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ABSTRACT 

Given a graph G and its vertex set V(G),  the chromatic number, ( )Gχ , represents 

the minimum number of colors required to color the vertices of G so that no two adjacent 

vertices have the same color.  The domination number of G, ( )Gγ , is the minimum 

number of vertices in a set S, where every vertex in the set ( )V G S−   is adjacent to a 

vertex in S.  The dominator chromatic number of the graph, ( )d Gχ , represents the 

smallest number of colors required in a proper coloring of G with the additional property 

that every vertex dominates a color class.  The ordered triple, , is realizable if a 

connected graph G exists with 

( , , )a b c

( )G aγ = , ( )G bχ = , and ( )d G cχ = .   

For every ordered triple,  of positive integers, if either (a) and 

 or (b) 

( , , )a b c 1a =

2b c= ≥ 2 ,a b c≤ <  and c a b≤ + , previous work has shown that the triple is 

realizable.  The bounds do not consider the case a b c= = .  In an effort to realize all the 

ordered triples, we explore graphs and graph classes with 2a b c k= = = ≥ . 
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I. INTRODUCTION  

A. BACKGROUND AND PURPOSE  

Ever since Leonhard Euler took a mathematical approach to determine whether 

citizens in Konigsberg could walk across each of the city’s seven bridges exactly once 

[1], mathematicians have applied graph theory to numerous problems.  In today’s modern 

world, some of the more commonly known uses of graph theory include networks.  A 

network might be a collection of computers, telephones, or related technology 

interconnected by telecommunication equipment used to transmit or receive information.  

In addition, the definition of networks can expand to include groups of people.  Graph 

coloring and domination are two areas of graph theory that have numerous applications to 

today’s networks.   

Network technology has rapidly evolved from those requiring a direct connection 

to those that are wireless, mobile and ad-hoc.  As discussed in [2], the flexibility provided 

by networks such as satellite, radio, cellular, and sensor make them more efficient for 

today’s modern world but are increasingly difficult to maintain at effective levels. 

Although graph coloring and domination are both still applicable to mobile ad-hoc 

networks, another topic might exist which better explains the behavior and properties of 

the modern network. This paper looks at one potential area, developed by combining 

graph coloring and domination.  This area is called dominator coloring. 

There has been research done on the dominator chromatic number for some of the 

more common graph classes [3, 4] and the relationship between a graph’s dominator 

chromatic number and its chromatic and domination number [4].  As discussed in [4], an 

ordered triple, ( , , can be used to represent the three parameters (domination 

number, chromatic number, and dominator chromatic number).  Such a triple is 

realizable if there is a connected graph G where a represents the domination number, b 

the chromatic number, and c the dominator chromatic number of G.   In [4] it was shown 

that a connected graph does exist that satisfies the requirements if either (a) and 

 or (b) 

, )a b c

1a =

2b c= ≥ 2 ,a b c≤ <  and c a b≤ + .  These bounds do not account for the case 

when .  In an attempt to realize all the triples ( , , we want to show whether a b c= = , )a b c

1 



or not graphs exist when all three parameters equal .  This paper explores those 

graphs in which the domination number, chromatic number, and dominator chromatic 

number are equal.   

2k ≥

B. TERMINOLOGY 

A majority of the terms, definitions, and symbols used in the following paper are 

those found in [1].  Those terms and symbols that are not found in that text are referenced 

appropriately. 

1. General Graph Overview 

A graph G consists of a finite nonempty set V of elements called vertices and a set 

E of unordered pairs of distinct elements of V called edges.  If e uv=  is an edge, vertices 

u and v are said to be adjacent and e is incident with both u and v.  The order of a graph, 

G , is the number of vertices in V(G).   All references to graphs in this paper refer to 

connected simple graphs.  A connected graph is a graph where every two vertices are 

adjacent and a simple graph is one where there are neither loops nor multiple edges 

between the same pair of vertices.  The degree of a vertex is the number of edges incident 

with v and is denoted deg v. A neighbor of a vertex v is a vertex that is adjacent to v.  The 

open neighborhood, N(v), of the vertex v is the set of all neighbors of v.  The closed 

neighborhood, N[v], is defined by [ ] ( ) { }N v N v v= ∪ .  The diameter of a graph, 

, is the greatest distance between any two vertices of G.  Two graphs, G and H, 

are equal if their vertex sets and edge sets are equal and they are isomorphic (G ) if 

the vertices of G and H can be labeled in a manner so that the two graphs are equal.  

Given V(G) and S, where S is a subset of V(G), the notation  denotes the 

removal of the vertices of S from the set V(G). 

( )diam G

H≅

( )V G S−

There are several standard classes of graphs we will refer to in this paper.  The 

complete graph on n vertices, , is a graph defined as one in which every two vertices 

of G are adjacent.  If G is a graph of order  with vertices , and its edges 

are , then G is called a cycle on n vertices and denoted .  A 

bipartite graph is one where  can be partitioned into two subsets U and W (referred 

nK

3n ≥ 1 2, ,..., nv v v

1 2 2 3 1 1, ,..., ,n n nv v v v v v v v− nC

( )V G
2 
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to as bipartite sets) in such a way that every edge of G joins a vertex of U and a vertex of 

W.  A complete bipartite graph, ,a bK  ( U a= and W b= ), is one in which every vertex 

of U is adjacent to every vertex of W.  A star is a complete bipartite graph where either 

 or  1a = 1b =

 A coloring is an assignment of “colors” (usually integers) to the vertices of a 

graph.  Graph coloring originated with a problem that Francis Guthrie explored in 1852 

dealing with the minimum number of colors required to color a map so that no two 

adjacent regions have the same color.  Guthrie proposed that one only needed four colors 

when coloring the countries on a map where no adjacent countries have the same color.  

