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ABSTRACT 

In a free electron laser (FEL) system, knowing the optical beam 

characteristics is of great importance. A beam may be comprised of higher-order 

modes due to the interaction with the electron beam, or from non-ideal 

operational conditions such as mirror distortions and misalignments, or from 

imperfect injection of the electron beam.  

In this thesis, the basic FEL theory is initially reviewed. The parabolic 

wave equation is then solved for the “fundamental” Gaussian mode and for 

higher-order modes. Working in rectangular coordinates, a complete and 

orthogonal set of solutions involving Hermite polynomials is found. When the 

wave equation is solved in cylindrical coordinates, we arrive at a set of solutions 

that contain Laguerre polynomials. The so-called Laguerre-Gaussian modes are 

analyzed. The evolution of these laser modes is also explored, yielding quite 

unexpected results due to their phase structure and orbital angular momentum of 

light. Lastly, we study a common case where higher-order optical modes appear, 

in order to quantify the tolerances of an FEL.  
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I. INTRODUCTION 

The Free Electron Laser (FEL) is a source of powerful, coherent radiation 

with unique attributes. Continuous tunability, high power, good efficiency and 

reliability make it suitable for a wide span of applications. The option of high 

power derives in part from the absence of a medium vulnerable to damage. 

Powerful coherent radiation was first produced when the microwave tube, 

which uses a beam of free non-relativistic electrons inside a closed microwave 

cavity, was invented in the 1930’s. Following this invention, the introduction of the 

open resonator enabled many steps towards the development of more powerful 

and efficient radiation sources.  

Based on its special attributes, the FEL is suitable for many diverse 

applications. It can be used in biology to study cell and molecular structure, and it 

can be used in the military, due to its high power output and its capability to 

operate in a broad range of wavelengths. A critical requirement for an FEL to 

have the desired results is good optical beam quality. We need to know the beam 

shape that can be produced under various operational conditions, so as to 

evaluate its performance. 

In this thesis, we analyze various high-order modes from an FEL, 

emphasizing cylindrical coordinates, which are motivated by the symmetry of the 

system. We present a brief review of a typical FEL system in the first chapter, as 

well as the relevant operating configurations. The next chapter introduces basic 

FEL theory, where we derive the pendulum equation, which describes the 

electron motion, and the parabolic wave equation, which describes the laser light 

evolution, from the classical electromagnetic theory.  

In the chapters that follow, we focus our attention on the optical beam. 

First, the basic optical theory is reviewed and the fundamental-mode solution to 

the wave equation is derived and analyzed. Although this solution is a good 

approximation for the output of many FELs, the actual operating parameters of a 
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system can generate laser light with higher-order modes. To analyze this effect, 

we initially review work with rectangular coordinates, and find the Hermite-

Gaussian modes. Following this, new work is presented with cylindrical 

coordinates, which are more relevant to an FEL system, and we arrive at the 

Laguerre-Gaussian solutions. Analyzing these high-order modes, we find that the 

orbital angular momentum of light plays important role in the evolution of such a 

beam.  

In the last chapter, we present the results of a new set of simulations 

designed to investigate the tolerance of the Jefferson Lab FEL (Figure 1) to 

electron beam tilt. From these results, we see that higher-order optical modes do 

indeed appear as a consequence of the non-ideal operating conditions. 

 

 

 

Figure 1.   Schematic of Jefferson Lab free electron laser After [1].  
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II. FREE ELECTRON LASER SYSTEM 

In the Free Electron Laser, a beam of relativistic electrons, produced by 

an injector and accelerated by a linear electron accelerator, passes through a 

transverse, periodic magnetic field, called the undulator, oscillates and therefore 

radiates. Radiation can be captured in a cavity and used to induce new electrons 

to emit even more radiation. Alternatively, radiation from an external source can 

be amplified over a single pass, and even without an external source it is 

possible to produce radiation through the process of spontaneous emission. 

Therefore, it is informative to look at the possible basic setups, which can be 

used in order for a free electron laser system to function. 

 

A. FEL CONFIGURATIONS 

The configuration used in the first FEL by John Madey in 1977 is the 

oscillator, employing an optical cavity in a very similar way as in the conventional 

chemical or solid state lasers. Radiation is stored and amplified in the optical 

cavity, bracketed by one fully and one partially reflective mirror, the latter being 

used to outcouple the laser light. Coherence is established after many passes of 

the light. Figure 2 is a typical FEL oscillator, where the emphasis is placed on the 

resonator. 

 

 
 

Figure 2.   Oscillator Free Electron Laser From [2]. 
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In the amplifier configuration there is no optical resonator and it can be 

considered the simplest type of FEL. Light from a seed laser is amplified by the 

interaction with the electron beam, passing only once through the periodic 

magnetic field. Coherence in this case is set up by the seed laser. 

A special type of amplifier is the SASE FEL (Self-Amplified Spontaneous 

Emission) where there is no external source. Instead, the spontaneous radiation 

in the first part of the magnetic field is used as the seed laser. At present, It 

appears to be the most promising concept in the race towards achieving much 

shorter wavelengths (UV,X-rays), since there are no seed lasers in this regime. 

Figure 3 shows the layout of a SASE FEL, where there are neither resonator 

mirrors nor seed laser, but where a significantly longer undulator is required.  

 

 
 

Figure 3.   SASE Free Electron Laser From [2]. 
 

B. FEL COMPONENTS 

The major components of an FEL system are the electron beam source, 

the accelerator, the undulator, the resonator (for the oscillator) and the beam 

dump. There are many other elements that make an FEL system operational, like 

bending and control magnets to steer the electron beam in the desired path and 

several detecting devices to continuously monitor all the critical points, in order to  
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keep track of the operational parameters and to enhance the performance. Last 

but not least, an optical system must be utilized to transport the laser light in the 

desired area.  

1. Electron Beam Injector 

The electron beam injector is the original source of electrons in the FEL, 

and it plays a crucial roll in the performance of the system. It is usually a 

photoinjector, where a drive laser excites the electrons in a cathode, which is 

positioned inside a Radio Frequency (RF) cavity, and a high voltage is applied so 

as to accelerate the released electrons, allowing them to gain a modest amount 

of energy before entering the main accelerator. Instead of taking advantage of 

the photoelectric effect, much the same release of electrons can be obtained by 

heating the cathode. The electron beam that is produced from an injector, like the 

one shown in Figure 4, usually comes out in pulses at regular intervals.  

 

 
 

Figure 4.   Electron Injector After [3]. 
 

2. Accelerator 

The electrons emerge from the injector with energy of about 5-10 MeV. In 

order to achieve infrared radiation from the FEL, we need a relativistic electron 

beam of about 100 MeV. To attain this energy level, the electron beam is passed 

through a Radio Frequency Linear Accelerator (RF LINAC). Superconducting 
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technology may be used as in the JLab FEL LINAC, shown in Figure 5. The 

accelerator uses an alternating electric field, which interacts with each electron 

bunch that passes through the RF cavity. For this reason, the electric field has to 

be fully synchronized with the electron bunches, so that it continuously 

accelerates the electrons. Also, the accelerator must have several stages of RF 

modules in order for the electrons to reach the required energy.  

The RF field inside the linear accelerator is generated by a klystron. To 

reduce the input power required, a special technique has been introduced. The 

electron beam that has traveled through the whole system can be driven back 

through the accelerator, so as to give most of its remaining energy, back to the 

RF field. To achieve this, we have to carefully adjust the timing of the beam, so 

as to be out of phase with the electric field of the RF cavities. This energy 

recovery procedure through the recirculation of the electron beam increases the 

overall efficiency of the system and additionally reduces the beam dump size.  
 

                     
  (a)          (b) 
 

 
(c) 

 
Figure 5.   JLab Superconducting LINAC  (a), (b) A five-cell cavity, photo and 

sketch, (c) Part of a cryomodule which contains six five-cell cavities 
From [4]. 
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3. Undulator 

The undulator is the component of the FEL system that forces the electron 

beam to wiggle and radiate. It is composed of a group of magnets, as can be 

seen in Figures 2 and 3, arranged so that they form an alternating magnetic field 

along the axis of the undulator. The electrons leaving the accelerator with 

relativistic speeds, enter the periodic magnetic field of the undulator, where the 

Lorentz force drives them to oscillate in a transverse direction. The radiation that 

is emitted interacts with the light already present in the undulator, through the 

process of the stimulated emission. This interaction results in the amplification of 

the stored light. 

4. Resonator 

In the oscillator configuration, as the one shown in Figure 2, the FEL 

system makes use of an optical cavity with the undulator enclosed inside. This 

way, light is stored and amplified through many passes. Two mirrors bound the 

cavity: one of them totally reflects the light, while the other allows a percentage to 

come out. The light that emerges through this out-coupling mirror is the desired, 

usable laser light of the system. It is obvious that for maximum coupling 

efficiency between the electrons and the light within the resonator, the optical 

beam should be synchronized with the electron bunch.  

5. Beam Dump 

The beam dump is simply a notched piece of metal that absorbs the 

energy of the electrons at the end of their path, either just after the undulator or in 

the energy recovery configuration, after the linear accelerator. Even though 

electrons give energy to the optical field in order for the FEL to emit light, and 

probably back to the RF field, they still have energy to be removed. Therefore, 

the beam dump can heat up at megawatt rates and needs to be water-cooled. 

Furthermore, it is shielded so that no radiation can exit. A schematic diagram of a 

beam dump is shown in Figure 6. 



 8

 

 
 

Figure 6.   Schematic diagram of the electron beam dump After [5]. 
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III. BASIC FREE ELECTRON LASER THEORY 

The basic idea behind the operation of a free electron laser is the 

extraction of energy from relativistic electrons, forcing them to radiate coherently. 

This energy conversion takes place inside the undulator, where the electron 

beam makes a wiggling, transverse motion, emitting spontaneous radiation in the 

forward direction. We can couple this motion to the electric field of the radiation 

to produce stimulated emission, thus amplifying the optical mode. We will now 

look at the mathematics that describe the attributes of a free electron laser and 

explain its operation. 

