

AFRL-IF-RS-TR-2007-149
Final Technical Report
June 2007

DYNAMIC HYBRID COMPONENT TEST FOR
MISSION-CRITICAL DISTRIBUTED SYSTEMS

Syracuse University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Rome
Research Site Public Affairs Office and is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

AFRL-IF-RS-TR-2007-149 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

TANYA MACRINA WARREN H. DEBANY, Jr.
Work Unit Manager Technical Advisor, Information Grid Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUN 2007
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Jul 06 – Dec 06
5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-06-1-0219

4. TITLE AND SUBTITLE

DYNAMIC HYBRID COMPONENT TEST FOR MISSION-CRITICAL
DISTRIBUTED SYSTEMS

5c. PROGRAM ELEMENT NUMBER
62702F

5d. PROJECT NUMBER
4519

5e. TASK NUMBER
TM

6. AUTHOR(S)

Joon Park

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Syracuse University
342 Hinds Hill
Syracuse NY 13244-4100

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFGB
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2007-149

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 07- 297

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The objective of this effort was to provide dynamic and hybrid survivability mechanisms that test a downloaded component in
runtime in the current computing environment by considering N-category, N-type, and N-way testing methods. The test results can
be used to fix the failures or immunize the component based on our previous research outcomes.

15. SUBJECT TERMS
Information systems, survivability, cyber attacks

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Tanya Macrina

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

28
19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

Table of Contents

1. Introduction --- 1
2. Survivability Challenges in a Mission-Critical Distributed System ---------- 3
3. Related Work --- 5
4. Multiple-Aspect Component Test --- 7
5. Applying the Proposed Approaches to Real Systems -------------------------- 11
5.1 Malicious Component Code --- 11
5.2 Overall Implementation Summary -- 12
6. Performance Evaluation -- 13
6.1 Simulation Environment -- 13
6.2 Analysis of Simulation Results -- 15
7. Conclusions and Future Work --- 19
8. PI’s Publications in the Topic Area --- 19
References -- 21

List of Figures

[Figure 1] A Distributed Application Spanning Multiple Organizations ---------- 3
[Figure 2] Multiple-Aspect Testing Architecture for Detecting Trojan Horses --- 8
[Figure 3] Notation of Trigger Decision Gate (TDG) ------------------------------- 10
[Figure 4] Cooperative Test Architecture --- 10
[Figure 5] An Example of Malicious Component with a Trojan Horse ---------- 12
[Figure 6] Simulated Network Architecture for Component Testing ------------- 14
[Figure 7] Example of a malicious component stored in component storage ---- 15
[Figure 8] Performance of Trojan horse detection in the existing component
 testing schemes --- 16
[Figure 9] Trojan horse detection in Provider Node-testing scheme -------------- 17
[Figure 10] Trojan horse detection in Multiple-Aspect testing scheme ----------- 18
[Figure 11] Trojan horse detection in Cooperative testing scheme ---------------- 18

List of Table

[Table 1] Comparison between different schemes ------------------------------------18

i

1

 1. Introduction

The software survivability is the capability of an entity to continue its mission even in the
presence of damage. An entity ranges from a single software-component (object), with its
mission in a distributed computing environment, to an information system that consists of many
components to support the overall mission. An entity may support multiple missions. Damage
can be caused by internal or external factors such as attacks, failures, or accidents. To make a
system survivable it is the mission of the system to continue even in the presence of damage,
rather than the individual functions of each component with full capacity all the time.

The need for survivability is most pressing for mission-critical systems. As information systems
became ever more complex and the interdependence of these systems increase, the survivability
picture became more and more complicated. Unfortunately, it is not always possible to
anticipate every type of failure and cyber attack within large information systems, and attempting
to predict and protect against every conceivable failure and attack soon becomes exceedingly
cumbersome and costly. Additionally, some damage results from novel, well-orchestrated,
malicious attacks that are simply beyond the abilities of most system developers to predict.
Under these conditions, even correctly implemented systems do not ensure that the system is
survivable. This becomes more serious when the systems are integrated with Commercial Off-
the-Shelf (COTS) products and services, which usually have both known and unknown flaws
that may cause unexpected problems and that can be exploited by attackers to disrupt mission-
critical services. Usually, organizations including the Department of Defense (DOD) use COTS
systems and services to provide office productivity, Internet services, and database services, and
they tailor these systems and services to satisfy their specific requirements. Using COTS systems
and services as much as possible is a cost-effective strategy, but such systems—even when
tailored to the specific needs of the implementing organization—also inherit the flaws and
weaknesses from the specific COTS products and services used.

In reality, we must assume that all software components are susceptible to malicious cyber
attacks or internal failures. Typically, failures are caused by poor implementation, local test
criteria, different runtime environments, and so on. Cyber attacks may involve tampering with
existing source code to include undesired functionality (e.g. Trojan horses), or replacing a
genuine component with a malicious one. When using a downloaded component, particularly in
mission-critical applications, we need to check to see if the source of the code is trusted and if
the code has been modified in an unauthorized manner since it was created. Also, we need to
monitor if the component is running correctly in the current computing environment.
Furthermore, once we find failures or malicious codes in the component, we should fix the

2

problems and recover the original functionality of the component so that we can support
survivability in the mission-critical system.

Traditional approaches for ensuring survivability, such as replay-based recovery, redundancy-
based recovery, and conventional component test, do not meet the challenges of providing
assured survivability in systems that must rely on commercial services and products in a
distributed computing environment. Those traditional approaches can still improve the
component survivability at some point, but they cannot solve the problems (i.e., internal failures
or malicious codes) fundamentally, especially in runtime.
With the replay-based approach, a component may go back to the state before the failure;
however, it cannot go further back into its previous state unless the reason for the failure is fixed.
This means the component is not able to continue its mission in the case. Furthermore, this
approach does not consider malicious codes that are already included in the components.
Similarly, with the redundancy-based approach, if the redundant components are distributed in
different network places, the services provided by those components can be recovered in the
event of network failures, in different environments. However, if there is a failure within a
component or an attack to a component, replacing that component with an identical copy is not a
fundamental solution, because identical components are vulnerable to the same failure and
attack. Therefore, we need advanced approaches to ensure survivability in mission-critical
systems that must rely on commercial services and products in a distributed computing
environment. In the following section we describe the key challenges to advanced software-
survivability.

In this project we focus on the survivability of mission-critical software components downloaded
on the Internet. We assume that all software components are susceptible to internal failures and
malicious cyber attacks. The failures may cause because of poor implementation, local test
criteria, different runtime environments, and so on. The attacks may involve tampering of
existing source code to include undesired functionality (e.g. Trojan horses), replacing a genuine
component with a malicious one. When using a downloaded component, particularly in mission-
critical applications, we need to check if the source of the code is trusted and the code has not
been modified by an unauthorized manner since it was created. Also, we need to monitor if the
component is running correctly in the current computing environment. Furthermore, once we
find the failures or malicious codes in the component, we should fix the problems and recover
the original functionality of the component so that we can support the survivability in the
mission-critical system.

