

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

AN OSKIT-BASED IMPLEMENTATION OF LEAST
PRIVILEGE SEPARATION KERNEL MEMORY

PARTITIONING

by

Donald W. Carter

June 2007

 Thesis Advisor: Cynthia E. Irvine
 Co-Advisor: Tim Vidas

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE An OSKit-Based Implementation of Least Privilege
Separation Kernel Memory Partitioning

6. AUTHOR(S) Donald W. Carter

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
In an environment with valuable information assets, the threat of subversion is real. Thus, systems must be built from

the ground up to counter the level of sophistication and capital that is pitted against them. To build such systems, rigorous
assurance criteria must be met.

Currently for high assurance systems there is no publicly available example of their design and construction. The
Trusted Computing Exemplar (TCX) Project is intended to make publicly available a high assurance component and its evaluation
evidence. This work is to build a working prototype of selected TCX kernel functionality.

The prototype is constructed and based on OSKit, and restricts information flow between memory partitions and resource
accesses made by processes. Pages are statically allocated on a per-partition basis and page faults are handled by the kernel.

The prototype demonstrates a least privilege-based approach to exported resource management. It uses a separation
kernel with preloaded configuration data to allocate memory resources to processes.

15. NUMBER OF
PAGES

101

14. SUBJECT TERMS separation kernel, least privilege, high assurance, paging, OSKit

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AN OSKIT-BASED IMPLEMENTATION OF LEAST PRIVILEGE
SEPARATION KERNEL MEMORY PARTITIONING

Donald W. Carter

Civilian, Naval Postgraduate School
B.S., Cal-State University of Bakersfield, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2007

Author: Donald W. Carter

Approved by: Cynthia E. Irvine, Ph.D.
Thesis Advisor

Tim Vidas
Co-Advisor

Peter J. Denning, Ph.D.
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In an environment with valuable information assets, the threat of subversion is

real. Thus, systems must be built from the ground up to counter the level of

sophistication and capital that is pitted against them. To build such systems, rigorous

assurance criteria must be met.

Currently for high assurance systems there is no publicly available example of

their design and construction. The Trusted Computing Exemplar (TCX) Project is

intended to make publicly available a high assurance component and its evaluation

evidence. This work is to build a working prototype of selected TCX kernel

functionality.

The prototype is constructed and based on OSKit, and restricts information flow

between memory partitions and resource accesses made by processes. Pages are

statically allocated on a per-partition basis and page faults are handled by the kernel.

The prototype demonstrates a least privilege-based approach to exported resource

management. It uses a separation kernel with preloaded configuration data to allocate

memory resources to processes.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. PURPOSE...1
C. THESIS ORGANIZATION..1

II. BACKGROUND ..3
A. SUBVERSION..3

1. Definition of Subversion ..3
2. Purpose of Subversion ...3
3. Implementation of Subversion..4
4. Subversion Vulnerability Pertinence ...4
5. Protection against Subversion ..4
6. Cost of Mitigation ..5
7. Subversion Summary...5

B. TCX PROJECT ...5
1. TCX Approach ...5
2. Implementation of TCX Approach ..6

C. OPEN SOURCE CONFIGURABLE OPERATING SYSTEMS6
1. Open Source Development Advantages ...6
2. Open Source Development Disadvantages ..6
3. Supported Features of Configurable Operating Systems7

D. SEPARATION KERNEL ...7
1. Separation Kernel Advantages ...7
2. Separation Kernel Disadvantages ..7
3. Principle of Least Privilege approach ..8

III. KERNEL KIT SELECTION..9
A. KERNEL KIT REQUIREMENTS ..9

1. Mandatory Requirements ...9
a. x86 Platform..10
b. Stable Release..10
c. Open Source Code Environment..11
d. More Than one Privilege Domain Environment12

2. Suggested Requirements ...12
a. Simple Code Generation Support ...12
b. Actively Maintained ..13
c. Debugging Support ...14

B. KERNEL KIT CONSIDERED...14
C. FINAL DETERMINATION...15

1. Final Deciding Factors...15
a. Fiasco ..15
b. Choices ..16
c. ECos...16

 viii

d. OSKit..16
2. Final Selection ..17

IV. PROTOTYPE IMPLEMENTATION ...19
A. SETTING UP THE DEVELOPMENT ENVIRONMENT........................19

1. Hardware..20
2. Software Compatibility ...20
3. Building the Prototype...20

a. Compiling ..20
b. Linking Together the Kernel Image.......................................21

4. Using Version Control ...21
B. IMPLEMENTING CONFIGURATION FILE...21

1. Configuration Data ..22
a. Partitions ...22
b. Processes..22
c. Resources...22
d. Partition Flows..22
e. Resources Flows..23

2. Porting the Configuration File to the Prototype23
a. The Application to Construct the Configuration File23
b. Binary Reading of the Configuration File.............................24

C. PARTITIONING OF MEMORY...24
1. Partitioning via Paging ..24

a. Hardware Page Faults ..25
2. Page Fault Trap Handler ..25

a. Handling Paging...25
b. Handling of Opcodes ..26

3. Permission Handling..26
a. Returning to User Process ..27

V. PROTOTYPE TESTING AND RESULTS...29
A. TEST PLAN ...30
B. FUNCTIONAL TESTING..30

1. Address Values ...30
2. Test Cases ...31

C. RESULTS ...32

VI. CONCLUSION AND FUTURE WORK ...35
A. CONCLUSION ..35
B. FUTURE WORK...35

1. Complete Handling of Opcodes in the Page Trap Handler35
2. Static Scheduling..36
3. Handling Other Resource Types ..36
4. Efficient Caching of Resource Accesses ...36

APPENDIX A: INSTALLATION ACTIVITIES ...37
A. ENIVRONMENT INSTALLATION...37

1. Serial Link Connection..37

 ix

2. Linux Installation...37
3. GRUB Installation ...37
4. Connecting to Subversion Server ...38

B. OSKIT INSTALLATION ...39

APPENDIX B: TEST PROCEDURES ..41
A. TESTING ACCESS CLASSES ..42

1. Constant to Memory ..42
2. Memory Address to Register ..42
3. Memory Pointed by a Register to Register......................................42
4. Register to Memory Pointed by a Register......................................43
5. Incrementing/Decrementing Memory..43
6. Pushing/Popping Memory Address..43
7. Memory to Memory...43
8. Memory to Register ...43
9. Register to Memory ...44
10. Pushing Memory ..44
11. Popping Memory..44
12. Accessing Program Counter Address ..44

B. TESTING THE PAGE FAULT TRAP HANDLER...................................44

APPENDIX C: PROTOTYPE CODE IMPLEMENTATION..47
A. OSKIT/SPROC.H ..47
B. OSKIT/UVM.H ..47
C. THREADS/SCHED_POSIX/SCHED_POSIX.C ..47
D. THREADS/PTHREAD_CREATE.C...48
E. UVM/SPROC/SPROC.C...48
F. UVM/UVM/OSKIT_UVM.C ..49
G. EXAMPLES/X86/SPROC/KERNEL.H...49
H. EXAMPLES/X86/SPROC/CONFIG.H ...50
I. EXAMPLES/X86/SPROC/USERMAIN_TESTSPROC.C52
J. EXAMPLES/X86/SPROC/ USERMAIN_HELLO.C.................................53
K. EXAMPLES/X86/SPROC/KERNEL.C...55
L. EXAMPLES/X86/SPROC/USER_CRT.C...71
M. EXAMPLES/X86/SPROC/CONFIGAPP.C..73
N. EXAMPLES/X86/SPROC/GNUMAKERULES...75
O. DISSASSEMBLY OF TESTSPROC.C ...78

LIST OF REFERENCES..81

INITIAL DISTRIBUTION LIST...83

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. System Topology. ..29
Figure 2. Testing Topology. ..31

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Reviewed Kernel Kits. ...15
Table 2. Memory Access Class Test Descriptions...32
Table 3. Test Results..33

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I wish to thank my wife and two kids for their loving support during the writing of

this thesis. I cannot thank my thesis advisors, Dr. Cynthia Irvine and Tim Vidas, enough

for whose tireless efforts and technical assistance throughout the research work of this

thesis helped me complete it on time.

This material is based upon work supported by the National Science Foundation

under Grant No. DUE - 0414102. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author and do not necessarily

reflect the views of the National Science Foundation.

This material is also based upon work supported by the Office of Naval Research.

Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the author and do not necessarily reflect the views of the Office of Naval

Research.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

Finding the right balance between protecting data from those who should not have

access and enabling data sharing with those who have a need to know is a difficult

problem. This problem is a real concern for those responsible over protecting classified

data. To help those responsible, the Principle of Least Privilege (PoLP) [1] can motivate

approach to system design that results in the protection of data while still permitting

access to those with the access need. This approach is beneficial for building high

assurance systems that protect sensitive data.

One problem with high assurance systems is that there is no publicly available

example of their design and construction. This does not enable reuse of key concepts

associated with the design and construction of high assurance systems, which would

benefit future projects in the domain space for both research and commercial use.

The motivation for this thesis is to provide a prototype of certain separation kernel

functionality for the TCX Project, which has the goal of providing a high assurance

kernel that adheres to the PoLP and makes publicly available its evaluation evidence.

B. PURPOSE

The purpose of the work done and explained in this paper is to prototype certain

functions for a Least Privilege Separation Kernel (LPSK) as part of the TCX Project.

This thesis focuses on memory separation that adheres to the PoLP [2]-[4].

C. THESIS ORGANIZATION

The organization of this work is as follows:

• Chapter I discusses the motivation and purpose of this thesis.

• Chapter II discusses the background information for understanding the

thesis work.

 2

• Chapter III discusses the operating system development kits that were

surveyed and chosen for use in the LPSK prototype.

• Chapter IV discusses the implementation of the LPSK prototype.

• Chapter V discusses the procedures used in testing the LPSK prototype

and their results.

• Chapter VI concludes with a discussion of the benefits gained from the

approach taken and future work still needed to be done.

 3

II. BACKGROUND

This chapter provides background on a range of topics associated with the

prototype implementation of a least privilege separation kernel interface. To fully

understand this work one must be familiar with the topics of subversion, the TCX project,

open source configurable operating systems, separation kernels, and the Least Privilege

Separation Kernel (LPSK).

A. SUBVERSION

When other forms of attack against a system are not possible, sophisticated, well

funded attackers employ subversion. Even though subversion is time consuming, these

attackers are sufficiently focused to mount such long range attacks. To better understand

the aspects of subversion, this section will define subversion, describe subversion’s

purpose and who uses it, explain how subversion is implemented, deployed and triggered,

outline what we can do to prevent subversion with its affiliated mitigation costs, and

reiterate why subversion prevention is important.

1. Definition of Subversion

System Subversion as defined by Myers is ‘… the covert and methodical

undermining of internal and external controls over a system lifetime to allow

unauthorized or undetected access to system resources and/or information.’ Covertly

compromising a system through subversion permits the use of surreptitious methods to

allow undetectable unauthorized access to a system’s data or controls [5].

2. Purpose of Subversion

The general purpose of subversion is to covertly gain privileged access to the

target system in order to exploit or threaten to exploit it at the most opportune time.

Subversion is the attack of choice by the professional attacker [6].

 4

3. Implementation of Subversion

Implementing subversion is tricky, but can be done by one or more compromised

insiders and through the use of special mechanisms. Compromising insiders or getting

compromised individuals and/or mechanisms inside a government and/or civilian facility

is a method that sophisticated adversaries will exploit when necessary. To deploy

subversion, a mechanism or insider must get a back door inside a system that is hidden

from detection until used. This may be done through the use of malware or rootkitting a

system during any of the stages of the life cycle of the system. A trigger for a backdoor

might be as simple as receipt of a single UDP packet over the Internet by a system

machine that has been subverted [7]. The ability of an insider to deploy such subversion

mechanisms makes the insider a great potential threat.

4. Subversion Vulnerability Pertinence

Experiments in system subversion have demonstrated that any medium level

programmer has the capability to subvert a system, and it did not take very many lines of

code to subvert a system [7]-[10].

5. Protection against Subversion

To mitigate the threat of system subversion, certain guarantees in a system’s

security functional requirements and security assurance requirements must be established.

An international standard known as the Common Criteria has been established as a means

to guarantee that functional and assurance requirements are met to the level as promised.

The Common Criteria has an assurance ranking system ranging from EAL1 to EAL7

[11]. EAL7 is similar to Class A1 from the Trusted Computer System Evaluation

Criteria [12], an older standard. To obtain a high EAL ranking, the system must go

through costly and time consuming methodical processes, but considering the harm

unauthorized access to information could cause, these extra measures are worth it. The

Trusted Computing Exemplar (TCX) project is developing an EAL 7 system that will be

openly available [2].

 5

6. Cost of Mitigation

The use of a highly rigorous development methodology, as required at EAL7, is a

way to protect a system from subversion. Protecting DoD facilities this way from

subversion is quite expensive. System subversion can be mitigated by methodically

verifying every aspect of the system through formal methods and other procedures.

Unfortunately, this method only works on small systems since “[t]he size and complexity

of today’s typical large system prohibit attempts to demonstrate that the entire system is

verifiable” [6].

7. Subversion Summary

Subversion was defined via Myers’ system subversion definition. Subversion’s

purpose and the people involved are discussed to better understand the threat.

Subversion’s implementation, deployment and triggering mechanisms were briefly

discussed. The lack of readily available development frameworks to build high assurance

systems has kept development costs high. To combat these costly endeavors, NPS is

developing the TCX project, one objective of which is to reduce the time necessary to

generate high assurance systems.

B. TCX PROJECT

1. TCX Approach

The objective of the Trusted Computing Base (TCX) project is to make readily

available source code and documentation that will help others build more complex high

assurance systems [2]. The project is building an open source high assurance

development framework, least-privilege separation kernel, and model application. The

intent for the final kernel is to bring the system to an initial secure state and to ensure that

every possible subsequent state is secure.

 6

2. Implementation of TCX Approach

The implementation of the TCX project involves many stages. The first stage

consists of defining a high assurance development framework. The second stage

involves using the framework to build a trusted computing component based on the

reference monitor concept [13]: the Least Privilege Separation Kernel (LPSK). The third

stage will be a third party evaluation of the LPSK. Finally, the results from the project

will be made available. Source code, as well as, the documentation will be made

available as open source [2]. The work presented here consists of building and testing a

prototype that exhibits a subset of the interface functionality of the least privilege

separation kernel.

C. OPEN SOURCE CONFIGURABLE OPERATING SYSTEMS

To enable the building of the prototype, a configurable operating system is used.

An open source configurable operating system is an open source development

environment that can be used to create, alter, and/or update kernels and their internal

mechanisms. This section discusses the advantages and disadvantages of open source

software and provides a list of supported features for configurable operating systems.

1. Open Source Development Advantages

Keeping a project open source has many advantages. Open source projects allow

a larger amount of scrutiny among peers through openness of viewing source code and

procedure documents. Keeping a project open source allows other groups to extend the

research undertaken and add input. In addition, open source projects, relative to

proprietary projects, often do not need as many resources expended to sell good ideas.

2. Open Source Development Disadvantages

However, open source projects also have disadvantages. Open source projects

may have very little funding. Some open source companies such as Red Hat Inc. have

been able to fund such projects by charging fees for technical support. Another problem

 7

is many open source development kits have been abandoned or have had limited recent

contributions, making it difficult to run the latest hardware and/or software.

3. Supported Features of Configurable Operating Systems

A configurable operating system may have many features, depending on its

intended use. Certain features are advantageous for use in developing the prototype.

These features include: platform support, hardware multi-ring support, memory isolation,

ease of use for compilation (i.e., configure, make, and make install), I/O support,

debugging support, simple design, kernel system calls, and memory management.