A. FEL PENDULUM EQUATION 

In order to understand the physics behind the electron motion and the 

subsequent radiation, we will first study their behavior inside the magnetic field of 

the undulator. For that reason, we will consider relativistic electrons entering a 

helical undulator field along the z-axis in the presence of optical field. As the 

electrons travel along the undulator, forces from both the static magnetic field of 

the undulator, and the oscillating electric and magnetic fields of the optical mode 

affect them [6].  

The magnetic field of the undulator can be expressed in rectangular 

coordinates as: 

 

 
G
BU   =  B cos koz( ),sin koz( ),0( ),       (III.1) 

 

where B  is the magnetic field strength, ko = 2π λo is the undulator wavenumber 

and λo  is the undulator  wavelength, being the distance of one complete cycle of 

the magnetic field in the undulator. 

The corresponding electric and magnetic field of the optical wave are 

given by: 
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G
Ε  =  Ε cosψ ,− sinψ ,0( ),        (III.2) 
 G
B  =  Ε sinψ ,cosψ ,0( ),        (III.3) 

 

with  ψ = kz − ωt + ϕ , Ε  the field amplitude of the optical wave in cgs units, 

k = ω / c   the optical wavenumber, ω  the frequency and ϕ   the optical phase. 

Electrons entering these fields encounter a Lorentz force that, in the case 

of relativistic particles, is given by the equations  

 
( ) ( )

 
   =  −   + ×

G
GG Gd e E B

dt mc

γ β
β ,       (III.4) 

 

   =  −    ⋅
G Gd e E

dt mc
γ β  ,       (III.5) 

 

where 21 =    1 −     
G

γ β   is the Lorentz factor,  =      
G Gv cβ  is the dimensionless 

electron velocity,  e = e   is the electron charge magnitude and m is the electron 

rest mass. Equation (III.5) is also known as the energy equation because it 

describes how electrons exchange energy with the optical field, and the electron 

energy is ε = γ mc2 . 

We can now substitute the fields from (III.1)-(III.3) into (III.4) to obtain the 

spatial components of the force on the electron  

 
( )

( )( ) ( )1 cos , sin ,0 sin ,cos ,0⊥ 
   =  −   − − + −⎡ ⎤⎣ ⎦

G

z z o o

d e E B k z k z
dt mc

γ β
β ψ ψ β , (III.6) 

 

d γ  βz( )
dt

   =  − 
e

mc
  E βx cosψ − βy sinψ( )+ B βx sin koz − βy coskoz( )⎡⎣ ⎤⎦ ,  (III.7) 
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where βx ,βy ,βz  are the three components of the velocity and 
∧ ∧

⊥ = +
G

x yi jβ β β  is 

the transverse velocity. Since we are dealing with relativistic electrons, we can 

take βz ≈ 1. Then, all terms of E 1 − βz( ) are small compared to βzB  and can be 

dropped. Integrating (III.6) and assuming perfect injection into helical orbits, so 

as to take the constants of integration to be zero, we obtain the velocity of the 

transverse motion 

 

( )2 cos ,sin ,0
2

o
o o

eB k z k z
mc
λβ

πγ⊥  =  −   
G

.      (III.8) 

 
We can write (III.8) in a more compact form if we introduce the dimensionless 

undulator parameter  

 

K =   
eBrmsλo

2πmc2   ,         (III.9) 

 
with Brms the rms value of the undulator magnetic field. Then  

 

( )cos ,sin ,0o o
K k z k zβ
γ⊥  =  −   

G
.       (III.10) 

 
In (III.10) note that for the helical undulator, Brms = B  and for a linearly polarized 

undulator Brms = Β 2 . 

At this point, we are able to look at the basic transverse motion of the 

electrons, by making the assumption that they travel roughly with the speed of 

light along the undulator. Then  βz c ≈ c  , and taking the electron velocity to be 

constant we can write z t( )≈ βz c t . Using ωo = βz  koc ≈ koc  as the electron 

oscillation frequency, (III.10) becomes 

 

( ) ( )( )cos ,sin ,0o o
K t tβ ω ω
γ⊥  ≈  −   

G
, (III.11) 
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and integrating we get  

 

( ) ( ) ( )( )sin ,cos ,0o o
Kx t t tλ ω ω
γ π

ο
⊥  ≈     −

2
G , (III.12) 

 

with ( ) ( ) ( )
∧ ∧

⊥ = +
Gx t x t i y t j . This equation approximates the transverse motion of 

the electrons inside the undulator. From this expression and for typical systems, 

we find that electrons move in the transverse directions in a distance of about 

25  µm , the oscillation frequency is in the microwave regime, but due to the 

relativistic Doppler effect, the radiation frequency is multiplied by a factor of  γ 2 , 

resulting in lasing at much higher infrared frequencies. 

Next, we want to study more carefully the microscopic motion of the 

electrons, without making the approximations of the previous paragraph. For this 

reason, we will use the transverse motion we found in equation (III.10), and plug 

it into the energy equation (III.5) to get 

 

 
�γ =

dγ
dt

 = −   
e

mc
Ε βx cosψ − βy sinψ( ). (III.13) 

 

Introducing the electron phase ζ = k + ko( )z − ωt  and recalling that 

ψ = kz − ωt + ϕ , (III.13) is rewritten as 

 

 
�γ  =   

eKE
γ mc

cos ζ + ϕ( ). (III.14) 

 
The last equation describes energy exchange, because it tells us whether 

electrons lose or gain energy, based on the sign of the cos ζ + ϕ( ) term. For 

instance, when cos ζ + ϕ( )< 0  then �γ < 0 , thus electron energy ε = γ mc2  

decreases, which is the desired condition for the FEL to operate, so that 

electrons give energy to the optical field. 
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Electron phase ζ  is a way to relate electron position to the co-propagating 

optical field; it corresponds to the position of the electron in a section of the 

electron beam one optical wavelength long. Therefore, it is reasonable to 

introduce the electron phase velocity, defined in the following way so as to be 

dimensionless 

 

( )≡    = + − =⎡ ⎤⎣ ⎦
D�

o z
L L k k k
c

ν ζ β ζ , (III.15) 

 
where L = Nλo  is the length of the undulator, N is the number of undulator 

periods and the symbol (..)
D

 indicates the derivative with respect to the 

dimensionless time τ , defined by τ = ct L . This normalizes time to the length of 

the undulator, so that τ = 0 → 1  from the beginning to the end of the undulator. 

The dimensionless electron phase velocity ν  is also known as the 

“resonance parameter”. For an electron that satisfies the resonance condition 

ν = 0 , the electrons and optical field have optimum energy exchange. In this 

case, cβz = kc k + ko( ). Assuming again relativistic electrons, we have βz ≈ 1 and 

ok k� . Therefore,  λ = λo  and laser frequency oω ω� , where ωo ≈ 2πc λo  is the 

electron oscillation frequency. Then, the laser wavelength is  

 

λ =
λo 1− βz( )

βz

. (III.16) 

 

 From (III.10), we find that  β⊥
2 = K 2 γ 2  and so  

 

 βz = 1 −
1 + K 2

γ 2

⎛
⎝⎜

⎞
⎠⎟

1
2

. (III.17) 

 
For relativistic electrons with 1γ � , equation (III.17) can be approximated by 
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2

2

11
2
+

 ≈ −z
Kβ

γ
. (III.18) 

 
Combining equations (III.16) and (III.18) we find the following expression of the 

resonance condition for the laser wavelength 

 

λ =
λo 1 + K 2( )

2γ 2 . (III.19) 

 
This resonance relationship makes obvious that an FEL can be continuously 

tuned by changing physical parameters, like the electron energy ε = γ mc2  or the 

design of the undulator. Since the undulator parameter is typically K ≈ 1 , it is 

clear that optical wavelength is much smaller than that of the undulator by a 

factor of   approximately 1 γ 2 . 

We are able now to continue our analysis, so as to arrive to a compact 

expression for the electron microscopic motion, taking first the time derivatives of 

the electron phase velocity v, defined in (III.15) and that of the longitudinal 

velocity βz  from (III.18) 

 

( )o zL k kν β= + �� ,            
2

3

1
z

Kβ γ
γ
+

 =� � . (III.20) 

 

Then, we combine these results to find 4 Nν π γ γ=� �  and finally substituting γ �  

from (III.14) we get 

 

( )2 2

4 cosL NeKLE
c mc

πν ν ζ ζ ϕ
γ

= = = +
D DD

� . (III.21) 

 

It is now reasonable to collect terms and define 2 2a 4 NeKLE mcπ γ=  as the 

dimensionless laser field amplitude, so that (III.21) becomes 
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  ν
o

= ζ
oo

= a cos ζ + ϕ( ), (III.22) 

 
which is the FEL “pendulum equation” that describes the microscopic motion of 

each electron in the reference frame of one optical wavelength. In this reference 

frame, the motion of the electrons can be taken to be similar to a classical 

pendulum. The dimensionless laser field amplitude a  is a measure of the 

strength of the optical field and expresses the rate of the electron bunching. 

When a π�  the laser has strong fields and it is near saturation, while for  a ≤ π  

the optical field is weak and there is no overbunching of electrons. 

Equation (III.22) implies that electrons inside the magnetic field of the 

undulator move in an equivalent way to the classical pendulum. Phase space 

plots are commonly utilized to visualize the motion of a pendulum, thus they can 

also be used to describe the motion of the electrons within an optical wavelength, 

showing the evolution of electron phase and phase velocity (analogous to 

position and angular velocity for the classical pendulum). Since phase velocity is 

related to the energy, phase space plots give an informative picture of the energy 

exchange between electrons and the optical field. 

