M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

A DYNAMIC THREE-DIMENSIONAL NETWORK
VISUALIZATION PROGRAM FOR INTEGRATION INTO
CYBERCIEGE AND OTHER NETWORK VISUALIZATION
SCENARIOS

by

Daniel A. Sledz
Donald E. Coomes

June 2007

Thesis Advisor: Mathias Kélsch
Second Reader: Michael Thompson

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 2007 Master’s Thesis

4. TITLE AND SUBTITLE A Dynamic Three-Dimensional Network Visualization | 5. FUNDING NUMBERS
Program for Integration into CyberCIEGE and Other Network Visualization
Scenarios

6. AUTHORS

Daniel A. Sledz, Donald E. Coomes

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited A

13. ABSTRACT (maximum 200 words)

Detailed information and intellectual understanding of a network’s topology and vulnerabilities is invaluable to
better securing computer networks. Network protocol analyzers and intrusion detection systems can provide this
additional information. In particular, game-based trainers, such as CyberCIEGE, have been shown to improve the
level of training and understanding of network security professionals. This thesis’ objective is to enhance these
applications by developing NTAV3D, or, Network Topology and Attack Visualizer (Three Dimensional).

NTAV3D is a tool that displays network topology, vulnerabilities, and attacks in an interactive, three
dimensional environment. This augments the design and gameplay of CyberCIEGE by increasing gameplayer
interaction and data display. Additionally, NTAV3D can be expanded to provide this capability to network analysis
and intrusion detection tools. Furthermore, NTAV3D expands on ideas and results from related work of the best
ways to visualize network topology, vulnerabilities, and attacks.

NTAV3D was created using open-source software technologies including Xj3D, X3D, Java, and XML. It is also
one of the first applications to be built with only the Xj3D toolkit. Therefore, the development process allowed
evaluation of these technologies, resulting in recommendations for future improvements.

14. SUBJECT TERMS 15. NUMBER OF
Network visualization, Networking, Networks, CyberCIEGE, Network Security, Intrusion Detection PAGES
Systems, Extensible Markup Language, XML, Java, Xj3D, X3D 135

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

i

Approved for public release; distribution is unlimited
A DYNAMIC THREE-DIMENSIONAL NETWORK VISUALIZATION PROGRAM FOR

INTEGRATION INTO CYBERCIEGE AND OTHER
NETWORK VISUALIZATION SCENARIOS

Daniel A. Sledz
Ensign, United States Navy
B.S., Purdue University, 2006
Donald E. Coomes
Ensign, United States Navy
B.S., Oregon State University, 2006
Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN MODELING,
VIRTUAL ENVIRONMENTS, AND SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL
June 2007

Authors: Daniel A. Sledz

Donald E. Coomes

Approved by: Mathias Koélsch
Thesis Advisor
Approved by: Michael Thompson

Second Reader

Approved by: Mathias Kolsch
Chair, MOVES Academic Committee

il

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Detailed information and intellectual understanding of a network’s topology and
vulnerabilities is invaluable to better securing computer networks. Network protocol
analyzers and intrusion detection systems can provide this additional information. In
particular, game-based trainers, such as CyberCIEGE, have been shown to improve the
level of training and understanding of network security professionals. This thesis’
objective is to enhance these applications by developing NTAV3D, or, Network
Topology and Attack Visualizer (Three Dimensional).

NTAV3D is a tool that displays network topology, vulnerabilities, and attacks in
an interactive, three dimensional environment. This augments the design and gameplay
of CyberCIEGE by increasing gameplayer interaction and data display. Additionally,
NTAV3D can be expanded to provide this capability to network analysis and intrusion
detection tools. Furthermore, NTAV3D expands on ideas and results from related work
of the best ways to visualize network topology, vulnerabilities, and attacks.

NTAV3D was created using open-source software technologies including Xj3D,
X3D, Java, and XML. It is also one of the first applications to be built with only the
Xj3D toolkit. Therefore, the development process allowed evaluation of these

technologies, resulting in recommendations for future improvements.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

INTRODUGCTION. ...ttt bbbttt bbbt eneas 1
A BACKGROUND ..ottt sttt sbe e enaeneas 1
1. CYDEIrCIEGE ... e 1

2. X3D: Extensible 3D GraphiCs.........ccoccvviiiiiiiieiieee e 2

3. XJBD et 2

4, NETWOIK TOOIS ..ot 2

B WHY A NETWORK VISUALIZATION TOOL IS NEEDED.................... 3
C GOALS AND PROPOSED SOLUTIONS.......cccotiiirieeieieese e 3
1. (0T | SSSRSSPRN 3

a. CyberCIEGE ENhancementccoceveeieiieneeic e 3

b. Intrusion Detection Tool Enhancementcccocevvevvcenee. 4

C. Visualization Tools Evaluationccccevevieieninnienciee 4

2. Proposed SOIULIONS........cccveiiiiiiiei e 5

D. LIMITATIONS ...ttt sttt snenreas 5
E. THESIS ORGANIZATION ..ottt 6
NETWORK VISUALIZATION BACKGROUNDccccoviiiiiiieienenene e 7
A. WHAT IS VISUALIZATIONooiiiiiiee et 7
1. DATASETS ...eii ittt 7

2. Representation Methods............ccooveviiiiiiiic e 8

a. Parallel Coordinate, Mosaic, and HyperBox Plots.................. 8

b. Node and Link Diagrams.........ccccvieerveriesiennnenieseeseeseesnee s 10

B. CURRENT NETWORK VISUALIZATION RESEARCH...........cccovevnene 11
1. ST] 110 o F SRS 12

a. Reducing Display CIUtter.........cccovieiieiiienieee e 12

b. Generating Correct TOPOIOgYcccvevveveevveriiiieie e 13

C. Real-Time Visualization and Data Reduction 15

2. Available Network Visualization TOOIS...........cccceeviveviviie i, 16

C. CURRENT NETWORK ATTACK RESEARCHcccocoiiiiiiiicecieenns 17
1. SOIULIONS ...t 18

a. Modeling and Understanding Multi-Stage Attacks............... 18

b. Detection Models for Novel Attack Schemes...........c.cccocee.ee. 19

C. Real-Time Detection and Analysisccccovveveninneeneieenne. 20

d. Tracing the Origins of Attacksccccccevvveveviniivcre e 21

2. Available Network Attack Visualization ToOISccccoooveiiinnnn, 21

D. KEY TAKE AWAYS FROM CURRENT RESEARCHccccovvnnnnnn. 24
NTAV3D TECHNOLOGY BACKGROUND AND DECISIONS...........ccccvvvenene 25
A. INTRODUCTION. ...ttt 25
B. D | D SRR 25
1. D= Tod]] X (o] ISR 25

2. =T od 1Y 0] L PRSP 26

C JAV A bbb 26

1. D= Tod] X (] ISR 26

2. DBCISIONS. ...ttt sttt b e sbeenbesneesre e e 27

D XIMIL Lt bbbt bbbt 28
1. D= o]]] 4[] o PO TR UROPPRRPRPRRN 28

2. DIBCISIONS. ...ttt bbb bbb 28

IV. VISUALIZATION DECISIONS ...ttt 31
A. WHAT IS BEING VISUALIZEDcccooiiiiiiiieieeee e 31
1. What is a Component COMPIrOMISEccceveereeieniieieesieeee e sieeiens 31

2. What is an ASSet ATEACK? ..o 32

a. SECreCy ATACKS.ccveice e 32

b. INtEgrity ALtACKSecoveiiecieeie e 32

B. GEOMETRIC REPRESENTATIONS.......ccooi it 33
1 Computers, Servers, and ROULETS...........cccevviieieereeieseese e 33

2 INTErNEt CloUdo 35

3 WVALIS....oe s 36

4 Network Links and Main LiNES.........ccccovveiiiieniieniiie e 37

5 Attacks: Component COMPIOMISES.......ccuevuveieiieerieeiereereeseeseeneenns 37

a. TrOJAN HOISE ..o 37

b. VITUS <ottt 38

C. Trap DOOK ... 39

d. Operating System Flaw.........c.ccccovveveiiniice e, 39

e. Physical Theft........cooiii e 40

6. The ATEACKET ... s 40

C. INTERACTION ...ttt st 41
1. Navigation Capabilitiesccccoeveeieiiiiiieccere e 41

2. Mouse Over Capabilities..........cccoveieiiiiiiiiie e 43

3. Scene Modification Capabilities...........ccocooviiiiiiiie, 44

D. ATTACK ANIMATIONS ..ot 45
1. ComponNeNnt COMPIOMISES.......cuiiriererieriesiesiesieeeeee e 45

2. Asset Attacks: INtegrity VS. SECIECYccovvviiieiiveii e s 45

E. ROUTING NETWORK LINKS. ..ot 46
V. APPLICATION IMPLEMENTATION ...ooiiiiiiiiest et 49
A. JAVA APPLICATION ARCHITECTUREccoeviiee e 49
1. Xj3D (SAI) Scene Access Interface Implementation...................... 49

a. Geometries Used in NTAV3D......cccooviieienieiieneeie e 50

b. TEXEUNING 1ttt ra e 54

C. USEr INTEFraCtioNocvevieieiiecieee e 55

d. ANIMALION ... 58

2. Java Class STFUCTUIEccuviieiieiece e 59

B. XML PROCESSING ..ottt 61
1. XML N NTAVBD ..ot 61

2. FHE STFUCTUIE. ... e 61

3. CyberCIEGE XML INfOrmation...........ccccoovvriininienenc e 62

a. Topology Data........cccecviiiiiieiice e 62

b. ATACK DALA......eiveeiieie e 63

4. XML System Implementation............ccccceevevieieiieie e 64
C. NETWORK TOOL INTERACTIONcocoiiiiiieieieee e 65
1. Why Work With Network TOOIS?cceoveieiiiieee e 65
2. TOOI OUEPUL ... e 65
3. Proposed NTAV3D Methodologycccccevviieiieiiciciiece e 67
a. Data Manipulation...........ccoooeriiieiieniie s 67
b. Inputting Data INto NTAV3Dccoeoeviieiiciecie e 68
D. EVALUATION OF XJ3D ..ottt 70
1. Overall EValuationccooeiiiiiiii i 70
2. POSITIVE ATBAS ...ttt ettt sb e e 70
a. X3D Knowledge Transferccocevveieieeie e 70
b. Graphics ADSEractionccooviieiiiiice e 71
C. EXEENSIDIITYvveieee e 71
3. Areas for IMProvemMENT.........ccooveiiiiiie e 71
a. DOCUMENTALION ...t 71
b. Ease of Programming/Debugging.........cccocevveieninnenniesennee. 72
C. X3D Node Implementationcccccvevevieenesie e 72

VI. RECOMMENDATIONS FOR FUTURE WORK AND THESIS
CONCLUSIONS ..o bbbttt ene s 75
A RECOMMENDATIONS FOR FUTURE WORK.......cccocoiiiiiirniiesena, 75
1. Packaging NTAV3D With CyberCIEGEccccccocviveviviiieiienns 75
2. NTAV3D iN GENEIalccooiiiiiiiiiieee e 75
a. Code ENNANCEMENT.......coviiiiieie e 75
b. Platform TeStING......ccoveiiriiiie e s 76
C. POrtabIlIty ..o 76
3. USEE STUAIES ...t 76
4, NETWOIK TOOIS ..o 76
B. CONCLUSIONS ..ottt 77
1. OVerall ANAIYSISooiiiiieieee e 77
2. Enhancement to CyberCIEGEcccooceiviie v 77
3. Visualizing Network Attacks ..., 79
a. IN CYDEerCIEGE..........coi e 79
b. IN Network TOOIS.......ooveiieice e 80
4, Working With Network ToOoISc.ccoeviiiiiiiieeccece e, 80
5. Final ThOUQNTSocooiiiiiie e 81
APPENDIX A. X3D NODE TYPES ..ot 83
A LIST OF X3D NODES UTILIZED IN NTAV3Dcccccceviieie e, 83
APPENDIX B. SELECTED XJ3D JAVA CODEccooiiiiiiiieee e 85
A PARSEXML CLASS (EXCERPT) .oooiiiieciceeeeeese e 85
B. WALLCREATOR CLASS ..ot 90
C. ATTACKERICON CLASS.......co ettt 93
D. PHYSICAL ATTACK CLASS ...ttt 96
APPENDIX C. THESIS CLASS DIAGRAM ..ot 99
A THESIS APPLICATION CLASS DIAGRAMcooiiiiieiese s 99

1X

APPENDIX D. SAMPLE XML FILES ... 109
A. CYBERCIEGE XML DOCUMENT TYPE DEFINITION

(NETVIEW.DTD) ..ottt 109

B. SAMPLE CYBERCIEGE XML OUTPUT ..o 111

LIST OF REFERENCES. ... 113
INITIAL DISTRIBUTION LIST .o 117

Figure 1.
Figure 2.
Figure 3.

Figure 4.
Figure 5.

Figure 6.
Figure 7.

Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Figure 18.

Figure 19.
Figure 20.
Figure 21.
Figure 22.

Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.

Figure 29.
Figure 30.

LIST OF FIGURES

The visualization process (From Holmberg et al, 2006)...........c.cccvvevierieennnns 7
Parallel coordinate plot with six variables (From Spence 2001)....................... 9
Mosaic plot of Titanic data broken down by gender, age, class and

survival (From Spence 2001)......ccuieeciiieiiiieeniieeeiee e 9
A five dimensional hyperbox (From Spence, 2001)......cccccoeeveriinennenienenne. 10

Example Node link diagram obtained from
http://www.answers.com/topic/high-availability-cluster on May 21, 2007.....11
Two topologies for the same nodes (From Kershenbaum and Murray,

2005). ettt ettt a et et b et b e b et st as 13
Example attack tree from Bruce Schneier at Counterpane Systems................ 18
Typical NIVA Session (From Nyarko et al, 2002)coceveviiniinenneneenens 22
LAN Attacker components (From Baxley et al, 2000).........c.cccceevveeeiveeennenn. 23
A screen shot of the front of the computer modelccoooieviiiiiiniinns 33
A screen shot of the front of the server model............c.ccoooiiiiiiiniininne 34
Multiple servers in a stacked configuration.............ccceeeveeviercieenieeciienieeene, 34
A computer (left), router (middle), and server (right)cccccceveviiieiiiieennnnn. 35
Internet Cloud mOdelcc.ooiiiiiiiiiiiee e 35
[llustration of semitransparent walls with .99 transparencycccceeeneennn. 36
[lustration of transparent walls with .85 transparency............cccceeeverveenenne. 36

Trojan Horst model (left) and inspirational image of a Peramodel Trojan

horse (3D paper model) from
http://www.venus.dti.ne.jp/~kpd/jpg/world/trojan.jpgccceceeeveeerveeerveeennennn 38
Virus model (left) and the inspirational virus image from the Molecular
Expressions™™ website at http://www.microscopy.fsu.edu/cells/virus.html

MATCh 2007 ..ottt 38
Trap door model closed (left) and open (right).........ccceeeveieeriiieiiiieieeiee, 39
Screen shot of an operating system flaw model............ccccoevviiriieniiiiiennennen. 39
Message displayed during a physical theft attack...........ccccoveeevieeiiieicnennnn. 40

Police sketch (right) of a suspect taken from identikit in Fairfax, New
Zealand. This image applied to the attacker geometry as a texture (left).41
Presentation of routing network links from an example scene viewed from

tWo different angles.........oooviieriiieiiie e e 47
A simplified scene graph for creating walls within NTAV3D that notes
important fields for nodes and includes a routing diagram...............ccccceuveennn. 50
Application FIOW CRart.........cc.ooiiiiiiiiiiiiieieeieee et 60
Screenshot of a running example of a network attack in NTAV3D................ 64
The Export File dialog in Wireshark showing the ability to save the file in
PSML fOIMAL ..o 69
View of CyberCIEGE’s current network VIew..........cccccvevieeiiiinieeciienieeenne, 78
A slightly overhead angle of NTAV3D’s view of the same network.............. 78
Overhead view of entire scene during an example asset attack with the

Walls turned Offoooiii e 79

Figure 31.

A close up view of the main office during an example asset attack with the
walls turned Offooiiiiiiii e

Xii

Table 1.
Table 2.

LIST OF TABLES

List of “hot keys” for both the visualization and CyberCIEGE....................... 43
Table comparing CyberCIEGE data to network tool data, and the ease of
obtaining said data from a network tool. Difficulty is from 1-6, with 1

being easy, 5 being extremely difficult, 3 being moderately difficult, and 6
being basically imposSIDLecceeviieiiiiiiieieeeeeeee e 66

xiil

THIS PAGE INTENTIONALLY LEFT BLANK

X1V

ACKNOWLEDGMENTS

First and foremost, we would like to thank our families for their love and support

during the long hours of work that went into this thesis.

We would also like to thank Dr. Mathias K6lsch and Michael Thompson, for their
guidance during the creation of this work. They greatly focused and guided both our

writing, and programming to ensure that the final product was one we all could be proud

of.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

l. INTRODUCTION

A BACKGROUND

Computer networks are the interconnections of one or more computers for the
purposes of communicating and sharing resources. Often, these networks can connect a
myriad of disparate hardware systems. Thus, securing and managing these networks can
become a daunting task. This is especially true for an inexperienced network
administrator. One way this issue is addressed is increased training for both the novice

and expert network manager.

However, part of the difficulty in network management and security in general
involves being able to visualize the network. This concept of network visualization
involves such aspects as how a network’s components are arranged, otherwise known as
the network’s topology, as well as its potential vulnerabilities. This is a complex subject,
and as such, it can become difficult to conceptualize a network’s level of security. By
gaining a better understanding of a network’s topology and vulnerabilities, it is hoped
that both the networking student, and professional network administrator can gain a better

awareness for the networks they are trying to secure.

1. CyberCIEGE

One effort to provide enhanced, effective training is the information assurance
training tool CyberCIEGE. This is a computer game-based trainer developed by
collaboration between The Center for Information Systems Security Studies and Research
(CISR) at the Naval Postgraduate School (NPS) and Rivermind, Inc. Its development
was sponsored by the Naval Education and Training Command, the Office of Naval
Research, and the Office of the Secretary of Defense. Through this tool, network security
and management can be taught in a more stimulating and interactive way. The goals of
the game are clear from its initial title video. It poses the question, “Can you keep the
network alive?” The program provides players with the ability to setup and defend
networks, and to see a visual representation of the consequences of the decisions they

make both before and after attacks on the network.

2. X3D: Extensible 3D Graphics

X3D, or Extensible 3D Graphics, is an open-source, royalty free file format and
run-time architecture that is used to display three dimensional graphics (What Is X3D?,
May 2007). X3D is also an ISO (International Organization for Standardization)-ratified
standard, which means it has industry backing as an accepted format for displaying three
dimensional graphics. X3D is based on the Extensible Markup Language, or XML,
which makes it well suited for programmatic parsing (see Chapter III for more

information on XML).

3. Xj3D

Xj3D is the Java-based application programming interface (API) that was used to
develop the software product of this thesis. The Xj3D project exists as both a
programming toolkit, and as a stand-alone browser that can load and manipulate the
previously mentioned X3D or VRML (Virtual Reality Modeling Language) graphics files
(Xj3D Project, 2006). For the purposes of this thesis, the Xj3D API, known as the SAI,
or Scene Access Interface, is used to create an X3D scene graph entirely within Java
code. The Xj3D browser is then programmatically implemented as an application that
can be embedded within CyberCIEGE, or launched separately to display the scene graph
produced. Additionally, for those only familiar with implementing X3D in its typical
stand-alone file format, Appendix A provides a list of the X3D node types that are

programmatically implemented in the thesis software product.

4. Network Tools

Many network tools exist that administrators and students can utilize to study,
analyze, and defend computer networks. One such group of software is referred to as
network protocol analyzers, or “packet sniffers.” An example of a very popular packet
sniffer is Wireshark (formerly known as Ethereal). This application can be downloaded
at http://www.wireshark.org (accessed May 2007). There also exists software that can
help network administrators detect intrusions or network attacks that may be occurring in

a network. A software package of this type is often known as an Intrusion Detection

Systems, or IDS. One example of such a program is Snort, available at
http://www.snort.org (accessed May 2007). Chapter II provides additional information

about network tools.

B. WHY A NETWORK VISUALIZATION TOOL IS NEEDED

CyberCIEGE presents a three dimensional virtual office or military command
environment that allows players to see users, their computers, and the office layout.
However, this “office view” does not depict network connections. The network topology
is viewed in a separate screen, and the current network view in CyberCIEGE is a two
dimensional view. The placement of components in this view does not correspond to
their actual placement in the office view of the game. An additional problem arises with
respect to players’ ability to visualize network attacks. Currently, a short video clip is
played after network attacks occur that explains the various types of attacks and how they
evolve. This video clip is generalized to cover all attacks and is not specific to the attack

that occurred or the scenario being played.

Additionally, many of the aforementioned network analysis and intrusion
detection systems that can be downloaded from the web, such as Snort or Wireshark,
have limited or no integrated visualization capabilities. These packages are not able to
create a visual display (let alone a three dimensional one) of the network topology based
on the information obtained from packets traveling in the networks. Additionally, visual
representation of packet paths is not currently implemented in these packages. Thus,
when a network security issues arises, it can become difficult to conceptualize the
networks nodes affected, as well as the path the attack itself is taking through the

network.

C. GOALS AND PROPOSED SOLUTIONS
1. Goals
a. CyberCIEGE Enhancement
The motivation for this thesis stems from the enhancement of
CyberCIEGE as a network security trainer. This will be accomplished by augmenting the

simple two-dimensional representation of network topology currently implemented in the
3

game with an interactive, three dimensional visualization tool, allowing game players to
see the networks they create from any angle. It is hoped that by providing players with
an interactive, three-dimensional visualization, they will be able to gain a better sense of
network interconnections created in the scenario being played, and a better understanding
of information flow involved in network attacks. This kind of information can be

invaluable in learning how to best setup and defend computer networks from attack.

b. Intrusion Detection Tool Enhancement

In addition to providing an enhanced visualization application to
CyberCIEGE, the thesis will pursue how its software application can be used to visualize
networks and traffic flows. The input for this will be derived from intrusion prevention
and detection systems and network protocol analyzers such as Snort or Wireshark.
Conceivably, the added feature of being able to visually "see" the networks one is trying
to analyze and defend, and the flow of data within these networks would be extremely
beneficial to users. It is hoped that the users of these software packages can gain
increased “situational awareness” and an overall better appreciation for the networks they

are studying, analyzing, and ultimately, trying to defend from attack.

C. Visualization Tools Evaluation

A further goal is to evaluate the capabilities of the Xj3D SAI for
programmatically creating three-dimensional visualizations. Currently, there are only a
small number of projects created thus far that implement X3D via Xj3D purely
programmatically, and without loading and manipulating individual X3D files. This
method of X3D application is quite different from creating, loading, and manipulating a
stand-alone X3D file. Therefore, this thesis will seek to explore how well Xj3D performs
in this capacity, and will provide a framework for how the technology can be

implemented.

2. Proposed Solutions

To address the goals in the previous section, the authors will design and develop a
Network Topology and Attack Visualizer (Three Dimensional), which will be referred to
as NTAV3D throughout this document. The main objective of the NTAV3D application
1s to be a network visualization tool that allows network administrators, and those
interested in learning about securing networks a way to conceptualize this complex
system of computing. NTAV3D will provide a three-dimensional view that correlates to
the “office view” in CyberCIEGE, but that focuses on network interconnections between
components. The tool will then display the actual flaws and malicious software that may
exist on these components, while also conveying which asset or assets were attacked and
how they were attacked. A framework will then be developed for how NTAV3D could
interact with some of the network tools mentioned above to provide similar

visualizations.

D. LIMITATIONS
Visualizing the actual origins of cyber attacks is a related, but separate problem
that is outside the scope of this thesis, and therefore is not included in NTAV3D’s

capabilities or the discussion therein.

Additionally, utilizing NTAV3D to provide network visualization to IDS or
protocol analyzers is comparatively more difficult than providing the visualization to

CyberCIEGE. Chapter V will further address these specific limitations.

Finally, NTAV3D is not meant to perform as a network topology and
management, or optimizer, tool. Other tools already exist in these areas that allow
network administrators to manage and optimize their networks. Products, such as
Hewlett-Packard’s “HP OpenView,” and SolarWinds suite of network management tools
are examples of applications that meet this need. More information on these tools can be
found at http://h20229.www2.hp.com and http://www.solarwinds.net respectively (both
accessed May 2007).

