

AFRL-IF-RS-TR-2007-147
Final Technical Report
June 2007

MEDIATION, ALIGNMENT, AND INFORMATION
SERVICES FOR SEMANTIC INTEROPERABILITY
(MAISSI): A Trade Study

BAE Systems

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Rome
Research Site Public Affairs Office and is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

AFRL-IF-RS-TR-2007-147 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

GENNADY STASKEVICH JAMES W. CUSACK
Work Unit Manager Chief, Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUN 2007
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Sep 06 – May 07
5a. CONTRACT NUMBER

FA8750-06-C-0207

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

MEDIATION, ALIGNMENT, AND INFORMATION SERVICES FOR
SEMANTIC INTEROPERABILITY (MAISSI): A TRADE STUDY

5c. PROGRAM ELEMENT NUMBER
63789F

5d. PROJECT NUMBER
SEMI

5e. TASK NUMBER
06

6. AUTHOR(S)

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
BAE Systems, Advanced Information Technologies, Inc.
6 New England Executive Park
Burlington, MA 01803

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFSE
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2007-147

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 07-274

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Today’s emphasis on joint and combined military operations and the need to maximize the effectiveness of these operations has led
to the need to better support interoperability among the various constituent communities. While the emerging net-centric
infrastructure allows these communities and their systems to communicate, this dialog is often constrained by the lack of common
semantic points of reference. For example, legacy databases often have custom schemas that represent the same information in
disparate ways. Semantic Interoperability (SI) encompasses a broad range of technologies such as data mediation and schema
matching, ontology alignment, and context representation that attempt to enable systems to understand each others’ semantics with
minimal modification of the legacy systems.

15. SUBJECT TERMS
Net-centric, Semantics, Interoperability, Information Transformation, Information Management, Study

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Gennady R. Staskevich

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

80
19b. TELEPHONE NUMBER (Include area code)

315-330-4889
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

 i

TABLE OF CONTENTS
Section Page

LIST OF FIGURES AND TABLES.. iii
1 Executive Summary ...1
2 Introduction..2

2.1 Technical Discussion...2
2.2 Technical Challenges...2
2.3 Key Findings and Recommendations..4

3 Demonstration Scenario...7
4 Semantic Alignment Technology ..12

4.1 Schema/Ontology Matching..12
4.1.1 The Space of Schema/Ontology Matchers...13
4.1.2 Schemas vs. Ontologies ...16
4.1.3 Performance Measures for Matchers ...16
4.1.4 Schema and Ontology Matching Tools..18
4.1.5 Ontology Matching Evaluation Initiative ..25
- assessing the strength and weakness of alignment/matching systems...................25
- comparing performance of techniques...25
- increasing communication among algorithm developers25
- improving evaluation techniques ...26
- most of all, helping improve the work on ontology alignment/matching..............26
- FOAM (University of Karlsruhe, Germany) ...26
- OLA (University of Montreal/INRIA, Canada)...26
- CtxMatch 2 (IRST Trento, Italy) ...26
- Falcon (Southeast University, Nanjin, China) ...26
- Unnamed (UC. Dublin, Ireland) ..26
- OMAP (CNR/Pisa, Italy) ...26

4.2 Data matching... 27
4.3 Use of Contextual Information..29

4.3.1 What is Context?..29
4.3.2 Contexts in Schema/Ontology Matching ...30

4.4 Special issues regarding ontologies...31
4.5 Semantic Enrichment...32
4.6 roadmap for semantic alignment ...32

5 Information Services Architecture...34
5.1 Database Services..34
5.2 Middleware Services ...35

5.2.1 JMS Java Messaging Service...37
5.2.2 ICE Internet Communications Engine ...38
5.2.3 MQ Series ..39

 ii

5.2.4 ESB..40
5.3 Syntactic-Level Services ...41

5.3.1 CORBA... 42
5.3.2 Web Services and J2EE ...44
5.3.3 Boeing SoSCOE...47

5.4 Semantic Web Services ...48
5.4.1 Ontology Web Language (OWL) ..49
5.4.2 OWL-S and COIs...49
5.4.3 Reasoners ...49
5.4.4 Web 2.0... 52

5.5 Standards..53
5.5.1 Object Management Group (OMG) Standards ..53
5.5.2 eXtended MetaData Registry (XMDR) Project...55

5.6 roadmap for Information Services...56
6 Related Programs ...58

6.1 Metadata Extraction and Tagging Services (METS)...58
6.2 Joint Metadata Tagging Pathfinder [1], [2] ...59
6.3 Intelligence Community Services Oriented Architecture (ICSOA) [3]59
6.4 Blackbook..61
6.5 Net Enabled Command and Control (NECC) [4]..61
6.6 The Expanding Global Information Grid (GIG) ...63
6.7 U.S. Army Future Combat Systems Network ...65

7 Technical Program Summary ..68
8 Appendix A: Evaluation Criteria ...69
9 References..72
10 About the Authors..74

 iii

LIST OF FIGURES AND TABLES
List of Figures
Section Page
Figure 2. Semantic mediators translate between different data representations. 12

Figure 3. Composite matcher architecture. .. 13

Figure 4. Simple and complex mappings... 15

Figure 5. Precision and recall for schema matching. ... 17

Figure 6. Automatch's attribute dictionary. ... 18

Figure 7. Matching weights between two schemas and the attribute dictionary. 19

Figure 8. Matching algorithms available in COMA++.. 20

Figure 9. Combination functions for similarity values. ... 22

Figure 10. Test ontologies for COMA++. ... 23

Figure 11. Mappings between source schemas and target schema.. 23

Figure 12. Architecture of LSD. .. 24

Figure 13. iMAP architecture. .. 25

Figure 14. Data matching... 27

Figure 15. Active Atlas architecture. ... 28

Figure 16. Context lattice for Internet Movie Database. ... 30

Figure 18. The OMG Object Management Architecture (OMA) reference model specifies a
complete middleware infrastructure for distributed object management.............................. 42

Figure 19 – The W3C Web Service Architecture consists of several layers of technology to
enable interoperability across heterogeneous systems.. 45

Figure 20: Mission Modeled In Task Integration Network .. 48

Figure 21: An ontology of aircrafts and regions... 51

Figure 22: ICSOA Core set of services... 60

Figure 23: NECC specifies a common computing platform for the Grid Computing Nodes....... 62

Figure 24: GIG Components (Reference JP 6-0).. 64

Figure 25: Information Management Component (Reference JP 6-0) ... 65

Figure 26: FCS BCT as part of the GIG ... 66

Figure 27: SoSCOE Services and Integration Groups.. 67

 1

1 EXECUTIVE SUMMARY
Today’s emphasis on joint and combined military operations and the need to maximize the

effectiveness of these operations has led to the need to better support interoperability among the
various constituent communities. While the emerging net-centric infrastructure allows these
communities and their systems to communicate, this dialog is often constrained by the lack of
common semantic points of reference. For example, legacy databases often have custom
schemas that represent the same information in disparate ways. Semantic interoperability (SI)
encompasses a broad range of technologies such as data mediation and schema matching,
ontology alignment, and context representation that attempt to enable systems to understand each
others’ semantics with minimal modification of the legacy systems.

BAE Systems, Advanced Information Technologies (BAE-AIT) performed a trade study to
assess the current state of the art of semantic interoperability technologies to meet the Air
Force’s need for a scalable and interoperable information sharing environment. For purposes of
this study we decomposed the SI space into two areas, semantic alignment and information
services architecture. Semantic alignment addresses how information is represented and how it
is transformed from one representation to another. Information services architecture is
concerned with how semantic alignment components can be combined and incorporated into a
scalable architecture that easily accommodates legacy components and systems.

A recent trade study by the Cross-Domain Semantic Interoperability (CDSI) Working Group
[5] on Data Interoperability, states that “Current technologies provide no viable solution for
sharing data across the many domains of large enterprises.” Although we agree with the general
premise that semantic integration for large scale, realistic ontologies is still immature, we believe
that current technologies have made significant progress in addressing key point challenge areas,
but they have not yet solved the problem of understanding semantics and exchanging knowledge
and information across systems in any automated fashion. We also believe, however, that with
proper emphasis of research towards the solution of real operational problems and through the
vetting of ideas with the user community, many of the existing technologies will grow to become
key enablers in achieving integration.

For this study we identified relevant SI technologies and, for each technology, evaluated the
technical strengths and weaknesses, the maturity (e.g., research prototype to deployed
component) and current level of vendor or contractor support, the relevance to the Air Force
mission, the performance and potential scalability to large numbers of users and systems, and the
compatibility with existing and emerging open standards. We also identified technology gaps in
the current tools and proposed research areas to address those gaps.

 2

2 INTRODUCTION

2.1 TECHNICAL DISCUSSION

"…[We must] leverage information technology and innovative network-centric concepts of
operations to develop increasingly capable joint forces. Our ability to leverage the power of
information and networks will be key to our success…"

--Former Deputy Secretary of Defense Paul Wolfowitz

The Air Force (AF) is increasingly under pressure to not only perform missions on its own,
but also coordinate its activities with other commands and centers of excellence to participate in
missions of global scale. A key challenge in establishing these operations is to exchange data and
information across multiple large-scale systems at the application level to enable effective
collaboration among multiple Communities of Interest (COIs).

In these situations, the AF must enable vertical and cross-service interoperability with joint-
level strategy tools and data sources at national-level commands such as STRATCOM and
JFCOM, as well as those of the various regional Combatant Commands and their non-air
components. Each command and each echelon has a unique mission, and an established but
evolving technology base of databases, schemas, tools, and processes designed to facilitate
execution of that mission. Enabling applications to interoperate on a global scale requires
dynamic transformations of the data to the specifications of the target systems. In addition, new
breakthroughs in Net-Centric Operations have motivated the development of DoD’s Global
Information Grid (GIG), which provides a vision for interconnecting the information systems
across all elements of the national power (Diplomatic, Military, Economic, Civilian support, etc).
In this environment, data must be converted not only to different syntactic representations, but
also to the semantic models of each domain application.

Semantic Interoperability is the set of technologies and tools that address these challenges
and offers a robust architecture for dynamic data transformation across multiple domain
problems.

The next section, Section 2.2, describes the technical challenges inherent in achieving SI
among disparate legacy systems, and Section 3 exemplifies these challenges using an example
scenario for campaign and strategy interoperability. Sections 4 and 5 describe the technologies in
detail, and Section 6 lists some key programs that deal with the problem of system integration
and discusses the approaches they have taken to address them. Our key observations and
recommendation are summarized at the beginning of the report, in Section 2.3, and described in
more detailed in the follow-up technical sections. Finally, Section 7 concludes with a summary
of conclusions from the trade study.

2.2 TECHNICAL CHALLENGES
Solving the Semantic Interoperability problem requires advancements in two closely related

challenge areas, which in turn can be decomposed into further sub-areas. Our proposed trade
study will explore tools and technologies for each one of these following challenge areas.

 3

• How to represent and mediate information relevant to Air Force missions to
enhance net-centric operations and collaboration among different COIs, and

• How to enable interoperability among legacy systems and data sources that have
been developed by multiple commands and echelons often using completely different
technologies and protocols.

We classify these challenges under the two overarching terms of Semantic Alignment and
Information Services Architecture.

Semantic Alignment

Semantic Alignment refers to the combined problems of information representation and
mediation (transformation). If multiple systems are to successfully exchange data, they must
first agree on the way they represent information. Developing a globally agreed common
information representation, however, is very difficult to achieve and almost impossible to
maintain. Information Systems support specific domain problems, and the objects they represent
are widely different from each other. In many cases there are reasons to keep representations
separate (for example, precise electronic measurements from tracking systems shouldn’t be
combined with imagery data from airborne assets), and there will always be the need to
communicate with a non-conforming system (import weather modeling data to AF planning
systems). Compounding this problem is the need to deconflict information from multiple source
databases, or consolidate attributes of real-world entities that are modeled across multiple
external sources. The problem becomes even harder as the source databases evolve over time,
and databases get consolidated to capture information for new domain problems. In most
instances precise matching between tuples is not possible, yielding the need to reason under
schema and semantic uncertainty.

The second alignment challenge is how to efficiently mediate information among multiple
cross-COI systems and services. Technologies and standards for mediation at the lowest-level of
richness, such as Extract Transform and Load (database mediation) and XSLT (XML mediation)
are relatively mature and widely used. However, to enable information on a global scale to flow
seamlessly, the more difficult challenges of 1) automated transformation from elementary
formats to richer ontology-based formats, and 2) mediation between different domain ontologies
and ontology representations must be addressed. Manually encoded ad hoc translators are a first
step, but must eventually be replaced by increasingly automated solutions that can infer the
appropriate ontology mappings and translation rules. Furthermore, techniques to represent,
learn, and apply contextual information will be needed to clarify semantics of like information
elements within different applications and COIs. This contextual information is also needed to
support semantic enrichment, in which the information representation and mediation
dynamically evolve to support changing information needs of COIs.

Information Services Architecture

Technologies for semantic alignment alone are simply elements of the SI solution. Putting
them together to achieve SI in practice will require a robust, layered architecture of information
services, built on industry standards and enterprise technologies. The Air Force often coordinates
complex operations in a collaborative environment with other Commands and Echelons, which
requires an infrastructure to support dynamic coupling of software applications to register their

 4

services on the network, discover other applications to interface with, and exchange information
via a well-defined and agreed protocol.

In addition, as the number of tools and users grows, the Information Infrastructure must be
scalable and extensible to eliminate redundant data storage and transfer, and to avoid
proliferation of specialized native data models and peer-to-peer interfaces. The Infrastructure
must be able to support a wide spectrum of information richness, ranging from elementary
database content to self-describing text formats such as XML to hierarchically organized domain
ontologies. Applications that operate in this environment must authenticate and authorize users
via well established and trusted access frameworks, disseminate information on a per-need basis
and provide services for federated access. These services must be implemented with open
industry standards and utilities that are mature, widely accepted by the technical community and
maintainable. Finally, we must incorporate legacy systems into the Information Infrastructure by
bringing to bear the semantic alignment tools discussed above to automate, or partially automate,
the extraction of semantic information from these systems.

2.3 KEY FINDINGS AND RECOMMENDATIONS
In our trade study we examined a wide range of technologies in Semantic Alignment and in

Information Services. In addition, we reviewed major programs that attempt to either integrate
systems together or try to address the need of a common interoperability infrastructure (both
framework and data modeling). Our key findings are that:

- The performance of the tools in the Semantic Alignment category varies widely based
on the domain problem and the instance of the evaluation ontologies. In the Ontology
Alignment Evaluation Initiative, conducted in 2005 against a bibliographic and
anatomic ontologies, results ranged from:

o Best : 0.91 precision, 0.89 recall, to

o Worst: 0.08 precision, 0.18 recall

- We did not find evidence of any comprehensive effort to evaluate Semantic
Alignment technologies in the context of military domains and DoD problems.

- Information Services technologies require heavy technical knowledge for
configuration and composition of component services. Most of the current major
SOA related programs expose applications via web services, but integrating these
services into a functional system requires heavy involvement by humans to interpret
the ICDs, consult with the modelers to understand the semantics of the data and learn
from the system developers the use of the data by the application.

- Standard languages do not produce interoperable data. Standard languages have
substantial value in expressing concepts in a common representation, but this is not
sufficient for data interoperability. Even though OWL, the leading ontology
specification language today, provides the ability to import ontologies and express
mappings between individual entities across ontologies, this does not solve the
pervasive challenge, which is to understand the semantics or the meaning of the
individual ontologies.

 5

- Data Interoperability has multiple layers and they are all critical to systems
integration. At the bottom of the stack are the bits and bytes and the protocols
between hardware platforms. The next level up captures the models and
representations of the data, followed by expressive ontologies that describe
relationships and dependencies. Finally at the top of the stack is the reasoning and
inferencing of new concept and relationships, proof of the results and trust that the
machine interpretation is correct.

Our analysis has shown that Systems Integration is still a manual process. There are tools
available today to automate many of the steps, such as generation of interface proxies for SOA
frameworks, deployment facilities, IDEs (Integrated Development Environments), debuggers,
reliable messaging systems, standards, etc, but the need to integrate data is still pervasive and
many of the efforts require heavy manual involvement

To advance the state of the art in Semantic Integration, we recommend the following list of
research efforts to the government:

- Develop sound theoretical foundations for schema and ontology matching. This effort
will guide the research of new techniques in semantic alignment and provide a unique
methodology for developing mathematically rigorous automated tools

- Conduct better evaluations and comparisons of matching tools to identify the
maximum performance that is theoretically attainable. Without a rigorous evaluation
approach, it will be impossible to quantify the capabilities of the technologies and
assess the progress in the field of semantic integration.

- Extend semantic discovery by exploiting context and rich constraint information.
Several schema matching tools use edit distance and structural similarities to compare
and match data models. In addition to these techniques, we propose to explore the
expressive information that is captured by ontologies and the context of the data
source to do the mapping

- Explore user-assisted semantic alignment. Fully automated matching for complex,
realistic ontologies is many years in the future. In the meantime, humans are still
better equipped than machines to understand semantics and meaning. The purpose of
this effort will be to explore the synergy of automated and user-assisted semantic
alignment and find the best way to involve the humans in the integration process.

- Exploit the use of modeling technologies for expressing doctrinal procedures. Instead
of letting ontologies grow organically and then try to integrate them, an alternate
approach will be to achieve integration through modeling. Express all the aspects of
the enterprise (data, processes, business logic, specifications, etc.) in a modeling
framework, such as the OMG Meta-Object Facility (MOF), and then use the
transformations intrinsic to MOF to convert data and processes between the various
components of the enterprise. A critical key to success of this approach is the
adoption by the various participants, so a product first step will be to assess the
viability of this approach and then explore how easily will be to describe the
complexities of each component in a common modeling representation.

- Conduct competition of semantic technologies. Finally, in order to build an
environment that naturally selects the most appropriate technologies and stimulates a

 6

healthy competition between the researches we suggest the creation of a Semantic
Alignment challenge effort. This program will be similar to the DARPA Challenge
and the IC sponsored Knowledge Discovery and Dissemination challenge (KDD), in
which the government selects appropriate programs of interest and then invites
contractors to compete with their best technologies to solve the needs of the program.
This effort will focus the research activities on real operational problems.

In the remainder of this paper we describe in detail the technical characteristics of
represented technologies. As we will demonstrate, the need for semantic integration is paramount
to the government and the technical challenges have not yet been solved with the current tools.
Several approaches have been tried in the past, many of them using variation of upper
ontologies, others are applying machine learning tools to discover the semantics of the
component sources, yet others are looking at how to enable COIs to grow their ontologies over
lateral, associated domains. We believe that the combination of these approaches and the
development of further research programs, along the lines of the ones we identified in our report,
will provide the means to advance the state of the art in this problem and yield accurate
technologies to facilitate the integration of heterogeneous systems.

 7

3 DEMONSTRATION SCENARIO
We will illustrate the use of the Semantic Interoperability technologies via a scenario that

involves the intelligence cell of the Air Operations Center as they are following the steps of the
Predictive Battlespace Awareness process. PBA consists of four major steps:

1. Intelligence Preparation of the Battlespace. This is the step in which raw information
from a variety of source is turned into actionable intelligence report.

