
A High Order WENO Scheme for a Hierarchical Size-Structured Model

Jun Shen1, Chi-Wang Shu2 and Mengping Zhang3

Abstract

In this paper we develop a high order explicit finite difference weighted essentially non-

oscillatory (WENO) scheme for solving a hierarchical size-structured population model with

nonlinear growth, mortality and reproduction rates. The main technical complication is

the existence of global terms in the coefficient and boundary condition for this model. We

carefully design approximations to these global terms and boundary conditions to ensure high

order accuracy. Comparing with the first order monotone and second order total variation

bounded schemes for the same model, the high order WENO scheme is more efficient and

can produce accurate results with far fewer grid points. Numerical examples including one in

computational biology for the evolution of the population of Gambussia affinis, are presented

to illustrate the good performance of the high order WENO scheme.

Key Words: hierarchical size-structured population model, WENO scheme, high order

accuracy

AMS(MOS) subject classification: 65M06, 92-08

1Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, P.R.
China. E-mail: jshen3@mail.ustc.edu.cn

2Division of Applied Mathematics, Brown University, Providence, RI 02912, USA. E-mail:
shu@dam.brown.edu. Research supported in part by NSFC grant 10671190 while he was visiting the De-
partment of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.
Additional support was provided by ARO grant W911NF-04-1-0291 and NSF grant DMS-0510345.

3Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, P.R.
China. E-mail: mpzhang@ustc.edu.cn. Research supported in part by NSFC grant 10671190.

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2007 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2007 to 00-00-2007  

4. TITLE AND SUBTITLE 
A High Order WENO Scheme for a Hierarchical Size-Structured Model 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Brown University,Division of Applied Mathematics,Providence,RI,02912 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

17 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



1 Introduction

In this paper we develop a high order finite difference weighted essentially non-oscillatory

(WENO) scheme for a hierarchical size-structured population model given by the following

equations

ut + (g(x, Q(x, t)) u)x + m(x, Q(x, t)) u = 0, (x, t) ∈ (0, L] × (0, T ]

g(0, Q(0, t))u(0, t) = C(t) +

∫ L

0

β(x, Q(x, t)) u(x, t)dx, t ∈ (0, T ] (1.1)

u(x, 0) = u0(x), x ∈ [0, L]

where u(x, t) is the density of individuals having size x at time t, and the non-local term

Q(x, t) is defined by

Q(x, t) = α

∫ x

0

ω(ξ)u(ξ, t)dξ +

∫ L

x

ω(ξ)u(ξ, t)dξ, 0 ≤ α < 1 (1.2)

for some given function ω. Q(x, t) depends on the density u in a global way and is usually

referred to as the environment. This global dependence makes the design of a high order

WENO scheme complicated. Another complication is the boundary condition at size x = 0,

which involves the function g representing the growth rate of an individual, and a global

dependency on the density u(x, t) for all x ∈ (0, L]. The function m in (1.1) represents the

mortality rate of an individual. The function β in the boundary condition of (1.1) represents

the reproduction rate of an individual, and the function C represents the inflow rate of

zero-size individual from an external source. We assume that the functions g, m and β are

functions of both the size x and the environment Q, which in turn depends globally on the

density u, hence the problem is highly nonlinear.

The hierarchical structured population model (1.1) describes population dynamics in

which the size of an individual determines its access to resources and hence to its growth

or decay. This dependency is based on the environment which is a global function of the

density for all sizes. We refer to, e.g. [5] for a more detailed discussion of the background

and application of the hierarchical size-structured population models. These models are used
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extensively in biological applications. For example, in [2], the model is applied to study the

evolution of a population of Gambussia affinis.

Hierarchical structured population models have been studied in the literature in, e.g.

