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Foreword

This report compares the current enlisted job classification algorithm, Classification
and Assignment within PRIDE (CLASP) instituted in 1981, with a proposed replacement
algorithm, the Rating Identification Engine (RIDE). RIDE was developed over the
course of several years, beginning with funding from the Office of Naval Research (Code
34, PE 0603236N), augmented by funding from Commander Navy Recruiting
Command to accelerate its development. The motivation to build a replacement for
CLASP was two-fold. First, components of CLASP are not well documented and it
executes off an expensive mainframe computer system. Second, CLASP has a number of
“hard coded” components that are inflexible and difficult to maintain. In contrast, RIDE
is web-based and flexible. The flexibility to add new classification rules, filters, and tests
was seen as an important component of our research program to overhaul and improve
the Navy’s enlisted selection and classification process.

RIDE substantially met the design requirements, it has an easy to use interface, can
be reconfigured rapidly and easily, and most importantly, new tests or classification
tools can be easily integrated. However, RIDE was under an accelerated development
cycle to meet deadlines to coincide with a planned overhaul of the Navy’s recruiting
management system (of which CLASP was one component). As a result, RIDE was not
as thoroughly evaluated against CLASP as would otherwise have been done. The current
report provides a detailed evaluation of both CLASP and RIDE and compares them in
terms of their embedded philosophies, functionality, maintenance, and efficacy. In the
end, it is clear that the continued use of CLASP is indefensible for a number of reasons.
Nevertheless, there are several concerns with RIDE that should be remedied and a plan
is needed to refresh its parameters to maintain its integrity across time.

This specific work reported here was supported by the Navy Personnel Research,
Studies, and Technology department (Ms. Janet Held) through the U.S. Research Office
of Scientific Services Program administered by Battelle (Delivery Order 296, Contract

No. DAAD19-02-D-0001).

David L. Alderton, Ph.D.
Director
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Introduction

Across the United States, Military Entrance Processing Stations (MEPS) process
approximately 51,000 applicants for enlistment into the active U.S. Navy each year. Of
these, upwards of 39,000 are selected for enlistment (Kaemmerer, G., personal
communication, September 14, 2006). Each of the selected applicants must be classified
into a Navy rating (i.e., job) that matches the individual's abilities and is needed by the
Service. To accomplish this, a job-matching algorithm is employed. The current Fortran-
based algorithm was originally developed in the late 1970s and put into wide-scale Navy
use in 1981. This paper compares and contrasts the existing classification software with
a newly designed classification algorithm.

Rating Identification Engine (RIDE)

The Personalized Recruiting for Immediate and Delayed Entry (PRIDE) system is
the Navy's current overarching computer system for processing applicants for
enlistment into the Navy. The Rating Identification Engine (RIDE) is an enlisted Navy
rating job classification algorithm that is designed to replace the Classification and
Assignment within PRIDE (CLASP) algorithm. RIDE consists of two components: (1)
the School Pipeline Success Utility (SPSU) and (2) the Armed Forces Qualification Test
(AFQT). The two RIDE components are designed to work in close association with each
other as opposed to the more or less independent operation of the six CLASP
components.

Classification and Assignment within PRIDE (CLASP)

Much of the material in this report is quoted directly from Kroeker and Rafacz
(1983), which describes the five components of the original CLASP model implemented
in 1981. Kroeker and Folchi (1984) describe the Attrition Component, which was added
to CLASP in 1983.

The CLASP utility model was formulated to ensure consistent application of Navy
personnel classification policy among classifiers and from one assignment to the next. It
is comprised of six components: School Success, Aptitude/Complexity, Navy
Priority/Individual Preference, Minority Fill, Fraction Fill, and Attrition. Each
component was designed to influence a composite utility calculation independently of
the others. This design does not imply strict statistical independence; rather, a slight
degree of correlation among the utility components is expected. The magnitude of these
correlations has never been studied.

The School Success, Aptitude/Complexity, Navy Priority/Individual Preference, and
Attrition are often called "Fit" components, because they optimize job assignments
based upon psychologically-based goodness-of-fit measures. The Aptitude/Difficulty,
Priority/Preference, and Attrition components are very similar because they are based
on policymaker judgments concerning the value to the Navy of assigning an individual
with a given person attribute to a job with a given job attribute. The school success



component differs from the other "Fit" components because its utility model is based
upon the empirical relationship between “A” School performance and Armed Services
Vocational Aptitude Battery (ASVAB) composite scores.

The Minority Fill and Fraction Fill components are often referred to as "Fill"
components, because they optimize based upon the goal of achieving approximately
equal fill rates during each recruiting period. The Minority Fill component focuses upon
achieving appropriate balance between minority and non-minority accessions in each
job category, while the Fraction Fill component is focused on achieving uniform quota
fill rates across job categories.

Using a utility function whose mathematical form is unique to it, each CLASP
component computes the raw utility value of the prospective person to job assignment.
Then, using mean and standard deviation parameters that describe the distribution of
utility values in the reference population, each raw utility is standardized so that its
mean is 50 and its standard deviation is 10.

Both the RIDE and CLASP algorithms can be conceptualized as operating on a payoff
matrix, which is a rectangular array of numbers representing the utilities of the various
decision outcome combinations. Assume that there are m individuals to be assigned to
jobs and n job openings. If individuals are indexed by i (1 < i < m) and jobs are indexed
by j (1 < j < n), then the entry U;; in row i and column j of the matrix expresses the value
to the Navy (on an arbitrary scale) of assigning the ith person to the jth job. Higher payoff
values are more desirable than the lower ones, because Navy policy considers the
probability of success on a job to be a monotonically increasing function of payoff value.
The payoff matrix may be used for both comparisons across jobs and comparisons
across individuals. Thus, U, , >U, , implies that individual i is better suited for job j;
than job j., while U, , > U, , implies that individual i is better suited for job j than
individual i..

Ideally, the composite utility function for each job category should be a realistic
mathematical representation of the value of assigning a given person to that job, based
upon all identifiable factors considered relevant to the classification decision. However,
because there are several important factors that neither RIDE nor CLASP are able to
incorporate into the classification process, the goodness-of-fit measures they generate

are often only a small part of the information factored into the final classification
decision.



School Pipeline Success Utility (SPSU) Component of
RIDE and School Success Component of CLASP
Comparison

This section evaluates the empirical relationship between composite score and “A”
School performance, and the manner in which that relationship is incorporated into
CLASP and RIDE, with emphasis on RIDE. In particular, we want to know how well the
applicant's ASVAB composite score predicts “A” School performance. We also evaluate
the “Point of Diminishing Return(s)” (PDR) concept.

The PDR concept hypothesizes the following general relationship between composite
score and school performance: The relationship is monotonically increasing at the lower
end of the composite score distribution, including the region to the immediate right of
the cut score. However, as the composite score increases toward the PDR, the rate of
performance improvement declines and eventually flattens out at the PDR. Between the
PDR and the high end of the score distribution, school performance either remains flat
or declines. The leveling off or decline may be attributed to high aptitude students who
are "over-qualified" for the curriculum/career path they are being considered for and,
thus, may be better suited for a more challenging training curriculum and/or career
path.

The following procedure (Folchi, 1999) was used to model the empirical relationship
between composite score and First Pass Pipeline Success (FPPS) in each of 70 “A”
School samples and determine the PDR in each sample. The data consisted of students
enrolled in the “A” School training pipelines for 70 ratings during fiscal years 1996,
1997, and 1998. The primary ASVAB selector composite score and FPPS status were
available for each student in each sample. The dichotomous criterion FPPS is coded as 1
(one, success) if the student completed all courses in his “A” School pipeline without any
course failures or setbacks, and as o (zero, failure) otherwise. The procedure defines a
methodology for grouping adjacent data points into groups (hereafter called "bins") that
are (somewhat) evenly spaced along the composite score distribution.

Starting at the high end of the distribution, the procedure sequentially constructs
bins by moving toward the low end in bin range increment of 5 points. The procedure
adds all points in each increment to the bin, and continues on to the next increment,
until a minimum bin size of 10 or more points have been added to the bin. After the bin
membership has been determined in this manner, the bin is identified with a value on
the composite score scale equal to the midpoint of the maximum and minimum of
scores in all increments used to build the bin. Construction of the next bin (to the left of
the bin just completed) starts at the point immediately to the left of the minimum score
in the previous bin. The FPPS rate among students in the bin associates each bin with a
point on the conditional probability of FPPS scale on the composite score. The PDR is
found by determining all bins whose FPPS rates are within 1 percent of the bin having
the largest FPPS rate. The PDR is the lowest composite score associated with the bins
from this set. The bin in which the PDR is located is called the PDR bin and the bin in
which the Cut Score is located in called the Cut Score bin. The associated points are
named accordingly: (CS, Fcs) is the Cut Score point and (PDR, Fppr ) is the PDR point.



SPSU Component of RIDE

The SPSU component description is based on Folchi (1999). The description has
been broken into 3 stages to provide a more detailed and understandable explanation.

Stage |: Bin FPPS Rate Model

The Stage I model is the result of the bin construction algorithm after all adjacent
bins have been connected by line segments. Its equation is given in Appendix A. As
shown in Figure 1, the Stage I model is piece-wise linear such that each segment
provides a linear interpolation estimator of the conditional probability of FPPS for
composite scores between the midpoints of adjacent bins. However, due to its
complexity, the Stage I model was transformed into Stage II.

—8—SPSU 1
§— —SPSU 2
—e—SPSU 3

SPSU Util
[+2]
(=]

-

42 47 52 57 62 67 72 77
Composite Score

Figure 1. School Pipeline Success Utility

Stage |1: Non-standardized FPPS Prediction Model with PDR

The Stage II model is constructed by eliminating all bins and line segments in the
Stage I model, except the Cut Score (CS) and PDR points. The line segment between
these 2 points estimates the conditional probability of FPPS for each composite score in
the interval CS < X < PDR. For X < CS, the SPSU is zero, as defined by the horizontal
line starting at X = CS - 1 and extending to the left toward the minimum composite
score. For X > PDR, Stage II model is defined by the horizontal line starting at the PDR
point and extending to the right toward the maximum composite score.



As shown in Figure 1, the Stage II model simplifies the Stage I model because it has
no more than three line segments. It is considered unstandardized because it has not
been adjusted so that meaningful comparisons across job options are possible. The
Stage II equation is given by:

Regardless of whether PDR; = CS, or PDR, # CS ;:
S, =0 i X, <E8;,
Si;=100Fppg  if PDR;<X;; Stage 11 Equation

If CS, < X,, <PDR, and CS,# PDR,:

Pl
SIL =1004| - (X, . ~CS; J+ Fes; | -
PDR - CS, j

where Fppr and Fcsare the FPPS rates in the PDR and cut score bins, respectively,
CS; = Cut Score for composite associated with job option j,
PDR; = PDR for job option j, and

Xij = ASVAB composite score for individual i in job option ;.

The conditional FPPS probabilities provided by the Stage II model cannot be
meaningfully compared across different job options. If applicants were assigned to jobs
solely on the basis of their conditional FPPS probability, then most would be assigned to
easy schools and few would be assigned to difficult schools, since the easier schools
generally have larger FPPS probabilities. (Ease and difficulty in this context refer to both
the proportion of the applicant population satisfying the ASVAB selection standard and
the proportion of student population satisfying the FPPS criterion.) For example,
suppose an applicant has the same conditional probability of FPPS in schools A and B
and is qualified for both schools. Assume also that A uses a more stringent ASVAB
selection criterion than B and that A graduates a smaller proportion of students than B.
One may argue that it would be more beneficial to send this applicant to A than to B.
Accordingly, the SPSU Stage 111 model adjusts the Stage II conditional probability of
FPPS estimate for two measures of school difficulty: (a) difficulty experienced by the
average applicant population member in satisfying the ASVAB qualification standard,
and (b) difficulty experienced by the average “A” School qualified student in satisfying
the FPPS criterion.

Another method of counteracting the tendency for school success utility scores to put
too many applicants in easy schools is to design the remaining classification model
components to compensate for this tendency. For example, the CLASP
Aptitude/Difficulty component counteracts the CLASP School Success component in
this respect. In RIDE, both the transition from Stage II to Stage III and the RIDE AFQT
component fulfill the compensatory role.