In our previous projects, sponsored by the Air Force Research Laboratory, we defined our
definition of survivability using an abstract state diagram, identified the static and dynamic
survivability models, proposed novel approaches for component recovery and immunization in
runtime based on the dynamic model, and proved the feasibility of our ideas by implementing the
proposed approaches [PC04, PCDG05, PCG04a, PCG04b, PCSG07, PG07, PJG06]. In this project, as
an extension of our previous work, we develop dynamic and hybrid survivability mechanisms
that test a downloaded component in runtime in the current computing environment by
considering multiple-aspect testing methods. The test results can be used to fix the failures or
immunize the component based on our previous research outcomes.

3

2. Survivability Challenges in a Mission-Critical Distributed System

Typically, an application running at an enterprise level may span more than one organization.
Figure 1 shows an example of a distributed application that spans multiple organizations. The
figure depicts three organizations interconnected to form a large enterprise-computing
environment. In the real world, there may be more than three organizations connected to form a
large enterprise, and some of the organizations in the enterprise may provide specialized services
that other organizations do not provide. It is each organization’s responsibility to develop the
corresponding software components for providing its services. In the figure, for example,
Organizations1, 2, and 3 are currently involved in Application X for their enterprise work. In this
example the application running in Organization 3 downloads the necessary components from
Organizations 1 & 2 for some special features that it lacks. These components are dynamically
downloaded in runtime from the remote hosts in Organizations 1 & 2 and run locally in
Organization 3. From this point forward, the software running in Organization 3 should
cooperate with the downloaded components that originated from different computing
environments. By employing autonomous operation the local computing environment may have
to perform some extra job of dealing with possible problems such as interoperability, failure
situations, or malicious codes in the external components.

[Figure 1] A Distributed Application Spanning Multiple Organizations.

Typically, an application running at an enterprise level may span more than one organization.
Figure 1 shows an example of a distributed application that spans multiple organizations. The
figure depicts three organizations interconnected to form a large enterprise-computing
environment. In the real world, there may be more than three organizations connected to form a
large enterprise, and some of the organizations in the enterprise may provide specialized services
that other organizations do not provide. It is each organization’s responsibility to develop the
corresponding software components for providing its services. In the figure, for example,

4

Organizations1, 2, and 3 are currently involved in Application X for their enterprise work. In this
example the application running in Organization 3 downloads the necessary components from
Organizations 1 & 2 for some special features that it lacks. These components are dynamically
downloaded in runtime from the remote hosts in Organizations 1 & 2 and run locally in
Organization 3. From this point forward, the software running in Organization 3 should
cooperate with the downloaded components that originated from different computing
environments. By employing autonomous operation the local computing environment may have
to perform some extra job of dealing with possible problems such as interoperability, failure
situations, or malicious codes in the external components.

This scenario becomes vastly more complicated when systems are integrated with Commercial
off-the-Shelf (COTS) components and services, which usually have both known and unknown
vulnerabilities that may cause unexpected problems that disrupt mission-critical systems.
Traditional methods of ensuring survivability that deal with a set of anticipated failures and
cyber attacks do not completely meet the challenges of providing assured survivability in these
systems. Therefore, it is important to employ additional means to ensure proper survivability of
such mission-critical systems.

Based on the typical operational scenario in a large distributed computing environment described
above, we identify the following generic challenges of the component-sharing services in large
distributed systems that span multiple organizations.

Challenge 1:
An autonomous mechanism to support component-sharing services in a trusted manner between
different organizations or systems is needed because there is no single administrator who can
control every aspect (e.g., software component development and testing) of the various systems
used in an enterprise. This is an inherent challenge, especially when many systems, including
those maintained by different organizations, are integrated within current distributed computing
environments, which implies that a downloaded component may have failures or malicious codes
that can affect the local computing environment. For instance, in Figure 1, when different
organizations collaborate for a common enterprise but are still competitors in the market, they
cannot simply trust the components from other organizations. Unfortunately, a remote
component cannot be tested in the local environment until runtime.

Challenge 2:
Testing software components before deployment cannot detect or anticipate all of the possible
failures or malicious codes that may manifest themselves during runtime, especially when
external components are integrated with local components. Some failures are detected only when
the components are deployed and integrated with other components in the current operational
environments. Malicious codes could be added to a legitimate component after it was originally
developed and tested. Existing problems in one component can be triggered by other components
in runtime. Furthermore, since we cannot simply assume that all the participating organizations
followed proper testing procedures of their software components, we need a new mechanism that
can test the component in the actual runtime environment, especially for components
downloaded from different environments. The runtime test criteria can vary, based on current
applications or operational environments, even for the same component.

5

Challenge 3:
In a distributed mission-critical system we must check if a downloaded component has been
altered in an unauthorized manner, especially if it contains malicious codes such as Trojan
Horses or viruses, before malicious codes are activated in the system. For instance, in Figure 1,
when different organizations collaborate for a common enterprise but are still competitors in the
market, each organization should check the components from other organization before they are
used in the local environment. Furthermore, if a component includes some malicious codes, but
the functionality of the original component is still needed for the mission of the system, we
cannot simply reject the entire component. Instead, we should retrieve only the legitimate code
safely, enervating the malicious code.

Challenge 4:
According to the currently available redundancy-based approaches, we may prepare multiple
copies of a critical component. However, this cannot provide survivability fundamentally. If one
component has failed because of reason R1, the rest of the redundant components will fail for the
same reason. It is only a matter of time until every redundant component is compromised for the
same reason. Furthermore, the strength of the redundancy-based approaches depends on the
prepared redundancy, which brings up the question of how many redundant components we need
provide. Technically, one could maintain as many redundant components as necessary for a
critical service. However, if the initially selected component is running in its normal state—
meaning there is no need to use other redundant components since the component is not
defective or compromised—the cost for running the redundant components has been wasted. In
this situation the resource efficiency is low, and the maintenance cost is high. Therefore, a
dynamic technique is needed to detect and analyze possible problems in the components and to
fix those problems in runtime.

Challenge 5:
Even if we know the reasons for the software failures or the types of malicious codes, in most
currently available recovery approaches in distributed computing environments, changing the
components capability (e.g., component immunization) in runtime is limited, especially when the
source code is not available (which is not an uncommon situation). When dealing with
component failures or malicious codes in a component, one conventional way is to modify the
corresponding source codes. However, this approach is possible only if the source code for that
component is available. In the case of COTS components and other components downloaded
from externally administered systems, the source code is often unavailable. This limitation
becomes more critical when problems should be fixed in runtime in a mission-critical system.
One must therefore employ advanced techniques to achieve the goal of fixing failed or
compromised components in runtime—without access to the source code—in order for the
mission of the component to continue.

