
AFRL-SN-WP-TR-2007-1124 
 
 
 

APERTURE AND RECEIVER 
TECHNOLOGY 
Delivery Order 0002: Bandwidth Invariant 
Spatial Processing 
Volume 1 - Computational Requirement Analysis 
of Wide-band Direction of Arrival (DOA) Algorithms 
 
Mohsin M. Jamali 
 

The University of Toledo 
Department of Electrical Engineering and Computer Science 
Toledo, OH  43606 
 
 

MAY 2007 
 

Final Report for 21 December 2005 – 31 May 2007 
 
 
 

 
Approved for public release; distribution is limited. 

 

 
STINFO COPY 

 
 
 
 
 
 
 
 

SENSORS DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AFB, OH 45433-7320                                    



NOTICE 
 
 
 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or permission 
to manufacture, use, or sell any patented invention that may relate to them.  
 
 
This report was cleared for public release by the Air Force Research Laboratory Wright Site 
(AFRL/WS) Public Affairs Office (PAO) and is releasable to the National Technical Information 
Service (NTIS). It will be available to the general public, including foreign nationals.  
 
 
 
THIS REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN 
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
*//signature//      //signature// 
______________________________________  ______________________________________ 
CHRISTOPHER R. REHM, Capt, USAF  JILL E. JOHNSON 
 
 
 
This report is published in the interest of scientific and technical information exchange and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings.  
 
*Disseminated copies will show “//signature//” stamped or typed above the signature blocks.  
 



i 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if 
it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 

May 2007 Final 12/21/2005 – 05/31/2007 
5a.  CONTRACT NUMBER 

 FA8650-05-D-1848-0002 
5b.  GRANT NUMBER 

4.  TITLE AND SUBTITLE 
APERTURE AND RECEIVER TECHNOLOGY 
Delivery Order 0002: Bandwidth Invariant Spatial Processing 
Volume 1 - Computational Requirement Analysis of Wide-band Direction of 
Arrival (DOA) Algorithms 

5c.  PROGRAM ELEMENT NUMBER 
62204F 

5d.  PROJECT NUMBER 

7622 
5e.  TASK NUMBER 

11 

6.  AUTHOR(S) 

Mohsin M. Jamali 
 

5f.  WORK UNIT NUMBER 

7622110L 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

 
8.  PERFORMING ORGANIZATION 

  REPORT NUMBER 

The University of Toledo 
Department of Electrical Engineering and Computer Science 
Toledo, OH  43606 

DSPH-10 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITORING AGENCY 
       ACRONYM(S) 

AFRL-SN-WP Sensors Directorate 
Air Force Research Laboratory  
Air Force Materiel Command 
Wright-Patterson AFB, OH 45433-7320 

  

11.  SPONSORING/MONITORING AGENCY 
REPORT NUMBER(S) 

       AFRL-SN-WP-TR-2007-1124 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited. 

13.  SUPPLEMENTARY NOTES 

Report contains color.  PAO Case Number: AFRL/WS-07-1443, 18 June 2007.  Report contains color. 
 

14.  ABSTRACT 
This work performed a review of wide-band DOA algorithms in the literature which was accumulated for more than 30 
years.  We have reviewed the most relevant ones with the goal of implementing them in hardware for real time 
applications.  We have discovered a class of computational requirements that would be required in all these algorithms.  
We have also given reviews and challenges.  We were able to cut through all the mathematics and convert algorithms into 
simple arithmetic operations.  This step is very useful in visualizing an architecture.  We have filled a gap between the 
design of computer hardware especially special purpose parallel architectures and available algorithms for various wide-
band DOA algorithms.  This work was the first step in sorting out which algorithm is appropriate for further study and for 
its hardware implementation for real time applications. 

15.  SUBJECT TERMS 
Wide-band, Direction of Arrival, Array Processing 

16.  SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

17. LIMITATION  
OF ABSTRACT: 

SAR 

18.  NUMBER 
OF PAGES 

    130 
 

         Capt. Christopher Rehm 
19b.  TELEPHONE NUMBER (Include Area Code) 

(937) 255-5579, ext. 3728 
 Standard Form 298 (Rev. 8-98)   

Prescribed by ANSI Std. Z39-18 

 



 iii 

Contents 

 

Acknowledgement         1 

Executive Summary         2 

1. Introduction          4 

1.1 Narrow-band Multiple Signal Classification algorithm    8 

1.2 Estimating number of sources:       10 

2. Review of Wide-band DOA Algorithms      12 

2.1 Coherent signal subspace method for wide-band sources   13 

2.2 Efficient Wide-band Source Localization Using BI Technique    14 

2.3 Multiple Broad-Band Source Location Using Steered Covariance Matrices 30 

2.4 Focused Wide-Band Array Processing by Spatial Re-sampling     38 

2.5 New Signal Subspace Direction Of Arrival Estimator for Wide-band Sources  42 

2. 6 A Method for Wide-band DOA Estimation Using FI  Beamformers   46 

2.7 Direction of Arrival Estimation and Beamforming for Smart Antennas   50 

2.8  Theory and Design of Broadband Sensor Arrays with FI  Beam Patterns   51 

2.9 FIR Filter Design for Frequency Invariant Beamformers    57 

2.10 Broadband DOA Estimation Using Frequency Invariant Beamforming  62 

2.11 Cyclostationarity Based Coherent Methods for Signal Source Location  65 

2.12 Fabrizio Sellone,”Robust Auto-Focusing Wide-band DOA Estimation  74 

3.0 Simulation          75 

3.1 DOA estimation for narrow-band sources     75 

3.2 DOA estimation for wide-band sources      77 

4  Analysis of Computational Requirements of Wide-band DOA Algorithms 84 

5 Hardware Implementation        94 

6 Conclusions           104 

7 References          106 

Appendix I          110 

Appendix II          118 



 1 

Acknowledgement 

 

I would like to thank the generous support of AFRL SN and MacAulay-Brown, Inc. 

Dayton for their financial support under contract Contract # FA 8650-05-D-1848/2. I 

would like to thank Mr. Nathan Wilkins and Captain Christopher Rehm for supporting 

and helping in this work. I would also like to extend my thanks Mr. Ken Hahn of 

MacAulay Brown to be there at every step in the course of this work and be anxious to 

help any time.  

 

I would like to thank and offer our sincere gratitude to all authors whose work has 

been reviewed in positive way and to extend their work to the next level of excellence 

and for the good of the country and mankind. Some of the language in Chapter 2 was 

borrowed from their original work as it was very difficult to re-write their excellent work 

in our own words. I have acknowledged their work by names and in references. I also 

apologize to authors whose work was not reviewed or referenced in this report. It was just 

impossible to put thirty years of excellent literature in one concise report and in finite 

time.  

 



 2 

Executive Summary 
 

This work performed a review of wide-band DOA algorithms in the literature 

which was accumulated for more than 30 years.    There are more than fifty  publications 

for wide-band detection of Direction of Arrival (DOA) algorithms which are available in 

the literature. We have reviewed the most relevant one and have not reviewed others 

which will not be applicable or suitable for hardware implementation. These algorithms 

were generally presented in a very complex or condense form, which are not easily 

understandable for people who are outside that narrow field. One of the reasons for their 

complex representation is due to their publication in IEEE transactions and conferences. 

These transactions generally prefer highly mathematical papers and sometimes authors 

insert mathematics so chances of their papers are increased. Another reason for condense 

reporting is that these papers face a page limit. Therefore algorithms need to be 

accommodated within those guidelines and also comply with the reviewers comments. 

One unfortunate thing happens in this process that essential information does not get into 

the papers and there is always missing information. This missing information is acute in 

our case as we are looking from hardware implementation point of view and we are 

ignoring details of statistical results and errors which are irrelevant in our case. We are 

willing to sacrifice small amount of error in order to accomplish the goal of implementing 

them in hardware for real time applications.  
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We have discovered a class of computational requirements that would be required 

in all these algorithms as was summarized. We have also given reviews and challenges. 

We were able to cut through all the mathematics and convert algorithms into simple 

arithmetic operations. This step is very useful in visualizing an architecture. We have 

filled a gap between the design of computer hardware especially special purpose parallel 

architectures and available algorithms for various wide-band DOA algorithms.  

This work was the first step in sorting out which algorithm is appropriate for 

further study and for its hardware implementation for real time applications. We have 

developed hardware as described in Chapter 5 and Volume 2 of this report. Work is in 

progress for implementation of identified computational steps in FPGAs.   

This work can be extended to develop re-configurable test-bed environment for 

investigative studies for various algorithm. The re-configurable test-bed would be useful 

to study timing, memory, hardware requirement and accuracy of results for various 

algorithms. This test-bed would be useful in evaluating different number of sensors and 

different kind of sensors. This test-bed would also be a technology scalable system and 

would become useful in deployment hardware. 
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Chapter 1 

 

Introduction 
 

Array processing has been an important part of signal processing in the past few 

decades [1-40]. The array consists of sensors located at different points in space with 

respect to a reference point. Direction of Arrival (DOA) denotes the direction from which 

the wave fields arrive at the sensor array. The goal in DOA detection and estimation is to 

accurately determine the number of sources producing waveforms and the locations of 

those sources.  The passive detection of objects has become important in the military 

applications as it evades detection by others. The estimation of Direction-Of-Arrival 

(DOA) from energy wavefield has many applications both inside and outside of the 

military use. Some civilian applications are in the areas of communications, air traffic 

control, seismology, sonar, and bioengineering. Generally passive detection approaches 

are computed intensive. Their hardware implementation could be cumbersome and hard 

to meet the real time computational requirements.   

With the growth in technology and increase in processing power, it is now 

possible to develop real time hardware for many applications.  There are three types of 

techniques generally available in the literature for detection of DOA [1-6]. They are 

Power Spectral (PSD), maximum likelihood, maximum entropy and signal subspace 

methods. PSD techniques are ineffective and maximum likelihood techniques are 

considered accurate, they are very computationally expensive and also yield non-linear 

equations. Maximum entropy methods introduce bias and are very sensitive to various 

parameters. Signal subspace techniques are accurate, give high resolution and reasonably 
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compute intensive. Subspace-based detection techniques that yield high resolution for 

estimating DOA through passive sensors have been popular and have become an 

intensive research area in array signal processing. These techniques utilize eigenstructure 

of the covariance matrix. The eigenvalues are then used to estimate the number of 

sources.  

This work considers that there are D sources in far field and wavefront is 

considered planar. There are M sensors arranged in a Uniform Linear Array. We also 

assume that number of sensors is greater than number of sources. The distance between 

two sensors is d. Signals under consideration could be narrow-band or wide-band. In the 

narrow-band case the carrier frequency is considered very large as compared to the 

bandwidth of the signal. If the carrier frequency is comparable to the bandwidth of the 

signal then the signal is considered as wide-band signal.  The propagation time from one 

sensor to another sensor is constant and is generally approximated by a pure phase delay 

in a narrow-band case. This approximation can not be made whenever there is a wide-

band signal.  The wavefront impinge on the sensor with azimuth angleθ . An ULA is 

shown in Figure 1. 

 
 

1 2 3 M 

d sin θ  

Figure 1: Uniform Linear Array of M sensors 
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We consider an array of M sensors and D point sources. Signals from these sources 

impinge on the array from directions 1 2, , , Dθ θ θK . The narrow-band signals can be 

represented as time shifted version of each other and are expressed as: 

 

1 1

2 2

( )

( )
( )

( )M M

x t

x t
Y t

x t

τ

τ

τ

− 
 − =
 
 

− 

M
 (1.1) 

 

Where τk is the time it takes the planar wavefront to travel from the source to the origin 

of the array through the mth sensor. The signal is generally considered as a complex 

signal and can be expressed as  

( ( ) )
( ) ( )k

j w t
y t x t e

ϕτ
τ

− − +
= −  (1.2) 

where ϕ is an arbitrary phase. 

This could then be expressed as  

1

2

( ) ( )

M

jw
e

jw
e

Y t x t

jw
e

τ

τ
τ

τ

−

−

−

 
 
 
 = −
 
 
 
 

M
 (1.3) 

The Mx1 vector in the above equation is generally referred as the steering vector. This 

steering vector includes the DOA parameter. The signal model can then be written as: 
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1

1

2
2

( )

( )
( ) ( )

( )M
M

jw
e n t

jw n te
Y t x t

n tjw
e

τ

τ
τ

τ

−

−

−

 
  
  
  = − +
  
  
  

 

MM
 (1.4) 

If there are D sources and M sensors then the sensor output model can be written as: 

( ) ( ) ( ) ( )
1

k k

D
Y t a x t n t

k
θ τ= − +∑

=
 (1.5) 

where xk(t), i=1,…,D are planar wavefronts  corresponding to each received source 

signal. n(t) is the noise which is considered as zero mean and white Gaussian, a(θ) is the 

steering vector  

 and 
sin

d
c

θ
τ =            (1.6) 

where d is the distance between two sensors and is considered as the half of the 

wavelength. 

Define 

( ) ( ) ( ) ( )1 2, ,
D

θ θ θ θ =  A a a aL        (1.7) 

( )
( ) ( )

( ) ( )

0 1

0

1
k

M k

jw

k

K

jw

M k

a e

a e

τ θ

τ θ

θ

θ

θ

−

−

 
 

=  
 
  

a M         (1.8) 

This equation is also commonly known as an array manifold. The output can be 

expressed in the matrix form as: 

( ) ( ) ( ) ( )Y t A X t N tθ= +  (1.9) 

where 

 Y(t), N(t) ∈ C 
M

, X(t) ∈ C 
D
 and A(θ) ∈ C 

 MxD
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Matrix A is called the direction matrix and each of the column vectors are the direction 

vectors of the sources. Assuming that the noise is independent of the signal with zero 

mean, the covariance matrix can be expressed as: 

( )( ) H

yy
E Y t Y t =  R          (1.10) 

If the output array vector ( )Y t  is observed over K subintervals of duration T∆  seconds 

each, the covariance matrix can be expressed as the snapshot averaged cross-product of 

( )
k

y t : 

( ) ( )
1

1 K
H

yy k k

k

y t y t
K =

= ∑R         (1.11) 

1.1 Narrow-band  Multiple Signal Classification algorithm: 

 

The Multiple Signal Classification (MUSIC) algorithm is a high resolution 

technique. It uses signal subspace approach and separates signal and noise subspaces. It 

finds the array manifold orthogonal to the noise space. Signal and noise subspaces are 

orthogonal to each other.   

This means that the eigenvectors associated with the M - D smallest eigenvalues are 

orthogonal to the direction vectors making up A . These observations form the basis of 

the MUSIC algorithm. We can estimate the direction of arrival by finding direction 

vectors which lie in the signal subspace. These vectors are the direction vectors that are 

orthogonal to the noise subspace. To search the noise subspace, we form a matrix 

containing the noise eigenvectors: 

[ ]1n D D+=V q qL          (1.12) 
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Since the direction vectors of the incoming signals are orthogonal to the noise subspace 

eigenvectors, we can say: 

( ) ( ) 0H H

n nθ θ =a V V a          (1.13) 

where  θ  is the direction of arrival of a signal component. 

The direction of arrival can then be estimated by finding the peaks of the MUSIC 

spectrum given by: 

( )
( )

[ ]
1

, 0, 2
( )H H

n n

p θ θ π
θ θ

= ∈
a V V a

      (1.14) 

The D largest peaks in the spectrum will correspond to the directions of arrival of the 

signals impinging on the sensor array.  

The MUSIC algorithm can be summarized as follow: 

1. Collect input samples ( )
k

y t  

2. Estimate the covariance matrix given by: 

      ( ) ( )
1

1 K
H

yy k k

k

y t y t
K =

= ∑R  

3. Compute eigenvalues and eigenvectors of the covariance matrix. 

4. Find number of sources D. 

5. Find the  DOA estimates by finding the D largest peaks of the MUSIC spectrum 

given by: 

     ( )
( )

1

( )H H

n n

p θ
θ θ

=
a V V a
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1.2 Estimating number of sources:  

The MUSIC algorithm depends on the parameter D, the numbers of wave fronts 

impinging on the sensor array, for estimating the DOA of multiple targets. The Minimum 

Description Length (MDL) was used in order to achieve this objective [1-7]. The MDL is 

specified by: 

MDL(D)=

( )
1

1

1

1
2 log (2 ) log( )

1 2

M
M D

k

k D
M

k
k D

M D N

M D

λ

λ

−

= +

= +

 
 
 
 − + −
 
 

−  
 

∏

∑
     (1.30) 

where N is the number of samples, λ represents the eigenvalues of the covariance matrix 

and M is the number of sensors. The number of sources is determined by finding a value 

of D which minimizes the MDL criterion. The maximum number of sources that can be 

estimated is M - 1. 

1.3 Wide-band sources 

 Signal model 

Assume that is a Uniform Linear Array of M sensors and there are D wide-band 

sources with identical bandwidth B impinging on the array from directions 1 2, , , Dθ θ θK .  In 

the wide-band case the time delay of planar wave propagating from one sensor to another 

cannot be approximated as a phase shift. Assuming that the signals are observed over a 

finite interval T, we can represent the signal 
i

x  by a Fourier series [1-7]: 

( ) ( ) n

l m
jw t

i i n

n l

x t X w e
+

=

=∑          (1.31) 

where ( )i nX w  are the Fourier coefficients given by: 
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( ) ( )
/ 2

1/ 2

/ 2

1
n

T

jw t

i n i

T

X w x t e dt
T

−

= ∫        (1.32) 

2
, , ,

n
w n n l l m

T

π
= = +K         (1.33) 

where lw  is the lowest frequency and  mlw +  is the highest frequency included in the 

bandwidth B. Assuming that the observation time T is much greater than the propagation 

delay across elements of the array, we can use a phase shift as an approximation of the 

time delay in the Fourier domain.   

( ) ( ) ( )
1

n ik

D
jw

i n ik k n i n

k

y w e x w w
τ−

=

= +∑a n       (1.34) 

The model used to represent the output vector is: 

( ) ( ) ( ) ( )n n n nY w w X w w= +A N       (1.35) 

( ) ( ) ( ) ( )1 2, ,
n n n D n

w w w wθ θ θ
 =  A a a aL      (1.36) 

( )
( ) ( )

( ) ( )

1

1
k

M k

jw

k

k n

jw

M k

a e

w

a e

τ θ

θ

τ θ

θ

θ

−

−

 
 

=  
 
  

a M         (1.37) 

As a result of the Fourier transform applied over a time segment T∆ , the array 

output vector is decomposed into non-overlapping narrow-band components. The 

covariance matrix for component nw   can be expressed as: 

( ) ( ) ( )H
yy n n nw E y w y w =

 
R         (1.38) 

This covariance matrix can also be expressed as: 

( ) ( ) ( )
1

1 K
H

yy n k n k n

k

w y w y w
K =

= ∑R        (1.40) 
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Chapter 2 

 

Review of Wide-band DOA Algorithms 

 

There are number of wide-band DOA algorithms currently available in literature 

mainly from IEEE. Number of searches was performed to locate wide-band DOA 

algorithms. These searches were conducted at the IEEE digital library website commonly 

known as IEEE Explorer and Google. Searches at Google extend beyond IEEE and hence 

proved very useful. This chapter provides review of wide-band DOA algorithms. Each 

review contains introduction, algorithm development, simulation information and our 

conclusions.  Algorithmic equations have modified as much as possible to keep 

uniformity and increase the readability of the work. This work assumes that there are D 

wide-band sources, a Uniform Linear Array of M sensors, J beamformers (where 

applicable) and N pieces of data. Sources are assumed to be in far field so waves are 

impinging on the array as planar wave. Moreover sources are also Omni-directional.  

Initially wide-band DOA estimation was performed by estimating narrow-band 

DOA at each frequency and then combined to obtain the wide-band frequency. This 

approach is called incoherent approach [4-5]. Comparison of computational 

requirements for all wide-band DOA algorithms reviewed in this chapter will be 

discussed in the next chapter. 
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2.1 Coherent signal subspace method for wide-band sources by Wang & Kaveh 

It is possible to combine the signal subspaces of different frequencies in order to 

generate a single subspace that will allow us to determine the correct number of sources 

and directions of arrival [6-7]. The matrix R  can be used to find the final DOA 

estimates. This matrix can be formed by: 

( ) ( ) ( )
1

J
H

j yy j j

j

w w w
=

=∑R T R T         (2.1) 

where J  is the number of narrow-band components. The matrices T are called 

transformation matrices and can be expressed as  

( )

( ) ( )
( ) ( )

( ) ( )

1 1

2 2

o j

o j

j

M o M j

a w a w

a w a w
w

a w a w

β β

β β

β β

 
 
 

=  
 
 
  

/

/
T

/

O
 (2.2) 

where ow  is the central frequency of bandwidth B, β  is the initial DOA value,  

and  ( )
ji wa β   is the  th

i  element of the direction vector ( )j
wβa . 