D. SEPARATION KERNEL

A separation kernel is a kernel that allocates resources, blocks or partitions, and

mediates flow between blocks. Its mechanisms run in the most privileged domain of the

system. A separation kernel has both advantages and disadvantages over the traditional

security kernel approach. These advantages and disadvantages will be introduced along

with the Least Privilege Separation Kernel (LPSK) approach which is slightly different

than the typical separation kernel approach.

1. Separation Kernel Advantages

The separation kernel approach simplifies the information flow checking

mechanisms of the kernel base by preventing direct interaction between processes that

have been separated. The separation kernel approach works by partitioning system

resources. This approach also allows the separation kernel to be very simple, for

evaluation, and moves non-security relevant processing out of the separation kernel.

2. Separation Kernel Disadvantages

Policies such as those captured by the Bell-LaPadula [14] model are not part of

the separation kernel definition or implementation. Thus when a separation kernel is

used to enforce a Multi-Level Security (MLS) policy, extraordinary care must be taken to

define the kernel configuration data.

 8

3. Principle of Least Privilege approach

The principle of least privilege approach limits information flow between

partitions to only the flow required to achieve the desired functionality of the system as a

whole.

 9

III. KERNEL KIT SELECTION

This chapter describes the selection process for choosing the kernel kit that was

used for the building of the prototype. The eventual choice was OSKit. To understand

the reason for this choice, one must review the requirements used in the kernel kit

selection. A kernel kit provides the ability to customize and extend the features and

capabilities of the kernel.

A. KERNEL KIT REQUIREMENTS

To enable the development of the kernel prototype, a kernel kit has to be chosen.

A sample of kernel kits was taken based on two requirements: the operating system could

not be too large and complex and it had to be written in the C/C++ language and/or

assembly. The sample set of candidate kernel kits was not intended to be comprehensive

but merely to include the most predominant small scale operating systems that appeared

to provide kernel development capabilities. After the sample set was identified, the

various operating systems were reviewed against requirements to determine the best

choice for the needs of the prototype. The requirements were subdivided into two key

requirement divisions: mandatory requirements and suggested requirements. If any

mandatory requirement was not met, the operating system was removed from further

consideration.

1. Mandatory Requirements

The chosen mandatory requirements were based on the following factors: cost,

availability, and pertinence for the prototype. In addition, it must run on an x86 platform,

provide a stable release, have available source code that can be altered, and have more

than one privilege domain.

 10

a. x86 Platform

The requirement to execute on an x86 platform is mandatory because of

the necessary features it provides. These are: segmentation, privilege levels, hardware

tasks, and call gates.

(1) Segmentation. Segmentation is implemented in the x86

architectures and supports highly granular management for the address space of each

process. Segmentation can support process isolation and controlled sharing of objects

among processes.

(2) Privilege Levels. An x86 platform supports four hardware

privilege levels: 0 to 3, with 0 being the most privileged. Privilege levels permit the most

privileged domain, i.e., that of the kernel, to be protected from applications. Privilege

levels are totally ordered and permit tasks to be organized in ways that support least

privilege.

(3) Task State Segments (TSS). In multitasking environments

where tasks must concurrently run, a task's running state must be saved. A task’s running

state is stored in its task state segment. The other benefit of the use of a TSS is code

efficiency. The context switch can happen with only one instruction. This allows context

switching to be performed easily.

(4) Call Gates and Traps. When tasks are running in a less

privileged domain and must access resources available in a more privileged domain,

execution goes through a call gate. Hardware privilege checks ensure that services are

provided to the caller while ensuring the integrity of the other privilege domains within

the task.

b. Stable Release

Providing a stable release of the system from which the prototype will be

built is a mandatory requirement. A stable release means that the kernel kit has been

 11

thoroughly debugged and tested. Spending too much time trying to track down software

bugs in the prototype is not a luxury the constricted development timeframe provides.

c. Open Source Code Environment

An open source code and environment requirement is mandatory because

of the benefits of modification, simple acquisition, and cost.

 (1) Modification. Due to the nature of the prototype being built,

the kernel kit must be modifiable. No other known and available open source prototype

exists for a system implementing the strong memory partitioning with fixed task

scheduling intended in this project. This project will take advantage of existing drivers

for network and I/O controls and basic operating system operations such as message

passing and threading. In building the prototype, software reuse with modifications as

needed makes the most sense. Due to these reasons, the requirement of being able to

modify the source code is mandatory.

 (2) Simple Acquisition. In order to modify the code, one must be

able to acquire the code in an easy acquisition process. Understanding how to download,

install, and run the software should not be difficult. The problems that prevent simple

acquisition include proprietary code, lack of documentation, and lack of archiving

support. Some Open Source Standards take care of these problems through GNU

licensing agreements by following the three step Unix installation standard (i.e.,

configure, make, and make install), and by having online archives of source code. Use of

the Unix compilation standard helps with any lack of documentation for installation. An

online archive of source code helps provide the ability to download the source code in an

easy manner.

 (3) Virtually No Cost. Purchasing expensive software for the

prototype is not an option. The benefit of open source software is that it can be acquired

at minimal or no cost.

 12

d. More Than one Privilege Domain Environment

To provide the ability of the prototype to partition memory and securely

control information flow, a kernel that implements user and kernel tasks is mandatory.

The requirements for having more than one privilege domain is achieved through

hardware support for privilege domains, and code support running in the most privileged

domain.

 (1) Hardware Requirement. The hardware requirement to enforce

separation of privilege domains is provided by the x86 platform. In x86 platforms, the

CPU checks memory accesses and permissions and traps when a task tries to access

memory not permitted.

 (2) Code Support. When the hardware interrupts due to non-

privileged attempts to access privileged instructions, the software must properly handle

these faults. As part of the mandatory requirement to use more than one privilege

domain, it is required that trap-handling mechanisms be built in and easy to modify.

2. Suggested Requirements

The suggested requirements for the system are as follows: simple code generation

support, actively maintained software, and debugging support. It is not assumed that any

one kernel kit will meet every mandatory and suggested requirement; however, the

suggested requirements help narrow the search for the best kernel kit.

a. Simple Code Generation Support

A suggested requirement is set of simple mechanisms to build the kernel.

These may include make files and other tools.

 (1) Make-File Like Procedures. Due to the complexity of

operating systems, compiling and linking in all of the include files and resources can be a

daunting task. To remember and type in by hand all of the necessary inputs for the

prototype to be built is difficult at best.

 13

Choosing kernel kits that provide a make file mechanism solves

this problem. The make file may require some modifications for the prototype.

 (2) Quick Compile Times. A disadvantage of building binaries

for an operating system is the time it takes to compile them. This can slow development

time.

To resolve this development time problem, it is important the

targeted kernel kit be comprised of a set of binaries that can be linked together. This

separation speeds up compilation when large chunks of code do not need to be

recompiled but simply linked in. Having make files that only recompile the changed files

is helpful at speeding up development time and thus is a part of the suggested

requirement for simple code generation support.

b. Actively Maintained

Another suggested requirement is that the chosen kernel kit is actively

maintained. To be deemed actively maintained, the website that provides the location to

acquire the source code must be recently updated by the webmaster, providing recent

stable releases of the source code, and encouraging feedback for new releases.

 (1) Website Maintained. To determine whether a kernel kit is

actively maintained, a check is made to see if the hosting website is active. The software

must be supported by an active community for active maintenance. Hardware devices

constantly change and update. Requiring an operating system that can work with and

support each new device is important. An indicator of active maintenance is having

recent software releases.

(2) Recent Updates to Software. Recent software updates is part

of the suggested requirement for active maintenance. Debugging software that is no

longer maintained will slow down development of the prototype. If the software is no

longer actively maintained, the kernel kit must have a stable release.

(3) Encourage Feedback. A community that encourages feedback

with the use of the operating system or kernel kit is a nice part of active maintenance.

 14

c. Debugging Support

A suggested helpful requirement is that the targeted operating system or

kernel kit will provide means to debug the prototype. It may not be feasible to have a

high level rich debugging environment for debugging the prototype. Providing a GDB

stub with debugging hooks in the code to step through the executing code is enough to

meet the suggested requirement.

B. KERNEL KIT CONSIDERED

The kernel kits considered are listed with their various properties relevant to the

selection process (See Table 1). The kernel kits that have a ‘No’ tag associated with a

mandatory requirement are eliminated from further consideration.

Kernel

Kit

Developers Link X86 Stable

Release

Open

Source

Privilege

Domains

Simple

Code

Genera

tion

Active

Mainta

nence

Debug

Support

Choices University

of Illinois

http://choice

s.cs.uiuc.ed

u

Yes Yes Yes Yes Yes Yes Yes

ECos Cygnus,

Red Hat,

ECosCentri

c

http://ecos.s

ourceware.

org/getstart.

html

Yes Yes Yes Yes Yes No Yes

OSKit University

of Utah

http://www.

cs.utah.edu

/flux/oskit

Yes Yes Yes Yes Yes No Yes

Fiasco TUD-

Dresden,

University

of

Technology

http://os.inf.

tu-

dresden.de/

fiasco

Yes Yes Yes Yes Yes Yes Yes

K42 IBM http://domin

o.research.i

bm.com/co

mm/researc

h_projects.

nsf/pages/k

42.index.ht

ml

Yes No Yes Yes Yes Yes Yes

Pebble Bell Labs http://www. No Yes Yes Yes Yes Yes Yes

 15

bell-

labs.com/pr

oject/pebble

Spin University

of

Washington

http://www.

cs.washingt

on.edu/rese

arch/project

s/spin/www

Yes Yes Yes No Yes No Yes

TinyOS University

of

Washington

http://www.

cs.washingt

on.edu/rese

arch/project

s/spin/www

Yes Yes Yes No Yes No Yes

MMLite Microsoft http://resear

ch.microsoft

.com/invisib

le

Yes Yes Yes No Yes Yes Yes

Table 1. Reviewed Kernel Kits.

C. FINAL DETERMINATION

After eliminating from the sample those operating systems or kernel kits that did

not satisfactorily meet the mandatory and suggested requirements, two kernel kits were

chosen for deeper consideration and analysis. An analysis of the deciding factors and

reasons for selection are given.

1. Final Deciding Factors

Eliminating most of the operating systems due to the previously stated reasons in

Table 1 narrowed the choices to the following four systems: Fiasco, Choices, ECos, and

OSKit.

a. Fiasco

Fiasco is developed at TU Dresden. It is compatible with the x86 L4

microkernel. It is a real-time preemptive kernel written in C++. Fiasco’s adherence to

the specification of the L4 microkernel makes it a desirable choice. The downside is

Fiasco is too specialized for what is needed by the prototype.

 16

b. Choices

Upon initial review, Choices did not appear to have a stable release that

ran on the tested x86 platform. Initially, the Choices operating system would not install.

Debug support was not provided with Choices to remedy the situation. Due to

acknowledged author error, Choices was eliminated prematurely. FiSh, a shell

application, is included with Choices to run applications using the Choices operating

system, making it a desirable choice. Choices is designed for systems research at the

university level.

c. ECos

ECos was developed in 1997 by Cygnus Solutions after success

supporting GNU GCC and GNU GDB. Cygnus Solutions built a real time operating

system for their GNUPro tool suite. ECos is a highly configurable embedded systems

kernel built for many different types of architectures and platforms.

The benefits of ECos are the following: ECos configurable tools are

available in a GUI environment; it supports command line execution, memory pools for

fixed sized memory allocation are used, remote GDB debugging is supported, and it has

plenty of documentation.

The disadvantages of ECos are the following: no memory protection is

implemented, the latest stable release was in May 2003, and it lacks non-preemptive

schedulers.

d. OSKit

OSKit was developed at the University of Utah to provide a platform to

lessen the cost of doing operating system research and development.

The benefits of OSKit are the following: modular design, brevity of code,

remote GDB debugging support, a simple process library, online documentation, non-

preemptive scheduling, and adequate sample code for the various kernel features

(threading, multitasking, timers, etc.).

 17

The disadvantages of OSKit are the following: the x86 LDT is not used,

and the kernel kit developers released the last stable update in March 2002.

2. Final Selection

Of the four kernel kits, OSKit and ECos were selected for more critical review.

Fiasco was too specialized for what was needed by the prototype and therefore was not

considered. Choosing between OSKit and ECos was difficult. Not surprisingly, ECos

provided GNU GDB debugging support. OSKit also provided the ability to add GDB

stub controls for the GDB debugger to work remotely. Both operating systems are built

to be modular and highly configurable. ECos and OSKit provide reasonable

documentation, installation ease, and make file support. Neither had recent stable

releases, forcing any development to be done on older hardware and operating systems.

For enabling development, ECos exceeded expectations by providing command line

execution of the created binaries to speed up development time. ECos also appeared

more able to meet the needs of the prototype with regard to static memory allocation and

memory pools. However, coding in OSKit was easier, and the kernel is more developed

for kernel and user space separation.

In the end, the simplicity of OSKit made it the better choice. It has few

dependencies between components. Unlike ECos it has existing libraries for multitasking

of processes to support kernel and user tasks. In the final analysis, OSKit proved the

better choice, as static non-preemptive scheduling and memory partitioning for multi-

tasked processes are highly attractive, and OSKit seems to provide the simplest platform

to enable these. An implementation was built using OSKit to provide memory

partitioning and the sharing of resources among processes.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

IV. PROTOTYPE IMPLEMENTATION

The LPSK prototype is built by enhancing the configurable operating system,

OSKit. OSKit separates memory between the kernel space and user space through

paging. User processes have separate address spaces. In OSKit, data can be transfered

between user processes using memory resources managed by the memory manager. The

prototype enables the system to govern rules established by the configuration file of

process and resource interaction. The implementation allocates memory into partitions

and memory resources within partitions. The altered kernel mediates the memory sharing

with paging and page fault trap handling. This enhanced OSKit enables the separation of

memory as defined by the configuration file. The steps to enhance the kernel are as

follows: setting up the development environment, using version control, implementing

the configuration file, partitioning memory, creating and allocating resources, and

altering user processes.

A. SETTING UP THE DEVELOPMENT ENVIRONMENT

Setting up the development environment is necessary to build the prototype.

Time was spent finding the most suitable configurable operating system. Also, time was

allocated to become familiar with OSKit to determine the least amount of changes needed

for the required enhancements. Having a working development environment enables the

ability to become familiar with OSKit and build the prototype. Building the development

environment requires the following procedures: acquiring hardware, choosing a

compatible software platform, installing OSKit, and implementing version control. A

more detailed explanation of setting up the development environment can be found in

Appendix A.

 20

1. Hardware

Building the prototype using OSKit requires certain hardware. An Intel PC with

32MB of RAM and a 400MHZ processor and an old TNT graphics card will permit the

prototype to run. A machine with one GB or more of RAM will not permit the prototype

to run without modifications to OSKit.

2. Software Compatibility

OSKit will not compile in all software environments. The last stable release of

OSKit was in 2002. Consequently, OSKit will only compile with certain tools and

versions. For OSKit to compile, it requires: “GNU make, GNU CC version 2.7.x or

version 2.95.2, and GNU binutils version 2.8.x, or 2.9.1 with BFD 2.9.1” [15]. Once a

system is configured correctly with the compatible software required, OSKit can be

compiled and the prototype built.

3. Building the Prototype

Building the prototype for the target machine involves compiling OSKit and

linking with the code for the prototype. Additionally, the prototype requires the Simple

Process Library (SPROC) that comes packaged with OSKit in order to add multi-process

capabilities to the prototype.

a. Compiling

Compiling OSKit involves a multi-step process. The first step to

compilation is to download the March 2002 release of OSKit into a directory on the

target machine. Next, one must execute the file named ‘configure’, type ‘make’, and

finally ‘make install’. The target machine now has the environment variables and the

source code compiled to run test kernels. These kernels must be linked together to

include all of the necessary kernel building blocks. One such test kernel is the prototype.

