tukey’s Honestly Significant Difference (HSD) Test, 369 
Two-level ANOVA design, 266-271 
Type I error, 113-114 
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Type II error, 113-114 
 
Unbiased criterion, 100 
Unconfounded comparisons, 393-397 
Union, 74 
Unit normal distribution, 89-90 
Unplanned comparisons, 360-374 
Untreated control group designs, 57-58, 64 
 
Verbal protocols, 158 
 
Wilcoxon signed ranks test, 218-221 
Within-subjects ANOVA design readings, 441 
Within-subjects design, 246 & 248 
 
X variable, 25 
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Introduction 
 
This report provides examples of statistical analyses using Version 9.1.3 of the SAS 
statistical package developed by the SAS Institute (2004). These analyses follow the 
examples provided by Williges (2006) in his reference material that describes applied 
experimental design and analysis useful in human factors and ergonomics research. 
Hyperlinks to the Williges (2006) PDF document are provided throughout this report. 
 
The purpose of this document is to aid users of the Williges (2006) reference material in 
using a statistical analysis package. Although SAS is used as an example computer 
package for statistical analysis, many statistical packages are available with similar 
features and abilities. This document is not intended to provide a detailed discussion of 
the entire SAS package. The reader is referred to the SAS Institute (2004) online user 
manual for Version 9.1.3 and to Cody and Smith (1997) for a detailed discussion of 
conducting various statistical analyses using SAS. 
 
A consistent format is followed for the presentation of each example. Each example 
provided in this report is referenced to the appropriate discussion in the Williges (2006) 
report. Each problem described by Williges (2006) is enhanced by providing the 
context/purpose and the statistical decision criteria. This problem statement is followed 
by the actual SAS input file stating the SAS procedures and uses the data set from 
Williges (2006). Each SAS input file is hyperlinked to the actual SAS program file which 
will appear in the SAS editor when clicked. This feature is provided for SAS users so 
that the example is readily available in SAS for interactive use and modification for 
alternative data sets. The SAS output file of the appropriate statistical analysis is 
presented. Wherever appropriate, special notes about procedures are provided to aid 
the user in conducting each example analysis with SAS. Finally, an explanation of the 
results is provided for each example, and the relevant aspects of the SAS output file 
that are related to the explanation are marked in boldface type for easy reference.  
 
The basic SAS setup of each problem follows a standard procedure. There are some 
major components to these basic setups including an options statement, title, data set 
name, input definition, and the procedure commands. Each statement must end with a 
semi-colon (;) to designate the completion of a single program statement (Cody and 
Smith 1997). See the SAS Institute (2004) online user manual for a listing of all 
procedure statements and options. A typical SAS format using data formatted in 
columns is as follows: 
 
Description Component 
Options Statement: Allows system options to be added (e.g., page numbers and 
centering); 
Title: Allows inclusion of a meaningful problem title and must be enclosed in single 
quotation marks; 
 
Data Input Component 
Data Statement: Names the data set being entered; 
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Input Statement: Names the columns and describes the format of the data for the 
corresponding data to be entered; 
Lines Statement: Tells the program that the information to follow will be the actual data 
to be analyzed; 
Data Input: Lists in columns the data corresponding to the variable names given in the 
input statement; 
 
Data Analysis Component 
Procedure Statement: Tells the program which type of statistical analysis to be 
conducted and any options associated with that analysis; 
Variable Statement: Tells the program which variables are used in the statistical 
analysis specified; and 
Quit Statement: Tells the program that it has reached the end of the analysis. 
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Section 1. Introduction to Experimental Design 
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Example 1: Interval Estimation 
 

(Click in this red rectangle to see the Reference Notes on Example 1.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 1, Topic 3. Basic Statistical Concepts, Part 3.4.3. Interval Estimation  
 
Page(s) in Williges (2006) Reference Material: 107 
 
Problem Description 
The reaction time (RT) of 6 subjects detecting a signal was measured. The mean RT was .657 
seconds, and the standard deviation was .0706 seconds. What is the 95% confidence interval of 
the true mean RT? 
 
Context/Purpose 
Determine the range within which the true mean would be expected to occur 95% of the time. 
 
Statistical Decision Criteria  
For small sample sizes and the 95% confidence interval, use the t-tabled values below/above 
which 0.025 of those cases would be expected to occur for the available degrees of freedom. 
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 1: Interval Estimation'; 
data Reaction; 
input Time; 
lines; 
0.56 
0.77 
0.69 
0.62 
0.64 
0.66 
; 
proc means alpha=0.05 n mean stddev var stderr clm data=reaction; 
var Time; 
quit; 
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SAS Output 
 
Example 1: Interval Estimation                                                                    
 
The MEANS Procedure 
 
                                    Analysis Variable : Time 
 
                                                                        Lower 95%       Upper 95% 
N            Mean         Std Dev        Variance       Std Error     CL for Mean     CL for Mean 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
6       0.6566667       0.0706163       0.0049867       0.0288290       0.5825594       0.7307740 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
 
Output Explanation 
 
95% of the time the true mean falls between 0.583 and 0.731 seconds. 
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Example 2: Single-Sample t-Test 
 

(Click in this red rectangle to see the Reference Notes on Example 2.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 1, Topic 3. Basic Statistical Concepts, Part 3.5.2. Single-Sample t-Test  
 
Page(s) in Williges (2006) Reference Material: 117 – 121 
 
Problem Description 
The experimenter wishes to compare the average scores on the final examination in a military 
course to a standard population value of 792 points. Forty-nine students are randomly assigned 
to a particular section of the course, and they scored an average of 827.61 points with a 
standard deviation of 84.19 points. The experimenter is interested in determining if the 827.61 
point average is significantly different from the standard value of 792 points. This test is 
conducted at the 0.05 level of significance.  
 
Context/Purpose 
Determine if there is significant difference between a sample mean and a standard mean. 
 
Statistical Decision Criterion 
To be conservative, use a two-tailed, t-test to determine if there is a difference between the 
mean of the class and the known value. Since this is a two-tailed test, α is set at 0.025 when 
determining the tabled value in a standard t table. 
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 2: Single Sample t-Test'; 
data final; 
input Scores; 
lines; 
881 
786 
665 
783 
766 
998 
954 
906 
763 
827 
862 
793 
806 
838 
874 
923 
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762 
958 
686 
841 
750 
805 
863 
832 
678 
936 
791 
812 
887 
765 
816 
723 
730 
868 
843 
956 
934 
902 
825 
884 
876 
708 
721 
739 
811 
792 
723 
930 
981 
; 
proc ttest h0=792 alpha=0.05 data=final; 
var Scores; 
quit; 
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SAS Output 
 
Example 2: Single Sample t-Test  
 
The TTEST Procedure 
                                         Statistics 
 
                  Lower CL        Upper CL  Lower CL             Upper CL 
Variable   N      Mean     Mean     Mean    Std Dev   Std Dev    Std Dev  Std Err 
 
Scores    49     803.43   827.61   851.79   70.207    84.189     105.18  12.027 
 
                T-Tests 
 
Variable      DF    t Value    Pr > |t| 
 
Scores        48       2.96      0.0048 
 
 

Output Explanation 
 
Since the two-tailed p-value (Pr > |t|) resulting from the SAS analysis (0.0048) is less than 0.05, 
one can reject the null hypothesis. Therefore the class mean (827.61) is significantly larger than 
the known population mean (792). Consequently, the population mean, 792, falls outside the 
95% confidence interval of the class mean, C[803.43 ≤ µ ≤ 851.79] = .95. 
 



Appendix: SAS Examples for Human Factors Experimental Design and Analysis Reference 

 9

Example 3: Between-Subjects t-Test 
 

(Click in this red rectangle to see the Reference Notes on Example 3.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 1, Topic 3. Basic Statistical Concepts, Part 3.6.4. Between-Subjects t-Test 
 
Page(s) in Williges (2006) Reference Material: 130-133 
 
Problem Description 
An experimenter wishes to compare performance of two different night vision displays used in 
nighttime maneuvering. Eight squads used Display A, and eight different squads used Display 
B. Each squad completed the same nighttime maneuver. The experimenter wants to determine 
if there is a significant difference (p < 0.05) in mean time in minutes to complete the nighttime 
maneuver using the two night vision displays. 
 
Context/Purpose 
Determine if there is a significant difference in the average time for a squad to complete the 
nighttime maneuver using the two night vision displays. 
 
Statistical Decision Criteria 
A two-tailed, between-subjects, pooled t-test conducted at the 0.5 level of significance is 
appropriate. Since this is a two-tailed test, α is set at 0.025 when determining the tabled value in 
a standard t table. A preliminary test of homogeneity of variance is usually not needed since 
sample sizes are equal.   
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options pageno=1 nodate nocenter; 
Title 'Example 3: Between-Subjects t-Test'; 
data display; 
input type $ Time; 
lines; 
A 59 
A 65 
A 52 
A 45 
A 63 
A 42 
A 53 
A 47 
B 54 
B 72 
B 69 
B 59 
B 67 
B 61 
B 51 
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B 63 
; 
proc means data=display n mean std stderr; 
var Time; 
by type; 
proc ttest ci=equal alpha=0.05 data=display; 
class type;  
var Time; 
quit; 
 
SAS Output                                        
 
Example 3: Between-Subjects t-Test                                                              
 
type=A 
 
The MEANS Procedure 
 
             Analysis Variable : Time 
 
 N            Mean         Std Dev       Std Error 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 8      53.2500000       8.4642104       2.9925503 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
type=B 
 
             Analysis Variable : Time 
 
 N            Mean         Std Dev       Std Error 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 8      62.0000000       7.2702918       2.5704363 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
The TTEST Procedure 
 
                                          Statistics 
 
                             Lower CL          Upper CL  Lower CL           Upper CL 
Variable  type            N      Mean    Mean      Mean   Std Dev  Std Dev   Std Dev  Std Err 
 
Time      A               8    46.174   53.25    60.326    5.5963   8.4642    17.227   2.9926 
Time      B               8    55.922      62    68.078    4.8069   7.2703    14.797   2.5704 
Time      Diff (1-2)           -17.21   -8.75    -0.289    5.7764   7.8899    12.443   3.9449 
 
                               T-Tests 
 
Variable    Method           Variances      DF    t Value    Pr > |t| 
 
Time        Pooled           Equal          14      -2.22      0.0436 
Time        Satterthwaite    Unequal      13.7      -2.22      0.0440 
 
                    Equality of Variances 
 
Variable    Method      Num DF    Den DF    F Value    Pr > F 
 
Time        Folded F         7         7       1.36    0.6984 
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Output Explanation      
                                                 
The SAS program automatically tests for homogeneity of variance even if sample size is equal 
in the two samples. One usually sets a high α error (e.g. α = 0.20) when making a homogeneity 
of variance test to avoid a Type II error. Since the Fmax is 1.36 and is significant at α = 0.6984, 
the experimenter fails to reject the null hypothesis and is justified in assuming homogeneity of 
variance for the subsequent pooled t-test of difference between using two night vision displays 
in nighttime maneuvering. 
 
The SAS program conducts a two-tailed t-test and states the probability of α error accordingly 
(Pr > |t|). Since the two-tailed p-value resulting from the SAS analysis (0.0436) is less than 0.05, 
one can reject the null hypothesis of equal means. Therefore, using night vision Display A 
resulted in an average of 8.75 significantly shorter nighttime maneuvering minutes than using 
night vision Display B (i.e., an average of 53.25 minutes using Display A versus 62 minutes 
using Display B). 
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Example 4: Within-Subjects t-Test 
 

(Click in this red rectangle to see the Reference Notes on Example 4.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 1, Topic 3. Basic Statistical Concepts, Part 3.6.5. Within-Subjects t-Test 
 
Page(s) in Williges (2006) Reference Material: 136-137 
 
Problem Description 
An experimenter wishes to compare performance of two different night vision displays used in 
nighttime maneuvering. Eight squads used both Display A and Display B. Each squad 
completed the same nighttime maneuver twice. Half of the squads used Display A first and half 
used Display B first to counterbalance order of use. The experimenter wants to determine if 
there is a significant difference (p < 0.05) in mean time in minutes to complete the nighttime 
maneuver between using the two night vision displays. 
 
Context/Purpose 
Determine if there is a significant difference in the average time for a squad to complete the 
nighttime maneuver using the two night vision displays. 
 
Statistical Decision Criteria 
A two-tailed, within-subjects t-test conducted at the 0.5 level of significance using difference 
scores is appropriate. Since this is a two-tailed test, α is set at 0.025 when determining the 
tabled value in a standard t table. No preliminary test of homogeneity of variance is required 
because repeated measures are used. 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options pageno=1 nodate nocenter; 
Title 'Example 4: Within-Subjects t-Test'; 
data display; 
input A B; 
lines; 
59 54 
65 72 
52 69 
45 59 
63 67 
42 61 
53 51 
47 63 
; 
proc means data=display n mean var std stderr; 
var A B; 
proc ttest alpha=0.05 data=display; 
paired A*B; 
quit; 
 



Appendix: SAS Examples for Human Factors Experimental Design and Analysis Reference 

 13

 
SAS Output 
 
Example 4: Within-Subjects t-Test                                                                  
 
The MEANS Procedure 
 
Variable    N            Mean        Variance         Std Dev       Std Error 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
A           8      53.2500000      71.6428571       8.4642104       2.9925503 
B           8      62.0000000      52.8571429       7.2702918       2.5704363 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                                                                  
 
The TTEST Procedure 
 
                                          Statistics 
 
                     Lower CL            Upper CL   Lower CL             Upper CL 
Difference       N       Mean     Mean       Mean    Std Dev   Std Dev    Std Dev   Std Err 
 
A - B            8     -16.38    -8.75     -1.117     6.0365      9.13     18.582    3.2279 
 
 
                 T-Tests 
 
Difference      DF    t Value    Pr > |t| 
 
A - B            7      -2.71      0.0302 
 
 
Output Explanation      
                                                 
Since the two-tailed p-value (Pr > |t|) resulting from the SAS analysis (0.0302) is less than 0.05, 
one can reject the null hypothesis of equal means. Therefore, using night vision Display A 
resulted in an average of 8.75 significantly shorter nighttime maneuvering minutes than using 
night vision Display B (i.e., 53.25 minutes versus 62 minutes). 
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Example 5: Chi-Square Goodness of Fit Test 
 

(Click in this red rectangle to see the Reference Notes on Example 5.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 2, Topic 5. Analysis of Nominal Data, Part 5.2.1. Chi-Square Goodness of Fit Test  
 
Page(s) in Williges (2006) Reference Material: 184 
 
Problem Description 
The relative frequency of the age of automobile drivers in the U.S. is known. A sample of 50 
drivers is chosen, and demographic data on age are recorded in six age groupings. Does the 
age of this sample differ from the distribution of the U.S. population of drivers known to be 0.19, 
0.11, 0.15, 0.27, 0.16, and 0.12 in the six age groupings (p < 0.01)? 
 
Context/Purpose 
Determine if the sampled demographic data are different from the known population of U.S. 
drivers. 
 
Statistical Decision Criteria 
The chi-square goodness of fit test is the appropriate test to compare the observed category 
frequencies to known population values. The test is made at the 0.01 level of significance. 
 
 
SAS Input** 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
**Note: The observed frequencies are listed in the data input. The expected frequencies for each 
category are listed in the “testp” command and must be stated in terms of relative frequencies or 
proportion of the sample size. 
 
options nodate nocenter pageno=1; 
title 'Example 5: Chi-Square Goodness of Fit Test'; 
data agedata; 
input Age $ observed; 
lines; 
18-25 10 
26-35 3 
36-45 6 
46-55 25 
56-65 5 
>65   1 
; 
proc freq data=agedata; 
weight observed; 
tables Age/nocum testp=(.19 .11 .15 .27 .16 .12)alpha=0.01; 
quit; 
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SAS Output                                        
 
Example 5: Chi-Square Goodness of Fit Test                                                        
 
The FREQ Procedure 
 
                                     Test 
Age      Frequency     Percent     Percent 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
18-25          10       20.00       19.00 
26-35           3        6.00       11.00 
36-45           6       12.00       15.00 
46-55          25       50.00       27.00 
56-65           5       10.00       16.00 
>65             1        2.00       12.00 
 
 
     Chi-Square Test 
for Specified Proportions 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square        16.5506 
DF                      5 
Pr > ChiSq         0.0054 
 
Sample Size = 50 

 
 
Output Explanation 
 
Since the p-value resulting from the SAS analysis (0.0054) is less than 0.01, one can reject the 
null hypothesis. Therefore, the age distribution of the sample of drivers in this study is 
significantly different from the U.S population of drivers. 
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Example 6: Chi-Square Test of Independence (2x2 Contingency Table) 
 

(Click in this red rectangle to see the Reference Notes on Example 6.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 2, Topic 5. Analysis of Nominal Data, Part 5.2.2. Chi-Square Test of Independence  
 
Page(s) in Williges (2006) Reference Material: 189 – 190 
 
Problem Description 
Every user in a random sample of 80 users classified themselves as either high (Hi) or low (Lo) 
in computer experience. All users practiced using an experimental text editor for 10 hours and 
were then asked to state whether they were satisfied (Yes) or not satisfied (No) with the text 
editor. Is their satisfaction evaluation independent of their computer experience (p < 0.05)? 
 
Context/Purpose 
Determine if satisfaction with the text editor is dependent upon amount of computer experience 
of the user. 
 
Statistical Decision Criteria 
A chi-squared test of independence of a 2x2 contingency table is appropriate to compare the 
frequency of satisfied ratings classified into two qualitative groups of computer experience and 
satisfaction with the text editor. The test is made at the 0.05 level of significance. 
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 6: Chi-Square Test of Independence (2x2 Contingency Table)'; 
data computer; 
input Experience $ Satisfied $ count; 
lines; 
Hi Yes 24 
Hi No 11 
Lo Yes 16 
Lo No 29 
; 
proc freq data=computer; 
tables Experience*Satisfied/chisq expected alpha=0.05; 
weight count; 
quit; 
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SAS Output       
 
Example 6: Chi-Square Test of Independence (2x2 Contingency Table)                                               
 
The FREQ Procedure 
 
Table of Experience by Satisfied 
 
Experience     Satisfied 
 
Frequency‚ 
Expected ‚ 
Percent  ‚ 
Row Pct  ‚ 
Col Pct  ‚No      ‚Yes     ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Hi       ‚     11 ‚     24 ‚     35 
         ‚   17.5 ‚   17.5 ‚ 
         ‚  13.75 ‚  30.00 ‚  43.75 
         ‚  31.43 ‚  68.57 ‚ 
         ‚  27.50 ‚  60.00 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Lo       ‚     29 ‚     16 ‚     45 
         ‚   22.5 ‚   22.5 ‚ 
         ‚  36.25 ‚  20.00 ‚  56.25 
         ‚  64.44 ‚  35.56 ‚ 
         ‚  72.50 ‚  40.00 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          40       40       80 
            50.00    50.00   100.00 
 
The FREQ Procedure 
 
Statistics for Table of Experience by Satisfied 
 
Statistic                     DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square                     1      8.5841    0.0034 
Likelihood Ratio Chi-Square    1      8.7558    0.0031 
Continuity Adj. Chi-Square     1      7.3143    0.0068 
Mantel-Haenszel Chi-Square     1      8.4768    0.0036 
Phi Coefficient                      -0.3276 
Contingency Coefficient               0.3113 
Cramer's V                           -0.3276 
 
Sample Size = 80 

 
  
Output Explanation 
 
Since the p-value resulting from the SAS analysis (0.0066) is less than 0.05, one can reject the 
null hypothesis. Therefore, user satisfaction with the experimental text editor was significantly 
dependent upon the amount of computer experience. 
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Example 7: Chi-Square Test of Independence (RxC Contingency Table) 
 

(Click in this red rectangle to see the Reference Notes on Example 7.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 2, Topic 5. Analysis of Nominal Data, Part 5.2.2. Chi-Square Test of Independence  
 
Page(s) in Williges (2006) Reference Material: 192 
 
Problem Description 
Every user in a random sample of 80 users classified themselves as high (Hi), medium (Med) or 
low (Lo) in computer experience. All users practiced using an experimental text editor for 10 
hours and were then asked to state whether they were satisfied (Yes) or not satisfied (No) with 
the text editor. Is their satisfaction evaluation independent of their computer experience (p < 
0.05)? 
 
Context/Purpose 
Determine if satisfaction with two different text editors is dependent upon amount of computer 
experience of the users. 
 
Statistical Decision Criteria  
Since n is greater than twenty and E is greater than 5, use a chi-square test of independence at 
the 0.05 level of significance using 3x2 contingency tables to compare frequencies organized in 
multiple qualitative groups. 
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 7: Chi-Square Test of Independence (RxC Contingency Table)'; 
data computer; 
input Experience $ Satisfied $ count; 
lines; 
Hi Yes 24 
Hi No 10 
Med Yes 8 
Med No 7 
Lo Yes 8 
Lo No 23 
; 
proc freq data=computer; 
tables Experience*Satisfied/chisq expected alpha = .05; 
weight count; 
quit; 
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SAS Output                                        
 
Example 7: Chi-Square Test of Independence (RxC Contingency Table)                                
 
The FREQ Procedure 
 
Table of Experience by Satisfied 
 
Experience     Satisfied 
 
Frequency‚ 
Expected ‚ 
Percent  ‚ 
Row Pct  ‚ 
Col Pct  ‚No      ‚Yes     ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Hi       ‚     10 ‚     24 ‚     34 
         ‚     17 ‚     17 ‚ 
         ‚  12.50 ‚  30.00 ‚  42.50 
         ‚  29.41 ‚  70.59 ‚ 
         ‚  25.00 ‚  60.00 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Lo       ‚     23 ‚      8 ‚     31 
         ‚   15.5 ‚   15.5 ‚ 
         ‚  28.75 ‚  10.00 ‚  38.75 
         ‚  74.19 ‚  25.81 ‚ 
         ‚  57.50 ‚  20.00 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Med      ‚      7 ‚      8 ‚     15 
         ‚    7.5 ‚    7.5 ‚ 
         ‚   8.75 ‚  10.00 ‚  18.75 
         ‚  46.67 ‚  53.33 ‚ 
         ‚  17.50 ‚  20.00 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          40       40       80 
            50.00    50.00   100.00 
 
 
Statistics for Table of Experience by Satisfied 
 
Statistic                     DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square                     2     13.0894    0.0014 
Likelihood Ratio Chi-Square    2     13.5782    0.0011 
Mantel-Haenszel Chi-Square     1      3.7513    0.0528 
Phi Coefficient                       0.4045 
Contingency Coefficient               0.3750 
Cramer's V                            0.4045 
 
Sample Size = 80 
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Output Explanation 
 
Since the p-value resulting from the SAS analysis (0.0014) is less than 0.05, one can reject the 
null hypothesis. Therefore, satisfaction with the experimental text editor is statistically 
dependent on computer experience. One would need to conduct additional tests to determine 
the locus of computer experience dependency through a series of additional chi-square tests of 
independence using meaningful 2x2 partitions of the original 3x2 contingency table. 
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Example 8: Chi-Square Test of Independence (Two Additive 2x2 Partitions) 
 

(Click in this red rectangle to see the Reference Notes on Example 8.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 2, Topic 5. Analysis of Nominal Data, Part 5.2.2. Chi-Square Test of Independence 
 
Page(s) in Williges (2006) Reference Material: 193-194 
 
Problem Description 
Every user in a random sample of 80 users classified themselves as high (Hi), medium (Med) or 
low (Lo) in computer experience. All users practiced using an experimental text editor for 10 
hours and were then asked to state whether they were satisfied (Yes) or not satisfied (No) with 
the text editor. Is their satisfaction evaluation independent of their computer experience (p < 
0.05)? 
 
Context/Purpose 
Determine which levels of variables within the 3x2 contingency table of Example 7 are 
independent of each other. First, only users classified as having either high or medium 
computer experience are compared to determine if their satisfaction evaluation is independent 
of their computer experience. 
 
Statistical Decision Criteria  
All additional chi-square tests of independence using two additive 2x2 partitions use the same 
level of significance (i.e., p < 0.05) as the overall 3x2 contingency table test in order to 
determine which qualitative groups have significant effects. 
 
 
SAS Input (Part A. 2x2 Table 1) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 8A: Chi-Square Test of Independence (Two Additive 2x2 
Partitions)'; 
data computer; 
input Experience $ Satisfied $ count; 
lines; 
Hi Yes 24 
Hi No 10 
Med Yes 8 
Med No 7 
; 
proc freq data=computer; 
tables Experience*Satisfied/chisq expected alpha = .05; 
weight count; 
quit; 
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SAS Output (Part A. 2x2 Table 1)                                        
 
Example 8A: Chi-Square Test of Independence (Two Additive 2x2 Partitions)                          
 
The FREQ Procedure 
 
Table of Experience by Satisfied 
 
Experience     Satisfied 
 
Frequency‚ 
Expected ‚ 
Percent  ‚ 
Row Pct  ‚ 
Col Pct  ‚No      ‚Yes     ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Hi       ‚     10 ‚     24 ‚     34 
         ‚ 11.796 ‚ 22.204 ‚ 
         ‚  20.41 ‚  48.98 ‚  69.39 
         ‚  29.41 ‚  70.59 ‚ 
         ‚  58.82 ‚  75.00 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Med      ‚      7 ‚      8 ‚     15 
         ‚ 5.2041 ‚ 9.7959 ‚ 
         ‚  14.29 ‚  16.33 ‚  30.61 
         ‚  46.67 ‚  53.33 ‚ 
         ‚  41.18 ‚  25.00 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          17       32       49 
            34.69    65.31   100.00 
                         
 
The FREQ Procedure 
 
Statistics for Table of Experience by Satisfied 
 
Statistic                     DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square                     1      1.3677    0.2422 
Likelihood Ratio Chi-Square    1      1.3401    0.2470 
Continuity Adj. Chi-Square     1      0.7122    0.3987 
Mantel-Haenszel Chi-Square     1      1.3398    0.2471 
Phi Coefficient                      -0.1671 
Contingency Coefficient               0.1648 
Cramer's V                           -0.1671 
 
Sample Size = 49 
 
 

Output Explanation (Part A. 2x2 Table 1)                                        
 
Since the p-value resulting from the SAS analysis (0.2422) is greater than 0.05, one cannot 
reject the null hypothesis. Therefore, user satisfaction of text editors cannot be considered 
statistically dependent on the high and medium levels of computer experience. Next, one would 
combine users with high and medium levels into one group and compare them to users with low 
level computer experience in an additional test of significance using a 2x2 contingency table. 
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SAS Input (Part B. 2x2 Table 2) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 8B: Chi-Square Test of Independence (Two Additive 2x2 
Partitions)'; 
data computer; 
input Experience $ Satisfied $ count; 
lines; 
Hi+Med Yes 32 
Hi+Med No 17 
Lo Yes 8 
Lo No 23 
; 
proc freq data=computer; 
tables Experience*Satisfied/chisq expected alpha = .05; 
weight count; 
quit; 
 
 
SAS Output (Part B. Table 2) 
 
Example 8: Chi-Square Test of Independence (Two Additive 2x2 Partitions)                          
 
The FREQ Procedure 
 
Table of Experience by Satisfied 
 
Experience     Satisfied 
 
Frequency‚ 
Expected ‚ 
Percent  ‚ 
Row Pct  ‚ 
Col Pct  ‚No      ‚Yes     ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Hi+Med   ‚     17 ‚     32 ‚     49 
         ‚   24.5 ‚   24.5 ‚ 
         ‚  21.25 ‚  40.00 ‚  61.25 
         ‚  34.69 ‚  65.31 ‚ 
         ‚  42.50 ‚  80.00 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Lo       ‚     23 ‚      8 ‚     31 
         ‚   15.5 ‚   15.5 ‚ 
         ‚  28.75 ‚  10.00 ‚  38.75 
         ‚  74.19 ‚  25.81 ‚ 
         ‚  57.50 ‚  20.00 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          40       40       80 
            50.00    50.00   100.00 
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The FREQ Procedure 
 
Statistics for Table of Experience by Satisfied 
 
Statistic                     DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square                     1     11.8499    0.0006 
Likelihood Ratio Chi-Square    1     12.2381    0.0005 
Continuity Adj. Chi-Square     1     10.3226    0.0013 
Mantel-Haenszel Chi-Square     1     11.7018    0.0006 
Phi Coefficient                      -0.3849 
Contingency Coefficient               0.3592 
Cramer's V                           -0.3849 
 
Sample Size = 80 

 
Output Explanation (Part B. 2x2 Table 2) 
 
Since the p-value resulting from the SAS analysis (0.0006) is less than 0.05, one can reject the 
null hypothesis. Therefore, the locus of dependency in text editor satisfaction and computer 
experience found in the overall 3x2 contingency table in Example 7 can be determined. User 
satisfaction with the experimental text editor was significantly dependent upon the amount of 
computer experience when users classified as having high and medium experience were 
combined and compared to users classified as having low computer experience. 
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Example 9: McNemar Change Test 
 

(Click in this red rectangle to see the Reference Notes on Example 9.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 2, Topic 5. Analysis of Nominal Data, Part 5.3.1. McNemar Change Test 
 
Page(s) in Williges (2006) Reference Material: 198 
 
Problem Description 
50 people stated their preference for either Hearing Protector A or B before and after using each 
protector on the job for one week. To counterbalance order of use, half the people used Hearing 
Protector A on the job first and the other half used Hearing Protector B first. Did trial use of the 
hearing protectors change their preference (p < 0.05)? 
 
Context/Purpose 
Determine differences between before and after use preferences of two types of hearing 
protectors. 
 
Statistical Decision Criteria  
Since each subject used both hearing protectors, a within-subjects McNemar Change Test 
based on frequency data of a before and after scenario is appropriate. The 0.05 level of 
significance is used. 
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options pageno=1 nodate nocenter; 
title 'Example 9: McNemar Change Test'; 
data protector; 
input Before $ After $ count; 
lines; 
A A 13 
A B 26 
B B 5 
B A 6 
; 
proc freq data=protector; 
tables Before*After/agree alpha=0.05; 
weight count; 
quit; 
 
 
SAS Output** 
 
**Note: SAS calculates the Pearson Chi-square statistic without using the more conservative Yate’s 
Correction for Continuity. See the SAS Institute (2004) online documentation for the formula used to 
calculate the S statistic in the McNemar Change Test. The example in the Williges (2006) reference used 
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the Yate’s correction. If the uncorrected formula were used, the Williges (2006) results would match the 
SAS program output. 
                                        
 
Example 9: McNemar Change Test                                                                    
 
The FREQ Procedure 
 
Table of Before by After 
 
Before     After 
 
Frequency‚ 
Percent  ‚ 
Row Pct  ‚ 
Col Pct  ‚A       ‚B       ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
A        ‚     13 ‚     26 ‚     39 
         ‚  26.00 ‚  52.00 ‚  78.00 
         ‚  33.33 ‚  66.67 ‚ 
         ‚  68.42 ‚  83.87 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
B        ‚      6 ‚      5 ‚     11 
         ‚  12.00 ‚  10.00 ‚  22.00 
         ‚  54.55 ‚  45.45 ‚ 
         ‚  31.58 ‚  16.13 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          19       31       50 
            38.00    62.00   100.00 
 
 
Statistics for Table of Before by After 
 
     McNemar's Test 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Statistic (S)    12.5000 
DF                     1 
Pr > S            0.0004 
 
 
    Simple Kappa Coefficient 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Kappa                    -0.1283 
ASE                       0.1065 
95% Lower Conf Limit     -0.3371 
95% Upper Conf Limit      0.0804 
 
Sample Size = 50 
 
 
Output Explanation 
 
Since the p-value resulting from the SAS analysis (0.0004) is less than 0.05, one can reject the 
null hypothesis. Trial use of the hearing protectors did result in a change in preference before 
and after use. A significant number of the people changed their preference after using both 
hearing protectors. 
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Example 10: Cochran Q Test 
 

(Click in this red rectangle to see the Reference Notes on Example 10.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 2, Topic 5. Analysis of Nominal Data, Part 5.3.2. Cochran Q Test  
 
Page(s) in Williges (2006) Reference Material: 200 – 201 
 
Problem Description 
15 experienced photo interpreters viewed a series of photographs under three enhancement 
procedures and rated each procedure as “acceptable = 1” or “unacceptable = 0”. Are the three 
procedures rated equally? (p < 0.001) 
 
Context/Purpose 
Determine if there is a difference among the frequency of acceptability ratings given by the 
photo interpreters who evaluated each of three photo enhancement procedures. 
 
Statistical Decision Criteria  
Since frequency data among more than two related samples are being compared, a Cochran Q 
Test conducted at the 0.01 level of significance is appropriate to use with within-subjects 
nominal data. 
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 10: Cochran Q Test'; 
data photos; 
input Proc1 Proc2 Proc3; 
lines; 
0 1 0 
1 1 1 
0 1 1 
0 1 1 
0 1 1 
0 1 1 
1 1 1 
0 1 1 
0 0 1 
0 1 1 
1 1 1 
0 1 1 
1 1 1 
0 1 1 
0 1 1 
; 
proc freq data=photos; 
tables Proc1 Proc2 Proc3/nocum alpha=0.001; 
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tables Proc1*Proc2*Proc3/agree noprint alpha=0.001; 
quit; 
 
 
SAS Output                    
 
Example 10: Cochran Q Test                                                                        
 
The FREQ Procedure 
 
Proc1    Frequency     Percent 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
    0          11       73.33 
    1           4       26.67 
 
 
Proc2    Frequency     Percent 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
    0           1        6.67 
    1          14       93.33 
 
 
Proc3    Frequency     Percent 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
    0           1        6.67 
    1          14       93.33 
 
 
 Cochran's Q, for Proc1 
   by Proc2 by Proc3 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Statistic (Q)    18.1818 
DF                     2 
Pr > Q            0.0001 
 
 
Total Sample Size = 15 

 
 
Output Explanation 
 
Since the p-value resulting from the SAS analysis (0.0001) is less than 0.001, one can reject the 
null hypothesis. Therefore, the frequency of acceptability ratings is significantly different among 
the three photo enhancement procedures. In order to determine these differences, one would 
need to perform a series of six McNemar Change Tests on all the paired-comparisons among 
the three procedures. 
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Example 11: Kolmogorov-Smirnov Tests 
 

(Click in this red rectangle to see the Reference Notes on Example 11.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 2, Topic 6. Analysis of Ordinal Data, Part 6.2.1. Kolmogorov-Smirnov Tests  
 
Page(s) in Williges (2006) Reference Material: 210 – 211 
 
Problem Description 
25 professional photographers and 30 nonprofessional photographers rated the acceptability of 
25 photographs taken by an experimental camera on a 7 point Likert –type scale. Median 
acceptability ratings of 25 photographs were determined for each individual. Did the 
nonprofessionals give significantly higher median ratings of acceptability (p < 0.01)?  
 
Context/Purpose 
Determine if the median acceptability ratings given by non-professional photographers are 
higher than those of the professional photographers. 
 
Statistical Decision Criteria 
Use the Kolmogorov-Smirnov test because only two groups of between-subjects ordinal data 
are being compared at the 0.01 level of significance. 
 
 
Observed Data 
 
The individual and median photo acceptability ratings are shown in the following tables for each 
professional and nonprofessional photographer, respectively. The frequency of median ratings 
at each of the 7 points on the Likert-type rating scale is used in the Kolmogorov-Smirnov Test. 
 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Median
1 1 3 1 1 2 3 1 1 1 1 2 3 2 2 2 2 1 1 2 1 2 1 2 1 1 1
2 1 5 3 7 4 3 3 2 3 5 6 3 1 3 5 7 3 2 1 2 6 3 4 3 2 3
3 5 1 6 5 4 6 7 2 7 5 6 3 7 5 7 6 2 6 4 7 6 4 5 6 7 6
4 4 4 2 2 1 1 1 2 3 1 1 1 2 1 1 1 3 2 1 1 1 1 3 4 1 1
5 3 4 6 2 4 5 5 3 4 1 7 6 3 4 5 6 2 6 1 7 5 4 6 5 6 5
6 3 2 4 1 6 2 3 1 1 5 2 3 1 2 6 2 3 1 4 2 3 7 4 1 2 2
7 5 3 4 1 6 3 1 5 4 2 3 1 5 4 2 7 3 4 5 7 6 2 3 1 4 4
8 2 3 4 1 5 1 2 4 3 1 2 4 6 5 2 3 1 2 2 7 5 6 2 1 1 2
9 3 2 2 5 1 3 2 6 2 3 3 1 2 4 5 1 2 3 1 7 4 3 1 2 1 2

10 1 2 1 1 1 3 5 2 1 1 1 1 2 2 1 1 1 1 3 1 1 2 1 1 1 1
11 5 4 6 1 6 7 5 7 6 4 1 6 7 5 6 2 4 7 6 5 7 2 3 6 7 6
12 1 5 3 6 4 3 7 6 7 5 4 5 1 2 4 5 3 7 2 5 6 5 4 1 5 5
13 3 6 1 2 1 1 1 1 1 2 3 2 1 1 1 2 3 4 1 1 2 1 1 1 1 1
14 3 2 2 1 1 5 2 6 1 2 1 1 1 1 3 2 5 1 1 1 1 2 3 1 1 1
15 1 1 2 4 3 5 2 4 2 6 7 2 2 1 3 1 2 4 6 1 3 6 2 1 3 2
16 7 7 4 7 6 7 3 7 2 5 7 7 6 7 5 4 7 7 6 7 2 7 4 6 7 7
17 7 2 4 3 1 1 2 1 1 1 1 3 1 1 2 1 1 1 1 4 3 1 1 1 2 1
18 6 3 2 4 1 1 3 4 1 2 5 4 2 7 6 1 2 1 3 2 1 1 3 4 2 2
19 5 2 4 1 2 4 6 2 7 6 4 6 3 1 5 5 6 4 5 7 4 2 6 5 7 5
20 2 1 3 1 1 4 2 1 2 1 1 1 3 3 1 2 5 1 1 1 2 2 1 1 1 1
21 3 1 2 4 2 3 3 1 6 1 4 7 4 2 1 3 1 5 1 2 3 1 3 2 1 2
22 1 5 7 2 3 5 3 6 7 5 1 4 7 2 3 4 5 6 7 2 5 2 5 3 5 5
23 3 2 1 1 1 1 2 1 1 1 1 1 5 2 1 2 1 1 2 1 1 1 1 2 2 1
24 5 2 3 1 2 1 3 2 1 1 1 4 1 1 1 1 3 1 1 1 2 1 1 1 2 1
25 4 3 5 2 6 2 5 3 1 3 5 1 4 7 6 2 4 5 7 2 3 4 3 2 5 4

Acceptability of PhotographProfessional 
Photographer
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SAS Output** 
 
**Note: The SAS output provides only D and tests the significance of the asymptotic KSa value. See the 
SAS Institute (2004) online documentation for a detailed description of these calculations. The SAS 
program does not calculate the Goodman Chi-Square statistic. To obtain the Goodman Chi-Square, use 
D2 in the formula presented in the Williges (2006) reference.                                   
 
Example 11: Kolmogorov-Smirnov Test                                                               
 
The NPAR1WAY Procedure 
 
   Kolmogorov-Smirnov Test for Variable rating 
           Classified by Variable Group 
 
                     EDF at    Deviation from Mean 
Group       N       Maximum        at Maximum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
P          25      0.600000          1.272727 
N          30      0.133333         -1.161836 
Total      55      0.345455 
 
   Maximum Deviation Occurred at Observation 9 
         Value of rating at Maximum = 2.0 
 
Kolmogorov-Smirnov Two-Sample Test (Asymptotic) 
KS   0.232367    D         0.466667 
KSa  1.723281    Pr > KSa  0.0053 
 
 
Output Explanation 
 
The Asymptotic Kolmogorov-Smirnov Test (KSa) shown in the SAS output is significant at the 
0.0053 level. The observed D statistic (0.46667) can be used to calculate the Goodman Chi-
Square statistic. The resulting Goodman Chi-Square statistic (11.896) is larger than the tabled 
chi-square (9.21) at the 0.01 level of significance (Williges, 2005). So, both calculations yield 
significant results. One can reject the null hypothesis, which means that the non-professional 
photographers gave significantly higher ratings of acceptability than those of the professional 
photographers (p < 0.01). 
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Example 12: Kruskal-Wallis One-Way ANOVA 
 

(Click in this red rectangle to see the Reference Notes on Example 12.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 2, Topic 6. Analysis of Ordinal Data, Part 6.2.2. Kruskal-Wallis One-Way ANOVA 
 
Page(s) in Williges (2006) Reference Material: 215 – 216 
 
Problem Description 
A between-subjects design (n=6) was used to compare original learning by lecture, text, and 
multimedia instruction. Every trainee rated their overall satisfaction with the training on a 9-point 
scale. Did satisfaction differ across the three methods of training (p < 0.05)? 
 