E. THESIS ORGANIZATION

Chapter II reviews background information in network visualization, including
how networks and network attacks have been visualized in the past. This information is
reflected in how the NTAV3D visualizations are implemented. Chapter III provides
background on the application technologies that were used to develop NTAV3D.
Additionally, it explains the decisions that were made with regard to the use of each
technology. Chapter IV explains the decisions made for the thesis visualization
application, based partly on feedback, and the research of Chapter II. Chapter V
discusses how the technologies previously introduced were actually used to implement
the visualization, as well as evaluations of these technologies. Finally, Chapter VI
provides recommendations for future work as well as suggests ways the NTAV3D
application can be expanded and improved. The chapter also includes the results of this

thesis, and evaluations on the success of the implementation detailed in this document.

II. NETWORK VISUALIZATION BACKGROUND

A WHAT IS VISUALIZATION

Visualization can be defined as the cognitive process, performed by human
beings, which brings meaning to data (Spence, 2001; Keller, 1993). When performed by
a human, visualization is achieved by creating an ephemeral mental model. Mental
models created by humans are cannot be easily shared or reproduced, whereas a
visualization created via a computer is reproducible and easily distributed. It is important
that a visualization be reproducible and distributable so that a large number of people can
benefit from it. With this in mind, the context of the term visualization throughout the
remainder of this thesis will refer to a visualization constructed via computer. Scientific
visualization is a related field where physical objects or phenomena are represented,
usually in simulated 3D (Spence, 2001). The goal of any visualization is to improve the
user’s understanding of the subject. The basic process of visualization is depicted in the

figure below.

3| e visualization _. e interpretation s .
‘i (mapping & display) E (perception & cognition) | \%
Data Set Image(s) Mental
Image(s)

Figure 1. The visualization process (From Holmberg et al, 2006).

The figure above illustrates the basic visualization process beginning with the
data set, which is converted to a visual representation to enhance the end user’s
understanding of the data set. There are two elements that comprise the basic framework
of every visualization. These elements are the datasets and the visual representation

method.

1. Datasets
The origin of a data set can come just about anywhere, but the most common
origins are from laboratory or simulation data, or output from sensors out in the field.

7

The data is usually in the form of a series of numbers. Although data in the form of
numbers is useful when performing a look up or a comparison, forming an ephemeral
model from them is difficult. The difficulty can often time be attributed to the sheer size
of the data. Employing a computer visualization helps to overcome the size difficulty

and facilitate the ephemeral model building process.

2. Representation Methods

There are numerous methods for visually presenting numbers with pie charts, bar
graphs, scatter plots, and histograms being some of the most common. Every method has
strengths and weaknesses. There is no perfect presentation method that will adequately
visualize all the different types of data that exist. The correct representation method is

dependent upon the data.

a. Parallel Coordinate, Mosaic, and HyperBox Plots

One method for representing datasets is a parallel coordinate plot where
each variable is given its own axis. Each line represents a single data entry. This
representation method can handle quantitative data as well as categorical data.
Relationships can be obtained by observing the appearance of the plot. The example in
Figure 2 has six variables and six data entries. Observing this example plot, it appears
that a correlation exists between variables B and C because none of the lines between
them cross and all the lines have very little slope. Looking at variables A and B, it
appears that an inverse correlation exists because the lower the point on axis A resulted in
a larger value on axis B, and vice versa. The ordering of the axis directly influences how
easily the same inferences can be made. Following the "a" data entry from one end to the
other can be difficult based on the number of data entries and the number of lines
crossing. Values can be obtained from the plot if the axes are marked with upper and

lower bounds. These values would be placed at the top and bottom of each axis.

AN

A B C D E F

Figure 2. Parallel coordinate plot with six variables (From Spence 2001)

Another representation method is a mosaic plot, which uses rectangles
with proportional heights and widths based on the data. This technique is useful when

dealing with high-dimensional data. The example plot in Figure 3 shows data concerning

Female I|
-

Finte Secend Thard Crew

the Titanic disaster.

f

Figure 3. Mosaic plot of Titanic data broken down by gender, age, class and
survival (From Spence 2001)

The green represents people who survived and the black represents the
people who died. The top portion of data is females and the bottom is males. The four
columns represent first class passengers, second class passengers, third class passengers,
and the crew, respectively. The small second column represents children, next to each of

the larger columns representing adults. A striking observation is the percentage of

women who survived as compared to men. Many other observations can be gleaned from
this figure by simply discerning patterns or anomalies in the figure. Unless values are

placed within the rectangles, it is difficult to extract numbers from these plots.

Both of these methods can be static displays, as depicted in the previous
two figures, or interactive displays. The interactive versions create new static displays
based off user interaction. Many people believe that dynamic or interactive graphics are
invaluable tools, which aid the process of understanding and finding patterns or
anomalies (Becker, 1990). The reason is that interactive graphics allow the user to see
the figure from different angles or different configurations. Different views may reveal
relationships that were not visible in other views. One of these hidden relationships
could potentially provide the information needed to increase the user’s understanding.
Additionally, “the Theory of Multiple Intelligences (Gardner, 1985) implies that teaching
with visual and other components can make learning more effective” (Baxley et al,

2006).

A hyperbox (Alpern and Carter, 1991) is constructed such that all possible
pairs of variables are shown plotted against each other (Spence, 2001). The result
resembles a solid three-dimensional object with many rectangular faces. Each
rectangular face is a separate pairing of two variables. Because all possible combinations
are shown, the ordering problem that arises with the parallel coordinate plots is avoided.

This method is useful for multivariate data sets.

Figure 4. A five dimensional hyperbox (From Spence, 2001)

b. Node and Link Diagrams

The method of interest for this thesis is a node and link diagram. The
nodes represent entities of interest and the links represent the relationships between
entities (Hansen and Johnson, 2004). These relationships include raw physical

10

measurements, computed aggregates, or abstract quantities (Hansen and Johnson, 2004).
The nodes can be portrayed as boxes, circles, points, or any other glyph—a graphical
object—which makes sense for the given visualization (Eick, 1996). Links are normally

portrayed as lines connecting one node to another.

& e \ —

(CEema)

Figure 5. Example Node link diagram obtained from
http://www.answers.com/topic/high-availability-cluster on May 21, 2007.

The example diagram in Figure 5 is a simple representation of a high-availability cluster.
As seen in the diagram there are a handful of computers, routers, and servers
interconnected with colored lines. Some of the visualization techniques employed in
node link diagrams were adopted, but in order to correctly represent the physical layout
of the network this representation had to be extrapolated into a three-dimensional
environment. As opposed to connecting components with straight lines as shown in
Figure 5, it was necessary to devise an alternative connection scheme in order to
minimize ambiguity and display clutter in the three-dimensional environment. The

solution and its benefit are discussed in detail in Chapter IV.

B. CURRENT NETWORK VISUALIZATION RESEARCH
Because networks are becoming increasingly large and complex, much of the

research efforts invested in network visualization these days are focused on solving the

11

problems associated with visualizing large networks. These problems include scalability
and alleviating display clutter, generating the appropriate topology, and achieving real-
time visualization results. The definition of what constitutes a large network may vary
slightly from source to source, but in the context of this thesis, networks with more than
100 nodes will be considered large networks. Large networks are not an issue within
CyberCIEGE because none of the networks created by game players approach the 100
node mark. Large networks are likely to be an issue when dealing with output from

intrusion detection systems in the real world.

1. Solutions

a. Reducing Display Clutter

With a finite amount of display space on a computer screen, visualizing
the entirety of a large network in manner clearly discernable to the end user is a difficult,
if not impossible, task to accomplish due to display clutter. The American Heritage
College Dictionary defines clutter as “a confused or disoriented state, caused by filling or
covering with objects.” This definition simply means that clutter beings on confusion
due to the number and spacing of objects within a scene. Scaling the network,
controlling what is displayed, color coding, and utilizing three-dimensional space are four

commonly employed methods to reduce display clutter.

The first common method to reduce the amount of display clutter is to
scale the large network into a smaller, more manageable size. This method results in a

smaller, less detailed network that can be displayed in a more clear manner.

The second common solution applied to this problem is to display only the
network components that are visible within the current view. This method can be thought
of as a level-of-detail method where a detailed representation of a particular area is
shown only when focused upon by the user. The user controls what level of detail is

shown by navigation through the scene.

The third method is to use a color coding scheme to represent numerical
values or other information which may occupy large amounts of screen real estate and
may also obscure other more important details is another method employed to reduce

ambiguity in the scene (Kershenbaum and Murray, 2005). By replacing physical
12

numbers with a color coding scheme, the amount of information displayed is reduced, yet
the amount of information that can be gleaned from the display is not reduced. In
NTAV3D, links are color coded to visually differentiate between separate networks

instead statically listing the name of the network next to the line.

The fourth reduction method is to use a three-dimensional representation
as opposed to a two-dimensional display. Visualizing in three-dimensional space does
introduce some different issues. Three-dimensional displays are often times confusing,
difficult to navigate, and cause the user to loose a sense of overall context (Cox et al,
1996). One method to mitigate navigational difficulties while maintaining context is to
restrict the navigation capabilities and make the display as user friendly as possible (Cox
et al, 1996). Restricting navigation such that the user cannot travel inside a piece of
geometry and maintaining the camera’s focus on the scene as the user navigates through
the scene will keep the user from becoming disoriented in the three-dimensional world.
In NTAV3D, the decision as to how to allow the user to navigate through the scene was
additionally constrained by maintaining a close relationship to controls already in place
within CyberCIEGE. Similar control schemes allow the user to transition from one

application to the other without having to memorize different control patterns.

b. Generating Correct Topology
Although reducing display clutter increases the likelihood of information
being extracted from a visualization, the chosen topological display of the data directly

impacts the relationships the user is able to take in.

— L4

Figure 6. Two topologies for the same nodes (From Kershenbaum and Murray,
2005).

13

The model on the right in Figure 6 shows the same relationships was the model on the

left, but positions the nodes such that no lines cross.

The same nodes displayed in a slightly different topology can convey a
different meaning. Topologies can be hand generated, but in most cases, they are
generated by an algorithm to meet certain criteria. Many algorithms are designed to meet
one or more of the following criteria:

e Minimize the number of links crossing

e Maximize the depiction of symmetry

e Minimize the number of link bends

e Maximize the minimum angle between links leaving a node
e Maximize link orthogonality

The level of importance for each criterion is based on what is being
visualized. In cases where physical location is important, the criteria above become
unimportant because the positions of nodes cannot be changed to meet the
aforementioned criteria. Geographic data is a good example of when physical location is
important. Because the physical location of nodes is specified by CyberCIEGE, straight
lines could not simply be drawn between nodes because eliminating crossing lines was

also import. This led to the development of a routing algorithm.

A group of researchers took different approach to placing nodes. Instead
of using criteria that create an aesthetically pleasing display, such as minimizing the
number of crossing links, these researchers looked into developing an algorithm that
takes into account the weight (strength) of the links (Eick and Wills, 1993). With this
approach, the strength of the link between two nodes is what determines their relative
position from one another. They determined that the algorithm would have an inverse

relationship such that nodes connected by stronger links would be closer together than

14

nodes connected by weaker links. The desired inverse relationship is achieved by

directly minimizing the function
)y (Wij — l/dij)2 =X (dijWij — 1)2/ dij2

where wi; is the weight of the link and d;; is the displayed length of the link (Eick and
Wills, 1993).

The developed algorithm also takes advantage of hierarchical relationships by placing

the root node then placing all the sub-networks generated by its children.

A variety of other tools exist that focus solely on the generation of
network topologies. BRITE is a free topology generation tool from Boston University
that is implemented in both Java and C++, but is no longer supported by its developers.
To download or for more information about this tool please refer to this website:
http://www.cs.bu.edu/brite/. GT-ITM 1is another topology generation tool that was
developed at Georgia Tech and is freely available for download
(http://www.cc.gatech.edu/projects/gtitm/). Inet is a more recent tool developed at the
University of Michigan for generating Internet topologies. The latest version (3.0) was
released in 2002 and can be downloaded at no charge from
http://topology.eecs.umich.edu/inet/. Other tools and algorithms exist for generating

topologies, but these are three popular tools that are available to anyone.

C. Real-Time Visualization and Data Reduction

The size of datasets has grown tremendously over the past ten years with
increased processor speeds and hard-drive size. And despite these technological
advancements, real-time visualization remains a difficult problem. In some cases, this
problem can be overcome by data streaming which is characterized by processing
independent subsets of the larger dataset. Streaming data is accomplished by breaking
large files into smaller files and loading these files in series. The small files can be

loaded in real time, while the single large file cannot.

15

Data reduction filters out data that is not relevant to visualization in order
to make the size of the dataset manageable. Three traditional methods used to reduce the
amount of network data to a manageable size are:

e Aggregation which is used when large numbers of links or nodes are present

e Averaging when dealing with large numbers of time periods

e Threshold and exception reporting used to detecting changes (Becker et al, 1995)
When using a data-reduction method, the possibility exists that important information
may be obscured or lost during the reduction process. Instead of reducing the size of data
sets and possibly loosing valuable information, research is being done to develop more
efficient algorithms that reduce the computation time of popular force-directed layout

algorithms used on large networks (Au et al, 2004).

2. Available Network Visualization Tools

Network visualization tools are continuously being produced and tweaked in
order to adapt to changing needs and to keep pace with the advances and changes made in
the network field. In the mid 90s, people at AT&T Bell Laboratories came up with
SeeNet, which consists of three graphical tools for visualizing network data (Becker et al,
1995). The example network used throughout the paper involves 110 nodes and over
12,000 links. Instead of trying to create a single view that depicts all the necessary
information at once, they chose to present the information in five separate views (Becket
et al, 1995). One view is a network map showing the entire network, a time slider view
for navigating through the time varying data, an interactive color scale view for
manipulating link colors, a bird’s-eye view for a more detailed view of areas on interest,
and a control panel view for other types of analysis and user controls. These views were
all two-dimensional. A year later, they added a three-dimensional view for better
geographic context (Cox et al, 1996). SeeNet is an application that was described in the

previous section and is used for visualizing network data for communication networks.

Another tool for network visualization is called VLNT (visualizing large network
topologies). This tool is designed to assist network managers in analyzing and improving
Internet routing topologies. Incorporated into this tool is a novel hybrid layout algorithm

for visualizing large network topologies (Au et al, 2004). The algorithm uses the inverted

16

self-organizing map (ISOM) for initial layout, and then uses the Kamada-Kawai
algorithm to refine and fine tune the layout. ISOM is stochastically based competitive
learning algorithm that is highly versatile (can produce a 2D or 3D layout), consumes
relatively few computational resources, and is not application specific (Meyer, 1998).
The Kamada-Kawai algorithm is a force-directed layout algorithm that models the
network as a set of springs and tries to find a layout that minimizes the energy in the
springs (Au et al, 2004). By combining these two previous approaches to node placement
and introducing a new termination criteria (edge-tension gradient) this new approach
leverages overall layout structure of the ISOM method with the unclustering ability of the
Kamada-Kawai method. The new termination criterion is “based on the ratio of the
average edge length in the layout to the ideal edge length” (Au et al, 2004). The ideal
edge length is calculated based on the dimensions of the display in order to keep the from
being too large for the display. Termination is reached once this ratio falls below a
specified threshold. The recommended thresholds were determined through empirical

testing.

The network animator (Nam) is a visualization tool that utilizes animated packet
flow for taking in large amounts of information quickly and visually identifying patterns
in communication to promote understanding of causality and interaction inside networks
(Estrin et al, 2000). Nam has three different methods for generating the network
topology. The first and most common method is an automatic layout algorithm based on
a spring embedded model. The second method, used only for small topologies) is relative
and allows the user to specify the relative directions of links (left, right, up down) and
positions the nodes accordingly. The third method is wireless and associates a node with
its physical location, but this method typically lacks explicit links. The animated packets
appear as rectangles with arrows at the front to indicate direction of travel and the path is
determined by trace events that indicate when a packet enters and leaves links and

queues.

C. CURRENT NETWORK ATTACK RESEARCH
As society continues to move forward in the Information Age, computers are

being integrated into more facets of everyday life than ever before. Additionally, these
17

systems are being linked to one another creating new and complex networks. With all
these systems and networks, information assurance and system security are critical areas
of research. Within the information assurance and system security realms, the main
research areas include modeling and understanding multi-stage attacks, developing
detection models for novel attacks while having a low false alarm rate, real-time
detection and analysis on high speed network traffic, and tracing the origins of attacks.
1. Solutions

a. Modeling and Understanding Multi-Stage Attacks

A number of research efforts are focusing on classifying and categorizing
the methods used to exploit vulnerabilities in systems during multi-stage network attacks
(Tidwell et al, 2001). Multi-stage attacks are a type of blended attack with the ability to
infiltrate protected systems by eluding threat detection systems (Dawkins and Hale,
2004). Tidwell and his fellow researchers used parametric attack trees in conjunction
with a system specification language to support vulnerability assessments and attack
visualization that can be extended to provide real-time attack notification and monitoring

services (Tidwell et al, 2001).

Open Safe
Pick Lock Learn Combo Cut Open Safe LS
Improperly
Find Written Get Combo
Combo From Target
Threaten Blackmail Eavesdrop Bribe
and
Listen to Get Target to
Conversation State Combo

Figure 7. Example attack tree from Bruce Schneier at Counterpane Systems.

Attack trees represent attacks and countermeasures as a tree structure, where the root
node is the goal of the attack and the leaf nodes are the attack methods (Schneier, 1999).

Figure 7 shows a very basic example of the structure of an attack tree. More information

18

can be added to each node such as a weight reflecting the probability of success or with

the cost associated with the node (Tidwell et at, 2001).

Dawkins and Hale supplemented a network model with a capabilities
model to express the resources and skills of the attacker. The vulnerability model uses
the two previous models to determine vulnerabilities, exposures, and exploits. An
iterative attack chaining process identifies a series of possible attack scenarios, which are
used to construct attack trees from the perspective of the attacker. Probability values are
assigned to the given vulnerabilities during the analysis phase. These values help to

identify the most probable avenues of attack for multi-stage attacks.

b. Detection Models for Novel Attack Schemes

IDSs are continually playing the catch-up game to detect the continuous
and ever changing threats posed by computer attackers. Attackers are continually
developing new methods to bring down or penetrate networks. New detection schemes
are being developed and tested in order to increase the probability of detecting novel
attacks while lowering the false alarm rate. Of course, the ideal scheme would have a
100% detection rate with a 0% false alarm rate. Such a model does not exist and
realistically is near impossible to achieve. Anomaly detection and pattern or signature
recognition are the two common detection schemes implemented for intrusion detection.
Pattern recognition is efficient and accurate, but only useful in identifying known attack
patterns, while anomaly detection methods can be used to identify novel attacks. One
recent method utilizes Principal Component Analysis, a well-established technique for
reducing dimensionality and multivariate analysis, to reduce the data attributes down to
two or three dimensions (Labib and Vemuri, 2004). Analysis techniques are
subsequently applied to the linear combinations of Principal Components to determine
when attacks have occurred. Another method expands upon existing intrusion detection
work by generalizing the activity properties of data into a frequency property, a duration
property, and an ordering property (Ye et al, 2001). The method focuses statistical
methods including decision trees, Markov chains, and Hotelling’s T* test on analyzing

these focus areas. The study found that the frequency property is essential for identifying

19

attacks, but when coupled with information from the ordering property, its identification

power is increased (Ye et al, 2001).

In a later study, researchers investigated the effects of building a long-term
profile of normal activities on a machine in order to compare recent and current activities
with the long-term profile to try to detect significant deviations (Ye et al, 2002).
Detection is based on Hotelling’s T* test, which is able to detect both counter-relationship

anomalies and mean-shift anomalies.

Research has been done to visually combine information obtained from an
intrusion detection monitoring environment with network traffic information. The
information obtained can be used to identify bottlenecks, failures, and wasted resources
on the network. The research conducted by Erbacher is geared towards simple two-
dimensional visualization techniques for continuous online monitoring of the network by
system administrators and network managers. The goal is to aid network managers’
“ability to asses the effectiveness of the network infrastructure and plan long range
infrastructure management as well as deal with short term and immediate crisis, such as

intrusions and misuses” (Erbacher, 2002).

C. Real-Time Detection and Analysis

Having good detection models is one thing, but being able to detect
attacks while they are occurring and providing users with helpful information is another
matter. In a recent study, ongoing attacks were visualized by mapping source IP
addresses, destination IP addresses, and destination port numbers to a three-dimensional
Cartesian space (Kim et al, 2004). These values are easily obtained from most Internet
packets. From this plot, denial-of-service attacks, host scans, and port scans are easily
seen. One short coming that was identified with this presentation method is that low
intensity attacks and attacks occurring near dominant legitimate traffic are hard to
identify from the three-dimensional plot. To over come this problem they implemented
an original “pivoted movement” algorithm which tracks the three values of these packets
and watches for instances where two of the coordinates remain fixed, while the third

pivots around (Kim et al, 2004).

20

d. Tracing the Origins of Attacks

The last main area of focus in network attacks is tracing the attack to its
source. Often, attackers will forge their source IP address in packets in order to hide their
identity. Proactive tracing is done before an attack is detected, while reactive tracing
occurs after an attack is detected. Two proactive tracing methods are packet marking and
messaging. Reactive tracing methods include hop-by-hop tracing, hop-by-hop tracing
with an overlay network, IPsec authentication, and traffic pattern matching. A recently
developed approach augments hop-by-hop tracing with “datalink-level identifiers such as
Ethernet’s media access control (MAC) address, ATM’s virtual path identifier/virtual
channel identifier (VPI/VCI), and frame relay’s datalink connection identifier (DLCI) to
identify nodes in the packet’s path” (Baba and Matsuda, 2002). Because it is difficult for
an attacker to forge the datalink-level identifiers of intermediate forwarding nodes, it is
easier to trace packets back to their source using datalink-level identifiers. Because of
the complexity of this issue and the fact that this information is not available within
CyberCIEGE and not provided by intrusion detection systems, visualizing the origins of

attacks is not presented in NTAV3D.

2. Available Network Attack Visualization Tools

A wide variety of intrusion detection systems are available for download on the
web. Some are free like Snort, AirSnare, Prevx Home, WinPatrol, and System Safety
Monitor, while others cost money like Process Guard, RegRun Gold, and Geek

Superhero.

NIVA is a network intrusion visualization application designed for interactive
investigation and detection of structured attacks across time and space that utilizes three-
dimensional displays (Nyarko et al, 2002). The application takes in output from an
intrusion detector in simple ASCII or database format. This detection list is parsed
according to the selected model. A node placement list is generated assigning locations
for each node in three-dimensional space by employing either the IP-Space algorithm, the
“spring technique,” or the “helix technique.” The IP-Space algorithm places components
based on relationships gathered from the IP addresses of components. The “spring”

technique assigns location based on the strength of a nodes connection to a central node,

21

while the “helix” technique assigns locations in helical pattern. Afterwards, a node-link
map is created. The scene is rendered in OpenGL and the user then has the ability to

manipulate both the displays and the data through the user interface.

endering Window | s

P

Figure 8. Typical NIVA Session (From Nyarko et al, 2002)

The experiment specification and visualization toolkit (ESVT) was developed at
Penn State University for use by experimenters conducting interactive experiments on
network test beds (Li et al, 2006). It is comprised of a topology builder, a TCL script
generator, and various visualization tools. Users have the choice of manually coding the
topology themselves, or they can import topologies generated by Inet, GT-ITM, BRITE,
or tiers topology generators (Li et al, 2006). ESVT is able to visualize traffic dump data
and node status logs with the main method of visualization consisting of a time-series
animation with adjustable time steps. A more in-depth visualization is available for
viewing the data at a more refined level such as the number of UDP packets during a

specific time period. This is achieved by selecting a link and defining the filter rules.

LAN attacker is an application developed primarily through North Carolina A &
T University, but also with help from Wesleyan College, to visualize the three major
attacks on Local Area Networks: ARP Poisoning, Switch Port Stealing, and Mac
Flooding (Baxley et al, 2006). The visualization provided includes a two-dimensional

model of a simple local area network (about ten nodes) and simulates network traffic by

22

having virtual packets, containing the Mac address and IP address of both the sender and
Target, that travel through the network model along the a virtual path represented by bold
black lines (Baxley et al, 2006).

3 Baurhrun.sef r-_E ﬁ|
Fie lien Jorbal Dedag
——
Attackar's PC
IF; 192, 168, L2
T Ak A AR RS LS A Inmternet
x
Rap-Thcha Takly
1F sgicess AL ASCaT ;‘:]?‘[:jr“ . Arp-Cache Table
DAF BE:TEFFFPIFAF Irasioen B o

scsn)| Faucn | Resit || Restan) e

‘ Port-Eapping Table

Computer 1 —_— Computer # Computer 3 L
IPL19Z. 168, I3 TP 192, L6 4 TF: 192. L. 0.5
MACyBEES BE)EBpHE1ER EACyOCaCCroCaCiieCL BC ¢ DB Dl D02 D DD Bl
L— B N ——
Lagr-Lache Takle Arp=Cacke Talile dsp=Cechie Table
IF Lalcera S badreas Ik eMeesa ELC hdiress IF Add:ess BN Ldidveoy

Figure 9. LAN Attacker components (From Baxley et al, 2006).