The Hardness index is a measure of the difficulty that the average applicant
population member experiences in satisfying the “A” School ASVAB qualification
standard. It assumes values between zero and one, where zero indicates the minimum
difficulty and one indicates maximum difficulty. The hardness index for job option j is
defined as:

Let NRJO be the total number of RIDE job options.
Let NTj be the number of ASVAB subtests in composite for job option j.

Cs,
Let H,, = Max W‘ 1< j<NRJO |, and

J

CS,
letH,, = Min[N—T"-| £ /= NRJO]. The hardness factor is given by:

/

CS,
NT - HMin
_ J
T H st~ i

The adjustment for the difficulty experienced by the average student in satisfying the
FPPS criterion is determined by the reciprocal of the FPPS rate at the PDR. This, of
course, assumes that the FPPS rate at the PDR is representative of the FPPS rate of all
students taking the course. The smaller the FPPS rate at the PDR, the larger the
reciprocal is, and, therefore, the greater the difficulty of satisfying the FPPS criterion.
Thus, the transition from Stage II to Stage III will produce a larger upward shift for a
school in which it is more difficult to satisfy the FPPS criterion. The standardization
factor is the ratio of the hardness index to the FPPS rate at the PDR. The larger the
hardness index and the smaller the FPPS rate at the PDR, the larger the standardization
factor. Accordingly, the Stage III model is

87 = o g Stage I1I Equati
L= o iy ge quation

5 PDR,

Observe from Figure 1 that the Stage II and Stage III models are discontinuous
between cut score minus one and the cut score, unless the FPPS rate in the cut score bin
is zero. Thus, there can be a large difference between the SPSU value at the cut score
and the SPSU value (zero) everywhere below the cut score.



Criticisms of RIDE SPSU Model
Stage | Model, Bin Construction, and PDR Determination

Any procedure for grouping data in this manner is arbitrary. Application of different
grouping procedures, bin sizes, and bin range increments lead to different bin
memberships. Different bin memberships in turn produce different empirical
relationships between FPPS and composite score and, consequently, different PDRs and
different SPSU models. Furthermore, there is no a priori reason to believe that any one
combination of grouping procedure, bin size, and bin range increment is superior to any
other. Increasing Bin Size improves the accuracy of the FPPS rate estimates in each bin.
However, it does so by reducing the number of bins and increasing the length of the
interval between bins. As a result, the identification of each bin with a particular
composite score becomes more arbitrary and diffuse. In addition, although there is no a
priori reason to believe that the PDR necessarily exists, the PDR search procedure has
been defined in such a manner that it will always find one.

FPPS School Performance Criterion

Several potential problems may arise as a consequence of using FPPS. To the
author’s knowledge, FPPS has never been studied or utilized in previous
NPRDC/NPRST selection and classification research. It is not possible to anticipate how
well it will perform in comparison to school performance measures used in ASVAB
validation studies, such as final school grade (FSG).

A tailor-made school performance measure is usually developed during the course of
performing an ASVAB validation study. Developing such a measure is often difficult and
time-consuming because a detailed understanding of the course and student evaluation
process is required. However, from the author's perspective, the effort generally
produces a criterion that does well in differentiating students from one another. The
resulting validity coefficients seem, in general, to be larger than those derived from
more readily available performance measures, such as those obtained from Navy
Integrated Training Resources and Administration System (NITRAS). A corollary to this
observation is that differences between FPPS and a tailor-made performance criterion
may be substantial enough to produce different validation study outcomes. For example,
the ASVAB composite that correlates the highest with FPPS in a particular “A” School
pipeline may not be the same as the composite that correlates highest with a criterion
that is tailor-made for the “A” School in that pipeline.

This has important implications for RIDE. The SPSU model and parameters were
developed using FPPS as the school performance measure and the current ASVAB
selector composite as the student aptitude measure. However, no research has verified
that the current ASVAB composites are still optimal in terms of their ability to predict
FPPS in each rating. It is possible that some composite other than the current one better
predicts FPPS. The definition of FPPS is broad enough to include any number of school
pipeline segments, in addition to the “A” School. No research has explored the number
of schools in the various pipelines, the nature of the courses and curricula associated



with the segments, or whether ASVAB aptitude measures are even relevant in terms of
their ability to predict success in segments that have not been included in previous
ASVAB validation studies.

Another potential problem is that many pipelines demonstrate extreme differences
between the proportions of successes and failures in the sample (e.g., 99% FPP success
and 1% FPP failures). Such an extreme split may adversely affect the estimation of the
conditional probability of FPPS, particularly in the presence of outliers in the failure sub
sample.

A full explanation of why an extreme split may cause problems is beyond the scope of
this paper. However, a very brief explanation is as follows: FPPS, when compared to
performance measures like FSG that have a continuous, bell-shaped distribution, has a
shortcoming when examined from a mathematical and statistical standpoint. The
dichotomization of a continuous performance measure necessitates the introduction of
an additional nuisance parameter into the analysis, namely the location of the point on
the distribution designating the boundary between the successes and failures. When this
point is near either extreme of the distribution, then the variance of its estimate is
increased, which in turn adversely affects the variances of the slope and intercept
parameters in the conditional probability of success estimator (Hannan & Tate, 1965;
Prince & Tate, 1966).

Stage 11 Model

Although the Stage II model is considerably simpler than the Stage I model, it
wastefully discards all data except the cut score and PDR bins. In addition, the
imposition of linear relationships may introduce bias to the estimation of the
conditional probability of FPPS at all points of the distribution, except at the Cut Score
and the PDR. The Stage I model, like any estimator, contains estimation error. However,
each FPPS rate estimate used to build the Stage I model is unbiased because the
properties of the binomial distribution ensure it. The greater the degree of non-linearity
demonstrated by the Stage I model, the greater the bias introduced as a result of
imposing the Stage II model on top of it. Consequently, the Stage II model is
contaminated by both estimation error (inherited from the Stage I model) and bias
(from imposing linear relationships that may not have existed in Stage I).

Stage 111 Model

Adjusting the Stage II model for difficulty in satisfying the FPPS criterion is a
reasonable standardization technique. However, a broader, more stable school difficulty
measure than FPPS rate in the PDR bin should be used. The overall FPPS rate in the
school sample seems more reasonable.

Bin Model Evaluation

Both subjective and objective evaluations of the Bin models were performed.
Subjective evaluations were performed by a committee consisting of Janet Held and
Geoff Fedak of Navy Personnel Research, Studies, and Technology (NPRST), and the



author. Each committee member studied graphical displays of the 70 bin models and
judged whether each display indicated the presence or absence of a PDR. A majority
vote on each display indicated that a PDR was present in 25 out of the 70 models

(35.7%).

The objective evaluation consisted of a statistical comparison of each bin model with
a model developed using a baseline methodology. In the author's opinion, an objective
evaluation of the bin construction process required a baseline methodology for
estimating the conditional probability of FPPS at a given composite score. The bin and
the baseline methodologies were compared on the basis of the accuracy of their
respective predictions of conditional probability of FPPS. Two logistic regression model
prototypes, the quadratic logistic regression model (QLRM) and the linear logistic
regression model (LLRM), were selected for the baseline role. Logistic regression is a
standard methodology for estimating the conditional mean of a dichotomous criterion
variable such as FPPS (Hosmer & Lemeshow, 1989).

The testing procedure described in this section was used to (a) compare the LLRM
and QLRM and select which model best describes the relationship between composite
score and FPPS in each “A” School sample, (b) determine whether a PDR exists in each
sample, and (c) compare the selected LRM (either QLRM or LLRM) with the Bin model
and determine whether the Logistic Regression Model (LRM) or Bin model best fits the
data.

Inclusion of the QLRM in this study stems from the central role of the PDR concept
in RIDE and the need to objectively test for the presence of a PDR. Thus, the choice
between LLRM and QLRM provides an objective test for determining whether a PDR
exists. If the test indicates that a QLRM (that also has certain characteristics described
below) best models the relationship between composite score and FPPS, then there is
statistical evidence that a PDR exists. On the other hand, if the test indicates that the
LLRM best models the relationship between composite score and FPPS, then there is
statistical evidence that a PDR does not exist.

Sl?j = {1 * exp[— (a2.in2./ o al‘iXiAj i ao./) ] }f]

is the QLRM for the conditional probability of FPPS with respect to individual i in job option ;.
ay; is the coefficient of X,.‘:j (k =0, 1, 2), and Xj; is the score of individual i/ on the ASVAB

composite for job option ;.

The QLRM has exactly one extreme value point, which may be either a maximum or
a minimum. As demonstrated in Appendix B, the extreme value point is a minimum if
a.; > 0 and is a maximum if a.; < 0. Two distinct QLRM sub models resulted from
fitting the generic QLRM to the 70 “A” School samples. One (QLRM #1) is consistent
with the assumption of a monotonic increasing relationship between composite score
and FPPS over the interval between the cut score (CS) and the maximum observed
composite score in the sample (Cuma). Hereafter, denote this interval as (CS, Cyax/. The
second (QLRM #2) is an acceptable QLRM because it is consistent with the PDR
concept. Hypothetical curves for QLRM #1 and QLRM #2 are illustrated in Figure 2. It
is assumed that CS = 120 and Cmax= 160 for all curves in Figure 2.
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Figure 2. Logistic regression models.

QLRM #1 characteristics: az;j > 0 and so the extreme value point Xuyi, is @ minimum.
Also, Xmax < CS < Cumax. This is shown in Figure 2, where Xui» =110, and so the model is
monotonic increasing on [CS, Cpax].

QLRM #2 characteristics: a.j < 0 and so the extreme value point Xy is a maximum.
In addition, CS < Xmax < Cmax. This is illustrated in Figure 2, where Xuya = 140 is a PDR,
since the relationship between X and FPPS is monotonic increasing on [CS, Xumax] and
monotonic decreasing (MD) on[Xwmax, Cmax].

The monotonic character of the LLRM over the entire composite score range makes
it appropriate in the context of using aptitude test scores to predict a dichotomous
training school success measure such as FPPS.

8= {1 + exp[— (ﬂ,A,X i By )] }*' is the LLRM for the conditional probability of FPPS
with respect to individual i in job option j. Bk, is the coefficient of X (k = 0, 1), and X;;

is the score of individual i on the ASVAB composite for job option j. As shown in Figure
2, there is no extreme value point associated with the LLRM, and hence it is monotonic
over the entire composite score range. The LLRM is monotonic increasing (monotonic
decreasing) if B, is positive (negative).

The following criteria were used to choose between LLRM and QLRM:

e With the exception of QLRM #2, the model should be monotonic increasing on
CS, Cmax. This consideration is based upon the assumption that the relationship
between composite score and FPPS should, in general, be monotonic increasing.
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e P-value test: We choose between LLRM and QLRM based primarily on the p-
values associated the highest degree parameter in the respective models. The
highest degree parameter of the LLRM is/f3,;, whereas the highest degree
parameter of the QLRM is a-;. Comparison of their p-values indicates which
parameter we may conclude, with the greatest degree of confidence, is unequal to
zero, and, consequently, whether the QLRM or LLRM best fits the data. See
Appendix A for discussion on the interpretation of p-values.

Define £, as the LLRM estimate of 3, and &, , as the QLRM estimate of a-,. For the

“A” School sample associated with job option j, we use the p-value to make a preliminary
choice between the QLRM and LLRM by applying the following decision rules:

If p-value (&, ,) < p-value (), we may conclude with greater confidence that a-, is

unequal to zero than we could that £ is unequal to zero. Thus, our preliminary choice is
QLRM, which we finalize by performing steps 1 through 3:

1. Ifthe QLRM satisfies the characteristics of QLRM categories #1 or #2 and if no
errors were detected during model fit, the model is declared as QLRM. If, in
addition, the QLRM satisfies the characteristics of QLRM #2, then a PDR is
declared to exist.

2. If (1) is not satisfied, the final model choice is LLRM, provided that Bl_, > 0 and
no error conditions were detected during parameter estimation.

3. If (2) is not satisfied, then the model is declared “No Decision,” indicating that
neither QLRM nor LLRM provides a satisfactory fit.

If p-value (&, ; ) > p-value (4,), then our preliminary model choice is LLRM. That

decision becomes final if £,; > 0 and no error conditions were detected during
parameter estimation. However, if A, < 0 or at least one error is detected, the model is
declared “No Decision.”

Once the QLRM vs. LLRM winner is selected, it is compared with the Stage II bin
model. The (non-standardized) Stage II model, rather than the (standardized) Stage III
model, is compared with the QLRM-LLRM winner because the basis for comparison is
accuracy of conditional probability of FPPS prediction.

