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 1. Introduction 
 
The software survivability is the capability of an entity to continue its mission even in the 
presence of damage. An entity ranges from a single software-component (object), with its 
mission in a distributed computing environment, to an information system that consists of many 
components to support the overall mission. An entity may support multiple missions. Damage 
can be caused by internal or external factors such as attacks, failures, or accidents. To make a 
system survivable it is the mission of the system to continue even in the presence of damage, 
rather than the individual functions of each component with full capacity all the time. 
 
The need for survivability is most pressing for mission-critical systems. As information systems 
became ever more complex and the interdependence of these systems increase, the survivability 
picture became more and more complicated.  Unfortunately, it is not always possible to 
anticipate every type of failure and cyber attack within large information systems, and attempting 
to predict and protect against every conceivable failure and attack soon becomes exceedingly 
cumbersome and costly. Additionally, some damage results from novel, well-orchestrated, 
malicious attacks that are simply beyond the abilities of most system developers to predict. 
Under these conditions, even correctly implemented systems do not ensure that the system is 
survivable. This becomes more serious when the systems are integrated with Commercial Off-
the-Shelf (COTS) products and services, which usually have both known and unknown flaws 
that may cause unexpected problems and that can be exploited by attackers to disrupt mission-
critical services. Usually, organizations including the Department of Defense (DOD) use COTS 
systems and services to provide office productivity, Internet services, and database services, and 
they tailor these systems and services to satisfy their specific requirements. Using COTS systems 
and services as much as possible is a cost-effective strategy, but such systems—even when 
tailored to the specific needs of the implementing organization—also inherit the flaws and 
weaknesses from the specific COTS products and services used.  
 
In reality, we must assume that all software components are susceptible to malicious cyber 
attacks or internal failures. Typically, failures are caused by poor implementation, local test 
criteria, different runtime environments, and so on. Cyber attacks may involve tampering with 
existing source code to include undesired functionality (e.g. Trojan horses), or replacing a 
genuine component with a malicious one. When using a downloaded component, particularly in 
mission-critical applications, we need to check to see if the source of the code is trusted and if 
the code has been modified in an unauthorized manner since it was created. Also, we need to 
monitor if the component is running correctly in the current computing environment. 
Furthermore, once we find failures or malicious codes in the component, we should fix the 
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problems and recover the original functionality of the component so that we can support 
survivability in the mission-critical system. 
 
Traditional approaches for ensuring survivability, such as replay-based recovery, redundancy-
based recovery, and conventional component test, do not meet the challenges of providing 
assured survivability in systems that must rely on commercial services and products in a 
distributed computing environment. Those traditional approaches can still improve the 
component survivability at some point, but they cannot solve the problems (i.e., internal failures 
or malicious codes) fundamentally, especially in runtime.  
With the replay-based approach, a component may go back to the state before the failure; 
however, it cannot go further back into its previous state unless the reason for the failure is fixed. 
This means the component is not able to continue its mission in the case. Furthermore, this 
approach does not consider malicious codes that are already included in the components. 
Similarly, with the redundancy-based approach, if the redundant components are distributed in 
different network places, the services provided by those components can be recovered in the 
event of network failures, in different environments. However, if there is a failure within a 
component or an attack to a component, replacing that component with an identical copy is not a 
fundamental solution, because identical components are vulnerable to the same failure and 
attack. Therefore, we need advanced approaches to ensure survivability in mission-critical 
systems that must rely on commercial services and products in a distributed computing 
environment. In the following section we describe the key challenges to advanced software-
survivability. 
 
In this project we focus on the survivability of mission-critical software components downloaded 
on the Internet. We assume that all software components are susceptible to internal failures and 
malicious cyber attacks. The failures may cause because of poor implementation, local test 
criteria, different runtime environments, and so on. The attacks may involve tampering of 
existing source code to include undesired functionality (e.g. Trojan horses), replacing a genuine 
component with a malicious one. When using a downloaded component, particularly in mission-
critical applications, we need to check if the source of the code is trusted and the code has not 
been modified by an unauthorized manner since it was created. Also, we need to monitor if the 
component is running correctly in the current computing environment. Furthermore, once we 
find the failures or malicious codes in the component, we should fix the problems and recover 
the original functionality of the component so that we can support the survivability in the 
mission-critical system. 
 
