

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DEPLOYMENT OF SHAPED CHARGES BY A SEMI-
AUTONOMOUS GROUND VEHICLE

by

John Frederick Herkamp

June 2007

 Thesis Advisor: Richard Harkins
 Second Reader: Peter Crooker

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Deployment of Shaped Charges by a Semi-
Autonomous Ground Vehicle
6. AUTHOR(S) John Frederick Herkamp

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Neutralization of remotely operated Improvised Explosive Devices (IEDs) is a dangerous task risking human

lives on a daily basis. BigFoot seeks to replace the local human component by deploying and remotely detonating
shaped charges to destroy IEDs. This research developed a platform that can autonomously navigate GPS waypoints,
avoid obstacles, and provide remote user controls for an onboard robotic arm to deploy and remotely detonate shaped
charges. BigFoot incorporates improved communication range over previous Autonomous Ground Vehicles and an
updated user interface that includes controls for the arm and camera by interfacing multiple microprocessors. BigFoot
is capable of avoiding static and mobile obstacles as well handling most surfaces with minor slopes. BigFoot continues
to be somewhat limited by communications range and GPS availability. However, BigFoot is an ideal platform for
relatively short range deployment to neutralize roadside IEDs.

15. NUMBER OF
PAGES

201

14. SUBJECT TERMS Autonomous, Robot, Shaped Charge, Improvised Explosive Device

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DEPLOYMENT OF SHAPED CHARGES BY A SEMI-AUTONOMOUS
GROUND VEHICLE

John Frederick Herkamp

Lieutenant, United States Navy
B.S. Electrical Engineering, Old Dominion University, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL
June 2007

Author: John Frederick Herkamp

Approved by: Richard Harkins
Thesis Advisor

Peter Crooker
Second Reader

James Luscombe
Chairman, Department of Physics

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Neutralization of remotely operated Improvised Explosive Devices (IEDs)

is a dangerous task risking human lives on a daily basis. BigFoot seeks to

replace the local human component by deploying and remotely detonating

shaped charges to destroy IEDs. This research developed a platform that can

autonomously navigate GPS waypoints, avoid obstacles, and provide remote

user controls for an onboard robotic arm to deploy and remotely detonate shaped

charges. BigFoot incorporates improved communication range over previous

Autonomous Ground Vehicles and an updated user interface that includes

controls for the arm and camera by interfacing multiple microprocessors.

BigFoot is capable of avoiding static and mobile obstacles as well handling most

surfaces with minor slopes. BigFoot continues to be somewhat limited by

communications range and GPS availability. However, BigFoot is an ideal

platform for relatively short range deployment to neutralize roadside IEDs.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. UGV.. 1
B. UAV.. 2
C. PREVIOUS NAVAL POSTGRADUATE SCHOOL (NPS)

PROJECTS .. 3
D. PROJECT MOTIVATION... 6

II. ROBOTIC FUNCTIONAL DESIGN... 9
A. PROBLEM SOLUTION.. 9

1. Block Diagram.. 10
2. Concept of Operations .. 10

III. EXPERIMENTAL DESIGN ... 13
A. MECHANICAL CONSTRUCTION.. 14

1. Platform .. 14
2. Motors and Motor Controllers .. 15
3. Arm ... 17

B. ELECTRICAL... 19
1. Batteries ... 19
2. Power Regulation .. 20
3. Power Distribution... 22

C. SENSORS.. 25
1. Compass... 25
2. Ultrasonic Range Finder ... 27
3. Infrared Rangers .. 29
4. Thermopile ... 31
5. Camera ... 32
6. Global Positioning System (GPS) .. 33

D. MICROCONTROLLERS .. 34
1. BL2000.. 34
2. OOPic.. 35

E. COMMUNICATIONS.. 36
1. Router ... 36
2. Antenna .. 37

IV. BIGFOOT’S PROGRAM... 39
A. GENERAL PROGRAM OVERVIEW.. 39
B. MANUAL OPERATION.. 41

1. Manual Control Costatement .. 42
2. Arm Control Costatement ... 42
3. Thermopile Costatement... 42
4. Position Costatement.. 43

C. AUTONOMOUS OPERATION... 43

 viii

1. Position Costatement.. 44
2. Waypoint Costatement.. 44
3. Navigation Costatement.. 45
4. PID Costatement .. 45
5. Collision Avoidance Costatement.. 48

V. OOPIC PROGRAM... 49

VI. JAVA GUI ... 51
A. MAP TAB ... 51
B. ARM CONTROL TAB .. 53
C. SENSOR TAB.. 55
D. ADDITIONAL FUNCTIONALITY.. 56

VII. RESULTS ... 57

VIII. FUTURE WORK AND CONCLUSIONS ... 63
A. FUTURE WORK... 63
B. CONCLUSIONS... 64

APPENDIX A – DYNAMIC C CODE ... 65

APPENDIX B – OOPIC CODE .. 115

APPENDIX C – JAVA CODE .. 121

LIST OF REFERENCES.. 179

INITIAL DISTRIBUTION LIST ... 183

 ix

LIST OF FIGURES

Figure 1. TALON Robot with arm (From [4]).. 2
Figure 2. Predator MAE UAV in flight (From [5]).. 2
Figure 3. UAV Tactical Control System (From [6])... 3
Figure 4. Bender.. 4
Figure 5. Lopez with all components installed (From [7]). 5
Figure 6. Agbot with all components installed (From [7]). 5
Figure 7. AGV on a test mission (From [8]). .. 6
Figure 8. Four destroyed TALONs (From [2]). ... 7
Figure 9. BigFoot. .. 9
Figure 10. BigFoot Operational Flowchart. .. 10
Figure 11. BigFoot viewed from bottom... 14
Figure 12. One of four motors.. 15
Figure 13. Motors and motor controllers mounted under base. 16
Figure 14. Motor controller and motor speed response. 17
Figure 15. BigFoot’s Arm... 18
Figure 16. Simplified Arm Free Body Diagram. ... 18
Figure 17. 20 cell, 24VDC, 4000 mAhr, rechargeable NiMH battery pack........... 19
Figure 18. 15VDC, 11000mAHr, rechargeable Lithium Ion battery...................... 20
Figure 19. Power Regulation System Functional Diagram. 21
Figure 20. BigFoot’s Power Regulation System. ... 21
Figure 21. Basic Power Distribution Schematic. .. 22
Figure 22. Switch Panel... 23
Figure 23. Power Panel. .. 24
Figure 24. Devantech CMPS03 Electronic Magnetic Compass (From [12]). 25
Figure 25. Magnetic Effect on Permalloy (From [13]). ... 26
Figure 26. Devantech SRF08 Ultrasonic Ranger... 27
Figure 27. SRF08 Beam Pattern (From [15])... 27
Figure 28. Ultrasonic Range Finder Operational Diagram (From [16]). 28
Figure 29. SRF08 Detection Pattern (From [15]). .. 29
Figure 30. Sharp GP2D12 Infrared Ranger. .. 29
Figure 31. Collision Avoidance Sensor Locations.. 30
Figure 32. IR Ranger Detection Configuration... 30
Figure 33. IR Ranger Output Voltage versus Object Distance (From [17]). 31
Figure 34. Thermal Sensor Mounted on Camera. ... 32
Figure 35. Garmin GPS 18-5Hz... 33
Figure 36. BL2000 Rabbit Microprocessor. ... 35
Figure 37. OOPic, Adapter Board, and Interface Board. 36
Figure 38. Netgear Rangemax 240. .. 37
Figure 39. D-Link 7dBi Antenna... 38
Figure 40. Basic Program Flow. .. 39
Figure 41. Manual Control Program Flow.. 41
Figure 42. Autonomous Operation Program Loop. .. 44

 x

Figure 43. OOPic Program Loop. .. 49
Figure 44. GUI Map Tab.. 52
Figure 45. BigFoot’s Joystick Scaling Graph. .. 53
Figure 46. GUI Arm Tab. ... 54
Figure 47. GUI Sensor Tab.. 55
Figure 48. BigFoot’s Camera in Multiple Lighting Scenarios. 60
Figure 49. D-Link Antenna Anechoic Test Result (From [29]). 61

 xi

LIST OF TABLES

Table 1. Summary of BigFoot’s major components.. 13
Table 2. Electrical Loading. .. 24
Table 3. BL2000 Connections. ... 35

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF EQUATIONS

Equation 1. Arm Torque Equation. .. 19
Equation 2. Lorentz Force Equation. ... 26
Equation 3. Magnetoresistance Equation (From [13]). .. 26
Equation 4. Ultrasonic Range Equation (From [16]). ... 28
Equation 5. IR Ranger Equation .. 31
Equation 6. Heading Error for Turn Logic. ... 46
Equation 7. Proportional Scale Equation. .. 46
Equation 8. Differential Scale Equation. .. 47
Equation 9. Integral Scale Equation. ... 47
Equation 10. PID Equation. ... 48

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I first must thank my Lord and Savior Jesus Christ. Without God’s

blessings, none of this or any other aspects of my life would have been possible.

I must also thank my patient, loving wife, Raylene, and son Isaac for sacrificing

their time and their endless love and support. I thank my family for their

continued love and support. I thank my advisor, Professor Richard Harkins, for

his guidance and advice. I thank Sam Barone and George Jaksha for their

knowledge and assistance. I also thank Todd Williamson and Ben Miller for their

invaluable help in BigFoot’s development and testing.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Robotics is playing an increasingly important role in military operations.

Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) are

used for everything from surveillance to carrying out combat operations and

neutralization of Improvised Explosive Devices (IEDs). While generally effective

at their specific missions, these platforms are not autonomous and operators

must control the platform to handle any unexpected scenarios.

The Department of Defense Joint Ground Robotics Enterprise (JGRE)

was founded as the Joint Robotics Program in 1989 by the Secretary of Defense

and was reorganized into the JGRE structure in 2006. Its mission is to develop

and assess unmanned robotic platforms for military applications [1]. Many

platforms have been designed and tested, but autonomous operation has yet to

be successfully implemented in any of the current applications.

A. UGV

TALON is the most commonly used ground robot currently in the military’s

inventory. It is used most commonly for IED detection and neutralization, but has

been equipped with weapons and sensors for other missions. TALON weighs

close to 140 lbs with an arm installed with approximate dimensions of 1’ X 2’ X 3’

and is not autonomous [3]. Since January 2004, TALON has been used to

neutralize more than 1000 IEDs that would otherwise have been handled by US

EOD personnel [2]. While it is a flexible and effective platform, it is a

cumbersome piece of equipment to transport and very expensive at

approximately $60,000 per unit. These characteristics make TALON undesirable

for large-scale employment. Smaller, lighter, and cheaper robots are desirable in

this situation.

 2

Figure 1. TALON Robot with arm (From [4]).

B. UAV

The most well known UAV program is Predator. Predator is capable of a

range of missions from intelligence, reconnaissance and surveillance to

launching Hellfire missiles in actual combat operations. Predator utilizes satellite

communications thereby permitting remote control from any location in the world

[5]. Figure 2 shows a Predator UAV in flight. Figure 3 shows the UAV Tactical

Control System for Predator which consists of an entire trailer of computers and

electronics.

Figure 2. Predator MAE UAV in flight (From [5]).

 3

Figure 3. UAV Tactical Control System (From [6]).

C. PREVIOUS NAVAL POSTGRADUATE SCHOOL (NPS) PROJECTS

The NPS Small Robot Technology (SMART) initiative develops prototype

robotic platforms for the military. The robots vary in size from inches to yards

and their missions are just as extensive. BigFoot’s development started with a

prototype known as Bender. Bender was not designed with any particular

mission objective, but was developed as a platform to investigate autonomous

architecture. It had a box shape and utilized a hardened track chassis. Bender

utilized ultrasonic ranging sensors to accomplish collision avoidance. An

onboard computer (a commercial BL2000) controlled all robot functions using the

basic programming language Dynamic C. Bender was equipped with a web-cam

to view any contacts in its path. Bender could function autonomously to the

extent that it could move from one point to another and avoid large obstacles in

the process. Figure 4 shows Bender in its final form. Bender’s large size and

expensive chassis make the platform unsuitable for BigFoot’s mission.

 4

Figure 4. Bender.

The second generation of autonomous robots was directed toward naval

specific applications. LT Jason Ward created Lopez as a prototype for a surf-

zone robot to conduct reconnaissance and surveillance on a beachhead. These

platforms will be launched from surface ships or submarines in the future. Figure

5 shows the working Lopez model.

The third generation of the robots from the SMART program was created

by ENS Tom Dunbar from NPS in collaboration with Case Western University.

Agbot is a more powerful version of Lopez constructed from aluminum. This

platform suffers from structural problems, but it is a working prototype that has

been successfully tested on sand, grass, and concrete [7]. Figure 6 shows Agbot

in its final state. Both Lopez and Agbot run autonomously from a Java interface.

These platforms both incorporate the same basic components (GPS, onboard

computer, compass, camera, and router) as BigFoot.

 5

Figure 5. Lopez with all components installed (From [7]).

Figure 6. Agbot with all components installed (From [7]).

The fourth generation of SMART robots was created by MAJ Ben Miller.

Autonomous Ground Vehicle (AGV) employs motion sensors and a web camera

to detect, investigate, and report suspicious activity to a remote monitoring

station. It also adapts previous work to a wheeled platform. AGV will be

deployed in the future along roadways in Iraq to detect IED emplacement to

 6

protect troop and civilian movements. Figure 7 shows AGV on a test mission.

The AGV platform is too small and slow to perform BigFoot’s mission, but is a

basis for BigFoot’s development.

Figure 7. AGV on a test mission (From [8]).

D. PROJECT MOTIVATION

The IED problem in Iraq continues to kill soldiers and civilians alike.

TALON robots are being used in the place of human with hands on efforts to

remove or detonate IEDs that have been identified. As shown in Figure 8, these

are not always completely successful. The TALON robots cost approximately

$60,000 each. Figure 8 represents almost a quarter of a million dollars for 4

IEDs. Secondly, TALON is relatively large. This makes it inconvenient or even

impossible for all units to take a TALON unit with them. As a result, smaller units

must wait for a TALON to be delivered to them, extending the time the IED is in

 7

place and risking lives while personnel are stationary. By employing smaller,

lighter, cheaper robots for IED neutralization, they can be made available to all

units at a minimal cost. If the smaller cheaper robot is destroyed, it can be

replaced at a significantly lower cost than TALON.

Figure 8. Four destroyed TALONs (From [2]).

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. ROBOTIC FUNCTIONAL DESIGN

Figure 9. BigFoot.

A. PROBLEM SOLUTION

Figure 9, above, is the autonomous ground vehicle, known as BigFoot,

designed to supplement or replace TALON. BigFoot is significantly smaller and

cheaper than TALON. It is also capable of semi autonomous operation. BigFoot

can navigate via GPS waypoints to a location of a suspected IED and avoid

major obstacles on the way. Once at the threat location, BigFoot will be able to

mix the previously inert chemical to arm a small shaped charge (once BigFoot is

complete). Its arm can then be controlled remotely to place the shaped charge

on the suspected IED. BigFoot can then navigate back to its origin and detonate

the shaped charge once it is a safe distance away. BigFoot is equipped with a

 10

visual camera to send real time digital photos and streaming video as well as a

thermal sensor for locating the IED when close. The Graphical User Interface

(GUI) is interactive with real time pictures and graphical representations of robot

condition.

1. Block Diagram

Mode
Auto/Manual

Autonomous GPS
Navigation

Remote
Manual
Controls

Obstacle
 Yes/No

Destination
Yes/No

Avoidance
Algorithm

Arm
Control

BigFoot
Deployed

Detonate
Charge

BigFoot
Home

No

Yes

No

Yes

Return TripToward IED

Auto

Manual

Figure 10. BigFoot Operational Flowchart.

Figure 10 shows a basic block diagram for BigFoot from the time it is

dropped until it has returned to its origin.

2. Concept of Operations

Briefly, when placed, BigFoot will wait until a route is sent or it is driven

manually. When driven manually, all controls will be as directed by a user at a

 11

remote laptop computer. When a route is sent, BigFoot will determine the

appropriate course to steer to reach the next waypoint. BigFoot will then begin

traveling to its next waypoint. While traveling autonomously, it will use onboard

ultrasonic and infrared (IR) rangers to detect obstacles. When an obstacle is

detected, BigFoot will stop and maneuver to avoid the obstacle and then return to

the necessary course to reach the next waypoint. If BigFoot deviates from the

necessary course, it will use Proportional-Integral-Derivative (PID) controls to

return to course. Once a waypoint is achieved, BigFoot will take action to

navigate to the next waypoint or stop and await command at the final waypoint.

The operator will then take remote manual control to order BigFoot to mix the

shaped charge’s explosive chemicals. The operator will remotely control the arm

to place and release the charge. The operator will then order BigFoot to return.

BigFoot will again autonomously navigate to ordered points. The operator will

then direct BigFoot to detonate the charge to neutralize the suspected IED.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. EXPERIMENTAL DESIGN

Table 1 is a summary of the major components used in BigFoot’s

construction

Hardware Component Vendor Price Operating Parameters

BigFoot Base Superdroid Robots $458.80 20" x 18" x 7", 2.5" ground
clearance

Motor Battery Superdroid Robots $88.60 NiMH, 2 x 10 array of C
batteries, 4Ah

Electronics Battery Electrovaya $369.00 Lithium Ion, 15V, 11Ah

Motors Superdroid Robots $21.95 ea. 24-volt, 190-rpm gear motors

Motor Controllers Superdroid Robots $125.00 ea 5-50VDC, 20A, Analog / I2C
control

Ultrasonic Range Finder Superdroid Robots $62.00 Objects from 0" to 254",
utilizes I2C bus

IR Rangers Superdroid Robots $14.85 ea. Objects from 5 to 80cm,
analog output

Thermopile Superdroid Robots $103.00 2-22um, 41º X 6º Field of
View

Servos Superdroid Robots $114.95 ea 180º Sweep, 333 oz-in
Torque

Router Newegg $129.99 802.11g wireless router,
max range apx. 300m

Antenna D-Link $44.99 7dBi omni-directional
antenna

BL2000 Rabbit $449.00
Single-board computer,
22.1 MHz, 11 analog inputs,
2 analog outputs

Compass Superdroid Robots $52.00 Digital magnetic compass,
heading to +/- 1.4 degrees

GPS Garmin $199.00 Low voltage system, utilizes
WAAS network

Camera D-Link $94.99 Web server 10/100Mbps,
640x480, 320x240 resolution

ooPIC Superdroid Robots $59.00 20MHz, four 8 bit AtoD
channels

ooPIC Adapter Superdroid Robots $64.00 Onboard Voltage Regulator,
Connections for servos

Table 1. Summary of BigFoot’s major components.

 14

A. MECHANICAL CONSTRUCTION

1. Platform

BigFoot’s frame is constructed from an All Terrain Robot kit that consists

of a base, motor mounts, and wheels. The base is a 12 x 16 x 1/8 inch sheet of

aircraft grade aluminum. The motor mounts are 2 x 2.25 x 5 inch welded

aluminum cases. The mounts and base are pre-drilled to permit multiple

mounting options. The wheels are constructed of rubber mounted to a plastic

hub and are approximately 6 inches in diameter. These wheels have a 0.96

coefficient of static friction on most typical ground type surfaces (concrete,

asphalt, grass, dirt, etc). A bumper constructed from two pieces of ¼ x 1 x 22

inch polystyrene is installed on the front of BigFoot to prevent damage to front

mounted electronic components in the event of a collision. The bumper extends

past the wheels to prevent BigFoot from inadvertently flipping over if the wheels

make contact with a vertical surface. When the wheels are installed, BigFoot is

approximately 22 x 19 inches with a ground clearance of 2¼ inches. Figure 11

shows a bottom view of BigFoot.

Figure 11. BigFoot viewed from bottom.

 15

2. Motors and Motor Controllers

BigFoot employs four 24VDC 190 RPM geared motors with a maximum

torque of 0.49 N-m. The rated motor current is <900mA at full load and <450mA

under no load conditions. [9] Each motor drives one wheel. The motors are

connected in parallel to two motor controllers. This permits both motors on a

side to be driven at the same speed for stable control.

Figure 12. One of four motors.

The motor controllers are 50VDC, 20A H-Bridge motor drivers. The

controllers produce 7.8 kHz pulse width modulated power to drive the motors.

They require a 5VDC signal for logic circuitry and draw less than 50mA. They

also require input voltage between 5 and 50VDC for the motors. The motors and

controllers are mounted under BigFoot’s frame base permitting maximum ground

clearance as shown in Figure 13.

 16

Figure 13. Motors and motor controllers mounted under base.

The controllers have five modes of operation. The motor controllers can

operate in I2C mode, 0-2.5-5v mode, 0-5v mode, RC mode, or PWM (Pulse

Width Modulation) mode. BigFoot utilizes the 0-2.5-5v mode. In this mode,

BigFoot sends an analog signal between 0 and 5 VDC to the motor controller to

control the motor speed and direction. When the input voltage is below 2.5VDC,

BigFoot travels forward. Between 2.5 and 5VDC, BigFoot travels in reverse.

When the motor controller receives an input voltage of 2.5VDC±2.7%, the motors

are stopped. Previous projects (Agbot and AGV) utilized an external PWM circuit

to drive a motor controller and relied on an external brake line to stop the motors.

Stop and slow speed voltages were unsteady and susceptible to noise. This

motor controller’s stop voltage is reliable and does not require an external brake

signal. Similarly the motor controllers have a linear speed response to analog

voltage input as shown in Figure 14. BigFoot uses an input voltage range of 0 to

4VDC based on the limits of the onboard computer controlling BigFoot’s

operation.

 17

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

M ot or Cont r ol l e r I nput Vol t a ge (V)

Figure 14. Motor controller and motor speed response.