2. Target Systems Analysis focuses on the identification of the enemy nodes that if
prosecuted will achieve the maximum intended effect.

3. ISR & Master Air Attack Planning is when the planning cells of the CAOC use
operational C2 systems to create and compare COAs and choose the most appropriate
one that addresses the Commander’s Intent

4. ISR Employment & Kill Chain. During plan execution, this steps matches weapons
to targets, authorizes the prosecution of targets and allocates the ISR assets to collect
intelligence reports in order to asses the status of the mission.

As is shown in Figure 1, the steps
of PBA are not completely
independent. Information, or work
products from one step can feed as
input to another step (or multiple other
steps). Semantic Interoperability
technologies can certainly help with
the automation of the process. In our
associated ‘MAISSI Final
Presentation Brief’ we describe the
classes of technologies that are
applicable for each step of the
process. In this final report, however,
we are focusing on the first step of the
process, Intelligence Preparation of

the Battlespace, and provide concrete
examples that demonstrate the value
of the SI technologies in a manner

similar to the one use by the SAB-TR-05-03 Report on Domain Integration study.

The emergence of the Global Information Grid (GIG) yields unprecedented information
access and sharing among Commanders, operators, Communities of Interest (COIs) and
eventually the war-fighters. SI technologies enable these various constituents to effectively
exploit the GIG Infrastructure by managing information efficiently to be of direct use to their
operations. In particular, SI technologies facilitate information management along five major
categories (a) Data Discovery/Context, (b) Mediation to multiple formats, (c) Alignment and

Figure 1: PBA consists of interrelated steps

 8

Matching across different semantic representations, (d) Reasoning, and (e) Data Transformations
to the format of the downstream applications.

This use case demonstrates how these classes of SI technologies assist with the first step of
the PBA process, the Intelligence Preparation of the Battlespace.

CONUSCONUS

AF Analysts &
Operators

AOC

Information Management Services

1. The GIG Establishes the Information Infrastructure

Step 1: The GIG establishes the Architecture which will be used by the JFACC’s Air

Operations Center (AOC). Operators and Analysts in the AOC are linked via tactical and
satellite communications links to Air Force Command, ISR, and Strike assets as well as back to
National and Air Force facilities in the Continental United States. These Gateways provide
access to DoD and other Government Communities of Interest Data Bases and file shares while
also providing access to open source material via the World Wide Web. Clients on the GIG can
use a variety of software applications and information management services to access, retrieve,
and synthesize data from a broad set of sources.

 9

AF Intel Analyst

2. AF Intel Analyst begins IPB for a New Mission

Receive JFACC Mission:
Perform ISR Operations to find Terrorist bases and
Lines Of Communication in the Country of Yemen

First PBA Task:
-Perform Intelligence Preparation of the Battlespace for

Terrorists in Yemen

GIG

Analyst inputs Lines of Inquiry into IPB application metadata is added
to the request Use of Context decomposes request into Info
searches

1. Where are
Terrorists Operating

in Yemen?

1. Where are
Terrorists Operating

in Yemen?

Step 2: Upon receipt of new JFACC Guidance and Directives in support of a new Mission, AOC
Intelligence Analysts begin performing Predictive Battlespace Awareness Activities to drive the
Joint Targeting Cycle and the Air Operations Campaign.

AF Intel Analyst

3. Discovering Sources of Information

GIG

IS and SA technologies discover sources of information via the GIG Computer
and Communications Infrastructure Semantic Discover technologies
identify relevant sources from established databases, file servers, and
unstructured sources such as web pages

Source Type Examples SA Technologies
MIDB Ontology Matching
NGIC Map Servers
Country Knowledge Base
IRISA Schema Matching
All Source Document Index Data Matching
NSA SIGINT Context Discovery
Department Of State
Yemeni Tourist Websites Data Matching
Univeristy Websites Context Discovery
Non-Governmental Organization
Websites

Known DB

File Servers

Open Source

LEGEND
NGA – National Geospatial Intelligence Agency
CKB – Country Knowledge Base
NSA – National Security Agency
DHS – DIA Defense HUMINT Service
IRISA – Intelligence Report Index Summary File
MIDB – Modernized Integrated DB
SOLIS – SIGINT Online Information Service
DoS – Department of State
GCCS-I3 – Global Command and Control System

Integrated Imagery and Intelligence
ASDIA – All Source Document Index

CKB

NGASOLIS

GCCS-I3

MIDBDHS NSA

Tourism
Websites

Tourism
Websites

University
Cultural
Studies
Websites

University
Cultural
Studies
Websites

Non-
Governmental
Organization
Websites

Non-
Governmental
Organization
Websites

Commercial
Trading
Websites

Commercial
Trading
Websites

ASDIAIRISA DoS

Step 3: The GIG provides access to known databases with defined ontologies, Community of

Interest File Servers, and open sources such as Foreign Country and University Web pages
which may be of interest. Semantic Alignment and Information Services Technologies discover
and sources of interest to the query.

 10

AF Intel Analyst

4. Correlate the information from relevant sources

GIG

Upon return of information from each source, alignment technologies correlate the
source information Schema and Ontology Mappings are established

data matching technologies link records from various sources

………………

05/23/78MaleSunniMohammedAl-Faral13

………………

03/12/1969MaleShi’aTariqAl-Fasdi14

DOBGenderReligionFirst NameLast nameID

………………

05/23/78MaleSunniMohammedAl-Faral13

………………

03/12/1969MaleShi’aTariqAl-Fasdi14

DOBGenderReligionFirst NameLast nameID

……………

……………

March 13,
1969

MaleShi’aTarik Al-Fasdi303

DOBGenderReligionNameID

……………

……………

March 13,
1969

MaleShi’aTarik Al-Fasdi303

DOBGenderReligionNameID

...
...

Schema and Ontology
Mapping

Record Linking

Step 4: Semantic Alignment and Information Services Technologies discover and match

ontologies, Schemas and data to the data elements resident in the Intel Analysts query.

AF Intel Analyst

5. Transform the Information into a useful response to the query

GIG

Upon correlating the source data Reasoning technologies transform
the data into information relevant to the IPB task discovery and use of
geospatial services assist reasoning about the proximate distance between
people and events in time and space

Geospatial
Service

Geospatial
Service

Mah’rib
Governate

Mareb
Region

Reasoning
Services

Reasoning
Services

-Al-fasdli is a legislator for IY Party
-Al-fasdli is AQ in Yemen member
-AQ in Yemen from Mareb Region

.

.

Step 5: Reasoners apply logic over the collected source data in tandem with their knowledge
bases to semantically enrich the data. Information Services provide for the use of geospatial and
geolocation services to verify the proximity to places and events to each other.

 11

AF Intel Analyst

6. Publish Information into Formats Usable by Downstream analysts and operators

GIG

Outputs from IPB are then generated and published into databases and files
which support down stream functions Ontology and schema mapping from
the original sources to the published databases can be maintained for information
provenance

NAI to Intel Requirement Matrix
NAI to Intel Requirement Matrix

NAI to Intel Requirement Matrix
NAI to Intel Requirement Matrix

Named Areas of Interest and Adversary
Courses of Action

Named Areas of Interest and Adversary
Courses of ActionNamed Areas of Interest and Adversary

Courses of Action

Named Areas of Interest and Adversary
Courses of ActionNamed Areas of Interest and Adversary

Courses of Action

Named Areas of Interest and Adversary
Courses of Action

TBMCS IPB Data
Operational

Overlay Server
IR Matrices

AOC DBs Intel
Community DBs

Step 6: The results of the C2 applications are finally stored in the databases and the ontology and
schema mapping technologies facilitate the transformation to the format of the receiving data
store.

NAI

CONUSCONUS

AF Analysts &
Operators

AOC

Enabling Interoperability and
Information Dominance

7. Supporting Downstream Analysis and Execution

IPB DataTGT List TBMCS MIDBNAI List

Joint
Message
Formats

Weapons
Effect
Models

Sensor
Models

Comm
Subscriber

Table

Air
Tasking
Order

J-msg Strike
Mission

Live
Video

COP
Update

subscriber

J-Msg
BDA

Request

BDA Assessment

In summary, as the figure above shows, Semantic Alignment and Information Services

Technologies enable the discovery and transformation of information into formats and storage to
support downstream application of the information by the right user on the GIG.

 12

4 SEMANTIC ALIGNMENT TECHNOLOGY
This section discusses SI technologies addressing the semantic alignment challenge described

in Section 2.2. Our trade study investigates technologies along the four category areas listed in
Table 1 below.

Table 1: Semantic Alignment techniques are needed across a wide spectrum of information
representations with varying expressive power.

Alignment Techniques Capabilities

Schema and Ontology
Matching

Discover mapping between database schemas. Build rules that convert data
from one syntactic representation into another.

Data Matching/Record
Linkage

Correlate instance level data. Deconflict data instances with similar
characteristics

Use of Contextual
Information

Extract meaning by looking at the context in which a given term is being used.

Semantic Enrichment Enrich the data with derived entities and relationship in support of schema
evolution and dynamic transformations.

4.1 SCHEMA/ONTOLOGY MATCHING
Mediation enables multiple services to exchange data based on a common vocabulary that

guarantees consistent interpretation and behavior, while allowing for specialized knowledge and
reasoning at the local level.

As defined in [16], mediators handle information exchange between a source and a receiver
system in two steps: (a) queries from the receiver system are translated to equivalent queries for
the source schema; and (b) the resulting source data are translated to the specification of the
receiver system. This mechanism is shown in Figure 2, below.

Receiver
System

Source
System

Source Query Receiver Query

Source Data

Mediator

Receiver Data

Figure 2. Semantic mediators translate between different data representations.

A preliminary step to query translation is that of Schema Matching. Elements from the source
schema need to be mapped to entities on the target schema, and the pertinent relationships among
the objects in the source model need to be translated to the representations of the target model.
Despite the active research in this field, the scarcity of meta-data information and the non-
standard use of model constraints often require human intervention. We explore the following
automated techniques for Schema Matching: (a) rule-based, and (b) machine-learning. The rule-
based solutions exploit schema information such as element names, data types, structure,
foreign-key relationship and integrity constraints to determine the representation of the data

 13

sources, and use handcrafted rules to map elements from one specification to another. Machine-
learning techniques use statistical methods to build probabilistic models of the schemas, or
analyze the values of the data elements to discover the semantics [13].

4.1.1 The Space of Schema/Ontology Matchers
There are a number of dimensions along which schema/ontology matchers can be

categorized. These include:

• Architecture
- Single algorithm
- Hybrid: Fixed combination of algorithms
- Composite: Flexibly combines different algorithms

• Algorithm types
- Rules
- Statistical learning
- Probabilistic matching

• Automated vs. user intervention
• Similarity measures

- Linguistic
- Structural
- Instances

• Mappings
- Simple: 1 to 1 mapping of schema elements
- Complex: map a schema element to a composition of multiple elements

• Ontologies vs. Schemas

Schema B

Schema A

Matcher1

Matcherk

.

.

.

...
...

0.4 ……

...

aj

bi

Similarity cube

Similarity
Combiner

0.9 ……

...Mappings
Combiner

Schema
mappings Similarity matrix

...
...

Figure 3. Composite matcher architecture.

Architecture. Schema matchers can be categorized as simple, hybrid, or composite. A
simple schema matcher uses a single similarity measure to compute matches. A hybrid matcher
(the most common type of matcher) combines multiple similarity measures, typically according
to a fixed formula, into a single overall similarity measure. A composite matcher provides the

 14

most flexibility, by combining the results of several independently operating matchers, each of
which may be simple or hybrid. Different component matchers may be chosen depending upon
the match task at hand and different combination techniques may be chosen. Figure 3 shows the
architecture for a composite schema matcher. The processing steps for a composite matcher are:

• Each matcher outputs a similarity value for each pair of objects.
• The similarity values for each pair of objects for each matcher are put in the similarity

cube.
• The similarity combiner combines the output of each matcher for each pair into a single

similarity value for that pair.
• The mappings combiner produces a mapping from schema A to schema B that optimizes

some function of the similarity values of mapped objects (e.g. the sum of similarity
values)

Algorithm types. The algorithms used by schema/ontology matchers can be roughly divided
into three types. Rule-based algorithms make use of “if, then” rules to determine matches. For
example, one might have a rule that says that element X of schema A matches element Y of
schema B if neither X nor Y has not been previously matched to any other element and the
overall similarity of X to Y is greater than X’s similarity to any other unmatched element. (This
rule in effect implements a greedy matching algorithm.) Matching rules may be constructed
manually or learned from examples.

In contrast to rule-based inference, probabilistic matching computes matches through some
form of probabilistic inference. Bayesian networks, neural nets, or statistical classifiers may be
used to do probabilistic matching. Typically, a probabilistic matcher is learned through training
examples.

Statistical learning algorithms are used by some matchers to learn rules or networks for
doing matching. An example is decision tree learning in which a set of manually constructed
matches is given to the statistical learner, which produces a decision tree. Statistical learning is
also used by some systems (i.e. iMAP) at a higher level to determine what weight to give to
lower level matching algorithms in particular circumstances.

Automated vs. user intervention. Some matchers are completely automated and don’t permit
human intervention whereas others do permit human input into the matching process or even rely
upon human intervention to a significant degree. Given the limitations of the state of the art in
schema matching, the ability to integrate human advice into the matching process is crucial.
Matchers that accept human input include COMA++ and iMAP (both discussed below).

Similarity measures. Nearly all schema/ontology matchers base matches on a measure of
similarity between schema/ontology elements. Hybrid and composite matchers work by
combining similarity values produced by single algorithms. Similarity may be measured along
multiple dimensions. Linguistic similarity involves similarity in the terms used to denote
elements in a schema or ontology. Two terms may be similar at a surface level by virtue of
being composed of similar sequences of characters. Edit distance between two terms is a
common measure of their similarity as character sequences. (Edit distance measures the number
of alterations needed to turn one string into another.) Phonetic similarity looks at how the two
terms are pronounced – i.e. at their similarity as sequences of phonemes. Finally, another type of
linguistic similarity involves relations of synonymy. If two terms are synonyms (e.g. “fast” and
“rapid”) that is some evidence that they match (i.e. have the same meaning as used in the two

 15

schemas). Being synonyms does not guarantee a match, however, since many words have
multiple meanings. (E.g. “fast” might mean “go without food” rather than “rapid.”)

Structural similarity measures look at the hierarchical structure of a schema or ontology to
determine similarity of terms. When a schema or ontology is represented as a tree, where the
edges in the tree represent either object containment or class/subclass relations, one take the
representation of an element in a schema to be, not just the term in the schema for that element,
but the entire path from the root of the tree to that term. A structural similarity measure
computes the similarity of two terms in different schemas by comparing the paths to these two
terms. Similarity of the two terms themselves plays a role in the path similarity but considering
paths instead of single terms allows other terms in the two schemas to play a role in determining
the similarity of the given terms.

Instance level similarity (or extensional similarity) is similarity of the instances of two
schema elements. For example, one schema might have a term “ComputerManufacturer” with
instances {Hewlett-Packard, Dell, Apple, IBM, Sony, ...} while another schema might have the
term “Constructeur_d_Ordinateurs” with instances {Bull, LaCie, IBM, Dell, ...}. The two sets of
instances might be similar in terms of having overlapping membership (IBM, Dell) or in terms of
similarity of distinct instances. (E.g. both the Bull and IBM corporate websites mention things
like servers and software.)

Simple vs. complex mappings. An important distinction between matchers is whether or not
complex mappings are supported. A simple mapping is a 1-1 mapping between terms in two
schemas. (E.g. “Plant” in one schema corresponds to “Facility” in another.) A complex
mapping, however, involves a correspondence between a term in one schema and a combination
of terms in another.

price agent-name address

1-1 match complex match

listed-price contact-name city state

Schema1

Schema2

Figure 4. Simple and complex mappings.
Figure 4 shows examples of both types of mapping. “price” in one schema maps directly to

“listed-price” in the other. However, there is no one term in Schema2 that corresponds exactly
with the term “address” in Schema 1. Rather the term “address” in Schema1 maps to a function
of two terms in Schema2 – the concatenation of “city” and “state.”

Most matchers only try to find simple 1-1 matches between terms in two schemas. This
greatly simplifies the matching task since the search space for 1-1 matches is finite. The search
space for complex matches, however, is infinite since there are an infinite number of ways of
combining schema elements. As will be discussed below, finding complex matches is a serious

 16

challenge but cannot be ignored since there is often not a simple 1-1 mapping between each term
in one schema and a term in another schema.

4.1.2 Schemas vs. Ontologies
The distinction between schemas and ontologies and the relevance of this distinction to

semantic alignment merits discussion up front. A schema (such as a relational database schema
or an XML schema) structures information and provides an intuitive semantics for data by
describing attributes of data types and containment relations among data types (e.g. zip code is a
component of address)

By ontology we mean formal ontology – i.e. an ontology described in a formal language such
as first-order logic or OWL. Formal ontology languages have more built-in semantics than do
schemas, making possible greater expressivity and enabling deeper reasoning with data
expressed in an ontology.

Although there is some overlap in the research communities for schema and ontology
matching, there are significant differences between the two communities. Although some
matchers can be applied to both schemas and ontologies, many well known schema matchers fail
to take advantage of the richer semantic information in ontologies. We have examined matchers
initially tailored for both database schemas and for ontologies and discuss examples of each
below. While the use of ontologies in principle allows richer information to be brought to bear
in matching, special issues arise with regard to their construction, acceptance, and maintenance,
which we will discuss in a separate section.

4.1.3 Performance Measures for Matchers
Recall and precision are common metrics for measuring matcher performance. Recall

measures how well a matcher does at finding correct matches; precision measure how well a
matcher avoids incorrect matches. Recall can precision can be defined in terms of three
quantities:

#Right = the number of reported matches that are correct matches
#Wrong = the number of reported matches that are not correct matches
#Missing = the number of correct matches that are not reported

These statistics require access to ground truth.

Recall is #Right ÷ (#Right + #Missing) (i.e. the proportion of correct matches that are
reported). Precision is #Right ÷ (#Right + #Wrong) ((i.e. the proportion of reported matches that
are correct).

 17

Precision = 2/3

Recall = 2/4 = 0.5

Correct match

Incorrect match
Missed match

Precision = 2/3

Recall = 2/4 = 0.5

Correct match

Incorrect match
Missed match

Figure 5. Precision and recall for schema matching.

 Figure 5 shows an example of how precision and recall are computed.

Recall and precision are often combined into a single measure called F-measure. F-measure
is defined by:

Recall Precision)1(
RecallPrecision)(measureF

∗+∗−
∗

=−
αα

α

α is an adjustable parameter that determines how much weight to give to recall or precision.
If α = 1, then F-measure becomes precision; if α = 0, then F-measure equals recall.

Some researchers in schema matching have proposed a performance metric that reflects the
saving of effort involved in correcting reported matches by adding misses and removing wrong
matches ([20]). This metric is sometimes called ”Overall” and is defined by:

Missing# Right #
Wrong# -Right # Overall

+
=

This measure achieves a maximum of 1 when #Wrong = #Missing = 0. The measure can be
negative (there can be more wrongs than rights) and has no lower bound. It is somewhat difficult
to interpret but one can see that increasing #Wrong or #Missing does decrease Overall when
#Right > #Wrong. Anomalously, when #Right = #Wrong, #Missing has no affect on Overall.
(Increasing #Missing should increase the effort involved in adding missed matches.) Even more
strangely, when #Wrong > #Right, increasing #Missing increases Overall.