This proposal became known as the Four Color Conjecture and its proof challenged 

graph theorists until 1976, when Wolfgang Haken and Kenneth Appel used a computer to 

assist in completing the proof.  Given a graph G with V(G) and E(G), a coloring is a 

function : ( )V G Cθ →  from the set of vertices to a set C of colors. A proper coloring is 

one in which no two adjacent vertices are assigned the same color.  A graph is k-

colorable if it has a proper coloring with k colors and it is k-chromatic if it is k-colorable 

but not (k-1)-colorable.  If G is k-chromatic, then we can partition V(G) into k 

independent subsets, , called color classes.  The smallest number of colors 

in any proper coloring of a graph G is the chromatic number of G and is denoted by χ(G).  

For example, Figure 1 shows the graph  with three different colorings. 

1 2,  ,...,  kV V V

4C

 

 
Figure 1.   Examples of Graph Coloring 

 

Using numbers to represent colors, the first graph in Figure 1 shows a 4-coloring 

of C4.  The second graph shows an improper coloring:  two pairs of adjacent vertices 

have the same color.  The third graph shows a 2-coloring of C4, which is the smallest 

number of colors that result in a proper coloring.  Therefore, χ(C4)=2.  A modern 

1 2

3 4

1 1

2 2

1 2

2 1



application uses graph coloring to solve problems dealing with allocation of resources, 

such as channel assignments.  Two radio or television transmitting stations can conflict if 

a message sent by the two stations can be received at the same place.  Graph coloring can 

help identify and resolve these conflicts [2, 5].  For example, a simple network might 

have a structure similar to the graph in Figure 1, with each vertex representing some node 

in the network and the edges showing which nodes will conflict with the other if both are 

used simultaneously.  By assigning a proper coloring to the network, nodes that conflict 

with one another are assigned different colors, with the total number of colors 

representing the number of required channels for this network to work properly. 

Claude Berge began studying domination in graphs in 1958 [6], with Oystein Ore 

coining the term in 1962 [7].  A vertex v in a graph G is said to dominate itself and all of 

its neighbors, that is v dominates N[v].  A set S of vertices of G is a dominating set of G 

if every vertex of G is dominated by some vertex in S.  More precisely, S is a dominating 

set of G if every vertex in ( )V G S−  is adjacent to some vertex in S.  A minimum 

dominating set is a dominating set of minimum cardinality.  The domination number of 

G, ( )Gγ , is the number of vertices in a minimum dominating set.  Consider the three 

copies of a graph in Figure 2.   

 

 
Figure 2.   Examples of Dominating Sets of a Graph. 

 

The sets S1 = {a, b, d, h} and S2 = {a, c, f} are dominating sets of G, while S2 is a 

minimum dominating set.  An example of domination can be seen in finding the 

minimum number of soldiers required to secure key terrain on an objective.  Using the 

first graph in Figure 2, have each vertex represent key terrain features and an edge 

ce

a b

d

g

f h

a b 

c 

d 
e

g
f

h 

g 

f h 

e 
d 

c

a b 
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between two vertices signify the visibility of one terrain feature to another.  Since the 

cardinality of the minimum dominating set is three, then three soldiers are required to 

secure the objective.   

With respect to networks, we can apply domination in graphs toward the 

clustering problem [2].  Mobile ad-hoc networks face constant changes in their network 

topology.  Clustering implements a hierarchy in these networks.  A connectivity graph is 

a graph where the vertices represent the nodes in a network and the edges represent 

communication links between the nodes.   The clustering problem divides the vertex set 

of a graph into subsets in such a way that the induced subgraph of each subset has a 

relatively small diameter.  Within each subset, a vertex is chosen as the cluster-head.  A 

new connectivity graph can be constructed using only the cluster-heads, where an edge 

exists between two cluster-heads if there is an edge between any of the vertices in the 

cluster-head’s subset.  In terms of domination in a graph, each vertex in the minimum 

dominating set becomes a cluster-head.  Suppose the graph in Figure 2 depicts a 

connectivity graph for a network.  The vertices in S2 are the cluster-heads and the clusters 

are formed by the closed neighborhood of each vertex in S2. 

2. Dominator Coloring 

5 

)

In [3], a dominator coloring of G is defined to be a proper coloring in which 

every vertex dominates a color class. There are two cases by which a vertex dominates a 

color class. The vertex is either adjacent to all the vertices of one color class or is the only 

vertex in its color class, by which it will dominate its own color class.  The dominator 

chromatic number, (d Gχ , is the minimum number of colors that allows a dominator 

coloring of G.   

With respect to the chromatic number and domination number, previous research 

has shown that the dominator chromatic number is greater than or equal to either 

parameter and bounded above by their sum: ( ), ( ) ( ) ( ) ( )dG G G G Gχ γ χ χ γ≤ ≤ +  [3, 4].  

For completeness, we include a version of the proof shown by Gera in [4]. 