Context/Purpose 
Determine if there is a difference in satisfaction across three types of multimedia instruction. 
 
Statistical Decision Criteria  
Use a Kruskal-Wallis One-Way ANOVA since comparisons are to be made among three or 
more independent samples of between-subjects ordinal data at the 0.05 level of significance. 
 
 
SAS Input** 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
**Note: One must enter the rank order of all rating scores as the input into SAS program as shown in the 
Williges (2006) reference. 
 
options nodate nocenter pageno=1; 
title 'Example 12: Kruskal-Wallis One-Way ANOVA'; 
data learning; 
input Type $ Rank; 
lines; 
Lecture 13 
Lecture 5.5 
Lecture 7.5 
Lecture 10 
Lecture 13 
Lecture 3.5 
Multimedia 13 
Multimedia 17 
Multimedia 17 
Multimedia 10 
Multimedia 15 
Multimedia 17 
Text 3.5 
Text 10 
Text 7.5 
Text 5.5 
Text 2 



Appendix: SAS Examples for Human Factors Experimental Design and Analysis Reference 

 34

Text 1 
; 
proc npar1way data=learning wilcoxon correct=no; 
class Type; 
var Rank; 
exact wilcoxon /alpha=.05; 
quit; 
 
 
SAS Output                                       
 
Example 12: Kruskal-Wallis One-Way ANOVA                                                     
 
The NPAR1WAY Procedure 
 
             Wilcoxon Scores (Rank Sums) for Variable Rank 
                      Classified by Variable Type 
 
                        Sum of      Expected       Std Dev          Mean 
Type           N        Scores      Under H0      Under H0         Score 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Lecture        6         52.50          57.0     10.594116      8.750000 
Multimed       6         89.00          57.0     10.594116     14.833333 
Text           6         29.50          57.0     10.594116      4.916667 
 
                   Average scores were used for ties. 
 
 
   Kruskal-Wallis Test 
 
Chi-Square         10.6948 
DF                       2 
Pr > Chi-Square     0.0048 
 
 
Monte Carlo Estimate for the Exact Test 
 
Pr >= Chi-Square 
Estimate                     0.0013 
95% Lower Conf Limit      5.937E-04 
95% Upper Conf Limit         0.0020 
 
Number of Samples             10000 
Initial Seed                  79643 
 
 
Output Explanation 
 
Note that the SAS program automatically calculates the Kruskal-Wallis test based on tied ranks 
(KW = 10.6948) if ties exist in the data set. Since the p-value resulting from the SAS analysis 
(0.0048) is less than 0.05, one can reject the null hypothesis. Consequently, there is a 
significant difference in user satisfaction ratings among the three training methods. To 
determine the locus of these differences, additional post hoc Z tests as described in the Williges 
(2006) reference are necessary. 
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Example 13: Wilcoxon Signed Ranks Test 
 

(Click in this red rectangle to see the Reference Notes on Example 13.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 2, Topic 6. Analysis of Ordinal Data, Part 6.3.1. Wilcoxon Signed Ranks Test  
 
Page(s) in Williges (2006) Reference Material: 220 - 221 
 
Problem Description 
Two electronic communication methods, video conferencing and instant messaging, were 
evaluated in a real-time battlefield information system on four 9-Point Likert-type scales in terms 
of ease of use, effectiveness, timeliness, and convenience by each soldier. Are the two forms of 
communication significantly different in terms of overall acceptability as measured by the sum of 
these four ratings (p < 0.05)? 
 
Context/Purpose 
Determine if there is a difference among acceptability ratings of communication methods. 
 
Statistical Decision Criteria 
Use the Wilcoxon Signed Rank Test, because the data were sampled from two ordinal, within-
subjects samples at the 0.05 level of significance. 
 
 
Observed Data 
 
These two tables show the soldier ratings of ease of use, effectiveness, timeliness, and 
convenience of the video conferencing and the instant messaging communication systems, 
respectively. The rank order of the difference between these two sums is used in the Wilcoxon 
Signed Rank Test as shown in Williges (2006). 
 
 

Video Conferencing 
Soldier Ease of Use Effectiveness Timeliness Convenience Sum 

1 8 7 8 6 29 
2 4 3 6 4 17 
3 2 1 3 2 8 
4 5 2 6 8 21 
5 9 8 7 9 33 
6 7 6 8 9 30 
7 6 4 9 6 25 
8 5 6 7 6 24 
9 4 1 4 6 15 

10 3 2 4 1 10 
11 9 8 9 8 34 
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Instant Messaging 
Soldier Ease of Use Effectiveness Timeliness Convenience Sum 

1 7 8 5 6 26 
2 4 5 1 1 11 
3 3 5 3 1 12 
4 2 2 2 2 8 
5 2 1 1 1 5 
6 5 6 4 4 19 
7 5 3 5 7 20 
8 4 2 2 2 10 
9 4 3 6 6 19 

10 1 2 4 5 12 
11 6 4 3 5 18 

 
 
SAS Input** 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
** Note: The data input into SAS are the rank order of the differences provided by Williges (2006) and not 
the actual differences of the sum of the four ratings shown in the video conferencing and instant 
messaging tables. 
 
options nodate nocenter pageno=1; 
title 'Example 13: Wilcoxon Signed Rank Test'; 
data communication; 
input subjects rank; 
lines; 
1 2 
2 6 
3 -3.5 
4 8 
5 11 
6 7 
7 5 
8 9 
9 -3.5 
10 -1 
11 10 
; 
proc univariate data=communication alpha=0.05; 
var rank; 
quit; 



Appendix: SAS Examples for Human Factors Experimental Design and Analysis Reference 

 37

SAS Output*** 
                                        
*** Note: The S statistic presented below can be related to the T+ statistic demonstrated in the Williges 
(2006) reference material by using the following formula  S = (T+) – [(n*(n +1))/4] as described in the SAS 
Institute (2004) online documentation. In addition, the SAS program uses an exact distribution when N ≤ 
20 and uses a Student’s t distribution when N > 20, which differs from the stated approach in Siegel and 
Castellan (1988) which is used in the Williges (2006) reference. 
 
Example 13: Wilcoxon Signed Rank Test                                                             
 
The UNIVARIATE Procedure 
Variable:  rank 
 
                            Moments 
 
N                          11    Sum Weights                 11 
Mean               4.54545455    Sum Observations            50 
Std Deviation      5.27472533    Variance            27.8227273 
Skewness           -0.5411792    Kurtosis            -1.1907993 
Uncorrected SS          505.5    Corrected SS        278.227273 
Coeff Variation    116.043957    Std Error Mean      1.59038953 
 
 
              Basic Statistical Measures 
 
    Location                    Variability 
 
Mean      4.54545     Std Deviation            5.27473 
Median    6.00000     Variance                27.82273 
Mode     -3.50000     Range                   14.50000 
                      Interquartile Range     10.00000 
 
 
           Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
 
Student's t    t  2.858076    Pr > |t|    0.0170 
Sign           M       2.5    Pr >= |M|   0.2266 
Signed Rank    S        25    Pr >= |S|   0.0234 

 
 
Output Explanation 
 
Since the p-value resulting from the SAS analysis (0.0234) is less than 0.05, one can reject the 
null hypothesis. Therefore, there is a statistically significant difference between the overall 
acceptability ratings of communication methods, such that the video conferencing 
communication system was rated higher than the instant messaging communication system in 
terms of the sum of the ease of use, effectiveness, timeliness, and convenience ratings.  



Appendix: SAS Examples for Human Factors Experimental Design and Analysis Reference 

 38

Example 14: Friedman Two-Way ANOVA 
 

(Click in this red rectangle to see the Reference Notes on Example 14.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 2. Topic 6. Analysis of Ordinal Data, Part 6.3.2. Friedman Two-Way ANOVA  
 
Page(s) in Williges (2006) Reference Material: 225 
 
Problem Description 
Five subjects performed a benchmark task using a new CAD program. After completing the 
task, users rated their satisfaction using QUIS, and median ratings were calculated for each of 
the four parts of the scale, i.e., I. Screen, II. Terminology, III. Learning, and IV. Capability. Did 
median satisfaction differ across the parts (p < 0.05)? 
 
Context/Purpose 
Determine if there is a difference in median satisfaction with the CAD program across the four 
parts of the QUIS rating scale. 
 
Statistical Decision/Criteria  
Use the Friedman Two-Way ANOVA at the 0.05 level of significance since there are more than 
two categories of within-subjects ordinal data. 
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 14: Friedman Two-Way ANOVA'; 
data CAD; 
input subject Part Rating; 
lines; 
1 1 2 
2 1 4 
3 1 1 
4 1 0 
5 1 5 
1 2 6 
2 2 8 
3 2 9 
4 2 5 
5 2 7 
1 3 7 
2 3 9 
3 3 6 
4 3 8 
5 3 4 
1 4 3 
2 4 3 
3 4 2 
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4 4 1 
5 4 6 
; 
proc freq data=CAD; 
tables subject*Part*Rating/cmh2 scores=rank noprint alpha=0.05; 
quit; 
 
 
SAS Output** 
 
** Note: The Friedman Fr statistic is identical to the Row Mean Scores Differ Value of the Cochran-
Mantel-Henszel (CMH) Statistic when based on rank order data as discussed in the SAS Institute (2004) 
online documentation. Consequently, the SAS output provides only the Row Mean Scores Differ rather 
than Fr used in the Williges (2006) reference. 
 
Example 14: Friedman Two-Way ANOVA                                                                
 
The FREQ Procedure 
 
Summary Statistics for Part by Rating 
Controlling for subject 
 
   Cochran-Mantel-Haenszel Statistics (Based on Rank Scores) 
 
Statistic    Alternative Hypothesis    DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
    1        Nonzero Correlation        1      0.3840    0.5355 
    2        Row Mean Scores Differ     3      8.2800    0.0406 
 
 
Total Sample Size = 20 

 
 
Output Explanation 
 
Since the p-value from the SAS analysis (0.0406) is less than 0.05, one can reject the null 
hypothesis. Therefore, a statistically significant difference among median ratings of the four 
parts of the QUIS was detected. To determine which of the four parts of the QUIS scale are 
significantly different, one would need to conduct additional post hoc paired-comparison Z tests 
as described in the Williges (2006) reference material. 
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Section 3. Basic Analysis of Variance (ANOVA) Designs



Appendix: SAS Examples for Human Factors Experimental Design and Analysis Reference 

 41

Example 15: One-Factor, Between-Subjects ANOVA 
 

(Click in this red rectangle to see the Reference Notes on Example 15.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 3, Topic 10. Between-Subjects ANOVA Designs, Part 10.1.1. One-Factor Example 
 
Page(s) in Williges (2006) Reference Material: 313 – 323 
 
Problem Description 
The effect of various aspects of information in military command and control situations was 
evaluated in terms of a commander’s situation awareness. Situation awareness was measured 
for each of four different commanders who received information characterized as unreliable (u), 
ambiguous (a), or conflicting (c). Each commander received only one of the three types of 
information. Do these three aspects of information have a significant effect on commander’s 
situation awareness (p < 0.05)? 
 
Context/Purpose 
Determine whether or not information characterized either as unreliable, ambiguous, or 
conflicting has a significant effect on the evaluation of a commander’s situation awareness. 
 
Statistical Decision Criteria  
Perform a one-factor, between-subjects (each type of information is given to a different 
commander) ANOVA at the 0.05 level of significance.  
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 15: One-Way, Between-Subjects'; 
data information; 
input subject $ characterization $ response; 
lines; 
1 u 42 
2 u 41 
3 u 37 
4 u 40 
5 a 43 
6 a 49 
7 a 52 
8 a 48 
9 c 32 
10 c 40 
11 c 41 
12 c 39 
; 
proc glm; 
class  subject characterization; 
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model response= characterization subject(characterization); 
means characterization/alpha=.05; 
test h=characterization e=subject(characterization); 
run; 
quit; 
 
 
SAS Output 
 
Example 15: One-Way, Between-Subjects                                                              
 
The GLM Procedure 
 
        Class Level Information 
 
Class                 Levels    Values 
 
subject                    4    1 2 3 4 
 
characterization           3    a c u 
 
Number of Observations Read          12 
Number of Observations Used          12 
 
 
Dependent Variable: response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                       11     330.0000000      30.0000000        .       . 
 
Error                        0       0.0000000        . 
 
Corrected Total             11     330.0000000 
 
 
R-Square     Coeff Var      Root MSE    response Mean 
 
1.000000           .               .         42.00000 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
characterization             2     224.0000000     112.0000000        .       . 
subject(characteriz)         9     106.0000000      11.7777778        .       . 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
characterization             2     224.0000000     112.0000000        .       . 
subject(characteriz)         9     106.0000000      11.7777778        .       . 
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Level of                   -----------response---------- 
characterization     N             Mean          Std Dev 
 
a                    4       48.0000000       3.74165739 
c                    4       38.0000000       4.08248290 
u                    4       40.0000000       2.16024690 
 
 
Dependent Variable: response 
 
Tests of Hypotheses Using the Type III MS for subject(characteriz) as an Error Term 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
characterization             2     224.0000000     112.0000000       9.51    0.0060 

 
 
Output Explanation 
 
The obtained level of significance in SAS (i.e., p = 0.0060) is less than 0.05 level of significance, 
which leads to the rejection of the null hypothesis. This result indicates that there is a significant 
effect due to the three information characterizations on the commanders’ spatial ability. Further 
analysis should be performed to determine which of the three types had effects on the 
commanders’ situation awareness. 
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Example 16: Two-Factor, Between-Subjects ANOVA 
 

(Click in this red rectangle to see the Reference Notes on Example 16.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 3, Topic 10. Between-Subjects ANOVA Designs, Part 10.2.4. Two-Factor Example 
 
Page(s) in Williges (2006) Reference Material: 330 – 334 
 
Problem Description 
Readability of printed text on a computer screen was evaluated in terms of two fonts (Helvetica 
and Old English) and number of words displayed per line (10, 20, or 30 words per line). Four 
different subjects read one particular combination of these two factors and their reading 
comprehension was tested. Did either of these two factors or the interaction between them have 
a significant effect on reading comprehension (p < 0.01)? 
 
Context/Purpose 
Determine if the fonts, words displayed per line, or the interaction of these two factors have a 
significant effect on reading comprehension. 
 
Statistical Decision Criteria  
Conduct a two-factor (font and words per line), between-subjects (each subject is given a 
different treatment combination) ANOVA to determine if there are any significant differences at 
the 0.01 significance level. 
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 

options nodate nocenter pageno=1; 
title 'Example 16: Two-Factor, Between-Subjects'; 
data six; 
input Subject $ Font $ Words $ Response; 
lines; 
1 H 10 46 
2 H 10 50 
3 H 10 49 
4 H 10 47 
5 OE 10 47 
6 OE 10 46 
7 OE 10 50 
8 OE 10 44 
9 H 20 49 
10 H 20 52 
11 H 20 54 
12 H 20 48 
13 OE 20 39 
14 OE 20 44 
15 OE 20 38 
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16 OE 20 45 
17 H 30 50 
18 H 30 47 
19 H 30 49 
20 H 30 52 
21 OE 30 35 
22 OE 30 42 
23 OE 30 39 
24 OE 30 40 
; 
proc glm; 
class Font Words Subject; 
model Response = Font Words Subject(Font*Words) Font*Words; 
means Font Words Font*Words/alpha=0.01; 
test h=Font e=Subject(Font*Words); 
test h=Words e=Subject(Font*Words); 
test h=Font*Words e=Subject(Font*Words); 
run; 
quit; 
 
 
SAS Output 
 
Example 16: Two-Factor, Between-Subjects                                                           
 
The GLM Procedure 
 
     Class Level Information 
 
Class         Levels    Values 
 
Font               2    H OE 
 
Words              3    10 20 30 
 
Subject            24   1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 3 4 5 6 7 8 9 
 
Number of Observations Read          24 
Number of Observations Used          24 
 
Dependent Variable: Response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                       23     561.8333333      24.4275362        .       . 
 
Error                        0       0.0000000        . 
 
Corrected Total             23     561.8333333 
 
 
R-Square     Coeff Var      Root MSE    Response Mean 
 
1.000000           .               .         45.91667 
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Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
Font                         1     294.0000000     294.0000000        .       . 
Words                        2      39.5833333      19.7916667        .       . 
Subject(Font*Words)         20     228.2500000      11.4125000        .       . 
Font*Words                   0       0.0000000        .               .       . 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
Font                         1     294.0000000     294.0000000        .       . 
Words                        2      39.5833333      19.7916667        .       . 
Subject(Font*Words)         18     127.5000000       7.0833333        .       . 
Font*Words                   2     100.7500000      50.3750000        .       . 
 
 
The GLM Procedure 
 
Level of            -----------Response---------- 
Font          N             Mean          Std Dev 
 
H            12       49.4166667       2.35326981 
OE           12       42.4166667       4.33711956 
 
 
Level of           -----------Response---------- 
Words        N             Mean          Std Dev 
 
10           8       47.3750000       2.13390989 
20           8       46.1250000       5.74300817 
30           8       44.2500000       6.08863109 
 
 
Level of     Level of           -----------Response---------- 
Font         Words        N             Mean          Std Dev 
 
H            10           4       48.0000000       1.82574186 
H            20           4       50.7500000       2.75378527 
H            30           4       49.5000000       2.08166600 
OE           10           4       46.7500000       2.50000000 
OE           20           4       41.5000000       3.51188458 
OE           30           4       39.0000000       2.94392029 
 
Dependent Variable: Response 
 
Tests of Hypotheses Using the Type III MS for Subject(Font*Words) as an Error Term 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
Font                         1     294.0000000     294.0000000      41.51    <.0001 
Words                        2      39.5833333      19.7916667       2.79    0.0877 
Font*Words                   2     100.7500000      50.3750000       7.11    0.0053 
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Output Explanation 
 
The p-value of the font type (0.0001) is less than 0.01, leading to the rejection of the null 
hypothesis. The p-value of the number of words displayed per line (0.0877) is greater than 0.01, 
indicating that it does not have a significant effect on reading comprehension. The p-value of the 
interaction (0.0053) is also less than 0.01 which again results in rejection of the null hypothesis. 
Consequently, both the font type and the interaction have a significant effect on reading 
comprehension. To determine which type of font has a greater effect on reading 
comprehension, one would need to conduct post hoc analyses. 
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Example 17: Planned Comparisons 
 

(Click in this red rectangle to see the Reference Notes on Example 17.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 3, Topic 11. Analysis of Comparisons and Interactions, Part 11.1.3.1 Planned 
Comparisons  
 
Page(s) in Williges (2006) Reference Material: 353 – 359 
 
Problem Description 
The average number of seconds for 12 soldiers to locate a position on a standard black and 
white navigational map (1) was compared to 12 other soldiers using an experimental colored 
map (2), and 12 other soldiers using an experimental 3-D map (3). Four tests of significant 
difference in location time were planned: standard verses color, standard versus 3-D, color 
versus 3-D, and standard versus the average of color and 3-D maps. Which differences were 
significant (p < 0.05)? 
 
Context/Purpose 
Determine which of the four planned comparisons show a significant difference on the soldiers’ 
ability to locate a position on a map. The first three are simple comparisons and the fourth is a 
complex comparison. 
 
Statistical Decision Criteria  
Use the contrast statement in GLM to test the four contrasts and use the Bonferroni t (Dunn) 
test to determine which of the three paired differences are significant at the 0.05 level. 
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 17: Planned Comparisons'; 
data location; 
input subject $ map $ response; 
lines; 
1 1 5 
2 1 3 
3 1 4 
4 1 3 
5 1 7 
6 1 6 
7 1 7 
8 1 2 
9 1 5 
10 1 4 
11 1 6 
12 1 2 
1 2 6 
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2 2 4.3 
3 2 3 
4 2 5 
5 2 3.8 
6 2 5.2 
7 2 4 
8 2 5.5 
9 2 3 
10 2 4 
11 2 4 
12 2 5 
1 3 5 
2 3 7 
3 3 9 
4 3 4 
5 3 6 
6 3 8 
7 3 11 
8 3 6 
9 3 5 
10 3 9 
11 3 10 
12 3 4 
; 
proc glm; 
class map; 
model response = map; 
lsmeans map/bon alpha=0.05; 
contrast 'D1' map 1 -1 0; 
contrast 'D2' map 1 0 -1; 
contrast 'D3' map 0 1 -1; 
contrast 'D4' map 2 -1 -1; 
estimate 'CD1' map 1 -1 0; 
estimate 'CD2' map 1 0 -1; 
estimate 'CD3' map 0 1 -1; 
run; 
quit; 
 

 
SAS Output 
 
Example 17: Planned Comparisons                                                                    
 
The GLM Procedure 
 
   Class Level Information 
 
Class         Levels    Values 
 
map                3    1 2 3 
 
 
Number of Observations Read          36 
Number of Observations Used          36 
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Dependent Variable: response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        2      52.0800000      26.0400000       8.04    0.0014 
 
Error                       33     106.9000000       3.2393939 
 
Corrected Total             35     158.9800000 
 
 
R-Square     Coeff Var      Root MSE    response Mean 
 
0.327588      33.95909      1.799832         5.300000 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
map                          2     52.08000000     26.04000000       8.04    0.0014 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
map                          2     52.08000000     26.04000000       8.04    0.0014 
 
 
Least Squares Means 
 
           response 
map          LSMEAN 
 
1        4.50000000 
2        4.40000000 
3        7.00000000 
 
 
 
Bonferroni (Dunn) t Tests for response 
 
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 
 
Alpha                              0.05 
Error Degrees of Freedom             33 
Error Mean Square              3.239394 
Critical Value of t             2.52221 
Minimum Significant Difference   1.8533 
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Means with the same letter are not significantly different. 
 
Bon 
Grouping   Mean      N    map 
 
A        7.0000     12    3 
 
B        4.5000     12    1 
 
B        4.4000     12    2 
 
 
Dependent Variable: response 
 
Contrast                    DF     Contrast SS     Mean Square    F Value    Pr > F 
 
D1                           1      0.06000000      0.06000000       0.02    0.8926 
D2                           1     37.50000000     37.50000000      11.58    0.0018 
D3                           1     40.56000000     40.56000000      12.52    0.0012 
D4                           1     11.52000000     11.52000000       3.56    0.0682 
 
                                            Standard 
Parameter                   Estimate           Error    t Value    Pr > |t| 
 
D1                       0.10000000      0.73477819       0.14      0.8926 
D2                      -2.50000000      0.73477819      -3.40      0.0018 
D3                      -2.60000000      0.73477819      -3.54      0.0012 
 
Output Explanation 
 
The planned F-test results in two significant comparisons by using the contrast statement. The 
comparison (D2) of standard versus 3-D displays is significant because the p-value (0.0018) is 
less than the specified significance (0.05). The comparison (D3) of color versus 3-D displays is 
significant since the p-value (0.0012) is less than the specified significance level (0.05). These 
comparisons have a significant effect on the location of the positions. The other two 
comparisons were not found to be significant because the p-values were greater than the 
significance value (0.05). The complex comparison (D4) is not significant at the 0.05 level since 
the p-value (0.0682) is larger. Note that SAS uses the estimate function to determine the critical 
differences of the means as opposed to using treatment totals. The Bonferroni t-test results in 
significant differences between the standard and 3-D display (D2) and between the color and 3-
D display (D3). This result is consistent with the results of the planned F-test and critical 
differences. The results of this analysis indicate that there is a significant difference in the 
location of positions when the soldiers used the 3-D display as opposed to the standard and 
color displays. 



Appendix: SAS Examples for Human Factors Experimental Design and Analysis Reference 

 52

Example 18: Unplanned Comparisons 
 

(Click in this red rectangle to see the Reference Notes on Example 18.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 3, Topic 11. Analysis of Comparisons and Interactions, Part 11.1.4. Unplanned 
Comparisons 
 
Page(s) in Williges (2006) Reference Material: 362 – 373 
 
Problem Description 
Proprioceptive, visual, sound, and voice modes of presenting information were evaluated by 24 
soldiers. One of these four modes of information was randomly assigned to 6 soldiers using 
wearable computers during training maneuvers. There was an overall significant mode 
difference in minutes to complete the training maneuver (p < 0.05). Which communication 
modes were significantly different from each other? 
 
Context/Purpose 
Determine which of the four modes of communication were different from each other by 
conducting a series of post hoc paired comparisons to isolate the significant main effect of 
information presentation mode. 
 
Statistical Decision Criteria  
Perform a one-way, between-subjects ANOVA on the four modes of communication with 
additional tests of Least Significant Difference, Bonferroni, Scheffe, Tukey, Dunnett, and 
Student Newman-Keuls at the 0.05 level of significance. The visual mode is the control for the 
Dunnett test. 
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 18: Unplanned Comparisons'; 
data wearable; 
input mode $ response; 
lines; 
proprio 10 
proprio 13 
proprio 14 
proprio 14 
proprio 15 
proprio 17 
visual 10 
visual 10 
visual 13 
visual 14 
visual 12 
visual 15 
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voice 15 
voice 15 
voice 16 
voice 17 
voice 16 
voice 18 
sound 13 
sound 14 
sound 12 
sound 18 
sound 16 
sound 19 
; 
proc glm; 
class mode; 
model response = mode; 
means mode/lsd bon scheffe tukey dunnett('visual') snk alpha=0.05; 
run; 
quit; 
 
 
SAS Output** 
 
**Note: The output displayed below has been re-ordered from the original SAS output to make the results 
easier to read. 
 
Example 18: Unplanned Comparisons                                                                  
 
The GLM Procedure 
 
              Class Level Information 
 
Class         Levels    Values 
 
mode               4    proprio sound visual voice 
 
 
Number of Observations Read          24 
Number of Observations Used          24 
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The GLM Procedure 
 
Dependent Variable: response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        3      51.5000000      17.1666667       3.64    0.0304 
 
Error                       20      94.3333333       4.7166667 
 
Corrected Total             23     145.8333333 
 
 
R-Square     Coeff Var      Root MSE    response Mean 
 
0.353143      15.06443      2.171789         14.41667 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
mode                         3     51.50000000     17.16666667       3.64    0.0304 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
mode                         3     51.50000000     17.16666667       3.64    0.0304 
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t Tests (LSD) for response 
 
NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 
 
 
Alpha                            0.05 
Error Degrees of Freedom           20 
Error Mean Square            4.716667 
Critical Value of t           2.08596 
Least Significant Difference   2.6156 
 
 
Comparisons significant at the 0.05 level are indicated by ***. 
 
                     Difference 
      mode              Between     95% Confidence 
   Comparison             Means         Limits 
 
voice   - sound           0.833     -1.782   3.449 
voice   - proprio         2.333     -0.282   4.949 
voice   - visual          3.833      1.218   6.449  *** 
sound   - voice          -0.833     -3.449   1.782 
sound   - proprio         1.500     -1.116   4.116 
sound   - visual          3.000      0.384   5.616  *** 
proprio - voice          -2.333     -4.949   0.282 
proprio - sound          -1.500     -4.116   1.116 
proprio - visual          1.500     -1.116   4.116 
visual  - voice          -3.833     -6.449  -1.218  *** 
visual  - sound          -3.000     -5.616  -0.384  *** 
visual  - proprio        -1.500     -4.116   1.116 
 
 
t Tests (LSD) for response 
 
NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 
 
 
Alpha                            0.05 
Error Degrees of Freedom           20 
Error Mean Square            4.716667 
Critical Value of t           2.08596 
Least Significant Difference   2.6156 
 
Means with the same letter are not significantly different. 
 
t Grouping      Mean      N    mode 
 
     A        16.167      6    voice 
      
     A        15.333      6    sound 
      
B    A        13.833      6    proprio 
 
B             12.333      6    visual 
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Tukey's Studentized Range (HSD) Test for response 
 
NOTE: This test controls the Type I experimentwise error rate. 
 
 
Alpha                                   0.05 
Error Degrees of Freedom                  20 
Error Mean Square                   4.716667 
Critical Value of Studentized Range  3.95829 
Minimum Significant Difference        3.5095 
 
 
Comparisons significant at the 0.05 level are indicated by ***. 
 
                     Difference      Simultaneous 
      mode              Between     95% Confidence 
   Comparison             Means         Limits 
 
voice   - sound           0.833     -2.676   4.343 
voice   - proprio         2.333     -1.176   5.843 
voice   - visual          3.833      0.324   7.343  *** 
sound   - voice          -0.833     -4.343   2.676 
sound   - proprio         1.500     -2.010   5.010 
sound   - visual          3.000     -0.510   6.510 
proprio - voice          -2.333     -5.843   1.176 
proprio - sound          -1.500     -5.010   2.010 
proprio - visual          1.500     -2.010   5.010 
visual  - voice          -3.833     -7.343  -0.324  *** 
visual  - sound          -3.000     -6.510   0.510 
visual  - proprio        -1.500     -5.010   2.010 
 
 
Tukey's Studentized Range (HSD) Test for response 
 
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 
 
 
Alpha                                   0.05 
Error Degrees of Freedom                  20 
Error Mean Square                   4.716667 
Critical Value of Studentized Range  3.95829 
Minimum Significant Difference        3.5095 
 
Means with the same letter are not significantly different. 
 
Tukey 
Grouping            Mean      N    mode 
 
     A        16.167      6    voice 
      
B    A        15.333      6    sound 
 
B    A        13.833      6    proprio 
 
B             12.333      6    visual 



Appendix: SAS Examples for Human Factors Experimental Design and Analysis Reference 

 57

Bonferroni (Dunn) t Tests for response 
 
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than Tukey's for all pairwise comparisons. 
 
 
Alpha                              0.05 
Error Degrees of Freedom             20 
Error Mean Square              4.716667 
Critical Value of t             2.92712 
Minimum Significant Difference   3.6703 
 
 
Comparisons significant at the 0.05 level are indicated by ***. 
 
                     Difference      Simultaneous 
      mode              Between     95% Confidence 
   Comparison             Means         Limits 
 
voice   - sound           0.833     -2.837   4.504 
voice   - proprio         2.333     -1.337   6.004 
voice   - visual          3.833      0.163   7.504  *** 
sound   - voice          -0.833     -4.504   2.837 
sound   - proprio         1.500     -2.170   5.170 
sound   - visual          3.000     -0.670   6.670 
proprio - voice          -2.333     -6.004   1.337 
proprio - sound          -1.500     -5.170   2.170 
proprio - visual          1.500     -2.170   5.170 
visual  - voice          -3.833     -7.504  -0.163  *** 
visual  - sound          -3.000     -6.670   0.670 
visual  - proprio        -1.500     -5.170   2.170 
 
 
Bonferroni (Dunn) t Tests for response 
 
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than REGWQ. 
 
 
Alpha                              0.05 
Error Degrees of Freedom             20 
Error Mean Square              4.716667 
Critical Value of t             2.92712 
Minimum Significant Difference   3.6703 
 
Means with the same letter are not significantly different. 
 
 Bon 
Grouping        Mean      N    mode 
 
     A        16.167      6    voice 
      
B    A        15.333      6    sound 
 
B    A        13.833      6    proprio 
 
B             12.333      6    visual 
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Scheffe's Test for response 
 
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type 
II error rate than Tukey's for all pairwise comparisons. 
 
 
Alpha                              0.05 
Error Degrees of Freedom             20 
Error Mean Square              4.716667 
Critical Value of F             3.09839 
Minimum Significant Difference   3.8228 
 
 
Comparisons significant at the 0.05 level are indicated by ***. 
 
                     Difference      Simultaneous 
      mode              Between     95% Confidence 
   Comparison             Means         Limits 
 
voice   - sound           0.833     -2.990   4.656 
voice   - proprio         2.333     -1.490   6.156 
voice   - visual          3.833      0.010   7.656  *** 
sound   - voice          -0.833     -4.656   2.990 
sound   - proprio         1.500     -2.323   5.323 
sound   - visual          3.000     -0.823   6.823 
proprio - voice          -2.333     -6.156   1.490 
proprio - sound          -1.500     -5.323   2.323 
proprio - visual          1.500     -2.323   5.323 
visual  - voice          -3.833     -7.656  -0.010  *** 
visual  - sound          -3.000     -6.823   0.823 
visual  - proprio        -1.500     -5.323   2.323 
 
 
Scheffe's Test for response 
 
NOTE: This test controls the Type I experimentwise error rate. 
 
 
Alpha                              0.05 
Error Degrees of Freedom             20 
Error Mean Square              4.716667 
Critical Value of F             3.09839 
Minimum Significant Difference   3.8228 
 
Means with the same letter are not significantly different. 
 
Scheffe 
Grouping        Mean      N    mode 
 
     A        16.167      6    voice 
     
B    A        15.333      6    sound 
 
B    A        13.833      6    proprio 
 
B             12.333      6    visual 
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Dunnett's t Tests for response 
 
NOTE: This test controls the Type I experimentwise error for comparisons of all treatments 
against 
a control. 
 
 
Alpha                              0.05 
Error Degrees of Freedom             20 
Error Mean Square              4.716667 
Critical Value of Dunnett's t   2.54043 
Minimum Significant Difference   3.1854 
 
 
Comparisons significant at the 0.05 level are indicated by ***. 
 
 
                     Difference      Simultaneous 
      mode              Between     95% Confidence 
   Comparison             Means         Limits 
 
voice   - visual          3.833      0.648   7.019  *** 
sound   - visual          3.000     -0.185   6.185 
proprio - visual          1.500     -1.685   4.685 
 
**Note: Since the Dunnett test compares only to the control (visual), only three output comparisons are 
given. 
 
Student-Newman-Keuls Test for response 
 
NOTE: This test controls the Type I experimentwise error rate under the complete null hypothesis 
but not under partial null hypotheses. 
 
 
Alpha                        0.05 
Error Degrees of Freedom       20 
Error Mean Square        4.716667 
 
 
Number of Means              2              3              4 
Critical Range       2.6155553      3.1723012      3.5095392 
 
 
Means with the same letter are not significantly different. 
 
 
 SNK 
Grouping            Mean      N    mode 
 
     A        16.167      6    voice 
      
B    A        15.333      6    sound 
 
B    A        13.833      6    proprio 
 
B             12.333      6    visual 
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Output Explanation 
 
The ANOVA output indicates that the mode of presentation does have a significant effect on 
time during the maneuver (p = 0.03). To determine which of these modes are significantly 
different from the others, post-hoc analyses were performed. The Least Significant Difference 
(LSD) test resulted in critical difference of 2.62 and significant differences between the voice 
and visual modes of communication as well as the sound and visual modes. The Tukey HSD 
test resulted in a significant difference between the voice and visual modes with a critical 
difference of 3.51. The Bonferroni test resulted in a critical difference of 3.67 and a significant 
difference between the voice and visual modes. The Scheffé test resulted in a critical difference 
of 3.82 and a significant difference between the voice and visual modes. The Dunnett test 
resulted in a critical difference of 3.19 and a significant difference between the voice and visual 
communication modes. The Student Newman-Keuls (SNK) test resulted in critical differences of 
2.62, 3.17, and 3.51. The SNK also reports a significant difference between the voice and visual 
modes of communication. All of the post-hoc comparisons report that there is a significant 
difference between the voice and visual communication modes. However, the LSD test reports 
a second significant difference pair. This may have occurred because the LSD test is the most 
lax of those performed and therefore found more significant differences (Williges 2005). Since 
all of the tests resulted in a significant difference between the voice and visual modes of 
communication, it can be said that these two modes have a significant effect on time to 
complete the maneuver. 
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Example 19: Analysis of Interactions 
 

(Click in this red rectangle to see the Reference Notes on Example 19.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 3, Topic 11. Analysis of Comparisons and Interactions, Part 11.2.1. Two-Factor 
Interaction Example Problem 
 
Page(s) in Williges (2006) Reference Material: 377 – 397 
 
Problem Description 
Distributed and co-located teams evaluated four zoom percentages (0, 50, 100, 150%) of 
computer displays. An overall ANOVA resulted in a significant interaction (p < 0.05) between 
type of team and percent zoom in terms of the percentage of threat evaluations made correctly. 
Based on the mean values in this between-subjects design, where is the locus of the interaction 
in terms of improving team communication and collaboration? 
 
Context/Purpose 
Isolate and interpret the significant interaction between the type of team and the percent zoom 
of computer displays resulting from the overall ANOVA. 
 
Statistical Decision Criteria  
Conduct simple effects tests, trend analyses, and post hoc paired comparisons at the 0.01 level 
of significance to isolate the significant interaction effects. 
 