The coherent signal subspace method for computation of DOA (wide-band sources) as 

proposed by Wang & Kaveh [10] can be summarized as follow: 

1. Collect data samples and convert the samples into frequency domain using FFT. 

2. Estimate the covariance matrix for each frequency component given by: 

       ( ) ( ) ( )
1

1 K
H

yy n k n k n

k

w y w y w
K =

= ∑R  

3. Compute eigenvalues and eigenvectors of the covariance matrix. 

4. Find initial estimates of direction of arrival by computing the MUSIC spectrum 

given by: 
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      ( )
( ) ( )

1
H

n n

p φ
θ θ

=
a V V a

 

5. Compute transformation matrix focusing on central frequency. 

6. Compute eigenvalues and eigenvectors of the focus matrix. 

7. Find number of sources D. 

8. Find the final DOA estimates by finding the D largest peaks of the MUSIC 

spectrum. 

 

2.2 Efficient Wide-band Source Localization Using Beamforming Invariance 

Technique by Ta-Sung Lee (Review) 

A beamspace wide-band source localization scheme is proposed which exploits 

the concept of beamspace manifold invariance [19].  A principle of Least Squares (LS) fit 

is employed to construct a beamforming matrix for each of the narrow-band frequency 

bins extracted from the wide-band array data. The beamforming matrices perform the 

same operation as do the focusing matrices of Wang and Kaveh [6-7].  In this case 

beamforming matrices are chosen in such a way as the resulting beamspace DOA 

matrices are essentially the same for all frequencies.  The focused beamspace data/noise 

correlation matrix pencil can then be readily formed with the respective narrow-band 

beamspace correlation matrices without any additional preliminary processing.  

A computationally efficient implementation of the beamspace Root-MUSIC 

algorithm via subarray beamforming and banded transformation is developed. By 

subarray beamforming, the large order Root-MUSIC  [1-8] signal polynomial is first 

reduced to one with the order equal to the beamspace dimension.  The algorithm is 
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further simplified by transforming the matrix representing the element space noise 

subspace into a banded form and converting the reduced-order signal polynomial into 

several polynomials with the order equal to the number of sources. These polynomials are 

then rooted in parallel to determine the DOA’s.  

 CSSM Model Formulation 

This paper assumes that there are D wide-band sources and M identical sensor 

elements which have a common passband width Bw centered at frequency fc. First of all 

data model needs to be defined which uses following two approaches: 

• The received data is decomposed into J narrow-band components using a bank of 

J bandpass filters. They are centered at fj followed by the conventional I-Q 

demodulation and sampling. The model has J sets of Mx1 complex array data 

snapshot vectors. 

( ; ) ( ) ( ; ) ( ; )
j j j

X n f A f s n f v n f= +       (2.2) 

where  

s(n; fj) represents the data received at some reference point of the array (Dx1) 

v(n; fj) represents the noise present at the M elements. (Mx1) 

A(fj) accounts for the phase variation across the array due to the wavefront 

(MxD). 

• This model can also be created by forming narrow-band components using 

Fourier transform as done by Wang & Kaveh [6]. 

Invariant means that it is unaffected by the group of mathematical operations 

under consideration and invariance means the quality or state of being invariant.  

Therefore beamforming-invariance means that beamforming is unaffected by other 
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factors. In a beam space beamforming, outputs from the array elements are first 

processed by a multiple-beam beamformer to form a suite of orthogonal beams. The 

output of each beam can then be weighted and the result combined to produce a desired 

output. The beamformer can be implemented using the FFT. For an M-element array, the 

overlapped orthogonal beam can be formed [28]. 

Beamspace beamforming requires a set of beamspace combiners to generate 

weighted outputs. The digital signal streams from the antenna elements are passed to the 

FFT processor, which generates K simultaneous orthogonal beams. The purpose of the 

beam selection function is to choose a subset of these orthogonal beams that need to be 

weighted to form a desired output.  

The approach in this paper performs beamspace transformation at each of the J 

frequency bins and choosing beamforming matrices with some kind of criterion. 

Therefore beam patterns are identical for all frequencies.  Consider first the patterns 

associated with a single beam: 

);();( j

H

jj frawfrw
rr

=          (2.3) 

where j is from 1 to J and jw  is the Mx1 complex weight vector employed at jf . 

It would be difficult to find two weight vectors that would produce identical beam 

patterns at two different frequencies. Due to the discrete nature of the array, it is not 

possible to find two weight vectors that produce completely identical beam patterns at 

two different frequencies. A Least Square (LS) fit method is used as an approximation to 

construct weight vectors that nearly provide frequency-invariant beam patterns. A simple 

measure of the proximity between the two patterns );( ifrw
r

and );( jfrw
r

 is the 

generalized L2 distance: 
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rdfrwfrwrd jiij

rrrr 2

);();()(∫
Ω

−= ρ        (2.4) 

rdfrawfrawrd j

H

ji

H

iij

rrrr 2

);();()(∫
Ω

−= ρ       (2.5) 

where Ω is a sector of the unit sphere representing the Field of View (FOV) of the array. 

The weighting function )(r
r

ρ  is enhancing the approximation within a pre-

selected angular region. The weight vector computation for “beamforming-invariance” is 

calculated using the following minimum-distance criterion 

{ rdfrawfrawr j

H

ji

H

i

ww ji

rrrr 2

,

);();()(min∫
Ω

−ρ       (2.6) 

Above condition is subject to that iw and jw  are not equal to zero. One 

consideration that is used as a constraint is to obtain good SNR gain and low side lobes. 

The weight selection process would first require a desired weight vector  ow  that would 

be associated with a pre-selected reference frequency of within the passband of the array. 

The Beamforming Invariance (BI) weight vectors associated with the J frequencies are 

calculated as: 

{ rdfrawfrawr j

H

j

H

w j

rrrr
oo

2

);();()(min∫
Ω

−ρ       (2.7) 

It may be noted that of need not be one of the frequencies jf . Following solutions are 

given by: 

owSUw jjj

1−=           (2.8) 

where 

rdfrafrarU j

H

jj

rrrr
),(),()(∫

Ω

= ρ  
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rdfrafrarS
H

jj

rrrr
o),(),()(∫

Ω

= ρ  

This technique is reducing the size of data by using a low-dimension beamspace 

narrow-band data associated with of . It is arguing that if wide-band source moves across 

the Field of View (FOV) of the array then this set of data would allow observation of 

output waveforms at the J beamformer outputs. 

 

Beamspace focusing with BI Transformation 

 In order to achieve effective reception of the source signals, multiple beams can 

be formed over the spatial band of interest.  A set of K beamforming weight vectors jkw  

are used to simultaneously form K linear combinations of the array data at jf . Therefore 

Mx1 element space data snapshot vectors are converted into Kx1 beamspace data 

snapshot vectors using the following relation: 

);();( j

H

jjB fnxWfnx =         (2.9) 

where Wj are the respective MxK beamforming matrices for J frequencies. K is chosen 

such that it is greater than number of sources and less than number of sensors. The 

beamspace data snapshot vectors will have a similar form as the original array snapshot 

vectors and is given as: 

);();()();( jBjjjB fnvfnsfBfnx +=        (2.10) 

where  )()( j

H

jj fAWfB =  and );();( j

H

jjB fnvWfnv =  

B and v are the beamspace DOA matrices and noise vectors respectively. 

The challenge would be the selection of  Wj and this could be done similar to 

procedure given earlier and is also provided for the convenience.  
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{ rdfrawfrawr j

H

j

H

w j

rrrr
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);();()(min∫
Ω

−ρ  

It may be noted that of need not be one of the frequencies jf . Following solutions 

are given by: 

owSUw jjj

1−=           (2.11) 

where 

rdfrafrarU j

H

jj

rrrr
),(),()(∫

Ω

= ρ  

rdfrafrarS
H

jj

rrrr
o),(),()(∫

Ω

= ρ  

• Determine a set of K reference weight vectors w0k associated with of .  

• Construct the K weight vectors associated with the J frequencies. 

kjjjk wSUw o
1−=  

This can be written in matrix form 

oWSUW jjj

1−=  

where W0 is the reference beamforming matrix. The beamforming matrices for all values 

of j’s would have the following form due to the BI property: 

)()( 0fBfB j ≈           (2.12) 

The beamspace data snapshot vectors would be fully characterized by a single 

beamspace DOA matrix )( 0fB associated with of .   This will represent the beamspace 

signal subspace associated with of .     Now CSSM approach can be applied and obtain a 

focused beamspace data correlation matrix. 
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The above operation is named as  BI-CSSM and would produce an effective 

narrow-band beamspace data/noise correlation matrix pencil associated with associated 

with of  giving an effective source correlation matrix Rss. The following section would 

address the issue of obtaining beamforming data matrix. 

Design of Reference Beamforming Matrix 

There are number of publications and techniques for forming a reference 

beamforming matrix and their references are provided in this paper. A Chebyshev 

beamformer can be used which exhibits low side lobes for LES arrays. One of the goals 

would be to design a beamforming matrix that is optimal and also has a small focusing 

error.  

Determine an orthonormal basis for the subspace of minimum focusing error. Let 

Ew be an MxK’ matrix satisfying IEE W

H

W =  and MKK ≤≤ ' .  Ew is used as the reference 

beamforming matrix then from oWSUW jjj

1−=  the resulting total focusing error is given 

by 

}{);();()(
1
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1

1
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H
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J

E =−= ∑∫
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The above operation is named as  BI-CSSM and would produce an effective 

narrow-band beamspace data/noise correlation matrix pencil associated with associated 

with of  giving an effective source correlation matrix Rss. The following section would 

address the issue of obtaining beamforming data matrix. 

Design of Reference Beamforming Matrix 

There are number of publications and techniques for forming a reference 

beamforming matrix and their references are provided in this paper. A Chebyshev 

beamformer can be used which exhibits low side lobes for LES arrays. One of the goals 

would be to design a beamforming matrix that is optimal and also has a small focusing 

error.  

Determine an orthonormal basis for the subspace of minimum focusing error. Let 

Ew be an MxK’ matrix satisfying IEE W

H

W =  and MKK ≤≤ ' .  Ew is used as the reference 

beamforming matrix then from oWSUW jjj

1−=  the resulting total focusing error is given 

by 
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Design Example 

An array manifold vector associated with an LES array consisting of M identical 

elements and operating with frequency f is given by: 

[ ]TfuMjfujfuj eeefua ])1(2 ,.......,,,1);( τττ −=       (2.14) 

where cd /2πτ =  and d is the spacing between two adjacent elements. The sine-space 

angle u  is defined as u=sin(θ ) and θ is the angle measured with respect to the broadside 

of the array.  First sensor element is assumed to be the reference point of the array.   

The frequency band is decomposed into J=33 uniformly distributed subbands. The 

reference beamforming matrix W0  is constructed  at of  = 1f .  by first formulating dW and 

using following equations: 

{
2

0

0

min
Fd

EW

WW
w

−
= ψ

 

d

H

ww

H

ww WEEEEW
1

0 )( −=  

 Use K’=9 and dW  is composed of weight vectors associated with k=7 Chebyshev 

beams with -30 dB sidelobles point at 0, ± 7.7, ± 15.5 and ± 23.6 in degrees. To alleviate 

the grating lobe problem of  = 1f  is chosen. Remaining thirty two beamforming matrices 

are computed via oWSUW jjj

1−= ,. The FOV was set to be -1.0 to 1.0 in u domain. The 

weighting function was chosen as 1.0 and 0.5. These assumptions were verified by 

computing the normalized focusing error spectrum.  

BI-CSSM/ROOT –Form Eigen-Based DOA Estimation 

Now consider only the operation associated with of  and omit the argument of 

frequency in the relevant terms. The beamspace eigen-based methods can be applied on 
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the BI_CSSM focused data dictates. It is known that the source DOA’s should be 

determined via the null spectrum 

)()()( 00 raWEPEWrar
HH

BB

H rrr
=Φ        (2.15) 

where  

BE  is referred to as the beamspace noise eigenvector matrix which is Kx(K-D). It 

contains generalized eigenvectors.  

P is a positive semi-definite matrix serving to weight the respective columns of BE .  

The null spectrum is converted into the 2(M-1)
th

 order signal polynomial 

)()()( 00

1
zaWEPEWzaz

HH

BB

T −=Φ  

where a(z)=[1,z,….z
M-1

]
T
 and 

ufj
ez 0τ= .  

There are  D signal roots zi extracted from )(zΦ  . Their DOA’s can be 

determined by 0/}ˆarg{ fzu ii τ=
r

 where i is from 1 to D.  These coefficients of )(zΦ  

exhibit conjugate symmetry such that the corresponding 2(M-1) roots from M-1 

conjugate reciprocal pairs. As a result only M-1 distinct values are observed regarding the 

phase angles of 2(M-1) roots.  

The root-form methods may be computationally expensive due to the need of large 

order polynomial rooting.  A new method is proposed which may be more 

computationally efficient and has following three stages: 

1. The signal polynomial is reduced from order 2(M-1) to 2(K-1) via judiciously 

performed subarray beamforming. 
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2. The reduced order signal polynomial is converted into several 2D
th

 or (D
th

) order 

polynomials via a banded transformation of the corresponding reduced noise EV 

matrix. 

3. Signal roots are extracted by rooting these polynomials in parallel. 

Polynomial-Order Reduction via Subarray Beamforming 

Consider an M-element LES array which consists of L=M-K+1 and overlaps K-

element subarrays. Define the KxM selection matrices that select from the full array data 

snapshot vectors the respective subarray data snapshot vectors 

)()( )(
nxnx

l

Kl =Γ  

where )()( nx l

K  denotes the Kx1 data snapshot vectors received at the l
th

 subarray and lΓ  is 

given by 

]||[ )1()1( +−−−=Γ lKMKXKXKlKXl OIO  

Subscripts indicate the sizes of the respective identity and zero matrices. Assume that the 

same Kx1 weight vector g is applied at each of the subarrays that would produce a set of 

Lx1 vectors. 
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=        (2.16) 

It represents the data snapshots received at the L subarray beamformer outputs. 

)(nxL is the data snapshot vector of L-element LES array which is also denoted as AL and 

apply an Lx1 vector c to form: 

)()()()()( nxwnxGcnxcnx HH

L

H

B ===       (2.17) 
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It can be seen that w=Gc and is the effective weight vector acting on the entire 

array. We may consider the beamforming to be performed first on AL and treating the L 

subarray as super elements. We may also apply an Lx1 weight vector c to produce a set 

of Kx1 vector data snapshots. 

∑
=

==
L

l

Hl

KlK nxCnxcnx
1

)(* )()()(  

where ∑
=

Γ=
L

l

T

licC
1

  

These vector data snapshots can be regarded as “data snapshot vectors” obtained 

from AK. Applying a Kx1 weight vector g forms: 

)()()()()( nxwnxCgnxgnx HH

L

H

B ===       (2.18) 

It can be concluded that the full weight vector exhibits two types of decomposition: 

W=Gc=Cg 

Using the banded, Toeplitz structure of C or G  

)}()}{({)( zaczagzaw L

H

k

HH =  

Similarly we can get 

})(}{)({)( 111 czagzawza T

L

T

K

T −−− =  

A beamspace transformation scheme based on the concept of weight vector 

decomposition can be developed. K reference weight vector can be constructed using the 

following form: 

kkk CgcGw ==0  

The w contains the same weight factor c. Now putting in matrix form and using above 

equations: 
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Substituting these equations in )()()( 00

1
zaWEPEWzaz

HH

BB

T −=Φ  yields 

)}()()}{()({)( 11 zaGEPEGzazacczaz K

HH

BB

T

KL

HT

L

−−=Φ     (2.19) 

It can be seen that this is decomposed into two individual factors accounting for c 

and G. The factor involving c is known a priori and thus there is no information about the 

DOAs. The DOA estimates can be determined with the 2(K-1)
th

 order polynomial. 

)}()()( 1 zaGEPEGzaz K

HH

BB

T

KK

−=Φ  

This equation suggests that this is the signal polynomial associated with K-

element LES array generated by the noise EV matrix BEG . This equation leads to 

substantial reduction in computational load if K<<M. 

Parallel Processing via Banded Transformation 

Subarray beamforming somewhat simplifies the polynomial rooting. The 

difficulty remain with the procedure of choosing D signal roots out of the 2(K-1) roots of 

)(zKΦ . A scheme has been proposed by others to convert the DOA estimation problem 

into that of rooting a D
th

 order polynomial. They exploit the fact that the ideal noise 

subspace associated with an LES array is spanned by the columns of a banded Toeplitz 

matrix with bandwidth D+1.  

Performing some algebraic manipulation which leads to: 

)}()()()()( 1

11

1 zaFzDPTTzFDzaz D

HH

BB

T

DK +
−−

+=Φ      (2.20) 

where a 
D+1

(z)=a(z) and D(z) is the diag {1,z,…..,z
K-D+1

} 
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The polynomial is associated with a (D+1) element LES array except for the z-dependent 

term D (z). In order to fully exploit this reduction in dimension, replace D (z) with a 

constant matrix by fixing z=z0. 

)()()()()|( 10

1

0

1

10 zaFzDPTTzFDzazz D

HH

BB

T

DK +

−−
+=Φ     (2.21) 

Comparing two )(zKΦ  equations, it can be seen that in order to achieve the 

performance of working with original signal polynomial, we must choose iufj

i ezz 0

0

τ=≈  

in estimating ui. It indicates that a set of reduced order signal polynomial be constructed 

with zi, i=1 ,…, D. The problem with this approach is that it requires the knowledge of 

the DOA’s that is being estimated. The effective spatial passband of the reference 

beamforming matrix can be decomposed into Is disjointing sectors centered at um, 

m=1,…., Is and construct the following: 

)()()()()|( 1

11

1 zaFzDPTTzFDzazz D

H

m

H

BBm

T

DmK +

−−
+=Φ     (2.22) 

with mufj

m ez 0τ=  and m=1,…., Is . )(zKΦ  can be approximated with the above equation 

for the m
th

 sector with high accuracy for a small sector size. This equation can be rooted 

in parallel and obtain Is set of roots of zim.  

Roots need to be picked and we should pick roots which are closer to the unit 

circle. This DOA estimator is suboptimum according to the author. It would also result in 

degradation in estimation accuracy at low SNR. Even with the true DOA, the DOA 

estimates may not be exactly identical as signal roots may not lay on the unit circle. The 

parallelized estimator behaves as a mixture of the root-form and spectral-form estimator.  

We note that under no noise/error conditions is the banded matrix is Toelplitz. We 

may assume that F is approximately rank one. This could be done using following 

replacement: 
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  (2.23) 

where Pm is a (K-D)x1 vector. Subscript m is used to emphasize the dependence on 

different sectors. With the above structure we need only work with the set of D
th

 order 

polynomials: 

)()()|( 1 zaFzDTPzz D

H

m

H

B

H

mmK +=Φ  

Algorithm Summary 

• Construct beamforming matrices and the BI transformations. 

• Perform a KxK generalized eigen-decomposition 

• Solve in parallel K-D systems of equations of size K-D. 

• Rooting in parallel Is 2D
th

 (or D
th

) order polynomials. 

Design of Subarray-Based Reference beamforming Matrix 

The factorization of the equation kkk CgcGw ==0   does not hold for a particular 

desired beamforming matrix Wd. One way to retain the merits of Wd using subarray 

beamforming is to selectively choose c and gk so that W0 is close to Wd. Using the LS fit 

technique leads to the following problem: 

2

1

min

1

2

min

1 ,..,,...,, dk

K

k

kkFdk wwggcWWggc ∑
=

−≡− oo

4847648476
     (2.24) 

Invoking the structure of  kkk CgcGw ==0  we can re-write above equation as: 

} }
2

min
2

min

~~
,, dFd wcGGCWGCGC −≡−  

This equation has no closed form solution in general. The problem should be 

decomposed into two individual stages for which in one stage we solve for the common 

weight factor c whereas in the other we solve for the uncommon weight factor gk. 
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Assuming that the initial guess of c is available and solving the left hand side of G we 

get: 

d

HH
WCCCG

1)(
~ −=  

Constructing G and then solving the right hand side for c yields: 

d

HH
wGGGc ~~

)
~~

( 1−=  

Now construct C and solve for new G. This procedure is then alternatively executed until 

the solution converges. 

