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AFIT/GAE/ENY/07-M30 

Abstract 

 

Fuel efficiency of aircraft is of great importance to the military and private sector.  

A more efficient wing design for UAVs would lead to improvements in mission support 

while reducing fuel costs for the Air Force.  An experimental investigation of one 

candidate design, the Houck Aircraft Configuration, has been conducted in the AFIT low 

speed wind tunnel.  This aircraft shares similarities to other joined-wing aircraft, but 

includes curved flow-guides of varying spanwise camber connecting the upper and lower 

wingtips.  Experimental results show that the addition of flow guides on the 24” Houck 

Configuration results in a 2.5% reduction in L/Dmax at Re ≈ 80K and a 0.3% reduction in 

L/Dmax at Re ≈ 125K.  This trend shows a decrease in the performance gap as the 

Reynolds number increases from 80K to 125K.  It is recommended that additional testing 

at higher Reynolds numbers be performed to determine if an increase in performance can 

be shown.  The designed flow guides proved to be successful in combining the upper and 

lower wing-tip vortices into a single vortex.  The flow guides alter what would be two 

smaller compact vortices and instead produce a slightly larger, spread out vortex which 

follows the curve of the flow guide.  Ultimately, evidence of improvements in 

aerodynamic efficiency will need to be shown before other claims of the design are 

demonstrated to be fully successful.    
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1 

THE AERODYNAMIC PERFORMANCE OF THE 24 INCH HOUCK 
CONFIGURATION 

 
 

I.  Introduction 

1.1 Background 

The Air Force Research Lab has been tasked with testing a novel aircraft wing 

design, the Houck Lifting Foil (see Figure 1).  The Houck Lifting Foil was designed with 

the purpose of increasing the aerodynamic efficiency of a joined-wing type aircraft.  A 

description of the lifting foil, found in the presently granted United States Patent of the 

design, follows:   

A lifting foil for an aircraft, a hydrofoil or the like having a pair of courses 
or wings. Vortex losses due to span-wise fluid flow are substantially 
reduced by joining the tips of the courses with flow guides configured for 
jointly terminating the undesired flows.  Termination is effected by 
providing the flow guides with cross-sections cambered for reducing the 
dynamic pressure of fluid flowing in a span-wise direction across flow 
guide surfaces (12). 
 
 

 

 

 

 

 

 
Figure 1:  Perspective View of Houck Lifting Foil (reproduced from Reference 12) 

 

The upper and lower wings of the Houck Lifting Foil are connected by specially 

designed, curved and cambered flow guides (see Figure 2).  The curved flow guides were 



 

2 

created to direct the airflow along a desired path.  The cambered airfoil sections are 

placed strategically to try to manipulate the pressure distribution along the surface of the 

flow guides.     

 

 

 

 

 

 

Figure 2:  Flow Guides – Varying Camber & Pressure Distribution (reproduced from Reference 12) 

 

The curved design of the flow guides connects the lower and upper wings with the 

intent of combining the individual wing-tip vortices (of the upper and lower wing) to 

form a weaker, more spread out vortex (see Figure 3). 

 

 

 

 

 

 

 

Figure 3:  Flow Guide Combining Wing-Tip Vortices 

 



 

3 

The flow guides are also crafted with varying degrees and orientation of camber 

in order to try to further manipulate the flow near the wing tips.  The cambered airfoil 

sections that form the flow guides are placed specifically so that the aerodynamic force 

created by the layout opposes the aerodynamic forces created by the wing-tip vortices 

(see Figure 4).   

 

 

 

 

 

Figure 4:  Flow Guide Force Opposing Wing-Tip Vortices 

 

The designer of the Houck Lifting Foil claims increased efficiency through the 

reduction of span-wise fluid flow over the wings (12).  The reduction of wing-tip vortices 

would result in lower induced drag (drag due to lift).  If the decrease in induced drag is 

greater than the increase in parasite drag (profile drag, skin friction drag, and interference 

drag) then the total drag will be reduced.  If successful, the design could be used for 

numerous applications where efficiency is valued:  fixed wing aircraft, rotary wing 

aircraft, submarines and hydrofoils (12). 

1.2 Research Focus 

The purpose of this report is to provide insight into the aerodynamic performance 

of a specific 24” Houck Configuration, provided by the inventor’s company, Iron Hawk 
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Enterprises LLC.  One of the initial steps in the study was to scan in the model built by 

Iron Hawk for use in setting up a CFD (computational fluid dynamics) mesh.  Figure 5 

shows an initial computational representation of the 24” Houck Configuration.  It is 

important to note that there is a V-shaped irregularity in the computational side view of 

the aircraft.  This view is used often in the report, but the irregularity does not exist on the 

actual model and should be ignored.   

 

 
 

 

 

 

 
Figure 5:  Three-View Representation of 24” Houck Configuration 

 

The model was crafted by Ronald G. Houck II, the holder of U.S. Patent # 

7,110,867.  The model was then altered (internally only) at AFIT so that it could be fitted 

on a balance in the low speed wind tunnel.  Modifications reduced the overall structural 

strength of the model because portions of the internal structure had to be hollowed out.  

In order to achieve aerodynamic analysis of the aircraft, numerous tests were completed 

in the AFIT low-speed wind tunnel.  The results of this report will be used in conjunction 

with other studies carried out by the Air Force Research Lab, Air Vehicles Directorate, 

Wright Patterson AFB, Ohio to determine the viability of the Houck Lifting Foil for the 

United States Air Force (4). 
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II. Literature Review 

2.1 Overview 

Numerous past studies have been devoted to devices which are designed to 

improve aircraft aerodynamics.  Studies to improve efficiency have been conducted on 

both biplanes and joined-wing aircraft.  Among the factors which can affect aircraft 

performance are airfoil camber and the formation of wing-tip vortices.  The distribution 

of the vortex sheet affects the total drag seen by the aircraft, which directly relates to the 

lift-to-drag efficiency ratio.   

2.2 Camber 

The chord line of an airfoil is created by drawing a straight line between the 

leading edge and the trailing edge.  The camber line is created by drawing a line from the 

leading edge to the trailing edge of an airfoil while keeping an equal distance between the 

top and bottom of the airfoil.  Figure 6 shows how camber can affect the lift produced by 

an airfoil.   

 

 

 

 

Figure 6:  How Camber Works (reproduced from Reference 27) 

 

An airfoil with zero camber creates zero lift at an angle of attack of zero.  When positive 

camber is introduced, positive lift is created at an angle of attack of zero.   
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2.3 Drag 

Drag is the force acting on an aircraft parallel to the free stream velocity.  It can 

be broken up into five major categories: form (pressure) drag, skin friction drag, 

interference drag, wave drag, and induced drag.  Form drag is caused primarily by the 

turbulent wake behind the aircraft due to pressure differences.  Streamlining an aircraft 

typically helps in the reduction of form drag.  Skin friction drag is a result of the 

interaction between particles of air and the aircraft’s surface due to boundary layer 

growth.  A smooth, polished surface often helps in the reduction of skin friction drag.  

Interference drag is due to interactions between different parts of the aircraft, such as the 

wing and a fuel tank.  Fairing and filleting attachment points can help to smooth the 

mixing of flow and reduce this type of drag.  Wave drag is a form of pressure drag that 

only comes into consideration in supersonic flight and is not a factor in this low-speed 

study.  The final type of drag that contributes to total aircraft drag is induced drag.  

Induced drag, also known as drag due to lift, is created primarily by the wing-tip vortices 

that form as an aircraft creates lift.  Also included in induced drag is the incremental 

change in pressure drag due to lift (change in angle of attack) (27).  A breakdown of drag 

in equation form follows: 

total parasite inducedD D D= +     (1) 

parasite form skin friction interferenceD D D D= + +   (2)  
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where totalD  (lbs) is total drag, parasiteD  (lbs)  is parasite drag, inducedD  (lbs)  is induced 

drag, formD  (lbs)  is form drag, skin frictionD  (lbs)  is skin friction drag, and interferenceD  (lbs)  is 

interference drag.   

For a given aircraft weight in steady, level unaccelerated flight, the drag vs. 

velocity curve helps to determine the most efficient speeds for maximizing range and 

endurance for a propeller-driven aircraft (see Figure 7). 

              

 

 

 

 

 

 

 

 

 

Figure 7:  Drag vs. Velocity at a Given Weight for Level Flight (reproduced from Reference 31) 

 

The velocity that will allow the aircraft to maximize its range is the velocity where the 

total drag is minimized.  At this velocity, the lift-to-drag ratio, L/D, is maximized and the 

induced drag is equal to the parasite drag (31).  The velocity for maximum endurance is 

found by finding the values of drag, D, and velocity, V, that minimize the ratio of D/V.  
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This can be done by drawing a line tangent to the curve through the origin.  At this 

velocity, the ratio of 3/ 2 /L DC C  is maximized and the induced drag is equal to three times 

the parasite drag (31): 

oDC = 
iDC   at L/Dmax    (3) 

    3
oDC = 

iDC   at 3/ 2 /L DC C max   (4) 

where 
oDC  (-) is the parasite drag coefficient and 

iDC  (-) is the induced drag coefficient. 

2.4 Wing-Tip Vortices 

Lift, when created by a wing, results from the net difference in pressure between 

the upper and lower surface of the wing.  If a higher pressure exists below the wing, then 

positive lift is created.  Because aircraft wings are finite in length, the flow over the 

wings acts in a three-dimensional manner to attempt to reach pressure equilibrium at the 

tip (see Figure 8).   

 

 

 

 

Figure 8:  Equalizing Pressure at the Wing Tips (reproduced from Reference 27) 

 

Wing-tip vortices form when high pressure induces a velocity from below a wing, 

around the wing tip to the lower pressure area above the wing.  This movement, 

combined with the flow of air past the airfoil from the free stream velocity, moves the 
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circular motion of flow downstream in a spiral pattern.  These are called wing tip vortices 

and can be seen in Figure 9. Vortices are usually located slightly above the wing tip.  

Velocities are highest at the core of a vortex and can sometimes approach 70% of the free 

stream velocity (16:304). 

 

 

 

 

 
 

 
Figure 9:  Tip Vortices Spiraling Downstream (reproduced from Reference 27) 

 

The wing-tip vortices cause a downward flow at the trailing edge of the wing.  

This downward flow, called downwash (see Figure 10), acts strongest near the wing tip 

while losing strength towards the aircraft body.  The downwash has two negative effects 

on the wing performance.  First, it causes the wing to experience a reduced effective 

angle of attack, therefore reducing the lift.  Second, it causes a portion of the lift to act as 

a drag force.  The portion of drag caused by the rotation of the lifting force is referred to 

as the induced drag, or drag due to lift (2).   
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Figure 10:  How Downwash is created (reproduced from Reference 27) 

 

Wing-tip vortices “can significantly diminish the aerodynamic performance of a 

finite wing as opposed to an airfoil” (16:304).  For a two-dimensional case (2-D airfoil or 

wing with infinite span), the induced drag is equal to zero (11:2).  However, for a three-

dimensional wing or aircraft, induced drag becomes a factor and contributes to the total 

drag.  The induced portion of total drag varies with different flight conditions.  Induced 

drag is more prevalent at slower aircraft speeds.  At slow speeds, such as landing or take-

off, induced drag can account for up to 75% of the total drag of an aircraft.  At higher 

speeds, such as for cruise, induced drag is generally around 25% of the total aircraft drag 

(16:304).  

2.5 Winglets 

 “Winglets are aerodynamic components, placed at the tip of a wing to improve its 

efficiency during cruise” (6).  The purpose of the winglet is to spread out the wingtip 

vortices by introducing a physical constraint to the flow field.  Spreading out the wingtip 

vortices causes a reduction in downwash, and therefore the induced drag (20; 11:1).  

Properly designed winglets can reduce overall drag, increase lift, provide added stability, 

increase safety, and improve roll performance.   
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“Concepts for reducing the strength of the aircraft wing tip vortices have been 

developed and demonstrated throughout the history of aviation by individuals, 

companies, and by government agencies including NASA and the Air Force” (16:305).  

Reducing the induced drag by the addition of wingtips has been researched since the mid 

1970’s when Dr. Richard Whitcomb at NASA Langley first proposed them (17).  They 

are currently being used on many different aircraft both commercially and militarily.  In 

fact, “data for the Boeing 747-400 indicate that without winglets the aircraft would suffer 

about 2.5% drag losses, which corresponds to +9.5 tons at take-off” (10).   

However, gaining all these advantages with winglets is not a simple task.  It is 

very difficult to properly design a winglet, as there are many design characteristics that 

have competing influences on the wing.  Of all of the advantages that winglets can 

provide, it is at the cost of an increased cross-sectional and wetted area, both of which 

cause the profile drag to increase.  It is difficult to produce a winglet that decreases the 

induced drag by more than it increases the profile drag.  There are so many variables to 

consider, that designing an optimized winglet can quickly become complicated (20).  

Often, a change is made to improve efficiency in one area without consideration of its 

effects on the other areas of aerodynamics.  “An evaluation of effectiveness of various 

devices for the attenuation of trailing vortices was performed by Kirkman et al.  It was 

found that while many devices show reduction in the maximum swirling velocity in the 

wake, the effects are typically accompanied by high drag penalties” (16:305).  

Nonetheless, winglets have, by and large, been accepted as effective fuel-saving 

aerodynamic devices by both small and large aircraft manufacturers. 
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2.6 Biplanes 

In the early days of aviation, biplanes were commonly used instead of 

monoplanes because of their advantages given the state of available structural materials.  

Wings were thin and materials were not as strong or durable as more modern 

technologies allow.  The biplane allows the use of struts and wires to support the upper 

and lower wing in a box-shaped configuration.  The shorter, stronger wings allow for 

superior maneuverability over monoplanes (important for early fighter aircraft).  The dual 

wing configuration is able to produce more lift than a single wing, but not without added 

drag from the struts, wires, extra wing surface area, and interference between the upper 

and lower wing.  “In a biplane, the load is not distributed equally between the wings.  The 

presence of one wing will affect the lift characteristics of the other wing” (22:1).  Still, 

for a given wing span, the biplane possesses advantages in aerodynamic efficiency when 

compared to the monoplane (28:536).  For a constrained wing area, however, the 

monoplane holds the aerodynamic advantage.  Other strengths of the biplane design 

include good load carrying capability, good lift to drag ratio combined with low wing 

loading, high lift at low speeds, and low-speed maneuverability (1:399).  

A biplane, and some of its common terminology, can be seen in Figure 11.  Gap, 

stagger, and angle of decalage are three important parameters when describing a 

biplane’s configuration.  The gap is the distance between the upper and lower wings, 

measured perpendicularly from the chord of the upper wing at the leading edge.  The 

stagger is the distance between the leading edges of the upper and lower wings, measured 

parallel with the chord of the upper wing.  The stagger is positive when the lower wing is 
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aft of the upper wing (22:2).  “The angle of decalage is the acute angle between the 

chords of the wings of a biplane.  The decalage shall be called positive when the lower 

wing has a smaller angle of attack than the upper wing” (22:2).   

 

 

 

 

 

 

 

 

 

 

Figure 11:  Biplane Terminology (reproduced from Reference 13) 

 

Studies have been done to find optimum configurations for these parameters.  

Two aerodynamicists, Nenadovitch and Olson, discovered certain combinations of gap, 

stagger, and decalage for rectangular, untwisted biplane wings that appeared to be 

optimal values.  The optimum values were a gap of 1 chord, a stagger of 0.875 chord, and 

a decalage angle of -5° (24:6).  “Numerical two-dimensional analysis by Rokhsaz 

confirmed that the combinations determined by Nenadovitch do approach optimum 

arrangements” (11:2). 
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 Studies have looked into the addition of winglets for the optimized biplane 

configuration.  One 1985 study, a joint effort between NASA Langley Research Center 

and Pennsylvania State University, used a model consisting of two wings, with NACA 

0012 sections, chords of 8” and semi-spans of 20”, set up in the optimized configuration.  

The upper and lower wings were connected to one another at the wing tips by a constant 

chord NACA 0003 section.  A 5% increase in CLα and a 4% increase in CLmax were 

gained with the addition of winglets.  The advantages of winglets were only seen at 

values of CL greater than 0.4.  This is because below this value of CL (at low angles of 

attack), the decrease in induced drag had not yet overcome the increase in profile drag 

from the addition of winglets (11:2).   

2.7 Joined Wings 

For most joined-wing aircraft, the rear wing is attached at its root to the top of the 

vertical tail or rear of the aircraft.  The rear wing then sweeps forward to join the trailing 

edge of the swept back main wing.  “The rear wing is used both for pitch control and as a 

structural support for the forward wing” (14:897).  This wing configuration forms a 

diamond-like shape in both the top view and front view of the aircraft (30:161).  A front 

view of an example joined-wing can be seen in Figure 12.  

 

 

 

Figure 12:  Front View of a Joined-Wing Aircraft (reproduced from Reference 30) 
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 “The main concern of the early biplanes was the large profile drag due to the 

structural wires that connected the wings.  Today, the joined-wing configurations have 

eliminated the connecting wires” (7:2).  As structural strength of materials advanced, 

monoplanes became more efficient than biplanes.  A monoplane’s wings could be 

designed with high aspect ratios, allowing for more efficient flight.  But there are still 

limits to how high the aspect ratios can actually be given the need for maneuverability 

(with material strength still limiting the design).  A joined-wing aircraft allows for the 

aspect ratio to be increased even more from the monoplane design.  Wings on a joined-

wing aircraft can be built with smaller chord lengths, thinner airfoils, or longer wingspans 

because the upper and lower wings are braced to one another, increasing their load 

bearing capabilities.   

Many benefits of optimally loaded joined-wing configurations have been found 

when compared to other aircraft of the same wingspan.  These include the potential of 

lower structural weight, high stiffness of the wings, good stability and control at both 

normal flight and stall, suitability for thin airfoils, higher possible aspect ratios, higher 

efficiency factors, reduced induced drag, reduced wetted area, reduced parasite drag, and 

reduced total drag (7:2; 14:897-8: 30:161,176).  

The chosen design of a joined-wing aircraft depends on its application and goals.  

Sometimes it may be beneficial to maximize weight savings, minimize induced and 

parasite drag, or minimize wave drag (thin airfoils for supersonic flight) (30:175).  

“Joined wings are not always lighter than single wings.  Weight will be saved only if the 

geometric parameters of the joined wing are properly chosen and if the internal wing 
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structure is optimized” (7:2).  When trying to minimize drag (improve efficiency), it is 

important to consider each flight condition for a given mission.  Constraints such as 

takeoff distance, rate of climb, and landing distance could increase the need for more 

wing area and offset any possible reduction in drag (14:898).    

2.8 Aircraft Efficiency 

The lift-to-drag ratio, L/D, is a primary measure of aircraft efficiency.  If a 

propeller driven aircraft is flying at its maximum lift-to-drag ratio, L/Dmax, then its range 

is optimized.  L/D is usually optimized for given flight conditions (altitude) and desired 

lift (or aircraft weight for straight and level flight).  With this information, a specific 

combination of velocity and angle of attack will maximize the lift-to-drag ratio.  This is 

the speed and angle of attack that should be flown for the given flight conditions.  A 

history of lift-to-drag ratios for common aircraft can be seen in Table 1.  The maximum 

L/D values range from approximately 8 to 20. 

 
Table 1: Lift-to-Drag Ratios of Historical Aircraft (reproduced from Reference 9)  

 
Type of Aircraft L/D Ratio  Subsonic Aircraft L/D max 

Supersonic Jet Transport (Concorde) 8  Boeing B707-320 19.4 
Tilt-rotor aircraft 9 to 10  Douglas DC-8 17.9 

New Supersonic Transport * 15  Airbus A320 17 
Oblique Flying Wing * 16 to 17  Boeing 767-200 19 
Subsonic Jet Transport 16 to 18  Boeing 747-100 17.7 

Bomber B-52 20  Douglas DC-10 17.7 
* Estimated data   Lockeed Tristar 17 

   Douglas DC-9 (1966) 16.5 
   Boeing B727-200 16.4 
   Douglas DC-3 (1935) 14.7 
   Ford Trimotor (1927) 12 
   Wright Flyer I (1903) 8.3 
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A graph showing the historical trend of maximum lift-to-drag ratio for propeller-

driven aircraft can be seen in Figure 13.  The steep rise in L/Dmax from 1920 to 1930 is a 

result of the switch from biplanes to monoplanes (higher aspect ratio) because of the 

advancement in fabrication materials and the reduction in parasite drag (13).  The 

reduction in parasite drag was due to advancements in aerodynamic design (streamlined 

design, minimizing interference drag, etc).  Not much change took place from 1940 to 

1980, but as further advancements in technology have occurred between 1980 and now, 

the max L/D value has continued to increase (L/Dmax ≈ 19.4 for the Boeing 707) (13).  

   

 

 

 

 

 

 

 

 

 

Figure 13:  Max Lift-to-Drag Ratio of Propeller-Driven Aircraft (reproduced from Reference 13) 
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The effective aspect ratio, e AR , is also used as a measure of efficiency for an 

aircraft.  With information about the lift and induced drag of an aircraft, the effective 

aspect ratio can be solved for using the equation: 

2

i

L
D

CC
e ARπ

=
⋅ ⋅

                                    (5) 

where CDi is the induced drag coefficient, CL is the lift coefficient, e is the span efficiency 

factor, AR is the aspect ratio, and the combination e AR is the effective aspect ratio. 

2.9 Hot-Wire Anemometry 

A constant temperature anemometer (CTA) is often used to collect fluid 

velocities.  In a CTA, a control algorithm maintains the anemometer wire at a constant 

temperature.  Electric current is supplied to the wire while tracking wire resistance.  Air 

velocity is directly related to the rate of wire heating.  The rate at which the heat 

dissipates off the relatively hot wire, into the surrounding cool air, is dependent on the 

velocity of the fluid going past the wire.  So, as the velocity of the fluid changes, the 

controller hardware must increase or drop the current supplied to keep the resistance 

constant.  This change in current can be measured and calibrated, so that it can be 

converted into a fluid velocity (25).  Two advantageous reasons for using a CTA are 

accuracy and high time dependent resolution.  The latter reason lends itself to use in 

collecting and analyzing turbulent flow data (29).     
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III. Methodology 

3.1 Chapter Overview 

The 24” Houck Configuration and 3 variations with altered flow guides were 

tested in the AFIT low-speed wind tunnel using numerous methods for collecting data.  

The types of data collected in this study include strain-gage balance data, hot-wire 

anemometry data, and flow visualization using tufts.  The methods of reducing data 

collected by these techniques are covered in this chapter.  The results from these tests are 

also compared with results from other studies.  The first study referenced in this report 

tests the same 24” Houck Configuration using computational fluid dynamics methods 

(CFD analysis).  These tests were performed by AFRL/VA, WPAFB, OH (from 2006 to 

2007).  The second study referenced for this report was performed by students at the 

United States Air Force Academy (Fall 2006).  The tests done in that study were done on 

an 18” Houck Configuration and tested in the USAFA Subsonic Wind Tunnel.   

3.2 Experimental Equipment 

3.2.1 24” Houck Configuration 

The model used for this study was the 24” Houck Configuration.  It was designed 

and crafted by Ronald G. Houck II.  As part of this research effort, the configuration was 

scanned using FARO’s Portable Measurement Arm precision measurement instrument.  

This allowed for a computational replica of the specific 24” Houck Configuration 

analyzed in this study to be created.  The aircraft parameters can be seen in Figure 14.  

The length of the aircraft is 23.90” and the wingspan is 23.58”.  The root chord of the 

lower (front) wing is 6.10” and starts 7.17” back from the front of the aircraft.  The root 
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chord of the upper (back) wing is 5.02” and starts 19.11” back from the front of the 

aircraft.  The average root chord of the upper and lower wing is 5.56”.  The tip chord for 

both wings is 7.50”.  The average chord, c , is 6.53”.  This was found by averaging lowerc  

and upperc .  The lower wing has a taper ratio of 1.23 and a leading edge sweep angle of 

24º.  The upper wing has a taper ratio of 1.49 and a leading edge sweep angle of -31º.  If 

biplane parameters were applied to the 24” Houck Configuration, it would have a gap of 

0.5 c , a stagger of 1.83 c , and a decalage angle of 2º.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14:  Front and Top View - 24” Houck Configuration with Dimensions 

 

u 

u 



 

21 

3.2.2 Variations of 24” Houck Configuration 

The first stet of variations tested for the 24” Houck Configuration incorporated 

changes in the aileron deflections.  The first variation was the original model with the 

ailerons deflected 20° down.  For the second variation, the ailerons were deflected 20° 

up.  The ailerons are located on the trailing edge of the upper wing and can be seen in the 

three-view representation of the 24” Houck Configuration in Figure 5.  The different 

aileron variations can be seen in Figure 15. 

 

 

 

Figure 15:  Different Aileron Variations 

 

Next, different variations in the flow guides were tested.  In order to test these 

variations, the flow guides of the original model needed to be cut using a Dremel tool, 

equipped with a cutting disc (see Figure 16).  The newly formed flow-guide edges were 

then sanded and taped in order to assure a smooth surface.  The creation of the three flow 

guide variations was performed, chronologically near the end of the investigation. 

Original Ailerons:  20º down Ailerons:  20º up 
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Figure 16:  Tools used to Alter Flow Guides 

 

 Three different flow guide variations were created and tested.  The first variation 

was a 1” strip cut out of the center of the flow guide, parallel with the reference angle of 

attack, α = 0°.  The 1” cut variation can be seen in Figure 17.  The second variation was a 

2” strip cut out of the center of the flow guide, parallel with the reference angle of attack.  

The 2” cut variation can be seen in Figure 18.  The third variation with respect to flow 

guide alterations was a complete removal of the curved flow guides.  The variation 

without flow guides can be seen in Figure 19.  This variation was created so that a 24” 

Houck aircraft without flow guides could be used to compare with the full flow guide 

configuration (original 24” Houck Configuration).  This provides a reference point from 

which to measure a change in efficiency due to the addition of the patented flow guide 

design.   
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Figure 17:  24” Houck Configuration with 1” Cut in Flow Guide 

 

 

 

 

 
 

 

Figure 18:  24” Houck Configuration with 2” Cut in Flow Guide 

 

 

 

 

 
 

 

Figure 19:  24” Houck Configuration with No Flow Guides 
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3.2.3 AFIT Low-Speed Wind Tunnel 

A low-speed, open-circuit wind tunnel, located at the Air Force Institute of 

Technology, was utilized for the tests completed in this study.  A schematic of the AFIT 

low-speed wind tunnel can be seen in Figure 20. 