3. Related Work

Currently, existing technologies for identifying faulty components are more or less static in
nature. One of those approaches employs black-box testing of the components [AL93]. In this

6

technique, behavioral specification is provided for the component to be tested in the target
system. This technique treats the target component as a black box and can be used to determine
how the component behaves anomalously. Traditionally, black-box testing is done without
knowledge of the internal workings of the component tested. Normally, black-box testing
involves only input and output details of the component, while information on how the output is
arrived at is not needed. The main disadvantage of this technique is that the specifications should
cover all the details of the visible behavior of the components, which is impractical in many
situations.

Another approach employs a source-code analysis, which depends on the availability of the
source code of the components. Software testability analysis [VMP92] employs a white-box
testing technique that determines the locations in the component where a failure is likely to
occur. Unlike black-box testing, white-box testing allows the tester to see the inner details of the
component, which later helps him to create appropriate test data. Yet another approach is
software component dependability assessment [VP00], a modification or testability analysis
which thoroughly tests each component. These techniques are possible only when the source
code of the components is available.

In the past, Kapfhammer et al. [KMHC00] employed a simple behavioral specification utilizing
execution-based evaluation. This approach combines software fault injection [AALC96, HTI97,
MCV00] at component interfaces and machine learning techniques to: (1) identify problematic
COTS components, and (2) to understand these components’ anomalous behavior. They isolated
problematic COTS components, created wrappers, and introduced them into the system under
different analysis stages to uniquely identify the failed components and to gather information on
the circumstances that surround the anomalous component behavior. Finally, they preprocess the
collected data and apply selective machine learning algorithms to generate a finite state machine
to better understand and to increase the robustness of faulty components. In other research
[VM98, CKBF02], the authors developed a dynamic problem determination framework for a
large J2EE platform, employing a fault detection approach based on data clustering mechanisms
to identify faulty components. In our work we employ a fault injection technique in runtime to
analyze how the system behaves under injected faults.

The use of interfaces is well known across several programming languages and software
programming concepts, and so are the concepts related to performance measurement, load
sharing, etc. However, we are using these techniques here to build a system that is capable of
taking in more testing ability at short notice and thus provide a more scalable and flexible
architecture. Building tools and code modules as plug-ins that are able to incorporate additional
application-specific code from the programmer at run-time have been implemented quite often in
the past. We would be using this mechanism in our system to incorporate in quick time the code
needed to test almost any type of threat or malicious content, apart from testing code
dependencies and internal failures in components, as we shall speculate on later.

N-Version Programming (NVP) is a well-known concept in fault-tolerant systems. The NVP was
proposed by [CA78, Che90, CLV05] for providing fault tolerance [AKL87, ALS88, Ran75] in
software. It has been researched thoroughly during the past decade. N-Version techniques are
used to ensure the reliability of a system by having multiple and different, yet functionally

7

equivalent implementations of critical software to ensure reliability of software systems. We
have suitably modified the technique here in the form of N-Way Testing, implementing it as a
way of increasing the possibility of detecting a fault in a component by having as many ways as
possible to conduct the test on target components. In our system we have incorporated these
strategies, but in a different flavor to bring in flexibility and adequate fault tolerance, as we shall
describe in more detail in the following sections.

4. Multiple-aspect Component Test

When components are downloaded from a site, one cannot immediately judge the
trustworthiness of these components, especially if the provider is not in a trust ring. A significant
overhead is incurred in testing for malicious or faulty contents in the downloaded components.
For a mission critical system it is even more important to ensure the safety and reliability of the
host system over which these safety mechanisms have been implemented. There are several
issues in the way components become faulty. One possible threat is that a component may be
altered or replaced with malicious contents while its transit over the network. As mentioned
earlier, traditional approaches, on detecting vulnerability would simply block or prevent the
faulty component from executing in the host environment. This is not the solution to our problem
as mission critical systems cannot afford complete blocking of components, which were
probably from a credible source but affected by malicious content during its transit (over a
network, etc). According to the typical scenario of a large distributed application described in
Section 2, we cannot simple assume that the source code of the downloaded component is
available in the local runtime environment. Furthermore, in some mission-critical systems, the
fault has to be fixed at the runtime. The entire concept of survivability hinges on the basis of
providing the system with capabilities to continue execution of the component after the faulty
parts have been successfully removed (or rendered harmless) by providing reliable recovery
schemes. Thus, as an extension of our previous work, in this project our focus is on improving
accuracy in detection of malicious contents is a downloaded component. The dynamic testing
strategies mentioned below are collectively termed as multiple-aspect testing due to the nature of
the testing itself.

In this project, we propose a multiple-aspect testing approach, which is used as a multi-
functional and extendible approach to achieve more of such accuracy in detection of failure or
malicious codes in a component downloaded from remote cite. The multiple aspect testing
consists of the various levels of testing that the system would need to conduct, i.e., N-category
testing, N-type, and N-way testing.

Figure 2 shows our multiple-aspect testing architecture for detecting Trojan horses in a
component downloaded from a remote system. It may include more kinds of types and ways than
those described in the figure. In our architecture we define three kinds of types and seven kinds
of ways. The actual examples of these types and ways with details are described in the following
sections.

8

Signature
Test

Integrity
Test

Behavior
Test

Trojan Horse

Abnormal
Behavior

Test

Normal
Behavior

Test

Time
stamp
Test

Check-
sum
Test

Size
Test

Digital
Signature

Test

Simple
Pattern

Matching
Test

Smart
Pattern

Matching
Test

…

…

……

Category

Type

Way

Signature
Test

Integrity
Test

Behavior
Test

Trojan Horse

Abnormal
Behavior

Test

Normal
Behavior

Test

Time
stamp
Test

Check-
sum
Test

Size
Test

Digital
Signature

Test

Simple
Pattern

Matching
Test

Smart
Pattern

Matching
Test

…

…

……

Category

Type

Way

[Figure 2] Multiple-Aspect Testing Architecture for Detecting Trojan Horses

N-category Testing:
A category refers to the type of faults we are addressing through our tests. For example, testing
for Trojan horses would be one category of testing, while testing for internal failures would be
another category. Since the system is to be implemented such that it can handle testing of a
number of such categories, we call it N-category testing. Thus if the categories for a component
can be defined by a set C = {c1, c2, c3… cn} then each of the elements of C can be one of virus,
internal failure, Trojan horse, and so on.

N-type Testing:
The N-type refers to the type of tests that are used to detect failure or malicious codes in a
download component. The N-type testing can be defined by a set of types T = {t1, t2, t3… tn}
where each of the elements of T can be one of signature-based test type, integrity-based test type,
behavior-based test type, and so on. For each type of test, there can be several test ways that have
different but conceptually equivalent implementations. For every category defined in the set C =
{c1, c2, c3…cn} we have a set of types.

The type of signature test detects Trojan horses based on a known pattern (i.e. signature). There
are at least two ways in signature test type, simple pattern matching and smart pattern matching.
The simple pattern matching tests the downloaded components based on a set of rules (patterns)
that describe characteristics of well-known Trojan horses. Furthermore, the smart pattern
matching considers more advanced patterns such as the order of the activities or the
interdependencies of the components.

