RAESTANTIA PER SCIENTIAM

¥

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

AN OSKIT-BASED IMPLEMENTATION OF LEAST
PRIVILEGE SEPARATION KERNEL MEMORY
PARTITIONING

by
Donald W. Carter
June 2007

Thesis Advisor: Cynthia E. Irvine
Co-Advisor: Tim Vidas

Approved for public release; distribution isunlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of infeation is estimated to average 1 hour per respamsleiding the time for reviewing instructior,
searching existing data sources, gathering andtaiaing the data needed, and completing and renigulhe collection of information. Senf
comments regarding this burden estimate or any atbigect of this collection of information, incladi suggestions for reducing this burden, jto
Washington headquarters Services, Directoratenformation Operations and Reports, 1215 JeffersaviDHighway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management andgBtidPaperwork Reduction Project (0704-0188) WagbmDC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 2007 Master’s Thesis

4. TITLE AND SUBTITLE An OSKit-Based Implementation of Least Privilege] 5. FUNDING NUMBERS

Separation Kernel Memory Partitioning

6. AUTHOR(S) Donald W. Carter
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/M ONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are thoskeoauthor and do not reflect the official poligy
or position of the Department of Defense or the. (G8vernment.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlied

13. ABSTRACT (maximum 200 wor ds)

In an environment with valuable information ass#is, threat of subversion is real. Thus, systerastie built from
the ground up to counter the level of sophisticatimd capital that is pitted against them. To dusilich systems, rigoroys
assurance criteria must be met.

Currently for high assurance systems there is nuigy available example of their design and comdion. The
Trusted Computing Exemplar (TCX) Project is intethde make publicly available a high assurance carapband its evaluatiof
evidence. This work is to build a working prototypf selected TCX kernel functionality.

The prototype is constructed and based on OSKitrastricts information flow between memory paotit and resourcg
accesses made by processes. Pages are staticalyerl on a per-partition basis and page fanéihandled by the kernel.

The prototype demonstrates a least privilege-baggaioach to exported resource management. It aiseparatior
kernel with preloaded configuration data to allecaemory resources to processes.

14. SUBJECT TERM S separation kernel, least privilege, high assurapaging, OSKit 15. NUMBER OF
PAGES
101
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20.LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF | ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution isunlimited
AN OSKIT-BASED IMPLEMENTATION OF LEAST PRIVILEGE
SEPARATION KERNEL MEMORY PARTITIONING

Donald W. Carter
Civilian, Naval Postgraduate School
B.S., Cal-State University of Bakersfield, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 2007
Author: Donald W. Carter
Approved by: Cynthia E. Irvine, Ph.D.

Thesis Advisor

Tim Vidas
Co-Advisor

Peter J. Denning, Ph.D.
Chairman, Department of Computer Science

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

In an environment with valuable information assétg threat of subversion is
real. Thus, systems must be built from the growpd to counter the level of
sophistication and capital that is pitted agaihsi. To build such systems, rigorous
assurance criteria must be met.

Currently for high assurance systems there is rdigy available example of
their design and construction. The Trusted Comguttxemplar (TCX) Project is
intended to make publicly available a high asswwanomponent and its evaluation
evidence. This work is to build a working prototymf selected TCX kernel
functionality.

The prototype is constructed and based on OSKdt,rastricts information flow
between memory partitions and resource accesse® rmgdprocesses. Pages are
statically allocated on a per-partition basis aagepfaults are handled by the kernel.

The prototype demonstrates a least privilege-bappdoach to exported resource
management. It uses a separation kernel with gdeld configuration data to allocate

memory resources to processes.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUGCTION. ...ttt et s e s e nsae e sneeesneeesreeeens 1
A. MOTIVATION .ottt 1
B. PURPOSE ...ttt et sne e snnee s 1
C. THESIS ORGANIZATION ..ottt 1
BACK GROUND ...ttt sttt e st e sae e e s ae e e snne s s enseesnnneesneneens 3
A. SUBVERSION....citiiieeee st 3
1. Definition of SUDVErSION ..o 3

2. PUrpose Of SUDVErSIONoouiiiiiiiieceeee e 3

3. Implementation of SUDVErSIoN.........ccccvecivievecie e 4

4, Subversion Vulnerability Pertinence..........cccoceveevinceneeinseenenens 4

5. Protection against SUDVErSIONccoceeieciene e 4

6. COSt Of MITIGAtION ..o e 5

7. SUDVEN SION SUMMAIY ...cuvieiiecieeieeiesieesie e eee e sae e ssee e eeesneesseennens 5

B. TCX PROJECT ittt e sttt s sbae e e b snaeeen 5
1. LG9, QA o] o] 0 7= T o IS 5

2. Implementation of TCX ApProach ..., 6

C. OPEN SOURCE CONFIGURABLE OPERATING SYSTEMS................ 6
1. Open Source Development Advantages..........cceveeveeeereeieeseesieninens 6

2. Open Source Development Disadvantages..........ccecvveererieeneesiennens 6

3. Supported Featuresof Configurable Operating Systems................ 7

D SEPARATION KERNEL ..ottt 7
1. Separation Kernel Advantages.........cccveceeveereveeseesieseeseesee e seeenens 7

2. Separation Kernel Disadvantages.........ccoveevereeneeieneeneesie e 7

3. Principleof Least Privilegeapproach.........ccccccovvviiveeivccececiec, 8
KERNEL KIT SELECTION ..ottt et s e s 9
A. KERNEL KIT REQUIREMENTSooiiiiiie s 9
1 Mandatory ReQUIreMENTS........cccveveieereee e 9

a. X86 PlatfOrm.......coviiieiee e 10

b. Stable REIGASE.........coiiieeee e 10

C. Open Source Code ENVironment..........ccoeeeevneenenieseenennns 11

d. More Than one Privilege Domain Environment................... 12

2. Suggested REQUITEMENTSooeiiieerieee e 12

a. Simple Code Generation SUPPOIt........ccceveeveerieereeieeseeseeeeens 12

b. Actively Maintainedcccoveienieneeeree e 13

C. Debugging SUPPOITcceevveeeereeeieseesieeiesee e eeesee e eeesree e 14

B. KERNEL KIT CONSIDERED......cccoiiieecee e 14
C. FINAL DETERMINATION ...ttt 15
1. Final Deciding FaCLOrS.......cccveiviiereeie e 15

a. FHASCO .t 15

b. CROICES ... 16

C. EC0S... i 16

d. OSKIT. ettt 16

2. Final SEIECTION ...oeeeiieceee e 17

V. PROTOTYPE IMPLEMENTATION ...cocoiiiiieieesesie et 19
A. SETTING UP THE DEVELOPMENT ENVIRONMENTc.ccoovninienne. 19
1 Har QWK €. . s 20

2. Software CompatibDilityccccveieiieriee e 20

3. Building the Prototype.......ccceccveeereeie e 20

a. COMPIHING et 20

b. Linking Together the Kernel Image..........cccooveveveevvccieseenne. 21

4, USING VErsion CONEIOlcooueiiiiierieeie et 21

B. IMPLEMENTING CONFIGURATION FILE. ... 21
1 Configuration Dat@........ccccceveeieriinieseee e 22

a. PartitioNS......cooieieieeeee e 22

b PrOCESSES..... ittt 22

C. RESOUICES..... oottt 22

d. Partition FIOWS........cccoiieiiieeee s 22

e RESOUICES FIOWS......ceeiiieieeee s 23

2. Porting the Configuration Fileto the Prototype........cccceccvevenuenee. 23

a. The Application to Construct the Configuration File........... 23

b. Binary Reading of the Configuration File...........ccccccccvveuennee. 24

C. PARTITIONING OF MEMORY ...octiiiieieienenie e nneas 24
1. Partitioning Via PagiNg......c.cceoveeereeieieeseee et eie e 24

a. Hardware Page Faults...........cccooieieniiieee e 25

2. Page Fault Trap Handler ... 25

a. Handling Paging.......cccoceririnieienee e 25

b. Handling of OpCOdeS.........cccvvveiereerieeceece e 26

3. Permission Handling........ccooeeeieene e 26

a. Returning to USer ProCeSS.......coovieeveeieneenee e 27

V. PROTOTYPE TESTING AND RESULTS......coiieeseeneree e 29
A. LI =S L I I A SRS P 30
B. FUNCTIONAL TESTING ..ottt 30
1 AdAreSSValUES.......coeoiiiiiieeieeeee e 30

2. LIS O SRR 31

C. RESUL TS ettt st sne e aentenbesnesnenneas 32
VI. CONCLUSION AND FUTURE WORK ..ottt 35
A. CONCLUSION ittt sttt st e e saesnesresneanis 35
B. FUTURE WORK ..ottt sttt snenneas 35
1. Complete Handling of Opcodesin the Page Trap Handler 35

2 Static SCNEAUITNG ..o s 36

3. Handling Other ReSOUIce TYPES.....cccvveereerieeiesteeie e 36

4 Efficient Caching of Resource ACCESSES........cccerverierieereenieneesieeens 36
APPENDIX A: INSTALLATION ACTIVITIESooi et 37
A. ENIVRONMENT INSTALLATION ..ot 37
1. Serial Link CONNECLION.......coiiieiieieiesie s 37

viii

2. LiNUX INStallation.......cccoiiiieeeeeee s 37

3. GRUB INSLaAll@tionccceviiirinieeeesiesese s 37

4, Connecting to SUbversion Server ... 38

B. OSKIT INSTALLATION Lttt 39
APPENDIX B: TEST PROCEDURES.........ccooiotiiiiiieeese et 41
A. TESTING ACCESS CLASSES ..ottt 42

1. CoNStant tO M EMOTYeeiiiii e 42

2. Memory Addressto REJISIENccoveviiieieeiieeee e 42

3. Memory Pointed by a Register to Registercovvvvieveeieceecieenen, 42

4, Register to Memory Pointed by a Registerccoovvviivenieneeneenen. 43

5. I ncrementing/Decrementing MemOoryccooveveeeeeeeneeeeeseeniennens 43

6. Pushing/Popping Memory Address..........ccooveeeneenenieeseeniesee e 43

7. MEMOIY 1O MEMOTY ..o 43

8. MeEMOrY t0 REJISLEN ...oceiiieeieeeieee e 43

0. REQISLEr tOMEMOIY ..ot 44

10. PUSNING MEMOTY ..ot 44

11. POPPING M EBIMOTY ..ot 44

12. Accessing Program Counter AddreSs........ccveeveeveseeneeieesieenesnnens 44

B. TESTING THE PAGE FAULT TRAPHANDLER.....cccccoeiiieieeice 44
APPENDIX C: PROTOTYPE CODE IMPLEMENTATION ..ot 47
A. OSKIT/ISPROC.H ..ottt 47

B. OSKITIUVIM . H .ottt 47

C. THREADS/SCHED_POSIX/SCHED _POSIX.C...ccooviieieieeriesese e 47

D. THREADS/PTHREAD_CREATE.C ..ot 48

E. UVM/SPROC/SPROC.C.....ooooiiiecteetieieee et sne s 48

F. UVM/UVM/OSKIT_UVM.C ..ot 49

G. EXAMPLES/X86/SPROC/KERNEL .H......ooiiiiiiiieeeee e 49

H. EXAMPLES/X86/SPROC/CONFIG.Hccoeiiiiiecieeceeeeee e 50

l. EXAMPLES/X86/SPROC/USERMAIN_TESTSPROC.C.......ccocevvriennene 52

J. EXAMPLES/X86/SPROC/ USERMAIN_HELLO.C.....ccoevveereceeee 53

K. EXAMPLES/X86/SPROC/KERNEL.C......cccooiiiiinireneeeese e 55

L. EXAMPLES/X86/SPROC/USER_CRT.C....ooovvieieeiecieeeneeeesie e 71

M. EXAMPLES/X86/SPROC/CONFIGAPP.C.....ccceiirirererieeene s 73

N. EXAMPLES/X86/SPROC/GNUMAKERULES........ccooeieieienenereseine 75

O. DISSASSEMBLY OF TESTSPROC.Cooooiiiiiininienereeeeee e 78

LIST OF REFERENCES.......cci ittt sttt na et st nneans 81
INITIAL DISTRIBUTION LIST .ottt sse st sne s s 83

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF FIGURES

Figure 1. System TOPOIOGY. ...ccoeeeiieeee e 29
Figure 2. L2 Lo I 0T] o o | 31

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

LIST OF TABLES

Table 1. Reviewed Kernel KitS. 15
Table 2. Memory Access Class Test DeSCrptioNSaeaaa..coooeevvviiveeeeeiiciee e 32
Table 3. TESE RESUILS. ..ot 33

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

ACKNOWLEDGMENTS

| wish to thank my wife and two kids for their lowg support during the writing of
this thesis. | cannot thank my thesis advisors,@nthia Irvine and Tim Vidas, enough
for whose tireless efforts and technical assistahoeughout the research work of this
thesis helped me complete it on time.

This material is based upon work supported by th&@ddal Science Foundation
under Grant No. DUE -0414102. Any opinions, firghn and conclusions or
recommendations expressed in this material areetbbthe author and do not necessarily

reflect the views of the National Science Foundatio

This material is also based upon work supportethbyOffice of Naval Research.
Any opinions, findings, and conclusions or recomdaions expressed in this material
are those of the author and do not necessarilgatethe views of the Office of Naval

Research.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

INTRODUCTION

A. MOTIVATION

Finding the right balance between protecting datafthose who should not have
access and enabling data sharing with those whe hameed to know is a difficult
problem. This problem is a real concern for thasponsible over protecting classified
data. To help those responsible, the Principleeaist Privilege (PoLP) [1] can motivate
approach to system design that results in the giote of data while still permitting
access to those with the access need. This appisabeneficial for building high
assurance systems that protect sensitive data.

One problem with high assurance systems is thae tiseno publicly available
example of their design and construction. Thissdoet enable reuse of key concepts
associated with the design and construction of lagburance systems, which would

benefit future projects in the domain space fohlvesearch and commercial use.

The motivation for this thesis is to provide a pitgpe of certain separation kernel
functionality for the TCX Project, which has theajmf providing a high assurance

kernel that adheres to the PoLP and makes pulali@yable its evaluation evidence.
B. PURPOSE

The purpose of the work done and explained inhjser is to prototype certain
functions for a Least Privilege Separation Kernd?$%K) as part of the TCX Project.

This thesis focuses on memory separation that adlierthe PoLP [2]-[4].
C. THESISORGANIZATION

The organization of this work is as follows:
» Chapter | discusses the motivation and purposkisthesis.

* Chapter Il discusses the background information understanding the

thesis work.

Chapter 1l discusses the operating system devedopriits that were

surveyed and chosen for use in the LPSK prototype.
Chapter IV discusses the implementation of the Lp8Kotype.

Chapter V discusses the procedures used in tegteng PSK prototype

and their results.

Chapter VI concludes with a discussion of the biéhefained from the

approach taken and future work still needed todreed

[1. BACKGROUND

This chapter provides background on a range ofc$opissociated with the
prototype implementation of a least privilege sapan kernel interface. To fully
understand this work one must be familiar withtibygcs of subversion, the TCX project,
open source configurable operating systems, separkernels, and the Least Privilege
Separation Kernel (LPSK).

A. SUBVERSION

When other forms of attack against a system argossible, sophisticated, well
funded attackers employ subversion. Even thoudlvession is time consuming, these
attackers are sufficiently focused to mount suctylange attacks. To better understand
the aspects of subversion, this section will defsubversion, describe subversion’s
purpose and who uses it, explain how subversianpéemented, deployed and triggered,
outline what we can do to prevent subversion wighaiffiliated mitigation costs, and

reiterate why subversion prevention is important.
1. Definition of Subversion

System Subversion as defined by Myers is ‘... theedowand methodical
undermining of internal and external controls ower system lifetime to allow
unauthorized or undetected access to system resoarad/or information.” Covertly
compromising a system through subversion permasutde of surreptitious methods to

allow undetectable unauthorized access to a systdata or controls [5].
2. Purpose of Subversion

The general purpose of subversion is to covertiy gaivileged access to the
target system in order to exploit or threaten tplei it at the most opportune time.

Subversion is the attack of choice by the profesdiattacker [6].