The following figures show the phase space paths for 20 sample 

electrons, injected with the same initial phase velocity, and having uniformly 

distributed initial phase. The FEL phase space paths can be found from the 

expression [6] 

 

 ν
2 = νo

2 + 2 a sin ζ + ϕ( )− sin ζo + ϕ( )⎡⎣ ⎤⎦ , (III.23) 

 
while the separatrix is given by  

 

 ν
2 = 2 a   1+ sin ζ + ϕ( )⎡⎣ ⎤⎦    i.e.,  ν = ± 2 a   1+ sin ζ + ϕ( )⎡⎣ ⎤⎦

1
2 , (III.24) 
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which defines a closed contour inside of which are the closed orbits, and outside 

of which are the open orbits. It passes through the unstable fixed points 

ζ ,ν( )= −π 2,0( ) and ζ ,ν( )= 3π 2,0( ), and its peak to peak height is easily seen 

to be  4 a 1 2 . An electron moving in an open orbit corresponds to a pendulum that 

swings over the top, whereas an electron that follows a closed orbit corresponds 

to a pendulum that swings back and forth. 

In Figure 7 it is plotted the evolution of 20 sample electrons starting at 

resonance (νo = 0 ), during the time period from τ = 0  (appearing as yellow dots) 

to τ = 1 (appearing as red dots). All paths are inside the separatrix, thus all 

electrons follow closed paths. The symmetry that appears, indicates that half of 

the electrons gain energy from the optical field and their paths shift up, while the 

other half lose energy. This is represented in the same figure from the graph of 

the net gain G τ( ), which is almost zero. Gain is defined as  

 

G τ( )=
P τ( )− Po

Po

, (III.25) 

 

where P τ( ) is the optical power at time τ  and Po  is the initial power. The optical 

phase evolution ϕ τ( ) is plotted in the same figure. 
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Figure 7.   Phase Space evolution of Electrons at Resonance (νo = 0 ), 

corresponding optical field Gain and Phase evolution. 
 

Contrary to the nearly zero net energy transfer when electrons are injected 

at resonance, we can arrange to have electrons give net energy to the optical 

field. Injecting electrons slightly off resonance, as shown in Figure 8, we notice 

that while some of them perform open orbits, at the end of the undulator when 

τ = 1, most electrons have moved to a lower value of phase velocity, resulting in 

a net loss of energy. In this case, a very important effect takes place near ζ = π , 

namely “bunching” of the electrons and a final gain of more than 10%.  

 

 
Figure 8.   Phase Space evolution of Electrons injected off resonance 

(νo = 2.6 ), corresponding optical field Gain and Phase evolution. 
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B. DIFFRACTION OF LASER BEAMS 

We will now study the propagation of laser light through a sourceless 

medium, in order to be able to understand and describe how light travels and 

moreover, how is affected by diffraction. We start with Maxwell’s equations, 

assuming for our case an isotropic and homogeneous medium. When there are 

no sources, that is to say the charge density ρ = 0  and the current density j = 0 , 

we write the four Maxwell’s equations in cgs units as 

 
0∇ ⋅ =

JG
E ,          (III.26) 

0∇ ⋅ =
JG
B ,          (III.27) 

1 ∂
∇× = −

∂

JGJG BE
c t

,         (III.28) 

1 ∂
∇× =

∂

JGJG EB
c t

,         (III.29) 

 
where c is the speed of light. Taking the curl of both sides of equation (III.28) we 

have 

 

( ) 1⎛ ⎞∂
∇× ∇× = ∇× −⎜ ⎟⎜ ⎟∂⎝ ⎠

JGJG BE
c t

 

( )1 ∂
= − ∇×

∂

JG
B

c t
. 

 

Applying a vector identity on the left-hand side and substituting ∇×
JG
B  from 

(III.29), we get 

 

( ) 2 1 1 EE E
c t c t

⎛ ⎞∂ ∂
∇ ∇ ⋅ − ∇ = − ⎜ ⎟

∂ ∂⎝ ⎠

JGJG JG
.      (III.30) 

 

Then, since 0E∇ ⋅ =
JG

 from (III.26), we get  
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2

2
2 2

1 0E
c t

⎛ ⎞∂
    ∇ − =⎜ ⎟∂⎝ ⎠

JG
,        (III.31) 

 

which is the wave equation that describes light propagation. Electric field �E Eε=
JG

, 

where �ε  is the polarization vector, is a function of position and time, thus 

equation (III.31) implies four second-order derivatives in Gx,t( ). Due to the 

coherence of the laser light, electric field E
JG

 is slowly varying in the direction of 

propagation over an optical wavelength. Likewise, E
JG

 is slowly varying in time 

over the optical period. Then, we can write the magnitude of the complex electric 

field in the form 

 
( ) ( ) ( ), , i kz tx t x t e ωα −    Ε =
G G  

( ) ( ) ( ),, i x t i kz tx t e eϕ ωα −   =
GG ,       (III.32) 

 

where     kz − ωt  is the carrier wave,    α = α eiϕ  is the complex optical field and 

 
Gx  = x, y, z( ). Next, we want to substitute the electric field (III.32) into the wave 

equation (III.31). After taking the required derivatives, we find  

 

    ∇⊥
2α +

∂2α
∂z2 + 2ik

∂α
∂z

− k2α
⎛
⎝⎜

⎞
⎠⎟

−
1
c2

∂2α
∂t 2 − 2iω

∂α
∂t

− ω 2α
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ei kz−ω t( ) = 0 , (III.33) 

 

with ∇⊥
2 = ∂2 ∂x2 + ∂2 ∂y2  the transverse Laplacian. We can simplify this equation 

by dropping out the second derivatives, because laser field amplitude ( ),x tα G  

and phase ( ),x tϕ G  are slowly varying. This means that  

 

 
    
∂ α
∂z

= k α    , 
 
    
∂ α
∂t

= ω α    ,       ∂ϕ
∂t

= ωϕ    and   ∂ϕ
∂z

= kϕ .  (III.34) 
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From   ∂ α ∂z = k α     we find that  ∂2 α ∂z2 = k ∂ α ∂z  and similarly from 

  ∂ α ∂t = ω α    we find that  ∂2 α ∂t 2 = ω ∂ α ∂t , so that we are justified in 

dropping the second derivatives in favor of the first derivatives in (III.33). In the 

same equation, the last term in each parenthesis cancels out, since 

k = ω / c ⇒ k2 = ω 2 / c2      ⇒     k2α = ω 2α / c2 . Then, after multiplying by e−i kz−ω t( ) , 

equation (III.33) becomes 

 

( )2 12 , 0ik x t
z c t

α⊥

⎡ ∂ ∂ ⎤⎛ ⎞    ∇ + + =⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

G .      (III.35) 

 
In order to simplify the last expression, we introduce a new variable 

u = z − ct  and again use the dimensionless time τ = ct L  (where L  is the 

propagation range). We can now rewrite the operator     ∂ ∂z + c−1 ∂ ∂t  that appears 

in (III.35) taking the necessary partial derivatives  

 

   
∂
∂z

 =
∂u
∂z

∂
∂u

+
∂τ
∂z

∂
∂τ

       
 ,       (III.36)  

1
c

∂
∂t

=
1
c

∂u
∂t

∂
∂u

+
1
c

∂τ
∂t

∂
∂τ

 

 
and since ∂u ∂z = 1 , ∂τ ∂z = 0 , ∂u ∂t = −c  and ∂τ ∂t = c L , the operator 

    ∂ ∂z + c−1 ∂ ∂t   is just     L−1 ∂ ∂τ  and consequently the wave equation (III.35) is 

now written 

 

( )2 2 , 0ik x t
L

α
τ⊥

∂⎛ ⎞    ∇ + =⎜ ⎟∂⎝ ⎠
G ,       (III.37) 

 
which is called the “parabolic” or “paraxial” wave equation, because we have 

made use of the paraxial approximations in (III.34). 



 21

At this point, it is convenient to use dimensionless transverse 

coordinates   x, y( ) along with the normalized time τ . If we rearrange the terms in 

equation (III.37), we can rewrite it as 

 

( )2 , 0
2
iL x
k

α τ
τ⊥

⎡ − ∂ ⎤⎛ ⎞    ∇ + =⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦

G ,       (III.38) 

 
where we notice from the first term, which is the diffraction term of the wave 

equation, that the transverse extent of the laser beam, together with the 

wavenumber k = 2π λ  and the propagation range L , affect the diffraction of the 

beam. The equation takes a simpler form if we normalize the transverse 

coordinates using the relationships  

 
1

2

2
kx x
L

⎛ ⎞ = ⎜ ⎟
⎝ ⎠

� ,  
1

2

2
ky y
L

⎛ ⎞ = ⎜ ⎟
⎝ ⎠

�  .     (III.39) 

 

In (III.39), the normalization factor  k 2L( )1
2  is related to the characteristic mode 

waste radius Wo  by 

 

Wo =
Zoλ
π

⎛
⎝⎜

⎞
⎠⎟

1
2

=
2Zo

k
⎛
⎝⎜

⎞
⎠⎟

1
2

,       (III.40) 

 
with Zo = L  in our case, where Zo  is the Rayleigh length, defined to be the 

propagation distance in which the beam doubles its area and it is determined by 

the curvature of the mirrors. Finally, using only dimensionless coordinates and 

utilizing the dimensionless transverse Laplacian, we arrive at the dimensionless 

parabolic wave equation, written without the tildes for convenience 

 

( )2 , 0
4
i xα τ

τ⊥

∂⎛ ⎞− ∇ + =⎜ ⎟∂⎝ ⎠
G .       (III.41) 
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From this last wave equation, we notice that for a beam with transverse 

dimensions of the order of unity or less, we have to take into account the 

diffraction, since it affects the beam a great deal, over the range τ = 0 → 1 , while 

for a much wider beam we can ignore it. Diffraction of the wavefront causes both 

the amplitude and the phase of the optical field to evolve. 