The “expected absolute total error” (EATE) criterion was used to compare the Bin
and LRM models. As described under Criticisms of RIDE SPSU Model, the Bin model
construction process introduces both bias and estimation error into its estimate of
conditional probability of FPPS. In contrast, the asymptotic unbiased property of
maximum likelihood estimators (MLE) means that the logistic regression parameter
estimates are unbiased in the limit as the sample size becomes large (Stuart & Ord,
1991). (The author is not aware of any studies indicating whether, for a fixed sample
size, the LRM parameter MLEs are still unbiased and, if not, the degree of bias present.)
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Preliminary Bin vs. LRM comparisons were performed using 95 percent confidence
intervals. Overall, these results indicated that the LRM had slightly narrower confidence
interval widths than the Bin model. However, since estimator bias is not considered in
the confidence interval calculation, a criterion was sought that would incorporate both
bias and estimation error variance into the comparison. The EATE criterion was
developed by assuming that ¢ (epsilon, the total FPPS rate estimation error due to the
presence of both bias and FPPS rate estimation error variance) is normally distributed
with mean equal to the bias and variance equal to the estimation error variance.
Mathematically, EATE is the expected value of the absolute value of £ (E|¢]|) and is
given by

EATE=E|¢|= 2o¢(—ﬁ)—2y¢[—ﬁj+y, where
(o2 (o2

02 is estimation error variance,

u is the bias of the estimator,

@( ) is the standard normal probability density function, and
@( ) is the standard normal cumulative distribution function.

This formula is used to calculate EATE of the logit in the LRM model, and the EATE
of the Bin model. The derivation of EATE is given in Appendix A, as are the procedural
details of the Bin vs. LRM comparison.

Table 1 summarizes the results of the analyses. The Bin columns indicate the mean of
the Bin model EATEs for each rating. Each mean was computed by averaging the EATEs
over all integer composite scores between the cut score and the Cyax in that rating. The
LRM columns indicate the mean of the LRM model EATEs for each rating, again
computed by averaging over all composite scores between the cut score and Cmax for that
rating. When these columns were averaged over all ratings, the mean Bin EATE was
0.050 and the mean LRM EATE was 0.030. The B/L columns indicate whether the Bin
model or LRM model produced the smaller EATE. In this comparison, the Bin model
produced the smaller EATE only 7 times, while the LRM produced the smaller EATE 62
times. The Model column indicates which LRM (QLRM or LLRM) was the superior
LRM for that rating and was matched against the Bin model in the EATE comparison.
The appearance of (PDR) in that column indicates that the chosen QLRM satisfied the
criteria for the existence of a PDR.! Six of the 70 LRMs were QLRM, 55 of them were
LLRM, and the remaining 9 were “No Decision.”2 Five of the six ratings that satisfied
the QLRM criteria also satisfied the conditions for the existence of a PDR. These ratings
are designated by an asterisk (*) in the Model columns.

1 Note: The LLRM was matched against the Bin model whenever the QLRM vs. LLRM comparison
resulted in a “No Decision” outcome.

2No Bin vs. LRM comparison was performed for the PH 5Y rating because only one bin resulted when the
bin construction procedure was performed on that sample. At least 2 bins are necessary to calculate the
Stage I estimate.
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Table 1

Bins vs. LRM

Rate Bin LRM B/L Model Rate Bin LRM B/L Model
AB--GE .065 .048 L QLRM* AC--5Y .097 .037 L LLRM
AD--SG .012 .010 1 LLRM AE--SG .022 .013 L LLRM
AECFAE .048 .015 L LLRM  AG--SG .100 .032 L LLRM
AK--SG 027 .021 L NoDe AM--GE .013 .008 L LLRM
AO--SG .061 .020 L LLRM AS--SG 119 .056 L NoDe
AT--GE .042 017 L LLRM AZ--SG .020 013 L LLRM
BU--5Y .085 .042 L QLRM* | CE--5Y .040 .020 L LLRM
CM--5Y .064 .025 L LLRM CTA-SG .017 .017 L LLRM
CTI-SG 119 .031 L LLRM CTM-AE .046 .024 L LLRM
CTO-SG .032 .033 B QLRM*  CTR-SG .053 .035 L NoDe
CTT-SG 015 .010 L LLRM DC--SG .023 .013 £ LLRM
DK--SG .060 035 L NoDe DT--GE .021 .010 L LLRM
EA--5Y .055 .039 L LLRM EM--SG .045 .022 L LLRM
EN--SG .060 .023 L LLRM EN--AT .108 .035 L LLRM
EO--5Y 0715 .010 L LLRM ETS-GE .051 .019 L LLRM
EW--SG .036 .027 L LLRM EW--AE .138 .048 L LLRM
FT--GE .028 .024 L LLRM GM--SG .053 .034 L LLRM
GSE-GE .083 .040 L LLRM GSM-GE .075 .028 L LLRM
HM--GE .027 .008 L LLRM HT--GE .028 .023 L QLRM
IC--GE A1 .032 1 LLRM I1S--SG .043 .025 I LLRM
JO--5Y .058 .044 i LLRM LI--SG .025 .050 B LLRM
MM--SG .029 .014 L LLRM MM--NF .069 .085 B LLRM
MMS-SG .078 .020 L LLRM MN--SG .038 .029 L NoDe
MR--SG .040 .036 L LLRM  MS--SG .072 .019 L NoDe
MSS-SG .070 .049 L LLRM MT--AE .036 .027 L LLRM

----NF .016 .022 B LLRM l 0S--SG .008 .007 L LLRM
PH--5Y --- QLRM*  PN--SG .027 .020 Ii LLRM
PR--SG .011 .015 B LLRM QM--SG .044 .038 . LLRM
RM--SG .029 .012 IL LLRM RP--SG .048 .048 B NoDe
SH--SG .032 .021 L LLRM SK--SG .028 .019 It NoDe
SKS-SG .101 .094 L LLRM SM--SG .030 .024 L LLRM
SS--SF .040 .016 L LLRM  STG-GE .007 .007 L LLRM
STS-GE .068 022 L LLRM SW--5Y .074 .042 L NoDe
TM--SG .065 .041 L LLRM UT--5Y .037 .038 B QLRM*
YN--SG .033 .013 L LLRM YNS-SG .094 .071 L LLRM
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School Success Component (SSC) of CLASP

The school success utility component predicts “A” School success as a function of the
operational ASVAB selector composite for each rating. Prior to CLASP, classifiers made
“A” School assignments based on the cut score for each rating, without considering the
degree to which the applicant may exceed that score. Based upon the assumption that an
applicant's likelihood of success increases with aptitude test score, the school success
component was designed to incorporate information about the complete range of scores,
instead of focusing solely on whether the cut score was satisfied. For the original CLASP
implementation in the early 1980s, Navy validation samples were obtained from Paul
Foley of Navy Personnel Research and Development Center (NPRDC). Linear regression
analyses were performed to develop unique school success equations for ratings in
which validation data was available. Thus, in the original CLASP implementation,
different selector composites were used to predict school success for different ratings.
The original equations were typically characterized by non-integer weights and, in some
instances, negative weights.

In 1984, a new policy allowed only operational ASVAB selector composites to be used
as school success equations in CLASP. Therefore, the current school success equation
for each job option is identical to the ASVAB composite currently used for selection
purposes. Accordingly, CLASP school success criterion measures vary from job option to
job option. For a given job option, the school success criterion is determined by the “A”
School performance measure used in the ASVAB validation study that recommended
use of that particular composite. Whenever an ASVAB validation study recommends
that the ASVAB composite(s) currently used for selection and/or the associated cut
score(s) be replaced, NPRST immediately submits for operational CLASP
implementation an updated school success mean and standard deviation for each job
option associated with the rating. When an ASVAB selector composite change is
recommended and approved, Commander, Navy Recruiting Command (CNRC) then
changes the corresponding school success equation(s) in the operational CLASP
implementation. Several “A” Schools select students using multiple composites and cut
scores, either as a multiple hurdle or as an "either/or" criterion. For CLASP job options
associated with these ratings, one composite is designated by NPRST as the CLASP
school success equation.

The standardized school success payoff for individual i in rating j is given by
. |
S, =50+ IO["—'U“”’] Sch_Suc

where
S, is the standardized school success payoff associated with placing individual i in

rating j,
Si;jis the ASVAB composite score for individual i in rating j,
uss,j is the S;; reference population mean for rating j, and

ossjis the S;j reference population standard deviation for rating j.
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The reference population used to estimate the mean and standard deviation consists
only of recruits who satisfy the ASVAB selector criteria for that rating, not the entire
recruit population. Subtracting uss; from S;; and dividing that difference by oss,j in
equation Sch_Suc adjusts each S;; for differences across ratings in the average ability
level required to qualify for and successfully complete “A” School. As a result, equation
Sch_ Suc transforms the S;jinto a common metric for all ratings and facilitates
comparison across ratings for individual i. However, it is not known if conversion to this
common metric is sufficient to completely eliminate the tendency for the easier schools
to experience higher school success utility scores, on the average.

CLASP Parameter Update Considerations

The reference population means and standard deviations for each job category are
the only School Success component parameters subject to updating. The CLASP
parameter update software automatically generates an update for these parameters
during the annual CLASP parameter update. In addition, NPRST possesses a software
package to update any specified subset of the school success mean and standard
deviation parameters when ASVAB selector composite and/or cut score changes have
been recommended and approved.

RIDE SPSU and CLASP SSC Summary

The section closes with a discussion of several important considerations in building
and maintaining the SPSU component of RIDE. Also included is a description of
strengths and weakness of SSC and SPSU.

CLASP SSC Weaknesses

School success equations in the current CLASP implementation are chosen from a
short list of approximately 12 ASVAB (unique) selector composites. This small number
of unique composites, relative to the approximately 120—-130 job options currently sold
in CLASP, means that the same composite is used for several job options. For example,
as of March 2003, CLASP used Verbal and Arithmetic Reasoning (VE+AR) to predict
school success in 17 job options and Arithmetic Reasoning, Math Knowledge,
Electronics Information, and General Science (AR+MK+EI+GS) in 30 job options.
Hence, the SSC has a limited differential prediction capability, meaning that it cannot
distinguish differences in school success utility between pairs of job options using the
same equation. A partial solution may be achieved in job options that use multiple
composites for selection, either as a multiple hurdle or as an "either/or" criterion. If
appropriate weights could be found, additional school success equations could be
created by taking a weighted sum of all composites appearing in the “A” School selection
standards for these job options. The number of CLASP job options sharing the same
composite could be reduced substantially. In addition to concerns regarding the quality
of differential prediction, the SSC lacks the flexibility to implement anything other than
a linear relationship between composite score and utility.
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CLASP SSC Strengths

The advantage of the SSC is that only Navy applicant data from PRIDE is required to
update the CLASP parameters, including SSC mean and standard deviation parameters.
When an ASVAB validation study recommends a selector composite and/or cut score
change for a given rating, CLASP does not require a new prediction model. CLASP
requires only that mean and standard deviation parameters for that rating be updated
based upon the new composite and/or cut score. NPRST uses a simple procedure to
estimate the new parameters and forward them for implementation. “A” School
validation samples are not required for this purpose.

RIDE SPSU Weaknesses

Development and maintenance of bin and/or logistic regression models for
predicting FPPS requires an “A” School validation sample for each rating. As is currently
the case with CLASP, when an ASVAB validation study recommends a change to the
operational selector composite in a given rating, a corresponding change to the SPSU
component of RIDE will be required. However, unlike CLASP, the RIDE parameter
update requires estimation of both a new PDR and the FPPS rate at the new PDR.
School performance data would be required to accomplish this. In addition, it is
anticipated that in some situations, such changes may be more difficult and time-
consuming than is currently the case with CLASP. When a selector composite change is
recommended and approved for a given rating, it may not be advisable to immediately
develop and implement a new FPPS prediction model for that rating using the currently
available validation sample and the replacement (i.e., new) selector composite. This will
be especially true if the incumbent and replacement composites will select student
populations that are significantly different from one another. Accordingly, it may not be
feasible to implement the new selector composite in RIDE until after sufficient students
have been selected with the replacement composite to develop and implement a new
prediction model.