3. I mplementation of Subversion

Implementing subversion is tricky, but can be dbgene or more compromised
insiders and through the use of special mechanisB@mpromising insiders or getting
compromised individuals and/or mechanisms insigexeernment and/or civilian facility
is a method that sophisticated adversaries willl@xpvhen necessary. To deploy
subversion, a mechanism or insider must get a daok inside a system that is hidden
from detection until used. This may be done thiotige use of malware or rootkitting a
system during any of the stages of the life cyéléhe system. A trigger for a backdoor
might be as simple as receipt of a single UDP paoker the Internet by a system
machine that has been subverted [7]. The abifignoinsider to deploy such subversion

mechanisms makes the insider a great potentiatthre

4, Subversion Vulnerability Pertinence

Experiments in system subversion have demonstrditad any medium level
programmer has the capability to subvert a system,it did not take very many lines of

code to subvert a system [7]-[10].
5. Protection against Subversion

To mitigate the threat of system subversion, cerguarantees in a system’s
security functional requirements and security aaste requirements must be established.
An international standard known as the Common @Gaiteas been established as a means
to guarantee that functional and assurance reqammsrare met to the level as promised.
The Common Criteria has an assurance ranking systaeging from EAL1 to EAL7
[11]. EALY is similar to Class Al from the Trusté&bmputer System Evaluation
Criteria [12], an older standard. To obtain a higAL ranking, the system must go
through costly and time consuming methodical preess but considering the harm
unauthorized access to information could causesetlegtra measures are worth it. The
Trusted Computing Exemplar (TCX) project is devatgpan EAL 7 system that will be
openly available [2].

6. Cost of Mitigation

The use of a highly rigorous development methodglag required at EAL7, is a
way to protect a system from subversion. ProtgctdoD facilities this way from
subversion is quite expensive. System subversam ke mitigated by methodically
verifying every aspect of the system through formedthods and other procedures.
Unfortunately, this method only works on small syss$ since “[t]he size and complexity
of today’s typical large system prohibit attempisdemonstrate that the entire system is
verifiable” [6].

7. Subversion Summary

Subversion was defined via Myers’ system subversieimition. Subversion’s
purpose and the people involved are discussed tterbenderstand the threat.
Subversion’s implementation, deployment and triggermechanisms were briefly
discussed. The lack of readily available develapnframeworks to build high assurance
systems has kept development costs hidlm. combat these costly endeavors, NPS is
developing the TCX project, one objective of whishto reduce the time necessary to

generate high assurance systems.

B. TCX PROJECT

1 TCX Approach

The objective of the Trusted Computing Base (TCK)jgxrt is to make readily
available source code and documentation that wilp lothers build more complex high
assurance systems [2]. The project is building cggen source high assurance
development framework, least-privilege separatiem&l, and model application. The
intent for the final kernel is to bring the systésran initial secure state and to ensure that

every possible subsequent state is secure.

2. I mplementation of TCX Approach

The implementation of the TCX project involves mastgges. The first stage
consists of defining a high assurance developmearnhdwork. The second stage
involves using the framework to build a trusted potmg component based on the
reference monitor concept [13]: the Least Privil&gparation Kernel (LPSK). The third
stage will be a third party evaluation of the LPSKinally, the results from the project
will be made available. Source code, as well he, documentation will be made
available as open source [2]. The work presenézd bonsists of building and testing a
prototype that exhibits a subset of the interfagacfionality of the least privilege

separation kernel.
C. OPEN SOURCE CONFIGURABLE OPERATING SYSTEMS

To enable the building of the prototype, a confadle operating system is used.
An open source configurable operating system is o@en source development
environment that can be used to create, alter,oangidate kernels and their internal
mechanisms. This section discusses the advansagksisadvantages of open source

software and provides a list of supported feattmesonfigurable operating systems.
1. Open Source Development Advantages

Keeping a project open source has many advanta@pen source projects allow
a larger amount of scrutiny among peers througmogses of viewing source code and
procedure documents. Keeping a project open sa@liloes other groups to extend the
research undertaken and add input. In additiorenopource projects, relative to
proprietary projects, often do not need as manyuegs expended to sell good ideas.

2. Open Sour ce Development Disadvantages

However, open source projects also have disadvesitagdpen source projects
may have very little funding. Some open source mames such as Red Hat Inc. have
been able to fund such projects by charging feesefthnical support. Another problem

6

is many open source development kits have beendabad or have had limited recent

contributions, making it difficult to run the latdsardware and/or software.
3. Supported Featuresof Configurable Operating Systems

A configurable operating system may have many featudepending on its
intended use. Certain features are advantageousséo in developing the prototype.
These features include: platform support, hardwiauméti-ring support, memory isolation,
ease of use for compilation (i.e., configure, ma&ad make install), /0O support,
debugging support, simple design, kernel systeils,Gid memory management.

D. SEPARATION KERNEL

A separation kernel is a kernel that allocatesuess, blocks or partitions, and
mediates flow between blocks. Its mechanisms muhe most privileged domain of the
system. A separation kernel has both advantagésliaadvantages over the traditional
security kernel approach. These advantages aadw#iatages will be introduced along
with the Least Privilege Separation Kernel (LPSKpm@ach which is slightly different

than the typical separation kernel approach.

1. Separation Kernel Advantages

The separation kernel approach simplifies the mation flow checking
mechanisms of the kernel base by preventing dirgetaction between processes that
have been separated. The separation kernel apprearks by partitioning system
resources. This approach also allows the separdtonel to be very simple, for
evaluation, and moves non-security relevant pracgssit of the separation kernel.

2. Separation Kernel Disadvantages

Policies such as those captured by the Bell-LaRadi4] model are not part of
the separation kernel definition or implementatiomhus when a separation kernel is
used to enforce a Multi-Level Security (MLS) poli@xtraordinary care must be taken to

define the kernel configuration data.

3. Principle of Least Privilege approach

The principle of least privilege approach limitsformation flow between
partitions to only the flow required to achieve thessired functionality of the system as a

whole.

1. KERNEL KIT SELECTION

This chapter describes the selection process foosithg the kernel kit that was
used for the building of the prototype. The evahtthoice was OSKit. To understand
the reason for this choice, one must review thaiirements used in the kernel kit
selection. A kernel kit provides the ability tostomize and extend the features and

capabilities of the kernel.
A. KERNEL KIT REQUIREMENTS

To enable the development of the kernel prototgpleernel kit has to be chosen.
A sample of kernel kits was taken based on twoirements: the operating system could
not be too large and complex and it had to be ewriin the C/C++ language and/or
assembly. The sample set of candidate kerneldtsnot intended to be comprehensive
but merely to include the most predominant smallesoperating systems that appeared
to provide kernel development capabilities. Aftee sample set was identified, the
various operating systems were reviewed againstiragents to determine the best
choice for the needs of the prototype. The requemrs were subdivided into two key
requirement divisions: mandatory requirements angdgssted requirements. If any
mandatory requirement was not met, the operatirsgesy was removed from further

consideration.

1. Mandatory Requirements

The chosen mandatory requirements were based ofoltbeiing factors: cost,
availability, and pertinence for the prototype. abidition, it must run on an x86 platform,
provide a stable release, have available source tlmat can be altered, and have more

than one privilege domain.

a. x86 Platform

The requirement to execute on an x86 platform isdatory because of
the necessary features it provides. These arenesggtion, privilege levels, hardware

tasks, and call gates.

(1) Segmentation. Segmentation is implementedhm x86
architectures and supports highly granular managere the address space of each
process. Segmentation can support process isolatid controlled sharing of objects

among processes.

(2) Privilege Levels. An x86 platform supports four hardware
privilege levels: 0 to 3, with O being the mostvleged. Privilege levels permit the most
privileged domain, i.e., that of the kernel, to fmetected from applications. Privilege
levels are totally ordered and permit tasks to tgamized in ways that support least
privilege.

(3) Task State Segments (TSS). In multitaskingirenments
where tasks must concurrently run, a task's runsiatg must be saved. A task’s running
state is stored in its task state segment. Ther dinefit of the use of a TSS is code
efficiency. The context switch can happen withyambe instruction. This allows context

switching to be performed easily.

(4) Call Gates and Traps. When tasks are runimng less
privileged domain and must access resources alailaba more privileged domain,
execution goes through a call gate. Hardware Ipgei checks ensure that services are
provided to the caller while ensuring the integufythe other privilege domains within
the task.

b. Stable Release

Providing a stable release of the system from wthehprototype will be

built is a mandatory requirement. A stable releasans that the kernel kit has been

10

thoroughly debugged and tested. Spending too rioehtrying to track down software

bugs in the prototype is not a luxury the constdaievelopment timeframe provides.
C. Open Source Code Environment

An open source code and environment requirememitaisdatory because

of the benefits of modification, simple acquisiti@md cost.

(1) Modification. Due to the nature of the prototype being built,
the kernel kit must be modifiable. No other knoamd available open source prototype
exists for a system implementing the strong mempaytitioning with fixed task
scheduling intended in this project. This projedt take advantage of existing drivers
for network and I/O controls and basic operatingtayn operations such as message
passing and threading. In building the prototygatware reuse with modifications as
needed makes the most sense. Due to these re#isengguirement of being able to
modify the source code is mandatory.

(2) Simple Acquisition. In order to modify thede, one must be
able to acquire the code in an easy acquisitiongg® Understanding how to download,
install, and run the software should not be difticuThe problems that prevent simple
acquisition include proprietary code, lack of doemtation, and lack of archiving
support. Some Open Source Standards take carbesé tproblems through GNU
licensing agreements by following the three stepixUmstallation standard (i.e.,
configure, make, and make install), and by haviniine archives of source code. Use of
the Unix compilation standard helps with any laéklocumentation for installation. An
online archive of source code helps provide thétalto download the source code in an

easy manner.

(3) Virtually No Cost. Purchasing expensive software for the
prototype is not an option. The benefit of opeurse software is that it can be acquired

at minimal or no cost.

11

d. More Than one Privilege Domain Environment

To provide the ability of the prototype to partitionemory and securely
control information flow, a kernel that implementser and kernel tasks is mandatory.
The requirements for having more than one privilefggnain is achieved through
hardware support for privilege domains, and coggett running in the most privileged

domain.

(1) Hardware Requirement.he hardware requirement to enforce
separation of privilege domains is provided by %86 platform. In x86 platforms, the
CPU checks memory accesses and permissions argl vittagn a task tries to access

memory not permitted.

(2) Code Support. When the hardware interrupts t non-
privileged attempts to access privileged instruttjothe software must properly handle
these faults. As part of the mandatory requirententise more than one privilege
domain, it is required that trap-handling mechasigm built in and easy to modify.

2. Suggested Requirements

The suggested requirements for the system ardlas/$o simple code generation
support, actively maintained software, and debuggimpport. It is not assumed that any
one kernel kit will meet every mandatory and sutgpksequirement; however, the

suggested requirements help narrow the searchédrdst kernel kit.

a. Simple Code Generation Support

A suggested requirement is set of simple mechanierbsiild the kernel.
These may include make files and other tools.

(1) Make-File Like Procedures. Due to the comipe of
operating systems, compiling and linking in alltle¢ include files and resources can be a
daunting task. To remember and type in by handfalhe necessary inputs for the

prototype to be built is difficult at best.

12

Choosing kernel kits that provide a make file medtra solves

this problem. The make file may require some nicatifons for the prototype.

(2) Quick Compile Times.A disadvantage of building binaries
for an operating system is the time it takes to miterthem. This can slow development

time.

To resolve this development time problem, it is amgnt the
targeted kernel kit be comprised of a set of bewmthat can be linked together. This
separation speeds up compilation when large chwiksode do not need to be
recompiled but simply linked in. Having make fildst only recompile the changed files
is helpful at speeding up development time and tlusa part of the suggested

requirement for simple code generation support.
b. Actively Maintained

Another suggested requirement is that the chosemekéit is actively
maintained. To be deemed actively maintainedwlssite that provides the location to
acquire the source code must be recently updatethdywebmaster, providing recent

stable releases of the source code, and encourgidgack for new releases.

(1) Website Maintained. To determine whethereankl kit is
actively maintained, a check is made to see ihib&ting website is active. The software
must be supported by an active community for acthantenance. Hardware devices
constantly change and update. Requiring an opgraystem that can work with and
support each new device is important. An indicaitbractive maintenance is having

recent software releases.

(2) Recent Updates to Software. Recent softwpoates is part
of the suggested requirement for active maintenanbebugging software that is no
longer maintained will slow down development of ghetotype. If the software is no
longer actively maintained, the kernel kit mustéavstable release.

(3) Encourage Feedback. A community that encasdgedback

with the use of the operating system or kerneiskit nice part of active maintenance.

13

C. Debugging Support

A suggested helpful requirement is that the tadyefgerating system or
kernel kit will provide means to debug the prot@yplt may not be feasible to have a
high level rich debugging environment for debuggihg prototype. Providing a GDB
stub with debugging hooks in the code to step thinoilne executing code is enough to

meet the suggested requirement.

B. KERNEL KIT CONSIDERED

The kernel kits considered are listed with theirimas properties relevant to the
selection process (See Table 1). The kernel kds hhave a ‘No’ tag associated with a

mandatory requirement are eliminated from furthersideration.

Kernel Developers | Link X86 | Stable Open Privilege | Simple | Active Debug
Kit Release | Source | Domains | Code Mainta | Support
Genera | nence
tion
Choices University http://choice | Yes | Yes Yes Yes Yes Yes Yes
of lllinois s.cs.uiuc.ed
u
ECos Cygnus, http:/lecos.s | Yes | Yes Yes Yes Yes No Yes
Red Hat, | ourceware.
ECosCentri | org/getstart.
c html
OSKit University http://www. Yes | Yes Yes Yes Yes No Yes
of Utah cs.utah.edu
[flux/oskit
Fiasco TUD- http://os.inf. | Yes | Yes Yes Yes Yes Yes Yes
Dresden, tu-
University dresden.de/
of fiasco
Technology
K42 IBM http://domin | Yes | No Yes Yes Yes Yes Yes
o.research.i
bm.com/co
mm/researc
h_projects.
nsf/pages/k
42.index.ht
ml
Pebble Bell Labs http:/iwww. No Yes Yes Yes Yes Yes Yes

14

bell-

labs.com/pr
oject/pebble

Spin University http:/iwww. Yes | Yes Yes No Yes No Yes
of cs.washingt

Washington | on.edu/rese

arch/project

s/spin/www
TinyOS University http://www. Yes | Yes Yes No Yes No Yes
of cs.washingt

Washington | on.edu/rese
arch/project

s/spinfwww

MMLite Microsoft http:/Iresear | Yes | Yes Yes No Yes Yes Yes
ch.microsoft
.com/invisib

le

Table 1. Reviewed Kernel Kits.

C. FINAL DETERMINATION

After eliminating from the sample those operatiggtems or kernel kits that did
not satisfactorily meet the mandatory and suggestqdirements, two kernel kits were
chosen for deeper consideration and analysis. rfatysis of the deciding factors and

reasons for selection are given.
1. Final Deciding Factors

Eliminating most of the operating systems due wpheviously stated reasons in
Table 1 narrowed the choices to the following fewstems: Fiasco, Choices, ECos, and
OSKit.

a. Fiasco

Fiasco is developed at TU Dresden. It is compatibith the x86 L4
microkernel. It is a real-time preemptive kerneltign in C++. Fiasco’s adherence to
the specification of the L4 microkernel makes itlesirable choice. The downside is
Fiasco is too specialized for what is needed bypthéotype.

15

b. Choices

Upon initial review, Choices did not appear to havstable release that
ran on the tested x86 platform. Initially, the @®s operating system would not install.
Debug support was not provided with Choices to wgméhe situation. Due to
acknowledged author error, Choices was eliminateempturely. FiSh, a shell
application, is included with Choices to run apafions using the Choices operating
system, making it a desirable choice. Choicesesghed for systems research at the

university level.
C. ECos

ECos was developed in 1997 by Cygnus Solutionsr afigccess
supporting GNU GCC and GNU GDB. Cygnus Solutiondtka real time operating
system for their GNUPro tool suite. ECos is a higtonfigurable embedded systems
kernel built for many different types of architees and platforms.

The benefits of ECos are the following: ECos camfidple tools are
available in a GUI environment; it supports comménd execution, memory pools for
fixed sized memory allocation are used, remote GleBugging is supported, and it has
plenty of documentation.

The disadvantages of ECos are the following: no orgnprotection is
implemented, the latest stable release was in M#B_2and it lacks non-preemptive

schedulers.
d. OSKit

OSKit was developed at the University of Utah tovyile a platform to

lessen the cost of doing operating system researdltdevelopment.