 

C. THE FEL WAVE EQUATION 

We have found, so far, a mathematical description for the laser light that 

propagates in absence of sources and also for the electron motion in the 

presence of light. What is left, in order to generalize, is to describe the optical 

wave evolution, taking into account the interaction with the current source due to 

the electron beam. We start with the full wave equation [6] 

  

( ) ( )
2

2
2 2

1 4, ,A x t J x t
c t c

π
⊥

⎛ ⎞∂
∇ − = −⎜ ⎟∂⎝ ⎠

JG JGG G ,      (III.42) 

 

where ( ),A x t
JG G  is the optical vector potential and ( ),J x t⊥

JG G  is the transverse current 

density due to oscillations of the electrons passing through the undulator. Then 

we are able to find the optical electric and magnetic fields from the vector 

potential using the relationships  

 
1 AE
c t

∂
= −

∂

JGJG
,  B A= ∇×

JG JG
.      (III.43) 

 
Once again, we will make use of the fact that laser light is coherent. Thus, we 

take ( ),A x t
JG G  to have a slowly varying envelope in the direction of propagation. In 

addition, we take the electric field to vary slowly over a laser wavelength and to 

vary slowly in time, relative to the optical frequency. Assuming a complex laser 

electric field E = E eiϕ , the vector potential can be written [6] 
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( ) ( ) � ( ),
, i kz tE x t

A x t e
k

ωε −=   
GJG G ,       (III.44) 

 

where     kz − ωt   is the carrier wave and �ε  is the laser polarization vector, which is 

� ( )iε  = − ,1,0  for the case of a helical undulator producing circular polarized laser 

light. If we assume again slowly varying wave amplitude and phase and use 

(III.44), the wave equation (III.42) becomes 

 
� ( )

2 1 42
i kz te ik E J
k z c t c

ωε π−

⊥⊥

  ⎡ ∂ ∂ ⎤⎛ ⎞∇ + +   = −⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

JG
 

� ( )2 1 42 i kz tkik E J e
z c t c

ωπ ε
∗ − −

⊥⊥

⎡ ∂ ∂ ⎤⎛ ⎞⇒ ∇ + +   = − ⋅   ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

JG
.    (III.45) 

 
We will now use the same technique as we used in (III.36), introducing the new 

variable u = z − ct  and τ = ct L , where L  is the length of the undulator, so as to 

rewrite the operator     ∂ ∂z + c−1 ∂ ∂t . Then (III.45) becomes  

 
� ( )2 2 4 i kz tik kE J e

L c
ωπ ε

τ
∗ − −

⊥⊥

∂⎛ ⎞∇ + = − ⋅   ⎜ ⎟∂⎝ ⎠

JG
.     (III.46) 

 
This last equation is the parabolic wave equation with a source current 

J ⊥

JG
, due to the bunched electrons. The source current, which is due to all of the 

electrons, can be expressed as  

 
( ) ( )( )3

i
i

J ec x r tβ δ⊥ ⊥= − −∑
JG G G G ,       (III.47) 

 

where δ 3( )  is the three-dimensional Dirac delta function, defined as 
( ) ( ) ( ) ( ) ( )3 r x y zδ δ δ δ=

G  and  
Gri t( ) is the position of the ith electron at time t. The 

transverse velocity β⊥  
G

 found in (III.10) can be expressed as 
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( ) �cos ,sin ,0 e oik z
o o

K Kk z k z i eβ ε
γ γ

−
⊥

⎧ ⎫
  =  −   = ℜ − ⎨ ⎬

⎩ ⎭

G
.    (III.48) 

 
Plugging (III.48) into the source current relationship in (III.47) and then the 

resulting source current into the parabolic wave equation (III.46), we have 

 

( ) ( )
2

,
2 4 , i

x t
ik E ieKk x t e
L

ζπ ρ γ
τ

−
⊥

∂⎛ ⎞  ∇ + = −       ⎜ ⎟∂⎝ ⎠
G

G .    (III.49) 

 
In this equation, ( , )x tρ G  is the electron beam particle density in a small volume 

element dV  

 

( ) ( ) ( )( )3, i
iV

x t x r t dVρ δ= −  ∑∫
G G G ,       (III.50) 

 

and with the symbol  .....  
 we denote the average over sample electrons. 

Employing again the dimensionless time τ = ct L , where L  is the length of the 

undulator, and defining the dimensionless complex laser field a = a eiϕ , with the 

laser field amplitude  a = 4π NeKLE γ o
2mc2 , as used in (III.22), the wave equation 

becomes 

 

( ) ( )
2

,a ,
2

i
x

iL x je
k

ζ
ττ

τ
−

⊥

∂⎛ ⎞  − ∇ + = −    ⎜ ⎟∂⎝ ⎠
G

G ,     (III.51) 

 
where we have introduced another important FEL parameter, the dimensionless 

current density j = 8π 2Ne2K 2L2ρ γ o
3mc2 , and we have made the reasonable 

assumption that γ ≈ γ o  during the whole interaction. We want now to make the 

wave equation completely dimensionless, thus we bring in again the  
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dimensionless transverse coordinates ( )
1

22x x k L =� , ( )
1

22y y k L =�  and the 

dimensionless Laplacian operator. Dropping the tildes, the FEL wave equation is 

finally written  

 

( ) ( )
2

,a ,
4

i
x

i x je ζ
ττ

τ
−

⊥

∂⎛ ⎞ − ∇ + = −    ⎜ ⎟∂⎝ ⎠
G

G  .     

 (III.52) 

 
In the case when the diffraction can be neglected, the last equation is 

simplified to  

 
a a ij e ζ

τ
−∂

 = = −    
∂

D
.        (III.53) 

 
From this expression, we realize that the electron beam should be bunched, 

since the factor  e−iζ   is a measure of the electron bunching. For instance, if the 

electrons are bunched at around  ζ = π , the laser field amplitude goes up, 

whereas if the bunching occurs at  ζ = 0 , the field amplitude goes down. Equation 

(IIII.53) also suggests that the laser field is related to the dimensionless current 

density j , so that when j ≤ π  we are in the low gain regime, while for j π�  the 

coupling between the laser light and the electron beam is large and we have high 

gain.  

 

D. GAIN 

In order to better understand and describe the energy exchange between 

the electron and the optical beam, it is handy to make use of the gain we defined 

in (III.25), which is the fractional change of the optical field power during a single 
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pass. In terms of the optical field amplitude, gain can be written as 

 
G τ( )=

a τ( )2
− ao

2

ao
2 =

a τ( )2

ao
2 − 1      or     G τ( )≈ 2

a τ( )
ao

− 1
⎛

⎝⎜
⎞

⎠⎟
, (III.54) 

 

for low gain and small change in a τ( )  from the initial field amplitude  ao .  

It is particularly useful to study the gain in the weak optical field state, 

because it gives us information about the performance of the FEL. For that 

reason, we will derive an expression for the gain, assuming weak optical fields, 

  ao = π  and low gain, so as to take a ≈ ao and ϕ ≈ 0  for the whole interaction. 

Applying the perturbation theory, we start by expanding the electron phase ζ  

and the electron phase velocity ν  in powers of the initial small field amplitude ao  

 

ζ = ζ 0( ) + ζ 1( ) + ζ 2( ) + ⋅ ⋅ ⋅ ,     ζ
o

= ν = ν 0( ) + ν 1( ) + ν 2( ) + ⋅ ⋅ ⋅ , (III.55) 

 

where ( )0ζ  is the zeroth order in ao , ζ 1( )  is the first order, and so on. We can now 

plug (III.55) into the pendulum equation (III.22) to get 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 1 2 0 1 2 0 1a cosoζ ζ ζ ν ν ν ζ ζ+ + + ⋅⋅⋅ = + + + ⋅⋅⋅ = + + ⋅⋅⋅
DD DD DD D D D

. (III.56) 

 

From the zeroth order in  ao  we have ( ) ( )0 0 0ζ ν= =
DD D

 which gives the solutions 

ζ 0( ) = ζo + νoτ = 0   and  ν 0( ) = νo .  From the first order in ao , using the zeroth order 

solutions and integrating over time τ , we find the solutions 

 

 
ζ 1( ) = −

ao

νo
2 cos ζo + νoτ( )− cos ζo( )+ νoτ sin ζo( )⎡⎣ ⎤⎦ , 

  
ν 1( ) = ζ

o 1( )
==

ao

νo

sin ζo + νoτ( )− sin ζo( )⎡⎣ ⎤⎦ . (III.57) 
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We can now make use of these results in the similarly expanded wave equation 

(III.53) 

 

   a
o

= −   j e− iζ  = −   j〈e− i(ζ 0( ) +ζ 1( ) +ζ 2( ) +⋅⋅⋅) 〉 . (III.58) 

 
Taking into account only the zeroth and the first order, we can approximate the 

last equation 

 

   a
o

≈ −   j〈e− iζ 0( )
e− iζ 1( )

〉 ≈ −   j〈e− iζ 0( )
(1 − iζ 1( ))〉 , (III.59) 

 

but since  〈e− iζ 0( )
〉 = 〈e− i(ζo +νoτ ) 〉 = e− i(ζo +νoτ )d∫ ζo 2π = 0 , (III.59) is written 

 

   a
o

≈ j〈e− iζ 0( )
iζ 1( )〉 = ij〈e− i(ζo +νoτ )ζ 1( )〉 . (III.60) 

 

We can plug in ζ 1( )  from (III.57) and integrate, recalling that the complex optical 

field is    a = a eiϕ , to find 

 

 
 a(τ ) = ao 1 + j

2 − 2 cos νoτ( )− νoτ sin νoτ( )
2νo

3

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ + ⋅ ⋅ ⋅ , 

 ϕ(τ ) = j
2sin νoτ( )− νoτ 1+ cos νoτ( )( )

2νo
3

⎛

⎝
⎜

⎞

⎠
⎟ + ⋅ ⋅ ⋅    . (III.61) 

 
Now, using equation (III.54), we are able to arrive at the low gain equation along 

the undulator [6] 

 

G(τ ) = j
2 − 2cos νoτ( )− νoτ sin νoτ( )

νo
3

⎛

⎝⎜
⎞

⎠⎟
. (III.62) 

 



 28

This equation indicates that the gain, in the weak field approximation, is 

proportional to the dimensionless current j  and the initial electron phase velocity 

νo . Plotting the final gain spectrum at τ = 1 in a single pass through the 

undulator, as shown in Figure 9, we can verify the results we found in the phase 

space plots of Figures 7 and 8. Particularly, when the electrons are ejected 

exactly at resonance νo = 0 , then there is zero net gain, meaning that the 

electrons lose and gain the same amount of energy during their interaction with 

the optical field inside the undulator. We also note, that the gain curve is anti-

symmetric in νo . The peak gain of about 13% is obtained when the FEL operates 

off resonance at νo ≈ 2.6 , while the peak absorption occurs at νo ≈ −2.6 . These 

results are consistent with the phase space analysis, suggesting that we must 

operate the FEL slightly off resonance in order to have the best exchange of 

energy from the electron beam to the optical mode and hence the maximum 

gain. 