 
SAS Input (Part A. Simple Effects) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 19A: Simple Effects of the Interaction'; 
data interactions; 
input subject $ teams $ zoom $ response; 
lines; 
1 d 0 79 
2 d 0 75 
3 d 0 77 
4 c 0 91 
5 c 0 90 
6 c 0 98 
7 d 50 82 
8 d 50 83 
9 d 50 79 
10 c 50 92 
11 c 50 95 
12 c 50 95 
13 d 100 90 
14 d 100 82 
15 d 100 80 
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16 c 100 88 
17 c 100 95 
18 c 100 93 
19 d 150 95 
20 d 150 89 
21 d 150 92 
22 c 150 90 
23 c 150 87 
24 c 150 96 
; 
proc glm; 
class teams zoom subject; 
model response = teams zoom teams*zoom; 
means teams zoom teams*zoom/alpha=0.05; 
lsmeans teams*zoom/ slice=teams; 
run; 
quit; 
 
 
SAS Output (Part A. Simple Effects) 
 
Example 19A: Simple Effects of the Interaction                                                   
1 
 
The GLM Procedure 
 
                                Class Level Information 
 
Class         Levels    Values 
 
teams              2    c d 
 
zoom               4    0 100 150 50 
 
subject           24    1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 3 4 5 6 7 8 9 
 
 
Number of Observations Read          24 
Number of Observations Used          24 
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Dependent Variable: response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        7      850.291667      121.470238       9.59    0.0001 
 
Error                       16      202.666667       12.666667 
 
Corrected Total             23     1052.958333 
 
 
R-Square     Coeff Var      Root MSE    response Mean 
 
0.807526      4.042434      3.559026         88.04167 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
teams                        1     477.0416667     477.0416667      37.66    <.0001 
zoom                         3     128.1250000      42.7083333       3.37    0.0446 
teams*zoom                   3     245.1250000      81.7083333       6.45    0.0045 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
teams                        1     477.0416667     477.0416667      37.66    <.0001 
zoom                         3     128.1250000      42.7083333       3.37    0.0446 
teams*zoom                   3     245.1250000      81.7083333       6.45    0.0045 
 
 
Level of            -----------response---------- 
teams         N             Mean          Std Dev 
 
c            12       92.5000000       3.39786029 
d            12       83.5833333       6.38831794 
 
 
Level of           -----------response---------- 
zoom         N             Mean          Std Dev 
 
0            6       85.0000000       9.27361850 
100          6       88.0000000       5.96657356 
150          6       91.5000000       3.50713558 
50           6       87.6666667       7.14609450 
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Level of     Level of           -----------response---------- 
teams        zoom         N             Mean          Std Dev 
 
c            0            3       93.0000000       4.35889894 
c            100          3       92.0000000       3.60555128 
c            150          3       91.0000000       4.58257569 
c            50           3       94.0000000       1.73205081 
d            0            3       77.0000000       2.00000000 
d            100          3       84.0000000       5.29150262 
d            150          3       92.0000000       3.00000000 
d            50           3       81.3333333       2.08166600 
 
 
Least Squares Means 
 
                     response 
teams    zoom          LSMEAN 
 
c        0         93.0000000 
c        100       92.0000000 
c        150       91.0000000 
c        50        94.0000000 
d        0         77.0000000 
d        100       84.0000000 
d        150       92.0000000 
d        50        81.3333333 
 
 
Least Squares Means 
 
           teams*zoom Effect Sliced by teams for response 
 
                         Sum of 
teams        DF         Squares     Mean Square    F Value    Pr > F 
 
c             3       15.000000        5.000000       0.39    0.7585 
d             3      358.250000      119.416667       9.43    0.0008 
 
 
Output Explanation (Part A. Simple Effects) 
 
The p-value (0.0008) for threat evaluation performance for distributed teams across various 
computer display zoom levels is less than 0.05, which leads to the rejection of the null 
hypothesis. There is not a significant effect display zoom percentage on threat evaluations of 
co-located teams, because the p-value (0.7585) is larger than 0.05. Consequently, the 
interaction is due to the effect of changes in the zoom level of computer displays used by 
distributed teams, not co-located teams.  
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SAS Input (Part B. Trend Analysis)** 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
** Note: The teams*zoom interaction contrasts uses the design model to determine the coefficients for the 
contrasts statements. 
 
options nodate nocenter pageno=1; 
title 'Example 19B: Trend Analysis of the Interaction'; 
data interactions; 
input teams $ zoom response; 
lines; 
d 0 79 
d 0 75 
d 0 77 
c 0 91 
c 0 90 
c 0 98 
d 50 82 
d 50 83 
d 50 79 
c 50 92 
c 50 95 
c 50 95 
d 100 90 
d 100 82 
d 100 80 
c 100 88 
c 100 95 
c 100 93 
d 150 95 
d 150 89 
d 150 92 
c 150 90 
c 150 87 
c 150 96 
; 
proc glm; 
class teams zoom; 
model response = teams zoom teams*zoom; 
lsmeans teams*zoom/alpha=0.05; 
contrast 'Linear at teams=c' zoom -3 -1 1 3 teams*zoom -3 -1 1 3 0 0 0 0; 
contrast 'Quadratic at teams=c' zoom 1 -1 -1 1 teams*zoom 1 -1 -1 1 0 0 0 0; 
contrast 'Cubic at teams=c' zoom -1 3 -3 1 teams*zoom -1 3 -3 1 0 0 0 0; 
contrast 'Linear at teams=d' zoom -3 -1 1 3 teams*zoom 0 0 0 0 -3 -1 1 3; 
contrast 'Quadratic at teams=d' zoom 1 -1 -1 1 teams*zoom 0 0 0 0 1 -1 -1 1; 
contrast 'Cubic at teams=d' zoom -1 3 -3 1 teams*zoom 0 0 0 0 -1 3 -3 1; 
run; 
quit; 
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SAS Output (Part B. Trend Analysis) 
 
Example 19B: Trend Analysis of the Interaction                                   1 
 
The GLM Procedure 
 
       Class Level Information 
 
Class         Levels    Values 
 
teams              2    c d 
 
zoom               4    0 50 100 150 
 
 
Number of Observations Read          24 
Number of Observations Used          24 
 
 
Dependent Variable: response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        7      850.291667      121.470238       9.59    0.0001 
 
Error                       16      202.666667       12.666667 
 
Corrected Total             23     1052.958333 
 
 
R-Square     Coeff Var      Root MSE    response Mean 
 
0.807526      4.042434      3.559026         88.04167 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
teams                        1     477.0416667     477.0416667      37.66    <.0001 
zoom                         3     128.1250000      42.7083333       3.37    0.0446 
teams*zoom                   3     245.1250000      81.7083333       6.45    0.0045 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
teams                        1     477.0416667     477.0416667      37.66    <.0001 
zoom                         3     128.1250000      42.7083333       3.37    0.0446 
teams*zoom                   3     245.1250000      81.7083333       6.45    0.0045 
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Least Squares Means 
 
                     response 
teams    zoom          LSMEAN 
 
c        0         93.0000000 
c        50        94.0000000 
c        100       92.0000000 
c        150       91.0000000 
d        0         77.0000000 
d        50        81.3333333 
d        100       84.0000000 
d        150       92.0000000 
 
 
Dependent Variable: response 
 
Contrast                    DF     Contrast SS     Mean Square    F Value    Pr > F 
 
Linear at teams=c            1       9.6000000       9.6000000       0.76    0.3969 
Quadratic at teams=c         1       3.0000000       3.0000000       0.24    0.6331 
Cubic at teams=c             1       2.4000000       2.4000000       0.19    0.6692 
Linear at teams=d            1     340.8166667     340.8166667      26.91    <.0001 
Quadratic at teams=d         1      10.0833333      10.0833333       0.80    0.3855 
Cubic at teams=d             1       7.3500000       7.3500000       0.58    0.4573 
 
Output Explanation (Part B. Trend Analysis) 
 
Only the p-value for the linear trend of distributed teams (<0.0001) is less than 0.05. 
Consequently, the significant interaction effect is due to a linear decrease in threat evaluations 
made by distributed teams as the percent of zoom level in computerized information displays 
increases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix: SAS Examples for Human Factors Experimental Design and Analysis Reference 

 68

SAS Input (Part C. Newman-Keuls Paired Comparisons)** 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
** Note: The Newman-Keuls analysis in SAS requires a reordering of the input data. The combinations 
here match those listed in increasing rank order as treatments on page 391 of the Williges (2006) 
reference. 
 
options nodate nocenter pageno=1; 
title 'Example 19C: SNK Paired Comparisons of the Interaction; 
data interactions; 
input combination $ response; 
lines; 
1 79 
1 75 
1 77 
2 82 
2 83 
2 79 
3 90 
3 82 
3 80 
4 90 
4 87 
4 96 
5 95 
5 89 
5 92 
6 88 
6 95 
6 93 
7 91 
7 90 
7 98 
8 92 
8 95 
8 95 
; 
proc glm; 
class combination; 
model response = combination; 
means combination/snk alpha=.05; 
run; 
quit; 
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SAS Output (Part C. Newman-Keuls Paired Comparisons) 
 
Example 19C: SNK Paired Comparisons of the Interaction 
 
          Class Level Information 
 
Class            Levels    Values 
 
combination           8    1 2 3 4 5 6 7 8 
 
 
Number of Observations Read          24 
Number of Observations Used          24 
 
 
Dependent Variable: response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        7      850.291667      121.470238       9.59    0.0001 
 
Error                       16      202.666667       12.666667 
 
Corrected Total             23     1052.958333 
 
 
R-Square     Coeff Var      Root MSE    response Mean 
 
0.807526      4.042434      3.559026         88.04167 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
combination                  7     850.2916667     121.4702381       9.59    0.0001 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
combination                  7     850.2916667     121.4702381       9.59    0.0001 
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Student-Newman-Keuls Test for response 
 
NOTE: This test controls the Type I experimentwise error rate under the complete null hypothesis 
but not under partial null hypotheses. 
 
 
Alpha                        0.05 
Error Degrees of Freedom       16 
Error Mean Square        12.66667 
 
Number of Means           2          3          4          5          6          7         8 
Critical Range    6.1603024  7.4982682  8.3139319  8.9028283  9.3633532  9.7410311 10.060777 
 
 
Means with the same letter are not significantly different. 
 
 
 SNK 
Groupi 
  ng            Mean      N    combination 
 
     A        94.000      3    8 
      
     A        93.000      3    7 
      
B    A        92.000      3    5 
 
B    A        92.000      3    6 
 
B    A        91.000      3    4 
 
B    C        84.000      3    3 
      
     C        81.333      3    2 
      
     C        77.000      3    1 
 

 
Output Explanation (Part C. Newman-Keuls Paired Comparisons) 
 
The Newman-Keuls analysis resulted in twelve significant comparisons including the (8,1), (8,2), 
(8,3), (7,1), (7,2), (7,3), (6,1), (6,2), (5,1), (5,2), (4,1), and (4,2) differences. Only three of these 
comparisons are unconfounded and have an effect on the interaction. Namely, the significant 
differences between distributed teams using 50% zoom and co-located teams using 50% zoom 
(8,2), the difference between distributed teams using 0% zoom and co-located teams using 0% 
zoom (7,1), and the difference between distributed teams using 150% zoom and distributed 
teams using 0% zoom (5,1). Consequently, computer display zoom only affects distributed 
teams who detect significantly fewer threats than co-located teams when teams only have 
access to 50% and 0% zoom displays. Note that the critical difference values calculated by SAS 
are the mean values not totals. To get the total values shown in the Williges (2006) reference, 
you would need to multiply these values by 2.33. 
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SAS Input (Part D. LSD Test of Paired Comparisons)** 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
**Note: The combination designation corresponds to the AB combination of the original problem. For 
example combination 11 corresponds to A1, B1 which is Distributed 0%. This example must be coded 
into SAS as a one-way ANOVA to achieve the correct results for the LSD. 
 
 
options nodate nocenter pageno=1; 
title 'Example 19D: LSD Paired Comparisons of the Interaction'; 
data interactions; 
input ABcombination $ response; 
lines; 
11 79 
11 75 
11 77 
21 91 
21 90 
21 98 
12 82 
12 83 
12 79 
22 92 
22 95 
22 95 
13 90 
13 82 
13 80 
23 88 
23 95 
23 93 
14 95 
14 89 
14 92 
24 90 
24 87 
24 96 
; 
proc glm; 
class ABcombination; 
model response = ABcombination; 
means ABcombination/lsd alpha=0.05; 
run; 
quit; 
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SAS Output (Part D. LSD Test of Paired Comparisons) 
 
Example 19D: LSD Paired Comparisons of the Interaction                                                      
1 
 
The GLM Procedure 
 
              Class Level Information 
 
Class            Levels    Values 
 
ABcombination           8    11 12 13 14 21 22 23 24 
 
 
Number of Observations Read          24 
Number of Observations Used          24 
 
Dependent Variable: response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        7      850.291667      121.470238       9.59    0.0001 
 
Error                       16      202.666667       12.666667 
 
Corrected Total             23     1052.958333 
 
 
R-Square     Coeff Var      Root MSE    response Mean 
 
0.807526      4.042434      3.559026         88.04167 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
ABcombination                  7     850.2916667     121.4702381       9.59    0.0001 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
ABcombination                  7     850.2916667     121.4702381       9.59    0.0001 
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t Tests (LSD) for response 
 
NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 
 
 
Alpha                            0.05 
Error Degrees of Freedom           16 
Error Mean Square            12.66667 
Critical Value of t           2.11991 
Least Significant Difference   6.1603 
 
 
Means with the same letter are not significantly different. 
 
 
  t 
Groupi 
  ng            Mean      N    ABcombination 
 
     A        94.000      3    22 
      
     A        93.000      3    21 
      
     A        92.000      3    23 
      
     A        92.000      3    14 
      
     A        91.000      3    24 
 
     B        84.000      3    13 
      
C    B        81.333      3    12 
 
C             77.000      3    11 
 
 
Output Explanation (Part D. LSD Test of Paired Comparisons) 
The following pairs are significant because they do not have the same letter as indicated by 
SAS: (22,13) (22,12) (22,11) (21,13) (21,12) (21,11) (23,13) (23,12) (23,11) (14,13) (14,12) 
(14,11) (24,13) (24,12) (24,11) and (13,11). However, only the pairs (22,12) (21,11) (23,13) 
(14,13) (14,12) (14,11) and (13,11) are unconfounded pairs and contribute to the interaction. 
The significant differences in threat evaluation performance between unconfounded pairs in the 
LSD analysis are the same as those found in the adjusted Bonferroni t analysis. Note that the 
least significant difference value calculated by SAS is off by a factor of three. SAS calculates 
this value using means, while the calculations in the Williges (2006) reference were done using 
totals. 
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SAS Input (Part E. Bonferroni t Paired Comparisons)** 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
**Note: SAS calculates the Bonferroni correction for all comparisons. It does not differentiate between 
confounded or unconfounded comparisons of the interaction. 
 
options nodate nocenter pageno=1; 
title 'Example 19E: Bonferroni t Paired Comparisons of the Interaction'; 
data interactions; 
input subject $ teams $ zoom $ response; 
lines; 
1 d 150 95 
2 d 150 89 
3 d 150 92 
4 c 150 90 
5 c 150 87 
6 c 150 96 
7 d 100 90 
8 d 100 82 
9 d 100 80 
10 c 100 88 
11 c 100 95 
12 c 100 93 
13 d 50 82 
14 d 50 83 
15 d 50 79 
16 c 50 92 
17 c 50 95 
18 c 50 95 
19 d 0 79 
20 d 0 75 
21 d 0 77 
22 c 0 91 
23 c 0 90 
24 c 0 98 
; 
proc glm; 
class teams zoom subject; 
model response = teams zoom teams*zoom; 
lsmeans teams*zoom/ pdiff adjust=bon alpha=0.05; 
run; 
quit; 
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SAS Output (Part E. Bonferroni t Paired Comparisons) 
 
Example 19E: Bonferroni t Paired Comparisons of the Interaction                                                  
1 
 
The GLM Procedure 
 
                                Class Level Information 
 
Class         Levels    Values 
 
teams              2    c d 
 
zoom               4    0 100 150 50 
 
subject           24    1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 3 4 5 6 7 8 9 
 
 
Number of Observations Read          24 
Number of Observations Used          24 
 
 
Dependent Variable: response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        7      850.291667      121.470238       9.59    0.0001 
 
Error                       16      202.666667       12.666667 
 
Corrected Total             23     1052.958333 
 
 
R-Square     Coeff Var      Root MSE    response Mean 
 
0.807526      4.042434      3.559026         88.04167 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
teams                        1     477.0416667     477.0416667      37.66    <.0001 
zoom                         3     128.1250000      42.7083333       3.37    0.0446 
teams*zoom                   3     245.1250000      81.7083333       6.45    0.0045 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
teams                        1     477.0416667     477.0416667      37.66    <.0001 
zoom                         3     128.1250000      42.7083333       3.37    0.0446 
teams*zoom                   3     245.1250000      81.7083333       6.45    0.0045 
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Least Squares Means 
Adjustment for Multiple Comparisons: Bonferroni 
 
                     response      LSMEAN 
teams    zoom          LSMEAN      Number 
 
c        0         93.0000000           1 
c        100       92.0000000           2 
c        150       91.0000000           3 
c        50        94.0000000           4 
d        0         77.0000000           5 
d        100       84.0000000           6 
d        150       92.0000000           7 
d        50        81.3333333           8 
 
 
                         Least Squares Means for effect teams*zoom 
                            Pr > |t| for H0: LSMean(i)=LSMean(j) 
 
                                Dependent Variable: response 
 
i/j           1          2          3          4          5          6          7          8 
 
   1                1.0000     1.0000     1.0000     0.0013     0.1938     1.0000     0.0280 
   2     1.0000                1.0000     1.0000     0.0026     0.3961     1.0000     0.0579 
   3     1.0000     1.0000                1.0000     0.0053     0.7956     1.0000     0.1197 
   4     1.0000     1.0000     1.0000                0.0007     0.0939     1.0000     0.0136 
   5     0.0013     0.0026     0.0053     0.0007                0.7956     0.0026     1.0000 
   6     0.1938     0.3961     0.7956     0.0939     0.7956                0.3961     1.0000 
   7     1.0000     1.0000     1.0000     1.0000     0.0026     0.3961                0.0579 
   8     0.0280     0.0579     0.1197     0.0136     1.0000     1.0000     0.0579 
 

 
Output Explanation (Part E. Bonferroni t Paired Comparisons) 
 
The following pairs are significant because they have p-values less than the significance level 
0.05: (5,1) (5,2) (5,3) (5,4) (7,5) (8,1) and (8,4). However, the pairs (5,2) (5,3) (5,4) and (8,1) are 
confounded pairs and do not contribute to the interaction. The significant differences in threat 
evaluation performance between unconfounded pairs in the Bonferroni analysis are the same as 
those found in the Newman-Keuls analysis. In the Williges (2006) reference, a fourth pair (7,8) 
is found to be significant and is not found to be significant in the SAS analysis. This p-value for 
the difference between 50% and 150% zoom displays used by distributed teams is just slightly 
larger (0.0579) than the stated p-value of 0.05. This occurs because in the SAS analysis the p-
values are calculated for all pairs, not just unconfounded pairs. 
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Example 20: One-Factor, Within-Subjects ANOVA 
 

(Click in this red rectangle to see the Reference Notes on Example 20.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 3, Topic 12. Within-Subjects ANOVA Designs, Part 12.1.1. Single Factor Design  
 
Page(s) in Williges (2006) Reference Material: 405 – 408 
 
Problem Description 
Four enhancements using automated information to help soldiers work with battlefield 
information were evaluated. Four soldiers used each of four presentation enhancements 
(context dependent displays, intelligent tutors, multiple viewpoints, and groupware) to evaluate 
reconnaissance information for 35 different threats. Were the display enhancements 
significantly different (p < 0.001) in terms of the number of threats detected? 
 
Context/Purpose 
Determine if there is a significant difference among context dependent displays, intelligent 
tutors, multiple viewpoints, and groupware presentation enhancements in terms of the mean 
number of the 35 threats detected from the reconnaissance information. 
 
Statistical Decision Criteria  
Conduct a one-way, within-subjects ANOVA at the 0.001 level of significance. This is a within-
subjects design because each of the four soldiers is exposed to each of the four presentation 
enhancements. 
 
 
SAS Input** 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 

**Note: The enhancement variable coding corresponds to the original data as: 1=context dependent, 
2=intelligent tutors, 3=multiple view points, and 4=groupware. 

 
options nodate nocenter pageno=1; 
title 'Example 20: One-Factor Within-Subjects'; 
data information; 
input subject $ enhancement $ response; 
lines; 
1 1 14 
2 1 9 
3 1 19 
4 1 19 
1 2 18 
2 2 15 
3 2 21 
4 2 18 
1 3 18 
2 3 17 
3 3 26 
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4 3 21 
1 4 20 
2 4 19 
3 4 30 
4 4 27 
; 
proc glm; 
class subject enhancement; 
model response= subject enhancement subject*enhancement; 
means subject enhancement/alpha=.001; 
test h=enhancement e=subject*enhancement; 
run; 
quit; 
 
 
SAS Output 
 
Example 20: One-Factor Within-Subjects                                                              
 
The GLM Procedure 
 
      Class Level Information 
 
Class            Levels    Values 
 
subject               4    1 2 3 4 
 
enhancement           4    1 2 3 4 
 
 
Number of Observations Read          16 
Number of Observations Used          16 
 
Dependent Variable: response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                       15     387.9375000      25.8625000        .       . 
 
Error                        0       0.0000000        . 
 
Corrected Total             15     387.9375000 
 
 
R-Square     Coeff Var      Root MSE    response Mean 
 
1.000000           .               .         19.43750 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
subject                      3     190.1875000      63.3958333        .       . 
enhancement                  3     166.1875000      55.3958333        .       . 
subject*enhancement          9      31.5625000       3.5069444        .       . 
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Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
subject                      3     190.1875000      63.3958333        .       . 
enhancement                  3     166.1875000      55.3958333        .       . 
subject*enhancement          9      31.5625000       3.5069444        .       . 
 
 
Level of           -----------response---------- 
subject      N             Mean          Std Dev 
 
1            4       17.5000000       2.51661148 
2            4       15.0000000       4.32049380 
3            4       24.0000000       4.96655481 
4            4       21.2500000       4.03112887 
 
Level of              -----------response---------- 
enhancement     N             Mean          Std Dev 
 
1               4       15.2500000       4.78713554 
2               4       18.0000000       2.44948974 
3               4       20.5000000       4.04145188 
4               4       24.0000000       5.35412613 
 
 
Dependent Variable: response 
 
Tests of Hypotheses Using the Type III MS for subject*enhancement as an Error Term 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
enhancement                  3     166.1875000      55.3958333      15.80    0.0006 
 
Output Explanation 
 
Presentation enhancement had a significant effect on threat evaluation since the p-value 
(0.0006) is less than 0.001. The result is a significant effect on the information evaluations due 
to the presentation enhancements. Post hoc analyses are needed to determine which of the 
four types of presentation enhancements significantly affected the soldiers’ evaluations. 
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Example 21: Two-Factor, Within-Subjects ANOVA 
 

(Click in this red rectangle to see the Reference Notes on Example 21.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 3, Topic 12. Within-Subjects ANOVA Design, Part 12.1.2. Two-Factor Design  
 
Page(s) in Williges (2006) Reference Material: 413 – 415  
 
Problem Description 
Three alternative visual displays (3 dimensional graphs, color coded diagrams, and flowcharts) 
were developed to augment intelligence information gathered over a 12-hour period. Six 
intelligence officers evaluated the information using each visual display either as redundant to or 
as a substitute for the standard intelligence information. Are the information presentations 
significantly different (p < 0.05)? 
 
Context/Purpose 
Determine if the main effect of three visual displays and two uses of displayed intelligence 
information are significantly different. In addition, determine if display type and display use 
interact significantly. 
 
Statistical Decision Criteria  
Since each officer is exposed to all three types of display and both uses of displayed 
information. The experimenter needs to perform a 3x2 within-subjects ANOVA at α = 0.05. 
 
 
SAS Input*** 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
** Note: The symbol (|) used in the model statement indicates to SAS that the two variables surrounding it 
should be analyzed as main effects and interaction effects.   
For this example response = use|display|subject is a compact way to write response = use display subject 
use*display use*subject display*subject use*display*subject. 
***Note: The coding of display corresponds to the original problem as: 1=three-dimensional graphs, 
2=color-coded diagrams, and 3=flowcharts. 

 
options nodate nocenter pageno=1; 
title 'Example 21: Two-Factors, Within-Subjects'; 
data six; 
input subject $ use $ display $ response; 
lines; 
1 r 1 46 
2 r 1 50 
3 r 1 49 
4 r 1 47 
5 r 1 51 
6 r 1 45 
1 s 1 47 
2 s 1 46 
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3 s 1 50 
4 s 1 44 
5 s 1 50 
6 s 1 44 
1 r 2 49 
2 r 2 52 
3 r 2 54 
4 r 2 48 
5 r 2 54 
6 r 2 48 
1 s 2 39 
2 s 2 44 
3 s 2 38 
4 s 2 45 
5 s 2 43 
6 s 2 41 
1 r 3 50 
2 r 3 47 
3 r 3 49 
4 r 3 52 
5 r 3 53 
6 r 3 47 
1 s 3 35 
2 s 3 42 
3 s 3 39 
4 s 3 40 
5 s 3 42 
6 s 3 41 
; 
proc glm; 
class use display subject; 
model response = use|display|subject; 
means use display use*display/alpha=0.05; 
test h=use e=use*subject; 
test h=display e=display*subject; 
test h=use*display e=use*display*subject; 
run; 
quit; 
 
SAS Output 
 
Example 21: Two-Factors, Within-Subjects                                                           
The GLM Procedure 
 
      Class Level Information 
 
Class         Levels    Values 
 
use                2    r s 
 
display            3    1 2 3 
 
subject            6    1 2 3 4 5 6 
 
 
Number of Observations Read          36 
Number of Observations Used          36 
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Dependent Variable: response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                       35     800.3055556      22.8658730        .       . 
 
Error                        0       0.0000000        . 
 
Corrected Total             35     800.3055556 
 
 
R-Square     Coeff Var      Root MSE    response Mean 
 
1.000000           .               .         46.13889 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
use                          1     406.6944444     406.6944444        .       . 
display                      2      42.8888889      21.4444444        .       . 
use*display                  2     139.5555556      69.7777778        .       . 
subject                      5      86.4722222      17.2944444        .       . 
use*subject                  5      16.4722222       3.2944444        .       . 
display*subject             10      31.4444444       3.1444444        .       . 
use*display*subject         10      76.7777778       7.6777778        .       . 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
use                          1     406.6944444     406.6944444        .       . 
display                      2      42.8888889      21.4444444        .       . 
use*display                  2     139.5555556      69.7777778        .       . 
subject                      5      86.4722222      17.2944444        .       . 
use*subject                  5      16.4722222       3.2944444        .       . 
display*subject             10      31.4444444       3.1444444        .       . 
use*display*subject         10      76.7777778       7.6777778        .       . 
 
 
 
Level of            -----------response---------- 
use           N             Mean          Std Dev 
 
r            18       49.5000000       2.70620203 
s            18       42.7777778       3.97870147 
 
 
Level of            -----------response---------- 
display       N             Mean          Std Dev 
 
1            12       47.4166667       2.50302847 
2            12       46.2500000       5.49586622 
3            12       44.7500000       5.69090183 
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Level of     Level of           -----------response---------- 
use          display      N             Mean          Std Dev 
 
r            1            6       48.0000000       2.36643191 
r            2            6       50.8333333       2.85773803 
r            3            6       49.6666667       2.50333111 
s            1            6       46.8333333       2.71416040 
s            2            6       41.6666667       2.80475786 
s            3            6       39.8333333       2.63944439 
 
 
 
Dependent Variable: response 
 
    Tests of Hypotheses Using the Type III MS for use*subject as an Error Term 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
use                          1     406.6944444     406.6944444     123.45    0.0001 
 
 
  Tests of Hypotheses Using the Type III MS for display*subject as an Error Term 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
display                      2     42.88888889     21.44444444       6.82    0.0135 
 
 
Tests of Hypotheses Using the Type III MS for use*display*subject as an Error Term 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
use*display                  2     139.5555556      69.7777778       9.09    0.0056 
 
 
Output Explanation 
 
The main effects of information use, display type, and the use by display interaction are each 
significant because all three p-values are less than 0.05 (i.e., p = 0.0001, 0.0135, and 0.0056, 
respectively). Additional post hoc analyses are needed to resolve the many effects of display 
type and the use by display interaction because more than two treatment means are included in 
these effects. 
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Example 22: Geisser-Greenhouse and Huyhn-Feldt Corrections 
 

(Click in this red rectangle to see the Reference Notes on Example 22.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 3, Topic 12. Within-Subjects ANOVA Design, Part 12.2. Homogeneity of Covariance 
 
Page(s) in Williges (2006) Reference Material: 421 – 422 
 
Problem Description 
Part A: Four enhancements using automated information to help soldiers work with battlefield 
information were evaluated. Four soldiers used each of four presentation enhancements 
(context dependent displays, intelligent tutors, multiple viewpoints, and groupware) to evaluate 
reconnaissance information for 35 different threats. Were the display enhancements 
significantly different (p < 0.001) in terms of the number of threats detected? 
 
Part B: Three alternative visual displays (3 dimensional graphs, color coded diagrams, and 
flowcharts) were developed to augment intelligence information gathered over a 12-hour period. 
Six intelligence officers evaluated the information using each visual display either as redundant 
to or as a substitute for the standard intelligence information. Are the information presentations 
significantly different (p < 0.05)? 
 
Context/Purpose 
Determine the extent of the Giesser-Greenhouse (G-G) and Huynh-Feldt (H-F) corrections for 
homogeneity of covariance for the problems described in Parts A and B. 
 
Statistical Decision Criteria  
Recalculate the ANOVAs on both the one and two factor within-subjects designs described in 
problems A and B to determine the G-G and H-F corrected p-values. 
 
 
SAS Input (Part A. One-Way, Within-Subjects ANOVA Correction)** 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 

**Note: This is the same problem and data used in Example 20. The form used in the input statement 
corresponds to the threats detected at each level of treatment enhancement. There is no class statement 
because there is no independent variable in the data input. The repeated command, allows SAS to 
calculate the repeated measures ANOVA. The dependent variables are included in the model statement, 
but since there is not a class statement, the area to the right of model statement is left empty. The nouni 
command indicates to SAS not to conduct univariate analyses on the dependent variables. See Cody and 
Smith (1997) for a more complete explanation of this format. 
 
options nodate nocenter pageno=1; 
title 'Example 22A: Geisser-Greenhouse and Huynh-Feldt One-Way Corrections'; 
data within; 
input threat1-threat4; 
lines; 
14 18 18 20 
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9 15 17 19 
19 21 26 30 
19 18 21 27 
; 
proc glm; 
model threat1-threat4 = /nouni; 
repeated enhancement 4 (1 2 3 4)/ printe; 
run; 
proc corr data=within; 
run; 
quit; 
 

 
SAS Output (Part A. One-Way, Within-Subjects ANOVA Correction) 
 
Example 22A: Geisser-Greenhouse and Huynh-Feldt One-Way Corrections                                   
1 
The GLM Procedure 
 
Number of Observations Read           4 
Number of Observations Used           4 
 
 
Repeated Measures Analysis of Variance 
 
            Repeated Measures Level Information 
 
  Dependent Variable     threat1  threat2  threat3  threat4 
 
Level of enhancement           1        2        3        4 
 
 
Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r| 
 
DF = 3         threat1        threat2        threat3        threat4 
 
threat1       1.000000       0.852803       0.818388       0.910359 
                               0.1472         0.1816         0.0896 
 
threat2       0.852803       1.000000       0.909137       0.838742 
                0.1472                        0.0909         0.1613 
 
threat3       0.818388       0.909137       1.000000       0.955090 
                0.1816         0.0909                        0.0449 
 
threat4       0.910359       0.838742       0.955090       1.000000 
                0.0896         0.1613         0.0449 
 
                                 E = Error SSCP Matrix 
 
enhancement_N represents the contrast between the nth level of enhancement and the last 
 
                   enhancement_1      enhancement_2      enhancement_3 
 
enhancement_1              14.75              13.00               1.50 
enhancement_2              13.00              38.00              18.00 
enhancement_3               1.50              18.00              11.00 
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                Partial Correlation Coefficients from the Error SSCP Matrix of the 
                  Variables Defined by the Specified Transformation / Prob > |r| 
 
DF = 3             enhancement_1      enhancement_2      enhancement_3 
 
enhancement_1           1.000000           0.549105           0.117760 
                                             0.4509             0.8822 
 
enhancement_2           0.549105           1.000000           0.880409 
                          0.4509                                0.1196 
 
enhancement_3           0.117760           0.880409           1.000000 
                          0.8822             0.1196 
 
 
Repeated Measures Analysis of Variance 
 
                            Sphericity Tests 
 
                                   Mauchly's 
Variables                    DF    Criterion    Chi-Square    Pr > ChiSq 
 
Transformed Variates          5    0.0150067     7.2320544        0.2039 
Orthogonal Components         5    0.0309138     5.9873974        0.3074 
 
 
MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no enhancement Effect 
                       H = Type III SSCP Matrix for enhancement 
                                 E = Error SSCP Matrix 
 
                                S=1    M=0.5    N=-0.5 
 
Statistic                        Value    F Value    Num DF    Den DF    Pr > F 
 
Wilks' Lambda               0.00588428      56.31         3         1    0.0976 
Pillai's Trace              0.99411572      56.31         3         1    0.0976 
Hotelling-Lawley Trace    168.94444444      56.31         3         1    0.0976 
Roy's Greatest Root       168.94444444      56.31         3         1    0.0976 
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Repeated Measures Analysis of Variance 
Univariate Tests of Hypotheses for Within Subject Effects 
 
                                                                                     Adj Pr > F 
Source                      DF    Type III SS    Mean Square   F Value   Pr > F    G - G    H - F 
 
enhancement                  3    166.1875000     55.3958333     15.80   0.0006   0.0053   0.0006 
Error(enhancement)           9     31.5625000      3.5069444 
 
 
Greenhouse-Geisser Epsilon    0.6199 
Huynh-Feldt Epsilon           1.5897 

 
 
Example 22A: Geisser-Greenhouse and Huynh-Feldt, Within-Subjects                                   
The CORR Procedure 
 
   4  Variables:    threat1  threat2  threat3  threat4 
 
 
                                    Simple Statistics 
 
Variable           N          Mean       Std Dev           Sum       Minimum       Maximum 
 
threat1            4      15.25000       4.78714      61.00000       9.00000      19.00000 
threat2            4      18.00000       2.44949      72.00000      15.00000      21.00000 
threat3            4      20.50000       4.04145      82.00000      17.00000      26.00000 
threat4            4      24.00000       5.35413      96.00000      19.00000      30.00000 
 
 
           Pearson Correlation Coefficients, N = 4 
                  Prob > |r| under H0: Rho=0 
 
              threat1       threat2       threat3       threat4 
 
threat1       1.00000       0.85280       0.81839       0.91036 
                             0.1472        0.1816        0.0896 
 
threat2       0.85280       1.00000       0.90914       0.83874 
               0.1472                      0.0909        0.1613 
 
threat3       0.81839       0.90914       1.00000       0.95509 
               0.1816        0.0909                      0.0449 
 
threat4       0.91036       0.83874       0.95509       1.00000 
               0.0896        0.1613        0.0449 
 
Output Explanation (Part A. One-Way, Within-Subjects ANOVA Correction) 
 
The corrected G-G p-value (0.0053) and the corrected H-F p-value (0.0006) are quite similar to 
the uncorrected p = 0.0006. Each shows a significant enhancement main effect (p < 0.001). 
Likewise, the inter-correlations among the four levels of enhancement are quite similar 
suggesting sphericity or homogeneity of covariance. Note that the maximum G-G correction is 
slightly greater than the H-F correction which equals the uncorrected p-level. 
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SAS Input (Part B. Two-Way, Within-Subjects ANOVA Correction)** 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 

**Note: This is the same problem and data used in Example 21. The form used in the input statement 
corresponds to the evaluations at each level of treatments alternative and use. There is no class 
statement because there is no independent variable in the data input. The repeated command, allows 
SAS to calculate the repeated measures ANOVA. The dependent variables are included in the model 
statement, but since there is not a class statement, the area to the right of model statement is left empty. 
The nouni command indicates to SAS not to conduct univariate analyses on the dependent variables. The 
nom command tells SAS to only display the univariate analyses. See Cody and Smith (1997) for a more 
complete explanation of this format. 
 
options nodate nocenter pageno=1; 
title 'Example 22B: Geisser-Greenhouse and Huynh-Feldt Two-Way Corrections'; 
data six; 
input evaluation1-evaluation6; 
lines; 
46 47 49 39 50 35 
50 46 52 44 47 42 
49 50 54 38 49 39 
47 44 48 45 52 40 
51 50 54 43 53 42 
45 44 48 41 47 41 
; 
proc glm; 
model evaluation1-evaluation6 = / nouni; 
repeated alternative 3, use 2 /nom printe; 
run; 
proc corr data=six; 
run; 
quit; 

 
SAS Output (Part B. Two-Way, Within-Subjects ANOVA Correction) 
 
Example 22B: Geisser-Greenhouse and Huynh-Feldt Two-Way Corrections                                   
 
The GLM Procedure 
 
Number of Observations Read           6 
Number of Observations Used           6 
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Repeated Measures Analysis of Variance 
 
                              Repeated Measures Level Information 
 
  Dependent Variable    evaluation1 evaluation2 evaluation3 evaluation4 evaluation5 evaluation6 
 
Level of alternative              1           1           2           2           3           3 
        Level of use              1           2           1           2           1           2 
 
 
           Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r| 
 
DF = 5        evaluation1   evaluation2   evaluation3   evaluation4   evaluation5   evaluation6 
 
evaluation1      1.000000      0.685051      0.887227      0.271196      0.303851      0.512323 
                                 0.1332        0.0184        0.6032        0.5583        0.2988 
 
evaluation2      0.685051      1.000000      0.898188     -0.455388      0.343418     -0.060489 
                   0.1332                      0.0150        0.3641        0.5051        0.9094 
 
evaluation3      0.887227      0.898188      1.000000     -0.182984      0.158423      0.313763 
                   0.0184        0.0150                      0.7286        0.7644        0.5448 
 
evaluation4      0.271196     -0.455388     -0.182984      1.000000      0.265860      0.639380 
                   0.6032        0.3641        0.7286                      0.6106        0.1716 
 
evaluation5      0.303851      0.343418      0.158423      0.265860      1.000000     -0.070628 
                   0.5583        0.5051        0.7644        0.6106                      0.8942 
 
evaluation6      0.512323     -0.060489      0.313763      0.639380     -0.070628      1.000000 
                   0.2988        0.9094        0.5448        0.1716        0.8942 
 
 
                                 E = Error SSCP Matrix 
 
alternative_N represents the contrast between the nth level of alternative and the last 
 
                   alternative_1      alternative_2 
 
alternative_1             101.33              33.00 
alternative_2              33.00              26.00 
 
 



Appendix: SAS Examples for Human Factors Experimental Design and Analysis Reference 

 90

Repeated Measures Analysis of Variance 
 
                Partial Correlation Coefficients from the Error SSCP Matrix of the 
                  Variables Defined by the Specified Transformation / Prob > |r| 
 
DF = 5             alternative_1      alternative_2 
 
alternative_1           1.000000           0.642911 
                                             0.1685 
 
alternative_2           0.642911           1.000000 
                          0.1685 
 
 
                            Sphericity Tests 
 
                                   Mauchly's 
Variables                    DF    Criterion    Chi-Square    Pr > ChiSq 
 
Transformed Variates          2    0.3813218     3.8564467        0.1454 
Orthogonal Components         2    0.5210828     2.6073853        0.2715 
 
 
                         E = Error SSCP Matrix 
 
use_N represents the contrast between the nth level of use and the last 
 
             use_1 
 
use_1       98.833 
 
 
                                 E = Error SSCP Matrix 
 
alternative_N represents the contrast between the nth level of alternative and the last 
        use_N represents the contrast between the nth level of use and the last 
 
                         alternative_1*use_1      alternative_2*use_1 
 
alternative_1*use_1                  133.333                   52.333 
alternative_2*use_1                   52.333                  149.333 
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Repeated Measures Analysis of Variance 
 
                Partial Correlation Coefficients from the Error SSCP Matrix of the 
                  Variables Defined by the Specified Transformation / Prob > |r| 
 
DF = 5                   alternative_1*use_1      alternative_2*use_1 
 
alternative_1*use_1                 1.000000                 0.370878 
                                                               0.4692 
 
alternative_2*use_1                 0.370878                 1.000000 
                                      0.4692 
 
 
                            Sphericity Tests 
 
                                   Mauchly's 
Variables                    DF    Criterion    Chi-Square    Pr > ChiSq 
 
Transformed Variates          2    0.8596865       0.60475        0.7391 
Orthogonal Components         2    0.9710397     0.1175518        0.9429 
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Repeated Measures Analysis of Variance 
Univariate Tests of Hypotheses for Within Subject Effects 
 
                                                                                     Adj Pr > F 
Source                      DF    Type III SS    Mean Square   F Value   Pr > F    G - G    H - F 
 
alternative                  2    42.88888889    21.44444444      6.82   0.0135   0.0303   0.0202 
Error(alternative)          10    31.44444444     3.14444444 
 
 
Greenhouse-Geisser Epsilon    0.6762 
Huynh-Feldt Epsilon           0.8381 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
use                          1     406.6944444     406.6944444     123.45    0.0001 
Error(use)                   5      16.4722222       3.2944444 
 
 
                                                                                  Adj Pr > F 
Source                         DF   Type III SS   Mean Square  F Value  Pr > F   G - G   H - F 
 
alternative*use                 2   139.5555556    69.7777778     9.09  0.0056  0.0062  0.0056 
Error(alternative*use)         10    76.7777778     7.6777778 
 
 
Greenhouse-Geisser Epsilon    0.9719 
Huynh-Feldt Epsilon           1.5807 
 
 
Example 22B: Geisser-Greenhouse and Huynh-Feldt, Within-Subjects                                   
The CORR Procedure 
 
   6  Variables:    evaluation1 evaluation2 evaluation3 evaluation4 evaluation5 evaluation6 
 
 
                                      Simple Statistics 
 
Variable              N          Mean       Std Dev           Sum       Minimum       Maximum 
 
evaluation1           6      48.00000       2.36643     288.00000      45.00000      51.00000 
evaluation2           6      46.83333       2.71416     281.00000      44.00000      50.00000 
evaluation3           6      50.83333       2.85774     305.00000      48.00000      54.00000 
evaluation4           6      41.66667       2.80476     250.00000      38.00000      45.00000 
evaluation5           6      49.66667       2.50333     298.00000      47.00000      53.00000 
evaluation6           6      39.83333       2.63944     239.00000      35.00000      42.00000 
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Pearson Correlation Coefficients, N = 6 
                                  Prob > |r| under H0: Rho=0 
 
              evaluation1   evaluation2   evaluation3   evaluation4   evaluation5   evaluation6 
 
evaluation1       1.00000       0.68505       0.88723       0.27120       0.30385       0.51232 
                                 0.1332        0.0184        0.6032        0.5583        0.2988 
 
evaluation2       0.68505       1.00000       0.89819      -0.45539       0.34342      -0.06049 
                   0.1332                      0.0150        0.3641        0.5051        0.9094 
 
evaluation3       0.88723       0.89819       1.00000      -0.18298       0.15842       0.31376 
                   0.0184        0.0150                      0.7286        0.7644        0.5448 
 
evaluation4       0.27120      -0.45539      -0.18298       1.00000       0.26586       0.63938 
                   0.6032        0.3641        0.7286                      0.6106        0.1716 
 
evaluation5       0.30385       0.34342       0.15842       0.26586       1.00000      -0.07063 
                   0.5583        0.5051        0.7644        0.6106                      0.8942 
 
evaluation6       0.51232      -0.06049       0.31376       0.63938      -0.07063       1.00000 
                   0.2988        0.9094        0.5448        0.1716        0.8942 
 
Output Explanation (Part B. Two-Way, Within-Subjects ANOVA Correction) 
 
The SAS analysis does not calculate the corrected p-values for the main effect of Use because 
it has only two levels. However, the main effect of Use is significant as shown in Williges (2006). 
All the G-G and H-F corrected p-values and the uncorrected p-levels are significant at the 0.05 
level for the main effect of Alternative and the two-way interaction. Corrections to p-levels are 
greatest for the interaction where the inter-correlations among the six treatment levels range 
from .0150 to 0.9094 suggesting some degree of heterogeneity of covariance. Again note that 
the maximum G-G correction is slightly greater than the H-F p-level correction as expected. 
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Example 23: Testing Order Effects in Balanced Latin Squares 
 

(Click in this red rectangle to see the Reference Notes on Example 23.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 3, Topic 12. Within-Subjects ANOVA Design, Part 12.3.3. Testing Order Effects 
 
Page(s) in Williges (2006) Reference Material: 432 – 436 
 
Problem Description 
Four enhancements using automated information to help soldiers work with battlefield 
information were evaluated. Four soldiers used each of four presentation enhancements 
(context dependent displays, intelligent tutors, multiple viewpoints, and groupware) to evaluate 
reconnaissance information for 35 different threats. Was the effect of presentation order of the 
four treatments significantly different (p < 0.001)? 
 