The benefits of OSKit are the following: modularsigm, brevity of code,
remote GDB debugging support, a simple processrbronline documentation, non-
preemptive scheduling, and adequate sample codethforvarious kernel features
(threading, multitasking, timers, etc.).

16

The disadvantages of OSKit are the following: ti8& X.DT is not used,
and the kernel kit developers released the labtestgpdate in March 2002.

2. Final Selection

Of the four kernel kits, OSKit and ECos were saldctor more critical review.
Fiasco was too specialized for what was neededéyptototype and therefore was not
considered. Choosing between OSKit and ECos wiisulli. Not surprisingly, ECos
provided GNU GDB debugging support. OSKit alsovited the ability to add GDB
stub controls for the GDB debugger to work remoteBoth operating systems are built
to be modular and highly configurable. ECos andKiSprovide reasonable
documentation, installation ease, and make filepstup Neither had recent stable
releases, forcing any development to be done oer dldrdware and operating systems.
For enabling development, ECos exceeded expecsatignproviding command line
execution of the created binaries to speed up dpuent time. ECos also appeared
more able to meet the needs of the prototype \egjand to static memory allocation and
memory pools. However, coding in OSKit was easied the kernel is more developed

for kernel and user space separation.

In the end, the simplicity of OSKit made it the teetchoice. It has few
dependencies between components. Unlike ECos ieXiating libraries for multitasking
of processes to support kernel and user taskstherfinal analysis, OSKit proved the
better choice, as static non-preemptive schedwdimd) memory partitioning for multi-
tasked processes are highly attractive, and OS3¢itns to provide the simplest platform
to enable these. An implementation was built us@§Kit to provide memory

partitioning and the sharing of resources amonggs®es.

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

V. PROTOTYPE IMPLEMENTATION

The LPSK prototype is built by enhancing the comfable operating system,
OSKit. OSKit separates memory between the kerpates and user space through
paging. User processes have separate address.sdac®SKit, data can be transfered
between user processes using memory resources ethbhgghe memory manager. The
prototype enables the system to govern rules estaol by the configuration file of
process and resource interaction. The implemenmtatilocates memory into partitions
and memory resources within partitions. The attd@rnel mediates the memory sharing
with paging and page fault trap handling. Thisarded OSKit enables the separation of
memory as defined by the configuration file. Theps to enhance the kernel are as
follows: setting up the development environmentngssersion control, implementing
the configuration file, partitioning memory, creai and allocating resources, and

altering user processes.
A. SETTING UP THE DEVELOPMENT ENVIRONMENT

Setting up the development environment is necesgarguild the prototype.
Time was spent finding the most suitable configleaiperating system. Also, time was
allocated to become familiar with OSKit to determthe least amount of changes needed
for the required enhancements. Having a workingelbgpment environment enables the
ability to become familiar with OSKit and build tipeototype. Building the development
environment requires the following procedures: a@wogy hardware, choosing a
compatible software platform, installing OSKit, amdplementing version control. A
more detailed explanation of setting up the devwelapt environment can be found in

Appendix A.

19

1. Hardware

Building the prototype using OSKit requires certhardware. An Intel PC with
32MB of RAM and a 400MHZ processor and an old TNa&piics card will permit the
prototype to run. A machine with one GB or mordRéfM will not permit the prototype

to run without modifications to OSKit.
2. Softwar e Compatibility

OSKit will not compile in all software environmentsThe last stable release of
OSKit was in 2002. Consequently, OSKit will onlprepile with certain tools and
versions. For OSKit to compile, it requires: “GNbulake, GNU CC version 2.7.x or
version 2.95.2, and GNU binutils version 2.8.x,2d.1 with BFD 2.9.1” [15]. Once a
system is configured correctly with the compatiblEtware required, OSKit can be
compiled and the prototype built.

3. Building the Prototype

Building the prototype for the target machine imed compiling OSKit and
linking with the code for the prototype. Additidlya the prototype requires the Simple
Process Library (SPROC) that comes packaged witKit: order to add multi-process
capabilities to the prototype.

a. Compiling

Compiling OSKit involves a multi-step process. Thest step to
compilation is to download the March 2002 releab@8Kit into a directory on the
target machine. Next, one must execute the filmath ‘configure’, type ‘make’, and
finally ‘make install’. The target machine nowshthe environment variables and the
source code compiled to run test kernels. Theseele must be linked together to

include all of the necessary kernel building block3ne such test kernel is the prototype.

20

b. Linking Together the Kernel Image

After the source code is compiled, the prototypestmhe linked. The
‘sproc’ directory under ‘oskit/examples/x86/ hagaenple code for multi-booting a
kernel with user processes that use the SimpleeBsocibrary. The multi-boot program
called ‘mkmb2’ links with the kernel object, contfigtion file, swap file, and user
process objects. Running the multi-boot programeotly generates the prototype image
file. Now, the prototype is ready for changes. miake needed changes to the prototype,

version control is important.
4, Using Version Control

Version control provides a way to manage softwagrdates, preventing loss of
data and allowing revision to previous softwaresi@rs. For the project, the version

control software Subversion was chosen.

Subversion manages system changes. It createsrsystckups by saving code
for each new release automatically during code igsdaFor the project, a Subversion
server was set up. A repository was created withean copy of OSKit. Subsequent
changes to OSKit are controlled through Subversiypmonitoring check in and check

out of the software.
B. IMPLEMENTING CONFIGURATION FILE

A requirement of the prototype is to allocate meyrtmised on specifications in a
kernel configuration file. The configuration filaust be read into kernel space before
any allocation of resources or creation of usercgsees. In the prototype this is
accomplished by linking the configuration file tbet kernel image and reading the

configuration after booting the kernel image.

21

1 Configuration Data

The configuration file as implemented includes dedadefine the following:
partitions, processes, resources, partition floasd resource flows. These are

implemented and handled in the prototype.
a. Partitions

Partitions are abstract entities to which resouaresallocated. Resources
include both active and passive entities as weth@&sution time.

b. Processes

Processes have priority assignments used for skthgduthin a partition
and fixed assignments used for static schedulingagtition time slices. Processes can
act as both subjects and objects. They act agasbjvhen they act on objects such as
resources. In addition, they act as objects whaadaupon by other processes. The
access by processes to resources is mediated wyridles enforced by the separation

kernel.
C. Resources

This prototype deals exclusively with memory resegr Other types of

resources will be implemented in the future versiohthe LPSK prototype.
d. Partition Flows

Partition Flows are directional flows that have asignated source
partition and a designated destination partitidhe maximum number of partition flows
in a system is the number of partitions in the eysimultiplied by one less than the
number of partitions in the system. The accessem@bssible in partition flows are the

following: read, write, and read/write.

In the prototype, every access mode is addresdexkcute reads and

execute writes are not permitted. An execute ieauoh instruction that reads the current

22

instruction pointer. An execute write is an instron that writes to the current
instruction pointer. Page faults due to attempmrecute reads or writes will terminate
the process. An execute read or write is knoowvbéd attempted when the instruction
pointer and page fault address in th2 register contain the same value. A read happens
when a process stores the contents of memory inégiater or memory. A write occurs

whenever contents in memory or in a register argemrto a memory location.
e Resources Flows

Resource flows are directional flows that have ssoeaiation between a
resource and a process with a defined access mdte. association depends on the
access mode. The access modes allowed are rata],amd read/write. The maximum
number of resource flows in a system is the nurobeesources in the system multiplied

by the number of processes in the system.

In the prototype, a memory access cannot occussirileere is a defined
partition flow and resource flow with the acceswifgges to permit the access. If any

one of the two flows does not exist, the processriminated.
2. Porting the Configuration Fileto the Prototype

The prototype reads the configuration file to abtdie permitted flows, create
partitions, allocate resources, and manage proges$be configuration data is linked

into the kernel prototype image.
a. The Application to Construct the Configuration File

An application called configapp was built to writee configuration data

directly to a file in binary form. The source d&iig application appears in Appendix C
This application uses the same compiler and theesamnfiguration header file as the
prototype. The data structure LPSKconfig is wnitte file by configapp and is the same
data structure used to retrieve the data by thtogyyme during execution. There are key
reasons this application is using the same compiber defined data structure from the
configuration header file as the prototype.

23

First, the same GCC compiler is used for compiboth the prototype and

configapp. This is to prevent any issues of défeerdata types having different sizes.

Second, the LPSKconfig structure is reused, allgwdanfiguration data
to be written and read properly in the correct oai®l with the correct size. This is the
same structure used by both the prototype to stwreconfiguration file data and by

configapp.
b. Binary Reading of the Configuration File

To read the binary information in the configuratible, the prototype
allocates memory for the LPSKconfig structure ahdnt reads the binary into the
structure. Since the configuration file is linkiedio the kernel image, the file has to be

retrieved using the procedure provided by OSK#kib absio_read'.
C. PARTITIONING OF MEMORY

The prototype has the ability to separate memocgtions into partitions access
to which is mediated by the kernel in accordancth whe configuration. Partitioning
results from separating memory through paging, @manting a page fault trap handler,

and defining partition flows.
1. Partitioning via Paging

Paging provides separation of memory between marsit When a user-domain
process is created, a check is made to determinehioh partition the process is
allocated. The minimum and maximum memory addees§¢he partition are applied to
the user-domain process. The prototype maps thesp® physical memory based on
these addresses for use by the user-domain proédss. the pages are mapped for the
process, the process is initialized and starteagser mode. The mapping is intentional.
Any attempt by the user-domain process to accegsspthat are not mapped to its

partition results in a hardware page fault.

24

a. Hardware Page Faults

Whenever there is an access to a page not mappidh vahysical
memory, hardware sends an interrupt, which results page fault. A page fault trap
handler was constructed for the prototype to harlgée page fault interrupts sent by
hardware. The page fault handler built into thetgiype does not handle all Intel x86
opcodes that may cause page faults. Instead ibuemates that page faults may be
handled. All major types of memory access handéng addressed by the page fault
handler, which are termed as memory access clagdesse memory access classes are:
constant to memory, memory address to register, anerpointed by a register to
register, register to memory pointed by a regist@rementing or decrementing memaory,
pushing or popping a memory address, memory to mgmaemory to register, register
to memory, pushing memory, popping memory, andssing program counter address.
Also handled are the following memory access mocesd, and write. A read execute or

write execute page fault will terminate the process
2. Page Fault Trap Handler

The prototype’s page fault trap handler readsitieedf code that caused the fault,
checks flows to determine access permissions, aanitle line of code, and returns
control to the next line of code following the linécode that caused the page fault. The

trap handler terminates any process that perfomiegal access.
a. Handling Paging

A kernel data structure describes the address spaiceeach
partition/process in terms of pages. If a pagét faccurs, this database is referenced. If
the page is in the address space to which the ggdwas permission for the access mode
attempted, then the kernel executes the instru¢tiahinitiated the memory access and

returns control following the instruction, othereithe process is terminated.

25

b. Handling of Opcodes

Before handling the requested access, the memogsa@ttempt must be
determined. The opcode that caused the page dmtdrmines the memory access
attempt. If the memory access is deemed legalopuade is handled in the kernel-
domain within the trap handler. The opcode is kethdhy editing the stored state of the
processor when the trap occurred, and this stdetel Becomes the state of the processor
when control returns back to the process in the-demain. The ability to read and
write the state of the processor when the trap roeduallows the handling of all page
fault traps used for the purposes of the prototype.

The prototype has a case statement that handlebytigosalue inputs with
a case statement in the default section that hamudlie-byte value inputs. This is done to
efficiently handle the opcodes that may be onewar bytes in length. Any opcode
unhandled will cause the termination of the procegdter a successful operation is
performed, the mapping of the required page wilrdmoved and the original mapping
restored. Once this mapping has been performestuéon can be returned to the user-
domain process. Before this operation can ocanmmissions are checked to determine

that the access attempt mode is allowed.
3. Permission Handling

The page fault trap handler checks the permissitlosved. These permissions
are between the source and destination partitibtiseanemory attempt and the resource
being accessed. Retrieving the process ID detesrongin of the page fault. Using this
ID, the partition flows and resource flows thats#xor this process are obtained and the
access modes allowed are read. A required parfibov must exist to permit the access.
If the access is permitted, another check is madketermine that a resource flow exists

with the required access permission. If both flexist, access to the page is granted.

26

a. Returning to User Process

To return execution back to the user process, th®type must prevent
the same page fault from occurring again. An itéinoop will occur if execution is
returned without advancing the instruction pointdwe process will execute the same
operation that caused the page fault. To sohepgioblem, the instruction pointer must
be updated to skip past the instruction that catisegage fault. These updated values
are based on the instruction set of the hardwé&i@. example, a four byte instruction is
handled by incrementing the instruction pointeffdayr. Upon performing this operation,
execution can return back to the process, and ssitdenandling of memory partitions

and resources is complete.

The enhanced changes made to OSKit to build theKLpftotype
enforce memory separation into partitions and thiitya of processes to access data
resources as defined by the configuration file. esehenhanced changes made to the
original OSKit release of snapshot 20020317 araileetin Appendix C.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

V. PROTOTYPE TESTING AND RESULTS

This chapter deals with the functional testingha prototype and the results. The
prototype has the ability to separate memory locatiinto partitions and resources that
the kernel mediates. Partitioning is the resutrfrseparating memory through paging,
implementing a page fault trap handler, and defjmpartition flows. Resource separation
results from defining resource flows that are cleecin the page fault trap handler when
a process in another partition attempts accesss prototype is tested to ensure that only
the correct memory based accesses occur betwegtioparand resources. These are

specified by the policy encoded in the configunatiite.

Individual prototype tests are conducted using eeldpment machine and a
testing machine. The development machine rungtbttype that has a GNU Project
Debugger (GDB) stub to permit remote debugging ftbentesting machine. The testing
machine runs the GDB debugger remotely connectirigd GDB stub via a serial link.

Legend 0

System Environment

Prototype w/ Symbol ‘ Count ‘ Description
GDB Stub
Backup of & : 1 User
Prototype Configuration File
. C .
N N
° TCP/IP o S 1 KVM Switch
N NS |
{@ 1 Terminal

Version Control Server Development Machine

KVM Cables- /\ GDB Debugger
X~
Serial }
& KVM Cables—\S
\ Testing Machine
Figure 1. System Topology.

29

The subsequent section describes the followingt pémn, setup, functional

testing, the results, and any problems encountered.
A. TEST PLAN

Tests are conducted on all memory access classesirg the access modes of
read, write, read/write, and execute are testetesyically. Memory access classes
discussed here are memory accesses that are possib86 architectures without
specifying a specific register, address, or valuEhe memory access classes are as
follows: constant to memory, memory address tostegi memory pointed by a register
to register, register to memory pointed by a regjstncrementing or decrementing
memory, pushing or popping a memory address, metoamnemory, memory to register,
register to memory, pushing memory, popping memanyl accessing program counter

address.

Each test results in a success or a failure. &belts are annotated with a success
or failure tag in Table 3. A success result oceunen the memory access class tested is
properly handled via the prototype’s trap handlifgfailure happens when the memory

access class is not handled via the prototypgxsheadling.
B. FUNCTIONAL TESTING

Performing the functional tests on the prototypeumes setting up an
environment based on policy which is derived frdra tonfiguration file instantiation.
The testing environment requires certain charagttesi to be initialized in the following:
processes, partitions, resources, partition floave] resource flows (see Figure 2). To
perform the functional tests, various values in tbsources are accessed in different

modes and the subsequent state is inspected.
1. AddressValues

The address values accessed in the tests arerthal\addresses ‘Oxa0009fac’

and ‘Oxa0009fa8’. These are the resource locatdr&o resources in Partition 2. The

30

tests involve changing the initial values, instioies, and access modes and verifying that

the correct values reside in the correct memoratlons.

(Legend 0
Prototype Test Environment
Symbol ‘ Description
D Partition
— Resource Flow
() Process
Resource
= Partition Flow K Partition 2 \
: Memory Address 0xB0000000
| Range ;
[
ot [
/ Partition 1 \ |
[
0x95000000 |
- / \ .
: Pl < g D :
| N / R2 |
| |
[
0x90000000 / :
k OonoooooV

NOTE: Processes have implicit access to resources in the same partition

Figure 2. Testing Topology.