 



6 

GProposition 1.  Given a graph, G, then ( ) ( )d Gχ χ≥  and ( ) ( )d G Gχ γ≥ . 

Proof:  Since a dominator coloring is also a proper coloring of G, it follows 

that ( ) ( )d G Gχ χ≥ .  For each color class i, 1 i k≤ ≤ , let vi be a vertex of color class i.  

Define S to be a subset of V(G), where S contains exactly one vertex of each color class.  

Let ( )x V G∈ .  Since x dominates the color class i, for some i 1 i k≤ ≤ , it follows that  x 

is dominated by vi.  Therefore, S is a dominating set, and ( ) ( )d G Gχ γ≥ .                         

We construct a dominator coloring of the graph in Figure 3 in order to better 

illustrate the concept.   

 

a b c 

d 
e f  

Figure 3.   An Example of Dominator Coloring 

 

Example 1.  The graph G in Figure 3 has ( ) 4d Gχ = . 

To see this, we can partition the vertices of G into two partite sets, { }, , ,S a b d e=  

and { },R c f= , therefore G is bipartite and has ( ) 2Gχ = .  Assign the color 1 to S and 

the color 2 to R.  Since G is bipartite, V(G) can only be partitioned into two subsets.  

These two subsets represent the color classes of G, which makes this proper coloring 

unique for G up to isomorphism.  No matter how we assign colors to R and S, each will 

require a single and unique color.  From Proposition 1, we know ( ) ( )d G Gχ χ≥ .  With the 

current coloring, no vertex dominates its own color class (it is not the only one of its 

color class) and it is not adjacent to all the vertices of another color class.    Two colors 

will not work for a dominator coloring, therefore ( ) 3d Gχ ≥ .   

Now, define a coloring on G where vertices a, b, d, and e have the color 1, the 

vertex c the color 2, and the vertex f the color 3.  In this coloring, each of the vertices c 



and f dominate the color class 2 and 3, respectively, which are their own color class.  

Since the colors of c and f are not repeated, and since { },c f  is a dominating set, each 

remaining vertex dominates the color class of c or f.  It follows that ( ) 3d Gχ ≤  and 

so ( ) 3d Gχ = .                  ◊  

For a finite graph, finding the dominator chromatic number is not relatively 

straightforward.  An example is the Petersen graph.  We proved (Petersen) 5dχ = , using 

a computer-assisted exhaustive proof. In fact, in [3] the authors showed that finding the 

dominator coloring of an arbitrary graph is NP-complete.  In complexity theory, an NP-

complete problem is a problem that can be solved nondeterministically in polynomial 

time and all other problems can be transformed to it in polynomial time [8].   These 

problems are recognized as being computationally difficult.  For completeness, we 

include a version of the proof. 

Theorem 1 [3].  Dominator chromatic number is NP-complete. 

Proof:  Dominator chromatic number is in NP. We can verify an assignment of 

colors to the vertices of a graph is a proper coloring and that every vertex dominates 

some color class.  In order to show that the dominator chromatic number problem is NP-

complete, we transform the chromatic number problem, which is NP-complete [9], to the 

dominator chromatic number problem.  Consider an arbitrary graph, G, with ( )G kχ = , 

where .  Construct the graph H by adding a vertex v to G and an edge from v to 

every vertex in V(G).  Since every vertex of G is adjacent to v, assign v the color class 

.  The result is a proper coloring of H, where 

k∈

1k + ( ) 1H kχ = + .  Since v is the only 

vertex in its color class, v dominates its own color class.  Furthermore, all the vertices in 

the set  dominate the color class ( )V H v− 1k + .  And so it is also a proper dominator 

coloring with ( ) 1d H kχ = + .  Now, we have H with a dominator coloring using k+1 

colors.  Since v is adjacent to every vertex in G, it must be the only vertex of the color 

k+1 in this coloring.  The removal of v results in a minimum proper coloring of G with k 

colors [3].                                             

7 
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II. ANALYSIS OF PAIRS 

 We have no generalized construction for graphs that have domination number, 

chromatic number, and dominator chromatic number equal.  The first step is to find 

classes of graphs in which two of the three parameters are equal, i.e. ( ) ( )G Gγ χ= , 

( ) ( )d G Gχ χ= , or ( ) ( )d G Gχ γ= .  The purpose behind this step is for us to gain insight 

into the graph’s structure that allow equality, and then apply that insight to develop a 

graph that has all three parameters equal. 

A. THE CASE ( ) ( )G Gγ χ=  

 First, we shall look at graphs satisfying ( ) ( )G Gγ χ= .  Observe that  with a 

pendant attached to each vertex satisfies this equality.  This graph is known as the corona 

of K

nK

n and K1, denoted . The corona of the two graphs, K( )nCor K n and K1, is the graph 

formed from one copy of Kn and ( )nV K  copies of K1, where each vertex in Kn is 

adjacent to a copy of K1 [10].  Figure 4 shows an example of  and . 3( )Cor K 4( )Cor K

 

 
Figure 4.    and  3( )Cor K 4( )Cor K

 

 Proposition 2.  If G is , then( )nCor K ( ) ( )G G nγ χ= = . 