 21

b. Linking Together the Kernel Image

After the source code is compiled, the prototype must be linked. The

‘sproc’ directory under ‘oskit/examples/x86/’ has example code for multi-booting a

kernel with user processes that use the Simple Process Library. The multi-boot program

called ‘mkmb2’ links with the kernel object, configuration file, swap file, and user

process objects. Running the multi-boot program correctly generates the prototype image

file. Now, the prototype is ready for changes. To make needed changes to the prototype,

version control is important.

4. Using Version Control

Version control provides a way to manage software updates, preventing loss of

data and allowing revision to previous software versions. For the project, the version

control software Subversion was chosen.

Subversion manages system changes. It creates system backups by saving code

for each new release automatically during code updates. For the project, a Subversion

server was set up. A repository was created with a clean copy of OSKit. Subsequent

changes to OSKit are controlled through Subversion by monitoring check in and check

out of the software.

B. IMPLEMENTING CONFIGURATION FILE

A requirement of the prototype is to allocate memory based on specifications in a

kernel configuration file. The configuration file must be read into kernel space before

any allocation of resources or creation of user processes. In the prototype this is

accomplished by linking the configuration file to the kernel image and reading the

configuration after booting the kernel image.

 22

1. Configuration Data

The configuration file as implemented includes data to define the following:

partitions, processes, resources, partition flows, and resource flows. These are

implemented and handled in the prototype.

a. Partitions

Partitions are abstract entities to which resources are allocated. Resources

include both active and passive entities as well as execution time.

b. Processes

Processes have priority assignments used for scheduling within a partition

and fixed assignments used for static scheduling of partition time slices. Processes can

act as both subjects and objects. They act as subjects when they act on objects such as

resources. In addition, they act as objects when acted upon by other processes. The

access by processes to resources is mediated by flow rules enforced by the separation

kernel.

c. Resources

This prototype deals exclusively with memory resources. Other types of

resources will be implemented in the future versions of the LPSK prototype.

d. Partition Flows

Partition Flows are directional flows that have a designated source

partition and a designated destination partition. The maximum number of partition flows

in a system is the number of partitions in the system multiplied by one less than the

number of partitions in the system. The access modes possible in partition flows are the

following: read, write, and read/write.

In the prototype, every access mode is addressed. Execute reads and

execute writes are not permitted. An execute read is an instruction that reads the current

 23

instruction pointer. An execute write is an instruction that writes to the current

instruction pointer. Page faults due to attempted execute reads or writes will terminate

the process. An execute read or write is known to be attempted when the instruction

pointer and page fault address in the cr2 register contain the same value. A read happens

when a process stores the contents of memory into a register or memory. A write occurs

whenever contents in memory or in a register are written to a memory location.

e. Resources Flows

Resource flows are directional flows that have an association between a

resource and a process with a defined access mode. The association depends on the

access mode. The access modes allowed are read, write, and read/write. The maximum

number of resource flows in a system is the number of resources in the system multiplied

by the number of processes in the system.

In the prototype, a memory access cannot occur unless there is a defined

partition flow and resource flow with the access privileges to permit the access. If any

one of the two flows does not exist, the process is terminated.

2. Porting the Configuration File to the Prototype

The prototype reads the configuration file to obtain the permitted flows, create

partitions, allocate resources, and manage processes. The configuration data is linked

into the kernel prototype image.

a. The Application to Construct the Configuration File

An application called configapp was built to write the configuration data

directly to a file in binary form. The source of this application appears in Appendix C

This application uses the same compiler and the same configuration header file as the

prototype. The data structure LPSKconfig is written to file by configapp and is the same

data structure used to retrieve the data by the prototype during execution. There are key

reasons this application is using the same compiler and defined data structure from the

configuration header file as the prototype.

 24

First, the same GCC compiler is used for compiling both the prototype and

configapp. This is to prevent any issues of different data types having different sizes.

Second, the LPSKconfig structure is reused, allowing configuration data

to be written and read properly in the correct order and with the correct size. This is the

same structure used by both the prototype to store the configuration file data and by

configapp.

b. Binary Reading of the Configuration File

To read the binary information in the configuration file, the prototype

allocates memory for the LPSKconfig structure and then reads the binary into the

structure. Since the configuration file is linked into the kernel image, the file has to be

retrieved using the procedure provided by OSKit, ‘oskit_absio_read’.

C. PARTITIONING OF MEMORY

The prototype has the ability to separate memory locations into partitions access

to which is mediated by the kernel in accordance with the configuration. Partitioning

results from separating memory through paging, implementing a page fault trap handler,

and defining partition flows.

1. Partitioning via Paging

Paging provides separation of memory between partitions. When a user-domain

process is created, a check is made to determine to which partition the process is

allocated. The minimum and maximum memory addresses of the partition are applied to

the user-domain process. The prototype maps the pages to physical memory based on

these addresses for use by the user-domain process. After the pages are mapped for the

process, the process is initialized and started in user mode. The mapping is intentional.

Any attempt by the user-domain process to access pages that are not mapped to its

partition results in a hardware page fault.

 25

a. Hardware Page Faults

Whenever there is an access to a page not mapped within physical

memory, hardware sends an interrupt, which results in a page fault. A page fault trap

handler was constructed for the prototype to handle the page fault interrupts sent by

hardware. The page fault handler built into the prototype does not handle all Intel x86

opcodes that may cause page faults. Instead it demonstrates that page faults may be

handled. All major types of memory access handling are addressed by the page fault

handler, which are termed as memory access classes. These memory access classes are:

constant to memory, memory address to register, memory pointed by a register to

register, register to memory pointed by a register, incrementing or decrementing memory,

pushing or popping a memory address, memory to memory, memory to register, register

to memory, pushing memory, popping memory, and accessing program counter address.

Also handled are the following memory access modes: read, and write. A read execute or

write execute page fault will terminate the process.

2. Page Fault Trap Handler

The prototype’s page fault trap handler reads the line of code that caused the fault,

checks flows to determine access permissions, handles the line of code, and returns

control to the next line of code following the line of code that caused the page fault. The

trap handler terminates any process that performs an illegal access.

a. Handling Paging

A kernel data structure describes the address space of each

partition/process in terms of pages. If a page fault occurs, this database is referenced. If

the page is in the address space to which the process has permission for the access mode

attempted, then the kernel executes the instruction that initiated the memory access and

returns control following the instruction, otherwise the process is terminated.

 26

b. Handling of Opcodes

Before handling the requested access, the memory access attempt must be

determined. The opcode that caused the page fault determines the memory access

attempt. If the memory access is deemed legal, the opcode is handled in the kernel-

domain within the trap handler. The opcode is handled by editing the stored state of the

processor when the trap occurred, and this stored state becomes the state of the processor

when control returns back to the process in the user-domain. The ability to read and

write the state of the processor when the trap occurred allows the handling of all page

fault traps used for the purposes of the prototype.

The prototype has a case statement that handles two-byte value inputs with

a case statement in the default section that handles one-byte value inputs. This is done to

efficiently handle the opcodes that may be one or two bytes in length. Any opcode

unhandled will cause the termination of the process. After a successful operation is

performed, the mapping of the required page will be removed and the original mapping

restored. Once this mapping has been performed, execution can be returned to the user-

domain process. Before this operation can occur, permissions are checked to determine

that the access attempt mode is allowed.

3. Permission Handling

The page fault trap handler checks the permissions allowed. These permissions

are between the source and destination partitions of the memory attempt and the resource

being accessed. Retrieving the process ID determines origin of the page fault. Using this

ID, the partition flows and resource flows that exist for this process are obtained and the

access modes allowed are read. A required partition flow must exist to permit the access.

If the access is permitted, another check is made to determine that a resource flow exists

with the required access permission. If both flows exist, access to the page is granted.

 27

a. Returning to User Process

To return execution back to the user process, the prototype must prevent

the same page fault from occurring again. An infinite loop will occur if execution is

returned without advancing the instruction pointer; the process will execute the same

operation that caused the page fault. To solve this problem, the instruction pointer must

be updated to skip past the instruction that caused the page fault. These updated values

are based on the instruction set of the hardware. For example, a four byte instruction is

handled by incrementing the instruction pointer by four. Upon performing this operation,

execution can return back to the process, and successful handling of memory partitions

and resources is complete.

The enhanced changes made to OSKit to build the LPSK prototype

enforce memory separation into partitions and the ability of processes to access data

resources as defined by the configuration file. These enhanced changes made to the

original OSKit release of snapshot 20020317 are detailed in Appendix C.

 28

THIS PAGE INTENTIONALLY LEFT BLANK

 29

V. PROTOTYPE TESTING AND RESULTS

This chapter deals with the functional testing of the prototype and the results. The

prototype has the ability to separate memory locations into partitions and resources that

the kernel mediates. Partitioning is the result from separating memory through paging,

implementing a page fault trap handler, and defining partition flows. Resource separation

results from defining resource flows that are checked in the page fault trap handler when

a process in another partition attempts access. This prototype is tested to ensure that only

the correct memory based accesses occur between partitions and resources. These are

specified by the policy encoded in the configuration file.

Individual prototype tests are conducted using a development machine and a

testing machine. The development machine runs the prototype that has a GNU Project

Debugger (GDB) stub to permit remote debugging from the testing machine. The testing

machine runs the GDB debugger remotely connecting to the GDB stub via a serial link.

Development Machine

Serial

1 User

3 PC

1 KVM Switch

1 Terminal

Symbol Count Description

System Environment

Legend

Testing Machine

Version Control Server

KVM Cables

KVM Cables

TCP/IP

Backup of

Prototype

Prototype w/

GDB Stub

&

Configuration File

GDB Debugger

Figure 1. System Topology.

 30

The subsequent section describes the following: test plan, setup, functional

testing, the results, and any problems encountered.

A. TEST PLAN

Tests are conducted on all memory access classes ensuring the access modes of

read, write, read/write, and execute are tested systematically. Memory access classes

discussed here are memory accesses that are possible in x86 architectures without

specifying a specific register, address, or value. The memory access classes are as

follows: constant to memory, memory address to register, memory pointed by a register

to register, register to memory pointed by a register, incrementing or decrementing

memory, pushing or popping a memory address, memory to memory, memory to register,

register to memory, pushing memory, popping memory, and accessing program counter

address.

Each test results in a success or a failure. The results are annotated with a success

or failure tag in Table 3. A success result occurs when the memory access class tested is

properly handled via the prototype’s trap handling. A failure happens when the memory

access class is not handled via the prototype’s trap handling.

B. FUNCTIONAL TESTING

Performing the functional tests on the prototype requires setting up an

environment based on policy which is derived from the configuration file instantiation.

The testing environment requires certain characteristics to be initialized in the following:

processes, partitions, resources, partition flows, and resource flows (see Figure 2). To

perform the functional tests, various values in the resources are accessed in different

modes and the subsequent state is inspected.

1. Address Values

The address values accessed in the tests are the virtual addresses ‘0xa0009fac’

and ‘0xa0009fa8’. These are the resource locations of two resources in Partition 2. The

 31

tests involve changing the initial values, instructions, and access modes and verifying that

the correct values reside in the correct memory locations.

Partition 1

P2

P1

R1

R2

Partition 2

0x95000000

0x90000000

0xB0000000

0xA0000000

Partition

Resource Flow

Process

Resource

Partition Flow

Memory Address

Range

Symbol Description

Prototype Test Environment

Legend

NOTE: Processes have implicit access to resources in the same partition

Figure 2. Testing Topology.

2. Test Cases

Test cases verify that the various accesses to memory are constrained correctly.

These test cases consist of all the opcodes handled by the prototype. The AC8 test case is

a success when the memory access attempt results in the termination of the user process

that made the attempt. The other test cases are considered a success when a memory

access attempt by an instruction running in user mode causes a page fault and is properly

handled by updating the system state (or not) according to policy, then returning back to

the user process at the next instruction. These tests cases consist of the tests described in

Table 2.

 32

Test Access Type Description

AC1 Write Constant to Memory Test AC1 certifies the prototype handles memory accesses due to

copying a constant value into a memory location.

AC2 None Memory Address to

Register

Test AC2 certifies the prototype handles memory accesses due to

copying a memory address into a register.

AC3 Read Memory Pointed by a

Register to Register

Test AC3 certifies the prototype handles memory accesses due to

copying memory referenced by a register into a register.

AC4 Write Register to Memory

Pointed by a Register

Test AC4 certifies the prototype handles memory accesses due to

copying values in a register into memory referenced by a register.

AC5 Write Incrementing or

Decrementing Memory

Test AC5 certifies the prototype handles memory accesses due to

incrementing or decrementing.

AC6 None Pushing or Popping

Memory Address

Test AC6 certifies the prototype handles memory accesses due to

pushing or popping a memory address onto or off of the stack.

AC7 Read &

Write

Memory to Memory Test AC7 certifies the prototype handles memory accesses due to

copying directly memory from one location to another.

AC8 Read Memory to Register Test AC8 certifies the prototype handles memory accesses due to

copying memory into a register.

AC9 Write Register to Memory Test AC9 certifies the prototype handles memory accesses due to

copying a register’s contents to memory.

AC10 Read Pushing Memory Test AC10 certifies the prototype handles memory accesses due to

pushing memory onto the stack.

AC11 Write Popping Memory Test AC11 certifies the prototype handles memory accesses due to

popping values off of the stack into memory.

AC12 Execute Accessing Program

Counter Address

Test AC12 certifies the prototype handles memory accesses due to

trying to access the instruction pointer address.

Table 2. Memory Access Class Test Descriptions.

C. RESULTS

The functional tests were performed against the prototype instance detailed in

Figure 2, and the results were collected. The data collected was checked to verify that the

prototype functions as intended. The results of the successes and failures of the test cases

run are displayed in Table 3.

 33

Test Access Type Expected Result Actual Result

AC1 Write Constant to Memory Success Success

AC2 None Memory Address to Register Failure Failure

AC3 Read Memory Pointed by a Register to Register Success Success

AC4 Write Register to Memory Pointed by a Register Success Success

AC5 Write Incrementing or Decrementing Memory Success Success

AC6 None Pushing or Popping Memory Address Failure Failure

AC7 Read & Write Memory to Memory Success Success

AC8 Read Memory to Register Success Success

AC9 Write Register to Memory Success Success

AC10 Read Pushing Memory Success Success

AC11 Write Popping Memory Success Success

AC12 Execute Accessing Program Counter Address Success Success

Table 3. Test Results.

As can be seen in Table 3, the test results demonstrated that the prototype did in

fact handle all of the memory access classes as expected.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

VI. CONCLUSION AND FUTURE WORK

This chapter discusses the conclusions and future work of the LPSK prototype to

supplement the TCX Project.

A. CONCLUSION

The goal of this thesis was to construct a prototype of certain aspects of the

functionality for a high assurance separation kernel that reflects the Principle of Least

Privilege (PoLP) [1] and that will enable the TCX Project. By implementing partitioning

of memory and monitoring memory resources within the separation kernel prototype, the

prototype allows the Principle of Least Privilege to be realized for memory resources of

the LPSK prototype. The tests described in Chapter V show that the approach taken to

monitor memory accesses between partitions is feasible and may be used in the TCX

Project to protect memory.

The approach taken of using paging to prevent unwarranted accesses as described

in this thesis enforces rules mandated by the configuration file in a straightforward

manner. Also, this approach prevents processes from accessing the instruction pointer to

point to or read locations in other partitions.

Implementation of this prototype leads to ideas for future work that would be of

benefit to the TCX Project.