 

 

 

 

 

 

 

 

 

Figure 20:  Schematic of Low-Speed Wind Tunnel (reproduced from AFIT LSWT laboratory data) 

 

Initially, the tunnel fan draws ambient air through the intake plenum.  Next, the air is 

guided though an aluminum honeycomb flow-straightener and steel mesh anti-turbulence 

screens. After the flow passes the last anti-turbulence screen it passes through the 

convergent portion of the tunnel. The intake and convergent section of the tunnel are 

shown in Figure 21. 
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Figure 21:  Intake and Convergent Section of Wind Tunnel 

 

The convergent section of the tunnel directs the airflow to the octagon-shaped test 

section.  The test section has a height of 31” and a width of 44”.  After exiting the test 

section, the airflow enters a diffuser section and exhausts vertically upward back into the 

room.   The test model is mounted to an internal balance that is attached to a movable 

sting.  The sting is controlled by a movable control table and a pitch control device.  

Figure 22 shows the wind tunnel test section, sting mechanism, balance, and movable 

circular table for β measurements.   

 

 

 

 

 

 

Figure 22:  Test Section, Sting Mechanism, and Balance 
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Once the wind tunnel is set to a desired velocity, measurements can be taken.  

Angle of attack sweeps can be accomplished by pitching the balance/model using the 

angle control device (a system of bars and cables) as seen in Figure 23.  Sweeps of β, the 

sideslip angle, can be accomplished by rotating the circular β table (Figure 22). 

 

 

 

 

 

  

 

 

Figure 23:  Angle Control Device 

  

Data acquisition was accomplished using a computerized data acquisition system 

(see Figure 24) operated by an AFIT lab technician, Dwight Gehring, who has been 

trained and is proficient in operating the system.  All data files for test runs were stored 

for later data reduction and manipulation.  Values collected during each test run were α, 

β, tunnel speed, unresolved normal force, unresolved axial force, side force, pitch 

moment, yaw moment, and roll moment.  All forces and moments are measured about the 

balance center. 
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Figure 24:  Data Acquisition Station 

 

Before testing each variation of the 24” Houck Configuration, a tare run was 

completed for the same alpha sweep that would be tested during the actual test runs.  This 

allows for the weight of the model to be subtracted from the data at all angles of attack.  

It is also significant to mention that between each change in airspeed, the wind tunnel is 

brought back to V = 0 in order to assure that the balance is still calibrated correctly. 

 

3.2.4 AFIT 10 lb Strain Gage Balance 

A 10 lb strain gage balance, manufactured by Modern Machine and Tool 

Company, was used in the AFIT low-speed wind tunnel to record force measurements on 

the 24” Houck Configuration.  The balance can be seen, set up and ready for use in the 

wind tunnel, in Figure 25.   
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Figure 25:  AFIT 10 lb Strain Gage Balance 

 

Initial tests were conducted on the model using a 40 lb balance to test the range of 

forces acting on the aircraft at different speeds.  This was done in order to make sure that 

the 10 lb balance would not experience forces greater than the allowable range.  Forces 

greater than allowable range of the balance can damage the balance and invalidate 

calibration.  A list of the max allowable forces and moments for the balance can be seen 

in Table 2. 

 
Table 2: Max Allowable Forces and Moments for 10 lb Balance  

 
Component Max Load 

Normal 10 lbs 
Axial 5 lbs 
Pitch 10 in-lbs 
Roll 4 in-lbs 
Yaw 5 in-lbs 
Side 5 lbs 

 

The balance’s moment center is located 1.3350” aft of the screws where the balance is 

attached to the model.  Other dimensions of the balance can be seen in Appendix A. 
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3.2.5 Dantec Hot-Wire Anemometer 

For the hot-wire analysis in this report, a computer-controlled three-component 

CTA system was utilized.  The specific CTA System used, the Streamline 90N10, is 

manufactured by Dantec Dynamics.  The Dantec hot-wire probe (Figure 26) allows for 

three-dimensional velocity analysis because of its tri-axis wire configuration.  The hot-

wire probe is mounted to a computer controlled 3-axis traverse and positioned inside of 

the wind tunnel.  The traverse allows the probe to be accurately positioned and moved 

along the x, y, and z axes. 

 

 

 
Figure 26:  Dantec Hot-Wire Anemometer 

 

The Dantec software data acquisition program, when prompted, performs an 

automatic traverse using a predetermined grid while recording a series of velocity 

measurements at each step.  The area covered by the hot-wire probe (see Figure 28) was a 

two dimensional grid, in the y-z plane (150 mm high by 200 mm wide) with x a set 

distance (0.33”) downstream of the farthest aft point of the aircraft model.  The lower 

right corner of the grid was located 6” from the center line of the model and 1” below the 

bottom surface of the lower wing.  The hot-wire probe starts its path in the lower left 

corner of the grid and works its way around the grid in the path seen in Figure 27.  

Measurements were taken at the initial position and then the hot-wire probe moved to its 

new location.  Each movement of the hot-wire probe was at 5 mm increments in the x or 
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y direction (depending on its location within the grid.  In all, measurements were taken at 

1271 grid points.  A total of 1024 velocity measurements per location were recorded by 

the Dantec software (samples at a rate of 5 KHz) and then transferred to Microsoft Excel 

and Tecplot for further manipulation and analysis. 

 
Figure 27:  Example Path of Hot-Wire Anemometer 

 

 

 

 

 

 

 

 

 

 

 

Figure 28:  Placement of Hot-Wire Grid with respect to 24” Houck Configuration 

 

u u 
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3.2.6 Flow Visualization using Tufts 

For a portion of testing of the original 24” Houck Configuration, tufts were added 

to the surface of the wings.  The tufts consisted of light weight yarn and were applied to 

the top and bottom surfaces of the upper and lower wings, including the flow guides.  The 

dark colored (to contrast with the white aircraft body) yarn was cut at a length of 2” and 

applied to the aircraft using Scotch tape.   

 

 

 

 

 

 

Figure 29:  Tufts on 24” Houck Configuration for Flow Visualization 

 

The addition of the tufts is used in order to gain a better understanding of the flow 

around the 24” Houck Configuration.  Tufts will often reveal when and where a flow is 

either steady or unsteady over a wing surface.  Regions of separation or buffeting flow 

can also be determined (3:193-194).  Portions of the flow visualization tests were 

recorded using a digital camera. 
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3.3 Collecting and Processing the Data 

3.3.1 Correction of Balance Data using MATLAB 

After a wind tunnel test is completed, the data has to be reduced in order to get 

useable results.  This is done using a MATLAB m-file to perform a series of operations on 

the wind tunnel output data.  The MATLAB code was adapted from previous research 

accomplished by former AFIT students Rivera Parga and Deluca (26; 8).  The MATLAB 

code can be seen in Appendix B.  The m-file requires multiple inputs about the model 

and conditions at the time of testing (e.g., room temperature, barometric pressure) to be 

modified in the code for accurate results.  The weight of the 24” Houck Configuration 

was measured using a scientific scale and weighed 1.98 lbs (0.898 kg).  The temperature 

and pressure in the room at the time of testing usually varied for each wind tunnel run.  

These values were recorded at the time of testing and input into the code when needed. 

When the aircraft is mounted on the balance, it is not at the reference zero angle 

of attack.  The aircraft angle of attack, AoA, is offset 4.13° from the angle at which the 

balance is positioned.  This means that when the balance is at the 0° position, the aircraft 

is at 4.13° AoA.  For data reduction, calculations were done using the angle of the 

balance.  This is because the force measurements are with respect to the balance position.  

When discussing the aircraft’s position and performance, the offset aircraft reference 

AoA will be used.  The offset angle of attack can be seen in Figure 30.  The dashed red 

line is the aircraft reference line where the AoA is zero.  The dashed blue line represents 

the balance positioned inside of the model.  When the balance is level, the aircraft is 

pitched up at an angle of 4.13°. 
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Figure 30:  Location of Aircraft Center of Gravity and Balance Moment Center 

 

In order to obtain moment data from the balance, a reference center of gravity for 

the aircraft must be picked.  For the data reduction in this study, the center of gravity was 

placed at the quarter chord location of the two wings (1/4 of the way back from the 

leading edge of the front/lower wing to the trailing edge of the rear/upper wing).  The 

resulting center of gravity was 11.41” back from the nose of the aircraft in the x-direction 

and centered in the y and z directions (in the aircraft body coordinate system) (see Figure 

30).  The aircraft center of gravity (the green dot) is located 2.13” in front of the balance 

moment center (the blue dot) and 0.65” above balance moment center (in the wind axis 

coordinate system).  These values were input into the MATLAB code for data reduction. 

Data reduction via the MATLAB code starts by subtracting the tare data from the 

test data.  The resulting voltage measurements are used along with the calibration data to 

calculate the different forces acting on the balance.  A few corrections to the data are 

performed along the way.  The first correction made is to account for blockage of flow in 

the wind tunnel from the model.  This is done by determining a blockage correction 

factor.  This correction accounts for any change in the speed of the flow due to a 

reduction in the available cross-sectional area near the aircraft model.  The delta term 

u 
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(δb), a blockage correction factor, is approximated to be equal for all configurations 

because their effective spans of 23.58” (for the first three variations) and 20.33” (for the 

variation without flow guides) make little difference in the estimation of the parameter.  

The δ term was found to be 0.1177 using the chart found in Barlow, Rae, and Pope 

(3:387).  This was done by first calculating the wind tunnel aspect ratio: 

tunnel

tunnel

height
width

λ =                                     (6) 

where λ  is the wind tunnel aspect ratio, tunnelheight  (ft) is the height of the wind tunnel 

cross-section, and tunnelwidth  (ft) is the width of the wind tunnel cross-section.  For the 

AFIT low-speed wind tunnel, λ  = 0.705.  The next calculation needed was the ratio of 

the 24” Houck Configuration wingspan to the width of the wind tunnel: 

tunnel

bk
width

=                 (7) 

where k  (-) is the ratio of span to tunnel height, and b  (ft, m) is the wing span of the 

aircraft model.  For these tests, k  = 0.536.  The values of λ  and k  are then used to find 

the blockage correction factor, δb. 

 A second correction transfers the normal and axial balance data into the proper 

frame of reference, with respect to the flow.  This is so that the lift and drag data are with 

respect to the free stream velocity, and not the angle of the balance/aircraft.  The 

calculations of the lift and drag coefficients from the normal and axial force acting on the 

balance follows: 
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where LC  (-) is the lift coefficient, DC  (-) is the drag coefficient, N  (lbs) is the normal 

force acting on the balance, A  (lbs) is the axial force acting on the balance, α  (°) is the 

angle of attack of the balance, ρ  is the air density, V (mph, m/s) is the tunnel velocity, 

and S  (in2) is the planform area (wing area) of the aircraft model.   

 

3.3.2 Hot-Wire Analysis using Tecplot 

The hot-wire probe is placed into the wind tunnel through a slot in the top of the 

test section.  This slot runs in the y-direction, but does not cover the full width of the 

tunnel.  For this reason, the hot-wire probe had to be angled-out 20° in order to cover a 

grid that reached beyond the wingtip of the 24” Houck Configuration.  While this 

allowed the hot-wire probe to cover a grid behind the wing that was of interest, the data 

now had to corrected to get it into the wind-axis coordinate system.  The equations used 

for this correction follow:  

cos sinu x yθ θ= ⋅ − ⋅     (10) 

sin cosv x yθ θ= ⋅ + ⋅     (11) 

  w z=       (12) 
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where u  (m/s) is the u-component of velocity with respect to the wind axis, v  (m/s) is 

the v-component of velocity with respect to the wind axis, w  (m/s) is the w-component 

of velocity with respect to the wind axis, x  (m/s) is the x-component of velocity with 

respect to the hot-wire probe, y  (m/s) is the y-component of velocity with respect to the 

hot-wire probe, z  (m/s) is the z-component of velocity with respect to the hot-wire probe, 

and θ  (°) is the angle rotated about the z axis that the hot-wire probe differs from the u 

direction of flow. 

After this correction is made in Microsoft Excel, the turbulent kinetic energy 

normalized by the square of the average freestream velocity is calculated (18): 

 
2 2 2

2

1
2

rms rms rmsu v wKe
V

+ +
=    (13) 

where Ke (-) is the normalized turbulent kinetic energy, urms (m/s) is the root mean 

squared of all u-component velocity measurements, vrms (m/s) is the root mean squared of 

all the v-component velocity measurements, wrms (m/s) is the root mean squared of all the 

w-component velocity measurements, and V (m/s) is the average tunnel velocity.  By 

plotting the results from this calculation, the turbulent areas of flow behind the wing will 

be visible. 

 Next, the data was imported into Tecplot.  A vorticity calculation was done in 

order to visualize the location and strength of flow circulation within the grid behind the 

aircrafts wing.  Only the x-component of curl was needed because the grid is contained in 

the y-z plane.  The vorticity (curl) equation follows: 
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x x
w vcurl V
y z

ω ∂ ∂
= = −

∂ ∂
   (14) 

where ωx (1/s) is the x-component of vorticity, w (m/s) is the w-component of velocity, v 

(m/s) is the v-component of velocity, y (mm) is the y-direction with respect to the hot-

wire grid, and z (mm) is the z-direction with respect to the hot-wire grid.  From here, 

three different contour plots can be created: a u-component velocity contour, a non-

dimensional turbulence contour, and a vorticity contour. 

 

3.3.3 Uncertainty Analysis 

Uncertainty analysis was performed on the lift-to-drag ratio for the 24” Houck 

Configuration.  This was done by taking the equation for lift-to-drag and breaking it 

down into a form consisting only of measurements from the wind tunnel results: 

cos sin/
sin cos

L

D

C N AL D
C N A

α α
α α

⋅ − ⋅
= =

⋅ + ⋅
  (15) 

where /L D  (-) is the lift-to-drag ratio, CL (-) is the lift coefficient, CD (-) is the drag 

coefficient, N (lbs) is the normal force measurement from the balance, A (lbs) is the axial 

force measurement from the balance, and α (°) is the angle of the balance to the free 

stream velocity.   

The partial of this equation is then taken with respect to both N and A: 

2

( / )
( sin cos )

L D A
N N Aα α

∂
=

∂ ⋅ + ⋅
  (16) 
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2

( / )
( sin cos )

L D N
A N Aα α

∂ −
=

∂ ⋅ + ⋅
  (17) 

where ( / )L D
N

∂
∂

 is the partial of the lift-to-drag ratio with respect to the unresolved 

normal force, and ( / )L D
A

∂
∂

 is the partial of the lift-to-drag ratio with respect to the 

unresolved axial force.   

Next, a worst case possible error and a realistic case possible error in lift-to-drag 

can be calculated: 

( / ) ( / )( / )worst
L D L DL D N A

N A
∂ ∂

Δ = ⋅Δ + ⋅Δ
∂ ∂

   (18) 

2 2( / ) ( / )( / ) ( ) ( )realistic
L D L DL D N A

N A
∂ ∂

Δ = ⋅Δ + ⋅Δ
∂ ∂

  (19) 

where ( / )worstL DΔ  is a worst-case error value in lift-to-drag ratio, ( / )realisticL DΔ  is a 

more realistic error value in lift-to-drag ratio, NΔ  is the possible error in the normal force 

measurement, and AΔ  is the possible error in the axial force measurement.   

For the 10 lb balance, the uncertainty in the normal force measurement, NΔ , is 

nominally specified by the manufacturer to be no more than 0.025 lbs.  The uncertainty in 

the axial force measurement, AΔ , is by the same measure no more than 0.0125 lbs.  The 

range for the possible lift-to-drag ratio can then be determined: 

/ / ( / )rangeL D L D L D= ± Δ    (20) 
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where / rangeL D  is the possible range of the lift-to-drag ratio given uncertainty in the 

measurements taken, /L D  is the measured lift-to-drag ratio, and ( / )L DΔ is the possible 

error in the L/D measurement (in one direction).  

 

3.3.4 USAFA Wind Tunnel Results 

In the Fall of 2006, a study on a different Houck Configuration was completed at 

the United States Air Force Academy by students, C1C Brittany Oligney and C1C 

Margaret Frash, and professor, Dr. Thomas R. Yechout.  The model, tested in the 

USAFA Subsonic Wind Tunnel, was the USAFA 18” Houck Configuration.  This 

variation of the Houck Lifting Foil is similar to the 24” Houck Configuration, but with a 

few modifications.  The 18” model was designed using Eppler airfoil sections for the 

wings (high camber).  The fuselage was also streamlined in order to reduce the drag for 

the total aircraft.  The USAFA 18” Houck Configuration can be seen in Figure 31.  

Lateral-directional static stability data from the USAFA study is used for comparison 

with the 24” Houck Configuration.  The reference location for the center of gravity used 

in data reduction was 8.81” from the back of the model.  

 

 

 

 
 
 
 

Figure 31:  USAFA 18” Houck Configuration (reproduced from Reference 24) 
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3.3.5 AFRL Computational Fluid Dynamics Results 

  In order to test a computational model of the 24” Houck Configuration, one first 

had to be created.  This was task was completed by Jay R. Anderson of AFIT through the 

use of the FARO Portable Measurement Arm laser-line scanner.  The laser-line scanner is 

a precision measurement instrument and is able to accurately measure a model in three 

dimensions and create a computational model from it.  The model is first scanned 

manually using the FARO measurement arm.  In Polyworks, a polygonal file is created 

and modified to fill any gaps that are present in the data.  The file is then exported into an 

*.stl file for use in Solid Works.  Once a file existed in Solid Works, AFRL/VAAA 

adapted the computational model further so that it could be used with CFD analysis 

software.  This modified *.stl file can then be exported into Materialise and printed out in 

a three-dimensional modeler.  The laser-line scanner allowed the original 24” Houck 

Configuration, a hand-crafted model, to be replicated both physically and 

computationally for further testing. 

Computational Fluid Dynamics analysis data on the 24” Houck Configuration is 

used in this report for comparisons with the experimental wind tunnel data.  The CFD 

analysis has been completed by John Staiger of AFRL/VAAI (Air Vehicles Directorate).  

CFD analysis was completed on the 24” Houck Configuration using a grid with 1.4 

million cells generated by AVUS (a CFD program). 
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3.4 Test Plan 

3.4.1 Overview 

A summary of the tests performed on the various Houck Configurations can be 

viewed in Table 3.  Experimental information has been collected using three primary 

methods:  balance data, hot wire analysis, and flow visualization.  Further detail for each 

variation of the Houck Configuration will be discussed in detail throughout the remainder 

of this section. 

Table 3: Summary of Tests Performed 
 

   Balance Data Hot Wire Flow Viz 
Configuration Re (-) V α Sweep β Sweep α = -2º α = 4º α = 8º 50 mph 

Orig. 24" Houck 80K 20 mph √ √    
Orig. 24" Houck 125K 30 mph √ √ √ √ √ 
Orig. 24" Houck 170K 40 mph √     

√ 

δ = 20º down 80K 20 mph √      
δ = 20º down 125K 30 mph √  √ √ √  
δ = 20º down 170K 40 mph √      
δ = 20º up 80K 20 mph √      
δ = 20º up 125K 30 mph √  √ √ √  
δ = 20º up 170K 40 mph √      

1" Cut in FG 80K 20 mph √      
1" Cut in FG 125K 30 mph √      
2" Cut in FG 80K 20 mph √      
2" Cut in FG 125K 30 mph √      

No Flow Guide 80K 20 mph √      
No Flow Guide 125K 30 mph √  √ √ √  

AFRL 24" CFD Houck 170K 40 mph √      
USAFA 18" Houck 545K M = 0.25 √ √     
 

 

3.4.2 Original 24” Houck Configuration 

Testing began with the original 24” Houck Configuration variation.  The model 

was placed in the AFIT low speed wind tunnel on the 10 lb balance and data was taken 
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for three different α sweeps (20 mph (8.94 m/s, Re ≈ 80K), 30 mph (13.41 m/s, Re ≈ 

125K), and 40 mph (17.88 m/s, Re ≈ 170K)) from -5º to 15º in 1º increments.  Data was 

also taken for two different β sweeps (20 mph (8.94 m/s, Re ≈ 80K) and 30 mph (13.41 

m/s, Re ≈ 125K)) from -8º to 8º in 1º increments.  Hot-wire data was then taken at 30 

mph (Re ≈ 125K) for three different angles of attack of interest.  An angle of attack of -2º 

was picked because lift was approximately zero at this location, α = 4º was chosen 

because L/D was approximately maximized at this location, and α = 8º was used because 

it provided an angle of attack that was into the range where efficiency (in terms of L/D) 

started to decrease.  Flow visualization analysis was also accomplished at a speed of 50 

mph (22.34 m/s, Re ≈ 205K) using tufts and a video recorder. 

 

3.4.3 Original 24” Houck Configuration with Aileron Deflections 

Next, testing was done on two variations of the 24” Houck Configuration with 

respect to aileron deflections.  In these variations the ailerons were deflected, δ = 20º 

down and δ = 20º up (δ = 0º has already been tested, the original 24” Houck 

Configuration).  Each variation was placed in the AFIT low speed wind tunnel on the 10 

lb balance and data was taken for three different α sweeps (20 mph (8.94 m/s, Re ≈ 80K), 

30 mph (13.41 m/s, Re ≈ 125K), and 40 mph (17.88 m/s, Re ≈ 170K)) from -5º to 15º in 

1º increments.  Hot-wire data was then taken at 30 mph (Re ≈ 125K) for three different 

angles of attack (α = -2º, 4º, and 8º).  The same angles of attack that were tested for the 

original 24” Houck Configuration with δ = 0º were used again so that comparisons could 

be made between the results for different variations of the aircraft. 
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3.4.4 Original 24” Houck Configuration with Changes to the Flow Guides 

Next, testing was done on three variations of the 24” Houck Configuration with 

respect to changing the flow guides.  The three variations tested are a 1” cut in the flow 

guide, a 2” cut in the flow guide, and the flow guides completely cut off (the complete 

flow guide variation has already been tested, the original 24” Houck Configuration).  

Each variation was placed in the AFIT low speed wind tunnel on the 10 lb balance and 

data was taken for two different α sweeps (20 mph (8.94 m/s, Re ≈ 80K), and 30 mph 

(13.41 m/s, Re ≈ 125K))from -5º to 15º in 1º increments.  Testing was not done at 40 

mph for the modified models because the structural integrity of the wings had been 

reduced by cutting the flow guides.  Hot-wire data was only taken on the variation with 

the flow guides completely cut off.  Hot-wire data was taken at 30 mph (Re ≈ 125K) for 

three different angles of attack (α = -2º, 4º, and 8º).  The same angles of attack that were 

tested for the original 24” Houck Configuration with flow guides were used again so that 

comparisons could be made between the results for the different variations of the aircraft 

at similar angles of attack. 
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IV. Results & Analysis 

4.1 Chapter Overview 

In this chapter, results will be shown for numerous tests conducted on different 

variations of the 24” Houck Configuration.  Six different variations of the 24” Houck 

Configuration are tested:  the original 24” Houck Configuration with no aileron 

deflection (δ = 0°), the original 24” Houck Configuration with δ = 20° down, the original 

24” Houck Configuration with δ = 20° up, the 24” Houck Configuration with a 1” section 

cut out of each flow guide, the 24” Houck Configuration with a 2” section cut out of each 

flow guide, and the 24” Houck Configuration with no flow guides. 

The results will be divided into three main sections.  The first section will show 

the results of the original 24” Houck Configuration, δ = 0°.  This section includes flow 

visualization using tufts, balance data using α sweeps, balance data using β sweeps, and 

hot-wire analysis all performed in the AFIT low-speed wind tunnel.  The second section 

will compare the three different aileron variations of the original 24” Houck 

Configuration:  δ = 0°, δ = 20° down, and δ = 20 up°.  Only balance data using α sweeps 

and hot-wire analysis, both performed in the AFIT low-speed wind tunnel, will be 

described in this section.  The third section will compare 4 variations of cuts to the flow 

guides for the 24” Houck Configuration, δ = 0°:  no cuts to the flow guides (original), a 

1” section cut from each flow guide, a 2” section cut from each flow guide, and the flow 

guides completely cut off.  Once again, only balance data using α sweeps and hot-wire 

analysis, both performed in the AFIT low-speed wind tunnel, will be described in this 

section.   
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4.2 Original Houck Configuration 

4.2.1 Flow Visualization 

Analysis of the flow visualization was completed on the 24” Houck Configuration 

at a speed of 50 mph (Re ≈ 215K).  Flow visualization helps to provide a glimpse of how 

the air flow moves and reacts near the surface of the aircraft.  A view of the tufts on the 

Houck model reacting to the flow (50 mph at α = 8.22°) can be seen in Figure 32.  In 

Figure 32(a), the flow can be seen moving upward and around the flow guide.  The 

strength of the upward flow grows as the flow moves over the flow guide.  Figure 32(b) 

shows the direction of the flow as it moves past the underside of the lower wing.  The 

outward spanwise flow grows in strength the as it approaches the wing tip.  These two 

occurrences are a result of air in the high pressure region below the wing circulating 

about the flow guide toward the low pressure region above the wing in order to reach 

equilibrium.    

 

 

 

 

 

 

(a)                                    (b) 

Figure 32:  Flow Visualization of 24” Houck Configuration at 50 mph, 8.22° AoA 

(a) Flow over and around the wingtip, (b) Flow past the lower wing 
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To capture the flow visualization for a range of angles of attack, video footage 

was taken of the 24” Houck Configuration, δ = 0°, with tufts for an alpha sweep (α = -4° 

to 12°) at a speed of 50 mph (22.35 m/s).  This video is summarized in Figure 33 and 

provides a glimpse at when and where separation occurs on the wings.  From angles of 

attack of -4° to 4°, there is very little change in the direction of the tufts (from a top view 

of the aircraft).  As α increases from 4° to 5°, two tufts start to flutter (1st row of tufts, 2nd 

and 3rd from the left).  This is the start of separation on the lower wing.  By α = 6°, the 

separation bubble has grown over the front section of the lower wing.  As α increases 

from 7° to 9°, the region of separation continues to expand toward the trailing edge of the 

lower wing.  When the angle of attack is between 10° and 12°, separation can be seen on 

the upper wing.  This knowledge will be referenced later in the chapter in order to help 

explain some of the 24” Houck Configuration’s performance.   

 

 

 

 

Figure 33:  Flow Visualization of 24” Houck Configuration at 50 mph:  Progression of Separation 

 

4.2.2 Wind Tunnel Balance Data – Alpha Sweeps 

In the AFIT low-speed wind tunnel, an alpha sweep from approximately -5º to 15º 

by 1º steps was performed on the 24” Houck Configuration at three different speeds:  20 

mph (8.94 m/s), 30mph (13.41 m/s), and 40 mph (17.88m/s).   A summary of the 
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resulting aerodynamic performance of the 24” Houck Configuration at Re ≈ 80,000 (20 

mph), Re ≈ 125,000 (30 mph), and Re ≈ 170,000 (40 mph) can be seen in Table 4.  Each 

performance parameter will be discussed in this section with its corresponding graph. 