The figure above shows basic interface and network topology of the LAN Attacker
application. During the attack phase, users can select which method of attack will occur.
Each of the attack methods is accurately modeled for this simple configuration. Users are
able to interact with the application by pausing the scenario at any point. This allows the
user to examine the animated packets’ details, update ARP Cache Tables, and update the
Port Mapping Tables. Additionally, text boxes appear as users’ mouse over the various
devices in the scene. The application also features a short quiz upon completion of the

scenario to test the comprehension of the user.

23

D. KEY TAKE AWAYS FROM CURRENT RESEARCH

In order to create a successful visualization, one must display the information in a
manner that allows users to easily understand the relationships and other statistics being
displayed with as little confusion as possible. One useful method to reduce confusion
levels is to only display the necessary information, and if possible, keep away from
statically displaying numerical or textual information as they may take up valuable screen
real estate. Color coding is one possible alternative to displaying numerical values when

only relative estimations of values are necessary.

Aside from the actual display itself, incorporating user interaction where possible
is important because interaction between the user and the display increases the
opportunities for the user to find a way to understand the information being displayed.
This includes viewing the scene from multiple angles so that information occluded or
partially obscured by one particular view is seen in a different view. Animation is a

useful tool when trying to visualize network attacks.

24

I11. NTAV3D TECHNOLOGY BACKGROUND AND DECISIONS

A INTRODUCTION

Since the product of the research of Chapter II is a working software application,
it is therefore prudent to explain how the software was built, and why certain
development choices were made. The intent is not to be a primer on the technologies
discussed below, but to explain how they relate to NTAV3D, and the reasoning behind
why they were selected. The motivation of the following is to provide the reader a basic
understanding of the underlying technologies that make up NTAV3D. References are

included for further examination of each technology.

B. XJ3D

1. Description

As introduced in Chapter I, Xj3D is the Java-based API for programmatically
implementing, and stand-alone browser for displaying, the X3D graphics format, and is
developed by the Web3D consortium. (The Xj3D Project, April 2006) As such,
NTAV3D utilizes both components of Xj3D. The browser component is currently
implemented in a stand-alone application, which can be launched independently.
However, the browser, and NTAV3D specifically, has the capability to be embedded
within a program as well. Additionally, the API component, again known as the SAI or
Scene Access Interface, is what is used as libraries in NTAV3D’s Java code to create and

manipulate an X3D scene graph in a purely programmatic way.

Xj3D is in a continual state of development. The most stable release is version
1.0 dated 15 April 2006, but “snapshot” releases, which contain new features and
improvements, are continually added. For this, and reasons stated below, NTAV3D
utilized the “bleeding edge” of the codebase. Thus, the latest version of Xj3D
implemented within NTAV3D is the “development snapshot” from 12 April 2007. More
information on Xj3D can be obtained from the project’s website at http://www.xj3d.org

(accessed May 2007).

25

2. Decisions

When choosing which software architecture to use to create a three dimensional
scene, the authors were looking for a package that did not have a steep learning curve,
and one that would be easy to integrate with CyberCIEGE first, and then network tools
second. Due to the authors’ background in X3D via previous coursework, and the fact
that both Xj3D and CyberCIEGE are implemented in Java, Xj3D became an attractive

option.

One example of an alternative to Xj3D was OpenSceneGraph, which is another
three dimensional graphics package that is implemented with C++ and OpenGL.
However, OpenSceneGraph has a fairly steep learning curve, and with little previous
experience, the authors would have been required to learn the intricacies of programming
with OpenGL, and C++, two programming constructs the authors were not as familiar
with. Xj3D actually also implements an OpenGL renderer as the method of displaying
the three dimensional scene. But, one of the benefits of the Xj3D libraries and
implementation is that it handles all of the OpenGL setup “behind the scenes,” without
requiring much work from the developers other than setting parameters for the browser
component. Additionally, the authors were already familiar with the X3D system, and
felt it would be a fairly easy transition to implementing X3D programmatically via the
Xj3D SAIL For further discussion of this experience, see Chapter VI, where an
evaluation of Xj3D is offered.

C. JAVA

1. Description

The main technology utilized to create NTAV3D was Java. Java is an open
source, multi-platform programming language. Being open source means that Java’s
program source code is freely available to be extended or enhanced without having to pay
large licensing fees. This also means that programs created with Java have fewer

restrictions on their ability to be redistributed.

The application was compiled with the Java SE JDK (Java Development Kit)

version six update one (otherwise known as Java 1.6). However, the application is

26

compliant with and will run on any Windows computer running Java version 1.5 or later.
For further information about Java, and to obtain thee Java runtime needed to execute the
application, one can visit the Sun Java website at http://java.sun.com/javase (accessed

May 2007).

Additionally, the primary IDE, or integrated development environment, chosen
was Eclipse, which is available from http://www.eclipse.org (accessed May 2007).
However, since the application is written purely in Java, any development environment
could be used, and in fact, some application testing and debugging was conducted using

the NetBeans IDE, available from http://www.netbeans.org (accessed May 2007).

2. Decisions

Java was the language of choice for this thesis application, instead of, for
example, C++, both because of the authors’ comfort level with the language, and due to
the previously mentioned fact that the graphical API of choice, Xj3D, is implemented
solely in Java. This choice of languages and APIs has many benefits. First, both Java
and Xj3D are open source and, as noted above, freely redistributable. This makes them
quite viable for a Department of Defense program or for further expansion of capabilities
by an interested community of developers later. For example, since NTAV3D is Java-
based, it could conceivably be made as an applet, and distributed over the web, thus
making network visualization quite portable (see Chapter V for more future work
suggestions). Additionally, since the application is written in Java and with the Java-
based libraries of Xj3D, it can run on almost any computer platform, be it Microsoft
Windows, Apple OS X, or different variations of Linux. This is an exciting feature, as it

can be used on any of these machines to visualize network activity.

In terms of development environments, primarily, Eclipse was chosen due to the
comfort of the authors, and because it contains an excellent revision control system,
specifically CVS (Concurrent Versioning System). CVS is a system that allows
programmers to work on application code simultaneously by storing the code in a
“repository” on a central server. Authors “checkout” and “checkin” code as it is written,

which allows everyone to be working off of the latest version, and not one that may have

27

become obsolete due to a colleagues editing. CVS is recommended for anyone who may

be working on programming code with multiple authors as it facilities easier

collaboration.
D. XML
1. Description

XML stands for Extensible Markup Language, and is the main way NTAV3D
receives data from outside programs, be it CyberCIEGE, or other network analysis tools.
XML is a human-readable, non-proprietary file format that is most often used to
exchange data between different computer programs or systems. XML is based on the
concept of a tree based, hierarchical file structure, where a tree of descriptive “tags”
surround data. Additionally, XML schemas can be developed. These schemas are how
XML becomes “extensible” in that the basic XML construct can be extended to create
what amounts to a virtual language all its own, as different schemas can be developed to

fit different needs.

In the case of NTAV3D, a document type definition, or DTD, schema was
developed to standardize how information from CyberCIEGE could be output as an XML
file. It would be this DTD, and the CyberCIEGE XML-based output file that NTAV3D
would load, parse, and use as input data to create the network visualization. Because this
process is similar for all XML files, this is also how the program could be expanded to
enhance intrusion detection systems (see Chapter V for more information on how

NTAV3D XML processing works).

To obtain more information about XML in general, one can visit the W3C web-

standards body’s site at http://www.w3.org/ XML (accessed May 2007).

2. Decisions

The decision to use XML as a kind of “middleware” for NTAV3D was made
dude to the power of XML. Like Java, XML is platform independent, since it is nothing
more than a text file. Additionally, XML is not a proprietary file format, so it is

unencumbered by licensing restrictions and other restrictions on redistribution. XML,

28

due to its tree structure, is also well suited for holding structured data, such as network
information, and as such is also fairly easy to parse. Also, through what are known as
XSLT, or Extensible Stylesheet Language Transformations, other XML files can be
converted to match the specifications of the NTAV3D XML parser, making it easier to
import data from other sources besides CyberCIEGE.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

IV. VISUALIZATION DECISIONS

A. WHAT IS BEING VISUALIZED

Before introducing the decisions and reasoning behind how elements are to be
visualized, a brief discussion of what is being visualized is necessary. What are being
visualized are attacks on computer resources and the assets stored on those resources. To
facilitate this visualization the physical network topology is presented. This topology
comes from the CyberCIEGE scenario being played, and with some added work, can be
extended to also include topologies described by output from intrusion detection

systems.

1. What is a Component Compromise

Component attacks or compromises refer to flaws within the component
protection mechanisms, or attacks on the component such as insertion of malicious
software, or the physical theft of the component. Malicious software inserted into a
component can originate from a variety of sources. In most cases within CyberCIEGE,
the origin of an attack is not known. Information about the origin of some malicious
software is potentially available within CyberCIEGE, but only in cases where a decision
from the user, like not scanning emails for malicious content, results in a system
infection. Even when it is the case that the origin is known, the information is not output
to the visualization application. As a result, the goal was not to show how a component
became compromised with malicious software, but that the component is compromised.
Again, the focus of the application is on visualizing network topology, highlighting flaws

or compromised components, and attacks on assets.

The purpose of an intrusion detection systems is primarily to identify how a user’s
system is compromised with malicious software and/or data designed to exploit known
flaws. An intrusion detection system determines that an attack has occurred by observing
traffic patterns and anomalous activities, such as port scanning. With most IDSs, the
types of attacks that can be identified are limited to known attack patterns. Identifying

the specific attack is difficult in some cases. With some additional research and work,

31

these vulnerabilities and compromises can be depicted using NTAV3D. The main
obstacles that currently prevent depiction of these vulnerabilities and compromises are

discussed in section B of Chapter VI.

2. What is an Asset Attack?

An asset attack refers to attacks upon assets, which are contained within a
component. Component compromises can facilitate asset attacks by providing an avenue
by which an attacker can access the asset contained within the component. In some
cases, the compromised component is not necessarily the component that contains the
asset. For example, a firewall can be breached, leading to disclosure of an asset on some
other component. Similarly, compromise of an outward facing web server can lead to the
compromise of assets stored on the backend database systems or storage servers. An
asset attack is launched by someone (an attacker) with the goal of obtaining the asset or
altering it in some way that benefits the attacker. Integrity attacks and Secrecy attacks
are the two types of asset attacks that are visualized. Availability attacks (e.g. a denial-
of-service) are not represented as asset attacks because these attacks can be deduced by

observing component compromises.

a. Secrecy Attacks

A secrecy attack results in the unauthorized disclosure of information.
This can occur as the result of a lack of or failure to properly configure protection
mechanisms. It can also occur as the result of component compromises described above,
i.e., some combination of flaws, malicious software, or physical theft. In all cases, the

flow of information is from the component containing the asset to the attacker.

b. Integrity Attacks

An integrity attack results in the unauthorized modification or destruction
of information. These attacks occur in a manner similar to secrecy attacks described
above. However, the specific modification that the attacker wishes to make to the asset
may be encapsulated within malicious software inserted into a component that can access
the asset at some later time. Therefore, since the tool does not depict the source of

malicious software, the flow of information form the attacker to the asset is not always

32

depicted. The player might only see the flow of information from malicious software on
some component to the asset. In this case, an attacker will not be displayed because this
would illustrate the placement of malicious software, which is a facet of a component

compromise that is not visualized.

B. GEOMETRIC REPRESENTATIONS

Because the structure of a network is represented well by a node link diagram, a
big decision became what to use as nodes to represent the various network components.
The logical solution was to represent the various components with actual models of the
various components. This is by no means a new or novel idea. This method of
representation allows the user to easily and correctly identify components within the

visualization.

1. Computers, Servers, and Routers

All computers were modeled to resemble a typical computer tower. A monitor
was not included in the model because tower representation was hypothesized to be
sufficient enough for the user to correctly identify the model as a computer in the scene,
although no user studies were done to confirm this hypothesis. A screen shot of the

actual model developed to represent a computer is displayed in Figure 10 below.

Figure 10. A screen shot of the front of the computer model

Because a server is basically just a computer tower that has different software and
in most cases lacks a graphical user interface, the same computer tower model was
adapted to also represent servers. In order to reduce the confusion when trying to

differentiate between servers and computers, without creating a separate model servers,
33

the aspect ratio of the server was altered significantly. The dimensions of the computer

are 0.6 X 1.2 X 0.8 meters, while the dimensions for the server are 1 X 1 X 1 meters.

Figure 11. A screen shot of the front of the server model

Compared to Figure 10, the Figure 11 model appears tall and slender, while a sever
model looks like a cube. In many cases in the real world a number servers are stacked
atop one another inside a rack. This is also the case in some CyberCIEGE scenarios. In
order to reduce ambiguity and allow CyberCIEGE users to distinguish individual servers
from one another when stacked, black lines had to be added to the textures used on

SCrvers.

Figure 12. Multiple servers in a stacked configuration

The figure above shows four severs stacked on top of one another. The black
lines wrap all the way around the model such so that individual servers can be visually

resolved within the server stack. These lines mark the border between servers.

Routers are an essential component with the framework of a network. The routers

were modeled after the average router that can be purchased from any retail vendor. This

34

model is easily identifiable when compared to computers and servers. The figure on the

following page shows a side-by-side comparison of these three network components.

Figure 13. A computer (left), router (middle), and server (right)

2. Internet Cloud

Physically modeling the Internet would be a challenge in and of itself.
Additionally, a physical model of the Internet might not be correctly identified as such
because people have not actually seen a physical representation of the Internet. A widely
accepted and widely used method for abstractly representing the Internet is to use a
cloud. A simple search on Google Images for “Internet Cloud” returns over 500,000
results. A physical model of a cloud is used to represent the Internet within the
visualization. A model of the Internet is necessary because at some point a connection is
made to the Internet. Instead of having lines that connect to the Internet meeting at an
arbitrary point in space, these lines will meet up within the Internet cloud model that is

shown in the figure below.

Figure 14. Internet Cloud model

35

3. Walls

Within the visualization, walls were represented by paper-thin planes. These
walls denote the zones in the scenario, which are the abstraction, used to represent
physical security in CyberCIEGE, and within the visualization, they provide the user with
a visual spatial reference frame. They were given a high level of transparency (.99 out of
1.0) in order for geometry such as network lines and to be visible when looking down on
the scene from above. Comparing Figure 15 and Figure 16 below illustrates why such a
high level of transparency was needed. The level of transparency in Figure 15 is .99,

compared to .85 in Figure 16. Also, the network links are clearly visible through the

floor in Figure 15 while in Figure 16, the same lines are barely visible.

Figure 15. Illustration of semitransparent walls with .99 transparency

Figure 16. Illustration of transparent walls with .85 transparency

36

4. Network Links and Main Lines

Figure 15 shows examples of both network main lines and network links. The
network links represent connections between components and the network main lines.
These connections are denoted by lines that have a width of a single pixel. In order to
represent larger traffic flow rates present within network main lines, and to differentiate
main lines from links, the main lines were model as large pipes. A radius of 0.3 meters
was chosen in order to reduce the sensitivity of the touch-sensor associated with this
geometry to a level where the user is able to effectively utilize the mouse-over capability.
The difference in size between network main lines and network links is clear when
comparing the three network main lines depicted along the bottom edge of Figure 15 with
the network links spread throughout the remainder of the scene. Both network links and
the main lines were color coded in order to differentiate between different networks

present in the scene.

5. Attacks: Component Compromises

Component compromises refer to flaws or attacks that compromise a component
itself, while asset attacks refer to attacks upon assets, which are contained within a
component. CyberCIEGE simulates a limited number of component compromises, and
directly identifies the compromised component and the type of compromise. Within
CyberCIEGE, there are five types of component compromises: Trojan horse, virus,
operating system flaw, trap door, and physical theft. Models were created to visually

represent each of these compromising attacks.

a. Trojan Horse

The Trojan horse was modeled after an image of a Trojan horse. With the
focus of this thesis (visualizing network structures and attacks occurring within these
networks) in mind, the image to base the Trojan horse model upon was selected based on
its simplicity and visual discernability. A simple model is less expensive to render than a
complex model with a large number of vertices. The total number of vertices in the

Trojan horse model is just under 250. Because a Trojan horse e is constructed from

37

wood, the model was given a light brown color. The resulting model displayed in Figure

17 is discernable as a Trojan horse and quick to render.

Figure 17. Trojan Horst model (left) and inspirational image of a Peramodel Trojan
horse (3D paper model) from
http://www.venus.dti.ne.jp/~kpd/jpg/world/trojan.jpg

b. Virus

A computer virus is merely lines of malicious code. Representing a virus
in a three-dimensional world with a few lines of text may confuse a user. Instead, the
virus modeled after a biological representation of a virus structure. Biologically, viruses
take on many different structures. The image that provided inspiration and the resulting
model are displayed in Figure 18. The virus model was given a red color to catch the

attention of the user.

Bacteriophage Structure

Figure 18. Virus model (left) and the inspirational virus image from the Molecular
Expressions™™ website at http://www.microscopy.fsu.edu/cells/virus.html
March 2007.

38

C. Trap Door

A trap door is defined as “a mechanism embedded within a system that
allows the normal access paths or access checks of a system to be bypassed. This often
takes the form of a special password that is hard-coded into the software. It can also take
the form of a special diagnostic interface” (Berg, 2005). The model created to represent
this attack took the form of an animated wall. An opening appears in the center of the
wall and remains open for a short period of time before returning to its original solid
state. Figure 19 shows two trap door models, one model with the door closed and the
other with the door open. Like the virus model, the trap door model was also given a red

color to draw the attention of the user.

Figure 19. Trap door model closed (left) and open (right)

d. Operating System Flaw

An operating system flaw can be thought of as a bug in the operating
system code. This bug in the code is born when the operating system is written. Once a
flaw is found in the code, it can then be exploited. With this notion of a bug in mind, the
model for an operating system flaw was modeled after an insect. The inspirational insect
is some sort of beetle. Just as with the trap door model and the virus model, the operating

system model was colored red. The model is displayed in Figure 20 below.

Figure 20. Screen shot of an operating system flaw model.

39

e. Physical Theft

Physical theft is an easy concept for a person to visualize. One can
visualize a person stealing a component. Rather than having a person come through the
visualization and swipe a component, or make the component randomly disappear, which
may be confusing to the user, the decision was made to have a message displayed to the
user informing him/her that a particular component was stolen. In case the location of the
message does not clearly indicate which component was stolen, an arrow is included with
the message and points directly at the stolen component. Figure 21 shows the message
displayed to the user and its position in relation to the stolen component. The text
remains red for a period of time before briefly fading to white and then back to red. This

brief change in color is meant to draw the attention of the user.

Figure 21. Message displayed during a physical theft attack

Each compromise is represented by a different geometric model. These models
will appear just to the left of the component that has been compromised. The decision to
place the attack model to the left of the component was made because in many cases
components might be stacked upon one another and if the model was placed above a
component that has components stacked atop it, the model would not be clearly visible.
Placing the model just beside the component makes it visible in all cases except when
components are placed side by side. It is an uncommon configuration to have

components located side by side in CyberCIEGE scenarios.

6. The Attacker
Although an attacker is a physical person, representing the attacker with a model
of a real person was not a logical option because not only would the model be

complicated, but the model may distract a user from the remainder of the visualization.

40

After searching the Internet for intimidating figures that could be easily construed as such
by a user, it was decided to create a partial person model. The model is basically just a
person’s head and shoulders and was inspired by a police sketch image from New
Zealand. The image served as both an inspiration for the actual geometry of the attacker
icon and also serves as the texture used to color the geometry. The resulting textured

geometry and the image that provided inspiration are displayed in Figure 22.

Figure 22. Police sketch (right) of a suspect taken from identikit in Fairfax, New
Zealand. This image applied to the attacker geometry as a texture (left).

C. INTERACTION

One of the key take-ways mentioned at the end of chapter two was importance of
user interaction with a visualization. Users should have the ability to interact with the
visualization in a variety of ways. The methods of interaction within NTAV3D include
basic navigation capabilities, mouse-over capabilities, and a limited ability to modify the

scene.

1. Navigation Capabilities

Navigating through a three-dimensional world can be tricky. Users can become
easily disoriented if they are allowed to travel inside solid objects or if the navigation
controls are difficult to use. The main navigation controls were modeled after the
navigation controls that are currently in place in CyberCIEGE. One reason for doing this
is that the navigation controls in place within CyberCIEGE are easy to use and afford the

user the freedom to navigate anywhere they desire in the scene. The main reason for

41

making the navigation controls within the visualization application resemble the controls
in CyberCIEGE is so that game players do not have to learn a separate set of controls to
navigate within the visualization application. A list of the available “hot keys” and the
corresponding actions produced by pressing these keys for both CyberCIEGE and
NTAV3D is listed in Table 1. After observing the table, it should be clear that the
majority of the main navigational controls utilized in CyberCIEGE are implemented in

the visualization in the same or similar manner.

The method for panning the camera side to side and forward and back in is one of
the most notable differences. While the panning motion itself is essential, duplicating the
CyberCIEGE implementation using off screen mouse movements would have required a
large time investment. Investing a large amount of time just to exactly match an
implementation style that the user is familiar with was not considered a good investment,
when underlying feature could be easily replicated using input from the keyboard. Under

this justification, it was decided to replicate the panning motion using selected hot keys.

Because the camera does not automatically change its orientation while zooming
or changing elevation, separate controls were added to allow the user to change the
camera’s orientation. This allows the user to directly control the camera angle while

viewing the scene from above or below.

Toggling between sites using only one key was the last useful navigation feature
in CyberCIEGE that was not implemented in NTAV3D in the same manner. Instead of
using one key, two keys are used to switch between the main site and the remote site. An
additional hot key was defined in order to move the view to where the entire scene (both

main and remote site) are visible.

42

NTAV3D CyberCIEGE

Key | Action Key Action

A Move camera down A Lower the camera

a Move camera up a Raise the camera

Z Move camera forward (zoom in) Z Zoom in

z Move camera backwards (zoom out) z Zoom out

T Rotate camera clockwise T Rotate camera clockwise

t Rotate camera counterclockwise around t Rotate camera counterclockwise

f Move camera right u Iterate through users

g Move camera left] Iterate through support staff

v Change camera’s orientation to look down m Iterate through computer

components

b Change camera’s orientation to look up d Iterate though network devices

H Move camera to view entire scene and set | Tab / Shift Iterate through simple camera
the pivot point to the center of entire scene Tab positions

h Move camera in front of main site and set | h Home (in current office)
the pivot point to the center of this site

1 Move camera in front of remote site and set | 1 Toggle between main office and
the pivot point to the center of this site remote site

Ctrl | Make walls appear Ctrl Slows panning

Alt | Make walls disappear Move cursor | Pans the camera in the direction of

off screen the cursor
Table 1. List of “hot keys” for both the visualization and CyberCIEGE

2. Mouse Over Capabilities

All geometry displayed in the scene besides the network links and the walls have
mouse over functionality built in. A game player can find out more information
(component name, network name, or attack type) about these objects in the scene by
placing the mouse over a piece of geometry. When the mouse is over a computer, router,

or server, the name of the component will appear directly in front of the component in

43

large white letters. When the mouse is over a network main line, the name of the
network pops up in front of the main line. Placing the mouse on an attack model display
the name of the attack above the model. As soon as the mouse is moved off the
component, the text will disappear again. The reason for text appearing and disappearing
is to keep the scene as clutter free as possible. Having all the component names, network
names, and attack types displayed on the screen at once would create a chaotic and
confusing scene due to limited screen real estate and numerous elements vying for space.
Messages would overlap forcing the user to decipher the alphabet soup displayed on the
screen. This type of burden on the user would make it hard for the user to extract the
information being presented. With the current mouse-over implementation, only one
message will be displayed at any given moment because the mouse can only be over a
single component. This eliminates the possibility of overlapping text and makes the

message easy for the user to read.

Attempting to place the mouse over a network link that has a width of one pixel
would be extremely difficult and all necessary information (which component and which
network the link is connected to is apparent from the scene). For these reasons, mouse-

over functionality was not build into network links.

3. Scene Modification Capabilities

The only modification of the scene that can be performed by the user is toggling
the walls from visible to invisible and vice versa. This capability is necessary because
the walls interfere with the mouse-over capability of components obscured by them. In
the absence of walls, the user is able to navigate more freely and access the mouse-over
features of components that were previously obscured by the walls. Turning the walls
back on restores visual familiarity and the spatial reference frame provided by the walls’
presence. It should be noted that in order to turn the walls back on the user must press
the Alt key twice in succession. The precise reason for this is not known, but this issue is

explored in more depth during the section on evaluation of Xj3D in chapter six.