The type of integrity test includes four different ways such as timestamp, size, checksum, and
digital (code) signature. The timestamp test checks the time intervals between requesting and
receiving the component from the remote machine. If the time interval for downloading a
component is greater than an acceptance threshold, the component is suspicious to be affected by
malicious activities during the transit. By checking the sizes of the original and the downloaded
components, we can figure out if malicious contents have been added to the original component.
Since an advanced attacker can add malicious contents to the component maintaining the original

9

size of the component, optionally we can check the checksum of the component or the code
signature on the component.

Finally, the type of behavior test builds information that describes the normal or abnormal
behaviors of components to check if the component’s current behavior in the local environment
is expected and legitimate. The abnormal behavior test detects an abnormal behavior based on
the attack state model that describes state for known attack behavior (e.g., trying to get access to
boot record, buffer/heap overflow). The downloaded component is executed on a virtual machine
for security test before it is included in the main program of host computer. If a behavior that
occurs in the middle of the execution of the downloaded program accords with the attack state
model, then the downloaded program is considered to include malicious contents. On the other
hand, the normal behavior test monitors the component’s current behavior based on the set of
expected state model that describes the characteristics (i.e., the expected behavior when
executed) of the normal components downloaded. If the downloaded component forms a poor
match with the defined behaviors, then it is considered to include malicious contents.

N-way Testing:
This is in a way similar (at the same time quite different, as mentioned below) to the manner in
which N-version techniques work in fault tolerant systems. If for each type of test conducted on
a category, we can have several different but functionally equivalent implementations, then we
have a greater chance of detecting a fault or malicious contents in the downloaded components.
N-version techniques are used to ensure the reliability of a system by having multiple and
different yet functionally equivalent implementations of the critical software to ensure reliability
of the system. N-way testing on the other hand is a way of increasing the possibility of detecting
a fault in a component by having as many ways as possible to conduct the test on the target
component. Another important observation here is that unlike the N-version schemes where the
decision mechanism is normally a voter when there are more than two versions and is a
comparator when there are only two versions, the N-way system just triggers the recovery block
even if one of the implemented “ways” detects malicious content. In this way the system is also
similar to a Recovery Block mechanism commonly used in fault tolerant software systems,
which executes alternate sections of code until the right result is produced.

The test mechanisms are structured in a way such that they can provide more Types and Ways of
testing various Categories, depending on the intensity of the threats and the criticality of the
system to be protected. Thus for a given number of Categories C, Types T, and Ways W, the
total number of test modules plugged into the system would be C * T * W. Thus if the criticality
of the system is high, then the number of tests to be performed on the downloaded components
would have to be higher to ensure higher reliability; and would thus be a factor proportional to C
* T * W. The ability to handle higher criticality of the host machine can also be implemented in
the system simply by increasing the acceptance threshold and the critical acceptance threshold
defined earlier.

Based on the multiple-aspect testing, we propose a cooperative testing scheme, in which the test
ways cooperate with each other to provide faster detection capability. Before explaining the
cooperative scheme, we introduce a Trigger Decision Gate (TDG), which has been developed in
order to express the relation among test ways.

10

Severity values
(Test results)

from test ways
...

Input i/fs output i/fs
Trigger
Value

Weight

Output an aggregate severity value
if the output interface is ON ...

[Figure 3] Notation of Trigger Decision Gate (TDG)

Figure 3 shows the notation of TDG that collects test results (i.e., severity values) through input
interfaces from test ways, and then outputs an aggregate severity value to the corresponding
output interface. In Figure 3, weight means a priority value assigned to the corresponding input
interface. Trigger value in TDG indicates a minimum value for turning the corresponding output
interface on. The output interface is triggered as follows:

⎪
⎪
⎩

⎪⎪
⎨

⎧

<

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<≤

=
+

+
=
∑

 otherwise ,
 here, w

 if ,
rfaceOutputInte

1kk

1k

i/finput

1i
ik

k

Off
ueTriggerValueTriggerVal

ueTriggerVallueSeverityVaueTriggerValON

Cooperative test scheme is a heuristic-based technique because we design a cooperative
architecture through the analysis of the characteristics (i.e., merit and demerit) of each test type
and way. For example, the signature test type has generally a merit that is able to detect
malicious codes fast, but a demerit that cannot detect unknown malicious codes. On the other
hand, the behavior test type can detect unknown malicious codes, but is very slow in the
detection speed. The integrity test type is able to detect malicious codes done by an illegal
attacker more accurately than any other test ways, but has difficulty in detecting not only
malicious codes (e.g., backdoor) intentionally written by a legitimate but malicious user, but also
failure codes accidentally written by a legitimate user.

Test
Way
Test
Way

Input data
to test

Severity Value
(detection result)

3
3

3

Trigger
recovery

T
D
G
l
A

1

22

T
D
G
l
B

2

Abnormal
Behavior Test
Abnormal

Behavior Test

Normal Behavior
Test

Normal Behavior
Test

1
0

Simple Pattern Matching TestSimple Pattern Matching Test

Smart Pattern Matching TestSmart Pattern Matching Test

Timestamp TestTimestamp Test

Checksum TestChecksum Test

Input
Components

Digital Signature TestDigital Signature Test

2

2 T
D
G
l
C2

Provider Node TestingProvider Node Testing

Test
Way
Test
Way

Input data
to test

Severity Value
(detection result)

3
3

3

Trigger
recovery

T
D
G
l
A

1

22

T
D
G
l
B

2

Abnormal
Behavior Test
Abnormal

Behavior Test

Normal Behavior
Test

Normal Behavior
Test

1
0

Simple Pattern Matching TestSimple Pattern Matching Test

Smart Pattern Matching TestSmart Pattern Matching Test

Timestamp TestTimestamp Test

Checksum TestChecksum Test

Input
Components

Digital Signature TestDigital Signature Test

2

2 T
D
G
l
C2

Provider Node TestingProvider Node Testing

[Figure 4] Cooperative Test Architecture

Fig. 4 shows a cooperative test architecture that is designed based on the existing schemes (i.e.,
pattern matching-based detection scheme, integrity-based detection scheme, and anomaly

11

detection scheme) and the two schemes (i.e., provider node testing scheme and multiple-aspect
testing scheme) proposed in this paper, which is able to enhance test performance in terms of
detection accuracy and detection speed. The cooperative architecture operates as follows. When
a consumer node receives several components, it first of all performs the provider node testing to
choose the cleanest component among those components. And then, the consumer tests the
component by using the simple pattern matching test way and smart pattern matching test. If
either of the two tests detects malicious code (i.e., if aggregate severity value is greater than or
equal to 3, in TGD-A), then a recovery mechanism is triggered to recover the infected
component. In this paper, we do not address the recovery mechanism. Else if either of the two
test ways find something suspected as malicious code (i.e., if aggregate severity value is greater
than or equal to 1, in TGD-A) in the component, then it triggers performing an abnormal
behavior test way and a normal behavior test. Otherwise, it triggers executing three kinds of test
ways, timestamp test, checksum test, and digital signature test. If the aggregate severity value
outputted from the three tests is greater or equal to 2, then TDG-B performs the abnormal
behavior test way and the normal behavior test. Finally, if the aggregate severity value outputted
from those two test ways is greater or equal to 2, then it triggers the recovery mechanism.