 Proof:  Since G contains a copy of Kn, ( )G nχ ≥ .  Let H be the subgraph of G that 

represents the copy of Kn.  Given ( ),iv V H∈  for 1 i n≤ ≤ , assign the color i , which 

results in n colors being used to color H.  To each pendant attached to v

∈

i, assign the color 

 (1 ) with the pendant adjacent to v1i + 1

n

i n≤ ≤ − n having the color 1.  This provides a 

proper coloring of G and ( )Gχ ≤ .  Thus ( )G nχ = .  Next, note that  is a 

dominating set, so 

( )V H

( )G nγ ≤ .  On the other hand, in order for each pendant to be 

9 



dominated, either the pendant vertex or its neighbor must be in the dominating set.  

Suppose Si is the set that includes vi and its pendant vertex (1 )i n≤ ≤ .  For 1 , all Si n≤ ≤ i 

are disjoint and at least n vertices are required for the dominating set, establishing 

( )G nγ ≥ .  Therefore, ( )G nγ = .                                                                                         

B. THE CASE ( ) ( )dG Gχ χ=  

Note that ( ) ( )dG Gχ χ=  for .  Since every pair of vertices is adjacent, nK

( )nK nχ = . In [2], the observation was made that for any complete graph, ( )d nK nχ = .  

We include a proof for completeness.   

Proposition 3.  The complete graph, Kn, has ( )d nK nχ = . 

Proof:  Since ( ) ( )d n nK Kχ χ≥ , we have that ( )d nK nχ ≥ .  At most n colors are 

required on n vertices, so we have ( )d nK nχ ≤ .  It follows that ( )d nK nχ = .                     

C. THE CASE ( ) ( )dG Gγ χ=  

Note that ( ) ( ) 2dG Gγ χ= =

G

 if G is the complete bipartite graph.  For all values 

greater than two, we can construct a graph G satisfying  ( ) ( )dGγ χ= .  Consider the 

following construction.  Starting with two copies of 3,3K , place an edge from one vertex 

in the first copy to a vertex in the second copy.  Figure 5 shows the resulting graph. 

 

a b c 

d e f 

g h i 

j k l 

 
Figure 5.   Graph Satisfying ( ) ( ) 4dG Gγ χ= =  

 

Example 2.  The graph in Figure 5 has ( ) ( ) 4dG Gγ χ= = . 

10 



 We now present an argument to support the above claim.  With respect to 

domination, we know that for each copy of 3,3K  there are two partite sets of vertices, 

where each vertex in one set is adjacent to all three vertices in the other partite set.  It 

follows that for one copy of 3,3K  there are two vertices in any minimum dominating set S.  

For the graph in Figure 5, we consider the case where g S∈ .  Because g is adjacent to f, 

the set S would also dominate vertex f.  The remaining undominated graph is a K2,3, 

which requires two additional vertices for domination.  Therefore, ( ) 4Gγ ≥ .  Select the 

vertex set S = {a, d, g, j}.  The vertex a dominates the vertices a, d, e, and f, the vertex d 

dominates a, b, c, and d, the vertex g dominates f, g, j, k, and l, and the vertex j dominates 

g, h, i, and j.  The set S is a dominating set for G, so ( ) 4Gγ ≤ .  Therefore, ( ) 4Gγ = . 

 For the dominator chromatic number, by Proposition 1 we have ( ) 4d Gχ ≥ .  

Partition the vertices of G into four sets: { }1 , ,V a b c= , { }2 , ,V d e f= , { }3 , ,V g h i= , and 

{ }4 , ,V j k l= .  Assign each vertex set Vi the color i (1 4i≤ ≤ ).  Each set  is one of the 

bipartite sets in a copy of 

iV

3,3K , so each vertex in Vi dominates the color class of the 

vertices in the other bipartite set to which it is adjacent.  This is a proper dominator 

coloring, so ( ) 4d Gχ ≤ . Therefore, ( ) 4d Gχ =  and ( ) ( ) 4d G Gχ γ= = .                            ◊  

 The previous proof establishes ( ) ( ) 4d G Gχ γ= =  for the graph that has two 

copies of K3,3 joined by a single edge between one vertex from each copy. We generalize 

this construction as follows.  We can attach an additional copy of K3,3 to the graph in 

Figure 5 with an edge from any vertex, v, in G where deg v = 3. By adjoining additional 

copies of K3,3 in this manner, we can increase the dominator chromatic number and 

domination by two for every copy.  For all i +∈ , let 3,3iG K≅ and let ui and vi denote an 

adjacent pair of vertices in Gi (1 )i n≤ ≤ .  Define Hn by 

{ }
1

1 1

,                                  if n = 1;
, ,     if n > 1.n

n n n n

G
H

H G u v− −

⎧
= ⎨ ∪ ∪⎩

 

 

 Proposition 4. Given the graph Hn defined above, ( ) ( ) 2n d nH H nγ χ= =  for 

all n . +∈

11 
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,3 Proof:  We proceed by induction on .  Since 1n ≥ 1 3H K≅ , we can select one 

vertex from each bipartite set for our dominating set establishing 1( ) 2Hγ = .  Assign one 

bipartite set the color class 1 and the other bipartite set the color class 2.  This is a proper 

dominator coloring since each vertex in one bipartite set is adjacent to every vertex in the 

other, therefore 1( ) 2d Hχ = . 