Despite these oddities, the Overall metric is on the right track: we do need a metric that
measures the saving of effort in manual alignment. Other metrics with more regular behavior
can be fashioned. For example, if we let t(S,T) be the time required to manually align ontologies
S and T without any automated help and t(M, S, T) the time required with the automatically
produced mapping M, then we could use

 18

t(S, T) - t(M, S, T)
t(S, T) + t(M, S, T)

as a measure of the saving of effort. This ranges from -1 to 1, with 0 indicating no saving of
effort, a negative value increased effort, and a positive value decreased effort. t(S, T) and t(M, S,
T) can be estimated from characteristics of S, T, and M.

4.1.4 Schema and Ontology Matching Tools
This section surveys some representation schema and ontology matching systems. The aim

of this section is not to provide a comprehensive evaluation of all the matchers out there but
rather to use selected examples to illustrate the state of the art in matching technology and to
probe some of the limitations of current matchers. The results of our evaluation of these
matchers provide the data for the roadmap for future research that we will present.

Automatch. This matcher is of interest as an example of a matcher that uses probabilistic
matching (Error! Reference source not found.). Automatch is an instance based matcher: it
determines the similarity between two attributes by looking at the overlap in their instances.

Automatch assumes that a database schema is simply a set {A1, ..., An} of attributes and that
each attribute has a set of values (instances) that belong to the attribute. An example is the
domain of computer retail manufacturing and sales, where the attributes include
DesktopManufacturer, MonitorManufacturer, DesktopModel, etc. The values of, for example,
DesktopManufacturer would be members of the set {Apple, Compaq, Dell, ...}.

{vn1 , vn2, …, vnkn
}An

……

{v21 , v22, …, v2k2
}A2

{v11 , v12, …, v1k1
}A1

ValuesAttributes

DictionaryAttribute

{vn1 , vn2, …, vnkn
}An

……

{v21 , v22, …, v2k2
}A2

{v11 , v12, …, v1k1
}A1

ValuesAttributes

DictionaryAttribute

Figure 6. Automatch's attribute dictionary.
Automatch requires an attribute dictionary, as shown in Figure 6, which is a list of possible

values for each attribute. The attribute dictionary is compiled from previous schema matches by
human experts. All known values of attributes matched by human experts to attribute Ai will be
in the set of possible values of Ai.

Matches between two schemas are computed in Automatch by using the attribute dictionary
as an intermediary. For each schema, the probability of an element in the schema matching an
attribute in the attribute dictionary is computed and these probabilities are combined to
determine a best match between elements of the two schemas.

 19

To compute the probability that an attribute X in a given schema matches an attribute A in
the attribute dictionary, Automatch assumes that for each value v, there is an unconditional
probability P(v ∈ X) that v will be observed to be a value of X and a conditional probability P(v
∈ X | X ↔ A) that v will be observed as a value of X given that X matches A. Automatch
further assumes that if V = {v1 , ..., vk } is a set of values, then P(V ⊆ X | X ↔ A) = P(v1 ∈ X |
X ↔ A)... P(vk ∈ X | X ↔ A). (I.e., whether a value is observed to belong to X is
probabilistically independent of what other values are observed for X given that X matches A.)

Given these assumptions, the probability that X matches A, given observed values for X can
be computed as:

P(X ↔ A | V ⊆ X) = P(V ⊆ X | X ↔ A)P(X ↔ A)/ P(V ⊆ X).

This formula is a straightforward instance of Bayes theorem, which follows from the
definition of conditional probability.

A1

A2

A3

Attribute Dictionary

R1

B1

B2

R2

C1

C2
w5

w1

w2

w3

w4

w6

w7

w8

w9

w11

w10

w12

Figure 7. Matching weights between two schemas and the attribute dictionary.
As shown in Figure 7, given two schemas R1 and R2, a tripartite graph is formed in which

each element in one schema is linked to each attribute in the attribute dictionary by a weighted
link. The weight on the link is precisely the probability that the schema element and the attribute
match given observed values for the schema element. Automatch uses this tripartite graph to
find a “best” match between elements of R1 and elements of R2 by computing a path between
each element of R1 and a unique element of R2 such that the sum of the weights on all paths is
maximal. Automatch uses an ingenious method to find the matchings that maximize the sum of
link weights: it turns the matching problem into a maximal flow problem with constraints and
solves the maximal flow problem using a standard algorithm for such problems.

Discussion of Automatch. Automatch uses a sound probabilistic inference technique to
assign weights to the links in the tripartite graph used for matching. The maximal flow
algorithm is guaranteed to find a matching that maximizes the sum of the weights over links in
the paths. However, the assumption that the goal is to maximize the sum of the weights over the
links is equivalent to the assumption that the attributes in each schema are independent of one
another, which is not in general true. For example, If in schema R2, attribute C2 is a subtype of
attribute C1 (e.g. C1 = ComputerManufacturer and C2 = DesktopManufacturer), then which
attributes of R1 match C2 is not independent of which attributes of R1 match C1. If B1 matches

 20

C1, then only a subtype of B1 can match C2 – e.g. we would not want to match a supertype of
B1 with C2.

One reason Automatch does not take into account dependencies among attributes is that it
uses a very simplified representation of attributes: attributes are essentially atoms, with no
internal structure. In particular, there are no hierarchical relations among attributes, as there is in
schemas or ontologies that are more than lists of concepts. This is a serious limitation of
Automatch, since it prevents it from making use of relational information about attributes that
can be important in determining matches.

COMA++. In the first half of the Trade Study, we focused our attention on COMA++, a
state of the art composite matcher ([22]). COMA++ has several advantages as a tool for
studying schema matching technologies:

• A demo version is freely available for download
• It builds on a number of well-known previous hybrid and composite matchers
• It comes with an extensive library of matching algorithms
• It’s matching algorithms cover all the main types of simple matchers
• It permits the flexible combination of individual matchers
• It performed well in the 2006 Ontology Matching Workshop, despite it’s not being

specifically designed to deal with ontologies (it was developed for relational database and
XML schemas)

_Leaf elementsLeaves

Existing matches-SchemaReuse-oriented

_Child elementsChildren

_Data types+NamesTypeName

_Names+PathsNamePath
_Element namesNameHybrid

User-specified (mis-) matches-UserFeedback

Type compatibilityData typesData Type

Extern. dictionariesElement namesSynonym

_Element namesEditDistance

_Element namesSoundex

_Element namesN-gram

_Element namesAffixSimple

Aux. InfoSchema InfoMatcherMatcher Type

_Leaf elementsLeaves

Existing matches-SchemaReuse-oriented

_Child elementsChildren

_Data types+NamesTypeName

_Names+PathsNamePath
_Element namesNameHybrid

User-specified (mis-) matches-UserFeedback

Type compatibilityData typesData Type

Extern. dictionariesElement namesSynonym

_Element namesEditDistance

_Element namesSoundex

_Element namesN-gram

_Element namesAffixSimple

Aux. InfoSchema InfoMatcherMatcher Type

Figure 8. Matching algorithms available in COMA++.

COMA++ has a large number of built-in algorithms for matching (see Figure 8). It provides
several functions for combining similarity values obtained from different matchers:

• Max: return the maximal similarity value for any matcher

 21

• Weighted: return the weighted sum of similarity values
• Average: Special case of Weighted in which weights for each matcher are equal
• Min: return the minimal similarity value for any matcher
We installed COMA++ and ran it on some several schema and ontology pairs. The purpose

of the runs was to gain familiarity with schema matching techniques and to get an initial
impression of the scope and limitations of those techniques. No systematic testing has been done
yet. There is no doubt that the composite matching approach implemented by COMA++ is a
significant advance over previous matching techniques. Nonetheless, we believe the approach
taken by COMA++ has certain limitations and that further improvements in schema matching are
possible.

First, it should be recognized that the use of similarity measures in determining matches is
only a proxy for what we are seeking, namely, the probability that a term in one schema is
semantically equivalent (or has some other semantic relation) to a term in the other schema. It is
certainly true that certain kinds of similarity provide evidence of semantic equivalence or
relatedness. However, the precise relationship between similarity along a certain dimension and
probability of semantic equivalence is unclear.

Even if we assume that we could specify a probability distribution relating similarity along
some dimension with probability of semantic equivalence, the combination rules used by
COMA++ do not correspond to any coherent ways of combining probabilities. Assume, for
example, that a similarity value for two terms can be interpreted as the probability that those two
terms are semantically equivalent. (This is not necessarily a correct interpretation, but our
critique does not depend upon the precise way in which similarity and probability are related.) If
matcher M1 reports a similarity value for terms T1 and T2 of p, we may interpret that
information as a conditional probability: P(T1 ≡ T2 | M1) -- the probability that T1 and T2 are
semantically equivalent given the output of M1. Suppose that a different matcher M2 yields a
similarity value of q for T1 and T2. If we assume that the outputs of M1 and M2 are
probabilistically independent of one another given the true state of equivalence or non-
equivalence of T1 and T2, then we can calculate that the probability of T1 and T2 being
semantically equivalent given the outputs of both M1 and M2 is given by:

))21(1/()21()1)(1()2,1|21(TTPTTPqppq
pqMMTTP

≡−≡−−+
=≡

where P(T1≡ T2) is the prior probability of semantic equivalence of T1 and T2.

 22

Figure 9. Combination functions for similarity values.
The top left graph in Figure 9 shows P(T1≡ T2 | M1, M2) (vertical axis) as a function of

P(T1≡ T2 | M1) and P(T1≡ T2 | M2) (horizontal axes), where we have set P(T1≡ T2) to 0.01.
This graph is to be contrasted with the other graphs, which show the average, minimum, and
maximum combination functions for similarity values. It is clear from these graphs that none of
the combination rules used by COMA++ corresponds at all closely to the probabilistic
combination of values.

This is not to suggest that the particular probabilistic combination rule shown above is the
correct one; however, these results suggest that there is no particular reason to suppose that the
combination rules used by COMA++ correspond to any well-grounded way of combining
probabilities of equivalence based on different matcher results.

 The combination rules used by COMA++ also do not take into account variable correlations
between outputs of different matchers – e.g. different matchers may be using same similarity
measure or dependent similarity measures (character similarity and phonetic similarity), so their
outputs will be correlated, or, they may be measuring similarity along completely independent
dimensions, so that their outputs will not be correlated). If we are combining outputs from more
than two matchers, the output of some pairs may be correlated while the output of other pairs
may be uncorrelated. There is no way that a single combination rule of the sort used by
COMA++ can adequately capture such variable correlations.

Evaluating COMA++. We did a simple experiment in which we used COMA++ to map each
of two source ontologies into a target ontology. The results revealed some of the strengths and
weaknesses of current schema matchers.

 23

Ontologies

hasPart
Tree

Node Edge

hasPart

Source1
Ontology

hasPart
Tree

Node Edge

hasPart

Source1
Ontology

Tree

Bark Limb

hasPart hasPart

Source2
Ontology

Tree

Bark Limb

hasPart hasPart

Source2
Ontology

Tree

Bark Branch

hasPart hasPart

Target
Ontology

Tree

Bark Branch

hasPart hasPart

Target
Ontology

Figure 10. Test ontologies for COMA++.

Figure 10 shows the source ontologies and the target ontology into which they were mapped.
Although these are trivial ontologies, the mappings discovered by COMA++ serve to illustrate
issues that need to be considered in future schema matching research.

Source1/Target Mapping
Source1:Edge ↔ Target:Branch: 0.868
Source1:Tree.hasPart ↔ Target:Tree.hasPart: 0.82
Source1:Tree ↔ Target:Tree: 0.82

Source2/Target Mapping
Source2:Bark ↔ Target:Bark: 0.868
Source2:Limb ↔ Target:Branch: 0.868
Source2:Tree.hasPart ↔ Target:Tree.hasPart: 0.82
Source2:Tree ↔ Target:Tree: 0.82

Figure 11. Mappings between source schemas and target schema.

We ran COMA++ on each pair of source and target ontology using the default setting for the
AllContext matching strategy, which computes the similarity of each pair of paths in the two
ontologies using name similarity, type of leaf nodes, and synonyms. The final similarity value
for each pair of paths is the average of the similarity values from the constituent matchers.

Figure 11 shows the mappings discovered by COMA++. (We note that we manually added
to the thesaurus that fact that “edge” and “branch” are synonyms (in graph theory) and “branch”
and “limb” are synonyms.) The numbers after each mapping are the final similarity values for
the two schema elements.

A number of issues arise from this simple example. First, although COMA++ computes a
“best” mapping (meaning a mapping that maximizes the sum of similarity values), it gives no
indication of the overall quality of the mapping. Although the mapping between Source1 and
Target has one fewer correspondence than that between Source2 and Target, the similarity values
for individual schema element pairs are comparable. Second, as mentioned above, similarity
values are difficult to interpret and their correspondence to probability of match is obscure.
Finally, it is apparent from this example that COMA++ does not make use of context information
in determining the quality of individual or overall matches. By context information, we mean in
this case information about the domain for which the ontology was created. In the case of
Source1, a human looking at these ontologies could probably guess that Source1 was created for
the domain of graph theory or perhaps computer science whereas the domains of Source2 and
Target are probably the same. This information has relevance to the probability that terms in two
of these ontologies match but there seems to be no way for COMA++ to make use of such

 24

information. The issue of context arises in other areas of semantic alignment and we will devote
a separate section below to discussing the use of context information.

LSD. LSD (Learning Source Description) is an example of a hybrid matcher that uses
statistical learner to train component matchers.

Training
Data

Base-learner1

Base-learnern

... Meta-learner

Hypotheses

Hypotheses

Weights for base
learners

Schema +
Instances

Base-learner1

Base-learnern

...
Predictions
Combiner

Hypotheses
about instances

Hypotheses
about instances

Constraint
Handler Matches

Hypotheses about
schema elements

Figure 12. Architecture of LSD.

The base learners of LSD are trained on manually created matches. A meta-learner then
assigns weights to the base learners based on their performance. The weights are relative to
characteristics of the schemas to be matched. (E.g. in schemas with a rich hierarchical structure,
more weight may be given to a matcher that exploits structural information.) The component
matchers are essentially classifiers: they group instances of one schema into the categories of
another. These classifications by different matchers are then combined to produce a mapping
between the two schemas. LSD can make use of known constraints on schema elements. For
example, if a relation in one schema is known to be functional (e.g. “motherOf”), it will not be
matched to a relation in the other schema that is not functional.

In evaluations ([23]), LSD has achieved 71-92% accuracy. The evaluations demonstrate that
the meta-learner significantly improves matching accuracy. LSD’s base matchers are inadequate
for certain types of schema elements, however. For example, the instances of the course code
element in one schema tested were short alpha-numeric strings. The base matchers had difficulty
classifying these instances, but in principle a format learner could have been used to do the
classification.

iMAP. iMAP advances the state of the art in schema matching by tackling the challenging
problem of finding complex matches. A complex match, recall, is one in which an element of
one schema maps to a function of multiple elements in the other (e.g. “name” in one schema
might map to the concatenation of “first_name”, “last_name” in another).

 25

Source schema + dataMediated schema

SearcherkSearcher2

Domain
knowledge
and data

Searcher1

User

Base-Learner1 Base-Learnerk

Meta-Learner

Similarity Matrix

Match candidates

Match selector

Explanation
module

Source schema + dataMediated schema

SearcherkSearcher2

Domain
knowledge
and data

Searcher1

User

Base-Learner1 Base-Learnerk

Meta-Learner

Similarity Matrix

Match candidates

Match selector

Explanation
module

From R. Dhamankar, et. al., “iMAP:
Discovering Complex Semantic Matches
between Database Schemas,” in
SIGMOD 2004.

1-1 and complex matches

Figure 13. iMAP architecture.

Since the search space for complex matches is infinite, iMAP uses heuristics to search that
space for plausible matches. These candidate matches are fed to a modified version of LSD,
which outputs a set of 1-1 and complex matches.

Another novel feature of iMAP is its ability to give explanations for the matches found.
Being able to explain results is important in gaining user trust in the system.

iMAP also allows user input in matching. The user may suggest particular 1-1 matches,
eliminate candidate matches, or suggest the use of particular combination functions for complex
matches. It turns out that considerable user intervention is required for iMAP to successfully
generate complex matches.

4.1.5 Ontology Matching Evaluation Initiative

A 2002 review of schema matching algorithms ([20]) found it hard to make comparisons for
several reasons

- Different test sets were used by different research groups

- Protocols were poorly described

- Dataset size varied considerably across groups

- Different metrics were used to evaluate performance

In recent years, these problems have been addressed by systematic evaluations of ontology
matchers under the auspices of the Ontology Alignment Evaluation Initiative . The goals of this
initiative, as described in its website, are:

- assessing the strength and weakness of alignment/matching systems

- comparing performance of techniques

- increasing communication among algorithm developers

 26

- improving evaluation techniques

- most of all, helping improve the work on ontology alignment/matching
Evaluations have been performed yearly since 2003. The latest evaluation for which results

were published in time to be analyzed for this trade study was the November 2005 evaluations
([21]). In 2005, ontologies from three ontology suites were tested:

-Benchmark test suite: bibliography ontologies

-Generated from a single ontology by systematic modifications

-Anatomy ontologies manually created by two medical research groups

-Web site directories

-Semi-automatically pruned versions of web site directories used by Google, Yahoo, and
Looksmart

The matching systems evaluated in 2005 were:

- FOAM (University of Karlsruhe, Germany)
- OLA (University of Montreal/INRIA, Canada)
- CtxMatch 2 (IRST Trento, Italy)
- Falcon (Southeast University, Nanjin, China)
- Unnamed (UC. Dublin, Ireland)
- OMAP (CNR/Pisa, Italy)

The performance measures used in this evaluation were recall and precision. The results for
the different test suites were as follows:

-Benchmark tests (Bibliography domain)
o Best precision score: 0.91 – Falcon
o Best recall score: 0.89 (Falcon)
o Lowest precision: 0.08 – ctxMatch2
o Lowest recall: 0.18 – CMS

-Web directories domain
o Best recall: 0.32 – OLA best, Falcon close second
o Worst recall: 0.094 – ctxMatch2
o The ground truth data generated could not guarantee completeness of the

ground truth mappings, so precision could not be calculated
-Anatomy domain

o Results were not available at time of publication of results article

These results show a wide variance in performance among matchers and across test suites.
For example, Falcon obtained very high recall and precision on the benchmark tests but had poor
recall in the Web directories domain.

While the OAEI is a major step in the direction of systematic evaluation of matchers, a
number of issues need to be addressed in order to properly interpret the evaluation results.

 27

One issue is whether the test cases are representative of real world matching problems of
concern to the Air Force. For each test suite, the ontologies are known to be from same domain.
Moreover, the bibliography and anatomy ontologies are likely to use very standardized
vocabulary. These features of the test suites are often not present in real world matching
problems, where the domains of data sources may not be known, standard vocabulary may not
exists, and matching might be done between schemas from different but overlapping domains.

A second issue is that the test protocols are not entirely clear. Organizers say in their
summary paper that the “… graphs [of participants results] are not totally faithful to the
algorithms because participants have cut their results (in order to get high overall precision and
recall)” The meaning of this statement is not entirely clear. An e-mail inquiry to the organizers
produced no response.