Context/Purpose 
A 4x4 Balanced Latin Square was used to counterbalance the order and partially balance the 
sequence of presentation of the four enhancement alternatives to each of the four soldiers. Can 
the presentation order effect be significant even though it was balanced across treatments and 
independent of the treatment effect? 
 
Statistical Decision Criteria  
Conduct an ANOVA on the Balanced Latin Square used for treatment presentation order to 
determine if there is a significant order effect at the 0.001 level of significance.  
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 

**Note: The data presented here is the same data that is used in Examples 20 and 22. The coding for the 
enhancement variable is the same as in Example 20. 

 
options nodate nocenter pageno=1; 
title 'Example 23: Testing Order Effects in Balanced Latin Squares'; 
data information; 
input order $ subject $ enhancement $ response; 
lines; 
1 1 1 14 
1 2 2 15 
1 3 3 26 
1 4 4 27 
2 1 2 18 
2 2 3 17 
2 3 4 30 
2 4 1 19 
3 1 4 20 
3 2 1 9 
3 3 2 21 
3 4 3 21 
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4 1 3 18 
4 2 4 19 
4 3 1 19 
4 4 2 18 
; 
proc glm; 
class subject order enhancement; 
model response = subject order enhancement; 
means subject order enhancement/alpha=0.001; 
run; 
quit; 
 
 
SAS Output** 
 
**Note: The output results are slightly different than those in the Williges (2006) reference due to 
rounding. 
 
Example 23: Testing Order Effects in Balanced Latin Squares                                                 
 
The GLM Procedure 
 
      Class Level Information 
 
Class            Levels    Values 
 
subject               4    1 2 3 4 
 
order                 4    1 2 3 4 
 
enhancement           4    1 2 3 4 
 
 
Number of Observations Read          16 
Number of Observations Used          16 
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Dependent Variable: response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        9     385.5625000      42.8402778     108.23    <.0001 
 
Error                        6       2.3750000       0.3958333 
 
Corrected Total             15     387.9375000 
 
 
R-Square     Coeff Var      Root MSE    response Mean 
 
0.993878      3.236799      0.629153         19.43750 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
subject                      3     190.1875000      63.3958333     160.16    <.0001 
order                        3      29.1875000       9.7291667      24.58    0.0009 
enhancement                  3     166.1875000      55.3958333     139.95    <.0001 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
subject                      3     190.1875000      63.3958333     160.16    <.0001 
order                        3      29.1875000       9.7291667      24.58    0.0009 
enhancement                  3     166.1875000      55.3958333     139.95    <.0001 
 
 
Level of           -----------response---------- 
subject      N             Mean          Std Dev 
 
1            4       17.5000000       2.51661148 
2            4       15.0000000       4.32049380 
3            4       24.0000000       4.96655481 
4            4       21.2500000       4.03112887 
 
 
Level of           -----------response---------- 
order        N             Mean          Std Dev 
 
1            4       20.5000000       6.95221787 
2            4       21.0000000       6.05530071 
3            4       17.7500000       5.85234996 
4            4       18.5000000       0.57735027 
 
 
Level of              -----------response---------- 
enhancement     N             Mean          Std Dev 
 
1               4       15.2500000       4.78713554 
2               4       18.0000000       2.44948974 
3               4       20.5000000       4.04145188 
4               4       24.0000000       5.35412613 
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Output Explanation 
 
This ANOVA on the Balanced Latin Square resulted in a significant effect due to the 
presentation order of the enhancements since the p-value (0.0009) is less than 0.001. This 
effect is independent of the significant treatment and subject effects. Consequently, the 
Balanced Latin Square procedure for partially counterbalancing order and sequence effects was 
successful in keeping the confounding effect of presentation order independent of the treatment 
effect of interest to the experiment. 
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Example 24: Within-Subjects and Between-Subjects Design Comparison 
 

(Click in this red rectangle to see the Reference Notes on Example 24.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 3, Topic 12. Within-Subjects ANOVA Design, Part 12.5. Within-Subjects Design 
Advantages 
 
Page(s) in Williges (2006) Reference Material: 439 
 
Problem Description 
Four enhancements using automated information to help soldiers work with battlefield 
information were evaluated. Four soldiers used each of four presentation enhancements 
(context dependent displays, intelligent tutors, multiple viewpoints, and groupware) to evaluate 
reconnaissance information for 35 different threats. Were the display enhancements 
significantly different (p < 0.001) in terms of the number of threats detected? 
 
Context/Purpose 
Compare the sensitivity of using a within-subjects design to its between-subjects design 
alternative. 
 
Statistical Decision Criteria  
Perform both a within-subjects and between-subjects ANOVA to test the significance 
differences (p < 0.001) among the four presentation enhancements. 
 
 
SAS Input (Part A. Within-Subjects ANOVA)** 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 

**Note: This is the same within-subjects analysis performed in Example 20. 
 
options nodate nocenter pageno=1; 
title 'Example 24A: One-Factor Within-Subjects'; 
data information; 
input subject $ enhancement $ response; 
lines; 
1 1 14 
2 1 9 
3 1 19 
4 1 19 
1 2 18 
2 2 15 
3 2 21 
4 2 18 
1 3 18 
2 3 17 
3 3 26 
4 3 21 
1 4 20 
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2 4 19 
3 4 30 
4 4 27 
; 
proc glm; 
class subject enhancement; 
model response= subject enhancement subject*enhancement; 
means subject enhancement/alpha=.001; 
test h=enhancement e=subject*enhancement; 
run; 
quit; 
 
 
SAS Output (Part A. Within-Subjects ANOVA) 

 
Example 24A: One-Factor Within-Subjects                                                             
 
The GLM Procedure 
 
      Class Level Information 
 
Class            Levels    Values 
 
subject               4    1 2 3 4 
 
enhancement           4    1 2 3 4 
 
 
Number of Observations Read          16 
Number of Observations Used          16 
 
 
Dependent Variable: response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                       15     387.9375000      25.8625000        .       . 
 
Error                        0       0.0000000        . 
 
Corrected Total             15     387.9375000 
 
 
R-Square     Coeff Var      Root MSE    response Mean 
 
1.000000           .               .         19.43750 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
subject                      3     190.1875000      63.3958333        .       . 
enhancement                  3     166.1875000      55.3958333        .       . 
subject*enhancement          9      31.5625000       3.5069444        .       . 
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Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
subject                      3     190.1875000      63.3958333        .       . 
enhancement                  3     166.1875000      55.3958333        .       . 
subject*enhancement          9      31.5625000       3.5069444        .       . 
 
 
Level of           -----------response---------- 
subject      N             Mean          Std Dev 
 
1            4       17.5000000       2.51661148 
2            4       15.0000000       4.32049380 
3            4       24.0000000       4.96655481 
4            4       21.2500000       4.03112887 
 
 
Level of              -----------response---------- 
enhancement     N             Mean          Std Dev 
 
1               4       15.2500000       4.78713554 
2               4       18.0000000       2.44948974 
3               4       20.5000000       4.04145188 
4               4       24.0000000       5.35412613 
 
 
Dependent Variable: response 
 
Tests of Hypotheses Using the Type III MS for subject*enhancement as an Error Term 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
enhancement                  3     166.1875000      55.3958333      15.80    0.0006 
 
 
Output Explanation (Part A. Within-Subjects ANOVA) 
 
Presentation enhancement is significant at p = 0.0006. 
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SAS Input (Part B. Between-Subjects ANOVA)** 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 

**Note: This is the same data as used in part A and Example 20, but it has been modified to be a 
between-subjects design. 
 
options nodate nocenter pageno=1; 
title 'Example 24B: One-Factor Between-Subjects'; 
data information; 
input subject $ enhancement $ response; 
lines; 
1 1 14 
2 1 9 
3 1 19 
4 1 19 
5 2 18 
6 2 15 
7 2 21 
8 2 18 
9 3 18 
10 3 17 
11 3 26 
12 3 21 
13 4 20 
14 4 19 
15 4 30 
16 4 27 
; 
proc glm; 
class subject enhancement; 
model response= enhancement subject(enhancement); 
means enhancement/alpha=.001; 
test h=enhancement e=subject(enhancement); 
run; 
quit; 
 
 
SAS Output (Part B. Between-Subjects ANOVA) 
 
Example 24B: One-Factor Between-Subjects                                                           
 
The GLM Procedure 
 
                     Class Level Information 
 
Class            Levels    Values 
 
subject              16    1 10 11 12 13 14 15 16 2 3 4 5 6 7 8 9 
 
enhancement           4    1 2 3 4 
 
Number of Observations Read          16 
Number of Observations Used          16 
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Dependent Variable: response 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                       15     387.9375000      25.8625000        .       . 
 
Error                        0       0.0000000        . 
 
Corrected Total             15     387.9375000 
 
 
R-Square     Coeff Var      Root MSE    response Mean 
 
1.000000           .               .         19.43750 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
enhancement                  3     166.1875000      55.3958333        .       . 
subject(enhancement)        12     221.7500000      18.4791667        .       . 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
enhancement                  3     166.1875000      55.3958333        .       . 
subject(enhancement)        12     221.7500000      18.4791667        .       . 
 
Level of              -----------response---------- 
enhancement     N             Mean          Std Dev 
 
1               4       15.2500000       4.78713554 
2               4       18.0000000       2.44948974 
3               4       20.5000000       4.04145188 
4               4       24.0000000       5.35412613 
 
 
Dependent Variable: response 
 
Tests of Hypotheses Using the Type III MS for subject(enhancement) as an Error Term 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
enhancement                  3     166.1875000      55.3958333       3.00    0.0729 
 
 
Output Explanation (Part B. Between-Subjects ANOVA) 
 
The p-level (0.0729) of the main effect of presentation enhancement is not significant at the 
0.001 level in the between-subjects ANOVA. By comparison, the alternative within-subjects 
design test of the presentation enhancement ANOVA main effect was significant at p = 0.0006 
as shown in Part A. These analyses illustrated that the within-subjects design provides a more 
sensitive (powerful) F-test than its between-subjects counterpart. 
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Example 25: Two-Way, Mixed-Factors ANOVA 
 

(Click in this red rectangle to see the Reference Notes on Example 25.) 
 

Problem 
 

Location in Williges (2006) Table of Contents 
Section 3, Topic 13. Mixed-Factors ANOVA Designs, Part 13.1.2. Two-Factor Design Example 
 
Page(s) in Williges (2006) Reference Material: 448 – 452 
 
Problem Description 
The decrement in target detection across 1-hour monitoring sessions was measured every 20 
minutes for five soldiers who monitored displays where the ratio of targets to non-targets was 
either 9/1 or 1/9. Are there any significant effects (p < 0.05) in the percent of defined targets 
detected in this experiment? 
 
Context/Purpose 
Determine if there are significant differences in target detection due to time monitoring, the ratio 
of targets to non-targets, or the interaction of time monitoring and target ratios. 
 
Statistical Decision Criteria  
Conduct a 2x3 mixed-factors ANOVA to determine if there are significant effects of time or ratio 
at the 0.05 level of significance. This is a mixed-factors design because time is a between-
subjects factor and ratio is a within-subjects factor. 
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 

options nodate nocenter pageno=1; 
title 'Example 25: Two-Way, Mixed-Factors ANOVA'; 
data detection; 
input subject $ ratio $ time $ targets; 
lines; 
1 1/9 20 95 
1 1/9 40 90 
1 1/9 60 82 
2 1/9 20 89 
2 1/9 40 82 
2 1/9 60 83 
3 1/9 20 92 
3 1/9 40 80 
3 1/9 60 79 
4 1/9 20 86 
4 1/9 40 89 
4 1/9 60 77 
5 1/9 20 90 
5 1/9 40 92 
5 1/9 60 75 
6 9/1 20 90 
6 9/1 40 88 
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6 9/1 60 92 
7 9/1 20 87 
7 9/1 40 95 
7 9/1 60 95 
8 9/1 20 96 
8 9/1 40 93 
8 9/1 60 95 
9 9/1 20 94 
9 9/1 40 90 
9 9/1 60 90 
10 9/1 20 91 
10 9/1 40 87 
10 9/1 60 86 
; 
proc glm; 
class subject ratio time; 
model targets = ratio time subject(ratio) ratio*time time*subject(ratio); 
means ratio time ratio*time/alpha=0.05; 
test h=ratio e=subject(ratio); 
test h=time e=time*subject(ratio); 
test h=ratio*time e=time*subject(ratio);  
run; 
quit; 
 

 
SAS Output 
 
Example 25: Two-Way, Mixed-Factors ANOVA                                                                      
 
The GLM Procedure 
 
           Class Level Information 
 
Class         Levels    Values 
 
subject           10    1 10 2 3 4 5 6 7 8 9 
 
ratio              2    1/9 9/1 
 
time               3    20 40 60 
 
 
Number of Observations Read          30 
Number of Observations Used          30 
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Dependent Variable: targets 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                       29     938.6666667      32.3678161        .       . 
 
Error                        0       0.0000000        . 
 
Corrected Total             29     938.6666667 
 
 
R-Square     Coeff Var      Root MSE    targets Mean 
 
1.000000           .               .        88.33333 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
ratio                        1     258.1333333     258.1333333        .       . 
time                         2     157.8666667      78.9333333        .       . 
subject(ratio)               8     130.5333333      16.3166667        .       . 
ratio*time                   2     169.8666667      84.9333333        .       . 
subject*time(ratio)         16     222.2666667      13.8916667        .       . 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
ratio                        1     258.1333333     258.1333333        .       . 
time                         2     157.8666667      78.9333333        .       . 
subject(ratio)               8     130.5333333      16.3166667        .       . 
ratio*time                   2     169.8666667      84.9333333        .       . 
subject*time(ratio)         16     222.2666667      13.8916667        .       . 



Appendix: SAS Examples for Human Factors Experimental Design and Analysis Reference 

 106

 
Level of            -----------targets----------- 
ratio         N             Mean          Std Dev 
 
1/9          15       85.4000000       6.12722263 
9/1          15       91.2666667       3.32665999 
 
 
Level of            -----------targets----------- 
time          N             Mean          Std Dev 
 
20           10       91.0000000       3.29983165 
40           10       88.6000000       4.67142614 
60           10       85.4000000       7.35149267 
 
 
Level of     Level of           -----------targets----------- 
ratio        time         N             Mean          Std Dev 
 
1/9          20           5       90.4000000       3.36154726 
1/9          40           5       86.6000000       5.27257053 
1/9          60           5       79.2000000       3.34664011 
9/1          20           5       91.6000000       3.50713558 
9/1          40           5       90.6000000       3.36154726 
9/1          60           5       91.6000000       3.7815340 
 
 
Dependent Variable: targets 
 
   Tests of Hypotheses Using the Type III MS for subject(ratio) as an Error Term 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
ratio                        1     258.1333333     258.1333333      15.82    0.0041 
 
 
Tests of Hypotheses Using the Type III MS for subject*time(ratio) as an Error Term 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
time                         2     157.8666667      78.9333333       5.68    0.0137 
ratio*time                   2     169.8666667      84.9333333       6.11    0.0107 
 
 
Output Explanation 
 
All three effects tested in this mixed-factors design are statistically significant, because the p-
value for the test of the main effect of the ratio of targets to non-targets (0.0041), the main effect 
of time (0.0137), and the interaction between ratio and time (0.0107) are each less than the 
stated 0.05 significance level. The 9/1 ratio of targets to non-targets resulted in higher target 
detection than the 1/9 ratio. Further analyses are needed to interpret the significant effects of 
time monitoring, and the ratio by time interaction since more than two comparisons are involved 
in each interpretation. 
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Section 4. Advanced ANOVA Designs 
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Example 26: Complete Hierarchical Between-Subjects Design 
 

(Click in this red rectangle to see the Reference Notes on Example 26.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 4, Topic 16. Hierarchical Designs, Part 16.2.1. Complete Hierarchical Design 
 
Page(s) in Williges (2006) Reference Material: 504-508 
 
Problem Description 
The military is testing a computer-based multimedia training procedure for commanders. The 
training procedure is presented to 80 commanders from eight battalions. Two battalions were 
chosen from each of two brigades within two divisions (infantry and cavalry). The hours to 
complete the multimedia training on the use of computer-generated surveillance displays were 
recorded for 10 commanders per battalion. Is training completion time significantly different 
based on the three command levels? (p < 0.05) 
 
Context/Purpose 
Determine if multimedia training completion time is significantly different for battalion 
commanders nested within brigades and divisions, brigades nested within divisions, and infantry 
and cavalry divisions. 
 
Statistical Decision Criteria 
Conduct a complete hierarchical ANOVA to test significant (p < 0.05) differences in training 
completion time across the level levels of command. 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 26: Complete Hierarchical Between-Subjects Design'; 
data info; 
input subject division brigade battalion hours; 
lines; 
1 1 1 1 17 
2 1 1 1 28 
3 1 1 1 16 
4 1 1 1 13 
5 1 1 1 31 
6 1 1 1 27 
7 1 1 1 23 
8 1 1 1 16 
9 1 1 1 34 
10 1 1 1 12 
11 1 1 2 29 
12 1 1 2 35 
13 1 1 2 33 
14 1 1 2 29 
15 1 1 2 37 
16 1 1 2 25 
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17 1 1 2 32 
18 1 1 2 13 
19 1 1 2 26 
20 1 1 2 29 
21 1 2 3 34 
22 1 2 3 23 
23 1 2 3 34 
24 1 2 3 33 
25 1 2 3 18 
26 1 2 3 26 
27 1 2 3 12 
28 1 2 3 27 
29 1 2 3 24 
30 1 2 3 19 
31 1 2 4 39 
32 1 2 4 21 
33 1 2 4 10 
34 1 2 4 18 
35 1 2 4 23 
36 1 2 4 17 
37 1 2 4 34 
38 1 2 4 39 
39 1 2 4 33 
40 1 2 4 35 
41 2 3 5 23 
42 2 3 5 17 
43 2 3 5 36 
44 2 3 5 21 
45 2 3 5 12 
46 2 3 5 28 
47 2 3 5 32 
48 2 3 5 24 
49 2 3 5 17 
50 2 3 5 36 
51 2 3 6 13 
52 2 3 6 24 
53 2 3 6 11 
54 2 3 6 19 
55 2 3 6 20 
56 2 3 6 33 
57 2 3 6 22 
58 2 3 6 14 
59 2 3 6 19 
60 2 3 6 36 
61 2 4 7 15 
62 2 4 7 25 
63 2 4 7 30 
64 2 4 7 32 
65 2 4 7 40 
66 2 4 7 28 
67 2 4 7 33 
68 2 4 7 16 
69 2 4 7 39 
70 2 4 7 32 
71 2 4 8 15 
72 2 4 8 27 
73 2 4 8 25 
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74 2 4 8 18 
75 2 4 8 20 
76 2 4 8 28 
77 2 4 8 11 
78 2 4 8 22 
79 2 4 8 13 
80 2 4 8 25 
; 
proc glm; 
class subject division brigade battalion; 
model hours = division brigade(division) battalion(division brigade) 
subject(division brigade battalion); 
means division brigade(division) battalion(division brigade)/alpha=0.05; 
test h=division e=subject(division brigade battalion); 
test h=brigade(division) e=subject(division brigade battalion); 
test h=battalion(division brigade) e=subject(division brigade battalion); 
run; 
quit; 
 
 
SAS Output 
 
Example 26: Complete Hierarchical Between-Subjects Design                                      1 
 
The GLM Procedure 
 
                                    Class Level Information 
 
Class        Levels  Values 
 
subject          80  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 
                     29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 
                     54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 
                     79 80 
 
division          2  1 2 
 
brigade           4  1 2 3 4 
 
battalion         8  1 2 3 4 5 6 7 8 
 
 
Number of Observations Read          80 
Number of Observations Used          80 
 
 
 
Dependent Variable: hours 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                       79     5405.187500       68.420095        .       . 
 
Error                        0        0.000000         . 
 
Corrected Total             79     5405.187500 
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R-Square     Coeff Var      Root MSE    hours Mean 
 
1.000000           .               .      24.68750 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
division                     1       66.612500       66.612500        .       . 
brigade(division)            2       39.125000       19.562500        .       . 
batta(divisi*brigad)         4      701.150000      175.287500        .       . 
subj(divi*brig*batt)        72     4598.300000       63.865278        .       . 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
division                     1       66.612500       66.612500        .       . 
brigade(division)            2       39.125000       19.562500        .       . 
batta(divisi*brigad)         4      701.150000      175.287500        .       . 
subj(divi*brig*batt)        72     4598.300000       63.865278        .       . 
 
 
Level of            ------------hours------------ 
division      N             Mean          Std Dev 
 
1            40       25.6000000       8.31063576 
2            40       23.7750000       8.23528213 
 
 
Level of     Level of            ------------hours------------ 
brigade      division      N             Mean          Std Dev 
 
1            1            20       25.2500000       8.01889217 
2            1            20       25.9500000       8.78680230 
3            2            20       22.8500000       8.20317653 
4            2            20       24.7000000       8.37351715 
 
 
Level of      Level of     Level of            ------------hours------------ 
battalion     division     brigade       N             Mean          Std Dev 
 
1             1            1            10       21.7000000        7.9169298 
2             1            1            10       28.8000000        6.7131711 
3             1            2            10       25.0000000        7.3786479 
4             1            2            10       26.9000000       10.3220368 
5             2            3            10       24.6000000        8.2758014 
6             2            3            10       21.1000000        8.1710872 
7             2            4            10       29.0000000        8.4195540 
8             2            4            10       20.4000000        6.0037026 
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Dependent Variable: hours 
 
Tests of Hypotheses Using the Type III MS for subj(divi*brig*batt) as an Error Term 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
division                     1      66.6125000      66.6125000       1.04    0.3105 
brigade(division)            2      39.1250000      19.5625000       0.31    0.7371 
batta(divisi*brigad)         4     701.1500000     175.2875000       2.74    0.0348 
 
 
Output Explanation 
     
Of the three hypothesis tests, only one is statistically significant. The test of the battalion 
commanders nested within divisions and brigades is significant since the p-value (0.035) is less 
than the stated significance level (0.05). Therefore, there is a significant difference in training 
completion time among battalion commanders nested within brigades and divisions. Post hoc 
tests are needed to isolate differences among battalion commanders. Possible interactions 
among battalion, brigade, and division command structure on multimedia training time 
completion cannot be assessed due to the complete nesting in this experimental design. 
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Example 27: Partial Hierarchical Between-Subjects Design 
 

(Click in this red rectangle to see the Reference Notes on Example 27.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 4, Topic 16. Hierarchical Designs, Part 16.2.2. Partial Hierarchical Design 
 
Page(s) in Williges (2006) Reference Material: 509-515 
 
Problem Description 
The military is testing two communication systems used by commanders of four brigades. Two 
brigades came from an infantry division and two from an armored division. Video conferencing 
and instant messaging are presented to 10 commanders in each brigade. Each commander 
used only one of the communication systems. The commanders’ satisfaction ratings for the 
systems were recorded. Is there a significant satisfaction difference (p < 0.05) between the two 
communication systems and/or the nesting of commander levels? 
 
Context/Purpose 
Determine if there is a significant difference in the ratings of the two communication systems 
and command structure of battalion commanders. 
 
Statistical Decision Criteria 
A between-subjects, partial hierarchical ANOVA design is used to evaluate the satisfaction with 
communication systems where the two communication systems are crossed with battalion 
commanders nest within divisions, and with the infantry and armor divisions. 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 27: Partial Hierarchical Between-Subjects Design’; 
data info; 
input subject division brigade system hours; 
lines; 
1 1 1 1 17 
2 1 1 1 28 
3 1 1 1 16 
4 1 1 1 13 
5 1 1 1 21 
6 1 1 1 27 
7 1 1 1 23 
8 1 1 1 16 
9 1 1 1 23 
10 1 1 1 12 
11 1 2 1 29 
12 1 2 1 35 
13 1 2 1 33 
14 1 2 1 29 
15 1 2 1 37 
16 1 2 1 25 
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17 1 2 1 32 
18 1 2 1 13 
19 1 2 1 26 
20 1 2 1 29 
21 2 3 1 34 
22 2 3 1 23 
23 2 3 1 39 
24 2 3 1 33 
25 2 3 1 19 
26 2 3 1 26 
27 2 3 1 12 
28 2 3 1 27 
29 2 3 1 24 
30 2 3 1 19 
31 2 4 1 39 
32 2 4 1 21 
33 2 4 1 10 
34 2 4 1 18 
35 2 4 1 23 
36 2 4 1 17 
37 2 4 1 34 
38 2 4 1 39 
39 2 4 1 29 
40 2 4 1 35 
41 1 1 2 23 
42 1 1 2 17 
43 1 1 2 36 
44 1 1 2 21 
45 1 1 2 12 
46 1 1 2 28 
47 1 1 2 32 
48 1 1 2 24 
49 1 1 2 17 
50 1 1 2 20 
51 1 2 2 13 
52 1 2 2 24 
53 1 2 2 11 
54 1 2 2 19 
55 1 2 2 20 
56 1 2 2 33 
57 1 2 2 22 
58 1 2 2 14 
59 1 2 2 19 
60 1 2 2 36 
61 2 3 2 15 
62 2 3 2 25 
63 2 3 2 30 
64 2 3 2 32 
65 2 3 2 40 
66 2 3 2 28 
67 2 3 2 33 
68 2 3 2 16 
69 2 3 2 39 
70 2 3 2 32 
71 2 4 2 35 
72 2 4 2 27 
73 2 4 2 35 
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74 2 4 2 18 
75 2 4 2 20 
76 2 4 2 28 
77 2 4 2 11 
78 2 4 2 22 
79 2 4 2 13 
80 2 4 2 25 
; 
proc glm; 
class subject division brigade system; 
model hours = division brigade(division) system system*division 
system*brigade(division) subject(division brigade system); 
lsmeans division brigade(division) system*division system*brigade(division); 
test h=division e=subject(division brigade system); 
test h=brigade(division)e=subject(division brigade system); 
test h=system e=subject(division brigade system); 
test h=system*division e=subject(division brigade system); 
test h=system*brigade(division) e=subject(division brigade system); 
run; 
quit; 
 
 
SAS Output 
 
Example 27: Partial Hierarchical Between-Subjects Design                                       1 
 
The GLM Procedure 
 
                                    Class Level Information 
 
Class       Levels  Values 
 
subject         80  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 
                    29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 
                    54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 
                    79 80 
 
division         2  1 2 
 
brigade          4  1 2 3 4 
 
system           2  1 2 
 
 
Number of Observations Read          80 
Number of Observations Used          80 
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Dependent Variable: hours 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                       79     5362.750000       67.882911        .       . 
 
Error                        0        0.000000         . 
 
Corrected Total             79     5362.750000 
 
 
R-Square     Coeff Var      Root MSE    hours Mean 
 
1.000000           .               .      24.62500 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
division                     1      180.000000      180.000000        .       . 
brigade(division)            2      188.450000       94.225000        .       . 
system                       1       20.000000       20.000000        .       . 
division*system              1       26.450000       26.450000        .       . 
briga*system(divisi)         2      413.650000      206.825000        .       . 
subj(divi*brig*syst)        72     4534.200000       62.975000        .       . 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
division                     1      180.000000      180.000000        .       . 
brigade(division)            2      188.450000       94.225000        .       . 
system                       1       20.000000       20.000000        .       . 
division*system              1       26.450000       26.450000        .       . 
briga*system(divisi)         2      413.650000      206.825000        .       . 
subj(divi*brig*syst)        72     4534.200000       62.975000        .       . 
 
Least Squares Means 
 
division    hours LSMEAN 
 
1             23.1250000 
2             26.1250000 
 
brigade    division    hours LSMEAN 
 
1          1             21.3000000 
2          1             24.9500000 
3          2             27.3000000 
4          2             24.9500000 
 
division    system    hours LSMEAN 
 
1           1           24.2000000 
1           2           22.0500000 
2           1           26.0500000 
2           2           26.2000000 
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brigade    system    division    hours LSMEAN 
 
1          1         1             19.6000000 
1          2         1             23.0000000 
2          1         1             28.8000000 
2          2         1             21.1000000 
3          1         2             25.6000000 
3          2         2             29.0000000 
4          1         2             26.5000000 
4          2         2             23.4000000 
 
Dependent Variable: hours 
 
Tests of Hypotheses Using the Type III MS for subj(divi*brig*syst) as an Error Term 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
division                     1     180.0000000     180.0000000       2.86    0.0952 
brigade(division)            2     188.4500000      94.2250000       1.50    0.2309 
system                       1      20.0000000      20.0000000       0.32    0.5748 
division*system              1      26.4500000      26.4500000       0.42    0.5190 
briga*system(divisi)         2     413.6500000     206.8250000       3.28    0.0432 
 

 
Output Explanation  
     
There is not a significant effect due to divisions, the nesting of brigades within divisions, 
communication systems, the communication system by brigades nested within divisions since 
the p-value (0.23) is greater than the stated significance level (0.05). The only significant effect 
is due to the interaction of communication systems and brigades nested with divisions since the 
p-value (0.043) is less than the stated significance level (0.05). Additional post-hoc tests would 
be needed to isolate the interaction. 
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Example 28: Simple Blocking of 2k Within-Subjects Design 
 

(Click in this red rectangle to see the Reference Notes on Example 28.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 4, Topic 17. Blocking Designs, Part 17.2.3.1. Simple Blocking Example 
 
Page(s) in Williges (2006) Reference Material: 546-549 
 
Problem Description 
Testing was conducted on a new computerized target detection system. The detection system 
evaluates four different dimensions (i.e., target speed, target size, noise level, and display 
resolution) each with two settings. Five soldiers have been recruited to participate in the testing 
of the new system. For each of the 16 dimension combinations, 100 detection trials per soldier 
are completed and a percentage is computed. Because of the number of trials (1600 trials per 
soldier), the testing procedure is too lengthy to complete in one day, so it will be conducted in 
two sessions over two days. Do the settings have an effect on the percentage of targets 
detected? (p < 0.01) Also, is there an effect due to the blocking of the data collection into two 
sessions? (p < 0.01) 
 
Context/Purpose 
Determine if there is a significant effect due to target speed, target size, noise level, and display 
resolution on percent target detection while removing the potential confounding effect of 
experimental sessions. 
 
Statistical Decision Criteria 
A within-subjects, simple blocking design is used to control the effect of testing sessions. The 
simple blocking design was constructed by using the four-way interaction of display dimensions 
as the defining relationship to keep main effects, two-way interactions, and three-way 
interactions unconfounded with testing sessions. 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 28: Simple Blocking of 2^k Within-Subjects Design'; 
data info; 
input subject $ session $ speed $ size $ level $ resolution $ probability; 
lines; 
1 1 0 0 0 0 0.5 
2 1 0 0 0 0 0.23 
3 1 0 0 0 0 0.45 
4 1 0 0 0 0 0.66 
5 1 0 0 0 0 0.37 
1 2 0 0 0 1 0.11 
2 2 0 0 0 1 0.77 
3 2 0 0 0 1 0.27 
4 2 0 0 0 1 0.33 
5 2 0 0 0 1 0.41 
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1 2 0 0 1 0 0.05 
2 2 0 0 1 0 0.6 
3 2 0 0 1 0 0.16 
4 2 0 0 1 0 0.21 
5 2 0 0 1 0 0.1 
1 1 0 0 1 1 0.78 
2 1 0 0 1 1 0.89 
3 1 0 0 1 1 0.64 
4 1 0 0 1 1 0.5 
5 1 0 0 1 1 0.4 
1 2 0 1 0 0 0.32 
2 2 0 1 0 0 0.41 
3 2 0 1 0 0 0.33 
4 2 0 1 0 0 0.11 
5 2 0 1 0 0 0.56 
1 1 0 1 0 1 0.7 
2 1 0 1 0 1 0.67 
3 1 0 1 0 1 0.9 
4 1 0 1 0 1 0.87 
5 1 0 1 0 1 0.76 
1 1 0 1 1 0 0.02 
2 1 0 1 1 0 0.43 
3 1 0 1 1 0 0.14 
4 1 0 1 1 0 0.27 
5 1 0 1 1 0 0.19 
1 2 0 1 1 1 0.99 
2 2 0 1 1 1 0.68 
3 2 0 1 1 1 0.68 
4 2 0 1 1 1 0.41 
5 2 0 1 1 1 0.77 
1 2 1 0 0 0 0.74 
2 2 1 0 0 0 0.55 
3 2 1 0 0 0 0.43 
4 2 1 0 0 0 0.67 
5 2 1 0 0 0 0.77 
1 1 1 0 0 1 0.28 
2 1 1 0 0 1 0.22 
3 1 1 0 0 1 0.39 
4 1 1 0 0 1 0.08 
5 1 1 0 0 1 0.44 
1 1 1 0 1 0 0.75 
2 1 1 0 1 0 0.48 
3 1 1 0 1 0 0.38 
4 1 1 0 1 0 0.89 
5 1 1 0 1 0 0.66 
1 2 1 0 1 1 0.5 
2 2 1 0 1 1 0.39 
3 2 1 0 1 1 0.4 
4 2 1 0 1 1 0.62 
5 2 1 0 1 1 0.57 
1 1 1 1 0 0 0.09 
2 1 1 1 0 0 0.23 
3 1 1 1 0 0 0.14 
4 1 1 1 0 0 0.37 
5 1 1 1 0 0 0.46 
1 2 1 1 0 1 0.31 
2 2 1 1 0 1 0.59 
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3 2 1 1 0 1 0.71 
4 2 1 1 0 1 0.61 
5 2 1 1 0 1 0.59 
1 2 1 1 1 0 0.99 
2 2 1 1 1 0 0.81 
3 2 1 1 1 0 0.77 
4 2 1 1 1 0 0.59 
5 2 1 1 1 0 0.54 
1 1 1 1 1 1 0.14 
2 1 1 1 1 1 0.27 
3 1 1 1 1 1 0.08 
4 1 1 1 1 1 0.31 
5 1 1 1 1 1 0.25 
; 
proc glm; 
class subject session speed size level resolution; 
model probability = subject speed speed*subject size size*subject level 
level*subject resolution resolution*subject session session*subject 
speed*size speed*size*subject speed*level speed*level*subject 
speed*resolution speed*resolution*subject size*level size*level*subject 
size*resolution size*resolution*subject level*resolution 
level*resolution*subject speed*size*level speed*size*level*subject 
speed*size*resolution speed*size*resolution*subject size*level*resolution 
size*level*resolution*subject speed*level*resolution 
speed*level*resolution*subject/ss1; 
lsmeans speed size level resolution session/alpha=0.01; 
test h=speed e=speed*subject; 
test h=size e=size*subject; 
test h=level e=level*subject; 
test h=resolution e=resolution*subject; 
test h=speed*size e=speed*size*subject; 
test h=speed*level e=speed*level*subject; 
test h=speed*resolution e=speed*resolution*subject; 
test h=size*level e=size*level*subject; 
test h=size*resolution e=size*resolution*subject; 
test h=level*resolution e=level*resolution*subject; 
test h=speed*size*level e=speed*size*level*subject; 
test h=speed*size*resolution e=speed*size*resolution*subject; 
test h=size*level*resolution e=size*level*resolution*subject; 
test h=speed*level*resolution e=speed*level*resolution*subject; 
test h=session e=session*subject; 
run; 
quit; 
 
 
SAS Output 
Example 28: Simple Blocking of 2^k Within-Subjects Design                                                     
1 
 
The GLM Procedure 
 
      Class Level Information 
 
Class           Levels    Values 
 
subject              5    1 2 3 4 5 
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session              2    1 2 
 
speed                2    0 1 
 
size                 2    0 1 
 
level                2    0 1 
 
resolution           2    0 1 
 
 
Number of Observations Read          80 
Number of Observations Used          80 
 
 
Dependent Variable: probability 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                       79      4.91327500      0.06219335        .       . 
 
Error                        0      0.00000000       . 
 
Corrected Total             79      4.91327500 
 
 
R-Square     Coeff Var      Root MSE    probability Mean 
 
1.000000           .               .            0.471250 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
subject                      4      0.06723750      0.01680938        .       . 
speed                        1      0.00220500      0.00220500        .       . 
subject*speed                4      0.16080750      0.04020187        .       . 
size                         1      0.00220500      0.00220500        .       . 
subject*size                 4      0.04513250      0.01128313        .       . 
level                        1      0.01012500      0.01012500        .       . 
subject*level                4      0.18141250      0.04535312        .       . 
resolution                   1      0.10224500      0.10224500        .       . 
subject*resolution           4      0.05876750      0.01469188        .       . 
session                      1      0.12324500      0.12324500        .       . 
subject*session              4      0.10376750      0.02594188        .       . 
speed*size                   1      0.12324500      0.12324500        .       . 
subject*speed*size           4      0.18569250      0.04642313        .       . 
speed*level                  1      0.08064500      0.08064500        .       . 
subject*speed*level          4      0.07059250      0.01764813        .       . 
speed*resolution             1      1.24500500      1.24500500        .       . 
subjec*speed*resolut         4      0.08840750      0.02210188        .       . 
size*level                   1      0.03612500      0.03612500        .       . 
subject*size*level           4      0.04103750      0.01025937        .       . 
size*resolution              1      0.21840500      0.21840500        .       . 
subject*size*resolut         4      0.11198250      0.02799563        .       . 
level*resolution             1      0.00180500      0.00180500        .       . 
subjec*level*resolut         4      0.13228250      0.03307063        .       . 
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speed*size*level             1      0.00924500      0.00924500        .       . 
subj*spee*size*level         4      0.11016750      0.02754188        .       . 
speed*size*resolutio         1      0.03120500      0.03120500        .       . 
subj*spee*size*resol         4      0.09713250      0.02428313        .       . 
size*level*resolutio         1      0.67344500      0.67344500        .       . 
subj*size*leve*resol         4      0.12306750      0.03076687        .       . 
speed*level*resoluti         1      0.42340500      0.42340500        .       . 
subj*spee*leve*resol         4      0.25323250      0.06330812        .       . 
 