RIDE SPSU Strengths

Availability of “A” School performance data will facilitate development of non-linear
models of the relationship between composite score and school performance. It will also
facilitate development of unique SPSU equations for more job options than is currently
feasible in CLASP. Although previous sections raised several questions concerning the
quality of the FPPS criterion and the quality of the Bin and LRM estimators of the
conditional probability of FPPS, the availability of school performance data would
facilitate further research on criterion measure alternatives to FPPS.
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CLASP Aptitude/Difficulty and RIDE AFQT Component
Comparison

In ascertaining whether an applicant is suited to a particular job, the employer must
assess the job's requirements and the applicant's abilities. The employer must decide
whether the prospective employee has the abilities required to succeed in the job.

During a typical employment interview, the employer judges the applicant's abilities
using some internal scale. The internal scale may not be well defined, but allows the
employer to evaluate and rank-order prospective employees. The employer can be more
certain about the characteristics of the job and the type of person most likely to fill the
job successfully. The employer's experience enables him to rank-order jobs based on the
technical ability they require. This continuum forms a second scale. For example, an
employer may judge that a particular applicant belongs to the upper 25 percent of
applicants, as assessed on the internal aptitude scale. A particular job may be rated by
the employer as belonging to the upper 25 percent of jobs on the scale of technical
aptitude required to succeed. Having established the relative positions of both the job
and the applicant on their respective scales, the employer may judge their
correspondence to each other. In this case, there appears to be a match and the
applicant will likely be offered the job.

The Aptitude/Difficulty component of CLASP works similarly to the employer's
evaluative techniques. This utility function involves two scales: (1) a measure of an
applicant's overall technical aptitude, and (2) a measure of the rating's technical
difficulty or complexity. Thus, given an applicant's technical aptitude and a rating's
technical difficulty, the utility of that person-job match may be evaluated and compared
with other possible person-job matchups.

Kroeker and Rafacz (1983) provide details concerning the technical aptitude and job
difficulty scales. The technical aptitude composite (TAC), computed as MC+AS+EI+GS,
measures the applicant's technical aptitude for purposes of the Aptitude/Difficulty
component. The following equation transforms the TAC so the resulting transformed
aptitude score (TAS) is between 40 and 100, inclusive.

180
d ) Apt_Dif TAS

A =40+60 ————
280180

Truncate to A; = 100 if C; = 280 and truncate to A; = 40 if C; > 180, where A; and C;
are the TAS and TAC scores for individual i, respectively. The TAS distribution must fall
in this range because the Aptitude/Difficulty utility function described below is
constructed such that its aptitude argument must satisfy this property.

As indicated by equation Apt_Dif TAS, the transformation truncates TAC scores
that are either less than 180 or greater than 280 so that they fall at the extremes of the
TAS distribution. Since the minimum standard score of each subtest is 20 and the
maximum standard score is 80, the minimum TAC score is 4 x 20 = 80 and the
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maximum is 4 x 80 = 320. Consequently, TAC scores between 80 and 180 correspond to
a score of 40 on the TAS, while TAC scores between 280 and 320 correspond to a TAS
score of 100. The original rationale for the truncation in equation Apt_Dif _TAS is
unknown, but its apparent effect is to prevent the TAS distribution from being tightly
concentrated around its mean and to spread it more uniformly over the range between
40 and 100.

The job difficulty scale was established using paired comparison methodology.
(Kroeker, personal communication, 1998). Initial scale values were produced for the
complete job set by applying the paired comparison procedure to two data sets: (1)
experimenter judgments about the cognitive skills required by each job, and (2)
experimenter estimates of the visual perceptual attributes required. Data were then
collected from subject matter experts (SMEs) who were asked to compare the job
difficulty of small groups of ratings. The SMEs ranked the difficulty of 8 to 10 jobs in
pairs, thus contributing to a matrix from which new scale values could be derived for the
entire job set. The scale was then modified by using an iterative procedure to revise
psychological values (Kroeker, 1982).

The unstandardized technical aptitude/job difficulty utility associated with assigning
person i to job j is given by:

Equation Apt_Dif_Util:

U.4f‘[)(Ai’Dj)=BOO+BZO(A _100) +BOI(D 35)+Bzz( _100)( i )2
8,4 1000, =55 B, |D =15F where

Bo,o = 30.0, B2, = -0.0005, Bo,; = 1.867, B2, = -0.00001696, B, ; = -0.0001867

and Bo. = -0.01244, Ua/p(A2, Dj) is the raw Aptitude/Difficulty utility of assigning
person i to job j, A; is the TAS score of person 7, and Dj is the job difficulty of rating j.

The following briefly explains the development of equation Apt_Dif Util. Ward
(1977) is an excellent source reference for this topic. The classification policymaker
assumed that Ua/p(A., D)) is a polynomial in two variables: applicant aptitude A; and job
difficulty D;. The maximum degrees of A; and Dj of the (bivariate) polynomial are
determined by the number of initial conditions, as described below. Hence, it was
originally specified as

U, »(4,.D,)= Zz 4,-100) (D, -35) Apt_Dif_Poly

i=0 j=0

There are (2+1) x (2+1) = 9 unknown coefficients (Bo,o, Bo,1, Bo,2, B1,0, B1,1, Bi,2, B2,o,
B. ., and B.) to be determined. Step 2 specifies a set of initial conditions (either on the
utility function itself or on its partial derivatives) at critical values of A and D. For
example, equation (Apt_Dif Poly) was developed using a set of initial conditions similar
to the following:
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(1) Ua/n(40,40) = 32.34
(2) 5_;/3_0 = 0 when evaluated at A = 40, D = 43.1

(3) Ua/p(40,100) = -204.65
(4) Ua/p(100,100) = 98.8
(5) Ua/p(100,40) = 39.02

(6) a(aj—“D’D = 0 when evaluated at A = D = 100

(7) Ua/p(70,40) = 37.35
(8) Ua/p(70,100) = 22.93

(9) a—(aj"?/” = 0 when evaluated at A = 70, D = 65.7

Note the number of initial conditions equals the number of unknown coefficients.
When the initial conditions are substituted into Apt_Dif Poly, the result is a system of 9
linear equations in the 9 unknown coefficients. The coefficients may be determined by
solving the linear system.

As described by Ward (1977), the initial conditions are based upon policymaker
requirements regarding the desired behavior of the function at pre-specified values of A
and D. Judicious choices in the initial condition specification will give Ua/p(A,D) its
desired appearance over the entire range of allowable values of A and D.

As far as the author can determine, the Aptitude/Difficulty, Priority/Preference, and
Attrition Component Utility functions were all developed as mathematical
representations of personnel classification policy. For example, the Aptitude/Difficulty
utility function is based upon policymaker judgments concerning the value to the Navy
of assigning an individual with a given technical aptitude level to a job with a given level
of technical difficulty. The A/D, P/P, and Attrition utility functions do not appear to
either represent the outcome or results of any empirical study or to be motivated by any
such study. The author is not aware of any research, either inside or outside the military,
which has produced an empirically-based model describing utility as a function of a
person attribute and a job attribute. As described below, similar procedures were used
to determine the coefficients for the raw utility functions in the Priority/Preference and
the Attrition components of CLASP.

Figure 3 shows a graph of equation Apt_Dif Util with Ua/n(A,D) plotted as a
function of Job Difficulty for fixed applicant Aptitude values A = 40, 50, 60, 80, 90, and
99. The uppermost curve on Figure 3 represents the utility values for the highest
technical aptitude level (99) across the entire range of job difficulty. The region at which
the curve assumes its maximum value occurs at the upper end of the difficulty scale.
This implies the utility function tends to assign the highest aptitude individuals to the
most technically complex ratings. The curve's gradual downward slope from the region
of greatest technical difficulty to the region of least technical difficulty implies that
smaller utility values are awarded when high-aptitude individuals are assigned to low-
difficulty jobs. Although the probability of such assignments is reduced accordingly,
they may still take place, due to the influence of the other CLASP components. The
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lowest curve represents the utility values for the lowest technical aptitude level (40)
across the entire range of job difficulty. Its maximum value occurs at the lowest end of
the difficulty scale; its sharply downward slope in the direction of increasing job
difficulty means that low-ability applicants will almost always be assigned to the least
complex jobs.

150
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2 o —A—A = 65
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Figure 3. Aptitude/Difficulty Utility.

The middle curve indicates that applicants of average ability (65) have a reasonable
chance to be assigned to ratings of all difficulty levels. However, given that the
maximum of this curve occurs in the range of intermediate job difficulty, it is most likely
they will be assigned to ratings of intermediate technical difficulty.

Thus, for a given level of applicant aptitude, the Aptitude/Difficulty component
awards the largest utility values to assignments providing the closest correspondence
between the applicant's ranking on the technical aptitude score distribution and the
job's ranking on the job difficulty distribution. In other words, the largest utility values
are awarded when high aptitude applicants are matched up with most difficult jobs.
Intermediate aptitude applicants are awarded the largest utility when they are matched
with intermediate difficulty jobs, although the utility of this matchup is not as large as
that of the high aptitude individual and high difficulty job. Low aptitude applicants are
awarded the largest utility when they are matched with low difficulty jobs, although the
utility of this matchup is not as large as that of the intermediate aptitude individual and
intermediate difficulty job. Table D-1 in Appendix D shows, for each fixed A, the
difficulty level Dyax(A) that maximizes Ua/p(A,D). That is, for any fixed A, Duax(A) is the
difficulty level D such that Ua,;p(A, Dmax(A)) > Ua/p(A,D) for all D in [40,99]. As shown
therein, both Dyax(A) and Ua/p(A, Dmax(A)) are increasing functions of A.
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In Figure 3, the 6 curves for the 6 aptitude levels do not intersect. Thus, for a given
job difficulty level, the utility associated with assigning an applicant with aptitude A, is
greater than the utility associated with TAS score A. if A; > A.. Stated differently, larger
applicant aptitude levels result in larger utility values, regardless of job difficulty level.
As a general rule, this seems reasonable, with the possible exception of the lowest job
difficulties. One may argue that higher applicant aptitudes should result in smaller
utilities for the lowest job difficulties, since the assignment of high aptitude individuals
to these jobs wastes talent that could productively be used in the technically more
difficult jobs. Such an argument could be used in support of the AFQT component in
RIDE.

The standardized Aptitude/Difficulty payoff is calculated as:

O .4p

CLASP Parameter Update Considerations

Uap, 0ap, and the job difficulty (i.e., job complexity) index parameters, Dj, for each
rating constitute the Aptitude/Difficulty component parameters subject to updating.
The CLASP parameter update software automatically generates updates for pap and 0ap
during the annual CLASP parameter update. Kroeker (personal communication, 1998)
documents the procedures and methodology he used to update the original set of job
difficulty parameters he developed in the late 1970s or early 1980s. The author knows of
no reason why these updated parameters could not be implemented in CLASP at this
time.

RIDE AFQT Utility

The purpose of the RIDE AFQT Component is to "penalize” the applicant's utility
scores in ratings where the AFQT score suggests the applicant is over-qualified. If the
degree of over-qualification is large enough, both the Navy's and the applicant's
interests are best served by placement in a rating in which the applicant’s general
aptitude more closely matches that of other applicants assigned to the rating. This
concept is based on the assumption that the AFQT score represents a measure of the
applicant's overall, general aptitude, while the ASVAB selector composite score
measures specific skills and aptitudes for the rating.

Figure 4 demonstrates this concept. The maximum AFQT utility is achieved by
individuals whose AFQT score is < the mean AFQT score M;of individuals assigned to
the rating. Utility decreases from a maximum of Quax = 100 to a minimum of Qumin = 0 as
the individual's AFQT score substantially exceeds the mean AFQT score for that rating.
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Figure 4. RIDE AFQT Utility.

Define Q;; as the AFQT utility associated with assigning individual i to job option j.
Define A; as the AFQT score of individual i, Mj as the mean of the AFQT distribution in
job option j, and o; as the standard deviation of the AFQT distribution in job option j. In
addition, define oj > 0 as the offset from M;j that defines the maximum AFQT score for
which Qij = Qmax = 100. Also, define 6; > Mj +§; as the minimum AFQT score for which
Qij = Qumin = 0. In other words, as A, increases from 0 to 100, M; + §; represents the
AFQT score at which the penalty begins to take effect, while 6; is the AFQT score at
which the penalty first reaches its maximum.

o
In Figure 4, M, =55, o, =10,9, =7’, and 8, =M ,.+3.50;.