In our previous projects, sponsored by the Air Force Research Laboratory, we defined our 
definition of survivability using an abstract state diagram, identified the static and dynamic 
survivability models, proposed novel approaches for component recovery and immunization in 
runtime based on the dynamic model, and proved the feasibility of our ideas by implementing the 
proposed approaches [PC04, PCDG05, PCG04a, PCG04b, PCSG07, PG07, PJG06]. In this project, as 
an extension of our previous work, we develop dynamic and hybrid survivability mechanisms 
that test a downloaded component in runtime in the current computing environment by 
considering multiple-aspect testing methods. The test results can be used to fix the failures or 
immunize the component based on our previous research outcomes. 
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2. Survivability Challenges in a Mission-Critical Distributed System 
 
Typically, an application running at an enterprise level may span more than one organization. 
Figure 1 shows an example of a distributed application that spans multiple organizations. The 
figure depicts three organizations interconnected to form a large enterprise-computing 
environment. In the real world, there may be more than three organizations connected to form a 
large enterprise, and some of the organizations in the enterprise may provide specialized services 
that other organizations do not provide. It is each organization’s responsibility to develop the 
corresponding software components for providing its services. In the figure, for example, 
Organizations1, 2, and 3 are currently involved in Application X for their enterprise work. In this 
example the application running in Organization 3 downloads the necessary components from 
Organizations 1 & 2 for some special features that it lacks. These components are dynamically 
downloaded in runtime from the remote hosts in Organizations 1 & 2 and run locally in 
Organization 3. From this point forward, the software running in Organization 3 should 
cooperate with the downloaded components that originated from different computing 
environments. By employing autonomous operation the local computing environment may have 
to perform some extra job of dealing with possible problems such as interoperability, failure 
situations, or malicious codes in the external components. 
 

 
 

[Figure 1] A Distributed Application Spanning Multiple Organizations. 
 
Typically, an application running at an enterprise level may span more than one organization. 
Figure 1 shows an example of a distributed application that spans multiple organizations. The 
figure depicts three organizations interconnected to form a large enterprise-computing 
environment. In the real world, there may be more than three organizations connected to form a 
large enterprise, and some of the organizations in the enterprise may provide specialized services 
that other organizations do not provide. It is each organization’s responsibility to develop the 
corresponding software components for providing its services. In the figure, for example, 
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Organizations1, 2, and 3 are currently involved in Application X for their enterprise work. In this 
example the application running in Organization 3 downloads the necessary components from 
Organizations 1 & 2 for some special features that it lacks. These components are dynamically 
downloaded in runtime from the remote hosts in Organizations 1 & 2 and run locally in 
Organization 3. From this point forward, the software running in Organization 3 should 
cooperate with the downloaded components that originated from different computing 
environments. By employing autonomous operation the local computing environment may have 
to perform some extra job of dealing with possible problems such as interoperability, failure 
situations, or malicious codes in the external components. 
 
This scenario becomes vastly more complicated when systems are integrated with Commercial 
off-the-Shelf (COTS) components and services, which usually have both known and unknown 
vulnerabilities that may cause unexpected problems that disrupt mission-critical systems. 
Traditional methods of ensuring survivability that deal with a set of anticipated failures and 
cyber attacks do not completely meet the challenges of providing assured survivability in these 
systems. Therefore, it is important to employ additional means to ensure proper survivability of 
such mission-critical systems. 
 
Based on the typical operational scenario in a large distributed computing environment described 
above, we identify the following generic challenges of the component-sharing services in large 
distributed systems that span multiple organizations. 
 
Challenge 1: 
An autonomous mechanism to support component-sharing services in a trusted manner between 
different organizations or systems is needed because there is no single administrator who can 
control every aspect (e.g., software component development and testing) of the various systems 
used in an enterprise. This is an inherent challenge, especially when many systems, including 
those maintained by different organizations, are integrated within current distributed computing 
environments, which implies that a downloaded component may have failures or malicious codes 
that can affect the local computing environment. For instance, in Figure 1, when different 
organizations collaborate for a common enterprise but are still competitors in the market, they 
cannot simply trust the components from other organizations. Unfortunately, a remote 
component cannot be tested in the local environment until runtime. 
 
Challenge 2: 
Testing software components before deployment cannot detect or anticipate all of the possible 
failures or malicious codes that may manifest themselves during runtime, especially when 
external components are integrated with local components. Some failures are detected only when 
the components are deployed and integrated with other components in the current operational 
environments. Malicious codes could be added to a legitimate component after it was originally 
developed and tested. Existing problems in one component can be triggered by other components 
in runtime. Furthermore, since we cannot simply assume that all the participating organizations 
followed proper testing procedures of their software components, we need a new mechanism that 
can test the component in the actual runtime environment, especially for components 
downloaded from different environments. The runtime test criteria can vary, based on current 
applications or operational environments, even for the same component. 
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Challenge 3: 
In a distributed mission-critical system we must check if a downloaded component has been 
altered in an unauthorized manner, especially if it contains malicious codes such as Trojan 
Horses or viruses, before malicious codes are activated in the system. For instance, in Figure 1, 
when different organizations collaborate for a common enterprise but are still competitors in the 
market, each organization should check the components from other organization before they are 
used in the local environment. Furthermore, if a component includes some malicious codes, but 
the functionality of the original component is still needed for the mission of the system, we 
cannot simply reject the entire component. Instead, we should retrieve only the legitimate code 
safely, enervating the malicious code. 
 