 
Least Squares Means 
 
          probability 
speed          LSMEAN 
 
0          0.46600000 
1          0.47650000 
 
 
         probability 
size          LSMEAN 
 
0         0.46600000 
1         0.47650000 
 
 
          probability 
level          LSMEAN 
 
0          0.46000000 
1          0.48250000 
 
 
               probability 
resolution          LSMEAN 
 
0               0.43550000 
1               0.50700000 
 
 
            probability 
session          LSMEAN 
 
1            0.43200000 
2            0.51050000 
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Dependent Variable: probability 
 
    Tests of Hypotheses Using the Type I MS for subject*speed as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed                        1      0.00220500      0.00220500       0.05    0.8263 
 
 
     Tests of Hypotheses Using the Type I MS for subject*size as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
size                         1      0.00220500      0.00220500       0.20    0.6813 
 
 
    Tests of Hypotheses Using the Type I MS for subject*level as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
level                        1      0.01012500      0.01012500       0.22    0.6612 
 
 
  Tests of Hypotheses Using the Type I MS for subject*resolution as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
resolution                   1      0.10224500      0.10224500       6.96    0.0577 
 
 
  Tests of Hypotheses Using the Type I MS for subject*speed*size as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed*size                   1      0.12324500      0.12324500       2.65    0.1786 
 
 
 Tests of Hypotheses Using the Type I MS for subject*speed*level as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed*level                  1      0.08064500      0.08064500       4.57    0.0993 
 
 
 Tests of Hypotheses Using the Type I MS for subjec*speed*resolut as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed*resolution             1      1.24500500      1.24500500      56.33    0.0017 
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Dependent Variable: probability 
 
  Tests of Hypotheses Using the Type I MS for subject*size*level as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
size*level                   1      0.03612500      0.03612500       3.52    0.1338 
 
 
 Tests of Hypotheses Using the Type I MS for subject*size*resolut as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
size*resolution              1      0.21840500      0.21840500       7.80    0.0492 
 
 
 Tests of Hypotheses Using the Type I MS for subjec*level*resolut as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
level*resolution             1      0.00180500      0.00180500       0.05    0.8267 
 
 
 Tests of Hypotheses Using the Type I MS for subj*spee*size*level as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed*size*level             1      0.00924500      0.00924500       0.34    0.5934 
 
 
 Tests of Hypotheses Using the Type I MS for subj*spee*size*resol as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed*size*resolutio         1      0.03120500      0.03120500       1.29    0.3203 
 
 
 Tests of Hypotheses Using the Type I MS for subj*size*leve*resol as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
size*level*resolutio         1      0.67344500      0.67344500      21.89    0.0095 
 
 
 Tests of Hypotheses Using the Type I MS for subj*spee*leve*resol as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed*level*resoluti         1      0.42340500      0.42340500       6.69    0.0609 
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Dependent Variable: probability 
 
   Tests of Hypotheses Using the Type I MS for subject*session as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
session                      1      0.12324500      0.12324500       4.75    0.0948 
 
 

Output Explanation      
 
The p-values for the interaction of speed and resolution (0.0017) and the interaction of size, 
level, and resolution (0.0095) are less than the stated significance level (0.01). Therefore, both 
of these interactions have a significant effect on the percentage of targets detected by the 
soldiers. Additional post-hoc tests are needed to isolate the interaction effects. There is not a 
significant effect due to blocking of the 2 sessions (p = 0.0948). 
 

Source     df  SS  MS  F 
Between-Subjects 
  Subjects (S)     4  0.0672  0.0168   
 
Within-Subjects 
  Session (SpeedxSizexLevelxResolution) 1  0.1232  0.1232  4.75 
  Session x S (SpeedxSizexLevelxResolutionxS) 4  0.1038  0.0259   
  Speed      1  0.0022  0.0022  0.05 
  Speed x S     4  0.1608  0.0402   
  Size      1  0.0022  0.0022  0.20 
  Size x S     4  0.0451  0.0113 
  Level      1  0.0101  0.0101  0.22 
  Level x S     4  0.1814  0.0453   
  Resolution     1  0.1022  0.1022  6.96 
  Resolution x S     4  0.0588  0.0147   
  Speed x Size     1  0.1232  0.1232  2.65 
  Speed x Size x S    4  0.1857  0.0464   
  Speed x Level     1  0.0806  0.0806  4.57 
  Speed x Level x S    4  0.0706  0.0176   
  Speed x Resolution    1  1.2450  1.2450  56.33* 
  Speed x Resolution x S   4  0.0884  0.0221 
  Size x Level     1  0.0361  0.0361  3.52 
  Size x Level x S    4  0.0410  0.0103   
  Size x Resolution    1  0.2184  0.2184  7.80 
  Size x Resolution x S    4  0.1119  0.0279 
  Level x Resolution    1  0.0018  0.0018  0.05 
  Level x Resolution x S    4  0.1323  0.0331 
  Speed x Size x Level    1  0.0092  0.0092  0.34 
  Speed x Size x Level x S   4  0.1102  0.0275   
  Speed x Size x Resolution   1  0.0312  0.0312  1.29 
  Speed x Size x Resolution x S   4  0.0971  0.0243   
  Speed x Level x Resolution   1  0.4234  0.4234  6.69 
  Speed x Level x Resolution x S   4  0.2532  0.0633  
  Size x Level x Resolution   1  0.6734  0.6734  21.89* 
  Size x Level x Resolution x S   4   0.1231  0.0308   
Total      79  4.9133   
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Example 29: Complex Blocking of 2k Within-Subjects Design 

 
(Click in this red rectangle to see the Reference Notes on Example 29.) 

 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 4, Topic 17. Blocking Designs, Part 17.2.3.2. Complex Blocking Example 
 
Page(s) in Williges (2006) Reference Material: 550-553 
 
Problem Description 
Testing was conducted on a new computerized target detection system. The detection system 
evaluates four different dimensions (i.e., target speed, target size, noise level, and display 
resolution) each with two settings. Five soldiers have been recruited to participate in the testing 
of the new system. For each of the 16 dimension combinations, 100 detection trials per soldier 
are completed and a percentage is computed. Because of the number of trials (1600 trials per 
soldier), the testing procedure is too lengthy to complete in one day and is conducted in four 
sessions over four days. Do the settings have an effect on the percentage of targets detected? 
(p < 0.01) Also, is there an effect due to the blocking of the data collection into four sessions?  
(p < 0.01) 
 
Context/Purpose 
Determine if there is a significant effect due to target speed, target size, noise level, and display 
resolution unconfounded by the four testing sessions. 
 
Statistical Decision Criteria 
A within-subjects, complex blocking design should be used to accommodate the length of the 
testing. The four-way interaction and the speed and size interaction are used as the two defining 
relationships to construct the complex blocking design so as to keep main effects unconfounded 
with the four testing sessions. 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 29: Complex Blocking of 2^k Within-Subjects Design'; 
data info; 
input subject $ session $ speed $ size $ level $ resolution $ probability; 
lines; 
1 1 0 0 0 0 0.5 
2 1 0 0 0 0 0.23 
3 1 0 0 0 0 0.45 
4 1 0 0 0 0 0.66 
5 1 0 0 0 0 0.37 
1 3 0 0 0 1 0.11 
2 3 0 0 0 1 0.77 
3 3 0 0 0 1 0.27 
4 3 0 0 0 1 0.33 
5 3 0 0 0 1 0.41 



Appendix: SAS Examples for Human Factors Experimental Design and Analysis Reference 

 127

1 3 0 0 1 0 0.05 
2 3 0 0 1 0 0.6 
3 3 0 0 1 0 0.16 
4 3 0 0 1 0 0.21 
5 3 0 0 1 0 0.1 
1 1 0 0 1 1 0.78 
2 1 0 0 1 1 0.89 
3 1 0 0 1 1 0.64 
4 1 0 0 1 1 0.5 
5 1 0 0 1 1 0.4 
1 4 0 1 0 0 0.32 
2 4 0 1 0 0 0.41 
3 4 0 1 0 0 0.33 
4 4 0 1 0 0 0.11 
5 4 0 1 0 0 0.56 
1 2 0 1 0 1 0.7 
2 2 0 1 0 1 0.67 
3 2 0 1 0 1 0.9 
4 2 0 1 0 1 0.87 
5 2 0 1 0 1 0.76 
1 2 0 1 1 0 0.02 
2 2 0 1 1 0 0.43 
3 2 0 1 1 0 0.14 
4 2 0 1 1 0 0.27 
5 2 0 1 1 0 0.19 
1 4 0 1 1 1 0.99 
2 4 0 1 1 1 0.68 
3 4 0 1 1 1 0.68 
4 4 0 1 1 1 0.41 
5 4 0 1 1 1 0.77 
1 4 1 0 0 0 0.74 
2 4 1 0 0 0 0.55 
3 4 1 0 0 0 0.43 
4 4 1 0 0 0 0.67 
5 4 1 0 0 0 0.77 
1 2 1 0 0 1 0.28 
2 2 1 0 0 1 0.22 
3 2 1 0 0 1 0.39 
4 2 1 0 0 1 0.08 
5 2 1 0 0 1 0.44 
1 2 1 0 1 0 0.75 
2 2 1 0 1 0 0.48 
3 2 1 0 1 0 0.38 
4 2 1 0 1 0 0.89 
5 2 1 0 1 0 0.66 
1 4 1 0 1 1 0.5 
2 4 1 0 1 1 0.39 
3 4 1 0 1 1 0.4 
4 4 1 0 1 1 0.62 
5 4 1 0 1 1 0.57 
1 1 1 1 0 0 0.09 
2 1 1 1 0 0 0.23 
3 1 1 1 0 0 0.14 
4 1 1 1 0 0 0.37 
5 1 1 1 0 0 0.46 
1 3 1 1 0 1 0.31 
2 3 1 1 0 1 0.59 
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3 3 1 1 0 1 0.71 
4 3 1 1 0 1 0.61 
5 3 1 1 0 1 0.59 
1 3 1 1 1 0 0.99 
2 3 1 1 1 0 0.81 
3 3 1 1 1 0 0.77 
4 3 1 1 1 0 0.59 
5 3 1 1 1 0 0.54 
1 1 1 1 1 1 0.14 
2 1 1 1 1 1 0.27 
3 1 1 1 1 1 0.08 
4 1 1 1 1 1 0.31 
5 1 1 1 1 1 0.25 
; 
proc glm; 
class subject session speed size level resolution; 
model probability = subject speed speed*subject size size*subject level 
level*subject resolution resolution*subject session session*subject 
speed*level speed*level*subject speed*resolution speed*resolution*subject 
size*level size*level*subject size*resolution size*resolution*subject 
speed*size*level speed*size*level*subject speed*size*resolution 
speed*size*resolution*subject size*level*resolution 
size*level*resolution*subject speed*level*resolution 
speed*level*resolution*subject/ss1; 
lsmeans speed size level resolution/alpha=0.01; 
test h=speed e=speed*subject; 
test h=size e=size*subject; 
test h=level e=level*subject; 
test h=resolution e=resolution*subject; 
test h=speed*level e=speed*level*subject; 
test h=speed*resolution e=speed*resolution*subject; 
test h=size*level e=size*level*subject; 
test h=size*resolution e=size*resolution*subject; 
test h=speed*size*level e=speed*size*level*subject; 
test h=speed*size*resolution e=speed*size*resolution*subject; 
test h=size*level*resolution e=size*level*resolution*subject; 
test h=speed*level*resolution e=speed*level*resolution*subject; 
test h=session e=session*subject; 
run; 
quit; 
  
 
SAS Output 
 
Example 29: Complex Blocking of 2^k Within-Subjects Design                                      1 
 
The GLM Procedure 
 
      Class Level Information 
 
Class           Levels    Values 
 
subject              5    1 2 3 4 5 
 
session              4    1 2 3 4 
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speed                2    0 1 
 
size                 2    0 1 
 
level                2    0 1 
 
resolution           2    0 1 
 
 
Number of Observations Read          80 
Number of Observations Used          80 
 
Dependent Variable: probability 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                       79      4.91327500      0.06219335        .       . 
 
Error                        0      0.00000000       . 
 
Corrected Total             79      4.91327500 
 
 
R-Square     Coeff Var      Root MSE    probability Mean 
 
1.000000           .               .            0.471250 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
subject                      4      0.06723750      0.01680938        .       . 
speed                        1      0.00220500      0.00220500        .       . 
subject*speed                4      0.16080750      0.04020187        .       . 
size                         1      0.00220500      0.00220500        .       . 
subject*size                 4      0.04513250      0.01128313        .       . 
level                        1      0.01012500      0.01012500        .       . 
subject*level                4      0.18141250      0.04535312        .       . 
resolution                   1      0.10224500      0.10224500        .       . 
subject*resolution           4      0.05876750      0.01469188        .       . 
session                      3      0.24829500      0.08276500        .       . 
subject*session             12      0.42174250      0.03514521        .       . 
speed*level                  1      0.08064500      0.08064500        .       . 
subject*speed*level          4      0.07059250      0.01764813        .       . 
speed*resolution             1      1.24500500      1.24500500        .       . 
subjec*speed*resolut         4      0.08840750      0.02210188        .       . 
size*level                   1      0.03612500      0.03612500        .       . 
subject*size*level           4      0.04103750      0.01025937        .       . 
size*resolution              1      0.21840500      0.21840500        .       . 
subject*size*resolut         4      0.11198250      0.02799563        .       . 
speed*size*level             1      0.00924500      0.00924500        .       . 
subj*spee*size*level         4      0.11016750      0.02754188        .       . 
speed*size*resolutio         1      0.03120500      0.03120500        .       . 
subj*spee*size*resol         4      0.09713250      0.02428312        .       . 
size*level*resolutio         1      0.67344500      0.67344500        .       . 
subj*size*leve*resol         4      0.12306750      0.03076688        .       . 
speed*level*resoluti         1      0.42340500      0.42340500        .       . 
subj*spee*leve*resol         4      0.25323250      0.06330813        .       . 
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Least Squares Means 
 
          probability 
speed          LSMEAN 
 
0          0.46600000 
1          0.47650000 
 
 
         probability 
size          LSMEAN 
 
0         0.46600000 
1         0.47650000 
 
 
          probability 
level          LSMEAN 
 
0          0.46000000 
1          0.48250000 
 
 
               probability 
resolution          LSMEAN 
 
0               0.43550000 
1               0.50700000 
 
 
Dependent Variable: probability 
 
    Tests of Hypotheses Using the Type I MS for subject*speed as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed                        1      0.00220500      0.00220500       0.05    0.8263 
 
 
     Tests of Hypotheses Using the Type I MS for subject*size as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
size                         1      0.00220500      0.00220500       0.20    0.6813 
 
 
    Tests of Hypotheses Using the Type I MS for subject*level as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
level                        1      0.01012500      0.01012500       0.22    0.6612 
 
 
  Tests of Hypotheses Using the Type I MS for subject*resolution as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
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resolution                   1      0.10224500      0.10224500       6.96    0.0577 
 
 
 Tests of Hypotheses Using the Type I MS for subject*speed*level as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed*level                  1      0.08064500      0.08064500       4.57    0.0993 
 
 
 Tests of Hypotheses Using the Type I MS for subjec*speed*resolut as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed*resolution             1      1.24500500      1.24500500      56.33    0.0017 
 
 
  Tests of Hypotheses Using the Type I MS for subject*size*level as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
size*level                   1      0.03612500      0.03612500       3.52    0.1338 
 
 
 Tests of Hypotheses Using the Type I MS for subject*size*resolut as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
size*resolution              1      0.21840500      0.21840500       7.80    0.0492 
 
 
 Tests of Hypotheses Using the Type I MS for subj*spee*size*level as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed*size*level             1      0.00924500      0.00924500       0.34    0.5934 
 
 
 Tests of Hypotheses Using the Type I MS for subj*spee*size*resol as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed*size*resolutio         1      0.03120500      0.03120500       1.29    0.3203 
 
 
 Tests of Hypotheses Using the Type I MS for subj*size*leve*resol as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
size*level*resolutio         1      0.67344500      0.67344500      21.89    0.0095 
 
 
 Tests of Hypotheses Using the Type I MS for subj*spee*leve*resol as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed*level*resoluti         1      0.42340500      0.42340500       6.69    0.0609 
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   Tests of Hypotheses Using the Type I MS for subject*session as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
session                      3      0.24829500      0.08276500       2.35    0.1233 

 
 
Output Explanation      
 
The p-values for the interaction of speed and resolution (0.0017) and the interaction of size, 
level, and resolution (0.0095) are less than the stated significance level (0.01). Therefore, both 
of these interactions have a significant effect on the percentage of targets detected by the 
soldiers. Note these results are similar to those in the previous example with two sessions. The 
number of sessions does not have a significant effect on the outcome at the 0.05 level. 
Additional post-hoc tests would be needed to isolate the interaction effects. 
 

 
Source     df  SS  MS  F 

Between-Subjects 
  Subjects (S)     4  0.0672  0.0168   
 
Within-Subjects 
  Blocks (SpeedxSizexLevelxResolution, 
    SpeedxSize, andLevelxResolution)  3  0.2483  0.0828  2.35 
  Blocks x S (SpeedxSizexLevelxResolutionxS, 
    SpeedxSizexS, and LevelxResolutionxS) 12  0.4217  0.0351   
  Speed      1  0.0022  0.0022  0.05 
  Speed x S     4  0.1608  0.0402   
  Size      1  0.0022  0.0022  0.20 
  Size x S     4  0.0451  0.0113 
  Level      1  0.0101  0.0101  0.22 
  Level x S     4  0.1814  0.0454   
  Resolution     1  0.1022  0.1022  6.96 
  Resolution x S     4  0.0588  0.0147   
  Speed x Level     1  0.0806  0.0806  4.57 
  Speed x Level x S    4  0.0706  0.0176   
  Speed x Resolution    1  1.2450  1.2450  56.33* 
  Speed x Resolution x S   4  0.0884  0.0221 
  Size x Level     1  0.0361  0.0361  3.52 
  Size x Level x S    4  0.0410  0.0103   
  Size x Resolution    1  0.2184  0.2184  7.80 
  Size x Resolution x S    4  0.1119  0.0279 
  Speed x Size x Level    1  0.0092  0.0092  0.34 
  Speed x Size x Level x S   4  0.1102  0.0275   
  Speed x Size x Resolution   1  0.0312  0.0312  1.29 
  Speed x Size x Resolution x S   4  0.0971  0.0243   
  Speed x Level x Resolution   1  0.4234  0.4234  6.69 
  Speed x Level x Resolution x S   4  0.2532  0.0633  
  Size x Level x Resolution   1  0.6734  0.6734  21.89* 
  Size x Level x Resolution x S   4   0.1231  0.0308   
Total      79  4.9133   
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Example 30: One-Half Replicate of 24 Between-Subjects Design 
 

(Click in this red rectangle to see the Reference Notes on Example 30.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 4, Topic 18. Blocking Designs, Part 18.1.2. Computational Considerations 
 
Page(s) in Williges (2006) Reference Material: 574-578 
 
Problem Description 
Preliminary testing was conducted on a new computerized target detection system. Two 
different settings of four different factors including target speed (A), target size (B), noise level 
(C), and display resolution (D) were evaluated. Five different soldiers completed 100 detection 
trials in only one treatment combination of the four factors tested to calculate the percent of 
targets detected. A one-half replicate of the full factorial design was used to pretest main effects 
and the existence of possible two-way interactions. Do the settings of any of the four main 
effects of target factors and two-way interactions have a significant effect on the percent of 
targets detected? (p < 0.01) 
 
Context/Purpose 
Determine if there are significant main effects and possible two-way interactions between target 
speed, target size, noise level, and display resolution. 
 
Statistical Decision Criteria 
A between-subjects, Resolution IV, one-half replicate design is used to keep all the main effects 
unconfounded and groups of two-way interactions unconfounded from other groups. The fourth-
order interaction is used as the identity relationship to construct the Resolution IV design.   
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 30: One-Half Replicate of 2^4 Between-Subjects Design'; 
data info; 
input subject $ treatment $ speed $ size $ level $ resolution $ probability; 
lines; 
1 1 0 0 0 0 0.5 
2 1 0 0 0 0 0.23 
3 1 0 0 0 0 0.45 
4 1 0 0 0 0 0.66 
5 1 0 0 0 0 0.37 
6 2 0 0 1 1 0.78 
7 2 0 0 1 1 0.89 
8 2 0 0 1 1 0.64 
9 2 0 0 1 1 0.5 
10 2 0 0 1 1 0.4 
11 3 0 1 0 1 0.7 
12 3 0 1 0 1 0.67 
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13 3 0 1 0 1 0.9 
14 3 0 1 0 1 0.87 
15 3 0 1 0 1 0.76 
16 4 0 1 1 0 0.02 
17 4 0 1 1 0 0.43 
18 4 0 1 1 0 0.14 
19 4 0 1 1 0 0.27 
20 4 0 1 1 0 0.19 
21 5 1 0 0 1 0.28 
22 5 1 0 0 1 0.22 
23 5 1 0 0 1 0.39 
24 5 1 0 0 1 0.08 
25 5 1 0 0 1 0.44 
26 6 1 0 1 0 0.75 
27 6 1 0 1 0 0.48 
28 6 1 0 1 0 0.38 
29 6 1 0 1 0 0.89 
30 6 1 0 1 0 0.66 
31 7 1 1 0 0 0.09 
32 7 1 1 0 0 0.23 
33 7 1 1 0 0 0.14 
34 7 1 1 0 0 0.37 
35 7 1 1 0 0 0.46 
36 8 1 1 1 1 0.14 
37 8 1 1 1 1 0.27 
38 8 1 1 1 1 0.08 
39 8 1 1 1 1 0.31 
40 8 1 1 1 1 0.25 
; 
proc glm; 
class subject treatment speed size level resolution; 
model probability = speed size level speed*size speed*level size*level 
resolution subject(speed*size*level*resolution)/ss1; 
means speed size level resolution/alpha=0.01; 
test h=speed e=subject(speed*size*level*resolution); 
test h=size e=subject(speed*size*level*resolution); 
test h=level e=subject(speed*size*level*resolution); 
test h=speed*size e=subject(speed*size*level*resolution); 
test h=speed*level e=subject(speed*size*level*resolution); 
test h=size*level e=subject(speed*size*level*resolution); 
test h=resolution e=subject(speed*size*level*resolution); 
run; 
quit; 
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SAS Output 
 
Example 30: One-Half Replicate of 2^4 Between-Subjects Design                                   1 
 
The GLM Procedure 
 
                                    Class Level Information 
 
Class         Levels  Values 
 
subject           40  1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 31 32 
                      33 34 35 36 37 38 39 4 40 5 6 7 8 9 
 
treatment          8  1 2 3 4 5 6 7 8 
 
speed              2  0 1 
 
size               2  0 1 
 
level              2  0 1 
 
resolution         2  0 1 
 
 
Number of Observations Read          40 
Number of Observations Used          40 
 
 
Dependent Variable: probability 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                       39      2.56084000      0.06566256        .       . 
 
Error                        0      0.00000000       . 
 
Corrected Total             39      2.56084000 
 
 
R-Square     Coeff Var      Root MSE    probability Mean 
 
1.000000           .               .            0.432000 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed                        1      0.29929000      0.29929000        .       . 
size                         1      0.18225000      0.18225000        .       . 
level                        1      0.00289000      0.00289000        .       . 
speed*size                   1      0.07744000      0.07744000        .       . 
speed*level                  1      0.28224000      0.28224000        .       . 
size*level                   1      0.85264000      0.85264000        .       . 
resolution                   1      0.08649000      0.08649000        .       . 
sub(spe*siz*lev*res)        32      0.77760000      0.02430000        .       . 
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Level of            ---------probability--------- 
speed         N             Mean          Std Dev 
 
0            20       0.51850000       0.26342431 
1            20       0.34550000       0.22279268 
 
 
Level of            ---------probability--------- 
size          N             Mean          Std Dev 
 
0            20       0.49950000       0.22382971 
1            20       0.36450000       0.27402411 
 
 
Level of            ---------probability--------- 
level         N             Mean          Std Dev 
 
0            20       0.44050000       0.25010471 
1            20       0.42350000       0.26847082 
 
 
Level of              ---------probability--------- 
resolution      N             Mean          Std Dev 
 
0              20       0.38550000       0.23098132 
1              20       0.47850000       0.27726626 
 
 
Dependent Variable: probability 
 
 Tests of Hypotheses Using the Type I MS for sub(spe*siz*lev*res) as an Error Term 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
speed                        1      0.29929000      0.29929000      12.32    0.0014 
size                         1      0.18225000      0.18225000       7.50    0.0100 
level                        1      0.00289000      0.00289000       0.12    0.7325 
speed*size                   1      0.07744000      0.07744000       3.19    0.0837 
speed*level                  1      0.28224000      0.28224000      11.61    0.0018 
size*level                   1      0.85264000      0.85264000      35.09    <.0001 
resolution                   1      0.08649000      0.08649000       3.56    0.0683 

 
 
Output Explanation      
 
The main effects of target speed (0.0014) and size (0.0100) are less than or equal to the stated 
p-value (0.01) and have a significant effect on the percentage of targets detected. The p-values 
for the interaction of target speed and noise level (0.0018) and the interaction of target size and 
noise level (<0.0001) are less than the stated significance level (0.01). The SAS printout does 
not show the alias structure of the fractional-factorial design. Note that the target size x display 
resolution is confounded with the speed x noise level interaction, and the target speed x display 
resolution interaction is confounded with the target size x noise level interaction in this one-half 
fractional factorial design. Additional data collection is needed to resolve these interactions. See 
Williges (2006) for a complete breakdown of the ANOVA summary table showing the alias 
structure. 
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Example 31: 4x4 Latin Square Designs 
 

(Click in this red rectangle to see the Reference Notes on Example 31.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 4, Topic 18. Fractional-Factorial ANOVA Designs, Part 18.2.3.4. Latin Square Examples 
 
Page(s) in Williges (2006) Reference Material: 605-609 
 
Problem Description 
The main effects of three characteristics of a hand held communication device was evaluated by 
forward observers in Army training exercises. Four different levels each of Input Display Color 
Resolution (A), Speaker Characteristics (B), and Keys Size (C), of the devices were evaluated 
in a 4x4 standard Latin square design. The minutes to complete a communication were 
measured on four soldiers in each treatment combination. Did any of the three characteristics of 
the communication devices have a significant effect on time to communicate (p < 0.01)? 
 
Context/Purpose 
Evaluate the time to complete a communication using16 configurations of a hand held 
communication device used by forward observers. These 16 configurations were based on four 
levels each of input display color resolution, speaker characteristics, and key size of the hand 
held communication device. 
 
Statistical Decision Criteria 
Use a 4x4 standard Latin square to test the significance of the three main effects of display 
color resolution, speaker characteristics, and key size (p < 0.01) of a hand held communication 
device on time to complete a communication. 
 
SAS Input (Part A. Between-Subjects, 4x4 Latin Square Design) 
 
Use a between-subjects, 4x4 standard Latin square design to evaluate the hand held 
communication device. 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 31A: Between-Subjects, 4x4 Latin Square Design'; 
data six; 
input Treatment Subject Color Speaker Key Time; 
lines; 
1 1 1 1 1 15 
1 2 1 1 1 20 
1 3 1 1 1 22 
1 4 1 1 1 18 
2 5 2 1 2 25 
2 6 2 1 2 26 
2 7 2 1 2 30 
2 8 2 1 2 25 
3 9 3 1 3 30 
3 10 3 1 3 32 
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3 11 3 1 3 28 
3 12 3 1 3 32 
4 13 4 1 4 39 
4 14 4 1 4 33 
4 15 4 1 4 28 
4 16 4 1 4 35 
5 17 2 2 1 25 
5 18 2 2 1 37 
5 19 2 2 1 39 
5 20 2 2 1 28 
6 21 3 2 2 35 
6 22 3 2 2 42 
6 23 3 2 2 39 
6 24 3 2 2 40 
7 25 4 2 3 40 
7 26 4 2 3 49 
7 27 4 2 3 42 
7 28 4 2 3 38 
8 29 1 2 4 26 
8 30 1 2 4 35 
8 31 1 2 4 32 
8 32 1 2 4 28 
9 33 3 3 1 30 
9 34 3 3 1 36 
9 35 3 3 1 28 
9 36 3 3 1 32 
10 37 4 3 2 45 
10 38 4 3 2 47 
10 39 4 3 2 44 
10 40 4 3 2 40 
11 41 1 3 3 28 
11 42 1 3 3 35 
11 43 1 3 3 30 
11 44 1 3 3 29 
12 45 2 3 4 38 
12 46 2 3 4 35 
12 47 2 3 4 36 
12 48 2 3 4 38 
13 49 4 4 1 39 
13 50 4 4 1 35 
13 51 4 4 1 38 
13 52 4 4 1 40 
14 53 1 4 2 21 
14 54 1 4 2 30 
14 55 1 4 2 25 
14 56 1 4 2 22 
15 57 2 4 3 15 
15 58 2 4 3 24 
15 59 2 4 3 18 
15 60 2 4 3 30 
16 61 3 4 4 20 
16 62 3 4 4 22 
16 63 3 4 4 15 
16 64 3 4 4 25 
; 
proc glm; 
class Color Speaker Key; 
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model Time = Color Speaker Key Color*Speaker*Key; 
means Color Speaker Key/alpha=0.01; 
run; 
quit; 
 
SAS Output (Part A. Between-Subjects, 4x4 Latin Square Design) 
 
Example 31A: Between-Subjects, 4x4 Latin Square Design                                          1 
                                                                                                   
The GLM Procedure                                                                                  
                                                                                                   
    Class Level Information                                                                        
                                                                                                   
Class         Levels    Values                                                                     
                                                                                                   
Color              4    1 2 3 4                                                                    
                                                                                                   
Speaker            4    1 2 3 4                                                                    
                                                                                                   
Key                4    1 2 3 4                                                                    
                                                                                                   
                                                                                                   
Number of Observations Read          64                                                            
Number of Observations Used          64                                                            
 
                                                                                                   
The GLM Procedure                                                                                  
                                                                                                   
Dependent Variable: Time                                                                           
                                                                                                   
                                        Sum of                                                     
Source                      DF         Squares     Mean Square    F Value    Pr > F                
                                                                                                   
Model                       15     3436.109375      229.073958      14.75    <.0001                
                                                                                                   
Error                       48      745.250000       15.526042                                     
                                                                                                   
Corrected Total             63     4181.359375                                                     
                                                                                                   
                                                                                                   
R-Square     Coeff Var      Root MSE     Time Mean                                                 
                                                                                                   
0.821768      12.59011      3.940310      31.29688                                                 
                                                                                                   
                                                                                                   
Source                      DF       Type I SS     Mean Square    F Value    Pr > F                
                                                                                                   
Color                        3     1602.171875      534.057292      34.40    <.0001                
Speaker                      3     1316.796875      438.932292      28.27    <.0001                
Key                          3      115.171875       38.390625       2.47    0.0729                
Color*Speaker*Key            6      401.968750       66.994792       4.31    0.0015                
                                                                                                   
                                                                                                   
Source                      DF     Type III SS     Mean Square    F Value    Pr > F                
                                                                                                   
Color                        3     1602.171875      534.057292      34.40    <.0001                
Speaker                      3     1316.796875      438.932292      28.27    <.0001                
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Key                          3      115.171875       38.390625       2.47    0.0729                
Color*Speaker*Key            6      401.968750       66.994792       4.31    0.0015                
 
                                                                                                   
The GLM Procedure                                                                                  
                                                                                                   
Level of            -------------Time------------                                                  
Color         N             Mean          Std Dev                                                  
                                                                                                   
1            16       26.0000000       5.92171146                                                  
2            16       29.3125000       7.35498697                                                  
3            16       30.3750000       7.38354025                                                  
4            16       39.5000000       5.31664054                                                  
                                                                                                   
                                                                                                   
Level of            -------------Time------------                                                  
Speaker       N             Mean          Std Dev                                                  
                                                                                                   
1            16       27.3750000       6.42780419                                                  
2            16       35.9375000       6.64799469                                                  
3            16       35.6875000       6.08515954                                                  
4            16       26.1875000       8.27219237                                                  
                                                                                                   
                                                                                                   
Level of            -------------Time------------                                                  
Key           N             Mean          Std Dev                                                  
                                                                                                   
1            16       30.1250000       8.18840644                                                  
2            16       33.5000000       8.94427191                                                  
3            16       31.2500000       8.52838398                                                  
4            16       30.3125000       7.16211096 
 
 
Output Explanation (Part A. Between-Subjects, 4x4 Latin Square Design) 
The p-value of 0.001 for the main effects of Display Color Resolution and Type of Speaker are 
both less than 0.01, leading to the rejection of the null hypothesis. The locus of these two main 
effects requires additional post hoc analyses. In addition, the p = .002 value for Residual (i.e., 
Color*Speaker*Key) is significant at the specified 0.01 level. Consequently, Residual cannot be 
combined with Error to provide a pooled error term. 
 
 
SAS Input (Part B. Within-Subjects, 4x4 Latin Square Design) 
 
Use a within-subjects, 4x4 standard Latin square design to evaluate the hand held 
communication device. 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 31B: Within-Subjects, 4x4 Latin Square Design'; 
data six; 
input Treatment Subject Color Speaker Key Time; 
lines; 
1 1 1 1 1 15 
1 2 1 1 1 20 
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1 3 1 1 1 22 
1 4 1 1 1 18 
2 1 2 1 2 25 
2 2 2 1 2 26 
2 3 2 1 2 30 
2 4 2 1 2 25 
3 1 3 1 3 30 
3 2 3 1 3 32 
3 3 3 1 3 28 
3 4 3 1 3 32 
4 1 4 1 4 39 
4 2 4 1 4 33 
4 3 4 1 4 28 
4 4 4 1 4 35 
5 1 2 2 1 25 
5 2 2 2 1 37 
5 3 2 2 1 39 
5 4 2 2 1 28 
6 1 3 2 2 35 
6 2 3 2 2 42 
6 3 3 2 2 39 
6 4 3 2 2 40 
7 1 4 2 3 40 
7 2 4 2 3 49 
7 3 4 2 3 42 
7 4 4 2 3 38 
8 1 1 2 4 26 
8 2 1 2 4 35 
8 3 1 2 4 32 
8 4 1 2 4 28 
9 1 3 3 1 30 
9 2 3 3 1 36 
9 3 3 3 1 28 
9 4 3 3 1 32 
10 1 4 3 2 45 
10 2 4 3 2 47 
10 3 4 3 2 44 
10 4 4 3 2 40 
11 1 1 3 3 28 
11 2 1 3 3 35 
11 3 1 3 3 30 
11 4 1 3 3 29 
12 1 2 3 4 38 
12 2 2 3 4 35 
12 3 2 3 4 36 
12 4 2 3 4 38 
13 1 4 4 1 39 
13 2 4 4 1 35 
13 3 4 4 1 38 
13 4 4 4 1 40 
14 1 1 4 2 21 
14 2 1 4 2 30 
14 3 1 4 2 25 
14 4 1 4 2 22 
15 1 2 4 3 15 
15 2 2 4 3 24 
15 3 2 4 3 18 
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15 4 2 4 3 30 
16 1 3 4 4 20 
16 2 3 4 4 22 
16 3 3 4 4 15 
16 4 3 4 4 25 
; 
proc glm; 
class Subject Treatment; 
model Time = Subject Treatment Treatment*Subject; 
test h=Treatment e=Treatment*Subject; 
proc glm; 
class Subject Color Speaker Key; 
model Time = Subject Color Speaker Key Color*Speaker*Key Subject*Color 
Subject*Speaker Subject*Key Subject*Color*Speaker*Key; 
means Color Speaker Key/alpha=0.01; 
test h=Color e=Color*Subject; 
test h=Speaker e=Speaker*Subject; 
test h=Key e=Key*Subject; 
test h=Color*Speaker*Key e=Color*Speaker*Key*Subject; 
run; 
quit; 
 
 
SAS Output (Part B. Within-Subjects, 4x4 Latin Square Design) 
 
Example 31B: Within-Subjects, 4x4 Latin Square Design                                          1 
 
The GLM Procedure                                                                                  
                                                                                                   
                    Class Level Information                                                        
                                                                                                   
Class          Levels    Values                                                                    
                                                                                                   
Subject             4    1 2 3 4                                                                   
                                                                                                   
Treatment          16    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16                                    
                                                                                                   
                                                                                                   
Number of Observations Read          64                                                            
Number of Observations Used          64                                                            
 
                                                                                                   
The GLM Procedure                                                                                  
                                                                                                   
Dependent Variable: Time                                                                           
                                                                                                   
                                        Sum of                                                     
Source                      DF         Squares     Mean Square    F Value    Pr > F                
                                                                                                   
Model                       63     4181.359375       66.370784        .       .                    
                                                                                                   
Error                        0        0.000000         .                                           
                                                                                                   
Corrected Total             63     4181.359375                                                     
                                                                                                   
                                                                                                   
R-Square     Coeff Var      Root MSE     Time Mean                                                 
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1.000000           .               .      31.29688                                                 
                                                                                                   
                                                                                                   
Source                      DF       Type I SS     Mean Square    F Value    Pr > F                
                                                                                                   
Subject                      3      144.921875       48.307292        .       .                    
Treatment                   15     3436.109375      229.073958        .       .                    
Subject*Treatment           45      600.328125       13.340625        .       .                    
                                                                                                   
                                                                                                   
Source                      DF     Type III SS     Mean Square    F Value    Pr > F                
                                                                                                   
Subject                      3      144.921875       48.307292        .       .                    
Treatment                   15     3436.109375      229.073958        .       .                    
Subject*Treatment           45      600.328125       13.340625        .       .                    
                                                                                                   
                                                                                                   
 Tests of Hypotheses Using the Type III MS for Subject*Treatment as an Error Term                  
                                                                                                   
Source                      DF     Type III SS     Mean Square    F Value    Pr > F                
                                                                                                   
Treatment                   15     3436.109375      229.073958      17.17    <.0001                
 
                                                                                                   
The GLM Procedure                                                                                  
                                                                                                   
    Class Level Information                                                                        
                                                                                                   
Class         Levels    Values                                                                     
                                                                                                   
Subject            4    1 2 3 4                                                                    
                                                                                                   
Color              4    1 2 3 4                                                                    
                                                                                                   
Speaker            4    1 2 3 4                                                                    
                                                                                                   
Key                4    1 2 3 4                                                                    
                                                                                                   
                                                                                                   
Number of Observations Read          64                                                            
Number of Observations Used          64                                                            
 
                                                                                                   
The GLM Procedure                                                                                  
                                                                                                   
Dependent Variable: Time                                                                           
                                                                                                   
                                        Sum of                                                     
Source                      DF         Squares     Mean Square    F Value    Pr > F                
                                                                                                   
Model                       63     4181.359375       66.370784        .       .                    
                                                                                                   
Error                        0        0.000000         .                                           
                                                                                                   
Corrected Total             63     4181.359375                                                     
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R-Square     Coeff Var      Root MSE     Time Mean                                                 
                                                                                                   
1.000000           .               .      31.29688                                                 
                                                                                                   
                                                                                                   
Source                      DF       Type I SS     Mean Square    F Value    Pr > F                
                                                                                                   
Subject                      3      144.921875       48.307292        .       .                    
Color                        3     1602.171875      534.057292        .       .                    
Speaker                      3     1316.796875      438.932292        .       .                    
Key                          3      115.171875       38.390625        .       .                    
Color*Speaker*Key            6      401.968750       66.994792        .       .                    
Subject*Color                9      170.515625       18.946181        .       .                    
Subject*Speaker              9      194.890625       21.654514        .       .                    
Subject*Key                  9      121.515625       13.501736        .       .                    
Subj*Color*Speak*Key        18      113.406250        6.300347        .       .                    
                                                                                                   
                                                                                                   
Source                      DF     Type III SS     Mean Square    F Value    Pr > F                
                                                                                                   
Subject                      3      144.921875       48.307292        .       .                    
Color                        3     1602.171875      534.057292        .       .                    
Speaker                      3     1316.796875      438.932292        .       .                    
Key                          3      115.171875       38.390625        .       .                    
Color*Speaker*Key            6      401.968750       66.994792        .       .                    
Subject*Color                9      170.515625       18.946181        .       .                    
Subject*Speaker              9      194.890625       21.654514        .       .                    
Subject*Key                  9      121.515625       13.501736        .       .                    
Subj*Color*Speak*Key        18      113.406250        6.300347        .       .                    
 