O .
Then M, +35, =M, + 7’ =60and §, = M, +3.50, = 90. Note that the specifications for
M, +6, and , have been modified since the Folchi (1999) specification. Qij may then be
defined as follows:
Qi./ = QAI(L\ if Ai < MI - 5/ 2
Qi./ = Qrtin if 42 9/ , and

QM '_QAI' s
0 =t Swn [4_ (M +85)|+Qy. if M,+5 54,56,
T M, +6,-6, P 2 :
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RIDE AFQT and CLASP Aptitude/Difficulty Summary

In summary, Us/p(A,D) is a mathematical representation of a classification policy
that assigns each applicant to a rating whose technical difficulty, D, approximately
corresponds with technical aptitude A. The costs (both to the Navy and the applicant) of
a mismatch seem clear. Worker boredom and a lost opportunity to assign individuals to
jobs that better match their skills and aptitude are the costs associated with assigning
applicants to jobs that are too easy. Decreased productivity is the cost of assigning
applicants to jobs for which they lack the required aptitude to perform properly.

Comparison of Figures 3 and 4 indicates the CLASP A/D and RIDE AFQT
components are quite different. RIDE AFQT penalizes for "over-qualification” in a given
rating (as measured by the degree to which the applicant's AFQT score exceeds the
M + § point in that rating's AFQT distribution). RIDE imposes no such penalty for
under-qualification. In contrast, CLASP A/D penalizes for "under-qualification" (as
measured by the degree to which the applicant's technical aptitude measure is less than
the Job Difficulty measure in that rating), but imposes no penalty for over-qualification.
Regardless of rating, the RIDE AFQT utility function is monotonically decreasing (flat
between the minimum AFQT score and M + &, downward sloping between M + § and 6,
and then flat between 0 and the maximum AFQT score). In contrast, Figure 3 shows the
CLASP A/D function is monotonically increasing between the minimum and maximum
values of A. As the Job Difficulty increases, Ua/p(A,D) increases more rapidly between
the minimum and maximum values of A. The CLASP policy that rewards a larger
aptitude with a larger utility value, regardless of job difficulty level, is not present in the
RIDE AFQT model. RIDE rewards larger aptitudes with larger utility scores only in the
more difficult jobs.

In summary, the RIDE AFQT and CLASP A/D components seem motivated in
conceptually opposite directions. Two possible methods for judging and comparing
them are: (a) evaluate them in context with the remaining model components, and (b)
evaluate them from a policymaker's standpoint. One possible technique of
accomplishing (a) is to apply the two algorithms to a baseline set of applicant records
and, applicant by applicant, compare the RIDE and CLASP optimal lists. In particular,
since RIDE requires less applicant input information, this technique could provide
useful insights into the manner in which the SPSU and AFQT components interact to
generate a composite RIDE utility. It may also be helpful in understanding how the
School Success and Aptitude/Difficulty components of CLASP interact, and how the
RIDE composite utilities compare with a composite of the School Success and
Aptitude/Difficulty components of CLASP. Evaluation of (b) requires a policymaker to
express opinions on questions such as: Do the "under-qualification" and "over-
qualification” concepts make sense in the Navy environment? In particular, should
under-qualified (or over-qualified) applicants be awarded fewer utility points if their
technical aptitude does not closely match the technical difficulty level of a given rating,
under the premise that too low (or too high) an aptitude level makes them less likely to
succeed in that rating?

The 4 remaining CLASP components that do not have counter-parts in RIDE are
discussed in the following sections.
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Navy Priority/Individual Preference Component

Kroeker and Rafacz (1983) provide an excellent introduction to the
Priority/Preference component and description of the priority scale.

The purpose of this component is to incorporate both Navy priorities and
individual preferences when assigning recruit applicants to ratings. These two
sets of objectives may be incompatible, particularly if both are described by
utility functions allowed to vary independently. For example, the gain in
utility resulting from an applicant's expression of strong preference for a
particular rating may be offset by a loss in utility if the rating has a low Navy
priority.

To overcome the deficiency of a strictly additive model, an interactive utility
function was designed. Thus, a utility value is obtained as a function of the
Navy priority index for a particular rating in conjunction with the applicant's
specified preference value for that rating. To address both Navy priority and
individual preference, two scales were derived:

Priority Scale: Navy priorities were obtained from the career reenlistment
objectives listed by the Office of the Chief of Naval Operations. These
priorities were augmented and modified using rating popularity and rating
size as variables in a least squares regression analysis. The resulting priority
scale was refined by data collected from 10 Navy personnel managers
concerned with setting recruiting goals and “A” School priorities. In a
procedure similar to that used to establish the job complexity scale, these
officers compared the relative importance to the Navy of small groups of
ratings, by pairs. As with the job complexity scale, values were then modified
using a procedure to revise estimates of psychological scale values (Kroeker,
1982).

The Kroeker and Rafacz description of the individual preference scale is not
consistent with the actual CLASP implementation. Therefore, the following alternative
description is provided:

An individual preference value is computed for each rating. The applicant
classification process at the Military Entrance Processing Station (MEPS) does not allow
enough time for the recruit to rank order all ratings s/he may potentially be assigned to.
Therefore, preference values are not determined on the basis of individual ratings.
However, since each rating belongs to exactly 1 of approximately 15 occupational group
categories, preferences are determined by asking the applicant to rank order up to 5
occupational groups in terms of preference. Each rating in the most preferred
occupational group receives the highest possible preference value (100), each rating in
the second ranked group receives the second highest possible preference value (90), etc.
Thus, the preference scale can be expressed as
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Zijirj =100 — 10(r — 1), T = 1, 2, ..., Np, where

Zijir is the individual preference value for individual i in rating j[r],
the index j[r] ranges over all ratings in the rth ranked occupational category,
r is the occupation group ranking, and

1 < np < 5 is the number of occupational groups the applicant expresses a
preference for.

For ratings in the remaining occupational groups r for which the applicant did not
express a preference, Zijis assigned the lowest possible preference value (20). Thus,
the individual preference scale ranges between 20 and 100, with larger preference
values associated with the applicant's most preferred ratings and smaller values
associated with his/her least preferred ratings.

Given the Navy priority index of a rating and the individual's preference value of the
rating, the unstandardized Priority/Preference utility is given by Equation
Prior_Pref Unstd:

U,,,,(W,,Z,__,) =90.0 + (0.001) W} +(1.8) (Z,, - 100) - (0.0000014) W} (Zij-100)?
- (0.00018) W} (Z, ;- 100) + (0.009) (Z, ;- 100)? , where

Usr (W’ Py ) is the priority/preference utility associated with individual i in rating
Js

” is the Navy priority index value for rating j, and

Zis is the individual preference value for individual i in rating j.

In Figure 5, Upp(W;, Zi;) is plotted on the vertical axis against Individual Preference
on the horizontal axis, for priority values of 100, 80, 50, and 0. The four curves are non-
intersecting and appear in order of increasing priority level from bottom to top. Thus,
for any fixed individual preference value, a larger priority value generates a larger
priority/preference utility than a smaller priority value.
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Figure 5. Priority/Preference Utility.

In addition, the utility for each priority level is an increasing function of individual
preference level. Thus, the utility of a person-rating match increases both as a function
of the rating priority (for a fixed individual preference level) and as a function of the
individual's preference for the rating (for a fixed priority level). However, since the
curves are not parallel, utility is a non-linear function of priority and preference.

The uppermost curve represents utility values corresponding to the highest level of
Navy priority (100) across the entire range of individual preferences. A strong or
moderate preference for a high priority rating yields a high utility value, since both the
Navy's and the applicant's interests are satisfied by such an assignment. A low
preference for a high priority rating yields a moderate level utility that expresses the
importance of the rating to the Navy. The lowest curve represents utility values
corresponding to the lowest Navy priority level (0) across the range of individual
preferences. A strong preference for a low-priority rating produces a high utility because
of the Navy's attempt to honor the applicant's preference. A moderate degree of
preference for the rating, however, results in a relatively low utility value because the
Navy's interests are not served by such an assignment. An expression of no preference
for a low-priority rating results in the lowest possible utility level because neither the
Navy's nor the applicant's interests are satisfied.

Equation Prior_Pref Unstd was developed by assuming that U,p(W, Z) is a
polynomial in Navy priority W and individual preference Z. It was assumed to be a
second degree polynomial in both W and Z, and thus it has 9 unknown coefficients:

2 2
Uppe(W,2)=>"> C,; W’ (Z-100f

=0 j=0
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The initial conditions used to estimate the coefficients were similar to the following.
Their reasonableness can be verified by inspection of Figure 5:

(1) Upp(100,0) = 50.

(2) Upp(100,100) = 100.

(3) a—gzi = 0 when evaluated at Z = 100, W = 100.
(4) Urp(0,100) = 90.

(5) Upp(0,0) = 0.

(6) ag—z”” = 0 when evaluated at Z = 0, W= o.

(7) Urp(80,100) = 96.4
(8) Upp(80,0) = 32.

o°U

2
27 = 0 when evaluated at W = 8o0.

(9)

Condition (9) states that U(80, Z) is a linear function of Z, and so its second partial
derivative with respect to Z should equal zero when evaluated at W = 80. The
standardized Priority/Preference payoff is obtained from the equation:

( UPP(Wj’Zi)_IuI’P )

Opp

U, (,,2,)=50+10 , where

Us,p (W, e ) is the standardized priority/preference payoff associated with
individual i and rating j,

Vs (W, "4 ) is the unstandardized priority/preference utility for individual i and
rating j, and

U,y and o,, arethe mean and standard deviation, respectively, of U ,, (W A )
scores in the reference population.

CLASP Parameter Update Considerations

The Navy priority indices, iy, and opp for each rating are the three
Priority/Preference component parameters that require updates. The CLASP parameter
update software automatically generates updates for ypp and gpp during the annual
CLASP parameter update. However, no known documentation describing procedures,
methodology, or software for updating the Navy priority indices exists, other than the
summary description given in Kroeker and Rafacz and repeated above. The priority
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indices were never updated during the author’s association with CLASP between 1980
and 1999. In the absence of detailed information to supplement the summary
description, it is not feasible to perform future Navy priority index updates.

Minority-Fill Component

Prior to CLASP, minority group members were assigned in disproportionately large
numbers to a few ratings and in small numbers to many others. The minority-fill
component was designed to provide a uniform assignment of minority group members
for each rating. A uniform rate of non-minority assignments is also implied. The goal
was for the proportion of minority group members in any rating to always equal the
previously specified minority proportion goal for the rating.

Kroeker's methodology for determining minority proportion goals during his tenure
on the CLASP project is largely undocumented. However, each goal was apparently
constructed to compensate for historical minority fill trends. If historical minority fill
rates for a given rating were less than historical minority fill rates across all ratings (e.g.,
Navy-wide minority fill rates), then a minority fill goal larger than the historical average
was specified. Conversely, if the historical fill rate for a given rating was greater than the
average historical rate across all ratings, then a minority fill goal smaller than the
historical average was specified. Beginning with the 2001 CLASP parameter update,
NPRST began using a common (Navy-wide) minority goal for all ratings.

Differences between the actual and desired minority group proportions at any given
time in the reservation cycle indicate the current status of the uniform fill-rate objective
function. The function compensates for current conditions by (1) adding utility points
for minority group members and subtracting utility points for non-minority group
members when the current proportion of minority group members is less than the
minority goal, and (2) subtracting utility points for minority group members and adding
utility points for non-minority group members when the current proportion of minority
group members is greater than the minority goal. The equation defining the feedback
function is given by

M;;j = (Gj — Fjt)Im/Nm, Where:

M; ; is the minority fill difference associated with assigning individual i to rating j at
time t,

G is the desired minority-fill goal for rating j,

Fj is the actual minority fill proportion for rating j at time ¢ (i.e., the ratio of the
number of minority accessions in rating j to the total number of accessions in
rating j), and

Im/nm is a variable whose value is 1 if the individual being classified at time t is a
minority group member and is -1 if the individual is a non-minority group
member.
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The standardized minority-fill payoff is computed according to the equation below.
The quantity of utility points added or subtracted is proportional to the difference
between the actual and desired fill proportions:

M,
U, jt)= 50+10( "j , where

O mr

U, (i, j,t) is the standardized minority fill payoff for individual i being classified at
time t with respect to rating j,

M, , is defined in the previous equation, and
o, 1s the standard deviation of M, differences in the reference population.

The above equation represents the minority fill payoff function used in the CLASP
simulation model and the operational CLASP model. Note that there is a difference in
the denominators of this equation and the corresponding equation in Kroeker and
Rafacz (1983); the reason for this difference is unknown.