2. Test Cases

Test cases verify that the various accesses to myeame constrained correctly.
These test cases consist of all the opcodes hahglldte prototype. The ACS8 test case is
a success when the memory access attempt resultts termination of the user process
that made the attempt. The other test cases a®deved a success when a memory
access attempt by an instruction running in usedentauses a page fault and is properly
handled by updating the system state (or not) a@oegrto policy, then returning back to
the user process at the next instruction. Theste tises consist of the tests described in

Table 2.
31

Test Access Type Description

AC1 Write Constant to Memory Test AC1 certifies the prototype handles memory accesses due to

copying a constant value into a memory location.

AC2 None Memory Address to | Test AC2 certifies the prototype handles memory accesses due to
Register copying a memory address into a register.

AC3 Read Memory Pointed by a | Test AC3 certifies the prototype handles memory accesses due to
Register to Register copying memory referenced by a register into a register.

AC4 Write Register to Memory | Test AC4 certifies the prototype handles memory accesses due to

Pointed by a Register copying values in a register into memory referenced by a register.

AC5 Write Incrementing or | Test AC5 certifies the prototype handles memory accesses due to

Decrementing Memory | incrementing or decrementing.

AC6 None Pushing or Popping | Test AC6 certifies the prototype handles memory accesses due to
Memory Address pushing or popping a memory address onto or off of the stack.
AC7 Read & | Memory to Memory Test AC7 certifies the prototype handles memory accesses due to
Write copying directly memory from one location to another.
AC8 Read Memory to Register Test AC8 certifies the prototype handles memory accesses due to

copying memory into a register.

AC9 Write Register to Memory Test AC9 certifies the prototype handles memory accesses due to

copying a register's contents to memory.

AC10 Read Pushing Memory Test AC10 certifies the prototype handles memory accesses due to
pushing memory onto the stack.
AC11 Write Popping Memory Test AC11 certifies the prototype handles memory accesses due to

popping values off of the stack into memory.

AC12 Execute Accessing Program | Test AC12 certifies the prototype handles memory accesses due to

Counter Address trying to access the instruction pointer address.

Table 2. Memory Access Class Test Descriptions.

C. RESULTS

The functional tests were performed against the@opype instance detailed in
Figure 2, and the results were collected. The daltacted was checked to verify that the
prototype functions as intended. The results efdinccesses and failures of the test cases

run are displayed in Table 3.

32

Test Access Type Expected Result | Actual Result
AC1 Write Constant to Memory Success Success
AC2 None Memory Address to Register Failure Failure
AC3 Read Memory Pointed by a Register to Register Success Success
AC4 Write Register to Memory Pointed by a Register Success Success
AC5 Write Incrementing or Decrementing Memory Success Success
AC6 None Pushing or Popping Memory Address Failure Failure
AC7 Read & Write Memory to Memory Success Success
AC8 Read Memory to Register Success Success
AC9 Write Register to Memory Success Success
AC10 Read Pushing Memory Success Success
AC11 Write Popping Memory Success Success
AC12 Execute Accessing Program Counter Address Success Success

Table 3. Test Results.

As can be seen in Table 3, the test results demavedtthat the prototype did in
fact handle all of the memory access classes actegh

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

VI. CONCLUSION AND FUTURE WORK

This chapter discusses the conclusions and futor& of the LPSK prototype to

supplement the TCX Project.
A. CONCLUSION

The goal of this thesis was to construct a prottgb certain aspects of the
functionality for a high assurance separation Ketinat reflects the Principle of Least
Privilege (PoLP) [1] and that will enable the TCXofect. By implementing partitioning
of memory and monitoring memory resources withm skparation kernel prototype, the
prototype allows the Principle of Least Privilegelte realized for memory resources of
the LPSK prototype. The tests described in Chaptshow that the approach taken to
monitor memory accesses between partitions islEasind may be used in the TCX

Project to protect memory.

The approach taken of using paging to prevent uramted accesses as described
in this thesis enforces rules mandated by the gordiion file in a straightforward
manner. Also, this approach prevents processes diccessing the instruction pointer to

point to or read locations in other partitions.

Implementation of this prototype leads to ideasftmwure work that would be of
benefit to the TCX Project.

B. FUTURE WORK

During the development of this thesis work, fouy lkeeeas were found to warrant

future work.
1. Complete Handling of Opcodesin the Page Trap Handler
Complete handling of all of the x86 opcodes thay mause page faults is not

fully implemented in the prototype’s page trap Hand The proof of concept work is

35

done to show that all of the x86 opcodes can bdemented. Further work in this area

would be to implement the complete set.
2. Static Scheduling

The prototype reads the configuration file to deiee the number of scheduled
ticks for each process and sends this to the stdrediihe scheduler, while sufficient for

this prototype, is not fully implemented. Furtiesrk may be done in this area.
3. Handling Other Resource Types

This work implements memory resource handling enltRSK prototype. Further

work is necessary to handle other resource types.
4, Efficient Caching of Resour ce Accesses

The efficiency of handling memory accesses outsfde process’ partition can be
improved by building into the prototype caching im&gisms to minimize the number of
page faults. Implementing a caching mechanism dcdagnefit the work done by

providing the benefits this approach offers whil@imizing the performance penalties.

36

APPENDIX A: INSTALLATION ACTIVITIES

A. ENIVRONMENT INSTALLATION

The procedures taken to install the working enviment are as follows:
connecting computers via serial link, installingnix Red Hat 7.2, installing GRUB, and

connecting to a Subversion server.
1 Serial Link Connection

To debug the prototype remotely with a GDB debugtier selected test machine
and development machine are connected via a $egal This serial line is connected via
serial ports and a cable. The cable used is alsassover cable to permit proper

communication.
2. Linux Installation

All of the procedures in this thesis are run withux Red Hat 7.2 installed on
both machines. After installing and running Linaxt of the box on the both machines,
GRUB needs to be installed on the selected devedopmachine. Linux Red Hat 7.2

was chosen for ease of use with OSKit.
3. GRUB Installation

Installing the GRUB package can be done following Red Hat documentation
to install GRUB since it will not be installed vike Red Hat Linux installation process.
After the GRUB package is loaded, one must opeotaighell command prompt and run
the command, ‘/sbin/grub-install <partition>’, wekpartition>’ is the location of the
first primary partition. This will install the GRRJ stage 1 boot loader, “to the MBR of
the master IDE device and on the primary IDE bu&fter running these procedures to
install GRUB, the GRUB graphical loader will displan boot [16].

After GRUB is installed, the ‘grub.conf’ file is ddd and should be edited to

include the prototype image file that will be ruihe way this is done is by copying the
37

title, root, and kernel lines of the Linux partstie ‘grub.conf’ file and editing the copied
lines with the title line changed to describe thHeSK prototype and the kernel line

changed to specify the location of the prototypagm
4, Connecting to Subversion Server

To install the SVN client in the Linux environme{pache Runtime (APR) as
well as Subversion has to be installed. SVN withRAcan be set up in many different
ways, running the following commands is one way:

cd/

wget http://subversion.tigris.org/downloads/subversion-1.4.4.tar.gz
tar —zxf subversion-1.4.4.tar.gz

cd subversion-1.4.4

svn co http://svn.apache.org/repos/asf/apr/apr/branches/0.9.x apr
cd apr

./buildconf

Jconfigure

make

cd ..

svn co http://svn.apache.org/repos/asf/apr/apr-util/branches/0.9.x apr-util
cd apr-util

./buildconf

Jconfigure —with-apr=/subversion-1.4.4/apr

make

cd ..

Jconfigure

make

make install

A Subversion repository was set up on the versaorirol server. To populate the
repository a Subversion client is installed and“gwa import” command is issued. The
original OSK:it files were imported into the repasyt using this procedure. Checking in
and checking out files allows OSKit to be modifiaad the LPSK prototype built. To
check-in and check-out existing files of the OSkgpository, the following commands
are used, where ‘<username>’ represents the usernampassword>" represents the
password, ‘<message>’ represents the message & aad ‘<repository location>’
represents the location of the repository:

svn ci —username <username> --password <password> -m “<message>"
svn co <repository location> —username <username> --password <password>

38

Any additional files that are made during the depeient of the LPSK prototype
are added by issuing the ‘svn add <filename>’ comunavhere ‘<filename>’ represents
the file to be added to the repository [17]-[19].

B. OSKIT INSTALLATION

Installing OSKit in the environment described SactiA of this Appendix
involves downloading OSKit's “St. Patrick's Day” apshot from the Flux website,
http://www.cs.utah.edu/flux/oskit/software.html, taring, and installing. Complete the
following steps and OSKit and the kernel image thigit become the prototype will be
compiled and ready for modification:

mkdir /oskit-dev

cd /oskit-dev

waget ftp://flux.cs.utah.edu/flux/oskit/oskit-20020317.tar.gz
tar —zxf oskit-20020317.tar.gz

cd oskit-20020317

Jconfigure

make

make install

cd examples/x86/sproc

make Image

mkmb2 kernel swapfile usermain_testsproc usermain_hello

OSKit has a variety of sample kernels that canrbated in different ways. See

the OSKit documentation for more information [20].

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

APPENDI X B: TEST PROCEDURES

The various tests run against the memory accessedaand their results are
discussed in Chapter V. A memory access classmemaory access performed by an
instruction using a nonspecific register, addressalue. The memory access classes are
as follows: constant to memory, memory addressetgister, memory pointed by a
register to register, register to memory pointed &yregister, incrementing or
decrementing memory, pushing or popping a memoress, memory to memory,
memory to register, register to memory, pushing @M popping memory, and
accessing program counter. The technical detdilsows these tests were performed
against the memory access classes are descriltbes iAppendix. The relative source
code not listed in this Appendix can be found ipApdix C.

OSKit has the ability to provide GNU debugger (GD#)b routines which can
be called by calling various OSKit included rousnerhe LPSK prototype enables GDB

debugging upon initialization with the following @e that comes with OSKit:

extern struct termios base_raw_termios,base_cooked termios;
printf("setting serial port for gdb\n");

base raw_termios.c_ispeed = B38400;

base raw_termios.c_ospeed = B38400;

base_cooked_termios.c_ispeed = B38400;

base_cooked_termios.c_ospeed = B38400;

gdb_pc_com_init(1, &base_raw_termios);

gdb_trap_mask = (1 <<T_PAGE_FAULT) | (1 << T_NO_FPU)i

printf("break\n");

gdb_breakpoint();

Testing the various memory access classes wasrpedioby creating two user-
domain processes with the source code detailetarfites ‘usermain_testsproc.c’ and
‘usermain_hello.c’. The ‘usermain_testsproc.c’e ficontains the source code that
generates the opcodes that are used to test theuwamccess classes. The
‘usermain_hello.c’ file contains the source codedisplay the data contained in the
resources that are accessed by the memory acces§bs. memory accesses are
performed by the code found in the ‘usermain_testsp’ file.

41

The GNU application objdump was used to view thépotted assembly and
machine code of the ‘usermain_testsproc.0’ objectile. f The
‘objdump -D <object file><dump file>' command wasead to dump the assembly and
machine code of the ‘<object file>’ file into thedump file>’ file. This was done to
verify that the C code written in the user-domargesses source code produces the

correct x86 opcodes that are implemented in thekLpy®totype.

A. TESTING ACCESS CLASSES

All access classes detailed in Chapter V were destall the tests conducted
ensure: the instruction executes in user mode esaapage fault, and is properly handled
by returning back to the original user processhatriext instruction. The instructions

used to test each access class are detailed isettiion.

1. Constant to Memory

The two-byte opcode ‘Ox05C7’ tests the accessibitift storing a value to
memory. The ‘movl $0x64, 0OxA0009fA8’ instructiomgaluces this opcode.

2. Memory Addressto Register

The one-byte opcode ‘0xB8’ tests the accessibaitgtoring a memory address to

a register. The ‘mov OXAOODBEEF, %eax’ instructigenerates the one-byte opcode.
3. Memory Pointed by a Register to Register

The ability of storing memory pointed by a regist®o a register is tested with

the two-byte opcode ‘0x008B’ via the ‘mov (%eax)edx’ instruction.

42

4, Register to Memory Pointed by a Register

The two-byte opcode ‘0x0289’ via the ‘mov %eax, (¥ instruction tests
register to memory pointed by a register accedss memory access copies the register

value to memory a register points to.
5. I ncrementing/Decr ementing Memory

The two-byte opcodes ‘0x0583" and ‘OxO5FF (whictere the ‘addl 0x04,
OXAOOQ9FAC’ and ‘incl OXAOOO9FAS8’ instructions) tmss the ability to access

incrementing or decrementing memaory.
6. Pushing/Popping Memory Address

The single-byte opcode ‘0x68' is generated using thush $0xAO00BEEF’
instruction and tests the ability to access pushimgemory address onto the stack. The
single-byte opcode ‘0x58’, is generated using {hep‘%eax” instruction and follows the
‘push $0xAO00BEEF’ instruction testing the ability pop a memory address off of the

stack.

7. Memory to Memory

The access type that involves copying memory to amgns tested with the two-
byte opcode ‘OxA4f3’. This opcode is the ‘repz mbwods:(%esi), %es:(%edi)’
instruction. The opcode was realized using the ecodstatement
‘memmove(0Xx0A0009FA8, 0xAO009FAC, 1) in C.

8. Memory to Register

Two opcodes: the two-byte ‘Ox158B’ and one-byte AQk test the accesses
involving storing memory into a register. The ‘m@xAO0009FAC, %edx’ instruction
generates the two-byte opcode and the ‘mov OxAOBB9Fbeax’ instruction generates

the one-byte opcode.

43

9. Register to Memory

The access type that involves copying register éonory is tested with the one-
byte opcode ‘Oxa3’. The ‘mov %eax, OXAOOO9FAS8'tmstion generates this one-byte

opcode.
10. Pushing Memory

The access of pushing memory is tested with theltyte opcode ‘Ox35FF’. The
‘pushl OXAOOO09FAS8’ instruction generates this twgtdoopcode.

11. Popping Memory

The access type that involves popping memory tedesith the two-byte opcode
‘Ox058F’. The ‘popl 0XAOOO9FAC’ instruction geneea this two-byte opcode.

12. Accessing Program Counter Address

The ‘jmp OXAO00AO072’ instruction tests the accegstle instruction pointer.
The instruction always returns with both ttr@ register and theip register in the saved
state containing the same value. The instructims in user mode, causing a page fault,
and terminates properly in the trap handler, thiisds the user process.

B. TESTING THE PAGE FAULT TRAPHANDLER

During the testing of the various access clasdesx;ks were made to verify that
the page faults issued were properly handled inptgge fault trap handler. The tests
were done via GDB with various ‘assert’ and ‘prirfatements. The code executed on
every page fault when entering the page fault reandlas follows:

printf("handler proc 0x8%x \n",(int)sthread->stopess);

printf("eip address: %x \n", ts->eip);

if("from_user){//if kernel page fault

printf("kernel\n"); //or double fault then kill poess
return 1; //Don't allow double faults! So killqoess

}

printf("ERR!: thread = %d, process = %p, signo =,%d
"code = %d, frame = %p\n", (int)pthread_self(),

44

sthread->st_process, signo, code, ts);
printf("page fault address 0x%x\n", cr2);
printf("eip address: %x value: %x \n", ts->eip,

(long)(ts->eip));
[* if page fault from accessing kernel memory, kilbc*/
if(cr2 < OSKIT_UVM_MINUSER_ADDRESS) return 1;
//sanity check
if((i = getVMSpace(cr2)) == -1) return 1;//no p&éidn
//so kill process

The process was checked to verify that the propédswas the correct pid
expected from the process that cause the page fAoluble faults and nested traps were
detected. Theip register was checked by stepping through codenaaking sure the
user-domain processip address of the instruction that caused the pagie \fiaas the
same that was printed in the page fault handlemwak also checked to make sure that
every page fault handled in the trap handler waslleal properly with the correep
address returned pointing to the next instructibthe instruction that caused the page

fault. Every x86 opcode that the LPSK prototypadias was checked and verified.

The page fault trap handler was tested againstyevemory access class by
reading and writing various values to the definesources. The code used to test the
handling of the access classes by the prototypdisiegl in Appendix C in the files,
‘usermain_testsproc.c’ and ‘kernel.c’, with the din code and assembly code of
‘usermain_testsproc.c’ and a description of whiekt tis performed by which line of

assembly is listed in the file named ‘dump’.