Assume that ( ) ( ) 2k d kH H kγ χ= =  for all .  Consider H1k ≥ k+1, and we show 

1 1( ) ( ) 2k d kH H k 2γ χ+ += = + .  Since { }1 1 ,k k k k kH H G u v+ += ∪ ∪ 1+ , it follows that in 

addition to the 2k vertices that form a dominating set for , at least two more are 

needed since no vertex of 

kH

{ }k kG v−  is dominated by any vertex of the 2k vertices in the 

dominating set already formed.  Thus 1( ) ( ) 2 2k kH H k 2γ γ+ ≥ + ≥ +

+

2

.  For a dominating 

set, S, of Hk+1, select one vertex from each of the k+1 partite sets found in each Gi, where 

. S is a dominating set for H1, 2,.., 1i k= k+1 that has two elements for every Gi.  

Therefore 1( ) 2kH kγ + ≤ + , and it follows that 1( ) 2kH k 2γ + = + .  For the dominator 

chromatic number, we know 1( ) (d k kH H 1)χ γ+ ≥ + 2, so it follows that 1( ) 2d kH kχ + ≥ + .  

Assign each partite set of each Gi (1 1i k≤ ≤ + ) a different color.  The result is a proper 

dominator coloring.  There are two colors for every copy of Gi (1 ), and so 1

2

i k≤ ≤ +

1( ) 2d kH kχ + ≤ + .  Therefore, 1 1( ) ( ) 2 2 2(k d kH H k k 1)γ χ+ += = + = + .                              

 We have now established the case ( ) ( ) 2 ,  1n d nH H n nγ χ= = ≥ .  In order to cover 

the odd cases, we need to construct a graph G that satisfies ( ) ( ) 2 1dG G nγ χ= = + .  

Initially, we desire a graph that satisfies ( ) ( ) 3dG Gγ χ= = .  Figure 6 shows such a  

graph, which we call J1 for further reference.  

 



 
Figure 6.   The Labeled Graph J1 and its Dominator Coloring 
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 Proposition 5.  The graph J1 in Figure 6 satisfies 1 1( ) ( ) 3dJ Jγ χ= = .  

 Proof:  First, we show 1( ) 3Jγ = .  The vertices c, e, and h form a dominating set 

and it follows that 1( ) 3Jγ ≤ .  To verify that 1( ) 3Jγ ≥ , it is necessary to show that there 

is no dominating set with exactly two vertices in it.   Because of the symmetry of the 

graph, there are five cases.  For each case, let S be a minimum dominating set. 

CASE I:  Assume .  Then a dominates a, e, g, h, and i.   In order for a S∈ 2S = , 

then the vertices b, c, d, and f must share a common neighbor.  They do not, so 3S ≥ . 

CASE II:  Assume b .  Then b dominates b, d, g, h, and i.  Since a, c, e, and f 

do not share a common neighbor, S requires at least 2 more vertices and 

S∈

3S ≥ . 

CASE III:  Assume .  Then vertices a, b, e, and f require domination.  These 

vertices do not have a common neighbor, therefore 

c S∈

3S ≥ . 

CASE IV:  Assume .   Vertices a, f,g, h, and i need to be dominated.  There 

is no common neighbor and S requires at least two more vertices.  Hence, 

d S∈

3S ≥ .   

CASE V:  Assume e .  Then b, c, g, and h require domination.  But b is not 

adjacent to c and h is not adjacent to g, so S requires at least two more vertices.  

Therefore 

S∈

3S ≥ .   

Each case has shown that 1( ) 3Jγ ≥ .  Since it was previously shown that 1( ) 3Jγ ≤ , 

we have 1( ) 3Jγ = . 

a b c 

d 

e 

f 

g 
h i 

1 1 1 

2 

3 

1 

2 
2 2 
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 With respect to the dominator chromatic number, we know from Proposition 1 

that 1( ) ( )d Jχ χ≥ .  Since J1 has an odd cycle, it follows that 1( ) 3d Jχ ≥ .  The second 

graph in Figure 6 shows a proper dominator coloring which establishes 1( ) 3d Jχ ≤ .  

Therefore, 1( ) 3d Jχ = .                                                                                                          

 Using  we can construct a graph that provides a basis for a graph that satisfies 1J

( ) ( ) 2 1dG G nγ χ= = +  for an arbitrary n.   Figure 7 shows the resulting graph. 

 

a b c 

d 

e 

f 

g 
h i 

j k l 

m n o 

 
Figure 7.   Graph Satisfying ( ) ( ) 5dG Gγ χ= =  

 

 Lemma 1.  The graph, G, in Figure 7 has ( ) ( ) 5dG Gγ χ= = . 

 Proof:  To show ( ) 5Gγ ≥ ,  consider first the subgraph J1 of G.  From Proposition 

5, we know that at least three vertices of J1 are required in any dominating set S.  In the 

case where , the set S would also dominate vertex o.  The remaining undominated 

graph is a K

a S∈

2,3, which requires two additional vertices for domination.  Therefore, 

( ) 5Gγ ≥ . Let S = {c, e, h, k, n}.  The set S is a dominating set for G and ( ) 5Gγ ≤ .  