3. Arm

To accomplish BigFoot’s mission, it will require an arm. A prototype arm

constructed from aluminum is mounted on the front, right corner of BigFoot. The

arm uses five hobby servo motors to allow 4 degrees of freedom. The base

servo is mounted on BigFoot’s platform and provides rotation in the horizontal

plane. This servo is connected to a plate that holds two high torque servos

operating together to provide rotation in the vertical plane. These shoulder

servos provide the main lifting force. The shoulder servos are connected to an

11 inch aluminum bar. At the end of the bar is connected a wrist servo motor

that is mounted to rotate in a plane parallel to the shoulder servos. The wrist

servo is connected to a hand servo that controls the gripping motion of the hand.

The arm is shown in Figure 15. The wrist servo and arm bar weigh

approximately 3 ounces each, and the hand and servo combination weighs

approximately 2 ounces. The payload mass is estimated to be 8 ounces. This is

shown in the simplified free body diagram of Figure 16.

 18

Figure 15. BigFoot’s Arm.

Figure 16. Simplified Arm Free Body Diagram.

In Figure 16, Treq is the required torque to lift the arm. The arm is length L,

and warm and wservos/hand arm the masses of the arm and of the wrist and hand

servos and hand itself. Mass of the payload is denoted as warm. The required

torque is then calculated using Equation 1.

 19

/(/ 2) () ()req arm servos hand payloadT w L w L w L= ⋅ + ⋅ + ⋅

Equation 1. Arm Torque Equation.

Substituting the design values into Equation 1 yields a required torque of

1.21 N-m. For this reason, two HSR-5995TG Ultra Torque servos are used with

a maximum torque of 2.35 N-m each at 6 volts. BigFoot’s servos operate at 5

volts and thus require two motors in parallel. The remaining available torque

allows for underestimation of payload mass as well as other possible

applications.

B. ELECTRICAL

1. Batteries

BigFoot requires 24, 15, 12, and 5VDC power. This power is drawn from

separate batteries for the motors and electronics. The motors require high

current both in steady state and in surges. The electronics are typically operated

at lower current, but have higher overall loading. A rechargeable 24 VDC, 4000

mAhr Nickel Metal Hydride (NiMH) battery pack is used for the motors. This

battery pack is mounted on underside of BigFoot in the center for even weight

distribution. The battery pack is a 2 x 10 array of C cell batteries and weighs 3½

pounds. The motor battery is shown in Figure 17.

Figure 17. 20 cell, 24VDC, 4000 mAhr, rechargeable NiMH battery pack.

 20

The electronics battery is a rechargeable, 15VDC, 11,000 mAhr Lithium

Ion battery. This battery is mounted flat on BigFoot’s chassis and weighs 2½

pounds. This battery permits extended on station time while motors are not

running. The battery capacity leads to an on station time of approximately 11½

hours. Figure 18 shows the electronics battery.

Figure 18. 15VDC, 11000mAHr, rechargeable Lithium Ion battery.

2. Power Regulation

Figure 19 shows a functional diagram of BigFoot’s power regulation

system. The electronics power is regulated from 15V to 12V by a standard 7812

voltage regulator. The 12V regulator is a TO-3 package allowing a high input

voltage of 35V and an output current of greater than 1A [10]. This regulator is

connected to a large heat sink to allow high current operation. 5V power is

produced by regulating output from the 12V regulator to 5V using a standard

7805 regulator. The 5V regulator is a TO-220 package connected to a heat sink

 21

for high current outputs. A 330µF capacitor is connected across the output of the

5V regulator to prevent any noise or fluctuations on the 5V bus. A second 5V

regulator in a TO-3PS package is employed for the camera. The camera

requires over 1.5A at 5V. This, with the other loads, would easily overload the

primary 5V regulator. Both batteries are connected to a common ground in the

power regulation system. Figure 20 shows the primary voltage regulators. The

camera voltage regulator is mounted separately.

Figure 19. Power Regulation System Functional Diagram.

Figure 20. BigFoot’s Power Regulation System.

 22

3. Power Distribution

Figure 21 shows a basic schematic diagram of BigFoot’s power

distribution system. The system is split into two major sections. Power from the

motor battery is sent through a set of disconnects to a three position, double pole

switch. The switch has a center off position. When the switch is in “ON”, the

power is directed through a pair of 25A fuses to the motor controllers’ input

terminals. When the motor switch is in the “CHARGE” position, the battery is

connected to a pair of red and black terminals. These terminals are then

connected to a battery charger to charge the motor battery. This enables

convenient charging without disconnecting or removing the motor battery. The

motor switch is shown on the left of the switch panel in Figure 22.

Figure 21. Basic Power Distribution Schematic.

The second major portion of the power distribution system distributes the

electronics power. This section distributes power from the electronics battery

and 12 and 5V regulators and distributes it via individual switches to BigFoot’s

various loads. Each of the different voltages is connected to a terminal for

 23

convenient testing. These terminals are color coded as is all wiring on BigFoot.

15V power is green, 12V is blue, 5V is yellow, 24V is black, and common is

black. Power is sent to switches on the switch panel (Figure 22). The switches

are equipped with Light Emitting Diodes (LEDs) to indicate when power is being

sent to a load. The output of the switches is sent to the power panel where the

power is directed through fuses for the 15V and 12V loads or poly-switches for

5V loads. The fuses and poly-switches are connected by quick connectors to the

individual loads for easy removal or testing. All loads connect to the common at

the regulator that provides their individual power to ensure a 0V common. Total

system loading is listed in Table 2. These currents are measured at 15V. The

5V loads will actually draw three times the listed currents at their operating

voltage.

Figure 22. Switch Panel.

 24

Figure 23. Power Panel.

Load Current

Voltage Regulators 9mA
BL2000 60 mA
Router 160 mA
ooPIC 100 mA

Motor Controllers 50 mA
IR Rangers 138 mA

Sonar 10 mA
Compass 10 mA

GPS 70 mA
Camera 340 mA

Thermopile 10mA
Total 957mA

Table 2. Electrical Loading.

All connections to the 5V bus also include connections to the I2C bus.

The I2C bus uses a pair of 1.2kΩ pull-up resistors connected to the 5V bus. The

BL2000 operates as the master device. Currently only the compass, sonar, and

 25

BL2000 are connected to the I2C bus. The I2C bus color scheme uses a white

data line using white and a purple clock line. Brown wires are used for signals

and data.

C. SENSORS

1. Compass

Figure 24. Devantech CMPS03 Electronic Magnetic Compass (From [12]).

BigFoot uses a Devantech CMPS03 electronic magnetic compass

(Figure 24). This compass is accurate to within 3 degrees with a resolution of 0.1

degrees [12]. This compass uses two orthogonally mounted Phillips KMX51

magnetic field sensors. The sensors are comprised of four magnetoresistors

connected in a Wheatstone bridge configuration. These magnetoresistors are

formed from ferromagnetic permalloy, an alloy of 19% Fe and 81% Ni [13], strips

that are deposited on a silicon substrate with a pair of coils for compensation and

field flipping. When the permalloy strips are deposited onto the silicon substrate,

a strong magnetic field is applied parallel to the strip axis to establish a preferred

magnetic direction within the strip which is aligned in the direction of current flow.

When an external magnetic field is applied, a net field is established at an angle

α with respect the direction of current flow as shown in Figure 25.

 26

Current

Magnetization

Permalloy

Hy

+ -
y

x

Figure 25. Magnetic Effect on Permalloy (From [13]).

This results in electrons traveling in curved, rather than straight, paths

across the permalloy strip due to the Lorentz force (Equation 2) effect on the

electrons in the permalloy. This results in a higher resistance which is

proportional to the angle α according to Equation 3.

()F q E v B= + ×

Equation 2. Lorentz Force Equation.

2
0 cosR R R α= + ∆ ⋅

Equation 3. Magnetoresistance Equation (From [13]).

This effect can lead to up to 3% variance resistance. This effect is

linear under small magnetic fields less than 10 Gauss. Note that the earth’s

magnetic field is on the order of 0.5 Gauss. This resistance change causes the

Wheatstone bridge to be imbalanced and thus creates a potential proportional to

the magnetic field orthogonal to the sensor strips. Two sensors are employed

perpendicular to one another to determine vector components of the earth’s

magnetic field. Together the components form a two dimensional vector for the

earth’s magnetic field [14]. This is then processed by the compass electronics to

produce an 8-bit word which is passed when the I2C master device calls address

0XC0. The compass is mounted to a mast approximately four inches above the

platform base to prevent interference from the motors’ magnetic fields.

 27

2. Ultrasonic Range Finder

Figure 26. Devantech SRF08 Ultrasonic Ranger.

BigFoot uses two different types of sensors for collision avoidance. The

primary is a Devantech SRF08 ultrasonic range finder (Figure 26). The range

finder is constructed from a pair of piezoelectric transducers. The ceramic

piezoelectric crystal flexes to create a pressure pulse when an electrical signal is

applied. These pressure pulses create a 40 kHz sound pulse in a conical beam

with the beam angle shown in Figure 27.

Figure 27. SRF08 Beam Pattern (From [15]).

 28

The pulse is reflected from any objects in the beam path. The ranger then

receives portions of the reflected wave. The time difference between the pulse’s

emission and reception of the reflected wave is proportional to the distance to the

obstacle as shown by Figure 28.

Figure 28. Ultrasonic Range Finder Operational Diagram (From [16]).

cos
2o

vtL Θ
=

Equation 4. Ultrasonic Range Equation (From [16]).

Equation 4 is used to calculate the range. In this equation, L0 is the range

to the obstacle, v is the speed of sound in air, and t is the time between pulse

emission and detection of the reflected wave. Θ is the angle of incidence of the

wave to the obstacle. The SRF08 can detect obstacles at a maximum range of 6

meters as shown in Figure 29. Due to the approximate beam width of 55

degrees at -6 dB, the ranger is mounted at an upward angle of approximately 30

degrees to prevent reflections from the ground causing indications of false

 29

obstacles. The ultrasonic ranger translates the calculated distance and reports

either time, or distance in centimeters or inches. This is converted it to an 8 bit

ASCII word that is read by the calling the I2C address 0xE0.

Figure 29. SRF08 Detection Pattern (From [15]).

3. Infrared Rangers

Figure 30. Sharp GP2D12 Infrared Ranger.

BigFoot employs six Sharp GP2D12 Infrared (IR) rangers (Figure 30) as a

secondary means of obstacle detection as well as for decision making purposes.

Four IR rangers are mounted on the front and two are mounted on the sides as

shown in Figure 31.

 30

Figure 31. Collision Avoidance Sensor Locations.

In Figure 31, the IR rangers are shown with the red lines representing their

range of coverage. The ultrasonic ranger is represented by the blue cone. The

four forward facing rangers are used to detect collision threats in front of BigFoot

while the two side-mounted rangers are used to determine which direction is

clear when turning to avoid obstacle. IR rangers continuously transmit an 850nm

wavelength light beam [17]. When an obstacle is present, the beam is reflected

back to the ranger where it is detected by a linear CCD array detector [18]. This

determines the angle at which the beam is returning. This angle is proportional

to the distance from the target. Figure 32 and Equation 5 show the relationship

between the detection angle and target distance.

Figure 32. IR Ranger Detection Configuration.

 31

tanL y θ= ⋅

Equation 5. IR Ranger Equation

In Equation 4, the distance to the object is L, y is the known distance from

the center of the detector to the sensor, and θ is the angle measured by the CCD

sensor array. The GP2D12 produces an analog voltage that is non-linearly

related to the object range. This relation is shown in Figure 33. As shown, the

maximum effective range is approximately 80cm with a minimum range of 10cm.

Figure 33. IR Ranger Output Voltage versus Object Distance (From [17]).

4. Thermopile

Additional sensing capability is available by use of a Trekker Thermal

Array Sensor TPA81 (Figure 34). This sensor is a linear array of eight

thermopiles. This array produces an eight pixel temperature reading with each

pixel representing a solid angle of 5.12 x 6 degrees. The thermopiles are a

series of interconnected thermocouples. These thermopiles respond to IR

radiation in the wavelength range of 2 to 22µm [19].

 32

Figure 34. Thermal Sensor Mounted on Camera.

The Thermal Sensor is mounted directly above the camera to permit

thermal information being correlated with visual images by the operator. The

thermal sensor operates on the I2C protocol and is programmed to address

0xD0. Each of the eight registers is read individually and returns the temperature

0 to 255 Celsius.

5. Camera

A commercial off the shelf D-Link DCS-900 internet camera is used to

send real time streaming video and still pictures to the operator. The camera is a

2 ½ x 2 ½ x 2 ¾ cylinder that weighs 0.61 pounds. It plugs directly into BigFoot’s

onboard router and has its own static IP address. The camera has a manual

focus, but the standard setting is acceptable. The lens has a 6.0mm focal length,

automatic brightness and contrast controls and an automatic frame rate. The

camera can transmit 640x480 and 320x240 pixel images and video [20]. The

camera utilizes a separate voltage regulator due to drawing approximately 1.5

Amps at 5V. The camera is mounted on a servo to permit panning to view

BigFoot’s surroundings without having to move. The camera is shown in Figure

34.

 33

6. Global Positioning System (GPS)

BigFoot exclusively uses the Garmin GPS 18-5Hz for navigation. The

GPS receives 5 location reports per second and can receive data from ten

satellites at one time. BigFoot’s GPS unit is shown in Figure 35. The GPS is

mounted at the top of the communications antenna to prevent interference from

BigFoot’s router. This is required as the GPS satellite signals and BigFoot’s

wireless communications both operate at 2.4 GHz. The GPS reports BigFoot’s

location in a Garmin proprietary data format using standard RS-232 serial

communications. The data is received by the BL2000, processed, and is passed

on to the user interface laptop. The location report is in standard latitude and

longitude coordinates [22] and includes the number of satellites currently being

tracked as well as the time of the last position fix.

Figure 35. Garmin GPS 18-5Hz.

The GPS capability includes the use of WAAS (Wide Area Augmentation

System) while in North America. Originally intended as a system to improve

GPS accuracy for aviation, WAAS has transitioned to also improve land based

applications. There are only two WAAS satellites in operation (one over the

Atlantic and one over the Pacific Oceans) [21]. The two satellites work 25

 34

ground stations to calculate possible GPS errors such as clock drift, orbital

errors, atmospheric delays, etc. These satellites broadcast the errors which are

then compensated for by the GPS receiver [7].

D. MICROCONTROLLERS

1. BL2000

BigFoot’s primary computer processor is the Z-World BL2000 Wildcat.

The BL2000 is a single-board 22.1 MHz computer with a Rabbit 2000

microprocessor. The BL2000 has 4 analog and 11 digital inputs as well as 2

analog and 10 digital outputs. The BL2000 also has four serial ports, 128K of

static RAM, and 256K of flash memory [23]. Figure 36 shows BigFoot’s BL2000.

The computer is connected via RJ 45 connections to the router for two way

communications with the operator laptop. It is also connected to the OOPic via

four of the digital output lines. Table 3 lists all connections to the BL2000. The

BL2000 controls all sensors with the exception of the camera and analyzes

sensor data to control BigFoot. The processor is programmed with dynamic C

code (see Section IV) via a serial cable connection which is permanently

mounted on BigFoot. The BL2000 utilizes 2 digital input and two digital output

ports to serve as the master device for the I2C bus.

 35

Figure 36. BL2000 Rabbit Microprocessor.

BL2000 Load BL2000 Load

Analog Output 1 Left Motor Controller Digital Input 0 I2C Data Line

Analog Output 2 Right Motor Controller Digital Input 1 I2C Clock Line

Analog Input 3 Left Side IR Ranger Digital Output 1 OOPic I/O Group 3 Pin 0

Analog Input 4 Left Corner IR Ranger Digital Output 2 OOPic I/O Group 3 Pin 1

Analog Input 5 Left Center IR Ranger Digital Output 3 OOPic I/O Group 3 Pin 2

Analog Input 6 Right Side IR Ranger Digital Output 4 OOPic I/O Group 3 Pin 3

Analog Input 7 Right Corner IR Ranger Digital Output 8 I2C Data Line

Analog Input 8 Right Center IR Ranger Digital Output 9 I2C Clock Line

TX2 GPS Receive Line RX2 GPS Transmit Line

Table 3. BL2000 Connections.

2. OOPic

BigFoot’s secondary processor is the Object Oriented Programmable

Interface Controller (OOPic). Specifically, BigFoot utilizes an OOPic II+. The

OOPic II+ utilizes B.2+ firmware which includes seven 10-bit Analog to Digital

(A2D) channels, 86 bytes of object memory, 72 bytes of variable memory, 8K of

 36

program code space, and 256 bytes of internal EEPROM space. The processor

is a PIC16F877 microcontroller operating at 20MHz [24]. The OOPic is used to

drive the servos for BigFoot’s arm control. The OOPic is perfect for this due to

the ability to drive multiple servos concurrently with its onboard pulse width

modulators. The OOPic is connected via a 40 pin parallel cable to an adapter

board which provides convenient connections to many standard small robotic

project components (such as IR Rangers, Sonar, Compass, servos, etc). The

BL2000 is also connected to the OOPic via the 40 pin parallel cable. The

BL2000 requires pull-up resistors on its digital outputs and are mounted on an

interface board where the BL2000 is connected to the 40 pin ribbon cable. The

OOPic, adapter board, and interface board are shown in Figure 37. The 40 pin

ribbon cable is removed for clarity.

Figure 37. OOPic, Adapter Board, and Interface Board.

E. COMMUNICATIONS

1. Router

BigFoot communicates via a Netgear Rangemax 240 wireless router. The

router operates with both IEEE 802.11b and 802.11g standards at 2.4 GHz. This

router has four RJ 45 connections to be used for wired connections. Two of

 37

these are used for the BL2000 and the camera leaving two connections for

additional components. The network is password protected to prevent

uncontrolled access to BigFoot or the camera. All communications utilize

standard UDP protocol. Figure 38 shows the router used by BigFoot.

Figure 38. Netgear Rangemax 240.

2. Antenna

Previous projects have been limited in range due to communications

range of the router. To alleviate this, BigFoot has been equipped with a D-Link

2.4GHz Omni-Directional 7dBi antenna. This 11 inch antenna is connected

directly to the router’s center antenna connection via a SMA connector. The

antenna is vertically polarized and has an impedance of 50 ohms [25]. BigFoot’s

antenna is shown in Figure 39.

 38

Figure 39. D-Link 7dBi Antenna.

 39

IV. BIGFOOT’S PROGRAM

BigFoot’s operation is directed by the BL2000. The BL2000 is

programmed using Dynamic C. Dynamic C is a Z-World version of the C

programming language. BigFoot’s complete Dynamic C code is included in

Appendix A.

A. GENERAL PROGRAM OVERVIEW

Figure 40. Basic Program Flow.

 40

Figure 40 shows the overall program flow. The program starts with

declaring global variables and function declarations. A small amount of

assembly language code is included to establish the I2C clock at 100 KHz. The

Rabbit 2000 microprocessor includes built in I2C functionality, but the BL2000

does not offer access to these ports. The declaration portion of the program

defines port operations for I2C functions on non-I2C ports.

The second major portion of the program is the initialization phase. In this

section, the BL2000 is initialized. The I2C communications are initialized and

communications sockets are opened. Five communications ports are used in

BigFoot’s communication scheme, three for receiving data, and two for sending

data. The receive ports are designated for waypoint instructions, manual

controls, and arm control instructions and the transmit ports are designated for

GPS and error data. The compass and thermopile data are passed in the error

stream and are separated from error messages in the GUI. All communications

are with a UDP protocol.

The remainder and bulk of the program is dedicated to the costatements.

Costatements are a Dynamic C specific functionality that allows the program to

wait to perform the instructions until a specific event occurs. This allows the

program to perform other functions while waiting on that event. Each

costatement is checked for its qualifying condition and either executed or skipped

until the program loops to check again.

BigFoot requires eight costatements. The first checks the manual control

port to determine if any manual control orders are being sent. If so, BigFoot is

placed in manual mode and manual controls are implemented. If there is no data

in the manual control stream and the robot is not already in manual, this

costatement is skipped. The second costatement is for arm control. If the robot

is in manual mode, this costatement will execute orders to control the arm. The

third costatement is the compass statement. This checks the compass and

reports the heading to the GUI. This is performed every loop of the program.

The program then checks the waypoint stream to determine whether

 41

autonomous orders are being sent. If the waypoint stream has orders, the robot

is placed in auto and the rest of the costatement is performed. The next

costatement is for the GPS. This is performed every loop through the program.

The remaining costatements are only performed while in autonomous mode.

These are the navigation orders, the controls for turning, and the obstacle

avoidance controls.

B. MANUAL OPERATION

Figure 41 shows the program loop while in manual mode of operation.

Figure 41. Manual Control Program Flow.

 42

1. Manual Control Costatement

When the robot is in manual operation, it is waiting on one of two inputs

from the GUI. It waits for manual orders from the manual control port. The

manual control stream is comprised of ASCII words for left and right side motor

controller voltages delimited by a space. These voltages are directed to the

analog output ports to control the motor controllers. If the robot was not

previously in manual mode when this order was received, the robot is placed in

manual at this time. The BL2000 will maintain a constant output to the motor

controllers until a new manual control order is received.

2. Arm Control Costatement

Secondly, the program is awaiting orders on the arm control port. It

checks the arm control port to determine whether any arm orders have been

received. If there are no new arm orders, the program continues to the next

costatement. If an arm order is received, the program will convert it from ASCII

format to an integer. The order will be set to 0 if it is any value greater than 12,

as those are not defined. The program then converts the order to a 4 bit digital

word that is placed on digital output ports 1-4. These ports are connected to the

OOPic. After a delay 300 milliseconds, the digital output ports are set to 0 to

prevent further operation of the arm. This limits the speed of the arm movement

and permits changing the arm position in 3-degree increments.

3. Thermopile Costatement

The third costatement in the manual control loop is the thermopile

costatement. The program calls the thermopile function to read each of the 8

thermopile registers. This data is then converted to ASCII format and placed in a

string with the leading keyword “THERM”. This string is placed in the error buffer

and is transmitted to the GUI on the error port.