44

D. ATTACK ANIMATIONS
Animation is used to both grab the user’s attention and to show data flow through
the network. Animation is only used during an attack. The animation used for

component attacks is different from the animation used during an asset attack.

1. Component Compromises

As mentioned earlier in this chapter, component compromise models are placed
just to the left of the component that has been compromised. Each of these models is
animated so as to attract the attention of the user. The Trojan horse, virus, and operating
system flaw models all have animated scales. This means that each model periodically
gets larger then smaller. The trap door model looks like a solid wall for a few moments,
and then a hole begins to open in the center of the wall. This hole remains open for a few
second before closing, returning the wall back to its original solid form. The message in
the physical attack changes color. It cycles between red and white, spending the majority

of the time as red text.

Although availability attacks are not explicitly represented in NTAV3D, users are
able to determine when these attacks have occurred by observing the presence of

component compromise models and the absence of an asset attack animation.

2. Asset Attacks: Integrity vs. Secrecy

In order to clearly represent the flow of traffic through the network during an
asset attack, information in the form of a cone was animated to travel through the
network. The animations for integrity attacks and secrecy attacks have a couple key
differences. The main, and most noticeable, difference is in the direction of traffic flow.
In an integrity attack information flows from the attacker to the asset. In order to convey
the direction of flow a cone travels through the network to present the path taken by the
information. Throughout the cone’s journey it say oriented such that the tip of the cone
points in the direction of travel. In this way, the direction of travel can be ascertained
from a static screen shot. During a secrecy attack, the flow is from the asset to the

attacker.

45

Besides the direction of flow, the name of the asset attacked is displayed above
the cone during a secrecy attack, while nothing is displayed during an integrity attack.
The reason nothing is displayed during an integrity attack is because nothing is known
about the information being sent by the attacker. By not directly informing the player
which asset is being attacked during an integrity attack, the player must observe which
component is being attack and reference the assets contained within the component to
determine which asset is being compromised. When a component contains multiple
assets, the component reference method fails. Determining how and where to present
information about which asset is being attacked during an integrity attack is a topic for

future work.

One final way in which the user can distinguish between integrity and secrecy
attacks is by the color of the cone. During a secrecy attack, the cone will be green, while
the cone will appear red during an integrity attack. The choice in coloring was made

solely to reinforce the fact that these two attacks are different.

E. ROUTING NETWORK LINKS

Because the positions of components like computers, routers, and servers is
important and these positions are directly specified by CyberCIEGE, a unique routing
scheme needed to be devised in order to route links between components and network

main lines.

As shown in Figure 15, all network main lines are located at the front edge
(largest z value) of the main site, but at different depths. The depth of a network main
line is dependent on the order in which it is specified in the input file. The first one
specified is at the shallowest depth below the floor, with the following network main
lines at incrementally deeper depths. Placing all the network main lines at one edge of a
site eliminated the possibility of a network link routing through a network main line as a
link routes down to the corresponding network depth because none of the main lines will

be directly under a component.

In order to minimize ambiguity with connections between network links, a clear

presentation scheme was developed in order to eliminate different colored lines crossing

46

(lines from different networks). To accomplish this task, a basic routing scheme was
developed where links route out from a component in the x-direction, then down through
the floor and over to the network main lines at the front of the site. The routing distance
in the x-direction eliminates the crossing of network links as they route from components
to network main lines by testing the “drop point” against already established network
links. The drop point is the point at which the network link is dropped through the floor.
If the drop point matches one from an existing link from a different network, then the
drop point is incremented and tested again. This process is repeated until drop point is
found that satisfies the test criterion. A clear presentation of routing can be found in

Figure 23.

Figure 23. Presentation of routing network links from an example scene viewed from
two different angles.

Figure 23 displays two different views of the same scene from different angles to
showcase how network links on different networks (differentiated by colors) do not cross.
This example scene has many components packed in a small area and without proper
routing would be confusing to a game player due to crossing lines. Only network links of
the same color, like the green lines routing out from the stacked servers, route down to

their networks with the same drop point. This greatly reduces the amount of clutter in the

47

scene and emphasizes the interconnections between links on the same network. This
method of presentation was not implemented to make all network connections from a
particular network use the same drop point when routing from stacked components. If
this were the case, the orange line coming out of the top server would meet up with the
orange lines on the other side of the stacked servers. This inconsistent presentation is due
to a coding implementation, but with some additional work, the routing scheme within
the NTAV3D application can be refined to include a single drop point for each network

connected to components in a stacked configuration.

48

V. APPLICATION IMPLEMENTATION

A. JAVA APPLICATION ARCHITECTURE

1. Xj3D (SAI) Scene Access Interface Implementation

Three dimensional scenes are not something new, but creating them by utilizing
only the Java-based Scene Access Interface (SAI) of the Xj3D tool kit is. This is
important because NTAV3D is one of the first applications solely developed utilizing the
Xj3D SAI A limited number of examples describing how to use the SAI can be found at
the Xj3D website, and all of the examples rely on outside files for the actual creation of
geometry. The sections to follow outline both the basics for how geometry, user
interaction, and animations were actually created within NTAV3D and also explain some

of the programming syntax involved.

The basic scene graph structure that is utilized within the Xj3D’s SAI is the same
as within X3D. A simplified scene for the creation of the transparent walls within
NTAV3D can be found in Figure 24. All the nodes used within the scene are children of
the Scene node. In addition to the basic parent-child relationships displayed in the scene
graph, Figure 24 also notes which fields are important within each node, and displays a
routing diagram that is denoted by the hashed lines. The various components of the scene

graph presented in Figure 24 will be explained over the next three subsections.

49

Scene

‘whichChaice

The annotation attached to
Y g ‘translation each node lists the important
—=| Switch] ‘rotation fields within that node
--Escale
[Transfarm | ‘none

coordindex

Shape [. texCordindex

—>-| IndexedFaceSat) .pﬂ_i"ut
'

TextureCoordinate |
‘none

—I-|.-“-.|:I pearance | -

(diffuseCalor
.-.a.|ﬂf:E'y 'E_T_'_a_ni:laren-:,;.,-
o[Keysenser] oMM

I

-inputTrue

|+ HonleanFiltert | .-+ - linputhlegate

-set_boolean

[npuiTrue

i ah,
BooleanFilter2 |- IF‘FJ.IEQEIE

set_boolean

] .1.J'Iig.ge"«."a ue
IntegerTrigger1 | .set_boolean

) ‘triggeryalue
—={ IntegerTrigger? |- ‘set_boolean

LY I

Figure 24. A simplified scene graph for creating walls within NTAV3D that notes
important fields for nodes and includes a routing diagram

a. Geometries Used in NTAV3D
As mentioned in Chapter IV, physical objects within NTAV3D are

represented by models resembling these objects. The majority of the geometry visible in

50

NTAV3D was created using indexed face sets and indexed line sets. In addition to these

two types of geometry, cones and extrusions were used.

(1) Xj3D Geometries Explained

Indexed face sets are one method for creating geometry. They are
comprised of a set of polygonal faces. The first step in creating an indexed face set is to
define the list of vertices that describe the structure of the object in the “points” field of
the Coordinate node attached as a child. The next step is to delineate which vertices
make up which face in the “coordIndex” field of the IndexedFaceSet node. This is
accomplished by referencing the indices of vertices in the list. A single vertex can be a
part of several polygonal faces. This framework for creating objects is efficient by way
of reusing vertices, and versatile in that any solid object can be modeled. Indexed face
sets were used to model the walls, computers, routers, servers, the Internet cloud, all the
component compromise models (except physical theft), and the attacker icon in
NTAV3D. Figure 24 illustrates the scene graph structure involved in creating an indexed

face set.

Indexed line sets are very similar to indexed face sets. They too
are comprised of a list of vertices, but instead of a list that creates polygonal faces, an
indexed line set has a list that specifies the order in which vertices are applied to create a
segmented line. Indexed lines sets were used to create the various network links seen
throughout scenes in NTAV3D. These lines have a unique property of always having a
thickness of one pixel regardless of how close or distant the line is within the scene.
Replacing the IndexedFaceSet node with an IndexedLineSet node is the only change to

the scene graph in Figure 24 needed to create an indexed line set.

Cones are one of the predefined simple geometries available in
Xj3D. The only information necessary to create a cone is a height and a radius. Within
NTAV3D, cones were used to represent data. One only need substitute the
IndexedFaceSet node and its children in Figure 24 with a Cone node in order to create a

cone.

51

Extrusions are the last method used to create geometry within
NTAV3D. An extrusion is defined by a two-dimensional cross section and a spine. The
cross section defines the prominent structure of the object. An extrusion is created by
repeating the cross-section along the vertices defined in the spine. The spine can also be
thought of as a set of controls points for controlling the smoothness between cross-
sectional slices. Extrusions were used in NTAV3D to model the network main lines.
The cross-section was a circle, and the spine consisted of a beginning point and an end
point. This created a three-dimensional pipe. An extra point in the spine was necessary
in the case when a network main line connected to the Internet cloud. This created a
smooth pipe with a single bend in it as illustrated by the red pipe in Figure 29 (page 79).
Substituting the IndexedFaceSet node Figure 24 with an Extrusion node is all that is

required to create an extrusion.

(2) Examining the Java Syntax

Understanding the relationships within the scene graph in Figure
24 and knowing which node fields are important make coding easier. This section
outlines how the walls were created within NTAV3D by examining code snippets from

the WallCreator class, which can be found in its entirety in Appendix B.

The pattern for creating any node within the scene is shown in the

first line of the code snippet below.

X3DNode tr = scene.createNode("'Transform™);
MFNode tran_children = (MFNode) tr.getField(""'children™);
tran_children.clear();

In the first line, a Transform node is created and added to the scene
by providing the createNode() method with the string “Transform.” A list of other nodes
used within NTAV3D can be found in Appendix A. Because a node is created by
specifying the name of the node via a string, the spelling must be exact or a run-time
error will occur. A Transform node is a type of grouping node, so it was necessary to be
able to add children to this node. The second and third lines of code create access to the
“children” field and clear this field in preparation for adding children. The next step to

create the actual geometry.

52

All geometry nodes are created as a child of separate Shape nodes.
Creating the Shape, IndexedFaceSet, and Coordinate nodes is accomplished in the same

manner that the Transform node was created.

X3DNode shape = scene.createNode(''Shape');
X3DNode box = scene.createNode("'IndexedFaceSet™);
X3DNode coordinate = scene.createNode(*'Coordinate'™);

The method for defining the vertices that comprise the indexed
face set is not as straightforward as adding the node. A special relationship is formed
between the parent node (IndexedFaceSet) and the child node (Coordinate) using a
SFNode. Through this relationship, the values set in the “points” field of the Coordinate

node are assigned to the “coord” field of the IndexedFaceSet node.

SFNode line_coord = (SFNode) (box.getField(*"‘coord™));

MFVec3f point_value = (MFVec3f) (coordinate.getField(*'point'™));
point_value.setValue(8, new float[] { this.cornerl[0], -1,
this.cornerl[1],. . . this.cornerl1[0], 3, this.corner2[1], });
line_coord.setValue(coordinate);

Setting the value of the “coordIndex” field of the IndexedFaceSet
node is much more straightforward since this field exists within the IndexedFaceSet
node. This field references the vertices defined in the “points” field of the Coordinate
node by using indices. Individual polygon faces are separated by values of negative one.
Because some browsers implement indexed face sets in different manners it is a good
practice to completely close faces by ending with the same point that began the face (first
specified faceis 8, 9, 5, 4, 8, -1).

MFINnt32 coord_index = (MFInt32) (box.getField(*'coordindex'));
coord_index.setValue(30, new int[] { 8, 9, 5, 4, 8, -1, 9, 10, 6,
5, 9, -1, 10, 11, 7, 6, 10, -1, 11, 8, 4, 7, 11, -1, 4, 7, 6, 5,
4, -1, B;

Once the geometry is defined, it must be added to the scene. This
is accomplished using another special relationship node to assign the IndexedFaceSet
node as the “geometry” field value for the Shape node. The Shape node is then appended
as a child of the Transform node. The Transform node becomes a child of the Switch
node, which is then added to the scene.

SFNode shape_geometry = (SFNode) (shape.getField("'geometry'));
shape_geometry.setValue(box);

tran_children.append(shape);

switch_children.append(tr);

scene.addRootNode(switchNode);

53

Both the direct and indirect methods for adding nodes to the scene
are illustrated in the previous code snippet. The direct method explicitly adds the node to
the scene. The indirect method involves appending nodes as children of nodes that are

directly added to the scene.

b. Texturing
(1) What is a Texture and What is it Used for?

A texture is an image that is put on an object to color it. Texturing
is done on a per fragment basis, whereas assigning color is done on a per vertex basis.
Using a texture allows one to explicitly assign colors per fragment using texture
coordinates (texels) as opposed to interpolating color values between vertices. Similar
results could be achieve by manually assigning colors to vertices, but a much larger
number of vertices for the same geometry is required. Texturing is an extremely
common and widely used method in the gaming industry (both console and computer

games).

(2) How are Textures Placed on Objects?

The example code that follows is taken from the Attackerlcon
class. The example code in this subsection shows how the rectangular image of the
attacker in Figure 22 (page 41) was mapped to the oddly shaped geometry in the figure.
An Appearance node and an ImageTexture node do the bulk of the work in assigning a

texture to an object.

X3DNode appearance = scene.createNode("'Appearance'™);
X3DNode image texture = scene.createNode("'ImageTexture'™);

As with the creation of an indexed face set, special relationships
are utilized while assigning values from a child node to a parent node. The actual name
and location of the image file used as the texture is specified in the “url” field of the

ImageTexture node.

SFNode shape_appearance = (SFNode) (shape.getField("'appearance'™));
SFNode appear_texture = (SFNode) (appearance.getField(*"texture’™));
MFString textureURL = (MFString) (image_texture.getField("'url'));
textureURL .setValue(1, new String[] { "images-jpg"” });
appear_texture.setValue(image_texture);

54

In the forth line the file name is specified in the setValue() method
by using a string array and its length. A string array is used so that multiple paths to the
same image file can be specified, and if the first path fails, the next path in the array list
will be tried. This provides alternative URLs for redundancy when referencing images

on the web.

This next snippet of code shows the steps necessary to map a
rectangular image to an irregular polygonal face. The “texCoordIndex” field of the

IndexedFaceSet node is set in the same manner that the “coordIndex” field is set.

MFINnt32 texCoord_index = (MFInt32)
(attacker _getField(""texCoordIndex'));
texCoord_index.setValue(textCoordIndex. length, textCoordIndex);

As seen in Figure 24, a TextureCoordinate node is created as a
child of the IndexedFaceSet node. Texels are defined in the “points” field of the
TextureCoordinate node in much the same way that vertices are defined in a Coordinate
node. Using the special parent-child relationship node, these texels are assigned back to
the “texCoord” field of the IndexedFaceSet node. Once these values are assigned back to

this field, they can be mapped to vertices on the indexed face set.

X3DNode textureCoord = scene.createNode("'TextureCoordinate™);
SFNode text coord = (SFNode) (attacker .getField(""texCoord™));
MFVec2f textCoord value = (MFVec2f)
(textureCoord.getField("'point'™));
textCoord_value.setValue(textureCoordinates.length /7 2,
textureCoordinates);
text_coord.setValue(textureCoord);
C. User Interaction

(1) Types of User Interaction

The two avenues by which the user can interact with scenes
created by NTAV3D are the keyboard and the mouse. As described in Chapter IV, the
keyboard is used to move around within the scene and to turn walls on and off. The
mouse is used to uncover additional information about objects (i.e. the components name,
the name of the zone, or the name of a network) by placing the mouse over a given

component.

55

(2) Creating Interaction with the Xj3D SAI

A Switch node is a type of grouping node that renders one or none
of its renderable children. Which child is rendered is controlled by the field
“whichChoice,” and by default, it is set to the first child. In the following code snippet, a
Switch node is created and set to render its first child. No children are rendered by setting
the value of the field “whichChoice” to minus one.

X3DNode switchNode = scene.createNode("'Switch™);

MFNode switch_children = (MFNode) switchNode.getField("'children'™);
switch_children.clear();

SFInt32 whichChoice = (SFInt32)
switchNode.getField("'whichChoice™);

whichChoice.setValue(0);

The first step in implementing the mouse-over feature to geometry
in the scene was to add a TouchSensor node. Touch sensors receive input from the
mouse. They know where the mouse pointer is located and whether a click is registered.
Adding a TouchSensor node is the same as adding any other node, but it needs to be
added to the scene graph such that it is at or above the level of the desired geometry. In
the code snippet below, the TouchSensor is added to the Transform node as a child,
which means that it will be associated with any geometry nodes that are children of that
Transform node.

X3DNode touchSensor = (X3DNode) scene.createNode(""'TouchSensor™);
scene.addRootNode(touchSensor) ;
tran_children.append(touchSensor);

Once a touch sensor is linked to geometry, it is able to determine
when the cursor is placed over or clicked upon a geometry linked to it. The next step is
to introduce the necessary logic components and route information to the necessary
nodes. Only one BooleanFilter node is necessary to create the mouse-over feature, while
two are needed to toggle the walls on and off. A BooleanFilter node takes in a Boolean
value and outputs a Boolean value. The filtering aspect of this node comes from sending
out a value only when specific Boolean input is received, or the Boolean input can be
negated and sent out. The following code snippet shows the creation and addition of a

BooleanFilter node to the scene.

X3DNode bf3 = scene.createNode("'BooleanFilter™);
scene.addRootNode(bT3) ;

56

Once the BooleanFilter is in place, a series of IntegerTrigger
nodes is necessary to convert Boolean inputs into integer outputs. The “integerKey” field
is where the desired output integer value is specified. Only one integer value can be
specified for each IntegerTrigger node. An IntegerTrigger node only outputs the integer
value when a Boolean true event is received. Two IntegerTrigger nodes are created and
assigned different output values before being added to the scene in the following code
snippet.

X3DNode triggerTextOn = scene.createNode("'IntegerTrigger');
SFInt32 integerKeyOnText = (SFInt32) triggerTextOn
-getField(""integerKey'™);
integerKeyOnText.setValue(0);
scene.addRootNode(triggerTextOn);

X3DNode triggerTextOff = scene.createNode("'IntegerTrigger');
SFInt32 integerKeyOffText = (SFInt32) triggerTextOff
-getField(""integerKey™);
integerKeyOffText.setValue(-1);
scene.addRootNode(triggerTextOff);

The last step is to route information from one node to another to
create the desired interaction. Route nodes are used to send information from one node to
another. A route sends values from an output field in the source node to an input field in
the destination node. Routes are depicted in Figure 24 by hashed red lines with a single
arrow head conveying which node is the source and which is the destination. Route
nodes are a vital component of any interaction or animation that occurs using X3D,
Xj3D, or VRML97.

scene.addRoute(touchSensor, "isOver'™, bf3, "set boolean™);
scene.addRoute(bf3, "inputTrue', triggerTextOn, "set boolean™);
scene.addRoute(bf3, "inputFalse’, triggerTextOff, "set boolean™);

scene.addRoute(triggerTextOn, 'triggerValue', switchNodeText,
"set_whichChoice™);

scene.addRoute(triggerTextOff, "triggerValue™, switchNodeText,
"set_whichChoice™);

Matching field types is vital during routing process in order for
things to work. Boolean values must be routed to Boolean fields and integer values must

be routed to integer fields.

The BooleanFilter is the intermediary for Boolean values between
the TouchSensor and the IntegerTtriggers. Without the BooleanFilter, Boolean values
would be routed from the TouchSensor to both IntegerTriggers at the same time resulting

57

in conflicting commands. Both IntegerTriggers would attempt to send integer values at
the same time, and the last integer received would be the one to influence which node
would be rendered by the Switch node. By having the IntegerTriggers receive values
from the Boolean filter, only one IntegerTrigger receives a value during an event and

conflicts are avoided while setting the rendering choice of switch node.

d. Animation
(1) Nodes Vital to Animation

The three nodes that make animation possible are the TimeSensor,
an Interpolator, and Route nodes. The TimeSensor node acts as a clock. Fields within
the TimeSensor node allow one to specify whether the animation will be looped, and the
duration of the animation. A TimeSensor also keeps track of the fraction of time that has
clapsed during the animation. This faction is useful for the Interpolator node. The
fraction of time elapsed tells the Interpolator node how much to interpolate the values
within the Interpolator node. The Route nodes are used to connect the TimeSensor to the
Interpolator, and the Interpolator to the component being animated. The lines of code to
follow in the next subsection were taken from the PhysicalAttack class. The entire class

can be found in Appendix B.

(2) How to Create Animation using Xj3D SAI

The first step to creating an animation is to create the TimeSensor.
Once the TimeSensor is created its fields can be modified to enable a looped animation

and the cycle interval can be set.

X3DNode timeSensor = scene.createNode("'TimeSensor'™);
SFBool loop = (SFBool) timeSensor .getField(""loop™);
loop.setValue(true) ;

SFTime cyclelnterval = (SFTime)

timeSensor .getField("'cyclelnterval');

cyclelnterval .setValue(2.0);
scene.addRootNode(timeSensor) ;

The next element necessary to create an animation is to create the
Interpolator node or nodes. The two fields of importance within an Interpolator node are

“keys” and “keyValues.” The first is a list of instants in time specified by floating point

58

values between 1.0 and 0.0. The second field lists the state for each instant in time listed
in the “keys” field. The code snippet below shows a PositionInterpolator node being

created and the “keys” and “keyValues” fields being set.

float[] keys = { 0, .25Ff, .75F, 1 };

float[] keyvalues = {1, 1, 1, 1, 0, 0, 1, O, O, 1, 1, 1 };
X3DNode pi = scene.createNode("'Positioninterpolator'™);
MFFloat key = (MFFloat) pi.getField("'key'™);
key.setValue(keys. length, keys);

MFVec3f keyValue = (MFVec3f) pi.getField("'keyVvalue');
keyValue .setValue((keyValues.length) /7 3, keyValues);
scene.addRootNode(pi);

As with user interactions, the last step is to connect Route nodes
between source node fields and destination node fields. The routing pattern shown in the

code snippet below is the pattern used when employing an Interpolator node.

scene.addRoute(timeSensor, "fraction_changed", pi,
"set fraction');

scene.addRoute(pi, *‘value_changed”, material2, "diffuseColor™);

2. Java Class Structure

The basic programmatic flow of the application is depicted in Figure 25 on the
following page. This diagram depicts the steps of execution each time NTAV3D is
launched, and allows one to gain a better understanding of how the different parts of
NTAV3D’s code interact with each other. For a full UML (Unified Modeling Language)
class diagram, which breaks down all of the Java classes and their elements, see

Appendix C.

59

Netview File
Or
Snort Ouput File

Main File » Parser
A 4 4
WallCreator Internet Cloud Network Storage Node Storage Assets & Attacks
h 4 v
Network Box
v v
4
Network Links Netvyork_llnes
(Main Pipes) Attack Creator
Trap Door Trojan Horse
Physical Virus
Figure 25. Application Flow Chart

Asset Attack

Attacker Icon

Operating System
Flaw

60

B. XML PROCESSING

1. XML in NTAV3D

As mentioned in Chapter III, XML was used to exchange data between outside
applications and NTAV3D. In this way, XML functions as a kind of “middleware” to the
application. The following sections will serve to describe how XML is utilized in
NTAV3D. The structure of the XML file will be discussed, including what data was
included and why. Then, the way NTAV3D actually processes the XML file will be
described. Knowledge of how NTAV3D handles XML is helpful to understand how the
program processes data, and will also facilitate a better understanding of how it can use

data from other programs (which will be addressed in the next section).

2. File Structure

To understand the structure of the XML file NTAV3D receives from
CyberCIEGE, Appendix D contains the CyberCIEGE document type definition, which
specifies the format of the XML file output from CyberCIEGE. Appendix D also
contains an example XML file that was actually output from CyberCIEGE. This is the
same example scene depicted in Figure 29. The CyberCIEGE XML file’s structure is
one that starts at a higher level of detail about the networks, and then continually drills
down to include more details about the networks and their components. The file starts
with high level data, such as which networks are currently involved in the game, and
details about them such as their name, and the color that they are mapped to in the game.
NTAV3D maintains this color mapping when displaying networks in an effort to help
player orientation. The next part of the XML file includes definitions of each network
zone (which corresponds to the previously mentioned transparent walls displayed), and
the components within each zone. Each component has such attributes as the type of
component, the name given in the game, the networks the component is connected to, and
any data assets that may exist on the device. An example of this data in XML is shown

below.