 
Table 4: Aerodynamic Performance of 24” Houck Configuration  

 
  Min Drag Zero Lift Slopes    

Configuration Re (-) CDo (-) α (º) α 0 Lift (º) CLα (/°) Cmα (/°)    
Orig. 24" Houck 80K 0.0281 -0.90 -2.32 0.0488 -0.0061    
Orig. 24" Houck 125K 0.0229 -1.01 -2.59 0.0457 -0.0056    
Orig. 24" Houck 170K 0.0219 -1.20 -2.62 0.0439 -0.0059    

          
  Max Range Max Endurance 

Configuration Re (-) L/D (-) α (º) CL (-) CD (-) CL
(3/2)/CD (-) α (º) CL (-) CD (-) 

Orig. 24" Houck 80K 6.50 4.30 0.286 0.044 3.75 6.70 0.420 0.112 
Orig. 24" Houck 125K 7.43 4.20 0.295 0.040 4.20 5.30 0.340 0.081 
Orig. 24" Houck 170K 8.02 4.00 0.293 0.037 4.53 5.10 0.340 0.075 

 

The drag coefficient, CD, for the 24” Houck Configuration is shown in Figure 34 

for three different Reynolds numbers based on the average root chord of the upper and 

lower wings (80K, 125K, and 170K).  CD has been plotted both versus CL and α.  From 

the drag polar, the minimum drag coefficient, CDo, of the 24” Houck Configuration can be 

attained.  CDo = 0.0281 at α = -0.90° for Re ≈ 80K.  CDo = 0.0229 at α = -1.01° for Re ≈ 

125K.  CDo = 0.0219 at α = -1.20° for Re ≈ 170K.  For these Reynolds numbers, the 

minimum drag coefficient decreases as Reynolds number increases. 
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              (a)                                  (b) 

Figure 34:  Drag Coefficient – 24” Houck Configuration 

(a) Drag Coefficient vs. Lift Coefficient (Drag Polar), (b) Drag Coefficient vs. Alpha 

 

Figure 35(a) plots the lift coefficient, CL, vs. α for the 24” Houck model at three 

different Reynolds numbers (80K, 125K, and 170K).  From the lift curve, a number of 

important aerodynamic values can be attained.  CLmax is the maximum lift coefficient of 

the aircraft.  Flying at an angle of attack that yields CLmax will produce the highest 

amount of lift for an aircraft at a given speed.  CLmax usually occurs right before the onset 

of stall.  However, in the tests performed, a maximum value of CL for the aircraft was 

never achieved for the α range studied due to the gradual stall characteristics of the 

aircraft.  Tests were conducted well past the linear region of CLα, but a loss of lift was not 

detected up to α = 15°.  Higher angles of attack may have provided a stall point, but given 

the reduced strength of the model, higher angles of attack were not attempted in order to 

reduce the risk of damaging the aircraft or wind tunnel.  CLα is the lift curve slope, and 

gives a ratio of change of CL with respect to α for the linear region of the lift curve, while  
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α0 Lift is the angle of attack where the aircraft produces zero lift.  At a Reynolds number of 

80K for the 24” Houck Configuration, α0 Lift = -2.32° and CLα = 0.0488 per degree.  At a 

Reynolds number of 125K for the aircraft, α0 Lift = -2.59° and CLα = 0.0457 per degree.  

At a Reynolds number of 170K for the Houck Configuration, α0 Lift = -2.62° and CLα = 

0.0439 per degree.   

Figure 35(b) plots the pitching moment coefficient, Cm, vs. the angle of attack, α, 

for the 24” Houck Configuration at three different Reynolds numbers (80K, 125K, and 

170K).  The longitudinal static stability derivative, Cmα, can be attained from this plot.  It 

is desirable to have a negative value for Cmα.  In flight, a negative value of Cmα will 

restore the aircraft to its trim state (where Cm = 0) when perturbed.  The 24” Houck 

Configuration is longitudinally stable about the reference CG (11.41” aft of the nose), for 

all three Reynolds numbers tested.  At a Reynolds number of 80K, Cmα = -0.0061 per 

degree and Cm = 0 at α ≈ -0.9°.  At a Reynolds number of 125K, Cmα = -0.0056 per 

degree and Cm = 0 at α ≈ -1.3°.  At a Reynolds number of 170K, Cmα = -0.0059 per 

degree and Cm = 0 at α ≈ -1.4°. 
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                                         (a)                                                                  (b) 

Figure 35:  Lift Coefficient and Pitch Moment Coefficient – 24” Houck Configuration 

(a) Lift Coefficient vs. Alpha, (b) Pitch Moment Coefficient vs. Alpha, reference location of CG used 

 

Figure 36 shows the lift-to-drag ratio for the 24” Houck Configuration at three 

different Reynolds numbers (80K, 125K, and 170K).  L/D has been plotted versus α and 

CL.  Lift-to-drag is one measure of an aircraft’s efficiency.  When an aircraft is flying at 

the angle of attack that produces its maximum L/D, the aircraft is maximizing its range 

(31).  At a Reynolds number of 80K for the 24” Houck Configuration, L/Dmax = 6.50 at α 

= 4.30° and CL = 0.286.  At a Reynolds’ number of 125K, L/Dmax = 7.43 at α = 4.20° and 

CL = 0.295.  At a Reynolds number of 170K, L/Dmax = 8.02 at α = 4.00° and CL = 0.293.  

There is a strong correlation between an increase in Reynolds number and an increase in 

L/D values.  The efficiency of the Houck model is increasing as the Reynolds number 

increases for the Reynolds numbers tested.  L/D values for each Reynolds number 

increase during the range α ≈ -4° to 3.9°.  Once L/Dmax at each Reynolds number is 

reached, the L/D values start to decrease.    This occurs beyond α ≈ 4.4° and CL ≈ 0.310, 
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and is likely due to the separation that starts to develop on the lower wing around this 

angle of attack (known from flow visualization). 

 

 

 

 

 

 

 
 
                                        (a)                       (b) 

Figure 36:  Lift-to-Drag – Max Range – 24” Houck Configuration 

(a) Lift-to-Drag vs. Alpha, (b) Lift-to-Drag vs. Lift Coefficient 

 

Figure 37 shows the lift-to-drag ratio plotted with error bars created through 

uncertainty analysis using the balance manufacturer’s specification for sensitivity.  These 

results can be seen in numerical form in Table 5.  A worst case scenario, where each 

possible source of error occurs at once in the same direction, and a more realistic case 

have been calculated for each Reynolds number.  For a Reynolds number of 

approximately 80K, the worst case error ranges from 2.09% to 21.07% of the maximum 

L/D ratio and the more realistic case ranges from 1.69% to 16.07% of L/Dmax.  The 

possible error at L/Dmax was 16.20% for the worst case and 12.98% for the realistic case.  

At Re ≈ 125K, the worst case error ranges from 0.85% to 9.83% of L/Dmax while the 

more realistic case ranges from 0.70% to 7.42% of L/Dmax.  The possible worst case error 
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at L/Dmax was 6.89% while the more realistic case error was 5.63%.  For a Reynolds 

number of approximately 170K, the worst case error ranges from 0.57% to 5.67% of the 

maximum L/D ratio and the more realistic case ranges from 0.47% to 4.33% of L/Dmax.  

The possible error at L/Dmax was 4.75% for the worst case and 3.84% for the realistic 

case.  As expected, the error values are decreasing as the Reynolds number is increased 

since higher velocities correspond to larger balance loading and therefore, increased 

sensitivity.  These uncertainty values are conservative, as the actual uncertainty values for 

the balance measurements are likely smaller than published in order to help assure the 

balance meets specifications. 

 

 
 
 

 

 

 

 

 
 

     (a)                     (b) 

Figure 37:  Lift-to-Drag – Uncertainty Analysis – 24” Houck Configuration 

(a) Worst Case Uncertainty Analysis, (b) Realistic Uncertainty Analysis 
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Table 5: Uncertainty Analysis in L/D for 24” Houck Configuration  
 

  Re = 80K (20 mph) Re = 125K (30 mph) Re = 170K (40 mph) 

   
Error in % of 

L/Dmax  
% Error of 

L/Dmax  
% Error of 

L/Dmax 
α balance (º) α aircraft (º) L/D (-) Worst Realistic L/D (-) Worst Realistic L/D (-) Worst Realistic

-8.43 -4.30 -3.31 12.91% 10.48% -3.58 5.89% 4.89% -3.53 3.14% 2.60% 
-7.40 -3.27 -2.00 11.04% 7.95% -1.98 4.94% 3.55% -1.93 2.62% 1.88% 
-6.28 -2.15 -0.41 7.95% 6.43% -0.02 3.08% 2.88% 0.15 1.59% 1.56% 
-5.16 -1.03 1.42 12.05% 8.82% 2.13 6.49% 4.61% 2.46 3.73% 2.64% 
-4.03 0.10 3.17 17.70% 12.59% 4.20 9.04% 6.54% 5.05 5.25% 3.86% 
-2.91 1.22 4.70 20.60% 15.18% 5.94 9.83% 7.42% 6.64 5.67% 4.33% 
-1.78 2.35 5.79 21.07% 16.07% 6.86 9.31% 7.25% 7.51 5.38% 4.23% 
-0.66 3.47 6.36 19.32% 15.16% 7.36 8.37% 6.70% 7.96 4.75% 3.84% 
0.46 4.59 6.48 16.20% 12.98% 7.39 6.89% 5.63% 7.94 3.88% 3.20% 
1.51 5.64 6.12 11.97% 9.68% 6.99 5.33% 4.41% 7.42 2.91% 2.43% 
2.64 6.77 5.77 9.11% 7.45% 6.41 4.00% 3.33% 6.72 2.13% 1.79% 
3.75 7.88 5.24 6.82% 5.59% 5.73 2.96% 2.47% 5.94 1.55% 1.30% 
4.83 8.96 4.65 5.14% 4.19% 5.04 2.20% 1.82% 5.16 1.14% 0.95% 
5.90 10.03 4.14 4.06% 3.28% 4.45 1.72% 1.42% 4.54 0.90% 0.75% 
6.96 11.09 3.80 3.38% 2.73% 4.06 1.43% 1.17% 4.18 0.76% 0.63% 
8.00 12.13 3.52 2.91% 2.34% 3.78 1.22% 1.00% 3.86 0.65% 0.53% 
8.97 13.10 3.30 2.56% 2.06% 3.54 1.07% 0.87% 3.61 0.57% 0.47% 
10.01 14.14 3.12 2.30% 1.85% 3.31 0.95% 0.78%    
11.06 15.19 2.95 2.09% 1.69% 3.11 0.85% 0.70%    

 

In order to show the conservative nature of the uncertainty analysis, a plot has 

been prepared to show the repeatability of the wind tunnel tests.  Most of the data taken 

on the original 24” Houck configuration was taken in November of 2006.  Prior tests 

were also completed in the early stages of the study.  Figure 38 shows a comparison of 

lift-to-drag data taken in both September of 2006 and November of 2006 at a Reynolds 

number of approximately 125K.  The data for the September test can be seen in Table 20, 

Appendix C.  The model and 10 lb balance were taken out of the wind tunnel between 

tests.  The balance was then put back into the wind tunnel, the balance was calibrated, 

and the model was mounted onto the balance.  Even after all of these changes, the results 
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for the two tests are almost indistinguishable from one another.  The maximum value for 

L/D for the September data is 7.313.  L/Dmax for the November data is 7.386.  This is a 

difference of less than 1% between the data points.  It is far less than the conservative 

error of 5.63% determined by the uncertainty analysis. 

 

 

 

 

 

 

 

 

 

Figure 38:  Lift-to-Drag – Repeatability – 24” Houck Configuration 

 

Figure 39 shows the ratio of CL
3/2/CD for the 24” Houck Configuration at three 

different Reynolds numbers (80K, 125K, and 170K).  CL
3/2/CD has been plotted both 

versus α and CL.  CL
3/2/CD is another measure of an aircraft’s efficiency.  When an 

aircraft is flying at the angle of attack that produces its maximum CL
3/2/CD, the aircraft is 

maximizing its endurance (time in flight with a set amount of fuel).  At a Reynolds 

number of 80K for the 24” Houck Configuration, CL
3/2/CD max = 3.75 at α = 6.70° and CL 

= 0.420.  At a Reynolds’ number of 125K, CL
3/2/CD max = 4.20 at α = 5.30° and CL = 
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0.340.  At a Reynolds number of 170K, CL
3/2/CD max = 4.53 at α = 5.10° and CL = 0.340.  

Similar to L/D, there is a strong correlation between an increase in Reynolds number and 

an increase in CL
3/2/CD values.  CL

3/2/CD values for each Reynolds number increase 

during the range α ≈ -4° to 5°.  Once CL
3/2/CD max at each Reynolds number is reached, 

the CL
3/2/CD values start to decrease.  This occurs beyond α ≈ 6.8° and CL ≈ 0.43.  The 

reduction in the endurance efficiency is also likely due to the increasing amount of 

separation visible on the lower wing around α = 5° and higher.  

 
 
 

 

 

 

 

 
 

 
        (a)                                     (b) 

Figure 39:  CL
3/2/CD– Max Endurance – 24” Houck Configuration 

(a) CL
3/2/CD vs. Alpha, (b) CL

3/2/CD vs. Lift Coefficient 
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values between the data points.  Since data was only taken at three speeds, interpolation 

can be done in order to determine intermediate velocity values that were not tested but 

may be the most efficient at a given aircraft weight. 

Figure 40 shows the plot for L/D versus aircraft weight.  If the 24” Houck 

Configuration is flying at an aircraft weight of 1.45 lbs, flying at a velocity of 30 mph 

would maximize the range of the aircraft.  Using interpolation, if the aircraft is flying at a 

weight of 2 lbs, a velocity of approximately 35 mph would maximize the range. 

 

 

 

 

 

 

 

 

 

 

 

Figure 40:  L/D vs. Weight for SLUF at Sea Level – 24” Houck Configuration 

 

Figure 41 shows the plot for CL
3/2/CD versus aircraft weight.  If the 24” Houck 

Configuration is flying at an aircraft weight of 0.8 lbs, then flying at a velocity of 20 mph 
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would maximize the endurance of the aircraft.  Using interpolation, if the aircraft is flying 

at a weight of 1.3 lbs, a velocity of approximately 25 mph would maximize the 

endurance. 

 

 

 

 

 

 

 

 

 

 

 

Figure 41:  CL
3/2/CD vs. Weight for SLUF at Sea Level – 24” Houck Configuration 

 

4.2.3 Comparison between Experimental and CFD Results 

As a part of the joint study on the performance of the Houck Lifting Foil design, 

headed by AFRL/VAAA, computational fluid dynamics analysis of the aircraft is done.  

Initial analysis completed by John Staiger of AFRL/VAAI on the 24” Houck 

Configuration was done at an aircraft speed of 40 mph (Re ≈ 170K) using AVUS for a 

1.4 million cell grid.  Further tests and analysis using CFD methods will continue to be 
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performed by AFRL, but the initial results have been used for comparisons.  Plots of the 

experimental and CFD results can be seen in Figure 42 and Figure 43.  The results of the 

40 mph CFD test can be seen in Table 21, Appendix C. 

  Figure 42(a) shows the experimental and CFD drag polar for the 24” Houck 

model at a Reynolds number of 170K.  The experimental and CFD data show similar 

results.  The experimental value of CDo = 0.0219, while the CFD value of CDo = 0.0221, a 

difference of only 0.9%. 

Figure 42(b) shows the experimental and CFD lift curve for the 24” Houck model.  

The α values have been shifted from the original CFD data in order to line up the angles 

of attack where lift was equal to zero.  This doesn’t change the data, but instead, aligns 

the reference angle of attack.  The experimental lift-curve slope, CLα, is equal to 0.0439 

per degree.  The CFD lift-curve slope is equal to 0.0426 per degree.  This difference may 

be due to a slight flexing of the model in the wind tunnel.  The flexing would increase 

with angle of attack and increase the actual angle of attack of the aircraft while the 

balance reads a different angle.  For example, this could make the data read 5° AoA while 

the actual AoA would be 5.2° from the flexing.  This would account for a difference 

between the experimental and CFD data value for CLα.  Testing a model made of stiffer 

material would possibly mitigate these differences. 
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        (a)                              (b) 

Figure 42:  Drag Polar and Lift Curve – Experimental vs. CFD 

(a) Drag Coefficient vs. Lift Coefficient, (b) Lift Coefficient vs. Alpha 

 

Comparative plots for max range and max endurance for an aircraft can be seen in 

Figure 43.  Both L/D (Figure 43(a)) and CL
3/2/CD (Figure 43(b)) are plotted versus CL.  

Once again, the plots for the experimental and CFD results are very similar.  The 

experimental value for L/Dmax = 8.02 while the CFD value for L/Dmax = 7.73, a difference 

of only -3.6%.  The experimental value for CL
3/2/CDmax = 4.53 while the CFD value for 

CL
3/2/CDmax = 4.55, a difference of only 0.5%.   
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        (a)                              (b) 

Figure 43:  Max Range and Endurance – Experimental vs. CFD 

(a) Lift-to-Drag vs. Lift Coefficient, (b) CL
3/2/CD vs. Lift Coefficient 

 

These results help to provide confidence in the validity of both the wind tunnel 

test results and the computational fluid dynamics results.  Not only can the CFD analysis 

be used to support experimental results, but it could possibly be used in instances where 

wind tunnel testing is not feasible or readily available. 
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aerodynamic coefficients can be seen in Table 6.  These angles were chosen because one 

resulted in close to zero lift (α ≈ -2°), one resulted in close to L/Dmax (α ≈ 4°), and one 

was far into the range that resulted in separation on the lower wing (α ≈ 8°).  The lift-to-

drag ratios and aerodynamic coefficients for the given angles of attack have been taken 

from the prior tests conducted in this section and can be seen in Table 16, Appendix C. 

 
Table 6: Aerodynamic Data at Angles of Attack used in Hot-Wire Tests for 24” Houck Configuration 
 

Configuration Re (-) α (º) L/D (-) CL (-) CD (-)
Orig. 24" Houck 125K -2.04 0.15 0.003 0.024
Orig. 24" Houck 125K 4.13 7.37 0.293 0.040
Orig. 24" Houck 125K 8.22 5.49 0.450 0.082

 

The hot-wire analysis for the 24” Houck Configuration, δ = 0°, can be seen in 

Figure 44 (α = -2.04°), Figure 45 (α = 4.13°), and Figure 46 (α = 8.22°).  The tests were 

performed at a speed of approximately 30 mph (13.41 m/s), resulting in a Reynolds 

number of around 125K.  Part (a) plots color contours of the u component of velocity 

with an overlay of v and w component velocity vectors.  The scale for the u component of 

velocity is from 8.1 m/s to 13.1 m/s with 26 steps of resolution.  The scale for the u 

component of velocity is held constant for each hot-wire test completed.  This allows for 

easier comparisons between tests.  A reference velocity vector (2 m/s) can be seen for 

comparison with the v and w component velocity vectors.  Part (b) plots color contours of 

the non-dimensional turbulence (non-dimensional kinetic energy per unit mass) with an 

overlay of v and w component velocity vectors.  The scale for the non-dimensional 

turbulence is from 0.001 to 0.041 with 26 steps of resolution.  The scale for the non-

dimensional turbulence is held constant for each hot-wire test completed.  This allows for 
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easier comparisons between tests.  Again, a reference velocity vector (2 m/s) is included.  

Part (c) plots a color contour of the streamwise component of vorticity with an overlay of 

the v and w component velocity vectors.  The vorticity values near zero were not plotted 

so that the position of the wing in front of the hot-wire grid could be seen.  The scale for 

the vorticity is from -1.0 rad/s to 0.8 rad/s with 26 steps of resolution.  The scale for the 

vorticity is held constant for each hot-wire test completed.  This allows for easier 

comparisons between tests.  Part (d) shows the actual angle of attack of the 24” Houck 

Configuration and its position with respect to the hot-wire grid.  It is easier to understand 

what is happening with these references in place. 

The hot-wire analysis at α = -2.04° (Re ≈ 125K) for the 24” Houck Configuration, 

δ = 0°, can be seen in Figure 44.  There is approximately zero lift at this angle of attack.  

As a result, there is virtually no induced drag and therefore, no vortices forming behind 

the wing.  Since the angle of attack is small, separation has not occurred and there is very 

little turbulence in the wake of the aircraft.  The turbulence that does appear in the 

turbulence contour plot can be attributed primarily to the blunt trailing edge of the airfoil.  

Blunt bodies created large pressure differences and leave behind turbulent wakes in their 

path.  This could likely be reduced with a more tapered trailing edge.  The normalized 

turbulent kinetic energy reaches a peak value of approximately 0.012.  The u-component 

of the velocity is slower behind the wing because of the turbulence from the blunt trailing 

edges. 

The hot-wire analysis at α = 4.13° for the 24” Houck Configuration, δ = 0°, can be 

seen in Figure 45.  This angle of attack produces an L/D value close to L/Dmax, the most 
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efficient angle at maximizing range.  The lift coefficient, CL, at 4.13° AoA is equal to 

0.293.  As a result of lift being produced, a clockwise (negative vorticity) vortex has 

formed behind the wing.  The shape of the vortex resembles the flow guide with its core 

strength located just off of the upper wing tip.  The strength at the core of the vortex 

reaches a vorticity of approximately 0.5 rad/s.  This vortex creates a downwash that can 

be seen by the direction of the v and w vectors behind the wing.  4.13° is close to the 

angle where separation first occurred on the lower wing in the flow visualization test.  

This separation results in a turbulent wake and can be seen forming on the lower wing.  

There is also an increased amount of turbulence at the core of the vortex.  The non-

dimensional turbulence reaches a peak value of approximately 0.016.  The turbulence 

from the blunt trailing edge of the airfoil is affected by the downwash created from the 

wing-tip vortex and can also be seen in the turbulence contour.  The u-component of the 

velocity is fastest at the core of the vortex and slower in the wake of turbulence created 

from separation and from the blunt trailing edges of the wings. 

The hot-wire analysis at α = 8.22° for the 24” Houck Configuration, δ = 0°, can be 

seen in Figure 46.  At this angle of attack, there is a lot of separation on the lower wing as 

seen in the flow visualization tests.  More lift is created at 8.22° than at 4.13°, but it is not 

as efficient because of the increased drag.  The lift coefficient, CL, at 8.22° AoA is equal 

to 0.450.  This is the highest value of lift produced for the hot-wire testing of the original 

24” Houck Configuration.  As a result, the clockwise vortex formed behind the wing is 

the largest for this value of α.  This vortex is circular in shape and has its core strength 

located just off of the upper wing tip.  Similar to the vortex at 4.13°, the maximum 
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strength of the vortex core at 8.22° reaches a vorticity of approximately 0.5 rad/s (but 

covers more area).  This vortex creates a downwash that can be seen by the direction of 

the v and w vectors behind the wing.  In the turbulence plot, the growth in turbulence can 

be seen when compared to an AoA of 4.13°.  The increase in turbulence is due to both the 

increase in separation on the lower wing and the increased induced drag (a larger/stronger 

vortex).  The total turbulence (including turbulence from the blunt trailing edge) inboard 

of the wing-tip vortex is affected by the downwash created from the vortex.  The non-

dimensional turbulence reaches a peak value of approximately 0.038 near the vortex core.  

This is more than two times the maximum turbulence created at 4.13° AoA.  The u-

component of velocity is no longer fastest at the center of the vortex.  The increased 

turbulence has slowed the velocity down directly behind the entire wing, as the largest 

values of the u-component of velocity are found beyond the reaches of the wings.  This 

set of results is consistent with separated flow.   
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Figure 44:  Hot Wire Analysis of 24” Houck Configuration, α = -2.04º, L/D = 0.15 

(a) u-component contours with v & w Vectors, (b) Non-dimensional turbulence contours with v & w vectors,  

(c) Vorticity behind wing with v & w vectors, (d) Position of hot-wire grid with respect to the 24” Houck Configuration 
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Figure 45:  Hot Wire Analysis of 24” Houck Configuration, α = 4.13º, L/D = 7.37 

(a) u-component contours with v & w Vectors, (b) Non-dimensional turbulence contours with v & w vectors,  

(c) Vorticity behind wing with v & w vectors, (d) Position of hot-wire grid with respect to the 24” Houck Configuration 

 



 

67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 46:  Hot Wire Analysis of 24” Houck Configuration, α = 8.22º, L/D = 5.49 

(a) u-component contours with v & w Vectors, (b) Non-dimensional turbulence contours with v & w vectors,  

(c) Vorticity behind wing with v & w vectors, (d) Position of hot-wire grid with respect to the 24” Houck Configuration 
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4.2.5 Wind Tunnel Balance Data – Beta Sweeps 

In the AFIT low-speed wind tunnel, a beta sweep from approximately -8º to 8º in 

1º increments at an AoA of 4.13° was performed on the 24” Houck Configuration at two 

different speeds:  20 mph (8.94 m/s, Re ≈ 80K) and 30mph (13.41 m/s, Re ≈ 125K).  Beta 

sweeps were also completed on the 18” USAFA Houck Configuration by Air Force 

Academy students C1C Brittany Oligney and C1C Margaret Frash.  Notably, the 

geometry of the 18” model varied from that of the 24” model in a number of ways (24).  

They performed beta sweeps on the 18” Configuration at a speed of Mach 0.25 (Re ≈ 

545K) at angles of attack of -5°, 0°, 5°, 10°, 15°, and 20°.  The results from four of these 

angles are examined because they were shown to be the most efficient AoA values for 

maximizing the range of the 18” USAFA model (see Figure 47).  The reference locations 

of the centers of gravity for each aircraft model were used in the data reduction.  A 

summary of the resulting stability derivatives of the 24” Houck Configuration and the 

18” USAFA Houck Configuration can be seen in Table 7.  A discussion of each stability 

derivative will be discussed in this section with its corresponding graph.  The complete 

data for each β run can be seen in Table 18, Table 19, and Table 22, Appendix C. 

 
Table 7: Lateral Stability Derivatives for the 24” Houck and the 18” USAFA Houck Configurations  

 
Variation Re (-) α (º) Clβ (/ º) Cnβ (/ º) ClΨ (/ º) CnΨ (/ º) CYβ (/ º) 

Orig. 24" Houck 80K 4.13 -0.001293 0.000408 0.001293 -0.000408 -0.007878 
Orig. 24" Houck 125K 4.13 -0.001291 0.000303 0.001291 -0.000303 -0.007002 

USAFA 18" Houck 545K 0 0.001104 0.000351 -0.001104 -0.000351 no data 
USAFA 18" Houck 545K 5 -0.001205 -0.000040 0.001205 0.000040 no data 
USAFA 18" Houck 545K 10 -0.002962 -0.000201 0.002962 0.000201 no data 
USAFA 18" Houck 545K 15 -0.004719 -0.000432 0.004719 0.000432 no data 
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The plot of L/D versus α for the 18” USAFA Houck Configuration at a Reynolds 

number of approximately 545K can be seen in Figure 47.  It shows a maximum L/D 

value of 5.5 at α = 13°, however, the L/D curve is relatively flat from α = 1° to 17°.  This 

trend could possibly be attributed to the heavy camber of the wings on the 18” model.  