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

APPENDIX C: PROTOTYPE CODE IMPLEMENTATION

The implementation of the Least Privilege Sepamati@rnel (LPSK) prototype
consists of downloading, installing, and modifythg OSKit snapshot version 20020317
as described in Appendix A. The files added or iffrei to the existing OSKit are listed
in this Appendix with the source for review. Thies are listed as indexed from the root
location where OSKit is installed. If the instracts given in Appendix A were followed

with strict adherence, the root development locaitso/oskit-dev/'.

A. OSKIT/SPROC.H

The ‘oskit/sproc.h’ file was modified with the onghange being done to the

‘oskit_sproc_create’ function prototype.

[* create a process and assign a process descriptio n*/
/* added min & max for residing processes in partit ions */
oskit_error_t oskit_sproc_create(const struct
oskit_sproc_desc *desc,
oskit_size t size, oskit_size t min,
oskit_size_t max, //[DWC 4/5/2007
struct oskit_sproc *outproc);

B. OSKIT/UVM.H

The ‘oskit/uvm.h’ file was modified with the onlyhange being done to the

‘oskit_uvm_create’ function prototype.

[* create a vmspace */ /[DWC 4/5/2007
/* added min and max for creating vmspaces with fix ed
min and max constraints for partitioning */
oskit_error_t oskit_uvm_create(oskit_size _t size,
oskit_size_t min, oskit_size tm ax,
oskit_vmspace_t *out_vm);

C. THREADS/'SCHED_POSIX/SCHED_POSIX.C

The ‘threads/sched_posix/sched_posix.c’ file waglifredl to add ticks to round

robin scheduler.

/* added ticks to processes for round robin schedul er*
Line 260:pthread->ticks = pthread->interval_ticks;
/* added ticks to processes for round robin schedul er*/

Line 433:pthread->ticks = pthread->interval_ticks;

a7

D. THREADSPTHREAD_CREATE.C

The ‘threads/pthread_create.c’ file was modifiedatdd ticks to round robin
scheduler.

/* added ticks to processes for round robin schedul er*/
Line 199:pthread->interval_ticks=attr->sched_ticks;

E. UVM/SPROC/SPROC.C

The ‘uvm/sproc/sproc.c’ file was modified with tbaly change being done to the

‘oskit_sproc_create’ function to permit partitiogiof memory.
extern oskit_error_t

oskit_sproc_create(const struct oskit_sproc_desc *d esc,
oskit_size_t size, oskit_size_t min, oskit_size_tm ax,
struct oskit_sproc *outproc)

/IDWC 4/5/2007 added min and max to create partitio ns

{

oskit_error _t error;
/* added min and max to create partitions */
error = oskit_uvm_create(size, min, max,
&outproc->sp_vm);//[DWC 4/5/2007
if (error) {
return error;
}

gueue_init(&outproc->sp_thread_head);
pthread_mutex_init(&outproc->sp_lock, NULL);
/* Install our uvm handler */
oskit_uvm_handler_set(outproc->sp_vm,
oskit_sproc_uvm_handler);

outproc->sp_desc = desc;
return O;

48

F. UVM/UVM/OSKIT_UVM.C

The ‘uvm/uvm/oskit_uvm.c’ file was modified with éhonly change was to the

‘oskit_uvm_create’ function to permit partitioniog memory.

/*

* API: Create a vmspace

*/

[* added changes to permit partitioning */
extern oskit_error_t

oskit_uvm_create(oskit_size_t size, oskit_size t mi n,
oskit_size t max,
oskit_vmspace_t *out_vm) //DWC 4/5 /2007
{

oskit_vmspace_t p;
oskit_error_t error;

if (min + size > max) { //DWC 4/5/2007
return OSKIT_EINVAL;
}

error = oskit_uvm_vmspace_alloc(&p);
if (error) {

return error;
}

UVM_LOCK;
/* allocate uvmspace by min and max of partitio n*/
p->vm_proc.p_vmspace = uvmspace_alloc(min,

min + size, 1); //IDWC 4/5/2007
UVM_UNLOCK;
*out_vm = p;

return O;

}
G. EXAMPLES/X86/SPROC/KERNEL.H

The ‘examples/x86/sproc/kernel.h’ file contains thenction prototypes and

defines used for the ‘kernel.c’ file.

#ifndef _KERNEL_H_
#define _KERNEL_H_

[* # of iteration */

#define NITER 1

[* # of processes run in parallel */

#define NPROCESS3

[* # of threads in a single process */

#define NTHREAD 1

[* user stack size */

#define USER_STACK_SIZE (16*1024)
[* for printing of debugging content */

49

extern int oskit_sproc_debug;

[* initialization for system calls */

extern int syscall_init(void);

[* create process and run in user-domain */

static void execute_process(void *);

[* trap handler to handle page faults */

static int handler(struct oskit_sproc_thread *sth,
int signo, int code,
struct trap_state *frame);

[* structure used for system calls */
extern struct oskit_sproc_sysent my_syscall_tab[];

#endif *KERNEL.H*/
H. EXAMPLES/X86/SPROC/CONFIG.H

The ‘examples/x86/sproc/config.h’ file contains #tructures and defines used by

‘kernel.c’ and ‘configapp.c’ for the configuratidite structure.

#ifndef CONFIG_H_
#define_ CONFIG_H_

#define MAX_PROCESSES 20 //define for max # of proc esses
#define MAX_PARTITIONS 8 //define for max # of part itions
#define MAX_RESOURCES 20 //define for max # of reso urces

#define MAX_CVT 3 //not implemented yet
#define MAX_AUTHS 20 //not implemented yet

#define MAX_NAME_LEN 100 //define for policy names and
Illprocess file names

#define DELAY 10 //define used for delaying program control

typedef enum {FALSE=0, TRUE} BOOL; //add Boolean ty pe

[* access modes used for determining resource and p artition

flow privileges */
typedef enum {N=0, R=2, W=3, RW=5} E_ ACCESS_MODE;
[* E_ABILITIES are not implemented yet */

typedef enum {RESTART=0, HALT, CONFIG_UPDATE} E_ABI LITY;
[* structure contains internal information for proc esses */
struct oskit_sproc_info{
char argl]MAX_NAME_LEN]; // string of c file of pr ocess
int proc_size; //partition size
long proc_min_addr; //partition min address for p rocess
long proc_max_addr; //partition max address for p rocess

long proc_heap_start_addr;

long proc_heap_size;

int sched_ticks; // ticks for scheduler

pthread_attr_t *attr; //loaded during process cre ate
struct oskit_vmspace *sp_vm; //created during pro c init
int process_id; //pid of the process

J* structure containing information for partitions */
struct partition{
int partition_id;

50

int resource_ids[MAX_RESOURCES];
int process_ids[]MAX_PROCESSES];
long part_min_addr;
long part_size;
int timeSlice;
¢
[* structure containing information for processes *
struct process{
int process_id;
int priority;
struct oskit_sproc_info info;

[* structure containing information for resources *
struct resource{

int resource_id;

int resource_type;

long res_min_addr;

long res_size;

[* structure not yet implemented */
struct sub_auth{
int process_id; //aka "subject"
E_ABILITY ability_id;
¢
[* structure containing information for partition f
struct partFlowTuple{

int partition_id_from;

int partition_id_to;

E_ACCESS_MODE access_mode;

[* structure containing information for resource fl
struct resFlowTuple{

int process_id;

int resource_id;

E_ACCESS_MODE access_mode;

/* struct of configuration file info for the protot
struct LPSKconfig{
intid; //aka "next"
int version;
int num_of_partitions;
int num_of _processes;
int num_of_resources;
int num_of part_flows;
int num_of res_flows;
char policy]MAX_NAME_LEN];
struct partition partitionListtMAX_PARTITIONS];
struct resource resourceListtMAX _RESOURCES];
struct sub_auth authListfMAX_AUTHS]; //not implem
struct process processListfMAX_PROCESSES];
struct partFlowTuple
partFlows[MAX_PARTITIONS*MAX_PARTITIONS]
struct resFlowTuple
resFlows[MAX_PROCESSES*MAX_RESOURCES];

J* structure not yet implemented */
struct LPSKConfigVectorTable{ //not implemented yet

51

lows */

ows */

ype */

ented

int version;

int curr_conf _id;

struct LPSKconfig CVT[MAX_CVT];
¥

#endif /*CONFIG.H*/

EXAMPLES/X86/SPROC/USERMAIN_TESTSPROC.C

The ‘examples/x86/sproc/usermain_testsproc.c’daetains the test cases used to
cause the memory accesses that are trapped bgdledault trap handler.

/*

* Copyright (¢) 2001 The University of Utah and th e Flux
* Group. All rights reserved.

*

* This file is part of the Flux OSKit. The OSKit is free
* software, also known as "open source;" you can

* redistribute it and/or modify it under the terms of the
* GNU General Public License (GPL), version 2, as

* published by the Free Software Foundation (FSF). To

* explore alternate licensing terms, contact the

* University of Utah at csl-dist@cs.utah.edu or +1 -801-
* 585-3271.

* The OSKit is distributed in the hope that it wil | be

* useful, but WITHOUT ANY WARRANTY; without even t he

* implied warranty of MERCHANTABILITY or FITNESS F ORA
* PARTICULAR PURPOSE. See the GPL for more detall s. You
* should have received a copy of the GPL along wit h the

* OSKit; see the file COPYING. If not, write to t he FSF,
* 59 Temple Place #330, Boston, MA 02111-1307, USA :
*/

[* Sample user program */

#include <oskit/c/stdio.h>
#include <oskit/c/malloc.h>
#include "user_syscall.h"

extern int errno;

int
main()

int pid; //Process Id

intrc;

int value;

char *vall, *val2;

pid = syscall_getpid();

printf("Start process (pid %d)\n", pid);

syscall_sleep(6);

value = 99;

value++;

[* Test Pushing Memory Access Class */

52

asm volatile("push 0XAOO009FA8\n\t");

[* Test Popping Memory Access Class */

asm volatile("pop OXAOO09FAC\n\t");

asm volatile("mov $0x12, %eax\n\t");

I* Test Register to Memory Access Class */

asm volatile("mov %eax, 0XAOO09FA8\n\t");

[* Test Constant to Memory Access Class */

(int)OXAOO09FAS8 = value;

asm volatile("push %eax\n\t");

[* Test Pushing/Popping to Memory Address Access Class */
asm volatile("push $0xA000BEEF\n\t");

asm volatile("pop Y%eax\n\t");

T T i
/* Test Memory Address to Register Access Class * /
asm volatile("mov $0XxA00DBEEF, %eax\n\t");

asm volatile("pop %eax\n\t");

printf("value is: 0x%d", *(int*)OXxAOO09FAS);

syscall_sleep(1);

/* Test Memory to Register, Memory Pointed by a * /

/* Register to Memory, and Memory to Memory Point ed by */
I* a Register Access Classes /
memcpy(*(int*)OXA0009FAC, *(int*)OXAOO009FAS, 4);

[* Test Incrementing/Decrementing Memory Access C lass */

(int)OXAOO09FAS8 = *(int*)OXAOO09FAS8 + 1;

(int)OXAO009FAC = *(int*)OXA0009FAC + 4;

[* Test Pushing/Popping Memory Address Access Cla ss */
vall = OXxAOO09FAS;

val2 = OXxAO009FAC;

[* Test Memory to Memory Access Class */

memmove(vall, val2, 1);

syscall_sleep(2);
[* Test Accessing Program Counter Address */
asm volatile("jmp 0XAOOO9FAC\n\t");

#if 1

[* Test userspace malloc */

{
int *basel, *base?;
syscall_lock();
basel = (int*)malloc(10);
syscall_unlock();
printf("pid %d: malloc returns %p\n", pid, base 1);
syscall_lock();
base2 = (int*)malloc(4096);
syscall_unlock();
printf("pid %d: malloc returns %p\n", pid, base 2);

#endif

syscall_sleep(5);
return O;

}
J. EXAMPLES/X86/SPROC/ USERMAIN_HELLO.C

53

The ‘examples/x86/sproc/usermain_hello.c’ file @wms the code to display the

resources that are created and tested in the ppetot

/*
* Copyright (¢) 2001 The University of Utah and th
* Group. All rights reserved.

* This file is part of the Flux OSKit. The OSKit

* software, also known as "open source;" you can

* redistribute it and/or modify it under the terms

* GNU General Public License (GPL), version 2, as

* published by the Free Software Foundation (FSF).

* explore alternate licensing terms, contact the

* University of Utah at csl-dist@cs.utah.edu or +1

* 585-3271.

* The OSKit is distributed in the hope that it wil

* useful, but WITHOUT ANY WARRANTY; without even t
* implied warranty of MERCHANTABILITY or FITNESS F
* PARTICULAR PURPOSE. See the GPL for more detalil
* should have received a copy of the GPL along wit

* OSKit; see the file COPYING. If not, write to t

* 59 Temple Place #330, Boston, MA 02111-1307, USA
*

/

[* Sample user program */

#include <oskit/c/stdio.h>
#include "user_syscall.h"

int main()

int value2 = 899;
int value = 455;
int pid, tid;
int1,j;
* obtain process id for displaying */
pid = syscall_getpid();
[* obtain thread id for displaying */
tid = syscall_gettid();
[* don’t run forever for testing */
for(i=0;i<9;i++){
[* display process running results for testing
printf("proc 0x8%x, tid %2d: Hello World, iter
pid, tid, i);
[* waste ticks without pre-emption */
for(j = 0; j < 100000000; j++){}
[* display resource values */
printf("address of value is: %x value2 is: %x a
%d value2 %d \n", &value, &value2, value,
[* waste ticks with pre-emption */
syscall_sleep(2);

printf("tid %d: Bye\n", tid);
/* tell kernel the process is done */
return O;

}
54

e Flux

is free
of the
To

-801-

| be

he
ORA
s. You
h the
he FSF,

*/
=%d ",

nd value
value2);

K. EXAMPLES/X86/SPROC/KERNEL.C

The ‘examples/x86/sproc/kernel.c’ file went througke most amount of changes.
The changes made include reading the configurafilen and creating partitions,
resources, processes, resource flows, and parflbars. Other changes made involve
adding a page fault trap handler that follows thkes of the flows to permit or deny

access attempts made by processes.

/*

* Copyright (¢) 2001 The University of Utah and th e Flux
* Group. All rights reserved.

*

* This file is part of the Flux OSKit. The OSKit is free
* software, also known as "open source;" you can

* redistribute it and/or modify it under the terms of the
* GNU General Public License (GPL), version 2, as

* published by the Free Software Foundation (FSF). To

* explore alternate licensing terms, contact the

* University of Utah at csl-dist@cs.utah.edu or +1 -801-
* 585-3271.