Therefore ( ) 5Gγ = .  With respect to the dominator chromatic number, we know 

( ) ( )d G Gχ γ≥  which produces ( ) 5d Gχ ≥ .  For the subgraph J1 in G, assign colors as 

depicted in the second graph of Figure 6.  Assign the color 4 to the vertices j, k, and l in G 

and the color 5 to the vertices m, n, and o.  This assignment gives a proper dominator 

coloring and establishes that ( ) 5d Gχ ≤ .  Therefore ( ) 5d Gχ = .                                          



We now prove by induction that there is a graph, *
nH , with 

* *( ) ( ) 2n d n 1H H iγ χ= = + .  For all , let 2n ≥ 3,3nG K≅ and let un and vn denote an adjacent 

pair of vertices in Gn.  Define { }*
1 1 1,n n n nH H J u v− −= ∪ ∪ .   

Proposition 6.  Given the graph *
nH  defined above, * *( ) ( ) 2n d n 1H H nγ χ= = + . 

Proof:  With respect to domination, we proceed by induction on n.  The base 

case, , is shown in Lemma 1.  Assume for , 2n = ≥ * 12k ( ) 2kH k=γ +

* 1 *

 and prove 

.  Let G1( ) 2( 1)kH kγ + = + + 1 be the first copy of K3,3 in 1kH + .  Let *
1 1' kH H G+= − .  

There exists a vertex, say v, in G1 that is adjacent to a vertex, say u, in 'H  such that 

.    By the induction hypothesis, * )∈ 1( kuv E H + ( ') 2 1H k=γ + .  Since v is the only vertex 

of G1 that can be dominated by some vertex of 'H , consider { }1G v 2,3

2

K− ≅ .  Since 

2,3( )Kγ = , it follows that * 11 2,3( ) ( ') ( ) 2 1 2 2( 1)kH H K k kγ γ γ+ = + = + + = + +

)

. 

For *(d nHχ , since *( ) (d n n
*)H Hχ γ≥  it follows that *( ) 2d n 1H nχ ≥ + .  Assign to 

each bipartite set of each of the Gn’s in 1nH −  a different color.  The result is a proper 

dominator coloring for , with1n−H ( ) 2( 1)H n1d nχ − = −

* 1

.  In the copy of J1, assign the 

vertices a, b, c, and f the color class 2(n-1)+1, the vertices d, g, h, and i the color class 

2(n-1)+2, and the vertex e the color class 2(n-1)+3.  The vertices a, b, and c dominate the 

color class 2(n-1)+2.  The vertices g, h, and i dominate the color class 2(n-1)+1, and the 

vertices d, e, and f dominate the color class 2(n-1)+3.  Three additional colors are 

required and it follows that ( ) 2( 1) 3 2d nH nχ ≥ − + ≥ +n *
d n.  Therefore, ( ) 2 1H nχ = + .  

15 
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III.  REALIZABLE TRIPLES 

A. PREVIOUS RESULTS 

In [4], Gera presented and proved Theorem 2. 

Theorem 2.  For each ordered triple of integers , where either (a) 

and  or (b) 2 ,  and 

( , , )a b c

1a = 2b c= ≥ a b c≤ < c a b≤ + , there is a connected graph G with 

( ) ,  ( ) ,G a G bγ χ= =  and ( )d G cχ = . 

The graph G is constructed from , where bK 1 2( ) { , ,..., }bV K u u ub= , by first adding 

a pendant to each vertex 1 2, ,...,  (0 )a ku u u k a− ≤ < .  Next we add copies of , whose 

vertices are  and , together with k additional edges 

k 2P

iv iw (0 )b iu v i k≤ ≤ .  An example of 

the graph is in Figure 8. 

ua-k+1

ua-k

u1

ub-1

ub

v1

v2

vk

w1

w

wk

 
Figure 8.   The Graph G in Theorem 2 [4] 

  

B. SMALL CASES 

 We will look at some small cases where the three parameters equal.  One can 

easily show that C4 has a dominator chromatic number, chromatic number, and 

domination number of two.  For the chromatic number, the third graph in Figure 1 shows 

a 2-coloring of C4 and so χ(C4) ≤ 2.  Since it is not possible to color the graph with 1 

color, we have χ(C4) = 2.  With respect to the domination number, we can select any 
17 



vertex and it dominates itself and its neighbors but not the fourth vertex.  Therefore, γ(C4) 

= 2.  Finally, using the same third graph in Figure 1, each vertex dominates a color class 

and the dominator chromatic number is 2.   The graph C4 is also the case  of the 

complete bipartite graph 

2n =

,n nK .  The following theorem generalizes this result. 

 Theorem 3.  Let G be a graph and a,b ≥ 2.  Then ( ) ( ) ( ) 2dG G Gχ γ χ= = =  if and 

only if .  ,a bG K≅

Proof:  (⇒ ) Since ( ) 2Gχ = , we know that G is bipartite and there exist two 

partite sets of vertices, I and J.  We know that G is not a star because ( ) 2Gγ =  and 

2I ≥  and 2J ≥ .  Since ( ) 2d Gχ = , every vertex in I must dominate J and every vertex 

in J must dominate I otherwise we need one more color.  Therefore, . ,a bG K≅

( ) Suppose G = K⇐ I,J with order n > 3.  Since G is bipartite, ( ) 2Gχ = .   Select 

vertices ,x I y J∈ ∈ .  Since G is complete bipartite, x dominates all the vertices in J and y 

dominates all the vertices in I, so γ(G) ≤ 2.  By choosing only one vertex, one vertex set 

will not be dominated and it follows that γ(G) = 2.  Assign to the vertices in I the color 

blue and to the ones in J the color red.  Because G is a complete bipartite graph, every 

vertex in either partite set is adjacent to all the vertices in the other partite set, so each 

vertex dominates a color class and ( ) 2d Gχ ≤ .  Since at least two colors are 

needed, ( ) 2d Gχ = .                                                                                                               

Theorem 3 tells us that the complete bipartite graph is only case where 

( ) ( ) ( ) 2dG G Gχ γ χ= = = .  The next step is to explore whether or not a graph exists with 

all three parameters equal to k for all .  We begin by looking at the case .  We 

will now show that the graph J

2k > 3k =

1, from Chapter II, meets this requirement. 