 43

4. Position Costatement

The final costatement is the position costatement. This costatement is

enacted in both manual and autonomous modes. It calls the compass function,

which orders the compass to report current heading. The compass function calls

a series of I2C functions to read the compass and returns a value between 0 and

255 proportional to heading. This is converted to 0 to 360 degrees. The

costatement then adds the compass heading to an ASCI string with the leading

string “Compass”, which is placed in the error buffer to be transmitted on the

error port to the GUI. The costatement then reads the data stream from the GPS

receiver and calls functions to convert the data into standard integer and floating

point data types for convenient calculations. The costatement sends the GPS

data to the GPS port to be sent to the GUI. The current and previous GPS

positions are compared to determine whether BigFoot is moving. If the position

is exactly the same for 6 program loops times, the robot is placed in manual

mode and stopped.

C. AUTONOMOUS OPERATION

Figure 42 shows the program loop while in autonomous mode of

operation.

 44

Waypoint
Costatement

Navigation
Costatement

PID Costatement

Analog
Voltage to

Motor
Controllers

Collision
Avoidance

Costatement

Analog
Voltage to

Motor
Controllers

Autonomous
Orders From

GUI

Position
Costatment Robot Heading

to GUI

Robot Position
to GUI

Figure 42. Autonomous Operation Program Loop.

1. Position Costatement

In autonomous operation, the program loop begins with the position

costatement. This is the same costatement described in the manual control

section. However, in autonomous mode, the information from the GPS and

compass is no longer just passed to the GUI for display. This data is stored and

used later for navigation.

2. Waypoint Costatement

The waypoint costatement is the second in the autonomous control loop.

The program checks the waypoint port to determine whether any waypoint orders

are being received. The waypoint stream is tokenized and stored in an array.

The array is sized to accept a maximum of 9 waypoints. This is also the limit in

the GUI. The latitude and longitude components are converted into double

 45

format while the action component is stored as a character. At the end of the

costatement, the program directs the motor controllers to drive forward for 500

milliseconds. This starts BigFoot traveling in a forward direction to prevent

interference with the compass due to an electromagnetic surge from the motors.

3. Navigation Costatement

The navigation costatement calculates the necessary course for BigFoot

to travel to reach the next waypoint. This is accomplished by first converting

latitude and longitude into minutes and decimal minutes. These are then used to

calculate the range to the next waypoint using a conversion factor of 2000 to

convert from minutes to yards and applying the Pythagorean Theorem to create

a straight line range to the next waypoint. If this distance is less than 5 yards,

BigFoot determines that the waypoint has been achieved. This range is chosen

due to accuracy of the GPS unit without WAAS available. When a waypoint is

achieved, the BigFoot will take action as assigned by the operator. This could

include stopping, turning, or returning to its origin. BigFoot will also pass a

message on the error port to the GUI to alert the operator that a waypoint has

been reached or to alert if an error has occurred, such as an invalid waypoint. In

the event an error does occur, BigFoot is placed in manual control and is

stopped. If BigFoot is not within 5 yards of the waypoint, the necessary course to

reach the waypoint is calculated by using trigonometry and logic.

4. PID Costatement

The PID (Proportional-Derivative-Integral) costatement is next in the

autonomous loop. In order to prevent overshoot or unstable operation while

turning, a PID control is used for turns while driving and while turning from a

stationary position. PID control also allows BigFoot to smoothly return to a

course while moving to minimize jerky operation.

 46

The program first calculates a heading error. This is the difference

between the current heading and the heading necessary to achieve the next

waypoint. This heading error first must be used to determine the direction to

turn. This is accomplished by using logic to produce Equation 6.

180 180 0Heading Error or Heading Error≥ ° − ° < < °

Equation 6. Heading Error for Turn Logic.

When this condition is satisfied, BigFoot will turn left. For all other

possible heading errors, BigFoot will turn right. This results in the shortest turn

for any possible heading error. Turn direction is then stored as a 0 or 1 value for

use later. If the heading error is less than 5 degrees in magnitude, the heading

error is defined as 0 and BigFoot continues on its current course. This is

necessary to prevent unstable operations due to compass accuracy and stop

voltage dead band for the motor controllers.

The heading error is normalized to a range of -180˚ to 180˚. This is then

used in a calculation to produce a voltage variable that is proportional to the

heading error. This is done by Equation 7.

2.4
180

voltspScale Error= ⋅
°

Equation 7. Proportional Scale Equation.

The differential component is calculated similarly. The differential

component is proportional to the time rate of change of heading error. This is

accomplished by subtracting the heading error from the last loop from the current

heading error. The time component is accounted for by the program loop

calculating the error once per cycle. Equation 8 is the differential scale equation.

 47

2.4()
180

voltsdScale Error previousError= − ⋅
°

Equation 8. Differential Scale Equation.

The final component is the integral component. This is a time

compounded variable related to the cumulative proportional error. The

proportional component is added to the integral component each loop to produce

a voltage variable proportional to cumulative heading error. Equation 9 is the

integral scale equation.

iScale pScale iScale= +

Equation 9. Integral Scale Equation.

These components are multiplied by weighting factors to tune the robot to

ensure a critically damped turn. If the proportional component is incorrect, the

robot will possibly overshoot the target heading if it is too large or could have a

heading offset if it is too small. If the differential component is too large, the robot

may be overdamped and be unable to reach the target heading. If the differential

component is too small, the robot’s turn may become very unstable causing the

robot to oscillate many times before reaching its destination heading. If the

integral component is too small, the robot will not be able to reach its destination

course. As a result, the weighting factors must be carefully chosen. In the past,

they have been chosen by a method of trial and error, but recent NPS research

has created a computer simulation to choose values that result in the most

efficient turn possible [26].

 48

insidevolts P pScale I iScale D dScale= ⋅ + ⋅ + ⋅

Equation 10. PID Equation.

The weighting factors are multiplied to the appropriate voltages

(proportional, differential, or integral) and the three components are added as

shown in Equation 10. This is the total turn voltage. This voltage is applied to

the inside wheels to slow them. The outer wheels continue to drive at full forward

voltage. This allows the robot to continue forward motion while turning to

maintain course. If the course change is large enough, BigFoot will pivot about

its inside wheels to turn sharply at the beginning of the turn, but will end up in a

slower turn as the desired heading is approached. The inside voltage is limited

to 2.35 volts to prevent driving the inside wheels in reverse. 2.35 allows a slight

amount of forward motion of the wheels to ease the turn by preventing the

dragging of the inside wheels.

5. Collision Avoidance Costatement

The final costatement of the autonomous loop is the collision avoidance

section. The program calls the sonar function twice. The sonar function calls a

series of I2C functions to direct the sonar to check for obstacles. All results of 0

are set to 255 due to the sonar reporting no contact as 0 instead of greater than

255. The sonar is checked twice to prevent false detections by averaging the

two results. After the sonar is checked, the program checks each of the IR

rangers. The program then compares all forward looking IR rangers and sonar

ranges to determine if a collision threat is present. A threat is defined as a sonar

contact at less than 75 inches or an IR contact at greater than 0.2 volts, which

corresponds to a contact at any range. If a threat is present, BigFoot backs up

for 1 second. The program then checks the side IR rangers to determine which

direction is clear and orders BigFoot to turn to that direction. BigFoot turns for 1

second and then returns to autonomous operation.

 49

V. OOPIC PROGRAM

The OOPic is programmed using visual basic. The OOPic program

receives an input from the BL2000 and positions servos as ordered. The basic

flow chart for the OOPic program is shown in Figure 43 and the full OOPic code

is included Appendix B.

Declare Global
Variables

Initialize Variables
Initialize Servos Move Servo

Wait

Check Order

Figure 43. OOPic Program Loop.

The OOPic program starts by declaring global variables. These variables

are initialized in the beginning of the main program. The initialization process

declares which pins are to be used for the input and output as well as initial

values. OOPic uses a variable type known as nibble. A nibble is a 4 bit word,

literally a half of a byte. The servos have a center position defined and an initial

value set. This will place the servo in the stowed position at the beginning of the

program. The loop portion of the program is a series of logic questions. The

 50

program reads in the nibble input and determines which servo to position and

whether to position it clockwise or counter clockwise. After repositioning the

servo, the program waits for 250 milliseconds to slow the speed of operation.

 51

VI. JAVA GUI

BigFoot interfaces with the operator via a JAVA based Graphical User

Interface (GUI) on a laptop computer. The GUI was originally developed at NPS

by LT Kubilay Uzun (Turkish Air Force) [27]. This application has been rewritten

and modified for ease of use and for application of additional sensors and control

of BigFoot’s arm. The full JAVA code is included in Appendix C.

The constructor class establishes the GUI window and all components.

All components reside on one of three tabs or a menu bar at the top of the

screen. The menu bar holds commands for infrequently used commands. The

menu bar is divided into three menus: “Routes”, “Tools”, and “About”. The

menus offer options to load or save routes, scale the waypoint map as well as to

view the error log and program information. The three tabs house the remainder

of GUI functionality. When a tab is selected a page is displayed that contains

graphics, controls, and reports for various BigFoot functions.

A. MAP TAB

The map tab is the location for all navigation information. This page is

broken into three major sections. The largest is the center section. The center

section contains a predefined scalable map or figure. The map can be a digital

image in any format, BMP, JPG, etc. The GUI has been tested using scale

computer drawings as well as satellite imagery from “Google Earth”. When the

robot is first used with a new map, the map must be scaled. This is

accomplished by placing the robot in recognizable positions from the map and

using the map scaling menu. Figure 44 shows the map tab with a scale drawing

used as the navigation map.

 52

Figure 44. GUI Map Tab.

The left side of the map page is a section for telemetry. Here, BigFoot’s

GPS position, heading, number of satellites tracked, and current time are

displayed. Also in this location are the waypoint selection tools. These buttons

allow the user to add or remove waypoints. When a route is constructed, the

user presses the send route button and the route is sent to BigFoot. When

BigFoot receives the route, it shifts to autonomous mode and navigates the

waypoints as previously described. The lower left had side of the map page is an

error pane. Any errors that BigFoot encounters are displayed in this area to

notify the user. This is also where status messages such as manual mode,

autonomous mode, waypoint reached, etc. are displayed.

The right side of the map page contains controls for manual control of

BigFoot. The top buttons are for motion in the forward and reverse directions,

pivoting, and stopping. These buttons send predetermined voltage values to

 53

BigFoot to send to its motors. The forward and reverse buttons are set to send

less than full speed voltages to allow more precise control. Below the manual

control buttons is the Joystick panel. This joystick sends voltage values to

BigFoot based on the mouse pointer position within the joystick panel. Due to

BL2000 limitations, BigFoot only has a voltage range of 0 to 4 volts with 2.5 volts

as the stop voltage. As a result, the scaling of the joystick is not uniform in the

forward and reverse directions. This results in finer control in the forward

direction, but non-linear response when turning with the joystick. Figure 45

shows BigFoot’s joystick scaling.

Joystick Voltage Curve

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 50 100

Number

Vo
lts

Stop

Reverse Forward

Figure 45. BigFoot’s Joystick Scaling Graph.

B. ARM CONTROL TAB

The arm tab contains all controls necessary to position the arm. The page

also provides dynamic position information for the operator to monitor arm

position. The arm page is also divided into two sections. The largest section is

on the left and contains overhead and side view drawings of BigFoot. This

 54

drawing is a dynamic graphic in that as the position of the arm is changed, the

drawing reflects the ordered arm position with a scale drawing of the arm. This

shows the location in all three dimensions of the arm’s payload with respect to

BigFoot. The picture indicates only the ordered arm position and not actual

position as there are no physical arm position indicators. Figure 46 shows the

GUI arm tab.

Figure 46. GUI Arm Tab.

The second section, on the right, contains a images from BigFoot’s web

camera as well as controls for the arm. The camera provides still images that

are updated every time anything with in the program changes. This includes

every time the GUI receives updated position and heading information from

BigFoot. As a result, the camera does not provide streaming video, but it does

 55

provide images that are updated more frequently than once per second. Below

the camera view are two button panels. These buttons control the servos for

BigFoot’s arm. When a button is clicked, the GUI sends a numerical command

to operate a particular servo either clockwise or counter clockwise. The button

click also causes the arm image to be redrawn at the new ordered position.

C. SENSOR TAB

The third tab contains BigFoot’s sensor information. This page is also

comprised of two major portions. The left and largest pane again contains a

drawing of BigFoot. The picture is an overhead view. This picture is also a

dynamic graphic. This drawing includes an arc that indicates the direction the

camera and thermopile are pointing. When the camera is repositioned, the arc is

redrawn to show the field of view with respect to BigFoot’s position. This picture

can also be used to indicate the direction of detected motion when used with a

robot that employs motion detectors. Figure 47 shows the GUI sensor tab.

Figure 47. GUI Sensor Tab.

 56

The second pane again contains an image feed from BigFoot’s web

camera. This pane also contains buttons to reposition the camera by pivoting

clockwise or counter clockwise. These buttons are located on the side of the

camera image. Directly above the image is a “Snap Photo” button. When this

button is clicked, the GUI stores records an image in JPG format from the web

camera. This image is saved with a unique name including a date-time stamp on

the hard drive of the GUI laptop. This can be done as long as the interface

laptop has space on its hard drive. Finally, directly below the camera image is an

eight block display that approximately corresponds to the camera field of view.

The eight blocks contain temperature information from the thermopile. This can

be used in low light conditions to aid the operator in locating objects or even

people. The display shows the numerical Centigrade temperature and is filled

with a red scale color scheme in which white represents 0 degrees and red

represents 255 degrees.

D. ADDITIONAL FUNCTIONALITY

The GUI now includes an error log and a GPS log. These logs record all

data passed in the error and GPS streams, respectively. They are stored on the

hard drive in text format. The data can be used to recreate the robot’s track and

troubleshoot in the unlikely event that errors are occurring.

 57

VII. RESULTS

BigFoot’s mechanical construction is sound. BigFoot is capable of taking

a moderate shock. When run directly and indirectly into solid object, BigFoot is

not damaged. The polystyrene bumper prevents any damage to front mounted

sensors. The mounting of the battery makes BigFoot very stable and resistant to

flipping over when climbing or descending obstacles. BigFoot has also been

dropped from heights of greater than four feet with no noticeable effects. When

driven off of a four foot high platform, the bottom heavy design and bumper

allowed BigFoot to land on its wheels with only minor cosmetic damage.

Secondly, BigFoot needs an enclosure. Currently, BigFoot is unable to operate

in dusty, sandy, or wet environments due to risk of fouling the electronics.

The wheels work well on most surfaces. The wheels have a measured

coefficient of friction of 0.96 on concrete, pavement, dirt, and grass. The

coefficient of friction is measured by locking BigFoot’s wheels and pulling with a

spring-scale to measure the force necessary to start sliding. This coefficient of

friction allows the robot to come to a dead stop from full speed with no sliding

and only minor slipping when taking off from a dead stop at full speed. On loose

surfaces, such as dirt, sand, or debris, BigFoot slides an average of 4 inches

when coming to a full stop from full speed. When operating at less than full

speeds, the skidding is minimal or non-existent.

BigFoot’s arm is currently insufficient for the task of delivering an

explosive charge. The servos do not produce enough torque to lift the hand

efficiently. This is due to misalignment of the shoulder servos. By being slightly

out of alignment, much of the torque produced by the servos is lost while the

servos are fighting against each other. This can be alleviated by more precise

construction of the shoulder joint components and precisely aligning the servos.

Secondly, a single larger servo that could produce sufficient torque on its own

 58

would alleviate the torque loss. Finally, the hand is not complete. This hand can

open and close with minimal gripping strength. The hand must either be rebuilt

to include a more powerful grip or must be purchased off the shelf.

The electrical system has proven to be sufficient when modified for all

purposes. The camera draws 1.5 amps at 5V. This alone is the capacity of the

original 5V regulator in BigFoot’s power regulation system. The addition of a

separate high capacity 5V regulator for the camera prevents excessive loading of

the main 5V regulator. This permits all loads to be operated concurrently.

BigFoot’s batteries performed satisfactorily. The motor battery capacity,

however, limits BigFoot’s range. The motor battery capacity gives an operational

time limit of 2 hours while continuously running. The electronics battery capacity

supports an operational time limit of approximately 11 hours. Together, they

allow BigFoot the ability to perform multiple consecutive missions limited by the

distance BigFoot must travel for each. If BigFoot is equipped with sensors for

surveillance, on station time will be limited to approximately 11 hours. This is a

dramatic increase over previous NPS robotic projects [8].

BigFoot’s compass performs satisfactorily in most cases. The compass is

sensitive to stray magnetic fields which made mounting a difficult task. The

motors produce large variable magnetic fields. The compass was originally

placed by measuring the deviation from actual heading at 768 different points on

BigFoot’s body. This provided a location that proved to be immune to stray

steady state magnetic fields. However, further testing showed an effect on

compass heading when the motors were stopped or started. This caused an

electromagnetic pulse that would cause the compass to deviate from true

heading by as much as 30 degrees. This was alleviated by moving the compass

farther away from the motors. The compass is now mounted on a mast that

elevates the compass beyond the effects of motor electromagnetic surges.

Secondly, the BL2000 code has been modified to prevent the compass from

taking a reading for 500 milliseconds after the motors start. This has eliminated

all electromagnetic surge effects. BigFoot’s Devantech CMPS03 compass is

 59

also a better choice from that used by previous robotic projects [Refs. 7, 8]. The

HMR3000 compass has pitch and roll measurement capability, but it requires

585 milliseconds to take a single reading. The CMPS03 requires 340

milliseconds, but does not have pitch and roll measurements available. For the

NPS ground robotic projects, pitch and roll have not been employed and are not

necessary at this point. This makes the CMPS03 more desirable due to reducing

the program loop time by 245 milliseconds. This represents a 13% reduction

from the total loop time of 1900 milliseconds.

The collision avoidance sensors effectively avoid most collisions. The

sensors have been shown to be accurate to the manufacturer’s design

specifications [8]. The time duration of the program loop limits the frequency at

which the sensors are sampled, however. Furthermore, sampling the sonar is a

major contributor to the program loop time. The sonar requires 665 milliseconds

from the initiation of the order to the time the measurement has been reported

using the I2C protocol. The program calls this twice representing 70% of the

total program loop time. As a result, the program loop time allows BigFoot to

close on obstacles between samples. This effect has been minimized by calling

all contacts detected by the IR rangers and any sonar contact less than 35

inches an obstacle. This provides sufficient range for BigFoot to detect an

obstacle and stop if it is just outside this range on the previous sample. A

second problem with the ultrasonic ranger arises when it reports an obstacle

when none is present. This tends to be a problem as it occurs relatively

frequently at an approximate frequency of 1 in 20 reports. This is not however a

predictable frequency. The cause of these spurious detections is unknown.

They are compensated for by ordering the sonar to check for obstacles twice in

succession every loop through the program. The results are then averaged to

mitigate effect of the spurious detection. The average is then used as the test

sample to determine whether an obstacle is present or not.

 60

The camera accomplishes all tasks that are demanded of it. The camera

is mounted on a servo to enable panning left and right. However, the camera

cannot view up and down. For BigFoot’s purpose, this is not necessary as the

camera can view what the arm is doing. However, the camera is only useful in

well lit situations. As shown in Figure 48, BigFoot’s camera performs poorly in

darkness. The left pane shows an image in dim natural morning light. The

middle pane shows the same scene with one light, and the right pane shows the

same scene with normal interior lighting on. This is due to having no attached

light to allow the camera to view the surroundings. To improve this, a camera

with night vision, such as Swann’s Max IP Cam network camera, is required.

This would enable BigFoot to be useful in the dark and for surveillance. The

camera’s video is not accessible in the JAVA GUI. This is due to the camera’s

video interface requiring an internet browser. The streaming video is still

available at the user laptop by merely opening an internet browser and typing in

the camera’s IP address. This requires another window to be open, but if

streaming video is desired for surveillance, it is available.

Figure 48. BigFoot’s Camera in Multiple Lighting Scenarios.

BigFoot’s GPS shows marked improvement over the GPS employed by

previous NPS robotics projects. Previous units utilized the GPS 16 LVS. This

unit updated once per second. The GPS 18-5Hz updates five times per second.

Secondly, the previous projects included a time delay in the program loop for the

GPS to ensure it was updated prior to plotting the robot’s position. The GPS 18-

 61

5Hz system update is slower than the time necessary to read the compass. This

time delay is no longer required. This reduces the program by 500 milliseconds

which is a reduction of 26% of the program loop time. The net reduction in

program loop time by using the new compass and new GPS unit is 39%.

BigFoot’s communication range is significantly improved over that of

previous NPS robotics projects. The antenna increased range dramatically. The

range increased from about 100 yards to almost 300 yards. Figure 49 shows the

result of anechoic testing of the antenna to demonstrate its effectiveness [29].

Figure 49. D-Link Antenna Anechoic Test Result (From [29]).

The PID controls for BigFoot required much testing. Previous PID controls

were incomplete in their employment. After updating the code, the PID

coefficients required tuning to set for optimal tuning. BigFoot was extensively

tested to measure turning characteristics. These characteristics were used to

predict optimal coefficients. The predicted coefficients have been implemented

and shown to turn efficiently [26]. These coefficients are not optimal for all

surfaces. In order to optimize turns on all surfaces, the robot would have to

detect its current surface characteristics and adjust the PID coefficients as

 62

necessary to adapt to the changing surfaces. This is not currently implemented

as no method is available to passively detect the surface characteristics.

 63

VIII. FUTURE WORK AND CONCLUSIONS

A. FUTURE WORK

The majority of BigFoot’s remaining work will be in development of the

arm. BigFoot’s current arm is meant only as a proof of concept and a test

platform for integrating OOPic and BL2000 functions. The arm will require more

robust servos and a more complicated gripper hand. The hand requires a

method to mix the chemicals of the explosive by puncturing a diaphragm. When

the chemicals are mixed and the explosive deployed, a system must be added to

remotely detonate the explosive. This can be done by either streaming a wire to

the charge or, ideally, by a radio frequency signal. This must be completed in

order to successfully meet BigFoot’s design objectives.

Secondly, the communications need improvement. The D-Link antenna

greatly boosted range, but ideal communications would be much longer range.