B. FUTURE WORK

During the development of this thesis work, four key areas were found to warrant

future work.

1. Complete Handling of Opcodes in the Page Trap Handler

Complete handling of all of the x86 opcodes that may cause page faults is not

fully implemented in the prototype’s page trap handler. The proof of concept work is

 36

done to show that all of the x86 opcodes can be implemented. Further work in this area

would be to implement the complete set.

2. Static Scheduling

The prototype reads the configuration file to determine the number of scheduled

ticks for each process and sends this to the scheduler. The scheduler, while sufficient for

this prototype, is not fully implemented. Further work may be done in this area.

3. Handling Other Resource Types

This work implements memory resource handling in the LPSK prototype. Further

work is necessary to handle other resource types.

4. Efficient Caching of Resource Accesses

The efficiency of handling memory accesses outside of a process’ partition can be

improved by building into the prototype caching mechanisms to minimize the number of

page faults. Implementing a caching mechanism could benefit the work done by

providing the benefits this approach offers while minimizing the performance penalties.

 37

APPENDIX A: INSTALLATION ACTIVITIES

A. ENIVRONMENT INSTALLATION

The procedures taken to install the working environment are as follows:

connecting computers via serial link, installing Linux Red Hat 7.2, installing GRUB, and

connecting to a Subversion server.

1. Serial Link Connection

To debug the prototype remotely with a GDB debugger, the selected test machine

and development machine are connected via a serial line. This serial line is connected via

serial ports and a cable. The cable used is a serial crossover cable to permit proper

communication.

2. Linux Installation

All of the procedures in this thesis are run with Linux Red Hat 7.2 installed on

both machines. After installing and running Linux out of the box on the both machines,

GRUB needs to be installed on the selected development machine. Linux Red Hat 7.2

was chosen for ease of use with OSKit.

3. GRUB Installation

Installing the GRUB package can be done following the Red Hat documentation

to install GRUB since it will not be installed via the Red Hat Linux installation process.

After the GRUB package is loaded, one must open a root shell command prompt and run

the command, ‘/sbin/grub-install <partition>’, where ‘<partition>’ is the location of the

first primary partition. This will install the GRUB stage 1 boot loader, “to the MBR of

the master IDE device and on the primary IDE bus”. After running these procedures to

install GRUB, the GRUB graphical loader will display on boot [16].

After GRUB is installed, the ‘grub.conf’ file is added and should be edited to

include the prototype image file that will be run. The way this is done is by copying the

 38

title, root, and kernel lines of the Linux parts in the ‘grub.conf’ file and editing the copied

lines with the title line changed to describe the LPSK prototype and the kernel line

changed to specify the location of the prototype image.

4. Connecting to Subversion Server

To install the SVN client in the Linux environment, Apache Runtime (APR) as

well as Subversion has to be installed. SVN with APR can be set up in many different

ways, running the following commands is one way:

cd /
wget http://subversion.tigris.org/downloads/subversion-1.4.4.tar.gz
tar –zxf subversion-1.4.4.tar.gz
cd subversion-1.4.4
svn co http://svn.apache.org/repos/asf/apr/apr/branches/0.9.x apr
cd apr
./buildconf
./configure
make
cd ..
svn co http://svn.apache.org/repos/asf/apr/apr-util/branches/0.9.x apr-util
cd apr-util
./buildconf
./configure –with-apr=/subversion-1.4.4/apr
make
cd ..
./configure
make
make install

A Subversion repository was set up on the version control server. To populate the

repository a Subversion client is installed and the “svn import” command is issued. The

original OSKit files were imported into the repository using this procedure. Checking in

and checking out files allows OSKit to be modified and the LPSK prototype built. To

check-in and check-out existing files of the OSKit repository, the following commands

are used, where ‘<username>’ represents the username, ‘<password>’ represents the

password, ‘<message>’ represents the message to save, and ‘<repository location>’

represents the location of the repository:

svn ci –username <username> --password <password> -m “<message>”
svn co <repository location> –username <username> --password <password>

 39

Any additional files that are made during the development of the LPSK prototype
are added by issuing the ‘svn add <filename>’ command, where ‘<filename>’ represents
the file to be added to the repository [17]-[19].

B. OSKIT INSTALLATION

Installing OSKit in the environment described Section A of this Appendix

involves downloading OSKit’s “St. Patrick’s Day” snapshot from the Flux website,

http://www.cs.utah.edu/flux/oskit/software.html, untaring, and installing. Complete the

following steps and OSKit and the kernel image that will become the prototype will be

compiled and ready for modification:

mkdir /oskit-dev
cd /oskit-dev
wget ftp://flux.cs.utah.edu/flux/oskit/oskit-20020317.tar.gz
tar –zxf oskit-20020317.tar.gz
cd oskit-20020317
./configure
make
make install
cd examples/x86/sproc
make Image
mkmb2 kernel swapfile usermain_testsproc usermain_hello

OSKit has a variety of sample kernels that can be created in different ways. See

the OSKit documentation for more information [20].

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

APPENDIX B: TEST PROCEDURES

The various tests run against the memory access classes and their results are

discussed in Chapter V. A memory access class is a memory access performed by an

instruction using a nonspecific register, address, or value. The memory access classes are

as follows: constant to memory, memory address to register, memory pointed by a

register to register, register to memory pointed by a register, incrementing or

decrementing memory, pushing or popping a memory address, memory to memory,

memory to register, register to memory, pushing memory, popping memory, and

accessing program counter. The technical details of how these tests were performed

against the memory access classes are described in this Appendix. The relative source

code not listed in this Appendix can be found in Appendix C.

OSKit has the ability to provide GNU debugger (GDB) stub routines which can

be called by calling various OSKit included routines. The LPSK prototype enables GDB

debugging upon initialization with the following code that comes with OSKit:

extern struct termios base_raw_termios,base_cooked_ termios;
printf("setting serial port for gdb\n");
base_raw_termios.c_ispeed = B38400;
base_raw_termios.c_ospeed = B38400;
base_cooked_termios.c_ispeed = B38400;
base_cooked_termios.c_ospeed = B38400;
gdb_pc_com_init(1, &base_raw_termios);

gdb_trap_mask = (1 <<T_PAGE_FAULT) | (1 << T_NO_FPU);
printf("break!\n");
gdb_breakpoint();

Testing the various memory access classes was performed by creating two user-

domain processes with the source code detailed in the files ‘usermain_testsproc.c’ and

‘usermain_hello.c’. The ‘usermain_testsproc.c’ file contains the source code that

generates the opcodes that are used to test the various access classes. The

‘usermain_hello.c’ file contains the source code to display the data contained in the

resources that are accessed by the memory accesses. The memory accesses are

performed by the code found in the ‘usermain_testsproc.c’ file.

 42

The GNU application objdump was used to view the outputted assembly and

machine code of the ‘usermain_testsproc.o’ object file. The

‘objdump -D <object file><dump file>’ command was used to dump the assembly and

machine code of the ‘<object file>’ file into the ‘<dump file>’ file. This was done to

verify that the C code written in the user-domain processes source code produces the

correct x86 opcodes that are implemented in the LPSK prototype.

A. TESTING ACCESS CLASSES

All access classes detailed in Chapter V were tested. All the tests conducted

ensure: the instruction executes in user mode, causes a page fault, and is properly handled

by returning back to the original user process at the next instruction. The instructions

used to test each access class are detailed in this section.

1. Constant to Memory

The two-byte opcode ‘0x05C7’ tests the accessibility of storing a value to

memory. The ‘movl $0x64, 0xA0009fA8’ instruction produces this opcode.

2. Memory Address to Register

The one-byte opcode ‘0xB8’ tests the accessibility of storing a memory address to

a register. The ‘mov 0xA00DBEEF, %eax’ instruction generates the one-byte opcode.

3. Memory Pointed by a Register to Register

The ability of storing memory pointed by a register into a register is tested with

the two-byte opcode ‘0x008B’ via the ‘mov (%eax), %eax’ instruction.

 43

4. Register to Memory Pointed by a Register

The two-byte opcode ‘0x0289’ via the ‘mov %eax, (%edx)’ instruction tests

register to memory pointed by a register access. This memory access copies the register

value to memory a register points to.

5. Incrementing/Decrementing Memory

The two-byte opcodes ‘0x0583’ and ‘0x05FF’ (which were the ‘addl 0x04,

0xA0009FAC’ and ‘incl 0xA0009FA8’ instructions) tests the ability to access

incrementing or decrementing memory.

6. Pushing/Popping Memory Address

The single-byte opcode ‘0x68’ is generated using the ‘push $0xA000BEEF’

instruction and tests the ability to access pushing a memory address onto the stack. The

single-byte opcode ‘0x58’, is generated using the “pop %eax” instruction and follows the

‘push $0xA000BEEF’ instruction testing the ability to pop a memory address off of the

stack.

7. Memory to Memory

The access type that involves copying memory to memory is tested with the two-

byte opcode ‘0xA4f3’. This opcode is the ‘repz movsb %ds:(%esi), %es:(%edi)’

instruction. The opcode was realized using the code statement

‘memmove(0x0A0009FA8, 0xA0009FAC, 1)’ in C.

8. Memory to Register

Two opcodes: the two-byte ‘0x158B’ and one-byte ‘0xA1’, test the accesses

involving storing memory into a register. The ‘mov 0xA0009FAC, %edx’ instruction

generates the two-byte opcode and the ‘mov 0xA0009FA8, %eax’ instruction generates

the one-byte opcode.

 44

9. Register to Memory

The access type that involves copying register to memory is tested with the one-

byte opcode ‘0xa3’. The ‘mov %eax, 0xA0009FA8’ instruction generates this one-byte

opcode.

10. Pushing Memory

The access of pushing memory is tested with the two-byte opcode ‘0x35FF’. The

‘pushl 0xA0009FA8’ instruction generates this two-byte opcode.

11. Popping Memory

The access type that involves popping memory is tested with the two-byte opcode

‘0x058F’. The ‘popl 0xA0009FAC’ instruction generates this two-byte opcode.

12. Accessing Program Counter Address

The ‘jmp 0xA000A072’ instruction tests the access of the instruction pointer.

The instruction always returns with both the cr2 register and the eip register in the saved

state containing the same value. The instruction runs in user mode, causing a page fault,

and terminates properly in the trap handler, thus killing the user process.

B. TESTING THE PAGE FAULT TRAP HANDLER

During the testing of the various access classes, checks were made to verify that

the page faults issued were properly handled in the page fault trap handler. The tests

were done via GDB with various ‘assert’ and ‘printf’ statements. The code executed on

every page fault when entering the page fault handler is as follows:

printf("handler proc 0x8%x !\n",(int)sthread->st_process);
printf("eip address: %x \n", ts->eip);
if(!from_user){//if kernel page fault
printf("kernel\n"); //or double fault then kill process
 return 1; //Don't allow double faults! So kill process
}
printf("ERR!: thread = %d, process = %p, signo = %d, "
 "code = %d, frame = %p\n", (int)pthread_self(),

 45

sthread->st_process, signo, code, ts);
printf("page fault address 0x%x\n", cr2);
printf("eip address: %x value: %x \n", ts->eip,
(long)(ts->eip));
/* if page fault from accessing kernel memory, kill proc*/
if(cr2 < OSKIT_UVM_MINUSER_ADDRESS) return 1;
 //sanity check
if((i = getVMSpace(cr2)) == -1) return 1;//no partition
 //so kill process

The process was checked to verify that the process pid was the correct pid

expected from the process that cause the page fault. Double faults and nested traps were

detected. The eip register was checked by stepping through code and making sure the

user-domain process’ eip address of the instruction that caused the page fault was the

same that was printed in the page fault handler. It was also checked to make sure that

every page fault handled in the trap handler was handled properly with the correct eip

address returned pointing to the next instruction of the instruction that caused the page

fault. Every x86 opcode that the LPSK prototype handles was checked and verified.

The page fault trap handler was tested against every memory access class by

reading and writing various values to the defined resources. The code used to test the

handling of the access classes by the prototype are listed in Appendix C in the files,

‘usermain_testsproc.c’ and ‘kernel.c’, with the binary code and assembly code of

‘usermain_testsproc.c’ and a description of which test is performed by which line of

assembly is listed in the file named ‘dump’.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

APPENDIX C: PROTOTYPE CODE IMPLEMENTATION

The implementation of the Least Privilege Separation Kernel (LPSK) prototype

consists of downloading, installing, and modifying the OSKit snapshot version 20020317

as described in Appendix A. The files added or modified to the existing OSKit are listed

in this Appendix with the source for review. The files are listed as indexed from the root

location where OSKit is installed. If the instructions given in Appendix A were followed

with strict adherence, the root development location is ‘/oskit-dev/’.

A. OSKIT/SPROC.H

The ‘oskit/sproc.h’ file was modified with the only change being done to the

‘oskit_sproc_create’ function prototype.

/* create a process and assign a process descriptio n */
/* added min & max for residing processes in partit ions */
oskit_error_t oskit_sproc_create(const struct
 oskit_sproc_desc *desc,
 oskit_size_t size, oskit_size_t min,
 oskit_size_t max, //DWC 4/5/2007
 struct oskit_sproc *outproc);

B. OSKIT/UVM.H

The ‘oskit/uvm.h’ file was modified with the only change being done to the

‘oskit_uvm_create’ function prototype.

/* create a vmspace */ //DWC 4/5/2007
/* added min and max for creating vmspaces with fix ed
 min and max constraints for partitioning */
oskit_error_t oskit_uvm_create(oskit_size_t size,
 oskit_size_t min, oskit_size_t m ax,
 oskit_vmspace_t *out_vm);

C. THREADS/SCHED_POSIX/SCHED_POSIX.C

The ‘threads/sched_posix/sched_posix.c’ file was modified to add ticks to round

robin scheduler.

/* added ticks to processes for round robin schedul er */
Line 260:pthread->ticks = pthread->interval_ticks;
/* added ticks to processes for round robin schedul er */
Line 433:pthread->ticks = pthread->interval_ticks;

 48

D. THREADS/PTHREAD_CREATE.C

The ‘threads/pthread_create.c’ file was modified to add ticks to round robin

scheduler.

/* added ticks to processes for round robin schedul er */
Line 199:pthread->interval_ticks=attr->sched_ticks;

E. UVM/SPROC/SPROC.C

The ‘uvm/sproc/sproc.c’ file was modified with the only change being done to the

‘oskit_sproc_create’ function to permit partitioning of memory.

extern oskit_error_t
oskit_sproc_create(const struct oskit_sproc_desc *d esc,
oskit_size_t size, oskit_size_t min, oskit_size_t m ax,
struct oskit_sproc *outproc)
//DWC 4/5/2007 added min and max to create partitio ns
{
 oskit_error_t error;
 /* added min and max to create partitions */
 error = oskit_uvm_create(size, min, max,
 &outproc->sp_vm);//DWC 4/5/2007
 if (error) {
 return error;
 }

 queue_init(&outproc->sp_thread_head);
 pthread_mutex_init(&outproc->sp_lock, NULL);

 /* Install our uvm handler */
 oskit_uvm_handler_set(outproc->sp_vm,
 oskit_sproc_uvm_handler);

 outproc->sp_desc = desc;
 return 0;
}

 49

F. UVM/UVM/OSKIT_UVM.C

The ‘uvm/uvm/oskit_uvm.c’ file was modified with the only change was to the

‘oskit_uvm_create’ function to permit partitioning of memory.