Summary 

The algorithm decomposes data using bandpass filters into J frequency beams. It 

performs beamspace transformation and computes weights using least square method. It 

then computes beamspace data matrix and focuses on single reference frequency which 

would be something similar to CSSM method. It performs transformation into K 

beamspaces and forms beamspace data matrix. This beamspace data matrix then focused 

on a single reference frequency out of J frequency bands. The design of beamspace data 

matrix is described which requires first design of beamforming matrices. They are again 

designed in a least square sense. The problem is then reduced to beamspace data 

correlation and noise matrices. Authors then apply their own derived root MUSIC 

algorithm which could be substituted with the MUSIC algorithm. The algorithm does not 

require any preliminary DOA estimates. 

This DOA estimator is suboptimum according to the author. It would also result 

in degradation in estimation accuracy at low SNR. Even with the true DOA, the DOA 

estimates may not be exactly identical as signal roots may not lay on the unit circle. The 

proposed parallelized estimator behaves as a mixture of the root-form and spectral-form 
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estimator. This approach provides an excellent alternative to CSSM but frequency 

decomposition and calculations of weight and beamspace data matrices. There may be 

some alternative ways to calculate weight and compute data beamspace matrices. In the 

end it again uses something similar to MUSIC algorithm to compute DOA. 

 

2.3 Multiple Broad-Band Source Location Using Steered Covariance Matrices 

Jefrey Krolik and David Swingler (Review) [17] 

This paper is based on space time statistics called the Steered Covariance Matrix 

(STCM). It is obtained by measuring the covariance of the time-domain array outputs 

after delays have been inserted to steer a conventional Delay-and-Sum (DS) beamformer 

beam [17].  This technique avoids source localization problem by defining a broad band 

covariance matrix having a rank one characterization regardless of source spectral 

content or source location. The drawback of this approach is that it is compute intensive.  

Model Formulation and the steered covariance matrix 

We consider an array of M wide-band sensors and D wide-band point sources. 

The output of a sensor located at  xm is denoted by ym(t) observed over a time interval of 

T seconds and is  expressed as: 

∑
=

+−=
D

i

mimim tvtuty
1

)())(()( θτ        (2.25) 

where ui(t), i=1,…,D are stationary, zero-mean, random processes corresponding to each 

received source signal and  vm(t) is the noise. )( im θτ  is the signal propagation delay to 

the m
th

 sensor when a source is located at iθ .  
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The locations iθ are the parameters that need to be estimated from a finite-time 

observation of the sensor outputs.  The STCM can be defined using the complex analytic 

representation of the sensor outputs. The delay and sum beamformer enhances the 

reception of signals emanating from location  θ  by inserting a delay of  )(θτ m  at the 

output of each sensor. The complex analytic representation of the delay and sum 

beamformer output b (t, θ ) with steering in direction θ is formed by taking the weighted 

sum of the elements of y (t, θ ) and is expressed as: 

),(),( θθ tywtb T=  

where w’s are a vector of real-valued array shading weights. The expected beam power 

would be: 

2
( ) { ( , ) }z E b tθ θ=  

This could then be expressed as z(θ )= w
T 

R(θ )w 

where R (θ ) =E{y(t, θ ) y(t, θ )
H
} is the Steered Covariance Matrix (STCM) and is 

corresponding to direction θ .  

The well known Cross Spectral Density Matrix (CSDM) is a function of temporal 

frequency and its corresponding weighting vector depends both on the array shading and 

steering angle. R (θ  ) is a function of steering θ  and w is a constant shading vector. The 

main advantage of using R (θ  ) in wide-band case is that the number of statistical degrees 

of freedom available to estimate R (θ  ) is approximately equal to the time-bandwidth 

product of the sources rather than the usually much smaller number of snapshots used in 

estimating each narrow-band CSDM.  
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Structure of R (θ  ) can be used for a wide variety of high resolution source 

location methods.  Consider a Uniform Linear Array (ULA) with M sensors at d distance 

apart at positions xm=md, m=0,… , M-1.   

)(.)( θτθτ mm =          (2.26) 

where )sin(/)( θθτ cd= , c is the propagation speed and  θ  is the bearing of the source 

relative to array broadside. Using the model of ∑
=

+−=
D

i

mimim tvtuty
1

)())(()( θτ , the jk
th
 

element of R (θ  ) is a function of m=j-k given by: 

∑
=

+−=
D

i

miijk mmr
1

))(.())()(.(()( θτηθτθτρθ       (2.27) 

where )(τρi is autocorrelation function of the i
th

 source and )(τηm is the cross-correlation 

function of the noise received at the array coordinate origin and the m
th

 sensor.  

When the steering direction is the direction of the source and the source is aligned 

with the steering direction then the STCM contains a constant. This perfectly coherent 

component is equal to the source power regardless of its spectral signature. One approach 

to determine the power level of a point source in the steering direction θ  is to accurately 

estimate the level of the dc constant term. This estimation is performed for a closely 

spaced set of steering directions yields a wide-band spatial power spectral estimate. It can 

also be noted that DS beamforming corresponds to making a conventional Blackman-

Tukey estimate of the dc component of r (m, θ ). Later on minimum variance and linear 

predictive spectral estimation are examined as methods of estimating the dc component 

for each steering direction. 
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Estimation of the Steered Covariance Matrix (STCM) 

An estimate of the Steered Covariance Matrix (STCM) is obtained using a simple 

relationship between the STCM and CSDM. Statistics of the estimated STCM can be 

expressed in terms of the Wishart characteristic function. Complex time domain vector of 

M sensor outputs can be expressed as  Tc

M

cc
tytyty )}(),...,(),([ 110 − over the time interval (-

T/2,T/2) in terms of the frequency-domain vectors as 

T

M kYkYkYkY )](),...(),([)( 110 −=        (2.28) 

With elements Ym(k) corresponds to the Fourier series coefficients of ym(t) at frequency 

Tkk /2πω =  The sensor outputs are approximately band-limited to hl ωωω ≤≤ . The 

steered sensor output vector y(t, θ ) can be expressed as: 
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ωθθ )()(),(         (2.29) 

where 
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Substituting above equation of y(t, θ ) into R (θ ) and under the assumption of large T, 

the STCM can be expressed as: 

∑
=

=
h

lk

H

kkk TKTR )()()()( θωθθ        (2.31) 

where })()({)( H

k kYkYEK =ω  is the conventional un-steered CSDM at frequency  kω .  
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This R (θ ) matrix is similar to coherently focused covariance matrix of CSS 

method proposed by Wang and Kaveh [2] for the case where all sources in the field are in 

a single group unresolved by a conventional delay and sum beamformer. In STCM the R 

(θ ) matrix is computed for each steering angle θ  making it computationally intensive. 

However, it eliminates the source location bias resulting from errors made in forming 

focusing matrices required by the CSS method. 

The relationship between matrices K and R (θ ) as given in  

∑
=

=
h

lk

H

kkk TKTR )()()()( θωθθ suggests a natural way of estimating R (θ ) by using finite-

time CSDM estimates for K̂ . A common method of forming K̂ from discrete-time sensor 

outputs is to divide the T second observation into N non-overlapping segments of  T∆  

seconds each and then apply the FFT to obtain uncorrelated frequency domain vectors 

Yn(k) for each segment n=1,…,N. The cross spectral density matrix at each frequency 

kω is then estimated and then substituted to estimate of R (θ ) matrix. An attractive 

feature of the STCM estimate given is that its statistics can be expressed in terms of the 

Wishart characteristic function. 

Steered Covariance Source Location Methods 

It is derived by finding the beamformer weight vector w which minimizes the 

beam power given by z(θ )= w
T 

R(θ )w subject to the constraint that the processor gain is 

unity for a broad-band plane wave in direction θ . The problem is viewed as one of 

estimating the dc component of the STCM steered in direction θ  by means of a 

Minimum Variance (MV) approach. In either case, this technique has the effect of 
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choosing w to minimize the power contribution from sources and noise not propagating 

from directionθ . The resulting STCM-based spatial spectral estimate is given by 

11 ]1)(1[ −−= θRZ
H

STMV         (2.32) 

where 1 is an Mx1 vector of ones.  

A finite estimate of ZSTMV can be obtained by substituting the estimate of R (θ ) 

matrix similarly estimated by  ∑
=

=
h

lk

H

kkk TKTR )()()()( θωθθ .  A complete broad-band 

spatial power spectral estimate is then formed by computing )(θSTMVZ  for a set of 

steering angles which span the locations of interest. 

For wide-band sources, the Minimum Variance Distortionless Response (MVDR) beam 

power is obtained by summing narrow-band beam powers over the band of interest and is 

given as: 

1

1 )]()()([)(

−

=

−∑=
h

lk

kk

H

kmvdr DKDZ θωθθ       (2.33) 

The steps in the STMV method are as follows: 

1. Form estimated Cross-Spectral Density Matrices k over the frequency band of interest. 

∑
=

=
N

n

H

nnk kYkY
N

K
1

)()(
1

)(ˆ ω         (2.34) 

2. Compute estimated steered covariance matrices for each steering direction θ  of 

interest. 

∑
=

=
h

lk

H

kkk TKTR )()(ˆ)()(ˆ θωθθ        (2.35) 

3. Compute R (θ ) in the following equation and form Z for each steering direction θ  to 

obtain a broad-band spatial power spectral estimate. 
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11 ]1)(ˆ1[ˆ −−= θRZ
H

STMV         (2.36) 

Compute linear prediction coefficients from the steered sensor outputs and 

approximate or model them for the Autoregressive (AR) model.  Compute forward and 

backward prediction error sequence and linear prediction coefficients. The linear 

prediction coefficients which minimize forward and backward prediction error sequence 

are simply complex conjugates of each other. Exploiting this property the Steered Linear 

Prediction (STLP) method is simply the minimizing the sum of forward and backward 

squared prediction errors.  The steered linear predictive estimate of the spatial power 

spectrum in direction θ  is given by 

2

1

, )(ˆ1

)(ˆ
)(ˆ

∑
=
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=
L

m

mL

L
stlp

a

Z

θ

θρ
θ         (2.37) 

This is also known as a maximum entropy spectral estimate evaluated at dc.  The 

computation of above equation and as the minimization of average forward and backward 

prediction squared error can be obtained as the solution to the following equation. 









=

L

L

LL aR
0

)(ˆ
)(ˆ)(ˆ

αρ
θθ  

Summary of the STLP algorithm 

• Form spatially averaged cross spectral density matrix estimates K over the 

frequency band of interest. 

• Compute spatially averaged steered covariance matrices R for each steering 

direction θ  of interest. 
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• Solve the augmented normal equation 







=

L

L

LL aR
0

)(ˆ
)(ˆ)(ˆ

αρ
θθ  to obtain vector 

STLP  coefficients  )(ˆ θLa  and )(ˆ θρL for each steering direction θ . 

• Compute  equation 
2

1

, )(ˆ1

)(ˆ
)(ˆ

∑
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−

=
L

m
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L
stlp

a

Z

θ

θρ
θ  

Simulation Study  

This study simulates using a  ULA with 16 sensors with inter-element spacing of 

7.5 m corresponding to a half wavelength frequency of 100 Hz is considered. The 

location parameter θ  is the bearing of the source relative to endfire. The Rayleigh limit 

of angular resolution for this array is approximately 2/(M-1)=0.133 radians or 7.62 

degrees. Two source signals were modeled as temporally stationary and mutually 

uncorrelated zero mean Gaussian processes with bandpass auto-spectra. 

Si(f) Li for f0 –BW/2 ≤ f ≤ f0+BW/2 

0 otherwise 

where each source has the same frequency f0=100Hz and bandwidth, BW=40Hz. The 

noises vm(t), m=1..M were taken to be stationary and mutually uncorrelated zero-mean 

Gaussian bandpass processes independent from the signals and watch with the auto-

spectrum: 

Sv(f) Lv for f0 –BW/2 ≤ f ≤ f0+BW/2 

1 otherwise 

defined over the same frequency band as the source signals. The SNR of the i
th

 source 

denoted SNRi is defined from the above by SNRi=Li/Lv. Estimated cross-spectral density 

matrices were formed using  
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∑
=

=
N

n

H

nnk kYkY
N

K
1

)()(
1

)(ˆ ω         (2.38) 

From sensor outputs where a segment length T∆ =0.8 seconds was used. For each 

segment the array output is decomposed into B=h-l+1=33 narrow-band DFT bins. The 

number of segments or snapshots N employed to estimate each k is varied in this 

simulation study. 

Summary 

We have used our simulation program with previously generated data outlined in [6]. 

Our program did not give two peaks as expected. Problems could be in two different 

areas: 

1. There may be some missing information regarding transformation matrix that 

could lead to not getting appropriate result. 

2. The paper uses random processes as data which may contribute to getting two 

peaks in their case and not in our case. 

3. The third conclusion we have is that this technique requires computation for each 

steering direction θ  increasing the computation requirements but eliminates the 

selection of initial focusing angle. 

 

2.4 Focused Wide-Band Array Processing by Spatial Re-sampling  by Jefrey Krolik 

and David Swingler (Review) [18] 

This focusing technique reduces each wide-band source in multigroup scenarios 

to a rank one representation. This approach does not require preliminary estimates of the 

source locations. The method is based on simply adjusting the spatial sampling rate or 
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“spatially re-sampling” the array outputs as a function of temporal frequency so that 

wide-band sources are aligned in the spatial frequency domain. [18] 

In this case an output of a discrete array of M sensors is considered as the result of 

spatially sampled a continuous linear array. Let ),( ωxy denote the field incident upon a 

line array positioned along the x axis at temporal frequencyω . The ),( ωxy is expressed 

as: 

∑
=

+=
D

i

xj

i xveSxy i

1

),()(),( ωωω ωα
       (2.39) 

where S is the temporal Fourier transform  

cii /)sin(θα = is the slowness 

θ  is the bearing angle. 

Assume a Uniform Linear Array (ULA) with M sensors is spaced at a uniform 

distance d meters apart.  The ),( ωmyd is the output of the sensor located at x=md and is 

expressed as: 

∑
=

+=
D

i

mdj

id mdveSxy i

1

),()(),( ωωω ωα
      (2.40) 

A narrow-band covariance matrix )(ωR  can be computed from sensor array outputs. This 

narrow-band covariance matrix R (ω ) can be expressed as: 

)(),()(),()( ωαωωαωω v

H

s RAPAR +=       (2.41) 

where A is the MxD source direction matrix of the i
th

 source, P is an unknown DxD 

source spectral density matrix vR  is the noise matrix. 

The goal of focusing methods is to transform the sensor outputs ),( ωmyd in such a way 

that it results in a source direction matrix which is constant for all frequencies within the 
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common bandwidth of the sources.  A direction matrix A is obtained for all ω  by 

adjusting the spatial sampling interval d as a function of temporal frequencyω .  A 

focusing frequency oω is also selected.   

The frequency dependent spatial sampling interval is denoted by d (ω ). The 

wide-band focusing via spatial re-sampling can be achieved by letting d (ω ) =d 0ω /ω .  

If we substitute d (ω ) in the above expression we get following focused array outputs: 

∑
=

+=
D

i

mdj

id

md
veSxy i

1

0 ),()(),(~ ω
ω

ω
ωω ωα

      (2.42) 

In order to avoid any spatial aliasing, d (ω ) must be chosen such 

that )(// ωπω dc < . This implies dc /0 πω <  relation should be true. It is known that the 

sensor spacing should be half wavelength of the highest source frequency maxω then this 

will result in focusing frequency oω should be less than highest source frequency giving 

max0 ωω < . The re-sampling of y(x,ω ) from the outputs of a discrete line array yd(m, ω ) 

at a finite set of frequencies nω ( where n is from 1 to B) should ensure nnn KL //0 =ωω . 

Therefore the sampling interval should follow this relation  

d( nω ) =d.Ln/Kn 

Therefore spatially re-sampling the data at frequency nω  involves changing the 

spatial sampling rate by a factor of Kn/Ln. This is also achieved by selecting the focusing 

frequency 0ω  equal to the minimum frequency of the sources minω . If elements are spaced 

a half wavelength apart at maxω  ( max/ωπcd = ) this implies nn KL ≤ for all n. Hence re-

sampling becomes an interpolation by a factor of  Kn/Ln . The   yd(m, ω ) is spatially re-

sampled by performing the following steps. 
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1. Insert (Kn-1) zeros between each pair of measured spatial samples giving 

,....2,,0),(,( ,) nnn

n

dn KKmfor
K

m
ymz ±±=−




= ωω  

0 otherwise 

2. Filter z (m, nω )  using a low-pass filter with FIR hn(m) designed to approximate the 

frequency response. Convolve zlp(m, nω  ) with hn(m)  yields the low-pass filtered output 

zlp(m, nω  ). 

3. Decimate zlp(m, nω  ) by a factor of Ln to obtain the focused spatial data sequence  

),(),(~
nnlpnd mLzmy ωω =  

After forming the spatially re-sampled Mx1 data vectors  

T

ndndndnd MyyyY )],1(~),...,,1(~),,0(~[)(
~

ωωωω −=  

For n=1…,B,  a single focused covariance matrix at frequency 0ω is estimated by 

∑
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B

n

H

ndnd YY
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~1

)(
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ωωω  

The wide-band source location can be computed using MUSIC operated at frequency 0ω . 

Simulation Method 

A 16 element line array with sensors spaced a half wavelength apart at πω =max was 

used. The array focused to 2/min0 πωω == where the Rayleigh resolution limit 

corresponds to sin(θ )=0.25. For each trial, 32 independent realization of yd( nω ) were 

generated for each nnn LK /0ωω = . Where Kn=32 and Ln=16, 17,…, 32. In these 

experiments  the up-sampling factor Kn  factor was fixed for convenience, which led to 
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nω , n=1, …., 17 non-uniformly spaced frequency samples spanning the band from π /2 

to π . The spectral MUSIC was to process the focused covariance matrix. 

Summary 

This method requires interpolation and then decimation of input data and then 

computation of covariance matrix. The interpolation filter was designed using the 

minimum mean square error filter design method. An FIR filter of length  2.J. Kn +1 

points was used to approximate an ideal low pass filter with cutoff frequency 

nc K/βπω = .  β  is between 0 and 1 (It was chosen as 0.4). The filter length factor J is 

chosen as 4. The computation of covariance matrix is done on B length of data which is 

done across various frequencies. So the value of B could be large in the case of wide-

band data. The MUSIC algorithm is applied to resolve various DOAs. Technique looks 

good some work need to be done to resolve value of B, K and L which are also assumed. 

Selection of B, K, and L may be tricky and this approach then will not be useful in a 

generalized case. No attempt was made to run MATLAB program due to above reasons. 

One advantage of this approach is that it does not require preliminary DOA estimates and 

iterations. 

2.5 New Signal Subspace Direction Of Arrival Estimator for Wide-band Sources by 

Yeo-Sun Yoon, Lance M. Kaplan and James H. McClellan (Review) [20] 

This work considers a uniform linear array with M sensors and assumes that the 

frequency bands of the D sources are known [20, 38, 40]. They are also overlapped. The 

sensor outputs are decomposed either using a filter bank or FFT. The sensor output at 

frequency iω is given as 

)()()()( iiii SAx ωηωθω +=         (2.43) 
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The relation between array manifolds of different frequencies and DOAs is as follows: 

),(),(),( zzyyxx aa θωθωθω Φ=        (2.44) 

where  },...,,{),(
2 yyyyyy Mjjj

yy eeediag
τωτωτω

θω
−−−

=Φ  

The relation between frequencies and DOAs is as follows: 
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Let xi=x( iω ) where iω for i=1,2,..K is within the frequency bands of all sources. The 

number of frequency bins K is constrained by 


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


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−
≥ 3,max
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M
K  

The covariance matrix Ri can be defined as: 

IARAxxER
H

iisi

H

iii

2

,][ σ+==        (2.45) 

where ]()([,

H

iiis ssER ωω=  and R is a full rank matrix. 

There are D largest eigenvectors corresponding to D sources and their range is the same 

as the range of Ai. Let e be the ordered eigenvectors of Ri from the largest to the smallest. 

They define matrices Fi as signal range space and Wi   is the null (noise) space  

],...,[ ,2,1, Diiii eeeF =       (2.46) 

        

],...,[ ,2,1, MiDiDii eeeW ++=      (2.47) 

Then following can be specified for signal and null range spaces: 

Range {Fi}= Range {Ai} 

Range {Wi}=Null Range {Ai
H
} 
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Let ij ωωω −=∆ then, 

)}ˆ({}),({ 0 θθω ji ARangeFRange =∆Φ  

where T
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This theorem informs that a signal subspace of one frequency bin can be linearly 

transformed into that of other frequency with modified DOAs in  
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θ sinsinsin +=  

If 0θ  in )}ˆ({}),({ 0 θθω ji ARangeFRange =∆Φ  is the same as one of the dθ  in the original 

signal subspace, this DOA is preserved in the new signal subspace. 