* The OSKit is distributed in the hope that it wil | be

* useful, but WITHOUT ANY WARRANTY; without even t he

* implied warranty of MERCHANTABILITY or FITNESS F ORA
* PARTICULAR PURPOSE. See the GPL for more detalil s. You
* should have received a copy of the GPL along wit h the

* OSKit; see the file COPYING. If not, write to t he FSF,
* 59 Temple Place #330, Boston, MA 02111-1307, USA .
*/

/*
* An example for simple process library. This ker nel
* loads an ELF binary into a user space and execut eitin
* user mode. Several quite simple system calls ar e
* implemented.
*/

[* This file has been modified to add partitioning and
* memory resources. The code in this file makes u p the
* bulk of the LPSK prototype created from OSKit so urce
*

/

#include <oskit/c/termios.h>
#include <oskit/c/unistd.h>
#include <oskit/clientos.h>
#include <oskit/debug.h>

#include <oskit/exec/exec.h>
#include <oskit/gdb.h>

#include <oskit/machine/pc/phys_Imm.h>
#include <oskit/sproc.h>

#include <oskit/startup.h>
#include <oskit/threads/pthread.h>
#include <oskit/version.h>
#include <oskit/x86/proc_reg.h>
#include <oskit/x86/trap.h>
#include <oskit/page.h>

55

#include <oskit/c/malloc.h>

#include <oskit/c/fcntl.h>

#include <oskit/io/absio.h>

#include <oskit/x86/pc/pic.h>

#include <oskit/x86/pc/pit.h>

#include <oskit/x86/pc/base_irq.h>
#include <uvm/sproc/sproc_internal.h>
#include <oskit/x86/eflags.h>

#include <oskit/lmm.h>

#include <stdio.h>

#include "proc.h"

#include "syscallno.h"

#include "kernel.h"

#include "config.h"

/* function to check access by comparing permitted

* rules with requested access

*

/

static int checkAccessFlows(oskit_size_t cr2,
E_ACCESS_MODE access_mo
int sproc);

[* structure used to connect the page fault trap ha

*in this file to be called when a page fault inte

* occurs

*

/

static struct oskit_sproc_desc process_desc = {
NSYS, [* # of system calls implemented */
my_syscall_tab, [* system call table */
handler [* trap handler */

* configuration file container*/
struct LPSKconfig *c_file;

/* main of LPSK prototype that reads the configurat
* and from the data gleaned create partitions, pro
* resource flows, resources, and partition flows
*/
extern int
main()

inti, j;

int fd;

const char *path = "/configfile";

oskit_off t offset;

oskit_size_t num_bhytes;

oskit_size t * out;

oskit_absio_t * absio;

oskit_error_t error;

pthread_attr_t threadattr;

struct sched_param param;
#ifndef KNIT

oskit_clientos_init_pthreads();

#endif
/* for GNU debugging and testing purposes */
#if O

{

extern struct termios base_raw_termios,
56

flows

de,

ndler
rrupt

ion file
cesses,

base cooked_termios;
printf("setting serial port for gdb\n");
base_raw_termios.c_ispeed = B38400;
base_raw_termios.c_ospeed = B38400;
base_cooked_termios.c_ispeed = B38400;
base cooked_termios.c_ospeed = B38400;
gdb_pc_com_init(1, &base_raw_termios);

gdb_trap_mask = (1 <<T_PAGE_FAULT) | (1 << T_NO_FP U);
printf("break\n");

gdb_breakpoint();

printf("go\n");

}
#endif
[* start the clock */
start_clock();
[* instantiate environment for pthreads */
start_pthreads();
start_fs_bmod();

#if O
{
externint __isthreaded;
__isthreaded = 1; /* for freebsd libc */
}
#endif
[* start up virtual memory system plus swap fil e*/

printf(">> Initializing UVM\n");
oskit_uvm_init();
oskit_uvm_swap_init();
printf(">> Swap On\n");
if (swapon("/swapfile")) {
extern int errno;
panic("swapon failed (errno %d)\n", errno);

/* read the configuration file from the binary
* created and linked into the elf image

*/

printf(">> Starting to read config file\n");
num_bytes = sizeof(struct LPSKconfig);

fd = open(path, O_RDWR);
if (fd ==-1){
return -1;

}
printf(">> Opened file\n");
error = fd_get_absio(fd, &absio);
if (error) {
printf("errror %i\n", error);
return -1;

[* allocate space for configuration file contai ner */
c_file = (struct LPSKconfig *)
malloc(sizeof(struct LPSKconfig));
/* read configuration file */
offset = 0;
error = oskit_absio_read(absio, c_file,

57

offset, num_bytes, out);
oskit_absio_release(absio); // don't need anymo re
if (error) {
printf("errror %i\n", error);
return -1;

printf("read config file!'\n");

getchar();

[* start page daemon */

printf(">> Starting the page daemon\n");
oskit_uvm_start_pagedaemon();

[* initialize simple process library */

printf(">> Initializing Simple Process Library\ n");
oskit_sproc_init();

printf(">> We are ready\n");

#ifdef GPROF
start_gprof();

#endif
/* fill structure with pthread attributes */
pthread_attr_init(&threadattr);

/* Initialize my system calls */
syscall_init();

for(=0;j<NITER ; j++) {
pthread_t th[c_file->num_of_processes];
intrc;
printf("****** Create processes (%d) ******\n", j);
/* create processes */
for i=0;i<c_file->num_of processes ; i++) {
/*
* Create the thread.
*/
[* set up details for scheduler for process */
param.priority = PRIORITY_NORMAL,;

pthread_attr_setschedparam(&threadattr, &par am);
pthread_attr_setschedpolicy(&threadattr, SCH ED_RR);

threadattr.sched_ticks =
c_file->processList[i].info.sched_ticks;
c_file->processList[i].info.attr = &threadattr;
[* add temp values for process id for orderi ng */
c_file->processList[i].info.process_id = i;
[* create thread for process */
rc = pthread_create(&th[i], &threadattr,
(void *(*)(void*))execute_process,
(void *)&c_file->processList[i].info);
assert(rc == 0);
/*
* Delay for a while, while the threads prove
* themselves.
*/
oskit_pthread_sleep(DELAY);

58

printf("******** Waltlng (%d) ********\n"' J)!
for i=0;i<c_file->num_of processes ; i++) {
pthread_join(th[i], NULL);

printf("******** Tarminated ********\n");
return O;

/* this function initializes the virtual memory map pings
* for a process and starts processes

*/

static void
load_process(struct oskit_sproc *sproc,

exec_info_t *exec_info, const char *el f,
struct oskit_sproc_info *info)

oskit_addr_t heap;
oskit_error_t error;

printf("**** creating a process [%s] (pid %p,
thread %d) ****\n", elf, sproc,
(int)pthread_self());
[* create a process with the min and max bounda ries of
* the partition that the process resides
*
/
if (oskit_sproc_create(&process_desc, info->pro c_size,
info->proc_min_addr, info->proc_max_addr, s proc)) {
panic("oskit_sproc_create failed\n");

error = oskit_sproc_load_elf(sproc, elf, exec i nfo);
if (error) {
panic("oskit_sproc_load_elf failed (0x%x)\n", erro r;

[* map heap area */

/Iheap = HEAP_START_ADDR,;

heap = (oskit_size_t)info->proc_heap_start_addr ;

printf("heap location: %d", heap);

[* create mapping for the process with the heap */

error = oskit_uvm_mmap(sproc->sp_vm, &heap,
(oskit_size_t)info->proc_heap_size,
PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANON|MAP_FIXED, 0, 0);

if (error) {

panic("oskit_uvm_mmap failed (heap)\n");

/lassert(heap == HEAP_START_ADDR);
assert(heap ==

(oskit_size_t)info->proc_heap_start_addr);
info->sp_vm = sproc->sp_vm;

/****'k*** *kkkkkkk

*
*
*

Multiple threads in a Process

*kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkkkkk *******/

59

[* this structure is used to store process informat ion */
struct arg {

struct oskit_sproc *sproc;

oskit_addr_tentry;

struct oskit_sproc_info *info;

h

/* this function initializes the user stack and pag e sizes
* for a process and then puts the process in user mode
* 50 that the process can begin

*/

static void
Iwp(struct arg *arg)

oskit_addr_t stkaddr;

struct oskit_sproc_stack stk;

[* pass arguments to process to know where heap

* will be located for a process

*
/

oskit_size t userarg[] = {
(oskit_size_t)arg->info->proc_heap_start_addr :
(oskit_size_t)arg->info->proc_heap_size, 300} ;

stkaddr = O;

printf("sproc: %p user heap addr: %x \n", arg-> sproc,
(oskit_size_t)arg->info->proc_heap_start _addr);

[* create the user process’ stack */

if (oskit_sproc_stack_alloc(arg->sproc, &stkadd r,

USER_STACK_SIZE, PAGE_SIZE, &stk)) {
panic("oskit_sproc_alloc_stack failed\n");

[* push the arguments for the process on it's s tack */
if (oskit_sproc_stack push(&stk, &userarg,
sizeof(userarg))) {
panic("oskit_sproc_alloc_push failed\n");

printf("thread %d: process %p, user stack [%oxX.. %x]J\n",
(int)pthread_self(), arg->sproc,
stkaddr + PAGE_SIZE,
stkaddr + USER_STACK_SIZE + PAGE_SIZE);

/* switch to user-domain */

oskit_sproc_switch(arg->sproc, arg->entry, &stk);
/* this function creates a process by initializing the
* configuration file structure to have the new pro cess

* id’s of the newly created process instead of
* the placeholder id’s from configuration file
*/

static void

execute_process(void *arg)

struct oskit_sproc sproc;
exec_info_t exec_info;
inti, k, I;

int process_id;

const char *filename =

60

}

(const char*)(((struct oskit_sproc_info *)(arg)
pthread_t thINTHREAD];

printf("filename: %s \n", filename);

load_process(&sproc, &exec_info, filename, arg)

/* obtain the process id for the new process */
process_id = (int)&sproc;

/* overwrite old process id placeholders in the
* configuration file structure
*
/
i = ((struct oskit_sproc_info *)arg)->process_i
for(k = 0; k< c_file->num_of_patrtitions; k++){
for(l = 0; I< c_file->num_of _processes; [++){
if(c_file->processList[i].process_id ==
c_file->partitionList[k].process_ids[l])
c_file->partitionList[k].process_ids|l
process_id;
}
}

for(k = 0; k< c_file->num_of_res_flows; k++){
if(c_file->processList[i].process_id ==
c_file->resFlows[k].process_id){
c_file->resFlows[k].process_id = process_id

}
c_file->processList[i].process_id = process_id;

[* create the processes and let them go, killin
*when and if they return
*
/
for (i=0;i<NTHREAD ;i++) {
struct arg arg2;
arg2.sproc = &sproc;
arg2.entry = exec_info.entry;
arg2.info = arg;

pthread_create(&thli],
((struct oskit_sproc_info *)(arg)
(void*(*)(void*))lwp, &arg2);

}
for i=0;i<NTHREAD ; i++) {
pthread_join(th[i], NULL);

printf("**** destroying process (thread %d) ***
(int)pthread_self());
oskit_sproc_destroy(&sproc);

/* this function checks the resource flows and part
* flows from the configuration data to determine i
* given process can have the petitioned access

*/

static int checkAccessFlows(oskit_size_t cr2,

E_ACCESS_MODE access_m
61

)->arg);

—_———

g them

)->attr,

*\nn’

ition

f the

ode,

int sproc){
inti, j, process_id;
int partition_from_id = 0;
int partition_to_id = 0;
int resource_id = 0;
int grant_access = 0;

process_id = sproc;
[* obtain partition where process resides */

for(i=0;i<c_file->num_of_partitions;i++){
for(j=0;j<c_file->num_of processes;j++){
if(c_file->partitionList[i].process_ids[j] ==
process_idY{
partition_from_id =
c_file->partitionList[i].partition_id;
break;
}
}

[* obtain partition where access is attempted */
for(i=0;i<c_file->num_of_partitions;i++){
if((cr2 >=

(oskit_size_t)c_file->partitionList[i].part._m
&& (cr2 <=
(oskit_size_t)c_file->partitionList[i].part_
+ (oskit_size_t)c_file->partitionList[i].part
partition_to_id =
c_file->partitionList[i].partition_id;

}

/lif no partition exists for read/write and from
/lterminate

/lthe check on where, which is a sanity check
if(partition_from_id) || (Ipartition_to_id)) re

/[First Check to see if there is a partition Flow
/lallow the access
for(i=0;i<c_file->num_of_part_flows;i++){
if((c_file->partFlowsJi].partition_id_from ==
partition_from_id) &&
(c_file->partFlowsJi].partition_id_to ==
partition_to_id) &&
(((c_file->partFlows][i].access_mode) ==
access_mode) ||
((c_file->partFlows[i].access_mode) >=
access_mode+2))¥{
grant_access = 1;

if('grant_access) return -1;

/INext Check to see if there is a resource Flow t

/lthe access
/lto this process

for(i=0;i<c_file->num_of_resources;i++){
62

ss_id);

in_addr)

min_addr
_size)}{

where,

turn -1;

to

o allow

if((cr2 >=
(oskit_size_t)c_file->resourcelList[i].res_mi
&& (cr2 <=
(oskit_size_t)c_file->resourcelList[i].res_mi
(oskit_size_t)c_file->resourcelList[i].res_si
resource_id = c_file->resourcelList[i].resourc

}

}

//if no resource exists for read/write, terminate
if('resource_id) return -1;

for(i=0;i<c_file->num_of res_flows;i++){
if((c_file->resFlows]i].process_id == process i
(c_file->resFlows]i].resource_id == resource
(((c_file->resFlows[i].access_mode) == acces
|| ((c_file->resFlows]i].access_mode) >=
access_mode+2))}{
return 1; //Permission granted

}

return -1; //Access denied

}

/* this function identifies a process that resides
* in the attempted access location
*/
static int getVMSpace(oskit_size_t cr2){
inti;
for(i=0;i<c_file->num_of processes;i++){
printf("cr2: 0x%x >= min 0x%x cr2: 0x%Xx <=
max 0x%x \n", cr2,
(oskit_size_t)c_file->processList[i].info.proc_m
cr2,
(oskit_size_t)c_file->processList[i].info.proc_ma

if((cr2 >=
(oskit_size_t)c_file->processList][i].info.proc_m
&& (cr2 <=
(oskit_size_t)c_file->processList[i].info.proc_max
printf("going to swap vmspace\n");
return i;

}

return -1;

}

/*
* Trap handler for the simple process library
* This trap handler is implemented to be a page f

* trap handler to catch the various memory access

* attempts

*/

static int

handler(struct oskit_sproc_thread *sthread, int sig
int code, struct trap_state *ts)

{
63

n_addr)
n_addr +

ze)l{

e id;

d) &&
_id) &&
s_mode)

in_addr,

X_addr);

in_addr)
_addn)){

ault

no,

oskit_size tcr2 = get_cr2();

int i;

int from_user = (ts->cs & 3) || (ts->eflags & E
struct oskit_vmspace *processesVM;

long mem, val,

unsigned char data[ts->ecx];
E_ACCESS_MODE access_mode;

(int)sthread->st_process);

printf("eip address: %x \n", ts->eip);
printf("esp address: %x \n", ts->esp);
printf("cr2 address: %x \n", cr2);
/* Is this a program counter access attempt?
* kill the process if it is

*

/
if(ts->eip == cr2){

printf("execute read or write so kill process

return 1;//Don't allow execute! so kill proce

/* Is this a nested trap or double fault?
* kill the process as to not allow if it is
*
/
if(!from_user){
printf("kernel\n");
return 1; //Don't allow trap nesting or doubl
/ffaults! So kill process
}

printf("ERR!: thread = %d, process = %p, signo
"code = %d, frame = %p\n", (int)pthread_self(),
sthread->st_process, signo, code, ts);
printf("page fault address 0x%x\n", cr2);
/* if page fault from accessing kernel memory
* kill process because this should never happe
*
/
/* sanity check */
if(cr2 < OSKIT_UVM_MINUSER_ADDRESS) return 1;
[* check if partition exists, if not kill proce
if((i = getVMSpace(cr2)) == -1) return 1;
[* get mapping from other process to use */
processesVM = c_file->processList[i].info.sp_vm
printf("opcode: %x \n", *(unsigned short*)ts->e
switch(*(unsigned short*)(ts->eip)}{
case(0x05FF): //incl addr
/* define access mode of this opcode */
access_mode = W,
/* grab memory address accessed */
mem = *(long*)(ts->eip+2);
printf("OXx05FFN\n");
/* make sure the address access is the fault
* address
*/
if(lmem != cr2) return 1; //sanity check
/lcheck access and kill if denied
if((i = checkAccessFlows(cr2, access_mode,
(int)sthread->st_process)) == -1) return 1;

64

FL_VM);

1"
=

SS

=%d, "

Ss */

ip);

/lswap in memory mapping to access memory
processesVM = oskit_uvm_vmspace_set(processesV
/* perform operation of instruction attempted
* user since it has enough permissions
*

/
*(intYYymem = *(int*)mem + 1;
[* swap in old mapping */
oskit_uvm_vmspace_set(processesVM);
[* set user to return after instruction since
* we have already executed the instruction
*
/
ts->eip = ts->eip+6;
return O; //handled trap so return to process

case(0x0583): //addl const,addr

/* define access mode of this opcode */
access_mode = W,
/* grab memory address accessed */
mem = *(long*)(ts->eip+2);
val = *(unsigned char*)(ts->eip+6);
printf("0x0583\n");
if(mem != cr2) return 1; //sanity check
//lcheck access and kill if denied
if((i = checkAccessFlows(cr2, access_mode,
(int)sthread->st_process)) == -1) return 1;
/[swap in memory mapping to access memory
processesVM = oskit_uvm_vmspace_set(processesV
/* perform operation of instruction attempted
* user since it has enough permissions
*
/
*(int*Yymem = *(int*)mem + val;
/* swap in old mapping */
oskit_uvm_vmspace_set(processesVM);
[* set user to return after instruction since
* we have already executed the instruction
*
/
ts->eip = ts->eip+7;
return O; //handled trap so return to process

case(0x35FF): //pushl addr

/* define access mode of this opcode */
access_mode = R;
/* grab memory address accessed */
mem = *(long*)(ts->eip+2);
/Ival = *(unsigned char*)(ts->eip+6);
printf("Ox058FN\n");
if(mem != cr2) return 1; //sanity check
//lcheck access and kill if denied
if((i = checkAccessFlows(cr2, access_mode,
(int)sthread->st_process)) == -1) return 1;
/* increase user stack since
* we need to execute the instruction
*
/
ts->esp = ts->esp - 4;
/[swap in memory mapping to access memory
processesVM = oskit_uvm_vmspace_set(processesV
/* perform operation of instruction attempted
* user since it has enough permissions
*
/