 

 
G/j 

vo 

 
 

Figure 9.   Single pass gain versus initial electron phase velocity νo  at τ = 1. 
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IV. OPTICAL THEORY 

Up to this point we have examined the interaction of the electron beam and 

the optical field inside the undulator, arriving at some important expressions. We 

have also introduced the gain G(τ ) , a useful tool to measure the performance of 

this interaction. In this section, we will focus our study only on the optical field, 

propagating in free space. Equation (III.52) describes the optical field evolution, 

in the more general case of the presence of source. However, when light is 

traveling in a sourceless medium, specifically inside the undulator while there is 

no electron beam present and outside the undulator, this equation reduces to 

equation  

 

( )2 a , 0
4
i x τ

τ⊥

∂⎛ ⎞− ∇ + =⎜ ⎟∂⎝ ⎠
G .       (IV.1) 

  
In the following sections, we will find solutions to this wave equation, starting with 

the one that describes typical optical waves produced by a Free Electron Laser. 

We call this solution the “fundamental”, and it is the lowest-order mode. Higher-

order modes, which we are going to analyze later, may also appear.  

 

A. FUNDAMENTAL SOLUTION TO THE WAVE EQUATION 

An ideal, realizable, laser beam cross sectional shape is Gaussian. We 

therefore seek a Gaussian solution to the wave equation. A trial solution of this 

form can be written 

 

( )
2

( )a , a ( )
r

q
or p e ττ τ

−
=

G ,         (IV.2) 

 

where ( )a ,r τG  is the dimensionless optical field, and ao  is the optical field 

amplitude at the point x, y,τ( )= (0,0,0) , r2 = x2 + y2 . The functions p(τ )  and q(τ ) , 
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as yet unknown, will be determined by the wave equation (IV.1) and the initial 

conditions imposed by the desired Gaussian shape of the beam, 

 

( )
2

a ,0 a o

r
z

or e
−

=
G ,          (IV.3) 

 
where zo = Zo L  is the dimensionless Rayleigh length, and L  is the propagation 

distance. These initial conditions give 

 
p(0) = 1  and q(0) = zo .       (IV.4) 

 
In order to find the expression we are looking for, from the trial solution (IV.2), we 

have to find the functions p(τ )  and q(τ ) . Before putting (IV.2) into the wave 

equation, we switch to cylindrical coordinates, due to the symmetry of our 

problem. Then, the wave equation (IV.1) becomes 

 

( )1 a , 0
4
i r r

r r r
τ

τ
⎡ ∂ ∂ ∂ ⎤⎛ ⎞− + =⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦

G .      (IV.5) 

 

Now we insert the trial solution (IV.2) into (IV.5). The first derivative of ( )a ,r τG  

with respect to r  is  
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from which 
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Finally, we calculate the time derivative of ( )a ,r τG  
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∂a
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= ao p(τ )e
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q(τ ) 1
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r2

q2 (τ )
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We can now go back to the wave equation (IV.5) and employ these derivatives  
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Dividing through by   ao p(τ )e
−r2

q(τ )   we get  

 

−i
r2

q(τ )
+ i

1
q(τ )

+
1

p(τ )
dp
dτ

+
r2

q2 (τ )
dq
dτ

= 0      .              (IV.10) 

 

Multiplying by −iq2 (τ )  and rearranging, we can write the last expression as 

   

r2 −1− i
dq
dτ

⎛
⎝⎜

⎞
⎠⎟

+ q2 (τ )
1

q(τ )
−

i
p(τ )
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In order for this equation to hold for all r  at any time τ , the quantities in the two 

parentheses must be identically zero, and therefore  

 

−1− i
dq
dτ

= 0 , and                 (IV.12) 

1
q(τ )

−
i

p(τ )
dp
dτ

= 0 .                 (IV.13) 

 
From equation (IV.12), after integrating, we find q(τ ) = iτ + qo , and from the initial 

conditions (IV.4) we see that q(0) = zo , so that  
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q(τ ) = iτ + zo .                  (IV.14) 

 
Using the last result in equation (IV.13) we see that 

 
dp
dτ

= −
ip(τ )

iτ + zo

   = −
p(τ )

−τ + izo

    ⇒  

1
p(τ )∫  dp =

dτ '
−τ '+ izo

∫   ⇒  

ln p(τ ) = − ln(−τ '+ izo ) |0
τ = − ln(−τ + izo ) + ln(izo )    ,             (IV.15) 

 
and finally 

 

p(τ ) =
1

1 + iτ
zo

.                  (IV.16) 

 
We can now substitute p(τ )  and q(τ )  into (IV.2) and write down the solution to 

the parabolic wave equation as 
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This solution can be written in a more informative way, expressed in terms of the 

dimensionless beam width w(τ ) , which is defined as  

 

w(τ ) = zo 1+
τ 2

zo
2

⎛
⎝⎜

⎞
⎠⎟

 or  w(τ ) = zo +
τ 2

zo

.             (IV.18) 

 
We note that at τ = 0 , the beam width or waist in this case (the minimum value of 

the beam width), is just w(0) = wo = zo . Of course, the beam waist need not be 
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at the beginning of propagation distance, thus a more general expression for the 

beam width at any point is  

 

w(τ ) = zo +
(τ − τw )2

zo

,                 (IV.19) 

 
where τw  is the dimensionless position of the beam waist (normalized, as usual, 

to the propagation distance L ). A cross-section of a propagating Gaussian beam 

is shown in Figure 10. Physically, the beam width is the distance where the 

optical field drops to 1 e  of its maximum, as shown in Figure 11.  

 

 

2

 
 

Figure 10.   Cross-section of a propagating Gaussian Beam. 
 
We are now ready to go back and modify the solution (IV.17). To make the 

calculations easier we let u = 1+ iτ zo . Then, equation (IV.17) becomes  
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τ
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=
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 34

 

 
 

Figure 11.   Gaussian beam profile. 
 

 

and since the complex conjugate of  u  is u* = 1− iτ zo ,  we can write (IV.20) as 
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The complex number u  can be written in polar form as 

 

u = 1 +
τ
zo
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e
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and since uu* = 1+ (τ zo)2 , equation (IV.21) becomes 
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We now insert the beam width w(τ ) , defined in (IV.18), into the last equation, 

which becomes 
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where we also used wo = zo . Finally, we can write the solution to the parabolic 

wave equation (IV.1) more compactly, realizing that the last two exponents in 

(IV.24) are pure imaginary. So, we let  
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and write the fundamental solution as 
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2 ,( )a , a
( )

r
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B. PROPERTIES AND PROPAGATION OF GAUSSIAN BEAMS 

The Gaussian beam is the lowest-order mode. A beam of this profile can 

be fully described by the beam waist wo  and the position of the beam waist τw . 

We will study the behavior of the optical beams described by the solution (IV.26), 

in order to better understand the evolution of their properties as they propagate.  
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First, we note that, at the beginning of the propagation, when τ = 0 , the 

beam has the Gaussian shape that we chose with the initial conditions, namely  
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2
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r
z

or e
−

=
G .                  (IV.27) 

 
As time increases, the beam width defined in (IV.18) gets bigger and so 

the transverse area of the beam expands. As a consequence, for a fixed distance 

from the center (fixed r ), the field strength goes down as the optical field 

propagates. Looking at the center of the optical mode, where r = 0 , the field 

decreases continuously, as it is expected, since a 0,τ( ) goes like  ∼ 1 τ .  

Gaussian modes have the very important feature that they do not change 

their profile as they propagate, except that the beam radius varies. In other 

words, a Gaussian beam stays Gaussian. This is the reason why we where 

looking for a solution to the wave equation of this form.  

Figure 12 represents a computer simulation of the propagation of a laser 

light in the fundamental mode. In this figure is plotted a cross-section of the 

Gaussian mode as it propagates from τ = 0  to τ = 1, together with the transverse 

cross-section at the beginning and at the end of the propagation distance. 

 

 y 

 x  0  1  x 

 y

 
 

Figure 12.   Cross-section of a propagating Gaussian Beam with τw = 0  and 
zo = 0.3 .  

 

Additionally, in Figure 13 is shown the surface plots of a Gaussian mode, at 

the beginning of the propagation when τ = 0 , at τ = 0.5  and at the end of the 

τ
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propagation distance when τ = 1 (note the difference in the vertical scale 

between the three graphs). From all these plots, we are able to visualize what we 

analyzed previously, specifically the fact that the light beam expands as it 

propagates and also that it suffers attenuation. 

 

 
 (a) (b) 

 

 
(c) 

 

Figure 13.   Surface plots of a Gaussian Beam evolution at times (a) τ = 0 ,     
(b) τ = 0.5  and (c) τ = 1. Scales in z-axis are different. 

 



 38

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 39

V. HIGHER ORDER MODES 

In the previous chapter, we considered only the fundamental Gaussian 

solution to the wave equation, which has the simplest intensity profile and is a 

good approximation to describe a laser beam. However, if we want to generalize 

for non-ideal beams and include the possible variations in the transverse beam 

profile, we have to find other solutions that correspond to higher order modes. 

These solutions to the parabolic wave equation have similar properties to the 

Gaussian. Furthermore, they form a complete and orthogonal set of functions, 

called the modes of propagation, so that every arbitrary optical beam can be 

expanded in terms of them [7]. We will find that the fundamental Gaussian beam 

is just the lowest-order mode of the generalized solution. 