                                                                                                   
The GLM Procedure                                                                                  
                                                                                                   
Level of            -------------Time------------                                                  
Color         N             Mean          Std Dev                                                  
                                                                                                   
1            16       26.0000000       5.92171146                                                  
2            16       29.3125000       7.35498697                                                  
3            16       30.3750000       7.38354025                                                  
4            16       39.5000000       5.31664054                                                  
                                                                                                   
                                                                                                   
Level of            -------------Time------------                                                  
Speaker       N             Mean          Std Dev                                                  
                                                                                                   
1            16       27.3750000       6.42780419                                                  
2            16       35.9375000       6.64799469                                                  
3            16       35.6875000       6.08515954                                                  
4            16       26.1875000       8.27219237                                                  
                                                                                                   
                                                                                                   
Level of            -------------Time------------                                                  
Key           N             Mean          Std Dev                                                  
                                                                                                   
1            16       30.1250000       8.18840644                                                  
2            16       33.5000000       8.94427191                                                  



Appendix: SAS Examples for Human Factors Experimental Design and Analysis Reference 

 145

3            16       31.2500000       8.52838398                                                  
4            16       30.3125000       7.16211096                                                  
                                                                                                   
The GLM Procedure                                                                                  
                                                                                                   
Dependent Variable: Time                                                                           
                                                                                                   
   Tests of Hypotheses Using the Type III MS for Subject*Color as an Error Term                    
                                                                                                   
Source                      DF     Type III SS     Mean Square    F Value    Pr > F                
                                                                                                   
Color                        3     1602.171875      534.057292      28.19    <.0001                
                                                                                                   
                                                                                                   
  Tests of Hypotheses Using the Type III MS for Subject*Speaker as an Error Term                   
                                                                                                   
Source                      DF     Type III SS     Mean Square    F Value    Pr > F                
                                                                                                   
Speaker                      3     1316.796875      438.932292      20.27    0.0002                
                                                                                                   
                                                                                                   
    Tests of Hypotheses Using the Type III MS for Subject*Key as an Error Term                     
                                                                                                   
Source                      DF     Type III SS     Mean Square    F Value    Pr > F                
                                                                                                   
Key                          3     115.1718750      38.3906250       2.84    0.0979                
                                                                                                   
                                                                                                   
Tests of Hypotheses Using the Type III MS for Subj*Color*Speak*Key as an Error Term                
                                                                                                   
Source                      DF     Type III SS     Mean Square    F Value    Pr > F                
                                                                                                   
Color*Speaker*Key            6     401.9687500      66.9947917      10.63    <.0001 
 
 
Output Explanation (Part B. Within-Subjects, 4x4 Latin Square Design) 
 
The p-value of less than 0.001 for the main effect of Display Color Resolution and the p-value of 
0.002 for the main effect of Type of Speaker are both less than 0.01, leading to the rejection of 
the null hypothesis. The locus of these two main effects requires additional post hoc analyses. 
In addition, the p < 0.0001 value for Residual (i.e., Color*Speaker*Key) is significant at the 
specified 0.01 level. Consequently, Residual cannot be combined with Subject*Color, 
Subjects*Speaker, Subject*Key, and Subject*Color*Speaker*Key to provide a pooled error term. 
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Example 32: Linear Correlation Coefficient 
 

(Click in this red rectangle to see the Reference Notes on Example 32.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 4, Topic 19. Analysis of Covariance (ANCOVA), Part 19.2.1.1. Computational Formulae 
 
Page(s) in Williges (2006) Reference Material: 623-633 
 
Problem Description 
The Army is trying to update their anthropometric database. They are currently recording the 
height, weight, age, and gender of new recruits that are enlisting. First they would like to 
determine the degree of linear relationship of height and weight and if this relationship is 
significant (p < 0.05). 
 
Context/Purpose 
Determine the degree of the linear relationship between the factors to ensure that the 
measurements are valid. 
 
Statistical Decision Criteria 
Calculate the Pearson Product Moment correlation and test for significance. 
 
SAS Input (Part A. Pearson Product Moment Correlation and Significance Test) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 32A: Pearson Product Moment Correlation and Significance Test'; 
data info; 
input height weight; 
lines; 
68 190 
62 133  
71 132  
76 211  
72 200  
67 154  
63 125  
75 158  
78 179  
65 139  
70 188  
69 191  
70 155 
69 140  
64 120  
70 188 
; 
proc corr pearson; 
run; 
quit; 
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SAS Output (Part A. Pearson Product Moment Correlation and Significance Test) 
 
Example 32A: Pearson Product Moment Correlation and Significance Test                        1 
 
The CORR Procedure 
 
   2  Variables:    height   weight 
 
 
                                    Simple Statistics 
 
Variable           N          Mean       Std Dev           Sum       Minimum       Maximum 
 
height            16      69.31250       4.55659          1109      62.00000      78.00000 
weight            16     162.68750      29.57413          2603     120.00000     211.00000 
 
 
Pearson Correlation Coefficients, N = 16 
       Prob > |r| under H0: Rho=0 
 
              height        weight 
 
height       1.00000       0.63451 
                            0.0083 
 
weight       0.63451       1.00000 
              0.0083 

 
Output Explanation (Part A. Pearson Product-Moment Correlation and Significance Test) 
The correlation value (r = 0.635) indicates that the relationship between the two factors, height 
and weight are positively correlated. The p-value (0.0083) is less than the stated value (0.05), 
indicating that it is statistically significant. 
 
 
SAS Input (Part B. Comparison of Two Correlations Significance Test) 
 
The Army would like to further investigate the degree of the relationship between height and 
weight comparing each gender (Female = 1 and Male = 2). Is there a significant difference (p < 
0.05) between the correlations of height and weight for six female (r1 = 0.648) and six male (r2 = 
0.615) soldiers? 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 32B: Comparison of Two Correlations Significance Test'; 
data info; 
input height weight gender; 
lines; 
68 190 1 
62 133 1 
71 132 1 
76 211 1 
72 200 1 
67 154 1 
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63 125 1 
75 158 1 
78 179 2 
65 139 2 
70 188 2 
69 191 2 
70 155 2 
69 140 2 
64 120 2 
70 188 2 
; 
proc corr data=info (where=(gender=1 or gender=2)) fisher; 
var height weight; 
by gender; 
run; 
quit; 
 
 
SAS Output (Part B. Comparison of Two Correlations Significance Test) 
 
Example 32B: Comparison of Two Correlations Significance Test                               1 
 
gender=1 
 
The CORR Procedure 
 
   2  Variables:    height   weight 
 
                                    Simple Statistics 
 
Variable           N          Mean       Std Dev           Sum       Minimum       Maximum 
 
height             8      69.25000       5.17549     554.00000      62.00000      76.00000 
weight             8     162.87500      33.40846          1303     125.00000     211.00000 
 
 
Pearson Correlation Coefficients, N = 8 
       Prob > |r| under H0: Rho=0 
 
              height        weight 
 
height       1.00000       0.64796 
                            0.0823 
 
weight       0.64796       1.00000 
              0.0823 
 
                Pearson Correlation Statistics (Fisher's z Transformation) 
 
            With                         Sample                        Bias    Correlation 
Variable    Variable           N    Correlation    Fisher's z    Adjustment       Estimate 
 
height      weight             8        0.64796       0.77177       0.04628        0.62030 
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Pearson Correlation Statistics (Fisher's z Transformation) 
 
            With                                     p Value for 
Variable    Variable       95% Confidence Limits        H0:Rho=0 
 
height      weight         -0.149892      0.921971        0.0844 
 
 
gender=2 
 
The CORR Procedure 
 
   2  Variables:    height   weight 
 
                                    Simple Statistics 
 
Variable           N          Mean       Std Dev           Sum       Minimum       Maximum 
 
height             8      69.37500       4.20671     555.00000      64.00000      78.00000 
weight             8     162.50000      27.53180          1300     120.00000     191.00000 
 
Pearson Correlation Coefficients, N = 8 
       Prob > |r| under H0: Rho=0 
 
              height        weight 
 
height       1.00000       0.61488 
                            0.1047 
 
weight       0.61488       1.00000 
              0.1047 
 
                Pearson Correlation Statistics (Fisher's z Transformation) 
 
            With                         Sample                        Bias    Correlation 
Variable    Variable           N    Correlation    Fisher's z    Adjustment       Estimate 
 
height      weight             8        0.61488       0.71673       0.04392        0.58682 
 
   Pearson Correlation Statistics (Fisher's z Transformation) 
 
            With                                     p Value for 
Variable    Variable       95% Confidence Limits        H0:Rho=0 
 
height      weight         -0.200942      0.913675        0.1090 

 
 
Output Explanation (Part B. Comparison of Two Correlations Significance Test) 
 
The correlation value (r = 0.648) indicates that the two factors, height and weight, are positively 
correlated when gender is female (gender=1). The p-value (0.082) is greater than the stated 
value (0.05) indicating that it is not statistically significant. The correlation value (r = 0.615) 
indicates that the two factors, height and weight are positively correlated when gender is male 
(gender=2). The p-value (0.105) is greater than the stated value (0.05) indicating that it is not 
statistically significant. SAS does not calculate the significance test of the two correlations. The 
hand calculations can be found in the Williges (2006) reference. 
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Example 33: Alternative Linear Correlations 

 
(Click in this red rectangle to see the Reference Notes on Example 33.) 

 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 4, Topic 19. Analysis of Covariance (ANCOVA), Part 19.2.2. Alternative Correlations 
 
Page(s) in Williges (2006) Reference Material: 636-653 
 
Problem Description 
A study is conducted to determine if there is a relationship between the number of years of 
service for sixteen officers and their current enlistment status (1=enlisted, 0=officer). The gender 
(1=male, 0=female) of the officers and the expected duration (in years) at their current post was 
also recorded. Before defining the full relationship between these factors, the researchers want 
to determine the correlation of these variables. Nonparametric correlations must be used 
because the variables are either dichotomous or rank ordered. 
 
Context/Purpose 
Determine the degree of the linear relationship between the factors of interest. 
 
Statistical Decision Criteria 
Conduct various nonparametric correlations between the classification and rank ordered 
variables to assess the linear relationships among them and conduct partial and part 
correlations to account for the effect of a third variable on the correlation. 
 
SAS Input (Part A. Point Biserial Correlation) 
 
First, the researchers would like to know the degree of the relationship of the officers’ enlistment 
status and the number of years that they have been in the Army which requires a point biserial 
correlation since one variable is continuous and one is dichotomous. 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 33A: Point Biserial Correlation'; 
data info; 
input status years; 
lines; 
1 20 
1 24 
1 27 
0 29 
1 30 
1 31 
1 33 
1 34 
0 35 
1 36 
0 37 
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0 38 
0 39 
0 40 
0 42 
0 44 
; 
proc corr pearson; 
run; 
quit; 
 
SAS Output (Part A. Point Biserial) 
 
Example 33A: Point Biserial Correlation                                                        1 
 
The CORR Procedure 
 
   2  Variables:    status   years 
 
 
                                    Simple Statistics 
 
Variable           N          Mean       Std Dev           Sum       Minimum       Maximum 
 
status            16       0.50000       0.51640       8.00000             0       1.00000 
years             16      33.68750       6.57996     539.00000      20.00000      44.00000 
 
 
Pearson Correlation Coefficients, N = 16 
       Prob > |r| under H0: Rho=0 
 
              status         years 
 
status       1.00000      -0.67689 
                            0.0040 
 
years       -0.67689       1.00000 
              0.0040 

 
Output Explanation (Part A. Point Biserial Correlation) 
For SAS to output the point biserial correlation, a Pearson correlation is conducted where one of 
the variables is dichotomous. The point biserial correlation value (r = -0.677) indicates that the 
variables are negatively correlated. The p-value of the F-test (0.0040) is less than the stated 
value (0.05) indicating that this correlation is statistically significant. 
 
 
SAS Input (Part B. Phi Correlation) 
 
Next, the researchers would like to determine the degree of the relationship between the 
officers’ enlistment status and their gender. Determining the degree of relationship requires a 
phi correlation since both variables are dichotomous. 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 33B: Phi Correlation'; 
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data info; 
input status gender; 
lines; 
1 1 
0 0 
0 0 
1 1 
0 0 
1 0 
1 0 
1 1 
0 1 
0 0 
1 1 
0 1 
1 0 
1 0 
1 1 
0 0 
; 
proc corr pearson; 
run; 
quit; 
 
 
SAS Output (Part B. Phi Correlation) 
 
Example 33B: Phi Correlation                                                                   1 
 
The CORR Procedure 
 
   2  Variables:    status   gender 
 
 
                                    Simple Statistics 
 
Variable           N          Mean       Std Dev           Sum       Minimum       Maximum 
 
status            16       0.56250       0.51235       9.00000             0       1.00000 
gender            16       0.43750       0.51235       7.00000             0       1.00000 
 
 
Pearson Correlation Coefficients, N = 16 
       Prob > |r| under H0: Rho=0 
 
              status        gender 
 
status       1.00000       0.26984 
                            0.3122 
 
gender       0.26984       1.00000 
              0.3122 

 
 
Output Explanation (Part B. Phi Correlation) 
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For SAS to output the Phi correlation, a Pearson correlation is conducted where two of the 
variables are dichotomous. The squared Phi correlation value (r = 0.269) indicates that the 
variables are positively correlated. The p-value of the F-test (0.3122) is greater than the stated 
value (0.05) indicating that the relationship is not statistically significant. 
 
SAS Input (Part C. Spearman Rank-Order, Rho, Correlation) 
 
The number of years of service and the remaining number of months the officers believe they 
will be stationed at their post were converted into rank orders. What is the Spearman rank-order 
correlation between these two rank orders and is this correlation significant (p < 0.05)? 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 33C: Spearman Rho Correlation'; 
data info; 
input years remaining; 
lines; 
1 4 
2 5 
3 6 
4 2 
5 3 
6 10 
7 9 
8 1 
9 14 
10 13 
11 15 
12 16 
13 7 
14 11 
15 12 
16 8 
; 
proc corr data=info spearman; 
var years remaining; 
run; 
quit; 
 
 
SAS Output (Part C. Spearman Rank-Order, Rho, Correlation) 
 
Example 33C: Spearman Rho Correlation                                                          1 
 
The CORR Procedure 
 
   2  Variables:    years     remaining 
 
 
                                     Simple Statistics 
 
Variable            N          Mean       Std Dev        Median       Minimum       Maximum 
 
years              16       8.50000       4.76095       8.50000       1.00000      16.00000 
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remaining          16       8.50000       4.76095       8.50000       1.00000      16.00000 
 
 
 
Spearman Correlation Coefficients, N = 16 
        Prob > |r| under H0: Rho=0 
 
                  years      remaining 
 
years           1.00000        0.57647 
                                0.0194 
 
remaining       0.57647        1.00000 
                 0.0194 

 
Output Explanation (Part C. Spearman Rank-Order, Rho, Correlation) 
The squared Spearman correlation value (r = 0.576) indicates that the variables, years of 
service and time remaining at their current post, are positively correlated. The p-value of the F-
test (0.02) is less than the stated value (0.05) indicating that it is statistically significant. 
 
 
SAS Input (Part D. Partial Correlation) 
 
Next the Army would like to determine the degree of the relationship between height and weight 
when the factor of age is held constant by using a partial correlation. 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 33D: Partial Correlation'; 
data info; 
input height weight age; 
lines; 
68 190 22 
62 133 19 
71 132 18 
76 211 22 
72 200 26 
67 154 19 
63 125 22 
75 158 25 
78 179 19 
65 139 18 
70 188 25 
69 191 18 
70 155 23 
69 140 23 
64 120 20 
70 188 21 
; 
proc corr pearson; 
run; 
proc corr data=info; 
var height weight; 
partial age; 
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run; 
quit; 
 
SAS Output (Part D. Partial Correlation) 
 
Example 33D: Partial Correlation                                                               1 
 
The CORR Procedure 
 
   3  Variables:    height   weight   age 
 
 
                                    Simple Statistics 
 
Variable           N          Mean       Std Dev           Sum       Minimum       Maximum 
 
height            16      69.31250       4.55659          1109      62.00000      78.00000 
weight            16     162.68750      29.57413          2603     120.00000     211.00000 
age               16      21.25000       2.67083     340.00000      18.00000      26.00000 
 
 
   Pearson Correlation Coefficients, N = 16 
           Prob > |r| under H0: Rho=0 
 
              height        weight           age 
 
height       1.00000       0.63451       0.29992 
                            0.0083        0.2591 
 
weight       0.63451       1.00000       0.34710 
              0.0083                      0.1878 
 
age          0.29992       0.34710       1.00000 
              0.2591        0.1878 
 
 
The CORR Procedure 
 
   1 Partial Variables:    age 
   2         Variables:    height   weight 
 
                                    Simple Statistics 
 
Variable           N          Mean       Std Dev           Sum       Minimum       Maximum 
 
age               16      21.25000       2.67083     340.00000      18.00000      26.00000 
height            16      69.31250       4.55659          1109      62.00000      78.00000 
weight            16     162.68750      29.57413          2603     120.00000     211.00000 
 
         Simple Statistics 
 
               Partial       Partial 
Variable      Variance       Std Dev 
 
age 
height        20.24449       4.49939 
weight       824.20110      28.70890 
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Pearson Partial Correlation Coefficients, N = 16 
       Prob > |r| under H0: Partial Rho=0 
 
              height        weight 
 
height       1.00000       0.59286 
                            0.0198 
 
weight       0.59286       1.00000 
              0.0198 
 
 
Output Explanation (Part D. Partial Correlation) 
The correlation value (r = 0.593) indicates that the relationship between height and weight when 
age is held constant is positively correlated. The p-value (0.02) is less than the stated value 
(0.05) indicating that it is statistically significant. 
 
 
SAS Input (Part E. Semi-Partial Correlation) 
 
The Army has studied the correlation between height and weight when age is removed in the 
previous examples, but they would now like to know the correlation between height and weight 
when only the variance in common between weight and age are removed by calculating a semi-
partial correlation. 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 33E: Semi-Partial Correlation'; 
data info; 
input height weight age; 
lines; 
68 190 22 
62 133 19 
71 132 18 
76 211 22 
72 200 26 
67 154 19 
63 125 22 
75 158 25 
78 179 19 
65 139 18 
70 188 25 
69 191 18 
70 155 23 
69 140 23 
64 120 20 
70 188 21 
; 
proc reg data=info; 
model weight= height age/pcorr2 scorr2(tests); 
run; 
quit; 
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SAS Output (Part E. Semi-Partial Correlation) 
 
Example 33E: Semi-Partial Correlation                                                          1 
 
The REG Procedure 
Model: MODEL1 
Dependent Variable: weight 
 
Number of Observations Read          16 
Number of Observations Used          16 
 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     2     5636.29141     2818.14570       4.90    0.0260 
Error                    13     7483.14609      575.62662 
Corrected Total          15          13119 
 
 
Root MSE             23.99222    R-Square     0.4296 
Dependent Mean      162.68750    Adj R-Sq     0.3419 
Coeff Var            14.74743 
 
 
                                   Parameter Estimates 
 
                                                                 Squared 
                 Parameter     Standard                     Semi-partial  ----Type II---- 
Variable   DF     Estimate        Error  t Value  Pr > |t|  Corr Type II  F Value  Pr > F 
 
Intercept   1   -140.05020     96.96051    -1.44    0.1723             .      .     . 
height      1      3.78280      1.42513     2.65    0.0198       0.30913     7.05  0.0198 
age         1      1.90786      2.43134     0.78    0.4467       0.02702     0.62  0.4467 
 
    Parameter Estimates 
 
                    Squared 
                    Partial 
Variable   DF  Corr Type II 
 
Intercept   1             . 
height      1       0.35148 
age         1       0.04522 

 
Output Explanation (Part E. Semi-Partial Correlation) 
The semi-partial (r = 0.556) indicates there is positive relationship between height and weight 
when the correlation between weight and age is removed. The p-value of the F-test (0.02) on 
the squared semi-partial correlation value (r2 = 0.309) is less than the stated value (0.05) 
indicating that it is statistically significant. 
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Example 34: Simple Linear Regression 
 

(Click in this red rectangle to see the Reference Notes on Example 34.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 4, Topic 19. Analysis of Covariance (ANCOVA), Part 19.3.1.2. Calculation Example 
 
Page(s) in Williges (2006) Reference Material: 659-660, 666-669 
 
Problem Description 
The Army is currently recording the height (X) and weight (Y) of new recruits that are enlisting. 
To what extent can weight of Army recruits be predicted by their height and is this prediction 
significant (p < 0.01)? 
 
Context/Purpose 
Determine the extent to which Army recruit weight can be predicted by height. 
 
Statistical Decision Criteria 
Conduct a simple linear regression to predict weight as a function of height and test the 
significance of the prediction at the 0.01 level of significance. 
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 34: Simple Linear Regression'; 
data info; 
input height weight; 
lines; 
68 190 
62 133  
71 132  
76 211  
72 200  
67 154  
63 125  
75 158  
78 179  
65 139  
70 188  
69 191  
70 155 
69 140  
64 120  
70 188  
; 
proc glm data=info; 
model weight=height/alpha=0.05 P; 
output out=prediction 
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 p = predweight; 
run; 
proc corr; 
var weight predweight; 
run; 
quit; 
 
 

SAS Output 
 
Example 34: Simple Linear Regression                                                           1 
 
The GLM Procedure 
 
Number of Observations Read          16 
Number of Observations Used          16 
 
Dependent Variable: weight 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        1      5281.85131      5281.85131       9.43    0.0083 
 
Error                       14      7837.58619       559.82759 
 
Corrected Total             15     13119.43750 
 
 
 
 
R-Square     Coeff Var      Root MSE    weight Mean 
 
0.402597      14.54363      23.66068       162.6875 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
height                       1     5281.851307     5281.851307       9.43    0.0083 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
height                       1     5281.851307     5281.851307       9.43    0.0083 
 
 
                                  Standard 
Parameter         Estimate           Error    t Value    Pr > |t| 
 
Intercept     -122.7553683     93.11749347      -1.32      0.2086 
height           4.1182019      1.34073114       3.07      0.0083 
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Observation             Observed          Predicted           Residual 
 
          1         190.00000000       157.28236002        32.71763998 
          2         133.00000000       132.57314871         0.42685129 
          3         132.00000000       169.63696568       -37.63696568 
          4         211.00000000       190.22797512        20.77202488 
          5         200.00000000       173.75516757        26.24483243 
          6         154.00000000       153.16415814         0.83584186 
          7         125.00000000       136.69135059       -11.69135059 
          8         158.00000000       186.10977323       -28.10977323 
          9         179.00000000       198.46437889       -19.46437889 
         10         139.00000000       144.92775436        -5.92775436 
         11         188.00000000       165.51876380        22.48123620 
         12         191.00000000       161.40056191        29.59943809 
         13         155.00000000       165.51876380       -10.51876380 
         14         140.00000000       161.40056191       -21.40056191 
         15         120.00000000       140.80955248       -20.80955248 
         16         188.00000000       165.51876380        22.48123620 
 
 
Sum of Residuals                          -0.000000 
Sum of Squared Residuals                7837.586193 
Sum of Squared Residuals - Error SS        0.000000 
First Order Autocorrelation                0.151581 
Durbin-Watson D                            1.495776 
 
 
 
The CORR Procedure 
 
   2  Variables:    weight     predweight 
 
 
                                     Simple Statistics 
 
Variable             N          Mean       Std Dev           Sum       Minimum       Maximum 
 
weight              16     162.68750      29.57413          2603     120.00000     211.00000 
predweight          16     162.68750      18.76495          2603     132.57315     198.46438 
 
 
Pearson Correlation Coefficients, N = 16 
       Prob > |r| under H0: Rho=0 
 
                  weight      predweight 
 
weight           1.00000         0.63451 
                                  0.0083 
 
predweight       0.63451         1.00000 
                  0.0083 
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Output Explanation 
 
The least squares solution for predicted weight as a function of height is expressed in a simple 
linear regression equation (Weight = -122.76 + 4.12Height). The results of the ANOVA 
performed on this simple regression show that the partial regression of weight on height is 
significant at the p = 0.0083 level, which is less than the stated value (0.05). Since simple 
regression uses only one predictor, the p-value of the simple linear regression and the 
correlation between height and weight in this example match the p-value and the Pearson 
correlation in Example 31A which used the same data set. 
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Example 35: One-Way, Analysis of Covariance (ANCOVA) 
 

(Click in this red rectangle to see the Reference Notes on Example 35.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 4, Topic 19. Analysis of Covariance (ANCOVA), Part 19.4.1. Basic ANCOVA Design 
 
Page(s) in Williges (2006) Reference Material: 673-682 
 
Problem Description 
An experiment was conducted to study the effects of three different weight training methods 
used during basic training. One group of eight soldiers used basic weight training (A), another 
group of eight soldiers received weight training and aerobic exercise (B), and a third group of 
eight soldiers received weight training and diet control (C). The maximum lifting weight (MLW) of 
the 24 soldiers was measured after two months of training on one of the three methods. A 
covariate, the weight of each subject was measured before measurement of MLW. Were the 
three different weight training methods significantly different (p < 0.05) in terms of MLW? 
 
Context/Purpose 
Determine the differences among three weight lifting training programs in terms of MLW after 
two months of training. 
 
Statistical Decision Criteria 
Conduct a between-subjects ANOVA on the three training programs and conduct an ANCOVA 
on the three training programs using weight of soldier as the covariate. 
 
 
SAS Input (Part A: ANOVA One-Way, Between-Subjects) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 35A: ANOVA One-Way, Between-Subjects Design'; 
data info; 
input  group $ weight MLW; 
lines; 
A 183 240 
A 168 264 
A 220 300 
A 200 342 
A 192 249 
A 178 277 
A 185 285 
A 190 263 
B 200 360 
B 207 295 
B 172 260 
B 188 305 
B 201 340 
B 177 285 
B 171 290 
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B 167 255 
C 182 275 
C 194 307 
C 179 240 
C 213 333 
C 194 248 
C 185 232 
C 183 267 
C 193 289 
; 
proc glm data=info; 
class group weight; 
model MLW = group; 
means group; 
run; 
quit; 
 
 
SAS Output (Part A: ANOVA One-Way, Between-Subjects) 
 
Example 35A: ANOVA One-Way, Between-Subjects Design                                            1 
 
The GLM Procedure 
 
                                    Class Level Information 
 
Class       Levels  Values 
 
group            3  A B C 
 
weight          20  167 168 171 172 177 178 179 182 183 185 188 190 192 193 194 200 201 207 213 
                    220 
 
 
Number of Observations Read          24 
Number of Observations Used          24 
 
Dependent Variable: MLW 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        2      2889.25000      1444.62500       1.22    0.3166 
 
Error                       21     24962.37500      1188.68452 
 
Corrected Total             23     27851.62500 
 
 
R-Square     Coeff Var      Root MSE      MLW Mean 
 
0.103737      12.16667      34.47730      283.3750 
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Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
group                        2     2889.250000     1444.625000       1.22    0.3166 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
group                        2     2889.250000     1444.625000       1.22    0.3166 
 
 
Level of           -------------MLW------------- 
group        N             Mean          Std Dev 
 
A            8       277.500000       32.3684149 
B            8       298.750000       36.2284419 
C            8       273.875000       34.7251967 

 
 
Output Explanation (Part A: ANOVA One-Way, Between-Subjects) 
Based on the ANOVA results there is no significant difference among the three weight training 
programs since the p-value (0.317) is greater than the stated p-value (0.05).   
 
 
SAS Input (Part B: Regression ANOVA One-Way, Between-Subjects) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 35B: Regression ANOVA One-Way, Between-Subjects Design'; 
data info; 
input  group $ weight MLW; 
lines; 
A 183 240 
A 168 264 
A 220 300 
A 200 342 
A 192 249 
A 178 277 
A 185 285 
A 190 263 
B 200 360 
B 207 295 
B 172 260 
B 188 305 
B 201 340 
B 177 285 
B 171 290 
B 167 255 
C 182 275 
C 194 307 
C 179 240 
C 213 333 
C 194 248 
C 185 232 
C 183 267 
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C 193 289 
; 
proc glm data=info; 
model MLW = weight; 
run; 
quit; 
 
 
SAS Output (Part B: Regression ANOVA One-Way, Between-Subjects) 
 
Example 35B: Regression ANOVA One-Way, Between-Subjects Design                                 1 
 
The GLM Procedure 
 
Number of Observations Read          24 
Number of Observations Used          24 
 
Dependent Variable: MLW 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        1      9111.02357      9111.02357      10.70    0.0035 
 
Error                       22     18740.60143       851.84552 
 
Corrected Total             23     27851.62500 
 
 
R-Square     Coeff Var      Root MSE      MLW Mean 
 
0.327127      10.29957      29.18639      283.3750 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
weight                       1     9111.023574     9111.023574      10.70    0.0035 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
weight                       1     9111.023574     9111.023574      10.70    0.0035 
 
 
                                  Standard 
Parameter         Estimate           Error    t Value    Pr > |t| 
 
Intercept      11.37362281     83.38334306       0.14      0.8927 
weight          1.44361633      0.44141656       3.27      0.0035 

 
 
Output Explanation (Part B: Regression ANOVA One-Way, Between-Subjects) 
The partial regression value for soldier weight is significant because the p-value (0.0035) is 
smaller than the stated p-value (0.05). Consequently, weight is a significant covariate. 
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SAS Input (Part C: ANCOVA One-Way, Between-Subjects) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 35C: ANCOVA One-Way, Between-Subjects Design'; 
data info; 
input  group $ weight MLW; 
lines; 
A 183 240 
A 168 264 
A 220 300 
A 200 342 
A 192 249 
A 178 277 
A 185 285 
A 190 263 
B 200 360 
B 207 295 
B 172 260 
B 188 305 
B 201 340 
B 177 285 
B 171 290 
B 167 255 
C 182 275 
C 194 307 
C 179 240 
C 213 333 
C 194 248 
C 185 232 
C 183 267 
C 193 289 
; 
proc glm data=info; 
class group; 
model MLW = group weight; 
lsmeans group/alpha=0.05;  
run;  
quit; 
 
 
SAS Output (Part C: ANCOVA One-Way, Between-Subjects) 
 
Example 35C: ANCOVA One-Way, Between-Subjects Design                                           1 
 
The GLM Procedure 
 
   Class Level Information 
 
Class         Levels    Values 
 
group              3    A B C 
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Number of Observations Read          24 
Number of Observations Used          24 
 
Dependent Variable: MLW 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        3     14023.05219      4674.35073       6.76    0.0025 
 
Error                       20     13828.57281       691.42864 
 
Corrected Total             23     27851.62500 
 
 
R-Square     Coeff Var      Root MSE      MLW Mean 
 
0.503491      9.279234      26.29503      283.3750 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
group                        2      2889.25000      1444.62500       2.09    0.1500 
weight                       1     11133.80219     11133.80219      16.10    0.0007 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
group                        2      4912.02861      2456.01431       3.55    0.0479 
weight                       1     11133.80219     11133.80219      16.10    0.0007 
 
Least Squares Means 
 
group      MLW LSMEAN 
 
A          275.748163 
B          303.668620 
C          270.708217 
 

 
Output Explanation (Part C: ANCOVA One-Way, Between-Subjects) 
 
The ANCOVA shows a significant difference among training groups on the maximum lifting 
weight since the p-value (0.0479) is less than the stated p-value (0.05) when adjusted for the 
covariate of soldier weight. The three training group means (i.e., A = 275.75, B = 303.67, and C 
= 270.71) are adjusted for the significant covariate, soldier weight. Post hoc analysis on the 
adjusted means for the three training conditions is needed to isolate these differences. 
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Section 5. Empirical Model Building 
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Example 36: Multiple Linear Regression 
 

(Click in this red rectangle to see the Reference Notes on Example 36.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 5, Topic 22. Multiple Regression, Part 22.2.3. Multiple Regression Example 
 
Page(s) in Williges (2006) Reference Material: 732-736 
 
Problem Description 
The commander’s combat operation performance in a battalion level command and control 
center for the Army is scored on a 100 point scale. Scores of fifteen battalion commanders are 
predicted as a function of four command and control tasks. The predictors are the time to 
complete Recognition, Decision, Communication, and, Evaluation tasks. What is the linear 
relationship of these four tasks on predicting the performance score? Are any of these 
predictors significant (p < 0.05)? 
 
Context/Purpose 
Determine the predictive relationship of Recognition, Decision, Communication, and Evaluation 
task completion times on a commander’s combat operation performance score. 
 
Statistical Decision Criteria 
Conduct a multiple linear regression using the four task completion times as predictors of 
combat operation performance and test the significance of each partial regression weight at the 
0.05 level of significance. 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 36: Multiple Regression'; 
data info; 
input rec dec com eval score; 
lines; 
56 47 59 55 76 
60 49 57 53 80 
59 50 64 57 86 
52 55 52 54 75 
51 45 55 58 66 
54 58 53 60 76 
60 49 57 62 90 
57 50 54 53 71 
58 53 56 54 77 
53 57 53 56 79 
63 45 54 51 83 
54 53 55 50 70 
58 50 58 55 76 
60 50 57 55 75 
55 56 50 53 73 
; 
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proc glm data=info; 
model score = rec dec com eval/XPX I; 
run; 
quit; 
 
 
SAS Output 
 
Example 36: Multiple Regression                                                                1 
 
The GLM Procedure 
 
Number of Observations Read          15 
Number of Observations Used          15 
 
                                      The X'X Matrix 
 
                 Intercept          rec          dec          com         eval        score 
 
Intercept               15          850          767          834          826         1153 
rec                    850        48334        43371        47332        46788        65532 
dec                    767        43371        39453        42552        42247        58922 
com                    834        47332        42552        46528        45959        64234 
eval                   826        46788        42247        45959        45628        63592 
score                 1153        65532        58922        64234        63592        89159 
 
 
                                    X'X Inverse Matrix 
 
                 Intercept          rec          dec          com         eval        score 
 
Intercept     97.010904214 -0.521298757 -0.560280652 -0.377620494 -0.322504682  -85.82673826 
rec           -0.521298757  0.008647366  0.002120518 -0.003052919  0.001681497    1.3955088796 
dec           -0.560280652  0.002120518  0.006343533  0.002973381 -0.000900147    0.4819552613 
com           -0.377620494 -0.003052919  0.002973381  0.010132472 -0.002992466    0.28959255 
eval          -0.322504682  0.001681497 -0.000900147 -0.002992466  0.007983567    0.7784971601 
score        -85.82673826   1.395508879  0.481955261  0.28959255   0.7784971601 161.09415695 
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Dependent Variable: score 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        4     370.6391764      92.6597941       5.75    0.0114 
 
Error                       10     161.0941570      16.1094157 
 
Corrected Total             14     531.7333333 
 
 
R-Square     Coeff Var      Root MSE    score Mean 
 
0.697040      5.221579      4.013654      76.86667 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
rec                          1     228.0185923     228.0185923      14.15    0.0037 
dec                          1      29.1946675      29.1946675       1.81    0.2080 
com                          1      37.5127582      37.5127582       2.33    0.1580 
eval                         1      75.9131583      75.9131583       4.71    0.0551 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
rec                          1     225.2067152     225.2067152      13.98    0.0039 
dec                          1      36.6169526      36.6169526       2.27    0.1626 
com                          1       8.2767401       8.2767401       0.51    0.4899 
eval                         1      75.9131583      75.9131583       4.71    0.0551 
 
 
                                  Standard 
Parameter         Estimate           Error    t Value    Pr > |t| 
 
Intercept     -85.82673826     39.53212596      -2.17      0.0551 
rec             1.39550888      0.37323454       3.74      0.0039 
dec             0.48195526      0.31967268       1.51      0.1626 
com             0.28959255      0.40401512       0.72      0.4899 
eval            0.77849716      0.35862321       2.17      0.0551 
 

 
Output Explanation 
 
The multiple linear regression equation of the four task completion times used to predict the 
overall combat performance score is: Performance Score = -85.83 + 1.40rec + 0.48dec + 
0.29com + 0.78eval. The ANOVA on regression indicated that this multiple regression predicts a 
significant amount of combat performance score variance since the obtained p-value (0.0114) is 
less than the stated value (0.05). In addition, only the partial regression weight for Recognition 
task completion time is significant (p = 0.0039), given that the other three predictors are present 
in the multiple regression equation. 
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Example 37: Best Regression Equation 
 

(Click in this red rectangle to see the Reference Notes on Example 37.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 5, Topic 22. Multiple Regression, Part 22.2.5. Best Equation Example 
 
Page(s) in Williges (2006) Reference Material: 745-752 
 
Problem Description 
The commander’s combat operation performance in a battalion level command and control 
center for the Army is scored on a 100 point scale. Scores of fifteen battalion commanders are 
predicted as a function of four command and control tasks. The predictors are the time to 
complete Recognition, Decision, Communication, and, Evaluation tasks. What is the best set of 
significant linear predictors to use in the prediction equation (p < 0.05)?  
 
Context/Purpose 
Determine the best subset of four task completion time predictors used to predict a 
commander’s combat operation performance score. 
 
Statistical Decision Criteria 
Use a variety of classical and modern regression procedures to choose the overall best subset 
of four completion task times to use as predictors in the multiple linear regression equation. 
 