Finally, as mentioned previously, since some human intervention in matching is necessary
for the foreseeable future, metrics that measure the savings in manual alignment effort may give
a more useful picture of matcher performance than standard recall and precision metrics.

4.2 DATA MATCHING
Schema/ontology matching involves discovering correspondences between elements at the

type level – i.e. between terms denoting classes or sorts of things. Data matching, or record
linkage, involves finding correspondences between specific data instances – e.g. between a
record for a terrorist suspect in one database and a record in another.

………………

05/23/78MaleSunniMohammedAl-Faral13

………………

03/12/1969MaleShi’aTariqAl-Fasdi14

DOBGenderReligionFirst NameLast nameID

………………

05/23/78MaleSunniMohammedAl-Faral13

………………

03/12/1969MaleShi’aTariqAl-Fasdi14

DOBGenderReligionFirst NameLast nameID

……………

……………

March 13,
1969

MaleShi’aTarik Al-Fasdi303

DOBGenderReligionNameID

……………

……………

March 13,
1969

MaleShi’aTarik Al-Fasdi303

DOBGenderReligionNameID

Record Linking

Figure 14. Data matching.

Figure 14 shows an example of data matching. Two databases with different schemas
contain information about terrorist suspects. The entry in one database with Last name = “Al-
Fasdi” and First Name = “Tariq” has been matched to an entry in the other database with Name

 28

= “Tarak Al-Fasdi.” Information from these two records can therefore be merged into a common
database.

records:
A1 ,A2, …

Source 1
records:

A1 ,A2, …

Source 1
records:
B1 ,B2, …

Source 2
records:
B1 ,B2, …

Source 2

Compute Similarity
Scores

Similarity
Scores

Similarity
Scores Learn

Mappings

Mapping Rules

_
score(X,Y,Attribute 1) > s ⇒ map(X,Y)
…

Mapping Rules

_
score(X,Y,Attribute 1) > s ⇒ map(X,Y)
…

user feedback

Figure 15. Active Atlas architecture.

The Active Atlas record linkage system [17] is a state of the art system for data merging. It
employs user feedback on predicted matches to do decision tree learning of mapping rules. The
mapping rules state when two data instances should be merged given similarity scores along
certain dimensions.

Issues analogous to those in schema/ontology matching arise with regard to data matching.
Although decision tree learning allows more complex rules to be learned than are used in a
schema matcher such as COMA++, the use of similarity as a basis for matching may suffer from
the same limitations as were seen in schema matching. The rules learned are deterministic;
investigation of probabilistic inference in data matching may prove fruitful. Finally, as is
common in schema matching, context information is rarely used.

Active Atlas has been extended to a system called “Apollo,” which makes use of secondary
information to resolve entity references. For example, two records for a restaurant in different
databases may have the same information except that the area code for one is different from the
area code for the other. By consulting an external database containing information about area
code changes, Apollo might be able to determine that one area code was changed to the other,
verifying that the two records are indeed for the same restaurant. Apollo also makes use of a
geographic database containing lat/long information for addresses.

The use of secondary information has been shown to produce significant increases in data
matching precision and recall [17]. In one experiment, precision was 100 percent and recall was
76 percent with only 150 training examples when secondary information was used, but was
lower when secondary information was not used, even though 250 training examples were used.

 29

tim e

source

top ic

Other approaches to data merging include a variety of algorithms for name comparison (e.g.
phonetic abstraction, Ngram indexing, Burkhart-Keller trees, partition filtering). Because these
use only syntactic or phonetic features of names, they are often used as a first-pass filter for
record linkage systems that make use of richer semantic information (e.g. attributes of entities).

Other systems for data merging include MARLIN, which uses support vector machines to
learn similarity measures over strings; and PROM, which uses attribute similarity for entities,
and information about the disjointness of attributes, to do entity resolution.

4.3 USE OF CONTEXTUAL INFORMATION

We have seen several areas in which context information is important to semantic alignment.
In this section, we explore more fully what context is and how it is, or should be, used in
semantic alignment. We start with an overview of some ways of understanding context and
representing it. We then consider the use of context in discovering schema/ontology mappings.
Finally, we look at the role context plays in query and data transformation.

4.3.1 What is Context?
Context has been understood in many different ways by different researchers. “context” has

been used to mean, among other things:

• Metadata
• Structure of concepts within which a term in an ontology is embedded
• The spatio-temporal situation in which the ontology was created or used
• That portion of reality (or unreality) modeled by an ontology
• Purpose for which the ontology was designed
• Physical arrangement of labels in an interface

A useful general framework for representing context is to view a
context as some portion of a multi-dimensional space whose axes as
dimensions such as source, time, purpose, topic, location, etc. (Kashyap
and Sheth, 1996). The specification of a region may be partial (e.g. a
time interval) so that contexts are volumes rather than points in this
space. While this is a useful picture, it should be noted that some of the
dimension of context space, such as topic or source, have no natural
ordering.

 30

 <>

<topic=movies> <source=imdb> <time=2006>

<topic=movies,
source=imdb>

<source=imdb,
time=2006>

<topic=movies,
time=2006>

<topic=movies,
source=imdb,
time=2006>

Figure 16. Context lattice for Internet Movie Database.

Given that contexts can be defined with greater or lesser degrees of specificity, they form a
lattice, with the most general context (“everything”) at the top of lattice and the bottom nodes
being points in context space. In systems that reason with contexts, such as Cyc ([24]) and
BAE/AIT’s AIT Knowledge Server (AKS) ([9]), a context lattice (or tree in the case of AKS) is
used to manage knowledge by partitioning the knowledge base into distinct but interconnected
contexts. Information relevant to a given context is stored with that context and is inherited by
all specializations of that context. Reasoning within a context is efficient since the inference
engine need only consult that part of the knowledge base contained in the context or in more
general contexts.

4.3.2 Contexts in Schema/Ontology Matching
Our survey of schema matching algorithms indicates that there is little or no use of context

information in schema matching. Knowing that the contexts of two schemas are the same or
different should influence our confidence in match results independently of particular similarity
values. For example, if we know that two databases both deal with terrorist events, that should
increase our confidence that, e.g., the term “perpetrator” and the term “organization” are
synonyms in this context, over and above the evidence of semantic equivalence based on features
internal to the two database schemas.

Context information can therefore be used to discover the semantics of data sources. If,
however, the context of a data source is unknown, then there is a chicken and egg problem. If
we knew the meaning of the schema, that would help us guess the context, but to figure out the
meaning of the schema, we may need to know the context.

 31

Context
Forestry
GraphTheory

50.0
50.0

Diameter
Occurs
DoesNotOccur

85.0
15.0

Tree
Occurs
DoesNotOccur

90.0
10.0

Algorithm
Occurs
DoesNotOccur

43.0
57.0

Node
Occurs
DoesNotOccur

52.0
48.0

Sap
Occurs
DoesNotOccur

45.5
54.5

Pulp
Occurs
DoesNotOccur

45.5
54.5

TreeMeaning
WoodyPlant
Graph

50.0
50.0

DiameterMeaning
TrunkDiameter
MaxShortes...

50.0
50.0

A probabilistic approach could be used to solve this problem. Here’s an example of how this
might work. The Bayesian network in the above figure shows how the meaning of certain terms
depends on their context. But the probability of a term occurring in a schema also depends upon
its context. If we find that certain terms occur in the schema, this gives us clues as to the
context, which in turn provides evidence for the meaning of the terms. Here the fact the certain
terms occur in the data source while others do not provides evidence about the context of the
data source, which in turn influences our interpretation of the terms.

4.4 SPECIAL ISSUES REGARDING ONTOLOGIES
The vision of the semantic web is to leverage ontology languages such as OWL to enable

machine processing of web content. This is a long range vision but important strides have been
made already toward its realization. Increasing use of ontologies will impact how matching of
representations is done and with what accuracy and efficiency. At the same time, the use of
ontologies as a representation language carries with it some serious challenges that must be
addressed before their benefits can be realized.

A recent workshop – the Ontology for the Intelligence Community Workshop -- addressed
some of these challenges. A keynote address by Maureen Baginski, former Executive Director
for Intelligence at the FBI, and former Director of the NSA Operations Center , made clear why
there is a strong push in the intelligence community to make use of ontologies. Analysts are
simply unable to keep all available information in their heads now. In the past, the focus of
intelligence analysis was on collecting, not on search or sharing. Intelligence analysts analyzed
what was dumped in their laps. The new paradigm, however, is one pull, not push. The analyst
is actively asking, What do we need to know? What do we have now that might be relevant?
Where can I find it? Who might have it? Ontologies allow analysts to ask the questions they
want to ask, not be slaves to the mass of data collected. They do this by providing a way of
navigating through vast amounts of data to locate and present in a meaningful way information
needed by the analyst.

Figure 17. Bayesian network for context inference.

 32

Unfortunately, ontologies are difficult beasts to tame. As Barry Smith, organizer of the
workshop and director of the National Center for Ontological Research at the University of
Buffalo, remarked, ontologies often reproduce the problems they are supposed to solve: people
talking past one another, lack of application interoperability. Ontologies are often poorly
constructed, by people who have little experience with ontologicial development. Such
ontologies are an impediment to intercommunication, rather than a facilitator of it. Moreover, a
Bill Anderson, chief scientist of Ontology Works, Inc., pointed out, one of the most serious
challenges in the use of ontologies is ontology maintenance: life cycle maintenance of large
ontologies is difficult because stewardship can often trump development costs. Terms may shift
meaning, so that previously established correspondences between different ontologies are no
longer valid. Ontologies may be extended in inconsistent or redundant ways, leading to further
difficulties in stabilizing mappings.

Despite these difficulties, the consensus of the workshop was that ontologies, when carefully
constructed and managed, provide benefits by providing key distinctions, constraints, and a
durable integration schema.

4.5 SEMANTIC ENRICHMENT
Semantic enrichment refers to the augmentation of the underlying database schema or

domain ontology with new concepts or relations, together with computational or inferential
mechanisms for inferring instances of the new concepts and relations. Semantic enrichment can
be used at the schema or ontology level to facilitate construction of a mapping between two
schemas or ontologies, as is done in [14]; by embedding terms in two ontologies in a richer
ontology, a similarity relation between terms in the two ontologies may be computed, which can
then be used to establish a mapping between the ontologies.

Semantic enrichment also finds application at the data level as a means of augmenting the
information in a database. Consider, for example, an intelligence database of information about
infrastructure targets whose schema simply involves attributes of targets such as name, category,
location and road segment data. An infrastructure analysis tool for analyzing connections
between targets may make use of an ontology in which the key concept is that of adjacency.
Semantic enrichment could infer adjacency between targets from the attribute information in the
database by inferring that two targets are on the same road segment or connected by a short path
of connected road segments with no intervening targets. By enriching the schema with the
adjacency relation, the inferred instances of this relation can be added to the database.

Although semantic enrichment was not the focus of our investigations in MAISSI, we will be
pursuing it further in the Tangram program. Tangram is a DARPA sponsored effort to integrate
multiple group and link discovery tools in a grid environment. A common data representation is
a crucial element of Tangram and semantic enrichment of the data will be needed in order for
some of the components to handle the data.

4.6 ROADMAP FOR SEMANTIC ALIGNMENT
Our investigation of semantic alignment technologies has revealed a number of areas in

which further progress can be made. In this section, we make a series of specific
recommendations for how to further research in these areas.

 33

Recommendation #1: Develop a Formal Theory of Matching

Current methods are ad hoc. Results can sound impressive for particular test sets but we lack
assurance that the results will generalize to realistic matching problems. The notion of similarity
needs to be put on a firm basis and its connection to probability of semantic equivalence
demonstrated. A number of researchers hope for a clear probabilistic foundation for matching
but no comprehensive framework is available,

Recommendation #2: Perform rigorous evaluations

Published performance results are often hard to compare due to use of different test cases and
metrics. The Ontology Evaluation Initiative has made a good start at providing a uniform set of
test cases and metrics for comparing matchers, but more realistic test cases are needed:
Ontologies for different but overlapping domains should be used. A richer set of metrics is for
evaluating matcher performance is needed. Precision and recall are important but they don’t tell
the whole story. Metrics that measure savings in manual alignment effort are needed, as well as
utility based measures that look at how merged information is used in decision-making.

Recommendation #3: Exploit rich information for alignment

Whenever possible, contextual information should be used to help discover the semantics of
the data. Key contextual parameters relevant to the semantics of terms need to be identified.
Algorithms need to be developed that can infer the context of a source when the context is not
already given and that can infer meaning from context. We need more research on how to
exploit the richer semantics of ontologies, as contrasted with database schemas, to drive
alignment.

Recommendation #4: Place emphasis on user-assisted semantic alignment, not on
complete automation

Fully automated matching for complex, realistic ontologies is many years in the future. In
the meantime, some human intervention is required to facilitate matching. The question is how
to minimize human intervention. We need to discover bottlenecks in automated matching that
can easily be overcome with human intervention. Since realistic matching requires the discovery
of complex matches, users should be able to enter suggestions for combination functions and
heuristics for searching for complex matches.

Recommendation #5: Develop an explanation capability for matchers.

Matching tools need to explain their choices to users before users will trust them.

 34

5 INFORMATION SERVICES ARCHITECTURE
Cutting across the SI challenges of semantic alignment, data mediation and ontology

transformation is the operational need to enable autonomous software applications to work
together, and exchange information and services in a reliable and efficient manner. Multiple
services for different abstraction layers are required to successfully integrate the data alignment
capabilities into a comprehensive net-centric solution such as the GIG. In particular, we will
explore information services addressing the four layers in Table 2 will be:

Table 2. Scalable SI requires information services spanning multiple layers of abstraction.

Service Layer Required Capabilities

Database Services
Provide fundamental persistence, access, and update services for elementary
data items. Support expressive queries and declarative rules for extracting,
merging, and mapping low-level data to the Object Services layer.

Middleware Services

Provide communication protocols and APIs for object-level exchange. Includes
distributed, cross-platform, and cross-language standards and support for
multiple exchange patterns (e.g. client/server, publish/subscribe, peer-to-peer,
etc.).

Syntactic-level
Services

Provide platform- and language-neutral standards for syntactic data
representation and exchange among coarse-grained systems. Provide a
common operating environment supporting rapid addition and integration of
new services through automatic registration and discovery.

Semantic Web
Services

Provide semantically rich standards for describing properties and capabilities of
new services. Support automatic composition of services.

Standards Specifications that lead to integration through the use of common formats,
languages and approaches

As with Semantic Alignment, technologies and standards at the lowest layers of the
Information Services, such as Relational Databases and System Oriented Architectures, are
relatively mature and widely used. The higher layers, however, still suffer from a plethora of
emerging standards, incomplete specifications, and incompatible approaches for syntactic and
semantic integration. This section describes some of the major technologies we plan to
investigate in the area of Information Services, along these four major category areas.

5.1 DATABASE SERVICES
Databases are the most mature technologies in the area of Information Management. They

abstract the mundane operations of data persistency, transaction management, storage
fragmentation and data consistency, and provide a standard interface for consumer application to
access and manage data. Their interfaces vary between three major modeling paradigms:
Relational, XML and Object-Oriented. We will investigate leading tradeoffs inherent among
these three interfaces in our trade study.

 35

To address scalability issues and provide access to geographically dispersed sites, database
vendors offer clustered and federated servers. Clustered Databases are usually employed in
single site applications, where a large number of users collaborate over common high speed
networks with low latency and high availability. Clusters use multiple processing units operating
against common persistence devices (such as core memory and hard drives). Federated
Databases, on the other hand, are more appropriate for Enterprise Systems with multi-site
configurations, in which the data are distributed on completely independent servers. Federated
Technology, for example, can be used in multi-strike planning missions between the AF CAOC
centers and the Global Operations Center of STRATCOM.

To process data across multiple databases we will address in the trade study two major
integration frameworks that are commonly employed: Data Warehouse and Enterprise
Information Integration. In the former approach, the data from the source server are brought
together into one single data warehouse, and in the latter approach, the data fragments are
combined on demand into a virtual unified schema. The DW framework requires establishing the
mappings and data scrubbing methods up front and providing the resources to load and manage
the resultant large centralized database, while the EII framework incorporates dynamic data
mediation and adaptive schema mapping techniques.

Database management is very important to the AF. In order to effectively integrate legacy
Systems with newer applications, a proper combination of DW and EII techniques may need to
be employed. As an example, consider the situation where Infrastructure data of adversary sites
from the MIDB database are brought together with imagery data from Image Processing
Libraries (IPL) and resource capabilities from the Defense Readiness Reporting System (DRRS)
in order to plan a strike mission. Combining the information from all these databases into one
warehouse will be time consuming and unnecessarily wasteful. A more appropriate technique
will be to bring in only the relevant information from the Weather and Readiness systems
depending on the location of the target and the types of capabilities required for the mission.

5.2 MIDDLEWARE SERVICES
Because of the maturity of database technology and their relative well understood interfaces,

databases instances have proliferated in the DoD environment. This has resulted in replication of
information across multiple sites and conflict of data among these instances. Consider, for
example, the situation where an Air Operations Plan from TBMCS is imported in a collaboration
system, such as GNCI or DSIDE [18], to be shared and manipulated by multiple collaborating
COCOMS. The plan may be modified by the consumer systems to resolve temporal and resource
constraints among its operational elements, but those changes may not necessarily be kept up to
date with the source planning system. To address these challenges, collaborating applications
employ the Middleware Services to exchange object level domain models among distributed
applications.

Middleware Services offer meta-data management services to specify the interchange
objects, and a programmatic interface to exchange the data. In MAISSI, we explored in
particular the following commonly used exchange models: client-server, publish/subscribe and
peer to peer. To utilize Middleware Services, applications either extend specific infrastructure
classes that supply the needed processing logic, or invoke messaging classes to send and receive
data and get notification when new information is available. In certain instances, the Middleware

 36

Services supports persistence with location transparency through a vendor neutral, object
oriented database abstraction layer.

Middleware is infrastructure software that is used to enable communication between
applications (inter-process communication). Different portions of a single software application or
component can easily communicate because they operate in the same portion of a computer’s
(virtual) memory. Typically this is accomplished by allowing different execution threads shared
access to the same block of memory. Operating systems support this sharing of information
across multiple threads with constructs such as mutexes and semaphores. Operating systems also
provide support for sharing information across the memory boundaries of processes by using
sockets, memory mapped files or pipes. Building distributed systems in terms of the low-level
constructs provided by the operating systems is difficult and error-prone. Middleware is used to
mitigate this problem by providing convenient abstraction layers over the facilities typically
provided by the operating system. It forms the foundation for building service-oriented
architectures and for enterprise integration.

Over the past twenty years different types of middleware have been developed to meet
different aspects of enterprise integration. There is no middleware solution that can globally
address all types of system integration challenges. Rather, system integrators must carefully
weigh their system integration requirements against the costs and benefits of the different types
of middleware solutions available.