[4, 5, 6, 7, 10, 12, 19], usually with more restrictive assumptions on the functions g, β and

m. For example, in [5] the model (1.1) was considered for the special situation g = g(Q),

β = β(Q), m = m(Q) and C = 0. In [4], the model (1.1) was studied with the functions g

and β depending linearly on the size x, m independent of x, and C = 0. In [12], (1.1) was

investigated with α = 0. The model (1.1) with the complete generality as stated above was

studied in [1] and [14]. In [1] an implicit first order finite difference scheme was analyzed and

its stability and convergence, as well as the existence, uniqueness and well-posedness (in L1

norm) of bounded variation weak solutions for (1.1) were proved. In [14] we developed and

analyzed two explicit finite difference schemes, namely a first order upwind scheme and a

second order high resolution scheme, for solving (1.1). Stability and convergence were proved

for both schemes in [14].

Even though the second order high resolution scheme developed in [14] is significantly

more accurate than first order schemes, the performance can be further improved by an

even higher order scheme. Of course, since the solution of this model can be discontinuous,

a nonlinearly stable high order scheme which can maintain high order accuracy in smooth

regions and have sharp, monotone discontinuity transitions would be desirable. In this

paper we develop an explicit finite difference WENO scheme for solving (1.1), following

the successful class of WENO schemes for computational fluid dynamics and for general

conservation laws [11, 15, 16, 17]. The main technical complication for this development is

the existence of global terms in the coefficient and boundary condition of this model. We

carefully design approximations to these global terms and boundary conditions to ensure

high order accuracy. We then provide numerical examples to demonstrate the capability

of the scheme in solving smooth and discontinuous solutions. For a smooth solution, we

verify that the complicated global boundary condition and coefficients are all implemented

3



accurately and the designed high order accuracy can be achieved. The numerical examples

also include one in computational biology for the evolution of the population of Gambussia

affinis, for which our results with the fifth order accurate WENO scheme have a comparable

resolution as the second order accurate scheme used in [2] with far fewer grid points.

We recall ([1] and [14]) that the following assumptions are made on the model functions:

• (H1) g(x, Q) is twice continuously differentiable with respect to x and Q, g(x, Q) > 0

for x ∈ [0, L), g(L, Q) = 0, and gQ(x, Q) ≤ 0.

• (H2) m(x, Q) is nonnegative continuously differentiable with respect to x and Q.

• (H3) β(x, Q) is nonnegative continuously differentiable with respect to x and Q. Fur-

thermore, there is a constant ω1 > 0 such that sup(x,Q)∈[0,L]×[0,∞) β(x, Q) ≤ ω1.

• (H4) ω(x) is nonnegative continuously differentiable.

• (H5) C(t) is nonnegative continuously differentiable.

• (H6) u0 ∈ BV [0, L] and u0(x) ≥ 0.

In section 2, we present the detailed construction of an explicit, fifth order accurate

finite difference WENO scheme for solving (1.1). Section 3 contains numerical examples

demonstrating the capability of this WENO scheme. Concluding remarks are given in section

4.

2 A fifth order accurate finite difference WENO scheme

First we briefly describe the notations that we will use. We assume the spatial domain [0, L]

is divided into N cells with cell boundary points denoted by xj , for 0 ≤ j ≤ N , x0 = 0 and

xN = L. For simplicity of presentation we will assume that the mesh is uniform of size ∆x,

namely xj = j∆x. Our scheme can also be designed on a smoothly varying non-uniform

mesh. We denote the time step by ∆t. In fact, this time step ∆t = ∆tn = tn+1 − tn could
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change from one step to the next, based on stability conditions, but we use the same notation

∆t without the superscript n since we will only consider one-step time discretization (Runge-

Kutta). We shall denote by un
j and Qn

j the finite difference approximations of u(xj, tn) and

Q(xj , tn), respectively. We also denote

gn
j = g(xj, Q

n
j ), βn

j = β(xj , Q
n
j ), mn

j = m(xj , Q
n
j ), ωj = ω(xj), Cn = C(tn)

and we define the standard discrete L1 and L∞ norms of the grid function un by

‖un‖1 =
N∑

j=1

|un
j |∆x, ‖un‖∞ = max

0≤j≤N
|un

j |.

For semi-discrete approximations the superscript n referring to the time level is absent.

We now describe our development of a fifth order finite difference WENO scheme for

solving (1.1), following the construction of finite difference WENO schemes in [11, 15, 16].