Minority Fill Parameter Update Considerations

The only Minority Fill component parameter subject to updating is omr. The CLASP
parameter update software automatically generates an update for our during the annual
CLASP parameter update.

Fraction Fill Component

Prior to CLASP, the end of each recruiting month was typically marked by a flurry of
recruiting activity aimed at filling a substantial number of positions in certain ratings.
From a managerial perspective, a procedure resulting in a uniform rate of assignment
across all ratings is highly desirable. The fraction fill component was designed to
compare the proportion of applicants assigned to a particular rating with the average
proportion of applicants assigned to all ratings at the time. If the fill proportion for the
rating in question is less than the average fill proportion, additional utility points are
awarded to influence the applicant to select the rating. If selected, the rating fill
proportion moves closer to average fill rate. Similarly, utility points are subtracted when
the proportion of the recruiting goal that has been filled in a given rating exceeds the
average fill proportion. If the applicant selects a different rating, the resulting average
fill rate increases slightly, thereby moving closer to the rating fill proportion. The
operational part of the fraction-fill utility function is given by:

Tj = Bt — Fj:, where

T;. is the difference in proportions for rating j when individual i is classified at time
t,

B is the average fill proportion across all ratings at time ¢, and

29



F;+ is the proportion of applicants that have been assigned to openings with rating j
up to time t.

The standardized fraction fill payoff is calculated as:

i
UFF(i,j,t):SOHO( - J,where
Orr

o, is the standard deviation of T, differences in the reference population.

Fraction Fill Parameter Update Considerations

The only Fraction Fill component parameter subject to updating is orr. The CLASP
parameter update software automatically generates an update for orr during the annual
CLASP parameter update.

Attrition Component

One apparent motive for adding the Attrition Component to the CLASP model was to
incorporate additional non-ASVAB information into the classification process. The
"Attrition" concept has a broader definition in context of the Attrition Component than
it does in the context of the School Success component. In School Success, attrition is
defined solely in terms of “A” School attrition, while in the context of the Attrition
Component; it is defined in terms of Navy-wide attrition. The person attribute is the
Success Chances of Recruits Entering the Navy (SCREEN) score, which is based upon
AFQT, education credential status, and age. Thus, the Attrition component incorporates
non-ASVAB information about the applicant's education credential status and his/her
age, and information concerning attrition in the rating from sources other than “A”
School into the classification process.

Like the Aptitude/Complexity and Navy Priority/Personnel Preference Components,
the Attrition component uses an individual characteristic measure and a rating
characteristic measure to evaluate utility. The Attrition Component evaluates the utility
of assigning a given individual to a given rating, based upon the probability of surviving
the first term of enlistment and the attrition severity index (ASI) of the rating. The
person characteristic measure is the SCREEN table (Lockman, 1977) and the rating
characteristic measure is the ASI. The SCREEN score, which is based upon the
individual's education credential status, AFQT score, and age, reflects the probability of
successfully completing the first term of his enlistment. The ASI was developed using 5
factors: retention rate, personnel replacement costs, rating size (number of personnel in
the rating), rating requirements (need for trained personnel in the rating), and priority
(relative importance of the rating) to the Navy. A multiplicative, multi-attribute model
was then used to calculate the ASI from the 5 factors (Thomas, Elster, Euske, & Griffin,

1984).
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The following discusses the construction of the attrition component policy function
describing the utility of assigning an individual to a rating on the basis of the
individual's attrition risk and the attrition severity characteristics of the ratings. The
SCREEN table is constructed so that an individual is a low (high) risk to attrite during
the first term of his enlistment if his SCREEN score is high (low). Accordingly, for
purposes of deriving the attrition policy function, the low attrition risk individual is
defined as having a SCREEN of 96, while the high attrition risk individual is defined as
having a SCREEN of 70. The ASI scale is constructed so that a rating is characterized by
high (low) attrition severity if its ASI is large (small). Accordingly, a rating with a low
attrition severity problem is defined as having an ASI of 10, while a rating with a high
attrition severity problem is defined as having an ASI equal to 80.

SCREEN rank-orders the applicant population and the ASI scale rank-orders the
ratings, thus the assignment of a low-risk applicant (high SCREEN) to a rating with a
large ASI is a desirable outcome and should receive high utility. In fact, the policy
function was constructed so that this assignment received the largest possible value
(100). Although the low-risk applicant is also a low risk to attrite from a low ASI rating,
it is more sensible from a classification policy standpoint to assign this applicant to the
high ASI ratings, and fill the low ASI ratings with individuals characterized by a slightly
larger risk to attrite. Accordingly, the assignment of the low-risk applicant to the low-
risk rating received an intermediate value of 60. The assignment of a high-risk applicant
to a low-risk rating received a value of 55, slightly less than the value of the assignment
of the low-risk applicant to the low-risk rating. Finally, the assignment of a high-risk
applicant to a high ASI rating results in the largest possible risk that the applicant will
attrite. Accordingly, this undesirable outcome received the lowest possible value (0).
Substitution of theses four functional specifications yields four linear equations in four
unknown coefficients: Co,0, Co,1, Ci,0, and Cy;.

UAtr(S, ‘/) = CO,O + Cz,o (S = 70) + Co,1 (V = 80) + C],] (S = 70) (V = 80) 5 where

Uau(S, V) = non-standardized attrition component utility of assigning person i to
job option j,

S = applicant's SCREEN score,
V = attrition severity index

Solution of the 4 equations yields these estimates: Co,0 = 0.0, Ci,0 = 3.846,
Co,1 = -0.7857, and C,; = 0.0522.

In Figure 6, the non-standardized attrition utility Ua.(S, V) is plotted on the vertical
axis against SCREEN on the horizontal axis, for fixed ASI values of 10, 45, and 80. The
standardized Attrition payoff is obtained from the equation:

* U r V"Si - tr
UM(VI.,S,.):SOHO[ V) 8)- 1 ] , where
O-Alr
b (V .. ,.) = standardized attrition component payoff associated with individual i

and rating j,
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U, (V, , S,) = non-standardized attrition component payoff for individual i and
rating j, and
u,, and o, arethe mean and standard deviation, respectively, of U ,, (V oy )

scores in the reference population.
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Figure 6. Attrition Utility at constant severity values.

CLASP Parameter Update Considerations

The attrition severity index (ASI) parameters for each rating along with 4 and oar
constitute the attrition component parameters subject to updating. The CLASP
parameter update software automatically generates updates for par and 0as during the
annual CLASP parameter update. Thomas, Elster, Euske, and Griffin (1984) document
the procedures and methodology they used to develop the original set of ASI parameters
in the early 1980s. However, the ASI parameters have not been updated since their 1983
implementation. In the absence of (a) detailed information to supplement the Thomas
et al. report, (b) knowledge of and access to all relevant attrition, replacement cost, and
demand for personnel information, and (c) software to calculate the updates, it is not
feasible to perform future ASI parameter updates.
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CLASP Component Weights and Composite Payoff

As previously described, a payoff vector for each CLASP component is calculated, the
jth entry of which is the standardized payoff of assigning a given individual to the jth
rating. For each rating, the weighted sum of the six components represents the
composite (overall) utility associated with assigning the individual to that rating. The
weighted sum for each rating, hereafter called the "composite payoff" is given by:

6
Ui.j = Z Wy U:_/.k where Z w, =100 Composite Payoff

k=1 k=1

where U, ; is the composite payoff for the ith individual with respect to job option j,

U;,, is the standardized component k payoff for the ith individual with respect to
job option j, and wis the weight associated with component k.

The component weights were determined by Navy classification policy. Each weight
expresses, in some sense, the policymaker's desired "contribution" of each component to
the composite. In practice, however, "contribution" is difficult to define mathematically.
Correlations among the 6 components make it difficult to state an exact relationship
between the component weight and the proportion of variance that the component
contributes to the composite payoff. However, standardization of the composite payoffs
allows CLASP to partially control each component's contribution to the composite
variance. As a result, each component weight provides a reasonable approximation to
the policymaker's desired contribution of each component.

As described by Kroeker and Rafacz (1983), the component weights were derived
according to the following criteria: The raw utility scores for the school success and
aptitude/complexity components were examined. It was observed that the variance of
the aptitude/complexity scores was affected by a number of extreme values. For the
center of the scale to function effectively in discriminating between persons, it was
decided that the variance of the weighted aptitude/complexity component should be
allowed to assume a larger value than that of the weighted school success component,
but by no more than a ratio of 3:2. Respective weights of 26 and 35 for the school
success and aptitude/complexity components satisfied this criterion. The second
criterion stipulated that the priority/preference component should carry approximately
the same weight (14) as the combined minority and fraction file component weights (15).
The minority-fill component was given a slightly larger weight than the fraction-fill
component, resulting in weights of 8 and 7 respectively. The attrition component weight
(10) was assigned according to the requirement that it not exceed the individual weights
of the school success, aptitude/difficulty, and priority/preference components.
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Table 2
Component weights

Component Weight
School Success 26
Aptitude/Complexity 35
Priority/Preference 14
Minority-Fill 8
Fraction-Fill i
Attrition 10

CLASP Decision Indices and Optimality Indicators

This section describes computation of applicants’ decision index (DI) and optimality
indicator (OI) distributions from their composite payoff vector. CLASP computes the
decision index for each rating as the difference between the composite payoff and the
corresponding decision index mean:

B, =TT, =0, Decision_Index
where A;j is the DI for the ith individual with respect to job option j,
Ui, is the composite payoff for the ith individual with respect to job option j, and
U , is the DIM for job option j.

As previously described, CLASP attempts to force the classifier and applicant to
select a job option close to the top of the optimal list and makes it more difficult to select
an option near the bottom. However, the joint distribution of the vector of composite
utility functions (across all job options) may be such that certain job options make
infrequent appearances near the top of the optimal list and, consequently, classifiers
cannot access them frequently enough to satisfy recruiting goals. Such a scenario may
occur, for instance, when the quota is large and the expected value of the composite
utility function for that job option is small, relative to the other job options. To
compensate, a decision index mean (DIM) for each job option is subtracted from the
applicant's composite utility score for than job. Each DIM is the mean of the composite
payoff distribution for that job option with respect to the applicant population (Ward,
1958). For each job, the expected value of the difference between the composite utility
and the DIM is zero. This adjustment insures that, over the long run, each job option is
as likely to appear near the top of the optimal list as it is to appear near the bottom.
Analysis of historical CLASP transaction data has demonstrated that this adjustment is
usually adequate to insure that sufficient CLASP presentations are generated to allow
classifiers to cover the quota for each job.

The decision indices are transformed onto a scale ranging from o to 100 for
presentation to the classifier and applicant. This is accomplished in two stages. Stage 1
transforms the individual's decision index distribution onto a first-stage OI scale having
a mean of 50 and standard deviation of 20. CLASP performs this transformation using a
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weighted mean and standard deviation of the individual's DI distribution, where each
weight is the current number of available openings (i.e., quota minus reservations-to-
date) for the rating and ship month. (Note: Equation [16] in Kroeker and Rafacz [1984]
is not consistent with the Stage 1 transformation performed in CLASP. The operational
CLASP implementation includes a [weighted] mean, while equation [16) does not.) The
Stage 1 Ol list is then sorted in descending order. OIs on the sorted list are then
translated and truncated to generate the Stage 2 list. The combined translation and
truncation operations give the highest-rated rating on the Stage 2 scale an OI of 100 and
insure that none of the Ols at the bottom of the list are less than zero. Equation (17) of
Kroeker and Rafacz (1984) describes the translation. After translation, each negative OI
on the list is set equal to zero.

RIDE Composite Payoff
The RIDE composite utility for individual i and job option j is

1
Ci,/' = Wepsy S:x/ + WAFQTQ:’./’

where Wspsy = Waror = 1/2 are the respective SPSU and AFQT component weights,
Ci,j is the composite RIDE utility for individual i and job option j, and

s and Qi; are the SPSU (Stage III) and AFQT utility scores for individual i and
job option j.

Discussion

This section discusses certain issues raised during the course of the CLASP-RIDE
comparison that may be relevant to classification policymakers. These issues include (1)
standardization of RIDE components, (2) incorporation of factors into the classification
decision that are excluded from the CLASP and RIDE algorithms, including non-
psychological/psychometric variables, and certain dynamic and time-critical factors, (3)
the PDR concept and parameterization of RIDE, and (4) discussion of Bin model vs.
LRM results.