Challenge 4: 
According to the currently available redundancy-based approaches, we may prepare multiple 
copies of a critical component. However, this cannot provide survivability fundamentally. If one 
component has failed because of reason R1, the rest of the redundant components will fail for the 
same reason. It is only a matter of time until every redundant component is compromised for the 
same reason. Furthermore, the strength of the redundancy-based approaches depends on the 
prepared redundancy, which brings up the question of how many redundant components we need 
provide. Technically, one could maintain as many redundant components as necessary for a 
critical service. However, if the initially selected component is running in its normal state—
meaning there is no need to use other redundant components since the component is not 
defective or compromised—the cost for running the redundant components has been wasted. In 
this situation the resource efficiency is low, and the maintenance cost is high. Therefore, a 
dynamic technique is needed to detect and analyze possible problems in the components and to 
fix those problems in runtime. 
 
Challenge 5: 
Even if we know the reasons for the software failures or the types of malicious codes, in most 
currently available recovery approaches in distributed computing environments, changing the 
components capability (e.g., component immunization) in runtime is limited, especially when the 
source code is not available (which is not an uncommon situation). When dealing with 
component failures or malicious codes in a component, one conventional way is to modify the 
corresponding source codes. However, this approach is possible only if the source code for that 
component is available. In the case of COTS components and other components downloaded 
from externally administered systems, the source code is often unavailable. This limitation 
becomes more critical when problems should be fixed in runtime in a mission-critical system. 
One must therefore employ advanced techniques to achieve the goal of fixing failed or 
compromised components in runtime—without access to the source code—in order for the 
mission of the component to continue. 
 
 
3. Related Work 
 
Currently, existing technologies for identifying faulty components are more or less static in 
nature. One of those approaches employs black-box testing of the components [AL93]. In this 
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technique, behavioral specification is provided for the component to be tested in the target 
system. This technique treats the target component as a black box and can be used to determine 
how the component behaves anomalously. Traditionally, black-box testing is done without 
knowledge of the internal workings of the component tested. Normally, black-box testing 
involves only input and output details of the component, while information on how the output is 
arrived at is not needed. The main disadvantage of this technique is that the specifications should 
cover all the details of the visible behavior of the components, which is impractical in many 
situations. 
 
Another approach employs a source-code analysis, which depends on the availability of the 
source code of the components. Software testability analysis [VMP92] employs a white-box 
testing technique that determines the locations in the component where a failure is likely to 
occur. Unlike black-box testing, white-box testing allows the tester to see the inner details of the 
component, which later helps him to create appropriate test data. Yet another approach is 
software component dependability assessment [VP00], a modification or testability analysis 
which thoroughly tests each component. These techniques are possible only when the source 
code of the components is available. 
 
In the past, Kapfhammer et al. [KMHC00] employed a simple behavioral specification utilizing 
execution-based evaluation. This approach combines software fault injection [AALC96, HTI97, 
MCV00] at component interfaces and machine learning techniques to: (1) identify problematic 
COTS components, and (2) to understand these components’ anomalous behavior. They isolated 
problematic COTS components, created wrappers, and introduced them into the system under 
different analysis stages to uniquely identify the failed components and to gather information on 
the circumstances that surround the anomalous component behavior. Finally, they preprocess the 
collected data and apply selective machine learning algorithms to generate a finite state machine 
to better understand and to increase the robustness of faulty components. In other research 
[VM98, CKBF02], the authors developed a dynamic problem determination framework for a 
large J2EE platform, employing a fault detection approach based on data clustering mechanisms 
to identify faulty components. In our work we employ a fault injection technique in runtime to 
analyze how the system behaves under injected faults. 
 
The use of interfaces is well known across several programming languages and software 
programming concepts, and so are the concepts related to performance measurement, load 
sharing, etc. However, we are using these techniques here to build a system that is capable of 
taking in more testing ability at short notice and thus provide a more scalable and flexible 
architecture. Building tools and code modules as plug-ins that are able to incorporate additional 
application-specific code from the programmer at run-time have been implemented quite often in 
the past. We would be using this mechanism in our system to incorporate in quick time the code 
needed to test almost any type of threat or malicious content, apart from testing code 
dependencies and internal failures in components, as we shall speculate on later. 
 
N-Version Programming (NVP) is a well-known concept in fault-tolerant systems. The NVP was 
proposed by [CA78, Che90, CLV05] for providing fault tolerance [AKL87, ALS88, Ran75] in 
software. It has been researched thoroughly during the past decade. N-Version techniques are 
used to ensure the reliability of a system by having multiple and different, yet functionally 
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equivalent implementations of critical software to ensure reliability of software systems. We 
have suitably modified the technique here in the form of N-Way Testing, implementing it as a 
way of increasing the possibility of detecting a fault in a component by having as many ways as 
possible to conduct the test on target components. In our system we have incorporated these 
strategies, but in a different flavor to bring in flexibility and adequate fault tolerance, as we shall 
describe in more detail in the following sections. 
 