In terms of how two applications exchange information, middleware can be characterized as
connection-oriented or message-oriented. Connection-oriented middleware allows two
applications to directly communicate by sharing a connection which is an abstraction of some
low-level operating system construct such as a socket. Examples of such middleware are
Common Object Request Broker (CORBA) and Java Remote Method Invocation (RMI).
Message-oriented middleware typically introduce at least one level of indirection in the
communication between processes by implementing it in terms of messages that are sent to the
recipient through an intermediary. There are many commercial implementations of such
middleware, many of them based on the Java Messaging Service (JMS) standard.

Services implemented in terms of the middleware can be:

1. Public or Private. Depending on whether they are available outside the system.
2. Stateful or Stateless. Depending on whether state is maintained across multiple

invocations from a client.
3. Coarse or fine grained. Depending on the semantics of the information exposed.
Services are typically organized in a hierarchy (set of tiers), with top level services that are

typically coarse grained and stateful. These top level services are typically implemented in terms
of lower level services that are more data-oriented and fine grained. A service client is external if
the network path across the middleware between the client and the invoked service is not totally
controlled by a particular organization. Middleware issues that are affected when a client is
external include firewall configuration and communication protocols (RMI/IIOP versus
HTTP/HTTPS).

An important trade-off in selecting middleware is based on the observation that in general
high interoperability (maximal loose coupling) can result in sub-optimal runtime performance. If
high runtime performance is critical to the usability of the system, it may be necessary to select a
middleware solution and to make architecture choices that may result in tighter coupling between

 37

components. It may be necessary to adopt multiple types of middleware to address different
aspects of the QoS requirements. For example a service may expose a coarse interface to external
web clients and could be implemented internally using a high performance architecture based on
CORBA.

Considerations that are important when selecting middleware include the following:

1. Amount of coupling between components. Message-oriented middleware generally
induce looser coupling between components.

2. Data Throughput and other QoS guarantees. Connection-oriented middleware are better
suited when large data rates between components are required.

3. Whether the application is distributed across a LAN, WAN or over the internet. Service
Oriented Architectures implemented as Web Services are better suited when distribution
over the internet is desired.

4. Middleware services. These include naming, trading or discovery, event management,
transaction management and encryption. Different middleware choices have varying
levels of standardization and maturity for such services.

5. Security

5.2.1 JMS Java Messaging Service
This is a standard developed by Sun Microsystems for message-oriented middleware for the

Java platform. A Messaging Server (or a federated set of servers) is required to act as an
intermediary for message routing. Applications can publish messages to Queues or Topics that
are usually administered resources of the Messaging Servers. In systems that consist entirely of
Java components a message can be a serialized Java object. JMS can be used for heterogeneous
systems as well. For example, components written in the C++ programming language can be part
of a JMS system by using a C++ to JMS bridge component that is commercially available. For
such systems messages are typically text based, usually XML, complying with an agreed upon
XSD. JMS is an excellent approach to building easy to configure, loosely coupled systems.

There are many implementations of JMS, including the reference implementation by Sun, as
well as several open source implementations. JMS implementations can include persistence and
guaranteed message delivery, high levels of reliability with fail-over, clustering and transaction
support. JMS architectures are more suited for internal architectures. For external clients, JMS
can be configured to utilize HTTP tunneling in order to cross firewalls.

Standard and Tool Developers: Standard development for JMS was lead by Sun Microsystems.
Commercial implementations of the standard include: FioranoMQ, SonicMQ, Tibco EMS,
WebSphereMQ, and Sun Java System Message Queue. Open source implementations include
AciveMQ and JORAM.

 38

Function: JMS is a standard for message-oriented interprocess communication.
Features: A JMS implementation includes a JMS server that acts as an intermediary between
publisher and subscriber clients. A JMS implementation may have provisions for federating the
JMS servers. A server can be persistent if it is configured to persist messages to a database, and a
subscription can be durable if the subscriber is guaranteed to receive all information that appears
in a topic of interest.
Strengths and Weaknesses: JMS is a mature standard with many high-quality commercial and
open-source implementations. It forms the foundation for building more proprietary constructs
such as Enterprise Service Bus (ESB) implementations. Although Java platform specific
commercial and open-source products exist that allow C++ applications to become JMS clients.
The learning curve for creating JMS clients is small.
Published performance results: Many, frequently contradictory performance comparisons can
be found on the internet. As with other commercial technologies (e.g. RDBMs) it is easy in a
comparison test to tune parameters in order to give one vendor an advantage over another. We
looked at a number of such reports (see for example [19]) to derive an aggregate sense of the
level of performance one can expect from a JMS-based system. Typical performance metrics
include scalability of the server as the number of topics and clients (both publishers and
subscribers) increases, and scalability of the server as the number of clients increases while
keeping the number of topics fixed. These types of measurements can be obtained while
allowing for persistent or non-persistent servers and durable or non-durable subscribers. The
performance results can vary across different implementations by an order of magnitude.
Furthermore, as we mentioned earlier, results from running a particular JMS can be highly
sensitive to implementation-specific tunable parameters.

A rough sample of the expected performance of a JMS system based on an evaluation of four
commercial products is as follows:

Assume two networked Windows PCs (3GHz, 2GB RAM) both running the Java HotSpot
Client VM. The JMS server is running in one machine and all the clients (both publishers and
subscribers) on the other. In the context of 10 topics, 10 publishers and 10 subscribers with a
1024 byte message size with non-persistent publishers, non-durable subscribers one can expect a
message throughput of anything between 2,500 and 25,000 messages per second. In the presence
of persistence and durability the throughput rate decreases to between 500 and 5,000 messages
per second. The commercial systems tested showed good scalability as the load increased from
10 publishers and 10 subscribers to 50 publishers and 50 subscribers, by roughly maintaining
their previous maximum throughput rate in steady state operation.

5.2.2 ICE Internet Communications Engine
The Internet Communications Engine (ICE) is a proprietary alternative to CORBA or the

Microsoft analogs COM/DCOM/COM+. ICE is available both under GPL and under commercial
license. ICE is an implementation of a proprietary specification that is a streamlined version of
the CORBA specification. It is reputed to run faster and require less bandwidth than an
equivalent CORBA implementation. The Slice language is the ICE analog of CORBA’s IDL (see
CORBA discussion below), and supports a simplified set of data types, without for example less
frequently used but high overhead concepts such as type Any. ICE, like CORBA, has bindings to
multiple popular languages, but most importantly it has a highly efficient binding to C++, in
contrast to the complex and error-prone binding of CORBA to C++. ICE relies on a simple, more
flexible proprietary communication protocol, instead of using IIOP. (See www.zeroc.com)

http://www.zeroc.com

 39

It may be a serious disadvantage that ICE is supported by a small private company.

Standard and Tool Developers: ICE is a proprietary standard and is currently implemented
only by on vendor.

Function: ICE is a standard similar to CORBA for connection-oriented middleware.

Features: ICE has bindings to the following languages: Java, C++, C#, Visual Basic, Python,
Ruby, and PHP.

Strengths and Weaknesses: ICE is easier to use, has a smaller footprint and a smaller learning
curve than CORBA. ZeroC also claims that it is easier than CORBA to configure and deploy in
wide are networks. It claims better runtime performance than CORBA. However, it appears that
its user base is fairly small and it is championed by a small company.

Published performance results: The results mentioned have been conducted and published by
ZeroC, the company that is both the author and implementer of the ICE standard. These are
comparative tests between ICE and TAO, an open-source CORBA implementation, and were
conducted both on Linux and on Windows XP.

Invocation latency is the time it takes for a client to complete a call to the server. Various
types of invocations were measured (two way, two way asynchronous message, and one way).
The results indicate that ICE is from around 100 to 200 percent faster.

Throughput experiments measure the ability of the middleware to transfer large amounts of
data. In the case of transferring raw bytes, TAO has an advantage of 70% under Windows and
20% under Linux. In the case of sequences of structures ICE claims an advantage between 30
and 80%.

ZeroC has also published benchmark data comparing the TAO Event Service with the ICE
Event Service (IceStorm), using various configurations. According to these ZeroC benchmarks
IceStorm is typically 2 to 3 times faster than TAO.

Maturity: It is not clear how mature the ICE specification and the ICE standard are. ICE is
currently in release 3.2. Boeing and SAIC have based their middleware solution for the Future
Combat Systems (FCS) on ICE. Commercial customers include Skype. Government users
include NAVSEA. The Naval Undersea Warfare Center uses ICE in its implementation of a
Distributed Network Forces test environment.

Automation support
Compatibility and Applicability to the GIG specification: ICE would probably be a poor
choice because it requires both the publisher and the subscriber to use ICE for communication.
Furthermore it uses a proprietary protocol for data transport.

5.2.3 MQ Series
MQSeries is an IBM family of software products that together can be used as a middleware

infrastructure for distributed application development.

MQSeries consists of three products:

 40

• MQSeries Messaging, which provides the communication mechanism between
applications on different platforms

• MQSeries Integrator, which centralizes and applies business operations rules

• MQSeries Workflow, which enables the capture, visualization, and automation of
business processes

The point of business integration is to connect different computer systems, diverse
geographical locations, and dissimilar IT infrastructures so that a seamless operation can be run.
IBM's MQSeries supplies communications between applications, or between users and a set of
applications on dissimilar systems. It has grown in popularity as applications are made available
over the Internet because of its support of over 35 platforms and its ability to integrate disparate
automation systems.

An additional helpful feature is that its messaging scheme requires the application that
receives the message to confirm receipt. If no confirmation materializes, the message is re-sent
by the MQSeries. IBM asserts that MQSeries can connect any two commercial systems that are
in current business use.

Standard and Tool Developers: This is an IBM proprietary product. Websphere MQ
implements the JMS standard.

Function: Message-oriented middleware with workflow capabilities.

Features
Strengths and Weaknesses: Provides support for C components.

Published performance results: See section on JMS performance results

Maturity: This is a mature commercial product.

Automation support: N/A

Compatibility and Applicability to the GIG specification MQ Series, along with other
messaging implementations, is highly compatible with the GIG specification.

5.2.4 ESB
Enterprise Service Bus is an abstraction layer over an implementation of an enterprise-wide

messaging system. It enables the construction message-oriented distributed applications using
abstractions that hide the details of the underlying messaging infrastructure. Frequently, an ESB
is used as a foundation for deploying Service Oriented Architectures and many vendors provide
an ESB as part of their SOA offering.

ESBs are operating system and programming language agnostic, and allow communication
between C++, Java and .NET applications. XML is used as a standard way to format messages.
Frequently ESBs include support for Web Service orchestration as well as security
implementations to authorize and authenticate. ESBs allow integration of legacy systems flexibly
and efficiently in a standards-based manner. However, such integration does require that all
systems be message-oriented, and messages can induce unintended coupling between the
components. ESBs also introduce additional processing overhead over basic messaging systems.

 41

Standard and Tool Developers

ESB is a description of a set of a capabilities rather than a standard. These capabilities can be
implemented in different ways. ESB is often viewed as a proprietary product, but can also be
seen as an architectural style that can be implemented in different ways.

Function

The following capabilities are generally accepted as part of an ESB:

• Invocation support (synchronous and asynchronous)
• Routing
• Mediation
• Process orchestration capability (for example BPEL)
• Complex event processing
• Quality of Service support (security, transactions, reliable delivery)
• System management (administration tools, logging, auditing, monitoring)
Complex event processing is the capability to process events that are frequently part of a

larger sequence of events that might be required in order to complete a higher level event such as
a transaction. This capability, in addition to event filtering, includes pattern matching on event
streams. Process orchestration is the ability to execute different workflows of processes on the
server side in order to satisfy either an external or an internal service request.

Features

Since ESB is a catch-all term, features vary by implementation.

Strengths and Weaknesses

There is no well-defined specification for an ESB, but there are multiple commercial
products that implement ESBs. Most of these implementations are layered on top of mature
technologies such as message-oriented middleware.

Published performance results

For performance estimates relating to the messaging portion of an ESB see section 1.1.1.5.

Maturity

Many of the commercial ESB products appear to be mature.

Automation support

N/A

Compatibility and Applicability to the GIG specification

Most of the technologies that define an ESB should be also relevant to the GIG.

5.3 SYNTACTIC-LEVEL SERVICES
Extending the interface mechanisms of the Middleware Services, Syntactic-Level Services

enable autonomous software applications to register their services on the network, discover other
applications with which to interface, authenticate and authorize users to access data on a per-

 42

need basis, and exchange information via well-defined and agreed protocols. We compare the
following three mature technologies for these services: CORBA, J2EE and Web Services.

5.3.1 CORBA
CORBA is a specification for connection-oriented middleware with many commercial and

open source implementations and bindings to multiple programming languages. CORBA is an
Object Management Group (OMG) standard with mature implementations of many associated
middleware services including Naming Service, Event Service, Distributed Transactions,
Trading Service (yellow pages for discovery of services), authentication and security.
Furthermore, for systems with real (or near-real) time requirements, CORBA includes
specifications for Quality of Service (QoS) that can be used to specify real-time requirements,
and there are open source implementations of these Real Time extensions of CORBA
(ACE/TAO). CORBA induces tighter coupling between interoperable components, because
components must share a definition of a set of data structures that can be exchanged at runtime.
These definitions are expressed in terms of CORBA’s Interface Definition Language (IDL).
CORBA is also problematic when processes are distributed across the internet. Although it is
possible to configure CORBA components so that they can interact in the presence of firewalls,
it is not straightforward to do so, and in practice CORBA has been limited to building systems
that have defined high performance requirements and can be completely deployed in a LAN.

Client Server

IDL
Compiler

Server Interface
Description

Interface
Stub

Interface
Skeleton

Object Request Broker
ORB Services

Naming ServiceTrading Service

Figure 18. The OMG Object Management Architecture (OMA) reference model specifies a complete
middleware infrastructure for distributed object management.

CORBA includes an architecture for distributed component computing known as the Object
Management Architecture, shown in Figure 18. The scope of the OMA is comprehensive and
somewhat complicated, which has also been an impediment to CORBA’s adoption for certain
software development efforts.

The OMA provides an architectural separation of concerns. CORBA Services provide
standard life-cycle management services for objects such as creation, deletion, access control,
events, persistence, transactions, queries, and time synchronization. Vertical CORBA Facilities

 43

represent interfaces providing computing solutions for business problems within a specific
vertical market (e.g., healthcare, manufacturing, finance). The OMG website provides lists of
published and recently adopted Vertical CORBA Facility specifications. Horizontal CORBA
Facilities represent those components providing support across an enterprise and across
businesses. Finally, the Application Objects part of the architecture represents those application
objects performing specific tasks for users. The OMA has influenced many DoD standardization
initiatives and provides useful architectural guidance for the BIKE architecture.

U.S. military systems being developed today are required to use commercial and open
standards, such as CORBA, to the greatest extent possible. The Joint Technical Architecture
(JTA) specifies CORBA as the standard for developing and providing distributed computing
services. Several military applications of CORBA are well-known because of their active
participation in the OMG, such as the Navy’s Open Computing Environment (OCE), the Joint
Tactical Radio System (JTRS), the Defense Information Infrastructure Common Operating
Environment (DII COE), and Air Force Theater Battle Management Core Systems (TBMCS)
programs.

CORBA’s infrastructure is useful for creating mechanisms for load balancing, resource
control, or fault tolerance on the server side with great flexibility. However, the origins (Unix
RPC), flexibility, and scope of the CORBA standard combine to create an extreme learning
curve for developers. Key stakeholders designed CORBA by committee, which led to a wide
representation of concerns in the standard, but sometimes too much specificity for unencumbered
development. Because of these and other factors, such as higher network communication
overhead, CORBA is often rejected as the middleware technology of choice, or it is “simplified”
by non-standard implementations. Of all the computing platforms, CORBA is still the most
widely used standard, but often as a hidden, enabling technology for system integration.

Standard and Tool Developers

CORBA is an OMG standard. There are more than two dozen commercial implementations
and more than a dozen open source implementations. The commercial implementations include
IONA, SUN and Visibroker. The open source ones include JacORB, TAO, and ORBit.

Function

CORBA is connection-oriented middleware for interprocess communication.

Features

CORBA supports vendor and platform neutral interprocess communication. It allows
designers to create an object model for the information being exchanged as well as a description
of the services being provided using the Interface Definition Language (IDL). A compiler for
this language generates “stub” and “skeleton” code for the CORBA servers and clients that
satisfy these interfaces. Cross-platform, cross-vendor interoperability is an important feature of
CORBA. Components written in Java can interoperate with components written in C++ or any
other language for which CORBA has a binding.

Strengths and Weaknesses

CORBA provides better QoS than Web Services. It has a steep learning curve, especially its
C++ binding. It induces tighter coupling between components. It is mature and has

 44

implementations of real-time extensions. However, it is more appropriate for deployment within
a LAN or WAN.

Published performance results

CORBA includes a QoS specification (OMG Real-Time CORBA 1.0 specification). The
open source TAO CORBA implementation includes an implementation of these real time
extensions.

Maturity

CORBA is a mature, although complex, standard. There are also many mature
implementations of the CORBA standard both commercial and open source.

Automation support

Compatibility and Applicability to the GIG specification

CORBA has limited or no applicability as an external service. Such services are typically
exposed as Web Services. However, due to better QoS CORBA can be used in the second and
third tier to address performance issues.

5.3.2 Web Services and J2EE
J2EE and Web Services, on the other hand, are refined though communities of interest,

which is different from the OMG consortium. J2EE and Web services architecture involves
many layered and interrelated technologies operating over the Internet, usually using HTTP, the
transport protocol for web pages. Although J2EE and Web Services offer similar capabilities,
they differ in the way applications can make use of their services. J2EE is based on the Java
programming language and requires that all collaborating applications adhere to the Java
associated technologies (such as Java Bean, JMS, WSDP, etc). The Web Services architecture,
on the other hand, is technology agnostic and is based on standards such as XML, SOAP,
WSDL, and UDDI to draw existing infrastructure together and provide a basis set of functions
for interoperation, such as messaging, directories of business capabilities, and descriptions of
technical services. This approach, however, has resulted in a proliferation of standards
addressing specific distributed computing issues. As a guidepost to web service interoperability,
the Web Services Interoperability Organization (WS-I) recently announced the release of the
final specification of Basic Profile 1.0 a set of recommendations on how to use web service
specifications to maximize interoperability.

Web services are self-contained business functions that operate over the Internet, usually
using HTTP, the transport for web pages. Based on standards such as XML, SOAP, WSDL, and
UDDI (described below), web services draw existing infrastructure together to provide a basis
set of functions for interoperation, such as messaging, directories of business capabilities, and
descriptions of technical services. Other functions are in active development.

Web services represent a vision of the World Wide Web as a bastion for electronic
commerce. The canonical example for the future of web services is a complex, seamless
commercial transaction such as airline reservations. A web service-based electronic commerce
application is decomposed into independent, layered capabilities, conforming to W3C standards
or recommendations. Figure 19 shows a generic web service architecture and the relationship
among the communication, messaging, application interface, and process definition layers.

 45

Though web services represent a vision of interoperability through standards, the process of
standardization occurs though communities of interest, which is different from the OMG
consortium. Many companies have been developing solutions in parallel with standardization
efforts. This has resulted in a proliferation of standards addressing specific distributed
computing issues. As a guidepost to web service interoperability, the Web Services
Interoperability Organization (WS-I) recently announced the release of the final specification of
Basic Profile 1.0 a set of recommendations on how to use web service specifications to maximize
interoperability. The Basic Profile is an extremely detailed set of recommendations for web
service practitioners who use the full gamut of standards. Below is a description of the most
important standards which comprise web services.