CLASP standardizes each of its 6 components so that each has a mean of 50 and
standard deviation of 10. As previously described, CLASP policymakers apparently felt it
was important to apply appropriate nominal weights to each component and
standardize the component score distributions in such a manner that the effective
component weights closely approximate the nominal weights. If classification
policymakers are also concerned about consistency between the nominal and effective
weights of the SPSU and AFQT components, they should recognize that the nominal
weights for the SPSU and AFQT components (currently 50% for each) are probably not
the same as the effective weights. The actual weight of each RIDE component is
determined by the product of the nominal weight and the standard deviation of the
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component. Hence, the component with the largest standard deviation has the largest
effective weight. If classification policymakers wish to specify the actual weight of each
component, each component must be standardized (by dividing by its standard
deviation) before calculation of the RIDE composite payoff.

In the current CLASP implementation, classifiers must attempt to sell each applicant
an option from the Top 15 prior to viewing the CLASP optimal list. However, before
introduction of the Top 15 feature, the CLASP optimal list presentation strategy
indicates there was considerable emphasis on placing each applicant into an "optimal"
job assignment. This emphasis was manifested in the manner in which the optimality
output was used in the classification interview, particularly in the optimal list
presentation strategy and the classifier's role in selling an option on the list. This
strategy forced the classifier and applicant to view the CLASP optimal list in groups of 5,
10, or 15 job options at a time, depending upon the applicant's projected enlistment
date. The first group of options consisted of those jobs with the highest optimality
scores. In theory, the classifier's role was to convince the applicant to buy an option on
this list because they were considered the best possible matches. If the classifier could
not sell one of these options, he would try to sell an option from the job group with the
next largest set of optimality scores. In theory, the classifier would continue working
down the optimal list until a group containing a mutually satisfactory option was found.
Although it was possible for classifiers to access and sell options near the bottom of the
CLASP optimal list, it was more difficult and time consuming for them to do so.

CLASP was developed during a period when several papers in the
Industrial/Organizational psychology literature touted the potential benefits of
automating empirical models describing the utility of matching applicants to jobs
(Dunnette & Borman, 1979). An attitude prevailed that most or all factors considered
during personnel classification decisions could and should be implemented on the
computer. In apparent accordance with this point of view, CLASP was sold to
Commander, Navy Recruiting Command (CNRC) under the philosophy that a
computerized classification algorithm could rank order job options by their mutual
benefit to both the Navy and applicant. The presentation strategy described above
clearly promotes CLASP's definition of optimality by reinforcing the classifier to select
from the top of the list.

Enlisted recruit classification occurs in an environment that places a strong
emphasis on filling quotas and meeting recruiting requirements and objectives. The
classification algorithm must operate in a manner consistent with the attainment of
these goals. These goals originate outside of CNRC. Some Navy ratings have large
recruiting goals, due to large manpower requirements, while other ratings have
comparatively small goals. Some ratings are popular and comparatively easy to sell,
while others are less popular and more difficult to sell. Changes in recruiting goals and
shifting of quotas among different recruiting cycles occur frequently. Changes in the
Navy's perception of which recruiting goals are critical in nature often occur. The events
that precipitate changing recruiting goals and changing criticality designations may be
difficult to forecast in advance. Hence, the dynamic nature of the operational Navy
environment means that designations of which jobs are considered critical, their relative
degrees of criticality, and recruiting goals can change suddenly and without warning.
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CLASP is unable to fill job quotas evenly and re-channel applicants into critical jobs
without substantial classifier intervention. Although the purpose of the Fraction Fill
component is to fill quotas evenly across job options, it has minimal impact on achieving
this because it carries only 7 percent of the weight in the CLASP optimality composite.
CLASP cannot re-channel applicants into critical jobs because it cannot differentiate
between jobs on the basis of their criticality. Instead, its definition of optimality focuses
on the psychological measures of goodness of fit between person and job. The inputs to
these functions are those person and job characteristics that are relatively stable,
permanent, and enduring in nature. These include factors such as intelligence, job-
specific aptitude, and job technical complexity. In short, it is not possible for CLASP or
RIDE to adjust for all factors that should be included in the classification process.
Classification algorithms such as RIDE and CLASP can optimize their assignment
recommendations based only on the more permanent and enduring characteristics of
person and job, in particular, the psychological/psychometric variables they currently
use. Classifiers must override classification algorithm recommendations if they desire to
incorporate the more dynamic and time-critical factors into the classification decision.
Therefore, classification algorithms and their optimal list presentation strategies must
give the classifier a convenient way to sell any job currently experiencing a critical need,
regardless of that job's ranking on the classification algorithm's optimal list. In CLASP,
the use of the decision index to rank-order the job options (instead of the composite
payoff) has helped insure that all ratings are reasonably accessible to classifier and
applicant, even when the classifier was expected to sell from the top of the optimal list.

In contrast, RIDE does not employ the DIM concept. It rank-orders job options on
the basis of RIDE composite utility. This may be entirely valid. RIDE is being developed
under different user expectations than CLASP was. Unlike CLASP, RIDE is being
implemented on modern hardware. The DIM concept may be completely unnecessary in
RIDE if user expectations and hardware capabilities are such that RIDE can provide
adequate accessibility to all ratings, regardless of optimality value.

Parameterization of RIDE Model

One attractive feature of CLASP is that “A” School student performance data is not
required to parameterize the model. The same is not true for RIDE. Student
performance data for each RIDE job option is required to both find the PDR and
estimate the FPPS rates in the cut score and PDR bins. However, in the Bin Model
Evaluation section, it was demonstrated that the PDR concept does not stand up to
rigorous statistical testing, except in a small number of ratings.

Given the following problems associated with the use of school performance data to
parameterize RIDE, it is reasonable to ask whether the RIDE model concept should be
modified to eliminate the need for school performance data from the parameter update
process. These include:
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e Weak empirical support for the current PDR concept
e Inexperience and uncertainty with respect to the FPPS criterion and data sources

e School performance data is not necessary to parameterize RIDE, except to update
the PDRs

¢ Collection of school performance data for PDR update purposes would require
time, money, and effort far beyond that required to collect only applicant data for
the same purpose

e In some cases, ASVAB selector composite and/or cut score changes cannot be
implemented immediately in RIDE, due to the inappropriateness of using an
outdated validation sample to update a PDR parameter

The design of the SPSU and AFQT components depends heavily on the validity of the
PDR concept. If one considers the current PDR concept to be invalid, but still believes
the SPSU and AFQT components to be valid mathematical models of the goodness-of-fit
between person and job, then an alternative PDR concept is needed and an alternative
procedure is needed to estimate the PDRs. The alternative procedure must not depend
on a hypothesized empirical relationship between FPPS and student aptitude. In
addition, the procedure should be constructed so that parameters can be estimated from
Navy applicant data only. School performance data should not be required to estimate
the parameters.

In the author's opinion, the RIDE algorithm can be justified as a classifier decision
process model and the PDR can be justified as an important parameter in that model.
An estimation procedure satisfying these requirements can then be derived from the
concept of RIDE as a classifier decision model. Suppose a classifier, without assistance
from an automated classification algorithm such as CLASP or RIDE, must classify an
applicant. Suppose the applicant satisfies the cut score in each option being considered.
Suppose the classifier knows (a) the applicant's composite and AFQT scores, (b) cut
scores for all composites, and (c) all composite score distributions relative to the
applicant population. A simple mathematical model can be developed to classify the
applicant based on the given information. The model is based on the assumption that
the classifier uses reference points on the composite and AFQT score distributions as
rules-of-thumb for determining which job option the applicant is best suited for.

In this model, the classifier uses one such reference point in the same manner as a
PDR, that is, to designate a decision cut-off point which he may use to determine
whether his applicant is marginally qualified, maximally qualified, or over-qualified for
a given job. If the composite score exceeds the PDR, then the classifier may consider the
applicant as either over-qualified for the job under consideration (and thus a potential
candidate for a more difficult job) or maximally qualified (and thus a solid candidate for
the job under consideration). If the composite score is less than the PDR, then the
classifier may consider the applicant as marginally qualified for the job and, therefore, a
potential candidate for a less difficult job. As previously described, the AFQT component
decides whether the applicant is over-qualified or maximally qualified. The decision
currently depends upon where the applicant's AFQT score stands in relation to the over-
qualification point (M + Delta) on the AFQT distribution for that job option.
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Future research is required to further analyze and fill in the details of this proposed
modification. Unanswered issues remain concerning the size of the marginally-qualified,
maximally-qualified, and over-qualified regions. Should they all be about the same size,
in terms of the proportions of the applicant population residing in each region?
Depending upon the answer, consideration should be given to modifying the AFQT
component's current decision rule.

As this report is being finalized, it is uncertain whether “A” School performance data
will be available and whether its use will be feasible for input to the RIDE parameter
update process. This report has also raised questions concerning the lack of empirical
support for the PDR concept and the Navy’s lack of experience with and understanding
of FPPS. If school performance data is either unavailable or infeasible for use, then
questions regarding the appropriateness of the Bin model to estimate FPPS are
irrelevant. As previously discussed, it will be necessary to reformulate the RIDE model
in terms of some underlying concept other than PDR as an indicator of student over-
qualification.

However, if it is determined that school performance data is available and feasible
for use (and the FPPS criterion and original PDR concept is still considered valid), then
the appropriateness of the Bin model for FPPS estimation purposes becomes an
important issue. In particular, NPRST must then determine what FPPS estimation
methodologies may be more appropriate and more accurate than the Bin procedure. The
results in Table 1 strongly suggest that the LRM is superior to the Bin procedure,
particularly when both bias and estimation error are taken into consideration. In
addition, from a mathematical and software implementation standpoint, the LRM is no
more complex than the Bin model.
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Conclusions and Recommendations

If classification policymakers desire that the nominal and effective weights of the
RIDE components remain approximately equal, RIDE must be modified so that each
component is standardized (by dividing by its standard deviation) before calculating the
RIDE composite payoff.

Assume that (1) classifiers using RIDE are not under any obligation to sell from the
top of the optimal list and (2) unlike CLASP, there are no constraints on classifier access
to the lower portions of the RIDE optimal list and it is equally convenient for him to sell
a job from the bottom of the list as it is for him to sell one from the top. Then, the DIM
concept is not required in the RIDE model because a classifier using RIDE has sufficient
freedom to put the applicant into a job option with a low optimality value if quota fill
and/or criticality requirements dictate that he do so.

If “A” School performance data is unavailable or is determined to be infeasible for
use in the RIDE parameter update (or the current PDR concept is considered invalid),
then classification policymakers should consider the classifier decision model as a
potential alternative for redefining the PDR concept and becoming the conceptual
framework for the RIDE parameter update process.

If school performance data is available and feasible for use in the RIDE parameter
update, then classification policymakers should consider the LRM as a replacement for
the Bin methodology.
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Appendix A:
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Derivation of EATE Formula and Pseudo Code to Compare
the Bin and LRM Models

Total Error e~N (,u,O'2 ) 1 =bias, o’ = estimation error variance.
Define ¢(f) = standard normal prob. density function,
Define ®(f) = Standard normal cumulative distribution function

EATE = El¢|= ﬂ |— (—)
EATE= Oj— — (p(t_—ﬂ]dt+ [i —(o[t——#j dt
A ; o P AT

and dy:idtwith t=cy+u
o

: =
Substitute y = E

= Q

o)

EATE= [-(oy + m)o(y)dy+ [l +u)oly)dy

K
o

EATE = [og(y)- ()] 7 +[- oply) + woly Iy,

EATE=20’¢7(—£)—2;1<D(—£)+;1
g (94

Pseudo Code to compare the Bin and LRM models:

Outer Loop over j = 1, 70 RIDE job options:

Inner Loop over composite score X;;, where CS < X, <C,, .

"LRM Calculation: Calculate LRM EATE for current value of X;;.
Assume Bias in Logit = 0, and Variance of logit is computed as follows:

The estimated logit i(X ) is

For LLRM: L(X, )Zﬁk,  ForQLRM: L(X, )Za“X‘

The variance of the estlmated logit is given by the quadratic form.
(1 X ))i (l 3 y where ¥ is the estimated covariance matrix of the parameter
| 1
] for the LLRM, X =| X, . | for the QLRM, and the superscript ¢

L)

X

iJj

estimates, X = (
i

indicates matrix transposition. Then, calculate EATE in Logit by substituting the logit



bias = 0 and the logit variance into equation EATE to obtain the EATE of the logit
(EA TE(L(X,_I. )) in LRM EATE formula):

Calculate EATE of LRM FPPS rate estimate (LRM EATE) for X;; by
1 1
I+ expl— (i(Xf./ )+ EA TE(i(X,__, ))) J I+ expl— (i(Xi./ )_ EA TE(L(X:./)))J

For current job option j, accumulate sum of LRM EATE over all Xj; .