5. Applying the Proposed Approaches to Real Systems

We have implemented a prototype based on the proposed multiple-aspect testing that is capable
of detecting Trojan horses in a component download from a remote system. In this section, we
describe the architecture and several algorithms for the multiple-aspect testing.

5.1. Malicious Component Code
The remote component downloaded from a remote system may have failures or malicious codes
such as a computer virus, worm, or Trojan horse. In this project, we address only Trojan horse as
an example. The multiple-aspect testing for detecting the other malicious attacks is now under
implementation based on the framework we described in the previous sections. Based on the
typical scenario that we described in Section 2, we consider that a downloaded component
contains a Trojan horse, especially when the participating organizations are competitors in the
market.

12

public class Normal-ComponentA {
……
public normal-methodA() {

……
}

public install-backdoor() {
newID= “trojan”
newPasswd = “horse”
filePtr = open(“/etc/passwd”);
write(filePtr, newID, newPasswd);

}

public execute-trojan-horse() {
if (backdoor is not installed) {

install-backdoor();
// e.g. 1) insert an ID into the password file to allow for malicious user
// to access this machine
// e.g. 2) open a network port to allow a request from remote malicious user
// e.g. 3) request a network session to a remote machine to receive
// commends from malicious user

}
}

public class Normal-ComponentB extends Normal-ComponentA {
……
public normal-methodB2(int time) {

……
normal-methodA();
execute-trojan();
……

}
}
……

public class Normal-ComponentA {
……
public normal-methodA() {

……
}

public install-backdoor() {
newID= “trojan”
newPasswd = “horse”
filePtr = open(“/etc/passwd”);
write(filePtr, newID, newPasswd);

}

public execute-trojan-horse() {
if (backdoor is not installed) {

install-backdoor();
// e.g. 1) insert an ID into the password file to allow for malicious user
// to access this machine
// e.g. 2) open a network port to allow a request from remote malicious user
// e.g. 3) request a network session to a remote machine to receive
// commends from malicious user

}
}

public class Normal-ComponentB extends Normal-ComponentA {
……
public normal-methodB2(int time) {

……
normal-methodA();
execute-trojan();
……

}
}
……

[Figure 5] An Example of Malicious Component with a Trojan Horse

Figure 5 shows a Java-like program of a component, which includes a Trojan horse, execute-
trojan-horse() method. The actual name of the malicious method can be different and its mission
varies. For instance, if the execute-trojan-horse() method is called, it installs a backdoor to allow
a malicious user who plants the Trojan horse to get access to the system. There may be various
types of backdoors. For example, the Trojan horse code may insert a login ID and password into
the password file or open a network port to allow a request from remote malicious user. As
another example, it may request a network session directly to a remote machine to receive
commends from malicious user. In the example of Figure 5, Trojan horse attacker uses a
backdoor that inserts illegal identifier into the password file (e.g., “/etc/passwd” in Unix).
Technically, an attacker can use a separate component as a Trojan horse, but in this example we
consider an embedded Trojan horse in a legitimate component because we believe this case is
more difficulty to detect.

If we could have access to the source code of the downloaded component it may be easier to
detect the Trojan horse. However, as we discussed in Section 2, the source code is often
unavailable to the local environment. Moreover, even though the source code is available, when
we consider a mission-critical system we may not have sufficient time to fix the source code,
recompile it, and redeploy the component in the runtime. Therefore, we need an advance
approach for component test with a high accuracy that can be done on the fly without the source
code.

5.2. Overall Implementation Summary
All the test algorithms used in our implementation utilize .Net Reflection techniques and the
XML file mentioned earlier to validate the integrity and authenticity of the components in the

13

collaboration system. The following figure shows the general structure of the test algorithms.
Here we use a scanner module, which uses reflection (when required) to scan the component for
all its types and compares this information with the XML that is provided by the publisher of the
component. Obtaining the size and timestamp of a component does not require the use of
Reflection and so is used selectively. Thus although algorithms have their own implementations
of what they validate (size, timestamps, behavior, etc), the use of reflection to scan the
component while validating the information obtained against that provided by the publisher is
the common approach. We have implemented the test ways that we described with Figure 2 to
test whether the downloaded component includes a Trojan horse.

In most cases we use Reflection to scan the components but as already mentioned a scan for the
size, timestamps etc can be done without using Reflection. The algorithms mainly validate this
information with that provided by the publisher in the XML file. The system returns a true (pass)
or false (fail) depending on whether the validation is a success or not. The Reflection technique
is not just used in the testing algorithms as mentioned above. One of the prime uses of Reflection
is to help in the loading of test procedures at run-time. The testing algorithms are built and stored
as DLLs and their functionality is loaded and executed at run-time by gathering and making calls
on their types (classes and functions, etc). This process of dynamic loading and executing is
achieved using Reflection. Addition or removal of the DLLs (from where it is scanned for the
dynamic loads) results in those tests being performed (or not performed). Note that this separates
the system from the tests that it conducts on components. This prevents breaking of the code in
the system with addition or removal of test procedures; and also gives the flexibility to control
the system at run-time. As a result this system is also automatically scalable to incorporate many
ways at run-time (as many as the test server running we can handle without too much loss in
speed and performance).

For the purpose of demonstrating the viability of using an extendible system, we developed a
prototype for the same, which lays out the basic design and structure for the system. It is to the
methods define only a demonstrative functionality for testing any of the categories (in our case
Trojans), and is meant to demonstrate the flexibility and robustness gained in testing for
survivability in components by using this model. We have considered the use of Microsoft's .Net
and C# as the platform to describe and prototype the testing and loading mechanisms, as it is a
new programming model that is quickly growing in popularity.

6. Performance Evaluation

In this section, we analyzes and evaluate the performance of the provider node testing scheme,
the multiple-aspect testing, and the cooperative testing in terms of detection accuracy and speed.
For this, we have implemented a component-sharing environment by using NS (Network
Simulator) [15].

6.1 Simulation Environment
Fig. 6 shows a simulated network architecture for component testing. The architecture consists of
5 parts, component storage, Component Provider (CP) nodes, and a Component Consumer (CC)
node, component test modules, and Integrity information DB.