Since the L/D values were highest from 1° to 17°, the β sweeps at α values of 0°, 5°, 10°, 

and 15° are examined and compared to the 24” Houck β sweep at α = 4.13° (close to 

L/Dmax). 

 

 

 

 

 

 

 

 

 

Figure 47:  L/D vs. Alpha – USAFA 18” Houck Configuration ‘JW’ (reproduced from Reference 24) 

 

Figure 48 shows a plot of the roll moment coefficient versus the sideslip angle, β.  

From this plot, the average slope, Clβ, can be attained.  Clβ is the lateral static stability 

derivative and is sometimes called the ‘dihedral effect’ (31:243).  A negative value for 

Clβ is statically stable and means that an aircraft will generate a rolling moment that rolls 
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the aircraft away from the direction of sideslip, returning it back toward β = 0°.  A change 

in angle of attack usually has a significant effect on Clβ (31).  The data for the 18” model 

backs up this claim.  As the angle of attack changes, the value for Clβ changes from 

positive (0.00110 at α = 0°) to negative (-0.00120 at α = 5°) to highly negative (-0.00472 

at α = 15°).  For the 24” Houck Configuration (α = 4.13°), Clβ = -0.00129 at both 

Reynolds numbers.  This value is closest to the Clβ value for the 18” aircraft when flying 

at α = 5°.   

 

 

 

 

 

 

 

 

Figure 48:  Roll Moment Coefficient vs. Beta – 24” Houck & USAFA 18” Houck Configurations 

 

Figure 49 shows a plot of the yaw moment coefficient, Cn, versus β.  From this 

plot, the average slope, Cnβ, can be calculated.  Cnβ is the directional static stability 

derivative and is also referred to as the ‘weathercock stability derivative’ (31:248).  A 

positive value for Cnβ is considered statically stable.  A positive value of Cnβ means that 

when the sideslip angle is perturbed (in the positive direction) from its trim condition, the 
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aircraft will create a positive yawing moment which reduces the sideslip angle back 

toward its trim state (usually β = 0°).  The directional static stability of an aircraft is 

easily altered by changing the location of the center of gravity.  If a higher value of Cnβ is 

desired, then moving the center of gravity forward will accomplish this goal.  For the 24” 

Houck Configuration (α = 4.13°), Cnβ = 0.00041 at Re ≈ 80K and Cnβ = 0.00030 at Re ≈ 

125K.  These values are closest to the α = 0° case for the 18” USAFA model (Cnβ = 

0.00035 at Re ≈ 545K). 

 

 

 

 

 

 

 
 

 
Figure 49:  Yaw Moment Coefficient vs. Beta – 24” Houck & USAFA 18” Houck Configurations 

 

By plotting the directional stability, Cnψ, vs. the effective dihedral, Clψ, an 

estimate of the flyability of the models (at their different angles of attack) can be 

determined.  Figure 50 shows flyability plot for the 24” Houck (α = 4.13° while Re ≈ 

80K and 125K) and 18” USAFA Houck (α = 0°, 5°, 10°, and 15° while Re ≈ 545K) 

Configurations.  Cnψ and Clψ are simply -Cnβ and -Clβ, respectively, because β = -ψ.  For 

all of the points plotted, the Cnψ values are not negative enough and point toward a 
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problem with directional divergence.  However, this is not a major issue because simply 

moving the center of gravity forward in each case will move the data points higher 

towards a more desired location.  The centers of gravity were places at the quarter chord 

location for each model, but moving the CG location forward will likely resolve this 

issue.  Once the center of gravity is adjusted, three data points will be in the satisfactory 

flyability region (24” model: α = 4.13°, Re ≈ 80K, 125K and the 18” model: α = 5°, Re ≈ 

545K).  The data points for the 18” model at α = 0°, 10°, and 15° would lie in the 

unsatisfactory region. 

 

 

 

 

 

 

 

 

 
 

Figure 50:  Directional Stability vs. Effective Dihedral (reproduced from reference 3) 

 

A plot of the sideslip coefficient, CY, versus β can be seen in Figure 51 for the 24” 

Houck Configuration.  From this plot, the average slope, CYβ, can be attained.  CYβ is 

normally negative for most aircraft and has an important influence on dutch roll 

dynamics (31:235).  At α = 4.13° and a Reynolds number of approximately 80K, CYβ is 



 

73 

equal to -0.007878.  At a Reynolds number of approximately 125K, CYβ = -0.007002.  

Data for the 18” USAFA Houck Configuration was not examined. 

 

 

 

 
 
 

 

 

 
 
 
 

Figure 51:  Sideslip Coefficient vs. Beta – 24” Houck Configuration 

 

4.3 Original Configuration with Aileron Deflections 

4.3.1 Wind Tunnel Balance Data – Alpha Sweeps 

Tests were also performed on two different aileron deflection variations of the 

original 24” Houck Configuration in the low-speed wind tunnel.  The first variation was a 

downward deflection of the ailerons, δ = 20º down.  The second variation was an upward 

deflection of the ailerons, δ = 20º up.  An alpha sweep on each model, from 

approximately -15º to 5º in 1º increments, was performed at three different speeds:  20 

mph (8.94 m/s), 30mph (13.41 m/s), and 40 mph (17.88m/s).  These results are then 

compared to the data from the original 24” Houck Configuration tests, δ = 0º.  A 

summary of the resulting aerodynamic performance of the 24” Houck Configuration with 
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aileron deflection variations at Re ≈ 80,000 (20 mph), Re ≈ 125,000 (30 mph), and Re ≈ 

170,000 (40 mph) can be seen in Table 8.  A discussion of each performance parameter 

will be discussed in this section with its corresponding graph. 

 
Table 8: Aerodynamic Performance of 24” Houck Configuration with Aileron Deflections 

 

  Min Drag 
Zero 
Lift Slopes    

Configuration Re (-) CDo (-) α (º) α 0 Lift (º) CLα (/°) Cmα (/°)    
δ = 0º 80K 0.0281 -0.90 -2.32 0.0488 -0.0061    
δ = 0º 125K 0.0229 -1.01 -2.59 0.0457 -0.0056    
δ = 0º 170K 0.0219 -1.20 -2.62 0.0439 -0.0059    

δ = 20º down 80K 0.035 -1.93 < -4 0.0474 -0.0052    
δ = 20º down 125K 0.029 -4.08 < -4 0.0437 -0.0041    
δ = 20º down 170K 0.027 -3.08 < -4 0.0431 -0.0041    
δ = 20º up 80K 0.043 -0.12 0.82 0.0483 -0.0048    
δ = 20º up 125K 0.037 -0.08 0.34 0.0489 -0.0095    
δ = 20º up 170K 0.033 -0.02 -0.33 0.0478 -0.0087    

          
  Max Range Max Endurance 

Configuration Re (-) L/D (-) α (º) CL (-) CD (-) CL
(3/2)/CD (-) α (º) CL (-) CD (-) 

δ = 0º 80K 6.50 4.30 0.286 0.044 3.75 6.70 0.420 0.112 
δ = 0º 125K 7.43 4.20 0.295 0.040 4.20 5.30 0.340 0.081 
δ = 0º 170K 8.02 4.00 0.293 0.037 4.53 5.10 0.340 0.075 

δ = 20º down 80K 6.54 3.67 0.386 0.059 4.26 4.79 0.437 0.103 
δ = 20º down 125K 7.28 2.53 0.320 0.044 4.43 4.76 0.414 0.093 
δ = 20º down 170K 7.65 2.52 0.314 0.041 4.66 4.75 0.407 0.087 
δ = 20º up 80K 4.03 7.65 0.314 0.078 2.33 8.76 0.356 0.152 
δ = 20º up 125K 4.91 6.59 0.300 0.061 2.85 7.71 0.352 0.123 
δ = 20º up 170K 5.58 5.51 0.281 0.050 3.18 7.74 0.375 0.118 

 

Figure 52(a) plots the drag polar, CD vs. CL, for the 24” Houck Configuration with 

varying aileron deflections at three different Reynolds numbers (80K, 125K, and 170K).  

As expected, the minimum drag coefficient, CDo, increases when the ailerons are 

deflected and decreases as the Reynolds number is increased.  Figure 52(b) plots the lift 

coefficient, CL, vs. α for three different Reynolds numbers (80K, 125K, and 170K).  The 
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variation with ailerons deflected 20° down has higher CL values across the entire range of 

tested angles of attack, as expected.  It does this because the 20° downward deflection 

increases camber, producing more lift at a given reference angle of attack.  For this same 

reason, the angle of attack that produces zero lift (α 0 Lift = -5°) is noticeably lower than 

the original Houck (α 0 Lift = -2.59°).  The variation with a 20° upward deflection in the 

ailerons does the opposite.  It produces less lift than the original Houck, δ = 0°, at a given 

angle of attack because the wings act like a wing with negative camber.  Likewise, it has 

a higher zero lift angle of attack (α 0 Lift = 0.34°) than the original Houck Configuration.  

Similar to the original Houck Configuration, stall is never fully seen for either variation 

with aileron deflections.  The lift-curve slope, CLα is not greatly affected by the variation 

in aileron deflection.  CLα for each variation hovers around 0.045 per degree. 

 
 

 

 

 

 

 

 

          (a)                          (b) 

Figure 52:  Drag Polar and Lift Curve – 24” Houck Configuration with Aileron Deflections 

(a) Drag Coefficient vs. Lift Coefficient, (b) Lift Coefficient vs. Alpha 
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The plots for L/Dmax (max range) and CL
3/2/CD max (max endurance) for the 24” 

Houck Configuration with aileron deflections can be seen in Figure 53.  As would be 

expected, the aircraft variation with δ = 20° up (the variation that creates more drag and 

less lift than the original model) has the worst range and endurance of the three 

variations.  The comparisons between the original Houck and the variation with ailerons 

deflected 20° down (the variation that produces more drag and more lift than the original 

model) are much more interesting.  In comparison to the original configuration, the 

variation with ailerons deflected 20° down produces a max L/D value 4.6% lower and a 

max CL
3/2/CD value 2.9% higher at a Reynolds number of 170K.  There may be an aileron 

deflection angle between 0°and 20° that would prove to be more efficient in both range 

and endurance.  However, this was not within the scope of the research. 

 
 

 

 

 

 

 

 

 
 

      (a)                                           (b) 

Figure 53:  Max Range and Endurance – 24” Houck Configuration with Aileron Deflections 

(a) Lift-to-Drag vs. Alpha, (b) CL
3/2/CD vs. Alpha 
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4.3.2 Hot-Wire Analysis 

Using the AFIT low-speed wind tunnel, hot-wire analysis at three angles of attack 

(α ≈ -2°, 4°, and 8°) was performed on the 24” Houck Configuration, δ = 20° down and δ 

= 20° up, at Re ≈ 125K (30 mph, 13.41 m/s).  A summary of the lift-to-drag ratios and 

aerodynamic coefficients at the tested values for α can be seen in Table 9.  These angles 

were chosen so that comparisons to the 24” Houck Configuration with δ = 0° could be 

made.  The lift-to-drag ratios and aerodynamic coefficients at the given angles of attack 

have been taken from the prior tests conducted in this section and can be seen in Table 24 

and Table 27, Appendix C.  The hot-wire analysis for the 24” Houck Configuration, δ = 

0°, has already been presented and can be seen in Figure 44, Figure 45, and Figure 46. 

 
Table 9: Aerodynamic Data at Angles of Attack used in Hot-Wire Tests for 24” Houck Configuration 

with Aileron Deflections 
 

Configuration Re (-) α (º) L/D (-) CL (-) CD (-)
δ = 0º 80K -2.04 0.15 0.003 0.024
δ = 0º 80K 4.13 7.37 0.293 0.040
δ = 0º 80K 8.22 5.49 0.450 0.082

δ = 20º down 80K -2.04 4.10 0.122 0.030
δ = 20º down 80K 4.13 7.03 0.385 0.055
δ = 20º down 80K 8.22 5.04 0.529 0.105
δ = 20º up 80K -2.04 -2.80 -0.119 0.042
δ = 20º up 80K 4.13 4.22 0.189 0.045
δ = 20º up 80K 8.22 4.66 0.370 0.079

 

 The hot-wire analysis for the 24” Houck Configuration, δ = 20° down at α = 

4.13° can be seen in Figure 54.  The other two angles of attack are not discussed in the 

text, but are located in Figure 66 (α = -2.04°) and Figure 67 (α = 8.22°), Appendix D.  

The hot-wire analysis for the 24” Houck Configuration, δ = 20° up at α = 4.13° can be 
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seen in Figure 55.  The other two angles of attack are not discussed in this section, but are 

located in Figure 68 (α = -2.04°) and Figure 69 (α = 8.22°), Appendix D.     

The hot-wire analysis for aileron deflection variations are plotted using the same 

scales as the hot-wire analysis for the original 24” Houck Configuration.  By keeping the 

scales constant within each type of plot, it is easier to compare and contrast using the 

colors of the contours without referring back to a different legend for every vorticity or 

turbulence plot.  The only scale that may change is the length of the 2 m/s reference 

vector.  The length of this vector is dependent on the magnitude of the v & w vectors 

shown in each plot.   

The hot-wire analysis at α = 4.13° for the 24” Houck Configuration, δ = 20° 

down, can be seen in Figure 54.  The flow behind the wing is similar to that of the α = 

4.13° for the δ = 0° case.  There is a slightly stronger wing-tip vortex (clockwise) for the 

variation with the ailerons deflected 20° down.  This is because it produces more lift due 

to the “cambered” effect on the wings.  There is also a second vortex that forms off of the 

outer edge of the deflected aileron.  This vortex is the stronger of the two existing 

vortices and approaches a rotation of -0.9 rad/s (clockwise).  The addition of this vortex 

and the increased strength of the original vortex result in a slight increase in turbulence 

from the original test for δ = 0°.  The deflection of the aileron directs the flow directly 

behind the aileron downward and contains more turbulence that slows the flow down.  

This is a primary reason for the increase in drag in this variation from the original 

configuration.  This area directly behind the deflected aileron is the slowest region with 

respect to the u-component of velocity aft of the wing. 
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The hot-wire analysis at α = 4.13° for the 24” Houck Configuration, δ = 20° up, 

can be seen in Figure 55.  The flow behind the wing is slightly similar to that of the α = 

4.13° for the δ = 0° case.  The wing-tip vortex strongly resembles the wing-tip vortex of 

the original configuration in both strength and size.  However, there is a second vortex 

that forms off of the outer edge of the deflected aileron.  This vortex rotates in the 

opposite direction and approaches a rotation of 0.5 rad/s (counter-clockwise) at its core.  

The vortex is rotating counter-clockwise because it has formed at the outer edge of the 

aileron/wing section that is producing negative lift due to the upward deflection.  The 

addition of this vortex and the increased strength of the original vortex result in a slight 

increase in turbulence from the original test for δ = 0°.  The deflection of the aileron 

directs the flow directly behind the aileron upward and causes more turbulence to form in 

that region.  The u-component of velocity is the smallest at the core of the counter-

clockwise vortex.   
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Figure 54:  Hot-Wire Analysis of 24” Houck Configuration, δ = 20º down, α = 4.13º, L/D = 7.03 

(a) u-component contours with v & w Vectors, (b) Non-dimensional turbulence contours with v & w vectors,  

(c) Vorticity behind wing with v & w vectors, (d) Position of hot-wire grid with respect to the 24” Houck Configuration 

 



 

81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 55:  Hot-Wire Analysis of 24” Houck Configuration, δ = 20º up, α = 4.13º, L/D = 4.22 

(a) u-component contours with v & w Vectors, (b) Non-dimensional turbulence contours with v & w vectors,  

(c) Vorticity behind wing with v & w vectors, (d) Position of hot-wire grid with respect to the 24” Houck Configuration 
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4.4 Original Configuration with Changes to Flow Guides 

4.4.1 Wind Tunnel Balance Data – Alpha Sweeps 

The third set of tests performed was on variations of the original 24” Houck 

Configuration with respect to the flow guides.  A 1” cut in the flow guide was made for 

the first variation.  For the second variation, the 1” gap was expanded to 2”.  The final 

variation of the 24” Houck model had the flow guides completely removed.  The 

variation without flow guides was to provide a reference model from which to gage 

changes in performance.  An alpha sweep from approximately -15º to 5º in 1º increments, 

was performed at three different Reynolds numbers:  Re ≈ 80K (20 mph, 8.94 m/s), Re ≈ 

125K (30mph, 13.41 m/s), and Re ≈ 170K (40 mph, 17.88m/s).  These results are then 

compared to the data from the original 24” Houck Configuration data.  The reference area 

used to calculate the aerodynamic coefficients for the original 24” Houck Configuration, 

the 1” flow guide cut variation, and the 2” cut flow guide variation was 307 in2 with a 

wingspan of 23.58”.  The reference area used for the variation without flow guides was 

254 in2 with a wingspan equal to 20.33”.  The large fluctuation in reference area is due to 

the inverse taper ratio of the Houck model (the root chord is shorter than the tip chord).  

A summary of the results can be seen in Table 10.  A discussion of each performance 

parameter will be discussed in this section with its corresponding figure. 
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Table 10: Aerodynamic Performance of 24” Houck Configuration with Flow Guide Cuts 
 

   Min Drag Zero Lift Slopes 
Configuration Re (-) S (in2) CDo (-) α (º) D (lbs) α 0 Lift (º) CLα (/°) Cmα (/°) 

Orig. 24" Houck 80K 307 0.0281 -0.90 0.0563 -2.32 0.0488 -0.0061 
Orig. 24" Houck 125K 307 0.0229 -1.01 0.1123 -2.59 0.0457 -0.0056 

1" Cut in FG 80K 307 0.0264 -1.30 0.0550 -2.68 0.0525 -0.0064 
1" Cut in FG 125K 307 0.0230 -1.90 0.1167 -2.80 0.0407 -0.0054 
2" Cut in FG 80K 307 0.0267 -0.10 0.0530 -2.68 0.0496 -0.0069 
2" Cut in FG 125K 307 0.0224 -1.10 0.1112 -2.90 0.0462 -0.0058 

No Flow Guide 80K 254 0.0296 -1.20 0.0473 -2.72 0.0576 -0.0078 
No Flow Guide 125K 254 0.0239 -1.85 0.0990 -3.02 0.0469 -0.0069 

         
   Max Range 

Configuration Re (-) S (in2) L/D (-) α (º) CL (-) CD (-) L (lbs) D (lbs) 
Orig. 24" Houck 80K 307 6.50 4.30 0.286 0.044 0.6090 0.0940 
Orig. 24" Houck 125K 307 7.43 4.20 0.293 0.039 1.5523 0.2102 

1" Cut in FG 80K 307 6.80 3.80 0.295 0.043 0.5493 0.0811 
1" Cut in FG 125K 307 7.50 3.70 0.263 0.035 1.3378 0.1794 
2" Cut in FG 80K 307 6.93 3.70 0.295 0.043 0.5590 0.0809 
2" Cut in FG 125K 307 7.68 3.50 0.270 0.035 1.3597 0.1772 

No Flow Guide 80K 254 6.67 4.50 0.386 0.058 0.5865 0.0881 
No Flow Guide 125K 254 7.45 3.60 0.303 0.041 1.1852 0.1595 

         
         
   Max Endurance 

Configuration Re (-) S (in2) CL
(3/2)/CD (-) α (º) CL (-) CD (-) L (lbs) D (lbs) 

Orig. 24" Houck 80K 307 3.75 6.70 0.420 0.112 0.8374 0.1452 
Orig. 24" Houck 125K 307 4.20 5.30 0.340 0.081 1.7754 0.2539 

1" Cut in FG 80K 307 4.16 6.30 0.432 0.104 0.7577 0.1170 
1" Cut in FG 125K 307 4.09 5.80 0.345 0.084 1.7927 0.2546 
2" Cut in FG 80K 307 4.05 5.50 0.375 0.093 0.7657 0.1168 
2" Cut in FG 125K 307 4.38 5.00 0.344 0.079 1.8161 0.2542 

No Flow Guide 80K 254 4.30 5.90 0.450 0.105 0.6823 0.1053 
No Flow Guide 125K 254 4.35 5.40 0.375 0.086 1.5948 0.2270 

 

Figure 56 plots the drag polar, CD vs. CL, for the 24” Houck Configuration and 

variations with alterations to the flow guides for two different Reynolds numbers (80K 

and 125K).  The variation without flow guides had the highest value for CDo at both 
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Reynolds numbers, but this is deceiving because of the reference area used for calculating 

the coefficients differed from the other variations.  Even though it has the highest value 

of CDo, it produces the least amount of parasite drag of the four variations.  In fact, as the 

surface area of the flow guides decreases, the parasite drag decreases as well.   

 

 

 

 

 

 

 

 
               (a)                  (b) 

Figure 56:  Drag Polar – 24” Houck Configuration with Flow Guide Variations 

(a) Re ≈ 80K, (b) Re ≈ 125K 

 

Figure 57 plots the Cm vs. α for the flow guide variations at two different 

Reynolds numbers (80K and 125K).  All four variations show longitudinal static stability 

at the Reynolds numbers tested.  As more material is cut away from the flow guides, the 

angle of attack where Cm = 0 decreases while the longitudinal static stability of the model 

increases, although only slightly. 
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            (a)               (b) 

Figure 57:  Pitch Moment Coefficient vs. α – 24” Houck Configuration with Flow Guide Variations 

(a) Re ≈ 80K, reference location of CG used, (b) Re ≈ 125K, reference location of CG used 

 

The lift coefficient, CL, is plotted versus α for two different Reynolds numbers 

(80K and 125K) in Figure 58.  The angle of attack that produces zero lift decreases as 

pieces of the flow guide are cut away, although the change is not drastic.  At Re ≈ 80K, 

the value for α 0 Lift ranges from -2.32° for the original 24” Houck variation to -2.72 for 

the variation with no flow guides.  Just as in earlier tests, the onset of stall is never fully 

achieved for the angle of attack range tested.  The lift curve slopes are also slightly 

affected by the alteration of the flow guides, but most of the variation can be attributed to 

the increased flexing of the wings at higher angles of attack.  This is because in the 

original configuration, the flow guides supported the wings at the tips and gave them 

strength.  Once the flow guides were cut, the wings were more likely to flex with higher 

speeds and angles of attack.  The lift curve slopes are almost identical at lower angles of 

attack until they start to diverge around α = 3°. 
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            (a)                                 (b) 

Figure 58:  Lift Coefficient vs. α – 24” Houck Configuration with Flow Guide Variations 

(a) Re ≈ 80K, (b) Re ≈ 125K 

 

A plot of the lift-to-drag versus angle of attack for the flow guide variations can 

be seen in Figure 59.  A summary of the results were shown in Table 10 and the percent 

of change from the model without flow guides can be seen in Table 11.  The variation 

without flow guides is used as a reference point in order to see how the addition of flow 

guides affects the performance of the aircraft.  At a Reynolds number of approximately 

80K, the original Houck Configuration produces an L/Dmax value 2.5% less than the 

model without flow guides.  At Re ≈ 125K, the original Houck Configuration produces 

an L/Dmax value 0.3% less than the model without flow guides.  While at first glance this 

doesn’t look promising, the gap in performance is closing as Reynolds number increases.  

If this trend continues, the performance of the original Houck Configuration could 

possibly surpass (or level out asymptotically) the performance of the variation without 

flow guides at a higher Reynolds number.  Interestingly, the two variations with strips cut 
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out of the flow guides (1” cut and 2” cut) out perform the model without flow guides at 

both tested Reynolds numbers.  This is likely due to a reduction in the parasite drag from 

cutting away wing material, while still retaining the overall flow guide design.  The gaps 

created by cutting the flow guides may be small enough so that the airflow around the 

wings is not greatly affected.  However, as the Reynolds number increases between the 

two tests, the percent improvement over the model without flow guides decreases for 

both variations.  Higher testing speeds (higher Reynolds numbers) could not be achieved 

in this study because of the loss of structural integrity of the models due to the flow guide 

alterations.  However, it would be of high interest to test a form of this model at higher 

Reynolds numbers to further analyze this trend. 

 

 

 

 

 

 

 
 
 

         (a)           (b) 

Figure 59:  Lift-to-Drag vs. α – 24” Houck Configuration with Flow Guide Variations 

(a) Re ≈ 80K, (b) Re ≈ 125K 
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Table 11: Percent Change in Performance of Variations of 24” Houck due to Flow Guide Alterations  
as Compared to Variation without Flow Guides 

 
  % Change 

Configuration Re (-) L/Dmax CL
(3/2)/CDmax 

Orig. 24" Houck 80K -2.5% -12.8% 
1" Cut in FG 80K 1.9% -3.3% 
2" Cut in FG 80K 3.9% -5.8% 

No Flow Guide 80K - - 
    

Orig. 24" Houck 125K -0.3% -3.4% 
1" Cut in FG 125K 0.7% -6.0% 
2" Cut in FG 125K 3.1% 0.7% 

No Flow Guide 125K - - 
 

In Figure 60, the lift-to-drag data has been plotted versus aircraft weight.  For any 

of the four models with flow guide variations, the best speed for maximizing range while 

flying SLUF at sea level can be determined.  Once a desired aircraft weight is chosen, the 

velocity that provides the best L/D can be determined.  Trend lines have been added so 

that interpolation between the data at different speeds can be done.  This graph allows a 

comparison to be made between different model variations.  Some of the Reynolds 

number trends that were discussed earlier can be seen.  The decreasing performance gap 

between the model without flow guides and the two variations with strips cut from the 

flow guides can be seen from Re ≈ 80K to Re ≈ 125K.  The decreasing performance gap 

between the original Houck configuration and the model without flow guides is not 

visible in this plot of the two data points.  The decrease in lift seen at Re ≈ 125K (30 

mph) for the model without flow guides has shifted the data point to the left and kept the 

performance gap between the two variations at a relatively constant value between the 

two tested Reynolds numbers.  This shows that the gap may not be decreasing as 
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previously thought, but the fact remains that more tests at higher Reynolds numbers must 

be performed in order to gain a better understanding of the relationship between the two 

model variations. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 60:  L/D vs. Weight for SLUF at Sea Level – 24” Houck with Flow Guide Variations 

 

A comparison of the induced drag for the 24” Houck Configuration with and 

without flow guides can be seen in Table 12.  For a Reynolds number of 80K, the original 

model produces less induced drag (0.034 lbs) than the model with out flow guides (0.043 

lbs) at the maximum L/D value.  For a Reynolds number of 125K, the original model 

produces more induced drag (0.088 lbs) than the model without flow guides (0.066 lbs).  
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It is tough to make a direct comparison between these two models, because they are 

producing different amounts of lift.  When looking at a ratio of lift-to-induced drag, the 

original model produces less induced drag per unit of lift for the lower Reynolds number, 

and roughly the same amount of induced drag per unit lift at the higher Reynolds number.  