Notice that we choose fifth order accuracy since it is the most often used WENO scheme,

however our scheme can also be designed for other orders of accuracy along the same lines,

see, e.g. [3]. The semi-discrete fifth order high finite difference WENO scheme is defined by

the following conservative approximation

d

dt
uj +

1

∆x

(
f̂j+1/2 − f̂j−1/2

)
+ mjuj = 0, 1 ≤ j ≤ N, (2.1)

where the fifth order accurate numerical flux f̂j+1/2 is defined by a weighted average of three

third order accurate fluxes

f̂j+1/2 = w1f̂
1
j+1/2 + w2f̂

2
j+1/2 + w3f̂

3
j+1/2, j = 0, 1, · · · , N.

The coefficients w1, w2 and w3 are called the nonlinear weights.

The three third order accurate fluxes f̂ 1
j+1/2, f̂ 2

j+1/2 and f̂ 3
j+1/2 are obtained following the

procedure in [11, 16] and are given explicitly by






f̂ 1
j+1/2 = 1

3fj−2 − 7
6fj−1 + 11

6 fj

f̂ 2
j+1/2 = −1

6fj−1 + 5
6fj + 1

3fj+1 j = 2, · · · , N − 2,

f̂ 3
j+1/2 = 1

3fj + 5
6fj+1 − 1

6fj+2
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in the middle of the computational domain. For the two points from the left boundary, these

fluxes are given by





f̂ 1
1/2 = 1

3f0 + 5
6f1 − 1

6f2

f̂ 2
1/2 = 11

6 f1 − 7
6f2 + 1

3f3

f̂ 3
1/2 = 13

3 f2 − 31
6 f3 + 11

6 f4,






f̂ 1
3/2 = −1

6f0 + 5
6f1 + 1

3f2

f̂ 2
3/2 = 1

3f1 + 5
6f2 − 1

6f3

f̂ 3
3/2 = 11

6 f2 − 7
6f3 + 1

3f4.

Similarly, for the two points from the right boundary, they are given by





f̂ 1
N−1/2 = 11

6 fN−4 − 31
6 fN−3 + 13

3 fN−2

f̂ 2
N−1/2 = 1

3fN−3 − 7
6fN−2 + 11

6 fN−1

f̂ 3
N−1/2 = −1

6fN−2 + 5
6fN−1 + 1

3fN ,






f̂ 1
N+1/2 = 13

3 fN−4 − 67
6 fN−3 + 47

6 fN−2

f̂ 2
N+1/2 = 11

6 fN−3 − 31
6 fN−2 + 13

3 fN−1

f̂ 3
N+1/2 = 1

3fN−2 − 7
6fN−1 + 11

6 fN .

In all the formulas above, fj = gjuj are the point values of the flux function g(x, Q(x, t)) u.

The nonlinear weights are defined by

wr =
αr∑3
s=1 αs

, αr =
dr

(ε+ βr)2
, r = 1, 2, 3. (2.2)

Here dr are the linear weights which can guarantee fifth order accuracy, and ε is a small

positive number introduced to avoid the denominator to become 0 and is usually taken as

ε = 10−6 in numerical tests. βr are the so-called “smoothness indicators”, which measure

the smoothness of the function in the relevant stencils. We adopt the smoothness indicators

introduced in [11]

βr =
2∑

!=1

∆x2!−1

∫ xj+1/2

xj−1/2

(
d!

dx!
pr(x)

)2

dx

where pr(x) is the relevant quadratic reconstruction polynomial to yield the flux f̂ r
j+1/2.

Notice that, since the coefficient g(x, Q(x, t)) is positive, upwinding is biasing the stencil to

the left, and the measurement of smoothness is for the interval [xj−1/2, xj+1/2] which is to the

left of the flux location xj+1/2. We can work out the explicit formulas for these smoothness

indicators. These explicit formulas, together with the linear weights dr, are listed below. For

the points inside the computational domain, with 1 ≤ j ≤ N − 2, we have





β1 = 13
12(fj−2 − fj−1 + fj)2 + 1

4(fj−2 − 4fj−1 + 3fj)2

β2 = 13
12(fj−1 − 2fj + fj+1)2 + 1

4(fj−1 − fj+1)2

β3 = 13
12(fj − 2fj+1 + fj+2)2 + 1

4(3fj − 4fj+1 + fj+2)2
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and

d1 = 1/10, d2 = 3/5, d3 = 3/10.