14

CP1CP1 CP2CP2 CP3CP3

RouterRouter

CCCC

IDBIDB

CP4CP4

Call to test a component

C1C1Component
Storage

Component randomly selected

Component
Test Modules

C2C2 C3C3 C4C4

T1T1

T2T2

T3T3

PNPN

MAMA

CPCP
• CP : Component Provider
• CC : Component Consumer
• IDB: Integrity information DB

CP1CP1 CP2CP2 CP3CP3

RouterRouter

CCCC

IDBIDB

CP4CP4

Call to test a component

C1C1Component
Storage

Component randomly selected

Component
Test Modules

C2C2 C3C3 C4C4

T1T1

T2T2

T3T3

PNPN

MAMA

CPCP
• CP : Component Provider
• CC : Component Consumer
• IDB: Integrity information DB

• CP : Component Provider
• CC : Component Consumer
• IDB: Integrity information DB

[Figure 6] Simulated network architecture for component testing

There are four kinds of components in the component storage, a normal component (C1), a
component with well-known Trojan horse (C2), a component with mutative Trojan horse (C3),
and component with unknown Trojan horse (C4). Note that all the components are the same each
other in that they provide the identical function, but different from each other in that C1 is a
normal component while C2, C3, and C4 each is infected with different type of Trojan horse. CP
nodes (i.e., CP1, CP2, CP3, and CP4) each randomly selects one among the four types of
components and send it to the CC node whenever it receives a request from the CC node. If the
CC node downloads components from CP nodes, it tests them. We have implemented the
existing three kinds of test ways, pattern-matching-based test, checksum-based test, and
abnormal behavior-based test, and the three schemes proposed in this paper, provider node
testing, multiple-aspect testing, and cooperative testing. The integrity information DB is used by
checksum-based test way to get integrity information for a download component.

Fig. 7 shows an example of a malicious component stored in component storage of Fig. 6. The
component is written in Tcl language. The code of the component provides a sin function (i.e.,
remote-sin in Fig. 7), but includes a backdoor (i.e., in calculate-sin). Whenever the remote-sin
function is called, it calls the calculate-sin function in order to calculate the sin value for the
input value. Once the calculate-sin function is called, it calculates the sin value for the input
value, and then checks a variable, backdoor_ if its value is 1. If the value of backdoor_ is not 1,
then the calculate-sin function connects to a malicious server to download a backdoor program
and install it on its system.

15

set component_(3) {
proc remote-sin {k} {

calculate-sin $k res
puts "<Component> sin($k) is $res"
return $res

}
global backdoor_
proc calculate-sin {invalue outvalue} {

upvar $outvalue result_
global backdoor_
set result_ [expr sin($invalue)]
Backdoor
if { ![info exists backdoor_] } {

set backdoor_ 1
connects to a malicious server to download a backdoor to install on the victim
set s [socket-client maliciousHostIP 2540]
puts $s "<Tester System> Send me the backdoor software"
set program [gets $s]
install the program
close $s

} } }

[Figure 7] Example of a malicious component stored in component storage. This is written in Tcl
language and includes a backdoor in the calculate-sin function.

We have introduced the existing three kinks of test ways, PM (Pattern-Matching)-based way, CS
(Check-Sum)-based way, and AB (Abnormal Behavior)-based way. The PM-based way uses
attack signature to detect malicious code in the component shown in Fig.7. For example, if the
PM-based way has “backdoor_” as attack signature, it will succeed in detecting the backdoor
because the component defines backdoor_ as a variable for the backdoor. The AB-based way
detects malicious code by monitoring abnormal behavior during the execution of the component.
So, if the AB-based way regards what the component connects to an external system as abnormal
behavior, it will detect the backdoor. Finally, the CS-based way detects malicious code by
comparing the checksum calculated from the component with the checksum downloaded from
IDB, irrespective of the content of the component. If the value of both checksums is different
each other, the CS-based way regards the component as malicious component. In this
experiment, the PM-based way has not “backdoor_” as an attack signature, but the AB-based
way defines what a component connects to an external system as abnormal behavior. So, AB-
based way is able to detect the backdoor in the component shown in Fig. 7.

6.2 Analysis of Simulation Results
In this simulation, there are three kinds of users, attacker, malicious user, and normal user. An
attacker is one who makes a malicious component illegally without any permission. On the other
hand, a malicious means one who is a legitimate user but inserts malicious codes (e.g., Trojan
horse or backdoor) into a normal component by accident or intentionally.

16

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

D
et

ec
tio

n
A

cc
ur

ac
y

(%
)

Attacker's
component
Malicious User's
component

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

D
et

ec
tio

n
A

cc
ur

ac
y

(%
)

Attacker's component
Malicious User's component

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

D
et

ec
tio

n
A

cc
ur

ac
y

(%
)

Attacker's
component
Malicious User's
component

(a) PM-based
Test

(b) CS-based
Test

(c) AB-based
Test

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

D
et

ec
tio

n
A

cc
ur

ac
y

(%
)

Attacker's
component
Malicious User's
component

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

D
et

ec
tio

n
A

cc
ur

ac
y

(%
)

Attacker's component
Malicious User's component

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

D
et

ec
tio

n
A

cc
ur

ac
y

(%
)

Attacker's
component
Malicious User's
component

(a) PM-based
Test

(b) CS-based
Test

(c) AB-based
Test

Fig. 8. Performance of Trojan horse detection in the existing component testing schemes: In this
graph, attacker is one who makes a component illegally without any permission.

On the other hand, a malicious user means one who is a legitimate user but makes a malicious
component. The infection rate of the CP (Component Provider) nodes indicates the rate of CP nodes
infected by attackers and malicious users.

Fig. 8 shows the performance of Trojan horse detection in the existing component testing
schemes. Fig. 8-(a), (b), and (c) are the performance of PM (Pattern-Matching) way, CS (Check-
Sum), and AB (Abnormal Behavior), respectively. The PM way and AB way decrease in
detection accuracy in proportion to the infection rate of the component provider nodes as shown
in Fig. 8. On the other hand, the CS way has great advantage in detecting malicious components
made by attackers, but is very poor at detecting malicious components made by malicious users.
This is because attackers have no right to generate checksum for components that they create
illegally, whereas malicious users are legitimate user who can generate it.

The performance of each test scheme shown in Fig. 8 has meaning in only itself and no concern
with that of the other schemes. So, Fig. 8 does not mean that the AB way is better than the PM
way in detection ability.

17

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

of

 C
le

an
 C

om
po

ne
nt

s
(%

)

Attacker's
component
Malicious User's
component

-30

-15

0

15

30

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

In
cr

ea
se

d
D

et
ec

tio
n

A
cc

ur
ac

y
(%

)

PM CS
AB

(a) Malicious
Component
Filtering

(b) Increased
Detection
Accuracy

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

of

 C
le

an
 C

om
po

ne
nt

s
(%

)

Attacker's
component
Malicious User's
component

-30

-15

0

15

30

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

In
cr

ea
se

d
D

et
ec

tio
n

A
cc

ur
ac

y
(%

)

PM CS
AB

-30

-15

0

15

30

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

In
cr

ea
se

d
D

et
ec

tio
n

A
cc

ur
ac

y
(%

)

PM CS
AB

(a) Malicious
Component
Filtering

(b) Increased
Detection
Accuracy

[Figure 9] Performance of Trojan horse detection in Provider Node testing scheme

Fig. 9 shows the performance of Trojan horse detection in the provider node testing scheme
proposed in this paper. The provider node testing is used to increase the possibility to choose
the most clean (uninfected) component among components that exist on CP nodes by filtering
malicious components as shown in Fig. 9-(a). Fig. 9-(b) shows the performance of Trojan horse
detection when the existing schemes employ the provider node testing scheme. The provider
node testing scheme improves the detection accuracy of all the existing schemes as shown in Fig.
9-(b). The provider node testing scheme is very effective until the infection rate of the CP nodes
is less then 60%, as shown in Fig. 9-(b).