SAS Input (Part A. Backward Selection) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 37A: Best Equation: Backward Selection'; 
data info; 
input rec dec com eval score; 
lines; 
56 47 59 55 76 
60 49 57 53 80 
59 50 64 57 86 
52 55 52 54 75 
51 45 55 58 66 
54 58 53 60 76 
60 49 57 62 90 
57 50 54 53 71 
58 53 56 54 77 
53 57 53 56 79 
63 45 54 51 83 
54 53 55 50 70 
58 50 58 55 76 
60 50 57 55 75 
55 56 50 53 73 
; 
proc reg corr data=info; 
model score = rec dec com eval/selection=b slstay=0.05 alpha=0.05; 
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run; 
quit; 
 
SAS Output (Part A. Backward Selection) 
 
Example 37A: Best Equation: Backward Selection                                                 1 
 
The REG Procedure 
 
Number of Observations Read          15 
Number of Observations Used          15 
 
 
                                         Correlation 
 
Variable              rec              dec              com             eval            score 
 
rec                1.0000          -0.4669           0.4434          -0.1207           0.6548 
dec               -0.4669           1.0000          -0.4856           0.0595          -0.0985 
com                0.4434          -0.4856           1.0000           0.2225           0.4394 
eval              -0.1207           0.0595           0.2225           1.0000           0.3632 
score              0.6548          -0.0985           0.4394           0.3632           1.0000 
 
 
Dependent Variable: score 
 
Number of Observations Read          15 
Number of Observations Used          15 
 
Backward Elimination: Step 0 
 
 
All Variables Entered: R-Square = 0.6970 and C(p) = 5.0000 
 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     4      370.63918       92.65979       5.75    0.0114 
Error                    10      161.09416       16.10942 
Corrected Total          14      531.73333 
 
 
             Parameter     Standard 
Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
Intercept    -85.82674     39.53213     75.93197     4.71  0.0551 
rec            1.39551      0.37323    225.20672    13.98  0.0039 
dec            0.48196      0.31967     36.61695     2.27  0.1626 
com            0.28959      0.40402      8.27674     0.51  0.4899 
eval           0.77850      0.35862     75.91316     4.71  0.0551 
 
Bounds on condition number: 1.5969, 22.671 
------------------------------------------------------------------------------------------------ 
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Backward Elimination: Step 1 
 
Variable com Removed: R-Square = 0.6815 and C(p) = 3.5138 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     3      362.36244      120.78748       7.84    0.0045 
Error                    11      169.37090       15.39735 
Corrected Total          14      531.73333 
 
 
Dependent Variable: score 
 
Backward Elimination: Step 1 
 
             Parameter     Standard 
Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
Intercept    -75.03410     35.73541     67.88376     4.41  0.0596 
rec            1.48276      0.34494    284.51389    18.48  0.0013 
dec            0.39697      0.29024     28.80436     1.87  0.1987 
eval           0.86402      0.33063    105.14918     6.83  0.0241 
 
Bounds on condition number: 1.2931, 10.76 
------------------------------------------------------------------------------------------------ 
 
Backward Elimination: Step 2 
 
 
Variable dec Removed: R-Square = 0.6273 and C(p) = 3.3018 
 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     2      333.55808      166.77904      10.10    0.0027 
Error                    12      198.17526       16.51460 
Corrected Total          14      531.73333 
 
 
             Parameter     Standard 
Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
Intercept    -42.42082     27.56566     39.11015     2.37  0.1498 
rec            1.26389      0.31647    263.40870    15.95  0.0018 
eval           0.86562      0.34242    105.53948     6.39  0.0265 
 
Bounds on condition number: 1.0148, 4.0591 
------------------------------------------------------------------------------------------------ 
 
All variables left in the model are significant at the 0.0500 level. 
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Dependent Variable: score 
 
                          Summary of Backward Elimination 
 
        Variable     Number     Partial      Model 
Step    Removed      Vars In    R-Square    R-Square     C(p)      F Value    Pr > F 
 
  1     com              3       0.0156      0.6815      3.5138       0.51    0.4899 
  2     dec              2       0.0542      0.6273      3.3018       1.87    0.1987 
 
 
Output Explanation (Part A. Backward Selection)      
The backward selection begins with all of the parameters in the model and compares it to a 
specified level of 0.05. If the parameter is less than the specified value, it remains in the model 
and the next parameter is removed and the new model is tested. The best relationship between 
performance time and recognition, decision, communication, and evaluation tasks is explained 
by the following multiple linear regression model: Performance Score = -42.42 + 1.26rec + 
0.86eval. The communication and decision task predictors were eliminated because the p-
values (0.49 and 0.19) are greater than the criterion value (0.05). The p-value for the new model 
(0.0005) is statistically significant at the 0.05 level. 
 
 
SAS Input (Part B. Forward Selection) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 37B: Best Equation: Forward Selection'; 
data info; 
input rec dec com eval score; 
lines; 
56 47 59 55 76 
60 49 57 53 80 
59 50 64 57 86 
52 55 52 54 75 
51 45 55 58 66 
54 58 53 60 76 
60 49 57 62 90 
57 50 54 53 71 
58 53 56 54 77 
53 57 53 56 79 
63 45 54 51 83 
54 53 55 50 70 
58 50 58 55 76 
60 50 57 55 75 
55 56 50 53 73 
; 
proc reg corr data=info; 
model score = rec dec com eval/selection=f slentry=0.05 alpha=0.05; 
run; 
quit; 
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SAS Output (Part B. Forward Selection) 
 
Example 37B: Best Equation: Forward Selection                                                 1 
 
The REG Procedure 
 
Number of Observations Read          15 
Number of Observations Used          15 
 
 
                                         Correlation 
 
Variable              rec              dec              com             eval            score 
 
rec                1.0000          -0.4669           0.4434          -0.1207           0.6548 
dec               -0.4669           1.0000          -0.4856           0.0595          -0.0985 
com                0.4434          -0.4856           1.0000           0.2225           0.4394 
eval              -0.1207           0.0595           0.2225           1.0000           0.3632 
score              0.6548          -0.0985           0.4394           0.3632           1.0000 
 
Forward Selection: Step 1 
 
Variable rec Entered: R-Square = 0.4288 and C(p) = 7.8532 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1      228.01859      228.01859       9.76    0.0081 
Error                    13      303.71474       23.36267 
Corrected Total          14      531.73333 
 
 
             Parameter     Standard 
Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
Intercept     10.71793     21.21049      5.96544     0.26  0.6218 
rec            1.16733      0.37365    228.01859     9.76  0.0081 
 
Bounds on condition number: 1, 1 
------------------------------------------------------------------------------------------------ 
 
Forward Selection: Step 2 
 
Variable eval Entered: R-Square = 0.6273 and C(p) = 3.3018 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     2      333.55808      166.77904      10.10    0.0027 
Error                    12      198.17526       16.51460 
Corrected Total          14      531.73333 
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Forward Selection: Step 2 
 
             Parameter     Standard 
Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
Intercept    -42.42082     27.56566     39.11015     2.37  0.1498 
rec            1.26389      0.31647    263.40870    15.95  0.0018 
eval           0.86562      0.34242    105.53948     6.39  0.0265 
 
Bounds on condition number: 1.0148, 4.0591 
------------------------------------------------------------------------------------------------ 
 
 
No other variable met the 0.0500 significance level for entry into the model. 
 
 
 
                            Summary of Forward Selection 
 
        Variable     Number     Partial      Model 
Step    Entered      Vars In    R-Square    R-Square     C(p)      F Value    Pr > F 
 
  1     rec              1       0.4288      0.4288      7.8532       9.76    0.0081 
  2     eval             2       0.1985      0.6273      3.3018       6.39    0.0265 
 
 
Output Explanation (Part B. Forward Selection) 
Forward selection begins with no parameters in the model. It adds one parameter and then 
compares the F-test to the specified value (0.05). If the F-test is less then the specified value, 
the parameter is added and the next one is tested. The parameters meeting this criterion are 
included in the final multiple regression model (Performance Score = -42.42 + 1.26rec + 
0.87eval). The obtained p-value for this model (0.0027) is significant at the stated 0.05 level. 
 
 
SAS Input (Part C. Stepwise Selection) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 37C: Best Equation: Stepwise Selection'; 
data info; 
input rec dec com eval score; 
lines; 
56 47 59 55 76 
60 49 57 53 80 
59 50 64 57 86 
52 55 52 54 75 
51 45 55 58 66 
54 58 53 60 76 
60 49 57 62 90 
57 50 54 53 71 
58 53 56 54 77 
53 57 53 56 79 
63 45 54 51 83 
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54 53 55 50 70 
58 50 58 55 76 
60 50 57 55 75 
55 56 50 53 73 
; 
proc reg corr data=info; 
model score = rec dec com eval/selection=stepwise slstay=0.05 slentry=0.10 
alpha=0.05; 
run; 
quit; 
 
SAS Output (Part C. Stepwise Selection) 
 
Example 37C: Best Equation: Stepwise Selection                                                 1 
 
The REG Procedure 
 
Number of Observations Read          15 
Number of Observations Used          15 
 
                                         Correlation 
 
Variable              rec              dec              com             eval            score 
 
rec                1.0000          -0.4669           0.4434          -0.1207           0.6548 
dec               -0.4669           1.0000          -0.4856           0.0595          -0.0985 
com                0.4434          -0.4856           1.0000           0.2225           0.4394 
eval              -0.1207           0.0595           0.2225           1.0000           0.3632 
score              0.6548          -0.0985           0.4394           0.3632           1.0000 
 
 
Stepwise Selection: Step 1 
 
 
Variable rec Entered: R-Square = 0.4288 and C(p) = 7.8532 
 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1      228.01859      228.01859       9.76    0.0081 
Error                    13      303.71474       23.36267 
Corrected Total          14      531.73333 
 
 
             Parameter     Standard 
Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
Intercept     10.71793     21.21049      5.96544     0.26  0.6218 
rec            1.16733      0.37365    228.01859     9.76  0.0081 
 
Bounds on condition number: 1, 1 
------------------------------------------------------------------------------------------------ 
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Stepwise Selection: Step 2 
 
Variable eval Entered: R-Square = 0.6273 and C(p) = 3.3018 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     2      333.55808      166.77904      10.10    0.0027 
Error                    12      198.17526       16.51460 
Corrected Total          14      531.73333 
 
 
             Parameter     Standard 
Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
Intercept    -42.42082     27.56566     39.11015     2.37  0.1498 
rec            1.26389      0.31647    263.40870    15.95  0.0018 
eval           0.86562      0.34242    105.53948     6.39  0.0265 
 
Bounds on condition number: 1.0148, 4.0591 
------------------------------------------------------------------------------------------------ 
 
 
All variables left in the model are significant at the 0.0500 level. 
 
No other variable met the 0.1000 significance level for entry into the model. 
 
                              Summary of Stepwise Selection 
 
       Variable    Variable    Number    Partial     Model 
Step   Entered     Removed     Vars In   R-Square   R-Square    C(p)     F Value   Pr > F 
 
  1    rec                         1      0.4288     0.4288     7.8532      9.76   0.0081 
  2    eval                        2      0.1985     0.6273     3.3018      6.39   0.0265 
 
 
Output Explanation (Part C. Stepwise Selection) 
The stepwise procedure first determines if the parameter should stay in the model and then 
determines other parameters that should be added. This iterative procedure continues until all 
the resulting subset of predictors are significant at the 0.05 level of significance. The best 
resulting multiple regression equation using the stepwise procedure is: Performance Score =     
-42.42 + 1.26rec + 0.87eval. 
 
SAS Input (Part D. All Possible Regressions) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 37D: Best Equation: All Possible Regressions'; 
data info; 
input rec dec com eval score; 
lines; 
56 47 59 55 76 
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60 49 57 53 80 
59 50 64 57 86 
52 55 52 54 75 
51 45 55 58 66 
54 58 53 60 76 
60 49 57 62 90 
57 50 54 53 71 
58 53 56 54 77 
53 57 53 56 79 
63 45 54 51 83 
54 53 55 50 70 
58 50 58 55 76 
60 50 57 55 75 
55 56 50 53 73 
; 
proc reg corr data=info; 
model score = rec dec com eval/selection=rsquare alpha=0.05; 
run; 
quit; 
 
SAS Output (Part D. All Possible Regressions) 
 
Example 37D: Best Equation: All Possible Regressions                                           1 
 
The REG Procedure 
 
Number of Observations Read          15 
Number of Observations Used          15 
 
 
                                         Correlation 
 
Variable              rec              dec              com             eval            score 
 
rec                1.0000          -0.4669           0.4434          -0.1207           0.6548 
dec               -0.4669           1.0000          -0.4856           0.0595          -0.0985 
com                0.4434          -0.4856           1.0000           0.2225           0.4394 
eval              -0.1207           0.0595           0.2225           1.0000           0.3632 
score              0.6548          -0.0985           0.4394           0.3632           1.0000 
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Number in 
  Model      R-Square    Variables in Model 
 
       1       0.4288    rec 
       1       0.1931    com 
       1       0.1319    eval 
       1       0.0097    dec 
------------------------------------------- 
       2       0.6273    rec eval 
       2       0.4837    rec dec 
       2       0.4565    rec com 
       2       0.2672    com eval 
       2       0.2103    dec com 
       2       0.1464    dec eval 
------------------------------------------- 
       3       0.6815    rec dec eval 
       3       0.6282    rec com eval 
       3       0.5543    rec dec com 
       3       0.2735    dec com eval 
------------------------------------------- 
       4       0.6970    rec dec com eval 
 

 
Output Explanation (Part D. All Possible Regressions) 
The R2 value for the model that includes all four parameters is the largest (0.70) thus indicating 
that all four should be included in the model. The relationship between combat performance as 
predicted by recognition, decision, communication, and evaluation task completion times is 
expressed in the following multiple linear regression equation: Performance Score = -85.83 + 
1.40rec + 0.48dec + 0.30com + 0.78eval which is equivalent to the multiple regression 
conducted in Example 35. 
 
SAS Input (Part E. PRESS Statistic) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 37E: Best Equation: PRESS Statistic'; 
data info; 
input rec dec com eval score; 
lines; 
56 47 59 55 76 
60 49 57 53 80 
59 50 64 57 86 
52 55 52 54 75 
51 45 55 58 66 
54 58 53 60 76 
60 49 57 62 90 
57 50 54 53 71 
58 53 56 54 77 
53 57 53 56 79 
63 45 54 51 83 
54 53 55 50 70 
58 50 58 55 76 
60 50 57 55 75 
55 56 50 53 73 
; 
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proc reg corr data=info; 
model score = rec/p; 
output Residual=Residual PRESS=PressRes; 
model score = rec eval/p; 
output Residual=Residual PRESS=PressRes; 
model score = rec dec eval/p; 
output Residual=Residual PRESS=PressRes; 
model score = rec dec com eval/p; 
output Residual=Residual PRESS=PressRes; 
proc print; 
run; 
quit; 
 
SAS Output (Part E. PRESS Statistic) 
 
Example 37E: Best Equation: PRESS Statistic                                                    1 
 
The REG Procedure 
 
Number of Observations Read          15 
Number of Observations Used          15 
 
                                         Correlation 
 
Variable              rec            score             eval              dec              com 
 
rec                1.0000           0.6548          -0.1207          -0.4669           0.4434 
score              0.6548           1.0000           0.3632          -0.0985           0.4394 
eval              -0.1207           0.3632           1.0000           0.0595           0.2225 
dec               -0.4669          -0.0985           0.0595           1.0000          -0.4856 
com                0.4434           0.4394           0.2225          -0.4856           1.0000 
 
------------------------------------------------------------------------------------------------ 
Model: MODEL 1 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1      228.01859      228.01859       9.76    0.0081 
Error                    13      303.71474       23.36267 
Corrected Total          14      531.73333 
 
 
Root MSE              4.83349    R-Square     0.4288 
Dependent Mean       76.86667    Adj R-Sq     0.3849 
Coeff Var             6.28815 
 
 
                        Parameter Estimates 
 
                     Parameter       Standard 
Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
Intercept     1       10.71793       21.21049       0.51      0.6218 
rec           1        1.16733        0.37365       3.12      0.0081 
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               Output Statistics 
 
            Dependent    Predicted 
     Obs     Variable        Value     Residual 
 
       1      76.0000      76.0884      -0.0884 
       2      80.0000      80.7578      -0.7578 
       3      86.0000      79.5904       6.4096 
       4      75.0000      71.4191       3.5809 
       5      66.0000      70.2518      -4.2518 
       6      76.0000      73.7538       2.2462 
       7      90.0000      80.7578       9.2422 
       8      71.0000      77.2558      -6.2558 
       9      77.0000      78.4231      -1.4231 
      10      79.0000      72.5865       6.4135 
      11      83.0000      84.2598      -1.2598 
      12      70.0000      73.7538      -3.7538 
      13      76.0000      78.4231      -2.4231 
      14      75.0000      80.7578      -5.7578 
      15      73.0000      74.9211      -1.9211 
 
Sum of Residuals                           0 
Sum of Squared Residuals           303.71474 
Predicted Residual SS (PRESS)      404.53009 
 
------------------------------------------------------------------------------------------------ 
Model: MODEL2 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     2      333.55808      166.77904      10.10    0.0027 
Error                    12      198.17526       16.51460 
Corrected Total          14      531.73333 
 
 
Root MSE              4.06382    R-Square     0.6273 
Dependent Mean       76.86667    Adj R-Sq     0.5652 
Coeff Var             5.28684 
 
 
                        Parameter Estimates 
 
                     Parameter       Standard 
Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
Intercept     1      -42.42082       27.56566      -1.54      0.1498 
rec           1        1.26389        0.31647       3.99      0.0018 
eval          1        0.86562        0.34242       2.53      0.0265 
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Model: MODEL2 
Dependent Variable: score 
 
               Output Statistics 
 
            Dependent    Predicted 
     Obs     Variable        Value     Residual 
 
       1      76.0000      75.9664       0.0336 
       2      80.0000      79.2907       0.7093 
       3      86.0000      81.4893       4.5107 
       4      75.0000      70.0452       4.9548 
       5      66.0000      72.2438      -6.2438 
       6      76.0000      77.7667      -1.7667 
       7      90.0000      87.0813       2.9187 
       8      71.0000      75.4990      -4.4990 
       9      77.0000      77.6285      -0.6285 
      10      79.0000      73.0403       5.9597 
      11      83.0000      81.3511       1.6489 
      12      70.0000      69.1105       0.8895 
      13      76.0000      78.4942      -2.4942 
      14      75.0000      81.0219      -6.0219 
      15      73.0000      72.9712       0.0288 
 
Sum of Residuals                           0 
Sum of Squared Residuals           198.17526 
Predicted Residual SS (PRESS)      326.63522 
 
------------------------------------------------------------------------------------------------ 
Model: MODEL3 
Dependent Variable: score 
 
Number of Observations Read          15 
Number of Observations Used          15 
 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     3      362.36244      120.78748       7.84    0.0045 
Error                    11      169.37090       15.39735 
Corrected Total          14      531.73333 
 
 
Root MSE              3.92395    R-Square     0.6815 
Dependent Mean       76.86667    Adj R-Sq     0.5946 
Coeff Var             5.10487 
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                        Parameter Estimates 
 
                     Parameter       Standard 
Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
Intercept     1      -75.03410       35.73541      -2.10      0.0596 
rec           1        1.48276        0.34494       4.30      0.0013 
dec           1        0.39697        0.29024       1.37      0.1987 
eval          1        0.86402        0.33063       2.61      0.0241 
 
 
               Output Statistics 
 
            Dependent    Predicted 
     Obs     Variable        Value     Residual 
 
       1      76.0000      74.1797       1.8203 
       2      80.0000      79.1767       0.8233 
       3      86.0000      81.5470       4.4530 
       4      75.0000      70.5604       4.4396 
       5      66.0000      68.5640      -2.5640 
       6      76.0000      79.9010      -3.9010 
       7      90.0000      86.9529       3.0471 
       8      71.0000      75.1254      -4.1254 
       9      77.0000      78.6631      -1.6631 
      10      79.0000      74.5652       4.4348 
      11      83.0000      80.3090       2.6910 
      12      70.0000      69.2759       0.7241 
      13      76.0000      78.3362      -2.3362 
      14      75.0000      81.3017      -6.3017 
      15      73.0000      74.5417      -1.5417 
 
Sum of Residuals                           0 
Sum of Squared Residuals           169.37090 
Predicted Residual SS (PRESS)      413.80891 
 
------------------------------------------------------------------------------------------------ 
Model: MODEL4 
 
Number of Observations Read          15 
Number of Observations Used          15 
 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     4      370.63918       92.65979       5.75    0.0114 
Error                    10      161.09416       16.10942 
Corrected Total          14      531.73333 
 
 
Root MSE              4.01365    R-Square     0.6970 
Dependent Mean       76.86667    Adj R-Sq     0.5759 
Coeff Var             5.22158 
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                        Parameter Estimates 
 
                     Parameter       Standard 
Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
Intercept     1      -85.82674       39.53213      -2.17      0.0551 
rec           1        1.39551        0.37323       3.74      0.0039 
dec           1        0.48196        0.31967       1.51      0.1626 
com           1        0.28959        0.40402       0.72      0.4899 
eval          1        0.77850        0.35862       2.17      0.0551 
 
 
               Output Statistics 
 
            Dependent    Predicted 
     Obs     Variable        Value     Residual 
 
       1      76.0000      74.8770       1.1230 
       2      80.0000      79.2867       0.7133 
       3      86.0000      83.5143       2.4857 
       4      75.0000      70.3449       4.6551 
       5      66.0000      68.1126      -2.1126 
       6      76.0000      79.5424      -3.5424 
       7      90.0000      86.2932       3.7068 
       8      71.0000      74.7134      -3.7134 
       9      77.0000      78.9124      -1.9124 
      10      79.0000      74.5509       4.4491 
      11      83.0000      79.1197       3.8803 
      12      70.0000      69.9268       0.0732 
      13      76.0000      78.8243      -2.8243 
      14      75.0000      81.3257      -6.3257 
      15      73.0000      73.6557      -0.6557 
 
Sum of Residuals                           0 
Sum of Squared Residuals           161.09416 
Predicted Residual SS (PRESS)      504.76277 
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Example 36E: Best Equation: PRESS Statistic                                                   
 
Obs    rec    dec    com    eval    score    Residual    PressRes 
 
  1     56     47     59     55       76      1.12304      1.4758 
  2     60     49     57     53       80      0.71327      0.8445 
  3     59     50     64     57       86      2.48569      6.2314 
  4     52     55     52     54       75      4.65508      6.0419 
  5     51     45     55     58       66     -2.11263    -10.1015 
  6     54     58     53     60       76     -3.54238     -6.2746 
  7     60     49     57     62       90      3.70680      8.5234 
  8     57     50     54     53       71     -3.71338     -4.2290 
  9     58     53     56     54       77     -1.91244     -2.1930 
 10     53     57     53     56       79      4.44907      5.7759 
 11     63     45     54     51       83      3.88034      9.5846 
 12     54     53     55     50       70      0.07318      0.1154 
 13     58     50     58     55       76     -2.82425     -3.1626 
 14     60     50     57     55       75     -6.32568     -7.3258 
 15     55     56     50     53       73     -0.65572     -0.9364 
 
 
Output Explanation (Part E. PRESS Statistic) 
The PRESS statistic is used to evaluate each possible variable and determine which should be 
included in the model by comparing how well it will predict the observed scores. The model with 
the smallest PRESS statistic should be selected for use. In this example the second model is 
the best equation since the PRESS statistic (326.64) is the smallest. The preferred model is 
Performance Score = -42.42 + 1.26rec + 0.87eval with a p-value (0.0027) less than 0.05, 
indicating that it is statistically significant. 
 
SAS Input (Part F. Mallows Cp) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 37F: Best Equation: Mallows C(p)'; 
data info; 
input rec dec com eval score; 
lines; 
56 47 59 55 76 
60 49 57 53 80 
59 50 64 57 86 
52 55 52 54 75 
51 45 55 58 66 
54 58 53 60 76 
60 49 57 62 90 
57 50 54 53 71 
58 53 56 54 77 
53 57 53 56 79 
63 45 54 51 83 
54 53 55 50 70 
58 50 58 55 76 
60 50 57 55 75 
55 56 50 53 73 
; 
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proc reg corr data=info; 
model score = rec dec com eval/selection=cp alpha=0.05; 
run; 
quit; 
 
SAS Output (Part F. Mallows Cp) 
 
Example 37F: Best Equation: Mallows C(p)                                                       1 
 
The REG Procedure 
 
Number of Observations Read          15 
Number of Observations Used          15 
 
 
                                         Correlation 
 
Variable              rec              dec              com             eval            score 
 
rec                1.0000          -0.4669           0.4434          -0.1207           0.6548 
dec               -0.4669           1.0000          -0.4856           0.0595          -0.0985 
com                0.4434          -0.4856           1.0000           0.2225           0.4394 
eval              -0.1207           0.0595           0.2225           1.0000           0.3632 
score              0.6548          -0.0985           0.4394           0.3632           1.0000 
 
 
C(p) Selection Method 
 
Number of Observations Read          15 
Number of Observations Used          15 
 
 
 
Number in 
  Model          C(p)    R-Square    Variables in Model 
 
       2       3.3018      0.6273    rec eval 
       3       3.5138      0.6815    rec dec eval 
       4       5.0000      0.6970    rec dec com eval 
       3       5.2730      0.6282    rec com eval 
       3       7.7123      0.5543    rec dec com 
       1       7.8532      0.4288    rec 
       2       8.0410      0.4837    rec dec 
       2       8.9403      0.4565    rec com 
       2      15.1880      0.2672    com eval 
       1      15.6347      0.1931    com 
       3      16.9798      0.2735    dec com eval 
       2      17.0650      0.2103    dec com 
       1      17.6531      0.1319    eval 
       2      19.1751      0.1464    dec eval 
       1      21.6872      0.0097    dec 
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Output Explanation (Part F. Mallows Cp) 
Each of the parameters is added to the model and the Mallows Cp value is calculated. The 
model with the Mallows Cp value that is closest to the number of parameters minus one (p-1) is 
selected as best fit. For this example, three parameters (4-1=3) are closest to the Mallows Cp 
value of 3.30 from the second model. Consequently, the resulting best multiple linear regression 
model is: Performance Score = -42.42 + 1.26rec + 0.87eval. 
 
Overall Choice of Best Regression Equation 
 
The multiple linear regression equation of Performance Score = -42.42 + 1.26rec + 0.87eval 
was selected as the best equation using the forward selection, backward selection, stepwise, 
PRESS statistic, and the Mallow’s Cp tests. The all possible selection method included all four 
variables in the best equation (Performance Score = -85.83 + 1.40rec + 0.48dec + 0.30com + 
0.78eval). Based on all these procedures, the overall best consensus multiple linear regression 
equation seems to be the regression with only two predictors: Performance Score = -42.42 + 
1.26rec + 0.87eval. 
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Example 38: Polynomial Regression 
 

(Click in this red rectangle to see the Reference Notes on Example 38.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 5, Topic 22. Multiple Regression, Part 22.3.2. Polynomial Regression Example 
 
Page(s) in Williges (2006) Reference Material: 756-763 
 
Problem Description 
A between-subjects experiment (n = 4) was conducted to build an empirical model of soldier 
percent reading comprehension of text presented on computer displays as a function of possible 
first- and second-order effects involving two different sizes of computer monitors (17 and 21 
inch) and three different font sizes (12, 16, and 18 point). What is the resulting second-order 
model and were any first- and second-order parameters significant predictors (p < 0.01)? 
 
Context/Purpose 
Determine an empirical model that includes first and second order parameters to predict reading 
comprehension as a function of monitor size and font size. 
 
Statistical Decision Criteria 
Use polynomial regression to generate the empirical model and test the significance of the 
partial regression weights included in the model at the 0.01 level of significance. 
 
SAS Input (Part A. Two-Factor ANOVA) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 38A: Polynomial Regression: Two-Factor ANOVA'; 
data six; 
input Subject Monitor Font Reading; 
lines; 
1 17 12 35 
2 17 12 42 
3 17 12 39 
4 17 12 40 
5 21 12 50 
6 21 12 47 
7 21 12 49 
8 21 12 52 
9 17 16 39 
10 17 16 44 
11 17 16 38 
12 17 16 45 
13 21 16 49 
14 21 16 52 
15 21 16 54 
16 21 16 48 
17 17 18 47 
18 17 18 46 
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19 17 18 50 
20 17 18 44 
21 21 18 46 
22 21 18 50 
23 21 18 49 
24 21 18 47 
; 
proc glm data=six; 
class Monitor Font Subject; 
model Reading = Monitor Font Monitor*Font; 
means Monitor Font Monitor*Font; 
run; 
quit; 
 
SAS Output (Part A. Two-Factor ANOVA) 
 
Example 38A: Polynomial Regression: Two-Factor ANOVA                                           1 
 
The GLM Procedure 
 
                                Class Level Information 
 
Class         Levels    Values 
 
Monitor            2    17 21 
 
Font               3    12 16 18 
 
Subject           24    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
 
 
Number of Observations Read          24 
Number of Observations Used          24 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        5     434.3333333      86.8666667      12.26    <.0001 
 
Error                       18     127.5000000       7.0833333 
 
Corrected Total             23     561.8333333 
 
 
R-Square     Coeff Var      Root MSE    Reading Mean 
 
0.773064      5.796268      2.661453        45.91667 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
Monitor                      1     294.0000000     294.0000000      41.51    <.0001 
Font                         2      39.5833333      19.7916667       2.79    0.0877 
Monitor*Font                 2     100.7500000      50.3750000       7.11    0.0053 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
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Monitor                      1     294.0000000     294.0000000      41.51    <.0001 
Font                         2      39.5833333      19.7916667       2.79    0.0877 
Monitor*Font                 2     100.7500000      50.3750000       7.11    0.0053 
 
 
Level of            -----------Reading----------- 
Monitor       N             Mean          Std Dev 
 
17           12       42.4166667       4.33711956 
21           12       49.4166667       2.35326981 
 
 
Level of           -----------Reading----------- 
Font         N             Mean          Std Dev 
 
12           8       44.2500000       6.08863109 
16           8       46.1250000       5.74300817 
18           8       47.3750000       2.13390989 
 
 
Level of     Level of           -----------Reading----------- 
Monitor      Font         N             Mean          Std Dev 
 
17           12           4       39.0000000       2.94392029 
17           16           4       41.5000000       3.51188458 
17           18           4       46.7500000       2.50000000 
21           12           4       49.5000000       2.08166600 
21           16           4       50.7500000       2.75378527 
21           18           4       48.0000000       1.82574186 
 
Output Explanation (Part A. Two-Factor ANOVA) 
A two-factor ANOVA was conducted to determine if there is a significant difference between 
monitor size and font size, as well as if there is any significance due to the interaction of these 
parameters. The analysis indicates that the monitor size has a significant effect on reading 
comprehension since the p-value (<0.0001) is less than the stated value (0.01). There is also an 
effect due to the interaction of monitor and font size (p-value = 0.0053). Post hoc analysis is 
required to determine which levels of monitor and font size interaction have an effect on reading 
comprehension. Subsequently, the data from this factorial design is used to generate an 
empirical model of these effects using polynomial regression. 
 
 
SAS Input (Part B. Complete Model) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 38B: Polynomial Regression: Complete Model'; 
data six; 
input Subject Monitor Font Reading; 
lines; 
1 17 12 35 
2 17 12 42 
3 17 12 39 
4 17 12 40 
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5 21 12 50 
6 21 12 47 
7 21 12 49 
8 21 12 52 
9 17 16 39 
10 17 16 44 
11 17 16 38 
12 17 16 45 
13 21 16 49 
14 21 16 52 
15 21 16 54 
16 21 16 48 
17 17 18 47 
18 17 18 46 
19 17 18 50 
20 17 18 44 
21 21 18 46 
22 21 18 50 
23 21 18 49 
24 21 18 47 
; 
proc glm data=six; 
model Reading = Monitor Font Font*Font Monitor*Font Monitor*Font*Font; 
run; 
quit; 
 
SAS Output (Part B. Complete Model) 
 
Example 38B: Polynomial Regression: Complete Model                                             1 
 
The GLM Procedure 
 
Number of Observations Read          24 
Number of Observations Used          24 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        5     434.3333333      86.8666667      12.26    <.0001 
 
Error                       18     127.5000000       7.0833333 
 
Corrected Total             23     561.8333333 
 
 
R-Square     Coeff Var      Root MSE    Reading Mean 
 
0.773064      5.796268      2.661453        45.91667 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
Monitor                      1     294.0000000     294.0000000      41.51    <.0001 
Font                         1      39.3601190      39.3601190       5.56    0.0299 
Font*Font                    1       0.2232143       0.2232143       0.03    0.8611 
Monitor*Font                 1      69.6696429      69.6696429       9.84    0.0057 
Monitor*Font*Font            1      31.0803571      31.0803571       4.39    0.0506 
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Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
Monitor                      1     19.06831267     19.06831267       2.69    0.1182 
Font                         1     26.41791445     26.41791445       3.73    0.0694 
Font*Font                    1     31.29063112     31.29063112       4.42    0.0499 
Monitor*Font                 1     26.53812944     26.53812944       3.75    0.0688 
Monitor*Font*Font            1     31.08035714     31.08035714       4.39    0.0506 
 
 
                                          Standard 
Parameter                 Estimate           Error    t Value    Pr > |t| 
 
Intercept              536.4375000     302.0210784       1.78      0.0926 
Monitor                -25.9375000      15.8085058      -1.64      0.1182 
Font                   -80.5156250      41.6917134      -1.93      0.0694 
Font*Font                2.9453125       1.4013385       2.10      0.0499 
Monitor*Font             4.2239583       2.1822440       1.94      0.0688 
Monitor*Font*Font       -0.1536458       0.0733494      -2.09      0.0506 
 
Output Explanation (Part B. Complete Model) 
The prediction of reading comprehension as a function of monitor size (M) and font size (F) is 
explained by the complete polynomial regression model: Reading Comprehension = 536.43 – 
25.94M – 80.51F + 2.95F2 + 4.22MF – 0.15MF2. This model is statistically significant since the 
p-value (>0.001) is less than the stated level (0.01) as determined by the ANOVA on regression. 
Again, there is a significant effect due to the size of the monitor (p-value <0.001) and the linear 
by linear component of the interaction of monitor and font size (p-value = 0.0057). The 
MF2partial regression weight is a third-order effect that should be removed if only a model 
involving first and second-order effects is needed.  
 
 
SAS Input (Part C. Second-Order Model) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 38C: Polynomial Regression: Second-Order Model'; 
data six; 
input Subject Monitor Font Reading; 
lines; 
1 17 12 35 
2 17 12 42 
3 17 12 39 
4 17 12 40 
5 21 12 50 
6 21 12 47 
7 21 12 49 
8 21 12 52 
9 17 16 39 
10 17 16 44 
11 17 16 38 
12 17 16 45 
13 21 16 49 
14 21 16 52 
15 21 16 54 
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16 21 16 48 
17 17 18 47 
18 17 18 46 
19 17 18 50 
20 17 18 44 
21 21 18 46 
22 21 18 50 
23 21 18 49 
24 21 18 47 
; 
proc glm data=six; 
model Reading = Monitor Font Font*Font Monitor*Font; 
run; 
quit; 
 
SAS Output (Part C. Second-Order Model) 
 
Example 38C: Polynomial Regression: Second-Order Model                                         1 
 
The GLM Procedure 
 
Number of Observations Read          24 
Number of Observations Used          24 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        4     403.2529762     100.8132440      12.08    <.0001 
 
Error                       19     158.5803571       8.3463346 
 
Corrected Total             23     561.8333333 
 
 
R-Square     Coeff Var      Root MSE    Reading Mean 
 
0.717745      6.291838      2.889002        45.91667 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
Monitor                      1     294.0000000     294.0000000      35.23    <.0001 
Font                         1      39.3601190      39.3601190       4.72    0.0428 
Font*Font                    1       0.2232143       0.2232143       0.03    0.8718 
Monitor*Font                 1      69.6696429      69.6696429       8.35    0.0094 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
Monitor                      1     120.8181235     120.8181235      14.48    0.0012 
Font                         1      11.7784128      11.7784128       1.41    0.2495 
Font*Font                    1       0.2232143       0.2232143       0.03    0.8718 
Monitor*Font                 1      69.6696429      69.6696429       8.35    0.0094 
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                                     Standard 
Parameter            Estimate           Error    t Value    Pr > |t| 
 
Intercept        -89.12053571     48.94070999      -1.82      0.0844 
Monitor            6.98660714      1.83631920       3.80      0.0012 
Font               6.22842262      5.24303290       1.19      0.2495 
Font*Font          0.02604167      0.15924129       0.16      0.8718 
Monitor*Font      -0.34151786      0.11820600      -2.89      0.0094 
 
 
Output Explanation (Part C. Second-Order Model) 
The resulting polynomial regression model predicting reading comprehension as a function of 
first- and second-order effects of monitor size (M), font size (F) is: Reading Comprehension =    
-89.12 + 6.99M +6.23F + 0.03F2 – 0.34MF. This model is statistically significant since the p < 
0.0001 level is less than the stated level (p < 0.01). Again, there is a significant effect due to the 
size of the monitor (p = 0.0012) and the interaction of monitor and font size (p = 0.0094). Note 
that the R2 coefficient of determination decreases as the order of the model decreases from the 
previous complete polynomial regression model and the beta weight change due to covariance 
among higher-order effects. 
 
 
SAS Input (Part D. Lack of Fit) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 38D: Polynomial Regression: Lack of Fit'; 
data six; 
input Subject Monitor Font Reading; 
lines; 
1 17 12 35 
2 17 12 42 
3 17 12 39 
4 17 12 40 
5 21 12 50 
6 21 12 47 
7 21 12 49 
8 21 12 52 
9 17 16 39 
10 17 16 44 
11 17 16 38 
12 17 16 45 
13 21 16 49 
14 21 16 52 
15 21 16 54 
16 21 16 48 
17 17 18 47 
18 17 18 46 
19 17 18 50 
20 17 18 44 
21 21 18 46 
22 21 18 50 
23 21 18 49 
24 21 18 47 
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; 
proc rsreg data=six; 
model Reading = Monitor Font /lackfit; 
run; 
quit; 
 
SAS Output (Part D. Lack of Fit) 
 
Example 38D: Polynomial Regression: Lack of Fit                                                1 
 
The RSREG Procedure 
 
Coding Coefficients for the Independent Variables 
 
Factor     Subtracted off      Divided by 
 
Monitor         19.000000        2.000000 
Font            15.000000        3.000000 
 
 
 Response Surface for Variable Reading 
 
Response Mean                  45.916667 
Root MSE                        2.889002 
R-Square                          0.7177 
Coefficient of Variation          6.2918 
 
 
                            Type I Sum 
Regression          DF      of Squares    R-Square    F Value    Pr > F 
 
Linear               2      333.360119      0.5933      19.97    <.0001 
Quadratic            1        0.223214      0.0004       0.03    0.8718 
Crossproduct         1       69.669643      0.1240       8.35    0.0094 
Total Model          4      403.252976      0.7177      12.08    <.0001 
 
 
                               Sum of 
Residual           DF         Squares     Mean Square    F Value    Pr > F 
 
Lack of Fit         1       31.080357       31.080357       4.39    0.0506 
Pure Error         18      127.500000        7.083333 
Total Error        19      158.580357        8.346335 
 
 
                                                                                   Parameter 
                                                                                    Estimate 
                                             Standard                             from Coded 
Parameter          DF        Estimate           Error    t Value    Pr > |t|            Data 
 
Intercept           1      -89.120536       48.940710      -1.82      0.0844       45.578125 
Monitor             1        6.986607        1.836319       3.80      0.0012        3.727679 
Font                1        6.228423        5.243033       1.19      0.2495        1.562500 
Monitor*Monitor     0               0               .        .         .                   0 
Font*Monitor        1       -0.341518        0.118206      -2.89      0.0094       -2.049107 
Font*Font           1        0.026042        0.159241       0.16      0.8718        0.234375 
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                        Sum of 
Factor      DF         Squares     Mean Square    F Value    Pr > F 
 
Monitor      2      363.669643      181.834821      21.79    <.0001 
Font         3      109.252976       36.417659       4.36    0.0169 
 
Canonical Analysis of Response Surface Based on Coded Data 
 
                  Critical Value 
Factor            Coded         Uncoded 
 
Monitor        1.178678       21.357355 
Font           1.819172       20.457516 
 
Predicted value at stationary point: 49.196219 
 
                        Eigenvectors 
 Eigenvalues         Monitor            Font 
 
    1.148421       -0.665718        0.746203 
   -0.914046        0.746203        0.665718 
 
     Stationary point is a saddle point. 
 
 
Output Explanation (Part D. Lack of Fit) 
The second-order model is exactly the same as calculated in Part C. An ANOVA on regression 
shows that the composite of the two linear components of the model (p < 0.001) is significant at 
the 0.01 level, and that the cross product model is also significant (p = 0.0094). The error due to 
lack of fit (p = 0.051) which is a third-order component is not significant (p>0.01) in the 
polynomial model. 
 