 Proposition 7.  The graph J1 in Figure 6 satisfies 1 1 1( ) ( ) ( ) 3dJ J Jγ χ χ= = = .  

 Proof:  Proposition 5 establishes 1 1( ) ( ) 3dJ Jγ χ= = , so we must show J1 is 3-

colorable.  Since the graph contains an odd cycle (c, d, e, f, g), 1( ) 3Jχ ≥ .  On the other 

hand, Figure 4 shows a 3-coloring of J1.  This 3-coloring of J1 implies 1( ) 3Jχ ≤ .  

Therefore, 1( ) 3Jχ = .                  

18 



The graph J1 establishes the existence of a graph where all three parameters are 

equal to three, but we cannot easily generalize the method of construction.  The next step 

is to determine whether or not there exists an algorithm to construct a graph G that 

satisfies ( ) ( ) ( ) 4dG G Gχ γ χ= = ≥ .  A technique developed by Jan Mycielski, which 

increases the chromatic number of a graph without introducing triangles, proved useful 

[11].  It involves the use of shadow graphs [1]. 

 A shadow graph is constructed by adding a vertex, ' , known as a shadow vertex, 

for each existing vertex, v, in the current graph.   The shadow vertex  is then adjacent 

to the neighbors of v.  A vertex in G and its shadow vertex are not adjacent in the shadow 

graph and no two shadow vertices are adjacent. For example, in Figure 5 we start 

with .  The vertex set {

v

'v

3K }',  ',  'a b c  is the set of shadow vertices of the graph.  Vertex '  

is adjacent to b and c,  is adjacent to a and c, and '  is adjacent to a and b.  The second 

graph in Figure 9 shows the construction of the shadow graph of K

a

'b c

3. 

 

a 

a’ 

b

b’

c 

c’ 

a

c

a’

b’ c’ b 

Figure 9.   The Construction of the Shadow Graph of K3 

 

 Mycielski’s construction uses the shadow graph, but introduces an additional 

vertex [11].  This vertex is adjacent to all the shadow vertices in the graph, increasing the 

chromatic number of the graph without introducing triangles.  With respect to the 

dominator chromatic number, the problem with introducing triangles into a graph lies in 

the structure of the triangle: 3 3( ) ( ) 3d K Kχ χ= =  but 3( ) 1Kγ = .  By introducing a 

triangle into a graph, it could potentially increase a graph’s chromatic and dominator 

chromatic number more than its domination number. 

 As previously established in Theorem 3, C4 represents the simplest case of a 

graph that has all three parameters equal to two.  Mycielski’s construction is intended to 

increase the chromatic number of a graph, but it will also have a desired impact on 
19 



domination and the dominator chromatic number.  Figure 10 shows the graph, J2, 

obtained by applying Mycielski’s construction to C4.     

 

20 

 
Figure 10.   The Labeled Graph J2 and its Proper Dominator Coloring 

 

 Proposition 8.  The graph J2 in Figure 10 satisfies 2 2 2( ) ( ) ( ) 3dJ J Jγ χ χ= = = . 

 Proof:  First, graph J2 is 3-colorable.  It contains an odd cycle (a, f, i, g, d) 

making its chromatic number greater than or equal to three. The second graph in Figure 

10 shows a 3-coloring of J2, establishing 2( ) 3Jχ ≤ .  Therefore, 2( ) 3Jχ = . 

 To show 2( ) 3Jγ = , first observe that the vertices a, c, and i constitute a 

dominating set establishing 2( ) 3Jγ ≤ .  Because of the symmetry of the graph, without 

loss of generality select one of the vertices on the outer 4-cycle, say a.  Vertex a 

dominates all the vertices except c, e, g, and i.  Since the vertices c, e, g, and i do not 

share a common neighbor, the dominating set of J2 cannot have just two vertices, thus 

2( ) 3Jγ ≥  .  Therefore, 2( ) 3Jγ = . 

 In Figure 10, the vertices e, f, g, h, and i all dominate the color class 3. The 

vertices a and c dominate the color class 2 and the vertices b and d dominate the color 

class 1.  This dominator coloring establishes 2( ) 3d Jχ ≤ .  From Proposition 1, we know 

that 2( ) ( )d J J2χ γ≥  which implies 2( ) 3d Jχ ≥ .  Therefore, 2( ) 3d Jχ = .               