As one can guess, the need for studying the optical beam more 

extensively arises from both experimental results and simulations. Generally 

speaking, whenever an FEL operates under non-ideal conditions, the laser beam 

may contain more than one higher-order modes. Such conditions could be 

vibrations of the mirrors in a portable system, electron beam shifts and tilts, 

mirror imperfections or deformations, and so on. For instance, vibrations can 

cause the electron beam to be injected slightly off-axis and to deform the mirrors, 

while heat can change the radius of curvature and shape of the mirrors.  

 

A. HERMITE-GAUSSIAN MODES 

The Hermite-Gaussian solutions are derived from the parabolic wave 

equation in rectangular coordinates, starting with the more general trial solution 

[8]  
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where the functions p(τ ) , q(τ ) , g x w( ) and h y w( ) are found following a 

procedure similar to the one used for the fundamental mode. The same initial 

conditions as before require that  

 
p(0) = 0 ,  q(0) = 1 ,         (V.2) 

 g x wo( ) = 1,  h y wo( ) = 1 . 

   
Using (V.2) and substituting the trial solution into the wave equation, we arrive at 

equations that have the form of the Hermite equation and can be solved in terms 

of the Hermite polynomials. After finding all the four unknown functions p , q , g  

and h , we write the m,n  mode of the Hermite-Gaussian beam as 
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 (V.3) 

 
where the phase is 
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and  m, n  are positive integers identifying the mode. In (V.3), Ηm and Ηn are the 

Hermite polynomials with  m, n  the non-negative integer indices. These indices 

determine the shape of the beam profile in the x and y direction respectively. The 

first ten of the Hermite polynomials are listed in Table 1. It is obvious that when 

m = 0  and n = 0 , the Hermite-Gaussian beam is just the Gaussian beam, which 

is why it is called the fundamental mode. A few examples of higher order 

Hermite-Gaussian modes are shown in Figure 14, where we note that m  nodes 

appear running vertically, while n  nodes run horizontally. 
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 H0 u( ) = 1  

 H1 u( ) = 2u  

 H2 u( ) = 4u2 − 2  

 H 3 u( ) = 8u3 − 12u  

 H 4 u( ) = 16u4 − 48u2 + 12  

 H5 u( ) = 32u5 − 160u3 + 120u  

 H6 u( ) = 64u6 − 480u4 + 720u2 − 120  

 H 7 u( ) = 128u7 − 1344u5 + 3360u3 − 1680u  

 H8 u( ) = 256u8 − 3584u6 + 13440u4 − 13440u2 + 1680  

 H9 u( ) = 512u9 − 9216u7 + 48384u5 − 80640u3 + 30240u  

 
Table 1. Hermite polynomials 

 

   
  m = 1,  n = 0  m = 0, n = 3  m = 1,  n = 1  

   
  m = 2,  n = 0  m = 1, n = 2  m = 2,  n = 3  
 
Figure 14.   Hermite-Gaussian modes in the transverse plane  x, y . Red 

indicates highest intensity, while blue indicates least intensity.  
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B. LAGUERRE-GAUSSIAN MODES 

The optical cavity of an FEL, utilizing circular mirrors and a round, aligned 

electron beam, has cylindrical symmetry. This fact suggests that we should use 

cylindrical coordinates to solve the dimensionless parabolic wave equation (IV.1), 

which is now written 
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since the dimensionless transverse Laplacian in cylindrical coordinates is 
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Motivated from the success in finding the Hermite-Gaussian modes trying the 

solution (V.1), we will now put a similar exponential term in the trial solution for 

the wave equation, adding ile ϑ  to match the single valued periodic boundary 

conditions, where l  is an integer. We also guess a power series in r , and since 

we anticipate diffraction that suggests the use of r w  dependence, we try the 

solution 
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where ( )2 22  r wA , P(τ )  and q(τ )  are the unknown functions that we will try to 

find next. Although we use cylindrical coordinates, we still require that at τ = 0   
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which gives ( )2 22  = 1
o

r wA , P(0) = 0  and q(0) = 1 . In order to put the trial solution 

(V.7) into the wave equation (V.5), we first need to calculate the derivatives of the 

function ( )2 22 r wA  using the chain rule 
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where we used the prime to represent the first derivative of A  with respect to its 

argument  2r2 w2 . Similarly, using the double prime for the second derivative, 

we find 

 
2 22 2

2 2 2 2 4

(2 ) 4 4 4 16  = = =
r
r w r rr

r w w r w w
⎛ ⎞∂ ∂ ∂⎛ ⎞ + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

′ ′′ ′ ′′A A AA A A .   (V.10) 

 

The time derivative of ( )2 22 r wA  is 
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with (..)
D

 indicating the derivative with respect to the dimensionless time τ . Now 

we are ready to calculate the derivatives of the trial solution (V.7) 
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Next, we want to substitute the trial solution (V.7) into the wave equation (V.5). 

Bringing all the derivatives together and dividing through by ( )
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We want this equation to have solutions for each transverse plane, or in other 

words, for each fixed time τ . Thus, we need to set the r  and A  dependent terms 

equal to a constant, while the r2  dependent terms should be equal to zero 

because equation (V.17) must be valid for any transverse position. Eventually, 

the terms with no r  dependence must be equal and opposite to the constant 
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value of the terms dependent on r  and A , in order for the equality to be true. 

Hence, we have to solve the following three equations simultaneously 
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where we used  − ξ  as the constant for the r   and A  dependent terms. We will 

start from (V.19), since it is straightforward  
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where for the last step we use the same argument as we did for the derivation of 

the fundamental mode, namely that the equation must hold for all r . After 

integrating, and since q(0) = 1  from the initial conditions, we find 
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From the definition of the beam width w(τ ) = zo + τ 2 zo  in (IV.18), we have 

 w
 o 

= τ wzo . Rearranging terms in equation (V.18) we write 

 
2 2 2 4

2 2 2

 0
2   2 4o o

w l w w i w
r z q r z r

τ ξ⎛ ⎞
+ − + + + =⎜ ⎟

⎝ ⎠
′′ ′A A A ,     (V.23) 
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where the terms in the parenthesis, after substituting q(τ )  from (V.22) and using 

zo = wo
2 , become 

 
2 2 2 2 2

2 2 2 2

          1
2   2 2 2o o

w l w w i w l w
r z q r z r r

τ
− + + = − + .     (V.24) 

 

Let u = 2r2 w2  to rewrite (V.23) more compactly as 

 

  
u ′′l + l + 1− u( ) ′l +

ξ w2

2
l = 0 ,      (V.25) 

 
which has the form x ′′y + (l + 1− x) ′y + py = 0 , of the differential equation for the 

associated Laguerre function [9], where l  and p  are real numbers. When p  is a 

non-negative integer, i.e. p = 0,1,2,3,..... Laguerre differential equation has as 

solutions the associated Laguerre polynomials Lp
l (x) . The first few polynomials 

are listed in Table 2. 

 

L0
l (x) = 1  

1( ) 1lL x x l= − + +  

L2
l (x) =

1
2

x2 − 2(l + 2)x + (l + 1)(l + 2)⎡⎣ ⎤⎦  

L3
l (x) =

1
6

−x3 + 3(l + 3)x2 − (l + 2)(l + 3)x + (l + 1)(l + 2)(l + 3)⎡⎣ ⎤⎦  

 
Table 2. Associated Laguerre polynomials From [9]. 

 

From  equation (V.25), the Laguerre polynomials specify the constant ξ  as 

 

 

ξ w2

2
= p   so that  ξ =

2 p
w2 .      (V.26) 
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We can now use this result in the equation (V.20) in order to find the last 

unknown function P(τ )  

 

  
−

l + 1
zo q

−
il w

o

w
− i P

o
=

2 p
w2   ⇒    P

o
=

i l
zo q

+
i

zo q
−

l τ
w2zo

+
2i p
w2 .   (V.27) 

 

We rewrite the last equation, using q(τ )  from (V.22) and w2 = zo + τ 2 zo , so that 

 

  
P
o

= i zo(1+ l + 2 p)
1

zo
2 + τ 2 +

τ
zo

2 + τ 2 .      (V.28) 

 
Finally, integration from 0  to τ  gives  

 

  
P(τ ) = i (1 + l + 2 p)arctan

τ
zo

⎛
⎝⎜

⎞
⎠⎟

+
1
2

ln
zo

2 + τ 2

zo
2

⎛
⎝⎜

⎞
⎠⎟

.    (V.29) 

 
At this point, we have found all the unknown functions P(τ ) , q(τ )  and power 

series Lp
l  and we can put them into the trial solution (V.7). After rearranging 

terms, we can write down the solution to the parabolic wave equation of the p, l( ) 

mode. This solution is usually referred as the p, l( ) Laguerre-Gaussian mode 

 

( ) ( )2

2

2

2

,
 , ,22 a , , a     

l r
lo w

p l o p

l
pi rr

w

w rr L e e
w w

ϑ τ
ϑ τ

φ−⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

GG ,    (V.30) 

 
with phase  

 

( )
2

2 2, , (1 2 )arctanl
p

o o

rr l p l
z z
τ τφ ϑ τ ϑ

τ
⎛ ⎞

= − + + + +⎜ ⎟ +⎝ ⎠

G .    (V.31) 

 
and the Laguerre polynomials listed in Table 2. 
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C. LAGUERRE-GAUSSIAN MODE ANALYSIS 

1. Intensity Plots 

Solving the parabolic wave equation in cylindrical coordinates, we find a 

family of modes, in equation (V.30), that are expressed in terms of the product of 

a Gaussian envelope, a Laguerre polynomial and a phase term. Each mode is of 

the  p, l( ) order, where p  is the radial mode number and l  is the angular mode 

number. For this reason, the Laguerre-Gaussian modes are usually denoted as 

LGp
l  modes. 

Figure 15 shows the intensity profiles of various LGp
l  modes at τ = 0 , 

created from simulations using C code. In these plots there is no phase 

information displayed, since we are plotting the a p,l × a p,l
∗  quantity. Examining 

these plots, we are able to evaluate several features of the Laguerre-Gaussian 

beams.  