The end state goal is to have the capability to communicate with a UAV to relay

information to remote control stations. This would extend BigFoot’s utility to a

wide range of possible missions.

BigFoot also needs an improved camera. The current camera suffices for

well lit operations, but a camera with night vision would be more effective and

would allow operators to employ BigFoot in dark environments with no local

modifications. This would also permit BigFoot to be used for surveillance

operations with included motion detectors. This improvement is critical for

BigFoot’s usefulness in the field.

Finally, BigFoot requires a more robust body. Currently, all electronics are

exposed to the environment. This will not suffice in a sandy or rainy

environment. The case does not need to be particularly strong, but needs to be

 64

dust and splash proof. BigFoot does not have the capability to be thrown to

deploy. BigFoot’s ability to absorb shock must be improved to allow use in a

battlefield environment.

B. CONCLUSIONS

BigFoot is capable of autonomously navigating to a user defined

destination. Once it has arrived, it is capable of maneuvering its arm to deploy a

shaped charge. BigFoot can deliver an explosive to the site of an IED and

though it is not complete, BigFoot is near completion. Once the delivery

mechanism is completed, BigFoot will be ready for mass production.

BigFoot cost approximately $3,000 to build from off the shelf components.

This is significantly less than the $60,000 to purchase a TALON. BigFoot weighs

26lbs. This is also significantly less than the 140lbs of TALON with its arm

installed. BigFoot is also significantly smaller in physical size than Talon.

Together these make BigFoot an ideal addition to the military’s arsenal for IED

neutralization.

 65

APPENDIX A – DYNAMIC C CODE

/* ***

BigFoot.c

BigFoot.c controls a semiautonomous ground vehicle.

BL2000 CONNECTIONS

 Motor Controllers

 DAC1 <---> //left side wheels

 DAC0 <---> //right side wheels

 GPS Serial Communications

 TX2 BROWN

 RX2 BROWN WITH RED

 GROUND BLACK

 I2C connections

 SDA OUT8/IN0 white

 SCL OUT9/IN1 purple

 OOPic Connections

 OUT1, 2, 3, 4 arm control signals

 IR Rangers

 ADC3-ADC8

 I2C Components

 Compass 0XC0/1

 Sonar 0XE0/1

 Thermopile 0XD0/1

 66

***/

#define READDELAY 15

#define MAX_SENTENCE 100

// Network Settings

#define MY_IP_ADDRESS "192.168.1.91"

#define INTERFACE_ADDRESS "192.168.1.90"

#define MY_NETMASK "255.255.255.0"

#define MY_GATEWAY "192.168.1.1"

#define MAN_PORT 4001 // receives manual control data

#define WP_PORT 4002 // receives waypoint data

#define GPS_PORT 4003 // sends gps data

#define ERROR_PORT 4005 // sends error reports, compass, thermopile data

#define ARM_PORT 4007 // receives arm orders

#use "dcrtcp.lib"

#memmap xmem

// Serial Port Settings

#define BINBUFSIZE 127

#define BOUTBUFSIZE 127

#define CINBUFSIZE 127

#define COUTBUFSIZE 127

//GPS Variables

double curr_lat;

 67

double curr_lon;

const int xmit_delay = 100;

char sentence[MAX_SENTENCE];

char dir_string[2];

typedef struct {

 int lat_degrees;

 int lon_degrees;

 double lat_minutes;

 double lon_minutes;

 char lat_direction;

 char lon_direction;

} GPSPosition;

GPSPosition current_pos; // Declare new GPSPosition variable

int gps_error, gps_error_count;

const float pi = 3.14;

const char GPS_Reset[]="$PGRMI,,,,,,,R\r\n"; // Reset Unit

const char GPS_Sent_Clr[]="$PGRMO,,2\r\n"; // Clear all output sentences

const char GPS_GGA_Enable[]="$PGRMO,GPGGA,1\r\n"; // Enable the GGA sentence

unsigned long gps_wait_time;

const int gps_timeout = 1;

int string_pos;

char input_char;

//New PID Variables

 68

int compconv;

const float P = 1; // proportional coefficient (concrete)

const float I = 5; // Integral coefficient (concrete)

const float D = 3; // differential coefficient (concrete)

int flag; // determines left or right turn or stop

int flagint; // integral counter

float insidevolts; // voltage on side to which robot turns

float pScale; // proportional scaling term

float dScale; // differential scaling term

float iScale; // integral scaling term

int Error; // heading error +/- 180

int prevError; // heading error previous sample

// Compass variables

char cmpd; // byte input from compass

int val; // numerical compass heading

char s[60]; // compass sentence to error stream

char p[12]; // compass data in ASCII

// Sonar variables

int sonarRange; //

int sonarRange1; //

int sonarRange2; //

char SonarRaw; // byte input from sonar

int SonRange; //

// Communications

word status, port;

longword host;

udp_Socket gps_data, error_data;

 69

sock_type wp_data, man_data, arm_data;

char cmdBuf[2048];

char cmdstr[20], *cmdptr;

char wptBuf[4096];

char wptstr[500], *wptptr, *wpttmp;

char error_buf[200];

char armBuf[2048];

char armstr[20], *armptr;

//Nav Variables

const float rng_error = 5.0; // Allowable range error (in yards)

float lat_diff, lon_diff; // The amount of Lat/Long (in Seconds and

 // Decimal Seconds between BigFoot's current

 // position and the next waypoint)

float theta; // Angle (deg) from True North to next waypoint

int hdg_error; // Angle (deg) from current heading to next

 // waypoint

int new_hdg; // The Desired heading in degrees

double rng; // Range and temporary range (in yards)

//Waypoint Variables

typedef struct

{

 double lat;

 double lon;

 char action;

 70

}WP; // Define WP structure

WP waypoints[10]; // stores the list of waypoints

char passed_waypoint[10]; // Stores action value for passed waypoints

int curr_wp; // current wp

char *temp;

char *temp_lat, *temp_lon;

char *temp_action;

double lat, lon, wlat, wlon;

// CTRL bools

int man_ctrl;

int GPS_updated;

// Arm Variables

int armCount;

int prevarmCount;

int armOrder;

int armFlag;

int serv1, serv2, serv3, serv4, serv5, serv6;

// Control Variables

const float PW_STOP = 2.50; //Pulse width that results in stop command

const float PW_REV = 4.00; //Pulse width that results in max reverse

const float PW_FWD = 0.10;

float LeftSide, RightSide; // wheel control for manual control

const int rt_ch = 0; //right side

 71

const int lt_ch = 1; //left side

// Collision Avoidance Variables

float fright, fleft, front, lside, rside, rear;

float ir6; // right corner anaIn(8)

float ir5; // right center anaIn(7)

float ir4; // right side anaIn(6)

float ir3; // left corner anaIn(5)

float ir2; // left side anaIn(4)

float ir1; // left center anaIn(3)

//Thermopile

char temp1;

char temp2;

char temp3;

char temp4;

char temp5;

char temp6;

char temp7;

char temp8;

char amb;

char t[70];

int t1i, t2i, t3i, t4i, t5i, t6i, t7i, t8i;

char t1a[8], t2a[8], t3a[8], t4a[8], t5a[8], t6a[8], t7a[8], t8a[8];

// Function Prototypes

int gps_get_position(GPSPosition *newpos, char *sentence);

int gps_parse_coordinate(char *coord, int *degrees, float *minutes);

int ERROR_function(int new_hdg);

 72

void msDelay (long sd);

void compass(void);

int sonar(void);

void CommStart(void);

void goOut(void);

void write_byte(char);

int read_byte(char *ch);

void i2c_start_tx();

void i2c_stop_tx();

void i2c_init();

void getack();

void giveack();

void therm();

// I2C functions

#ifndef i2c_SCL_H()

#define i2c_SCL_H() BitWrPortI(PEDR,&PEDRShadow,0,0)

#define i2c_SCL_L() BitWrPortI(PEDR,&PEDRShadow,1,0)

#define i2c_SDA_H() BitWrPortI(PEDR,&PEDRShadow,0,1)

#define i2c_SDA_L() BitWrPortI(PEDR,&PEDRShadow,1,1)

#endif

int i2c_clocks_per_us;

#define cWAIT_5_us asm ld a, (i2c_clocks_per_us) $\

 sub 3 $\

 ld b,a $\

 db 0x10, -2

unsigned long t0;

#define time 5

// ^^^

 73

//

// Main Function

//

// ^^^

main()

{

 int i;

// --

// Initializations

// --

 brdInit();

 i2c_init();

 CommStart();

 serv1=0;

 serv2=-15;

 serv3=14;

 serv4=0;

 serv5=0;

// --

// Motor Initialization

// --

 anaOutVolts(rt_ch, PW_STOP);

 anaOutVolts(lt_ch, PW_STOP);

 new_hdg=0;

 compass();

 iScale=0;

 74

 pScale=0;

 dScale=0;

 // set flags

 man_ctrl = 1;

 GPS_updated = 0;

 // Initialize GPS

 serCopen(9600); // Open serial port C

 serCwrFlush(); // Flush serial port C Buffer

 serBputs(GPS_Reset); // Send Reset signal to GPS Receiver

 serBputs(GPS_Sent_Clr); // Send Clear signal to GPS Receiver

 serBputs(GPS_GGA_Enable); // Send GGA Sentence enable signal

 // (position info)

 //new location for the following 6 lines, it works well here

// P = 1;

// I = 5;

// D = 3;

 while (1)

 {

 tcp_tick(NULL);

// ---

// Receive Manual Control Data

// ---

 costate

 {

 waitfor(sock_recv(&man_data, cmdstr, (word)sizeof(cmdstr)));

 75

 //Tokenize the string and convert to integers

 LeftSide = atof(strtok(cmdstr, " "));

 RightSide = atof(strtok(NULL, "/n"));

 anaOutVolts(rt_ch, RightSide);

 anaOutVolts(lt_ch, LeftSide);

 if (!man_ctrl)

 {

 sprintf(error_buf,

 "$Manual control data recieved...IN MANUAL CTRL\n",

 curr_wp);

 sock_puts(&error_data, error_buf);

 }

 //Update the flags

 man_ctrl = 1;

 } // man data costate

// ---

// Receive Arm Control Data

// ---

 costate

 {

 waitfor(sock_recv(&arm_data, armstr, (word)sizeof(armstr)));

 if(man_ctrl!=1)

 {

 abort;

 76

 }

 anaOutVolts(rt_ch, PW_STOP);

 anaOutVolts(lt_ch, PW_STOP);

 //Tokenize the string and convert to integers

 armCount = atoi(strtok(armstr, " "));

 armOrder = atoi(strtok(NULL, "/n"));

 if (armCount==prevarmCount)

 {

 abort;

 }

 else

 {

 armFlag=1;

 while(armFlag==1)

 {

 if (armOrder>12)

 {

 armOrder=0; // handle undefined orders

 }

 if (armFlag==1)

 {

 goOut(); // control the arm with the current order

 msDelay(300); // timedelay to prevent excessive operation speed

 armFlag=0; // clear order

 armOrder=0; // stop after one position change per button click

 77

 goOut(); // send hold order

 } // end if

 } // end while

 } // end else

 prevarmCount = armCount;

 // end if man ctrl

 }// end arm control costate

// --

// Thermopile Costatement

//

// this is where we transmit the thermopile report to the GUI

// --

 costate

 {

 waitfor(man_ctrl);

 therm();

 // convert individual temperatures to ASCII

 itoa(t1i, t1a);

 itoa(t2i, t2a);

 itoa(t3i, t3a);

 itoa(t4i, t4a);

 itoa(t5i, t5a);

 itoa(t6i, t6a);

 itoa(t7i, t7a);

 itoa(t8i, t8a);

 // create temperature string

 strcpy(t, "$*,"); // $* denotes thermal information

 78

 strcat(t, t1a);

 strcat(t, ",");

 strcat(t, t2a);

 strcat(t, ",");

 strcat(t, t3a);

 strcat(t, ",");

 strcat(t, t4a);

 strcat(t, ",");

 strcat(t, t5a);

 strcat(t, ",");

 strcat(t, t6a);

 strcat(t, ",");

 strcat(t, t7a);

 strcat(t, ",");

 strcat(t, t8a);

 sock_puts(&error_data, t); // transmit temperature report

 tcp_tick(NULL);

 }// send thermopile data

// --

// Compass Costatement

//

// this is where we transmit the compass report to the GUI

// --

 costate

 {

 compass();

 // create compass string

 itoa(val, p);

 79

 strcpy(s, "$^,"); // $^ denotes compass data

 strcat(s, p);

 strcat(s, ",N,0,N,0");

 sock_puts(&error_data, s); // transmit compass report

 tcp_tick(NULL);

 }// send compass data

// --

// Receive Waypoint Data

// --

 costate

 {

 waitfor(sock_recv(&wp_data, wptstr, (word) sizeof(wptstr)));

 //find begining of string

 wptptr = wptstr; //assign a pointer

 while (*wptptr != '$') //Step through until begining of string

 wptptr++;

 wptptr++;

 //tokenize

 temp_lat = strtok(wptptr, " ");

 temp_lon = strtok(NULL, " ");

 temp_action = strtok(NULL, " ");

 for (i = 0; i < 10; i++)

 {

 if ((temp_lat == 0 && temp_lon ==0) ||

 80

 waypoints[i].action != "P")

 {

 waypoints[i].lat = strtod(temp_lat, NULL);

 waypoints[i].lon = strtod(temp_lon, NULL);

 waypoints[i].action = *temp_action;

 } //End if Statement

 temp_lat = strtok(NULL, " ");

 temp_lon = strtok(NULL, " ");

 temp_action = strtok(NULL, " ");

 }//End for loop

 curr_wp = 0; // Resets current WP to 1st waypoint. If this is an

 // update to waypoints, Nav will increment curr_wp until

 // a good waypoint is there.

 //update the flags

 man_ctrl = 0;

 sprintf(error_buf,

 "$WP's recieved. In AUTO NAV and preceeding to WP %d\n",

 curr_wp);

 sock_puts(&error_data, error_buf);

 // these commands make the robot start moving forward before

 // trying to find the heading to avoid em surge near compass

 anaOutVolts(rt_ch, PW_FWD);

 anaOutVolts(lt_ch, PW_FWD);

 msDelay(500);

 }//End Waypoint Costatement

// ---

 81

// GPS

// ---

 costate

 {

// waitfor (DelaySec(gps_delay));

 serCrdFlush();

 string_pos = 0;

 input_char = serCgetc();

 //timeout if gps not sending data

 gps_wait_time = SEC_TIMER + gps_timeout;

 while (input_char != '$')

 {

 if (SEC_TIMER > gps_wait_time) abort;

 input_char = serCgetc();

 msDelay(READDELAY);

 }

 //find begining of sentence

 while ((input_char != '\r') && (input_char !='\n'))

 {

 sentence[string_pos] = input_char;

 string_pos++;

 if(string_pos == MAX_SENTENCE)

 string_pos = 0; //reset string if too large

 input_char = serCgetc();

 msDelay(READDELAY);

 }

 sentence[string_pos] = 0;

 82

 sock_puts(&gps_data, sentence);

 //tcp_tick(NULL);

 gps_error = gps_get_position(¤t_pos, sentence);

 if ((gps_error == 0) || (gps_error == -1))

 gps_error_count = 0;

 else

 {

 gps_error_count ++;

 // Stop Bigfoot and place in manual control if BAD position data

 // for 6 times (1 minute) changed to 30 for new GPS (18-5Hz)

 if ((gps_error_count > 30) && man_ctrl == 0)

 {

 sock_puts(&error_data,

 "$GPS error count exceeded. Bigfoot in MANUAL CONTROL.\n");

 tcp_tick(NULL);

 anaOutVolts(rt_ch, PW_STOP);

 anaOutVolts(lt_ch, PW_STOP);

 //update flags for manual control

 man_ctrl = 1;

 abort; //still parse if -1

 }

 }

// following three lines commented out due to not required

// if (1)// (gps_error == 0)|| (gps_error == -1))

// {

 GPS_updated = 1;

 curr_lat=(current_pos.lat_degrees +

 83

 (current_pos.lat_minutes/60));

 curr_lon=(current_pos.lon_degrees +

 (current_pos.lon_minutes/60));

// }

 }//GPS

// ---

// Navigation

//

// Passes heading error and range to CTRL costatement and uses error function

// to determine error from new_hdg and curr_heading

// ---

 costate

 {

 if (man_ctrl)

 {

 abort;

 }

 if (GPS_updated) //Navigates to new waypoint

 {

 lat = 60 * curr_lat; // converts latitude into

 // Minutes and decimal minutes

 lon = 60 * curr_lon; // converts longitude into

 // Minutes and decimal minutes

 wlat = 60 * waypoints[curr_wp].lat; // Converts waypoint values

 wlon = 60 * waypoints[curr_wp].lon; // to decimal minutes

 rng =sqrt((4000000*(wlat-lat)*(wlat-lat))+

 (2560000*(wlon-lon)*(wlon-lon)));

 84

 if (rng <= rng_error) // When close enough to waypoint, action

 // code takes effect and next waypoint

 // is loaded

 {

 switch (waypoints[curr_wp].action)

 {

 case 'T': //Go to next waypoint

 {

 passed_waypoint[curr_wp] = 'T';

 // Stores action code in temp array

 waypoints[curr_wp].action = 'P';

 // Changes action code to indicate

 // WP has been passed

 sock_puts(&error_data, "$Proceeding to next WP\n");

 curr_wp++;

 while ((waypoints[curr_wp].lat == 0) &&

 (waypoints[curr_wp].lon == 0))

 { //checks for valid WP

 curr_wp++;

 if (curr_wp == 10)

 {

 sock_puts(&error_data, "$No Valid WP Found\n");

 tcp_tick(NULL);

 man_ctrl = 1;

 abort;

 }//End if

 }//End while

 break;

 } //End case 'T'

 case 'H': //Start from beginning again

 {

 for (i = 0;i < 10;i++) //Reloads prior action codes

 {

 85

 waypoints[i].action = passed_waypoint[i];

 }

 sock_puts(&error_data,"$Proceeding back to home WP. \n");

 curr_wp = 0;

 while ((waypoints[curr_wp].lat == 0) &&

 (waypoints[curr_wp].lon == 0))

 { //checks for valid WP

 curr_wp++;

 if (curr_wp == 10)

 {

 sock_puts(&error_data, "$No Valid WP Found\n");

 tcp_tick(NULL);

 man_ctrl = 1;

 abort;

 }//End if

 }//End while

 break;

 }//End case 'H'

 case 'S': //Stop

 {

 anaOutVolts(rt_ch, PW_STOP);

 anaOutVolts(lt_ch, PW_STOP); //Stops Bigfoot

 for (i = 0; i < 10; i++) //Clears the Waypoint array

 {

 waypoints[i].lat = 0;

 waypoints[i].lon = 0;

 waypoints[i].action='T';

 }//End for loop

 sock_puts(&error_data,

 "$Destination Achieved, Waypoints cleared\n");

 86

 tcp_tick(NULL);

 man_ctrl = 1;

 abort;

 }//End case 'S'

 case 'C': // Turn in a circle then proceed to next

 // WP

 {

 //add something here to turn in a circle

 curr_wp++;

 while ((waypoints[curr_wp].lat == 0) &&

 (waypoints[curr_wp].lon == 0))

 { //checks for valid WP

 curr_wp++;

 if (curr_wp == 10)

 {

 sock_puts(&error_data, "$No Valid WP Found\n");

 tcp_tick(NULL);

 man_ctrl = 1;

 abort;

 }// End if

 }// End while

 break;

 }//End case 'C'

 case 'P': // Check for passed waypoints

 {

 curr_wp++; // Bigfoot ignores this point

 // and goes to next one

 while ((waypoints[curr_wp].lat == 0) &&

 (waypoints[curr_wp].lon == 0))

 { // Checks for valid WP

 curr_wp++;

 87

 if (curr_wp == 10)

 {

 sock_puts(&error_data, "$No Valid WP Found\n");

 tcp_tick(NULL);

 man_ctrl = 1;

 abort;

 }//End if

 }//End while

 break;

 }//End case 'P'

 default: //Indicates and invalid action code

 {

 sprintf(error_buf, "$Invalid action for WP # %d\n",

 curr_wp);

 sock_puts(&error_data, error_buf);

 tcp_tick(NULL);

 anaOutVolts(rt_ch, PW_STOP);

 anaOutVolts(lt_ch, PW_STOP); // Stops Bigfoot and places

 man_ctrl = 1; // in manual control

 abort;

 }//End default case

 }//End Switch

 if (curr_wp > 9) // Should not be here.

 // Action for last WP invalid.