 
 
4. Multiple-aspect Component Test 
 
When components are downloaded from a site, one cannot immediately judge the 
trustworthiness of these components, especially if the provider is not in a trust ring. A significant 
overhead is incurred in testing for malicious or faulty contents in the downloaded components. 
For a mission critical system it is even more important to ensure the safety and reliability of the 
host system over which these safety mechanisms have been implemented. There are several 
issues in the way components become faulty. One possible threat is that a component may be 
altered or replaced with malicious contents while its transit over the network. As mentioned 
earlier, traditional approaches, on detecting vulnerability would simply block or prevent the 
faulty component from executing in the host environment. This is not the solution to our problem 
as mission critical systems cannot afford complete blocking of components, which were 
probably from a credible source but affected by malicious content during its transit (over a 
network, etc). According to the typical scenario of a large distributed application described in 
Section 2, we cannot simple assume that the source code of the downloaded component is 
available in the local runtime environment. Furthermore, in some mission-critical systems, the 
fault has to be fixed at the runtime. The entire concept of survivability hinges on the basis of 
providing the system with capabilities to continue execution of the component after the faulty 
parts have been successfully removed (or rendered harmless) by providing reliable recovery 
schemes. Thus, as an extension of our previous work, in this project our focus is on improving 
accuracy in detection of malicious contents is a downloaded component. The dynamic testing 
strategies mentioned below are collectively termed as multiple-aspect testing due to the nature of 
the testing itself. 
 
In this project, we propose a multiple-aspect testing approach, which is used as a multi-
functional and extendible approach to achieve more of such accuracy in detection of failure or 
malicious codes in a component downloaded from remote cite. The multiple aspect testing 
consists of the various levels of testing that the system would need to conduct, i.e., N-category 
testing, N-type, and N-way testing. 
 
Figure 2 shows our multiple-aspect testing architecture for detecting Trojan horses in a 
component downloaded from a remote system. It may include more kinds of types and ways than 
those described in the figure. In our architecture we define three kinds of types and seven kinds 
of ways. The actual examples of these types and ways with details are described in the following 
sections. 
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[Figure 2] Multiple-Aspect Testing Architecture for Detecting Trojan Horses 
 
 
N-category Testing:  
A category refers to the type of faults we are addressing through our tests. For example, testing 
for Trojan horses would be one category of testing, while testing for internal failures would be 
another category. Since the system is to be implemented such that it can handle testing of a 
number of such categories, we call it N-category testing. Thus if the categories for a component 
can be defined by a set C = {c1, c2, c3… cn} then each of the elements of C can be one of virus, 
internal failure, Trojan horse, and so on.  
 
N-type Testing: 
The N-type refers to the type of tests that are used to detect failure or malicious codes in a 
download component. The N-type testing can be defined by a set of types T = {t1, t2, t3… tn} 
where each of the elements of T can be one of signature-based test type, integrity-based test type, 
behavior-based test type, and so on. For each type of test, there can be several test ways that have 
different but conceptually equivalent implementations. For every category defined in the set C = 
{c1, c2, c3…cn} we have a set of types. 
 
The type of signature test detects Trojan horses based on a known pattern (i.e. signature). There 
are at least two ways in signature test type, simple pattern matching and smart pattern matching. 
The simple pattern matching tests the downloaded components based on a set of rules (patterns) 
that describe characteristics of well-known Trojan horses. Furthermore, the smart pattern 
matching considers more advanced patterns such as the order of the activities or the 
interdependencies of the components.  
 
The type of integrity test includes four different ways such as timestamp, size, checksum, and 
digital (code) signature. The timestamp test checks the time intervals between requesting and 
receiving the component from the remote machine. If the time interval for downloading a 
component is greater than an acceptance threshold, the component is suspicious to be affected by 
malicious activities during the transit. By checking the sizes of the original and the downloaded 
components, we can figure out if malicious contents have been added to the original component. 
Since an advanced attacker can add malicious contents to the component maintaining the original 
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size of the component, optionally we can check the checksum of the component or the code 
signature on the component.  
 
Finally, the type of behavior test builds information that describes the normal or abnormal 
behaviors of components to check if the component’s current behavior in the local environment 
is expected and legitimate. The abnormal behavior test detects an abnormal behavior based on 
the attack state model that describes state for known attack behavior (e.g., trying to get access to 
boot record, buffer/heap overflow). The downloaded component is executed on a virtual machine 
for security test before it is included in the main program of host computer. If a behavior that 
occurs in the middle of the execution of the downloaded program accords with the attack state 
model, then the downloaded program is considered to include malicious contents. On the other 
hand, the normal behavior test monitors the component’s current behavior based on the set of 
expected state model that describes the characteristics (i.e., the expected behavior when 
executed) of the normal components downloaded. If the downloaded component forms a poor 
match with the defined behaviors, then it is considered to include malicious contents. 
 