We see that the lowest order mode LG0
0  is just the fundamental Gaussian 

mode, as expected. The other modes, with p = 0  and l > 0 , have a simple ring 

profile, since they have one central node. As the angular mode number l  

increases, the central, near-zero intensity region becomes larger, which is also 

true for modes with p > 0 . All modes with p > 0  have a profile in the form of 

concentric rings. The radial mode number p  indicates the number of nodes and 

therefore the number of the rings. Thus, the total number of dark nodes is p  at 

r ≠ 0 , in addition to the central node. These p + 1  nodes come from the zeros of 

the Laguerre polynomials. We also see that the width of the rings gets narrower 

for beams with higher l  and same p . Finally, as the radial mode number p  

increases, the effective width of the beam gets bigger. 
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Figure 15.   Laguerre-Gaussian modes LGp

l  ; Intensity plots (  a p,l × a p,l
∗ ) in the 

transverse plane x, y , at τ = 0 , where red is most intense, while 
blue is least intense. 

 

In order to see more clearly how an LGp
l  beam varies along the 

transverse plane, we plot in Figure 16 for two sample modes, the radial intensity 

distribution of the Laguerre-Gaussian beam across a diametric plane. 

p

↓
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LGp
l LGp

l  

r →  0   

In
te

ns
ity

 →
 

r →  0  

 (a) (b)  

Figure 16.   Radial intensity distribution for (a) LG2
1   and  (b) LG3

2  beams. 

  

2. Plots of Real Part 

Plotting only the intensity of a Laguerre-Gaussian mode, we neglect 

phase. These effects turn out to play an important role in the evolution of a 

propagating beam. In Figure 17, we plot the same Laguerre-Gaussian modes as 

in Figure 15, but this time we include the phase term of equation (V.30) by 

plotting the real part squared. We could as well plot the real part, but in this case 

we would have to plot negative values of the optical field amplitude  a . We 

immediately note that in all modes, except for the fundamental LG0
0 , radial nodes 

appear. The number of nodes is proportional to the angular mode number l , 

since when τ = 0 , the phase (V.31) is just  ( ), ,l
p r lφ ϑ τ ϑ=

G .  
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Figure 17.   Laguerre-Gaussian modes LGp

l  ; plots of the real part squared, at 
τ = 0 . 
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D. PROPAGATION OF LAGUERRE-GAUSSIAN MODES 

We have seen previously in Figure 12 that a Gaussian beam, which is an 
0
0LG  beam, retains its shape as it propagates. We find, by running similar 

simulations, that this is true for all higher-order modes, provided the laser beam 

consists of only one pure mode.  

1.  Intensity Plots 

Figure 18 shows the results of computer simulations for the evolution of 

several Laguerre-Gaussian modes as they propagate from τ = 0  to τ = 1. We 

show the intensity plots of the transverse cross section at the beginning and at 

the end of the propagation, and the cross section of the beam from τ = 0  to τ = 1. 

It is clear that as the beam evolves, its shape is unchanged. The central node is 

preserved, and even though the beam diverges, the multiple radial nodes persist. 

Nevertheless, we can see clearly that the peak intensities of the rings (antinodes) 

decrease as a function of the propagation distance, showing that the beam 

spreads reducing intensity.  
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LG1
0  

LG1
3  

LG2
0  

 

LG2
3  

LG3
0  

LG3
3  

 
Figure 18.   Intensity plots of Laguerre-Gaussian modes as they propagate.  
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2. Plots of Real Part 

In order to complete our study of the evolution of the Laguerre-Gaussian 

beams, we must examine the phase structure of the beam as it propagates. 

Simulations have shown that we have to take into account the well-known fact 

that light carries angular momentum [10]. For example, in the case of a circularly 

polarized beam, light caries an angular momentum that relates to the spin of 

individual photons. Furthermore, a light beam can also have orbital angular 

momentum, a feature that can be deduced classically from Maxwell’s equations. 

It has been shown that for a Laguerre-Gaussian beam, the orbital angular 

momentum is well defined and has a value of l h  per photon, where l  is the 

angular mode number and h  is the Planck’s constant [11]. 

The orbital angular momentum arises from the azimuthal dependence, 

particularly from the term  ei l ϑ  of the solution to the wave equation (V.30). We 

will analyze this solution a bit more by examining a sample of Laguerre-Gaussian 

beams. We will plot the real part of the solution (V.30), so as to include the phase 

and see how it changes along the propagation distance. In the following figures 

we show the surface plots of a few Laguerre-Gaussian modes at the end of the 

propagation distance (where τ = 1). In this way, we can see how the phases 

evolve, compared to their initial shapes at τ = 0 , presented in Figure 17. For 

each mode we plot the real part and the real part squared, so that in the latter we 

avoid plotting negative values, as we did in Figure 17. 

Starting with the LG0
3  mode, we put τ = 1 in the solution (V.30) and we 

use Table 2 to find the associated Laguerre polynomial with p = 0 . Then, the real 

part of the solution can be written explicitly as 

 

( )
( )

2

2
3 5 22 2

13
0,3 2 22

2 1a , ,1 a    cos 4arctan 3
11

o

o

r z
zo

o
o oo

z rr r e
z zz

ϑ ϑ
−

+ ⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟++ ⎝ ⎠⎣ ⎦

 G .  (V.32) 
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Figure 19 shows two surface plots at time τ = 1, for a LG0
3  laser mode. In Figure 

19(a) we plot the real part, as described by equation (V.32), while in Figure 19(b) 

we plot the real part squared. We notice that a spiral pattern appears in the mode 

structure, due to the fact that the phase rotates as a function of r  and the angle 

ϑ . We have to stress that the light does not follow a spiral path; it is just the 

phase that changes in a way that it describes such a spiral path. This path, in 

three dimensions is somewhat helical [10].  

 

 
 (a) (b) 
 
Figure 19.   Plots of (a) real part and (b) real part squared of a LG0

3  beam at the 
end of the propagation distance (τ = 1), with ao = 1 and zo = 0.4 . 

 
Other examples of the evolution of Laguerre-Gaussian beams, including 

phase change, are shown in Figure 20 and Figure 21, where we present, as in 

Figure 19, the surface plots of a LG1
2  and a LG2

1  laser beam respectively. 

 

 (a) (b) 
 
Figure 20.   Plots of (a) real part and (b) real part squared of a LG1

2  beam at the 
end of the propagation distance (τ = 1), with ao = 1 and zo = 0.4 . 
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The solution to the parabolic wave equation for the LG2
1  mode can be 

written in more detail as 

 

( )
( )

2

2
5 2 5 3 22

1
2,1 22 2 22

2 2 6 1a , ,1 a  3  cos 6arctan
1 1 11

o

o

r z
zo o o

o
o o o oo

z z r z r rr r e
z z z zz

ϑ ϑ
−

+
⎡ ⎤ ⎡ ⎤⎛ ⎞⎢ ⎥= − + − +⎢ ⎥⎜ ⎟⎢ ⎥+ + ++ ⎝ ⎠⎣ ⎦⎣ ⎦

G , (V.33) 

giving the plots of Figure 21. We observe again the spiral patterns due to the 

phase evolution. We can see more clearly how areal  varies with  r  in Figure 22, 

where we show the radial distribution of areal  along various angles. 

 

 
(a) (b) 
 

Figure 21.   Plots of (a) real part and (b) real part squared of a LG2
1  beam at the 

end of the propagation distance (τ = 1), with ao = 1 and zo = 0.4 . 
 

Analyzing equation (V.33), we recognize the term e
−

r2 zo

zo
2 +1  as the radial 

damping term. The behavior of the oscillating cosine term is easier to understand 

when we plot the set of points in r  and ϑ  where it is maximum (Figure 23). We 

see that due to this term, the spiral pattern appears. These two terms, along with 

the term that comes from the Laguerre polynomial, give the beam profile of 

Figure 21(a). 
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Figure 22.   Radial distribution of a LG2

1  beam along (a) ϑ = 0 , (b) ϑ = π 2  and 
(c) ϑ = π 4 . 

 

 
Figure 23.   Set of points in r  and ϑ  where the cosine term of equation (V.33) 

is maximum. 
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VI. HIGH-ORDER MODES IN FREE ELECTRON LASER 
SIMULATIONS 

In previous chapters, we have studied the fundamental Gaussian optical 

mode as well as the higher-order modes in both rectangular and cylindrical 

coordinates and their propagation through a medium without any sources. The 

primary tool for our research was the computer code, which enabled us to solve 

the parabolic wave equation numerically. To analyze the operating conditions of 

an FEL inside the undulator, where the optical beam coincides with the electron 

beam, is more complex. There we must solve both the wave equation (III.52) and 

the pendulum equation (III.22) at the same time. At NPS, the FEL research group 

has developed computer codes that solve these two equations simultaneously, 

and they can be used to simulate various working parameters for a free electron 

laser system. These are powerful tools to gain deeper understanding of FEL 

physics and determine the importance of every operational parameter. Perhaps 

more importantly, it helps us to optimize FEL performance. 

  

A. ELECTRON BEAM TILT 

One must first understand the FEL under ideal operating conditions. But in 

order to cover more realistic situations, we must study the system performance 

under non-ideal conditions. Vibrations of a mobile system for instance, might 

cause the electron beam to enter the undulator off-axis or at an angle. We use 

the three-dimensional simulations (in x , y  and τ ) developed in the FEL 

research group to investigate how sensitive the FEL is to off-axis tilting and 

shifting. In the simulations, we use dimensionless transverse coordinates 

 �x = x k 2L ,  �y = y k 2L  and the normalized time τ = ct L . Three-dimensional 

simulations were used to analyze the tolerance of the Jefferson Lab (Jlab) FEL to 

a tilted electron beam. The simulations discussed below, are divided into two 

parts. 
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1.  Gain  

In the first part of the Jlab simulations, we explore the gain response to the 

misaligned electron beam. In other words, we focus our attention on region 1 of 

Figure 24, which is a graph of a typical power build up of an FEL. In this region, 

we have just turned on the FEL so it has not yet reached steady-state. The gain 

is proportional to the slope of the power, in this case.  