 {

 anaOutVolts(rt_ch, PW_STOP);

 anaOutVolts(lt_ch, PW_STOP); // Stops Bigfoot and places

 man_ctrl = 1; //in manual control

 sock_puts(&error_data, "$Invalid action for wp 9\n");

 tcp_tick(NULL);

 88

 abort;

 }//End if (curr_wp>9)

 }//End if (rng < rng_error)

 // Calculate new heading if range not within error

 // 3600 converts lat_diff and lon_diff to decimal seconds

 lat_diff = 3600 * (waypoints[curr_wp].lat-curr_lat);

 lon_diff = 3600 * (curr_lon - waypoints[curr_wp].lon);

 // determine theta in degrees

 theta = atan((lat_diff) / (lon_diff)) * (180 / pi);

 // waypoint located in positive y-axis

 if ((lon_diff == 0) && (lat_diff > 0))

 new_hdg = 0;

 // waypoint is located in negative y-axis

 else if ((lon_diff == 0) && (lat_diff < 0))

 new_hdg = 180;

 // waypoint is located in positive x-axis

 else if ((lon_diff > 0) && (lat_diff == 0))

 new_hdg = 90;

 // waypoint is located in negative x-axis

 else if ((lon_diff < 0) && (lat_diff == 0))

 new_hdg = 270;

 // waypoint is located in the first or fourth quadrant

 // (0-90 or 270-0)

 else if (lon_diff > 0)

 new_hdg = 90 - (int)(theta);

 89

 // waypoint is located in the second or third quadrant

 // (90-180 or 180-270)

 else if (lon_diff < 0)

 new_hdg = 270-(int)(theta);

 hdg_error = ERROR_function(new_hdg);

 tcp_tick(NULL);

 }// End if (GPS_updated)

 }// End NAV costate

// ***

// PID Controls

// ***

 costate

 {

 waitfor(!man_ctrl);

 if (hdg_error <= 5.0 && hdg_error >= -5.0)

 {

 hdg_error = 0.0;

 flag = 2;

 }

 if ((hdg_error >= 180.0) ||

 ((hdg_error > -180.0) && (hdg_error < 0.0)))

 {

 flag = 1;

 }

 else

 {

 90

 flag = 0;

 }

 //calculate proportional scale constant

 Error = (int)(fabs(hdg_error));

 if (Error > 180)

 {

 Error = 360 - Error;

 }

 pScale = (Error*(0.008333));

 dScale = ((Error-prevError)*(0.00833));

 iScale = pScale + iScale;

 if(flagint > 40)

 {

 iScale = 0.0;

 }

 flagint++;

 prevError = Error;

 if(!(hdg_error == 0.0))

 {

 insidevolts = (P * pScale) + (I * iScale) + (D * dScale);

 //Do not send more than we put out

 if(insidevolts > PW_STOP)

 {

 insidevolts = 2.35;

 91

 }

 if(flag == 0) // turn right

 {

 anaOutVolts(rt_ch, insidevolts);

 anaOutVolts(lt_ch, PW_FWD);

 }

 if(flag == 1) // turn left

 {

 anaOutVolts(rt_ch, PW_FWD);

 anaOutVolts(lt_ch, insidevolts);

 }

 }//ends if for heading error not = 0

 else

 {

 // send the right voltages to the wheels if no heading error

 // and the range is greater than the delta

 anaOutVolts(rt_ch, PW_FWD);

 anaOutVolts(lt_ch, PW_FWD);

 }

 }//end PID costate

// ---

// Collision Avoidance

// ---

 costate

 {

 waitfor(!man_ctrl);

 92

//Sonar Itself

sonarRange1=sonar();

sonarRange2=sonar();

 if (sonarRange1 == 0)

 {

 sonarRange1 = 255;

 } // take care of the sonar equal to zero when there is no return

 if (sonarRange2 == 0)

 {

 sonarRange2 = 255;

 } // take care of the sonar equal to zero when there is no return

 sonarRange=((sonarRange1+sonarRange2)/2);

//IR Rangers

 ir1 = anaInVolts(3); // left side

 ir2 = anaInVolts(4); // left corner

 ir3 = anaInVolts(5); // left center

 ir4 = anaInVolts(6); // right side

 ir5 = anaInVolts(7); // right corner

 ir6 = anaInVolts(8); // right center

 if ((ir2 > 0.2)||(ir1 > 0.2)||(ir5 > 0.2)||(ir4 > 0.2)||

 (sonarRange < 35.0))

 {

 anaOutVolts(lt_ch, PW_REV);

 anaOutVolts(rt_ch, PW_REV);

 msDelay(1000);

 if (ir1 < ir4)

 {

 anaOutVolts(lt_ch, PW_REV);

 93

 anaOutVolts(rt_ch, PW_FWD);

 }

 else

 {

 anaOutVolts(rt_ch, PW_REV);

 anaOutVolts(lt_ch, PW_FWD);

 }

 msDelay(1000);

 anaOutVolts(lt_ch, PW_FWD);

 anaOutVolts(rt_ch, PW_FWD);

 }

 } //Collision Avoidance Costatement

}//while(1)

}//main

// **

// gps_parse_coordinate

//

// Parses GPS position data

//

//PARAMETERS: coord - contains N/S, E/W

// degrees, minutes - positional information

//

//RETURN VALUE: 0 - success (xxxxx.xxxx minutes)

// -1 - parsing error

//

// **

nodebug int gps_parse_coordinate(char *coord, int *degrees, float *minutes)

{

 auto char *decimal_point;

 94

 auto char temp;

 auto char *dummy;

 decimal_point = strchr(coord, '.');

 if(decimal_point == NULL)

 return -1;

 temp = *(decimal_point - 2);

 *(decimal_point - 2) = 0; //temporary terminator

 *degrees = atoi(coord);

 *(decimal_point - 2) = temp; //reinstate character

 *minutes = strtod(decimal_point - 2, &dummy);

 return 0;

}

/* START FUNCTION DESCRIPTION **

gps_get_position

SYNTAX: int gps_get_position(GPSPositon *newpos, char *sentence);

KEYWORDS: gps

DESCRIPTION: Parses a sentence to extract position data.

 This function is able to parse any of the following

 GPS sentence formats: GGA

PARAMETER1: newpos - a GPSPosition structure to fill

PARAMETER2: sentence - a string containing a line of GPS data

 in NMEA-0183 format

RETURN VALUE: 0 - success

 -1 - not differential

 -2 - sentence marked invalid

 -3 - parsing error

 95

SEE ALSO:

END DESCRIPTION **/

//can parse GGA

nodebug int gps_get_position(GPSPosition *newpos, char *sentence)

{

 auto int i;

 if(strlen(sentence) < 4)

 return -3;

 if(strncmp(sentence, "$GPGGA", 6) == 0)

 {

 //parse GGA sentence

 for(i = 0;i < 11;i++)

 {

 sentence = strchr(sentence, ',');

 if(sentence == NULL)

 return -3;

 sentence++; //first character in field

 //pull out data

 if(i == 1) //latitude

 {

 if(gps_parse_coordinate(sentence,

 &newpos->lat_degrees,

 &newpos->lat_minutes)

)

 {

 return -3; //get_coordinate failed

 }

 }

 if(i == 2) //lat direction

 {

 96

 newpos->lat_direction = *sentence;

 }

 if(i == 3) // longitude

 {

 if(gps_parse_coordinate(sentence,

 &newpos->lon_degrees,

 &newpos->lon_minutes)

)

 {

 return -3; //get_coordinate failed

 }

 }

 if(i == 4) //lon direction

 {

 newpos->lon_direction = *sentence;

 }

 if(i == 5) //link quality

 {

 if(*sentence == '0')

 return -2;

 if(*sentence == '1')

 return -1;

 }

 }

 }

 else

 {

 return -3; //unknown sentence type

 }

 return 0;

}

/* START FUNCTION DESCRIPTION **

ERROR_function

 97

SYNTAX: int ERROR_function(new_hdg);

KEYWORDS: nav, control

DESCRIPTION: Determines heading error for use by Nav and Control costatements

PARAMETER1: new_hdg - latest update of bearing to next waypoint or direction

 to drive based upon sonar contact

RETURN VALUE: hdg_error

SEE ALSO:

END DESCRIPTION **/

int ERROR_function(int new_hdg)

{

 hdg_error = new_hdg - val;

 if (hdg_error <= 6 && hdg_error >= -6)

 {

 hdg_error = 0;

 }

 return(hdg_error);

}

/* START FUNCTION DESCRIPTION **

gps_get_position

SYNTAX: void msDelay(long sd);

KEYWORDS: delay, wait

 98

DESCRIPTION: introduces a defined ms delay loop

PARAMETER1: sd - number of ms to wait

SEE ALSO:

END DESCRIPTION **/

void msDelay (long sd)

{

 unsigned long t1;

 t1 = MS_TIMER;

 for (t1 = MS_TIMER; MS_TIMER < (sd + t1););

}

//***

// Compass Function

// **

void compass()

 {

 i2c_start_tx();

 write_byte(0xC0);

 getack();

 write_byte(0x01);

 getack();

 i2c_start_tx();

 write_byte(0xC1);

 getack();

 read_byte(&cmpd);

 val=(int)(1.4*cmpd);

 i2c_stop_tx();

 99

 }

// **

// Sonar Function

// **

int sonar()

{

 unsigned long tSonar;

 i2c_start_tx();

 write_byte(0xE0);

 getack();

 write_byte(0x00);

 getack();

 write_byte(0x50);

 getack();

 cWAIT_5_us;

 i2c_stop_tx();

 for(tSonar=MS_TIMER;MS_TIMER<tSonar+65;);

 i2c_start_tx();

 write_byte(0xE0);

 getack();

 write_byte(0x03);

 getack();

 i2c_start_tx();

 write_byte(0xE1);

 getack();

 read_byte(&SonarRaw);

 SonRange=(int)(SonarRaw);

 i2c_stop_tx();

 return SonRange;

 }

 100

// **

// Communication Start

// **

void CommStart()

{

 sock_init();

 if (!(host = resolve(INTERFACE_ADDRESS)))

 {

 exit(3);

 }

// open outgoing error port

 if (!udp_open(&error_data, ERROR_PORT, 0xffffffff, ERROR_PORT, NULL))

 {

 exit(3);

 }

 sock_mode(&error_data, TCP_MODE_ASCII);

 sock_mode(&error_data, UDP_MODE_NOCHK);

// open incoming waypoint port

 if (!udp_open(&wp_data, WP_PORT, 0xffffffff, WP_PORT, NULL))

 {

 sock_puts(&error_data, "$Unable to open WP UDP session\n");

 exit(3);

 }

 sock_mode(&wp_data, UDP_MODE_NOCHK);

// open incoming manual control port

 if (!udp_open(&man_data, MAN_PORT, 0xffffffff, MAN_PORT, NULL))

 {

 sock_puts(&error_data, "$Unable to open MANUAL UDP session\n");

 exit(3);

 }

 101

 sock_mode(&man_data, UDP_MODE_NOCHK);

// open incoming arm order port

 if (!udp_open(&arm_data, ARM_PORT, 0xffffffff, ARM_PORT, NULL))

 {

 sock_puts(&error_data, "$Unable to open ARM UDP session\n");

 exit(3);

 }

 sock_mode(&arm_data, UDP_MODE_NOCHK);

// open outgoing GPS port

 if (!udp_open(&gps_data, GPS_PORT, 0xffffffff, GPS_PORT, NULL))

 {

 sock_puts(&error_data, "$Unable to open GPS UDP session\n");

 exit(3);

 }

 sock_mode(&gps_data, TCP_MODE_ASCII);

 sock_mode(&gps_data, UDP_MODE_NOCHK);

 sock_puts(&error_data, "$Sockets are established\n");

 if (sock_recv_init(&wp_data, wptBuf, (word)sizeof(wptBuf)))

 {

 sock_puts(&error_data, "$Could not enable WP buffer.\n");

 exit(3);

 }

 if (sock_recv_init(&man_data, cmdBuf, (word)sizeof(cmdBuf)))

 {

 sock_puts(&error_data, "$Could not enable MAN buffer.\n");

 exit(3);

 }

 if (sock_recv_init(&arm_data, armBuf, (word)sizeof(armBuf)))

 102

 {

 sock_puts(&error_data, "$Could not enable ARM buffer.\n");

 exit(3);

 }

} // end Comm Start

// **

// Arm Output

//

// This puts a 4 bit digital output based on input from GUI. These inputs

// drive the input pins to the OOPIC

// **

void goOut()

{

 switch (armOrder)

 {

 case 0:

 {

 digOut(1,0);

 digOut(2,0);

 digOut(3,0);

 digOut(4,0);

 break;

 }

 case 2:

 {

 if(serv2==32)

 {

 serv1=serv1;

 }

 else

 {

 103

 digOut(1,1);

 digOut(2,0);

 digOut(3,0);

 digOut(4,0);

 serv1++;

 break;

 }

 }

 case 1:

 {

 if(serv1==-32)

 {

 serv1=serv1;

 }

 else

 {

 digOut(1,0);

 digOut(2,1);

 digOut(3,0);

 digOut(4,0);

 serv1--;

 break;

 }

 }

 case 3:

 {

 if(serv2==32)

 {

 serv2=serv2;

 }

 else

 {

 digOut(1,1);

 digOut(2,1);

 104

 digOut(3,0);

 digOut(4,0);

 serv2++;

 break;

 }

 }

 case 4:

 {

 if(serv2==-32)

 {

 serv2=serv2;

 }

 else

 {

 digOut(1,0);

 digOut(2,0);

 digOut(3,1);

 digOut(4,0);

 serv2--;

 break;

 }

 }

 case 5:

 {

 if(serv3==32)

 {

 serv3=serv3;

 }

 else

 {

 digOut(1,1);

 digOut(2,0);

 digOut(3,1);

 digOut(4,0);

 105

 serv3++;

 break;

 }

 }

 case 6:

 {

 if(serv3==-32)

 {

 serv3=serv3;

 }

 else

 {

 digOut(1,0);

 digOut(2,1);

 digOut(3,1);

 digOut(4,0);

 serv3--;

 break;

 }

 }

 case 7:

 {

 if(serv4==32)

 {

 serv4=serv4;

 }

 else

 {

 digOut(1,1);

 digOut(2,1);

 digOut(3,1);

 digOut(4,0);

 serv4++;

 break;

 106

 }

 }

 case 8:

 {

 if(serv4==-32)

 {

 serv4=serv4;

 }

 else

 {

 digOut(1,0);

 digOut(2,0);

 digOut(3,0);

 digOut(4,1);

 serv4--;

 break;

 }

 }

 case 9:

 {

 if(serv5==32)

 {

 serv5=serv5;

 }

 else

 {

 digOut(1,1);

 digOut(2,0);

 digOut(3,0);

 digOut(4,1);

 serv5++;

 break;

 }

 }

 107

 case 10:

 {

 if(serv5==-32)

 {

 serv5=serv5;

 }

 else

 {

 digOut(1,0);

 digOut(2,1);

 digOut(3,0);

 digOut(4,1);

 serv5--;

 break;

 }

 }

 case 11:

 {

 if(serv6==32)

 {

 serv6=serv6;

 }

 else

 {

 digOut(1,1);

 digOut(2,1);

 digOut(3,0);

 digOut(4,1);

 serv6++;

 break;

 }

 }

 case 12:

 {

 108

 if(serv6==-32)

 {

 serv6=serv6;

 }

 else

 {

 digOut(1,0);

 digOut(2,0);

 digOut(3,1);

 digOut(4,1);

 serv6--;

 break;

 }

 }

 } // end switch

 } // end goOut

 void write_byte(char d) //done

{

 int i;

 for (i=0; i<8; i++)

 {

 for (t0=MS_TIMER;MS_TIMER<t0+time;);

 if (d & 0x80)

 {i2c_SDA_H();}

 else

 {i2c_SDA_L();}

 i2c_SCL_H();

 for (t0=MS_TIMER;MS_TIMER<t0+time;);

 i2c_SCL_L();

 d=d<<1;

 }

 i2c_SCL_L();

 109

 i2c_SDA_H();

}

int read_byte(char *ch) // done

{

 auto char res,cnt;

 i2c_SDA_H();

 for (cnt=0,res=0; cnt<8; cnt++)

 {

 i2c_SCL_H();

 while (BitRdPortI(PEDR,2)==0);//SCL Clock Stretching

 for (t0=MS_TIMER;MS_TIMER<t0+time;);

 res<<=1;

 if(BitRdPortI(PEDR,3)) res|=0x01;

 i2c_SCL_L();

 for (t0=MS_TIMER;MS_TIMER<t0+time;);

 }

 *ch=res;

 return 0;

}

void i2c_start_tx() // done

{

 i2c_SCL_H();

 i2c_SDA_H();

 cWAIT_5_us;

 i2c_SDA_L();

 cWAIT_5_us;

 i2c_SCL_L();

}

 110

void i2c_stop_tx()

{

 i2c_SDA_L();

 for(t0=MS_TIMER;MS_TIMER<t0+time;);

 //cWAIT_5_us;

 i2c_SCL_H();

 cWAIT_5_us;

 i2c_SDA_H();

}

void i2c_init()

{

 int i;

 void i2c_stop_tx();

 i2c_SDA_H();

 cWAIT_5_us;

 i2c_SCL_L();

 for (i=0; i < 3; i++)

 {

 i2c_stop_tx();

 }

}

void giveack()

{

 i2c_SDA_L();

 cWAIT_5_us;

 i2c_SCL_H();

 for(t0=MS_TIMER;MS_TIMER<t0+200;);

 //cWAIT_5_us;

 111

 i2c_SCL_L();

 cWAIT_5_us;

 i2c_SDA_H();

}

void getack()

{

 i2c_SDA_H();

 while (BitRdPortI(PEDR,3) == 1);

 if (BitRdPortI(PEDR,3) == 1)i2c_stop_tx(); //originally uncommented

 i2c_SCL_H();

 for (t0=MS_TIMER;MS_TIMER<t0+time;);

 //cWAIT_5_us;

 i2c_SCL_L();

}

void therm()

{

 i2c_start_tx();

 write_byte(0xD0);

 getack();

 write_byte(0x00);

 getack();

 i2c_start_tx();

 write_byte(0xD1);

 getack();

 read_byte(&amb);

 i2c_start_tx();

 write_byte(0xD0);

 getack();

 write_byte(0x01);

 112

 getack();

 i2c_start_tx();

 write_byte(0xD1);

 getack();

 read_byte(&temp1);

 t1i=(int)(temp1);

 i2c_start_tx();

 write_byte(0xD0);

 getack();

 write_byte(0x02);

 getack();

 i2c_start_tx();

 write_byte(0xD1);

 getack();

 read_byte(&temp2);

 t2i=(int)(temp2);

 i2c_start_tx();

 write_byte(0xD0);

 getack();

 write_byte(0x03);

 getack();

 i2c_start_tx();

 write_byte(0xD1);

 getack();

 read_byte(&temp3);

 t3i=(int)(temp3);

 i2c_start_tx();

 write_byte(0xD0);

 getack();

 write_byte(0x04);

 getack();

 113

 i2c_start_tx();

 write_byte(0xD1);

 getack();

 read_byte(&temp4);

 t4i=(int)(temp4);

 i2c_start_tx();

 write_byte(0xD0);

 getack();

 write_byte(0x05);

 getack();

 i2c_start_tx();

 write_byte(0xD1);

 getack();

 read_byte(&temp5);

 t5i=(int)(temp5);

 i2c_start_tx();

 write_byte(0xD0);

 getack();

 write_byte(0x06);

 getack();

 i2c_start_tx();

 write_byte(0xD1);

 getack();

 read_byte(&temp6);

 t6i=(int)(temp6);

 i2c_start_tx();

 write_byte(0xD0);

 getack();

 write_byte(0x07);

 getack();

 i2c_start_tx();

 114

 write_byte(0xD1);

 getack();

 read_byte(&temp7);

 t7i=(int)(temp7);

 i2c_start_tx();

 write_byte(0xD0);

 getack();

 write_byte(0x08);

 getack();

 i2c_start_tx();

 write_byte(0xD1);

 getack();

 read_byte(&temp8);

 t8i=(int)(temp8);

 i2c_stop_tx;

 }// end therm

 115

APPENDIX B – OOPIC CODE

' 5sevos.osc
' This program controls BigFoot's servos for the arm and camera

Dim count1 As New oByte
Dim count2 As New oByte
Dim count3 As New oByte
Dim count4 As New oByte
Dim count5 As New oByte

Dim serv1 As New oServo
Dim serv2 As New oServo
Dim serv3 As New oServo
Dim serv4 As New oServo
Dim serv5 As New oServo

Dim MyNib As New oDIO4

Sub main()

'declare input line numbers using pins 28-31
' board pins 26,28,30,32
 MyNib.IOGroup=3
 MyNib.Nibble=1
 MyNib.Direction=1

' inititialize counters
 count1.Value=31
 count2.Value=31

 116

 count3.Value=31
 count4.Value=31
 count5.Value=31

' declare servos lines
 serv1.IOLine=9 ' pin 18
 serv2.IOLine=10 ' pin 16
 serv3.IOLine=11 ' pin 14
 serv4.IOLine=14 ' pin 8
 serv5.IOLine=15 ' pin 6

' order operate
 serv1.Operate=cvTrue
 serv2.Operate=cvTrue
 serv3.Operate=cvTrue
 serv4.Operate=cvTrue
 serv5.Operate=cvTrue

' set servo center values
 serv1.Center = 25 ' shoulder horizontal
 serv2.Center = 10 ' shoulder vertical
 serv3.Center = 18 ' wrist
 serv4.Center = 18 ' camera
 serv5.Center = 31 ' grip

serv1.Value=31 ' centered
serv2.Value=10 ' arm back
serv3.Value=1 ' wrist fully forward
serv4.Value=31 ' camera centered
serv5.Value=25 '

 117

While (1)
Do

' determine if servo 1 is selected
If (MyNib.Value=1) Then
 count1.Value=count1.Value-1
 serv1.Value=count1.Value
 ooPIC.Delay = 25
End If

If (MyNib.Value=2) Then
 count1.Value=count1.Value+1
 serv1.Value=count1.Value
 ooPIC.Delay = 25
End If

' determine if servo 2 is selected
If (MyNib.Value=3) Then
 count2.Value=count2.Value-1
 serv2.Value=count2.Value
 ooPIC.Delay = 25
End If

If (MyNib.Value=4) Then
 count2.Value=count2.Value+1
 serv2.Value=count2.Value
 ooPIC.Delay = 25
End If

' determine if servo 3 is selected
If (MyNib.Value=5) Then

 118

 count3.Value=count3.Value-1
 serv3.Value=count3.Value
 ooPIC.Delay = 25
End If

If (MyNib.Value=6) Then
 count3.Value=count3.Value+1
 serv3.Value=count3.Value
 ooPIC.Delay = 25
End If

' determine if servo 4 is selected
If (MyNib.Value=7) Then
 count4.Value=count4.Value-1
 serv4.Value=count4.Value
 ooPIC.Delay = 25
End If

If (MyNib.Value=8) Then
 count4.Value=count4.Value+1
 serv4.Value=count4.Value
 ooPIC.Delay = 25
End If

' determine if servo 5 is selected
If (MyNib.Value=9) Then
 count5.Value=count5.Value-1
 serv5.Value=count5.Value
 ooPIC.Delay = 25
End If