Assume that 








−
≥ 3,max

DM

M
K  holds. 

Let Ei for i=1,2…K be Dx(M-D) matrices such that  

i

H

i

H

i WFE ),(1 θω∆Φ=  

 where 1ωωω −=∆ i . Define the Dx(M-D) matrix B such that  

B=[E2  E3   … EK] 

Then  
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Proof: As Range {Wi}=Null Range {Ai
H
} has been specified earlier then 

T

i
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id Wa 0)( =ω  

This is true for all d. We also know that 
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ATF )ˆ(),( 11 θθω =∆Φ  
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Giving the following relation 
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This is the d
th

 row where we have 0
T
. 

Since there are multiple sources then there is a possibility that one of the 

s
'θ̂ would be the same as jθ . If we use atleast three frequency bins then this ambiguity 

can be removed.  Therefore only for dθθ = ,  B becomes 
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and it loses rank. 

The estimation process is 
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1. Divide the sensor output into J identical blocks 

2. Compute FFT of each block 

3. Find ix̂ for pre-selected iω  

4. Find the signal subspace 1F̂  and noise subspace iŴ  by eigendecomposition of the 

covariance matrix iR̂  

5. Find iÊ  using i

H

i

H

i WFE ),(1 θω∆Φ=  

6. Find θ̂  such that 

})(ˆ)(ˆ{maxargˆ HBBK θθθ =  

Summary 

This method requires that preliminary estimate of the DOA that could be one of the 

angles in the estimation and number of sources need also be estimated. There is missing 

information in this work so no further study is planned at this time for this work. We may 

come back later on and have a second look at it as things progress with other work. 

Authors have extended their work for arbitrary shaped multidimensional arrays. They 

have also named this technique as Test of Orthogonality of Projected Spaces (TOPS) [20, 

38-40]. 

2. 6 A Method for Wide-band Direction of Arrival Estimation Using Frequency-

Domain Frequency-Invariant Beamformers by Tuan Do-Hong, Franz Demmel, 

Peter Russer (Review) [21-25] 

A new method for wide-band DOA estimation using arbitrary antenna array based 

on Frequency-Domain Frequency-Invariant Beamformers (FDFIB) is proposed by these 

authors [21-25]. Earlier a beam-space processing using Time-Domain Frequency-
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Invariant Beamformers (TDFIB) was proposed [22]. This method does not require 

preliminary DOA estimates and has less computational complexity than beamspace CSS 

[19].  However the frequency invariant characteristics depend on the number of antenna 

elements within the arrays, on the geometry of arrays and on the design of filters in 

TDFIB.  

In this work, Frequency-Domain Beamformers (FDBs) are used with 

appropriately designed weights at different frequencies. This ensures that beam-patterns 

of FDBs remain constant over the frequency band.  This approach is then termed as 

frequency-invariant beamformer as beam patterns are independent of the frequency.  This 

technique transforms the element-space into the beam-space and acts as spatial processor. 

DOA is then estimated using the well known narrow-band MUSIC that is applied in 

beam-space at single selected frequency. The selected frequency should also be within 

the bandwidth. 

Frequency-Domain Frequency-Invariant Beamformers (FDFIB) 

 An array of M identical elements and a beamforming network of J frequency 

domain beamformers are considered and it is assumed that there are D wide-band sources 

located in the far field. The j
th

 beam pattern is given by: 

),()()( bkk

H

jkj bwB Ω= ωωω         (2.50) 

where ),( bkb Ωω  is the steering vector and ]cos,sinsin,sin[cos bbbbbb θθφθφ=Ω with 

azimuth and elevation at the b
th

 direction. Azimuth is between -π to π and elevation is 

between 0 and π /2.  )( k

H

jw ω  is the weighting vector with weight at frequency kω  of the 

j
th

 beamformer at m
th

 antenna element.  
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The weights at each frequency are chosen such that )()( 0ωω jkj BB = .  Where 0ω  

is the focusing frequency? The weights for frequency-invariant beamformer at each 

frequency are determined as  

b
T
mb

T
m

k
d

c
jd

c
j

mkjm e
Ω+Ω−

=
0

)(

ωω

αωω       (2.51) 

Where mα is the amplitude weighting coefficients and its value as unity is suggested in 

this work? 

Wide-band Signal Model in Element and Beam-Space 

Denote x (n) as the output of the sensor arrays which is Mx1 vector.  Sensor array output 

in frequency domain can be written as: 

∑
=

+Γ=
D

d

kkddkk NSaX
1

)()(),()( ωωωω       (2.52) 

where T

dddddp ]cos,sinsin,sin[cos θθφθφ=Γ and in matrix notation above equation 

becomes: 

)()()()( kkkk NSAX ωωωω +=        (2.53) 

where A is MxD source direction matrix, S is the Dx1 vector of signals at inputs of the 

array and N is the noise matrix.  

A J-beamforming network is used and it is assumed that D is less than equal to J 

and J is less than equal to M. Output of J beamforming network in frequency domain can 

be written as: 

)()()()()()](),..(),...([)( 1 kCkkCkk

HT

kJkjkk NSAXCYYYY ωωωωωωωωω +===  (2.54) 
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where Y is Fourier coefficient of beam-space signal. )()()( kk

H

kC ACA ωωω = is source 

direction matrix in beam space, T

kJkjkk wwwC )](),..(),...([)( 1 ωωωω = is called the 

beamforming matrix and w is weighting vector of j
th

 frequency-invariant beamformer. 

 

The source direction matrix in beam-space is constant for all frequencies within 

the signal bandwidth as this beamformer is designed to be frequency-invariant.  A single 

direction matrix )( 0ωCA  can characterize the DOA for the wide-band case. It is 

customary to assume that the signals and the noise are uncorrelated. The cross spectral 

density matrix in beam-space is given by: 

)()()()}()({)( kkxk

H

k

H

kkY CRCYYER ωωωωωω ==  

where )}()({)( k

H

kkX XXER ωωω = is the cross-spectral density matrix in element-space. 

The wide-band covariance matrix in beam-space can then be written as: 
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==

==       (2.55) 

A dense grid of I angle points (or spatial frequency points) of azimuth and elevation is 

defined. For the MUSIC algorithm the DOAs are determined by searching the peak 

positions of the spatial spectrum.  
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ΓΓ
=Γ−       (2.56) 

Where U is the noise subspace matrix and is obtained from the eigenvalue computation of 

R matrix and H

Ca is the Jx1 source direction vector in beam space.  

Summary of the algorithm: 

Compute the FFT of the data to go to frequency domain 



 50 

Frequency domain data is fed to J beamformers 

Compute output of the J beamformers in parallel using steering vector and weights 

Compute covariance matrix from the outputs of J beamformers 

Compute MUSIC algorithm using a selected frequency on a dense grid of I angle points.  

The coordinates of the array (dm)  are not known. Azimuth estimation using a uniform 

circular array of 9 elements is used. The co-ordinates of the elements are normalized over 

hfc /=λ  and the radius of array r= λ . Three uncorrelated wide-band sources with 

normalized frequencies are considered. The focusing frequency 0ω  is selected at hω . 

2.7 Wide-band Direction of Arrival Estimation and Beamforming for Smart 

Antennas System by Tuan Do-Hong, Peter Russer (Review) [21-25] 

This paper is similar to the previous paper from these authors [21] and their two 

other papers [24-25] with following differences. It assumes an arbitrary Uniform Linear 

Array.  It uses a wide-band beamforming method with prescribed narrow main-beam 

width and Low Sidelobe Level (SLL) using spatial interpolation. It uses a spatial 

interpolation process consisting of two FDFIBs. The first FDFIB is based on a 

(prototype) FDFIB when the inter-element spacing of d is replaced by Nd. In this case N 

is an integer referred to as expansion factor. The required main-beam width can be 

obtained by adjusting the number N in the combination with spatial widows. The second 

FDFIB is applied at the output of the first FDFIB to attenuate grating lobes, which appear 

due to changing of the spacing. The attenuated level depends on the required SLL.  As a 

result, the beam-pattern with narrow main-beam width (due to larger spacing) and low 

SLL (due to the attenuation of the second FDFIB) are simultaneously obtained without 

increasing the number of antenna elements. The use of spatial interpolation provides for 
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the specification of main-beam width while at the same time allowing for the 

specification of SLL, one can reduce number of antenna elements and the corresponding 

RF modules, A/D converters etc., while still retaining same main-beam width and SLL as 

traditional beamforming method that requires larger number of elements.  Moreover due 

to larger inter-element spacing, the mutual coupling between antenna elements can be 

eliminated. 

Summary 

Four papers were reviewed from these authors [21-25] and they are similar in their work 

with notational changes in equations. That makes it difficult to separate their work. 

Simulation results are also somewhat similar. They have not provided a step by step 

mechanism for their algorithm. The bright part of their work is that it does not require 

preliminary estimate of the DOA. It does require array geometry and guessing of 

common frequency so their algorithm could be based on it.  

2.8  Theory and Design of Broadband Sensor Arrays with Frequency Invariant 

Beam Patterns  by Darren B. Ward, Rodney A. Kennedy, Robert C. Williamson 

(Review) [26] 

This work deals with the problem of designing a uniformly spaced array for wide 

band applications. This group of authors has published three papers in this series and they 

will be reviewed one at a time [26,29-30]. A summary of all these work will be provided 

at the end of the third review.  

Consider broad band arrays in which there is little or no frequency variation in the 

far-field array beam pattern over an arbitrarily wide desired bandwidth.  The asymptotic 

theory of unequally spaced arrays is used to derive relationships between beam pattern 
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properties and array design. Theory in this work assumes planar arrays and sources are in 

far field. Broadband FI array is defined in terms of the array beam pattern. These beam 

patterns are assumed to be identical at different frequencies and require a compound 

array of k subarrays. Subarrays are identical and their spatial coordinates are expressed in 

wavelength. There infinite number of subarrays would be required for producing an 

identical beam for wide range of frequencies. First of all a continuous sensor is developed 

which will produce frequency invariant beam pattern and then it is approximated with 

group of discrete sensors.  

First consider a one-dimensional (linear) continuous sensor aligned with the x-axis. The 

output of this continuous sensor is 

∫
∞

∞−

= dxfxfxSZ f ),(),( ρ         (2.57) 

where S is the signal received and  ρ  is the sensitivity distribution  

The ρ (x,f) is considered as the aperture distribution.  It is assumed that the 

sensitivity distribution is absolutely integrable and the integral exists for finite power 

signals.  The output of the sensor when subject to plane waves arriving from an angle θ  

is given by 

θπ sin2 1

),( fxcj
efxS

−−=  

where c is the speed of wave propagation. 

The output of the sensor is a function of  θ  and the sensor beam pattern at 

frequency f  is as follows: 

dxfxeb
fxcj

f ),()( sin2 1

ρθ θπ −−
∞

∞−
∫=  
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A wide-band frequency invariant (FI) sensor will have pattern as frequently invariant and 

is defined as , )()( θθ bb f = , for all f>0. 

The sensitivity distribution of a one-dimensional sensor, which is a function of distance x 

along the sensor and frequency f is given by  

)(),( xffGfx =ρ  for all f>0 

where G is an arbitrary absolutely integrable complex function of a single real variable.  

Then the far-field beam pattern )(θfb which is a function of the angle θ measured 

relative to broadside and frequency f, will be frequency invariant. 

ξξθθ θξπ
dGebb

cj

f )()()( sin2 1−−
∞

∞−
∫==        (2.58) 

where  ξ =xf. 

Above mathematical derivation was presented as a theorem by authors. A 

sensitivity distribution theorem was also developed by authors. Assume )(θb as an 

arbitrary continuous square integrable frequency invariant far field beam pattern which is 

specified for )2/,2/( ππθ −∈  and it determines ρ (x,f) uniquely. Then the sensitivity 

distribution ρ (x,f) of a linear sensor which realizes this beam pattern must satisfy the 

following conditions: 

1. )(),( xffGfx =ρ  for some function G. 

2. G has a Fourier transform Γ  satisfying   

Γ (s)=B(s)=b{sin 
-1

 (sc)}, )/1,/1( ccs −∈  

 Γ (s)=A(s), )/1,/1( ccs −∉  

where c is the speed of wave propagation and A(.) is an arbitrary square integrable 

function such that 
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( 1)
[( 1) / ] lim ( )

i

i

s
c

A c B s
−

→

− =  

for i=0,1 

Thus the only freedom in choosing ρ (x,f) for a desired FI beam pattern is in the 

sufficiently high spatial frequency behavior of G.  )(θb for )2/,2/( ππθ −∈  determines 

ρ (x,f) uniquely. 

Assume D-dimensional continuous sensor. Let the output of the sensor be given by 

∫=
R

f dxfxfxSZ ),(),( ρ  

The sensor has a frequency invariant far-field beam pattern if 

)(),( xfGffx D=ρ  

If G is an arbitrary absolutely integrable complex-valued function then it can be 

expressed as: 

G(xf)= )()( fHxA xf =  

A defines the aperture distribution function at a nominally fixed frequency f and H 

defines the primary filter at a single point x on the sensor. The total filtering required at a 

fixed point x can be expressed as 

)(),( fHffx x

D=ρ  

 

where Df  is considered as a secondary filter. It is independent of the sensor spatial 

vector x and it is a function of the sensor dimensions D only.  

G is a symmetric function of spatial variable x and of the frequency variable f. 

This implies that f and x can be interchanged without affecting the value of the function. 
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Their values can be varied one at a time and keeping the other constant. The primary 

filter response takes the same shape as the aperture distribution.  

If H denotes the frequency response of the primary filter at a point x and A denotes the 

aperture distribution for a given frequency then H=A. (fx) (ignoring some mathematical 

notations). 

The primary filter response required at point x can be obtained by taking a slice 

through the aperture distribution from the origin in the direction of x. The aperture 

distribution can be determined from the desired beam pattern and vice versa. The 

correspondence between aperture distribution and primary filter response is for both 

magnitude and phase. All primary filter responses in a D-dimensional frequency invariant 

broadband sensor for a given x are identical up to frequency dilation. 

If we concentrate on single sided one dimensional array apertures with the first 

element located at x=0. An array of sensors can only approximate the ideal broadband 

continuous sensor. This reduces to a numerical approximation uniformly in f to the 

following integral representing the output of the ideal continuous sensor for an arbitrary 

signal S. 

∫
∞

∞−

= dxxffGfxSZ f )(),(         (2.59) 

This is for f greater than 0. Assume {xi } denote a finite set of N discrete sensor locations. 

In approximating a finite number of sensors and limiting the range of frequency to [fL, fU] 

then we have: 

∑
−

=

=
1

0

)(),(
N

i

iiif fxGfxSgfZ         (2.60) 

S is the complex signal received at point xi. 
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G(xif) is the sampled value of G(xf) at x =xi 

 gi is a frequency independent weighting function to compensate for the possibly non-

uniform sensor locations.  

An important aspect of this broadband array design is that the array design comes from 

approximating an integral describing a broadband FI continuous sensor. A trapezoid 

integration method is used.  

Using G(xf)= )()( fHxA xf =  write the output of the primary filter attached to the ith 

sensor as 

),()()( fxSfHfy ixi i
=  

This can also written using filter dilation theorem as 

),()/()( 1 fxSfxxHfy iixi i
=  

This emphasizes that only one primary filter shape is required in the numerical 

integration approximation and is written as 

TxffyZ f

')(
~

=  

The weighting function g can be seen to relate to Tx via an un-illuminating formula. The 

weighting functions can be a function of one or more discrete sensor locations but are 

independent of the frequency. 

It is assumed that the aperture distribution is a slowly varying function with respect to x 

compared to the exponential term in dxfxeb
fxcj

f ),()( sin2 1

ρθ θπ −−
∞

∞−
∫= . 

The block diagram of general single sided one dimensional broadband FI array would 

look like a FIR block diagram.  

1. The primary filters are simple dilations of a single frequency response. 
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2. )(1
)( fxHfH =  

3. The primary filter frequency response H(f) is similar  to the continuous aperture 

distribution shape both in magnitude and phase. 

4. The primary filter outputs can be combined via frequency independent weight g 

that depends only on the sensor locations generating a scalar output. 

5. All sensors share a common secondary filtering response f to generate the final 

output. 

2.9 FIR Filter Design for Frequency Invariant Beamformers by Darren B. Ward, 

Rodney A. Kennedy and Robert C. Williamson (Review) [29] 

This work uses a Frequency Invariant Beamformer (FIB) approach and in this 

case the response of the beamformer is constant over an arbitrarily wide design 

bandwidth. Previously these authors have presented an analog technique based on 

approximating an ideal continuous aperture [26]. This filter design approach just 

described in this report.  Based on this theory, two methods namely multirate sampling 

and single sampling rate of designing FIR filters for use in an FIB are proposed in this 

paper [26, 29-30]. 

The response of a linear continuous aperture to planar waves from an angle θ  

measured to broadside was given as: 

max

0

2 sin
( , ) ( , )

x
j fx

f e x f dx
c

π θ
τ θ ρ= ∫ ) 

where ( , )x fρ is the aperture illumination.  

It is a continuous function of both location x and frequency f and c is the speed of 

wave propagation. The response remains constant if the aperture illumination is given by 
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f.G(xf), where G(.) is an arbitrary absolutely integrable function. This allows breaking of 

filtering of an FIB into two parts namely primary filter response and the secondary filter 

response. 

1. The primary filter response is  Hx(f)=G(xf) 

2. The secondary filter response f is independent of position.  

An important feature of the FI aperture is that all primary filters are related by 

dilation, i.e. if Hx(f) is the primary filter response at an arbitrary point on the aperture, 

then the primary filter response at a point 0, >γγx  is given by 

)()()( fHxfGfH xx γγγ == .        (2.61) 

The continuous aperture is approximated using numerical approximation of the 

integral described in the above equation to be able to design a practical frequency 

invariant beamformer. Let xn denote a set of N+1 sensor locations with the zeroth sensor 

located at x0=0. If we limit the frequency to the range [fL, fU], we can use the following 

approximations: 

∑
=

−

=
N

n

cfxj

nn
nefHgfr

0

sin2 1

)()(ˆ
θπθ        (2.62) 

where ˆ( )r θ  is the approximate frequency invariant response  

g is a spatial weighting term  

)()( fxGfH nn = is the primary filter response of the nth sensor.  

In other work [26], it was shown how to obtain g for the case corresponding to the 

trapezoidal integration method. The set of sensor locations can be determined by 

minimizing the number of sensors required while avoiding spatial aliasing.  

The sensor locations are given by  



 59 

,
2

( )
2 1

U

n

n PU

n

x
P

P
P

λ

λ −

 
  

=  
 
 − 

        (2.63) 

where P is the aperture length measured in half wavelength. Uλ  is the wavelength 

corresponding to the upper frequency of operation and 
















−







+=

1
loglog

P

P

f

f
PN

L

U  

Design of the primary filters 

The primary filters of an FIB have an important property of frequency dilation. It 

means that all primary filters are derived from a single reference frequency response, and 

hence all primary filter coefficients may be derived from a single set of coefficients. 

There are two design techniques described by this work and they are multirate method 

and single rate method. 

Multirate Method 

A primary filter response Href(f) at a reference location xref  having  a sampling 

period T will have href [k] as a set of l filter coefficients. The primary filters needs to have 

the required dilation property if the n
th

 primary filter response is given by 

∑
−

−−=

−=
2/)1(

2/)1(

2
][)(

L

Lk

kfTj

refn
nekhfH

π
        (2.64) 

where Tn=Txn/xref is the sampling period of the n
th

 sensor. 

Multirate sampling is generally achieved by sampling every sensor at the highest 

rate required and then use decimation to bring down the sampling rate to the desired 

sampling rate. Therefore each of the primary filters would be implemented by 

• Downsampling by refnn xx /=γ  
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• Applying the reference primary filter 

• Upsampling by nγ .  

The aperture length is defined to be P half-wavelengths at all frequencies within the 

design band. Therefore, the n
th

 primary filter is band limited with Hn(f)=0 for 

)2/( nxPcf > . If we ignore the zeroth primary filter (which has a constant response), the 

primary filter with the widest bandwidth will be located at )2/(1 Ufcx = .  It will have the 

effective bandwidth as PfU, requiring a sampling rate of fs=2PfU. The reference primary 

filter is located at xref=c/(2fU). 

Single Rate Method 

A desired primary response at some reference location will have a set of reference 

coefficients href[k] . The n
th

 set of primary filter coefficients can be obtained by first 

reconstructing the continuous time impulse response of href[k], applying the scaling 

property of the Fourier transform and resampling the scaled impulse response.  The 

primary filter coefficients are given by: 

 
( 1) / 2

( 1) / 2

1
[ ] [ ]sin ( )

L

n ref

k Ln n

m
h m h k c k

γ γ

−

=− −

= −∑  

where refnn xx /=γ  and )/()sin()(sin xxxc ππ= .  