<network>
<networkName>Offsite LAN</networkName>
<color>0xFFFFFF00</color>

</network>

<mainSite>

61

<zoneName>Entire Office</zoneName>

<upperLeft><x>33</x><z>49</z></upperLeft>

<lowerRight><x>56</x><z>31</z></lowerRight>

<component>
<componentName>Joe ws</componentName>
<componentBase>Blato Desktop Select</componentBase>
<location><x>35</x><y>1</y><z>36</z></location>
<networkName>leased</networkName>
<networkName>Lan 1 </networkName>
<assetName>Plans</assetName>

</component>. . .

</mainSite>

Finally, the XML file can contain information on the kind of network attack
occurring on or over the network. This provides NTAV3D with a way of visualizing the
attacks that occur in CyberCIEGE. This information will only be included in the file at

the time of an attack. See the next section for a discussion of this attack data.

3. CyberCIEGE XML Information

a. Topology Data

During the course of NTAV3D development, changes were made
continually to the structure of the CyberCIEGE Document Type Definition (DTD) so that
information provided to NTAV3D is more useful. For example, to show the network
topology and general office structure, the physical location of components, and office
“walls,” or zones, was needed. For easier topology and data display, the names of each
component and the names of the networks it is connected to was needed. Therefore, for
each zone and component, location data was added to the XML file specification. As
will be discussed later, providing a physical location for components in a real network is
quite difficult, so including location data in the CyberCIEGE file helped to eliminate a
layer of complexity. CyberCIEGE already was storing location data from the “office
view”, it only made sense to provide that information to NTAV3D. Another benefit of
this is that it allowed the mappings of where objects were located in the “office view” to

be similar in NTAV3D. Again, this helps aid gameplayer orientation.

62

b. Attack Data

Another crucial area of data that was needed from CyberCIEGE was that
relating to network attacks. This is vital for NTAV3D, as it allows it to visualize the
attacks that occur in the game, as opposed to the game’s current generic movie clips.
After conducting the research discussed previously, the details of a network attack to
include in the CyberCIEGE XML file was decided. First, NTAV3D has to know which
network component or components were compromised. Next, the specific asset that was
on the components must be known. Once this data is outlined, “segment” data is needed
in order to show the information flow resulting from the attack. This information will
determine the route the attack followed by providing the networks and networking
components that the attack passed through. Once these segments are known, NTAV3D
then uses an algorithm to determine the specific path of the attack, and thereby show an
animated cone to represent data flow. Finally, CyberCIEGE outputs the type of attack
occurring (secrecy, integrity, Trojan horse etc.), and also the type of attacker. This
information allows NTAV3D to display its icons specific to each attack, so that the
gameplayer is given context of which kind of attack is occurring. An example of this

data in XML format is shown below.

<attack>
<assetName>Basic Research</assetName>
<policy>Integrity</policy>
<segment><Network>Internal LAN1</Network><componentName>Bit
Flipper 3</componentName></segment>
<segment><Network>Internal LAN2</Network><componentName>Five Inches of
Asbestos 4</componentName></segment>
<segment><Network>Internet</Network></segment>
<attacker>Attacker</attacker>

</attack>

By parsing this data, NTAV3D has the information needed to depict a
network attack. Figure 26 on the following page shows a screenshot of a running

example of a network attack in NTAV3D.

63

Figure 26. Screenshot of a running example of a network attack in NTAV3D

Note the attacker icon in the figure, as well as the cone to depict data flow
seen traveling along the red network (in this image it is directly below the foremost
transparent zone wall and moving left). Also, while CyberCIEGE does not currently
export data about component compromises or asset attacks, the structure and data content

will be similar to that above, and it is expected NTAV3D can display them.

4. XML System Implementation

At the time NTAV3D is launched, it looks for an XML file, whose file system
path is specified at run-time as a startup parameter. Once the file is located, the Apache
Xerces XML parser is utilized to parse the file. Some of the code behind this is available
as an excerpt (for brevity) in Appendix B. The parser then searches for specific XML
nodes specified in the Java code, and creates an internal list of the node, and the sub-
elements contained in it. For example, it will look for all “component” nodes, and then
store a list of the “componentName,” componentBase,” etc. for each node. Then, the
NTAV3D code loops through each list, extracting information as it goes, or taking
actions in the Xj3D scene, such as creating a new server object, or constructing walls.

An example of this kind of action is in the code below

Element netNameEImnt = (Element) netFstNode;
NodeList netNmEImntLst = netNameEImnt
-getElementsByTagName("'networkName'™) ;

64

Element netNmEImnt = (Element) netNmEImntLst.item(0);
NodeList netName = netNmEImnt.getChildNodes();
networkStorage.getNetworkArrEl (holdnet) .setNetworkName (
(netName.item(0)) .getNodeValue());

This code is going through the already defined “Network” list and looking for the
element known as “networkName.” When it finds this, it gets the value and stores it
within the NTAV3D array (a Java programming structure for holding data) known as

“networkStorage.” This process is then continued for all of the nodes in the XML file.

C. NETWORK TOOL INTERACTION

1. Why Work With Network Tools?

Some intrusion detection systems, such as Snort, can detect attacks automatically
and in real-time. Therefore, a valid question is why bother displaying a network attack to
a human operator at all? Why not just automatically remove the offending packets from
the network and be done? By providing a visual depiction of the attack, and especially
one that is interactive and in three dimensions, the objective is to provide the network
security professional with increased situational awareness (the need for studies to prove
this situational awareness enhancement is addressed in Chapter VI). By being able to
“see” the attack happening, a somewhat abstract idea of unseen electronic attack can be
put into a more usable context, hopefully one that the security operator can use to his or

her advantage to repel future attacks.

2. Tool Output

However, allowing NTAV3D to work with other network analyzers and intrusion
detection systems, such as the aforementioned Wireshark or Snort, is a much more
complicated problem than that posed by CyberCIEGE. This is mainly due the fact that
these network tools are showing the information from a “real” network, instead of the
“scripted” one shown in CyberCIEGE. Whereas CyberCIEGE can tell NTAV3D where
certain components etc. are located, to discover the physical location of a network node

using a program like Wireshark or Snort can be extremely difficult.

Indeed, network topology generation could be a completely separate and

independent thesis topic. Along these lines, there are additional differences between the

65

kinds of data CyberCIEGE can provide, and that which a network tool can. Table 2
below shows a comparison of the kinds of data NTAV3D displays of a CyberCIEGE
“office”, and the data network tools can provide. The table also shows the difficulty (as
rated by the authors) that it would take to obtain the data from a network tool. In some
cases, such as office zone names, a network tool would not normally provide that kind of
information, but it is included in the table to show the details included by CyberCIEGE

that would probably not be able to be included via a network tool.

Data Type CyberCIEGE Network Tool Difficulty of Obtaining
(Wireshark Data From Network Tool
Snort, etc.)
Physical Office Zone Names & X -- 6
Locations
Network topology X X (with topology 5
generator)
Network attack origin X -- 5
Specific asset compromised X X 5
Path of network attack X X 5
Network Attack Type (Trojan X X 4
horse, etc.)
Assets stored on component X X 4
Network Names X X 4
Detect live network attacks -- X 3
Networks component belongs X X 3
to
Component types (server, X X 3
computer, etc.)
Component names X X 2
Log real network data packets -- X 1
in real-time
Table 2. Table comparing CyberCIEGE data to network tool data, and the ease of

obtaining said data from a network tool. Difficulty is from 1-6, with 1 being easy, 5
being extremely difficult, 3 being moderately difficult, and 6 being basically impossible

66

As can be seen, some of the most difficult aspects of using a network tool for
network visualization involve extracting network topology, and determining data flow.
NTAV3D cannot solve these problems, nor is it meant to. NTAV3D has the capability to
visualize this information, but actually deriving this data is outside the scope of this

thesis.

Representing network attacks in almost “real-time” is quite a challenging aspect
of network security. Snort, as an example, can log packets of network data, and attempt
to alert network security professionals of possible intrusion attempts. Using the
methodology detailed in the next section, it can, with future work, be possible to
represent this data in NTAV3D, thus providing a visual context for how data is flowing,
and nodes that are compromised, which would be quite useful. For example, if Snort
were to detect a Trojan horse program trying to send unauthorized data, NTAV3D could
display exactly where that node is, and what internal networks the data is traveling
through. Again, however, NTAV3D is only meant to visualize such data, not discover
and derive it itself. The next section explains how NTAV3D can be utilized in such a

role to provide this type of visualization.

3. Proposed NTAV3D Methodology

a. Data Manipulation

In order to provide visualization capabilities to network protocol analyzers
or intrusion detection software, the thesis application could employ its already existing
XML parser. This will require the help of outside tools however; as again, NTAV3D is
not a stand-alone analysis program. The raw output of such network analysis or intrusion
detection programs as Wireshark or Snort could be fed to outside topology generators
(such as those discussed in Chapter II). These generators could then be utilized to create
topology, while at the same time, the results of the network tools’ analysis could be used

to determine segments of attack, which could then be provided to NTAV3D.

However, this is still not an easy task. For example, as mentioned above,
it is extremely difficult to identify distinct networks from the raw data that a tool such as

Snort provides. Thus, a separate network analysis would be needed for each physical

67

network. This data would then have to be collated together, allowing for the discovery of
distinct networks within the data. Furthermore, attempting to collate interconnecting
networks with different security statuses could prove troublesome. An example could be
trying to collate the Department of Defense’s secure SIPRNET with the normal
NIPRNET. While NTAV3D itself would not be a potential vulnerability, since it is only
providing the visualization, whatever tools are used to try to connect packet flow between
the networks (e.g., to transfer NTAV3D data from the NIPRNET to the SIPRNET for

collation) could serve as a gateway for attacks.

As mentioned above, obtaining this data is quite difficult. Thus, a possible
solution as relates to NTAV3D could be to allow users of the tool to manually associate
and provide data about their networks in a similar way that CyberCIEGE does. In this
case, a user of NTAV3D may already have a good idea of his or her network’s topology,
and just wants to use NTAV3D’s ability to show three dimensional topology or depict
attacks. Therefore, the user could manually provide topology data, and such data as
component names, and even zone locations. Then the data fed to NTAV3D in real-time
would instead be such information as attack segments and compromised components,

instead of all data about the network.

b. Inputting Data Into NTAV3D
Either manually or through outside analysis tools, once this data is
obtained, it can be converted into an XML file that the thesis application can load, parse,

and visualize.

For ease of processing, and to ensure the integrity of data, keeping outputs
and inputs in XML format throughout the process would be beneficial. Wireshark has
the built-in ability to export its analysis into an XML file. This can be seen in Figure 27

on the following page.

68

- Wireshark: Export File $1
Savein: ;M Computer - @ Er
- Name Type } Total Size Free Space
e Hard Disk Drives (1) -
RaceitPlaces Devices with Removable Storage (1) v
Desktop
E—
&
Computer
A
5 - : e name: ket 5""’
etworl r =
Save as type [Haln ted (b '.] | Concel
Flain tesd (" bd)
PostSeript *ps) Hebp
CSV {Comma Sep
Packcet Range PSML (XML packet summary) (* pemi]
& Cag PDML (XML packst detail) " pmi) S
@ Al packets 5 | Packet details:
Selected packet 1 P ——
| Packet Bytes
Range: 0 Each packet on a new page

Figure 27. The Export File dialog in Wireshark showing the ability to save the file in
PSML format

Snort can also output its detections to an XML file via a plug-in, which
can be installed from http://www.cert.org/kb/snortxml (accessed May 2007). Once these
network tools have outputs that are in XML format, the aforementioned analysis tools
could be run to manipulate and provide data to input to NTAV3D. At this point, an
XSLT, or Extensible Stylesheet Language Transformation, can be performed on the file.
An XSLT is performed by creating a special kind of XML file. This file contains special
rules which are processed against an existing XML file to result in a new file being
created that matches the XSLT file’s criteria. It is this file that can be made to conform
to the standards of the XML parser of NTAV3D. Again, as mentioned in the previous
section, an outside tool would have to be utilized to help create the data that this XSLT
would execute on the fly. This is because XSLTs can translate data syntactically, but not

semantically. This means the XSLT can change the format of data, but not understand its

69

meaning. For example, the XSLT cannot create the topology data where none exists.
But, by using the outside analysis tools, their data can be transformed into a format

NTAV3D can understand.

Additionally, there would even be a way to make the transition from
CyberCIEGE to network tool input seamless to NTAV3D, in other words, no Java code
would have to be changed. Once it is created, the XSLT could be performed such that
the new file that will be loaded into NTAV3D, based on the protocol analyzer or
intrusion detection system, is in the same format as a CyberCIEGE file. From here, the
file can be read into the thesis application in the same way as the CyberCIEGE XML file,

and the visualization can continue.

D. EVALUATION OF XJ3D

1. Overall Evaluation

Overall, Xj3D was successfully utilized to meet the objectives of the thesis. As a
computer graphics toolkit it, for the most part, produced the desired end result. However,
while the problem this thesis attempted to solve is not an easy one, at times finding the
solution became not just a matter of overcoming the problem, but one of overcoming the
tool chosen. Nonetheless, Xj3D’s benefits mean it has potential to be a power tool for

producing three dimensional computer programs.

2. Positive Areas
a. X3D Knowledge Transfer
Having a pre-existing knowledge of X3D stand-alone file development
allowed the authors a slight head start in programming with SAI and Xj3D. Indeed, once
the SAI is understood, it is fairly simple to see how the SAI maps to X3D elements. This
is a benefit for those who have worked with stand-alone X3D files, as they can “jump in”

to SAI development right away.

70

b. Graphics Abstraction

Another benefit of Xj3D is the layer of abstraction built into it. The Xj3D
SAI allowed the author to focus on content, rather than having to have a deep knowledge
of the “inner workings” of how the computer hardware produces a three dimensional

scene.

C. Extensibility

Since Xj3D is the Java implementation of the X3D standard, it is quite
extensible. What this means is that X3D, and thus Xj3D, has the ability to be expanded,
customized, and used in almost any way (within context) that a developer wishes.
Customized graphics elements can be created and reused at the will of the developer,
rather than being forced to use rigid constructs that may exist with no possibility of
enhancement. NTAV3D relies on this ability to create whatever graphical element is
needed in order to visualize the information the way that it does. Additionally, the level
of extensibility inherent to Xj3D will allow the future expansion of NTAV3D in ways the

authors may not even have conceived originally.

3. Areas for Improvement

a. Documentation

As noted in Chapter III, Xj3D was chosen over such a package as
OpenSceneGraph because the authors were already familiar with X3D file development,
and were more comfortable working with Java. However, while it was noted above this
familiarity with X3D allowed a fairly quick understanding of the SAI; it did not provide
assistance with actually implementing the SAI. For one, a clear, up to date
documentation of how to use the Xj3D SAI in purely programmatic Java is non-existent.
All documentation on the Xj3D website is almost exactly a year old; (from 2006)
however, development of Xj3D has been continual throughout the past year. Thus, the
way the Xj3D SAI is implemented has changed along the way. In some cases in slight
ways, and in others, enough to change the way a program is created. Indeed, many
person-hours of programming were “wasted” on trying to figure out how to implement

X3D nodes that are easily created using X3D file editors. This was mainly due to the
71

lack of documentation, and having to manually investigate the X3D specification for each
node that the authors wanted to create. Some sort of up to date code example repository
would help to alleviate this issue, and make using the Xj3D SAI much easier for further

programmers.

b. Ease of Programming/Debugging

Along these same lines, the structure of Xj3D does not lend itself to
“developer-friendly” programming. For one, the Xj3D SAI objects are not strongly
typed. An example is that while there is an Xj3D type known as “X3DNode,” to actually
create a specific X3D node in the scene graph, simple strings are utilized, as in the

example below.

X3DNode shape = scene.createNode(''Shape') ;
SFNode shape_geometry = (SFNode) (shape.getField(*'geometry'*));

In this code, while a type of X3DNode is defined as “shape,” the function “createNode”
that has the string “Shape” as it parameter is still required to actually implement that X3D
shape node in the scene graph. As can be seen above, this same reliance on strings is
seen in the way the SAI gets the fields from the just-created shape node (note the
“getField” method with the string “geometry” as the parameter). The result of this
weakly typed construction is an increased risk for run-time errors. These errors are
generally due to mistyping the string needed, or, again due to lack of documentation, not
knowing which exact string to pass in the appropriate methods to create or get the

appropriate X3D node or field.

C. X3D Node Implementation

Additionally, some aspects of X3D are buggy or not yet supported by the
Xj3D implementation. One example is “bindable” nodes. Upon launch of NTAV3D, it
is supposed to jump to a viewpoint, which can be thought of as a specific camera angle
for viewing the scene. This is done by setting the “bind” value of the viewpoint to “true”
within the SAI Java code. However, though the code matches examples and “should”
work, it does not perform as expected. Another example is how some ECMAScript

nodes are handled. ECMAScript is a scripting language that allows for the automation or

72

manipulation of objects within an established environment. (ECMA, 1999)
ECMAScript is used within X3D (and thus Xj3D) to provide dynamic control, at run-
time, of the three dimensional objects created within the scene graph. This played a role
in the navigation scheme. In order to allow keyboard mappings, ECMAScript was
necessary. However, the Xj3D SAI could not “route” from the X3D node to the script
successfully. Thus, the authors had to resort to creating an actual X3D file on the fly
based on viewpoint data, and then integrating it within the scene graph. This process of
meshing an outside X3D file with an already created scene graph is known as “inlining.”
This is not optimal, and violated the NTAV3D design goal of manipulating every X3D
element purely programmatically, and with no X3D files. And while the X3D file is in
fact created programmatically, and manipulated within Java code, it is not the same as
actually using the SAI to create the needed nodes; however, the SAI left the authors no
choice. Hopefully, the continued development of Xj3D will allow the resolution of these

and similar issues.

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

V. RECOMMENDATIONS FOR FUTURE WORK AND
THESIS CONCLUSIONS

A RECOMMENDATIONS FOR FUTURE WORK
This chapter will first outline work for future extensions to NTAV3D, and will

discuss conclusions in Part B.

1. Packaging NTAV3D With CyberCIEGE

Currently, NTAV3D is already able to be packaged with CyberCIEGE. In order
to accomplish this task, an “x3d” folder is created in the CyberCIEGE root directory.
Into this folder is placed the compiled .class files that make up NTAV3D. Additionally,
all of the Xj3D DLL and .jar files should be placed within an “Xj3D” folder within this
“x3d” folder. Next, the NTAV3D graphics files are copied to the
“\CyberCIEGE\game\exec” directory. Once this is accomplished, the game is launched
as normal, and the key combination “ctrl-n” is used from within the game to launch

NTAV3D.

Since the capability to be installed and run from within the game already exists,
the only remaining task that would have to be accomplished to make NTAV3D a fully
redistributable part of CyberCIEGE would be to include the aforementioned files within
the CyberCIEGE installer. Xj3D is licensed under a combination of GNU GPL, GNU
LGPL, and BSD. (Xj3D Licensing information, May 2007) All of these license

structures allow, in general, the Xj3D libraries to be packaged and redistributed.

2. NTAV3D in General
a. Code Enhancement
Future work with NTAV3D includes further enhancements to the
program. The code can be optimized for both performance and formatting gains, in terms
of class structures, class packaging, memory and program flow optimizations etc.
Additionally, as each new version of Xj3D is released, some of the problems mentioned
in the previous chapter may be fixed. Thus, it would be beneficial to continually test the

NTAV3D codebase against each new snapshot release of Xj3D.
75

One beneficial modification would be to change the code such that a trail
is left during an asset attack so that the user is able to see the entire path that was taken
without having to remember it. One method for achieving this would be to have the line
segments change color as the information passes along the line segment. Another
solution would be to add a bread crumb trail using hash marks behind the information as

is travels along.

b. Platform Testing

Additionally, the open source, multi-platform nature of NTAV3D could be
employed. Due to hardware available and development constraints, NTAV3D remains
untested on Apple OS X or Linux computers. Further testing could be done on these

platforms to ensure interoperability.

C. Portability

Since NTAV3D is Java-based, it could conceivably be made into a Java
applet, and distributed via the web within web browsers, thus making network
visualization quite portable, and perhaps enabling concepts like remote monitoring of

security in a three dimensional view from anywhere in the world with internet access.

3. User Studies

Time did not permit user studies to be carried out. Therefore, it would be
interesting to see future work carried out that would explore if the network visualizations
of NTAV3D actually have a measurable benefit to the user. Such studies would also help
to answer the more general question of whether a three dimensional network visualization

really does add value to the user experience.

4. Network Tools
Utilizing the framework outlined in the previous chapter, work should be done to
allow NTAV3D to work, perhaps in real-time, with network protocol analyzers and

intrusion detection systems.

76

B. CONCLUSIONS

1. Overall Analysis

This thesis has been successful in accomplishing its research motivations and
objectives. While time did not permit detailed user studies and analysis, the authors feel
that the thesis’ network visualization application provides enhancement and benefit to
users of CyberCIEGE. Also, a viable framework was presented that will allow those
working with network tools to visualize networks, and associated attacks. Finally, as far
as can be determined, NTAV3D is the first network visualization software application
developed utilizing the combination of XML and Xj3D technology. Thus, the resulting
development process allowed for the efficacy of Xj3D as a means for network attack

visualization to be successfully evaluated.

The problem of network visualization is not an easy one to resolve, and it is hoped
the research presented within this thesis will assist other researchers in the form of
recommended practices and lessons learned. Network administrators will never have all
of the information needed to prevent network intrusion. However, this thesis never had
the goal of improving the methods of network intrusion detection. Instead, it was
successful in being able to provide a better context for seeing the information
administrators do have, and might not have been able to interpret as well without a visual

context.

2. Enhancement to CyberCIEGE

The creation of the thesis” NTAV3D application has provided an enhancement to
the gameplay of CyberCIEGE that did not exist previously. Prior to the creation of
NTAV3D, CyberCIEGE users were only able to view the networks they had constructed
in a two dimensional view, and no player interaction was possible, other than changing
network connections. The player was merely presented with a basic network map. This
view provided no relation to the “office view” of how components were laid out.
Additionally, due to the nature of the diagram, it was hard to decipher which networks
components with multiple connections were part of. On the contrary, NTAV3D allows
the gameplayer the ability to explore the network they have created; to “walk through”

the network’s configuration in a way similar to the physical office during regular

77

gameplay. Figures 28 and 29 show this difference. Figure 28 is the current state of how
the gameplayer sees the network he or she has created in CyberCIEGE. Conversely,
Figure 29 shows the exact same network visualized within NTAV3D. While it is hard to
capture the experience of “walking” a three dimensional space in prose, the difference
seen in these figures, which is the ability to virtually move through the network in a three
dimensional space provides the user with a higher level of interaction than the current
“flat,” two dimensional view. Additionally, since the locations of the network devices
map to their locations in the “office view” of CyberCIEGE, the player should be able to
more easily deduce specifically which network component from the game he or she is

looking at.

=7

kim's Lunitos AFOS_2
Workstation

- -

Bit Flipper Bit Flipper_2
Border_3

Joe_ws Lunitos AFQS_3

Entire Office Zone Offsite Zone

Figure 28. View of CyberCIEGE’s current network view

Figure 29. A slightly overhead angle of NTAV3D’s view of the same network

78

Besides just providing a much improved view of the network topology, NTAV3D
provides the player with a vastly improved depiction of network attacks. Instead of only
the generic movie that would play informing the player of an attack, NTAV3D allows the
player to actually see the information flow resulting from an attack. Depicting this in the
three dimensional space also allows the player the ability to adjust their view of the attack
so that they can glean the best understanding of the security issues being taught. This can
be an invaluable training tool in learning about network security, and will be explained

more in the section below.

3. Visualizing Network Attacks

a. In CyberCIEGE

Given the information output by CyberCIEGE, users are able to observe
the path taken by information during asset attacks. By observing the flow of traffic
during one of these attacks, the user is able to determine which type of attack (integrity or
secrecy) is occurring. By observing component compromises, players can hypothesize
the role of flaws, malicious software, and physical attacks in the attack on the asset.
Similarly, by observing malicious software on components, the player can deduce the

potential for availability attacks.

Figure 30. Overhead view of entire scene during an example asset attack with the
walls turned off

79

Figure 31. A close up view of the main office during an example asset attack with the
walls turned off

Figure 30 and Figure 31 are two different views during an example
secrecy asset attack. In this example, there is a Trojan horse on a component and the
attacker is out on the web somewhere. The name of the asset is shown because this is a
secrecy attack. Because this is just a snap shot, the path taken by the information is not

visible, but the direction of travel is known because of the orientation of the cone.

b. In Network Tools

Once the framework in the previous chapter is implemented, NTAV3D
has the possibility of being expanded to provide visualization of network attacks detected
from such programs as Snort. This could become an excellent tool for network security
professionals, as it would provide them with the increased network awareness to help
thwart said attack. If network security experts can “see” an attack as its happening, they
will have a better chance of isolating and stopping it, and preventing similar attacks in the

future.