Figure 19 – The W3C Web Service Architecture consists of several layers of technology to enable
interoperability across heterogeneous systems.

Standards and Frameworks

The following standards (current and under development) are relevant to the development of
Web Services (in alphabetical order):

• BPEL4WS: Business Process Execution Language for Web Services defines a notation
for specifying executable business interactions as well as describing the messages
exchanged between two parties. Multiple additional standards either already exist or are
in development in the area of WS Choreography. WS-CDL is the Web Services
Choreography Description Language

• HTTPR: Reliable delivery of HTTPO packets between server and client that will enable
reliable messaging between web services

• SAML: Security Assertion Markup Language is an XML framework for exchanging
authentication and authorization information.

• SOAP: Simple Object Access Protocol enables XML-based messages that can be used to
exchange structured and typed information between web services.

• UDDI: Universal Description, Discovery, and Integration is a specification for a SOAP-
based web service that is used for locating web services based on WSDL-formatted

 46

descriptions of the protocols for accessing these services. WS-Discovery is an emerging
standard for a multi-cast service discovery protocol.

• WS-Addressing: This is a specification that enables message transmission in a transport-
neutral manner through network nodes with endpoint managers, firewalls and gateways.

• WS-Coordination, WS-Atomic Transaction: Protocols for coordinating actions of
distributed applications

• WSDL: Web service Description Language provides an XML-based protocol for
describing Web services

• WS-Federation: WS Federation Language is a specification that defines protocols for
different security realms to communicate by brokering trust, identities, attributes and
authentication. Part of the WS Security Model

• WSIL: WS Inspection Language is a specification for an XML-formatted approach to
inspect a site for available services

• WS-Security: Enhancements to SOAP messaging to ensure message integrity,
confidentiality and authentication

The list of standards above is far from complete.

Web Services frameworks include the following:

• Apache Axis
• JSON-RPC Java
• Java Web Services Development Pack
• Web Services Invocation Framework
• Windows Communication Foundation
• XFire: a next generation Java-based SOAP framework that facilitates the implementation

of high-performance Service-Oriented Architectures, through a simple, standards-based
API. (http://xfire.codehaus.org)

• XML Interface for Network Services
• gSoap: A set of generator tools for coding SOAP/XML Web Services in C and C++. It

provides a transparent SOAP API, and uses compiler technology to map XML schemas
to C/C++ definitions. SOAP/XML interoperability is achieved with a simple API that
hides the details of WSDL and SOAP.

Function

Web Services allow communications between applications across the internet. In particular,
Web Services can be used to implement systems in accordance with principles of Service-
oriented Architecture (SOA). Message-oriented services are services where the emphasis is on
the message being exchanged rather than on the operation being performed.

RESTful Web Services are designed by analogy to protocols like HTTP by constraining their
exposed interfaces to a set of standard operations with suggestive semantics such as GET, PUT,
and DELETE. These services focus on client interactions with stateful resources rather than
messages or operations.

Features

Applications are loosely coupled, since they are only bound by the format of the messages
being exchanged.

http://xfire.codehaus.org

 47

Strengths and Weaknesses

Loose coupling and ease of use across the internet are strengths. Uncertain Quality of Service
(QoS) in terms connection latency, and throughput for data intensive applications.

Published performance results

None found. There are many reports of poor or unpredictable runtime performance for data
intensive applications or when QoS is an important aspect of the interaction.

Maturity

Standards are still being developed and evolving especially in the areas of security,
messaging, transactions and orchestration.

Automation support

Standards such as BPEL4WS support automation.

Compatibility and Applicability to the GIG specification

Web services are the preferred approach to service development for the GIG.

5.3.3 Boeing SoSCOE
Of particular interest to the AF, is an emerging architecture from Boeing, called System of

Systems Common Operational Environment (SoSCOE). The SoSCOE has an architectural goal to
present a full set of integrated C2 capabilities through the use of primary utility services called
Task Integration Network (TIN). TIN-able application differ from the purely Service Oriented
utilities in the way they are scheduled and tasked. The TIN framework provides a Hierarchical
Task Network (HTN) logic to decompose and order the implementation of services based on C2
objectives and data interchange needs. Figure 20, below, shows the decomposition of the TIN-
able services to support Mission Execution. Each one of the blocks in the diagram represents a
service that is broken down to its sub-ordinate components. SoSCOE provides the framework to
define TIN-able services and register the decomposition rules. The rules themselves are specified
by the various domain planners (for example, maneuver, logistics, air support, etc.) and are
developed by the appropriate service components.

 48

Figure 20: Mission Modeled In Task Integration Network

Like CORBA and Web Services, the FCS C2 architecture is service-based. A service is an
independently compiled, stateless software unit that knows how to perform some foundation
task(s). A service uses credentials (defined by a role) for data access and is intended to interact
with FCS system database via the SoSCOE. The primary mechanism for organizing the services
around roles is the Task Integration Network (TIN). A TIN is a logical arrangement of services
(or utilities) organized in such a way as to achieve some useful user-oriented objective. It
provides the thread(s) through all of the necessary services. (Note that the word service within
the context of the TIN can also be used to include the word utilities.) TINs use a Hierarchical
Task Network (HTN) application framework to decompose and order the implementation of
services. This framework provides an extensible execution flow with robust error recovery and
constrained execution support.

The FCS architecture is decomposed into mission applications, groupings of related services,
including the Warfighter Machine Interface (WMI), Situation Understanding, Planning &
Preparation, Battle Command & Mission Execution, and Sustainment. The FCS architecture is
still in the conceptual design, and subcontracts have been awarded to General Dynamics and
others to refine requirements and build mission application. Boeing is drawing on its
subcontractor’s expertise in distributed computing platforms, such General Dynamics’
Openwings framework, to shape the design of the SoSCOE. BIKE research can draw from and
contribute to this process. The BIKE project will help extend and refine the requirements of for
the FCS information model, Battle Command semantics, service orchestration, and workflow
policy definitions for the distributed Army and JIM perspectives.

5.4 SEMANTIC WEB SERVICES
Finally, at the top level of the technology stack are the Semantic Web services which extend

the capabilities of Semantic Web ontologies with a core set of markup constructs for describing
the properties and capabilities of their web services in unambiguous, computer-interpretable
form. In our study we reviewed the following set of technologies: OWL, OWL-S and COIs,

 49

Reasoners, Web 2.0 technologies, and finally the new term Web 3.0 that encompasses all of the
above.

5.4.1 Ontology Web Language (OWL)
OWL is a semantic web language for describing classes, individuals, and their relations.

OWL incorporates merges many of the representational constructs of description logics and
frame systems. It uses an XML syntax, building on top of RDF, an XML-based language for
describing web content. There are three dialects of OWL of increasing expressivity. OWL Lite
provides a classification hierarchy (class/subclass relations), binary relations between objects,
and simple constraints on relations (e.g. 0/1 cardinality constraints).

OWL DL (“DL” for “Description Logic”) is the most expressive decidable dialect of OWL.
(A logic is decidable if there is a mechanical procedure for determining whether or not an
inference in the logic is correct.) OWL DL extends OWL Lite by adding functions for
constructing new classes out of existing classes and a richer set of constraints on relations.

OWL Full has the maximum expressiveness. It extends OWL DL by allowing classes and
properties to be individuals. That is, a class, such as Dog (the class of all dogs) can be treated as
an individual by, e.g., being an instance of some higher order class such as Species (all of whose
instances are classes).

5.4.2 OWL-S and COIs
The value of semantic interoperability cannot be fully realized unless flexible and adaptable

architectures are in place for the composition of information services over the GIG. OWL-S [10]
supports this capability by providing a framework to register service definitions and allow
composite systems to evolve through object-oriented techniques. OWL-S describes services in
three aspects: profile (set of functional capabilities provided), model (decomposition of the
service into finer-grained steps), and grounding (list of interfaces). McIllraith [11] and Wu [12]
describe techniques for using service models specified in OWL-S to automatically compose
services.

In addition to these challenges, the Defense Information Systems Agency is mandating that
combat systems be integrated in a net-centric environment in terms of dynamically composable
services operating in the GIG. In this context, COIs evolve that are characterized by similar
vocabularies and ontologies. In order to accomplish the goal of composability of services it is
necessary to address the issue of semantic interoperability and semantic alignment extending
across different COIs in areas where there is semantic overlap. The resulting interoperability is
the foundation for network-centric warfare, improved situational awareness, and enhanced
collaborative interaction among multiple joint and coalition platforms, sensors, units and
individuals.

5.4.3 Reasoners
A big challenge in systems integration is to adapt software under changing technologies and

evolving requirements. This becomes particularly important for enterprise-level applications that
serve many constituents and interface with disparate systems. This could be accomplished using
traditional repository technologies, i.e. relational databases, Java, C++, etc. For example, one

 50

could write a custom application that retrieves the values of the objects from the database,
determines their location and other characteristics, and based on the rules of engagement assesses
their status as enemies of not. However, any application we build with procedural programming
techniques will be specific to the current problem and will not be easily extensible. Similar work
will have to be done when the situation changes, i.e. new rules of engagement. Semantic
technologies make software more fit to survive in today’s ecosystems of interacting components.
This section describes newly emerging services for the semantic web that allow one to apply
generic reasoners to modular rule bases that are separate from application software and are
therefore modifiable and extensible without requiring changes to the underlying software.

We looked at several reasoners for OWL. Racer is a commercial reasoning system for OWL.
In a comparison of Racer with a commercial database information retrieval system ([25]), the
authors found that Racer is comparable in speed to the database system when the queries are
simple data retrieval queries but for more complex queries, Racer is much slower. However, the
greater speed of the database system comes at the expense of completeness of inference: the
database system cannot find all valid inferences. The authors point out that an issue affecting all
OWL reasoners, not just Racer, is the need to have all data in main memory in order to reason
about it. This is a limitation that will have to be overcome if OWL reasoners are to scale to
realistic problems.

Another study ([26]) compared Racer with two other OWL reasoners: Pellet, and FaCT.
The authors found that Racer and FaCT are more efficient on classification tasks while

Pellet is faster than Racer in answering conjunctive queries over instance data (FaCT does
not provide reasoning support for instances).

A number of lessons emerge from our examination of OWL reasoners. The reasoners tend to
be tailored for academic research audiences and generally have poor documentation and a
limited user interface. There is too often a focus on “logic-centric” concerns such as decidability
at the expense of usability. Most OWL reasoners use tableau proof procedures that facilitate
proofs of soundness and decidability but may not be as efficient as other proof procedures. We
recommend more interaction between the OWL reasoner community and the logic programming
community since the latter has decades of experience with compiling efficient programs
(especially with regard to the Prolog programming language). Better knowledge management
techniques are needed to overcome the limitation that all data must be in main memory to be
reasoned with.

We also examined ways in which the expressivity of OWL can be extended to support richer
representations and reasoning. SWRL is a language that extends OWL with the ability to
expresses Horn clauses rules. (A Horn clause rule is an “if, then” rule with variables whose “if”
clause is a conjunction of atomic statements and whose “then” clause is a single atomic
statement.) Rules are of the form of an implication between an antecedent (body) and
consequent (head). The intended meaning can be read as: whenever the conditions specified in
the antecedent hold, then the conditions specified in the consequent must also hold.

The vocabulary for the rules is derived from an associated OWL ontology and the rules allow
for the expression of constraints not expressible in OWL alone. Atoms in these rules can be of
the form C(x), P(x,y), sameAs(x,y) or differentFrom(x,y), where C is an OWL description, P is
an OWL property, and x,y are either variables, OWL individuals or OWL data values.

 51

To facilitate with the understanding of SWRL and also demonstrate its use to the Air Force,
we constructed a simple example in SWRL of rules that allow reasoning about whether an
aircraft is friendly or enemy. The example illustrated the potential for semantic web reasoners to
provide a flexible, adaptable framework for managing information needs.

Figure 21: An ontology of aircrafts and regions

Consider, an ontology of aircrafts and regions, as shown in Figure 21. Aircrafts can be
classified as enemy-aircrafts and blueForce-aircrafts. The ontology contains properties, ‘in’ and
‘moving’, that capture the information that an aircraft is located in a particular region and

whether it is moving or not. The
ontology shown was developed
with the Protégé tool.

Now suppose that we extend
this ontology with the following
rules and facts:

- Definition of enemy: Any
aircraft that is located in a
restricted area is classified
as an enemy aircraft

- Definition of BlueForce:
Any aircraft that is located
in a *non* restricted area is
classified as a BlueForce
aircraft

- Fact_1: Aircraft_14 is in
restricted region 15

- Fact_2: Aircraft_15 is in
non-restricted region 2

 52

These rules are encoded in SWRL and are shown in the adjacent figure.

The benefits of Semantic Technologies is that, given the facts above and the rules in the
ontology, a reasoner can infer that Aircraft_14 is an enemy aircraft without any custom coding or
special purpose tools. As the rules of engagement change, new SWRL specifications can capture
these extensions. For example, it will be very easy to add a rule that an enemy aircraft needs to
be a moving object and rerun the reasoner to reclassify the aircrafts. More importantly, as we
integrate with other services this automated system can provide a more complete operational
picture and synchronize events with other commands and echelons. For example, if the objective
is to reduce the risk of fratricide, we can add a rule not to prosecute targets that are very close to
blue force units.

Although reasoners seem to provide great benefits, there come with severe limitations. Their
use requires different sets of skills than traditional software engineering. Coding in logic is a
completely different paradigm than procedural languages and testing and debugging is more
difficult. Moreover, the tools are not as mature yet as traditional engineering applications.

5.4.4 Web 2.0
Web 2.0, a phrase coined by O'Reilly Media in 2004,refers to a perceived second-

generation of Web based communities and hosted services — such as social networking sites,
wikis and folksonomies — that facilitate collaboration and sharing between users.

Web 2.0 technologies provide the following list of capabilities:

- Provides an adaptive semantic glue to form communities of interest. It supports "local
optimization“, that is the information is optimized for the interest of the particular group,
not the whole.

- Supports dynamic and accurate dissemination of information. By relying on user
generated tags, information and knowledge created on the web reaches the network of
the interested participants more dynamically and accurately than by relying on brittle
manually entered user profiles which often use irrelevant key word schemes and quickly
fall out of date.

- Enables Bottom-up collaboration and Information search. ‘Dynamic folksnonomies’
arise from the group tagging patterns and ‘Google mashups’ are web or desktop widgets
that marry up disparate data sources with disparate presentation layers. Main examples
of this on the web are GoogleEarth visualizations of nearby places of interest from sites
not originally designed for Google, but it could apply to other platforms like mobile
handhelds or i-phones.

- Finally, ‘popular social networking’ sites connect people across the net and as a result
their popularity has been growing rapidly. There are numerous articles in the popular
press about GPS- and wireless-based technologies for keeping track of exactly where
your friends are and what they've been doing at any given moment via brief text-blog
entries.

While it is the "young and the geeky" that are mainly driving this market, the intelligence
community has already adopted Web 2.0 technologies and the operators in the AOC centers
often use chat to collaborate. A more concerted effort from the part of the government to

 53

leverage these technologies has the potential to yield great results in systems integration, not so
much to automate the exchange of data, but rather to make data available in formats that can be
readily analyzed by the users.

5.5 STANDARDS
Central to the interoperability effort is the use of standards, both in terms of expressing the

data and also processes to enable applications to work with each other. There are several efforts
in both the industry and the government to define standards and achieve adoption from the
community. In this effort, we have evaluated two such efforts, the OMG suite of standards and
the eXtended Metadata Registry (XMDR).

5.5.1 Object Management Group (OMG) Standards
OMG’s CORBA specification established standards for component to component

interoperability in a network. However, this standard addresses only one level of granularity for
interoperability, and over the years OMG has extended their efforts to address different levels of
granularity for interoperability. OMG aims to build consensus in the form of standards for
interoperability over heterogeneous systems and networks using modeling as an enabling
technology to support the design implementation and maintenance of interoperable systems. The
foundation for modeling is OMG’s Universal Modeling Language (UML) standard. In the
following sections we will list a subset of OMG standards that are related to interoperability. The
goal of interoperability can be generalized to mean capturing structured information so that it
becomes possible to convey or transmit that information to a different entity, component or
toolset.

Many of these standards are ostensibly designed to meet business requirements, but have
obvious applicability to government. In many cases, the commercial and government sectors
have overlapping or competing standards. One such example is The Open Group Application
Framework (ToGAF) and the DoD Application Framework (DoDAF).

OMG’s Business Specifications

These include the following:

• Business Motivation Model (BMM)
• Business Process Maturity Model (BPMM)
• Business Process Modeling Notation (BPMN)
• Business Process Definition Metamodel (BPDM)
A Business Process (BP) is a defined sequence of steps to be executed in order to generate a

product or a service. Essentially everything a business does is part of a BP. Each BP can be
subject to Business Rules and can contain multiple Workflows. The goal of these OMG standards
is to enable Business process modeling. The BPMM is analogous to the Capability Maturity
Model Integrated (CMMI), except it is focused on business processes. Like CMMI a BPMM has
5 levels:

• Initial
• Managed
• Standardized

 54

• Predictable
• Innovating
Business process modeling can be used to guide business process improvement, to assess the

risks in developing and deploying enterprise applications, to evaluate the capabilities of
suppliers, and to compare against the competition. BPMN standardizes flowchart diagrams that
are done by business analysts and managers. It can be used by humans for analysis, or it can be
mapped to an executable language like Business Process Execution Language for Web Services
(BPEL4WS). It can also be used to communicate the structure of business processes internally,
or across businesses (B2B).

The Modeling Foundation

Models can represent with clarity and stability processes and applications in a technology
independent manner. The help maximize IT return on investment. OMG supports modeling with
the following standards (among others):

• MOF: Meta-Object facility
• UML: Unified Modeling Language
• XMI: XML Metadata Interchange
• CWM: Common Warehouse Metamodel
• QVT: Query View Transform
MOF is a self-describing facility that can be used to define modeling languages like UML.

XMI is XML based and can be used as a vendor and platform independent language for
exchanging both models and meta-models. CWM can be used for Data Warehousing integration
and includes record and table formats and specifications for data loading and transformations.
QVT is a specification for platform and vendor independent transformations of models.

Prior to MOF and UML 2.0 metadata about objects in the enterprise could be stored in a
Naming Service, a Trading Service or an Interface Repository. MOF and UML 2.0 include
infrastructure that can be used to define a metadata foundation for modeling.

MOF is a key element in OMG’s Model Driven Architecture (MDA) initiative because it can
be used to generate code from a model. QVT can be used to define automated transformations
that can enhance the utility of the models, and can support model evolution. MOF-based models
are technology agnostic. For example a UML data model can be transformed via a UML-to-
Relational transformation to a relational database schema. The same model can be transformed
via a UML-to-EJB transformation to an EJB Application. Transformations can be specified
across different heterogeneous technologies, for example: UML package corresponds to
Relational Schema and a Java jar file. A UML class corresponds to a Relational table and a Java
class. A UML attribute corresponds to a column of a table and a field of a Java class. The
canonical form of a transformation of a source model is to loop through the elements of the
model while traversing associations and applying transformations to each element reached
according to its type. Metadata forms the foundation for model transformations. By using MOF
to standardize the format of the metadata we enable transformation specification and application.

