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Spacecraft Charging - Present Situation and Some Problems

Shu T. LailSpace Vehicles Directorate, Air Force Research Laboratory, Hanscom AFB., MA 01731

0l This overview discusses some aspects of the present situation of spacecraft chargingrelated to space weather and suggests some simple research problems.

I. IntroductionO 1 1 W ith the launch of the geosynchronous SCATHA satellite some three decades ago, full-fledged research inV spacecraft charging started. The main reasons for studying spacecraft charging 1,2 are (1) effects on scientificmeasurements onboard, and (2) damage to the scientific instruments [Figure 1]. Significantly, spacecraftcharging can have impact on mission. Many advances have been made in the past decades. A historical developmentcan be reflected by the series of Spacecraft Charging Technology Conferences, which started some 30 years ago atthe Air Force Academy, Colorado Springs. Spacecraft surface charging now stands up as a field in science andengineering. There are many new research opportunities to be opened up for future research in surface charging.In recent years, much attention has been paid to space weather, which is becoming an important field. Muchsatellite data on space weather are becoming available. A main purpose of studying space weather is for eventualapplications to space systems. With the availability of the space weather data and spacecraft charging data, it is nowbeginning to be ready for venturing into their overlapped area, viz., coordinated data studies on the effects of space
weather on space systems.

This talk will present an overview on some aspects of spacecraft charging related to space weather and suggestsome simple problems. Advances in laboratory measurements, computer modeling, spacecraft instrumentation, andfuture space systems, are important but will be outside the scope here.The launch of the geosynchronous SCATHA satellite some three decades ago, full-fledged research in spacecraftcharging started. The main reasons for studying spacecraft charging 1.2 are (1) effects on scientific measurementsonboard, and (2) damage to the scientific instruments [Figure 1]. Significantly, spacecraft charging can have impacton mission. Many advances have been made in the past decades. A historical development can be reflected by theseries of Spacecraft Charging Technology Conferences, which started some 30 years ago at the Air Force Academy,Colorado Springs. Spacecraft surface charging now stands up as a field in science and engineering. There are manynew research opportunities to be opened up for future research in surface charging.In recent years, much attention has been paid to space weather, which is becoming an important field. Muchsatellite data on space weather are becoming available. A main purpose of studying space weather is for eventualapplications to space systems. With the availability of the space weather data and spacecraft charging data, it is nowbeginning to be ready for venturing into their overlapped area, viz., coordinated data studies on the effects of space
weather on space systems.

This talk will present an overview on some aspects of spacecraft charging related to space weather and suggestsome simple problems. Advances in laboratory measurements, computer modeling, spacecraft instrumentation, andfuture space systems, are important but will be outside the scope here.

II. Space Weather Effects on Spacecraft Surface ChargingThe geosynchronous environment is the most important region in the magnetosphere for spacecraft charging tooccur. The reason is because (1) the plasma temperature is sometimes very high (multiple keV) and the plasmadensity is sometimes very low (few electrons per cc.) in that region, and (2) most communication satellites are there.It is now well understood that the onset of spacecraft charging depends very much on the plasma temperature. For agiven surface material, there exists a critical temperature above which spacecraft charging to negative potentialsoccurs [Figure 2]. Below it, charging to negative potentials does not occur. The theory of critical temperature was
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obtained by considering Maxwellian space plasmas. It is surprising that the theory agrees very well with the
observed data on the Los Alamos National Laboratory (LANL) satellites [Figure 3].It is not surprising that the Maxwellian model is correct; it is surprising why the space plasma should beMaxwellian so often, rendering the better-than expected agreement between theory and observations. Indeed, thespace plasma should be sometimes in a double Maxwellian distribution 3, especially when fresh energetic plasmasarrive at a region where less energetic plasmas are already present. In a double Maxwellian plasma environment,triple-root jump in spacecraft potential can occur. A study 4, 5 has shown that, even in a double-Maxwellian
environment, the critical temperature still plays an important role in delineating the parametric domains of the
charging behavior.