It would seem advantageous to produce less induced drag per unit lift, but the trend here 

is opposite to the closing performance gap seen in the maximum lift-to-drag comparisons.  

More tests are needed at higher Reynolds numbers in order to gain some perspective into 

this relationship.  Ultimately, improving the L/D ratio is desirable. 

 
Table 12: Comparison of Induced and Parasite Drag – 24” Houck with and without Flow Guides 

 
Configuration Re (-) L/D CDo CDi CDi/CD L (lbs) D (lbs) Dmin Di L/Di 
Orig. 24" Houck 80K 6.50 0.0281 0.0159 36.1% 0.609 0.094 0.060 0.034 17.93
Orig. 24" Houck 125K 7.43 0.0229 0.0165 41.9% 1.552 0.210 0.122 0.088 17.63
No Flow Guide 80K 6.67 0.0296 0.0283 48.9% 0.586 0.088 0.045 0.043 13.63
No Flow Guide 125K 7.45 0.0239 0.0168 41.2% 1.185 0.160 0.094 0.066 17.96

 

A plot of the CL
3/2/CD versus angle of attack for the flow guide variations can be 

seen in Figure 61.  These results can be used to determine which flow guide variation is 

best for optimizing endurance at a given Reynolds number.  A summary of the results 

were shown in Table 10 and the percent of change from the model without flow guides 

can be seen in Table 11.  At a Reynolds number of approximately 80K, the original 

Houck Configuration produces a CL
3/2/CDmax value 12.8% less than the model without 

flow guides.  At Re ≈ 125K, the original Houck Configuration produces a CL
3/2/CDmax 

value 3.4% less than the model without flow guides.  Once again, the performance gap 

between the two model variations is decreasing as the Reynolds number increases.  More 



 

91 

testing at higher Reynolds numbers is recommended.  The original Houck configuration 

is outperformed by the other three flow guide variations at Re ≈ 80K, but closes the gap 

and surpasses the 1” cut variation at Re ≈ 125K. 

 

 

 

 

 

 

 
 
 

            (a)                                            (b) 

Figure 61:  CL
3/2/CD vs. α – 24” Houck Configuration with Flow Guide Variations 

(a) Re ≈ 80K, (b) Re ≈ 125K 

 

In Figure 62, the CL
3/2/CD data has been plotted versus aircraft weight.  For any of 

the four models with flow guide variations, the best speed for maximizing endurance 

while flying SLUF at sea level can be determined.  In this plot, the performance gap in 

endurance decreases greatly from 30 mph (Re ≈ 80K) to 40mph (Re ≈ 125K).  The 

performance of the 24” Houck Configuration increases the most out of the variations over 

this Reynolds number range.  It is easy to see how the 24” Houck Configuration could 

surpass the other variations at a higher testing speed if this trend were to continue.  

However, this could only be determined with further testing. 
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Figure 62:  CL
3/2/CD vs. Weight for SLUF at SL – 24” Houck with Flow Guide Variations 

 

The effective aspect ratio, e AR, has been calculated for the four flow guide 

variations at Re ≈ 80K and 125K.  This data can be seen in Table 13.  The induced drag 

coefficient and lift coefficient data for each calculation was taken at L/Dmax for all four 

variations.  The effective aspect ratio for the original 24” Houck Configuration is 1.638 at 

Re ≈ 80K and 1.653 at Re ≈ 125K.  For this range of Reynolds number, the effective 

aspect ratio is increasing as the Reynolds number increases.  The 1” cut variation has a 

better effective aspect ratio than the original model at Re ≈ 125K, while the 2” cut 

variation has a better effective aspect ratio at both Reynolds numbers tested.  A direct 

comparison of the aerodynamic coefficients for the original model and the model without 
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flow guides is difficult to make because of the differences in wingspan and reference area 

between the two variations.  The lift-to-drag ratio is one way to compare the models, 

because the reference area is cancels out, however, the two models still have different 

aspect ratios.  The first three variations have a wingspan of 23.58” and a reference area of 

307 in2, while the variation without flow guides has a wingspan of 20.33” and a reference 

area of 254 in2.  The aspect ratio of each model was not calculated due to the numerous 

definitions available for different wing configurations (e.g., monoplane, biplane, and 

joined-wing). 

 
Table 13: Effective Aspect Ratio of 24” Houck Configuration with Flow Guide Cuts 

 
Configuration Re (-) eAR (-) 

Orig. 24" Houck 80K 1.638 
1" Cut in FG 80K 1.631 
2" Cut in FG 80K 1.746 

No Flow Guide 80K 1.678 
   

Orig. 24" Houck 125K 1.653 
1" Cut in FG 125K 1.825 
2" Cut in FG 125K 1.819 

No Flow Guide 125K 1.742 
 

 

4.4.2 Hot-Wire Analysis 

Using the AFIT low-speed wind tunnel, hot-wire analysis at three angles of attack 

(α ≈ -2°, 4°, and 8°) was performed on the 24” Houck Configuration without flow guides.  

The tests were performed at a speed of approximately 30 mph (13.41 m/s), resulting in a 

Reynolds number of around 125K.  A summary of the lift-to-drag ratios and aerodynamic 

coefficients at the tested values of α can be seen in Table 14.  These angles were chosen 
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so that comparisons to the 24” Houck Configuration with full flow guides could be made.  

The lift-to-drag ratios and aerodynamic coefficients at the given angles of attack have 

been taken from the prior tests conducted in this section and can be seen in Table 34, 

Appendix C.  The hot-wire analysis for the 24” Houck Configuration with flow guides 

has already been presented and can be seen in Figure 44, Figure 45, and Figure 46. 

 
Table 14: Aerodynamic Data at Angles of Attack used in Hot-Wire Tests for 24” Houck 

Configuration with No Flow Guide 
 

Configuration Re (-) α (º) L/D (-) CL (-) CD (-)
Orig. 24” Houck 80K -2.04 0.15 0.003 0.024
Orig. 24” Houck 80K 4.13 7.37 0.293 0.040
Orig. 24” Houck 80K 8.22 5.49 0.450 0.082
No Flow Guide 80K -2.13 0.78 0.019 0.024
No Flow Guide 80K 4.13 7.39 0.324 0.044
No Flow Guide 80K 8.22 5.53 0.466 0.085

 
 

The hot-wire analysis for the variation without flow guides are plotted using the 

same scales as the hot-wire analysis for the original 24” Houck Configuration.  The hot-

wire analysis at α = -2.13° for the 24” Houck Configuration with no flow guides can be 

seen in Figure 63.  The hot-wire results are similar to the results from the original 24” 

Houck Configuration with the exception of the area around the absence of the flow 

guides.  This is the only area that will be discussed.  The biggest difference between the 

results of the two model variations is the additional vortex that forms at the wingtips, one 

on the upper wing and one on the lower wing.  In the results for the original Houck 

Configuration, only one vortex ever formed and it took the shape of the flow guide.  At 

this angle of attack, very little lift is being created.  As a result, the vortices that are 



 

95 

formed on the tips of the upper and lower wing are small still (max vorticity ≈ -0.4 rad/s 

(clockwise)).  Notice that the stronger vortex forms on the lower wing.  The lower wing 

showed signs of separation/stall in the flow visualization before the upper wing did for 

the swept alpha range.  This suggests that the lower wing is producing a majority of the 

lift at angles of attack less than 5°, before separation occurs, and is confirmed here by the 

resulting strengths of the wingtip vortices.  The vortices create turbulence which results 

in slower streamwise (u-component) velocities in that region. 

The hot-wire analysis at α = 4.13° for the 24” Houck Configuration with no flow 

guides can be seen in Figure 64.  4.13° is close to being the most efficient angle of attack 

for maximizing range.  With the increase in lift, when compared to α = -2.13°, the 

vortices grow both in strength (max vorticity ≈ -0.9 rad/s) and size.  Once again, the 

stronger vortex forms behind the lower wing.  This angle of attack is close to where 

separation starts to form on the lower wing, but it hasn’t yet started to decrease the lift 

created by the lower wing, resulting in a stronger wingtip vortex when compared to the 

upper wing.  The onset of separation on the lower wing can be seen in the turbulence 

plot.  There is also turbulence created in the regions of the wingtip vortices.  At the core 

of the lower vortex, the fastest streamwise velocity can be seen, 12.8 m/s, but the speed 

quickly decreases away from the center of the vortex core. 

The hot-wire analysis at α = 8.22° for the 24” Houck Configuration with no flow 

guides can be seen in Figure 65.  The upper and lower wingtip vortices still appear 

behind the wing.  The lower vortex has decreased in strength (from -0.9 rad/s to -0.65 

rad/s), while the upper vortex has increased in strength (-0.75 rad/s to -0.9 rad/s).  This is 
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a signal that the majority of the lift is now being produced by the upper wing.  At this 

angle of attack, separation has fully developed over the lower wing (as seen in the flow 

visualization).  This can be seen in both the turbulence plots (high turbulence above the 

lower wing) and in the u-component of velocity plot (lower speeds above the lower 

wing).  The turbulence plot shows a large circular region of heavy turbulence (Ke ≈ 0.41) 

near the location of the lower wing vortex.  The high turbulence results in a very slow 

region of streamwise flow (only 9.3 m/s).    
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Figure 63:  Hot-Wire Analysis of 24” Houck Configuration, No Flow Guides, α = -2.13º, L/D = 0.64 

(a) u-component contours with v & w Vectors, (b) Non-dimensional turbulence contours with v & w vectors,  

(c) Vorticity behind wing with v & w vectors, (d) Position of hot-wire grid with respect to the 24” Houck Configuration 
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Figure 64:  Hot-Wire Analysis of 24” Houck Configuration, No Flow Guides, α = 4.13º, L/D = 7.39 

(a) u-component contours with v & w Vectors, (b) Non-dimensional turbulence contours with v & w vectors,  

(c) Vorticity behind wing with v & w vectors, (d) Position of hot-wire grid with respect to the 24” Houck Configuration 
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Figure 65:  Hot-Wire Analysis of 24” Houck Configuration, No Flow Guides, α = 8.22, L/D = 5.53 

(a) u-component contours with v & w Vectors, (b) Non-dimensional turbulence contours with v & w vectors,  

(c) Vorticity behind wing with v & w vectors, (d) Position of hot-wire grid with respect to the 24” Houck Configuration 
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V. Conclusions and Recommendations 

5.1 Conclusions of Research 

The purpose of this study was to analyze the aerodynamic performance of the 24” 

Houck Configuration and the Houck Lifting Foil concept.  It has been shown that the 24” 

Houck Configuration is capable of values for L/Dmax equal to 6.50 at Re ≈ 80K, 7.43 at 

Re ≈ 125K, and 8.02 at Re ≈ 170K.  These are comparable to historical L/D values as 

shown previously in Figure 13 and have the potential to increase with optimization of the 

aircraft fuselage, wing configuration, and testing at higher Reynolds numbers.  Maximum 

values of CL
3/2/CD were shown to be equal to 3.75 at Re ≈ 80K, 4.20 at Re ≈ 125K, and 

4.53 at Re ≈ 170K.  It has also been shown that at Reynolds numbers of approximately 

80K and 125K, the 24” Houck Configuration shows longitudinal, directional, and lateral 

static stability. 

When compared to the variation without flow guides, the 24” Houck 

Configuration was shown to have a 2.5% decrease in L/Dmax at Re ≈ 80K and a 0.3% 

decrease at Re ≈ 125K.  It was also shown to have 12.8% decrease in CL
(3/2)/CDmax at Re ≈ 

80K and a 3.4% decrease at Re ≈ 125K.  For both cases, maximizing range and 

endurance, the gap in performance between the 24” Houck Configuration and the model 

without flow guides decreases as the Reynolds number increases.  Further testing is 

needed to determine what would happen at higher Reynolds numbers. 

The effective aspect ratio, e AR, was calculated to be 1.6375 at Re ≈ 80K and 

1.653 at Re ≈ 125K.  The designed flow guides proved to be successful in combining the 

upper and lower wing-tip vortices into a single vortex.  The flow guides alter what would 
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be two smaller compact vortices and instead produce a slightly larger, spread out vortex 

which follows the curve of the flow guide.  Ultimately, evidence of improvements in 

aerodynamic efficiency will need to be shown before other claims of the design are 

demonstrated to be fully successful.    

5.2 Recommendations for Future Research 

 It is recommended to continue testing the Houck Lifting Foil concept in order to 

better understand the design and how it works.  Both experimental wind tunnel testing as 

well as CFD analysis is suggested.  Experimentally, a more generic and geometrically 

specified baseline model with interchangeable flow guides should be tested in order to 

determine the validity of the patent claims.  The model should be constructed with wind 

tunnel testing in mind and built to withstand higher speeds and angles of attack.  This will 

allow further analysis into the performance of a Houck aircraft at higher Reynolds 

numbers.  If possible, use the same wingspan and planform area for each flow guide 

variation tested.  Flow guides with varying camber should also be tested to determine if 

there are any optimal layouts.  CFD analysis should also be continued in order to 

compare to experimental results and explore areas that are not as easily tested in an 

experimental setting.   
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Appendix A:  10 lb Balance Dimensions 
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 Appendix B:  MATLAB 10 lb Balance Code 
 
%************************************************************************** 
%************************************************************************** 
%**********         Lt. Gebbie & Capt Anthony DeLuca    ******************* 
%******   Adapted for the Balance AFIT 1 by Lt. Rivera Parga ************** 
%*********     re-adapted by Troy Leveron, ENS, USNR    ******************* 
%**********     Calculation of Lift, Drag, Moments      ******************* 
%**********     FLEX WING, Prop OFF, ALPHA SWEEPS       ******************* 
%************************************************************************** 
%***********  re-adapted by 1Lt Michael Walker, ENY, USAF  **************** 
%************************************************************************** 
%This Code will transfer measured Forces and Moments on the AFIT 1 balance to Wind 
%(earth) centered frame of reference by correctiing for tare effects, balance 
%interactions, and wind tunnel irregularities, then gives a file with all the  
%corrected data   
  
clear; clc; close all; 
format long 
%########################################################################## 
%                               INPUT DECK 
%FIRST FILL THE FOLLOWING INFORMATION (modified by M. Walker on 11 Sept, 2006) 
  
Masskg=0.89825;                    % kgs - Mass of Houck configuration - (2 lbs) 
T_room = mean([74.6]) + 459.67;             %deg R  ****Room Temperature on 14 Nov 2006**** 
P_barro = mean([28.8058]) * 0.4911541;      %Psi   ****Pressure on 14 Nov 2006**** 
  
load Houck_Nov_10lb_TARE_alpha_n8to10_B0.txt;                %tarefile tare.txt - CHANGE FOR EACH 
TEST RUN 
TareFile = Houck_Nov_10lb_TARE_alpha_n8to10_B0(:,1:9); 
  
load Houck_Orig_10lb_30mph_alpha_n8to10_B0.txt;               %datafile .txt - CHANGE FOR EACH 
TEST RUN 
DataFile = Houck_Orig_10lb_30mph_alpha_n8to10_B0(:,1:9); 
  
%Offset distances from the Mounting Block to the Model C.G.,%(inches) 
Y_cmb =  0; 
X_cmb = 2.13;                             %inches  (from origin @ balance center w/ + forward) 
Z_cmb = 0.65;                             %inches  (from origin @ balance center w/ + down) 
  
     % Requeried for the Solid body blockage corrections due to wing and fuselage  
  
Body_Volume = 248.37/(12^3) ;      %(ft^3): FROM DR. TIM FRY'S CFD MODEL 
Wing_Area = 307/(12^2);         %(ft^2): FROM DR. TIM FRY'S CFD MODEL 
c_bar = 12.27/12;             % (ft): FROM DR. TIM FRY'S CFD MODEL 
span = 23.58/12;               % (ft): FROM DR. TIM FRY'S CFD MODEL 
root_chord = 5.56/12;         % (ft): FROM DR. TIM FRY'S CFD MODEL 
%************************************************************************** 
% Requeried for the Pitching Moment Correction (NOT USED FOR HOUCK MODEL) 
  
% l_t =  9/12;                                % ft = length from tail MAC to aircraft CG 
% Span_t =(4+(6/16)) / 12;                    % ft = horizontal span  
% Tail_Area = (9.42962435) / 144;             % ft^2 =  horizontal tail area 



 

104 

%************************************************************************** 
 %####################################################################### 
%II.-   Room Conditions and Model Specifics : 
%       UNITS are in Ft, Sec, lbm, Psf, Rankine, fps  
%####################################################################### 
  
Mass = (Masskg * 1000) * 0.0022046;                          %lbm (24 in Houck Model) 
Gas_Const = 1716;                                            %ft-lbf/Slug-R 
Density = (P_barro * 144)/(1716 * T_room);                   %lbm/ft^3 or lbf-s^2/ft^4 
Root_Chord = root_chord;                                     %ft 
Span = span;                                                 %ft 
Aspect_Ratio = Span^2 / Wing_Area; 
Kinematic_Viscosity = .372e-6;                               %slug/ft-s 
Speed_of_Sound = sqrt(1.4 * T_room * Gas_Const);             %fps 
  
%####################################################################### 
%III.-     Solid body blockage corrections due to wing and fuselage  
%####################################################################### 
  
K_1 = 0.9; 
K_3 = 0.93; 
delta = 0.1177; 
Tau_1 = 0.83125;                     % from page XXX in text - Figure XX 
X_Section = (31/12)*(44/12);                               %ft^2 
Wing_Volume = Body_Volume;                                 %ft^3 
              
Epsilon_sb_w = (K_1*Tau_1*Wing_Volume) / X_Section^(3/2); 
Epsilon_sb_b = (K_3*Tau_1*Body_Volume) / X_Section^(3/2); 
Epsilon_tot = Epsilon_sb_w + Epsilon_sb_b; 
%Epsilon_tot = Epsilon_sb_w ; 
  
%####################################################################### 
% III.-  Load the static tare data for the alpha sweep w/o the wind ,  
%        separate each force from the file, and fit a 4th order poly  
%        as an x-y plot (AoA vs.Force) for each of the 6 force sensors. 
%###################################################################### 
  
FILE=TareFile(:,:);                     % Pulls in tare data file 
  
j=1; 
k=1; 
L=length(FILE); 
  
for i=1:L                               %Run for all data points # of rows 
    if i~=L                             %if current row is not last row, go to next 
        NEXT=i+1;                       %set next equal to the value of the next row  
        VALUE2=FILE(NEXT,1);            %set value2 as next row column 1 
    else if i==L                        %unless the it is the last value     
        VALUE2=50;                      %value2 set to 50 to end the sequence 
    end 
    end 
    A(j,:)=FILE(i,:);                   %set row j of A equal to row i of FILE 
    VALUE1=FILE(i,1);                   %set value1 equal to row i column 1 of FILE 
    if VALUE1==VALUE2                   %if value1 equals value2, go to next row 
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        j=j+1; 
    else if VALUE1~=VALUE2              %if value1 and value2 are different check    
        if length(A(:,1))<5                  %if less than 5 values, ignored due to angle change 
            j=1; 
            clear A; 
        else if length(A(:,1))>5            %if more than 5 values 
                C=length(A(:,1));                %find length of A 
                for m=1:9                   %Average all rows of the like values in A  
                    B(k,m)=mean(A(4:C,m));     %disregarding first 3 for vibrations 
                end  
                j=1; 
                k=k+1; 
                clear A 
        end 
        end 
       
    end 
    end 
end  
  
if B(k-1,1)<B((k-2),1) 
    B=B(1:(k-2),:) 
end 
  
tare=[B]; 
  
%_________________________________End of inserted code 
[row,col] = size(tare); 
   
for k = 1:row; 
  
theta_tare(k,:,:)   = tare(k,1).* (pi/180); 
NF_tare(k,:,:)      = tare(k,4); 
PM_tare(k,:,:)      = tare(k,5);    
AF_tare(k,:,:)       = tare(k,6); 
SF_tare(k,:,:)      = tare(k,7);   
YM_tare(k,:,:)      = tare(k,8); 
RM_tare(k,:,:)       = tare(k,9);    
  
end 
  
NF_poly = polyfit(theta_tare,NF_tare,4); 
PM_poly = polyfit(theta_tare,PM_tare,4); 
AF_poly  = polyfit(theta_tare,AF_tare,4); 
SF_poly = polyfit(theta_tare,SF_tare,4); 
YM_poly = polyfit(theta_tare,YM_tare,4); 
RM_poly  = polyfit(theta_tare,RM_tare,4); 
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%####################################################################### 
%IV.- Load the specific test run files,  
%####################################################################### 
   
clear ('AA','B','C','L') 
%___________________________________________ 
  
FILE=DataFile(:,:);                   % Pulls in test data file 
  
j=1; 
k=1; 
L=length(FILE); 
  
for i=1:L                               %Run for all data points # of rows 
    if i~=L                             %if current row is not last row, go to next 
        NEXT=i+1;                       %set next equal to the value of the next row  
        VALUE2=FILE(NEXT,1);            %set value2 as next row column 1 
    else if i==L                        %unless the it is the last value     
        VALUE2=50;                      %value2 set to 50 to end the sequence 
    end 
    end 
    A(j,:)=FILE(i,:);                   %set row j of A equal to row i of FILE 
    VALUE1=FILE(i,1);                   %set value1 equal to row i column 1 of FILE 
    if VALUE1==VALUE2                   %if value1 equals value2, go to next row 
        j=j+1;             
    else if VALUE1~=VALUE2              %if value1 and value2 are different check    
        if length(A(:,1))<5                  %if less than 5 values, ignored due to angle change 
            j=1; 
            clear A; 
        else if length(A(:,1))>5            %if more than 5 values             
                C=length(A(:,1));                %find length of A 
                for m=1:9                   %Average all rows of the like values in A  
                    B(k,m)=mean(A(4:C,m));     %disregarding first 3 for vibrations 
                end  
                j=1; 
                k=k+1; 
                clear A             
        end 
        end 
    end    
    end 
end 
  
%  if B(k-1,1)<B((k-2),1) 
%     B=B(1:(k-2),:) 
%  end 
  
sample_data=[B]; 
  
%_________________________________End of inserted code 
 
[row2,col2] = size(sample_data); 
 for i = 1:row2; 
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%Angles of the model during test runs (Roll, Pitch {AoA}, Yaw {Beta}): 
  
phi                 = 0; 
theta(i,:)        = sample_data(i,1) .* (pi/180)-(0*pi/180);                %radians   
si(i,:)           = sample_data(i,2) .* (pi/180);                           %radians    
Wind_Speed(i,:)   = sample_data(i,3) .* (5280/3600);                        %fps   
  
%Flight Parameters (Re#, Ma#, Dynamic Pressure): 
  
q = (.5 * Density) .* Wind_Speed.^2;                                                        %lbf/ft^2 
q_Corrected = q .* (1 + Epsilon_tot)^2;                                                     %lbf/ft^2 
Wind_Speed_Corrected = Wind_Speed .* (1 + Epsilon_tot);                                     %fps  
Mach_Number = Wind_Speed_Corrected ./ Speed_of_Sound;                                       %NonDimensional 
Reynolds_Number = ((Density * Root_Chord) .* Wind_Speed_Corrected) ./ Kinematic_Viscosity;  
%NonDimensional 
Flight_Parameters = [Mach_Number Reynolds_Number q_Corrected] 
  
%individual forces and moments for each sensor: 
  
%NEW NOTATION 
NF_test(i,:,:)      = sample_data(i,4); 
PM_test(i,:,:)      = sample_data(i,5);    
AF_test(i,:,:)       = sample_data(i,6); 
SF_test(i,:,:)      = sample_data(i,7);  
YM_test(i,:,:)      = sample_data(i,8); 
RM_test(i,:,:)       = sample_data(i,9);    
  
%####################################################################### 
%V.-   Subtract the effect of the static 
%      weight with the tare polynominals above 
%####################################################################### 
   
%Evaluating the actual test theta angle (AoA) in the tare polynominal to 
%determine the tare values for the angles tested in each run. 
  
NF_eval = polyval(NF_poly,theta); 
PM_eval = polyval(PM_poly,theta); 
AF_eval  = polyval(AF_poly,theta); 
SF_eval = polyval(SF_poly,theta); 
YM_eval = polyval(YM_poly,theta); 
RM_eval  = polyval(RM_poly,theta); 
  
%The Time-Averaged (raw) forces and momentums NF,AF,SF,PM,YM AND RM measurd in the wind 
%tunnel (body axis) with the tare effect of the weight subtracted off. 
  