The reference set of coefficients must first be convolved with the coefficients of a 

low pass filter having a cutoff of 2/sn fγ  to avoid temporal aliasing.  For 0=nγ , the 

reference coefficients are simply an impulse. The length of the n
th 

primary filter should be 

L nγ a predefined number of coefficients should be used to give best results. 
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If the input signal is band-limited to fU, the minimum sampling rate is fs=2fU. The 

location of the reference sensor should be such that Href(f)=0. Hence for the single 

sampling rate FIB, the reference sensor is located at xref=Pc/(2fU). 

Determining the Coefficients of the Reference Primary Filter 

With the use of fG(xf) and the change of variables in the first equation in this work. The 

Fourier transform relationship between the desired response and the aperture distribution 

is apparent. Thus given a desired response and the visible region the required distribution 

is given. The coefficient of the primary filter can be calculated with a vague method 

described by the author. The secondary filter is a differentiator and its design could be a 

Type 4 FIR filter, even length with odd symmetric coefficients. 

Simulation Example: 

Authors used an aperture length of P=4 half-wavelengths, and the design bandwidth of  

200-3400 Hz, requiring 17 sensors and a total array size of 3.4 m. A secondary filter with 

12 coefficients and a uniform aperture illumination were used in both cases. They show 

response of the multirate FIB with a maximum sampling rate of 30 kHz and a reference 

filter with nine coefficients. The single sampling rate FIB with a sampling rate of 8 kHz 

is also shown. The reference filter had nine coefficients but each of the primary filters 

had a minimum of 51 coefficients (with the larges primary filter having 151 coefficients). 

Summary 

The technique presented is for acoustic wave in the air. This approach requires 

design of set of primary filters and a secondary filter. Design process is described 

vaguely and its implementation in MATLAB would be a difficult task as of missing 

information. No further study is planned for this work. 
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2.10 Broadband DOA Estimation Using Frequency Invariant Beamforming by 

Darren B. Ward, Zhi Ding, and Rodney A. Kennedy (Review) [30] 

This technique is for wide-band focusing using time domain processing. It 

performs beamspace processing using frequency-invariant beamformers i.e. beamformers 

whose beampatterns are constant over a wide frequency band. This approach uses a set of 

appropriately designed beam-shaping filters. These filters ensure that the same array 

manifold is produced for all frequencies within the design band. The proposed estimator 

does not perform frequency decomposition. This approach exploits the FIR filtering 

based approach to implicitly perform focusing over a wide frequency band. It is a filter 

and sum approach. Authors have provided design of filters for this scheme in their earlier 

work [26, 29]. 

Frequency Invariant Beamforming 

This approach uses a filter and sum structure. The FIR filter at the m
th

 sensor has 

response as  Hm(f).  Hs(f) is an optional normalization FIR filter. The beam shape is 

constant as a function of frequency and beam shaping is performed by sensor filters. The 

response of this beamformer to plane waves arriving from an angle θ  is 

2 ( )

1

( , ) ( ) ( ) n

M
j f

s n

m

r f H f H f e
π τ θθ

=

= ∑        (2.65) 

where )(θτ n  is the propagation delay to the m
th

 sensor.  Above equation may also be 

written as: 

),()(),( fafbfr H θθ =  

Assume that each row of b(f) is an FIR filter with filter coefficients bm[nc] and 

nc=0, ….. NC-1.  These filters need to be properly design so the response of the 
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beamformer is approximately constant with respect to frequency over the design 

bandwidth giving a frequency invariant response.  

Frequency Invariant Beamspace Processing for DOA Estimation 

Consider a linear array of M sensors that are not necessarily uniformly spaced. Assume 

that D<M far field broadband signals arriving from D sources. The time series received at 

the m
th

 sensor is 

1

[ ] [ ( )] [ ]
D

m d m m

d

y k s k v kτ θ
=

= − +∑        (2.66) 

Its frequency response can be written as 

2 ( )

1

[ ] [ ] [ ]m

D
j f

m d m

d

y f e s f v f
π τ θ

=

= +∑        (2.67) 

We can define an N-dimensional vector of stacked array data and its frequency response 

can be written as: 

)()(),()( fvfsfAfy +Θ=         (2.68) 

where s(f) is the Dx1 source signal vector.  A is the MxD source direction matrix and v is 

the noise vector.  

The source signals and noise have finite bandwidth [fL,fU]. We want to determine 

the source direction from the observed array data vector y[k] over a finite time period 

n=1….N. 

Assume we apply an FIB to the received array data. The beam former output is 

1

1 0

[ ] [ ] [ ]
M NC

m m

m nc

z n b nc y n nc
−

= =

= −∑∑        (2.69) 

where b is the set of FIR filter coefficients on the m
th

 sensor. The frequency response of 

the beamformer output is  
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)()()( fyfbfz H=          (2.70) 

Assume we now form J ( D J M< ≤ ) such beamformers using J different sets of filtering 

vectors. Denote the stacked vector of beamformer response as z(f) where b is the i
th

 set of 

beam shaping filter responses. These beamformers are designed to cover a spatial vector 

in which the sources are assumed to lie, and they should have uniformly low side lobes to 

attenuate unwanted out-of-sector sources e.g. Chebyshev beamformers.  

Let C(f) be the MxJ beamforming matrix. Because the beamformers are designed to 

satisfy the frequency invariant property, the FIBs source direction matrix is 

approximately constant for all frequencies with the design band. Hence the broadband 

source directions are completely characterized by a single beamspace source matrix Ac. 

Assuming the source signals and the noise are uncorrelated the FIBS data covariance 

matrix is 

)()()()()}()({)( fRAfRAfzfzEfR v

H

cs

H

z c
+ΘΘ==     (2.71) 

The broad band FIBS data covariance matrix is now in a form in which conventional 

eigenbased DOA estimator may be applied. The eigensubspaces of noise and signals can 

be obtained and MUSIC algorithm can then be applied.  

Summary of the proposed algorithm 

Design J FIB’s that cover the selected spatial region. 

Calculate the broadband FIBs noise covariance matrix Rv (why and how in real life can 

this be calculated) 

Collect data from each of the J beamformers over the observation period n=1,…N and 

estimate the broadband FIBS data covariance matrix ˆ
z

R  using the following relation. 
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1

1ˆ [ ] [ ]
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H

z

n

R z n z n
N =

= ∑  

where z is computed using the following relation: 

1

1 0

[ ] [ ] [ ]
M NC

m m

m nc

z n b nc y n nc
−

= =

= −∑∑  

Using ˆ
z

R , we can form signal and noise subspace and use MUSIC algorithm to find 

DOAs. 

This work use 27 uniformly spaced elements with d spacing. Three FIB’s were 

designed (using FIR filters with 201 taps) to be frequency invariant over the normalized 

frequency band [0.2, 0.4] and to cover the spatial sector {80 to 100 degrees}. The 

corresponding beampattern with center frequency of 0.3 were calculated. Authors show 

results and claim that they are better than CSS and Lee’s paper. 

Summary 

This approach looks very attractive and needs some more work. It is still not clear 

as how to design these FIR filters which require more calculation and experimentation. 

We need to find a way to design these FIR filter coefficients need to be more focused and 

find a way to compute them. 

2.11 Cyclostationarity Based Coherent Methods for Wide-band-Signal Source 

Location by Giacinto Gelli and Luciano Izzo (Review) [39] 

This work exploits cyclostationarity properties existing in modulated signals and 

uses for the computation of direction of arrival and spatial filtering in congested areas. 

Signals which do not have similar cyclostationary properties do not pose problems for 

cyclic methods [39]. These methods can also be used where number of sources are 

greater than or equal to the number of sensors. This work extends the cyclic approach to 
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wide-band case and uses Cyclic Spectral Density Matrix (CSDM) for the estimating 

DOAs at different frequency values.  

Cyclic wide-band signal source location method should have following properties:  

1. Exhibit high spatial resolution 

2. Suitable to work in a multiple access scenario 

3. Capable of also working in a fully correlated environment 

4. Can potentially exploit all the Signal of Interest (SOI) bandwidths. 

This work is based on the concept of focusing transformations [2, 20-21]. Different 

array CSDMs are coherently combined into a single matrix using a common frequency.  

This is done by means of appropriate linear transformations. The resulting matrix will 

condense all the information contained in the frequency dependent array CSDMs. Then 

its signal subspace properties are used to obtain high resolution estimates of the DOAs. 

The scope of this paper is two fold: 

1. To show theoretically how the coherent or focusing approach can be applied to 

the cyclic case. 

2. To extend practical focusing techniques from the conventional to the cyclic case. 

Two techniques are proposed in this paper. 

1. It is an extension of the Wang & Kaveh’s CSS method [6-7]. It is called Cyclic 

Coherent Signal Subspace (CCSS) method. 

2. The second part uses a class of spatial resampling method and it is an extension of 

the Array Manifold Interpolation (AMI) method of Krolik [17-18]. It is renamed 

as Cyclic AMI (CAMI) 
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Both these methods can perform high-resolution wide-band signal source location 

even in fully correlated environment. They exploit all the bandwidth of the SOIs and are 

able to separate SOIs with similar characteristics. 

Background on Frequency Domain Cyclostationarity 

Second order wide sense joint characterization of two scalar zero mean discrete 

time complex valued signals requires knowledge of the cross correlations. 

)]()([),( *

2121 nxmnxEmnR xx +≅  

)]()([),( 21

*

21 nxmnxEmnR xx +≅  

where E denotes statistical averaging. 

If x1 and x2 are jointly second order cyclostationary then Rx1x2 (n,m) is a periodic function 

of n. It then allows a generalized Fourier series representation with respect to n for every 

value of m. 

∑=
α

παα nj

xxxx emRmnR
2

21

[*]

21 )(),(  

where each Fourier coefficient  

nj

xxxx emnRmR παα 2

[*]21*21 ),()( −=  

It denotes infinite time averaging, represents the cyclic cross correlation function 

and the values of α  are referred to as the cyclic frequencies. When x1(n)=x2(n), the 

above functions R reduce to the Cyclic Autocorrelation Function (CAF) and the Cyclic 

Conjugate Correlation Function (CCCF). The Fourier transform S of R is referred to as 

the cyclic cross spectral density function and cyclic conjugate cross spectral density 

function. When α =0, both R and S will reduce to the conventional cross correlation 

function and the power cross spectral density functions respectively. 
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If we assume that x1(n) and x2(n) satisfy appropriate mixing conditions, the 

functions S can be given an alternative interpretation in terms of spectral correlation. 

Then X1(v)N and X2(v)N represents their Fourier transform of finite sequences.  It results 

that  

]))](([)([
1

lim)( [*]*

21[*]21 NNxx vXvXE
N

vS αα −−=      (2.72) 

S is interpreted as the limit spectral correlation between pairs of spectral 

components of x1(n) and x2(n) spaced α  cycles apart. Such a correlation is zero for a 

wide-sense stationary signal.  

Let an array of M sensors receiving D signals and D<M which are bandlimited 

zero mean SOIs. It is assumed that sources are in far field and wavefronts are planar.  

They have common frequency spectral support and exhibit  cyclostationarity with a 

common cycle frequency. Continuous time signal received at the m
th

 array sensor will 

have the following form. 

1

( ) [ ( )] ( )
D

m d m d m

d

x t s t i tτ θ
=

= − +∑        (2.73) 

It is assumed that sensor outputs are first down converted to baseband and successively 

sampled and processed digitally. Denoting fs=1/Ts ≥ 2W the sampling frequency. Then 

the discrete time complex envelope at the m
th

 sensor is expressed as: 

2 0 ( )

1

( ) [ ( )] ( )
D

j v mk d

k d k d k

d

x n s n m e i n
π θθ −

=

= − +∑       (2.74) 

where sffv /00 =  and Tsm dkdk /)()( θτθ = . We also assume that m term is integer. 

Moreover the discrete time SOIs will exhibit cyclostationarity with discrete time cycle 

frequency   
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α .  It turns out that 

NNN vIvSvvAvX )()(),()( 0 ++≈ θ        (2.75) 

which are Fourier transform and expressed in frequency domain.  If we assume that the 

interfering and noise signals are uncorrelated with the SOIs and do not exhibit 

cyclostationarity with the considered cycle frequency α , the array CSDM defined by S is 

given by  

))]([,()(),()( 0

[*]

[*]0[*] vvAvSvvAvS
H

ssxx +−−+= αθθ αα      (2.76) 

where S is the CSDM of the SOIs and we have accounted for the Hermitian property of A 

with respect to v. Note that for α =0. The CSDM given by above equation reduces to the 

conventional array spectral density matrix (SDM). Wide-band cyclic methods which are 

based on this above equation are expected to perform well even in unknown or time 

varying interference environments.  

If we assume that there exists at least a value of v such that the array manifold is 

known and unambiguous and that the SOI CSDM has full rank D, the signal subspace 

approach can be applied to obtain high resolution estimates of the signal DOAs. The 

wide-band cyclic MUSIC method estimates the signals DOAs by resorting to the SVD 

decomposition of the array CSDM evaluated at a single value of v.  

Coherent Cyclic Methods for DOA Estimation 

Authors propose to perform a coherent combination of the array CSDMs 

evaluated in correspondence of J distinct frequency values vj, j=1,…J. Let 

NN vXvTvY )()()( =  

This represents a linear transformation of X and  T is a nonsingular MxM matrix. T 

should satisfy the following focusing condition [6-7]: 
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),(),()( 00 vvAvvAvT f +=+ θθ        (2.77) 

Where vf is a suitable focusing frequency belonging to referred focusing bandwidth 

which is symmetric to v=0. Denoting y(n) as the inverse Fourier transform of Y(v) the 

array CSDM of y(n) is given by  
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[*]

1
( ) lim [ ( ) ([ ]( )) ]H

yy N N
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S v E Y v Y v
N

α α
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= − −  

[*] [*]
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1
( ) ( ) lim [ ( ) ([ ]( )) ]* ([ ]( ))H H
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S v T v E X v X v T v
N

α α α
→∞

= − − − −  

))](([*)()()( [*]

[*][*] ααα −−= vTvSvTvS
H

xxyy  

Modifying this by using Equation 12  

),())]([,()(),()()( 0

[*]

0

[*]

[*]0[*] vvTvvAvSvvAvTvS f

HH

ssyy ++−−+= θαθθ αα   (2.78) 

),()(),()( 0

[*]

[*]0[*] vvAvSvvAvS f

H

ssfyy ++= θθ αα      (2.79) 

Note that the array CSDM at frequency v has been focused to frequency vf by means of 

the transformation T(v). Therefore all the different frequency contributions can be 

coherently combined to obtain the matrix 

)()( [*][*] vSvgR
fv

yyxx ∑
Ω∈

= αα         (2.80) 

where g(v) is a complex weight function to be suitably chosen and the discrete sum 

ranges over J frequency values belonging to fΩ .  By substituting (2.79) into (2.80) we 

get the following: 

=α
[*]xxR ),()(),( 0

[*]

[*]0 vvAvRvvA f

H

ssf ++ θθ α  

where R is the DxD matrix that combines all the focused SOI contributions. 
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If the array manifold is known and unambiguous for each v, the matrix A has full 

rank D. Then under the assumption that R also has full rank D which must be assured by 

an appropriate choice of g(v), it results that R has rank D<M and hence any signal 

subspace method can be applied to obtain high-resolution estimates of the DOAs. 

0

[*]

0 0

0

0

H

SssH

xx H

VSU U
R USV

S V

α
   

= =    
     

 

This denotes the SVD decomposition of R. where U and V are unitary matrices and S is a 

real non-negative diagonal matrix. Since R has rank D and accounting for (15) it turns out 

that 0),( 00 =+ UvvA f

H θ  and hence the maxima of the spatial spectrum 
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1
)(

0000 vvaUUvva
P

f

H

f

H ++
=

θθ
θ  

It can be utilized to determine the unknown DOAs. 

Conventional focusing methods are able to work in a multipath environment. This 

property is also extended to the cyclic case. Sss is singular at every frequency, the 

frequency averaging performed in (16) to obtain Rss removes the singularity. If we denote 

v∆ as the spacing between two consecutive frequency values, for 1<<∆v  and 

Ω≈Ω f we can write: 
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which has rank D and m0 is suitably chosen according to the signal characteristics. Since 

this approach is a sub space based approach and it requires estimation of D. Generally 

this can be done using AIC or MDL algorithms but there is an absence of noise term in 

Rxx and therefore other techniques will be required. 

Practical Focusing Strategies 

Authors suggest that T should be estimated either using the Wang & Kaveh’s 

approach [6] for single group case or use Hung & Kaveh’s approach [7-8]for multigroup 

case. In both cases preliminary estimates of DOA are required.  

A different approach which does not require preliminary DOA estimate is the 

class of spatial resampling method of Krolik  and Swingler [17-18]. Their technique 

exploits the separability of the array manifold with respect to the unknown DOA and the 

frequency. By exploiting the series of expansion of a plane wave in polar coordinates, it 

can be shown [32] that the k
th

 element of the steering vector )},({ 0vva d +θ in 

NNN vIvSvvAvX )()(),()( 0 ++≈ θ  can be expressed as: 

)cos()/()(2
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×+=+ ∑ ])(2[)},({ 00  

where ),( kkr φ are polar coordinates of the k
th

 sensor and Jn is the n
th

 order Bessel function 

of the first kind. The function J decays faster than exponentially, we can truncate the 

infinite sum as: 
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which allows one to approximately express the steering vector )},({ 0vva d +θ in separable 

form as: 

)()()},({ 00 dd wvvGvva θθ +≈+        (2.82) 

where G is an Mx2Ne matrix whose (k,n)
th

 element is 

kjnk

sn

n e
c

r
fvvJjknvvG

φπ −×+=+ ])(2[)}({ 00 for k =1,..M,  

where as w is the 2ne column vector whose n
th

 element is djn

d enw
θθ =)}({  

Therefore by substitution of (2.82), the focusing condition reduces to  

)()()( 00 vvGvvGvT f +=+  

Now T(v) can be solved without requiring any preliminary DOA estimate using G 

matrices. This method is referred as CAMI. 

Note: Number of terms in summation increases with increasing size of the array and 

increasing focusing bandwidth. 

1. For a fixed number of M it puts a limitation on the maximum number of 

terms. 

2. The accuracy will degrade as the size of the array is increased.  

Since focusing transformations basically exploit the spatial properties of the array, it is 

clear that almost every focusing technique can be extended with minor modification to 

the cyclic one. 

Summary 

This approach is based on previously reviewed two approaches of Wang & Kaveh [2,20-

21] and Krolik [17]. They proposed ways to compute DOA using above mentioned 

approach.  Authors specify another focusing matrix for use in their algorithm. One 
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drawback of their work is that they are restricting their signal to cyclostationary signals 

which is not a good assumption. We are looking more a general approach and hence we 

are not pursuing this approach at this time. 

2.12 Fabrizio Sellone,”Robust Auto-Focusing Wide-band DOA Estimation (Review) 

[31] 

Authors propose a new way of designing focusing matrices which has some robustness. It 

does not need initial estimates of DOA. He also claims that computational requirement is 

also reduced when compared to RSS and SST approach [32,33]. 
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Chapter 3 

Simulation 

 Simulation is the best way to verify the validity of any algorithm. Simulation 

program first of all requires generation of appropriate data which is reasonable for the 

algorithm under the test. The input data should also have any assumption or initial 

condition that are necessary and should be spelled out. Algorithm then needs to be coded 

properly and debugged. Obtained results should be analyzed to check validity. Results 

can then be shown in tabular form and or graphically in one dimensional or three 

dimensional forms. Plotting of results also requires appropriate plotting mechanism. In 

this work it is best to test our algorithm in MATLAB which provides mechanism to 

generate data, commands to execute any algorithm at various levels. It also has various 

ways to plot results from one dimensional to three dimensional plots. 

 

3.1 DOA estimation for narrow-band sources 

A Uniform Linear Array of sixteen equally spaced Omni-directional sensors was 

used as shown in Figure 3.1. 

 

Figure 3.1 : Uniform Linear Array of 16 elements 

Ө 
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  The spacing between sensors is 
of

c

2
, where c is the velocity of propagation and 

of  is the central frequency.   The signal sample size is 4096. The MATLAB simulation 

program first of all generates random data using two sources located at 9 and 12 degrees. 