N-way Testing: 
This is in a way similar (at the same time quite different, as mentioned below) to the manner in 
which N-version techniques work in fault tolerant systems. If for each type of test conducted on 
a category, we can have several different but functionally equivalent implementations, then we 
have a greater chance of detecting a fault or malicious contents in the downloaded components. 
N-version techniques are used to ensure the reliability of a system by having multiple and 
different yet functionally equivalent implementations of the critical software to ensure reliability 
of the system. N-way testing on the other hand is a way of increasing the possibility of detecting 
a fault in a component by having as many ways as possible to conduct the test on the target 
component. Another important observation here is that unlike the N-version schemes where the 
decision mechanism is normally a voter when there are more than two versions and is a 
comparator when there are only two versions, the N-way system just triggers the recovery block 
even if one of the implemented “ways” detects malicious content. In this way the system is also 
similar to a Recovery Block mechanism commonly used in fault tolerant software systems, 
which executes alternate sections of code until the right result is produced.  
 
The test mechanisms are structured in a way such that they can provide more Types and Ways of 
testing various Categories, depending on the intensity of the threats and the criticality of the 
system to be protected. Thus for a given number of Categories C, Types T, and Ways W, the 
total number of test modules plugged into the system would be C * T * W. Thus if the criticality 
of the system is high, then the number of tests to be performed on the downloaded components 
would have to be higher to ensure higher reliability; and would thus be a factor proportional to C 
* T * W. The ability to handle higher criticality of the host machine can also be implemented in 
the system simply by increasing the acceptance threshold and the critical acceptance threshold 
defined earlier.  
 
Based on the multiple-aspect testing, we propose a cooperative testing scheme, in which the test 
ways cooperate with each other to provide faster detection capability. Before explaining the 
cooperative scheme, we introduce a Trigger Decision Gate (TDG), which has been developed in 
order to express the relation among test ways. 
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[Figure 3] Notation of Trigger Decision Gate (TDG) 
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interface. Trigger value in TDG indicates a minimum value for turning the corresponding output 
interface on. The output interface is triggered as follows: 
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Cooperative test scheme is a heuristic-based technique because we design a cooperative 
architecture through the analysis of the characteristics (i.e., merit and demerit) of each test type 
and way. For example, the signature test type has generally a merit that is able to detect 
malicious codes fast, but a demerit that cannot detect unknown malicious codes. On the other 
hand, the behavior test type can detect unknown malicious codes, but is very slow in the 
detection speed. The integrity test type is able to detect malicious codes done by an illegal 
attacker more accurately than any other test ways, but has difficulty in detecting not only 
malicious codes (e.g., backdoor) intentionally written by a legitimate but malicious user, but also 
failure codes accidentally written by a legitimate user. 
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[Figure 4] Cooperative Test Architecture 
 
Fig. 4 shows a cooperative test architecture that is designed based on the existing schemes (i.e., 
pattern matching-based detection scheme, integrity-based detection scheme, and anomaly 
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detection scheme) and the two schemes (i.e., provider node testing scheme and multiple-aspect 
testing scheme) proposed in this paper, which is able to enhance test performance in terms of 
detection accuracy and detection speed. The cooperative architecture operates as follows. When 
a consumer node receives several components, it first of all performs the provider node testing to 
choose the cleanest component among those components. And then, the consumer tests the 
component by using the simple pattern matching test way and smart pattern matching test. If 
either of the two tests detects malicious code (i.e., if aggregate severity value is greater than or 
equal to 3, in TGD-A), then a recovery mechanism is triggered to recover the infected 
component. In this paper, we do not address the recovery mechanism. Else if either of the two 
test ways find something suspected as malicious code (i.e., if aggregate severity value is greater 
than or equal to 1, in TGD-A) in the component, then it triggers performing an abnormal 
behavior test way and a normal behavior test. Otherwise, it triggers executing three kinds of test 
ways, timestamp test, checksum test, and digital signature test. If the aggregate severity value 
outputted from the three tests is greater or equal to 2, then TDG-B performs the abnormal 
behavior test way and the normal behavior test. Finally, if the aggregate severity value outputted 
from those two test ways is greater or equal to 2, then it triggers the recovery mechanism. 
 
 
5. Applying the Proposed Approaches to Real Systems 
 
We have implemented a prototype based on the proposed multiple-aspect testing that is capable 
of detecting Trojan horses in a component download from a remote system. In this section, we 
describe the architecture and several algorithms for the multiple-aspect testing.  
 