NF_resolved = NF_test - (NF_eval); 
PM_resolved = PM_test - (PM_eval); 
AF_resolved  = AF_test -  (AF_eval); % check this 8-17-04 
SF_resolved = SF_test - (SF_eval); 
YM_resolved = YM_test - (YM_eval); 
RM_resolved  = RM_test -  (RM_eval); 
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Forces_minus_tare = [NF_resolved, AF_resolved, PM_resolved, RM_resolved, YM_resolved, 
SF_resolved]'; 
 %####################################################################### 
%VI.- CORRECT FORCES AND MOMENTS FOR BALANCE INTERATIONS (body axis) 
%########################################################################## 
  
%USING THE REDUCTION EQUATIONS 
%LET US SET A MAXIMUN NUMBER OF INTERATIONS (FOR AVOIDING AN INFINIT LOOP) 
MAXIT=100;  
%SET THE LIMIT FOR THE DIFFERENCE BETWEEN INTERATIONS(CRITERIA FOR FINISH 
THE INTERATIONS)  
LIMIT=  10E-14;  
  
%MATCHING EACH NAME WITH  THE DATA  
% Prof. Reeder added :i 
MNF=NF_resolved(i); 
MAF=AF_resolved(i); 
MPM=PM_resolved(i); 
MRM=RM_resolved(i); 
MYM=YM_resolved(i); 
MSF=SF_resolved(i); 
  
%INPUT OF THE CONSTANTS VALUES FROM THE MATRIX FOR SENSITIVITIES AND 
INTERATIONS 
K=[0  -1.3567E-03  -3.8021E-03  -4.2814E-03  -1.6966E-03   1.7567E-03  ... 
   5.3167E-05  -1.3867E-04  -5.5629E-05  3.5181E-05  1.0601E-05  -2.5271E-04... 
   5.6693E-05  -1.9537E-04   1.7908E-05  -3.6606E-05  -4.9934E-05  4.1205E-05... 
   2.5648E-05  -1.9289E-05  8.9661E-05  -1.9594E-05  -4.9859E-04  -1.1599E-03... 
   5.7163E-05  8.9798E-05  -7.8591E-05  9.3187E-03  0  -3.8421E-03  3.5740E-03... 
   9.7714E-05  -2.7776E-03  -1.3552E-04  5.1538E-04  2.2082E-04  -1.2706E-05... 
  -2.3637E-05  1.3686E-05  1.1085E-04  -3.6557E-06  4.9876E-06  8.1085E-06... 
   3.7381E-05  1.2791E-04  -9.4527E-06  -2.3083E-06  -1.2046E-06  7.8161E-04... 
   -1.1997E-03  -3.0560E-05  -6.6202E-05  3.7227E-04  -2.1469E-04  4.8386E-03... 
   -3.7387E-03  0  -1.8479E-02  3.9077E-03  9.9165E-04  -1.4825E-05  -1.4830E-06... 
   6.0845E-05  8.0667E-05  1.8547E-05  -5.0212E-05  1.0539E-04  -2.2676E-04... 
   4.3793E-05  -1.0456E-05  -8.1186E-06  -2.1653E-05  -3.3070E-05  1.7280E-05... 
   -7.4509E-05  -3.4399E-05  -8.2999E-04  -6.7962E-04  4.0521E-05  -5.1604E-05... 
   9.1132E-06  -5.7360E-03  -2.2213E-04  9.9131E-04  0  -9.5790E-03  6.7114E-03... 
   3.6824E-05  1.0056E-04  -3.7105E-05  -9.0295E-05  -7.4580E-05  1.4814E-04... 
   7.2634E-05  -8.4778E-06  6.3486E-05  5.6328E-05  -1.3617E-04  2.2196E-05... 
   1.3606E-05  -3.6689E-05  8.3283E-05  1.1865E-04  1.8544E-05  -1.9831E-05... 
   1.7894E-05  -6.8164E-05  -7.0892E-05  1.2378E-03  1.6961E-03  -6.5102E-03... 
   -9.3202E-03  0  5.1349E-03  1.3612E-05  -1.3175E-04  7.2442E-06  5.6705E-04... 
   -1.4723E-05  -4.8656E-05  -1.4282E-04  5.9711E-05  5.9046E-05  -3.6490E-04... 
   7.4881E-05  5.4601E-06  1.0129E-03  -1.3867E-04  8.1617E-05  6.6053E-05... 
   -1.3417E-05  9.0025E-05  -4.5362E-05  -4.4672E-06  9.5087E-05  -3.4077E-02... 
   7.9142E-04  1.6667E-03  -6.6512E-03  8.1538E-03 0  -1.4185E-05  7.3209E-05... 
   -2.5849E-05  1.2325E-03  -4.1696E-05  4.6266E-05  8.6146E-05  2.1436E-05... 
   5.0874E-05  -3.2738E-04  2.2218E-04  8.6478E-06  7.3395E-04  -4.1453E-05... 
   3.5719E-05  2.5313E-05  1.5182E-04  3.6007E-05  -2.8844E-05  8.9741E-05... 
  -7.3257E-05]; 
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%COMPUTE THE UNCORRECTED FORCES AND MOMENTS BY 
%CONSIDERING THAT THE PRIME SENSITIVITY CONSTANTS ARE ALREADY APLIED: 
  
NF1=MNF; 
AF1=MAF; 
PM1=MPM; 
RM1=MRM; 
YM1=MYM; 
SF1=MSF; 
  
%FOR THE FIRST INTERACTION LET US INITIALIZE THE VALUES OF FORCES AND 
%MOMENTS WITH THE VALUES OF THE UNCORRECTED FORCES AND MOMENTS 
  
NF(1)=NF1; 
AF(1)=AF1; 
PM(1)=PM1; 
RM(1)=RM1; 
YM(1)=YM1; 
SF(1)=SF1; 
  
%DOING THE INTERACTION EQUATIONS: 
  
for n=2:MAXIT; 
   
NF(n)=NF1-((K(2)*AF(n-1))+(K(3)*PM(n-1))+(K(4)*RM(n-1))+(K(5)*YM(n-1))+(K(6)*SF(n-
1))+(K(7)*NF(n-1)^2)+... 
         (K(8)*(NF(n-1)*AF(n-1)))+(K(9)*(NF(n-1)*PM(n-1)))+(K(10)*(NF(n-1)*RM(n-
1)))+(K(11)*(NF(n-1)*YM(n-1)))+... 
         (K(12)*(NF(n-1)*SF(n-1)))+(K(13)*(AF(n-1)^2))+(K(14)*(AF(n-1)*PM(n-1)))+(K(15)*(AF(n-
1)*RM(n-1)))+... 
         (K(16)*(AF(n-1)*YM(n-1)))+(K(17)*(AF(n-1)*SF(n-1)))+(K(18)*(PM(n-1)^2))+(K(19)*(PM(n-
1)*RM(n-1)))+... 
         (K(20)*(PM(n-1)*YM(n-1)))+(K(21)*(PM(n-1)*SF(n-1)))+(K(22)*(RM(n-1)^2))+(K(23)*(RM(n-
1)*YM(n-1)))+... 
         (K(24)*(RM(n-1)*SF(n-1)))+(K(25)*(YM(n-1)^2))+(K(26)*(YM(n-1)*SF(n-1)))+(K(27)*(SF(n-
1)^2))); 
          
AF(n)=AF1-((K(28)*NF(n-1))+(K(30)*PM(n-1))+(K(31)*RM(n-1))+(K(32)*YM(n-1))+(K(33)*SF(n-
1))+(K(34)*NF(n-1)^2)+... 
         (K(35)*(NF(n-1)*AF(n-1)))+(K(36)*(NF(n-1)*PM(n-1)))+(K(37)*(NF(n-1)*RM(n-
1)))+(K(38)*(NF(n-1)*YM(n-1)))+... 
         (K(39)*(NF(n-1)*SF(n-1)))+(K(40)*(AF(n-1)^2))+(K(41)*(AF(n-1)*PM(n-1)))+(K(42)*(AF(n-
1)*RM(n-1)))+... 
         (K(43)*(AF(n-1)*YM(n-1)))+(K(44)*(AF(n-1)*SF(n-1)))+(K(45)*(PM(n-1)^2))+(K(46)*(PM(n-
1)*RM(n-1)))+... 
         (K(47)*(PM(n-1)*YM(n-1)))+(K(48)*(PM(n-1)*SF(n-1)))+(K(49)*(RM(n-1)^2))+(K(50)*(RM(n-
1)*YM(n-1)))+... 
         (K(51)*(RM(n-1)*SF(n-1)))+(K(52)*(YM(n-1)^2))+(K(53)*(YM(n-1)*SF(n-1)))+(K(54)*(SF(n-
1)^2))); 
  
PM(n)=PM1-((K(55)*NF(n-1))+(K(56)*AF(n-1))+(K(58)*RM(n-1))+(K(59)*YM(n-1))+(K(60)*SF(n-
1))+(K(61)*NF(n-1)^2)+... 
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         (K(62)*(NF(n-1)*AF(n-1)))+(K(63)*(NF(n-1)*PM(n-1)))+(K(64)*(NF(n-1)*RM(n-
1)))+(K(65)*(NF(n-1)*YM(n-1)))+... 
         (K(66)*(NF(n-1)*SF(n-1)))+(K(67)*(AF(n-1)^2))+(K(68)*(AF(n-1)*PM(n-1)))+(K(69)*(AF(n-
1)*RM(n-1)))+... 
         (K(70)*(AF(n-1)*YM(n-1)))+(K(71)*(AF(n-1)*SF(n-1)))+(K(72)*(PM(n-1)^2))+(K(73)*(PM(n-
1)*RM(n-1)))+... 
         (K(74)*(PM(n-1)*YM(n-1)))+(K(75)*(PM(n-1)*SF(n-1)))+(K(76)*(RM(n-1)^2))+(K(77)*(RM(n-
1)*YM(n-1)))+... 
         (K(78)*(RM(n-1)*SF(n-1)))+(K(79)*(YM(n-1)^2))+(K(80)*(YM(n-1)*SF(n-1)))+(K(81)*(SF(n-
1)^2))); 
   
RM(n)=RM1-((K(82)*NF(n-1))+(K(83)*AF(n-1))+(K(84)*PM(n-1))+(K(86)*YM(n-1))+(K(87)*SF(n-
1))+(K(88)*NF(n-1)^2)+... 
         (K(89)*(NF(n-1)*AF(n-1)))+(K(90)*(NF(n-1)*PM(n-1)))+(K(91)*(NF(n-1)*RM(n-
1)))+(K(92)*(NF(n-1)*YM(n-1)))+... 
         (K(93)*(NF(n-1)*SF(n-1)))+(K(94)*(AF(n-1)^2))+(K(95)*(AF(n-1)*PM(n-1)))+(K(96)*(AF(n-
1)*RM(n-1)))+... 
         (K(97)*(AF(n-1)*YM(n-1)))+(K(98)*(AF(n-1)*SF(n-1)))+(K(99)*(PM(n-1)^2))+(K(100)*(PM(n-
1)*RM(n-1)))+... 
         (K(101)*(PM(n-1)*YM(n-1)))+(K(102)*(PM(n-1)*SF(n-1)))+(K(103)*(RM(n-
1)^2))+(K(104)*(RM(n-1)*YM(n-1)))+... 
         (K(105)*(RM(n-1)*SF(n-1)))+(K(106)*(YM(n-1)^2))+(K(107)*(YM(n-1)*SF(n-
1)))+(K(108)*(SF(n-1)^2))); 
  
YM(n)=YM1-((K(109)*NF(n-1))+(K(110)*AF(n-1))+(K(111)*PM(n-1))+(K(112)*RM(n-
1))+(K(114)*SF(n-1))+(K(115)*NF(n-1)^2)+... 
         (K(116)*(NF(n-1)*AF(n-1)))+(K(117)*(NF(n-1)*PM(n-1)))+(K(118)*(NF(n-1)*RM(n-
1)))+(K(119)*(NF(n-1)*YM(n-1)))+... 
         (K(120)*(NF(n-1)*SF(n-1)))+(K(121)*(AF(n-1)^2))+(K(122)*(AF(n-1)*PM(n-1)))+(K(123)*(AF(n-
1)*RM(n-1)))+... 
         (K(124)*(AF(n-1)*YM(n-1)))+(K(125)*(AF(n-1)*SF(n-1)))+(K(126)*(PM(n-
1)^2))+(K(127)*(PM(n-1)*RM(n-1)))+... 
         (K(128)*(PM(n-1)*YM(n-1)))+(K(129)*(PM(n-1)*SF(n-1)))+(K(130)*(RM(n-
1)^2))+(K(131)*(RM(n-1)*YM(n-1)))+... 
         (K(132)*(RM(n-1)*SF(n-1)))+(K(133)*(YM(n-1)^2))+(K(134)*(YM(n-1)*SF(n-
1)))+(K(135)*(SF(n-1)^2))); 
  
SF(n)=SF1-((K(136)*NF(n-1))+(K(137)*AF(n-1))+(K(138)*PM(n-1))+(K(139)*RM(n-
1))+(K(140)*YM(n-1))+(K(142)*NF(n-1)^2)+... 
         (K(143)*(NF(n-1)*AF(n-1)))+(K(144)*(NF(n-1)*PM(n-1)))+(K(145)*(NF(n-1)*RM(n-
1)))+(K(146)*(NF(n-1)*YM(n-1)))+... 
         (K(147)*(NF(n-1)*SF(n-1)))+(K(148)*(AF(n-1)^2))+(K(149)*(AF(n-1)*PM(n-1)))+(K(150)*(AF(n-
1)*RM(n-1)))+... 
         (K(151)*(AF(n-1)*YM(n-1)))+(K(152)*(AF(n-1)*SF(n-1)))+(K(153)*(PM(n-
1)^2))+(K(154)*(PM(n-1)*RM(n-1)))+... 
         (K(155)*(PM(n-1)*YM(n-1)))+(K(156)*(PM(n-1)*SF(n-1)))+(K(157)*(RM(n-
1)^2))+(K(158)*(RM(n-1)*YM(n-1)))+... 
         (K(159)*(RM(n-1)*SF(n-1)))+(K(160)*(YM(n-1)^2))+(K(161)*(YM(n-1)*SF(n-
1)))+(K(162)*(SF(n-1)^2))); 
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% SET THE LIMIT FOR THE DIFFERENCE BETWEEN INTERATIONS(CRITERIA FOR FINISH 
THE INTERATIONS)  
  
DIFFNF(n)=abs(NF(n)-NF(n-1)); 
DIFFAF(n)=abs(AF(n)-AF(n-1)); 
DIFFPM(n)=abs(PM(n)-PM(n-1)); 
DIFFRM(n)=abs(RM(n)-RM(n-1)); 
DIFFYM(n)=abs(YM(n)-YM(n-1)); 
DIFFSF(n)=abs(SF(n)-SF(n-1)); 
   
if DIFFNF(n)&DIFFAF(n)&DIFFPM(n)&DIFFRM(n)&DIFFYM(n)&DIFFSF(n) < LIMIT 
 break 
  
end 
  
end 
  
%disp('THE FINAL VALUES ARE (NF,AF,PM,RM,YM,SF):') 
Corrected_Data(:,i)= [NF(n);AF(n);PM(n);RM(n);YM(n);SF(n)]; 
  
%disp('THE FINAL DIFFERENCE BETWEEN INTERATIONS ARE(FOR NF,AF,PM,RM,YM,SF) :') 
%FINAL_DIFFERENCE=[DIFFNF(n),DIFFAF(n),DIFFPM(n),DIFFRM(n),DIFFYM(n),DIFFSF(n)] 
  
%disp('THE NUMBER OF INTERATIONS USED WAS:') 
%n 
  
%####################################################################### 
%VII.- Calculation of the Axial, Side, & Normal Forces from the corrected balance 
%      forces in the Body Axis reference frame 
%####################################################################### 
  
Forces_b(:,i) = [Corrected_Data(2,i); Corrected_Data(6,i); Corrected_Data(1,i)]; 
  
  
%Calculation of the Drag, Side, & Lift Forces in the Wind Axis reference 
%frame 
  
Forces_w = [Forces_b(1,:).*cos(theta').*cos(si')+Forces_b(2,:).*sin(si')+Forces_b(3,:).*sin(theta').*cos(si');      
%in radians 
           -Forces_b(1,:).*sin(si').*cos(theta')+Forces_b(2,:).*cos(si')-Forces_b(3,:).*sin(theta').*sin(si'); 
           -Forces_b(1,:).*sin(theta')+Forces_b(3,:).*cos(theta')]; 
  
%First entry is the moments calculated by the balance or direct calculation 
%in the Body Reference Frame.  Balance measures Roll (l), Yaw is about the 
%z-axis (n), and Pitch is about the y-axis (m).  Distances from strain 
%gages to C.G. are in INCHES.  Moments are in-lbf. See pp. 236-238 of 
%Barlow et. al., 3rd ed. 
  
m = Corrected_Data(3,i); 
n = Corrected_Data(5,i); 
l = Corrected_Data(4,i); 
  
Moments_b(:,i) = [l; m; n]; 
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%Second entry is the conversion from the "Balance Centeric" moments to the 
%Wind Reference monments with respect to the Balance Center (bc) 
  
Moments_w_bc = [Moments_b(1,:).*cos(theta').*cos(si')-
Moments_b(2,:).*sin(si')+Moments_b(3,:).*sin(theta').*cos(si'); 
                
Moments_b(1,:).*sin(si').*cos(theta')+Moments_b(2,:).*cos(si')+Moments_b(3,:).*sin(theta').*sin(si'); 
               -Moments_b(1,:).*sin(theta')+Moments_b(3,:).*cos(theta')]; 
  
%Finally, the balance centered moments are converted to moments about the 
%Model's Center of Mass (cm) or Center of Gravity (CG) 
  
cgdist=sqrt((X_cmb)^2+(Z_cmb)^2); %Obtaining the direct distance between the  
                                   %center of the balance and the center of mass 
w=atan(-Z_cmb/X_cmb);  %Obtaining the angle between cgdist and the x axes at zero angle of attack 
  
X_cm(i,:)= cos(theta(i,:)+w)*cos(si(i,:))*(cgdist); 
Y_cm(i,:) = Y_cmb + X_cm(i,:)*tan(si(i,:));             % appropriate for very small y_cmb and reasonable si 
Z_cm(i,:)= -sin(theta(i,:)+w)*(cgdist); 
  
  
Moments_w_cg_u = [Moments_w_bc(1,:) + Z_cm(i,:)*Forces_w(2,:) + Forces_w(3,:)* Y_cm(i,:); 
                 Moments_w_bc(2,:) - Forces_w(3,:)* X_cm(i,:) + Forces_w(1,:)* Z_cm(i,:); 
                 Moments_w_bc(3,:) - Forces_w(1,:)* Y_cm(i,:) - Forces_w(2,:)* X_cm(i,:)]; 
  
%####################################################################### 
  
%VIII.- Calculation of the actual Lift and Drage nondimensional Coefficients, uncorrected for tunnel 
effects, (Cl 
%       and Cd) 
%####################################################################### 
  
C_D_u = Forces_w(1,:) ./ (q_Corrected' .* Wing_Area); 
C_Y_u = Forces_w(2,:) ./ (q_Corrected' .* Wing_Area); 
C_L_u = Forces_w(3,:) ./ (q_Corrected' .* Wing_Area);                 %Keuthe & Chow pg 178 
Coefficients = [C_L_u; C_D_u; C_Y_u]'; 
 Ave_Cl = mean(Coefficients(:,1)); 
 Ave_Cd = mean(Coefficients(:,2)); 
  
end 
  
%####################################################################### 
%IX          Drag Coefficient Correction  
%####################################################################### 
  
C_D_o = min(Coefficients(:,2)); 
C_L_u_sqrd = Coefficients(:,1).^2; 
Delta_C_D_w = ((delta * Wing_Area) / X_Section) .* C_L_u_sqrd; 
C_D_Corrected = C_D_u' + Delta_C_D_w; 
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%####################################################################### 
%X.-  Angle of Attack due to upwash Correction  
%####################################################################### 
  
alpha_before = sample_data(:,1); 
alpha =[alpha_before]-[0]; %18APR05 change to 5 for sting block angle, then back to 0 for Aero 517 SU 
2005 ************************************* 
Delta_alpha_w = ((delta * Wing_Area) / X_Section) .* (57.3 * C_L_u); 
alpha_Corrected = alpha + Delta_alpha_w'; 
  
%####################################################################### 
%XI.-  Pitching Moment Correction  
%####################################################################### 
  
% tau2 = 0.65; 
 c_bar = c_bar;                                 % ft = Mean Chord of wing 
% V_bar =  0/ (Wing_Area * c_bar);              %  Horizontal tail volume ratio    
% eta_t = 1.0; 
% epsilon_o = 0; 
% i_t = pi/4;                                                             % radians 
% i_w = 0; 
% Aspect_Ratio_t = Span_t^2 / Tail_Area; 
%  
% D_epslion_D_alpha = ((2 .* C_L_u) ./ (pi* Aspect_Ratio))'; 
% epsilon = epsilon_o + (D_epslion_D_alpha .* alpha_Corrected ); 
% alpha_t = alpha_Corrected - i_w - epsilon + i_t; 
% C_L_alpha_t = 0 %((0.1* Aspect_Ratio) / (Aspect_Ratio_t +2)) * 0.8; 
% D_Cm_cg_t_D_alpha_t = -C_L_alpha_t* V_bar * eta_t; 
% Delta_C_m_cg_t = ((D_Cm_cg_t_D_alpha_t) * (delta*tau2) * (Wing_Area / X_Section) .* (C_L_u * 
57.3))'; 
  
Cl_w_cg =   Moments_w_cg_u(1,:) ./ (q_Corrected' .* (Wing_Area * Span*12)); 
Cm_w_cg_u = Moments_w_cg_u(2,:) ./ (q_Corrected' .* (Wing_Area * c_bar*12)); 
Cn_w_cg =   Moments_w_cg_u(3,:) ./ (q_Corrected' .* (Wing_Area * Span*12)); 
  
Cm_w_cg_corrected = Cm_w_cg_u %-Delta_C_m_cg_t';  %no tail 
Corrected_Moment_Coefficients = [Cl_w_cg' Cm_w_cg_corrected' Cn_w_cg']; 
   
%OBTAINING THE MOMENT COEFFICIENTS CORRECTED ABOUT THE CENTER OF THE 
%BALANCE 
   
Cl_w_bc =   Moments_w_bc(1,:) ./ (q_Corrected' .* (Wing_Area * Span*12)); 
Cm_w_bc_u = Moments_w_bc(2,:) ./ (q_Corrected' .* (Wing_Area * c_bar*12)); 
Cn_w_bc =   Moments_w_bc(3,:) ./ (q_Corrected' .* (Wing_Area * Span*12)); 
  
Cm_w_bc_corrected = Cm_w_bc_u ;  %no tail 
Corrected_Moment_Coefficients_bc = [Cl_w_bc' Cm_w_bc_corrected' Cn_w_bc']; 
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%####################################################################### 
%XII.- OUTPUT VARIABLES FORMATING 
%####################################################################### 
  
alpha = sample_data(:,1); 
  
% fprintf('   Mach Number Reynolds Number Dynamic Pressure(Psf)\r') 
% % Flight_Parameters 
% fprintf(' \r'); 
% fprintf(' Loads are in lbf and arranged [D S L] across the top and increments of alpha down the side \r') 
% Forces_w' 
% fprintf(' \r') 
% fprintf(' Moments are in in-lbf and arranged [L M N] down the side and increments of alpha along the 
top \r') 
% % Moments_w_cg_u 
% fprintf(' \r') 
% fprintf('       Cl_u           Cd_u             CY_u \r'); 
% % Coefficients 
% fprintf(' \r') 
% fprintf('    Del_CD_w       CD_u     CD_Corrected \r'); 
% Compare_CD = [Delta_C_D_w C_D_u' C_D_Corrected] 
% fprintf(' \r') 
% fprintf('    Del_alpha_w    alpha_g     alpha_Corrected \r'); 
% Compare_alpha = [Delta_alpha_w' alpha alpha_Corrected ] 
% fprintf(' \r') 
% fprintf('    Cl_cg_wind    Cm_cg_corrected_w     Cn_cg_wind \r'); 
% % Corrected_Moment_Coefficients 
% fprintf(' \r') 
% fprintf('       M#           Re#          q_c           Uoo        alpha_c        C_L        C_D_c      Cl_cg_w       
Cm_cg_c_w    Cn_cg_w       C_Y\r'); 
YY=[Flight_Parameters (Wind_Speed_Corrected .* (3600/5280)) alpha_Corrected C_L_u' C_D_Corrected 
Corrected_Moment_Coefficients C_Y_u' NF_resolved AF_resolved] 
% XX=['M#', 'Re#', 'q_c',  'Uoo', 'alpha_c', 'C_L', 'C_D_c', 'Cl_cg_w', 'Cm_cg_c_w', 'Cn_cg_w', 'C_Y_u']; 
  
% ZZ=[XX; YY]; 
% wk1write('output.xls',YY,2,1) 
   
% Max_Cl = max(Coefficients(:,1)) 
  
% LET US SAVE TOTAL DATA IN A EXTERNAL FILE 
  
dlmwrite('Houck_Orig_Nov_30mph_8to10',YY,'\t') 
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Appendix C:  Low-Speed Wind Tunnel Test Results 

 

The following data was taken in the AFIT low-speed wind tunnel using the 10lb 

balance and resolved using the MATLAB code found in Appendix B. 