Common Warehouse Metamodel (CWM)

CWM addresses the integration problem across multiple databases, repositories and schemas.
Typically data integration requires manual schema transformations. CWM is aimed at integrating

 55

existing data models, can be mapped to existing database schemas, and can support automated
schema generation. It can be used to facilitate data mining and OLAP.

CWM consists of a set of metamodels consisting of the following:

• CWM foundation
• Relational
• Record data
• Multidimensional data
• XML data
• Transformations
• OLAP
• Data mining
• visualization
• Business terminology
• warehouse processes
• warehouse operations
CWM is about to be renamed. The new name is Information Management Metamodel

(IMM). MOF will be the metamodel for IMM and UML will provide profiles for Relational,
Entity-Relationship and XML data modeling.

5.5.2 eXtended MetaData Registry (XMDR) Project
This project is aimed at improving the standards and technology for representing the

semantics, terminologies and structures of heterogeneous data sources. This project includes a
live prototype implementation of a metadata registry and is also aimed at improving or refining
the technologies used to implement metadata registries. Another goal of the project is to propose
extensions to the ISO/IEC metadata registry standards for enhanced diversity of metadata types,
semantic specification and queries.

The project is spearheaded by a group at the Lawrence Berkeley National Laboratory. Its
institutional participants include the Department of Defense (DoD), Environmental Protection
Agency (EPA), Department of Energy (DOE), National Cancer Institute (NCI), US Geological
Survey (USGS), National Biological Information Infrastructure (NBII) and the Mayo Clinic.

XMDR Use Cases

The MDR can be used by a stand-alone application to manage a portion of the semantic
context, classification schemes or data types used by or produced by the application. In the case
of multiple interoperating systems the MDR can foster semantic consistency across multiple
applications. Data migration across two systems can be facilitated if both systems have registered
its metadata with the MDR. Likewise, Data Portals or Warehouses providing access to data from
multiple sources presented in a form that has well-defined semantics.

An important use case is support for Data Grid or Online Transaction Networks such as
travel reservation networks, securities trading, electronic banking etc. Data grids are also pursued
within various scientific communities.

Finally, the most challenging use case is support for a “universal” grid which is not limited to
a particular domain or scientific area and contains resources that can be dynamically discovered,

 56

navigated, queried and utilized both by humans and automated software agents and client
systems.

A different class of use cases includes repository administration and maintenance. Such
activities include registration of metadata, location and retrieval of metadata, revision and
extension (while preserving the integrity of the system as a whole), semantic normalization,
disambiguation and harmonization.

Additional use cases include mapping between metadata across different domains,
relationship maintenance between metadata, navigation, aggregation, resource discovery and
online help.

Project resources

A live prototype implementation of XMDR is available at http://xmdr.org. This includes
SPARQL query capability and Advanced Inference Search. Project software is available for
download. The implementation is also based on bare XML rather than RDF, XMI or SCL.

Architecture

The SOA for XMDR is implemented in a REST (Representational State Transfer see
http://rest.blueoxen.net/cgi-bin/wiki.pl?RestArchitecturalStyle) interface that will be later
wrapped in SOAP.

The XDMR team has selected an internal architecture for the project based on the so called
“fully modular approach” leveraging open source software such as Apache Web Server, Eclipse
IDE, and the Protégé Ontology Editor. Each component of XDMR is installed as a “plug-in” for
the framework, resulting in a flexible system that is highly reusable and portable.

Areas that the project is not planning to immediately address are: transaction management,
classification (in DL sense), and an integrated query language.

Modules (plug-ins) that are proposed for immediate implementation include: Registry Store
(persistence and versioning), Metadata Validator, Retrieval Index, Mapping Engine and
Authentication Service.

5.6 ROADMAP FOR INFORMATION SERVICES
Our investigation of Information Services technologies has revealed a number of areas in

which further progress can be made. In this section, we make a series of specific
recommendations for how to further research in these areas.

Recommendation #6: Embrace process modeling

The MDA initiative from OMG is based on the idea that “active” models such as MOF-based
UML diagrams or BPDM business process models are intrinsically more valuable than passive
models such as charts, viewgraphs or Visio diagrams. The purpose of this effort is to expand this
notion to not only work products, but also systems, processes and applications. We could
potentially capture AF operating procedures, such as the kill chain, into MOF-based models and
use the semantically rich capabilities of the OMG models to enable integration between the
various collaborating systems.

http://xmdr.org
http://rest.blueoxen.net/cgi-bin/wiki.pl?RestArchitecturalStyle

 57

Recommendation #7: Establish Semantic Technologies Challenge

There is a wide criticism within the technical and user community that the Semantic
Technologies have not solved any real problems yet. In this effort, we will identify a series of
hard operational problem and conduct competition of technologies to solve them. Some
problems or interest can include Close Air support, Time Critical Targeting, etc. This effort will
be similar to the DARPA Grand Challenge and the KDD challenge that the intelligence
community is conducting.

The focus of this effort will be to select the best technologies that can solve real operational
problems. It will provide a uniform standard for comparing technologies and it will facilitate the
selection of the best approaches.

 58

6 RELATED PROGRAMS
In addition to technologies, we also investigated programs related to Semantic Integration in

an effort to identify trends and best practices that could be leveraged by a future research effort
in this field. In particular, we explored the following programs: Metadata Extraction and Tagging
Services (METS), Joint Metadata Tagging Pathfinder, IC Service-Oriented Architecture,
BlackBook, TANGRAM, Net Enabled Command Capability (NECC), Future Combat System
(FCS) and the GIG.

We observed that the adoption of semantic technologies varies widely by the maturity of
these programs. At the lowest end of adoption are programs that have clear path to transition or
are ready to be fielded. These programs make wide use of middleware technologies, such as
ESB, CORBA, etc. and employ relational or XML technologies for expressing their data models.
In addition, we observed that in many of these programs there is a wide plethora of unstructured
reports that require processing therefore there is a high need for content tagging and cataloguing.

At the next level up are the Emerging Systems that are coming out of ACTDs, DISA, the
Services, etc. These programs have evolved beyond traditional middleware technologies and
have embraced Web Services. In fact, there is a mandate by the main sponsors (i.e. DISA, ONR,
ARL, etc) for all new services to be net-centric and be implemented as Web-Services. The
interoperability in these programs is addressed from the grounds up, mainly through three
approaches: (a) mandate a common schema (FCS); (b) use upper ontologies that capture the
common terms of all the external systems (NIEM, CBRNE, etc); and (c) develop peer to peer
mediators that convert the data to the different specifications.

Finally, at the top of the adoption curve are the Research Efforts, coming out of DARPA,
AFRL, DTO, etc, that have embraced Semantic Technologies, such as developing expressive
ontologies written in OWL, using machine learning to make inferences and mediate data
between different specifications, enrich data requests with context relevant information, etc. In
addition to data interoperability, these programs explore the use of planning and composition
technologies to build dynamic and adapting workflows of services that emerge and evolve
depending on the user request and the needs of the particular mission. Finally, they employ Web
2.0 types of technologies for tagging content, facilitating collaboration among users and
promoting social networking.

6.1 METADATA EXTRACTION AND TAGGING SERVICES (METS)
METS is an ontology-based tagging service for documents. The METS services extract

metadata information from textual documents, stores the meta-data into RDF and XML
representations, and makes this information available to downstream applications for intelligence
analysis. The emphasis of the METS program is on generation of large volumes of semantic
information, which will drive the development of more sophisticated search and analysis tools
using that information.

METS is focused on extracting and disseminating meta-data information from text document.
The architecture consists of a Database server tier that stores the metadata in XML and RDF, the
Extraction Tier Server that performs the data cleansing, normalization and relationships
extraction, and the Client Tier Server that exposes the application of METS as Web enabled

 59

services. The database server uses Tamino for the storage of the metadata, the extraction server
utilizes, NetKernel, AeroText, Attensity, Mohomine, ContentMaster, Name Hunter, Name Parser
and Name Classifier, for entity extraction, and the client server is deployed on BEW WebLogic.

METS addresses the interoperability problem by using an upper ontology to represent the
meta-data information and by storing the extracted meta-data into an RDF repository that enables
schema evolution and allows client applications to perform further reasoning and inferencing
with the information.

6.2 JOINT METADATA TAGGING PATHFINDER [1], [2]
Another program related to metadata extraction is the Joint Metadata tagging Pathfinder, a

Joint effort by the Air Force, Army, Navy, Marines and JFCOM. The main hypothesis of the
Pathfinder program is that manual creation of meta-data is inaccurate and costly. According to
statistics developed by the A4 cell of the AF to understand magnitude of cost and effort to create
the DDMS tags to populate a Metadata Repository, the effort is quantified as follows:

- There are currently 139 high-profile A4 systems that provide reports

- Each system generates about 150 reports on average

- Labor hour to enter 1 document into the metadata registry is 6 hours. This estimate is
based on real-life exercise.

- The hourly labor hour rate is $83.

Total estimated cost that would be incurred by the A4/7 cell for populating the MDR with all
system reports is $10.4M

The objective of the Pathfinder program is to demonstrate that COTS search engines have the
basic ability to automatically identify the content discovery keywords as required by the DoD
Discovery Metadata Specification (DDMS).

The Pathfinder program ran experiments with three tools, Autonomy, Convera and FAST and
compared the recall performance of the extracts meta-data across four input sources: IL,
JC3IEDM, FM and Air Ops. The performance results were mixed. The maximum recall achieved
was 93.6% and the lowest one 8.9%. Our source document didn’t identify the combination of
vendor/data source that yielded these results.

A secondary learning from this program is that instead of attempting to align individual data
sources, a better approach will be to align the shared-vocabulary, or upper ontologies, of the
various COIs. PathFinder introduces the concept Metadata Environment which is an architecture
to achieve integration between COIs. Each MDE Each MDE consists of three registries: (a)
structural registry that holds the format and semantics of the data; (b) service registry that
describes/advertises services; and (c) metadata catalog that contains descriptive information to
enable the discovery of the data.

6.3 INTELLIGENCE COMMUNITY SERVICES ORIENTED ARCHITECTURE
(ICSOA) [3]

ICSOA is an integration framework for the Intelligence Community that enables the sharing
of data and the interoperability of applications in support of the business needs and the mission

 60

of the IC. ICSOA consists of a set of core services to process and disseminate data (similar to the
NCES model), is augmented by a governance process for adherence to the specifications of the
framework, and is specifically focused on the ‘need-to-share’ paradigm set forth by the National
Intelligence Strategy.

The focus areas of the IC SOA include:

1. IC Data Services – An IC data access platform that enables distributed discovery, access,
and consumption of data of relevance across organizational, agency, intelligence
discipline, and Community of Interest (COI) lines, regardless of physical location, data
type, and/or technical implementation.

2. The definition and development of key service-oriented infrastructure services to enable
IC-wide consumer-provider interactions. These service capabilities include Security,
Service Discovery, Mediation, Messaging, Management, and Governance.

3. Governance – Define and develop the necessary Architecture Management Board
(AMB)-supporting governance constructs to support the AMB to enable IC SOA
implementation

4. Assessment, Validation, and Refinement – The IC SOA emphasizes continuous
improvement and refinement of architecture specifications through assessment,
validation, feedback, and alignment activities. This includes the creation of an
environment for interoperability testing using the IC SOA Infrastructure Services and
Specifications to:

• Leverage and validate IC SOA Reference Architectures and specifications for
interoperability and data exchange across the IC in order to provide IC SOA
implementation policy.

• Accelerate the adoption and deployment of the IC SOA implementation policy (in
existing and new programs).

• Ensure the architecture can be supported by multiple vendors (COTS-centric).
• Encourage the widest participation of programs and industry base (integrators).

ManagementGovernanceMediation

Service DiscoveryMessagingSecurity

ManagementGovernanceMediation

Service DiscoveryMessagingSecurity

ManagementGovernanceMediation ManagementGovernanceGovernanceMediation

Service DiscoveryMessagingSecurity Service DiscoveryMessagingSecurity

• How do I discover
services to use?
• How do I advertise my
service to be used by
others?

• How do I guarantee my
message is received?
• How do I send messages
asynchronously?

• How do I protect
access to my service?
• How do I make my
security requirements
known?

• How do I obtain data
from various data
sources in a format that I
can easily view and
understand? • How do I ensure interoperability

amongst services?
• How do I ensure that services
are discoverable and able to be
consumed?

• How do I manage SLAs for my
service?
• How do I monitor the use of my
service?
• How do I report QoS metrics
for my service?

• How do I discover
services to use?
• How do I advertise my
service to be used by
others?

• How do I guarantee my
message is received?
• How do I send messages
asynchronously?

• How do I protect
access to my service?
• How do I make my
security requirements
known?

• How do I obtain data
from various data
sources in a format that I
can easily view and
understand? • How do I ensure interoperability

amongst services?
• How do I ensure that services
are discoverable and able to be
consumed?

• How do I manage SLAs for my
service?
• How do I monitor the use of my
service?
• How do I report QoS metrics
for my service?

Figure 22: ICSOA Core set of services

 61

The ICSOA consists of 6 core services, as shown in the above figure. Each service addresses
specific requirements, as set forth by the ICSOA architecture team, and is implemented via a
combination of COTS, GOTS and customer tools.

To develop this infrastructure, the ICSOA program identified a number of potential vendor
products to be used for the Reference Implementation and established evaluation criteria to ranks
these products. In addition, the team developed a series of pilot case studies that will be used to
validate the Reference Architecture and the efficacy of the chosen products to satisfy the needs
of the IC for data exchange across the community. So far the team has achieved basic integration
of searchable data services via COTS tools, and has integrate over 15 data sources on the RDEC
network through a combination of COTS and government related programs.

6.4 BLACKBOOK
Blackbook is a research program from the intelligence community to retrieve targeted

information from multiple, heterogeneous data sources. The technical approach of Blackbook is
based on the concept of the ‘data dip’: dip an object of interest in various sources and collect the
relevant information only. The actual implementation of the ‘data dip’ is done via procedurally
defined mediators cognizant of the schema and semantics of each external source that translate
the data from the source schema to the specification of the search object.

Central to the Blackbook system is a data model that is domain and ontology neutral. The
model is simple and consists of a few core entities, such as Nodes, Attributes, Entities,
Associations, etc. Domain specific models are expressed in terms of these few primitive
structures. This modeling approach is very similar to graph based models that are applicable for
Intelligence related applications. Data that have been retrieved from the external sources and
expressed in the BB model can be processed by BB client applications. BB provides an object-
oriented approach for external developers to define BB compliant apps. Apps are graph based
and their signature model is very simple:

Public BBGraph (BBGraph input){
// do work
Return BBGraph
}

The vision behind Blackbook is to provide knowledge collaboration between individual
analysts, COIs or even whole departments and agencies, operate over many massive databases,
be fully distributed, support data normalization for fast access, support policy filters for need-to-
know access, deploy in operational environment and also serve as a venue for further research in
the area of data integration. The next version of BB (v 2.1) will use RDF, though in a somewhat
restrictive manner, as a central storage representation

6.5 NET ENABLED COMMAND AND CONTROL (NECC) [4]
NECC is a major effort by DISA to establish a common joint standard for a GIG Computing

Node (GCN) physical architecture. The standard is based on the use of VMWare as a virtual
environment to establish a common computing platform across different hardware servers and
software operating systems. Applications that are certified to run on this common platform can
be deployed easily on the various nodes of the NECC framework depending on the availability
of the resources and the needs of the mission. This approach has several benefits: (a) because of

 62

the commonality of the computing platform, applications for the NECC Grid Computing Node
(GCN) are easier to deploy and operate, thus resulting in significant cost savings; (b) the
footprint of NECC compliant systems are smaller than fully deployable applications, thus
eliminating the need of large hardware systems and allowing applications to run on resource-
constraint server rooms (i.e. Navy ships); (c) because of the well-specified computing
configuration and the disciplined governance of building the infrastructure, software is more
readily provisioned thus resulting in new capabilities delivered in more rapid pace; and (d)
software is more easily accredited, since the accreditation on a single VM platform makes the
software valid across all GCNs.

Local GCNs (at Operational Sites)

Enterprise GCNs
Service any user across
the enterprise. Maintains
state across the enterprise
to support COOP

Local GCNs
Services local users at a
local site. Provides onsite
services when in DIL mode

Enterprise GCNs (at DECCs)

Site selects, provisions, and
manages HW, so long as it
implements GCN standard

GCN Virtual Machine allows
CMs/Apps to run in their own
environment

CMs/Apps select a Guest OS
to form a Package that runs
in a GCN Virtual Machine

GIG Computing Node
Network

Common Joint GCN Architecture

Figure 23: NECC specifies a common computing platform for the Grid Computing Nodes

As Figure 23 shows, the NECC specification supports two types of nodes: Enterprise GCNs
that service users across the whole enterprise, and Local GCNs, that service users that are local
to a specific site. Both Enterprise CCNs and Local GCNs operate on top of the same virtual
computing environment, thus making them interchangeable in terms of where to deploy, and
ensuring transparency of access from the client applications.

In addition to defining a common computing platform, NECC will also deliver a set of core
services and a specification for third-party developed services. The core NECC services consist
of (a) Core Enterprise Services that includes Security, Data Discovery, M2M messaging
(preferably Enterprise Service Bus), collaboration (provided by NCES); (b) Redirection Services
that allows a service request to automatically redirected to a physical service access point (utilize
a COTS solution); (c) Geospatial Rendering services supporting many different formats and
processing capabilities for geospatial data; and (d) Analysis and Reporting services such as
tables, charts, etc.

The third-party services fall into three major categories: (a) presentation services for
visualization and UI capabilities (for example, web based mapping in the Global UDOP apps; (b)
synchronous data access, for query-able and discoverable data capabilities (for example, unit
readiness report lookup in the Force Readiness app); and (c) asynchronous data provision service
that sends data updates to subscribers (for example, publishing track updates in the Joint Track
Data apps.

 63

NECC is in the first of many increment spirals. Increment #1 has identified a set of data
sources to integrate and processing applications to use and is scheduled for completion in August
07. The evaluation of increment #1 will be conducted on a testbed consisting of 6 computing
nodes operating over the SIRPNET.

6.6 THE EXPANDING GLOBAL INFORMATION GRID (GIG)
 Over the last decade, the United States Department of Defense and Armed Services have

committed to the establishment of a networked force to fully leverage the power of information
as a combat multiplier. The manifestation of this effort has come to be called the Global
Information Grid, or GIG. Joint Pub 6-0 defines the GIG as the “globally interconnected, end-to-
end set of information capabilities, associated processes and personnel for acquiring, processing,
storing, transporting, controlling, and presenting information on demand to joint forces and
support personnel.” The enabling technologies which constitute the GIG provide for the Joint
services to operate in a more integrated manner with each other as well as with the broader
communities of interest within and external to the US Government.

 The challenge facing the Air Force is to identify, define, and develop the information
management services which will enable its Air Operations Centers, Air Wings, and Bases to
operate effectively within the larger GIG, and more importantly, take advantage of the ever
increasing amount of information available on the GIG.