5.1. Malicious Component Code 
The remote component downloaded from a remote system may have failures or malicious codes 
such as a computer virus, worm, or Trojan horse. In this project, we address only Trojan horse as 
an example. The multiple-aspect testing for detecting the other malicious attacks is now under 
implementation based on the framework we described in the previous sections. Based on the 
typical scenario that we described in Section 2, we consider that a downloaded component 
contains a Trojan horse, especially when the participating organizations are competitors in the 
market. 
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public class Normal-ComponentA {
……
public normal-methodA() {

……
}

public install-backdoor()   {
newID= “trojan”
newPasswd = “horse”
filePtr = open(“/etc/passwd”);
write(filePtr, newID, newPasswd); 

}

public execute-trojan-horse()  {
if (backdoor is not installed )  {

install-backdoor();
// e.g. 1) insert an ID into the password file to allow for malicious user 
//             to access this machine   
// e.g. 2) open a network port to allow a request from remote malicious user
// e.g. 3) request a network session to a remote machine to receive 
//            commends from malicious user

}
}

public class Normal-ComponentB extends Normal-ComponentA {
……
public normal-methodB2(int time) {

……
normal-methodA();
execute-trojan();
……

}
}
……

public class Normal-ComponentA {
……
public normal-methodA() {

……
}

public install-backdoor()   {
newID= “trojan”
newPasswd = “horse”
filePtr = open(“/etc/passwd”);
write(filePtr, newID, newPasswd); 

}

public execute-trojan-horse()  {
if (backdoor is not installed )  {

install-backdoor();
// e.g. 1) insert an ID into the password file to allow for malicious user 
//             to access this machine   
// e.g. 2) open a network port to allow a request from remote malicious user
// e.g. 3) request a network session to a remote machine to receive 
//            commends from malicious user

}
}

public class Normal-ComponentB extends Normal-ComponentA {
……
public normal-methodB2(int time) {

……
normal-methodA();
execute-trojan();
……

}
}
……  

 
[Figure 5] An Example of Malicious Component with a Trojan Horse 

 
Figure 5 shows a Java-like program of a component, which includes a Trojan horse, execute-
trojan-horse() method. The actual name of the malicious method can be different and its mission 
varies. For instance, if the execute-trojan-horse() method is called, it installs a backdoor to allow 
a malicious user who plants the Trojan horse to get access to the system. There may be various 
types of backdoors. For example, the Trojan horse code may insert a login ID and password into 
the password file or open a network port to allow a request from remote malicious user. As 
another example, it may request a network session directly to a remote machine to receive 
commends from malicious user. In the example of Figure 5, Trojan horse attacker uses a 
backdoor that inserts illegal identifier into the password file (e.g., “/etc/passwd” in Unix). 
Technically, an attacker can use a separate component as a Trojan horse, but in this example we 
consider an embedded Trojan horse in a legitimate component because we believe this case is 
more difficulty to detect. 
 
If we could have access to the source code of the downloaded component it may be easier to 
detect the Trojan horse. However, as we discussed in Section 2, the source code is often 
unavailable to the local environment. Moreover, even though the source code is available, when 
we consider a mission-critical system we may not have sufficient time to fix the source code, 
recompile it, and redeploy the component in the runtime. Therefore, we need an advance 
approach for component test with a high accuracy that can be done on the fly without the source 
code. 
 
5.2. Overall Implementation Summary 
All the test algorithms used in our implementation utilize .Net Reflection techniques and the 
XML file mentioned earlier to validate the integrity and authenticity of the components in the 
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collaboration system. The following figure shows the general structure of the test algorithms. 
Here we use a scanner module, which uses reflection (when required) to scan the component for 
all its types and compares this information with the XML that is provided by the publisher of the 
component. Obtaining the size and timestamp of a component does not require the use of 
Reflection and so is used selectively. Thus although algorithms have their own implementations 
of what they validate (size, timestamps, behavior, etc), the use of reflection to scan the 
component while validating the information obtained against that provided by the publisher is 
the common approach. We have implemented the test ways that we described with Figure 2 to 
test whether the downloaded component includes a Trojan horse.  
 
In most cases we use Reflection to scan the components but as already mentioned a scan for the 
size, timestamps etc can be done without using Reflection. The algorithms mainly validate this 
information with that provided by the publisher in the XML file. The system returns a true (pass) 
or false (fail) depending on whether the validation is a success or not. The Reflection technique 
is not just used in the testing algorithms as mentioned above. One of the prime uses of Reflection 
is to help in the loading of test procedures at run-time. The testing algorithms are built and stored 
as DLLs and their functionality is loaded and executed at run-time by gathering and making calls 
on their types (classes and functions, etc). This process of dynamic loading and executing is 
achieved using Reflection. Addition or removal of the DLLs (from where it is scanned for the 
dynamic loads) results in those tests being performed (or not performed). Note that this separates 
the system from the tests that it conducts on components. This prevents breaking of the code in 
the system with addition or removal of test procedures; and also gives the flexibility to control 
the system at run-time. As a result this system is also automatically scalable to incorporate many 
ways at run-time (as many as the test server running we can handle without too much loss in 
speed and performance).  
 