However, the space plasma is sometimes non-Maxwellian. For example, the distribution sometimes resembles akappa distribution -9, in which the high-energy tail is more prominent than in a Maxwellian distribution. A study l0on spacecraft charging in a kappa distribution of space plasma has shown that the onset of spacecraft charging isdetermined by a critical value very close to the critical temperature of the Maxwellian plasma theory. A thoroughstatistical study, using the LANL satellite charging data, on the problem of spacecraft charging in an ambientenvironment with kappa distribution of electrons has to be done and may be worthy to be thesis material.The advent of critical temperature enables forecast of spacecraft charging at geosynchronous altitudes to becarried out. Although there are many parameters in space weather, it is useful to single out the most directparameter, or parameters, for spacecraft charging forecasts. As an analogy, although there are many parameters inour daily weather, sometimes we only hope to know whether it will rain at a Saturday evening. Whatever thebarometric pressure distribution is at 7500 feet altitude within 10 miles may not be our concern.In space weather, the main driving force is the large eruptions on the Sun. The solar plasma propagates to theEarth's magnetosphere and disturbs the Earth's space weather. The space weather parameters are many, includingthe electron density, electron temperature, ion temperature, ion density, magnetic field vector, ion group velocity,ratio of the magnetic to particle pressures, etc. However, if one can forecast just the plasma electron temperature ator near the geosynchronous region, one can predict whether spacecraft charging is likely to occur. It is amazing thatonly one parameter is practically sufficient for the prediction of the onset of spacecraft charging. See, however, the
following remark.

This paragraph remarks on the Maxwellian model. The Maxwellian model " yields two results, viz., (1) thecritical electron temperature for the onset of spacecraft charging and (2) the charging voltage for each given electrontemperature exceeding the critical value. A statistical study 12 has shown the existence of critical temperatureagreeing reasonably well with the data obtained from the LANL geosynchronous satellites. There are statisticalfluctuations and they are tabulated in Ref.1 1. The study also shows the linear or quadratic trend of charging voltageas a function of electron temperature. With a given temperature, one can therefore predict the charging voltage byusing the linear or quadratic trend. The trend deviates from being linear when the voltage reaches about 3 kV(Figure 4). A quadratic trend (dash line in Figure 4) fits better. There are statistical fluctuations. One reason for thefluctuation is because possible deviation of the distribution from being Maxwellian. In the kappa distributionstudyl°, only a small set of data (the set used in Ref. 11) was used. The results are close to those of the Maxwelliantheory as far as onset is concerned. No charging voltage as a function of temperature was studied in the Harris
thesis 10. The reason for the closeness of the onset results is probably because the plasma is not deviating too muchfrom equilibrium at low temperatures, such as 0.1-3.0 keV. This range is approximately that of the criticaltemperature values for typical surface materials. For highly disturbed plasma, not only the temperature becomesvery high but also the distribution often deviates from being Maxwellian. However, as far as prediction of onset ofcharging is concerned, the low temperature range (up to about 3 keV) enables the Maxwellian theory to be useful.The space weather13 parameters allow one to do many interesting spacecraft charging problems. For example,how does the sequence of a severe geomagnetic storm correlate with spacecraft charging? How severely does acoronal mass ejection (CME) affect spacecraft charging 14-16? How does one compare the effects of a co-rotatinginteraction region (CIR) with those of a CME on spacecraft charging? How much does an exo-event (when the solarwind compresses the magnetosphere so much that part of the sunward side of the satellite orbit lies outside themagnetosphere) affect spacecraft charging, etc. These are some suggested problems related to space weather. Theanswers to these problems may contribute towards an ultimate goal of space weather - to apply scientific knowledge

of space weather to space systems.
In addition to the space weather of the Earth, one should look towards the moon and the planets. This is a futuredirection, as mankind's horizon is expanding towards farther outer limits. The moon does not have a magnetosphereand is therefore exposed to the solar winds. It is dusty on the moon. More on charging of lunar dust 18 in solarwind plasmas with energy distributions needs to be studied systematically. The small dust size poses problems tosecondary electron emission, because the secondary electrons are generated from shallow depths only 19.20
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Furthermore, the primary electron, if energetic enough, can pass through a dust particle and exit from the oppositeside. Depending on the size distribution of the dust particles 21-22 and the energy distribution of the plasma electrons,one can formulate charging theories of dusts with further assumptions. Such theories may be worthy to pursue andare possibly thesis materials. This is a futile area for research 23-26.The planets have their magnetic field orientations and magnetospheres. It is well known that Jupiter has aurorae[Figure 5]. (http://www.jpl.nasa.gov/releases/2001/belts.html) It has been observed that spacecraft surface chargingcan occur in the magnetospheres of Jupiter and some other planets27"30. X-ray observations have yielded evidence ofelectrons up to 200 MeV in energy on Jupiter. High-energy electrons with energies in MeV or more are wellknown as 'killer-electrons' for their ability to penetrate, deposit, and accumulate into dielectric materials ofspacecraft. Therefore, deep dielectric charging 30-35 is an important subject for spacecraft traveling into highlyenergetic charged environments such as the magnetospheres of Jupiter and some other planets. In summary, bothsurface charging and deep dielectric charging are likely to occur in some planetary magnetospheres. More planetarymagnetosphere data are needed. This is likely a fruitful area for future spacecraft charging research.