 

 

Table 15: Original Configuration at 20 mph:  Alpha Sweep 
 

Original Configuration at 20 mph:  Alpha Sweep - 14 Nov. 2006, Troom = 74.6º F, Pbaro = 28.8058 "Hg, S = 307 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 
-4.30 -3.31 81167 20.00 0.9555 -0.228 0.069 -0.1121 0.0338 -0.0050 0.0015 0.0201 0.0018 

-3.27 -2.00 80772 19.90 0.9463 -0.128 0.064 -0.0636 0.0318 -0.0039 0.0015 0.0142 0.0018 

-2.15 -0.41 80413 19.81 0.9379 -0.025 0.059 -0.0123 0.0297 -0.0032 0.0014 0.0080 0.0017 

-1.03 1.42 80334 19.79 0.9360 0.080 0.056 0.0400 0.0282 -0.0015 0.0011 0.0008 0.0016 

0.10 3.17 80308 19.78 0.9354 0.185 0.058 0.0925 0.0292 -0.0016 0.0011 -0.0057 0.0018 

1.22 4.70 80852 19.92 0.9481 0.298 0.063 0.1476 0.0314 0.0003 0.0014 -0.0108 0.0015 

2.35 5.79 81162 19.99 0.9554 0.407 0.070 0.1996 0.0344 0.0010 0.0015 -0.0141 0.0014 

3.47 6.36 80946 19.94 0.9503 0.508 0.080 0.2508 0.0394 0.0036 0.0015 -0.0172 0.0012 

4.59 6.48 81001 19.95 0.9516 0.609 0.094 0.3002 0.0463 0.0063 0.0012 -0.0217 0.0001 

5.64 6.12 80462 19.82 0.9390 0.727 0.119 0.3629 0.0593 0.0086 0.0007 -0.0319 -0.0005 

6.77 5.77 80059 19.72 0.9296 0.837 0.145 0.4225 0.0732 0.0104 0.0002 -0.0410 -0.0007 

7.88 5.24 80308 19.78 0.9354 0.929 0.177 0.4656 0.0888 0.0118 -0.0004 -0.0477 -0.0010 

8.96 4.65 80516 19.83 0.9403 0.984 0.212 0.4906 0.1056 0.0132 -0.0015 -0.0558 -0.0009 

10.03 4.14 80343 19.79 0.9362 1.006 0.243 0.5040 0.1217 0.0151 -0.0020 -0.0664 -0.0008 

11.09 3.80 80131 19.74 0.9313 1.027 0.270 0.5172 0.1361 0.0157 -0.0026 -0.0744 0.0000 

12.13 3.52 80406 19.81 0.9377 1.031 0.293 0.5157 0.1466 0.0158 -0.0017 -0.0789 -0.0004 

13.10 3.30 80108 19.73 0.9308 1.038 0.315 0.5233 0.1587 0.0156 -0.0021 -0.0803 -0.0001 

14.14 3.12 80068 19.72 0.9298 1.041 0.334 0.5251 0.1684 0.0160 -0.0024 -0.0790 0.0003 

15.19 2.95 79775 19.65 0.9230 1.030 0.349 0.5233 0.1775 0.0170 -0.0022 -0.0759 0.0002 
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Table 16: Original Configuration at 30 mph: Alpha Sweep 
 

Original Configuration at 30 mph:  Alpha Sweep - 14 Nov. 2006, Troom = 74.6º F, Pbaro = 28.8058 "Hg, S = 307 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 
-4.28 -3.58 126230 31.10 2.3112 -0.496 0.139 -0.1007 0.0281 -0.0036 0.0017 0.0177 0.0011 

-3.25 -1.98 125710 30.97 2.2922 -0.247 0.125 -0.0506 0.0256 -0.0028 0.0010 0.0098 0.0010 

-2.13 -0.02 125670 30.96 2.2908 -0.003 0.117 -0.0006 0.0240 -0.0022 0.0008 0.0036 0.0012 

-1.01 2.13 125910 31.02 2.2995 0.240 0.112 0.0489 0.0229 -0.0013 0.0007 -0.0020 0.0013 

0.11 4.20 126110 31.07 2.3065 0.502 0.120 0.1022 0.0243 0.0007 0.0012 -0.0072 0.0006 

1.25 5.94 126330 31.12 2.3149 0.813 0.137 0.1647 0.0277 0.0040 0.0012 -0.0129 0.0001 

2.37 6.86 126610 31.19 2.3252 1.071 0.156 0.2161 0.0315 0.0070 0.0012 -0.0168 -0.0002 

3.49 7.36 126520 31.17 2.3216 1.310 0.178 0.2647 0.0360 0.0071 0.0006 -0.0225 -0.0001 

4.61 7.39 126510 31.16 2.3213 1.552 0.210 0.3137 0.0425 0.0081 0.0006 -0.0297 -0.0004 

5.72 6.99 126580 31.18 2.3238 1.775 0.254 0.3584 0.0512 0.0090 0.0005 -0.0351 -0.0006 

6.74 6.41 126600 31.19 2.3245 1.986 0.310 0.4007 0.0625 0.0107 0.0004 -0.0399 -0.0009 

7.84 5.73 126160 31.08 2.3084 2.170 0.379 0.4410 0.0769 0.0111 -0.0003 -0.0458 -0.0011 

8.92 5.04 126150 31.08 2.3083 2.295 0.455 0.4663 0.0925 0.0139 -0.0007 -0.0537 -0.0010 

9.98 4.45 126320 31.12 2.3145 2.332 0.523 0.4725 0.1061 0.0114 -0.0023 -0.0626 -0.0007 

11.03 4.06 126320 31.12 2.3144 2.363 0.582 0.4789 0.1179 0.0128 -0.0026 -0.0690 -0.0003 

12.09 3.78 126050 31.05 2.3044 2.411 0.638 0.4907 0.1298 0.0125 -0.0035 -0.0733 0.0004 

13.06 3.54 126050 31.05 2.3045 2.433 0.688 0.4952 0.1400 0.0132 -0.0030 -0.0750 0.0006 

14.09 3.31 126030 31.05 2.3036 2.409 0.727 0.4906 0.1481 0.0119 -0.0022 -0.0741 0.0002 

15.13 3.11 125990 31.04 2.3023 2.391 0.768 0.4871 0.1564 0.0112 -0.0023 -0.0708 0.0005 
 
 

Table 17: Original Configuration at 40 mph:  Alpha Sweep 
 

Original Configuration at 40 mph:  Alpha Sweep - 14 Nov. 2006, Troom = 74.6º F, Pbaro = 28.8058 "Hg, S = 307 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 

-4.27 -3.53 169890 41.85 4.1865 -0.843 0.239 -0.0945 0.0268 -0.0060 0.0002 0.0148 0.0021 

-3.25 -1.93 169730 41.81 4.1782 -0.418 0.217 -0.0469 0.0244 -0.0045 0.0002 0.0093 0.0020 

-2.13 0.15 170040 41.89 4.1935 0.031 0.204 0.0035 0.0228 -0.0029 0.0003 0.0030 0.0017 

-1.00 2.46 170210 41.93 4.2022 0.485 0.197 0.0541 0.0220 -0.0005 0.0006 -0.0025 0.0010 

0.14 5.05 170140 41.91 4.1986 1.097 0.217 0.1225 0.0243 0.0051 0.0010 -0.0081 -0.0004 

1.27 6.64 170280 41.95 4.2055 1.583 0.238 0.1766 0.0266 0.0069 0.0010 -0.0130 -0.0006 

2.38 7.51 170620 42.03 4.2221 2.009 0.268 0.2232 0.0297 0.0071 0.0006 -0.0177 -0.0005 

3.50 7.96 170410 41.98 4.2117 2.433 0.306 0.2710 0.0340 0.0076 0.0006 -0.0243 -0.0006 

4.62 7.94 170140 41.91 4.1986 2.874 0.362 0.3211 0.0404 0.0089 0.0004 -0.0336 -0.0010 

5.73 7.42 170280 41.95 4.2056 3.300 0.444 0.3680 0.0496 0.0105 0.0004 -0.0430 -0.0016 

6.84 6.72 170610 42.03 4.2220 3.703 0.551 0.4114 0.0612 0.0122 0.0001 -0.0517 -0.0022 

7.86 5.94 170160 41.92 4.1995 4.033 0.679 0.4504 0.0758 0.0139 -0.0003 -0.0594 -0.0024 

8.93 5.16 170060 41.89 4.1944 4.220 0.817 0.4719 0.0914 0.0142 -0.0010 -0.0641 -0.0022 

9.98 4.54 169990 41.88 4.1912 4.235 0.933 0.4740 0.1044 0.0139 -0.0020 -0.0663 -0.0013 

11.04 4.18 169510 41.76 4.1673 4.316 1.033 0.4858 0.1163 0.0123 -0.0033 -0.0699 -0.0005 

12.09 3.86 169270 41.70 4.1559 4.353 1.128 0.4913 0.1273 0.0125 -0.0036 -0.0730 0.0002 

13.05 3.61 169610 41.78 4.1724 4.363 1.209 0.4904 0.1359 0.0131 -0.0031 -0.0742 0.0002 
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Table 18: Original Configuration at 20 mph:  Beta Sweep 
 

Original Configuration at 20 mph:  Beta Sweep – 5 Sept. 2006, Troom = 74.1º F, Pbaro = 29.0115 "Hg 

α (º) L/D Re (-) V (mph) Mach (-) q (lbf/ft2) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) β (º) 

4.57 6.18 80901 19.93 0.025800 0.9493 0.290460 0.046966 -0.052480 -0.005044 -0.018732 0.002467 7.47 

4.57 6.34 80885 19.93 0.025795 0.9489 0.291570 0.045988 -0.046026 -0.003727 -0.019586 0.002269 6.62 

4.57 6.52 80945 19.94 0.025814 0.9503 0.292870 0.044901 -0.039004 -0.002356 -0.020270 0.002036 5.69 

4.58 6.69 80964 19.95 0.025820 0.9508 0.293320 0.043877 -0.031098 -0.000922 -0.021331 0.001730 4.71 

4.58 6.84 80864 19.92 0.025788 0.9484 0.297170 0.043440 -0.023673 0.000183 -0.022353 0.001387 3.74 

4.59 6.95 80737 19.89 0.025748 0.9454 0.300750 0.043268 -0.015894 0.001369 -0.023086 0.001023 2.80 

4.59 7.01 80719 19.88 0.025742 0.9450 0.305640 0.043606 -0.008510 0.002665 -0.023378 0.000692 1.83 

4.60 7.09 80763 19.90 0.025756 0.9461 0.307940 0.043425 -0.000787 0.003483 -0.023953 0.000378 0.85 

4.59 7.09 80826 19.91 0.025776 0.9475 0.305070 0.043031 0.009359 0.005095 -0.021742 -0.000809 -0.13

4.60 7.06 80815 19.91 0.025772 0.9473 0.307830 0.043624 0.016779 0.006265 -0.023127 -0.001317 -1.10

4.60 6.98 80855 19.92 0.025785 0.9482 0.310460 0.044461 0.024821 0.007300 -0.023928 -0.001726 -2.08

4.61 6.89 80804 19.91 0.025769 0.9470 0.313200 0.045465 0.032757 0.008612 -0.024420 -0.002222 -3.06

4.61 6.78 80815 19.91 0.025772 0.9473 0.315470 0.046512 0.040364 0.009714 -0.023674 -0.002607 -4.03

4.61 6.62 80915 19.93 0.025804 0.9496 0.317510 0.047944 0.047475 0.010945 -0.022907 -0.002922 -5.01

4.61 6.42 80914 19.93 0.025804 0.9496 0.315380 0.049126 0.054359 0.012035 -0.020038 -0.003175 -5.95

4.61 6.24 80842 19.92 0.025781 0.9479 0.316730 0.050797 0.061393 0.013293 -0.018864 -0.003426 -6.88

4.61 6.05 80693 19.88 0.025734 0.9444 0.317840 0.052572 0.068283 0.014783 -0.018662 -0.003790 -7.86
 
 

Table 19: Original Configuration at 30 mph:  Beta Sweep 
 

Original Configuration at 30 mph:  Beta Sweep – 5 Sept. 2006, Troom = 74.1º F, Pbaro = 29.0115 "Hg 

α (º) L/D Re (-) V (mph) Mach (-) q (lbf/ft2) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) β (º) 

4.58 6.72 126360 31.13 0.040296 2.3158 0.294950 0.043921 -0.044189 -0.004460 -0.023816 0.001511 7.13 

4.58 6.93 126420 31.14 0.040316 2.3180 0.297080 0.042889 -0.037971 -0.003299 -0.025226 0.001407 6.29 

4.59 7.11 126480 31.16 0.040336 2.3203 0.300490 0.042280 -0.031226 -0.001991 -0.026825 0.001146 5.35 

4.59 7.27 126470 31.15 0.040332 2.3198 0.302120 0.041565 -0.024284 -0.000637 -0.027722 0.000879 4.37 

4.59 7.37 126420 31.14 0.040315 2.3179 0.303100 0.041123 -0.017448 0.000734 -0.027833 0.000585 3.40 

4.60 7.49 126410 31.14 0.040312 2.3175 0.307250 0.040996 -0.010804 0.001537 -0.029864 0.000373 2.46 

4.60 7.53 126330 31.12 0.040286 2.3146 0.308360 0.040975 -0.003938 0.002783 -0.029833 0.000056 1.49 

4.60 7.58 126290 31.11 0.040274 2.3132 0.309620 0.040853 0.003185 0.003983 -0.029142 -0.000435 0.51 

4.60 7.56 126340 31.12 0.040290 2.3151 0.310080 0.041030 0.010353 0.005037 -0.028748 -0.000966 -0.47

4.60 7.49 126420 31.14 0.040317 2.3181 0.310880 0.041518 0.017439 0.006287 -0.028947 -0.001304 -1.44

4.60 7.42 126420 31.14 0.040317 2.3181 0.312350 0.042115 0.024355 0.007489 -0.029015 -0.001650 -2.42

4.61 7.32 126410 31.14 0.040312 2.3176 0.315180 0.043039 0.031597 0.008767 -0.028998 -0.002105 -3.40

4.61 7.21 126390 31.14 0.040308 2.3171 0.317560 0.044039 0.038661 0.010240 -0.028769 -0.002394 -4.37

4.61 7.08 126320 31.12 0.040283 2.3142 0.319420 0.045147 0.045006 0.011547 -0.028484 -0.002572 -5.35

4.62 6.90 126200 31.09 0.040245 2.3099 0.321170 0.046530 0.051649 0.012880 -0.027680 -0.002771 -6.37

4.62 6.70 126140 31.07 0.040225 2.3076 0.320500 0.047823 0.057980 0.014186 -0.025956 -0.003016 -7.35

4.62 6.50 126100 31.06 0.040213 2.3062 0.320990 0.049356 0.064046 0.015501 -0.024691 -0.003172 -8.32
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Table 20: September 2006 Alpha Sweep for Original Configuration at 30 mph  
 

Original Configuration at 30 mph:  Alpha Sweep - Re ~ 125K 

September 2006, S = 307 in^2 

α (º) L/D (-) V (mph) q (lbf/ft^2) 
-4.28 -3.58 30.94 2.3071 

-3.25 -1.98 30.88 2.2975 

-2.13 -0.02 30.88 2.2972 

-1.01 2.13 30.87 2.2964 

0.11 4.20 30.89 2.2996 

1.25 5.94 30.95 2.3082 

2.37 6.86 30.98 2.3118 

3.49 7.36 30.99 2.3132 

4.61 7.39 30.96 2.3101 

5.72 6.99 30.94 2.3060 

6.74 6.41 30.92 2.3035 

7.84 5.73 30.91 2.3024 

8.92 5.04 30.90 2.3002 

9.98 4.45 30.88 2.2970 

11.03 4.06 30.86 2.2946 

12.09 3.78 30.83 2.2904 

13.06 3.54 30.80 2.2852 

14.09 3.31 30.76 2.2803 

15.13 3.11 30.73 2.2752 
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Table 21: CFD Data for Original Configuration at 40 mph:  Alpha Sweep  

 
CFD - Original Configuration at 40 mph:  Alpha Sweep in AVUS, S = 307 in2 

α (º) L/D (-) CL
(3/2)/CD Re (-) V (mph) CL (-) CD (-) Cm (-) 

-5.40 -4.77 - 170000 40.00 -0.136553 0.028619 0.000716 

-4.40 -3.68 - 170000 40.00 -0.093313 0.025381 0.004593 

-3.40 -2.05 - 170000 40.00 -0.047277 0.023110 0.008391 

-2.40 -0.22 - 170000 40.00 -0.004932 0.022081 0.012127 

-1.40 1.70 0.33 170000 40.00 0.037907 0.022237 0.017271 

-0.40 3.47 0.99 170000 40.00 0.080571 0.023187 0.021938 

0.60 5.05 1.78 170000 40.00 0.123828 0.024505 0.026518 

1.60 6.28 2.57 170000 40.00 0.167259 0.026646 0.030766 

2.60 7.17 3.29 170000 40.00 0.210463 0.029333 0.034456 

3.60 7.54 3.78 170000 40.00 0.250664 0.033237 0.039292 

4.60 7.70 4.15 170000 40.00 0.290035 0.037662 0.043436 

5.60 7.73 4.43 170000 40.00 0.329029 0.042588 0.046231 

6.60 7.51 4.55 170000 40.00 0.366723 0.048823 0.049826 

7.60 7.17 4.54 170000 40.00 0.401967 0.056098 0.051961 

8.60 6.72 4.42 170000 40.00 0.433366 0.064488 0.053459 

9.60 5.91 3.98 170000 40.00 0.454795 0.076982 0.052095 

9.60 5.85 3.94 170000 40.00 0.453343 0.077555 0.050644 

10.60 5.06 3.41 170000 40.00 0.453174 0.089500 0.042383 
 
 
 

Table 22: USAFA 18” Configuration at M = 0.25, Re ≈ 545K:  Beta Sweep  
 

USAFA 18" Houck Configuration - Beta Sweeps, S = 189 in2 

 α = 0º α = 5º α = 10º α = 15º 

β (º) Cl (-) Cn (-) Cl (-) Cn (-) Cl (-) Cn (-) Cl (-) Cn (-) 
-4.66 -0.006 -0.0004 0.008 0.0033 0.0175 0.0055 0.025 0.0061 

-2.25 0.002 0.0015 0.006 0.0028 0.0096 0.0054 0.0125 0.0058 

0.35 0.00275 0.00215 0.0035 0.00285 0.00275 0.00494 0.0013 0.00488 

2.8 0.00333 0.0019 -0.002 0.0038 -0.0045 0.00433 -0.0099 0.0038 

5.3 0.005 0.0031 -0.004 0.0029 -0.012 0.0035 -0.022 0.0018 
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Table 23: Ailerons 20° Down at 20 mph:  Alpha Sweep 
 

Ailerons 20º Down at 20 mph:  Alpha Sweep - 14 Nov. 2006, Troom = 74.6º F, Pbaro = 28.8058 "Hg, S = 307 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 
-4.08 1.00 80360 19.80 0.9366 0.070 0.069 0.0349 0.0348 0.0005 0.0042 -0.0629 0.0004 

-3.05 2.33 80574 19.85 0.9416 0.162 0.070 0.0809 0.0347 0.0012 0.0042 -0.0680 0.0006 

-1.93 3.81 80442 19.82 0.9385 0.264 0.069 0.1320 0.0347 0.0026 0.0039 -0.0738 0.0004 

-0.81 4.98 80215 19.76 0.9333 0.361 0.072 0.1814 0.0364 0.0041 0.0033 -0.0793 0.0002 

0.29 5.65 80567 19.85 0.9415 0.448 0.079 0.2230 0.0395 0.0048 0.0031 -0.0795 0.0003 

1.41 6.13 80498 19.83 0.9398 0.547 0.089 0.2731 0.0445 0.0064 0.0041 -0.0807 0.0001 

2.54 6.47 80388 19.80 0.9373 0.658 0.102 0.3293 0.0509 0.0080 0.0043 -0.0849 -0.0001 

3.67 6.54 80604 19.86 0.9423 0.775 0.118 0.3857 0.0590 0.0106 0.0048 -0.0932 -0.0008 

4.79 6.44 80888 19.93 0.9490 0.885 0.137 0.4374 0.0680 0.0106 0.0035 -0.1018 -0.0005 

5.82 6.01 80603 19.86 0.9423 0.975 0.162 0.4851 0.0808 0.0137 0.0032 -0.1068 -0.0020 

6.94 5.56 80102 19.73 0.9306 1.062 0.191 0.5355 0.0963 0.0166 0.0030 -0.1126 -0.0026 

8.03 5.06 80117 19.74 0.9310 1.119 0.221 0.5637 0.1115 0.0158 0.0013 -0.1178 -0.0021 

9.08 4.50 80366 19.80 0.9368 1.139 0.253 0.5704 0.1268 0.0205 -0.0010 -0.1255 -0.0022 

10.13 4.10 80101 19.73 0.9306 1.135 0.277 0.5721 0.1397 0.0189 -0.0027 -0.1303 -0.0015 

11.18 3.76 79723 19.64 0.9218 1.133 0.301 0.5766 0.1532 0.0183 -0.0015 -0.1331 -0.0016 

12.22 3.52 79792 19.66 0.9234 1.127 0.320 0.5726 0.1628 0.0213 -0.0007 -0.1307 -0.0017 

13.17 3.31 79819 19.66 0.9241 1.120 0.339 0.5685 0.1720 0.0179 -0.0014 -0.1249 -0.0017 

14.20 3.12 79902 19.68 0.9260 1.110 0.356 0.5623 0.1801 0.0189 -0.0016 -0.1162 -0.0009 

15.23 2.92 79487 19.58 0.9164 1.078 0.369 0.5516 0.1890 0.0174 -0.0023 -0.1073 0.0006 
 

Table 24: Ailerons 20° Down at 30 mph:  Alpha Sweep 
 

Ailerons 20º Down at 30 mph:  Alpha Sweep - Alpha Sweep - 14 Nov. 2006, Troom = 74.6º F, Pbaro = 28.8058 "Hg, S = 307 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 
-4.08 1.07 126260 31.10 2.3121 0.155 0.145 0.0315 0.0294 0.0014 0.0042 -0.0574 -0.0002 

-3.06 2.62 125750 30.98 2.2934 0.378 0.144 0.0773 0.0295 0.0020 0.0041 -0.0633 -0.0002 

-1.94 4.25 125760 30.98 2.2940 0.621 0.146 0.1270 0.0299 0.0037 0.0041 -0.0696 -0.0004 

-0.82 5.62 125980 31.03 2.3017 0.862 0.153 0.1756 0.0313 0.0048 0.0042 -0.0747 -0.0004 

0.30 6.55 125990 31.04 2.3024 1.114 0.170 0.2270 0.0346 0.0068 0.0042 -0.0793 -0.0008 

1.42 7.10 126570 31.18 2.3234 1.371 0.193 0.2769 0.0390 0.0086 0.0034 -0.0816 -0.0011 

2.53 7.28 127220 31.34 2.3474 1.599 0.220 0.3196 0.0439 0.0108 0.0034 -0.0849 -0.0015 

3.64 7.15 126960 31.28 2.3379 1.809 0.253 0.3629 0.0508 0.0106 0.0034 -0.0883 -0.0015 

4.76 6.88 126620 31.19 2.3255 2.052 0.298 0.4139 0.0601 0.0128 0.0031 -0.0948 -0.0021 

5.80 6.35 126210 31.09 2.3102 2.302 0.363 0.4675 0.0736 0.0164 0.0032 -0.0998 -0.0026 

6.90 5.78 126320 31.12 2.3142 2.489 0.431 0.5045 0.0873 0.0173 0.0023 -0.1041 -0.0030 

7.98 5.17 126330 31.12 2.3146 2.609 0.504 0.5287 0.1022 0.0190 0.0010 -0.1093 -0.0029 

9.02 4.60 126190 31.09 2.3095 2.615 0.569 0.5312 0.1155 0.0181 -0.0010 -0.1153 -0.0023 

10.07 4.18 125940 31.03 2.3006 2.616 0.625 0.5334 0.1275 0.0174 -0.0020 -0.1189 -0.0013 

11.12 3.88 125530 30.92 2.2854 2.626 0.676 0.5390 0.1388 0.0163 -0.0019 -0.1196 -0.0007 

12.17 3.64 125370 30.88 2.2798 2.634 0.724 0.5420 0.1489 0.0159 -0.0028 -0.1182 -0.0002 

13.12 3.43 125610 30.94 2.2884 2.618 0.763 0.5367 0.1565 0.0164 -0.0026 -0.1129 0.0000 

14.14 3.22 125720 30.97 2.2923 2.561 0.795 0.5239 0.1628 0.0157 -0.0019 -0.1049 0.0001 

15.17 3.01 125400 30.89 2.2808 2.481 0.825 0.5102 0.1696 0.0152 -0.0019 -0.0967 0.0010 
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 Table 25: Ailerons 20° Down at 40 mph:  Alpha Sweep 
 

Ailerons 20º Down at 40 mph:  Alpha Sweep - 14 Nov. 2006, Troom = 74.6º F, Pbaro = 28.8058 "Hg, S = 307 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 
-4.11 0.58 170650 42.04 4.2236 0.146 0.250 0.0162 0.0277 0.0027 0.0040 -0.0509 -0.0007 

-3.08 2.27 170400 41.98 4.2115 0.555 0.245 0.0619 0.0273 0.0036 0.0041 -0.0562 -0.0007 

-1.96 3.98 170640 42.04 4.2232 0.992 0.249 0.1102 0.0277 0.0051 0.0042 -0.0620 -0.0008 

-0.84 5.56 170710 42.05 4.2267 1.441 0.259 0.1599 0.0288 0.0068 0.0042 -0.0675 -0.0011 

0.27 6.60 170450 41.99 4.2137 1.885 0.286 0.2099 0.0318 0.0081 0.0045 -0.0712 -0.0014 

1.40 7.26 170630 42.03 4.2226 2.359 0.325 0.2621 0.0361 0.0105 0.0038 -0.0738 -0.0017 

2.52 7.65 170840 42.09 4.2333 2.833 0.370 0.3139 0.0410 0.0115 0.0027 -0.0806 -0.0018 

3.64 7.63 171020 42.13 4.2420 3.310 0.434 0.3660 0.0480 0.0133 0.0030 -0.0853 -0.0020 

4.75 7.29 171040 42.13 4.2429 3.684 0.505 0.4072 0.0558 0.0141 0.0030 -0.0887 -0.0022 

5.86 6.77 170600 42.03 4.2211 4.053 0.599 0.4504 0.0665 0.0148 0.0028 -0.0933 -0.0023 

6.87 6.15 170170 41.92 4.1998 4.379 0.712 0.4890 0.0795 0.0161 0.0022 -0.0975 -0.0025 

7.96 5.49 169680 41.80 4.1757 4.619 0.841 0.5189 0.0944 0.0172 0.0011 -0.1025 -0.0026 

9.02 4.87 169120 41.66 4.1484 4.702 0.966 0.5316 0.1092 0.0193 -0.0001 -0.1082 -0.0022 

10.06 4.38 169540 41.77 4.1692 4.655 1.064 0.5237 0.1197 0.0151 -0.0020 -0.1113 -0.0010 

11.11 4.07 169400 41.73 4.1619 4.715 1.159 0.5314 0.1306 0.0148 -0.0028 -0.1124 -0.0005 

12.16 3.79 169260 41.70 4.1551 4.727 1.246 0.5336 0.1407 0.0148 -0.0029 -0.1115 0.0000 

13.11 3.55 168610 41.54 4.1234 4.660 1.313 0.5301 0.1493 0.0144 -0.0028 -0.1087 0.0002 
 
 

Table 26: Ailerons 20° Up at 20 mph:  Alpha Sweep 
 

Ailerons 20º Up at 20 mph:  Alpha Sweep - 14 Nov. 2006, Troom = 74.6º F, Pbaro = 28.8058 "Hg, S = 307 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 
-4.53 -4.43 80580 19.85 0.9418 -0.527 0.119 -0.2625 0.0593 -0.0060 0.0043 0.1077 0.0023 

-3.49 -3.91 80638 19.86 0.9431 -0.419 0.107 -0.2082 0.0532 -0.0041 0.0039 0.1002 0.0020 

-2.37 -3.22 80313 19.78 0.9355 -0.311 0.097 -0.1560 0.0485 -0.0025 0.0043 0.0943 0.0018 

-1.24 -2.32 79929 19.69 0.9266 -0.204 0.088 -0.1034 0.0446 -0.0002 0.0046 0.0879 0.0016 

-0.12 -1.11 80422 19.81 0.9381 -0.095 0.086 -0.0477 0.0430 0.0007 0.0045 0.0800 0.0016 

1.02 0.23 80579 19.85 0.9418 0.020 0.088 0.0099 0.0439 0.0028 0.0046 0.0733 0.0012 

2.15 1.56 80182 19.75 0.9325 0.143 0.092 0.0718 0.0461 0.0060 0.0041 0.0678 0.0008 

3.28 2.53 80390 19.80 0.9373 0.249 0.099 0.1247 0.0494 0.0096 0.0033 0.0644 0.0002 

4.39 3.28 80713 19.88 0.9449 0.349 0.106 0.1731 0.0527 0.0089 0.0029 0.0594 0.0005 

5.42 3.67 80475 19.82 0.9393 0.441 0.120 0.2200 0.0599 0.0116 0.0032 0.0557 0.0002 

6.54 3.96 80637 19.86 0.9431 0.540 0.136 0.2685 0.0678 0.0110 0.0031 0.0514 0.0001 

7.65 4.03 80633 19.86 0.9430 0.632 0.157 0.3142 0.0780 0.0124 0.0029 0.0455 -0.0002 

8.76 3.91 80412 19.81 0.9378 0.711 0.182 0.3555 0.0909 0.0144 0.0025 0.0393 -0.0004 

9.85 3.66 80164 19.75 0.9321 0.766 0.209 0.3856 0.1054 0.0134 0.0016 0.0326 -0.0005 

10.91 3.36 80178 19.75 0.9324 0.793 0.236 0.3989 0.1186 0.0166 0.0008 0.0243 -0.0003 

