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(4)  Statement of the problem studied 
 
 
The goal of this project was twofold: (1) to improve yields of hyperpolarized  129Xe and increase 
its nuclear polarization, and (2) to carry out exploratory experiments on the use of  129Xe for 
medical diagnostics.  Our research has allowed us to make great strides in explaining the 
relaxation of solid xenon, leading to a better understanding of polarization loss during the 
cryogenic distillation of hyperpolarized 129Xe.  By modifying the cryogenic separation procedure 
to account for these depolarizing effects, we were able to modify our xenon polarizer to produce 
larger volumes of more highly-polarized 129Xe.  With the resulting increase in signal, we could 
investigate the applications of hyperpolarized xenon-129 NMR spectroscopy to medical and 
biological research.  We focused on contrasting the chemical shift of 129Xe dissolved in healthy 
and in atherosclerotic blood vessels. 
 
 
(5)  Summary of the most important results 
 
 
Experimental results[1] achieved in this lab demonstrate that the nuclear spin relaxation lifetime 
(T1) of hyperpolarized xenon-129 is much shorter in the solid phase than had been expected.  
Previous theoretical calculations explained frozen xenon relaxation by invoking spin-flip 
interactions with lattice phonons, an effect which correctly predicts the 2.5-hour xenon T1 at 
liquid nitrogen temperatures.  Our group made highly precise measurements of xenon relaxation 
times near melting and discovered that they are much shorter than anticipated (ranging from 
seconds to a few minutes), with the decrease being most dramatic at low magnetic field.  We 



have also generated a model which explains the relaxation of "warm" frozen xenon (solid xenon 
above 120K) as the result of vacancy diffusion in the crystal lattice.  This model uses only 
previously measured quantities and yet fits these new data with impressive accuracy: 
 
 

Figure 1:  Relaxation rate of solid 
129Xe as a function of magnetic 
field and temperature.  The 
previous theory (black line) was 
unable to account for enhanced 
T1 relaxation above 120 K and at 
low magnetic fields[2].  Our 
simulations (colored lines) 
predicted these relaxation rates 
very accurately.  Figure taken from 
[1]. 

 
 
These relaxation data suggested two ways to conserve more polarization during cryogenic 
distillation: lower the collection temperature, or increase the magnetic field.  The former tactic is 
very challenging to implement, since 77 K is the lower limit for the thermal bath (lest LN2 
condense in the cold finger) and also because the thermal conductivity of the xenon “snow" is so 
low.  This leaves the option of increasing the holding magnetic field during solid xenon 
collection.   
 
An experiment was performed to test the effectiveness of a stronger permanent magnet on the 
fraction of 129Xe polarization retained during cryogenic separation.  Xenon was polarized and 
collected in an accumulator held at 77K in a magnetic field which could be varied.  The xenon 
was then thawed and flowed into an NMR spectrometer.   By comparing the initial and final 
xenon polarizations, it was possible to measure the 129Xe polarization retained during the 
cryogenic separation process.  We found that increasing the field of the permanent magnet within 
the polarizer can improve the end polarization of the pure xenon by a factor of two or more.  
Typically, anywhere from seventy to eighty percent of the initial xenon polarization is lost when 
the xenon is frozen out in the 700-gauss field (previously the industry standard for commercial 
xenon polarizers), whereas the percentage lost in a 1.2-tesla field is only forty to fifty percent.  It 
came as a welcome surprise that the simple measure of installing a new permanent magnet could 
enhance the xenon polarization (and thus the signal-to-noise ratio in NMR trials) by such a large 
amount.  Moreover, we learned that most of the nuclear relaxation occurs in the very brief time it 
takes to thaw the xenon, and not throughout the cryogenic accumulation process: 
 



Figure 2:  Relaxation of 129Xe 
during the cryogenic 
accumulation process and 
subsequent thawing.  Nearly 
70% of the original xenon 
polarization is lost when the 
xenon is thawed in a moderate 
magnetic field of 800 Gauss; this 
loss is cut in half when the xenon 
is thawed in a magnetic field of 
1.2 Tesla (12000 Gauss).  From 
a talk presented at the 2004 
DAMOP conference. 