65

M);

M);
by

M);
by

val = *(long*)mem;
[* swap in old mapping */
oskit_uvm_vmspace_set(processesVM);
(long)(ts->esp) = val,
[* set user to return after instruction since

* we have already executed the instruction
*

/
ts->eip = ts->eip+6;
return O; //handled trap so return to process

case(0x058F): //popl addr

/* define access mode of this opcode */
access_mode = W,
/* grab memory address accessed */
mem = *(long*)(ts->eip+2);
val = *(long*)(ts->esp);
printf("Ox058F\n");
if(mem != cr2) return 1; //sanity check
/lcheck access and kill if denied
if((i = checkAccessFlows(cr2, access_maode,
(int)sthread->st_process)) == -1) return 1;
//[swap in memory mapping to access memory
processesVM = oskit_uvm_vmspace_set(processesV
[* perform operation of instruction attempted
* user since it has enough permissions
*
/
(long)mem = val;
/* swap in old mapping */
oskit_uvm_vmspace_set(processesVM);
/* decrease user stack since
* we have already executed the instruction
*
/
ts->esp = ts->esp + 4;
[* set user to return after instruction since
* we have already executed the instruction
*
/
ts->eip = ts->eip+6;
return O; //handled trap so return to process

case(0x05c7): //Imovl const, addr

/* define access mode of this opcode */
access_mode = W,
/* grab memory address accessed */
mem = *(long*)(ts->eip+2);
val = *(long*)(ts->eip+6);
printf("0x05¢c7\n");
if(mem != cr2) return 1; //sanity check
//lcheck access and kill if denied
if((i = checkAccessFlows(cr2, access_mode,

(int)sthread->st_process)) == -1) return 1;
/[swap in memory mapping to access memory
processesVM = oskit_uvm_vmspace_set(processesV
/* perform operation of instruction attempted
* user since it has enough permissions
*

/
[*(int*)mem = val;
asm volatile(

"pushl %%eax\n\t"
"pushl %%ebx\n\t"

66

M);
by

M);
by

"pushl %21\n\t"
"pushl %0\n\t"
"popl %%eax\n\t"
"popl %%ebx\n\t"
"movl %%eax, (%%ebx)\n\t"
"popl %%ebx\n\t"
"popl %%eax\n\t"
:"=m" ((long)val)
2 "m" ((oskit_size_t)mem)

/* swap in old mapping */
oskit_uvm_vmspace_set(processesVM);
[* set user to return after instruction since
* we have already executed the instruction
*
/
ts->eip = ts->eip+10;
return O; //handled trap so return to process

case(0x008b): //mov (Yeax),%eax

/* define access mode of this opcode */
access_mode = R;
/* grab memory address accessed */
mem = ts->eax;
printf("0x008b"\n");
if(lmem != cr2) return 1; //sanity check
/lcheck access and kill if denied
if((i = checkAccessFlows(cr2, access_mode,
(int)sthread->st_process)) == -1) return 1;
//[swap in memory mapping to access memory
processesVM = oskit_uvm_vmspace_set(processesV
/* perform operation of instruction attempted
* user since it has enough permissions
*
/
ts->eax = *(int*)mem;
/* swap in old mapping */
oskit_uvm_vmspace_set(processesVM);
[* set user to return after instruction since
* we have already executed the instruction
*
/
ts->eip = ts->eip+2;
return O; //handled trap so return to process

case(0x0289): //Imov %eax,(%oedx)

/* define access mode of this opcode */
access_mode = W,
/* grab memory address accessed */
mem = ts->edx;
val = ts->eax;
printf("0x0289\n");
if(lmem != cr2) return 1; //sanity check
/lcheck access and kill if denied
if((i = checkAccessFlows(cr2, access_maode,
(int)sthread->st_process)) == -1) return 1;
/[swap in memory mapping to access memory
processesVM = oskit_uvm_vmspace_set(processesV
/* perform operation of instruction attempted
* user since it has enough permissions
*
/
(int)ymem = val;

67

M);
by

M);
by

/* swap in old mapping */
oskit_uvm_vmspace_set(processesVM);
[* set user to return after instruction since
* we have already executed the instruction
*
/
ts->eip = ts->eip+2;
return O; //handled trap so return to process

case(0x158b): //mov addr, %edx

/* define access mode of this opcode */
access_mode = N;
/* grab memory address accessed */
mem = *(long*)(ts->eip+2);
printf("0x158b\n");
if(lmem != cr2) return 1; //sanity check
/Icheck access and kill if denied
if((i = checkAccessFlows(cr2, access_mode,
(int)sthread->st_process)) == -1) return 1;
/[swap in memory mapping to access memory
processesVM = oskit_uvm_vmspace_set(processesV
/* perform operation of instruction attempted
* user since it has enough permissions
*
/
ts->edx = mem;
/* swap in old mapping */
oskit_uvm_vmspace_set(processesVM);
[* set user to return after instruction since
* we have already executed the instruction
*
/
ts->eip = ts->eip+6;
return O; //handled trap so return to process

case(0xa4f3): //repz movsb %ds:(%esi), %es:(%

//lbased on ecx count
[* define access mode of the first half opcode
access_mode = R;
printf("esi address: %x \n", ts->esi);
printf("edi address: %x \n", ts->edi);
/* grab memory address accessed */
mem = ts->esi;
printf("Oxa4f3\n");
if(mem != cr2) return 1; //sanity check
/lcheck access and kill if denied
if((i = checkAccessFlows(cr2, access_maode,
(int)sthread->st_process)) == -1) return 1;
/[swap in memory mapping to access memory
processesVM = oskit_uvm_vmspace_set(processesV
[* perform operation of instruction attempted
* user since it has enough permissions
*
/
for(i=0;i<(int)ts->ecx;i++)
data]i] = (unsigned char)*(((long*)ts->esi)+
[* swap in old mapping */
oskit_uvm_vmspace_set(processesVM);
/[from and to addresses may reside in separate
/Ipartitions
//so we must set vmspace again
/fif no partition found, kill process
if((i = getVMSpace(ts->edi)) == -1) return 1,

68

edi)

by

*/

M);
by

/[swap in memory mapping to access memory
processesVM = c¢_file->processList[i].info.sp_v
/* define access mode of this half of opcode *
access_mode = W,
/lcheck access and kill if denied
if((i = checkAccessFlows(cr2, access_mode,
(int)sthread->st_process)) == -1) return 1;
/[swap in memory mapping to access memory
processesVM = oskit_uvm_vmspace_set(processesV M);
[* perform operation of instruction attempted by
* user since it has enough permissions
*
/
for(i=0;i<(int)ts->ecx;i++)
(((long)ts->edi)+i) = data[i];
/* swap in old mapping */
oskit_uvm_vmspace_set(processesVM);
[* set user to return after instruction since
* we have already executed the instruction
*
/
ts->eip = ts->eip+2;
return O; //handled trap so return to process
default:
switch(*(unsigned char*)(ts->eip){
case(0x58): //pop addr value into eax reg ister
/this will not occur
* define access mode of this opcode */
access_mode = N;
printf("Ox581\n");
/lcheck access and kill if denied
if((i = checkAccessFlows(cr2, access_mo de,
(int)sthread->st_process)) ==-1) re turn 1;
//[swap in memory mapping to access memo ry
processesVM =
oskit_uvm_vmspace_set(processesVM);
[* perform operation of instruction att empted
* by user since it has enough permissio ns
*
/
ts->eax = crz;
[* swap in old mapping */
oskit_uvm_vmspace_set(processesVM);
[* set user to return after instruction since
* we have already executed the instruct ion
*
/
ts->eip = ts->eip+1;
return O; //handled trap so return to p rocess
case(0x68): //push addr code will not cau se trap
/Iso this will never happen
* define access mode of this opcode */
access_mode = N;
/* grab memory address accessed */
mem = *(long*)(ts->eip+1);
val = 0;//ts->eax;
printf("Ox681\n");
if(mem != cr2) return 1; //sanity check
/llcheck access and kill if denied
if((i = checkAccessFlows(cr2, access_mo de,
(int)sthread->st_process)) ==-1) re turn 1;

69

3

//[swap in memory mapping to access memo
processesVM =
oskit_uvm_vmspace_set(processesVM);
[* perform operation of instruction att
* by user since it has enough permissio
*
/
/lts->eax = mem;
asm volatile(

"pushl %21\n\t"

2"=m" (val)

2"m" (mem)

/* swap in old mapping */
oskit_uvm_vmspace_set(processesVM);
[* set user to return after instruction
* we have already executed the instruct
*

/
ts->eip = ts->eip+5;

return O; //handled trap so return to p

case(Oxal): //mov addr, %eax

* define access mode of this opcode */
access_mode = N;
[* grab memory address accessed */
mem = *(long*)(ts->eip+1);
val = 0;//ts->eax;

printf("Oxall\n");

If(mem != cr2) return 1; //sanity check
/lcheck access and kill if denied

if((i = checkAccessFlows(cr2, access_mo

(int)sthread->st_process)) ==-1) re
//[swap in memory mapping to access memo
processesVM =

[* swap in old mapping */
oskit_uvm_vmspace_set(processesVM);
[* perform operation of instruction att
* by user since it has enough permissio
*
/
/lts->eax = mem;
asm volatile(

"pushl %%ebx\n\t"

"pushl %21\n\t"

"popl %%ebx\n\t"

"mov %%ebx, %0\n\t"

"popl %%ebx\n\t"

2"=m" (val)

2"m" (mem)

oskit_uvm_vmspace_set(processesVM);
ts->eax = val;
[* set user to return after instruction
* we have already executed the instruct
*

/
ts->eip = ts->eip+5;

return O; //handled trap so return to p

case(0xa3): //mov %eax, addr

* define access mode of this opcode */
access_mode = R;

70

ry

empted
ns

since
ion

rocess

de,
turn 1;
ry

empted

_since
ion

rocess

/* grab memory address accessed */
mem = *(long*)(ts->eip+1);

val = ts->eax;

printf("Oxa3\n");

if(mem != cr2) return 1; //sanity check
/llcheck access and kill if denied

if((i = checkAccessFlows(cr2, access_mo de,
(int)sthread->st_process)) ==-1) re turn 1;

//lswap in memory mapping to access memo ry

processesVM =

oskit_uvm_vmspace_set(processesVM);

* perform operation of instruction att empted

* by user since it has enough permissio ns

*

/

I*(int*)mem = ts->eax;

asm volatile(

"pushl %%eax\n\t"
"pushl %%ebx\n\t"
"pushl %21\n\t"
"pushl %0\n\t"
"popl %%ebx\n\t"
"popl %%eax\n\t"
"mov %%ebx, (%%eax)\n\t"
"popl %%ebx\n\t"
"popl %%eax\n\t"
2"=m" (val)
2 "m" ((oskit_size_t)mem)

[* swap in old ’mapping */
oskit_uvm_vmspace_set(processesVM);

[* set user to return after instruction since
* we have already executed the instruct ion

*/

ts->eip = ts->eip+5;

return O; //handled trap so return to p rocess

default: printf("not found\n");
return 1; //not found so kill process
}

return O; //handled trap so return to process

}
/*
* For debugging
*/

void
dump_kvmspace()

oskit_uvm_vmspace_dump(&oskit_uvm_kvmspace);

}
L. EXAMPLES/X86/SPROC/USER_CRT.C

The ‘examples/x86/sproc/user_crt.c’ file was maatifito permit heap allocation
within partitions that the user process resides.
71

/*

* Copyright (¢) 2001 The University of Utah and th
* Group. All rights reserved.

*

* This file is part of the Flux OSKit. The OSKit

* software, also known as "open source;" you can

* redistribute it and/or modify it under the terms

* GNU General Public License (GPL), version 2, as
* published by the Free Software Foundation (FSF).
* explore alternate licensing terms, contact the

* University of Utah at csl-dist@cs.utah.edu or +1

* 585-3271.

* The OSKit is distributed in the hope that it wil

* useful, but WITHOUT ANY WARRANTY:; without even t
* implied warranty of MERCHANTABILITY or FITNESS F
* PARTICULAR PURPOSE. See the GPL for more detail

* should have received a copy of the GPL along wit
* OSKit; see the file COPYING. If not, write to t

/

/*

* C run time for user mode process.

* |nitialize minimal C library, allocate malloc ar
* etc.

*/

#include <oskit/c/stdio.h>

#include <oskit/com/mem.h>

#include <oskit/Imm.h>

#include <oskit/c/malloc.h>

#include <oskit/c/environment.h> /* libc_memory_obj
#include <oskit/c/unistd.h>* exit */

#include <oskit/uvm.h>

#include "proc.h"
#include "user_syscall.h"

Imm_t malloc_Imm = LMM_INITIALIZER,;
struct Imm_region region;

extern void syscall_return(int code);
extern int main(int argc, char **argv);
[* pass paramaters to user processes for heap alloc
* within their partition
*
/
extern int
_start(int argl, int arg2, int arg3)
{

oskit_mem_t *memi;
static volatile int initstate = O;

/* Poor lock */
syscall_lock();
if (initstate == 0) {

memi = oskit_mem_init();
72

* 59 Temple Place #330, Boston, MA 02111-1307, USA
*

e Flux

is free
of the
To

-801-

| be

he

OR A

sS. You

h the
he FSF,

ena,

ect */

ation

printf("Start user process\n");

/* Print the arguments received from the kernel */

printf("argl = %x, arg2 = %X, arg3 = %x\n", argl,
arg2, arg3);

/* Initialize LMM for userspace malloc heap */
/* added heap allocation based on partition s pace */
Imm_add_region(&malloc_Imm, ®ion, (void*)arg1l,
arg2, 0, 0); //DWC 4/6/2007
Imm_add_free(&malloc_Imm, (void*)argl,
arg2); /IDWC 4/6/2007

libc_memory_object = memi;

/* set exit hook */
oskit_libc_exit = syscall_return;
initstate = 1;

syscall_unlock();

[* XXX: please someone add argc and argv! */
exit(main(0, NULL));
}

M. EXAMPL ES/X86/SPROC/CONFIGAPP.C

The ‘examples/x86/sproc/configapp.c’ file contaitie code of the configapp

application that creates configuration files indsypnform.