For the purpose of demonstrating the viability of using an extendible system, we developed a 
prototype for the same, which lays out the basic design and structure for the system. It is to the 
methods define only a demonstrative functionality for testing any of the categories (in our case 
Trojans), and is meant to demonstrate the flexibility and robustness gained in testing for 
survivability in components by using this model. We have considered the use of Microsoft's .Net 
and C# as the platform to describe and prototype the testing and loading mechanisms, as it is a 
new programming model that is quickly growing in popularity.  
 
 
6. Performance Evaluation 
 
In this section, we analyzes and evaluate the performance of the provider node testing scheme, 
the multiple-aspect testing, and the cooperative testing in terms of detection accuracy and speed. 
For this, we have implemented a component-sharing environment by using NS (Network 
Simulator) [15]. 
 
6.1   Simulation Environment 
Fig. 6 shows a simulated network architecture for component testing. The architecture consists of 
5 parts, component storage, Component Provider (CP) nodes, and a Component Consumer (CC) 
node, component test modules, and Integrity information DB. 
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[Figure 6] Simulated network architecture for component testing 

 
There are four kinds of components in the component storage, a normal component (C1), a 
component with well-known Trojan horse (C2), a component with mutative Trojan horse (C3), 
and component with unknown Trojan horse (C4). Note that all the components are the same each 
other in that they provide the identical function, but different from each other in that C1 is a 
normal component while C2, C3, and C4 each is infected with different type of Trojan horse. CP 
nodes (i.e., CP1, CP2, CP3, and CP4) each randomly selects one among the four types of 
components and send it to the CC node whenever it receives a request from the CC node. If the 
CC node downloads components from CP nodes, it tests them. We have implemented the 
existing three kinds of test ways, pattern-matching-based test, checksum-based test, and 
abnormal behavior-based test, and the three schemes proposed in this paper, provider node 
testing, multiple-aspect testing, and cooperative testing. The integrity information DB is used by 
checksum-based test way to get integrity information for a download component. 
 
Fig. 7 shows an example of a malicious component stored in component storage of Fig. 6. The 
component is written in Tcl language. The code of the component provides a sin function (i.e., 
remote-sin in Fig. 7), but includes a backdoor (i.e., in calculate-sin). Whenever the remote-sin 
function is called, it calls the calculate-sin function in order to calculate the sin value for the 
input value. Once the calculate-sin function is called, it calculates the sin value for the input 
value, and then checks a variable, backdoor_ if its value is 1. If the value of backdoor_ is not 1, 
then the calculate-sin function connects to a malicious server to download a backdoor program 
and install it on its system. 
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set component_(3) {
proc remote-sin {k} {

calculate-sin $k res
# puts "<Component> sin($k) is $res" 
return $res

}
global backdoor_
proc calculate-sin {invalue outvalue} {

upvar $outvalue result_
global backdoor_
set result_ [expr sin($invalue)]
# Backdoor
if { ![info exists backdoor_] } {

set backdoor_ 1
# connects to a malicious server to download a backdoor to install on the victim
set s [socket-client maliciousHostIP 2540]
puts $s "<Tester System> Send me the backdoor software"
set program [gets $s]
# install the program
close $s

}     }    }  
 
[Figure 7] Example of a malicious component stored in component storage. This is written in Tcl 
language and includes a backdoor in the calculate-sin function. 
 
We have introduced the existing three kinks of test ways, PM (Pattern-Matching)-based way, CS 
(Check-Sum)-based way, and AB (Abnormal Behavior)-based way. The PM-based way uses 
attack signature to detect malicious code in the component shown in Fig.7. For example, if the 
PM-based way has “backdoor_” as attack signature, it will succeed in detecting the backdoor 
because the component defines backdoor_ as a variable for the backdoor. The AB-based way 
detects malicious code by monitoring abnormal behavior during the execution of the component. 
So, if the AB-based way regards what the component connects to an external system as abnormal 
behavior, it will detect the backdoor. Finally, the CS-based way detects malicious code by 
comparing the checksum calculated from the component with the checksum downloaded from 
IDB, irrespective of the content of the component. If the value of both checksums is different 
each other, the CS-based way regards the component as malicious component. In this 
experiment, the PM-based way has not “backdoor_” as an attack signature, but the AB-based 
way defines what a component connects to an external system as abnormal behavior. So, AB-
based way is able to detect the backdoor in the component shown in Fig. 7. 
 
6.2   Analysis of Simulation Results 
In this simulation, there are three kinds of users, attacker, malicious user, and normal user. An 
attacker is one who makes a malicious component illegally without any permission. On the other 
hand, a malicious means one who is a legitimate user but inserts malicious codes (e.g., Trojan 
horse or backdoor) into a normal component by accident or intentionally. 
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Fig. 8. Performance of Trojan horse detection in the existing component testing schemes: In this 
graph, attacker is one who makes a component illegally without any permission. 
 