For j = N − 1, we have





β1 = 10
3 f 2

N−4 + 61
3 f 2

N−3 + 22
3 f 2

N−2 − 49
3 fN−4fN−3 + 29

3 fN−4fN−2 − 73
3 fN−3fN−2

β2 = 4
3f

2
N−3 + 25

3 f 2
N−2 + 10

3 f 2
N−1 − 19

3 fN−3fN−2 + 11
3 fN−3fN−1 − 31

3 fN−2fN−1

β3 = 4
3f

2
N−2 + 13

3 f 2
N−1 + 4

3f
2
N − 13

3 fN−2fN−1 + 5
3fN−2fN − 13

3 fN−1fN

and

d1 = −3/110, d2 = 47/110, d3 = 3/5.

For j = N , we have





β1 = 22
3 f 2

N−4 + 121
3 f 2

N−3 + 40
3 f 2

N−2 − 103
3 fN−4fN−3 + 59

3 fN−4fN−2 − 139
3 fN−3fN−2

β2 = 10
3 f 2

N−3 + 61
3 f 2

N−2 + 22
3 f 2

N−1 − 49
3 fN−3uN−2 + 29

3 fN−3fN−1 − 73
3 fN−2fN−1

β3 = 4
3f

2
N−2 + 25

3 f 2
N−1 + 10

3 f 2
N − 19

3 fN−2uN−1 + 11
3 fN−2fN − 31

3 fN−1fN

and

d1 = 3/65, d2 = −417/1430 d3 = 137/110.

Notice that some of the linear weights for j = N − 1 and j = N are negative. We have

used the technique introduced in [15] to treat these negative weights. We refer to [15] for

the details and will not describe them here.

For the two points from the left boundary, we could also use the smoothness indicators

and nonlinear weights as those for the right boundary, in a mirror symmetric fashion. Our

computational experience however indicates that it is better to use simply the linear weights

for these two points, which is the practice that we have adopted in the numerical experiments

in next section.

The global boundary condition at the left is implemented by a fifth order composite rule

g0u0 = C +
N∑

j=0

′ βjuj∆x, (2.3)

where the special summation notation is defined by

j2∑

j=j1

′ aj =
251

720
aj1 +

299

240
aj1+1 +

211

240
aj1+2 +

739

720
aj1+3 +

739

720
aj2−3 +

211

240
aj2−2 +

299

240
aj2−1 +

251

720
aj2 +

j2−4∑

j=j1+4

aj
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if j2 − j1 ≥ 7. The environment is computed also by the same fifth order composite rule,

except for the integrals with j2 − j1 ≤ 6 and the integral over the first interval which is

computed avoiding the usage of u0. Letting A = (55
24ω1u1 − 59

24ω2u2 + 37
24ω3u3 − 9

24ω4u4)∆x be

the fifth accurate approximation to
∫ x1

x0
ω(x)u(x, t) dx, we have

Qj = A + α
j∑

i=1

′ ωiui∆x +
N∑

i=j

′ ωiui∆x, 8 ≤ j ≤ N − 7,

Q0 = A +
N∑

i=1

′ ωiui∆x, Q1 = αA +
N∑

i=1

′ ωiui∆x, QN = αQ0,

Q2 = α∆x

(
8

3
ω1u1 −

5

3
ω2u2 +

4

3
ω3u3 −

1

3
ω4u4

)
+

N∑

i=2

′ ωiui∆x,

Q3 = α∆x

(
21

8
ω1u1 −

9

8
ω2u2 +

15

8
ω3u3 −

3

8
ω4u4

)
+

N∑

i=3

′ ωiui∆x,

Q4 = α∆x

(
21

8
ω1u1 −

7

6
ω2u2 +

29

12
ω3u3 +

1

6
ω4u4 −

1

24
ω5u5

)
+

N∑

i=4

′ ωiu
n
i∆x,

Q5 = α∆x

(
21

8
ω1u1 −

7

6
ω2u2 +

19

8
ω3u3 +

17

24
ω4u4 +

1

2
ω5u5 −

1

24
ω6u6

)
+

N∑

i=5

′ ωiui∆x,

Q6 = α∆x

(
21

8
ω1u1 −

7

6
ω2u2 +

19

8
ω3u3 +

2

3
ω4u4 +

25

24
ω5u5 +

1

2
ω6u6 −

1

24
ω7u7

)