 
 
Armed with higher nuclear polarizations in the xenon gas, we switched our focus to the 
application of hyperpolarized 129Xe NMR spectroscopy to disease diagnosis.  Xenon is highly 
lipophilic and dissolves readily in most biological tissues.  Moreover, the chemical shifts of 
dissolved xenon are extremely sensitive to its molecular environment. We exploited this 
sensitivity, combined with the high signal-to-noise ratios (SNR) available with hyperpolarized 
129Xe, to explore the structural differences between normal and diseased tissues of human aorta 
affected by atherosclerosis.  This technique holds promise for clinical trials because inhaled 
xenon is absorbed into the bloodstream and then deposited into blood vessel walls, exactly where 
the symptoms of atherosclerosis are most manifest.  Early results indicate that the chemical shift 
spectrum of xenon dissolved in diseased aorta tissue is qualitatively different from that of xenon 
in healthy tissue: 



 
 
Figure 3:  129Xe NMR spectra on ex vivo human aorta samples.  A qualitative but evident correlation 
exists between the xenon NMR spectrum and the condition of the sample. 
 
 
After these initial measurements we focused on improving the delivery of pure polarized xenon 
gas to the sample of interest.  Based upon our knowledge of xenon gas relaxation rates as a 
function of magnetic field and magnetic field gradient [3], we designed an NMR probe which 
can store 100 cc’s of xenon gas in the homogeneous high-field region of the NMR magnet bore, 
directly underneath the sample.  Not only does this reduce relaxation in the gas-phase xenon; it 
also decreases the transfer distance to the sample and thus reduces additional mechanisms of 
relaxation (such as wall relaxation) which are incurred as the xenon flows from the storage 
volume to the NMR coil.  The measured relaxation time of the gaseous 129Xe in this container is 
over 2 hours, whereas the average experiment duration is less than 30 minutes.  The experiment 
length is comparable to the time required to prepare an additional batch of xenon, so we could 
conceivably replenish the xenon as quickly as we deplete it and average ad infinitum, obtaining 
unprecedented signal-to-noise ratios for xenon spectroscopy. 
 



 
 
Figure 4:  The 129Xe NMR probe designed in these studies.  Polarized xenon gas is held in a reservoir 
below the NMR coil, which can be removed from the probe independently from the gas container.  This 
allows samples to be switched on the fly without depolarizing the remaining gas. 
 
 
These advantages come at the cost of a larger inherent linewidth, since the internal geometry of 
the new NMR probe exacerbates the effects of magnetic susceptibility changes at material 
interfaces and thus enhances susceptibility-related field gradients within the NMR sample.  We 
modeled these effects extensively and re-designed the probe in order to minimize these line-
broadening gradients.  The result was a dramatically narrowed xenon spectrum which allowed 
for identification of a heterogeneous lipid/water sample through hyperpolarized xenon NMR: 
 

 

 
 

Fig 5: Original attempts 
to obtain 129Xe chemical-
shift spectra by blowing 
gas at a sample in a 
horizontal coil led to 
severe diamagnetic 
susceptibility 
broadening. 
 
 
 
 

 



 
 
  

 

 

Fig 6: By using thinner 
coil wire in a vertical 
sample geometry and a 
susceptibility-matched 
coil enclosure, much 
narrower 129Xe lines 
were achieved both in 
lipid/gas and lipid/D2O 
phantom samples. In 
both cases a thin layer 
of lipid (dairy butter) was 
spread on the walls of 5-
mm NMR tube. 129Xe 
was either blown 
through the tube or 
bubbled through D2O in 
the tube prior to NMR 
spectrum acquisition. 

 
 
It is important to note that the technological achievements mentioned in this section are not 
limited in scope to biological samples, but that we now have the ability to perform high-
resolution, long time-scale 129Xe NMR spectroscopy on any material. 
 
Because of our expertise in the area of hyperpolarized xenon production and high-resolution 
129Xe NMR spectroscopy, several groups have sought our help in testing new applications of 
hyperpolarized xenon.  Most recently, we collaborated with the Dmochowski group at the 
University of Pennsylvania to test new 129Xe NMR biosensors for matrix metalloproteinase 
detection [4].  With our unique experimental setup we were able to perform high-resolution 
NMR spectroscopy and observe the change in 129Xe chemical shift as matrix metalloproteinase 
was added to the biosensor.  This is a very promising field of study in the near future, as such 
biosensors can be synthesized for a variety of compounds. 
 
All these applications have benefited from our expertise in the production and detection of 
hyperpolarized xenon, and we expect that this area of research will be fruitful for many years to 
come. 
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