III. Deep Dielectric Charging
High energy (MeVs) electrons and ions penetrate into material to different depths. At energies below 100 MeV,electrons penetrate deeper than ions. For spacecraft dielectric materials, the electrons penetrate inside, stay there forhours, days, or months, depending on the material conductivity, and accumulate as more and more energeticelectrons bombard the spacecraft. Without the presence of ions in the deep layer, the electrons are not neutralizedand therefore form a high electric field. The electric field may eventually reach a critical value E*. Typically, E* isabout 106 V/m, depending on the material 2. Above the critical electric field E*, dielectric breakdown occurs.The electric field of the deep electron layer may extend outside the surface, thus attracting low energy ambientions to the surface, forming a double layer of electrons and ions. However, the ions entering the material can notreach the deep layer of electrons because MeV electrons and ions penetrate to different depths [Figures 6,7]. Sincethe ambient ion flux is typically two orders of magnitude lower than that of ambient electrons, the surface ionsdeposit relatively slowly. Since nature prefers neutrality, the far field of the double layer is eventually neutral.Inside a double layer, the electric field is higher than that of one electron layer alone. With a double layer, theelectric field outside the spacecraft surface becomes nearly zero, because the electric field of the ion layer cancelsapproximately that of the electrons. This phenomenon suggests that surface charging is not associated with deep

dielectric charging 36.
Energetic electrons are present in the Earth's radiation belts, especially during highly active events of the Sun.Indeed, the CRRES satellite experienced anomalies in the radiation belts, especially during solar activities 35. The

anomalies were attributed to deep dielectric charging 30-35. Interestingly, no surface charging (beyond -30V)occurred during the days of the anomalies. [Figure 8).
Following the CRRES papers 37-39 analyzed the correlations between killer electrons and spacecraft anomaliesobserved on several satellites and declared the evidences conclusive [Figure 9]. Subsequently, more and morespacecraft anomalies attributed to killer electrons during highly active solar events have been reported 0 It now wellaccepted that killer electrons can cause deep dielectric charging and spacecraft anomalies.Whether deep dielectric charging or surface charging is more important for causing spacecraft anomalies is stillin debate. Koons et a141 have analyzed all spacecraft anomaly events available up to about 1999 and concluded thatsurface electrostatic discharge is the most likely cause of missions terminated [Figure 10]. Although surfacecharging provides higher current than deep dielectric charging, the latter probably hurts the electronics more. Inview of the near perfect correlations between the anomalies observed on various satellites (such as CRRES, DRA,TCI and TC2) and the high fluence of high-energy electrons in the radiation belts, deep dielectric charging isemerging as the more important cause of anomalies in the radiation belts following very energetic solar events. Ifso, the future direction of spacecraft charging research should turn more towards deep dielectric charging. This isnot a new field but much more needs to be done.

IV. Summary and Discussion
We have discussed some aspects of spacecraft charging related to space weather and suggested some simpleproblems for research. There exists a theory of critical temperature for the onset of spacecraft surface charging.Observations have agreed very well with the theory. It is strange why the agreement should be so good in view ofthe fact that the space plasma may not be always in equilibrium. The future of spacecraft research applicationsshould be broadened towards applications on the planetary magnetospheres. Jupiter has aurorae and high-energy
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(MeV) electrons. The latter are called 'killer-electrons' because they can penetrate into and deposit inside
dielectrics. Observations of anomalies on satellites in the Earth's radiation belts have shown (1) near perfect
correlations with the fluence of 'killer-electrons', and (2) there exists a critical fluence above which the anomalies
are likely to occur. Deep dielectric charging may emerge in the future as a very important charging research area.There are many research problems in deep dielectric charging. For example, there is no effective method at thepresent for mitigation of deep dielectric charging. Shielding of high-energy electrons certainly works, but a satellite
needs to have eyes and ears which should not be shielded. Development of tailored conductivity in materials
appears as a feasible approach 42, 43. The problem of mitigation of deep dielectric charging needs to be solved.
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Figure 1. Spacecraft charging and discharging. Figure 2. Critical temperature (key) for the onset
spacecraft charging.
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Figure 3. Spacecraft charging on a LANL satellite. The data show existence
of critical temperature for the onset of spacecraft charging. [Ref.1lj
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