#include <stdio.h>
#include <fcntl.h>
#include "config.h"

/* configuration file structure used by LPSK protot ype */
static struct LPSKconfig *c_file;

int main(){

[* allocate space for the config file structure * /

c_file = (struct LPSKconfig *) malloc(sizeof(stru ct
LPSKconfig));

* set unique configuration file id */

c_file->id = 100;

* set policy name */

strncpy(c_file->policy,"policyl”, 7);

[* set version number */

c_file->version = 1;

/* set number of partitions */

c_file->num_of_partitions = 2;

[* set number of resources */

c_file->num_of resources = 2;

[* set number of processes */

c_file->num_of processes = 2;

/* set number of partition flows */

c_file->num_of part_flows = 1;

73

* set number of resource flows */
c_file->num_of res_flows = 2;
I* set timeSlices used for scheduling for partiti

c_file->partitionList[0
c_file->partitionList[1

/* set process id’s for

c_file->processList[0
c_file->processList[1

.timeSlice = 1;
.timeSlice = 1;

the processes */
.process_id = 153;
.process_id = 253;

/* set priorities used for scheduling the process

c_file->processList
c_file->processList

.priority = 1;
.priority = 1;

[* set partition memory locations and their sizes

0
1
o}
c_file->partitionList[0
c_file->partitionList[0
c_file->partitionList[1
c_file->partitionList[1

.Jpart_min_addr = 0x900000
.part_size = 0x5000000;
.Jpart_min_addr = 0xA00000
.part_size = 0x10000000;

* set unique resource id’s for each resource */
c_file->resourcelList[0].resource_id = 12345;

c_file->resourcelList

.resource_id = 6785;

[* set resource memory locations and their sizes*

c_file->resourceList
c_file->resourceList

1
0
c_file->resourceList[0
0
1

c_file->resourcelList[1

.res_size = 0x4;

.res_size = 0x4;

[* pass unique resource id’s to partitions */

c_file->partitionList[1
c_file->partitionList[1
e

.resource_ids[0] = 12345;
.resource_ids[1] = 6785;

[* pass unique process id’s to partitions */

c_file->partitionList[0
c_file->partitionList[1

.process_ids[0] = 153;
.process_ids[0] = 253;

[* set unique partition id’s for each partition *

c_file->partitionList[0
c_file->partitionList[1

Jpartition_id = 89354;
.partition_id = 90876;

[* pass unique partition id’s to partition flows
c_file->partFlows[0].partition_id_from = 89354;
c_file->partFlows|0].partition_id_to = 90876;

* set the access mode for partition flow */
c_file->partFlows[0].access_mode = RW,

[* pass unique resource id’s to resource flows */
c_file->resFlows|[0].resource_id = 12345;
c_file->resFlows[1].resource_id = 6785;

* define the process that has access to the reso

* flows
*/

c_file->resFlows[0].process_id = 1583;

c_file->resFlows[1].process_id = 1583;

[* set the access modes for the resource flows */

c_file->resFlows[0].access_mode = RW;,

c_file->resFlows[1].access_mode = RW;,

/* set the name of the file with main of the proc

strncpy(c_file->processList[0].info.arg,
"lusermain_testsproc”, 19);

[* set partition constraints to the process mappi

* defines and scheduling ticks of the process

*/

.res_min_addr = OXxAOO09FA8
.res_min_addr = OXAOO09FAC

c_file->processList[0].info.proc_size = 0x5000000
c_file->processList[0].info.proc_min_addr = 0x900

74

ons */

es */

*/
00;

00:;

*/

urce

ess */

ng

00000:

c_file->processList[0].info.proc_max_addr = 0x950 00000;
c_file->processList[0].info.proc_heap_start_addr =

0x92500000;
c_file->processList[0].info.proc_heap_size = 0x10 000;
c_file->processList[0].info.sched_ticks = 1;
* set the name of the file with main of the proc ess */

strncpy(c_file->processList[1].info.arg,
"lusermain_hello", 15);

[* set partition constraints to the process mappi ng
* defines and scheduling ticks of the process
*
/
c_file->processList[1].info.proc_size = 0x1000000 0;
c_file->processList[1].info.proc_min_addr = 0xA00 00000;
c_file->processList[1].info.proc_max_addr = 0xB0OO 00000;
c_file->processList[1].info.proc_heap_start_addr =
0xA7500000;
c_file->processList[1].info.proc_heap_size = 0x10 000;
c_file->processList[1].info.sched_ticks = 1;
* write the config data to the configuration fil e
writeData(c_file, "configfile");
return O;
}
[* Writing */
[* This function writes the LPSKconfig structure to file */
int writeData(struct LPSKconfig* data, const char * file)
{
int fd = 0;
FILE *f

/* open the file for writing */

f = fopen(file, "w");

[* write the binary structure right to the file */
fwrite(data,sizeof(struct LPSKconfig),1,f);

[* close the file */

fclose(f);

return O;

N. EXAMPLES/X86/SPROC/GNUMAKERULES

The ‘examples/x86/sproc/gnumakerules’ was modifee@llow processes to run
in their specific partition and to read the confafion file for the LPSK prototype.

/*

* Copyright (¢) 2001 The University of Utah and th e Flux
* Group. All rights reserved.

*

* This file is part of the Flux OSKit. The OSKit is free
* software, also known as "open source;" you can

* redistribute it and/or modify it under the terms of the
* GNU General Public License (GPL), version 2, as

* published by the Free Software Foundation (FSF). To

* explore alternate licensing terms, contact the
75

* University of Utah at csl-dist@cs.utah.edu or +1
* 585-3271.
* The OSKit is distributed in the hope that it wil
* useful, but WITHOUT ANY WARRANTY ; without even t
* implied warranty of MERCHANTABILITY or FITNESS F
* PARTICULAR PURPOSE. See the GPL for more detalil
* should have received a copy of the GPL along wit
* OSKit; see the file COPYING. If not, write to t
* 59 Temple Place #330, Boston, MA 02111-1307, USA
*

/

ifndef _oskit_examples x86_sproc_makerules_
_oskit_examples_x86_sproc_makerules__ =yes

USER_PROGS = usermain_testsproc usermain_hello
usermain_malloc

added configfile as a bmod to link in configurati

BMODS = kernel swapfile configfile $(USER_PROGS)

TARGETS = Image

all: $(TARGETS)
SRCDIRS += $(OSKIT_SRCDIR)/examples/x86/sproc
INCDIRS += $(OSKIT_SRCDIR)/oskit/c

CLEAN_FILES += $(TARGETS) $(BMODS) *.gdb
OSKIT_CFLAGS += -DOSKIT

#

The C library is made up of several pieces. The ¢
library, the POSIX interface that converts syscal

COM, and the actual COM interfaces. Note that the
library is built with the COM library.

CLIB =-loskit_c

#CLIB_P = -loskit_c_p -loskit_gprof -loskit_¢c_p -
#loskit_kern_p

include $(OSKIT_SRCDIR)/GNUmakerules

DEPENDLIBS = $(filter %.a,
$(foreach DIR,$(LIBDIRS),$(wildcard $(DIR)/*

THRDLIBS = -loskit_threads -loskit_netbsd _uvm
THRDLIBS_P = -loskit_threads_p -loskit_netbsd_uvm
CLIB = -loskit_freebsd c_r -loskit_com -loskit_th
CLIB_P = -loskit_freebsd_c_r_p -loskit_com_p\

-loskit_threads_p -loskit_gprof \
-loskit_freebsd_c_r_p -loskit_kern_p

kernel: $(OBJDIR)/lib/multiboot.o kernel.o kern_sys
$(DEPENDLIBS)

$(OSKIT_QUIET_MAKE_INFORM) "Linking example $@"
$(LD) -Ttext 100000 $(LDFLAGS) $(OSKIT_LDFLAGS)\
\

-0 3@ $(filter-out %.a,$")
-loskit_startup -loskit_fsnamespace \
-loskit_memfs -loskit_sproc \

76

-801-

| be

he

OR A
s. You

h the
he FSF,

on file

ore
Is to

)

Y
reads

call.o

-loskit_netbsd_uvm -loskit_exec -loskit_memfs \
$(THRDLIBS) -loskit_clientos \

-loskit_dev -loskit_kern -loskit_Imm\

$(CLIB) $(OBJDIR)/lib/crtn.o

kernel_p.gdb: $(OBJDIR)/lib/multiboot.o kernel.po
kern_syscall.po $(DEPENDLIBS)
$(OSKIT_QUIET_MAKE_INFORM) "Linking example $@"
$(LD) -Ttext 100000 $(LDFLAGS) $(OSKIT_LDFLAGS) \
-0 $@ $(filter-out %.a,$") \
-loskit_startup_p -loskit_fsnamespace_p \
-loskit_memfs_p -loskit_sproc_p\
-loskit_netbsd_uvm_p -loskit_exec_p\
-loskit_memfs_p\
"$(THRDLIBS_P) -loskit_clientos_p \
-loskit_realtime_p -loskit_kern_p -loskit_Imm_p\
$(CLIB_P)\
$(OBJDIR)/lib/crtn.o

kernel_p: kernel_p.gdb
cp kernel_p.gdb kernel_p
strip kernel_p

#
Build user mode programs
#
USER_CRT = user_crt.o
USER_OBJS = user_syscall.o user_mem.o user_morecore .0
added 90000000 to have this process be in a parti tion
usermain_testsproc: $(USER_CRT) usermain_testsproc. 0]
$(USER_OBJS) \
$(CC) -nostdlib -static \
$(USER_CRT) usermain_testsproc.o \
$(USER_OBJS) \
-0 $@ -Xlinker -Ttext -Xlinker 90000000 \
-L../..0. b -loskit_c -loskit_Imm
added A0000000 to have this process be in a parti tion
usermain_hello: $(USER_CRT) usermain_hello.o $(USER _0BJS)\
$(CC) -nostdlib -static \
$(USER_CRT) usermain_hello.o $(USER_OBJS) \
-0 $@ -Xlinker -Ttext -Xlinker AO0O00000 \
-L../../../lib -loskit_c -loskit_Imm

added 50000000 to have this process be in a parti tion
usermain_malloc: $(USER_CRT) usermain_malloc.o $(US ER_OBJS)
$(CC) -nostdlib -static $(USER_CRT) usermain_mallo c.0

$(USER_OBJS) \
-0 $@ -Xlinker -Ttext -Xlinker 50000000 \
-L../..0./lib -loskit_c -loskit_Imm

#
Small swapfile (1MB)
#

swapfile:
dd if=/dev/zero of=$@ count=2048

#
Bind all together!

77

#

Image: $(BMODS)

Image_p: kernel_p kernel_p.gdb swapfile $(USER_PROG
echo "use 'mkmb2 -0 $@ kernel_p kernel_p.gdb:a.out
swapfile configfile $(USER_PROGS)' to build a

endif

echo "use 'mkmb2 $(BMODS)' to build the bmod"

O. DISSASSEMBLY OF TESTSPROC.C

S)

bmod"

The ‘dump’ file of testpsroc.c was created usingGbdbjdump. The machine

code and the assembly are listed with commentsnttenstand which assembly tested

which memory access class test. The code has cotaroewhich test was run by the

assembly instruction and follow the naming conwamtused in Appendix B. The

opcodes mentioned in Appendix B are listed hemaashine code and are either the first

byte or first two bytes listed on each line.

4c: ff35a89f00a0 pushl 0xa0009fa8 //Te

52: 8f05ac9f00a0 popl 0xa0009fac /IT

58: b8 12 00 00 00 mov $0x12,%eax

5d: a3 a8 9f00 a0 mov %eax,0xa0009fa8 //Te
62: c¢7 05 a8 9f 00 a0 64 movl $0x64,0xa0009fa8//Te
69: 00 00 00

6¢c: 50 push %eax

6d: 68 ef be 00 a0 push $0xa000beef //Te

72: 58 pop %eax//Test AC6

73: b8 efbe 0d a0 mov $0xa00dbeef,%eax //Te
78: 58 pop %eax

79: 58 pop %eax

7a: ba pop %edx

7b: 6a64 push $0x64

7d: 68 4f 00 00 00 push $0x4f

82: e8fcffffff call 83 <main+0x83>

87: ¢7 04240100 0000 movl $0x1,(%esp,1)

8e: e8fc ff ff ff call 8f <main+0x8f>

93: ala89f00al mov 0xa0009fa8,%eax //Te
98: 8b15ac9f00a0 mov 0xa0009fac,%edx //Te
9e: 8b 00 mov (%eax),%eax /[Test A
a0: 8902 mov %eax,(%edx) /[Test
a2: 83c40c add $0xc,%esp

ab: ff05a89f00a0 incl 0xa0009fa8 /[Test A
ab: 8305 ac 9f 00 a0 04 addl $0x4,0xa0009fac //T
b2: 6a01 push $0x1

b4: 68 ac 9f 00 a0 push $0xa0009fac l[Test
b9: 68 a8 9f 00 a0 push $0xa0009fa8 l[Test
be: e8 fc ff ff ff call bf <main+0xbf> //Te

c3: ¢704 2402000000 movl $0x2,(%esp,1) /ITes
ca: e8fcffffff call cb <main+0xcb> //Te

/* Test AC12 */

78

st AC10
est AC11

st AC9
st AC1

st AC6
st AC2

st AC8
st AC8
C3
AC4

C5
est AC5

AC7
AC7
st AC7
t AC7
st AC7

cf: e9a89f00 a0 jmp a000a07¢c <main+0xa000 a07c>

79

THIS PAGE INTENTIONALLY LEFT BLANK

80

10.

11.

12.

LIST OF REFERENCES

Saltzer, J. H., and Schroeder, M. D., “The Protectf Information in Operating
Systems,’Proceedings of the IEEE. 63(9):1278-1308. 1975.

Nguyen, T. D., Levin, T. E., and Irvine, C. E., "X®roject: High Assurance for
Secure Embedded Systems]th IEEE Real-Time and Embedded Technology

and Applications Symposium Work-In-Progress Session, San Francisco, CA,
March 2005.

Levin, T. E., Irvine, C. E., and Nguyen, T. D., L&ast Privilege Model for Static
Separation Kernels,” NPS-CS-05-003, Naval Post@ted8chool, October 2004.

Irvine, C. E., Levin, T. E., Nguyen, T. D., and bip G. W., "The Trusted
Computing Exemplar Project,” Proceedings of theRIEEE Systems, Man and
Cybernetics Information Assurance Workshop, WestdlY, June 2004, pp.
109-115.

Myers, P. A., “Subversion: The Neglected AspedComputer Security,”
Master’s Thesis, Naval Postgraduate School, Mopt€2d, USA. June 1980.

Anderson, E. A., Irvine, C. E., and Schell, R.‘Bybversion as a Threat in
Information Warfare,” Journal of Information WaréavVolume 3, No. 2, June
2004, pp. 52-65.

Lack, L., “Using the Bootstrap Concept to Build Aataptable and Compact
Subversion Artifice,” Master’s Thesis, Naval Posatipmate School, Monterey,
CA, USA, June 2003.

Murray, J., “An Exfiltration Subversion Demonstat|” Master’'s Thesis, Naval
Postgraduate School, Monterey, CA, USA, June 2003.

Rogers, D., “A Framework for Dynamic Subversiddaster’s Thesis, Naval
Postgraduate School, Monterey, CA, USA, June 2003.

Anderson, E.A.A Demonstration of the Subversion Threat: Facing a Critical
Responsibility in the Defense of Cyberspace, Master’s Thesis, Naval Postgraduate
School, Monterey, CA, USA, March 2002.

Common Criteria Project Sponsoring OrganizationrSRSO).Common Criteria
for Information Technology Security Evaluation. Version 3.0 Revision 2,
CCIMB-2005-07-[001, 002, 003]. June 2005.

U.S. Department of Defense, “Trusted Computer Systealuation Criteria,”
DoD 5200.28-STD, 26 December 1985.

81

13.

14.

15.

16.

17.

18.

19.

20.

Anderson, J. P., Computer Security Technology RtenStudy, ESD-TR-73-51,
Vol. I, ESD/AFSC, Hanscom AFB, Bedford, Mass., @&tn1972 (NTIS AD-758
206).

Bell, D.E., and La Padula, L.J., “Secure Computet&n: Unified Exposition
and Multics Interpretation MTR-2997, Mitre Corp., Bedford, MA, July 1975.

The Flux Research Grouepartment of Computer Science,

University of Utah, “The OSKit: The Flux Operatig&ystem Toolkit Version
0.97,” March 2002. Available: http://www.cs.utahuétlix/oskit/html/oskit-
www.html Accessed: June 2007.

Red Hat, Inc., “Red Hat Linux Reference Guide,” 20Qvailable:
http://www.redhat.com/docs/manuals/linux/RHL-9-Matitef-guide/s1-grub-
installing.html Accessed June 2007.

Subversion 1.4.4 — Available: http://www.redhat.¢dats/manuals/linux/RHL-9-
Manual/ref-guide/s1-grub-installing.html Accessede 2007.

APR — Available: http://svn.apache.org/repos/asfégg/branches/0.9.x Accessed
June 2007.

APR-util — Available: http://svn.apache.org/repasiaor/apr-util/branches/0.9.x
Accessed June 2007.

OSKit 20020317 — Available: ftp://flux.cs.utah.eflu/oskit/oskit-
20020317.tar.gz Accessed June 2007.

82

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, VA

Dudley Knox Library
Naval Postgraduate School
Monterey, CA

Dr. Diana Gant
National Science Foundation

Dr. Ralph Wachter
ONR
Arlington, VA

Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, CA

Timothy Vidas
Naval Postgraduate School
Monterey, CA

Thuy D. Nguyen
Naval Postgraduate School
Monterey, CA

Donald Carter

Civilian, Naval Postgraduate School
Monterey, CA

83