Fig. 10 shows the performance of Trojan horse detection in multiple-aspect testing scheme. As
shown in Fig. 10-(a), the multiple-aspect testing gains significantly in accuracy of testing over
one-way techniques used for detecting malicious content. The detection accuracy in multiple-
aspect testing is directly proportional to the number of test ways. This shows that the multiple-
aspect testing proposed in this paper provides a dramatically high precision of the malicious code
detection in a downloaded component. However, the multiple-aspect testing has a performance
overhead problem because it performs several test ways to test one component. As shown in Fig.
10-(b), the detection time of the multiple-aspect testing is not good.

18

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

D
et

ec
tio

n
A

cc
ur

ac
y

(%
) 1 Way

2 Ways
3 Ways
4 Ways

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50

The number of
Components

D
et

ec
tio

n
T

im
e

(m
s)

1 Way
2 Ways
3 Ways
4 Ways

(a) Detection
Accuracy

(b) Detection
Time

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

D
et

ec
tio

n
A

cc
ur

ac
y

(%
) 1 Way

2 Ways
3 Ways
4 Ways

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50

The number of
Components

D
et

ec
tio

n
T

im
e

(m
s)

1 Way
2 Ways
3 Ways
4 Ways

(a) Detection
Accuracy

(b) Detection
Time

[Figure 10] Performance of Trojan horse detection in Multiple-Aspect testing scheme

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

D
et

ec
tio

n
A

cc
ur

ac
y

(%
) 1 Way

3 Ways
4 Ways
Cooperative Testing

(a) Detection
Accuracy

(b) Detection
Time

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50

The number of
Components

D
et

ec
tio

n
T

im
e

(m
s)

1 Way
3 Ways
4 Ways
Cooperative Testing

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Infection Rate
of CP nodes

(%)

D
et

ec
tio

n
A

cc
ur

ac
y

(%
) 1 Way

3 Ways
4 Ways
Cooperative Testing

(a) Detection
Accuracy

(b) Detection
Time

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50

The number of
Components

D
et

ec
tio

n
T

im
e

(m
s)

1 Way
3 Ways
4 Ways
Cooperative Testing

[Figure 11] Performance of Trojan horse detection in Cooperative testing scheme

We have proposed the cooperative testing scheme to address the detection speed problem of the
multiple-aspect testing. The cooperative testing scheme can provide faster detection capability by
making the test ways cooperate with each other without giving much impact on its system. Fig.
11 shows that the cooperative testing scheme can detect attacks as accurately as 4-ways as shown
in Fig. 11-(a), while its attack detection time is even less then 4 ways.

Table 1. Comparison between schemes proposed in this paper

Schemes
Performance

Provider
Node

Test

Multiple-
aspect

Test

Cooperative
Test

19

Attack
Detection

Time

- Increase
(Bad)

Decrease
(Good)

Attack
Detection

Precision

Increase
(Good)

Increase
(Good)

Increase
(Good)

Table 1 shows a comparison based on the simulation results between schemes proposed in this
paper.

7. Conclusions and Future Work

In our previous projects, sponsored by the Air Force Research Laboratory, we defined our
definition of survivability using an abstract state diagram, identified the static and dynamic
survivability models, proposed novel approaches for component recovery and immunization in
runtime based on the dynamic model, and proved the feasibility of our ideas by implementing the
proposed approaches [PC04, PCDG05, PCG04a, PCG04b, PJG06]. In this project, as an
extension of our previous work, we develop dynamic and hybrid survivability mechanisms that
test a downloaded component in runtime in the current computing environment by considering
multiple testing methods. The test results can be used to fix the failures or immunize the
component based on our previous research outcomes.

Our simulation results proved that the proposed ideas are able to effectively and efficiently detect
malicious codes in a downloaded component. We also have implemented a prototype
collaboration network environment to evaluate the performance of those schemes proposed in
this project in terms of detection accuracy and detection speed. The experimental results show
that the provider node testing can increase the possibility to choose the most clean (uninfected)
component among components that exist on multiple remote systems, the multiple-aspect testing
can improve ability to detect a fault or malicious contents, and the cooperative testing scheme
can provide fast detection speed. Currently, we have been implementing our approaches on real
systems in Microsoft's .Net environment. Our future work will extend our idea so as to integrate
for detecting various kinds of attacks as well as internal errors.

8. PI’s Publications in the Topic Area

Based on the outcomes from the PI’s research in the area of component survivability, sponsored
by the US Air Force Laboratory, Rome, NY, we have published the following papers in the
research journals, book chapter, conferences, and workshops.

• Gaeil An and Joon S. Park. Cooperative component testing architecture in collaborating
network environment. Proceedings of the 4th International Conference on Autonomic
and Trusted Computing (ATC), Lecture Notes in Computer Science (LNCS), Hong Kong,
China, July 11-13, 2007. Springer.

20

• Joon S. Park and Pratheep Chandramohan. Component Recovery Approaches for
Survivable Distributed Systems. 37th Hawaii International Conference on Systems
Sciences (HICSS-37), Big Island, Hawaii, January 5-8, 2004.

• Joon S. Park, Pratheep Chandramohan, and Joseph Giordano. Survivability Models and

Implementations in Large Distributed Environments. Accepted for the 16th IASTED
(International Association of Science and Technology for Development) conference on
Parallel and Distributed Computing and Systems (PDCS), MIT, Cambridge, MA,
November 8-10, 2004.

• Joon S. Park, Pratheep Chandramohan, and Joseph Giordano. Component-Abnormality

Detection and Immunization for Survivable Systems in Large Distributed Environments.
Accepted for the 8th IASTED (International Association of Science and Technology for
Development) conference on Software Engineering and Application (SEA), MIT,
Cambridge, MA, November 8-10, 2004.

• Joon S. Park, Pratheep Chandramohan, Ganesh Devara jan, and Joseph Giordano. Trusted

component sharing by runtime test and immunization for survivable distributed systems.
In the 20th IFIP International Conference on Information Security (IFIP/SEC 2005),
Chiba, Japan, May 30 - June 1, 2005.

• Joon S. Park, Pratheep Chandramohan, Avinash T. Suresh, and Joseph Giordano.

Component survivability for mission-critical distributed systems. Journal of Automatic
and Trusted Computing (JoATC), 2007. In press.