 
 

Number of passes  - n 

1 

2 

 

 
Figure 24.   Simulation output, showing the power P  versus number of passes 

n  in an FEL. In the first region, power is still building up while in 
region 2, FEL has reached its steady-state. 

 
We use the basic input parameters shown in Table 3, where we simulate 

weak fields (  a o = π ) and small number of passes n  so as to be sure that we 

explore the power evolution in region 1. Also, the electron beam focus position is 

τ β = 0.5 , so the electron beam is focused at the center of the undulator. We thus 

run our simulations by varying the tilt angle about the center of the undulator. 

We also normalize the tilt angle of the electron beam to the undulator 

length and the optical wavelength  

 

 
�ϑ yo =

ϑ yo

λ π L
       ≈       

ϑ yo

(426mrad)
    for the Jlab parameters.   (VI.1) 
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Rayleigh Length  zo  0.42 

Initial Optical Field Amplitude  a o  0.001 

Current Density  j  20.0 

Number of Undulator Periods  N  30 

Number of Passes  n  30 

Electron Beam Focus Position  τβ 0.5 

Optical Waist Position  τ w  0.5 

Cavity Quality Factor   Qn  17.0 

 

Table 3. The basic dimensionless parameters used in the Jefferson Lab FEL 
simulations for the Gain.  

 

We vary the normalized tilt angle �ϑ yo  from 0 to 4. To run the simulations, we 

enter the parameters of Table 3 and a range for the initial phase velocity νo . The 

optimum value of νo  is determined in this way and we then look at the output of 

the run with this specific phase velocity νo . In Figure 25, we show a sample 

output for  
�ϑ yo = 2.0 , where the optimum initial phase velocity was found to be 

νo = 5.5 . 

The dimensionless input parameters are shown in the upper-right box of 

Figure 25. On the upper-left graph, we plot the evolution of a slice of the optical 

beam at the outcoupling mirror, over the number of passes n , along with the 

color scale for the intensity plots of the optical field amplitude. Next to it, there is 

a 3-D representation of the beam shape after the last pass, again at the 

outcoupling mirror. Below the 3-D graph, we plot the cross-section of the optical 

beam  a(0, y,τ )  (yellow) and the electron beam (red) inside the undulator, at the 
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last pass. Further down, there is a graph of the evolution of the phase velocity 

distribution over the number of passes f (ν ,n) , and next to it there is a phase-

space plot of the electrons at the end of the undulator. Below the parameter 

table, there are two plots which show the development of the optical power P(n)  

and the gain  G(n) . In the next row, there are graphs at both the outcoupling and 

the left mirror after the last pass, showing the optical beam transverse profile 

(yellow) compared to the theoretical Gaussian (purple), and the optical phase. 

Also shown in the same graphs is the intensity of the light (using the color scale 

at the top) and the extent of the mirrors (black). At the bottom, there is a list of 

the calculated results and in the lower right we plot the coefficients of the modes 

 c(m,n)  that comprise the beam at the outcoupling mirror after the last pass. The 

modal analysis is performed in terms of the Hermite-Gaussian modes. In the 

simulation results of Figure 25 we see that the output beam comprises basically 

from the fundamental mode ( m = n = 0 ) but simulation predicts that there will be 

few higher-order modes in the beam structure as well. This is shown with the 

plotted squares (lighter blue color). Using this tool, we can look at the mode 

composition of any arbitrary wavefront that our simulations predict as the laser 

output. 

Figure 26 is a summary of the results showing gain G  versus electron 

beam tilt angle  
�ϑ yo . We note that the FEL can operate pretty well with an 

imperfect electron beam injection into the undulator, since the gain falls to half of 

its peak value at dimensionless tilt angle of about �ϑ yo ≈ 3.5 , corresponding to an 

actual tilt of about 1.5  mrad . 
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Figure 25.   Output of a 3-D Simulation for Jefferson Lab FEL. 
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Figure 26.   Summary of the simulation results for the gain versus increasing 
electron beam tilt angle �ϑ yo . 

 

2.  Extraction  

Having explored how the FEL responds to a tilted electron beam during 

the early stages of its operation, we can now explore the effects during its steady 

state phase, region 2 of the graph in Figure 24. So we choose strong initial 

optical fields  a o  and large number of passes n , as shown in the Table 4. 

As a measure of the performance of the FEL in this case, we estimate the 

extraction η , defined as the fractional energy transferred from the electron beam 

to the optical field during one pass through the undulator 

 

 
η =

extracted optical power
initial electron beam power

.      (VI.2) 
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Rayleigh Length  zo  0.42 

Initial Optical Field Amplitude  a o  10 

Current Density  j  20.0 

Number of Undulator Periods  N  30 

Number of Passes  n  500 

Electron Beam Focus Position  τβ 0.5 

Optical Waist Position  τ w  0.5 

Cavity Quality Factor   Qn  17.0 

 

Table 4. The basic dimensionless parameters used in the Jefferson Lab FEL 
simulations for the extraction.  

 
Running the simulations as before, we first determine the value of the 

phase velocity νo  for peak extraction η , and then we look at the output of this 

particular run. One sample output for �ϑ yo = 3.0  is shown in Figure 27, where we 

can verify from the power evolution graph P(n) , that the FEL is in its steady-state 

operation region.  
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Figure 27.   Output of a 3-D Simulation for Jefferson Lab FEL, exploring 

extraction. 
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Summarizing the results for many tilt angles �ϑ yo , we note with some 

surprise that the FEL exhibits good tolerance; the extraction actually increases 

with increasing angles  
�ϑ yo , up to a point, as shown in Figure 28. This may be due 

to “overbunching” of the electrons when there is no tilt, reducing the extraction in 

that case. The simulation predicts extraction greater than 1% for normalized 

beam tilt   
�ϑ yo < 3 , corresponding to an actual tilt about 1.3  mrad . 
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Figure 28.   Summary of the simulation results for the extraction η  versus 

increasing electron beam tilt angle �ϑ yo . 
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VII. CONCLUSION 

In this thesis, after reviewing the basic FEL and optical theory, we found 

solutions to the parabolic wave equation that suggest the existence of higher- 

order optical modes, working with either rectangular or cylindrical coordinates. 

Motivated by the symmetry of the FEL system, we focused our attention on the 

solutions derived using cylindrical coordinates, which employed Laguerre 

polynomials. Analyzing the Laguerre-Gaussian modes, we found interesting 

results for the beam shape and for the beam evolution as well. The modal 

analysis showed us that we have to consider the physical attributes of light, in 

order to explain the unexpected behavior of the laser beam after its propagation. 

Particularly, we noticed spiral patterns in the beam, attributed to the orbital 

angular momentum of light. Finally, we demonstrated the appearance of higher- 

order modes in an FEL output, while investigating the tolerance of the Jefferson 

Lab FEL to electron beam tilt. 

Currently, the NPS FEL research group is analyzing the output wavefronts 

of computer simulations in terms of Hermite-Gaussian modes. We suggest that a 

future thesis work would develop a function that analyzes an arbitrary wavefront 

from an FEL simulation in terms of the Laguerre-Gaussian modes. The use of 

this tool could make the optical beam analysis of any simulated FEL output more 

complete, helping us understand better the effects of the investigating operating 

parameters.  

 

 

 

 

 

 



 70

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 71

LIST OF REFERENCES 

[1]  Thomas Jefferson Lab National Facility, Free electron laser system 
diagram, http://www.jlab.org/FEL/feldescrip.html, 3 March 2007.  

[2]  The BESSY SASE FEL, http://www.bessy.de, 2 March 2007.  

[3]  Joachim Stohr, Stanford Synchrotron Radiation Laboratory, Linac 
Coherent Light Source, Toward an X-Ray Free Electron Laser, 2 February 
2007.  

[4]  Thomas Jefferson Lab National Accelerator Facility, Annual Review, 17 
January 2007.  

[5]  Duke University, FEL Laboratory, http://www.fel.duke.edu, 20 March 2007.  

[6]       W.B. Colson, C. Pellegrini and A. Renieri, Free Electron Laser Handbook, 
Volume 6, Chapter 5, North-Holland Physics, 1990. 

[7]  H. Kogelnik and T. Li, Laser Beams and Resonators, Applied Optics, Vol. 
5, No. 10, 1966. 

[8]  R.Vigil, Hermite-Gaussian Modes and Mirror Distortions in the Free 
Electron Laser, Master’s Thesis, Naval Postgraduate School, 2006. 

[9]  Wolfram Mathworld, Laguerre Differential Equation, 
http://mathworld.wolfram.com/LaguerreDifferentialEquation.html, 30 April 
2007. 

[10]  P. Crawford,  M. Pysher, H. Sztul and P.J. Haglin, Light Beams in High-
Order Modes, 
http://departments.colgate.edu/physics/research/optics/oamgp/gp.htm, 17 
January 2007. 

[11]  L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw and J. P. Woerdman, 
Phys. Rev. A, 45, 8185, 1992. 

[12]  B. Williams, Higher-Order Modes in Free Electron Lasers, Master’s 
Thesis, Naval Postgraduate School, 2005. 

[13]  SpringerLink, Laguerre Polynomials, http://eom.springer.de/l/l057310.htm, 
20 November 2006. 

[14]  D. J. Griffiths, Introduction to Electrodynamics, Prentice Hall, 1999. 



 72

[15]  F. L. Pedrotti, L. S. Pedrotti and L. M. Pedrotti, Introduction to Optics, 
Third Edition, Prentice Hall, 2006. 

 

 



 73

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Professor William Colson 
Naval Postgraduate School 
Monterey, California  
 

4. Professor Robert Armstead 
Naval Postgraduate School 
Monterey, California 
 

5. Professor Joseph Blau 
Naval Postgraduate School 
Monterey, California 
 

6. Professor Peter Crooker 
Naval Postgraduate School 
Monterey, California 
 

7. Chairman, Physics Department 
Naval Postgraduate School 
Monterey, California 
 

8. Air Attache  
Embassy of Greece 
Washington, DC 