/*
 * API: Create a vmspace
 */
/* added changes to permit partitioning */
extern oskit_error_t
oskit_uvm_create(oskit_size_t size, oskit_size_t mi n,
 oskit_size_t max,
 oskit_vmspace_t *out_vm) //DWC 4/5 /2007
{
 oskit_vmspace_t p;
 oskit_error_t error;

 if (min + size > max) { //DWC 4/5/2007
 return OSKIT_EINVAL;
 }

 error = oskit_uvm_vmspace_alloc(&p);
 if (error) {
 return error;
 }

 UVM_LOCK;
 /* allocate uvmspace by min and max of partitio n */
 p->vm_proc.p_vmspace = uvmspace_alloc(min,
 min + size, 1); //DWC 4/5/2007
 UVM_UNLOCK;
 *out_vm = p;

 return 0;
}

G. EXAMPLES/X86/SPROC/KERNEL.H

The ‘examples/x86/sproc/kernel.h’ file contains the function prototypes and

defines used for the ‘kernel.c’ file.

#ifndef _KERNEL_H_
#define _KERNEL_H_

/* # of iteration */
#define NITER 1
/* # of processes run in parallel */
#define NPROCESS 3
/* # of threads in a single process */
#define NTHREAD 1
/* user stack size */
#define USER_STACK_SIZE (16*1024)
/* for printing of debugging content */

 50

extern int oskit_sproc_debug;
/* initialization for system calls */
extern int syscall_init(void);
/* create process and run in user-domain */
static void execute_process(void *);
/* trap handler to handle page faults */
static int handler(struct oskit_sproc_thread *sth,
 int signo, int code,
 struct trap_state *frame);

/* structure used for system calls */
extern struct oskit_sproc_sysent my_syscall_tab[];

#endif /*KERNEL.H*/

H. EXAMPLES/X86/SPROC/CONFIG.H

The ‘examples/x86/sproc/config.h’ file contains the structures and defines used by

‘kernel.c’ and ‘configapp.c’ for the configuration file structure.

#ifndef _CONFIG_H_
#define _CONFIG_H_

#define MAX_PROCESSES 20 //define for max # of proc esses
#define MAX_PARTITIONS 8 //define for max # of part itions
#define MAX_RESOURCES 20 //define for max # of reso urces
#define MAX_CVT 3 //not implemented yet
#define MAX_AUTHS 20 //not implemented yet
#define MAX_NAME_LEN 100 //define for policy names and
 //process file names
#define DELAY 10 //define used for delaying program control

typedef enum {FALSE=0, TRUE} BOOL; //add Boolean ty pe
/* access modes used for determining resource and p artition
 flow privileges */
typedef enum {N=0, R=2, W=3, RW=5} E_ACCESS_MODE;
/* E_ABILITIES are not implemented yet */
typedef enum {RESTART=0, HALT, CONFIG_UPDATE} E_ABI LITY;
/* structure contains internal information for proc esses */
struct oskit_sproc_info{
 char arg[MAX_NAME_LEN]; // string of c file of pr ocess
 int proc_size; //partition size
 long proc_min_addr; //partition min address for p rocess
 long proc_max_addr; //partition max address for p rocess
 long proc_heap_start_addr;
 long proc_heap_size;
 int sched_ticks; // ticks for scheduler
 pthread_attr_t *attr; //loaded during process cre ate
 struct oskit_vmspace *sp_vm; //created during pro c init
 int process_id; //pid of the process
};
/* structure containing information for partitions */
struct partition{
 int partition_id;

 51

 int resource_ids[MAX_RESOURCES];
 int process_ids[MAX_PROCESSES];
 long part_min_addr;
 long part_size;
 int timeSlice;
};
/* structure containing information for processes * /
struct process{
 int process_id;
 int priority;
 struct oskit_sproc_info info;
};
/* structure containing information for resources * /
struct resource{
 int resource_id;
 int resource_type;
 long res_min_addr;
 long res_size;
};
/* structure not yet implemented */
struct sub_auth{
 int process_id; //aka "subject"
 E_ABILITY ability_id;
};
/* structure containing information for partition f lows */
struct partFlowTuple{
 int partition_id_from;
 int partition_id_to;
 E_ACCESS_MODE access_mode;
};
/* structure containing information for resource fl ows */
struct resFlowTuple{
 int process_id;
 int resource_id;
 E_ACCESS_MODE access_mode;
};
/* struct of configuration file info for the protot ype */
struct LPSKconfig{
 int id; //aka "next"
 int version;
 int num_of_partitions;
 int num_of_processes;
 int num_of_resources;
 int num_of_part_flows;
 int num_of_res_flows;
 char policy[MAX_NAME_LEN];
 struct partition partitionList[MAX_PARTITIONS];
 struct resource resourceList[MAX_RESOURCES];
 struct sub_auth authList[MAX_AUTHS]; //not implem ented
 struct process processList[MAX_PROCESSES];
 struct partFlowTuple
 partFlows[MAX_PARTITIONS*MAX_PARTITIONS] ;
 struct resFlowTuple
 resFlows[MAX_PROCESSES*MAX_RESOURCES];
};
/* structure not yet implemented */
struct LPSKConfigVectorTable{ //not implemented yet

 52

 int version;
 int curr_conf_id;
 struct LPSKconfig CVT[MAX_CVT];
};

#endif /*CONFIG.H*/

I. EXAMPLES/X86/SPROC/USERMAIN_TESTSPROC.C

The ‘examples/x86/sproc/usermain_testsproc.c’ file contains the test cases used to

cause the memory accesses that are trapped by the page fault trap handler.

/*
 * Copyright (c) 2001 The University of Utah and th e Flux
 * Group. All rights reserved.
 *
 * This file is part of the Flux OSKit. The OSKit is free
 * software, also known as "open source;" you can
 * redistribute it and/or modify it under the terms of the
 * GNU General Public License (GPL), version 2, as
 * published by the Free Software Foundation (FSF). To
 * explore alternate licensing terms, contact the
 * University of Utah at csl-dist@cs.utah.edu or +1 -801-
 * 585-3271.
 * The OSKit is distributed in the hope that it wil l be
 * useful, but WITHOUT ANY WARRANTY; without even t he
 * implied warranty of MERCHANTABILITY or FITNESS F OR A
 * PARTICULAR PURPOSE. See the GPL for more detail s. You
 * should have received a copy of the GPL along wit h the
 * OSKit; see the file COPYING. If not, write to t he FSF,
 * 59 Temple Place #330, Boston, MA 02111-1307, USA .
 */

/* Sample user program */

#include <oskit/c/stdio.h>
#include <oskit/c/malloc.h>
#include "user_syscall.h"

extern int errno;

int
main()
{
 int pid; //Process Id
 int rc;
 int value;
 char *val1, *val2;
 pid = syscall_getpid();
 printf("Start process (pid %d)\n", pid);

 syscall_sleep(6);
 value = 99;
 value++;
 /* Test Pushing Memory Access Class */

 53

 asm volatile("push 0xA0009FA8\n\t");
 /* Test Popping Memory Access Class */
 asm volatile("pop 0xA0009FAC\n\t");
 asm volatile("mov $0x12, %eax\n\t");
 /* Test Register to Memory Access Class */
 asm volatile("mov %eax, 0xA0009FA8\n\t");
 /* Test Constant to Memory Access Class */
 (int)0xA0009FA8 = value;
 asm volatile("push %eax\n\t");
 /* Test Pushing/Popping to Memory Address Access Class */
 asm volatile("push $0xA000BEEF\n\t");
 asm volatile("pop %eax\n\t");
 /// ////////
 /* Test Memory Address to Register Access Class * /
 asm volatile("mov $0xA00DBEEF, %eax\n\t");
 asm volatile("pop %eax\n\t");
 printf("value is: 0x%d", *(int*)0xA0009FA8);
 syscall_sleep(1);
 /* Test Memory to Register, Memory Pointed by a * /
 /* Register to Memory, and Memory to Memory Point ed by */
 /* a Register Access Classes * /
 memcpy(*(int*)0xA0009FAC, *(int*)0xA0009FA8, 4);
 /* Test Incrementing/Decrementing Memory Access C lass */
 (int)0xA0009FA8 = *(int*)0xA0009FA8 + 1;
 (int)0xA0009FAC = *(int*)0xA0009FAC + 4;
 /* Test Pushing/Popping Memory Address Access Cla ss */
 val1 = 0xA0009FA8;
 val2 = 0xA0009FAC;
 /* Test Memory to Memory Access Class */
 memmove(val1, val2, 1);

 syscall_sleep(2);
 /* Test Accessing Program Counter Address */
 asm volatile("jmp 0xA0009FAC\n\t");

#if 1
 /* Test userspace malloc */
 {
 int *base1, *base2;
 syscall_lock();
 base1 = (int*)malloc(10);
 syscall_unlock();
 printf("pid %d: malloc returns %p\n", pid, base 1);
 syscall_lock();
 base2 = (int*)malloc(4096);
 syscall_unlock();
 printf("pid %d: malloc returns %p\n", pid, base 2);
 }
#endif
 syscall_sleep(5);
 return 0;
}

J. EXAMPLES/X86/SPROC/ USERMAIN_HELLO.C

 54

The ‘examples/x86/sproc/usermain_hello.c’ file contains the code to display the

resources that are created and tested in the prototype.

/*
 * Copyright (c) 2001 The University of Utah and th e Flux
 * Group. All rights reserved.
 *
 * This file is part of the Flux OSKit. The OSKit is free
 * software, also known as "open source;" you can
 * redistribute it and/or modify it under the terms of the
 * GNU General Public License (GPL), version 2, as
 * published by the Free Software Foundation (FSF). To
 * explore alternate licensing terms, contact the
 * University of Utah at csl-dist@cs.utah.edu or +1 -801-
 * 585-3271.
 * The OSKit is distributed in the hope that it wil l be
 * useful, but WITHOUT ANY WARRANTY; without even t he
 * implied warranty of MERCHANTABILITY or FITNESS F OR A
 * PARTICULAR PURPOSE. See the GPL for more detail s. You
 * should have received a copy of the GPL along wit h the
 * OSKit; see the file COPYING. If not, write to t he FSF,
 * 59 Temple Place #330, Boston, MA 02111-1307, USA .
 */

/* Sample user program */

#include <oskit/c/stdio.h>
#include "user_syscall.h"

int main()
{
 int value2 = 899;
 int value = 455;
 int pid, tid;
 int i,j;
 /* obtain process id for displaying */
 pid = syscall_getpid();
 /* obtain thread id for displaying */
 tid = syscall_gettid();
 /* don’t run forever for testing */
 for (i = 0 ; i < 9; i++) {
 /* display process running results for testing */
 printf("proc 0x8%x, tid %2d: Hello World, iter = %d ",
 pid, tid, i);
 /* waste ticks without pre-emption */
 for(j = 0; j < 100000000; j++){}
 /* display resource values */
 printf("address of value is: %x value2 is: %x a nd value
 %d value2 %d \n", &value, &value2, value, value2);
 /* waste ticks with pre-emption */
 syscall_sleep(2);
 }
 printf("tid %d: Bye!\n", tid);
 /* tell kernel the process is done */
 return 0;
}

 55

K. EXAMPLES/X86/SPROC/KERNEL.C

The ‘examples/x86/sproc/kernel.c’ file went through the most amount of changes.

The changes made include reading the configuration file and creating partitions,

resources, processes, resource flows, and partition flows. Other changes made involve

adding a page fault trap handler that follows the rules of the flows to permit or deny

access attempts made by processes.

/*
 * Copyright (c) 2001 The University of Utah and th e Flux
 * Group. All rights reserved.
 *
 * This file is part of the Flux OSKit. The OSKit is free
 * software, also known as "open source;" you can
 * redistribute it and/or modify it under the terms of the
 * GNU General Public License (GPL), version 2, as
 * published by the Free Software Foundation (FSF). To
 * explore alternate licensing terms, contact the
 * University of Utah at csl-dist@cs.utah.edu or +1 -801-
 * 585-3271.
 * The OSKit is distributed in the hope that it wil l be
 * useful, but WITHOUT ANY WARRANTY; without even t he
 * implied warranty of MERCHANTABILITY or FITNESS F OR A
 * PARTICULAR PURPOSE. See the GPL for more detail s. You
 * should have received a copy of the GPL along wit h the
 * OSKit; see the file COPYING. If not, write to t he FSF,
 * 59 Temple Place #330, Boston, MA 02111-1307, USA .
 */

/*
 * An example for simple process library. This ker nel
 * loads an ELF binary into a user space and execut e it in
 * user mode. Several quite simple system calls ar e
 * implemented.
 */
/* This file has been modified to add partitioning and
 * memory resources. The code in this file makes u p the
 * bulk of the LPSK prototype created from OSKit so urce
 */
#include <oskit/c/termios.h>
#include <oskit/c/unistd.h>
#include <oskit/clientos.h>
#include <oskit/debug.h>
#include <oskit/exec/exec.h>
#include <oskit/gdb.h>
#include <oskit/machine/pc/phys_lmm.h>
#include <oskit/sproc.h>
#include <oskit/startup.h>
#include <oskit/threads/pthread.h>
#include <oskit/version.h>
#include <oskit/x86/proc_reg.h>
#include <oskit/x86/trap.h>
#include <oskit/page.h>

 56

#include <oskit/c/malloc.h>
#include <oskit/c/fcntl.h>
#include <oskit/io/absio.h>
#include <oskit/x86/pc/pic.h>
#include <oskit/x86/pc/pit.h>
#include <oskit/x86/pc/base_irq.h>
#include <uvm/sproc/sproc_internal.h>
#include <oskit/x86/eflags.h>
#include <oskit/lmm.h>
#include <stdio.h>

#include "proc.h"
#include "syscallno.h"
#include "kernel.h"
#include "config.h"
/* function to check access by comparing permitted flows
 * rules with requested access
 */
static int checkAccessFlows(oskit_size_t cr2,
 E_ACCESS_MODE access_mo de,
 int sproc);
/* structure used to connect the page fault trap ha ndler
 * in this file to be called when a page fault inte rrupt
 * occurs
 */
static struct oskit_sproc_desc process_desc = {
 NSYS, /* # of system calls implemented */
 my_syscall_tab, /* system call table */
 handler /* trap handler */
};
/* configuration file container*/
struct LPSKconfig *c_file;

/* main of LPSK prototype that reads the configurat ion file
 * and from the data gleaned create partitions, pro cesses,
 * resource flows, resources, and partition flows
 */
extern int
main()
{
 int i, j;
 int fd;
 const char *path = "/configfile";
 oskit_off_t offset;
 oskit_size_t num_bytes;
 oskit_size_t * out;
 oskit_absio_t * absio;
 oskit_error_t error;
 pthread_attr_t threadattr;
 struct sched_param param;
#ifndef KNIT
 oskit_clientos_init_pthreads();
#endif
/* for GNU debugging and testing purposes */
#if 0
 {
 extern struct termios base_raw_termios,

 57

 base_cooked_termios;
 printf("setting serial port for gdb\n");
 base_raw_termios.c_ispeed = B38400;
 base_raw_termios.c_ospeed = B38400;
 base_cooked_termios.c_ispeed = B38400;
 base_cooked_termios.c_ospeed = B38400;
 gdb_pc_com_init(1, &base_raw_termios);

 gdb_trap_mask = (1 <<T_PAGE_FAULT) | (1 << T_NO_FP U);
 printf("break!\n");
 gdb_breakpoint();
 printf("go!\n");
 }
#endif
 /* start the clock */
 start_clock();
 /* instantiate environment for pthreads */
 start_pthreads();
 start_fs_bmod();