 Before presenting the challenge facing the Air Force, it is important to further describe
the GIG in order to identify which elements require investment to resolve challenges with respect
to Air Force Battle Management Systems. The GIG consists of seven components: Warrior,
Global Applications, Computing, Communications, Foundation, Information Management, and
Network Operations. Figure 24 demonstrates and describes the relationship of each of these
components to one another.

 64

Figure 24: GIG Components (Reference JP 6-0)

 As can be seen Figure 24, these are two components that serve to integrate the other five
components. These are Network Operations and Information Management. The Network
Operations Component provides the mechanisms to manage the GIG, while the Information
Management Component provides the Information Distribution and Transformation Services
required to deliver the correct information to the correct warfighter when required. Figure 25
further describes the services which comprise the Information Management Component.

 65

Figure 25: Information Management Component (Reference JP 6-0)

 The Information Management Component handles information discovery, sharing,
mediation, and delivery to the appropriate warfighter in a manner which facilitates situational
awareness and decision making. The challenge here is having Information Management
technologies keep pace with ever growing global communications, data storage sources,
transmission speeds, and information availability. To date, no common data standard exists for
finding, accessing, and storing information or for specifying the semantics associated with the
data. Producers create, publish, and store information in a format consistent with their known
consumers; however, the GIG environment provides for the reduction of these traditional
stovepipes such that information can be used by anyone who may require it. Yet, the
inconsistencies in this format create a challenge for the “non-traditional” consumer.
Additionally, the consumer is challenged by the fact that information systems today are
incapable of understanding the context of the analytical task the information is required for,
which limits the communicative efficiencies of human-machine interaction.

 While the GIG requirements do require the establishment of standards for sharing data,
the current standards still have shortcomings; and it is unlikely that previously published
information or non-GIG managed information sources will migrate to these standards. This
suggests a need for technological investment in technologies to assist in the discovery,
mediation, and transformation of the information provided by these sources.

6.7 U.S. ARMY FUTURE COMBAT SYSTEMS NETWORK
 The Army’s Future Combat Systems (FCS) program is delivering a System-of-Systems

consisting of soldier equipment and 14 platforms all connected via the network (commonly
referred to as 14 + 1 + 1). As shown in the figure below, the FCS Brigade Combat Team nests

 66

its network inside the Army’s LANDWARNET, which is the Army component of the Global
Information Grid (GIG).

Figure 26: FCS BCT as part of the GIG

 The FCS Brigade is the ground force component of the GIG where the primary transport
layer is provided by the Joint Tactical Radio System (JTRS) and WIN-T. The FCS program is
developing a System-of-Systems Common Operating Environment (commonly called SoSCOE)
to serve as the Information Services and Interoperability Layer. In the tactical environment,
SoSCOE is expected to provide service discovery of available sensors and effectors to respond to
battlefield events.

 SoSCOE delivers Net-Centric capabilities through 16 service families which are grouped
into 4 Integration Groups: Tactical Integration, Platform Integration, Battle Command
Integration, and Enterprise/GIG Integration.

 67

Figure 27: SoSCOE Services and Integration Groups

 Tactical Integration delivers interoperability within the FCS Brigade Combat Team
elements to include management of network quality of service in a limited bandwidth
environment. Battle Command Integration provides a framework for Battle Command
Applications. Platform Integration provides basic services common on all platforms. Finally,
Enterprise/GIG Integration provides access out to other service providers such as the Net Centric
Enterprise Services (NCES).

 68

7 TECHNICAL PROGRAM SUMMARY
The ultimate goal of this trade study is to provide a roadmap with recommendations for SI

research and development in future years to help overcome critical limitations in current SI
capabilities. This section summarizes our accomplishments in performing the trade study and
defining the roadmap.

In our trade study of semantic mediation technologies, we have

1. Developed an overarching challenge problem scenario that demonstrates the need for SI
technologies. The challenge problem scenario also illustrates how candidate SI
technologies might be applied to improve Air Force net-centric operations.

2. Investigated current and emerging technologies that address semantic alignment,
including information representation and mediation (information transformation). We
have looked at technologies applicable to a wide vertical spectrum of information
richness, from database schema matching to ontology mediation.

3. Investigated emerging technology solutions and open standards and architectures for
semantic information services spanning the four abstraction layers of database, object,
syntactic, and semantic-level services. Our investigation focused in particular on
solutions that are compatible with DISA’s Core Enterprise Services Strategy for the
GIG.1

4. Evaluated the SI alignment technologies and information services identified in the two
previous tasks, based on an objective set of criteria, including general strengths and
weaknesses, comparison of published results, maturity (i.e. Technical Readiness Level),
automation support, scalability, and compatibility and applicability to the GIG.

5. Finally, we specified a roadmap for future SI research and development that identifies
areas where current technologies and services fall short of AF and GIG interoperability
requirements and suggest specific technical foci for future research to fill these gaps. In
particular we proposed the following 7 research efforts

i. Develop a Formal Theory of Matching

ii. Perform rigorous evaluations of semantic alignment technologies

iii. Exploit rich information for alignment

iv. Place emphasis on user-assisted semantic alignment, not on complete
automation

v. Develop an explanation capability for matchers

vi. Embrace process modeling

vii. Establish Semantic Technologies Challenge

1 http://www.defenselink.mil/nii/org/cio/doc/GIG_ES_Core_Enterprise_Services_Strategy_V1-1a.pdf

http://www.defenselink.mil/nii/org/cio/doc/GIG_ES_Core_Enterprise_Services_Strategy_V1-1a.pdf

 69

8 APPENDIX A: EVALUATION CRITERIA

Tool: COMA++
Developer: University of Leipzig
Function: Find a mapping between a source ontology or schema and a target ontology or
schema.
Features: COMA++ is a composite matcher that provides flexible rules for combining the
outputs of multiple schema matchers. It works with relational database schemas, XML
schemas, and OWL ontologies. It allows for user input into matching and can make use of past
matches.
Evaluation:
• General strengths and weaknesses: COMA++ is state of the art for schema matchers,

as contrasted with more recent ontology matchers. It permits great flexibility in the way
matching is done and has a large number of built-in matching algorithms. It shares a
common drawback with other schema matchers, namely that it does not make use of
context information in matching (information about the domain or use of a data source or
schema). It does not provide any estimate of the degree of confidence in a match. The
similarity values it outputs for paired items are hard to interpret.

• Published performance results: COMA++ achieved high recall and precision scores on
the test cases for the 2006 Ontology Matching Initiative. It was not the highest scoring
matcher, however. It should be kept in mind that COMA++ was originally designed as a
schema matcher, not an ontology matcher.

• Maturity: High. COMA++ is the result of many years of research on schema matching
and incorporates techniques from previous well-known schema matchers.

• Degree of automation support: COMA++ is fully automated but allows for user input.
• Scalability: COMA++ does not scale to very large datasets. Large datasets must be

manually partitioned in order for COMA++ to process them.
• Compatibility and applicability to the GIG specification and reference

implementations: COMA++ was not designed with reference to the GIG; however, it is
written in pure JAVA and should be portable to a GIG environment.

Tool: Automatch
Developer: George Mason University
Function: Find a mapping between a relational source schema and a relational target schema.
Features: Automatch is a single algorithm matcher that that uses naive Bayes learning on
instance data to evaluate similarity of schema elements. Schema information is not used.
Evaluation:
• General strengths and weaknesses: Automatch’s strength is a principled probabilistic

foundation for part of the matching process. However, this is combined with some ad
hoc procedures for computing an optimal match.

• Published performance results: Published results are for very small schemas. Precision
and recall are in the low 80% range.

• Maturity: Questionable. Cannot discover recent work on Automatch. May not be
maintained.

• Degree of automation support: Fully automated. No user input.

 70

• Scalability: In doubt. There is no data on Automatch’s performance on large datasets.
• Compatibility and applicability to the GIG specification and reference

implementations: No information.

Tool: LSD/GLUE
Developer: University of Washington
Function: Find a mapping between a source schema and target schema.
Features: LSD matches new data sources to a previously determined global schema; GLUE
extends LSD by matching between arbitrary data sources. Both are composite matchers.
Individual matchers use a machine learning approach and their results are combined. LSD and
GLUE learn from previous matches and can accept user input.
Evaluation:
• General strengths and weaknesses: Good performance on real datasets. One

disadvantage is that learning requires manual creation of matches.
• Published performance results: Precision and recall are around 80% for real world

data. GLUE achieved high accuracy on very large datasets.
• Maturity: Good. Continuing development of capabilities.
• Degree of automation support: Fully automated. User input accepted
• Scalability: Scales to large datasets.
• Compatibility and applicability to the GIG specification and reference

implementations: No information.

Tool: iMAP
Developer: University of Washington and University of Illinois
Function: Find a mapping between a source schema and target schema.
Features: For each source schema element, iMAP search the space of all matches, returns a
set of candidate matches, and uses LSD to evaluate them. iMAP can return complex matches,
where a term in one schema may map to a combination of terms in the other schema. (E.g.
“address” might map to a combination of “city” and “zip code.”
Evaluation:
• General strengths and weaknesses: Has achieved high accuracy (92%) in real world

domains with up to 40 elements. A drawback is that it requires fairly active human in the
loop interaction

• Published performance results: 43% to 93% accuracy for real world data. High
accuracy requires human intervention.

• Maturity: Good. Continuing development of capabilities.
• Degree of automation support: High accuracy achieved only with human intervention.
• Scalability: No data on large datasets, but scalability is in doubt because of the size of

the search space.
• Compatibility and applicability to the GIG specification and reference

implementations: No information.

Tool: Falcon
Developer: Southeast University, Nanjing, China

 71

Function: Find a mapping between two ontologies.
Features: It combines the output of a linguistic similarity matcher and a structural matcher
and uses rules to determine how much weight to give to each matcher for a given match
problem.
Evaluation:
• General strengths and weaknesses: Does very well when structural similarity between

the two ontologies is high, even when linguistic similarity is low; does not perform so
well when structural similarity is low.

• Published performance results: Had best average performance in 2005 Ontology
Evaluation Initiative.

• Maturity: Was developed fairly recently but builds on well-known technologies.
• Degree of automation support: Fully automated; no user input.
• Scalability: Has gotten high precision and recall on test sets with up to 10k classes and

several dozen relationships.
• Compatibility and applicability to the GIG specification and reference

implementations: No information.

 72

9 REFERENCES

[1] ‘Joint Metadata Tagging Pathfinder’, Presentation to DON CIO, Sep 11, 06

[2] ‘USAF Data Strategy: A Federated Approach to Net Centricity’, Air Force/Army/Navy/
Marines/JFCOM Team, 11 September 06

[3] ‘IC Service-Oriented Architecture’, Overview Presentation to the Director of the National
Intelligence Office of the CIO, December 2006

[4] ‘NECC Technical Review to the C2 PEO’, Mark Kuzma, 16 Feb 2007

[5] ‘Data Interoperability across the Enterprise – Why Current Technology Can’t Achieve it’,
http://209.85.165.104/search?q=cache:zfYAkTcnl2MJ:colab.cim3.net/forum/cuo-wg/2007-
02/docGnfb8BKQyl.doc+%22current+technologies+provide+no+viable+solutions+for+shari
ng%22&hl=en&ct=clnk&cd=3&gl=us, paper was drafted and reviewed by members of the
Cross-Domain Semantic Interoperability (CDSI) Working Group,
http://www.visualknowledge.com/wiki/CDSI, and its parent organization, Semantic
Interoperability Community of Practice (SICoP), http://colab.cim3.net/cgi-bin/wiki.pl?SICoP
. Editor: James Schoening, U.S. Army, james.schoening@us.army.mil

[6] Pioch, N., Barlos, F., Fournelle, C., Stephenson, T., “A Link and Group Analysis Toolkit for
Intelligence Analysis”, Proc. 2005 International Conference on Intelligence Analysis,
McLean, VA, May 2005.

[7] Rosenthal, A. and Seligman L., “Scalability Issues to Data Integration.” AFCEA Federated
Database Colloquium, San Diego, 2001.

[8] Noy, N, Doan, A., and Halevy, A. Y., “Semantic Integration,” AI Magazine, Spring 2005, pp.
7-9.

[9] Hunter, D. and Bostwick, D., “Default Reasoning with Contexts.” Contexts and Ontologies:
Theory, Practice and Applications: Papers from the AAAI Workshop. Technical Report WS-
05-01, AAAI Press, Menlo Park, California, 2005

[10] The OWL Services Coalition, “OWL-S: Semantic Markup for Web Services.”
http://www.daml.org/services/owl-s/1.0/owl-s.pdf

[11] McIllraith, S. and Son, T, “Adapting Golog for Composition of Semantic Web Services.”
Proceedings of the Eight International Conference on Knowledge Representation and
Reasoning, Toulouse, France, 2002.

[12] Wu, D., Parsia, B., Sirin, E., Hendler, J., and Nau, D., “Automating DAML-S web services
composition using SHOP2.” In Proceedings of 2nd International Semantic Web Conference
(ISWC2003), Sanibel Island, Florida, October 2003.

http://209.85.165.104/search?q=cache:zfYAkTcnl2MJ:colab.cim3.net/forum/cuo-wg/2007-02/docGnfb8BKQyl.doc+%22current+technologies+provide+no+viab
http://209.85.165.104/search?q=cache:zfYAkTcnl2MJ:colab.cim3.net/forum/cuo-wg/2007-02/docGnfb8BKQyl.doc+%22current+technologies+provide+no+viab
http://www.visualknowledge.com/wiki/CDSI
http://colab.cim3.net/cgi-bin/wiki.pl?SICoP
mailto:schoening@us.army.mil
http://www.daml.org/services/owl-s/1.0/owl-s.pdf

 73

[13] Doan AnHai, Halevy Alon, “Semantic-Integration: Research in the Database Community”,
American Association for Artificial Intelligence, Spring 2003.

[14] Su, Xiaomeng, Hakkarainen, Sari and Brasethvik, Terje, “Semantic Enrichment for
Improving Systems Interoperability.” In Proceedings of the 2004 ACM Symposium on
Applied Computing, March 14-17, 2004, Nicosia, Cyprus.

[15] W3C. Web Services Architecture. http://www.w3.org/TR/ws-arch/

[16] Scott Renner, Arnon Rosenthal, James Scarano, “Data Interoperability: Standardization or
Mediation,” The Mitre Corporation.

[17] Michalowski, Michael, Thakkar, Snehal, and Knoblock, Craig, “Automatically Utilizing
Secondary Sources to Align Information Across Sources.” In AI Magazine, Spring 2005, pp.
33-44.

[18] Defense Strategic Integrated Decision Environment,
http://www.les.disa.mil/c/extranet/home?e_l_id=50

[19] JMS Performance Comparison: Performance for Publish Subscribe Messaging 10/29/2004,
Krissoft Solutions for ITtoolbox EAI http://research.ittoolbox.com/white-papers/

[20] Do, Hong-Hai; Melnik, Sergey; Rahm, Erhard. “Comparison of Schema Matching
Evaluations” Proc. GI-Workshop "Web and Databases", Erfurt, Oct. 2002.

[21] Euzenat, Jerome, Stuckenschmidt, Heiner, and Yatskevich, Mikalai. “Introduction to the
Ontology Alignment Evaluation 2005.” In K-CAP ’05, Integrating Ontologies Workshop,
October 2, 2005, Banff, Alberta, Canada.

[22] Do, Hong-Hai and Rahm, Erhard. “COMA – A System for Flexible Combination of
Schema Matching Approaches.” In Proceedings of the 28th VLDB Conference, Hong Kong,
China, 2002.

[23] Doan, AnHai. “Learning to Map between Structured Representations of Data.” Ph.D.
thesis, Computer Science & Engineering Department, University of Washington, 2002.

[24] Cyc, http://www.cyc.com/.

[25] Haarslev, Möller, Ralf, Wessel, Michael. “Description Logic Inference Technology:
Lessons Learned in the Trenches.” Available at http://www.sts.tu-
harburg.de/~r.f.moeller/racer/dl-2005-racer.pdf.

[26] Srin, Evrin; Parsia, Bijan; Grau, Bernardo; Kalyanpur, Aditya; and Yarden, Katz. “Pellet:
A Practical OWL-DL Reasoner.” Available at
http://www.mindswap.org/papers/PelletJWS.pdf.

http://www.w3.org/TR/ws-arch
http://www.les.disa.mil/c/extranet/home?e_l_id=50
http://research.ittoolbox.com/white-papers
http://www.cyc.com
http://www.sts.tu-harburg.de/~r.f.moeller/racer/dl-2005-racer.pdf
http://www.sts.tu-harburg.de/~r.f.moeller/racer/dl-2005-racer.pdf
http://www.sts.tu-harburg.de/~r.f.moeller/racer/dl-2005-racer.pdf
http://www.mindswap.org/papers/PelletJWS.pdf

 74

10 ABOUT THE AUTHORS

Fotis Barlos
Dr. Barlos has 15+ year experience in software development, program management and

technology research in the areas of decision support tools, knowledge inference, planning, effects
based operations, automated computing, parallel processing and data warehouses. He has
managed multi-million dollar programs for both Defense and Commercial systems. Dr. Barlos
has a Ph.D. in Computer Science from George Mason University and had published several
papers in Data Processing, System Architectures and Performance Analysis. Prior to joining
AIT, Dr. Barlos held senior technical positions at Epsilon Data Management and Vignette
Corporation, where he led the technical track, and provided project management for several
multi-year engagements for large financial, e-commerce, and health-care systems.

Dan Hunter
Dr. Hunter has extensive experience in the areas of ontological engineering, design of

representation languages, and translation between different languages. At BAE-AIT (formerly
ALPHATECH, Inc.) since June 2001, Dr. Hunter has led ontology development efforts in the
areas of terrorist threat detection and detection of complex events in videos. On the VACE
program, he was a member of a working tasked to develop a language and upper ontology for
describing video events. He has implemented translators between a variety of representation
formats, including a translator from DAML+OIL into AKS. As an ontologicial engineer at
Cycorp, Dr. Hunter was responsible for the development of ontologies in multiple military
domains, including command structure and representation of urban warfare. While at Cycorp, he
implemented an interface between the University of Maryland’s SHOP planner and the Cyc
knowledge-base.

Basil Krikeles
Dr. Basil C. Krikeles is Chief Architect for the Intelligent Systems Division at BAE Systems,

Advanced Information Technologies. He holds a B.A. in mathematics from Princeton University
and M.S. and Ph.D. degrees in mathematics from Yale University. His professional interests
include large-scale software development, software producibility, distributed computing, object-
oriented programming, generative programming, model-driven software development, and
numeric/scientific computing.

James McDonough
Prior to joining BAE Systems AIT, Mr. McDonough served as a Captain in the U.S. Army

form 1997 to 2004. From 2003 to 2004, Mr. McDonough served as the 4th Infantry Division’s
Fires and Effects Cell Liaison Officer to Combined Joint Task Force-7 (CJTF-7) during
Operation Iraqi Freedom. Mr. McDonough’s primary duty was to coordinate, plan, and
synchronize 4th Infantry Division’s lethal and non-lethal effects targeting activities with adjacent
and higher headquarters. This included participation in the Joint Targeting Cycle and submission
of Air Support Requests for his division. Since joining BAE Systems AIT, Mr. McDonough has
provided Subject Matter Expertise and Systems Engineering in the development of the Planning
and Preparation Services for the Army’s Future Combat Systems Program.