4, Working With Network Tools

As just stated, the framework provided in the previous chapter could provide
NTAV3D with the means to become an excellent tool for network security professionals.
The framework could be a viable method for easily utilizing the capabilities of NTAV3D

to interact with network protocol analyzers, or intrusion detection systems. By

80

harnessing the power of XML, and the pre-existing XML parsing in NTAV3D, the
software application can successfully add increased network awareness to those charged

with keeping it secure.

5. Final Thoughts

By combining research in network topology and vulnerability visualization, three
dimensional graphics, and open source programming technologies, this thesis was
successfully able to provide valuable enhancement to CyberCIEGE. Additionally, with
the future work outlined previously, this NTAV3D project can be extended to provide
additional functionality to network security tools. NTAV3D is also one of the first
programs to utilize solely the Java-based Xj3D SAI to create three dimensional scenes.
Thus, this thesis has provided contributions to three dimensional graphics programming,

and the overall goals of improving network security and defense.

81

THIS PAGE INTENTIONALLY LEFT BLANK

82

APPENDIX A. X3D NODE TYPES

A. LIST OF X3D NODES UTILIZED IN NTAV3D

The NTAV3D solution utilizes X3D graphics in only pure Java code, without
manipulating an actual X3D format file. This approach may be a less familiar concept to
those X3D or VRML developers who usually only work with standard stand-alone X3D
or VRML files. Therefore, for reference, the following is a list of the X3D nodes that
were implemented within NTAV3D. To understand how each node was implemented,
refer to code snippets included throughout this document, the selected classes in
Appendix B, or the NTAV3D source, which is available for review. For more

information on these nodes, refer to the table derived from the X3D specification found at

http://www.realism.com/Web3D/x3d/nodeReference.html (last accessed, April 30, 2007).

X3D nodes implemented within NTAV3D listed alphabetically:

e Appearance e Material

e Billboard e MovieTexture

e BooleanSequencer e NavigationInfo

e BooleanTimeTrigger e PositionInterpolator
e Box e ProximitySensor

e Color e Script

e Cone e Shape

e (Coordinate e Sphere

e Cylinder e Switch

e GeoViewpoint o Text

e Group e TextureCoordinate
e ImageTexture e TimeSensor

e IndexedFaceSet e TouchSensor

e Inline e Transform

e IntegerSequencer e Viewpoint

e IntegerTimeTrigger e WorldInfo

o KeySensor

THIS PAGE INTENTIONALLY LEFT BLANK

84

APPENDIX B. SELECTED XJ3D JAVA CODE

A. PARSEXML CLASS (EXCERPT)

package uti

lity;

// Core Java APIs

import geoNodes.Attackerlcon;
import geoNodes.Cloud;

import geoNodes.NodeStorage;
import geoNodes.WallCreator;

import java.io.File;
import java.io.lOException;

import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.

import com.

w3c.dom.Document;
w3c.dom.Element;
w3c.dom.Node;
w3c.dom.NodeList;
web3d.x3d.sai -MFString;
web3d.x3d.sai -X3DNode;
web3d.x3d.sai -X3DScene;
xml .sax.SAXException;

sun.org.apache.xerces. internal .parsers.DOMParser;

import dataNodes.AttackStorage;
import dataNodes.CompromiseStorage;
import dataNodes.Network;

import dataNodes.NetworkStorage;

public class

ParsexML {

public ParseXML(X3DScene scene, File parseFile) {
this.scene = scene;
this.parseFile = parseFile;

}

private

X3DScene scene;

File parseFile;

private
private
private
private
private
private
private
private
private
private

private

static int hold = O;

static int holdnet = O;

NodeStorage nodeStorage = new NodeStorage();
CompromiseStorage compromiseStorage = new CompromiseStorage();
AttackStorage attackStorage = new AttackStorage();
NetworkStorage networkStorage = new NetworkStorage();

WallCreator wallCreator[] = new WallCreator[1];

float maxX = 0;
float minX = 0;
float minZ = O;
float maxZ = 0O;

85

private
private
private
private
private
private
private
private
private
private
private
private
private
private
private

private

boolean InternetExist = false;
boolean leasedExist = false;
boolean remotelnterExist = false;
boolean remoteleasedExist = false;
int internetEl = -1;

int leasedEl = -1;

float[] mainSite;

float[] remoteSite;

Network remotelnternet;
Network remoteleased;

float[] internetLinep;

float[] leasedLinep;

float[] maininternetEnd = new float[3];

float[] mainLeasedEnd = new float[3];

float[] remotelnternetStart = new float[3];

float[] remotelLeasedStart = new float[3];

public void parse() {

try {

}

}

}
}
private

{

// Create a DOM Parser

DOMParser parser = new DOMParser();

// Parse the incoming Tile (passed from
parser .parse(parseFile.toURI() .toString()) ;

// Obtain the document

Document doc = parser .getDocument();

parseDocument(doc) ;

catch (10Exception ioe) {
ioe.printStackTrace();

catch (SAXException saxe) {

saxe.printStackTrace() ;

void parseDocument(Document doc) {

minX = findMinX(doc);
maxX = findMaxX(doc);

minZ = findMinZ(doc);
maxZ = findMaxZ(doc);

mainSite = findSite(doc, 0);

remoteSite = findSite(doc, 999);

86

Main)

new MovingViewpoint(mainSite, remoteSite);
// Tloat z = (minZ + maxZ) / 2;

float z = maxZ;

float y -2;

float y2 = -2.5F;

remotelnternet = new Network(scene);

remoteLeased = new Network(scene);

NodeList netNodeLst = doc.getElementsByTagName(**network™);

// adding main pipes
for (int x = 0; x < netNodeLst.getLength(); x++) {
networkStorage.setNetworkArr(holdnet, scene);

Node netFstNode = netNodelLst.item(x);
if (netFstNode.getNodeType() == Node.ELEMENT_NODE) {

Element netNameEImnt = (Element) netFstNode;

NodeList netNmEImntLst = netNameEImnt
.getElementsByTagName(‘'networkName™) ;

Element netNmEImnt = (Element) netNmEImntLst.item(0);

NodeList netName = netNmEImnt.getChildNodes();

networkStorage . getNetworkArrEl(holdnet) . setNetworkName (
(netName.item(0)) -getNodeValue()) ;

NodeList netColEImntLst = netNameElImnt
-getElementsByTagName(*‘color™);

Element netColEImnt = (Element) netColEImntLst.item(0);

NodeList netColor = netColEImnt.getChildNodes() ;

networkStorage . getNetworkArrEl(holdnet) .setColor(
(netColor.item(0)) -getNodeValue()) ;

if (networkStorage.getNetworkArrEl(holdnet)
_getNetworkName() -toLowerCase ()
-contains(""internet™)) {

internetEl = holdnet;

internetExist = true;

networkStorage . getNetworkArrEl(holdnet) .setLinep(

new float[] { mainSite[0], y, z, mainSite[1],

Y. Z 1);
mainlnternetEnd[0] = mainSite[1];
mainlnternetEnd[1] = y;
mainlnternetEnd[2] = z;

internetLinep = networkStorage.getNetworkArrEl(holdnet)
-getLinep();
// z =z + 2;
} else if (networkStorage.getNetworkArrEl(holdnet)
-getNetworkName () -toLowerCase() -contains(*'remote')
|1 networkStorage.getNetworkArrEl(holdnet)
-getNetworkName () - toLowerCase() - contains(
"offsite™)) {
if ((internetExist == true)
&& (remotelnterExist == false)) {
remotelnternet._setNetworkName(networkStorage
-getNetworkArrEl(internetEl)
-getNetworkName()) ;
remotelnternet._setLinep(new float[] {
remoteSite[0], y2, remoteSite[2],
remoteSite[1], y2, remoteSite[2] });

87

remotelnternet.setColor(networkStorage
-getNetworkArrEl(internetEl) . getStrColor()) ;
remotelnternet
-addInternet(new float[] {

((minX + maxX) /7 2 + 10), -2,

(minzZz - 10) });
remotelnterExist = true;
remotelnternetStart[0] = remoteSite[0];
remotelnternetStart[1l] = y2;
remotelnternetStart[2] = remoteSite[2];

// remoteSite[2] = remoteSite[2] + 2;

y2 = y2 - 1.25F;
3
networkStorage . getNetworkArrEl(holdnet) .setLinep(

new float[] { remoteSite[0], y2, remoteSite[2],

remoteSite[1], y2, remoteSite[2] });

// remoteSite[2] = remoteSite[2] + 2;
y2 = y2 - 1.25F;

3} else {

}

networkStorage . getNetworkArrEl(holdnet) .setLinep(
new float[] { mainSite[0], y, z, mainSite[1],

Y, Z });
// z =z + 2;

if (networkStorage.getNetworkArrEl(holdnet)
-getNetworkName() - toLowerCase() -contains(**leased™)) {

leasedEl = holdnet;
leasedExist = true;
networkStorage.getNetworkArrEl(holdnet) .setLinep(

new float[] { mainSite[0], y, z, mainSite[1],

Y. Z });
mainLeasedEnd[0] = mainSite[1];
mainLeasedEnd[1] = vy;
mainLeasedEnd[2] = z;

leasedLinep = networkStorage.getNetworkArrEl(holdnet)

-getLinep();
// z =z + 2;

} else if ((leasedExist == true)
&& (remotelLeasedExist == false)) {

}

remotelLeased.setNetworkName(nhetworkStorage
-getNetworkArrEl(leasedEl) . getNetworkName()) ;

remotelLeased
_setLinep(new float[] { remoteSite[0], y2,
remoteSite[2], remoteSite[1l], y2,
remoteSite[2] });

remotelLeased.setColor(networkStorage - getNetworkArrEI
leasedEl) . getStrColor());

remotelLeased.addNode();

remotelLeasedExist = true;

remotelLeasedStart[0] = remoteSite[0];

remotelLeasedStart[1] y2;

remotelLeasedStart[2] remoteSite[2];

// remoteSite[2] =

// remoteSite[2] + 2;

y2 = y2 - 1.25F;

if (holdnet == internetEl) {

networkStorage . getNetworkArrEI(x) .addInternet(
new float[] { ((minX + maxX) /7 2 + 10), -2,
(minZ - 10) });

3} oelse {

}

networkStorage.getNetworkArrEl(holdnet) .addNode() ;

y =y - 1.25F;
holdnet++;

88

}

networkStorage.setNetworkArr(holdnet, scene);
networkStorage . getNetworkArrEl(holdnet) . setColor (**0x00000000™") ;
networkStorage . getNetworkArrEl(holdnet) . setNetworkName(

"Nul INet7834™);
networkStorage.getNetworkArrEl(holdnet) .setLinep(

new float[] { 0, 0, 0, 0, 0, 0 });

NodeList nodelLst = doc.getElementsByTagName(*'‘component');

for (int x = 0; X < nodeLst.getLength(); x++) {
nodeStorage -setBoxArr(hold, scene, new float[] { 0, 0, 0 },
new float[] { 0, 0, O, O }, new float[] { 0.5F, 0.5F,
0.5F }, new float[] { 0.8F, 0.8F, 0.7F });

Node fstNode = nodelst.item(X);
if (FstNode.getNodeType() == Node.ELEMENT_NODE) {

Element comNameEImnt = (Element) fstNode;
NodeList comNmEImntLst = comNameEImnt
-getElementsByTagName(‘*"‘componentName™) ;
Element comNmEImnt = (Element) comNmEImntLst.item(0);
NodeList comName = comNmEImnt.getChildNodes() ;
nodeStorage - getBoxArrEl(hold) . setCompName(
(comName . item(0)) -getNodeValue()) ;

NodeList comBaseNmEImntLst = comNameEImnt
-getElementsByTagName(*"‘componentBase™) ;

Element comBaseNmEImnt = (Element) comBaseNmEImntLst
.item(0);

NodeList comBaseName = comBaseNmEImnt.getChildNodes() ;

nodeStorage - getBoxArrEl(hold) . setCompBase (
(comBaseName . item(0)) -getNodeValue()) ;

NodeList assetNmEImntLst = comNameEImnt
-getElementsByTagName(‘"assetName') ;

Element assetNmEImnt = (Element) assetNmEImntLst.item(0);

try {

NodeList assetName = assetNmEImnt.getChildNodes();
nodeStorage - getBoxArrEl(hold) . setAsset(
(assetName.item(0)) .getNodeValue()) ;
} catch (NullPointerException e) {
nodeStorage - getBoxArrEl(hold) .setAsset("**") ;
}

if (nodeStorage.getBoxArrEl(hold) .getCompBase()
_toLowerCase() -contains(*'router"")
|1 nodeStorage.getBoxArrEl(hold) .getCompBase()
_toLowerCase() -contains(*"flipper'™)
|1 nodeStorage.getBoxArrEl(hold) .getCompBase()
-toLowerCase() -contains(‘'asbestos™™)
|| nodeStorage .getBoxArrEl(hold) .getCompBase()
-toLowerCase() -contains(*"linkcrypt'™)) {
nodeStorage - getBoxArrEl(hold) .setCompType(2) ;
nodeStorage - getBoxArrEl(hold) - setScal
new float[] { 0.5F, 0.15F, 0.5F });
} else if (nodeStorage.getBoxArrEl(hold) .getCompBase()
-toLowerCase() . contains(*‘desktop’™)
|| nodeStorage.getBoxArrEl(hold) .getCompBase ()
-toLowerCase() -contains(*‘green'")
|1 nodeStorage.getBoxArrEl(hold) .getCompBase()

&9

_toLowerCase() -contains(""lunitos'™)) {
nodeStorage - getBoxArrEl(hold) -setCompType(3) ;
nodeStorage - getBoxArrEl(hold) -setScal
new float[] { 0.3f, 0.6F, 0.4f });
} else if (nodeStorage.getBoxArrEl(hold) .getCompBase()
_toLowerCase() -contains(*'server')) {
nodeStorage - getBoxArrEl(hold) .setCompType(1) ;
¥

NodeList netNmEImntLst = comNameEImnt
-getElementsByTagName(*'networkName') ;
for (int y = 0; y < netNmEImntLst.getLength(); y++) {
Element netNmEImnt = (Element) netNmEImntLst.item(y);
NodeList netName = netNmEImnt.getChildNodes() ;
nodeStorage - getBoxArrEl(hold) . setNetworks(y,
(netName.item(0)) -getNodeValue()) ;

B. WALLCREATOR CLASS

package geoNodes;

import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.

public class
private
private
private
private

private

web3d
web3d
web3d
web3d
web3d
web3d
web3d
web3d
web3d
web3d
web3d
web3d

.x3d
-x3d
-x3d
-x3d
-x3d
-x3d
-x3d
.x3d
.x3d
-x3d
-x3d
-x3d

.sai .MFInt32;
.sai .MFNode;
.sai .MFString;
.sai -MFVec3f;
.sai .SFBool ;
.sai .SFColor;
.sai.SFFloat;
.sai .SFInt32;
.sai .SFNode;
.sai .SFVec3f;
.sai .X3DNode;
.sai .X3DScene;

WallCreator {

X3DScene scene;

float[] cornerl;

float[] corner2;

float[] col;

float transparency;

private String[] zoneName = { " };

public WallCreator() {

}

public WallCreator(X3DScene scene, float[] inputl, float[] input2) {
this.scene =
this.cornerl
this.corner2

float[] color

scene;

= Inputl;

= Input2;

= { .8f, .8F, .8F };

90

this.col = color;
float transp = .95fF;
this. transparency = transp;

}

public void setZoneName(String name) {
this.zoneName[0] = name;
}

public String getZoneName() {
return this.zoneName[0];
}

public float[] getXCoords() {
return new float[] { cornerl[0], corner2[0] };
}

public void addNode() {

X3DNode switchNode = (X3DNode) scene.createNode('Switch™);

MFNode switch_children = (MFNode) switchNode.getField(‘'children™);
switch_children.clear();

SFInt32 whichChoice = (SFInt32) switchNode.getField(*'whichChoice™);
whichChoice.setValue(0);

X3DNode tr = (X3DNode) scene.createNode(''Transform');
MFNode tran_children = (MFNode) tr.getField(*'children™);
tran_children.clear();

X3DNode shape = scene.createNode(''Shape');

SFNode shape_geometry = (SFNode) (shape.getField(‘'geometry'));

X3DNode box = scene.createNode(''IndexedFaceSet™);

SFBool solid = (SFBool) box.getField(''solid");

solid.setValue(false) ;

SFBool convex = (SFBool) box.getField(''convex');

convex.setValue(false) ;

X3DNode appearance = scene.createNode(''Appearance');

SFNode shape_appearance = (SFNode) (shape.getField(‘appearance'™));

SFNode appear_material = (SFNode) (appearance.getField("'material™));

X3DNode material = scene.createNode("'Material'™);

SFColor mat_color = (SFColor) (material._getField('diffuseColor™));

mat_color.setValue(col);

SFFloat mat_transparency = (SFFloat) (material.getField("transparency™));

mat_transparency.setValue(transparency);

appear_material .setvValue(material);

MFINt32 coord_index = (MFInt32) (box.getField(*coordIndex'));

coord_index.setvValue(30, new int[] { 4, 5, 1, 0, 4, -1, 5, 6, 2, 1, 5, -1, 6, 7, 3,
2,6, -1,7,4,0,3,7,-1,0,3, 2,1, 0, -1, P);

SFNode line_coord = (SFNode) (box.getField(*'coord™));

X3DNode coordinate = scene.createNode(''Coordinate');

MFVec3f point_value = (MFVec3f) (coordinate.getField("'point™));

point_value.setValue(8, new float[] { this.cornerl[0], -1,

this.corner1[1], // O

this.corner2[0], -1, this.cornerl[1l], // 1

this.corner2[0], -1, this.corner2[1], // 2

this.cornerl[0], -1, this.corner2[1], // 3

this.cornerl[0], 3, this.cornerl[1], // 4

this.corner2[0], 3, this.cornerl[1], // 5

this.corner2[0], 3, this.corner2[1], // 6

this.cornerl1[0], 3, this.corner2[1], // 7

D:;

line_coord.setValue(coordinate);

// TouchSensor ****Important*****
X3DNode touchSensor = (X3DNode) scene.createNode(*'TouchSensor™™);
scene.addRootNode (touchSensor);

shape_appearance.setValue(appearance);
shape_geometry.setValue(box);

91

tran_children.append(shape);
tran_children.append(touchSensor);
switch_children.append(tr);
scene.addRootNode(switchNode) ;

// KeySensor
X3DNode keySensor = (X3DNode) scene.createNode("'KeySensor™);
scene.addRootNode(keySensor) ;

// BooleanFilterl
X3DNode bfl = (X3DNode) scene.createNode(''BooleanFilter');
scene.addRootNode(bfl);

// BooleanFilter2
X3DNode bf2 = (X3DNode) scene.createNode(*'BooleanFilter™);
scene.addRootNode(bf2);

// BooleanFilter3
X3DNode bf3 = (X3DNode) scene.createNode(*'BooleanFilter™);
scene.addRootNode(bf3);

// IntegerTriggers for turning walls on/off

X3DNode triggerOn = (X3DNode) scene.createNode(IntegerTrigger™);
SFInt32 integerKeyOn = (SFInt32) triggerOn.getField('integerKey');
integerKeyOn._setValue(0);

scene.addRootNode(triggeroOn);

X3DNode triggerOff = (X3DNode) scene.createNode('IntegerTrigger');
SFInt32 integerKeyOff = (SFInt32) triggerOff._getField("integerKey");
integerKeyOff.setValue(-1);

scene.addRootNode(triggerOff);

// IntegerTriggers for mouseover text

X3DNode triggerTextOn = (X3DNode) scene.createNode(*'IntegerTrigger™);

SFINt32 integerKeyOnText = (SFInt32) triggerTextOn
.getField(""integerKey™);

integerKeyOnText.setValue(0);

scene.addRootNode(triggerTextOn);

X3DNode triggerTextOff = (X3DNode) scene.createNode('IntegerTrigger™);

SFINnt32 integerKeyOffText = (SFInt32) triggerTextOff
.getField("integerKey');

integerKeyOffText.setValue(-1);

scene.addRootNode(triggerTextOff);

// Switch Node for mouse-over text

X3DNode switchNodeText = (X3DNode) scene.createNode('Switch™);

MFNode switchText_children = (MFNode) switchNodeText
.getField("'children™);

switchText_children.clear();

SFINnt32 whichChoiceText = (SFInt32) switchNodeText
.getField("'whichChoice™);

whichChoiceText.setValue(-1);

/7 Billboard for text

X3DNode bb = (X3DNode) scene.createNode(''Billboard™);

SFVec3f rotationAxis = (SFVec3f) bb.getField(''axisOfRotation');
rotationAxis.setValue(new float[] { 0, 1, 0 });

MFNode bill_children = (MFNode) bb.getField("children™);
bill_children.clear();

// Transform to locate text
X3DNode tr2 = (X3DNode) scene.createNode("'Transform'™);
SFVec3f translation2 = (SFVec3f) tr2.getField("translation™);
translation2.setValue(new float[] {

(this.corner1[0] + this.corner2[0]) /7 2.0f, 1.5F,

(this.corneri[1] + 1.5F) });
SFVec3f scale2 = (SFVec3f) tr2.getField(''scale');
scale2.setValue(new float[] { 2.5F, 2.5F, .5F });
MFNode tran_children2 = (MFNode) tr2.getField(''children™);
tran_children2.clear();

92

// Create text shape

X3DNode shape2 = scene.createNode('Shape™);

SFNode shape_geometry2 = (SFNode) (shape2.getField(‘'geometry'));
X3DNode text = scene.createNode("'Text");

MFString words = (MFString) (text.getField(''string™));
words.setValue(zoneName. length, zoneName);

// Justify text for middle middle

X3DNode fontStyle = (X3DNode) scene.createNode('FontStyle™);
SFNode text_justify = (SFNode) text.getField(''fontStyle');
MFString justify = (MFString) fontStyle.getField("justify');
jJustify._setvalue(2, new String[] { ""MIDDLE", "MIDDLE™ });
text_justify.setValue(fontStyle);

X3DNode appearance2 = scene.createNode(''Appearance');

SFNode shape_appearance2 = (SFNode) (shape2.getField('appearance™));
SFNode appear_material2 = (SFNode) (appearance2.getField("'material™));
X3DNode material2 = scene.createNode(*'Material™™);

SFColor mat_color2 = (SFColor) (material2.getField("'diffuseColor™));
mat_color2.setValue(new float[] { 1, 1, 1 });
appear_material2._setValue(material2);
shape_appearance2.setValue(appearance?);
shape_geometry2._setValue(text);

bill_children.append(shape?2);

tran_children2.append(bb);

switchText_children.append(tr2);

scene.addRootNode (switchNodeText);

// Routes
scene.addRoute(keySensor, "altKey', bfl, 'set_boolean');
scene.addRoute(keySensor, ‘‘controlKey', bf2, "set boolean™);
scene.addRoute(bfl, "inputTrue', triggerOff, "set boolean™);
scene.addRoute(bf2, "inputTrue', triggerOn, *“set_boolean™);
scene.addRoute(triggerOff, 'triggerValue', switchNode,
"set_whichChoice™);
scene
.addRoute(triggerOn, *“triggerValue™, switchNode,
“set_whichChoice™);
scene.addRoute(touchSensor, "isOver', bf3, "set_boolean');
scene.addRoute(bf3, "inputTrue'™, triggerTextOn, "set boolean™);
scene.addRoute(bf3, "inputFalse™, triggerTextOff, "set_boolean™);
scene.addRoute(triggerTextOn, *“triggerValue', switchNodeText,
""'set_whichChoice");
scene.addRoute(triggerTextOff, "triggerValue', switchNodeText,
"set_whichChoice™);

C. ATTACKERICON CLASS

package geoNodes;

import org.web3d.x3d.sai.MFINnt32;
import org.web3d.x3d.sai.MFNode;
import org.web3d.x3d.sai .MFString;
import org.web3d.x3d.sai.MFVec2f;
import org.web3d.x3d.sai .MFVec3T;
import org.web3d.x3d.sai.SFBool ;
import org.web3d.x3d.sai.SFColor;
import org.web3d.x3d.sai.SFFloat;
import org.web3d.x3d.sai.SFInt32;
import org.web3d.x3d.sai.SFNode;
import org.web3d.x3d.sai.SFRotation;
import org.web3d.x3d.sai .SFVec3T;
import org.web3d.x3d.sai .X3DNode;

93

import org.web3d.x3d.sai .X3DScene;
public class Attackerlcon {
private X3DScene scene;
private float[] trans = new float[3];
private float[] rot = new float[4];
private float transparency = 0;
public Attackerlcon() {

}

public Attackerlcon(X3DScene scene, float[] position) {
this.scene = scene;
this. trans[0] = position[0] - 1.0F;
this.trans[1] position[1] - .4f;
this.trans[2] position[2];