#if 0
 {
 extern int __isthreaded;
 __isthreaded = 1; /* for freebsd libc */
 }
#endif
 /* start up virtual memory system plus swap fil e */
 printf(">> Initializing UVM\n");
 oskit_uvm_init();
 oskit_uvm_swap_init();
 printf(">> Swap On\n");
 if (swapon("/swapfile")) {
 extern int errno;
 panic("swapon failed (errno %d)\n", errno);
 }
 /* read the configuration file from the binary
 * created and linked into the elf image
 */
 printf(">> Starting to read config file\n");
 num_bytes = sizeof(struct LPSKconfig);

 fd = open(path, O_RDWR);
 if (fd == -1) {
 return -1;
 }
 printf(">> Opened file\n");
 error = fd_get_absio(fd, &absio);
 if (error) {
 printf("errror %i\n", error);
 return -1;
 }
 /* allocate space for configuration file contai ner */
 c_file = (struct LPSKconfig *)
 malloc(sizeof(struct LPSKconfig));
 /* read configuration file */
 offset = 0;
 error = oskit_absio_read(absio, c_file,

 58

 offset, num_bytes, out);
 oskit_absio_release(absio); // don't need anymo re
 if (error) {
 printf("errror %i\n", error);
 return -1;
 }
 printf("read config file!!!\n");
 getchar();
 /* start page daemon */
 printf(">> Starting the page daemon\n");
 oskit_uvm_start_pagedaemon();
 /* initialize simple process library */
 printf(">> Initializing Simple Process Library\ n");
 oskit_sproc_init();

 printf(">> We are ready\n");

#ifdef GPROF
 start_gprof();
#endif
 /* fill structure with pthread attributes */
 pthread_attr_init(&threadattr);

 /* Initialize my system calls */
 syscall_init();

 for (j = 0 ; j < NITER ; j++) {
 pthread_t th[c_file->num_of_processes];
 int rc;
 printf("****** Create processes (%d) ******\n", j);
 /* create processes */
 for (i = 0 ; i < c_file->num_of_processes ; i++) {
 /*
 * Create the thread.
 */
 /* set up details for scheduler for process */
 param.priority = PRIORITY_NORMAL;

 pthread_attr_setschedparam(&threadattr, &par am);
 pthread_attr_setschedpolicy(&threadattr, SCH ED_RR);

 threadattr.sched_ticks =
 c_file->processList[i].info.sched_ticks;
 c_file->processList[i].info.attr = &threadattr;
 /* add temp values for process id for orderi ng */
 c_file->processList[i].info.process_id = i;
 /* create thread for process */
 rc = pthread_create(&th[i], &threadattr,
 (void *(*)(void*))execute_process,
 (void *)&c_file->processList[i].info);
 assert(rc == 0);
 }
 /*
 * Delay for a while, while the threads prove
 * themselves.
 */
 oskit_pthread_sleep(DELAY);

 59

 printf("******** Waiting (%d) ********\n", j);
 for (i = 0 ; i < c_file->num_of_processes ; i++) {
 pthread_join(th[i], NULL);
 }
 }
 printf("******** Terminated ********\n");
 return 0;
}
/* this function initializes the virtual memory map pings
 * for a process and starts processes
*/
static void
load_process(struct oskit_sproc *sproc,
 exec_info_t *exec_info, const char *el f,
 struct oskit_sproc_info *info)
{
 oskit_addr_t heap;
 oskit_error_t error;

 printf("**** creating a process [%s] (pid %p,
 thread %d) ****\n", elf, sproc,
 (int)pthread_self());
 /* create a process with the min and max bounda ries of
 * the partition that the process resides
 */
 if (oskit_sproc_create(&process_desc, info->pro c_size,
 info->proc_min_addr, info->proc_max_addr, s proc)) {
 panic("oskit_sproc_create failed\n");
 }
 error = oskit_sproc_load_elf(sproc, elf, exec_i nfo);
 if (error) {
 panic("oskit_sproc_load_elf failed (0x%x)\n", erro r);
 }
 /* map heap area */
 //heap = HEAP_START_ADDR;
 heap = (oskit_size_t)info->proc_heap_start_addr ;
 printf("heap location: %d", heap);
 /* create mapping for the process with the heap */
 error = oskit_uvm_mmap(sproc->sp_vm, &heap,
 (oskit_size_t)info->proc_heap_size,
 PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANON|MAP_FIXED, 0, 0);
 if (error) {
 panic("oskit_uvm_mmap failed (heap)\n");
 }
 //assert(heap == HEAP_START_ADDR);
 assert(heap ==
 (oskit_size_t)info->proc_heap_start_addr);
 info->sp_vm = sproc->sp_vm;
}

/** ********
 *
 * Multiple threads in a Process
 *
 ** *******/

 60

/* this structure is used to store process informat ion */
struct arg {
 struct oskit_sproc *sproc;
 oskit_addr_t entry;
 struct oskit_sproc_info *info;
};

/* this function initializes the user stack and pag e sizes
 * for a process and then puts the process in user mode
 * so that the process can begin
*/
static void
lwp(struct arg *arg)
{
 oskit_addr_t stkaddr;
 struct oskit_sproc_stack stk;
 /* pass arguments to process to know where heap
 * will be located for a process
 */
 oskit_size_t userarg[] = {
 (oskit_size_t)arg->info->proc_heap_start_addr ,
 (oskit_size_t)arg->info->proc_heap_size, 300} ;
 stkaddr = 0;
 printf("sproc: %p user heap addr: %x \n", arg-> sproc,
 (oskit_size_t)arg->info->proc_heap_start _addr);
 /* create the user process’ stack */
 if (oskit_sproc_stack_alloc(arg->sproc, &stkadd r,
 USER_STACK_SIZE, PAGE_SIZE, &stk)) {
 panic("oskit_sproc_alloc_stack failed\n");
 }
 /* push the arguments for the process on it’s s tack */
 if (oskit_sproc_stack_push(&stk, &userarg,
 sizeof(userarg))) {
 panic("oskit_sproc_alloc_push failed\n");
 }

 printf("thread %d: process %p, user stack [%x.. %x]\n",
 (int)pthread_self(), arg->sproc,
 stkaddr + PAGE_SIZE,
 stkaddr + USER_STACK_SIZE + PAGE_SIZE);
 /* switch to user-domain */
 oskit_sproc_switch(arg->sproc, arg->entry, &stk);
}

/* this function creates a process by initializing the
 * configuration file structure to have the new pro cess
 * id’s of the newly created process instead of
 * the placeholder id’s from configuration file
 */
static void
execute_process(void *arg)
{
 struct oskit_sproc sproc;
 exec_info_t exec_info;
 int i, k, l;
 int process_id;
 const char *filename =

 61

 (const char*)(((struct oskit_sproc_info *)(arg))->arg);
 pthread_t th[NTHREAD];

 printf("filename: %s \n", filename);
 load_process(&sproc, &exec_info, filename, arg) ;
 /* obtain the process id for the new process */
 process_id = (int)&sproc;
 printf("main proc 0x8%x!!!!!!!!\n", process_id) ;
 /* overwrite old process id placeholders in the
 * configuration file structure
 */
 i = ((struct oskit_sproc_info *)arg)->process_i d;
 for(k = 0; k< c_file->num_of_partitions; k++){
 for(l = 0; l< c_file->num_of_processes; l++){
 if(c_file->processList[i].process_id ==
 c_file->partitionList[k].process_ids[l]) {
 c_file->partitionList[k].process_ids[l] =
 process_id;
 }
 }
 }
 for(k = 0; k< c_file->num_of_res_flows; k++){
 if(c_file->processList[i].process_id ==
 c_file->resFlows[k].process_id){
 c_file->resFlows[k].process_id = process_id ;
 }
 }
 c_file->processList[i].process_id = process_id;

 /* create the processes and let them go, killin g them
 * when and if they return
 */
 for (i = 0 ; i < NTHREAD ; i++) {
 struct arg arg2;
 arg2.sproc = &sproc;
 arg2.entry = exec_info.entry;
 arg2.info = arg;

 pthread_create(&th[i],
 ((struct oskit_sproc_info *)(arg))->attr,
 (void*(*)(void*))lwp, &arg2);
 }
 for (i = 0 ; i < NTHREAD ; i++) {
 pthread_join(th[i], NULL);
 }

 printf("**** destroying process (thread %d) *** *\n",
 (int)pthread_self());
 oskit_sproc_destroy(&sproc);
}

/* this function checks the resource flows and part ition
 * flows from the configuration data to determine i f the
 * given process can have the petitioned access
*/
static int checkAccessFlows(oskit_size_t cr2,
 E_ACCESS_MODE access_m ode,

 62

 int sproc){
 int i, j, process_id;
 int partition_from_id = 0;
 int partition_to_id = 0;
 int resource_id = 0;
 int grant_access = 0;

 process_id = sproc;
 /* obtain partition where process resides */
 printf("check access proc 0x8%x !!!!!!!!\n",proce ss_id);
 for(i=0;i<c_file->num_of_partitions;i++){
 for(j=0;j<c_file->num_of_processes;j++){
 if(c_file->partitionList[i].process_ids[j] ==
 process_id){
 partition_from_id =
 c_file->partitionList[i].partition_id;
 break;
 }
 }
 }
 /* obtain partition where access is attempted */
 for(i=0;i<c_file->num_of_partitions;i++){
 if((cr2 >=
 (oskit_size_t)c_file->partitionList[i].part_m in_addr)
 && (cr2 <=
 (oskit_size_t)c_file->partitionList[i].part_ min_addr
 + (oskit_size_t)c_file->partitionList[i].part _size)){
 partition_to_id =
 c_file->partitionList[i].partition_id;
 }
 }
 //if no partition exists for read/write and from where,
 //terminate
 //the check on where, which is a sanity check
 if((!partition_from_id) || (!partition_to_id)) re turn -1;

 //First Check to see if there is a partition Flow to
 //allow the access
 for(i=0;i<c_file->num_of_part_flows;i++){
 if((c_file->partFlows[i].partition_id_from ==
 partition_from_id) &&
 (c_file->partFlows[i].partition_id_to ==
 partition_to_id) &&
 (((c_file->partFlows[i].access_mode) ==
 access_mode) ||
 ((c_file->partFlows[i].access_mode) >=
 access_mode+2))){
 grant_access = 1;
 }
 }
 if(!grant_access) return -1;

 //Next Check to see if there is a resource Flow t o allow
 //the access
 //to this process

 for(i=0;i<c_file->num_of_resources;i++){

 63

 if((cr2 >=
 (oskit_size_t)c_file->resourceList[i].res_mi n_addr)
 && (cr2 <=
 (oskit_size_t)c_file->resourceList[i].res_mi n_addr +
 (oskit_size_t)c_file->resourceList[i].res_si ze)){
 resource_id = c_file->resourceList[i].resourc e_id;
 }
 }

 //if no resource exists for read/write, terminate
 if(!resource_id) return -1;

 for(i=0;i<c_file->num_of_res_flows;i++){
 if((c_file->resFlows[i].process_id == process_i d) &&
 (c_file->resFlows[i].resource_id == resource _id) &&
 (((c_file->resFlows[i].access_mode) == acces s_mode)
 || ((c_file->resFlows[i].access_mode) >=
 access_mode+2))){
 return 1; //Permission granted
 }
 }
 return -1; //Access denied
}

/* this function identifies a process that resides
 * in the attempted access location
*/
static int getVMSpace(oskit_size_t cr2){
 int i;
 for(i=0;i<c_file->num_of_processes;i++){
 printf("cr2: 0x%x >= min 0x%x cr2: 0x%x <=
 max 0x%x \n", cr2,
 (oskit_size_t)c_file->processList[i].info.proc_m in_addr,
 cr2,
 (oskit_size_t)c_file->processList[i].info.proc_ma x_addr);

 if((cr2 >=
 (oskit_size_t)c_file->processList[i].info.proc_m in_addr)
 && (cr2 <=
 (oskit_size_t)c_file->processList[i].info.proc_max _addr)){
 printf("going to swap vmspace\n");
 return i;
 }
 }
 return -1;
}

/*
 * Trap handler for the simple process library
 * This trap handler is implemented to be a page f ault
 * trap handler to catch the various memory access
 * attempts
 */
static int
handler(struct oskit_sproc_thread *sthread, int sig no,
int code, struct trap_state *ts)
{

 64

 oskit_size_t cr2 = get_cr2();
 int i;
 int from_user = (ts->cs & 3) || (ts->eflags & E FL_VM);
 struct oskit_vmspace *processesVM;
 long mem, val;
 unsigned char data[ts->ecx];
 E_ACCESS_MODE access_mode;

 printf("handler proc 0x8%x !!!!!!!!\n",
 (int)sthread->st_process);
 printf("eip address: %x \n", ts->eip);
 printf("esp address: %x \n", ts->esp);
 printf("cr2 address: %x \n", cr2);
 /* Is this a program counter access attempt?
 * kill the process if it is
 */
 if(ts->eip == cr2){
 printf("execute read or write so kill process !");
 return 1;//Don't allow execute! so kill proce ss
 }
 /* Is this a nested trap or double fault?
 * kill the process as to not allow if it is
 */
 if(!from_user){
 printf("kernel\n");
 return 1; //Don't allow trap nesting or doubl e
 //faults! So kill process
 }

 printf("ERR!: thread = %d, process = %p, signo = %d, "
 "code = %d, frame = %p\n", (int)pthread_self(),
 sthread->st_process, signo, code, ts);
 printf("page fault address 0x%x\n", cr2);
 /* if page fault from accessing kernel memory
 * kill process because this should never happe n
 */
 /* sanity check */
 if(cr2 < OSKIT_UVM_MINUSER_ADDRESS) return 1;
 /* check if partition exists, if not kill proce ss */
 if((i = getVMSpace(cr2)) == -1) return 1;
 /* get mapping from other process to use */
 processesVM = c_file->processList[i].info.sp_vm ;
 printf("opcode: %x \n", *(unsigned short*)ts->e ip);
 switch(*(unsigned short*)(ts->eip)){
 case(0x05FF): //incl addr
 /* define access mode of this opcode */
 access_mode = W;
 /* grab memory address accessed */
 mem = *(long*)(ts->eip+2);
 printf("0x05FF!\n");
 /* make sure the address access is the fault
 * address
 */
 if(mem != cr2) return 1; //sanity check
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mode,
 (int)sthread->st_process)) == -1) return 1;

 65

 //swap in memory mapping to access memory
 processesVM = oskit_uvm_vmspace_set(processesV M);
 /* perform operation of instruction attempted by
 * user since it has enough permissions
 */
 (int)mem = *(int*)mem + 1;
 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 /* set user to return after instruction since
 * we have already executed the instruction
 */
 ts->eip = ts->eip+6;
 return 0; //handled trap so return to process
 case(0x0583): //addl const,addr
 /* define access mode of this opcode */
 access_mode = W;
 /* grab memory address accessed */
 mem = *(long*)(ts->eip+2);
 val = *(unsigned char*)(ts->eip+6);
 printf("0x0583!\n");
 if(mem != cr2) return 1; //sanity check
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mode,
 (int)sthread->st_process)) == -1) return 1;
 //swap in memory mapping to access memory
 processesVM = oskit_uvm_vmspace_set(processesV M);
 /* perform operation of instruction attempted by
 * user since it has enough permissions
 */
 (int)mem = *(int*)mem + val;
 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 /* set user to return after instruction since
 * we have already executed the instruction
 */
 ts->eip = ts->eip+7;
 return 0; //handled trap so return to process
 case(0x35FF): //pushl addr
 /* define access mode of this opcode */
 access_mode = R;
 /* grab memory address accessed */
 mem = *(long*)(ts->eip+2);
 //val = *(unsigned char*)(ts->eip+6);
 printf("0x058F!\n");
 if(mem != cr2) return 1; //sanity check
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mode,
 (int)sthread->st_process)) == -1) return 1;
 /* increase user stack since
 * we need to execute the instruction
 */
 ts->esp = ts->esp - 4;
 //swap in memory mapping to access memory
 processesVM = oskit_uvm_vmspace_set(processesV M);
 /* perform operation of instruction attempted by
 * user since it has enough permissions
 */