It assumes 16 sensors located at equidistance in an Uniform Linear Array. Gaussian noise 

has been added to the signals. The signal to noise ratio is 10 dB. MATLAB simulation 

using above mentioned data generation was performed Figure 3.2 shows DOA for two 

sources in narrow-band.  
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Figure 3.2: DOA estimation for two narrow-band sources 
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3.2 DOA estimation for wide-band sources 

There are number of wide-band DOA algorithms that have been discussed in the 

previous chapter. Most popular wide-band DOA algorithms are signal subspace based 

algorithms. These subspace algorithms can further be divided into incoherent and 

coherent signal. MATLAB programs have been written for both these approaches.  

Wang and Kaveh [6, 7] proposed Coherent Signal-Subspace (CSS) method for 

detection of DOA for wide-band sources. This technique separates the wide frequency 

band into narrow-band components. The data set for this algorithm is divided into 64 

segments and each segment contains 64 samples. It also assumes an Uniform Linear 

Array of 16 sensors. The time domain samples will be transformed into frequency 

domain by applying a 64 point FFT to each of the 64 segments.  The Coherent Signal 

Subspace approach proposed by Wang & Kaveh [6] follows following computational 

steps. 

1. Compute 64 sets of 64-point FFT 

2. Compute 33 Covariance matrices (16 by 16) 

3. Computation of initial DOA estimate using MUSIC algorithm [6] 

4. Computation of 33 Focusing matrices 

5. Computation of Focus matrix 

6. Computation of number of sources 

7. Separation of Signal & Noise subspaces 

8. Compute DOA using MUSIC algorithm 

 

In order to demonstrate the performance of the DOA algorithm for wide-band 

signals, an Uniform Linear Array of sixteen equally spaced Omni-directional sensors was 

used.  The spacing between sensors is 
of

c

2
, where c is the velocity of propagation and 
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of  is the central frequency.  Two wide-band sources at DOA  1θ  and 2θ  were assumed.  

The signals are stationary zero mean band pass white Gaussian processes with central 

frequency 100of Hz=  and bandwidth 40B Hz= .  The array noise is also stationary zero mean 

band pass with the same pass band as the signal with a SNR of 10dB at each sensor.  

Source signals and the noise are random processes with a bandwidth of 40 Hz.  The 

sampling frequency is chosen to be 300 Hz.  The signal will be observed over a period of 

oT  seconds and oT  will be divided into 64=k segments.  On each of those segments, the 

array output along with corresponding noise will be decomposed into narrow-band 

components using a fast Fourier transform.  The total number of samples taken by each 

sensor will be 4096.   

The MATLAB simulation program first of all generates random data using two 

sources located at 9 and 12 degrees. It assumes 16 sensors located at equidistance in an 

Uniform Linear Array. Gaussian noise has been added to the signals. The signal to noise 

ratio is 10 dB. The data set consists of 64 segments of 64 sets of data [6]. The data is 

bandpass filtered using a Butterworth filter and has wide-band characteristics of 

containing frequencies from 80 Hz to 120 Hz.  MATLAB simulation using above 

mentioned data generation was performed Figure 3.3 shows initial estimate of DOA. It 

can be seen that it is sort of pointing towards an angle of 10.5 degrees. Using this initial 

estimate, simulation continues to perform other operations and was able to show two 

peaks at angles of 9 and 12 degrees very clearly. These two DOA peaks are shown in 

Figure 3.4.  
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Figure 3.3: Initial estimate of wide-band DOA CSS algorithm 

 

Figure 3.4: Final estimate of wide-band DOA CSS algorithm 
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Simulation program which was generated earlier for the Coherent Signal 

Subspace method has been modified to incorporate incoherent signal subspace method 

proposed by Wax [5]. The simulation program uses similar input data as was used in the 

case of CSS. Figure 3.5 shows DOA plots showing two peaks at 9 and 12 degrees as was 

obtained earlier. The only difficult part is that this approach uses lot more computation as 

MUSIC algorithm was used for each frequency and then it was averaged. 

 

Figure 3.5 : DOA estimate using incoherent signal subspace method 

Simulation program which was generated earlier for the Coherent Signal 

Subspace method has been modified to incorporate bilinear transformation algorithm as 

proposed by Shaw [8 ]. The simulation program uses similar input data as was used in the 
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case of CSS. Figure 3.6 shows DOA plots showing two peaks at 9 and 12 degrees as was 

obtained earlier.  

 

Figure 3.6: DOA estimation for wide-band sources using Bilinear Transformation  

Simulation program which was generated earlier for the Coherent Signal  

Subspace method has been modified to incorporate BASS-ALE algorithm as proposed by 

Buckley  [41]. The simulation program uses similar input data as was used in the case of 

CSS. Figure 3.7 and 3.8  shows DOA plots showing two peaks at 9 and 12 degrees as was 

obtained earlier. The only difficult part is that this approach uses lot more computation as 

MUSIC algorithm was used for each frequency and then it was averaged. 
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Figure 3.7 : DOA estimation for wide-band sources using BASS-ALE algorithm   
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Figure 3.8: DOA estimation for wide-band sources using BASS-ALE algorithm   

Simulation program which was generated earlier for the Coherent Signal 

Subspace method has been modified to incorporate wide-band DOA in time domain. We 

inserted 16 delays in each sensor data and formed a data vector of 256. This then 

translated into a covariance matrix of size 256*256. Eigendecomposition was again on a 

matrix size of 256 giving 256 eigenvalues. MUSIC algorithm was then applied to get 

similar DOA plots and two peaks. 
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 Chapter 4 

 

Analysis of Computational Requirements of Wide-band DOA 

Algorithms 

Passive detection of objects has been studied for more than 20 years [1-14].  This 

approach evades detection by others and has many applications.  There are more than 

thirty publications for wide-band detection of Direction of Arrival (DOA) algorithms 

which are available in the literature.  These algorithms are generally presented in a very 

complex or condense form, which are not easily understandable for people who are 

outside that narrow field. It is not known which class of techniques would be appropriate 

for implementing them in hardware and would be useful for real time applications.  One 

has to cut through all the mathematics and convert algorithms into simple arithmetic 

operations before architecture can be visualized. There is a need to bridge a gap between 

the design of computer hardware especially special purpose parallel architectures and 

available algorithms for various interdisciplinary problems.  

This work is the first step in sorting out which algorithm is appropriate for further 

study and for its hardware implementation for real time applications. Wide-band DOA 

algorithms available in the literature have been reviewed in Chapters 1 and 2. They are 

also simulated in MATLAB and their results are provided in Chapter 3. These wide-band 

algorithms can be divided into following categories: 

• Modal Decomposition Signal Subspace (In-coherent signal subspace) 

• Coherent Signal Subspace Method 

• Rotational Signal Subspace Method 
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• Wide-band DOA detection using focusing matrices  

• Wide-band DOA detection using beamforming approaches 

• Combination of beamforming and focusing approaches restricted to chirp or 

cyclostationary signals. 

• Use of ARMA model and Bayesian approaches 

• Use of maximum likelihood algorithms 

• Bilinear Transformation Method 

• Wide-band DOA in time domain 

 

Signal subspace approaches are very popular for computing DOA for both 

narrow-band and wide-band sources. One problem with them is that they may not be 

optimal but produce computationally efficient algorithms. Signal subspace based 

approaches are further subdivided into coherent based and incoherent based signal 

subspace approaches. Incoherent signal subspace approach decomposes signals into 

individual narrow-band frequencies and then combined them to produce final results. 

They are computationally expensive and are unable to resolve coherent sources [2, 18-

19]. Some of the subspace approaches require initial estimates. If the initial estimate is 

not accurate then final DOA will also not be accurate or may have some issues with it. 

There will also be issues with bias and variances.  

In order to implement DOA algorithm in hardware for real time applications, it is 

important to use a computationally efficient algorithm. One approach is to evaluate 

computational requirements of currently available wide-band DOA algorithms and select 

one of them for hardware implementation. An interdisciplinary research is performed for 

the development of Parallel Architectures suitable for real time wide-band digital receiver 

applications. 
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Development of wide-band DOA algorithm started with the incoherent signal 

subspace approach which is a brute force extension of narrow-band case. This approach 

works but computationally expensive. Wang & Kaveh [6] proposed a Coherent Signal 

Subspace approach which creates a focusing matrix using a single frequency. This has a 

simple transformation scheme and requires initial estimates of DOA. Results are 

reasonable and produce two peaks. Hung & Kaveh [7] extended their previous work with 

a promise of statistically better results. They introduce concept of rotational signal 

subspace making it more complex or accurate focusing matrix. The cost to their approach 

is that they added a computational step of singular value decomposition. There may be 

little improvement in accuracy of results with additional computational cost. Their work 

was simulated in MATLAB and results were obtained and were shown in Chapter 3.  

 

Shaw [8] extended work of Wang & Kaveh [6] and Hung & Kaveh [7] and 

introduced a bilinear transformation approach with certain approximation. Advantage of 

their work is that it does not require initial estimate of DOA. Their work was simulated in 

MATLAB and results were obtained. Their algorithm is very sensitive to certain 

assumptions and parameter values which make it unattractive for hardware 

implementation.  

The algorithm proposed by Ta-Sung Lee [19] and he decomposes data using 

bandpass filters into J frequency beams. It performs beamspace transformation and 

computes weights using least square method. It then computes beamspace data matrix 

and focuses on single reference frequency which would be something similar to CSSM 

method. It performs transformation into K beamspaces and forms beamspace data matrix. 
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This beamspace data matrix then focused on a single reference frequency out of J 

frequency bands. The design of beamspace data matrix is described which requires first 

design of beamforming matrices. They are again designed in a least square sense. The 

problem is then reduced to beamspace data correlation and noise matrices. Authors then 

apply their own derived root MUSIC algorithm which could be substituted with the 

MUSIC algorithm. The algorithm does not require any preliminary DOA estimates. 

This DOA estimator is suboptimum according to the author. It would also result 

in degradation in estimation accuracy at low SNR. Even with the true DOA, the DOA 

estimates may not be exactly identical as signal roots may not lay on the unit circle. The 

proposed parallelized estimator behaves as a mixture of the root-form and spectral-form 

estimator. This approach provides an excellent alternative to CSSM but frequency 

decomposition and calculations of weight and beamspace data matrices. There may be 

some alternative ways to calculate weight and compute data beamspace matrices. In the 

end it again uses something similar to MUSIC algorithm to compute DOA.  This 

algorithm was not implemented due to lack of information and we are looking into filling 

those gaps. The previously MATLAB program can easily be extended to accommodate 

this algorithm. 

 We have investigated work of Krolik and its extension [17-18]. Our program did 

not give two peaks as expected. Problems could be in missing information regarding 

transformation matrix that could lead to not getting appropriate result. Moreover their 

paper uses random processes as data which may contribute to getting two peaks in their 

case and not in our case. This technique requires computation for each steering direction 
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θ  increasing the computation requirements but eliminates the selection of initial focusing 

angle. 

The second of Krolik work uses interpolation and then decimation of input data and 

then computation of covariance matrix. Technique looks good some work need to be 

done to resolve value of B, K and L which are also assumed. Selection of B, K, and L 

may be tricky and this approach then will not be useful in a generalized case. No attempt 

was made to run MATLAB program due to above reasons. One advantage of this 

approach is that it does not require preliminary DOA estimates and iterations. 

The work of Yoon [20, 38-40] requires that preliminary estimate of the DOA that 

could be one of the angles in the estimation and number of sources need also be 

estimated. There is missing information in this work so no further study is planned at this 

time for this work. They have also named this technique as Test of Orthogonality of 

Projected Spaces (TOPS).  

Four papers were reviewed from Tuan Do-Hong and Peter Russer [21-25] and 

they are similar in their work with notational changes in equations. That makes it difficult 

to separate their work. Simulation results are also somewhat similar. They have not 

provided a step by step mechanism for their algorithm. The bright part of their work is 

that it does not require preliminary estimate of the DOA. It does require array geometry 

and guessing of common frequency so their algorithm could be based on it.  

Darren Ward et al [26, 29-30] produced a group of three papers and performs 

filter and sum beamforming in frequency invariant fashion. They proposed a design of 

FIR filter and then computed covariance matrices.  Three FIB’s were designed (using FIR 

filters with 201 taps) to be frequency invariant over the normalized frequency band [0.2, 
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0.4] and to cover the spatial sector {80 to 100 degrees}. The corresponding beampattern 

with center frequency of 0.3 were calculated. This approach looks very attractive and 

needs some more work. It is still not clear as how to design these FIR filters which 

require more calculation and experimentation. Filter specifications were not provided. 

We need to find a way to design these FIR filter coefficients which needs to be more 

focused and find a way to compute them. 

Gelli and Izzo [39] work is based on previously reviewed two approaches of 

Wang & Kaveh [2,20-21] and Krolik [17]. They proposed ways to compute DOA using 

above mentioned approach.  Authors specify another focusing matrix for use in their 

algorithm. One drawback of their work is that they are restricting their signal to 

cyclostationary signals which is not a good assumption. We are looking more a general 

approach and hence we are not pursuing this approach at this time.  

Sellone [31] proposed a new way of designing focusing matrices which has some 

robustness. It does not need initial estimates of DOA. He also claims that computational 

requirement is also reduced when compared to RSS and SST approach [32,33]. 

Wide-band DOA algorithms reviewed in Chapter 2 and simulated in Chapter 3 are 

compiled together.  This work evaluated computational requirement for various DOA 

algorithms using common data and assumptions. Computational requirements for these 

algorithms are presented in Table 4.1.  A review and challenges of these algorithms are 

summarized in Table 4.2. 

These wide-band DOA algorithms use following computational steps: 

• Generation of wide-band signals 

• Conversion of time domain signals into frequency domain via FFT. 

• Computation of covariance matrices in frequency domain. 
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• Computation of eigenvalues and eigenvectors 

• Computation of initial estimates of number of sources 

• Computation of initial estimates of DOA 

• Computation of transformation matrices and focusing on central frequency 

• Computation of eigenvalues and eigenvectors 

• Computation of number of sources 

• Computation of final estimates of DOA 

 

In this work we have identified common computational steps and they can be 

implemented in hardware. Most of these algorithms follow similar computational steps 

with some variations. These variations can be adopted if we use re-configurable approach 

and implement these algorithms in FPGAs. Chapter 5 presents hardware implementation 

of these algorithms. 
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NAME OF 

THE 

TECHNIQUE 

COHERENT 

SIGNAL 

SUBSPACE 

ROTATIONAL 

SIGNAL 

SUBSPACE 
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TRANSFORMATION 

BEAMFORMING 

INVARIANCE  

STEERED 
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RESAMPLING 

TOPS- DOA 

ESTIMATOR 

FDFIB-

BEAMFORMER 

Authors Wang & 

Kaveh [6] 

Hung & Kaveh 

[7] 

Shaw [8] Ta-Sung Lee [19] Krolik & 

Swingler [17] 

Krolik & 

Swingler [18] 

Yoon 

[20,38,40] 

Do-Hong, Russer 

[21,23-24] 
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in least square 

sense 

Inverse of 

steered 

covariance 

matrix R for 

each angle 

Compute 

covariance 

matrix for B 

samples 

Compute 

eigenvalues & 

eigenvectors for 

each frequency 

Eigen- 

decomposition 

 Eigen- 

decomposition 

Eigen- 

decomposition 

Eigen- 

decomposition 

Eigen- 

decomposition 

Spatial power 

spectral estimate 

Z for each angle  

Operations are 

performed for 

each frequency  

Define signal & 

noise subspace 

for each 

frequency 

Number of 

sources 

 Number of 

sources 

Number of 

sources 

Number of sources Number of 

sources 

Determine peak 

positions of the 

power 

Eigen- 

decomposition 

Compute 

rotational signal 

subspace 

focusing matrix 

Perform MUSIC 

on selected 

frequency 

 Compute 

DOA using 

MUSIC 

Compute DOA 

using MUSIC 

Compute DOA using 

MUSIC 

Proposes a root 

MUSIC algorithm 

for DOA 

 Number of 

sources 

Eigen- 

decomposition 

 

      Perform 

MUSIC to 

compute DOA 

Number of 

sources 

 

       Perform 

MUSIC to 

compute DOA 

 

 

Table 4.1: Computational requirements of  various wideband DOA algorithms 
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NAME OF 

THE 

TECHNIQUE 

TIME 

DOMAIN 

FIB USING 

FIR 

CYCLOSTATIONARY 

BASED COHERENT 

METHOD  

Authors Ward [26,29-

30] 

Gelli & Izzo [39] 

Computational 

steps 

Design FIR 

filters 

(primary & 

secondary) 

Compute 64 point FFT 

 Form J 

beamforming  

networks 

Compute  Covariance 

matrices 

 Covariance 

matrix 

Focusing  matrices 

 

 Eigen- 

decomposition  

Find weight function  

 Number of 

sources 

 R matrix 

 Perform 

MUSIC 

Singular value 

decomposition 

  Eigen- 

decomposition  

  Number of sources 

  Perform MUSIC 

 

 

 

 

Table 4.1: Computational requirements of  various wideband DOA algorithms (continued from the previous page)
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Name Authors Review Challenges 

Coherent signal 

subspace method 

Wang & 

Kaveh 

Utilizes linear transformation using focusing matrices 

Coherent sources can be resolved, superior detection and 

accuracy 

Vulnerable to source location bias 

Initial DOA estimates are required 

Rotational signal 

subspace method 

Hung and 

Kaveh 

Uses rotational transformation matrices 

Improves bias and performance 

Additional computation steps (SVD) 

Initial DOA estimates are required 

Coherent interpolation Bienvenu Interpolates the wavefield to emulate a spatial sampling which is 

adopted to individual frequency 

It is applicable to linear arrays and error increases with 

the increase in the spatial frequency. It will limit the 

range of DOA. 

Efficient Wide-band 

Source Localization 

Using Beamforming 

Invariance Technique 

Lee Forms J beamforming matrices 

Computes weight using least square. Focusses on single 

frequency. Uses root MUSIC 

Utilizes parallel algorithm to offset heavy polynomial 

computations. 

DOA estimator is suboptimum  

Iterative 

Too many computations and transformations from one 

computational step to another.  

Difficult to implement. 

Signal subspace DOA 

estimator 

Yoon, 

Kaplan, 

McClellan 

Assumes that the  J frequency bands of the sources are known 

Computes FFT for J blocks, compute K covariance matrices 

Compute eigenvalues & eigenvectors. 

Define signal & noise subspaces, compute focusing matrices 

Compute DOA 

 

Initial DOA estimates are required 

There is some missing information in this work 

Cyclostationary 

based coherent 

method 

Gelli & 

Izzo 

Uses focusing, transformation matrices,  weight function, and 

SVD 

Restricts to cyclostationary signals 

Spatial Resampling Krolik & 

Swingler  

Perform operation for each frequency bin (33) 

Insert zeros to interpolate 

Low pass filter using convolution 

Decimate signals 

Form covariance matrix 

Compute DOA with MUSIC 

Design of interpolator filter.  

Stability of various parameters and their selection 

Processing is done for each frequency bin 

Steered Covariance 

matrices 

Krolik & 

Swingler 

Performs FFT on input data. Computes covariance matrix for 

each frequency. Computes steered covariance matrix for each 

angle. Inverse all steered covariance matrices. Finds peak of the 

power. No eigenvalues or eigenvectors 

33 different covariance matrices 

90 different steered covariance matrices (2 matrix 

multiplication for each angles) 

90 inverse matrices 

Compute maximum power 

Extensive computations for each steered angle 

 

FDFIB Beamformer Do-Hong 

& Russer 

 

Compute FFT 

Form J beamforming networks 

Compute covariance matrices 

Perform MUSIC 

Requires array geometry and guessing of common 

frequency.  Computational steps are not very clear. 

 

Table 4.2: Reviews and challenges of various wideband DOA algorithms
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Chapter 5 
 

 

Hardware Implementation 

 

 

Various wide-band DOA algorithms available in the literature have been investigated. 

Comparative studies were performed from the computational requirement point of view. The 

goal of this study to select an algorithm or class of algorithm which will be suitable for further 

study and will be a candidate for hardware implementation for real time application. It is clear 

from this study that there are common computational modules in these algorithms and most of 

them use following computational steps: 

• Generation of wide-band signals 

• Conversion of time domain signals into frequency domain via FFT. 

• Computation of covariance matrices in frequency domain. 