Bin Calculation: Calculate EATE(Bin) = EATE of Bin model FPPS rate estimator:
For current X, compute Bin bias = difference between Stage I and Stage II
Models at the current value of X;;. The stage I estimator is:

F (m)-F (m-1
(r,)- 2Ll
7 b (m)-b,(m—1)
where ﬁ, (m) is the FPPS rate in the mth bin of school sample /, and X;; is located
between the midpoint of the (m-1)th and mth bins, i.e. bj (m - l) < X,..j < b/. (m)

For current X, calculate stage I model estimation error variance for the current X;; satisfying
b].(m =1)e X% b/.(m). The variance is

X, =b,(m-1) 2 5 b,(m)-X,, 2 5
{ )} Var(F,(m))+{b. - —l)} Var( ,(m—l))

& (x,, =b,(m=1)+F (m-1)

]

b,(m)—bl(m—l

F (m)i-F,(m))

where Var(I:" (m))— N (m)

i
The variance is derived by computing the variance of the stage I estimate, and using the
properties of the binomial distribution and the independence of the FPPS rates in the mth and (m-
1)th bins.
For current X, calculate EATE(Bin) using the Bin bias and the stage I estimation error
variance and substituting them into equation EATE.
Accumulate sum of EATE(Bin) over all Xj;

End Inner Loop (CS < X, , <C,,.. loop).

Max

For job option j, compute LRM_EATE = average of EATE(LRM) = mean EATE
of LRM FPPS rate estimates over all Xi; { Xj;| CS< X, , <C,,.. }.

For job option j, compute Bin_EATE = average of EATE(Bin) = mean EATE
of Bin FPPS rate estimates over all Xi;: { Xj;| CS< X, <C,,. }.

End Outer Loop (RIDE job option j loop).

Compute Overall_LRM_EATA = average of Expected AbsoluteTotal Error of LRM FPPS rate
estimates over all job options j and all X;.

Compute Overall_Bin_EATA = average of Expected AbsoluteTotal Error of Bin FPPS rate
estimates over all job options j and all Xj.
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Finding the QLRM Extreme Value Point

Show that QLRM has exactly one extreme value point and find it. Show that the extreme value
point is a minimum if @, ; >0 and is a maximum if &, ; <0: The QLRM is given by:

=
S,?; = {1 + exp[— (az.inz.j +a X, + ao.v/) ] }
. . . dSiQ/' . .
Extreme value point is found by solving dX" =0 for X, (Rodin, 1970). By the chain rule,

i

ds? 4L dy .
e where L(v) =il +exp|— ~ and
TS () = {l+exp[-y |}
)’(Xi./) = aZ./'Xiz.j +al.in,j ta,,-
d_Lzﬁp(;y)_2>0 for all y and dy =20, X, +@ -
dy (1+exp(—y)) dX,; '

ds?
Hence, —~ =0 ifand only if 2a, . X, , + @, ; = 0. Therefore, solving this equation for X ,

tiJ

=y ;
2a2__,.
2¢0 dZSQ

i i,j

Extreme value point X ., is a minimum iff T < 0 and is a maximum if and only if i >
ij i

we see that the only extreme value point occurs at X ., =

0,

&S,
where dX;'J is evaluated at X, (Rodin, 1970).

ij

d
. However, 2 =0 at X, =Xg,» 50

200 2 . 2
d°'S7 d’L( dy dL d°y
E o

dx}, dy*\dx,, ) dydX} dx
d*s?. 2 "5
E _4Ld r =2a, d—L Since LS 50, -~ <0 if and only if
dx;, dydX;, dy dy dX;;
2¢0

@, <0 and — /. >0 if and onlyif @, , > 0. QED.
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Use of P-value

In our testing situation, we set a null hypothesis for the QLRM and a null hypothesis

for the LLRM. The QLRM null hypothesis is that the X’ coefficient in the QLRM is
zero, while the LLRM null hypothesis states that the X coefficient in the LLRM is zero.
Opposing each null hypothesis is the corresponding alternative hypothesis stating the
coefficient is non-zero. For two-sided tests such as these, the p-value may be defined as
the probability that the test statistic is at least as large in absolute value as the
parameter estimate actually observed if the null hypothesis were true. Stated differently,
the p-value represents the probability that the experimenter incorrectly rejects the null
hypothesis on the basis of his observed parameter estimate. Thus, a small p-value
implies small credibility for the null hypothesis and a large p-value implies large
credibility for the null hypothesis. Hence, the p-value associated with the X* coefficient
estimate in the QLRM is a convenient way to measure the credibility of the QLRM null
hypothesis, while, the p-value associated with the X coefficient estimate in the LLRM is
a convenient way to measure the credibility of the LLRM null hypothesis (Wonnacott &
Wonnacott, 1972).

In logistic regression analysis, the test statistic is the square of the ratio of the
parameter estimate and its standard estimation error. In our case, the LLRM null
hypothesis states that the slope parameter in the LLRM is zero and, therefore,
composite score is not useful in predicting FPPS. If the LLRM null hypothesis is false
and the LLRM alternative hypothesis H , ;.\, : B, # 0 is true, then composite score

results in a statistically significant improvement in predicting FPPS. Under the null
hypothesis, the square of the ratio of the estimated slope parameter divided by its
standard estimation error has a chi-square distribution with 1 degree of freedom. An
analogous argument shows that if the QLRM null hypothesis is rejected and the QLRM
alternative hypothesis H , ,, : @,, # 0 is true, then we may conclude there is statistical

evidence that an extreme value point (i.e., maximum or minimum) exists.
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Features of Aptitude/Difficulty Utility Function

In Figure 3, Ua/p(A,D) is plotted on the vertical axis against Job Difficulty D on the
horizontal axis for fixed Aptitude values A = 40, 50, 60, 80, 90, and 99. Equation
(Apt_Dif) indicates that this function is both a quadratic in A (for fixed D) and a
quadratic in D (for fixed A). Each curve in Figure 3 represents Ua/p(A,D) for a fixed A.
Since each curve is a quadratic in D, it has exactly one maximum on the job difficulty
interval between D=40 and D=99. The maximum, hereafter called D, (4), occurs at

the difficulty level D that awards the largest utility score for the applicant whose
aptitude is A. D, (4) may be obtained by setting the partial derivative of Ua/n(A,D)

with respect to D equal to zero, then solving for D:

. 2 2
—j"— = B,, +2B,,(4-100)*(D-35)+ B,,(4-100)" +2B,,(D—-35) = 0.

B, % B {4-100)"
Dy = 35— ) : 2
2B,,(4-100)" +2B,,

Table D-1 shows the D,, (4) value associated with each Aptitude score between 40
and 99, inclusive. One can verify that D,,, (4) maximizes Ua/p(A,D) for all D by
observing that the 2nd partial derivative of U with respect to D is less than zero for 40 <
A £ 99.

ﬁz UA/D
é D?
In addition, D,, (4) is monotonically increasing in A. As demonstrated in Table D-1

=2B,,(4-100)* +2B,, <0

and mathematically below, both D,, (4) and Ua/n(A, D, (4)) are monotonically
increasing in A.

o . :
Differentiating ——2 with respect to A, we obtain
) 2
— e 2(4- 100)[32_0 + B, D35+ B, | D-35) ]

" oU
Since A-100 < 0, Boo < 0, B2 < 0,and B, < 0, —ﬁ > 0 for all A between 40 and

99, inclusive, and for all D between 40 and 99, inclusive. Thus, for any given D,
Ua/p(A1,D) > Ua/p(A2,D) if A, > A.. In particular, this is true for D = D, (4 ¥



Table D-1
Duax(A) value associated with each Aptitude score between 40 and 99

Apt Dmax(A)  U(A,Dumax(A) Apt Dmax(A)  U(A,Dmax(A)
40 43.1 33.1 70 65.7 55.6
11 439 33.4 71 67.0 57.0
42 43.9 33.8 12 68.4 58.4
43 44.3 34.3 13 69.9 59.8
44 44 .8 34.7 74 71.4 61.4
45 45.2 35.1 19 73.0 62.9
46 45.7 358 76 74.6 64.6
47 46.2 36.1 17 16.3 66.2
48 46.7 36.6 78 78.0 68.0
49 47.2 3.1 79 79.8 69.8
50 47.8 7.7 80 81.6 71.6
51 48.3 38.3 81 83.5 73.4
52 48.9 38.9 82 85.4 18
53 49.6 39.5 83 87.3 11.2
54 50.2 40.2 84 89.2 79.2
55 50.9 40.8 85 91.1 81.1
56 51.6 41.5 86 93.1 83.0
51 52.4 42.3 87 95.0 84.9
58 53.2 43.1 88 96.8 86.8
59 54.0 43.9 89 98.6 88.6
60 54.8 44.7 90 100.4 90.4
61 55.1 45.6 91 102.0 92.0
62 56.6 46.6 92 103.6 93.6
63 57.6 47.5 93 105.0 95.0
64 58.6 48.5 94 106.3 96.3
65 59.7 49.6 95 107.4 97.4
66 60.8 50.7 96 108.3 98.3
67 61.9 51.8 97 109.1 99.1
68 63.1 53.0 98 109.6 99.6
69 64.4 54.3 99 109.9 99.9
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Disentangling the SPSU and AFQT Components

The Disentangle program looks at four alternative ¢, (theta) definitions and five
alternative applicants. ¢, is where AFQT utility reaches minimum (zero) after declining
from its maximum. The alternative 6,s are givenby M, + No , where N = 1.0, 2.0, 3.0,
and 3.5. M, + 6, is where AFQT utility begins to decline from its maximum value (100)

toward its minimum value of zero. The Disentangle program always defines M, + 0, =

1
M/.+—2-O'/-.

In this example, we look at one applicant whose AFQT score is 90. N has been fixed
at 3.5. Thus, 6, = M, +3.50, . The applicant qualified for all jobs (X > CutS). On all jobs

for which composite score X exceeded the PDR, S, . was equal to 100 * Hardness factor
(HF). Hence, applicant achieves highest possible S, ; score on all these jobs.

The applicant’s AFQT (90) was greater than M, + 5, for all jobs, except NF and MM-
NF. Hence, applicant achieves highest possible O, ; = 100 only on NF and MM-NF. The
applicant’s AFQT (90) was greater than 6, only for SKS-SG and SM-SG. Hence, the
applicant received the lowest possible O, ; (zero) on these 2 jobs. Other than MM-NF,
NF, SKS-SG, and SM-SG, his AFQT was greater than M, + 9, and was less than &,.
Therefore, the applicant’s Q, ;on these jobs was between zero (the minimum) and 100
(the maximum).
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Distribution

AIR UNIVERSITY LIBRARY

ARMY MANAGEMENT STAFF COLLEGE LIBRARY

ARMY RESEARCH INSTITUTE LIBRARY

ARMY WAR COLLEGE LIBRARY

CENTER FOR NAVAL ANALYSES LIBRARY

DEFENSE TECHNICAL INFORMATION CENTER

HUMAN RESOURCES DIRECTORATE TECHNICAL LIBRARY

JOINT FORCES STAFF COLLEGE LIBRARY

MARINE CORPS UNIVERSITY LIBRARIES

NATIONAL DEFENSE UNIVERSITY LIBRARY

NAVAL HEALTH RESEARCH CENTER WILKINS BIOMEDICAL LIBRARY

NAVAL POSTGRADUATE SCHOOL DUDLEY KNOX LIBRARY

NAVAL RESEARCH LABORATORY RUTH HOOKER RESEARCH LIBRARY

NAVAL WAR COLLEGE LIBRARY

NAVY PERSONNEL RESEARCH, STUDIES, AND TECHNOLOGY SPISHOCK
LIBRARY (3)

PENTAGON LIBRARY

USAF ACADEMY LIBRARY

US COAST GUARD ACADEMY LIBRARY

US MERCHANT MARINE ACADEMY BLAND LIBRARY

US MILITARY ACADEMY AT WEST POINT LIBRARY

US NAVAL ACADEMY NIMITZ LIBRARY