}

public void addNode() {
X3DNode tr = (X3DNode) scene.createNode(''Transform');
SFVec3f translation = (SFVec3f) tr.getField(""translation');
translation.setValue(trans);
SFRotation rotation = (SFRotation) tr.getField("'rotation™);
rotation.setValue(rot);
SFVec3f scale = (SFVec3f) tr.getField(*'scale™);
scale.setValue(new float[] { 1.5F, 1.5F, 1 });
MFNode tran_children = (MFNode) tr.getField("'children™);
tran_children.clear();

// Attacker shape

X3DNode shape = scene.createNode(*'Shape');

SFNode shape_geometry = (SFNode) (shape.getField(**'geometry'));
X3DNode attacker = scene.createNode("'IndexedFaceSet');

SFBool solid = (SFBool) attacker.getField("'solid™);
solid.setValue(false) ;

X3DNode appearance = scene.createNode(*'Appearance');

SFNode shape_appearance = (SFNode) (shape.getField(*"appearance™));
SFNode appear_material = (SFNode) (appearance.getField("'material’));
X3DNode material = scene.createNode('Material'™);

SFColor mat_color = (SFColor) (material.getField("*diffuseColor™));
mat_color.setValue(new float[1 { -2Ff, .2f, .2F });

SFFloat mat_transparency = (SFFloat) (material.getField(*"transparency'));
mat_transparency .setValue(transparency);

appear_material .setValue(material);

SFNode appear_texture null;
X3DNode image_texture null;
MFString textureURL = null;

appear_texture = (SFNode) (appearance.getField(""texture™));
image_texture = scene.createNode(*'ImageTexture');
textureURL = (MFString) (image_texture.getField('url™));
textureURL .setValue(1, new String[] { "images.jpg” }):;
appear_texture _setValue(image_texture);

MFINt32 coord_index = (MFInt32) (attacker.getField(**'coordindex™));
MFINnt32 texCoord_index = (MFInt32) (attacker .getField(""texCoordIndex'™));
coord_index.setValue(coordIndex. length, coordlndex);
texCoord_index.setValue(textCoordIndex. length, textCoordlndex);

SFNode line_coord = (SFNode) (attacker.getField(**'coord™));

SFNode text_coord = (SFNode) (attacker .getField(**texCoord™));

94

//

//

X3DNode coordinate = scene.createNode(*'Coordinate');

X3DNode textureCoord = scene.createNode("'TextureCoordinate');

MFVec3f point_value = (MFVec3f) (coordinate.getField("'point'™));

MFVec2f textCoord_value = (MFVec2f) (textureCoord.getField(*'point™));

point_value.setValue(points.length /7 3, points);

textCoord_value.setValue(textureCoordinates. length /7 2,
textureCoordinates);

line_coord.setValue(coordinate);

text_coord.setValue(textureCoord) ;

TouchSensor ****Important*****
X3DNode touchSensor = (X3DNode) scene.createNode("'TouchSensor™);
scene .addRootNode (touchSensor) ;

shape_appearance .setValue(appearance);
shape_geometry.setValue(attacker);
tran_children.append(shape);
tran_children.append(touchSensor);
scene.addRootNode(tr);

scene . updateNamedNode(""tr'*, tr);

BooleanFilter
X3DNode bf = (X3DNode) scene.createNode(‘'BooleanFilter'™);
scene .addRootNode(bf) ;

// IntegerTriggers

X3DNode triggerOn = (X3DNode) scene.createNode(*'IntegerTrigger');
SFINnt32 integerKeyOn = (SFInt32) triggerOn.getField(""integerKey™);
integerKeyOn . setValue(0);

scene.addRootNode(triggerOn);

X3DNode triggerOff = (X3DNode) scene.createNode("'IntegerTrigger™);
SFINnt32 integerKeyOff = (SFInt32) triggerOff._getField("*integerKey™);
integerKeyOff._setValue(-1);

scene.addRootNode(triggerOff) ;

X3DNode switchNode = (X3DNode) scene.createNode(*'Switch™);

MFNode switch_children = (MFNode) switchNode.getField("'children'™);
switch_children.clear();

SFInt32 whichChoice = (SFInt32) switchNode.getField("'whichChoice™);
whichChoice.setValue(-1);

String[] inputText = { "Attacker" };

X3DNode bb = (X3DNode) scene.createNode(''Billboard™);

SFVec3f rotationAxis = (SFVec3f) bb.getField(""'axisOfRotation™);
rotationAxis.setValue(new float[] { 0, 1, 0 });

MFNode bill_children = (MFNode) bb.getField("’children™);
bill_children.clear();

X3DNode tr2 = (X3DNode) scene.createNode('Transform™);
SFVec3f translation2 = (SFVec3f) tr2._getField(""translation™);
translation2

-setValue(new float[] { trans[0], (trans[1]+4.5f), trans[2] }):
SFVec3f scale2 = (SFVec3f) tr2._getField(“'scale™);
scale2.setValue(new float[] { 2.5F, 2.5F, .5F });
MFNode tran_children2 = (MFNode) tr2.getField(**‘children™);
tran_children2._clear();

X3DNode shape2 = scene.createNode(*'Shape™);

SFNode shape_geometry2 = (SFNode) (shape2.getField(*‘geometry’));
X3DNode text = scene.createNode("'Text');

MFString words = (MFString) (text.getField("'string™));
words.setValue(inputText.length, inputText);

X3DNode fontStyle = (X3DNode) scene.createNode("'FontStyle'™);
SFNode text justify = (SFNode) text.getField(*'fontStyle™);

95

MFString justify = (MFString) fontStyle._getField(""justify');
Justify.setValue(2, new String[] { "MIDDLE"™, "MIDDLE"™ });
text_justify.setValue(fontStyle);

X3DNode appearance2 = scene.createNode(*'Appearance');

SFNode shape_appearance2 = (SFNode) (shape2.getField("‘appearance'™));
SFNode appear_material2 = (SFNode) (appearance2.getField("'material™));
X3DNode material2 = scene.createNode(*'"Material™);

SFColor mat_color2 = (SFColor) (material2._getField(*"diffuseColor'™));
mat_color2_setValue(new float[] { 0, 0, 1 });
appear_material2._setValue(material2);

shape_appearance?2.setValue(appearance?);
shape_geometry2_setValue(text);
bill_children.append(shape2);
tran_children2._append(bb);

switch_children._append(tr2);
scene.addRootNode(switchNode) ;

scene.addRoute(touchSensor, "isOver', bf, 'set boolean™);
scene.addRoute(bf, "inputTrue', triggerOn, "set boolean™);
scene.addRoute(bf, "inputFalse", triggerOff, "set _boolean™);
scene
-addRoute(triggerOn, "triggerValue™, switchNode,
"'set_whichChoice™);
scene.addRoute(triggerOff, "triggerValue', switchNode,
"set_whichChoice");

}

float[] points = { 1f, -1.2F, .1f, 1f, -.73594fF, .1f, 1f, -.73594fF, -.1f, 1f, -1.2F, -
JAF, -1F, -1.2F, .1F, . . ., -.4844F, -.1f };

int[] coordindex = { 12, 52, 13, -1, 13, 52, 53, -1, 13, 53, 55, -1, 55, 53, 54, -1,
12, 13, 14, -1, . . ., 68, -1 };

float[] textureCoordinates = { 1f, Of, 1f, .193f, 1f, .193f, 1f, Of, Of, Of, Of, .153f,
of, .153f, Of, Of, .686f, .874f, .314f, .874f,
.686F, .874f, .314f, .874f, .864f, . . ., .298fF };

int[] textCoordlndex = { 12, 52, 13, -1, 13, 52, 53, -1, 13, 53, 55, -1, 55, 53, 54, -
1, 12, 13, 14, -1, . . ., 68, -1 };

}

D. PHYSICAL ATTACK CLASS

package geoNodes;

import org.web3d.x3d.sai.MFFloat;
import org.web3d.x3d.sai-MFNode;
import org.web3d.x3d.sai .-MFString;
import org.web3d.x3d.sai .MFVec3f;
import org.web3d.x3d.sai.SFBool ;
import org.web3d.x3d.sai.SFColor;
import org.web3d.x3d.sai.SFNode;
import org.web3d.x3d.sai.SFTime;
import org.web3d.x3d.sai.SFVec3f;
import org.web3d.x3d.sai .X3DNode;
import org.web3d.x3d.sai .X3DScene;

public class PhysicalAttack {

private X3DScene scene;

96

private float[] trans;
private float[] col;
public PhysicalAttack() {

}

public PhysicalAttack(X3DScene scene, float[] location) {
this.scene = scene;
this.trans = location;
float[] color = { 1, 1, 1 };
this.col = color;

}

public void addNode() {

float[] keys = { 0, .25F, .75F, 1 };
float[] keyvalues = {1, 1, 1, 1, 0, O, 1, O, O, 1, 1, 1 };

X3DNode bb = (X3DNode) scene.createNode(''Billboard™);

SFVec3f rotationAxis = (SFVec3f) bb.getField("'axisOfRotation');
rotationAxis.setValue(new float[] { 0, 1, 0 });

MFNode bill_children = (MFNode) bb.getField(**children™);
bill_children.clear();

String[] name = { "Component', '"Stolen!" };

X3DNode tr2 = (X3DNode) scene.createNode('Transform');
SFVec3f translation2 = (SFVec3f) tr2._getField(""translation™);
translation2

_setValue(new float[] { (trans[0] - 2), trans[1l], trans[2] }):
SFVec3f scale2 = (SFVec3f) tr2._getField(“'scale™);
scale2.setValue(new float[] { 3.0f, 3.0F, 1 });
MFNode tran_children2 = (MFNode) tr2._getField("’children'™);
tran_children2._clear();

X3DNode shape2 = scene.createNode(**Shape™);

SFNode shape_geometry2 = (SFNode) (shape2.getField(*'geometry'™));
X3DNode text = scene.createNode(*'Text');

MFString words = (MFString) (text.getField(*’'string™));
words.setValue(name. length, name);

X3DNode fontStyle = (X3DNode) scene.createNode("'FontStyle'™);
SFNode text_justify = (SFNode) text.getField(*"fontStyle™);
MFString justify = (MFString) fontStyle._getField(""justify');
Justify.setValue(2, new String[] { "MIDDLE", "MIDDLE" });
text_justify.setValue(fontStyle);

X3DNode appearance2 = scene.createNode(*'Appearance');

SFNode shape_appearance2 = (SFNode) (shape2.getField("*appearance'™));
SFNode appear_material2 = (SFNode) (appearance2.getField("'material™));
X3DNode material2 = scene.createNode(*'"Material™);

SFColor mat_color2 = (SFColor) (material2._getField(*"diffuseColor'™));
mat_color2_setValue(new float[] { 1, 1, 1 });
appear_material2._setValue(material2);

shape_appearance?2.setValue(appearance?);
shape_geometry2_setValue(text);
bill_children.append(shape2);
tran_children2._append(bb);

scene.addRootNode(tr2);
scene.updateNamedNode(""tr2", tr2);

// positionlnterpolator

97

X3DNode pi = (X3DNode) scene.createNode(''Positioninterpolator™);
MFFloat key = (MFFloat) pi.getField("'key™);

key.setValue(keys. length, keys);

MFVec3f keyValue = (MFVec3f) pi.getField(“"’keyValue™);
keyValue.setValue((keyValues. length) / 3, keyValues);
scene.addRootNode(pi);

scene . updateNamedNode("'pi**, pi);

// TimeSensor

X3DNode timeSensor = (X3DNode) scene.createNode(*'TimeSensor™);
SFBool loop = (SFBool) timeSensor .getField(*"loop™);

loop.setValue(true) ;

SFTime cyclelnterval = (SFTime) timeSensor.getField(‘‘cyclelnterval™);
cyclelnterval _setValue(2.0);

scene.addRootNode(timeSensor) ;

scene . updateNamedNode(""timeSensor', timeSensor);

// Routes
scene.addRoute(timeSensor, *“fraction_changed”™, pi, "set fraction™);
scene.addRoute(pi, "value_changed'", material2, "diffuseColor™);

98

APPENDIX C. THESIS CLASS DIAGRAM

A. THESIS APPLICATION CLASS DIAGRAM

The following pages contain UML class diagrams for each programmatic package
of the thesis application. These diagrams allow the classes to be seen at a glace, and to
see which classes relate to each other. To organize the programming code, classes with
similar functions are grouped into what are known as “packages.” Due to space
limitations and to enhance readability, in some cases, the packages are broken up into
parts for the purposes of these diagrams, but each class in the “partl, 2, etc.” diagram is
actually all within one package. The following is a brief summary of what each package

contains.

sledzCoomesThesis: Contains the “main” method of the program, as well as those

that setup the Xj3D browsing environment. It also contains the calls to the XML parsing

class, which starts the process of visualizing whatever is input to NTAV3D.

dataNodes: Contain classes that hold data about network nodes and network

attack information.

geoNodes: Contain the classes that define all of the geometric objects that appear
in NTAV3D, such as computer, server, and router models, as well as the transparent

walls, moving cones, etc.

utility: Contains the main XML parser class, which carries out the bulk of the
work in parsing the XML file and creating the three dimensional scene graph. The utility
package also contains various utility classes, such as Java array resizers and the classes

that interpret positions.

99

[]

sledzCoomesThesi%

SledzCoomesThesisMain
{ From sledzCoomesThesis }

Attributes
private long serialVersionUID = 385452894 1272958121

private ¥30Scene mainScens
protected ExternalBrowser x3dBrowser

Operations

public SledzCoomesThesisMain()

public ¥x305cene gethMainScens()

public void setMainScene(X3D5cene mainScene)
protected ExternalBrowser getX3dBrowser|)
public wvoid main{ String args[0..™])

100

(Japonpayoenyab Gums algnd

(spoppeaeRe DULLS JaponpeaeRylas ploa ajgnd
(JadAiyienyaf Buing agnd

(adAlyaege Bung JadAyaepylas ploaagnd

(auass aualg ey Jasiwoidwo? Agnd

(Jasiwoidwog aygnd
suopesado

= apoppayiepe Dulys sesud
. = adi3aene Bulys sjeand

auals auaaggex aeaud
sHNGURY

(["Dlsodpnoja ieay Bauiajuippe pioa aignd
(Japonppe pioadjignd

{ [0ldaun ey ydaurpas ploA ajjgnd

(1) 3dauimeh oy 2)gnd

{ ydaurmab [oheoy agnd

(indu| Bums Jiojooi8s ploa algnd

(Jojpongal Buus agnd

(Jojogiab [oheop aygnd

(BLENYI0MEU BULLS JBLLUENYIOMBNIBS PIOA 3)jgnd
(Jawenplomangald Buus agnd

(aua3s ausIgIEK HIOMBN 3ljgnd

(plioman agnd

suopeisdo

{ sapopneep o4 }
as|woidwon

=0 Awasiuoidwog

.= l10jooas Bullg apeaud

[0ldBun 1eoy seaud

[« 0lioj03 Jeoy apeaud
aLepplomal Bullg sleald

aUa3s aUaISaEX aleaud
SHnqURY

{ s3ponelEp WOl }
HomeN

{ Juyes|woidwogezisal ploa 2

(aus2s BUAISAEX 'PIOY 1UI)IyaSILLIOIHLIODIAS PIOA Il
(xu) 3uyesiuoidwonish as|woidwog o)

(Jigasiwoidwoniah [plasiwoldios il

(Jabeloigas|woldwiog 3
suoyessdy

<0 Lispomgau

Arysiuawfas

(Jiwswswbagazisal ploa agnd

{ auais aUa3ISAEX 'PIOY W1 Jysiuawhagias ploa agognd
(% jun)| 3wsiualubagiab spuawbag aond

{ Jysjuawbagab [, glsiuswbag alognd

(Jpayaenassyiad buws aand

(slueNassE BUS JpEIENYIESSYIas ploa ljand
{ Maogiah Bums aand

(Aayjod Bums JAaljodies pioa ajgnd

(Jsisgquayaenyab ueajooq ajgnd

(Jsispgieoenyas ploa aond

{ 8UB3s aUadSAEX 1HIENY Aland

suogeisdn

(2yoepy 2ond

SISXIIEHIENE Ueajaoq sleAud
Aanod Buing s1eaud
pavaepylasse Buulg slead
auads aUsISAEX aleald

sanguay

{ sapopejep woi4 }
yaeny

+0

{ JpfiomiapazIsal ploa aljgnd

(aUa3s aUsISAEX 'PIOY U1 JIHI0MENIES PIoA 3jand
(Ul J3innpomaist yiomsp ajgnd
(Juysiomanah [, -pblioman aond

suogersdg

(Jaweniomanab Bus ajond

{ Jawepauodwonial Bulys ajognd

(sweppusuodwos Buls Jswenusuodwoolas ploaa)gnd
(awepsIomal Gunsg JBLUBNYIOMENISS PIoA 3)(gnd
(ausas susasgex Jsiuawhas 2 gnd

()Jswawbag agnd

suoyersdo

LiaEE

sanquiy

snguiy

{ sapopElEp WOl }
abeloygasiwoidwod

{ saponMeElep Wold }
abeiojgyiomiaN

, = allepuauodwon Buils aleaLd
= BUIENRIOMBU Bulls senud
auads auaISaex aleaud

ssngugy

{ Juypoepyezisal gnd

(8Ua3s AUAISAEX 'PIOY UL YUYIENWES PIOA 3ljand
(xu Ji3uyaeneb yoepy a)ond

(Juraeniab [ooloeny alond

{ Jabeloysyaeny jond

suogeisdn

sy

{ sapopejep wol4 }
sjuawbesg

{ sapopNElEp WOI4 }
abelolgyoeny

sapopne3ep

[

101

Attackericon

AR et
preats OD5Cene vene
e St a7 = new S0t
pastn B ot] = e Bt 4]
prestn e gy = 0
package fas portafl %)= (1130, 101 7369
pachage et comtindenf). = (13, 6. 1 n_n.
package fas testaeCoondnatiafd 7 = (1.
package ot feriCoomtindesf) ¥ = {17, 83 n_t

]
puhc wid adablsda)

g
age feat peintfd | = {fant], flast], flest},

MNodeStorage TouchSenserTaxt
OCScens
privats L
e WedsEeneagel) S ek o e
bl vl setBaahe]int bod, T30Scme scene, Boad irssafl] Naat rorfd] faat sealf) | haat 2o 7} rivate ot %]
b weid wetBeadan| it hold | provats St wcalfd) |
s wiid SeiLinaAn] it hotd, I00Scase scase, il coondingl '] Sam portfD] Mam colerfD '])
bl Beaff | et | e —
bl Linellaft 4| gt) Lot
et Bo et et 1 | R u——u
ot LinaSal guilnasefi ot 1) s ToushfarasTont |
pabhc woid reselisain] | pusds TouchSenqorTast| KI0Scene vcare Soat irpmaf 1)
e e v e
bastyr
o
ey

Box

private Bimng avwet = =

putiec Bas)

Pt Lraat |

Cpeamni.

mm[msomum ot traenf0 "], Sent el 1. Sual scall) "] Sl col0 7}
arTousa(0G0 1oene |

102

bl Cionst)

pubiss Cloudl 0Scemm scens, hast caisnld) 1]
Pt et et Scanel KI0%cane acune |

b woid patTrame| st tramfl)])

b et et Tramas] st framat |

b wned wat Trams [Bt tramm ¥ |

CL. hes wog Jiegars pren smand —
suen peog Iiueise proa pgnd = D

{ suen jeog |xsueigms pros syend -z

[huean 0o houei e pios sand de.sn.l_h“.rzi) "

(1. o= oy JEagies pron suged

L lea reag hegies peos anged

(L phw=s ooy heagien peon axged

.ol ieog Ningies poa Jaged

A1 chwsmn o Jruespien poos 249ad

= L

1o eog 'L Ohess beey 'L glos eog . ‘clsueis ey "sub38 SUBIS00K Mibeds: 3and
[besgds 2aged

[l plsuesn woy Jsueigws pras snd
[hubst susdsee urssin pesa sgnd
(pe oy 1o [b wow L cleas mow L ol weog ' ot ey "sus sukasn: epuls aaed

11, g ooy phues e pean 3nged 1 Tiwey smgnd
[swa2s sunag 00K eunsgies pra Ju9nd L £ b .
(pee0p w100 L 0boa wou L clreos oy ol 169 Dlsuen oy “wnas wueasOn usabmon 2 _n_-suz..._.:.... e . ey ey siewsd
1 JousaBamony sqed = . Oltwa gandes Bunns, speasd
Lo L. livess g wied
r—— 1.t iouponine ins sieasd
0= kzussedsues jeog spessd MBS0 BUBIS SUBISOEN DIEN
el jeog siensd o=
1By g bpend
L s jeog wpensd FLLTS
e yeog wessd
L. olieu 1e0g mpessd
L. et e wpenssd
b3 SUAISO0K it
g
auoBulAH
| Juajzpe prs sand
[lspoppe pioa sand
1 eporgb apenine suind
[bporu pGEN JepeneEw proa snnd
[lpatgpe pra 3nnd [bowenispind Buig smnd
1 Iemppdwogied Buns snd [Mousmdsuriynd g spnd
[Izsveiné mog sugnd [Izsueiymd ooy sind
1 Jusuesyed oy smnd [Jusueiynb sog sand
1 hesueaynd gog swnd [ysueayml geog swand
{eweu Buing pueyfuoies pos sggnd (paueapied [gleog suqnd
[pea ey npegin proa sugnd { busey Boug wenibt pra gnd
] [teog Jubissies pioa smnd [Aoumsedsuen) jeog Mousedsueigws pis 3and

[l 0itea g hegirs pros sand
(1 e mog Jeasiwt proa suand
(L tlheu peog oy proa sugnd

 Joponippe peoi oggnd. 3 .