 And so Mycielski’s construction, when applied to , produces another graph, J4C 2, 

where all three parameters are equal to three.  Moreover, we obtained J2 using a graph 

a b

cd 

e 

1 2 

1 2

1 2 

1 
2

3

f

g
h 

i 



from the only class of graphs where ( ) ( ) ( ) 2dG G Gγ χ χ= = =

4

. The next step is to 

determine whether the shadow graph of J2, SJ2, results in a graph with all three 

parameters equal to four.  After applying Mycielski’s construction to J2, we find that 

2 2( ) ( )SJ SJγ χ= = , but 2( )d SJ 5χ = .  We applied the same construction to graphs other 

than C4 and did not achieve the desired result.  Although this technique does not provide 

a general algorithm for constructing the graphs where ( ) ( ) ( )dG G G kγ χ χ= = =  for all 

, it does provide us a second graph that satisfies the criteria where all three 

parameters are equal.   

3k >

C. LARGE CASES 

 Our next step is to find a class of graphs where ( ) ( ) ( )dG G G kγ χ χ= = =  for 

.  From our previous analysis, we know 3k > ( ) ( )n dK nKχ χ=  and, by Theorem 3, a 

complete bipartite graph, ,a bK , satisfies , , ,( ) ( ) ( )a b a b d a bK K K 2γ χ χ= = = .  Let Rα , where 

2α ≥ , be the graph obtained in the following manner. Let α represent the number of 

disjoint copies of 3,3K  in Rα .  Let U i be one bipartite set of 3,3K  composed of three 

vertices in the ith copy and let Wi be the other bipartite set in the ith copy, where 

1 i α≤ ≤ .  Let v and v .  Define the set 2 1i iU− ∈ iW∈2i { }1 2 2, ,...,V v v v α=  and add edges 

 (1 , )i jv v i j α≤ ≤  to construct the complete graph K2α on V.  Figure 11 shows the graphs 

2R  and 3R .  As we show next, the class of graphs { }2Rα α ≥  satisfies 

( ) ( ) ( ) 2dR R Rα α αγ χ χ= = = α . 

 

R2

R3

Figure 11.   The Graphs 2R and 3R  
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Theorem 4.  For , there is a class of graphs, { }Rα2α ≥ , such that  

( ) ( ) ( ) 2dR R Rα α αγ χ χ= = = α . 

 Proof:  Since K2α is a subgraph of Rα , ( ) 2Rαχ α≥ .  Assign the color 2i-1 to 

i i.  The result is a prvertices in U , and the color 2i to the vertices in W oper coloring of G, 

establishing ( ) 2Gχ α≤ .  Therefore, ( ) 2Rαχ α= . 

{ }2 1i ix U v −∈ − To determine the domination number, first choose .  Note that only 

elements of { }iW x∪ will dominate it.   There remains a vertex { }2 1,i iy U v x−∈ −

Ui, it follows th

 that 

needs to be dominated.  Since y is not adjacent to any element in at a 

vertex from Wi is required in the dominating set.  It follows that for each copy of K3,3, 

two vertices are needed in the dominating set and ( ) 2Rαγ α≥ . Let S = V.  For1 i α≤ ≤ , 

v W v U

that ( ) 2R

2i-1 dominates the vertices in i and 2i dominates the vertices in i.  It follows 

αγ α≤ , therefore ( ) 2Rαγ α= . 

( )d Rαχ , Proposition 1 establishes ( ) 2d Rαχ α≥ For .  Refer to the proper coloring 

of Rα  described above.  Since Ui and Wi are bipartite sets in K3,3, each vertex in Ui 

inates the colo idom r class 2i and each vertex in W  dominate the color class 2i-1, where 

1 i α≤ ≤ .  As a result, ( ) 2Rd αχ α≤  and ( ) 2Rd αχ α= .                                                      

{ }Rα   Theorem 4 establishes the existence of a class of graphs where all three 

parameters are equal, but only for even values greater than or equal to four.  The graphs 

graphs that satisfie

1J  and  J  have all parameters equal to three, so we are concerned with finding a class of 2

s ( ) ( ) ( ) 2 1dG G G kγ χ χ= = = +  for   After attempting several 

tisfies

2.k ≥

constructions, we propose the following conjecture. 

 Conjecture 1.  There is no graph, G, that sa  ( ) ( ) ( ) 2 1dG G G kγ χ χ= = =  +

for 2.k ≥  



IV. TOPICS FOR FURTHER RESEARCH 

A. APPLICATIONS 

As a relatively new development, there are no specific applications to date for 

dominator coloring.  Because it combines two topics, coloring and domination, that 

currently have applications to networks, the initial focus is on finding an application in 

that area.  It is possible that applications exist in other areas.   

B. OPEN QUESTIONS 

There are several interesting questions that are still open for dominator colorings.  

With respect to this paper, the most immediate is proving or disproving Conjecture 1.  If 

it is proved true, then we will know that there are some limitations on constructing graphs 

with these three parameters.  If disproved, then we know all the triples are realizable.   

Below are some possible open questions. 

1.  We found two graphs,  and , that satisfy 1J 2J ( ) ( ) ( ) 3dG G Gγ χ χ= = = .  Are 

there other graphs that satisfy this condition?  If so, can such a graph be used to construct 

a class of graphs that will disprove Conjecture 1? 

2.  Other than the class { }Rα , are there graphs or graph classes that satisfy 

( ) ( ) ( ) 2dG G Gγ χ χ= = = α ? 

3.  From a computer-assisted exhaustive proof, we know that the dominator 

chromatic number of the Petersen Graph is five.  Is it possible to show (Petersen) 5dχ =  

without the aid of a computer? 

23 
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