+
N∑

i=6

′ ωiui∆x,

Q7 = α∆x

(
21

8
ω1u1 −

7

6
ω2u2 +

19

8
ω3u3 +

2

3
ω4u4 + ω5u5 +

25

24
ω6u6 +

1

2
ω7u7 −

1

24
ω8u8

)

+
N∑

i=7

′ ωiui∆x,

QN−1 = ∆x

(
9

24
ωNuN +

19

24
ωN−1uN−1 −

5

24
ωN−2uN−2 +

1

24
ωN−3uN−3

)

+α

(

A +
N−1∑

i=1

′ ωiui∆x

)

,

QN−2 = ∆x

(
1

3
ωNuN +

4

3
ωN−1uN−1 +

1

3
ωN−2uN−2

)
+ α

(
A +

N−2∑

i=1

′ ωiui∆x

)
,

QN−3 = ∆x

(
1

3
ωNuN +

31

24
ωN−1uN−1 +

7

8
ωN−2uN−2 +

13

24
ωN−3uN−3 −

1

24
ωN−4uN−4

)
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+α

(
A +

N−3∑

i=1

′ ωiui∆x

)
,

QN−4 = ∆x

(
1

3
ωNuN +

31

24
ωN−1uN−1 +

5

6
ωN−2uN−2 +

13

12
ωN−3uN−3 +

1

2
ωN−4uN−4

− 1

24
ωN−5uN−5

)
+ α

(

A +
N−4∑

i=1

′ ωiui∆x

)

,

QN−5 = ∆x

(
1

3
ωNuN +

31

24
ωN−1uN−1 +

5

6
ωN−2uN−2 +

25

24
ωN−3uN−3 +

25

24
ωN−4uN−4

+
1

2
ωN−5uN−5 −

1

24
ωN−6uN−6

)
+ α

(
A +

N−5∑

i=1

′ ωiui∆x

)
,

QN−6 = ∆x

(
1

3
ωNuN +

31

24
ωN−1uN−1 +

5

6
ωN−2uN−2 +

25

24
ωN−3uN−3 + ωN−4uN−4

+
25

24
ωN−5uN−5 +

1

2
ωN−6uN−6 −

1

24
ωN−7uN−7

)
+ α

(
A +

N−6∑

i=1

′ ωiui∆x

)
.

Notice that these approximations to Qj are all fifth order accurate. The initial condition is

taken as

u0
j = u0(xj), j = 1, 2, · · · , N.

Using the notation λ = ∆t
∆x , we can write the Euler forward time discretization of the semi-

discrete scheme (2.1) as

un+1
j = un

j − λ(f̂n
j+1/2 − f̂n

j−1/2) −∆tmn
j un

j , j = 1, 2, · · · , N. (2.4)

This, together with the boundary condition (2.3) for un
0 , provides a complete description of

the explicit time marching fifth order finite difference WENO scheme. In order to obtain

higher order accuracy in time without compromising the nonlinear stability of the WENO

scheme, we use the total variation diminishing (TVD) high order Runge-Kutta time dis-

cretization in [18], see also [8, 9]. If we denote the ordinary differential equation system (2.1)

by
d

dt
uj − L(u, t)j = 0,

then the third order TVD Runge-Kutta method in [18] that we use in next section is given
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by

u(1) = un +∆tL(un, tn)

u(2) =
3

4
un +

1

4

(
u(1) +∆tL(u(1), tn +∆t)

)
(2.5)

un+1 =
1

3
un +

2

3

(
u(2) +∆tL

(
u(2), tn +

1

2
∆t

))
.