(1 clusiesey mey “susss sesS0E JSRIRsiYg Spg0d. “olagea 1wap E&!&Sﬂw—:&l:ﬁ

1 Tnzeipnesiniyg 3w9ed e 29
) (L2 0 R0000'0 H00€ 0 = [s e wbey2ed
A 1o s = . closespponiss B, st
suns w500 s . okod ey wmand
e) 1. el meoy smad
1ol yeoy mmand
WammIEaBAY, L gl yeog ssmud
d Bt RSO0 sed

Rl
sadjdupen

{ uepuni and [l "olsues sog Jsueigms. prs 2pand
{ #usas 2UBISOEY [Suacgms pras siHnd
suegdwen fung wiewd [ity pmog “wesa bensS0E Jpnog Spand
pel jeop A 1 Jpnexy smnd

ey e]
1. chea 1eag sieass 0 lieog (reoq) “Deogh = [plsaned ieog sfeysed
I aleas ieog sieasd = e g s
1.l g wiensd 0w dsminduoni) 0o oiead
L toncs g v . ches g siosd
SUBIE SUIISOEK SIEAH [obes oy meand
1ol e il
L. ol 1o wiesd
HpUIAD i BN BiE
BUBIE SUBISEY S

i

103

(Jawel4ppe ploaaqnd

{ uoogppe ploaangnd

{ Japopppe ploa agnd

[oluosod jeoy ‘augas suaasaex Joogdes ayand
(JioogdelL aand

suoyersdg

F 50" 1-'5 'L 0} = [Dlewel yxapulpiood Wi abeyaed
STV - UT0 L = L p]aluelgsiuiod jeoy abesoed
‘0°-TE 0 e ok =l olaepuplood i abesaed
098" 41-'0 8- 41 '0 er-h = [oolsiulod eoy soexyaed
0 =Aausiedsueneoy sleald

[olieas jeoy ajeand

[pheoy mau = [, ool 1eol areaid

[Eheoy mau = [,"glsueljeoy seand

aUas aUBISALK slenld
sanquy

Jooqdes)|

{ yaponppe ploaajgnd
([pluoisod jeoy ‘auads aualagaex JsmiA ond

(Isnua anjgnd
suoyesstn

‘0°1-"L'E'0 - 'e T 0l = [olapupaooa Jul abieoed
3655} h-'0 WEBRSE | YL = 0lsiulod jeoy sbexaed
0 =hauziedsuen oy seaud

[heoy mau = [, photjeoy peaud

[Eheoy mau = [, plsueln ieoy sleand

aua3s auaasqey alead
SanquY

snaip

{ JapoNppE ploa aljgnd
o) ‘[, pluoysod o) ‘BUS3S 8USISAEK JLLDAL J1End

(Juuopn angnd
suopeisdn

BLot ‘0 451 = [plsaneauonaagssod jeoy abeyaed
ISE100°0 Y5E 1000} = [0]sanieaa|eas jeoy abexyaed
015 LTPTAEEE'0 15-} = 0lsaniEAaUIds Je0) abeydEd

["olioa oy slead
["olieas 1oy sieaud

[ohoijeoy seaud
[olsuenieoy aieaud

aua3s auaiggex ajead
sanquRy

()2ponppe qnd
()spioozyash [, oleoy anand

(Jewenauozel Guus Jgnd

(@aweu bung Jawenauozias ploa agnd

([y plzindurieoy ‘[l pndur jeoy ‘auaas auaagaex Moleald||Ba dljgnd

{ oz ||ep 1gnd

suogessd

1= loplewuenauoz Bupys sleayd
fausiedsuel ea sjead

[0lo2 eoy ajeaud

[olz1au103 |e0|) ajeaUd

[0] 11au102 |eo|) ajeaLd

aUg9s UISAEX AleAud
senquiy

uLiop

Jo3e813][EM

(Japopppe pioa oljgnd
[v"0lsuUEn 1B0| ‘BUBIS 8UBISAEX J8sI0HUEOIL 2land
["0lsuen 10y ‘Buads susIgdEX JesioHuElolL ajgnd

{ JasioHuelod] agnd
suoyeiEcy

}-'78 98 '0 '}-'88 'L ‘0l = [y 0lxapujpiooa jul abesaed
PLETS 9B0F L~ UGERLL - = 0lsiuod jeoy abexaed
4118 1t = oliojoa 1eo) afiexoed

0 =fausiedsuen jeoy aeaud

[."0lieas yeoj ajenud

[Fhieoy mau = [,"gho 1eo| ajeaud

[cheoy mau = [, plsuel jeo) ajead

8895 BUBISAEK AleAld
sHnquiy

asloHuelol]

gUedsapoNoab

[

(Japopppe ploaongnd

{ JawenaNEh Bug angnd

(Jawendwooiah Buus aqnd

(Jhauasedsuel s Jeoy agnd

{ Jzsueiysh jeoy aygnd

{ Jasuelaf jeoy ongnd

{ Jxsuelyab jeoy aygnd

(Jsueipyab [, gleoy aygnd

(BleU BumS JaLENIENIaS ploA algnd

(aweu fums Jawepndwooias ploa gnd

(faualedsuenieoy Jiausiedsuel3as ploa angnd
(l"0llo2 jeoy Jjoolas ploa angnd

([, 0lleas jeoy)ieagias ploa dyand

([ohol ey iodias ploa dlgnd

([, 0lsuenjeoy Jsueiyas ploaoygnd

{ auaas au=3gQEx Jauaaglas ploaagqnd
(Aauzuedsuen jeoy ‘[, oplioa 1eoy ‘[ol i3S 1eop [oliod O [plSUBILIEDY 'BUA3S auadgAEx Xogsuel] agnd
{ Jxogsueldy angnd

suopeisdn

=sLENIEU Bulls 2lead
= awepdwoa Gus apend

0 =Ajuaiedsuen jeoy ajeaud
[0l102 1eay ajeand

[0lie3s g0y ajennud

[, ohou 2ol seaud
[.-olsuen oy ajeaud

auals auaIsgex aead
sapnquy

xogsued|

104

TEREEHE A geu Vel MU S G0 Jezel FEEI] Ty TAnGU oERy Jegeal
suogeiady suogedy auogeidy suoyeady suogiady
SHNquY gy aanquy Sy sy
{hymwoigf {fym i} { o waig} {Aymwolg} {hygn u014

Jojeaigiasaurazisayielsy Jasauryazisayfesy Wpazisayfelsy aspuoidwogiezisayitily Jornyiazsaulesy

ST Ty QICUTXOF Jezis [y Jhag SEISMEUN] Ty QAL IR JE2sel Ty GUOWEEIEN 2o TEIghEU I T, U FUg Jezse: [y UG oy SGMEL YU T QO SJUBLUEE Jezsel Ty QSEBEg ayim BN) R E e A e
suogeiady suogeiady suogeiady suogeiady suojaiady
saquay. sanquy sancuy sanquy sanyugy

{ Ay woi4} { o woty} {in woig} { Ao wol- {fyn woig}
xoglazjsayfesy lojeal|epdazisayfesly Bussazisayfesly wawbasiaziseyhesy JomgzNazisayhedsy

JHedimn

105

(i)iegeurman oy iand
{ NAwRgpee plosanand
[Jeponpee piod syand

(LR e it i (o ooy 1 ‘i o wssan e el
(1955¢ BUInE VOIEAIIAE ARSI 00 15 5 ' (i ._R-a:m.___.,,»ﬂ.!.
[HORERI R RTINS AN [R sengmay
revamed e
LB BesEe 180y e L tlzubseao) ieoy siensd r%u..”ﬁoauﬂ!a
G o
(asse Bupng Seasd — 0 pudgeao) jeoy siensd |, oheg e pwog sqead
S b gpus yeeg sgesd
v taaduiben oy sread
IBIERIDIE S IS Ty aupedmaipBuinsy BUB3E BuEISOCN e
annan
JeaeBIAn SR

{PUENbET NS A0E1 160U PRIENDETNS0ETRAS Pio Jiand

(27 uonaRip oy)7 UoHIsICRES PO 2iand
AT wERRIR e JATUSHRIREE plosangnd

(T UORIBID I 1 UOISICEES ploa 3gnd

1 9P ¥OE U J8EAUN MUrTEgUORIAe QUS| irand

[Z7ieas e0p 2 RICHE pionaiand
1127 Iesgieb 1oy ayand
TATIER JEOP IATRIGHE pion diand
{)47 ezgie 1oy nd
(XIeas 1m0y " eacs proa Jiand
{ 1lexmiol oy aand

[IpaenbECRsabicTInn 1eoy Jnand
(7 BPOU ESLI7APONS BI0A aiand
{17~ opoNRg ey nand
{ATHDOU WO UTADOMSE. DI 21Kand
{ WapopIah oy Jnand

{3 Bpou ey 1 spcrEes posaiand
{ KBROMIBG Wwoy 3nand
[Z7uiBn0 rop 17 LBa0uEe piod 3and
I uugIe teoy anand
[ATuBue peep A uaiagues pioa 3ngnd
1 Tubugie peoy angnd
(7B geop s udiagges piosaygnd
1 BuBugisb sy 3uand

{12 woRaenmEG ey Aiand
 WTuoReNGIe0 Loy Aand

{ b uowsenaal oy nand
{ SpLuteRiied ueddon Inand

[271es je0y 27135388 pi0a 3i1and

1127 |e2giab oy yjqnd
CATIe 10 JATIRIGIRE plos yignd

[aTezgial woy ynd
(371e% 10w B 1eIgRS Bros and

{ 1ezsed weg and

{PRURNEE ORI 120U PGS CHSICIETRS PIoA And
{ IPUEnbSESAGIETIAN oy Nand
(Z70POU E0g 17 3P0NARS PI0A AT

{ g opowat 1oy 2and
{ATRROU FEOR 1TADOMIEE. DI Jiand

{ MTapopIat woy Jnand
{x"Bpou oy 1" sponnRe pros and

{ BepoNIal wey 3and
(77U w0y I USuCIER plos 3iand

{7 UBIQIAG ey and
CATwBi peon ha uugees pos aignd
[T wBngysl ey aygnd
(sualiya peog b TuSugaes pros 3ygnd

L1 wBugist ey syand

L uoRaRIR o 12 W RIEE plos nand
I uoEENOE0 sy aand
{ATuEER R oy 1A W RIGEE plos agnd
I uomeniel ey 2nand
{TUOEIBID R0 1 LAHIBINCHER pioa Jand

(BpoUEDG ") AU Juagaale

{ HAIMEEUIAAQUEFSife) 2itand [Juspraiaguossiied 3ignd
SR gty

Bl i e0iE) ios eard FHIENDS” i 16os st

e g e e jeop el

AT o e AT jeop el

¥ srog paid ¥ geog et

2 apou oy e 2 upouseos mesid

A7 upou seog dgeid A7 upou seog aqend

57 pou sty e 5" unou seog sesd

2 B8R o tataid ZUBRIRAR 86 NI

A uoR0p w0 el ATuBRiaNp 3e0g MEND

Wuemstiip g tyeid WTuBBIGIp Jeo dienid

T g apesnd 3" uibyio jeog syl

A uitun s mewd ATuibue ees mewd

A uibuo yog mpd A uibluo jeog mesnd
sy s

suriroguopIsIeguUolsyIo)

uopIMeUoIE|Io]

(Jakipyigai pron sgind

[s OluonEse peess oy
[lesieipatny avand

WRLE BA5 Bensd
Lo aluonresd jmay spisd
BURIS FUSISODK HeNsd
gy

RLL TR

(1nduste BUAS SRS RASE piosaand

U0y Qlsjuewees oy o0 Bupns JEsE DULS ‘Busss susasaL MIEHvEssy and

usgus

[Jwesneesyiad Looifuag and

[I8snieAosRas Logheoy Jnand

1 Inkeoysess Lgheoy sand

i Isdonruogsme Lgbeoy anand

(Jabeptasbiegmensa [ghwoy 3ind
{ ekesmens [gheey 3uand

{ lpRinbS el ey 3gnd

{ hsnuavshnBegEaI piosaand
1 oS B SRR poAaIand

 aeuwessy nand

[11Buing s = | pléustpgesee Suws spad

Hanped Eung sy

L clsernaten g sqead
[T p——
o Glsteoe ooy e
L olsee oo basd
0 Ol ey e
USRS SUEISOCK BB

106

utilityPart3

Positioninterpolator

Adtributes

private X3DScene scene
private float keys[0.*]
private float keyVWalues(0.*]

Operations
public Positioninterpolator(X3DScene scene, float keys[0.*], float keyWalues([d.)

public void addMode()
public floatf0.] getkeys()

public void setkeys(float keys[0.4])

public float[0.* getkeyalues()

public vaid setkeyValues(float keyValues(0.*])
public X3DScene getScene()

public void setScens(X3DScens scene)

Orientationinterpolator

Athibutea
private X3DScene scene
private float keys[0.*]
private float keyValues[0.*]

Cpetions

public Qrizntationinterpolator()

public Orientationinterpolator{ X3DScene scane, float keys(0.*], float keyValues[0.*])
public void addNode()

public floati0.*] getkeys()

public void setkeys(float keys(0.*])

public float[0. ¥ getkeywalues()

public void setieyvalues(float keyvalues[0.*])

public X3DScene getScene()

public void setScene(X3DScene scene)

ParseXML
Attibutes
private X3DScene scene
packaqge File parseFile
private inthold= 0
private intholdnet= 0
private float max< =0
private float min¥ = 0
private float minZ= 0
private float maxZ = 0
private boolzan intametExist=false
private boolean leasedExist= false
private boolean remotelnterExist = false
private boolean remoteleasedExist = false
private intintermnetel
private int leasedEl
private float mainSite[0.]
private float remoteSite[0.]
private float internetlinep[0.*]
private float leasedLinep(0.*]
private float maininternetEnd[0.] = new float(3]
private float mainLeasedEnd([0.*] = new float[3]
private float remoteinternetStart[0.*] = new float[3]
private float remoteLeasedstar0. "] = new finat[3]
Operations.
public ParseXML(X3DScana scane, Filz parseFile)
public void parse(
private void parseDocument(Document doc)
public void createGraph()
private float findMinX({ Document doc)
private float findMaxx(Document doc)
private float findMinZ(Document doc)
private float findMaxZ(Document doc)
private float[0.* findSite(Document doc, int siteNum)
public void resizeWallCreatorArr{)
public void K(nadeStorage, A orage, inti)
TimeSensor
Atibutes
private X3DScene scene
private boolean loopCondition
private double cycleTime
Operations

public TimeSensor()

public TimeSensar{ X3DScene scene, boolean loopGondition, double cycleTime)
public void addNode()

public double getCycleTime()

public void setCycleTime(double cyeleTime)

public boaolean isLoopCondition{)

public void setLoopCaondition(boolean loopCondition)

public X3DScene gatScens()

public void setSeene(X3DScene scene)

107

THIS PAGE INTENTIONALLY LEFT BLANK

108

APPENDIX D. SAMPLE XML FILES

A CYBERCIEGE XML DOCUMENT TYPE DEFINITION (NETVIEW.DTD)

<]--
Name: netView.dtd
Version: Draft 1.2

>

<IELEMENT CyberCIEGEnetView ((version, SDFid, network+, mainSite, offSite?,

componentCompromise*, attack*))>

<IELEMENT version (#PCDATA)>

<IELEMENT SDFid (#PCDATA)>

<--

Associate colors with network names to match that seen in game.
>
<IELEMENT network (networkName, color)>
<!IELEMENT mainSite (zoneName, upperLeft, lowerRight, component*, zone*)>
<IELEMENT offSite (zoneName, upperLeft, lowerRight, component™*)>
<I--

zones can be nested.
>
<IELEMENT zone (zoneName, upperLeft, lowerRight, component*, zone*)>
<--

In the future component may include O/S name and configuration settings. In
initial implementation, assets need not be depicted on other than the computer that is
attacked.
>
<IELEMENT component (componentName, componentBase, location, networkName*,
assetName*)>
<|--

The component name as assigned by player or engine, e.g., "Joe's PC"
>
<!IELEMENT componentName (#PCDATA)>
<l--

Identifies the graphics image to use when representing this component
>
<!IELEMENT componentBase (#PCDATA)>
<!--

Dimensions are between 0 and 100 on each axis. Component locations will all
tend to have the same "y" component, except when located in a server rack. For now,
those components floating above each other will be sufficient (i.e., no need to illustrate a
rack).
>
<IELEMENT upperLeft (x, z)>
<!IELEMENT lowerRight (x, z)>
<!IELEMENT location (x, y, z)>

109

<IELEMENT x (#PCDATA)>
<IELEMENT y (#PCDATA)>
<IELEMENT z (#PCDATA)>
<!IELEMENT networkName (#PCDATA)>
<IELEMENT assetName (#PCDATA)>

<l

-->

The componentCompromise pairs identify which components should include
which attack type visual representation. There is currently no semantic linkage
between componentCompromise and attacks.

<IELEMENT componentCompromise (attackType, componentName)>
<IELEMENT attackType (#PCDATA)>
<I--<!ELEMENT attackType (trojanHorse | trapDoor | osFlaw | physical | virus)>-->

<l

-->

The attack simply illustrates the asset being compromised. A policy of "secrecy"
will show information flowing from the asset out throught the networks. A policy
of "integrity" will show information flowing from the networks into the asset. If
no segments are provided, the flow will simply be into and out of the component
that contains the asset, and if "attacker" is present the flow will be to-from the
attacker. If attacker is not present, the flow will be internal to the computer (i.e.,
it would be an integrity compromise driven by malware).

The segments simply reflect the path the data takes on its way to or from the
attacker. Segments are order dependent. If a "attacker" is present, then the
componentName in the final segment is the component at which the attacker
receives information from secrecy attacks or sends information in integrity
attacks. In a typical secrecy case, information would be depicted as flowing from
the asset, through a series of networks and components, and then out of the final
component into an attacker icon. If the final segment includes a zoneName
instead of a componentName, then the information enters or leaves the final
network anywhere within the named zone. If there is no named zone or
component in the final segment then the network will be exernal (either the
Internet or some network that goes between the main site and the offsite) - in
which case the attacker is at the Internet or the other network link.

<IELEMENT attack (assetName, policy, segment*, attacker?)>
<IELEMENT segment (Network, (componentName? | zoneName?))>
<!IELEMENT Network (#PCDATA)>

<IELEMENT policy (#PCDATA)>

<1--<IELEMENT policy (Secrecy | Integrity)>-->

<IELEMENT attacker (#PCDATA)>

<IELEMENT zoneName (#PCDATA)>

<l

-->

Color is rgb in hex, e.g., 0OxFFOOFFO00

<IELEMENT color (#PCDATA)>

110

B. SAMPLE CYBERCIEGE XML OUTPUT

<?xml version="1.0"7>
<IDOCTYPE CyberCIEGEnetView SYSTEM "netView.dtd">
<CyberCIEGEnetView>
<version>0.0</version>
<SDFid>0.0</SDFid>
<network>
<networkName>Internet</networkName>
<color>0xFFFF0000</color>
</network>
<network>
<networkName>leased</networkName>
<color>0xFFOOFF00</color>
</network>
<network>
<networkName>link1</networkName>
<color>0xFFFF7F00</color>
</network>
<network>
<networkName>link2</networkName>
<color>0xFF0000FF</color>
</network>
<network>
<networkName>Lan1</networkName>
<color>0xFFFFOOFF</color>
</network>
<network>
<networkName>Offsite LAN</networkName>
<color>0xFFFFFF00</color>
</network>
<mainSite>
<zoneName>Entire Office</zoneName>
<upperLeft><x>33</x><z>49</z></upperLeft>
<lowerRight><x>56</x><z>31</z></lowerRight>
<component>
<componentName>Joe ws</componentName>
<componentBase>Blato Desktop Select</componentBase>
<location><x>35</x><y>1</y><z>36</z></location>
<networkName>leased</networkName>
<networkName>Lan1</networkName>
<assetName>Plans</assetName>
</component>
<component>
<componentName>Lunitos AFOS 3</componentName>
<componentBase>Lunitos AFOS</componentBase>

111

<location><x>35</x><y>0</y><z>47</z></location>
<networkName>leased</networkName>
<networkName>link1</networkName>

</component>

<component>
<componentName>Bit Flipper Border 3</componentName>
<componentBase>Bit Flipper Border</componentBase>
<location><x>34</x><y>1</y><z>37</z></location>
<networkName>Internet</networkName>
<networkName>link1</networkName>
<networkName>Lan1</networkName>

</component>

</mainSite>
<offSite>

<zoneName>Offsite</zoneName>
<upperLeft><x>94</x><z>28</z></upperLeft>
<lowerRight><x>106</x><z>21</z></lowerRight>
<component>
<componentName>Kim's Workstation</componentName>
<componentBase>Blato Desktop Select</componentBase>
<location><x>104</x><y>1</y><z>23</z></location>
<networkName>leased</networkName>
</component>
<component>
<componentName>Lunitos AFOS 2</componentName>
<componentBase>Lunitos AFOS</componentBase>
<location><x>96</x><y>1</y><z>22</z></location>
<networkName>Offsite LAN</networkName>
</component>
<component>
<componentName>Bit Flipper 2</componentName>
<componentBase>Bit Flipper</componentBase>
<location><x>95</x><y>1</y><z>23</z></location>
<networkName>Internet</networkName>
<networkName>Offsite LAN</networkName>
</component>

</offSite>
</CyberCIEGEnetView>

112

LIST OF REFERENCES

Alpern, B. Amd Carter, L. 1991. HyberBox. IEEE, Proceedings Visualisation 1991, pp.
133-139.

Au, S., Leckie, C., Parhar, A., Wong, G. Efficient Visualization of Large Routing

Topologies. International Journal of Network Management. 2004.

Baba, T., Matsuda, S. Tracing Network Attacks to Their Sources. IEEE Internet
Computing. March/April 2002. pp. 20-26.

Baxley, T., Xu, J., Yu, H., Zhang, J., Yuan, X., Brickhouse, J. LAN Attacker: A Visual
Education Tool. Proceedings 3rd Annual Conference on Information Security
Curriculum Development. ACM 2006.

Becker, R.A., Eick, S.G., Miller, E.O., Wilks, A.R. 1990. Dynamic Graphics for Network

Visualization. The Institute of Electrical and Electronic Engineers, INC.

Becker, R. A, Eick, S.G., Wilks, A.R. 1995. Visualizing Network Data. IEEE

Transactions on Visualization and Computer Graphics. Vol. 1. pp. 16-28.

Berg, C. High-Assurance Design: Architecting Secure And Reliable Enterprise

Applications. Pearson Publishing. 2005.

Cone, B. D., Thompson, M. F., Irvine, C. E. and Nguyen, T. D., Cyber Security Training
and Awareness Through Game Play, 2006, in IFIP International Federation for
Information Processing, Volume 201, Security and Privacy in Dynamic
Environments, eds. Fischer-Hubner, S., Rannenberg, K., Yngstrom, L., Lindskog,

S., (Boston: Springer), pp. 431-436.

Cox, K. C., Eick, S. G., He, T. 3D Geographic Network Displays. SIGMOD Record,
Vol. 25, No. 4, December 1996.

Dawkins, J., Hale, J. A Systematic Approach to Multi-State Network Attack Analysis.
Proceedings 2nd IEEE International Information Assurance Workshop 2004.

ECMA. 1999. ECMAScript Language Specification. <http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-262.pdf>. June 8, 2007.

113

Eick, G., 1996. Aspects of Network Visualization. The Institute of Electrical and

Electronic Engineers, INC.
Eick, S., Wills, G. Navigating Large Networks with Hierarchies. IEEE 1993.

Erbacher, R. Glyph-Based Generic Network Visualization. Proceedings of SPIE 2002

Conference on Visualization and Data Analysis.

Estrin, D., Handley, M., Heidemann, J., McCanne, S., Xu, Y., Yu, H. Network
Visualization with NAM, the VINT Network Animator. Computer. IEEE
Computer Society Press. VOL 33, Issue 11. 2000. pp. 63-68.

ISO/IEC 19775-1:2004. 2004. Web3D Consortium.
<http://www.web3d.org/x3d/specifications/[SO-IEC-19775-
X3DAbstractSpecification/>. April 25, 2007.

Gardner, H. Frames of Mind: The Theory of Multiple Intelligences. New York. Back
Books Inc. 1985.

Hansen, C., Johnson, C. Visualization Handbook. New York. Academic Press. 2004.

Holmberg, N., Wiinsche, B., Tempero, E. A Framework for Interactive Web-Based
Visualization. Proceedings 7" Australasian User Interface Conference (AUIC)
2006.

Irvine, C.E., Thompson, M.F., and Allen, K. CyberCIEGE: Gaming for Information
Assurance. IEEE Security and Privacy, (May/June 2005), Volume 3 Issue 3, 61-
64.

Keller, P. R., M. M. Keller. 1993. Visual Cues Practical Data Visualization. The Institute

of Electrical and Electronic Engineers, INC.

Kershenbaum, A., Murray, K. Visualization of Network Structures. Journal of
Computing Sciences in Colleges. Vol. 21, Issue 2. Consortium for Computing

Sciences in Colleges 2005. pp. 59-71.

Kim, H., Kang, 1., Bahk, S. Real-Time Visualization of Network Attacks on High-Speed
Links. IEEE Network. September/October 2004.

114

Labib, K., Vemuri, R. Detecting and Visualizing Denial-of-Service and Network Probe
Attacks Using Principal Component Analysis. Proceedings 3™ Conference on
Security and Network Architectures. SAR 2004.

Li, L., Liu, P., Kesdis, G. Visual Toolkit for Network Security Experiment Specification
and Data Analysis. VizSEC. ACM 2006.

Meyer, B. Self-organizing Graphs: A Neural Network perspective of Graph Layout. In
Proceedings of the 1998 Graph Drawing Symposium (GD’98). Montreal, Canada
August 1998.

Nyarko, K., Capers, T., Scott, C., Ladeji-Osias, K. Network Intrustion Visualization with
NIVA, an Intrusion Detection Visual Analyzer with Haptic Integration.
Proceedings 10" Symposium On Haptic Interfaces for Virtual Environments &

Teleoperator Systems. IEEE 2002.
Schneier, B. Attack Trees. 8, October 1999.
Snort.org. April 20, 2007. Sourcefire Inc. <http://www.snort.org/>. April 23, 2007.

Spence, Robert. 2001. Information Visualization. ACM Press, A Division of the

Association for Computing Machinery , INC.

Tidwell, T., Larson, R., Fitch, K., Hale, J. Modeling Internet Attacks Proceedings 2001
IEEE Workshop on Information Assurance and Security. pp. 54-59.

The Xj3D Project. April 21, 2006. Web3D Consortium. <http://www.xj3d.org/>.
February 12, 2007.

Web3D Consortium. What is X3D?. <http://www.web3d.org/about/overview>. May 15,
2007.

Xj3D Licensing information. October 16, 2005. Web3D Consortium.
<http://www.xj3d.org/licenses/license.html>. May 29, 2007.

Ye, N., Emran, S., Chen, Q., Vilbet, S. Multivariate Statisical Analysis of Audit Trails
for Host-Based Intrusion Detection. IEEE Transactions on Computers. Vol. 51,
No. 7. July 2002.

115

Ye, N., Li, X., Chen, Q., Emran, S., Xu, M. Probabilistic Techniques for Intrusion
Detection Based on Computer Audit Data. IEEE Transactions on Systems, Man,
and Cybernetics — Part A: Systems and Humans. Vol. 31, No. 4. July 2001.

116

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Mathias Kolsch
Naval Postgraduate School
Monterey, California

Michael Thompson
Naval Postgraduate School
Monterey, California

Cynthia Irvine
Naval Postgraduate School
Monterey, California

Don Brutzman

Naval Postgraduate School
Monterey, California

117