• Computation of eigenvalues and eigenvectors 

• Computation of initial estimates of number of sources 

• Computation of initial estimates of DOA 

• Computation of transformation matrices and focusing on central frequency 

• Computation of eigenvalues and eigenvectors 

• Computation of number of sources 

• Computation of final estimates of DOA 

 

It can be seen that these computation requirement would require special purpose hardware in 

order that it would get executed in real time. There would also be a need to exploit parallel 

processing to speed up the computation process. There are number of ways to build hardware for 

these applications and some of the options are described as: 

 

• Commercially available Digital Signal Processor 

• Field Programmable Gate Arrays (FPGAs) 

• Application Specific Integrated Circuits (ASIC) 
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Use of commercially available DSP chips is a viable way to design DSP hardware. These 

DSP devices can either be programmed in C or Assembly language.  DSPs have general purpose 

instruction set which are mapped to the architecture in an optimal. They may not be suitable for a 

specific application. Modern DSPs offer on-chip multiply accumulate unit, multiple memories, 

specialized instruction set for signal processing applications. Generally support software is 

available from the DSP manufacturer. Some times there is access to design libraries and also 

design boards are also available. One drawback with this approach is that the algorithms are 

executed in sequential fashion and programs are stored in the memory along with the data. This 

could create a bottleneck in terms of speed of execution. DSPs are also clocked with certain 

clock frequency. This approach provides a viable way to have a proof of concept hardware. In 

order to gain more speed parallel processing can be exploited and multiple chips can be used. 

Second option of developing application specific hardware is to use FPGAs. They contain 

thousands of look up tables to store logic, hundreds of I/O blocks, on-chip memory, on-chip 

multiplier and very flexible programmable multi-standard I/O pins. There are number of 

manufacturer namely Actel, Alterra, Xilinx and others who provides these devices along with 

synthesis and design tools.  Different manufacturers use different technologies and operational 

philosophies for their devices. They provide their own proprietary design tools. The choice of 

use of a particular FPGA device family and manufacturer depends on availability of 

experimental devices, design tools, training facilities, personal preferences, application 

dependency, customer specification and most of all available expertise in an organization. There 

is a steep learning curve for these devices. Switching design from one family to another family 

of FPGA devices may again require additional training and gaining experience. 
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FPGAs are capable of implementing high performance DSP algorithm as they can provide 

multiple Giga Operation Per Second (GOPS). FPGAs are flexible, programmable and can be re-

configured infinite number of times. Another advantages of using FPGAs is   that they can be 

used to implement true parallel processing. A parallel algorithm can be implemented easily in 

FPGAs. This can help to gain speed and cut down the execution. This kind of facility or 

flexibility is unavailable in commercially available DSPs as we have to worry about scheduling 

of the parallel tasks. The operating system should also be capable of handling parallel processing 

operations and be capable of handling scheduling and load balancing to truly achieve benefits of 

parallel processing. This is not a problem in FPGAs as custom parallel algorithms can be 

configured and mapped on the FPGAs.  Various designs containing parallel algorithms can be 

experimented with the FPGAs to achieve high speed operations and optimize need for FPGA 

resources. This kind of approach can totally avoid need of schedulers and operating system with 

parallel processing capabilities. There FPGAs offer a good rapid prototyping option for computer 

intensive DOA estimation applications. 

Third option of developing special purpose hardware is with the use of Application Specific 

Integrated Circuits (ASIC). This approach is capable of producing design which are custom 

designed for speed and area. They could be hand crafted to achieve desired goal. Drawbacks for 

this approach are high design cost, very high level of design expertise, and one time 

programmability.  Other drawback would be that each ASIC would then need to be handcrafted 

for each application. Moreover device needs to be manufactured by the manufacturer themselves. 

This will take away flexibility of user programmability and ability to change designs at the last 

minute. Moreover this option is a very expensive one compared to the previous one. This 

approach is not pursued in this work. 
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Hardware Design using Digital Signal Processors 

A general purpose DSP was selected as an appropriate platform for implementation 

because of its ease of programming. Also, the DSP is the best suited for matrix and floating 

points computations. The DSP used in our implementation is a DIOPSIS™ 740 by Atmel. 

DIOPSIS™ 740 (D740) is a high performance dual-core processing platform for real time 

applications. The D740 is optimally suited for floating point applications complex domain 

computations. The ARM7TDMI embedded microcontroller core is equipped with several 

peripherals and on-chip memories. The main components of the DSP subsystem are the core 

processor, the on-chip memories and the interfaces to and from the ARM subsystem.  The mAgic 

DSP has four on-chip memory blocks: the program memory, the data memory, the data buffer, 

and the dual ported memory shared with the ARM processor. An external memory interface 

multiplexes the data accesses and the program accesses to and from the external memory. The 

program memory stores the Very Long Instruction Word (VLIW) program to be executed by 

mAgic.  

Multicore Application Development Environment (MADE) is an Integrated Development 

Environment (IDE) that can be used to develop D740 applications [43-45]. It includes the C 

compilers for both ARM and mAgic DSP based on GNU compiling tools named as GCC. The 

magic C compiler contains a DSP library composed of over 220 functions such as Fast Fourier 

Transform and IIR and FIR filter creation.  The JTST board [43-45] is low-cost, stand-alone, 

general-purpose module that provides the appropriate resources in order to evaluate D740 DSP 

performances in a wide range of applications. The JTST board provides several memories and 

other peripherals.  
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DIOPSIS™ 740 (DSP) was used as an implementation vehicle for the Coherent Signal-

Subspace algorithm proposed by Wang & Kaveh [6]. This technique separates the wide 

frequency band into narrowband components. The data set for this algorithm is divided into 64 

segments and each segment contains 64 samples. It also assumes a uniform linear array of 16 

sensors. The Coherent Signal Subspace approach proposed by Wang & Kaveh [6] follows 

following computational steps. 

• Compute 64 sets of 64-point FFT 

• Compute 33 Covariance matrices (16 by 16) 

• Computation of initial DOA estimate using MUSIC algorithm [14] 

• Computation of Focus matrix 

• Computation of number of sources 

• Separation of Signal & Noise subspaces 

• Compute DOA using MUSIC algorithm 

 

The covariance matrices for all the frequency components are estimated and combined to 

form a single focused covariance matrix. The narrowband MUSIC algorithm can then be applied 

to the resulting focused covariance matrix. It can be seen that the CSS algorithm is based on 

matrix computations and orthogonal transformations, which are computationally intensive. The 

eigendecomposition problem is a very important part of this DOA estimation algorithm. Finding 

the eigenvalues and eigenvectors of the covariance matrix is needed to construct the signal and 

noise subspaces that the CSS algorithm will use. The Householder and QR algorithms [43] can 

be used to compute the eigenvalues and eigenvectors of the symmetric covariance matrix. The 

Householder algorithm is used to reduce the bandwidth of the covariance matrix by transforming 

it into tridiagonal form. The eigenvalues and eigenvectors can then be computed using the QR 
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algorithm. The computational cost needed for computing the eigenvalues and eigenvectors of a 

tridiagonal matrix will be much smaller than that of the original symmetric matrix.  

A parallel architecture capable of improving the performance of the coherent signal 

subspace algorithm was proposed. The computation time of the proposed architecture was 

measured and compared with the single DSP implementation. The results showed that the 

parallel architecture yielded the same results, while providing superior performance. One of the 

limitations of the proposed architecture was the use of static matrices. This implied that the 

number of sensors and sources was known in advance. It also implied that the system would not 

be able to detect a greater number of sources without major modifications in the source code. 

Using dynamic matrices would allow the system to easily adapt to the number of sources to be 

detected. Table 5.1 shows the comparison between the computation time of the single DSP and 

the computation time of the parallel architecture. 

Single DSP Parallel architecture Task 

Cycles Seconds Cycles Seconds 

Covariance matrix 1400000 0.014 42000 0.00042 

Householder 2600000 0.026 30000 0.0003 

QR 100000000 1 2100000 0.021 

Power spectrum 1400000 0.014 47000 0.00047 

Total 210000000 2.1 5300000 0.053 

 

Table 5.1 : Performance results for single DSP and parallel architecture 

 

Details of DSP based implementation are provided in the second volume of this report. A 

conference paper based on this design has been accepted for presentation at the 2007 IEEE Radar 

Conference. A copy of the paper is provided in Appendix I. 

 

FPGA based Design 
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FPGAs can be used to implement wide-band DOA algorithms. This approach will provide 

shorter time to design, chance to exploit parallel processing to squeeze all the processing power 

and a chance to reconfigure to accommodate other designs. In this work, we have chosen to use 

Xilinx’s FPGAs for multiple reasons. Most of all, it was easy to access design tools to work with.  

A Field Programmable Gate Array (FPGA) is a general purpose integrated circuit. It is user 

programmable and provides flexibility and reconfigurability.  Xilinx’s FPGAs [46] use static 

RAM to keep their configuration environment. A bitstream file is created and downloaded into 

RAM for FPGAs. They are used to provide their configuration. If another design need to be used 

then another file can be downloaded as bitstream file and FPGA will use that configuration.  

 

Xilinix provide excellent design tools and these tools are also available for research work. 

Main design tool consists of behavioral simulation, synthesizer to perform functional simulation, 

implementation for timing simulation and download feature for in-circuit verification. There are 

two mechanisms to provide initial design specifications to the design tool.  

First of all we need to describe any design in a hardware descriptive language. In our case we 

use Very High Speed Integrated Circuit Hardware Descriptive Language (VHDL) which is an 

industry and IEEE standard. The VHDL code is fed to Xilinx’s synthesizer which performs 

synthesis and provides mapping, timing, placement in a bit stream file.  Xilinx tool [46] will 

transform VHDL codes into standard FPGA components such as Look Up Tables (LUTs), 

outputs F and Gs from the LUTs  and FFs. It would yield a fuse file to program the FPGA. 

Synthesis tools should be also be fast, cost effective and technology independent. This approach 

reduces risk and last minute changes can be made to the design. It also optimizes for area or 
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speed. If one is satisfied with the synthesis then one can move on to downloading and perform 

hardware development using actual FPGA chip.  

 

One drawback of this approach is that the Xilinx synthesizer does not recognize floating 

point and complex numbers. Wide-band DOA algorithms heavily rely on floating point and 

complex numbers. It would require translating of all these data types to integer using other 

software available else where. The problem with this approach is that we can quickly loose 

control of our design and get bog down with so many details. The other problem is that this 

approach requires very high skill level of VHDL programming. It is not advisable to pursue this 

approach due to inefficiencies in the synthesizer. 

 

There is an alternate mechanism which is the result of partnership between Mathworks [47] 

and Xilinx [46] Corporations. They provide a System Generator software. This software would 

take a design in MATLAB/Simulink code and system generator would provide a VHDL code 

which that can be used with the Xilinx’s design tools (synthesizer). This will by pass writing of 

VHDL code. System generator also provides converter blocks for converting floating point 

numbers to standard bit-vectors and vice versa. This feature eliminates the need for special 

routines for dealing and redefining the floating point and complex numbers.  

  

System Generator [47] is used to create design in Simulink, simulation capabilities in a 

graphical environment. It allows connection of subsystems to form a larger system. System 

Generator has a library of blocks some times called cores and allows incorporation of user 

defined blocks in VHDL. Library provides blocks for multipliers, arithmetic operations, 
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memories, buffers, up/down data rate converters, counters, input/output ports and other blocks 

etc.  It provides a capability to implement the designing onto FPGAs. The output of the System 

Generator is VHDL which is used by the synthesizer. 

 

System generator approach is very attractive and is an excellent technique for designing 

specialized hardware for DSP application. It would be extremely beneficial for us to convert our 

wide-band DOA algorithm code and re-develop Simulink code. System generator also offers 

some pre-developed cores which can be used for initial rapid prototyping. This work is using 

System Generator software for developing FPGA based hardware. The hardware design work 

using FPGAs is in progress.  

 

 

FFT Implementation 

First computational block in most of the wide-band DOA algorithms is computation of Fast 

Fourier Transform (FFT). Most of algorithms and our MATLAB program use 64-point FFT. 

This FFT block is used continuously. It would be appropriate to investigate best way to design 

FFT block. Its implementation is well researched, documented and widely available in the 

literature.  There are number of DSP and other chips are also available for its computation.  Most 

of these high-performance FFT chips employ parallel arithmetic units and cascaded structures 

with varying processing time. Cascaded structures provide pipelining and parallel processing 

capabilities and provide good cost-performance tradeoff. First of all it is proven and documented 

that FFT computation using radix-4 would provide efficient implementation when compared to 

radix-2 implementation. It is proposed that we should use radix-4 implementation which would 
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be appropriate in our case as the only restriction in radix-4 algorithm that the number of points 

should be power of 4. It is true in our case as we would like to compute 64-point FFT and it is 

power of 4. Literature search was conducted and two following interesting work were found: 

• COBRA: A 100-MOPS Single-Chip Programmable and Expandable FFT by Tom Chen, 

Glen Sunada, and Jian Jin [27] 

 

• An Expandable Column FFT Architecture Using Circuit Switching Networks by Tom 

Chen and Li Zhu [28] 

 

These techniques offer interesting structure that need to be modified and adopted for FPGA 

implementation. Following building blocks would be required. 

 

1. An array of 16 bit radix-4 butterfly processors. 

2. 128*128 crossbar switch matrix 

3. 128-element data exchange block 

4. 128-element input/output (I/O) memory 

5. Controller 

 

 

This approach would require design of highly parallel butterfly processor and an 

interconnection mechanism using crossbar switch matrix concept. The I/O memory block should 

be divided into two sub-blocks: input memory block and the output memory block. The memory 

sub-block is further subdivided into two sections: one for real part of a 64-point complex input 

vector and another for the imaginary part. Loading of input data, circulating of intermediate data 

and sending out the output data should be considered and design in an optimal way. This detailed 

design work has not been pursued and at this time we will use available block from the System 

Generator for FFT computation.  

The work on other computational block is in progress and would be reported at the end of 

this contract.  
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Chapter 6 

 

Conclusions  

 
This work performed a review of wide-band DOA algorithms in the literature which was 

accumulated for more than 30 years [1-41].    There are more than fifty  publications for wide-

band detection of Direction of Arrival (DOA) algorithms which are available in the literature. 

We have reviewed the most relevant one and have not reviewed others which will not be 

applicable or suitable from hardware implementation. These algorithms were generally presented 

in a very complex or condense form, which are not easily understandable for people who are 

outside that narrow field. One of the reason for their complex representation is due to their 

publication in IEEE transactions and conference. These transactions generally prefer highly 

mathematical papers and sometimes authors insert mathematics so chances of their papers are 

increased. Another reason for condense reporting is that these papers face a page limit. Therefore 

algorithms need to be accommodated within those guidelines and also comply with the reviewers 

comments. One unfortunate thing happens in this process that essential information does not get 

into the papers and there is always missing information. This missing information is acute in our 

case as we are looking for hardware implementation point of view and we are ignoring details of 

statistical results and errors which are irrelevant in our case. We are willing to sacrifice small 

amount of error in order to accomplish the goal of implementing them in hardware for real time 

applications. 
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We have discovered a class of computational requirements that would be required in all 

these algorithms as was summarized in Table 4.1. We have also given reviews and challenges in 

Table 4.2. 

We were able to cut through all the mathematics and converted algorithms into simple 

arithmetic operations. This step is very useful in visualizing an architecture. We have filled a gap 

between the design of computer hardware especially special purpose parallel architectures and 

available algorithms for various interdisciplinary problems.  

This work was the first step in sorting out which algorithm is appropriate for further 

study and for its hardware implementation for real time applications. We have developed some 

hardware as described in Chapter 5 and Volume 2 of this report. Work is in progress for 

implementation of identified computational steps.  

This work can be extended to develop re-configurable test-bed environment for 

investigative studies for various algorithm. The re-configurable test-bed would be useful to study 

timing, memory, hardware requirement and accuracy of results from various algorithms. This 

test-bed would also be useful in evaluating different number of sensors and different kind of 

sensors. This test-bed would also be a technology scalable system and would become useful in 

deployment hardware. 
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Abstract 

There is a need for the computation of 

Direction of Arrival (DOA) for wideband sources for 

number of applications. There are number of 

algorithms available in the literature for wideband 

case however we focus on Coherent Signal Subspace 

method proposed by Wang and Kaveh.  Most 

algorithms available in the literature follow some 

variation of CSS algorithm thereby increasing 

computational complexity in an effort to get more 

accurate, statistically stable and unbiased DOA. We 

are interested in computing DOA for wideband 

sources in real time. We chose CSS algorithm and 

investigated possibility of implementing it using 

commercially available Digital Signal Processor 

(DSP) in an effort to achieve real time capability.   

DSPs offer flexibility, ease of development of 

embedded system, reduces design cost and offers use 

of high-level programming language such as C. In 

this work, we propose a DSP based architecture for 

detecting and estimating the DOA of wideband 

sources. It is known that DOA algorithms require 

computation of eigenvalues and eigenvectors. It 

would be best to find computational friendly 

algorithm for the computation of eigenvalues and 

eigenvectors. In this work eigenvalues and 

eigenvectors are computed using well known 

Householder and QR algorithms. CSS algorithm is 

then implemented in C and executed on DIOPSIS™ 

740 by Atmel. DIOPSIS™ 740 (D740) is a high 

performance dual-core processing platform for real 

time applications. The CSS algorithm was then 

parallelized and a parallel architecture was then 

developed.  This paper presents parallel architecture 

using  DIOPSIS™ 740 (D740) and computes 

performance parameters.  

I. Introduction 

Array processing has been an important part 

of signal processing in the past few decades [1-2]. 

The array consists of sensors located at different 

points in space with respect to a reference point. 

Direction of Arrival (DOA) denotes the direction 

from which the wave fields arrive at the sensor array. 

The goal in DOA detection and estimation is to 

accurately determine the number of sources 

producing waveforms and the locations of those 

sources.  There are number of publications available 

in the literature for detection of directional of arrival 

for wideband sources. [1-15]. Wang and Kaveh [1] 

proposed Coherent Signal-Subspace (CSS) method 

for detection of DOA for wideband sources. This 

technique separates the wide frequency band into 

narrowband components. The data set for this 

algorithm is divided into 64 segments and each 

segment contains 64 samples. We also assume a 

uniform linear array of 16 sensors. The Coherent 

Signal Subspace approach proposed by Wang & 

Kaveh [1] follows following computational steps. 

 

9. Compute 64 sets of 64-point FFT 

10. Compute 33 Covariance matrices (16 by 16) 

11. Computation of initial DOA estimate using 

MUSIC algorithm [14] 

12. Computation of Focus matrix 

13. Computation of number of sources 

14. Separation of Signal & Noise subspaces 

15. Compute DOA using MUSIC algorithm 

The covariance matrices for all the 

frequency components are estimated and combined to 

form a single focused covariance matrix. The 

narrowband MUSIC algorithm can then be applied to 

the resulting focused covariance matrix. It can be 
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seen that the CSS algorithm is based on matrix 

computations and orthogonal transformations, which 

are computationally intensive. The 

eigendecomposition problem is a very important part 

of this DOA estimation algorithm. Finding the 

eigenvalues and eigenvectors of the covariance 

matrix is needed to construct the signal and noise 

subspaces that the CSS algorithm will use. The 

Householder and QR algorithms [16-17] can be used 

to compute the eigenvalues and eigenvectors of the 

symmetric covariance matrix. The Householder 

algorithm is used to reduce the bandwidth of the 

covariance matrix by transforming it into tridiagonal 

form. The eigenvalues and eigenvectors can then be 

computed using the QR algorithm. The 

computational cost needed for computing the 

eigenvalues and eigenvectors of a tridiagonal matrix 

will be much smaller than that of the original 

symmetric matrix.  
II. DSP Implementation  

 

To implement this algorithm in real-time, 

hardware capable of executing millions of operations 

per second is required. A general purpose DSP was 

selected as an appropriate platform for 

implementation because of its ease of programming. 

Also, the DSP is suitable for matrix and floating 

point computations. The DSP used in our 

implementation is a DIOPSIS™ 740 by Atmel. 

DIOPSIS™ 740 (D740) is a high performance dual-

core processing platform for real time applications 

[18]. The D740 is optimally suited for floating point 

applications complex domain computations. The 

ARM7TDMI embedded microcontroller core is 

equipped with several peripherals and on-chip 

memories. The main components of the DSP 

subsystem are the core processor, the on-chip 

memories and the interfaces to and from the ARM 

subsystem.  The mAgic DSP has four on-chip 

memory blocks: the program memory, the data 

memory, the data buffer, and the dual ported memory 

shared with the ARM processor. An external memory 

interface multiplexes the data accesses and the 

program accesses to and from the external memory. 

The program memory stores the Very Long 

Instruction Word (VLIW) program to be executed by 

mAgic.  

 

Multicore Application Development 

Environment (MADE) is an Integrated Development 

Environment (IDE) that can be used to develop D740 

applications [18]. It includes the C compilers for both 

ARM and mAgic DSP based on GNU compiling 

tools named as GCC. The magic C compiler contains 

a DSP library composed of over 220 functions such 

as Fast Fourier Transform,  IIR and FIR filter 

creation.  The JTST board [18] is low-cost, stand-

alone, general-purpose module that provides the 

appropriate resources in order to evaluate D740 DSP 

performances in a wide range of applications. The 

JTST board provides several memories and other 

peripherals.  