If (MyNib.Value=10) Then

 119

 count5.Value=count5.Value+1
 serv5.Value=count5.Value
 ooPIC.Delay = 25
End If

Loop
Wend

End Sub

 120

THIS PAGE INTENTIONALLY LEFT BLANK

 121

APPENDIX C – JAVA CODE

//---
// Filename: BigFoot.java
// Author: Kubilay Uzun
// Rewritten: John Herkamp
// Date: 5/16/2007
// Project: Bigfoot
// Compiler: JDK 1.4.1_06
//
// Original BigFoot GUI modified to include arm control functions, arm
// display functions, IP camera display and control, thermopile information
// error and gps logs. The GUI is redesigned to establish page tabs and
// a menu bar. Operates with BigFoot.c
//
//---

import javax.swing.*;
import javax.imageio.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;
import java.lang.Integer;
import java.awt.image.BufferedImage;
import java.applet.*;
import java.applet.Applet;
import java.text.*;

 122

import com.sun.image.codec.jpeg.*;
import javax.swing.event.*;

/*
 * The Bigfoot class provides all storage and services in order to monitor and
 * control the robot. The mission structure including waypoints and
 * actions are constructed and uploaded to the robot by this class. With a user
 * friendly GUI interface, Bigfoot helps the mission to be costructed on a
 * detailed map of the area. In addition, all robot sensor data can be monitored
 * continously via Bigfoot. Manual control of robot is accomplished by a
 * mouse-drag joystick which is very natural to adapt.
 * All network communications performed by Bigfoot use Datagram connections
 * which are fast and not sensitive to fading and connection losses which are
 * highly probable in a wireless network environment.
 *
 * @author Kubilay Uzun, modified John Herkamp
 */

public class BigFoot extends JFrame
 implements MouseMotionListener,
 MouseListener,
 WindowListener,
 ActionListener {

/*
 * MOTOR_MIN,MOTOR_MAX constants set the precision of
 * manual control inputs. Selecting a small or big number is a trade-off between
 * precision and response speed. Since the control outputs are not sent unless
 * they're changed small numbers cause less control packets to be trasmitted.
 * However, Datagram connection used for this task is so fast that usually
 * there is no reason to worry about overloading buffer and degrading the

 123

 * control response.
 */

 static final double MOTOR_MIN = 0;
 static final double MOTOR_MAX = 100;

 static final double MOTOR_MIN_VOLTS = 0.10;
 static final double MOTOR_MAX_VOLTS = 4.0;
 private double leftMotor = (MOTOR_MAX + MOTOR_MIN) / 2;
 private double rightMotor = (MOTOR_MAX + MOTOR_MIN) / 2;
 private double lOld, rOld;

/*
 * Map constants and globals. NAVMAP_FILE_NAME sets the file name
 * to be used as an area map. This should be a JPEG file. Huge files need
 * extended times to be loaded. Since the map is periodically updated, using
 * huge files may seriously degrade the performance of the program. Files
 * up to 1MByte are tolerated well depending on the performance of the
 * platform.
*/
 static final String NAVMAP_FILE_NAME = "NavMap_small.jpg";
 static final String ARM_PIC = "arm_pic.jpg";
 static final String SENSOR_PIC = "sensor_pic.jpg";
 static final String INTRO_PIC = "intro_pic.jpg";
 private JLabel map;
 private JLabel armmap;
 private JLabel sensormap;
 private JLabel intromap;
 private JLabel ArmCamMap;
 private JLabel SensorCamMap;
 private Graphics mapGraph;

 124

 private Graphics armmapGraph;
 private Graphics sensormapGraph;
 private Image img;
 private Image armimg;
 private Image sensorimg;
 private Image introimg;
 private Image img1;
 private Image img2;
 private ImageIcon armmapIcon;
 private ImageIcon mapIcon;
 private ImageIcon sensormapIcon;
 private ImageIcon intromapIcon;
 private ImageIcon ArmCamMapIcon;
 private ImageIcon SensorCamMapIcon;
 private double WptCircleDia = 20; //WayPoint circle diameter

 static final String CAMERA_FILE_NAME = "http://192.168.1.2/image.jpg";
 static final String PROGRAM_LOCATION = "C:/j2sdk1.4.2_06/bin/";

// Global GUI items. These items are used by various methods of the program
// for I/O.

 private JButton joyStickPanel, insertWpt, stopButton, photoButton;
 private JPanel buttonControlPanel;
 private JTextArea messageArea;
 private JLabel cursorCoord;
 private JComboBox wayPointField;
 private JTextField fixTimeField,
 numberOfSatellitesField,
 gpsField,
 latField,

 125

 lonField,
 headField,
 navModeField,
 thermoText1,thermoText2,thermoText3,
 thermoText4,thermoText5,thermoText6,
 thermoText7,thermoText8;

// oldErrorMessage is used to keep track of the BigFoot origined error
// messages are being changed or not. Since the communication is
// asynchronous, this prevents the same message from being displayed
// repeatedly if there's nothing new.

 private String oldErrorMessage;

// Thermopile text data fields are used to display the thermopile
// temperature in centigrade.

 private String t1 = "0";
 private String t2 = "35";
 private String t3 = "70";
 private String t4 = "105";
 private String t5 = "140";
 private String t6 = "175";
 private String t7 = "210";
 private String t8 = "255";

// Networking constants and globals. Robot IP adress is defined here. This
// implies that a compiled intance of BigFoot belongs to a certain robot.
// In order to control other platforms ROBOT_IP_ADRESS should be modified.

 126

 static final String ROBOT_IP_ADRESS = "192.168.1.91";

// Ports. Starting from 4001, ports are used for Manual control,
// route upload, arm control, gps monitor, and BigFoot error message
// monitoring respectively.

 static final int CMD_PORT = 4001; //outgoing
 static final int ROUTE_PORT = 4002; //outgoing
 static final int GPS_PORT = 4003; //incoming
 static final int ERROR_PORT = 4005; //incoming
 static final int ARM_ORDER_PORT = 4007; //outgoing

 static final int CMD_BUFFER_SIZE = 2048;
 static final int ROUTE_BUFFER_SIZE = 2048;
 static final int ARM_BUFFER_SIZE = 2048;

// Datagram sockets. Note here that sockets are defined only for data output.
// The reason for this is data output is non-blocking. So, there no reason
// for using separate threads for Datagram output.

 private DatagramSocket cmdSock;
 private DatagramSocket routeSock;
 private DatagramSocket armSock;

// Datagram input threads. The blocking nature of asynchronous Datagram
// input pushes us to create separate threads for each input socket. See
// PacketReceivingThread for detailed explanation.

 127

 private PacketReceivingThread gpsThread;
 private PacketReceivingThread errorThread;

// Timers. In this program javax.swing.Timer class is used. What is the
// reason for an initial delay? Since the timer is started immediately after
// timer.start() method is called, the tasks which are performed by the
// timer event may be calling not-yet-constructed objects. This probably
// causes the timer event to return a nullPointerException. Initial delay
// should ensure fully construction of the frame before operating.
// TMR_INTRO_DELAY is used for welcome screen

 static final int TMR_INITIAL_DELAY = 10000;
 static final int TMR1_DELAY = 10000;
 private javax.swing.Timer tmr1;

 static final int TMR_INTRO_DELAY = 2000;
 private javax.swing.Timer tmr2;

 // Waypoints. Maximum number of waypoints per mission is set by
 // MAX_WAYPOINTS constant. To change this, MAX_WAYPOINTS constant
 // should be modified.

 static final int MAX_WAYPOINTS = 10;
 static final int INSERT = 0;
 static final int OVERRIDE = 1;

 private int currentWpt;
 private int wptInsertMode;
 private int nowScaling;
 private double scalePos1Lat, scalePos1Lon, scalePos2Lat, scalePos2Lon;

 128

 private double scalePos1x, scalePos1y, scalePos2x, scalePos2y;
 private double scaleX, scaleY;

 private WayPoint route[] = new WayPoint[MAX_WAYPOINTS];
 private WayPoint scalingWpt1;
 private WayPoint scalingWpt2;
 private WayPoint mapCursorWpt;

 private NewWayPoint nwpt;

 // Robot arm variables and constants. x1, x2, x3, y1, y2, y3 are the coordinates
 // for the different joints on the arm map. The arm lengths are scaled.
 // Angles are stored in radian and degree units for specific calculations
 // Xref, Yref, Zref, X3ref are reference points for the bases of the joints
 // armCount is used to report which sequential order is being sent.

 private double x1, x2, x3, y1, y2, z3;
 private double L1=130, L2=30; // the lengths of the arms
 private double Ang1, Ang2, Ang3, Ang5;
 private int Xref=150, Yref=375, X3ref, Zref=81;
 private int x1i, x2i, x3i, y1i, y2i, z3i; //integer form for line drawing
 private double Ang1Deg=0, Ang2Deg=0, Ang3Deg=0, Ang5Deg=0;
 private int serv; //servo control variable
 private int Ang1Temp=0, Ang2Temp=-30, Ang3Temp=0, Ang5Temp=0;
 private int armCount=0; // initial counter for arm

// Camera variables. This is for servo position information for the camera
 private double Ang4;
 private double Ang4Deg=0;
 private int Ang4Temp=0;

 129

// Robot position. Current robot position and heading is retrieved from
// the Datagram socket, tokenized, parsed and assigned to these data members.
// Constant ROBOT_HEADING_TICK_LENGTH should be modified to change
// the heading tick.

 static final int ROBOT_HEADING_TICK_LENGTH = 20;
 private WayPoint robotPos;
 private double robotHeading;

 /**
 * File streams. Scaling data of the current mission map is read and written
 * each time program is entered or exited. Route streams provide load/save
 * functions of the current route.
 */
 private FileInputStream fStorIn;
 private FileOutputStream fStorOut;
 private DataInputStream storIn;
 private DataOutputStream storOut;
 private FileInputStream fRouteIn;
 private FileOutputStream fRouteOut;
 private ObjectInputStream routeIn;
 private ObjectOutputStream routeOut;
 private FileInputStream fLogOpen;
 private ObjectInputStream LogOpen;

 public JPanel ctrPanel, navPanel, pnl2;

// The BigFoot() constructor initializes data members of the main
// application and creates all GUI elements. There are three tabs:
// one for navigation, one for arm control, and one for sensor display.

 130

// A menu bar has been added to remove infrequently used tools from the
// main display page.

// @param none
// @exception none

 public BigFoot() {

 //Application's name
 super("BIGFOOT'S CONTROL INTERFACE");

 // Create launch window
 JWindow IntroWindow = new JWindow();
 IntroWindow.setLocation(320, 240);
 IntroWindow.setSize(400,303);
 intromap = new JLabel();
 JScrollPane IntroPicturePane = new JScrollPane(intromap);
 IntroWindow.add(IntroPicturePane, BorderLayout.WEST);
 intromap.setName("I");

 // Read launch image from file
 File file4 = new File(INTRO_PIC);
 try {
 introimg = ImageIO.read(file4);
 } catch (Exception ex) {
 // messageArea.append("\nCannot Read Picture Map.\n");
 }

 // Set image to launch window
 intromapIcon = new ImageIcon(introimg);
 intromap.setIcon(intromapIcon);

 131

 //launch window time delay
 long time1;
 for (time1=System.currentTimeMillis();
 System.currentTimeMillis()<time1+3000;)
 {
 IntroWindow.setVisible(true);
 }

 // Hide launch window
 IntroWindow.setVisible(false);

 // Main GUI window Size.
 setSize(new Dimension(800,600));
 setExtendedState(Frame.MAXIMIZED_BOTH);
 setDefaultCloseOperation(EXIT_ON_CLOSE);

 //Start javax.swing.Timer
 tmr1 = new javax.swing.Timer(TMR1_DELAY, this);
 tmr1.setInitialDelay(TMR_INITIAL_DELAY);
 tmr1.start();

 // Initialize current robot pos/heading to default
 // default coordinates near outside of Halligan. TWD 29APR04
 try {
 robotPos = new WayPoint("N36 35.760 W121 52.600", "Turn");
 robotHeading = 0;
 } catch (Exception ex) {}

 //Create an istance of NewWayPoint
 nwpt = new NewWayPoint(this);

 132

 //Create menu bar buttons
 JMenuItem j1 = new JMenuItem("Load Route");
 j1.addActionListener(this);
 JMenuItem j2 = new JMenuItem("Save Route");
 j2.addActionListener(this);

 JMenuItem j3 = new JMenuItem("Map Scaling");
 j3.addActionListener(this);
 JMenuItem j4 = new JMenuItem("View Error Log");
 j4.addActionListener(this);

 JMenuItem j5 = new JMenuItem("Acknowledgements");
 j5.addActionListener(this);

 //Create menu bar
 JMenuBar menubar = new JMenuBar();

 JMenu routemenu = new JMenu("Routes");
 routemenu.add(j1);
 routemenu.add(j2);

 JMenu toolmenu = new JMenu("Tools");
 toolmenu.add(j3);
 toolmenu.add(j4);

 JMenu aboutmenu = new JMenu("About");
 aboutmenu.add(j5);

 menubar.add(routemenu);
 menubar.add(toolmenu);

 133

 menubar.add(aboutmenu);

 // Establish Page Tabs

 // Navigation Tab
 JPanel navPanel = new JPanel(new BorderLayout());

 // Arm Control Tab
 JPanel armPanel = new JPanel(new BorderLayout());

 // Sensor Tab
 JPanel sensorPanel = new JPanel(new BorderLayout());

 JTabbedPane tabs = new JTabbedPane();
 tabs.addTab("Navigation", navPanel);
 tabs.addTab("Arm Control", armPanel);
 tabs.addTab("Sensors", sensorPanel);

 // Main Panel
 setJMenuBar(menubar);
 setContentPane(tabs);
 addWindowListener(this);

 // Center Video Panel
 JPanel ctrPanel = new JPanel(new BorderLayout());
 navPanel.add(ctrPanel, BorderLayout.CENTER);

 // Top Button Manifold
 JPanel ctrUpperButtonPanel = new JPanel();
 ctrPanel.add(ctrUpperButtonPanel, BorderLayout.NORTH);

 // Cursor Position

 134

 cursorCoord = new JLabel("N0 0.0 W0 0.0");
 ctrUpperButtonPanel.add(cursorCoord);

 //Navigation map
 map = new JLabel();

 //Put this into a JScrollPane
 JScrollPane mapPane = new JScrollPane(map);
 ctrPanel.add(mapPane, BorderLayout.CENTER);

 //Name is used to discriminate between GUI element calls
 map.setName("M");

 //Change cursor for accuracy of perception
 map.setCursor(new Cursor(Cursor.CROSSHAIR_CURSOR));
 map.addMouseListener(this);
 map.addMouseMotionListener(this);

 //Read map from file
 File file = new File(NAVMAP_FILE_NAME);
 try {
 img = ImageIO.read(file);
 } catch (Exception ex) {
 messageArea.append("\nCannot Read Navigation Map.\n");
 }

 mapIcon = new ImageIcon(img);
 map.setIcon(mapIcon);

 //Manual Control & Joystick Panels
 JPanel pnl2 = new JPanel(new GridLayout(3,1));
 navPanel.add(pnl2,BorderLayout.EAST);

 135

 JPanel buttonControlPanel = new JPanel(new BorderLayout());
 pnl2.add(buttonControlPanel);

 // Joystick
 joyStickPanel = new JButton("JOYSTICK");
 joyStickPanel.setName("J");
 pnl2.add(joyStickPanel);
 joyStickPanel.addMouseMotionListener(this);

 // Manual Control Buttons
 JButton stopButton = new JButton();
 stopButton.setLabel("STOP");
 stopButton.setVisible(true);
 buttonControlPanel.add(stopButton, BorderLayout.CENTER);
 stopButton.addActionListener(this);
 JButton fwdButton = new JButton("FORWARD");
 buttonControlPanel.add(fwdButton, BorderLayout.NORTH);
 fwdButton.addActionListener(this);
 JButton rvsButton = new JButton("REVERSE");
 buttonControlPanel.add(rvsButton, BorderLayout.SOUTH);
 rvsButton.addActionListener(this);
 JButton rightButton = new JButton("RIGHT");
 buttonControlPanel.add(rightButton, BorderLayout.EAST);
 rightButton.addActionListener(this);
 JButton leftButton = new JButton("LEFT");
 buttonControlPanel.add(leftButton, BorderLayout.WEST);
 leftButton.addActionListener(this);

 //Position & Waypoint Panels
 JPanel pnl3 = new JPanel(new GridLayout(3,1));

 136

 navPanel.add(pnl3,BorderLayout.WEST);

 JPanel positionPanel = new JPanel(new GridLayout(6,2));
 pnl3.add(positionPanel);
 JLabel fixTimeLabel = new JLabel("LAST FIX TIME");
 positionPanel.add(fixTimeLabel);
 fixTimeField = new JTextField();
 positionPanel.add(fixTimeField);
 JLabel numberOfSatellitesLabel = new JLabel("NUMBER of SATELLITES");
 positionPanel.add(numberOfSatellitesLabel);
 numberOfSatellitesField = new JTextField();
 positionPanel.add(numberOfSatellitesField);
 JLabel gpsLabel = new JLabel("GPS STATUS");
 positionPanel.add(gpsLabel);
 gpsField = new JTextField();
 positionPanel.add(gpsField);
 JLabel latLabel = new JLabel("LAT");
 positionPanel.add(latLabel);
 latField = new JTextField();
 positionPanel.add(latField);
 JLabel lonLabel = new JLabel("LON");
 positionPanel.add(lonLabel);
 lonField = new JTextField();
 positionPanel.add(lonField);
 JLabel headLabel = new JLabel("HEADING");
 positionPanel.add(headLabel);
 headField = new JTextField();
 positionPanel.add(headField);

 //Waypoint Panel
 JPanel wayPointPanel = new JPanel(new GridLayout(5,2));
 pnl3.add(wayPointPanel);

 137

 JLabel navModeLabel = new JLabel("NAV MODE");
 wayPointPanel.add(navModeLabel);
 navModeField = new JTextField("MANUAL");
 wayPointPanel.add(navModeField);
 JLabel wayPointLabel = new JLabel("WAYPOINT");
 wayPointPanel.add(wayPointLabel);
 wayPointField = new JComboBox();
 Integer ii;
 for (int i = 1; i <= MAX_WAYPOINTS; i++) {
 ii = new Integer(i);
 wayPointField.addItem(ii.toString());
 }
 wayPointField.addActionListener(this);
 wayPointPanel.add(wayPointField);
 JButton wptDecrease = new JButton("<");
 wayPointPanel.add(wptDecrease);
 wptDecrease.addActionListener(this);
 JButton wptIncrease = new JButton(">");
 wayPointPanel.add(wptIncrease);
 wptIncrease.addActionListener(this);
 insertWpt = new JButton("Inserting");
 wayPointPanel.add(insertWpt);
 insertWpt.addActionListener(this);
 JButton deleteWpt = new JButton("DELETE WAYPOINT");
 wayPointPanel.add(deleteWpt);
 deleteWpt.addActionListener(this);
 JButton editWpt = new JButton("EDIT WAYPOINT");
 wayPointPanel.add(editWpt);
 editWpt.addActionListener(this);
 JButton sendRoute = new JButton("SEND ROUTE");
 wayPointPanel.add(sendRoute);
 sendRoute.addActionListener(this);

 138

 //Message Output Area
 messageArea = new JTextArea(20,22);
 JScrollPane masp = new JScrollPane(messageArea);
 pnl3.add(masp);

 //Construct route
 for (int i = 0; i < MAX_WAYPOINTS; i++) {
 route [i] = new WayPoint();
 }

 // Arm Tab

 //Center Picture Panel
 JPanel ArmPicturePanel = new JPanel(new BorderLayout());
 armPanel.add(ArmPicturePanel, BorderLayout.CENTER);

 //Arm map
 armmap = new JLabel();
 JScrollPane ArmPicturePane = new JScrollPane(armmap);
 ArmPicturePanel.add(ArmPicturePane, BorderLayout.NORTH);
 armmap.setName("A");
 armmap.setCursor(new Cursor(Cursor.HAND_CURSOR));
 armmap.addMouseListener(this);
 armmap.addMouseMotionListener(this);

 // Read ARM map from file
 File file1 = new File(ARM_PIC);
 try {
 armimg = ImageIO.read(file1);
 }

 139

 catch (Exception ex) {
 // messageArea.append("\nCannot Read Navigation Map.\n");
 }
 armmapIcon = new ImageIcon(armimg);
 armmap.setIcon(armmapIcon);

 // Arm Button and Camera Panels
 JPanel armPanel2 = new JPanel(new GridLayout(3,1));
 armPanel.add(armPanel2, BorderLayout.EAST);

 // Camera Panel
 ArmCamMap = new JLabel();
 JPanel ArmCamPanel = new JPanel();
 armPanel2.add(ArmCamPanel);
 ArmCamPanel.add(ArmCamMap);
 ArmCamMap.setName("AC");

 //Read camera
 URL url;
 ArmCamMap.setIcon(null);
 try {
 url = new URL(CAMERA_FILE_NAME);
 img2 = ImageIO.read(url);
 }
 catch (MalformedURLException e){
 messageArea.append("\nBad URL\n");
 }
 catch (java.io.IOException e){
 messageArea.append("\nBad File Reading\n");
 }
 ArmCamMapIcon = new ImageIcon(img2);
 ArmCamMap.setIcon(ArmCamMapIcon);

 140

 //Arm Control Button Panel 1
 JPanel armControlPanel1 = new JPanel(new BorderLayout());
 armPanel2.add(armControlPanel1);

 JButton openButton = new JButton("OPEN");
 armControlPanel1.add(openButton, BorderLayout.CENTER);
 openButton.addActionListener(this);

 JButton rotCWButton = new JButton("CW");
 armControlPanel1.add(rotCWButton, BorderLayout.EAST);
 rotCWButton.addActionListener(this);

 JButton rotCCWButton = new JButton("CCW");
 armControlPanel1.add(rotCCWButton, BorderLayout.WEST);
 rotCCWButton.addActionListener(this);