11.97 3.16 80475 19.82 0.9393 0.823 0.261 0.4110 0.1302 0.0156 0.0001 0.0146 -0.0003 

12.94 2.98 80773 19.90 0.9463 0.849 0.285 0.4206 0.1411 0.0222 0.0005 0.0052 0.0002 

14.01 2.85 80071 19.73 0.9299 0.866 0.304 0.4371 0.1533 0.0183 0.0000 -0.0019 0.0004 

15.07 2.74 79805 19.66 0.9237 0.882 0.322 0.4480 0.1635 0.0190 0.0005 -0.0080 0.0003 
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Table 27: Ailerons 20° Up at 30 mph:  Alpha Sweep 
 

Ailerons 20º Up at 30 mph:  Alpha Sweep - 14 Nov. 2006, Troom = 74.6º F, Pbaro = 28.8058 "Hg, S = 307 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 
-4.48 -4.38 125710 30.97 2.2921 -1.130 0.258 -0.2313 0.0528 -0.0041 0.0040 0.0993 0.0016 

-3.45 -3.84 124900 30.77 2.2628 -0.890 0.232 -0.1844 0.0481 -0.0027 0.0038 0.0942 0.0016 

-2.33 -3.07 125050 30.81 2.2681 -0.643 0.209 -0.1330 0.0433 -0.0011 0.0037 0.0877 0.0014 

-1.21 -2.04 125540 30.93 2.2859 -0.389 0.190 -0.0798 0.0390 0.0005 0.0037 0.0787 0.0012 

-0.08 -0.61 126050 31.05 2.3046 -0.111 0.182 -0.0225 0.0370 0.0022 0.0039 0.0653 0.0007 

1.06 1.05 126060 31.05 2.3047 0.191 0.183 0.0390 0.0372 0.0050 0.0039 0.0519 -0.0001 

2.19 2.56 126240 31.10 2.3116 0.490 0.191 0.0994 0.0389 0.0077 0.0035 0.0385 -0.0007 

3.32 3.66 126380 31.13 2.3164 0.755 0.206 0.1530 0.0418 0.0084 0.0032 0.0268 -0.0009 

4.44 4.42 126530 31.17 2.3220 1.001 0.226 0.2022 0.0457 0.0080 0.0029 0.0158 -0.0005 

5.46 4.81 127340 31.37 2.3519 1.246 0.259 0.2486 0.0517 0.0098 0.0027 0.0053 -0.0011 

6.59 4.91 126800 31.24 2.3318 1.494 0.304 0.3005 0.0612 0.0126 0.0027 -0.0050 -0.0022 

7.71 4.81 125950 31.03 2.3009 1.726 0.359 0.3518 0.0732 0.0150 0.0022 -0.0150 -0.0030 

8.81 4.49 126420 31.14 2.3181 1.927 0.429 0.3900 0.0868 0.0170 0.0016 -0.0238 -0.0033 

9.88 4.11 126760 31.23 2.3306 2.040 0.496 0.4105 0.0998 0.0163 0.0011 -0.0291 -0.0030 

10.95 3.75 126240 31.10 2.3115 2.091 0.557 0.4242 0.1130 0.0187 0.0008 -0.0329 -0.0030 

12.01 3.48 125670 30.96 2.2904 2.121 0.609 0.4343 0.1248 0.0189 -0.0004 -0.0354 -0.0021 

12.97 3.25 125680 30.96 2.2911 2.151 0.661 0.4404 0.1354 0.0184 -0.0007 -0.0374 -0.0016 

14.02 3.07 125610 30.94 2.2884 2.158 0.702 0.4423 0.1439 0.0180 -0.0003 -0.0385 -0.0012 

15.07 2.92 125480 30.91 2.2835 2.186 0.748 0.4490 0.1536 0.0173 0.0000 -0.0401 -0.0012 
 
 

Table 28: Ailerons 20° Up at 40 mph:  Alpha Sweep 
 

Ailerons 20º Up at 40 mph:  Alpha Sweep - 14 Nov. 2006, Troom = 74.6º F, Pbaro = 28.8058 "Hg, S = 307 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 

-4.45 -4.38 169900 41.85 4.1865 -1.877 0.429 -0.2103 0.0480 -0.0021 0.0032 0.0849 0.0005 

-3.41 -3.68 169950 41.87 4.1894 -1.388 0.377 -0.1554 0.0422 0.0001 0.0032 0.0713 0.0000 

-2.28 -2.61 170110 41.91 4.1973 -0.883 0.338 -0.0987 0.0378 0.0017 0.0033 0.0571 -0.0003 

-1.15 -1.23 169670 41.80 4.1755 -0.378 0.307 -0.0425 0.0345 0.0039 0.0037 0.0442 -0.0007 

-0.02 0.48 170140 41.91 4.1985 0.144 0.299 0.0161 0.0334 0.0058 0.0040 0.0311 -0.0010 

1.12 2.33 170240 41.94 4.2037 0.708 0.304 0.0790 0.0340 0.0077 0.0035 0.0178 -0.0015 

2.25 3.73 170270 41.94 4.2048 1.202 0.322 0.1341 0.0359 0.0094 0.0030 0.0063 -0.0018 

3.36 4.70 170500 42.00 4.2162 1.642 0.349 0.1827 0.0389 0.0096 0.0026 -0.0038 -0.0020 

4.48 5.32 170460 41.99 4.2144 2.088 0.392 0.2324 0.0437 0.0105 0.0026 -0.0140 -0.0021 

5.51 5.58 170790 42.07 4.2307 2.530 0.453 0.2805 0.0502 0.0113 0.0025 -0.0239 -0.0023 

6.63 5.49 170820 42.08 4.2323 2.965 0.540 0.3286 0.0599 0.0127 0.0026 -0.0335 -0.0025 

7.74 5.19 170510 42.00 4.2166 3.373 0.649 0.3752 0.0722 0.0139 0.0022 -0.0427 -0.0027 

8.84 4.76 170320 41.96 4.2072 3.708 0.779 0.4134 0.0869 0.0160 0.0016 -0.0502 -0.0031 

9.93 4.31 169960 41.87 4.1898 3.916 0.909 0.4384 0.1018 0.0178 0.0010 -0.0549 -0.0038 

10.99 3.91 169910 41.86 4.1870 4.019 1.028 0.4503 0.1151 0.0200 0.0002 -0.0578 -0.0042 

12.03 3.60 169930 41.86 4.1880 4.046 1.123 0.4531 0.1257 0.0198 -0.0010 -0.0589 -0.0032 

13.00 3.39 169680 41.80 4.1757 4.089 1.206 0.4594 0.1355 0.0211 -0.0011 -0.0604 -0.0030 
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Table 29: 1" Cut in Flow Guides at 20 mph:  Alpha Sweep 
 

1" Cut in Flow Guides at 20 mph:  Alpha Sweep - 1 Feb. 2007, Troom = 71.7º F, Pbaro = 28.8197 "Hg, S = 307 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 

-4.37 -2.98 81979 20.08 0.9690 -0.201 0.067 -0.0972 0.0326 -0.0005 0.0051 0.0148 0.0005 

-3.25 -1.56 79682 19.51 0.9154 -0.093 0.060 -0.0478 0.0306 0.0009 0.0046 0.0081 0.0005 

-2.12 0.21 81659 20.00 0.9614 0.012 0.056 0.0058 0.0275 0.0013 0.0031 0.0002 0.0004 

-1.01 1.89 82165 20.12 0.9734 0.104 0.055 0.0500 0.0265 0.0022 0.0038 -0.0062 0.0003 

0.13 3.64 77814 19.06 0.8730 0.209 0.057 0.1124 0.0308 0.0021 0.0041 -0.0143 0.0004 

1.26 5.23 77976 19.10 0.8767 0.325 0.062 0.1738 0.0332 0.0031 0.0034 -0.0209 0.0003 

2.39 6.32 79393 19.44 0.9088 0.446 0.071 0.2301 0.0364 0.0040 0.0038 -0.0255 0.0003 

3.51 6.77 80286 19.66 0.9294 0.549 0.081 0.2772 0.0410 0.0056 0.0035 -0.0296 -0.0003 

4.56 6.67 79593 19.49 0.9134 0.657 0.099 0.3376 0.0506 0.0072 0.0033 -0.0403 -0.0003 

5.70 6.48 77998 19.10 0.8772 0.758 0.117 0.4052 0.0625 0.0077 0.0026 -0.0497 -0.0005 

6.82 6.10 78137 19.14 0.8803 0.853 0.140 0.4547 0.0746 0.0081 0.0024 -0.0563 -0.0006 

7.84 5.59 82865 20.29 0.9901 0.929 0.166 0.4399 0.0787 0.0082 0.0009 -0.0555 -0.0007 

8.92 5.01 82836 20.29 0.9894 0.975 0.195 0.4622 0.0922 0.0108 -0.0005 -0.0614 -0.0007 

9.99 4.43 78001 19.10 0.8772 1.002 0.226 0.5356 0.1209 0.0130 -0.0022 -0.0776 -0.0001 

11.01 4.05 79540 19.48 0.9122 1.016 0.251 0.5223 0.1290 0.0107 -0.0031 -0.0797 0.0002 

12.01 3.75 82607 20.23 0.9839 1.034 0.276 0.4928 0.1315 0.0089 -0.0026 -0.0779 0.0006 

13.11 3.49 79918 19.57 0.9209 1.042 0.298 0.5308 0.1519 0.0119 -0.0021 -0.0847 0.0007 

14.16 3.30 79939 19.58 0.9214 1.056 0.320 0.5376 0.1629 0.0100 -0.0027 -0.0830 0.0012 

15.21 3.10 79336 19.43 0.9075 1.048 0.338 0.5418 0.1746 0.0134 -0.0021 -0.0807 0.0010 
 

Table 30: 1" Cut in Flow Guides at 30 mph:  Alpha Sweep 
 

1" Cut in Flow Guides at 30 mph:  Alpha Sweep - 1 Feb. 2007, Troom = 71.7º F, Pbaro = 28.8197 "Hg, S = 307 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 
-4.36 -3.08 125400 30.71 2.2673 -0.438 0.142 -0.0905 0.0294 -0.0007 0.0011 0.0116 0.0003 

-3.23 -1.56 128700 31.52 2.3881 -0.199 0.127 -0.0390 0.0249 0.0006 0.0013 0.0047 0.0002 

-2.12 0.40 129620 31.74 2.4224 0.047 0.120 0.0092 0.0232 0.0017 0.0010 -0.0020 0.0002 

-1.00 2.54 127260 31.17 2.3352 0.297 0.117 0.0596 0.0235 0.0028 0.0013 -0.0081 0.0002 

0.13 4.69 128670 31.51 2.3871 0.580 0.124 0.1141 0.0243 0.0038 0.0021 -0.0163 0.0001 

1.26 6.25 127850 31.31 2.3568 0.852 0.136 0.1696 0.0271 0.0046 0.0028 -0.0233 -0.0001 

2.37 7.01 127210 31.15 2.3334 1.086 0.155 0.2184 0.0312 0.0056 0.0021 -0.0273 0.0000 

3.47 7.46 130640 31.99 2.4606 1.338 0.179 0.2550 0.0342 0.0059 0.0015 -0.0336 -0.0002 

4.48 7.38 133470 32.69 2.5686 1.569 0.212 0.2865 0.0388 0.0061 0.0018 -0.0378 -0.0003 

5.60 7.04 131570 32.22 2.4961 1.793 0.255 0.3369 0.0478 0.0068 0.0012 -0.0439 -0.0003 

6.72 6.43 129330 31.67 2.4117 1.996 0.310 0.3881 0.0604 0.0081 0.0010 -0.0491 -0.0006 

7.80 5.75 130920 32.06 2.4713 2.169 0.377 0.4116 0.0715 0.0086 0.0005 -0.0530 -0.0008 

8.89 5.07 129280 31.66 2.4099 2.282 0.450 0.4442 0.0876 0.0114 -0.0006 -0.0609 -0.0009 

9.87 4.51 128180 31.39 2.3691 2.325 0.516 0.4603 0.1022 0.0122 -0.0017 -0.0686 -0.0005 

10.92 4.12 128710 31.52 2.3884 2.360 0.573 0.4635 0.1126 0.0126 -0.0022 -0.0729 0.0000 

11.96 3.86 130750 32.02 2.4651 2.425 0.628 0.4615 0.1195 0.0104 -0.0035 -0.0728 0.0008 

13.05 3.59 126770 31.05 2.3172 2.440 0.679 0.4940 0.1374 0.0123 -0.0029 -0.0784 0.0008 

14.09 3.37 127520 31.23 2.3445 2.437 0.723 0.4876 0.1446 0.0130 -0.0018 -0.0760 0.0006 

15.10 3.18 130070 31.85 2.4393 2.419 0.760 0.4651 0.1462 0.0123 -0.0014 -0.0694 0.0005 
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Table 31: 2" Cut in Flow Guides at 20 mph:  Alpha Sweep 
 

2" Cut in Flow Guides at 20 mph:  Alpha Sweep - 1 Feb. 2007, Troom = 72.1º F, Pbaro = 28.8188 "Hg, S = 307 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 

-4.37 -3.11 80938 19.84 0.9453 -0.201 0.065 -0.0999 0.0321 -0.0019 0.0053 0.0144 0.0009 

-3.25 -1.63 79686 19.53 0.9163 -0.094 0.058 -0.0483 0.0297 0.0000 0.0060 0.0074 0.0008 

-2.12 0.21 79100 19.39 0.9028 0.011 0.054 0.0059 0.0283 0.0009 0.0054 -0.0007 0.0008 

-0.99 2.30 79038 19.37 0.9014 0.122 0.053 0.0633 0.0276 0.0027 0.0037 -0.0087 0.0005 

0.12 3.95 81928 20.08 0.9685 0.218 0.055 0.1056 0.0267 0.0030 0.0032 -0.0142 0.0004 

1.23 5.46 83475 20.46 1.0055 0.331 0.061 0.1546 0.0283 0.0031 0.0033 -0.0198 0.0003 

2.38 6.51 81135 19.88 0.9499 0.449 0.069 0.2216 0.0341 0.0054 0.0036 -0.0257 0.0000 

3.52 6.91 79583 19.50 0.9139 0.559 0.081 0.2869 0.0415 0.0097 0.0036 -0.0352 -0.0009 

4.56 6.78 79314 19.44 0.9077 0.665 0.098 0.3439 0.0507 0.0108 0.0030 -0.0465 -0.0009 

5.67 6.56 80845 19.81 0.9431 0.766 0.117 0.3808 0.0581 0.0115 0.0027 -0.0527 -0.0011 

6.76 6.11 81510 19.98 0.9587 0.853 0.139 0.4173 0.0682 0.0129 0.0028 -0.0568 -0.0013 

7.88 5.57 80542 19.74 0.9361 0.931 0.167 0.4663 0.0837 0.0139 0.0024 -0.0643 -0.0016 

8.98 4.99 79542 19.49 0.9130 0.982 0.197 0.5045 0.1011 0.0157 0.0008 -0.0735 -0.0015 

9.96 4.44 79611 19.51 0.9145 1.009 0.228 0.5177 0.1167 0.0163 -0.0016 -0.0817 -0.0007 

11.01 4.07 80005 19.61 0.9236 1.032 0.253 0.5243 0.1287 0.0162 -0.0020 -0.0855 -0.0002 

12.09 3.77 79242 19.42 0.9061 1.055 0.280 0.5459 0.1450 0.0168 -0.0014 -0.0915 0.0001 

13.10 3.54 81279 19.92 0.9533 1.067 0.302 0.5248 0.1485 0.0161 -0.0016 -0.0890 0.0002 

14.13 3.35 82201 20.15 0.9750 1.075 0.321 0.5172 0.1544 0.0161 -0.0017 -0.0843 0.0008 

15.11 3.15 81014 19.86 0.9471 1.073 0.341 0.5315 0.1688 0.0157 -0.0020 -0.0825 0.0008 
 

Table 32: 2" Cut in Flow Guides at 30 mph:  Alpha Sweep 
 

2" Cut in Flow Guides at 30 mph:  Alpha Sweep - 1 Feb. 2007, Troom = 72.1º F, Pbaro = 28.8188 "Hg, S = 307 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 
-4.34 -3.06 128410 31.47 2.3791 -0.415 0.136 -0.0819 0.0268 -0.0019 0.0013 0.0104 0.0007 

-3.23 -1.48 126990 31.12 2.3271 -0.179 0.122 -0.0361 0.0245 -0.0005 0.0013 0.0034 0.0006 

-2.11 0.58 126530 31.01 2.3102 0.066 0.114 0.0133 0.0232 0.0013 0.0015 -0.0032 0.0005 

-0.99 2.88 126630 31.03 2.3138 0.320 0.111 0.0649 0.0225 0.0030 0.0019 -0.0114 0.0003 

0.13 4.83 128080 31.39 2.3673 0.572 0.119 0.1134 0.0235 0.0039 0.0026 -0.0177 0.0001 

1.26 6.58 129060 31.63 2.4036 0.862 0.131 0.1682 0.0256 0.0048 0.0027 -0.0249 -0.0001 

2.36 7.42 130500 31.98 2.4575 1.110 0.150 0.2119 0.0286 0.0067 0.0018 -0.0294 -0.0002 

3.40 7.67 129240 31.67 2.4100 1.360 0.177 0.2646 0.0345 0.0083 0.0017 -0.0379 -0.0006 

4.54 7.57 125910 30.86 2.2876 1.598 0.211 0.3276 0.0433 0.0100 0.0016 -0.0475 -0.0007 

5.65 7.14 126560 31.02 2.3111 1.816 0.254 0.3686 0.0516 0.0112 0.0015 -0.0518 -0.0009 

6.74 6.50 127220 31.18 2.3354 2.013 0.310 0.4044 0.0622 0.0124 0.0014 -0.0557 -0.0012 

7.83 5.81 128430 31.48 2.3802 2.182 0.375 0.4300 0.0740 0.0138 0.0009 -0.0602 -0.0014 

8.90 5.12 128350 31.46 2.3773 2.295 0.448 0.4529 0.0884 0.0148 0.0001 -0.0673 -0.0013 

9.87 4.56 128650 31.53 2.3881 2.343 0.514 0.4603 0.1010 0.0149 -0.0009 -0.0738 -0.0009 

10.93 4.17 128930 31.60 2.3987 2.392 0.573 0.4678 0.1121 0.0140 -0.0013 -0.0781 -0.0005 

12.01 3.89 127230 31.18 2.3359 2.469 0.634 0.4958 0.1273 0.0151 -0.0024 -0.0830 0.0002 

13.05 3.64 128320 31.45 2.3758 2.497 0.686 0.4930 0.1353 0.0151 -0.0022 -0.0828 0.0005 

14.13 3.42 125300 30.71 2.2653 2.503 0.732 0.5183 0.1517 0.0154 -0.0016 -0.0846 0.0005 

15.07 3.22 126150 30.92 2.2963 2.469 0.767 0.5043 0.1568 0.0160 -0.0008 -0.0787 0.0001 
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Table 33: No Flow Guides at 20 mph:  Alpha Sweep 
 

No Flow Guides at 20 mph:  Alpha Sweep - 1 Feb. 2007, Troom = 72.4º F, Pbaro = 28.8110 "Hg, S = 254 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 

-4.35 -2.87 79423 19.48 0.9110 -0.164 0.057 -0.1018 0.0354 -0.0015 0.0037 0.0130 0.0010 

-3.24 -1.61 77999 19.13 0.8786 -0.083 0.052 -0.0538 0.0333 -0.0006 0.0041 0.0063 0.0009 

-2.12 0.33 79468 19.49 0.9120 0.016 0.049 0.0099 0.0303 0.0019 0.0038 -0.0023 0.0008 

-1.01 2.05 79131 19.41 0.9043 0.097 0.047 0.0607 0.0297 0.0032 0.0049 -0.0083 0.0005 

0.11 3.87 79155 19.42 0.9048 0.191 0.049 0.1199 0.0310 0.0035 0.0045 -0.0149 0.0005 

1.22 5.30 80348 19.71 0.9323 0.285 0.054 0.1732 0.0327 0.0029 0.0036 -0.0217 0.0005 

2.35 6.28 79221 19.43 0.9063 0.385 0.061 0.2409 0.0384 0.0051 0.0037 -0.0287 0.0002 

3.40 6.53 77070 18.90 0.8578 0.485 0.074 0.3203 0.0490 0.0106 0.0031 -0.0418 -0.0012 

4.53 6.66 77010 18.89 0.8565 0.586 0.088 0.3882 0.0583 0.0126 0.0024 -0.0561 -0.0013 

5.64 6.48 78144 19.17 0.8819 0.682 0.105 0.4386 0.0677 0.0141 0.0024 -0.0649 -0.0015 

6.74 6.05 78490 19.25 0.8897 0.762 0.126 0.4855 0.0803 0.0148 0.0023 -0.0714 -0.0016 

7.79 5.53 80970 19.86 0.9468 0.826 0.149 0.4947 0.0894 0.0154 0.0016 -0.0743 -0.0017 

8.86 5.01 82234 20.17 0.9766 0.887 0.177 0.5147 0.1028 0.0174 0.0000 -0.0815 -0.0017 

9.83 4.46 83041 20.37 0.9959 0.913 0.205 0.5200 0.1165 0.0194 -0.0016 -0.0907 -0.0009 

10.93 4.08 80682 19.79 0.9401 0.944 0.232 0.5696 0.1398 0.0205 -0.0022 -0.1040 -0.0007 

12.02 3.77 78459 19.25 0.8890 0.952 0.253 0.6074 0.1612 0.0226 -0.0034 -0.1137 -0.0004 

13.08 3.53 78588 19.28 0.8919 0.966 0.273 0.6141 0.1737 0.0228 -0.0030 -0.1152 -0.0007 

14.16 3.34 76238 18.70 0.8394 0.953 0.286 0.6435 0.1929 0.0232 -0.0033 -0.1180 -0.0003 

15.12 3.16 76297 18.71 0.8407 0.960 0.304 0.6473 0.2050 0.0219 -0.0026 -0.1120 -0.0001 
 

Table 34: No Flow Guides at 30 mph:  Alpha Sweep 
 

No Flow Guides at 30 mph:  Alpha Sweep - 1 Feb. 2007, Troom = 72.4º F, Pbaro = 28.8110 "Hg, S = 254 in2 

α (º) L/D Re (-) V (mph) q (lbf/ft2) L (lbs) D (lbs) CL (-) CD (-) CY (-) Cl (-) Cm (-) Cn (-) 
-4.32 -2.69 124860 30.63 2.2516 -0.321 0.119 -0.0807 0.0300 -0.0018 0.0004 0.0091 0.0007 

-3.22 -1.22 125640 30.82 2.2797 -0.131 0.107 -0.0326 0.0267 -0.0003 0.0004 0.0016 0.0005 

-2.11 0.64 128480 31.51 2.3839 0.065 0.101 0.0153 0.0241 0.0014 0.0004 -0.0042 0.0004 

-1.00 2.88 125990 30.90 2.2924 0.285 0.099 0.0706 0.0245 0.0033 0.0012 -0.0130 0.0001 

0.11 4.75 125030 30.67 2.2575 0.503 0.106 0.1263 0.0266 0.0043 0.0023 -0.0206 0.0000 

1.22 6.34 127450 31.26 2.3458 0.739 0.116 0.1786 0.0281 0.0047 0.0019 -0.0266 0.0000 

2.33 7.20 127360 31.24 2.3425 0.961 0.133 0.2325 0.0323 0.0080 0.0017 -0.0332 -0.0003 

3.37 7.43 125750 30.85 2.2838 1.185 0.160 0.2942 0.0396 0.0104 0.0019 -0.0443 -0.0011 

4.47 7.37 127680 31.32 2.3544 1.397 0.190 0.3365 0.0457 0.0113 0.0016 -0.0518 -0.0011 

5.57 7.02 127970 31.39 2.3650 1.595 0.227 0.3823 0.0544 0.0127 0.0014 -0.0578 -0.0014 

6.66 6.45 129210 31.69 2.4110 1.779 0.276 0.4182 0.0649 0.0141 0.0013 -0.0628 -0.0018 

7.74 5.83 129910 31.87 2.4373 1.944 0.333 0.4521 0.0775 0.0160 0.0008 -0.0692 -0.0020 

8.83 5.17 129390 31.74 2.4178 2.065 0.399 0.4843 0.0936 0.0184 0.0000 -0.0784 -0.0022 

9.79 4.59 130380 31.98 2.4551 2.126 0.463 0.4909 0.1070 0.0187 -0.0018 -0.0872 -0.0013 

10.87 4.17 127940 31.38 2.3638 2.182 0.523 0.5233 0.1254 0.0193 -0.0019 -0.0967 -0.0011 

11.94 3.90 127340 31.23 2.3418 2.234 0.573 0.5409 0.1387 0.0201 -0.0032 -0.1001 -0.0005 

12.99 3.66 127830 31.36 2.3600 2.258 0.617 0.5424 0.1482 0.0203 -0.0041 -0.1000 0.0001 

14.03 3.44 126930 31.13 2.3267 2.239 0.650 0.5455 0.1584 0.0195 -0.0035 -0.0986 0.0003 

14.99 3.25 126370 31.00 2.3061 2.209 0.681 0.5430 0.1673 0.0173 -0.0025 -0.0943 0.0009 
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Appendix D:  Additional Hot-Wire Analysis Plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 66:  Hot-Wire Analysis of 24” Houck Configuration, δ = 20º down, α = -2.04º, L/D = 4.10 

(a) u-component contours with v & w Vectors, (b) Non-dimensional turbulence contours with v & w vectors,  

(c) Vorticity behind wing with v & w vectors, (d) Position of hot-wire grid with respect to the 24” Houck Configuration 
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Figure 67:  Hot-Wire Analysis of 24” Houck Configuration, δ = 20º down, α = 8.22º, L/D = 5.04 

(a) u-component contours with v & w Vectors, (b) Non-dimensional turbulence contours with v & w vectors,  

(c) Vorticity behind wing with v & w vectors, (d) Position of hot-wire grid with respect to the 24” Houck Configuration 
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Figure 68:  Hot-Wire Analysis of 24” Houck Configuration, δ = 20º up, α = -2.04º, L/D = -2.80 

(a) u-component contours with v & w Vectors, (b) Non-dimensional turbulence contours with v & w vectors,  

(c) Vorticity behind wing with v & w vectors, (d) Position of hot-wire grid with respect to the 24” Houck Configuration 
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Figure 69:  Hot-Wire Analysis of 24” Houck Configuration, δ = 20º up, α = 8.22°, L/D = 4.66 

(a) u-component contours with v & w Vectors, (b) Non-dimensional turbulence contours with v & w vectors,  

(c) Vorticity behind wing with v & w vectors, (d) Position of hot-wire grid with respect to the 24” Houck Configuration 
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