CSS computation 

There are 33 covariance matrices in this 

algorithm and the covariance matrix for each 

frequency component is computed.  The main issue 

resides in forming the matrix X containing all 

samples of one frequency components. Samples 

related to each frequency are spread across the 64 

matrices and need to be put in the same matrix.  This 

can be done by using the memory transfer function to 

transfer each of the data matrices and then store the 

row corresponding to the frequency needed.  Figure 1 

shows that computation process for the frequency 

component ow . 

Using the periodicity and symmetric 

properties of the FFT, it is possible to have all the 

information needed by selecting frequencies ow  

to 32w .  The process above is repeated for each of the 

33 covariance matrices.  The eigenvalues and 

eigenvectors of a symmetric matrix are computed 

using the Householder and QR algorithms [16-17]. 

However, these algorithms cannot be directly applied 

to the covariance matrix as it is a Hermitian matrix. 

Solving this problem requires the conversion of the 

Hermitian matrix into a real symmetric matrix.  It 

should be noted that Hermitian matrices have real 

eigenvalues. The power spectrum is computed to 

obtain an initial estimate for the DOA. The column 

vectors forming the noise matrix are the eigenvectors 

associated with the M-D lowest eigenvalues, where 

M is the number of sensors and D is the number of 

sources.  The number of sources has been determined 

using the MDL algorithm and initial DOA estimates 

are obtained [14-15]. The computational process 

continues for the computation of focus matrix, 

computation of eigenvalues & eigenvectors, 

computation of number of sources and then final 

computation of DOA estimate. 
 III. Parallel Architecture for Coherent Signal Subspace 

Algorithm 

  

A method for computing the covariance 

matrices and other modules using a single DSP was  
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Figure 1: Data transfer scheme from external memory to local memories 

 

 

 
 

Figure 2: Parallel architecture for coherent signal subspace algorithm 
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presented earlier.  This method can be improved 

upon. by using one DSP to perform computation 

related to each frequency bins. This would 

require computation of 33 covariance matrices.  

All 33 DSPs share the same external memory.  

Figure 2 shows its parallel architecture. 

Processors can initiate a DMA transfer from the 

external memory to their local memory.  The 

address used during the transfer is the address of 

the row containing the samples at a particular 

frequency and the number of elements 

transferred is the number of elements contained 

in the row.  The DMA transfer for the first 

matrix is shown above in Figure 3. 

 

After a DMA transfer is complete, 

another transfer will be initiated for a different 

segment matrix.  This process is repeated for all 

64 matrices (segments) in external memory.  The 

execution time will be the same for each 

processor.  This execution time can be further 

reduced by computing only the lower triangular 

part of the covariance matrix.  Since the 

covariance matrix is Hermitian, the information 

contained in the lower triangular part is sufficient 

to form the entire matrix.  Using a single DSP 

approach, a total of 64 x 33 DMA transfers of 

256 elements each were required.  The 

parallelized process only requires 64 transfers of 

16 elements each, which should result in 

increased performance. 

 

 Using certain properties of the 

Householder matrices, it is possible to parallelize 

the process.  This observation will allow us to 

create parallel architectures for both the 

Householder and QR methods. The Householder 

method consists of transforming a symmetric 

matrix into tridiagonal form using the following 

transformations  

2 2 1 1 2 2n n− −=B H H H AH H HK L  

The orthogonal transformation will be 

accumulated in a matrix Q in order to recover the 

eigenvectors of the original matrix A.  This can 

then be written as =B QAQ .  It can be shown 

that the product HA could be computed using n 

parallel processors if H was a Householder 

matrix. As a result, 2 1H H A  and 

2 2 1n−H H H AK  can also be computed with n 

processors. The tridiagonal matrix will be the 

result of the product  of two sequences. After 

execution of the Householder algorithm, matrix 

A is the tridiagonal matrix and matrix Q contains 

the product of all the orthogonal transformations. 

 

The QR method is based of the use of 

the following orthogonal transformations 

1 2 1n−=R H H H AK  and  

1 2 1n−=Q H H HK  

We can compute R and Q using n parallel 

processors. The next step involves the 

computation of the matrix A = RQ and the 

computation of a matrix X containing the 

product of the orthogonal transformations 

1 2 m
Q Q QL ,where m is the number of 

iterations. These computations can be done using 

a single DSP. This process will start over until 

the number of iterations required for a good 

approximation has been reached. After execution 

of the QR algorithm, the matrix A contains the 

eigenvalues of the original matrix along its 

diagonal and matrix X contains the eigenvectors 

of the tridiagonal matrix.  The eigenvectors of 

the original matrix can be obtained be 

multiplying the matrix Q obtained in the 

Householder process and matrix X. 

 

The power spectrum needs to be 

computed for every angle between 0 and 90 

degrees. Each spectrum value can be computed 

by sending the matrix containing the 

eigenvectors, the number of sources and the 

angle of arrival to a specific processor. The DSP 

can then compute the power spectrum and send 

the results back to external memory. By sending 

3 angles values to 30 of the 33 available DSPs, it 

is possible to reduce the time needed to compute 

the power spectrum by a factor of 30.  

VI. Simulation 

In order to demonstrate the performance 

of the DOA algorithm for wideband signals, a 

uniform linear array of sixteen equally spaced 

Omni-directional sensors was used.  The spacing 

between sensors is 

of

c

2
, where c is the velocity 

of propagation and of  is the central frequency.  

Two wideband sources at   1θ  and 2θ  were 

assumed.  The signals are stationary zero mean 

band pass white Gaussian processes with central 

frequency 100of Hz=  and bandwidth 40B Hz= .  

The array noise is also stationary zero mean band 

pass with the same pass band as the signal with a 

SNR of 10dB at each sensor.  Source signals and 
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the noise are random processes with a bandwidth 

of 40 Hz.  The sampling frequency is chosen to 

be 300 Hz.  The signal will be observed over a 

period of oT  seconds and oT  will be divided 

into 64=k segments.  On each of those 

segments, the array output along with 

corresponding noise will be decomposed into 

narrowband components using a fast Fourier 

transform.  The total number of samples taken by 

each sensor will be 4096.  Simulation data is 

similar to the method described by Wang & 

Kaveh [1]. 

 

 The time domain samples will be 

transformed into frequency domain by applying 

a 64 point FFT to each of the 64 segments.  Due 

to the memory limitation of the DSP, the output 

data will be saved in the external memory as 

sixty four 64x16 matrices, where each matrix 

represents the output for each of the 64 

segments.  This is done using a memory transfer 

from local to external memory. 

 

The previous simulation created for 

single DSP was used again for the case of the 

parallel DSP architecture. This was done to 

measure DOA and compare their performances. 

The parallel architecture was simulated using a 

single DSP by executing the parallel processes 

sequentially. However, the performance would 

be measured using the longest running process in 

that sequence in terms of number of clock cycles. 

The purpose of the simulations was to detect and 

estimate the DOA of two sources located at 
°20  

and 
°60 using 40 iterations for the QR 

algorithm. Figure 4 shows the simulations 

results.  It can be seen that both techniques 

yielded the same results. The performance 

analysis showed that the most computationally 

intensive tasks were the QR algorithm, the 

Householder algorithm and the power spectrum 

computation. Table 1 shows the comparison 

between the computation time of the single DSP 

and the computation time of the parallel 

architecture.  

The total number of cycles for both the single 

DSP and the parallel architecture includes tasks 

that could not be parallelized and are not listed in 

the table. The total execution time for the parallel 

architecture is 0.05 seconds, compared to 2.1 

seconds for the single DSP. This is due to the 

fact that the execution time for QR algorithm, 

which accounts for approximately 95% of the 

whole process, was significantly reduced using 

the parallel architecture.  

VII. Conclusion 
The coherent signal subspace algorithm 

was chosen for the implementation because of its 

high resolution; the platform selected was an 

Atmel Diopsis740 DSP. A parallel architecture 

capable of improving the computational time of 

the coherent signal subspace algorithm was 

proposed. The computation time of the proposed 

architecture was measured and compared with 

the single DSP implementation. The results 

showed that the parallel architecture yielded the 

same results, while cutting computational time. 

One of the limitations of the proposed 

architecture was the use of static matrices. This 

implied that the number of sensors and sources 

was known in advance. It also implied that the 

system would not be able to detect a greater 

number of sources without major modifications 

in the source code. Using dynamic matrices 

would allow the system to easily adapt to the 

number of sources to be detected. 
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Figure 4: Power spectrum for final DOA estimate of angles 
°= 201θ and

°= 602θ using single and 

parallel DSP approach 

Single DSP Parallel architecture Task 

Cycles Seconds Cycles Seconds 

Covariance matrix 1400000 0.014 42000 0.00042 

Householder 2600000 0.026 30000 0.0003 

QR 100000000 1 2100000 0.021 

Power spectrum 1400000 0.014 47000 0.00047 

Total 210000000 2.1 5300000 0.053 

 

Table 1 : Performance results for single DSP and parallel architecture 
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Abstract 

 

There are an extensive number of wide-band 

DOA algorithms available in the literature. If one needs to 

implement embedded hardware for a real-time application, 

there is a daunting task of identifying an appropriate 

algorithm. We can accept a small amount of error in the 

hope of getting hardware which can execute these 

algorithms and provide results in real-time for a given 

application. This work is a first step in sorting out which 

algorithm will be appropriate for hardware implementation 

and presents some quantitative comparisons of these 

algorithms. 

 

Introduction 

 

Passive detection of objects has been studied 

for more than 30 years [1-13] and references within 

them.   There are more than sixty publications for 

wide-band detection of Direction of Arrival (DOA) 

algorithms which are available in the literature.  

These algorithms are generally presented in a very 

complex or condensed form, which are not easily 

understood by people who are outside that narrow 

field. It is not known which class of techniques 

would be appropriate for implementing in hardware 

and would be useful for real-time applications.  One 

has to cut through all the mathematics and convert 

algorithms into simple arithmetic operations before 

the architecture can be visualized. There is a need to 

bridge a gap between the design of computer 

hardware, especially special purpose parallel 

architectures and available algorithms for various 

interdisciplinary problems.  

 

This work is the first step in sorting out 

which algorithm is appropriate for further study and 

its hardware implementation in real-time 

applications. Wide-band DOA algorithms appropriate 

to our needs have been reviewed and have been 

simulated in MATLAB.  These algorithms can be 

divided into following categories: 

• In-coherent Signal Subspace  

• Coherent/rotational  Signal Subspace (CSS)  

• CSS using  other focusing matrices  

• DOA detection using beamforming  

• Combination of beamforming and focusing 

approaches  

• Use of ARMA model and Bayesian 

approaches 

• Use of maximum likelihood algorithms 

• Bilinear Transformation Method 

 

Signal subspace approaches are very popular 

for computing DOA for both narrow-band and wide-

band sources [1-6]. One problem with them is that 

they may not be optimal but they produce 

computationally efficient algorithms. Signal subspace 

based approaches are further subdivided into 

coherent based and incoherent based signal subspace 

approaches. Incoherent signal subspace approaches 

decompose signals into individual narrow-band 

frequencies and then combine them to produce the 

final results. They are computationally expensive. 

Some of the subspace approaches require initial 

estimates. If the initial estimate is not accurate then 

the final DOA will also not be accurate and there will 

be issues with bias and variances.  

 

In order to implement a DOA algorithm in 

hardware for real-time applications, it is important to 

use a computationally efficient algorithm. One 

approach is to evaluate the computational 

requirements of currently available wide-band DOA 

algorithms and select one of them for hardware 

implementation.  

 

Wide-band DOA Algorithms 

Development of wide-band DOA algorithm 

started with the incoherent signal subspace approach 

which is a brute force extension of the narrow-band 

case and is computationally expensive. Wang & 

Kaveh [5] proposed a Coherent Signal Subspace 

Method (CSSM) which creates a focusing matrix 

using a single frequency. This has a simple 

transformation scheme and requires an initial 

estimate of the DOA. Results are reasonable and 

produced peaks at the appropriate DOA. Hung & 
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Kaveh [6] extended their previous work with a 

promise of statistically better results. They introduce 

the concept of a Rotational Signal Subspace (RSS) 

producing a more complex or accurate focusing 

matrix. This required the additional computational 

step of singular value decomposition. There may be 

little improvement in accuracy of the results.  Shaw 

[7] extended the work of Wang/Hung & Kaveh [5-6] 

and introduced a bilinear transformation approach 

with certain approximation. The advantage of their 

work is that it does not require an initial DOA 

estimate.  Their algorithm is very sensitive to certain 

assumptions and parameter values which make it 

unattractive for hardware implementation.  

Krolik et al.  [8] introduced the computation of a 

steered covariance matrix for each angle, then 

inverted the covariance matrices to find peaks of the 

power. He eliminated the need of eigen-

decomposition and selection of an initial focusing 

angle. This technique requires computation for each 

steering direction θ  increasing the computation 

requirements.  His extended work [9] uses 

interpolation and then decimation of the input data 

followed by computation of the covariance matrix. 

The technique looks good but some work needs to be 

done to resolve some of the parameters as their 

selection may be tricky.  This approach may not be 

useful in a generalized case. It also eliminates 

preliminary DOA estimates. 

Ta-Sung Lee [10] decomposes received data 

using bandpass filters into J frequency beams. His 

algorithm performs beamspace transformation and 

computes weights using a least square method. It then 

computes a beamspace data matrix and focuses on a 

single reference frequency which would be 

something similar to CSSM method. It performs 

transformation into K beamspaces and forms the 

beamspace data matrix. This beamspace data matrix 

is then focused on a single reference frequency out of 

J frequency bands. The design of the beamspace data 

matrix is described which first requires design of 

beamforming matrices. The weights are again 

designed in a least square sense. The problem is then 

reduced to beamspace data correlation and noise 

matrices. The authors then apply their own derived 

root MUSIC algorithm which could be substituted 

with the MUSIC algorithm. The algorithm does not 

require any preliminary DOA estimates. This DOA 

estimator is suboptimum according to the author. It 

would also result in degradation in estimation 

accuracy at low SNR. Even with the true DOA, the 

DOA estimates may not be exactly identical as the 

signal roots may not lay on the unit circle. This 

approach provides an excellent alternative to CSSM 

except for the frequency decomposition and 

calculations of weight and beamspace data matrices.  

 

 

Tuan Do-Hong et al.  [11] first compute the 

FFT then form beamforming networks, compute 

covariance matrices, and then perform MUSIC. They 

require array geometry and guessing of a common 

frequency. Daren et al. [12] performs filter and sum 

beamforming in a frequency invariant fashion. They 

proposed a FIR filter design and then computed 

covariance matrices.  Three FIB’s were designed 

using FIR filters in a frequency invariant fashion 

covering the normalized frequency band and the 

spatial sector. This approach looks very attractive and 

needs some more work. Filter specifications were not 

provided. We need to find a way to design these FIR 

filter coefficients and a more focused way to compute 

them. Sellone [13] proposed a new way of designing 

focusing matrices which has the same robustness. It 

does not need initial estimates of DOA. He also 

claims that the computational requirement is also 

reduced when compared to the RSS and SST 

approach. The work of Yoon [14] requires a 

preliminary estimate of the DOA that could be one of 

the angles in the estimation and the number of 

sources need also needs to be estimated. They 

compute K covariance matrices, eigenvalues and  

eigenvectors. They form signal & noise subspaces 

and compute focusing matrices. Finally they find the 

DOA. They have also named this technique as Test 

of Orthogonality of Projected Spaces (TOPS).  

 
Algorithm Challenges 

CSSM [5] Initial DOA estimates are required 

RSS [6] Additional SVD step and initial DOA is 

required 

Beamforming 

Invariance [10] 

DOA estimator is suboptimum  and iterative 

 

DOA estimator 

[14] 

Initial DOA estimates are required 

Spatial 

Resampling [9] 

Design of interpolator filter.  

Stability of parameters and their selection 

Processing is done for each frequency bin. 

Steered Covariance 

matrices [8] 

Steered covariance matrices for each angle. 

Compute maximum power for each steered 

angle 

 

FDFIB 

Beamformer [11] 

Requires array geometry and guessing of 

common frequency.   

 

Table 2: Challenges of wide-band DOA algorithms 

 

Computational Requirements 

This work evaluated the computational 

requirement for various DOA algorithms using 
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common data and assumptions. Computational 

requirements for these algorithms are presented in 

Table 1.  Their implementation was also explored. 

These wide-band DOA algorithms use following 

computational steps: 

• Generation of wide-band signals 

• Conversion of time domain signals into 

frequency domain via FFT. 

• Computation of covariance matrices in the 

frequency domain. 

• Computation of eigenvalues and 

eigenvectors 

• Computation of initial estimates of the 

number of sources 

• Computation of initial DOA estimates 

• Computation of transformation matrices and 

focusing on central frequency 

• Computation of eigenvalues and 

eigenvectors 

• Computation of number of sources and  final 

estimates of DOA 

 

Conclusions 

In this work we have identified common 

computational steps and they can be implemented in 

hardware. Most of these algorithms follow similar 

computational steps with some variations. These 

variations can be adopted if we use a re-configurable 

approach and implement these algorithms in FPGAs.  
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DOA  

ALGORITH

M 

COHERE

NT 

SIGNAL 

SUBSPAC

E 

ROTATION

AL SIGNAL 

SUBSPACE 

BINLINEAR 

TRANSFOR

M.  

BEAMFORMING 

INVARIANCE  

STEERED 

COVARIANC

E 

SPATIAL 

RESAMPLIN

G 

TOPS- DOA 

ESTIMATO

R 

FDFIB 

BEAMFOR

MER 

FIB USING 

FIR 

CYCLOSTA

TIONARY   

Authors Wang & 

Kaveh 

[6] 

Hung & 

Kaveh [7] 

Shaw [8] Ta-Sung Lee [19] Krolik  [17] Krolik  [18] Yoon 

[20,38,40] 

Do-Hong  

[21,23-24] 
Ward 

[26,29-30] 

Gelli & 

Izzo [39] 

Compute 64 point 

FFT 

 64 point 

FFT 

64 point 

FFT 

Beamspace 

transformation 

into J frequency 

bins 

Separate 

frequencies 

using FFT  

Insert Kn -1 

zeros 

Perform 

interpolation 

 FFT for 

each block 

(J) 

Compute 

FFT 
Design 

FIR filters  

 64 point 

FFT 

Compute Compute 

33 

Covarian

ce 

matrices 

Compute 

33 

Covariance 

matrices 

 33 

Covariance 

matrices 

Compute weight 

using Least 

Square fit method  

Cross 

spectral 

density 

matrix K for 

each 

frequency  

Convolve 

with the low 

pass  FIR 

filter 

Compute 

sensor 

output for 

pre-

selected 

frequencies 

J 

beamformi

ng network 

operation 

Form J 

beamform

ing  

networks 

Covarianc

e matrices 

Compute initial 

DOA 

estimate 

using 

MUSIC 

initial DOA 

estimate 

using 

MUSIC 

 J Beamspace data 

matrix focused on 

single ref.  

frequency 

Steered cov.  

matrix R for 

each angle 

Perform 

decimation 

operation 

K 

Covariance 

matrices  

Compute 

covariance 

matrix 

Covarianc

e matrix 

Focusing  

matrices 

 

Compute Focusing 

matrices 

 

Focusing 

matrices 

 

Focusing 

matrices 

 

Beamspace data 

matrix is 

designed in least 

square sense 

Inverse of 

steered 

covariance 

matrix R for 

each angle 

covariance 

matrix for B 

samples 

eigenvalues 

& 

eigenvector

s for each 

frequency 

Eigen- 

decomposit

ion 

Eigen- 

decompos

ition  

 weight 

function  

Compute Eigen- 

decompo

sition 

Eigen- 

decomposit

ion 

Eigen- 

decomposit

ion 

Eigen- 

decomposition 

Spectral 

estimate Z 

for each 

angle  

Operations  

for each 

frequency  

 subspaces 

for each 

frequency 

#  of 

sources 

#  of 

sources 
 R matrix 

Compute #  of 

sources 

#  of 

sources 

#  of 

sources 

#  of sources s Determine 

peak 

positions of 

the power 

Eigen- 

decompositio

n 

RSS 

focusing 

matrix 

MUSIC on 

selected 

frequency 

Perform 

MUSIC 

SVD 

Compute MUSIC  MUSIC  MUSIC Root MUSIC   #  of sources Eigen- 

decomp 

  Eigen- 

decomp  

Compute      MUSIC  MUSIC   MUSIC 

Table 1: Computational requirements of  various wideband DOA algorithms 