 JButton lowerUpButton = new JButton("Lower Up");
 armControlPanel1.add(lowerUpButton, BorderLayout.NORTH);
 lowerUpButton.addActionListener(this);

 JButton lowerDownButton = new JButton("Lower Down");
 armControlPanel1.add(lowerDownButton, BorderLayout.SOUTH);
 lowerDownButton.addActionListener(this);

 //Arm Panel 2
 JPanel armControlPanel2 = new JPanel(new BorderLayout());
 armPanel2.add(armControlPanel2);

 JButton closeButton = new JButton("CLOSE");
 armControlPanel2.add(closeButton, BorderLayout.CENTER);
 closeButton.addActionListener(this);

 141

 JButton upperUpButton = new JButton("Wrist Up");
 armControlPanel2.add(upperUpButton, BorderLayout.NORTH);
 upperUpButton.addActionListener(this);

 JButton upperDownButton = new JButton("Wrist Down");
 armControlPanel2.add(upperDownButton, BorderLayout.SOUTH);
 upperDownButton.addActionListener(this);

 // Sensor Tab

 //Center Picture Panel
 JPanel SensorPicturePanel = new JPanel(new BorderLayout());
 sensorPanel.add(SensorPicturePanel, BorderLayout.WEST);

 //Sensor map
 sensormap = new JLabel();

 JScrollPane SensorPicturePane = new JScrollPane(sensormap);
 SensorPicturePanel.add(SensorPicturePane, BorderLayout.NORTH);

 sensormap.setName("S");

 //Read map from file
 File file2 = new File(SENSOR_PIC);
 try {
 sensorimg = ImageIO.read(file2);
 } catch (Exception ex) {
 messageArea.append("\nCannot Read Navigation Map.\n");
 }
 sensormapIcon = new ImageIcon(sensorimg);

 142

 sensormap.setIcon(sensormapIcon);

 JPanel sensorPanel2 = new JPanel(new GridLayout(2,1));
 sensorPanel.add(sensorPanel2, BorderLayout.EAST);

 //Sensor Panel 1
 JPanel sensorControlPanel1 = new JPanel(new BorderLayout());
 sensorPanel2.add(sensorControlPanel1);

 JButton camleftButton = new JButton("Pan Left");
 sensorControlPanel1.add(camleftButton, BorderLayout.WEST);
 camleftButton.addActionListener(this);

 JButton camrightButton = new JButton("Pan Right");
 sensorControlPanel1.add(camrightButton, BorderLayout.EAST);
 camrightButton.addActionListener(this);

 // Camera Panel
 SensorCamMap = new JLabel();//map = new JLabel();
 JPanel SensorCamPanel = new JPanel();//(ArmCamMap);
 sensorControlPanel1.add(SensorCamPanel, BorderLayout.CENTER);
 SensorCamPanel.add(SensorCamMap);
 SensorCamMap.setName("SC");
 SensorCamMap.setIcon(null);
 SensorCamMapIcon = new ImageIcon(img2);
 SensorCamMap.setIcon(SensorCamMapIcon);

 //picture button
 JButton photoButton = new JButton("SNAP PHOTO");
 sensorControlPanel1.add(photoButton, BorderLayout.NORTH);
 photoButton.addActionListener(this);

 143

 //Thermopile panel
 JPanel thermoPanel = new JPanel(new GridLayout(1,8));

 sensorControlPanel1.add(thermoPanel, BorderLayout.SOUTH);

 // Set thermopile readout
 thermoText1 = new JTextField(4);
 thermoText2 = new JTextField(4);
 thermoText3 = new JTextField(4);
 thermoText4 = new JTextField(4);
 thermoText5 = new JTextField(4);
 thermoText6 = new JTextField(4);
 thermoText7 = new JTextField(4);
 thermoText8 = new JTextField(4);
 thermoText1.setEditable(false);
 thermoText2.setEditable(false);
 thermoText3.setEditable(false);
 thermoText4.setEditable(false);
 thermoText5.setEditable(false);
 thermoText6.setEditable(false);
 thermoText7.setEditable(false);
 thermoText8.setEditable(false);
 thermoPanel.add(thermoText1);
 thermoPanel.add(thermoText2);
 thermoPanel.add(thermoText3);
 thermoPanel.add(thermoText4);
 thermoPanel.add(thermoText5);
 thermoPanel.add(thermoText6);
 thermoPanel.add(thermoText7);
 thermoPanel.add(thermoText8);
 thermoText1.setText(t8);

 144

 thermoText2.setText(t7);
 thermoText3.setText(t6);
 thermoText4.setText(t5);
 thermoText5.setText(t4);
 thermoText6.setText(t3);
 thermoText7.setText(t2);
 thermoText8.setText(t1);

 //assign colors from white to red depending on the string number
 thermoText1.setBackground(new
 Color(255,255-Integer.decode(t8),255-Integer.decode(t8)));
 thermoText2.setBackground(new
 Color(255,255-Integer.decode(t7),255-Integer.decode(t7)));
 thermoText3.setBackground(new
 Color(255,255-Integer.decode(t6),255-Integer.decode(t6)));
 thermoText4.setBackground(new
 Color(255,255-Integer.decode(t5),255-Integer.decode(t5)));
 thermoText5.setBackground(new
 Color(255,255-Integer.decode(t4),255-Integer.decode(t4)));
 thermoText6.setBackground(new
 Color(255,255-Integer.decode(t3),255-Integer.decode(t3)));
 thermoText7.setBackground(new
 Color(255,255-Integer.decode(t2),255-Integer.decode(t2)));
 thermoText8.setBackground(new
 Color(255,255-Integer.decode(t1),255-Integer.decode(t1)));

 draw();

 } //Constructor

// Establish all Datagram connections/instantiate and start all packet

 145

// receiving threads.

 public void establishDatagramConnections() {
 messageArea.append("\nConnecting to Datagram Sockets...");

 InetAddress hostAdress= null;
 try {
 //Instantiate sockets for data output
 cmdSock = new DatagramSocket();
 cmdSock.connect(hostAdress.getByName(ROBOT_IP_ADRESS),
 CMD_PORT);
 cmdSock.setSendBufferSize(CMD_BUFFER_SIZE);

 routeSock = new DatagramSocket();
 routeSock.connect(hostAdress.getByName(ROBOT_IP_ADRESS),
 ROUTE_PORT);
 routeSock.setSendBufferSize(ROUTE_BUFFER_SIZE);

 armSock = new DatagramSocket();
 armSock.connect(hostAdress.getByName(ROBOT_IP_ADRESS),
 ARM_ORDER_PORT);
 armSock.setSendBufferSize(ARM_BUFFER_SIZE);

 //Instantiate threads for data input
 gpsThread = new PacketReceivingThread(ROBOT_IP_ADRESS,
 GPS_PORT);
 errorThread = new PacketReceivingThread(ROBOT_IP_ADRESS,
 ERROR_PORT);
 //Start threads
 gpsThread.start();
 errorThread.start();
 } catch (Exception ex) {

 146

 messageArea.append("Failed.\n");
 return;
 }
 messageArea.append("Success.\n");

 }//establishDatagramConnections

// Send control voltages to the control socket

 public void sendControlData() {
 double leftMotorVolts = 2.50;
 double RightMotorVolts = 2.50;

 //Calculate motor voltages
 if (leftMotor > 50)
 {
 leftMotorVolts = -0.048*leftMotor + 4.9;
 }
 else
 {
 leftMotorVolts = -0.03*leftMotor + 4.0;
 }

 if (rightMotor > 50)
 {
 RightMotorVolts = -0.048*rightMotor + 4.9;
 }
 else
 {
 RightMotorVolts = -0.03*rightMotor + 4.0;
 }

 147

 Double lmv = new Double (leftMotorVolts);
 Double rmv = new Double (RightMotorVolts);
 Integer ml= new Integer((int)leftMotor);
 Integer mr= new Integer((int)rightMotor);
 Integer rmv1 = new Integer((int)leftMotorVolts);

 //Output motor values to control surface
 joyStickPanel.setText ("L" + ml.toString() + " R" + mr.toString());

 //Send control voltages
 InetAddress hostAdress= null;
 String lstr = lmv.toString() + "00000";
 String rstr = rmv.toString() + "00000";

 String cmdStr = lstr.substring(0,5) + " " +
 rstr.substring(0,5) + "\n\n\n\n";
 byte[] cmdBytes = cmdStr.getBytes();
 try {
 DatagramPacket cmdPack = new DatagramPacket(cmdBytes,
 cmdBytes.length,
 hostAdress.getByName(ROBOT_IP_ADRESS),
 CMD_PORT);
 cmdSock.send(cmdPack);
 navModeField.setText("MANUAL");
 } catch (Exception ex) {
 messageArea.append("\nCannot Send Control Voltages.\n");
 return;
 }
 } //sendControlData

 148

// sendArmData() added 11/13/06 - creates a command to move the arm.
// a counter is included to ensure robot moves only once per signal.
// also ensures old orders are ignored.

 public void sendArmData() {

 //Send control voltages
 armCount=armCount+1;

 Double aCount = new Double (armCount);
 Double aOrder = new Double (serv);

 InetAddress hostAdress= null;

 String CountStr = aCount.toString() + "00000";
 String OrderStr = aOrder.toString() + "00000";

 String armStr = CountStr.substring(0,5) + " " +
 OrderStr.substring(0,5) + "\n\n\n\n";

 byte[] armBytes = armStr.getBytes();
 try {
 DatagramPacket armPack = new DatagramPacket(armBytes,
 armBytes.length,
 hostAdress.getByName(ROBOT_IP_ADRESS),
 ARM_ORDER_PORT);
 armSock.send(armPack);
 } catch (Exception ex) {
 messageArea.append("\nCannot Send Arm Control.\n");
 return;
 }
 serv=0;

 149

 }//sendArmData

// Increase current waypoint indicator by one

 public void increaseCurrentWaypoint() {
 currentWpt++;
 if (currentWpt > (MAX_WAYPOINTS - 1)) {
 currentWpt = (MAX_WAYPOINTS - 1);
 }
 wayPointField.setSelectedIndex(currentWpt);
 }//increaseCurrentWaypoint

// Decrease current waypoint indicator by one

 public void decreaseCurrentWaypoint() {
 currentWpt--;
 if (currentWpt < 0) {
 currentWpt = 0;
 }
 wayPointField.setSelectedIndex(currentWpt);
 }//decreaseCurrentWaypoint

// When displaying navigation map, draw WayPoint symbols and robot symbol.
// When displaying arm map, draw arm position and camera image
// when displaying sensor map, draw camera position, camera image,
// themopile information.

 public void draw() {

 150

 //Update map
 map.setCursor(new Cursor(Cursor.CROSSHAIR_CURSOR));

 File file = new File(NAVMAP_FILE_NAME);
 try {
 img = ImageIO.read(file);
 } catch (Exception ex) {
 messageArea.append("\nCannot Read Navigation Map.\n");
 }

 mapIcon = new ImageIcon(img);
 map.setIcon(mapIcon);
 mapGraph = img.getGraphics();
 //Draw Waypoints
 double lat, lon, screenX, screenY;
 for (int i = 0; i < MAX_WAYPOINTS; i++) {
 lat = route[i].getLatNum();
 lon = route[i].getLonNum();

 screenY = scalePos1y + ((lat - scalePos1Lat) / scaleY);
 screenX = scalePos1x + ((lon - scalePos1Lon) / scaleX);

 mapGraph.setColor(Color.RED);
 mapGraph.drawOval((int)(screenX - WptCircleDia / 2 - 1),
 (int)(screenY - WptCircleDia / 2 - 1),
 (int)WptCircleDia,
 (int)WptCircleDia);
 Integer ii = new Integer(i + 1);
 mapGraph.drawString(ii.toString(),(int)(screenX + WptCircleDia / 2),
 (int)screenY);
 }
 //Draw Robot Position & Heading

 151

 lat = robotPos.getLatNum();
 lon = robotPos.getLonNum();

 double x1,y1,x2,y2;
 y1 = scalePos1y + ((lat - scalePos1Lat) / scaleY);
 x1 = scalePos1x + ((lon - scalePos1Lon) / scaleX);

 mapGraph.setColor(Color.BLUE);
 mapGraph.drawOval((int)(x1 - WptCircleDia / 2 - 1),
 (int)(y1 - WptCircleDia / 2 - 1),
 (int)WptCircleDia,
 (int)WptCircleDia);
 //robotHeading = robotHeading % 360;
 double robotHeadingRad = (Math.toRadians(robotHeading)) -
 ((Math.PI)/2);
 y2 = y1 + ROBOT_HEADING_TICK_LENGTH *
 Math.sin(robotHeadingRad);
 x2 = x1 + ROBOT_HEADING_TICK_LENGTH *
 Math.cos(robotHeadingRad);
 mapGraph.drawLine((int)x1,(int)y1,(int)x2,(int)y2);

 map.repaint();
 img.flush();
 mapGraph.dispose();

 // Draw Arm Page
 URL url;
 ArmCamMap.setIcon(null);
 try {
 url = new URL(CAMERA_FILE_NAME);
 img2 = ImageIO.read(url);
 }

 152

 catch (MalformedURLException e){
 messageArea.append("\nBad URL\n");
 }
 catch (java.io.IOException e){
 messageArea.append("\nBad File Reading\n");
 }

 ArmCamMapIcon = new ImageIcon(img2);
 ArmCamMap.setIcon(ArmCamMapIcon);

 File file2 = new File(ARM_PIC);
 try {
 armimg = ImageIO.read(file2);
 } catch (Exception ex) {
 messageArea.append("\nCannot Read Navigation Map.\n");
 }

 armmapIcon = new ImageIcon(armimg);
 armmap.setIcon(armmapIcon);
 armmapGraph = armimg.getGraphics();
 img2.flush();

 // convert arm servo positions to degrees
 Ang1Deg=2.8125*Ang1Temp;
 Ang2Deg=2.8125*Ang2Temp;
 Ang3Deg=2.8125*Ang3Temp;

 // reference arm angles to one another
 Ang2Deg=180-Ang2Deg;
 Ang3Deg=-(Ang3Deg+90);

 // convert arm angles to radians

 153

 Ang1=Ang1Deg*Math.PI/180;
 Ang2=Ang2Deg*Math.PI/180;
 Ang3=Ang3Deg*Math.PI/180;

 //calculate positions
 x1=L1*Math.sin(Ang2);
 y1=L1*Math.cos(Ang2);

 x2=L2*Math.sin(Ang3+Ang2);
 y2=L2*Math.cos(Ang3+Ang2);

 x3=(x2+x1)*Math.cos(Ang1);
 z3=(x2+x1)*Math.sin(Ang1);

 //find position and convert to int
 x1i=Xref+(int)Math.round(x1);
 x2i=x1i+(int)Math.round(x2);
 x3i=Xref+(int)Math.round(x3);
 y1i=Yref+(int)Math.round(y1);
 y2i=y1i+(int)Math.round(y2);
 z3i=Zref+(int)Math.round(z3);

 //draw lines on side view
 armmapGraph.setColor(Color.BLUE);
 armmapGraph.drawLine(Xref-1,Yref, x1i-1, y1i);
 armmapGraph.drawLine(Xref,Yref,x1i,y1i);
 armmapGraph.drawLine(Xref+1,Yref,x1i+1,y1i);

 armmapGraph.setColor(Color.BLUE);
 armmapGraph.drawLine(x1i-1, y1i, x2i-1, y2i);
 armmapGraph.drawLine(x1i,y1i,x2i, y2i);
 armmapGraph.drawLine(x1i+1,y1i,x2i+1, y2i);

 154

 armmapGraph.setColor(Color.MAGENTA);
 armmapGraph.fillOval(x2i, y2i-8, 16, 16);

 //draw lines on top view
 armmapGraph.setColor(Color.BLUE);
 armmapGraph.drawLine(Xref, Zref-1, x3i, z3i-1);
 armmapGraph.drawLine(Xref, Zref, x3i, z3i);
 armmapGraph.drawLine(Xref, Zref+1, x3i, z3i+1);

 armmap.repaint();
 armimg.flush();
 armmapGraph.dispose();

 // Draw sensor page

 //redraw camera on sensor page
 SensorCamMap.setIcon(null);
 SensorCamMapIcon = new ImageIcon(img2);
 SensorCamMap.setIcon(SensorCamMapIcon);

 //Read map from file
 File file3 = new File(SENSOR_PIC);
 try {
 sensorimg = ImageIO.read(file3);
 } catch (Exception ex) {
 messageArea.append("\nCannot Read Navigation Map.\n");
 }

 sensormapIcon = new ImageIcon(sensorimg);
 sensormap.setIcon(sensormapIcon);

 155

 sensormapGraph = sensorimg.getGraphics();

 Ang4Deg=2.8125*Ang4Temp;

 int CamAng = (int)Ang4Deg-30;

 //draw camera view arc
 sensormapGraph.setColor(Color.BLUE);
 sensormapGraph.drawArc(172,119,300,300,CamAng,60);

 sensormap.repaint();
 sensorimg.flush();
 sensormapGraph.dispose();
 }//draw

// Get rid of leading, trailing and middle spaces

 public String cleanString(String s) {
 int spacePos;
 s = s.trim();
 while ((spacePos = s.indexOf(" ")) != -1) {
 s = s.substring(0, spacePos) +
 s.substring(spacePos + 1, s.length());
 }
 return s;
 }//cleanString

// Listen for and handle mouse clicking events on GUI elements. This happens
// when map is getting scaled or working with WayPoints. The method
// discriminates the call by caller's Name and do not react to other callers.

// @param e MouseEvent to be handled

 156

 public void mouseClicked(MouseEvent e) {
 //Left Double Click on Map
 if ((e.getComponent().getName()).equals("M")) {
 if ((e.getButton() == 1) && (e.getClickCount() == 2)) {
 //If WayPoint is being added
 if (nowScaling == 0) {
 WayPoint temp = new WayPoint();
 temp = nwpt.getWayPointData(this, mapCursorWpt);
 if (temp == null) {
 return;
 }
 if (wptInsertMode == INSERT) {
 for (int i = (MAX_WAYPOINTS - 1); i > currentWpt; i--) {
 route[i] = route[i - 1];
 }
 }
 route[currentWpt] =temp;
 draw();
 increaseCurrentWaypoint();
 return;
 }
 //If map scaling step 1 is happening
 if (nowScaling == 1) {
 scalingWpt1 = nwpt.getWayPointData(this, mapCursorWpt);
 if (scalingWpt1 == null) {
 return;
 }
 nowScaling =2;
 scalePos1Lat = scalingWpt1.getLatNum();
 scalePos1Lon = scalingWpt1.getLonNum();
 scalePos1x = e.getX();

 157

 scalePos1y = e.getY();
 return;
 }
 //If map scaling step 2 is happening
 if (nowScaling == 2) {
 scalingWpt2 = nwpt.getWayPointData(this, mapCursorWpt);
 if (scalingWpt2 == null) {
 return;
 }
 nowScaling =0;
 messageArea.append("\nFollowing Points are Processed:\n");
 messageArea.append(scalingWpt1.getLatLon() + "\n");
 messageArea.append(scalingWpt2.getLatLon() + "\n");
 scalePos2Lat = scalingWpt2.getLatNum();
 scalePos2Lon = scalingWpt2.getLonNum();
 scalePos2x = e.getX();
 scalePos2y = e.getY();

 scaleX= (scalePos2Lon - scalePos1Lon) /
 (scalePos2x - scalePos1x);
 scaleY= (scalePos2Lat - scalePos1Lat) /
 (scalePos2y - scalePos1y);
 System.out.println("scalepos1x" + scalePos1x);
 System.out.println("scalepos1y" + scalePos1y);
 return;
 }
 }
 }
 }//mouseClicked

//Events not being implemented
 public void mousePressed(MouseEvent e) {

 158

 }
 public void mouseReleased(MouseEvent e) {
 }
 public void mouseEntered(MouseEvent e) {
 }
 public void mouseExited(MouseEvent e) {
 }

// Listen for and handle mouse dragging events on GUI elements. This happens
// when manual control joystick is used. The method discriminates the call
// by caller's Name and do not react to other callers.

// @param e MouseEvent to be handled

 public void mouseDragged(MouseEvent e) {
 if ((e.getComponent().getName()).equals("J")) {
 Dimension rv = new Dimension();
 joyStickPanel.getSize(rv);
 double maxx = rv.getWidth() / 2;
 double maxy = rv.getHeight() / 2;

 // x and y values from joystick normalized to -1 to 1.
 double x = e.getX() / maxx - 1;
 double y = (maxy - e.getY()) / maxy;

 //Calculate motor values (not voltages)
 leftMotor = ((y + x + 1) * ((MOTOR_MAX - MOTOR_MIN) / 2) +
 MOTOR_MIN);
 rightMotor = ((y - x + 1) * ((MOTOR_MAX - MOTOR_MIN) / 2) +
 MOTOR_MIN);

 159

 //Check for overflows
 if (leftMotor > MOTOR_MAX) leftMotor = MOTOR_MAX;
 if (leftMotor < MOTOR_MIN) leftMotor = MOTOR_MIN;
 if (rightMotor > MOTOR_MAX) rightMotor = MOTOR_MAX;
 if (rightMotor < MOTOR_MIN) rightMotor = MOTOR_MIN;

 //Set current values not to send every time even if nothing's changed
 if ((leftMotor != lOld) || (rightMotor != rOld)) {
 sendControlData();
 lOld = leftMotor;
 rOld = rightMotor;
 }
 }
 }//mouseDragged

// Listen for and handle mouse moving events on GUI elements. This happens
// when cursor is moved over the map.This method computes and otputs the
// current position. The method discriminates the call by caller's Name
// and do not react to other callers.

// @param e MouseEvent to be handled

 public void mouseMoved(MouseEvent e) {
 if ((e.getComponent().getName()).equals("M")) {
 double curX, curY;

 curX = scalePos1Lat + (((e.getY() - scalePos1y)) * scaleY);
 curY = scalePos1Lon + (((e.getX() - scalePos1x)) * scaleX);

 try {

 160

 mapCursorWpt = new WayPoint(curX, curY, "Turn");
 } catch (Exception ex) {
 return;
 }
 cursorCoord.setText(mapCursorWpt.getLatLon());
 }
 }//mouseMoved

// Perform tasks which should be done immediately the program starts such as
// welcoming user, establishing connections and loading map scaling data.