• Joon S. Park, Pratheep Chandramohan, Artur Zak, and Joseph Giordano. Fine-Grained,

Scalable, and Secure Key Management Scheme for Trusted Military Message Systems.
Accepted for the Military Communications Conference (MILCOM), Monterey, CA,
October 31-November 3, 2004.

• Joon S. Park and Joseph Giordano. Software component survivability in information

warfare. In Encyclopedia of Information Warfare and Cyber Terrorism. IDEA Group
Publishing, 2007. In press.

• Joon S. Park and Judith N. Froscher. A Strategy for Information Survivability. 4th

Information Survivability Workshop (ISW), Vancouver, Canada, March 18-20, 2002.

• Joon S. Park, Gautam Jayaprakash, and Joseph Giordano. Component integrity check and
recovery against malicious codes. In IEEE International Workshop on Trusted and
Automatic Computing Systems (TACS), Vienna, Austria, April 18-20, 2006.

21

References

[AALC96] D. R. Avresky, J. Arlat, J.-C. Laprie, and Y. Crouzet. Fault injection for formal
testing of fault tolerance, IEEE Transactions on Reliability, vol. 45, no. 3, pp. 443–455, 1996.

[AL93] M. Abadi and L. Lamport. Composing specifications, ACM Transactions on
Programming Languages and Systems, vol. 15, no. 1, pp. 73–132, 1993.

[AKL87] A. Avizienis, H. Kopetz, and J. C. Laprie, editors. The Evolution of Fault-Tolerant
Computing. Springer, Wien, New York, 1987.

[ALS88] A. Avizienis, M. R. Lyu, and W. Schuetz. In search of effective diversity: a six-
languagestudy of fault-tolerant flight control software. In Digest of 18th FTCS, pages 15–22,
Tokyo, Japan, June 1988.

[AP07] Gaeil An and Joon S. Park. Cooperative component testing architecture in collaborating

network environment. Proceedings of the 4th International Conference on Autonomic and
Trusted Computing (ATC), Lecture Notes in Computer Science (LNCS), Hong Kong, China,
July 11-13, 2007. Springer.

[CA78] L. Chen and A. Avizienis. N-version programming: a fault-tolerance approach to

reliability of software operation. In Digest of 8th FTCS, pages 3–9, Toulouse, France, June
1978.

[Che90] J. J. Chen. Software Diversity and Its Implications in the N-Version Software Life Cycle.

PhD dissertation, UCLA, Computer Science Department, 1990.

[CKBF02] M. Chen, E. Kiciman, E. Brewer, and A. Fox. Pinpoint: Problem Determination in

Large, Dynamic Internet Services. In Proceedings of the IEEE International Conference on
Dependable Systems and Networks, DSN, 2002.

[CLV05] X. Cai, M. R. Lyu, and M. A. Vouk, An experimental evaluation on reliability features

of n-version programming. The 16th IEEE International Symposium on Software Reliability
Engineering. Washington, DC, USA: IEEE Computer Society, November 2005, pp. 161–
170.

[HTI97] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques and tools,

Computer, vol. 30, no. 4, pp. 75–82, 1997.

[KMHC00] G. Kapfhammer, C. Michael, J. Haddox, and R. Colyer. An approach to identifying

and understanding problematic COTS components, in The Software Risk Management
Conference (ISACC), Reston, Virginia, 2000.

22

[MCV00] H. Madeira, D. Costa, and M. Vieira. On the emulation of software faults by software

fault injection, in International Conference on Dependable Systems and Networks (DNS).
Washington, DC, USA: IEEE Computer Society, 2000, pp. 417–426.

[PC04] Joon S. Park and Pratheep Chandramohan. Component Recovery Approaches for

Survivable Distributed Systems. 37th Hawaii International Conference on Systems Sciences
(HICSS-37), Big Island, Hawaii, January 5-8, 2004.

[PCG04a] Joon S. Park, Pratheep Chandramohan, and Joseph Giordano. Survivability Models

and Implementations in Large Distributed Environments. Accepted for the 16th IASTED
(International Association of Science and Technology for Development) conference on
Parallel and Distributed Computing and Systems (PDCS), MIT, Cambridge, MA, November
8-10, 2004.

[PCG04b] Joon S. Park, Pratheep Chandramohan, and Joseph Giordano. Component-

Abnormality Detection and Immunization for Survivable Systems in Large Distributed
Environments. Accepted for the 8th IASTED (International Association of Science and
Technology for Development) conference on Software Engineering and Application (SEA),
MIT, Cambridge, MA, November 8-10, 2004.

[PCDG05] Joon S. Park, Pratheep Chandramohan, Ganesh Devara jan, and Joseph Giordano.

Trusted component sharing by runtime test and immunization for survivable distributed
systems. In the 20th IFIP International Conference on Information Security (IFIP/SEC
2005), Chiba, Japan, May 30 - June 1, 2005.

[PCSG07] Joon S. Park, Pratheep Chandramohan, Avinash T. Suresh, and Joseph Giordano.

Component survivability for mission-critical distributed systems. Journal of Automatic and
Trusted Computing (JoATC), 2007. In press.

[PCZG04] Joon S. Park, Pratheep Chandramohan, Artur Zak, and Joseph Giordano. Fine-

Grained, Scalable, and Secure Key Management Scheme for Trusted Military Message
Systems. Accepted for the Military Communications Conference (MILCOM), Monterey, CA,
October 31-November 3, 2004.

[PG07] Joon S. Park and Joseph Giordano. Software component survivability in information

warfare. In Encyclopedia of Information Warfare and Cyber Terrorism. IDEA Group
Publishing, 2007. In press.

[PF02] Joon S. Park and Judith N. Froscher. A Strategy for Information Survivability. 4th

Information Survivability Workshop (ISW), Vancouver, Canada, March 18-20, 2002.

[PJG06] Joon S. Park, Gautam Jayaprakash, and Joseph Giordano. Component integrity check

and recovery against malicious codes. In IEEE International Workshop on Trusted and
Automatic Computing Systems (TACS), Vienna, Austria, April 18-20, 2006.

23

[Ran75] B. Randell. System structure for software fault-tolerance. In IEEE Transactions on
Software Engineering, SE-1(6):220–232, June 1975.

[VMP92] J. M. Voas, K. W. Miller, and J. Payne. PISCES: A tool for predicting software

testability, NASA, Tech. Rep., 1992.

[VM98] J. M. Voas and G. McGraw. Software Fault Injection: Innoculating Programs Against

Errors. Wiley Computer Publishing, 1998.

[VP00] J. M. Voas and J. Payne, Dependability certification of software components, Journal of

Systems and Software, vol. 52, no. 2-3, pp.165–172, 2000.

24

Acronym List

Checksum (CS)
Abnormal Behavior (AB)
Commercial Off-the-Shelf (COTS)
Component Consumer (CC)
Component Provider (CP)
Dynamic-Link Library (DLL)
Network Simulator (NS)
N-Version Programming (NVP)
Pattern Matching (PM)
Trigger Decision Gate (TDG)