 66

 val = *(long*)mem;
 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 (long)(ts->esp) = val;
 /* set user to return after instruction since
 * we have already executed the instruction
 */
 ts->eip = ts->eip+6;
 return 0; //handled trap so return to process
 case(0x058F): //popl addr
 /* define access mode of this opcode */
 access_mode = W;
 /* grab memory address accessed */
 mem = *(long*)(ts->eip+2);
 val = *(long*)(ts->esp);
 printf("0x058F!\n");
 if(mem != cr2) return 1; //sanity check
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mode,
 (int)sthread->st_process)) == -1) return 1;
 //swap in memory mapping to access memory
 processesVM = oskit_uvm_vmspace_set(processesV M);
 /* perform operation of instruction attempted by
 * user since it has enough permissions
 */
 (long)mem = val;
 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 /* decrease user stack since
 * we have already executed the instruction
 */
 ts->esp = ts->esp + 4;
 /* set user to return after instruction since
 * we have already executed the instruction
 */
 ts->eip = ts->eip+6;
 return 0; //handled trap so return to process
 case(0x05c7): //movl const, addr
 /* define access mode of this opcode */
 access_mode = W;
 /* grab memory address accessed */
 mem = *(long*)(ts->eip+2);
 val = *(long*)(ts->eip+6);
 printf("0x05c7!\n");
 if(mem != cr2) return 1; //sanity check
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mode,
 (int)sthread->st_process)) == -1) return 1;
 //swap in memory mapping to access memory
 processesVM = oskit_uvm_vmspace_set(processesV M);
 /* perform operation of instruction attempted by
 * user since it has enough permissions
 */
 //*(int*)mem = val;
 asm volatile(
 "pushl %%eax\n\t"
 "pushl %%ebx\n\t"

 67

 "pushl %1\n\t"
 "pushl %0\n\t"
 "popl %%eax\n\t"
 "popl %%ebx\n\t"
 "movl %%eax, (%%ebx)\n\t"
 "popl %%ebx\n\t"
 "popl %%eax\n\t"
 : "=m" ((long)val)
 : "m" ((oskit_size_t)mem)
);
 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 /* set user to return after instruction since
 * we have already executed the instruction
 */
 ts->eip = ts->eip+10;
 return 0; //handled trap so return to process
 case(0x008b): //mov (%eax),%eax
 /* define access mode of this opcode */
 access_mode = R;
 /* grab memory address accessed */
 mem = ts->eax;
 printf("0x008b!\n");
 if(mem != cr2) return 1; //sanity check
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mode,
 (int)sthread->st_process)) == -1) return 1;
 //swap in memory mapping to access memory
 processesVM = oskit_uvm_vmspace_set(processesV M);
 /* perform operation of instruction attempted by
 * user since it has enough permissions
 */
 ts->eax = *(int*)mem;
 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 /* set user to return after instruction since
 * we have already executed the instruction
 */
 ts->eip = ts->eip+2;
 return 0; //handled trap so return to process
 case(0x0289): //mov %eax,(%edx)
 /* define access mode of this opcode */
 access_mode = W;
 /* grab memory address accessed */
 mem = ts->edx;
 val = ts->eax;
 printf("0x0289!\n");
 if(mem != cr2) return 1; //sanity check
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mode,
 (int)sthread->st_process)) == -1) return 1;
 //swap in memory mapping to access memory
 processesVM = oskit_uvm_vmspace_set(processesV M);
 /* perform operation of instruction attempted by
 * user since it has enough permissions
 */
 (int)mem = val;

 68

 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 /* set user to return after instruction since
 * we have already executed the instruction
 */
 ts->eip = ts->eip+2;
 return 0; //handled trap so return to process
 case(0x158b): //mov addr, %edx
 /* define access mode of this opcode */
 access_mode = N;
 /* grab memory address accessed */
 mem = *(long*)(ts->eip+2);
 printf("0x158b!\n");
 if(mem != cr2) return 1; //sanity check
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mode,
 (int)sthread->st_process)) == -1) return 1;
 //swap in memory mapping to access memory
 processesVM = oskit_uvm_vmspace_set(processesV M);
 /* perform operation of instruction attempted by
 * user since it has enough permissions
 */
 ts->edx = mem;
 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 /* set user to return after instruction since
 * we have already executed the instruction
 */
 ts->eip = ts->eip+6;
 return 0; //handled trap so return to process
 case(0xa4f3): //repz movsb %ds:(%esi), %es:(% edi)
 //based on ecx count
 /* define access mode of the first half opcode */
 access_mode = R;
 printf("esi address: %x \n", ts->esi);
 printf("edi address: %x \n", ts->edi);
 /* grab memory address accessed */
 mem = ts->esi;
 printf("0xa4f3!\n");
 if(mem != cr2) return 1; //sanity check
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mode,
 (int)sthread->st_process)) == -1) return 1;
 //swap in memory mapping to access memory
 processesVM = oskit_uvm_vmspace_set(processesV M);
 /* perform operation of instruction attempted by
 * user since it has enough permissions
 */
 for(i=0;i<(int)ts->ecx;i++)
 data[i] = (unsigned char)*(((long*)ts->esi)+ i);
 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 //from and to addresses may reside in separate
 //partitions
 //so we must set vmspace again
 //if no partition found, kill process
 if((i = getVMSpace(ts->edi)) == -1) return 1;

 69

 //swap in memory mapping to access memory
 processesVM = c_file->processList[i].info.sp_v m;
 /* define access mode of this half of opcode * /
 access_mode = W;
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mode,
 (int)sthread->st_process)) == -1) return 1;
 //swap in memory mapping to access memory
 processesVM = oskit_uvm_vmspace_set(processesV M);
 /* perform operation of instruction attempted by
 * user since it has enough permissions
 */
 for(i=0;i<(int)ts->ecx;i++)
 (((long)ts->edi)+i) = data[i];
 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 /* set user to return after instruction since
 * we have already executed the instruction
 */
 ts->eip = ts->eip+2;
 return 0; //handled trap so return to process
 default:
 switch(*(unsigned char*)(ts->eip)){
 case(0x58): //pop addr value into eax reg ister
 //this will not occur
 /* define access mode of this opcode */
 access_mode = N;
 printf("0x58!\n");
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mo de,
 (int)sthread->st_process)) == -1) re turn 1;
 //swap in memory mapping to access memo ry
 processesVM =
 oskit_uvm_vmspace_set(processesVM);
 /* perform operation of instruction att empted
 * by user since it has enough permissio ns
 */
 ts->eax = cr2;
 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 /* set user to return after instruction since
 * we have already executed the instruct ion
 */
 ts->eip = ts->eip+1;
 return 0; //handled trap so return to p rocess
 case(0x68): //push addr code will not cau se trap
 //so this will never happen
 /* define access mode of this opcode */
 access_mode = N;
 /* grab memory address accessed */
 mem = *(long*)(ts->eip+1);
 val = 0;//ts->eax;
 printf("0x68!\n");
 if(mem != cr2) return 1; //sanity check
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mo de,
 (int)sthread->st_process)) == -1) re turn 1;

 70

 //swap in memory mapping to access memo ry
 processesVM =
 oskit_uvm_vmspace_set(processesVM);
 /* perform operation of instruction att empted
 * by user since it has enough permissio ns
 */
 //ts->eax = mem;
 asm volatile(
 "pushl %1\n\t"
 : "=m" (val)
 : "m" (mem)
);
 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 /* set user to return after instruction since
 * we have already executed the instruct ion
 */
 ts->eip = ts->eip+5;
 return 0; //handled trap so return to p rocess
 case(0xa1): //mov addr, %eax
 /* define access mode of this opcode */
 access_mode = N;
 /* grab memory address accessed */
 mem = *(long*)(ts->eip+1);
 val = 0;//ts->eax;
 printf("0xa1!\n");
 if(mem != cr2) return 1; //sanity check
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mo de,
 (int)sthread->st_process)) == -1) re turn 1;
 //swap in memory mapping to access memo ry
 processesVM =
 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 /* perform operation of instruction att empted
 * by user since it has enough permissio ns
 */
 //ts->eax = mem;
 asm volatile(
 "pushl %%ebx\n\t"
 "pushl %1\n\t"
 "popl %%ebx\n\t"
 "mov %%ebx, %0\n\t"
 "popl %%ebx\n\t"
 : "=m" (val)
 : "m" (mem)
);
 oskit_uvm_vmspace_set(processesVM);
 ts->eax = val;
 /* set user to return after instruction since
 * we have already executed the instruct ion
 */
 ts->eip = ts->eip+5;
 return 0; //handled trap so return to p rocess
 case(0xa3): //mov %eax, addr
 /* define access mode of this opcode */
 access_mode = R;

 71

 /* grab memory address accessed */
 mem = *(long*)(ts->eip+1);
 val = ts->eax;
 printf("0xa3!\n");
 if(mem != cr2) return 1; //sanity check
 //check access and kill if denied
 if((i = checkAccessFlows(cr2, access_mo de,
 (int)sthread->st_process)) == -1) re turn 1;
 //swap in memory mapping to access memo ry
 processesVM =
 oskit_uvm_vmspace_set(processesVM);
 /* perform operation of instruction att empted
 * by user since it has enough permissio ns
 */
 //*(int*)mem = ts->eax;
 asm volatile(
 "pushl %%eax\n\t"
 "pushl %%ebx\n\t"
 "pushl %1\n\t"
 "pushl %0\n\t"
 "popl %%ebx\n\t"
 "popl %%eax\n\t"
 "mov %%ebx, (%%eax)\n\t"
 "popl %%ebx\n\t"
 "popl %%eax\n\t"
 : "=m" (val)
 : "m" ((oskit_size_t)mem)
);
 /* swap in old mapping */
 oskit_uvm_vmspace_set(processesVM);
 /* set user to return after instruction since
 * we have already executed the instruct ion
 */
 ts->eip = ts->eip+5;
 return 0; //handled trap so return to p rocess
 default: printf("not found!\n");
 return 1; //not found so kill process
 }
 }
 return 0; //handled trap so return to process
}

/*
 * For debugging
 */
void
dump_kvmspace()
{
 oskit_uvm_vmspace_dump(&oskit_uvm_kvmspace);
}

L. EXAMPLES/X86/SPROC/USER_CRT.C

The ‘examples/x86/sproc/user_crt.c’ file was modified to permit heap allocation

within partitions that the user process resides.

 72

/*
 * Copyright (c) 2001 The University of Utah and th e Flux
 * Group. All rights reserved.
 *
 * This file is part of the Flux OSKit. The OSKit is free
 * software, also known as "open source;" you can
 * redistribute it and/or modify it under the terms of the
 * GNU General Public License (GPL), version 2, as
 * published by the Free Software Foundation (FSF). To
 * explore alternate licensing terms, contact the
 * University of Utah at csl-dist@cs.utah.edu or +1 -801-
 * 585-3271.
 * The OSKit is distributed in the hope that it wil l be
 * useful, but WITHOUT ANY WARRANTY; without even t he
 * implied warranty of MERCHANTABILITY or FITNESS F OR A
 * PARTICULAR PURPOSE. See the GPL for more detail s. You
 * should have received a copy of the GPL along wit h the
 * OSKit; see the file COPYING. If not, write to t he FSF,
 * 59 Temple Place #330, Boston, MA 02111-1307, USA .
 */

/*
 * C run time for user mode process.
 * Initialize minimal C library, allocate malloc ar ena,
 * etc.
 */

#include <oskit/c/stdio.h>
#include <oskit/com/mem.h>
#include <oskit/lmm.h>
#include <oskit/c/malloc.h>
#include <oskit/c/environment.h> /* libc_memory_obj ect */
#include <oskit/c/unistd.h> /* exit */
#include <oskit/uvm.h>

#include "proc.h"
#include "user_syscall.h"

lmm_t malloc_lmm = LMM_INITIALIZER;
struct lmm_region region;

extern void syscall_return(int code);
extern int main(int argc, char **argv);
/* pass paramaters to user processes for heap alloc ation
 * within their partition
 */
extern int
_start(int arg1, int arg2, int arg3)
{
 oskit_mem_t *memi;
 static volatile int initstate = 0;

 /* Poor lock */
 syscall_lock();
 if (initstate == 0) {

 memi = oskit_mem_init();

 73

 printf("Start user process\n");
 /* Print the arguments received from the kernel */
 printf("arg1 = %x, arg2 = %x, arg3 = %x\n", arg1,
 arg2, arg3);

 /* Initialize LMM for userspace malloc heap */
 /* added heap allocation based on partition s pace */
 lmm_add_region(&malloc_lmm, ®ion, (void*)arg1,
 arg2, 0, 0); //DWC 4/6/2007
 lmm_add_free(&malloc_lmm, (void*)arg1,
 arg2); //DWC 4/6/2007

 libc_memory_object = memi;

 /* set exit hook */
 oskit_libc_exit = syscall_return;
 initstate = 1;
 }
 syscall_unlock();

 /* XXX: please someone add argc and argv! */
 exit(main(0, NULL));
}

M. EXAMPLES/X86/SPROC/CONFIGAPP.C

The ‘examples/x86/sproc/configapp.c’ file contains the code of the configapp

application that creates configuration files in binary form.

#include <stdio.h>
#include <fcntl.h>
#include "config.h"

/* configuration file structure used by LPSK protot ype */
static struct LPSKconfig *c_file;

int main(){
 /* allocate space for the config file structure * /
 c_file = (struct LPSKconfig *) malloc(sizeof(stru ct
 LPSKconfig));
 /* set unique configuration file id */
 c_file->id = 100;
 /* set policy name */
 strncpy(c_file->policy,"policy1", 7);
 /* set version number */
 c_file->version = 1;
 /* set number of partitions */
 c_file->num_of_partitions = 2;
 /* set number of resources */
 c_file->num_of_resources = 2;
 /* set number of processes */
 c_file->num_of_processes = 2;
 /* set number of partition flows */
 c_file->num_of_part_flows = 1;

 74

 /* set number of resource flows */
 c_file->num_of_res_flows = 2;
 /* set timeSlices used for scheduling for partiti ons */
 c_file->partitionList[0].timeSlice = 1;
 c_file->partitionList[1].timeSlice = 1;
 /* set process id’s for the processes */
 c_file->processList[0].process_id = 153;
 c_file->processList[1].process_id = 253;
 /* set priorities used for scheduling the process es */
 c_file->processList[0].priority = 1;
 c_file->processList[1].priority = 1;
 /* set partition memory locations and their sizes */
 c_file->partitionList[0].part_min_addr = 0x900000 00;
 c_file->partitionList[0].part_size = 0x5000000;
 c_file->partitionList[1].part_min_addr = 0xA00000 00;
 c_file->partitionList[1].part_size = 0x10000000;
 /* set unique resource id’s for each resource */
 c_file->resourceList[0].resource_id = 12345;
 c_file->resourceList[1].resource_id = 6785;
 /* set resource memory locations and their sizes* /
 c_file->resourceList[0].res_min_addr = 0xA0009FA8 ;
 c_file->resourceList[0].res_size = 0x4;
 c_file->resourceList[1].res_min_addr = 0xA0009FAC ;
 c_file->resourceList[1].res_size = 0x4;
 /* pass unique resource id’s to partitions */
 c_file->partitionList[1].resource_ids[0] = 12345;
 c_file->partitionList[1].resource_ids[1] = 6785;
 /* pass unique process id’s to partitions */
 c_file->partitionList[0].process_ids[0] = 153;
 c_file->partitionList[1].process_ids[0] = 253;
 /* set unique partition id’s for each partition * /
 c_file->partitionList[0].partition_id = 89354;
 c_file->partitionList[1].partition_id = 90876;
 /* pass unique partition id’s to partition flows */
 c_file->partFlows[0].partition_id_from = 89354;
 c_file->partFlows[0].partition_id_to = 90876;
 /* set the access mode for partition flow */
 c_file->partFlows[0].access_mode = RW;
 /* pass unique resource id’s to resource flows */
 c_file->resFlows[0].resource_id = 12345;
 c_file->resFlows[1].resource_id = 6785;
 /* define the process that has access to the reso urce
 * flows
 */
 c_file->resFlows[0].process_id = 153;
 c_file->resFlows[1].process_id = 153;
 /* set the access modes for the resource flows */
 c_file->resFlows[0].access_mode = RW;
 c_file->resFlows[1].access_mode = RW;
 /* set the name of the file with main of the proc ess */
 strncpy(c_file->processList[0].info.arg,
 "/usermain_testsproc", 19);
 /* set partition constraints to the process mappi ng
 * defines and scheduling ticks of the process
 */
 c_file->processList[0].info.proc_size = 0x5000000 ;
 c_file->processList[0].info.proc_min_addr = 0x900 00000;