// @param e WindowEvent to be handled

 public void windowOpened(WindowEvent e) {

 //Welcome user
 messageArea.append("Welcome to the Control Interface.\n");
 messageArea.append("Written by: Kubilay Uzun,\n");
 messageArea.append("James Knoll, Robert Williams.\n");
 messageArea.append
 ("Modified by Jason Ward, Ben Miller, John Herkamp\n");
 messageArea.append("Naval Postgraduate School\n");
 messageArea.append("Monterey, California\n");

 //Establish Connections
 establishDatagramConnections();

 //Read Scaling Data
 try {
 fStorIn = new FileInputStream("Storage.dat");
 storIn = new DataInputStream(fStorIn);

 161

 scalePos1Lat = storIn.readDouble();
 scalePos1Lon = storIn.readDouble();
 scalePos1y = storIn.readDouble();
 scalePos1x = storIn.readDouble();
 scaleY = storIn.readDouble();
 scaleX = storIn.readDouble();
 } catch (Exception ex) {
 messageArea.append("\nCannot Read Map Scaling Data.\n");
 }
 }//windowOpened

// Perform tasks which should be done just before the program exits such as
// closing sockets, saving map scaling data.

// @param e WindowEvent to be handled

 public void windowClosing(WindowEvent e) {

 //Close sockets
 try {
 cmdSock.close();
 routeSock.close();
 armSock.close();
 } catch (Exception ex) {
 messageArea.append("\nCannot Close Sockets.\n");
 }
 //Write Scaling Data
 try {
 fStorOut = new FileOutputStream("Storage.dat");
 storOut = new DataOutputStream(fStorOut);

 162

 storOut.writeDouble(scalePos1Lat);
 storOut.writeDouble(scalePos1Lon);
 storOut.writeDouble(scalePos1y);
 storOut.writeDouble(scalePos1x);
 storOut.writeDouble(scaleY);
 storOut.writeDouble(scaleX);
 } catch (Exception ex) {
 messageArea.append("\nCannot Write Map Scaling Data.\n");
 }
 }//windowClosing

//Events not being implemented
 public void windowClosed(WindowEvent e) {
 }
 public void windowIconified(WindowEvent e) {
 }
 public void windowDeiconified(WindowEvent e) {
 }
 public void windowActivated(WindowEvent e) {
 }
 public void windowDeactivated(WindowEvent e) {
 }

// Perform numerous tasks including all functional buttons and the timer

// @param ev ActionEvent to be handled

 public void actionPerformed(ActionEvent ev) {

 //Timer event happened

 163

 if (ev.getActionCommand() == null) {
 boolean anythingChanged = false;

 //Query packet receiving threads
 String gpsStream = gpsThread.getReceivedData();
 String errorStream = errorThread.getReceivedData();

 //If GPS socket have something
 if (gpsStream != null) {

 //Tokenize GPS data
 StringTokenizer tok = new StringTokenizer(gpsStream, ",");
 if (tok.countTokens() < 8) {
 messageArea.append("\nCorrupted GPS Data.\n");
 return;
 }
 tok.nextToken(); //ignore header
 String GPSTime = tok.nextToken();
 GPSTime = cleanString(GPSTime);
 String GPSLatNums = tok.nextToken();
 GPSLatNums = cleanString(GPSLatNums);
 String GPSLatHemi = tok.nextToken();
 GPSLatHemi = cleanString(GPSLatHemi);
 String GPSLonNums = tok.nextToken();
 GPSLonNums = cleanString(GPSLonNums);
 String GPSLonHemi = tok.nextToken();
 GPSLonHemi = cleanString(GPSLonHemi);
 String GPSStatus = tok.nextToken();
 GPSStatus = cleanString(GPSStatus);
 String GPSSatellites = tok.nextToken();
 GPSSatellites = cleanString(GPSSatellites);

 164

 GPSTime = GPSTime.substring(0,2) + ":" +
 GPSTime.substring(2,4) + ":" +
 GPSTime.substring(4,6);

 String GPSPos = GPSLatHemi +
 GPSLatNums.substring(0,2) + " " +
 GPSLatNums.substring(2,9) + " " +
 GPSLonHemi +
 GPSLonNums.substring(0,3) + " " +
 GPSLonNums.substring(3,10);
 if (GPSStatus.equals("0")) {
 GPSStatus = "GPS not Available";
 } else if (GPSStatus.equals("1")) {
 GPSStatus = "GPS Available";
 } else {
 GPSStatus = "GPS Differential Fix";
 }

 fixTimeField.setText(GPSTime);
 numberOfSatellitesField.setText(GPSSatellites);
 gpsField.setText(GPSStatus);
 try {
 robotPos = new WayPoint(GPSPos, "Turn");
 } catch (Exception ex) {
 messageArea.append("\n Cannot Parse Robot Position.\n");
 }
 latField.setText(robotPos.getLat());
 lonField.setText(robotPos.getLon());
 anythingChanged = true;

 try {

 165

 FileWriter gpsl = new FileWriter("gps_log.txt", true);
 gpsl.write(gpsStream);
 gpsl.write("\n");
 gpsl.close();
 }
 catch (IOException e) {
 System.out.println("Error -- could not open gps log");
 }
 }

 //If error socket has something
 if (errorStream != null) {
 String temp = new String();
 StringTokenizer ErrorTok = new StringTokenizer(errorStream, ",");
 temp = cleanString(ErrorTok.nextToken());
 if (temp.equals("$^"))
 {
 temp = ErrorTok.nextToken();
 headField.setText(cleanString(temp));
 try {
 robotHeading = Double.parseDouble(headField.getText());
 }
 catch(Exception ex) {
 messageArea.append
 ("\nCannot Parse Compass Heading.\n");
 }
 anythingChanged = true;
 }

 else if (temp.equals("$*"))
 {

 166

 t1 = cleanString(ErrorTok.nextToken());
 t2 = cleanString(ErrorTok.nextToken());
 t3 = cleanString(ErrorTok.nextToken());
 t4 = cleanString(ErrorTok.nextToken());
 t5 = cleanString(ErrorTok.nextToken());
 t6 = cleanString(ErrorTok.nextToken());
 t7 = cleanString(ErrorTok.nextToken());
 t8 = cleanString(ErrorTok.nextToken());
 thermoText1.setText(t1);
 thermoText2.setText(t2);
 thermoText3.setText(t3);
 thermoText4.setText(t4);
 thermoText5.setText(t5);
 thermoText6.setText(t6);
 thermoText7.setText(t7);
 thermoText8.setText(t8);
 thermoText1.setBackground(new Color
 (255,255-Integer.decode(t1),255-Integer.decode(t1)));
 thermoText2.setBackground(new Color
 (255,255-Integer.decode(t2),255-Integer.decode(t2)));
 thermoText3.setBackground(new Color
 (255,255-Integer.decode(t3),255-Integer.decode(t3)));
 thermoText4.setBackground(new Color
 (255,255-Integer.decode(t4),255-Integer.decode(t4)));
 thermoText5.setBackground(new Color
 (255,255-Integer.decode(t5),255-Integer.decode(t5)));
 thermoText6.setBackground(new Color
 (255,255-Integer.decode(t6),255-Integer.decode(t6)));
 thermoText7.setBackground(new Color
 (255,255-Integer.decode(t7),255-Integer.decode(t7)));
 thermoText8.setBackground(new Color
 (255,255-Integer.decode(t8),255-Integer.decode(t8)));

 167

 }

 else if(!(errorStream.equals(oldErrorMessage))) {
 if (ErrorTok.countTokens() < 3)
 {
 messageArea.append("\nBigFoot: " + errorStream + "\n");
 oldErrorMessage = errorStream;
 }
 }
 anythingChanged = true;
 }

 try {
 FileWriter erl = new FileWriter("error_log.txt", true);
 erl.write(errorStream);
 erl.write("\n");
 erl.close();
 }
 catch (IOException e) {
 System.out.println("Error -- could not open error log");
 }

 if (anythingChanged) {
 draw();
 }
 return;
 }

 //Motor control event Happened
 boolean isMotorEvent = false;
 if (ev.getActionCommand().equals("STOP")) {
 leftMotor = 50;

 168

 rightMotor = 50;
 isMotorEvent = true;
 }else if (ev.getActionCommand().equals("FORWARD")) {
 leftMotor = 75; //MOTOR_MAX;
 rightMotor = 75; //MOTOR_MAX;
 isMotorEvent = true;
 }else if (ev.getActionCommand().equals("REVERSE")) {
 leftMotor = 25; //MOTOR_MIN;
 rightMotor = 25; //MOTOR_MIN;
 isMotorEvent = true;
 }else if (ev.getActionCommand().equals("RIGHT")) {
 leftMotor = MOTOR_MAX;
 rightMotor = MOTOR_MIN;
 isMotorEvent = true;
 }else if (ev.getActionCommand().equals("LEFT")) {
 leftMotor = MOTOR_MIN;
 rightMotor = MOTOR_MAX;
 isMotorEvent = true;
 }
 if (isMotorEvent) {
 if (((leftMotor != lOld) || (rightMotor != rOld)) ||
 (ev.getActionCommand().equals("STOP"))) {
 sendControlData();
 lOld = leftMotor;
 rOld = rightMotor;
 }
 return;
 }

 //Map Scaling event happened
 if (ev.getActionCommand().equals("Map Scaling")) {
 nowScaling = 1;

 169

 JOptionPane.showMessageDialog(this, "Double Click and Enter 2 " +
 "Points on the map.");
 return;
 }

 //Increasing and decreasing current wpt event happened
 if (ev.getActionCommand().equals(">")) {
 increaseCurrentWaypoint();
 return;
 }
 if (ev.getActionCommand().equals("<")) {
 decreaseCurrentWaypoint();
 return;
 }
 if (ev.getActionCommand().equals("comboBoxChanged")) {
 currentWpt = wayPointField.getSelectedIndex();
 return;
 }

 //Delete WayPoint event happened
 if (ev.getActionCommand().equals("DELETE WAYPOINT")) {
 int pos, max;
 for (pos = currentWpt; pos < (MAX_WAYPOINTS - 1); pos++) {
 route[pos] = route[pos + 1];
 }
 route[MAX_WAYPOINTS - 1] = new WayPoint();
 draw();
 return;
 }

 //Insert/override event happened
 if (ev.getActionCommand().equals("Inserting")) {

 170

 insertWpt.setText("Overriding");
 wptInsertMode = OVERRIDE;
 return;
 }
 if (ev.getActionCommand().equals("Overriding")) {
 insertWpt.setText("Inserting");
 wptInsertMode = INSERT;
 return;
 }

 //Edit WayPoint event happened
 if (ev.getActionCommand().equals("EDIT WAYPOINT")) {
 WayPoint temp = new WayPoint();
 temp = nwpt.getWayPointData(this, route[currentWpt]);
 if (temp == null) {
 return;
 }
 route[currentWpt] = temp;
 draw();
 }

 //Save/Load route event happened
 if (ev.getActionCommand().equals("Save Route")) {
 FileDialog sr = new FileDialog(this, "Save Route", FileDialog.SAVE);
 sr.show();
 String fn = sr.getFile();
 try {
 fRouteOut = new FileOutputStream(fn);
 routeOut = new ObjectOutputStream(fRouteOut);
 for (int i=0; i < MAX_WAYPOINTS; i++) {
 routeOut.writeObject(route[i]);
 }

 171

 routeOut.close();
 } catch (Exception ex) {
 messageArea.append("\nCannot Save Route.\n");
 }
 draw();
 return;
 }
 if (ev.getActionCommand().equals("Load Route")) {
 FileDialog sr = new FileDialog(this, "Load Route", FileDialog.LOAD);
 sr.show();
 String fn = sr.getFile();
 try {
 fRouteIn = new FileInputStream(fn);
 routeIn = new ObjectInputStream(fRouteIn);
 for (int i=0; i < MAX_WAYPOINTS; i++) {
 route[i] = (WayPoint)routeIn.readObject();
 }
 routeIn.close();
 } catch (Exception ex) {
 messageArea.append("\nCannot Load Route.\n");
 }
 draw();
 return;
 }

 //Send route event happened
 if (ev.getActionCommand().equals("SEND ROUTE")) {
 String routeStream = "$" + route[0].getPack() + " ";

 for (int i =1; i < MAX_WAYPOINTS; i++) {
 routeStream = routeStream + route[i].getPack()+ " ";
 }

 172

 routeStream = routeStream + "\n\n\n\n\n";

 InetAddress hostAdress= null;
 //send route
 byte[] routeBytes = routeStream.getBytes();
 try {
 DatagramPacket routePack = new DatagramPacket(routeBytes,
 routeBytes.length,
 hostAdress.getByName(ROBOT_IP_ADRESS),
 ROUTE_PORT);
 routeSock.send(routePack);
 navModeField.setText("AUTO");
 } catch (Exception ex) {
 messageArea.append("\nCannot Send Route.\n");
 return;
 }
 }

 // servo control events
 if (ev.getActionCommand().equals("CW")) {
 //ArmCamMap.repaint();
 serv = 1;
 sendArmData();
 Ang1Temp++;
 draw();
 return;
 }

 if (ev.getActionCommand().equals("CCW")) {
 serv = 2;
 sendArmData();
 Ang1Temp--;

 173

 draw();
 return;
 }

 if (ev.getActionCommand().equals("Lower Up")) {
 serv = 4;
 sendArmData();
 Ang2Temp++;
 draw();
 return;
 }
 if (ev.getActionCommand().equals("Lower Down")) {
 serv = 3;
 sendArmData();
 Ang2Temp--;
 draw();
 return;
 }
 if (ev.getActionCommand().equals("Wrist Up")) {
 serv = 5;
 sendArmData();
 Ang3Temp++;
 draw();
 return;
 }
 if (ev.getActionCommand().equals("Wrist Down")) {
 serv = 6;
 sendArmData();
 Ang3Temp--;
 draw();
 return;
 }

 174

 if (ev.getActionCommand().equals("Pan Right")) {
 serv = 8;
 sendArmData();
 Ang4Temp--;
 draw();
 return;
 }
 if (ev.getActionCommand().equals("Pan Left")) {
 serv = 7;
 sendArmData();
 Ang4Temp++;
 draw();
 return;
 }
 if (ev.getActionCommand().equals("OPEN")) {
 serv = 9;
 sendArmData();
 Ang5Temp++;
 draw();
 return;
 }
 if (ev.getActionCommand().equals("CLOSE")) {
 serv = 10;
 sendArmData();
 Ang5Temp--;
 draw();
 return;
 }

 if (ev.getActionCommand().equals("View Error Log")) {
 FileDialog el = new FileDialog(this, "View Error Log", FileDialog.LOAD);

 175

 el.show();
 String fn1 = el.getFile();
 try {
 fLogOpen = new FileInputStream(fn1);
 LogOpen = new ObjectInputStream(fLogOpen);
 } catch (Exception ex) {
 //messageArea.append("\nCannot Open Log.\n");
 }
 draw();
 return;
 }

 if (ev.getActionCommand().equals("SNAP PHOTO")) {
 snapPhoto();
 draw();
 return;
 }

 }//Action events

 public void snapPhoto()
 {
 DateFormat df = DateFormat.getDateTimeInstance
 (DateFormat.SHORT, DateFormat.LONG);
 String str = new String();
 String photofilename = new String();
 str = df.format(new Date());
 photofilename = str.replace(':','_');
 photofilename = photofilename.replace('/','_');

 File outputFile = new File
 (PROGRAM_LOCATION+photofilename+".jpg");

 176

 URL url;

 BufferedImage img2 = new BufferedImage
 (640,480, BufferedImage.TYPE_INT_ARGB);
 try {
 url = new URL(CAMERA_FILE_NAME);
 img2 = ImageIO.read(url);
 }
 catch (MalformedURLException e){
 // messageArea.append("\nBad URL\n");
 }
 catch (java.io.IOException e){
 // messageArea.append("\nBad File Reading\n");
 }

 try{
 ImageIO.write(img2, "JPG", outputFile);
 }
 catch(IOException e){messageArea.append("\nCannot save photo.\n");
 }
 messageArea.append("\nPhoto Saved "+photofilename+".jpg\n");

// displayImage(img2, photofilename);

 }

// Function written to display the image in a separate window.
 public void displayImage(BufferedImage img, String filename){

 Graphics picGraph;
 ImageIcon picIcon;

 177

 JFrame picturePage = new JFrame(filename+".jpg");
 Container c = picturePage.getContentPane();

 JLabel pic = new JLabel();

 //Put this into a JPanel
 JScrollPane picPanel = new JScrollPane(pic);
 picIcon = new ImageIcon(img);
 pic.setIcon(picIcon);
 picturePage.add(pic, BorderLayout.CENTER);
 pic.setName("P");
 picturePage.setSize(new Dimension(330,250));
 picturePage.setVisible(true);
 }

// Main. Set the GUI frame visible only.

// @param args The string array which is arguments passed
// @exception Exception

 public static void main(String[] args) throws Exception {
 BigFoot bf = new BigFoot();
 bf.setVisible(true);

 try {
 FileWriter erl = new FileWriter("error_log.txt", false);
 erl.write("|||");
 erl.close();
 }
 catch (IOException e) {

 178

 System.out.println("Error -- could not open error log");
 }

 try {
 FileWriter gpsl = new FileWriter("gps_log.txt", false);
 gpsl.write(" ");
 gpsl.close();
 }
 catch (IOException e) {
 System.out.println("Error -- could not open gps log");
 }
 }//main
}//Bigfoot

 179

LIST OF REFERENCES

[1] Department of Defense. Joint Robotics. http://www.jointrobotics.com,
April 2007.

[2] Department of Defense. FY2005 UGV MASTER PLAN.
http://www.jointrobotics.com/activities_new/2005%20JRP%20Master%20
Plan.pdf, April 2007.

[3] Foster-Miller. Talon Robot Brochure. http://www.foster-
miller.com/literature/documents/TALONBrochure.pdf, April 2007.

[4] Foster-Miller. Talon Robots. http://www.foster-miller.com/lemming.htm,
April 2007.

[5] Federation of American Scientists. RQ-1 Predator Medium Altitude
Endurance (MAE) UAV.
http://www.fas.org/irp/program/collect/predator.htm, April 2007.

[6] Federation of American Scientists. UAV Tactical Control System.
http://www.fas.org/irp/program/collect/uav_tcs.htm, April 2007.

[7] T. Dunbar. Demonstration of waypoint navigation for a semi-autonomous
prototype surf-zone robot. Master’s Thesis, Naval Postgraduate School,
June 2006.

[8] B. Miller. Improvised explosive devise placement detection from a semi-
autonomous ground vehicle. Master’s Thesis, Naval Postgraduate
School, December 2006.

[9] Superdroid Robots. IG32P 24VDC 190 RPM Gear Motor.
http://www.superdroidrobots.com/shop/item.asp?itemid=374&catid=7,
April 2007.

[10] NTE. NTE1914 Voltage Regulator,
http://www.nteinc.com/specs/1900to1999/pdf/nte1914.pdf, April 2007.

[11] Fairchild Semiconductor. LM78XX/LM78XXA – 3 Terminal 1A Positive
Voltage Regulator, http://www.fairchildsemi.com/ds/LM/LM7805.pdf, April
2007.

[12] Superdroid Robots. Electronic Magnetic Compass,
http://www.superdroidrobots.com/shop/item.asp?itemid=128&catid=35,
April 2007.

 180

[13] Phillips Semiconductors. Application Note, Electronic Digital Compass
Design using KMZ51 and KMZ52, AN00022, 12.

[14] J. Fraden. AIP Handbook of Modern Sensors, American Institute of
Physics, New York, 1993, pp. 487-489.

[15] Superdroid Robots. SRF08 Support,
http://www.superdroidrobots.com/product_info/SRF08.htm, April 2007.

[16] J. Fraden. AIP Handbook of Modern Sensors, American Institute of
Physics, New York, 1993, pp. 303-305.

[17] Superdroid Robots. GP2D12.
http://www.superdroidrobots.com/product_info/SharpGP2D12-15.pdf, April
2007.

[18] Savage Innovations. GP2D12. http://www.oopic.com/gp2d12.htm, April
2007.

[19] Superdroid Robots. TPA81.
http://www.superdroidrobots.com/product_info/TPA81.htm, April 2007.

[20] D-Link. DCS-900.
http://www.dlink.com/products/resource.asp?pid=270&rid=807&sec=0,
October 2006.

[21] Garmin. WAAS. http://www.garmin.com/about/GPS/waas.html, August
2006.

[22] Garmin. GPS 16.
http://www.garmin.com/manuals/425_TechnicalSpecifications.pdf, April
2007.

[23] Z-World. BL2000. http://www.zworld.com/products/bl2000/, April 2007.

[24] Dennis Clark. Programming and Customizing the OOPic Microcontroller,
McGraw-Hill, 2003, p. 17.

[25] D-Link. 2.4 GHz Omni-Directional 7 dBi Indoor Antenna.
http://www.dlink.com/products/resource.asp?pid=416&rid=1551&sec=0,
April 2007.

[26] T. Williamson. Modeling and Implementation of PID Control for
Autonomous Robots. Master’s Thesis, Naval Postgraduate School, June
2007.

[27] K. Uzun. SE4015 Class Presentation (June 2003).

 181

[28] J. Herkamp. et al. SE4015 Class Presentation (September 2006).

[29] B. Kerstens. et al. SE4015 Class Presentation (March 2007).

 182

THIS PAGE INTENTIONALLY LEFT BLANK

 183

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Richard Harkins
Department of Applied Physics
Naval Postgraduate School
Monterey, California

4. Professor Peter Crooker
Department of Applied Physics
Naval Postgraduate School
Monterey, California

5. Physics Department
Naval Postgraduate School
Monterey, California