 
Summary of Polynomial Regression Example 
Shown below a partially revised ANOVA summary table that uses the information provided by 
the SAS output. The complete revised ANOVA summary table for this design can be found in 
the Williges (2006) reference. The empirical model describing reading comprehension is:   
Reading Comprehension = -89.12 + 6.99M +6.23F – 0.03F2 – 0.34MF as shown in Parts C and 
D. 
 

Revised ANOVA Summary Table (Second-Order Empirical Model) 
 
                            Type I Sum 
Source              DF      of Squares    F Value    Pr > F 
Model              (4)   (403.252976)    (12.08)    (<.0001) 
 Monitor            1     294.000000      35.23      <.0001 
 Font               1      39.360119       4.72      0.0428 
 Font*Font          1       0.223214       0.03      0.8718 
 Monitor*Font       1      69.669643       8.35      0.0094 
Error             (19)    (158.58036)       
 Lack of Fit        1      31.080357       4.39      0.0506 
 Pure Error        18     127.500000         
Corrected Total    23     561.8333333 
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Example 39: Orthogonal, Between-Subjects, Central-Composite Design 
 

(Click in this red rectangle to see the Reference Notes on Example 39.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 5, Topic 23. Central-Composite Designs (CCD), Part 23.4.1. Between-Subjects 
Example 
 
Page(s) in Williges (2006) Reference Material: 796-801 
 
Problem Description 
A computer-generated Army surveillance display is tested to predict the effects of three target 
characteristics on the probability of target detection. The three parameters of interest are target 
size, target density, and target velocity. Forty-five soldiers were tested in a between-subjects, 
orthogonal, central-composite design. Is the complete orthogonal, second-order empirical model 
significant (p < 0.05)? Which predictors are significant and do significant higher-order predictors 
exist (p < 0.05)? 
 
Context/Purpose 
Develop a complete second-order empirical model that predicts the probability of target 
detection as a function of target size, target density, and target velocity. 
 
Statistical Decision Criteria 
Use an orthogonal, second-order, between-subjects central-composite design to develop the 
polynomial regression model and conduct an ANOVA on regression to test for significance at 
the 0.05 level. The coded value of α is set at ±1.216 to keep the partial regression weight 
orthogonal in the second-order empirical model. 
 
 
SAS Input (Part A. Between-Subjects Coded) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 39A: Orthogonal, Between-Subjects-Subjects, Central-Composite 
Design (Coded)'; 
data info; 
input Subject Size Density Velocity Probability; 
lines; 
1  1  -1   1  0.70 
2  1  -1   1  0.82 
3  1  -1   1  0.78 
4  1   1  -1  0.63 
5  1   1  -1  0.44 
6  1   1  -1  0.52 
7 -1   1   1  0.65 
8 -1   1   1  0.67 
9 -1   1   1  0.86 
10 -1  -1  -1  0.30 
11 -1  -1  -1  0.45 
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12 -1  -1  -1  0.26 
13 -1   1  -1  0.49 
14 -1   1  -1  0.58 
15 -1   1  -1  0.47 
16 -1  -1   1  0.48 
17 -1  -1   1  0.56 
18 -1  -1   1  0.35 
19  1  -1  -1  0.53 
20  1  -1  -1  0.74 
21  1  -1  -1  0.63 
22  1   1   1  0.85 
23  1   1   1  0.98 
24  1   1   1  0.81 
25 -1.216  0   0  0.36 
26 -1.216  0   0  0.47 
27 -1.216  0   0  0.55 
28  0  -1.216  0  0.53 
29  0  -1.216  0  0.74 
30  0  -1.216  0  0.60 
31  0   0  -1.216 0.58 
32  0   0  -1.216 0.35 
33  0   0  -1.216 0.25 
34   1.216  0   0  0.77 
35  1.216  0    0  0.93 
36  1.216  0   0  0.81 
37  0   1.216  0  0.62 
38  0   1.216  0  0.93 
39  0   1.216  0  0.68 
40  0   0   1.216 0.86 
41  0   0   1.216 0.94 
42  0   0   1.216 0.96 
43   0   0    0  0.75 
43  0   0   0  0.73 
45  0   0        0  0.62 
; 
proc glm data=info; 
model Probability= Size Density Velocity Size*Density Size*Velocity 
Density*Velocity Size*Size Density*Density Velocity*Velocity; 
proc rsreg data=info; 
model Probability= Size Density Velocity/LACKFIT; 
run; 
quit; 
 
 
SAS Output (Part A. Between-Subjects Coded) 
 
Example 39A: Orthogonal, Between-Subjects-Subjects, Central-Composite Design (Coded)            1 
 
The GLM Procedure 
 
Number of Observations Read          45 
Number of Observations Used          45 
Dependent Variable: Probability 
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                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        9      1.25816155      0.13979573      11.26    <.0001 
Error                       35      0.43456290      0.01241608 
Corrected Total             44      1.69272444 
 
 
R-Square     Coeff Var      Root MSE    Probability Mean 
 
0.743276      17.54456      0.111427            0.635111 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
Size                         1      0.41288853      0.41288853      33.25    <.0001 
Density                      1      0.09722840      0.09722840       7.83    0.0083 
Velocity                     1      0.58662015      0.58662015      47.25    <.0001 
Size*Density                 1      0.06933750      0.06933750       5.58    0.0238 
Size*Velocity                1      0.00770417      0.00770417       0.62    0.4362 
Density*Velocity             1      0.03450417      0.03450417       2.78    0.1044 
Size*Size                    1      0.02525858      0.02525858       2.03    0.1626 
Density*Density              1      0.00537412      0.00537412       0.43    0.5149 
Velocity*Velocity            1      0.01924592      0.01924592       1.55    0.2214 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
Size                         1      0.41288853      0.41288853      33.25    <.0001 
Density                      1      0.09722840      0.09722840       7.83    0.0083 
Velocity                     1      0.58662015      0.58662015      47.25    <.0001 
Size*Density                 1      0.06933750      0.06933750       5.58    0.0238 
Size*Velocity                1      0.00770417      0.00770417       0.62    0.4362 
Density*Velocity             1      0.03450417      0.03450417       2.78    0.1044 
Size*Size                    1      0.02532309      0.02532309       2.04    0.1621 
Density*Density              1      0.00539361      0.00539361       0.43    0.5141 
Velocity*Velocity            1      0.01924592      0.01924592       1.55    0.2214 
 
 
Dependent Variable: Probability 
 
 
                                          Standard 
Parameter                 Estimate           Error    t Value    Pr > |t| 
 
Intercept             0.7100326514      0.04237199      16.76      <.0001 
Size                  0.1120737154      0.01943478       5.77      <.0001 
Density               0.0543856011      0.01943478       2.80      0.0083 
Velocity              0.1335875076      0.01943478       6.87      <.0001 
Size*Density          -.0537500000      0.02274504      -2.36      0.0238 
Size*Velocity         0.0179166667      0.02274504       0.79      0.4362 
Density*Velocity      0.0379166667      0.02274504       1.67      0.1044 
Size*Size             -.0439565503      0.03077922      -1.43      0.1621 
Density*Density       -.0202864066      0.03077922      -0.66      0.5141 
Velocity*Velocity     -.0383208018      0.03077922      -1.25      0.2214 
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The RSREG Procedure 
 
Coding Coefficients for the Independent Variables 
 
Factor      Subtracted off      Divided by 
 
Size                     0        1.216000 
Density                  0        1.216000 
Velocity                 0        1.216000 
 
 
Response Surface for Variable Probability 
 
Response Mean                   0.635111 
Root MSE                        0.111427 
R-Square                          0.7433 
Coefficient of Variation         17.5446 
 
 
                            Type I Sum 
Regression          DF      of Squares    R-Square    F Value    Pr > F 
 
Linear               3        1.096737      0.6479      29.44    <.0001 
Quadratic            3        0.049879      0.0295       1.34    0.2774 
Crossproduct         3        0.111546      0.0659       2.99    0.0438 
Total Model          9        1.258162      0.7433      11.26    <.0001 
 
 
                               Sum of 
Residual           DF         Squares     Mean Square    F Value    Pr > F 
 
Lack of Fit         5        0.113096        0.022619       2.11    0.0915 
Pure Error         30        0.321467        0.010716 
Total Error        35        0.434563        0.012416 
 
                                                                                     Parameter 
                                                                                      Estimate 
                                               Standard                             from Coded 
Parameter            DF        Estimate           Error    t Value    Pr > |t|            Data 
 
Intercept             1        0.710033        0.042372      16.76      <.0001        0.710033 
Size                  1        0.112074        0.019435       5.77      <.0001        0.136282 
Density               1        0.054386        0.019435       2.80      0.0083        0.066133 
Velocity              1        0.133588        0.019435       6.87      <.0001        0.162442 
Size*Size             1       -0.043957        0.030779      -1.43      0.1621       -0.064997 
Density*Size          1       -0.053750        0.022745      -2.36      0.0238       -0.079478 
Density*Density       1       -0.020286        0.030779      -0.66      0.5141       -0.029997 
Velocity*Size         1        0.017917        0.022745       0.79      0.4362        0.026493 
Velocity*Density      1        0.037917        0.022745       1.67      0.1044        0.056066 
Velocity*Velocity     1       -0.038321        0.030779      -1.25      0.2214       -0.056663 
 
                         Sum of 
Factor       DF         Squares     Mean Square    F Value    Pr > F 
 
Size          4        0.515253        0.128813      10.37    <.0001 
Density       4        0.206464        0.051616       4.16    0.0074 
Velocity      4        0.648074        0.162019      13.05    <.0001 
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 Canonical Analysis of Response Surface Based on Coded Data 
 
                   Critical Value 
Factor             Coded         Uncoded 
 
Size            9.961250       12.112880 
Density       -15.954920      -19.401183 
Velocity       -4.131266       -5.023620 
 
Predicted value at stationary point: 0.525681 
 
 
                                Eigenvectors 
 Eigenvalues            Size         Density        Velocity 
 
    0.001174       -0.444288        0.841895        0.306302 
   -0.046952        0.578941        0.008886        0.815321 
   -0.105878        0.683693        0.539568       -0.491355 
 
             Stationary point is a saddle point. 
 

 
Output Explanation (Part A. Between-Subjects Coded) 
By using coded-values of levels in the polynomial regression, the complete, second-order, 
empirical model that predicts the probability of target detection (P) as a function of the three 
display variables is: P = 0.7100 + 0.1121(Size) + 0.0544(Density) + 0.1336(Velocity) – 
0.0538(Size x Density) + 0.0179(Size x Velocity) + 0.0379(Density x Velocity) - 0.0440(Size2) – 
0.0203(Density2) - 0.0383(Velocity2). The p-value for the model (<0.001) is less than the 
specified significance level (0.05). Therefore, the relationship describing the decision rate is 
statistically significant. The R2 value (0.74) indicates that approximately 74% of the variation in 
probability of target detection is accounted for by the second-order empirical model. The 
predictors for target size, density, and velocity are all significant at the 0.05 level and the linear 
by linear predictor of size x density is also significant in this model (p = 0.024). Shown below is 
a partially revised ANOVA summary table that uses the information provided by SAS. The 
complete ANOVA summary table for this design can be found in the Williges (2006). 
 
 

CCD Revised ANOVA Summary Table (Orthogonal Coded Between-Subjects Design) 
 
                           Type III Sum 
Source              DF      of Squares    F Value    Pr > F 
Model              (9)    (1.25816155)   (11.26)    (<.0001) 
 Size               1      0.41288853     33.25      <.0001 
 Density            1      0.09722840      7.83      0.0083 
 Velocity           1      0.58662015     47.25      <.0001 
 Size*Density       1      0.06933750      5.58      0.0238 
 Size*Velocity      1      0.00770417      0.62      0.4362 
 Density*Velocity   1      0.03450417      2.78      0.1044 
 Size*Size          1      0.02532309      2.04      0.1621 
 Density*Density    1      0.00539361      0.43      0.5141 
 Velocity*Velocity  1      0.01924592      1.55      0.2214 
Total Error       (35)    (0.434563)         
 Lack of Fit        5      0.113096        2.11      0.0915 
 Pure Error        30      0.321467            
Corrected Total    44      1.692724 
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SAS Input (Part B. Between-Subjects Raw Scores) 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 

Level 

Target 
Size 

(pixels) 

Target 
Density 

(# per hour) 

Target 
Velocity 

(Km per hour) 
-1.216 11 11 8 

-1 12 12 10 
0 18 16 20 
1 24 20 30 

1.216 25 21 32 
 
 
options nodate nocenter pageno=1; 
title'Example 39B: Orthogonal, Between-Subjects-Subjects, Central-Composite 
Design (Raw Score)'; 
data info; 
input Subject Size Density Velocity Probability; 
lines; 
1 24 12 30  0.70 
2 24 12 30  0.82 
3 24 12 30  0.78 
4 24 20 10  0.63 
5 24 20 10  0.44 
6 24 20 10  0.52 
7 12 20 30  0.65 
8 12 20 30  0.67 
9 12 20 30  0.86 
10 12 12 10  0.30 
11 12 12 10  0.45 
12 12 12 10  0.26 
13 12 20 10  0.49 
14 12 20 10  0.58 
15 12 20 10  0.47 
16 12 12 30  0.48 
17 12 12 30  0.56 
18 12 12 30  0.35 
19 24 12 10  0.53 
20 24 12 10  0.74 
21 24 12 10  0.63 
22 24 20 30  0.85 
23 24 20 30  0.98 
24 24 20 30  0.81 
25 11 16 20  0.36 
26 11 16 20  0.47 
27 11 16 20  0.55 
28 18 11 20  0.53 
29 18 11 20  0.74 
30 18 11 20  0.60 
31 18 16 8  0.58 
32 18 16 8  0.35 
33 18 16 8  0.25 
34  25 16 20  0.77 
35 25 16 20  0.93 
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36 25 16 20  0.81 
37 18 21 20  0.62 
38 18 21 20  0.93 
39 18 21 20  0.68 
40 18 16 32  0.86 
41 18 16 32  0.94 
42 18 16 32  0.96 
43  18 16 20  0.75 
43 18 16 20  0.73 
45 18 16 20  0.62 
; 
proc glm data=info; 
model Probability= Size Density Velocity Size*Density Size*Velocity 
Density*Velocity Size*Size Density*Density Velocity*Velocity; 
proc rsreg data=info; 
model Probability= Size Density Velocity/LACKFIT; 
run; 
quit; 
 
 
SAS Output (Part B. Between-Subjects Raw Score) 
 
Example 39B: Orthogonal, Between-Subjects-Subjects, Central-Composite Design (Raw Score)        1 
 
The GLM Procedure 
 
Number of Observations Read          45 
Number of Observations Used          45 
 
Dependent Variable: Probability 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        9      1.25196924      0.13910769      11.05    <.0001 
 
Error                       35      0.44075521      0.01259301 
 
Corrected Total             44      1.69272444 
 
 
R-Square     Coeff Var      Root MSE    Probability Mean 
 
0.739618      17.66912      0.112219            0.635111 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
Size                         1      0.40926848      0.40926848      32.50    <.0001 
Density                      1      0.09707865      0.09707865       7.71    0.0088 
Velocity                     1      0.58400600      0.58400600      46.38    <.0001 
Size*Density                 1      0.06933750      0.06933750       5.51    0.0247 
Size*Velocity                1      0.00770417      0.00770417       0.61    0.4394 
Density*Velocity             1      0.03450417      0.03450417       2.74    0.1068 
Size*Size                    1      0.02820012      0.02820012       2.24    0.1435 
Density*Density              1      0.00393044      0.00393044       0.31    0.5799 
Velocity*Velocity            1      0.01793972      0.01793972       1.42    0.2407 
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Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
Size                         1      0.08385942      0.08385942       6.66    0.0142 
Density                      1      0.01498329      0.01498329       1.19    0.2828 
Velocity                     1      0.00264703      0.00264703       0.21    0.6494 
Size*Density                 1      0.06933750      0.06933750       5.51    0.0247 
Size*Velocity                1      0.00770417      0.00770417       0.61    0.4394 
Density*Velocity             1      0.03450417      0.03450417       2.74    0.1068 
Size*Size                    1      0.02552432      0.02552432       2.03    0.1634 
Density*Density              1      0.00420672      0.00420672       0.33    0.5670 
Velocity*Velocity            1      0.01793972      0.01793972       1.42    0.2407 
 
 
                                          Standard 
Parameter                 Estimate           Error    t Value    Pr > |t| 
 
Intercept             -1.189941916      0.65442552      -1.82      0.0776 
Size                   0.094616417      0.03666530       2.58      0.0142 
Density                0.069643079      0.06384680       1.09      0.2828 
Velocity               0.007852595      0.01712766       0.46      0.6494 
Size*Density          -0.002239583      0.00095444      -2.35      0.0247 
 
 
Dependent Variable: Probability 
 
                                          Standard 
Parameter                 Estimate           Error    t Value    Pr > |t| 
 
Size*Velocity          0.000298611      0.00038178       0.78      0.4394 
Density*Velocity       0.000947917      0.00057266       1.66      0.1068 
Size*Size             -0.001276546      0.00089665      -1.42      0.1634 
Density*Density       -0.001087680      0.00188189      -0.58      0.5670 
Velocity*Velocity     -0.000375451      0.00031456      -1.19      0.2407 
 
The RSREG Procedure 
 
Coding Coefficients for the Independent Variables 
 
Factor      Subtracted off      Divided by 
 
Size             18.000000        7.000000 
Density          16.000000        5.000000 
Velocity         20.000000       12.000000 
 
 
Response Surface for Variable Probability 
 
Response Mean                   0.635111 
Root MSE                        0.112219 
R-Square                          0.7396 
Coefficient of Variation         17.6691 
 
 
                            Type I Sum 
Regression          DF      of Squares    R-Square    F Value    Pr > F 
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SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title 'Example 11: Kolmogorov-Smirnov Test'; 
data photos; 
input Group $ rating count; 
lines; 
P 1 9 
P 2 6 
P 3 1 
P 4 2 
P 5 4 
P 6 2 
P 7 1 
N 1 1 
N 2 3 
N 3 2 
N 4 5 
N 5 8 
N 6 7 
N 7 4 
; 
proc npar1way data=photos edf; 
class Group; 
var rating; 
freq count; 
quit; 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Median
1 5 2 3 4 1 2 6 2 4 3 1 5 2 1 1 3 4 2 2 2 5 3 1 2 1 2
2 6 4 3 5 2 6 7 3 4 5 3 7 5 4 1 3 6 2 4 6 5 6 7 4 5 5
3 1 3 4 6 2 7 5 2 4 1 4 3 6 5 2 4 1 4 3 2 5 6 4 1 3 4
4 7 5 7 7 6 2 4 7 3 4 7 7 2 7 6 7 2 1 7 7 6 7 7 5 7 7
5 1 3 4 5 7 5 6 2 3 7 6 4 6 4 6 7 5 6 7 5 6 6 7 7 3 6
6 3 2 1 4 2 5 3 1 7 2 4 1 2 3 2 5 1 3 2 4 2 1 3 5 2 2
7 5 6 6 1 1 2 6 6 7 6 3 7 5 6 7 7 6 2 3 6 7 7 1 5 6 6
8 1 5 4 1 7 5 2 6 4 5 3 1 5 4 7 3 5 4 6 2 5 4 6 5 7 5
9 3 1 4 5 6 2 1 0 5 4 2 7 3 5 4 3 1 4 5 6 4 3 4 5 1 4

10 4 3 1 5 3 3 7 1 4 2 3 5 7 3 4 5 1 3 3 1 2 4 5 3 3 3
11 3 7 4 6 7 7 1 7 7 6 7 2 4 7 6 7 5 7 2 4 7 3 7 7 7 7
12 2 3 6 4 5 5 1 2 7 5 4 6 7 4 5 1 5 6 3 4 2 4 5 7 5 5
13 2 1 3 1 4 1 6 3 2 1 1 1 5 2 1 1 4 2 1 1 6 2 1 1 1 1
14 1 5 4 7 5 3 4 7 2 6 7 3 4 3 5 7 6 4 3 5 6 2 4 7 5 5
15 5 1 7 3 2 4 5 1 1 2 4 7 3 5 1 4 2 4 4 3 4 7 5 1 5 4
16 7 6 4 6 5 2 7 6 3 4 7 6 7 5 6 2 6 5 3 7 6 2 4 6 5 6
17 5 2 3 2 4 5 3 2 1 2 2 7 5 3 3 1 4 5 1 2 2 4 3 3 2 3
18 6 1 3 5 7 4 5 2 4 5 5 6 4 2 4 7 5 3 7 4 5 3 6 2 5 5
19 1 3 6 7 2 4 6 4 2 6 7 3 3 5 6 7 7 6 4 2 7 6 7 2 6 6
20 2 5 7 3 2 3 5 1 2 6 4 5 4 7 5 2 6 5 1 4 5 5 3 6 7 5
21 4 5 2 1 3 6 1 1 2 4 2 3 1 5 2 3 5 2 2 3 1 6 2 1 1 2
22 6 5 4 7 6 1 7 5 6 7 5 4 6 1 4 3 6 7 7 4 7 5 6 5 6 6
23 1 3 7 5 6 7 2 7 7 3 7 6 7 5 4 7 7 3 7 7 4 7 7 6 7 7
24 6 1 4 2 1 5 4 3 5 4 1 7 4 5 3 1 4 6 2 3 5 4 1 7 4 4
25 4 6 7 3 1 4 2 7 5 2 5 4 6 7 6 5 3 1 6 4 2 3 5 6 7 5
26 3 3 7 2 4 5 6 7 6 2 5 7 6 7 6 4 7 3 3 5 6 7 6 5 7 6
27 7 3 4 3 5 7 5 6 7 7 6 7 4 7 3 7 7 4 7 6 7 5 7 7 7 7
28 4 5 1 3 5 7 3 1 4 2 6 5 1 7 5 3 6 5 2 4 5 7 6 5 3 5
29 7 6 2 1 5 7 6 5 2 3 7 6 5 7 6 6 6 6 5 2 7 3 7 4 4 6
30 5 4 1 2 3 5 4 6 4 1 2 3 4 5 7 6 3 1 2 4 3 6 4 1 4 4

Acceptability of PhotographNon-Professional 
Photographer
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Linear               3        1.090353      0.6441      28.86    <.0001 
Quadratic            3        0.050070      0.0296       1.33    0.2817 
Crossproduct         3        0.111546      0.0659       2.95    0.0459 
Total Model          9        1.251969      0.7396      11.05    <.0001 
 
 
                               Sum of 
Residual           DF         Squares     Mean Square    F Value    Pr > F 
 
Lack of Fit         5        0.119289        0.023858       2.23    0.0775 
Pure Error         30        0.321467        0.010716 
Total Error        35        0.440755        0.012593 
 
                                                                                     Parameter 
                                                                                      Estimate 
                                               Standard                             from Coded 
Parameter            DF        Estimate           Error    t Value    Pr > |t|            Data 
 
Intercept             1       -1.189942        0.654426      -1.82      0.0776        0.708101 
Size                  1        0.094616        0.036665       2.58      0.0142        0.131598 
Density               1        0.069643        0.063847       1.09      0.2828        0.067416 
Velocity              1        0.007853        0.017128       0.46      0.6494        0.160515 
Size*Size             1       -0.001277        0.000897      -1.42      0.1634       -0.062551 
Density*Size          1       -0.002240        0.000954      -2.35      0.0247       -0.078385 
Density*Density       1       -0.001088        0.001882      -0.58      0.5670       -0.027192 
Velocity*Size         1        0.000299        0.000382       0.78      0.4394        0.025083 
Velocity*Density      1        0.000948        0.000573       1.66      0.1068        0.056875 
Velocity*Velocity     1       -0.000375        0.000315      -1.19      0.2407       -0.054065 
 
 
                         Sum of 
Factor       DF         Squares     Mean Square    F Value    Pr > F 
 
Size          4        0.511834        0.127959      10.16    <.0001 
Density       4        0.205127        0.051282       4.07    0.0082 
Velocity      4        0.644154        0.161039      12.79    <.0001 
 
Canonical Analysis of Response Surface Based on Coded Data 
 
                   Critical Value 
Factor             Coded         Uncoded 
 
Size            4.332517       48.327621 
Density        -5.337505      -10.687523 
Velocity       -0.317968       16.184378 
 
Predicted value at stationary point: 0.787740 
 
 
                                Eigenvectors 
 Eigenvalues            Size         Density        Velocity 
 
    0.003890       -0.436292        0.841545        0.318515 
   -0.045069        0.586540       -0.002457        0.809917 
   -0.102630        0.682364        0.540182       -0.492528 
 
             Stationary point is a saddle point. 
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Output Explanation (Part B. Between-Subjects Raw Scores) 
 
By using raw scores of levels in the polynomial regression, the complete, second-order, 
empirical model that predicts the probability of target detection (P) as a function of the three 
display variables is: P = -1.1899 + 0.0946(Size) + 0.0696(Density) + 0.00079(Velocity) – 
0.0022(Size x Density) + 0.0003(Size x Velocity) + 0.0009(Density x Velocity) – 0.0013(Size2) - 
0.0011(Density2) - 0.0004(Velocity2). The R2 value (0.74) indicates that approximately 74% of 
the variation in probability of target detection is accounted for by the second-order empirical 
model. The p-value (<0.001) is less than the specified significance level (0.05). Therefore, the 
relationship describing the probability is statistically significant. The predictor of target size is 
statistically significant (0.014) at the 0.05 level, and the linear-by-linear predictor of Size*Density 
is also significant (0.024). The models had equal levels of significance (<0.0001) and R2 values 
(0.74). However, the regression models have different parameter estimates since the raw score 
values do not result in orthogonal partial regression weights. Note the differences and 
similarities between the coded values (Part A) and raw score (Part B) results. Shown below is a 
partially revised ANOVA summary table that uses the information provided by SAS. The 
complete ANOVA summary table for this design can be found in the Williges (2006) reference. 
 
 
 

 
CCD Revised ANOVA Summary Table (Orthogonal Raw Score Between-Subjects Design) 

 
                           Type III Sum 
Source              DF      of Squares    F Value    Pr > F 
Model               (9)   (1.25196924)    (11.05)   (<.0001) 
 Size                1     0.08385942       6.66     0.0142 
 Density             1     0.01498329       1.19     0.2828 
 Velocity            1     0.00264703       0.21     0.6494 
 Size*Density        1     0.06933750       5.51     0.0247 
 Size*Velocity       1     0.00770417       0.61     0.4394 
 Density*Velocity    1     0.03450417       2.74     0.1068 
 Size*Size           1     0.02552432       2.03     0.1634 
 Density*Density     1     0.00420672       0.33     0.5670 
 Velocity*Velocity   1     0.01793972       1.42     0.2407 
Total Error       (35)    (0.440755)         
 Lack of Fit        5      0.119289         2.23    0.0775 
 Pure Error        30      0.321467       
Corrected Total    44      1.69272444 
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Example 40: Blocked, Within-Subjects, Central-Composite Design 
 

(Click in this red rectangle to see the Reference Notes on Example 40.) 
 
Problem 
 
Location in Williges (2006) Table of Contents 
Section 5, Topic 23. Central-Composite Designs (CCD), Part 23.4.2. Within-Subjects Example 
 
Page(s) in Williges (2006) Reference Material: 802-805 
 
Problem Description 
A computer-generated Army surveillance display is tested to predict the effects of three target 
characteristics on the probability of target detection. The three parameters of interest are target 
size, target density, and target velocity. Three soldiers were tested in a within-subjects, central-
composite design that was blocked across three testing days. Is the complete second-order 
empirical model significant (p < 0.05)? Which predictors are significant and do significant higher-
order predictors exist (p < 0.05)? 
 
Context/Purpose 
Develop a complete second-order empirical model that predicts the probability of target 
detection as a function of target size, target density, and target velocity. 
 
Statistical Decision Criteria 
Use an orthogonal blocked, second-order, within-subjects, central-composite design to develop 
the polynomial regression model and conduct an ANOVA on regression to test for significance 
at the 0.05 level. The coded value of α is set at ±1.871 to keep the effect of testing days 
orthogonal to the second-order empirical model. 
 
 
SAS Input 
 

(Click in this blue rectangle to open the following SAS Input directly in the SAS Editor.) 
 
options nodate nocenter pageno=1; 
title'Example 40: Blocked, Within-Subjects, Central-Composite Design 
(Coded)'; 
data info; 
input Treatment Block Subject Size Density Velocity Probability; 
lines; 
1 1 1  1  -1   1  0.70 
1 1 2  1  -1   1  0.82 
1 1 3  1  -1   1  0.78 
2 1 1  1   1  -1  0.63 
2 1 2  1   1  -1  0.44 
2 1 3  1   1  -1  0.52 
3 1 1 -1   1   1  0.65 
3 1 2 -1   1   1  0.67 
3 1 3 -1   1   1  0.86 
4 1 1 -1  -1  -1  0.30 
4 1 2 -1  -1  -1  0.45 
4 1 3 -1  -1  -1  0.26 
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5 2 1 -1   1  -1  0.49 
5 2 2 -1   1  -1  0.58 
5 2 3 -1   1  -1  0.47 
6 2 1 -1  -1   1  0.48 
6 2 2 -1  -1   1  0.56 
6 2 3 -1  -1   1  0.35 
7 2 1  1  -1  -1  0.53 
7 2 2  1  -1  -1  0.74 
7 2 3  1  -1  -1  0.63 
8 2 1  1   1   1  0.85 
8 2 2  1   1   1  0.98 
8 2 3  1   1   1  0.81 
9 3 1 -1.871  0   0  0.36 
9 3 2 -1.871  0   0  0.47 
9 3 3 -1.871  0   0  0.55 
10 3 1  0  -1.871  0  0.53 
10 3 2  0  -1.871  0  0.74 
10 3 3  0  -1.871  0  0.60 
11 3 1  0   0  -1.871 0.58 
11 3 2  0   0  -1.871 0.35 
11 3 3  0   0  -1.871 0.25 
12 3 1   1.871  0   0  0.77 
12 3 2  1.871  0    0  0.93 
12 3 3  1.871  0   0  0.81 
13 3 1  0   1.871  0  0.62 
13 3 2  0   1.871  0  0.93 
13 3 3  0   1.871  0  0.68 
14 3 1  0   0   1.871 0.86 
14 3 2  0   0   1.871 0.94 
14 3 3  0   0   1.871 0.96 
15 3 1   0   0    0  0.75 
15 3 2  0   0   0  0.73 
15 3 3  0   0      0  0.62 
; 
proc glm data=info; 
model Probability= Size Density Velocity Size*Density Size*Velocity 
Density*Velocity Size*Size Density*Density Velocity*Velocity; 
proc rsreg data=info; 
model Probability= Size Density Velocity/LACKFIT; 
run; 
proc glm data=info; 
class Block Subject; 
model Probability= Block Subject; 
run; 
quit; 
 
 
SAS Output 
 
Example 40: Blocked, Within-Subjects, Central-Composite Design (Coded)                         1 
 
The GLM Procedure 
 
Number of Observations Read          45 
Number of Observations Used          45 
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The GLM Procedure 
Dependent Variable: Probability 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        9      1.29927815      0.14436424      12.84    <.0001 
 
Error                       35      0.39344630      0.01124132 
 
Corrected Total             44      1.69272444 
 
 
R-Square     Coeff Var      Root MSE    Probability Mean 
 
0.767566      16.69395      0.106025            0.635111 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
Size                         1      0.43493641      0.43493641      38.69    <.0001 
Density                      1      0.09098767      0.09098767       8.09    0.0074 
Velocity                     1      0.65424252      0.65424252      58.20    <.0001 
Size*Density                 1      0.06933750      0.06933750       6.17    0.0179 
Size*Velocity                1      0.00770417      0.00770417       0.69    0.4134 
Density*Velocity             1      0.03450417      0.03450417       3.07    0.0885 
Size*Size                    1      0.00327847      0.00327847       0.29    0.5926 
Density*Density              1      0.00053902      0.00053902       0.05    0.8279 
Velocity*Velocity            1      0.00374823      0.00374823       0.33    0.5673 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
Size                         1      0.43493641      0.43493641      38.69    <.0001 
Density                      1      0.09098767      0.09098767       8.09    0.0074 
Velocity                     1      0.65424252      0.65424252      58.20    <.0001 
Size*Density                 1      0.06933750      0.06933750       6.17    0.0179 
Size*Velocity                1      0.00770417      0.00770417       0.69    0.4134 
Density*Velocity             1      0.03450417      0.03450417       3.07    0.0885 
Size*Size                    1      0.00533015      0.00533015       0.47    0.4956 
Density*Density              1      0.00055274      0.00055274       0.05    0.8258 
Velocity*Velocity            1      0.00374823      0.00374823       0.33    0.5673 
 
 
                                          Standard 
Parameter                 Estimate           Error    t Value    Pr > |t| 
 
Intercept             0.6669765192      0.05883015      11.34      <.0001 
Size                  0.0983078202      0.01580461       6.22      <.0001 
Density               0.0449641571      0.01580461       2.85      0.0074 
Velocity              0.1205714729      0.01580461       7.63      <.0001 
Size*Density          -.0537500000      0.02164228      -2.48      0.0179 
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Dependent Variable: Probability 
 
                                          Standard 
Parameter                 Estimate           Error    t Value    Pr > |t| 
 
Size*Velocity         0.0179166667      0.02164228       0.83      0.4134 
Density*Velocity      0.0379166667      0.02164228       1.75      0.0885 
Size*Size             -.0147471234      0.02141638      -0.69      0.4956 
Density*Density       -.0047489545      0.02141638      -0.22      0.8258 
Velocity*Velocity     -.0123666070      0.02141638      -0.58      0.5673 
 
 
The RSREG Procedure 
 
Coding Coefficients for the Independent Variables 
 
Factor      Subtracted off      Divided by 
 
Size                     0        1.871000 
Density                  0        1.871000 
Velocity                 0        1.871000 
 
 
Response Surface for Variable Probability 
 
Response Mean                   0.635111 
Root MSE                        0.106025 
R-Square                          0.7676 
Coefficient of Variation         16.6939 
 
 
                            Type I Sum 
Regression          DF      of Squares    R-Square    F Value    Pr > F 
 
Linear               3        1.180167      0.6972      34.99    <.0001 
Quadratic            3        0.007566      0.0045       0.22    0.8788 
Crossproduct         3        0.111546      0.0659       3.31    0.0313 
Total Model          9        1.299278      0.7676      12.84    <.0001 
 
 
                               Sum of 
Residual           DF         Squares     Mean Square    F Value    Pr > F 
 
Lack of Fit         5        0.071980        0.014396       1.34    0.2733 
Pure Error         30        0.321467        0.010716 
Total Error        35        0.393446        0.011241 
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                                                                                     Parameter 
                                                                                      Estimate 
                                               Standard                             from Coded 
Parameter            DF        Estimate           Error    t Value    Pr > |t|            Data 
 
Intercept             1        0.666977        0.058830      11.34      <.0001        0.666977 
Size                  1        0.098308        0.015805       6.22      <.0001        0.183934 
Density               1        0.044964        0.015805       2.85      0.0074        0.084128 
Velocity              1        0.120571        0.015805       7.63      <.0001        0.225589 
Size*Size             1       -0.014747        0.021416      -0.69      0.4956       -0.051624 
Density*Size          1       -0.053750        0.021642      -2.48      0.0179       -0.188159 
Density*Density       1       -0.004749        0.021416      -0.22      0.8258       -0.016624 
Velocity*Size         1        0.017917        0.021642       0.83      0.4134        0.062720 
Velocity*Density      1        0.037917        0.021642       1.75      0.0885        0.132733 
Velocity*Velocity     1       -0.012367        0.021416      -0.58      0.5673       -0.043291 
 
 
                         Sum of 
Factor       DF         Squares     Mean Square    F Value    Pr > F 
 
Size          4        0.517308        0.129327      11.50    <.0001 
Density       4        0.195382        0.048846       4.35    0.0059 
Velocity      4        0.700199        0.175050      15.57    <.0001 
 
 
Canonical Analysis of Response Surface Based on Coded Data 
 
                   Critical Value 
Factor             Coded         Uncoded 
 
Size            5.390717       10.086031 
Density         0.387870        0.725706 
Velocity        7.105130       13.293698 
 
Predicted value at stationary point: 1.980480 
 
 
                                Eigenvectors 
 Eigenvalues            Size         Density        Velocity 
 
    0.071875       -0.523661        0.792020        0.313822 
   -0.016517        0.575447        0.057211        0.815836 
   -0.166897        0.628204        0.607809       -0.485724 
 
             Stationary point is a saddle point. 
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The GLM Procedure 
 
   Class Level Information 
 
Class         Levels    Values 
 
Block              3    1 2 3 
 
Subject            3    1 2 3 
 
 
Number of Observations Read          45 
Number of Observations Used          45 
 
Dependent Variable: Probability 
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
Model                        4      0.11379341      0.02844835       0.72    0.5829 
 
Error                       40      1.57893103      0.03947328 
 
Corrected Total             44      1.69272444 
 
 
R-Square     Coeff Var      Root MSE    Probability Mean 
 
0.067225      31.28253      0.198679            0.635111 
 
 
Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
Block                        2      0.04917563      0.02458782       0.62    0.5415 
Subject                      2      0.06461778      0.03230889       0.82    0.4483 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
Block                        2      0.04917563      0.02458782       0.62    0.5415 
Subject                      2      0.06461778      0.03230889       0.82    0.4483 
 
 
Output Explanation 
 
By using coded-values of levels in the polynomial regression, the complete, second-order, 
empirical model that predicts the probability of target detection (P) as a function of the three 
display variables is: P = 0.6670 + 0.0983(Size) + 0.0450(Density) + 0.1206(Velocity) – 
0.0538(Size x Density) + 0.0179(Size x Velocity) + 0.0379(Density x Velocity) – 0.0147(Size2) - 
0.0047(Density2) - 0.0124(Velocity2). The R2 value (0.77) indicates that approximately 77% of 
the variation in probability of target detection is accounted for by the second-order empirical 
model. The p-value for the regression model (<0.001) is less than the specified significance 
level (0.05). Therefore, the relationship describing the probability of detection is statistically 
significant. However, the ANOVA results indicate that testing days is not significant (p = 0.54) 
nor is the effect due to the subjects (p = 0.45). The partial regression weights for target size (p < 
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0.001), density (p = 0.0074), velocity (p < 0.001), and the linear-by-linear interaction of size and 
density (p = 0.0179) all have a significant effect on the probability of target detection at the 0.05 
level. Shown below is a partially revised ANOVA summary table that uses, the information 
provided by SAS. The complete ANOVA summary table for this design can be found in the 
Williges (2006) reference. Note that the SAS output has different lack of fit and error values 
because SAS requires two separate programs to obtain the blocking and within-subjects results. 
To obtain the correct calculation, see the Williges (2006) reference.  
 

 
 

CCD Summary Table (Blocked Coded Within-Subjects Design) 
 
                            Type III Sum 
Source               DF      of Squares      F Value    Pr > F 

 
Model                (9)    (1.29927815)     (12.84)  (<.0001) 
 Size                 1      0.43493641       38.69    <.0001 
 Density              1      0.09098767        8.09    0.0074 
 Velocity             1      0.65424252       58.20    <.0001 
 Size*Density         1      0.06933750        6.17    0.0179 
 Size*Velocity        1      0.00770417        0.69    0.4134 
 Density*Velocity     1      0.03450417        3.07    0.0885 
 Size*Size            1      0.00533015        0.47    0.4956 
 Density*Density      1      0.00055274        0.05    0.8258 
 Velocity*Velocity    1      0.00374823        0.33    0.5673 
Total Error          (35)   (0.393446)         
 Lack of Fit*         3      0.071980          1.34    0.2733 
 Block                2      0.04917563        0.62    0.5415 
 Subject              2      0.06461778        0.82    0.4483  
 Error*              28      0.2568         
Corrected Total      44      1.692724 

 
*These values have been modified from the SAS output to use the Williges (2006) error term 
corrected for blocks and the subject effect that is not calculated in SAS. 
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