 75

 c_file->processList[0].info.proc_max_addr = 0x950 00000;
 c_file->processList[0].info.proc_heap_start_addr =
 0x92500000;
 c_file->processList[0].info.proc_heap_size = 0x10 000;
 c_file->processList[0].info.sched_ticks = 1;
 /* set the name of the file with main of the proc ess */
 strncpy(c_file->processList[1].info.arg,
 "/usermain_hello", 15);
 /* set partition constraints to the process mappi ng
 * defines and scheduling ticks of the process
 */
 c_file->processList[1].info.proc_size = 0x1000000 0;
 c_file->processList[1].info.proc_min_addr = 0xA00 00000;
 c_file->processList[1].info.proc_max_addr = 0xB00 00000;
 c_file->processList[1].info.proc_heap_start_addr =
 0xA7500000;
 c_file->processList[1].info.proc_heap_size = 0x10 000;
 c_file->processList[1].info.sched_ticks = 1;
 /* write the config data to the configuration fil e */
 writeData(c_file, "configfile");
 return 0;
}

/* Writing */
/* This function writes the LPSKconfig structure to file */
int writeData(struct LPSKconfig* data, const char * file)
{
 int fd = 0;
 FILE *f;
 /* open the file for writing */
 f = fopen(file, "w");
 /* write the binary structure right to the file */
 fwrite(data,sizeof(struct LPSKconfig),1,f);
 /* close the file */
 fclose(f);

 return 0;
}

N. EXAMPLES/X86/SPROC/GNUMAKERULES

The ‘examples/x86/sproc/gnumakerules’ was modified to allow processes to run

in their specific partition and to read the configuration file for the LPSK prototype.

/*
 * Copyright (c) 2001 The University of Utah and th e Flux
 * Group. All rights reserved.
 *
 * This file is part of the Flux OSKit. The OSKit is free
 * software, also known as "open source;" you can
 * redistribute it and/or modify it under the terms of the
 * GNU General Public License (GPL), version 2, as
 * published by the Free Software Foundation (FSF). To
 * explore alternate licensing terms, contact the

 76

 * University of Utah at csl-dist@cs.utah.edu or +1 -801-
 * 585-3271.
 * The OSKit is distributed in the hope that it wil l be
 * useful, but WITHOUT ANY WARRANTY; without even t he
 * implied warranty of MERCHANTABILITY or FITNESS F OR A
 * PARTICULAR PURPOSE. See the GPL for more detail s. You
 * should have received a copy of the GPL along wit h the
 * OSKit; see the file COPYING. If not, write to t he FSF,
 * 59 Temple Place #330, Boston, MA 02111-1307, USA .
 */

ifndef _oskit_examples_x86_sproc_makerules_
_oskit_examples_x86_sproc_makerules__ = yes

USER_PROGS = usermain_testsproc usermain_hello
 usermain_malloc
added configfile as a bmod to link in configurati on file
BMODS = kernel swapfile configfile $(USER_PROGS)
TARGETS = Image

all: $(TARGETS)

SRCDIRS += $(OSKIT_SRCDIR)/examples/x86/sproc

INCDIRS += $(OSKIT_SRCDIR)/oskit/c

CLEAN_FILES += $(TARGETS) $(BMODS) *.gdb
OSKIT_CFLAGS += -DOSKIT

The C library is made up of several pieces. The c ore
library, the POSIX interface that converts syscal ls to
COM, and the actual COM interfaces. Note that the C
library is built with the COM library.
CLIB = -loskit_c
#CLIB_P = -loskit_c_p -loskit_gprof -loskit_c_p -
#loskit_kern_p

include $(OSKIT_SRCDIR)/GNUmakerules

DEPENDLIBS = $(filter %.a,
 $(foreach DIR,$(LIBDIRS),$(wildcard $(DIR)/*)))

THRDLIBS = -loskit_threads -loskit_netbsd_uvm
THRDLIBS_P = -loskit_threads_p -loskit_netbsd_uvm _p
CLIB = -loskit_freebsd_c_r -loskit_com -loskit_th reads
CLIB_P = -loskit_freebsd_c_r_p -loskit_com_p \
 -loskit_threads_p -loskit_gprof \
 -loskit_freebsd_c_r_p -loskit_kern_p

kernel: $(OBJDIR)/lib/multiboot.o kernel.o kern_sys call.o
 $(DEPENDLIBS)
 $(OSKIT_QUIET_MAKE_INFORM) "Linking example $@"
 $(LD) -Ttext 100000 $(LDFLAGS) $(OSKIT_LDFLAGS) \
 -o $@ $(filter-out %.a,$^) \
 -loskit_startup -loskit_fsnamespace \
 -loskit_memfs -loskit_sproc \

 77

 -loskit_netbsd_uvm -loskit_exec -loskit_memfs \
 $(THRDLIBS) -loskit_clientos \
 -loskit_dev -loskit_kern -loskit_lmm \
 $(CLIB) $(OBJDIR)/lib/crtn.o

kernel_p.gdb: $(OBJDIR)/lib/multiboot.o kernel.po
 kern_syscall.po $(DEPENDLIBS)
 $(OSKIT_QUIET_MAKE_INFORM) "Linking example $@"
 $(LD) -Ttext 100000 $(LDFLAGS) $(OSKIT_LDFLAGS) \
 -o $@ $(filter-out %.a,$^) \
 -loskit_startup_p -loskit_fsnamespace_p \
 -loskit_memfs_p -loskit_sproc_p \
 -loskit_netbsd_uvm_p -loskit_exec_p \
 -loskit_memfs_p \
 $(THRDLIBS_P) -loskit_clientos_p \
 -loskit_realtime_p -loskit_kern_p -loskit_lmm_p\
 $(CLIB_P) \
 $(OBJDIR)/lib/crtn.o

kernel_p: kernel_p.gdb
 cp kernel_p.gdb kernel_p
 strip kernel_p

Build user mode programs

USER_CRT = user_crt.o
USER_OBJS = user_syscall.o user_mem.o user_morecore .o
added 90000000 to have this process be in a parti tion
usermain_testsproc: $(USER_CRT) usermain_testsproc. o
 $(USER_OBJS) \
 $(CC) -nostdlib -static \
 $(USER_CRT) usermain_testsproc.o \
 $(USER_OBJS) \
 -o $@ -Xlinker -Ttext -Xlinker 90000000 \
 -L../../../lib -loskit_c -loskit_lmm
added A0000000 to have this process be in a parti tion
usermain_hello: $(USER_CRT) usermain_hello.o $(USER _OBJS) \
 $(CC) -nostdlib -static \
 $(USER_CRT) usermain_hello.o $(USER_OBJS) \
 -o $@ -Xlinker -Ttext -Xlinker A0000000 \
 -L../../../lib -loskit_c -loskit_lmm
added 50000000 to have this process be in a parti tion
usermain_malloc: $(USER_CRT) usermain_malloc.o $(US ER_OBJS)
 $(CC) -nostdlib -static $(USER_CRT) usermain_mallo c.o
 $(USER_OBJS) \
 -o $@ -Xlinker -Ttext -Xlinker 50000000 \
 -L../../../lib -loskit_c -loskit_lmm

Small swapfile (1MB)

swapfile:
 dd if=/dev/zero of=$@ count=2048

Bind all together!

 78

Image: $(BMODS)
 echo "use 'mkmb2 $(BMODS)' to build the bmod"

Image_p: kernel_p kernel_p.gdb swapfile $(USER_PROG S)
 echo "use 'mkmb2 -o $@ kernel_p kernel_p.gdb:a.out
 swapfile configfile $(USER_PROGS)' to build a bmod"

endif

O. DISSASSEMBLY OF TESTSPROC.C

The ‘dump’ file of testpsroc.c was created using GNU objdump. The machine

code and the assembly are listed with comments to understand which assembly tested

which memory access class test. The code has comments of which test was run by the

assembly instruction and follow the naming convention used in Appendix B. The

opcodes mentioned in Appendix B are listed here as machine code and are either the first

byte or first two bytes listed on each line.

4c: ff 35 a8 9f 00 a0 pushl 0xa0009fa8 //Te st AC10
52: 8f 05 ac 9f 00 a0 popl 0xa0009fac //T est AC11
58: b8 12 00 00 00 mov $0x12,%eax
5d: a3 a8 9f 00 a0 mov %eax,0xa0009fa8 //Te st AC9
62: c7 05 a8 9f 00 a0 64 movl $0x64,0xa0009fa8//Te st AC1
69: 00 00 00
6c: 50 push %eax
6d: 68 ef be 00 a0 push $0xa000beef //Te st AC6
72: 58 pop %eax//Test AC6
73: b8 ef be 0d a0 mov $0xa00dbeef,%eax //Te st AC2
78: 58 pop %eax
79: 58 pop %eax
7a: 5a pop %edx
7b: 6a 64 push $0x64
7d: 68 4f 00 00 00 push $0x4f
82: e8 fc ff ff ff call 83 <main+0x83>
87: c7 04 24 01 00 00 00 movl $0x1,(%esp,1)
8e: e8 fc ff ff ff call 8f <main+0x8f>
93: a1 a8 9f 00 a0 mov 0xa0009fa8,%eax //Te st AC8
98: 8b 15 ac 9f 00 a0 mov 0xa0009fac,%edx //Te st AC8
9e: 8b 00 mov (%eax),%eax //Test A C3
a0: 89 02 mov %eax,(%edx) //Test AC4
a2: 83 c4 0c add $0xc,%esp
a5: ff 05 a8 9f 00 a0 incl 0xa0009fa8 //Test A C5
ab: 83 05 ac 9f 00 a0 04 addl $0x4,0xa0009fac //T est AC5
b2: 6a 01 push $0x1
b4: 68 ac 9f 00 a0 push $0xa0009fac //Test AC7
b9: 68 a8 9f 00 a0 push $0xa0009fa8 //Test AC7
be: e8 fc ff ff ff call bf <main+0xbf> //Te st AC7
c3: c7 04 24 02 00 00 00 movl $0x2,(%esp,1) //Tes t AC7
ca: e8 fc ff ff ff call cb <main+0xcb> //Te st AC7
/* Test AC12 */

 79

cf: e9 a8 9f 00 a0 jmp a000a07c <main+0xa000 a07c>

 80

THIS PAGE INTENTIONALLY LEFT BLANK

 81

LIST OF REFERENCES

1. Saltzer, J. H., and Schroeder, M. D., “The Protection of Information in Operating
Systems,” Proceedings of the IEEE. 63(9):1278-1308. 1975.

2. Nguyen, T. D., Levin, T. E., and Irvine, C. E., "TCX Project: High Assurance for
Secure Embedded Systems,” 11th IEEE Real-Time and Embedded Technology
and Applications Symposium Work-In-Progress Session, San Francisco, CA,
March 2005.

3. Levin, T. E., Irvine, C. E., and Nguyen, T. D., "A Least Privilege Model for Static
Separation Kernels,” NPS-CS-05-003, Naval Postgraduate School, October 2004.

4. Irvine, C. E., Levin, T. E., Nguyen, T. D., and Dinolt, G. W., "The Trusted
Computing Exemplar Project,” Proceedings of the 2004 IEEE Systems, Man and
Cybernetics Information Assurance Workshop, West Point, NY, June 2004, pp.
109-115.

5. Myers, P. A., “Subversion: The Neglected Aspect of Computer Security,”
Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA. June 1980.

6. Anderson, E. A., Irvine, C. E., and Schell, R. R., “Subversion as a Threat in
Information Warfare,” Journal of Information Warfare, Volume 3, No. 2, June
2004, pp. 52-65.

7. Lack, L., “Using the Bootstrap Concept to Build an Adaptable and Compact
Subversion Artifice,” Master’s Thesis, Naval Postgraduate School, Monterey,
CA, USA, June 2003.

8. Murray, J., “An Exfiltration Subversion Demonstration,” Master’s Thesis, Naval
Postgraduate School, Monterey, CA, USA, June 2003.

9. Rogers, D., “A Framework for Dynamic Subversion,” Master’s Thesis, Naval
Postgraduate School, Monterey, CA, USA, June 2003.

10. Anderson, E.A., A Demonstration of the Subversion Threat: Facing a Critical
Responsibility in the Defense of Cyberspace, Master’s Thesis, Naval Postgraduate
School, Monterey, CA, USA, March 2002.

11. Common Criteria Project Sponsoring Organizations (CCPSO). Common Criteria
for Information Technology Security Evaluation. Version 3.0 Revision 2,
CCIMB-2005-07-[001, 002, 003]. June 2005.

12. U.S. Department of Defense, “Trusted Computer System Evaluation Criteria,”
DoD 5200.28-STD, 26 December 1985.

 82

13. Anderson, J. P., Computer Security Technology Planning Study, ESD-TR-73-51,
Vol. I, ESD/AFSC, Hanscom AFB, Bedford, Mass., October 1972 (NTIS AD-758
206).

14. Bell, D.E., and La Padula, L.J., “Secure Computer System: Unified Exposition
and Multics Interpretation,” MTR-2997, Mitre Corp., Bedford, MA, July 1975.

15. The Flux Research Group: Department of Computer Science,
University of Utah, “The OSKit: The Flux Operating System Toolkit Version
0.97,” March 2002. Available: http://www.cs.utah.edu/flux/oskit/html/oskit-
www.html Accessed: June 2007.

16. Red Hat, Inc., “Red Hat Linux Reference Guide,” 2003. Available:
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/ref-guide/s1-grub-
installing.html Accessed June 2007.

17. Subversion 1.4.4 – Available: http://www.redhat.com/docs/manuals/linux/RHL-9-
Manual/ref-guide/s1-grub-installing.html Accessed June 2007.

18. APR – Available: http://svn.apache.org/repos/asf/apr/apr/branches/0.9.x Accessed
June 2007.

19. APR-util – Available: http://svn.apache.org/repos/asf/apr/apr-util/branches/0.9.x
Accessed June 2007.

20. OSKit 20020317 – Available: ftp://flux.cs.utah.edu/flux/oskit/oskit-
20020317.tar.gz Accessed June 2007.

 83

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, VA

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, CA

3. Dr. Diana Gant

National Science Foundation

4. Dr. Ralph Wachter
 ONR
 Arlington, VA

5. Dr. Cynthia E. Irvine
 Naval Postgraduate School
 Monterey, CA

6. Timothy Vidas
 Naval Postgraduate School
 Monterey, CA

7. Thuy D. Nguyen
 Naval Postgraduate School
 Monterey, CA

8. Donald Carter
 Civilian, Naval Postgraduate School
 Monterey, CA