On the other hand, a malicious user means one who is a legitimate user but makes a malicious
component. The infection rate of the CP (Component Provider) nodes indicates the rate of CP nodes
infected by attackers and malicious users. 
 
Fig. 8 shows the performance of Trojan horse detection in the existing component testing 
schemes. Fig. 8-(a), (b), and (c) are the performance of PM (Pattern-Matching) way, CS (Check-
Sum), and AB (Abnormal Behavior), respectively. The PM way and AB way decrease in 
detection accuracy in proportion to the infection rate of the component provider nodes as shown 
in Fig. 8. On the other hand, the CS way has great advantage in detecting malicious components 
made by attackers, but is very poor at detecting malicious components made by malicious users. 
This is because attackers have no right to generate checksum for components that they create 
illegally, whereas malicious users are legitimate user who can generate it. 
 
The performance of each test scheme shown in Fig. 8 has meaning in only itself and no concern 
with that of the other schemes. So, Fig. 8 does not mean that the AB way is better than the PM 
way in detection ability. 
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[Figure 9] Performance of Trojan horse detection in Provider Node testing scheme 
 
Fig. 9 shows the performance of Trojan horse detection in the provider node testing scheme 
proposed in this paper. The provider node testing is used to increase the possibility to choose 
the most clean (uninfected) component among components that exist on CP nodes by filtering 
malicious components as shown in Fig. 9-(a). Fig. 9-(b) shows the performance of Trojan horse 
detection when the existing schemes employ the provider node testing scheme. The provider 
node testing scheme improves the detection accuracy of all the existing schemes as shown in Fig. 
9-(b). The provider node testing scheme is very effective until the infection rate of the CP nodes 
is less then 60%, as shown in Fig. 9-(b). 
 
Fig. 10 shows the performance of Trojan horse detection in multiple-aspect testing scheme. As 
shown in Fig. 10-(a), the multiple-aspect testing gains significantly in accuracy of testing over 
one-way techniques used for detecting malicious content. The detection accuracy in multiple-
aspect testing is directly proportional to the number of test ways. This shows that the multiple-
aspect testing proposed in this paper provides a dramatically high precision of the malicious code 
detection in a downloaded component. However, the multiple-aspect testing has a performance 
overhead problem because it performs several test ways to test one component. As shown in Fig. 
10-(b), the detection time of the multiple-aspect testing is not good. 
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[Figure 10] Performance of Trojan horse detection in Multiple-Aspect testing scheme 
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[Figure 11] Performance of Trojan horse detection in Cooperative testing scheme 
 
We have proposed the cooperative testing scheme to address the detection speed problem of the 
multiple-aspect testing. The cooperative testing scheme can provide faster detection capability by 
making the test ways cooperate with each other without giving much impact on its system. Fig. 
11 shows that the cooperative testing scheme can detect attacks as accurately as 4-ways as shown 
in Fig. 11-(a), while its attack detection time is even less then 4 ways. 
 

Table 1. Comparison between schemes proposed in this paper 
              

Schemes 
Performance 

Provider 
Node 

Test 

Multiple-
aspect 

Test 

Cooperative 
Test 
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Attack 
Detection 

Time 

- Increase 
(Bad) 

Decrease 
(Good) 

Attack 
Detection 

Precision 

Increase 
(Good) 

Increase 
(Good) 

Increase 
(Good) 

 
Table 1 shows a comparison based on the simulation results between schemes proposed in this 
paper. 
 
7. Conclusions and Future Work 
 
In our previous projects, sponsored by the Air Force Research Laboratory, we defined our 
definition of survivability using an abstract state diagram, identified the static and dynamic 
survivability models, proposed novel approaches for component recovery and immunization in 
runtime based on the dynamic model, and proved the feasibility of our ideas by implementing the 
proposed approaches [PC04, PCDG05, PCG04a, PCG04b, PJG06]. In this project, as an 
extension of our previous work, we develop dynamic and hybrid survivability mechanisms that 
test a downloaded component in runtime in the current computing environment by considering 
multiple testing methods. The test results can be used to fix the failures or immunize the 
component based on our previous research outcomes. 
 
Our simulation results proved that the proposed ideas are able to effectively and efficiently detect 
malicious codes in a downloaded component. We also have implemented a prototype 
collaboration network environment to evaluate the performance of those schemes proposed in 
this project in terms of detection accuracy and detection speed. The experimental results show 
that the provider node testing can increase the possibility to choose the most clean (uninfected) 
component among components that exist on multiple remote systems, the multiple-aspect testing 
can improve ability to detect a fault or malicious contents, and the cooperative testing scheme 
can provide fast detection speed. Currently, we have been implementing our approaches on real 
systems in Microsoft's .Net environment. Our future work will extend our idea so as to integrate 
for detecting various kinds of attacks as well as internal errors. 
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