Clearly, this is just three Euler forward time discretizations with suitable coefficients, hence

its implementation does not introduce any difficulty.

3 Numerical examples

In this section we perform numerical experiments to demonstrate the performance of the

fifth order WENO scheme developed in the previous section. We use the third order TVD

Runge-Kutta time discretization (2.5) with a CFL condition

∆tn = 0.6∆x/‖g(x, Qn) + m(x, Qn)∆x‖∞

unless otherwise stated.

In our first example, we use the initial condition u0(x) = −x2 + x + 1, and take the

parameters and functions in (1.1) and (1.2) as L = 1, α = 0.5, ω(x) = 1, g(x, Q) =

(1 − x)(5 − x + x2/2 − Q), m(x, Q) = 4 + 2Q + (1 − x)2/2, and β(x, Q) = (1 + x)(2 − Q).

The purpose of this example is to show that the WENO scheme is non-oscillatory in the

presence of solution discontinuities. For this purpose we take C(t) = 3, which causes an

incompatibility of the boundary data and the initial condition at the origin and generates

a discontinuity in the solution which moves from the left boundary into the computational

domain. The numerical solutions using N = 100 uniformly spaced grid points for the first

order monotone scheme [14], the second order high resolution scheme [14], and the fifth order

WENO scheme are plotted in Fig. 3.1. We can see clearly that our fifth order WENO scheme

can resolve the discontinuity sharper than the first order monotone scheme and the second

order high resolution scheme, without introducing spurious numerical oscillations.
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x

u(
x,
0.
2)

0 0.25 0.5 0.75 10.65

0.7
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Figure 3.1: Numerical solutions with N = 100 uniform grid points, using the first order
monotone scheme in [14] (triangles), the second order high resolution scheme in [14] (circles),
and the fifth order WENO scheme (solid line).

The second example is chosen to demonstrate that our fifth order WENO scheme can

achieve its designed accuracy for smooth solutions. For this purpose we take g(x, Q) =

−2ex−1 + 2, β(x, Q) = 2, m(x, Q) = 1, L = 1, ω(x) = 1, α = 0.5, the initial condition

u0(x) = e−x, and C(t) = 0. For these choices the equation (1.1) has a smooth exact solution

u(x, t) = et−x. The L∞ and L1 errors and orders of accuracy of our fifth order WENO

scheme are listed in Table 3.1. We can see that the designed order of accuracy is obtained

for this smooth solution in the L1 norm. The order in the L∞ norm is reduced by one order

because near the boundary, the cancellation of the neighboring numerical fluxes to generate

an extra order of accuracy is no longer valid. For this test case we further reduce the time

step to ensure that the spatial error dominates in the solution.

Our third example is from computational biology [2], for the simulation of the population
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Table 3.1: L∞ and L1 errors and numerical orders of accuracy of the fifth order WENO
scheme using N uniformly spaced mesh points.

N L∞ error order L1 error order
10 0.21E-03 0.25E-04
20 0.95E-05 4.46 0.64E-06 5.28
40 0.52E-06 4.20 0.19E-07 5.07
80 0.30E-07 4.10 0.59E-09 5.03
160 0.18E-08 4.08 0.18E-10 5.02
320 0.10E-09 4.12 0.49E-12 5.20

evolution of Gambussia affinis. This model is given by the equation (1.1), written in a slightly

different form as

ut + (g(x, t) u)x + m(x, Q(t), t) u = 0, (x, t) ∈ [9, 63] × (0, T ]

g(9, t)u(9, t) =

∫ 63

9

β(x, t) u(x, t)dx, t ∈ (0, T ] (3.1)

u(x, 0) = u0(x), x ∈ [9, 63]

The non-local term Q(t) is defined by

Q(t) =

∫ 63

9

ω(x)u(x, t)dx (3.2)

The initial condition and the functions in (3.1) and (3.2) are defined as in [2]. In particular,

β(x, t) = β(x)Tβ(t), g(x, t) = g(x)Tg(t), m(x, Q(t), t) = m(x, Q(t))Tm(t),

where β(x) is a smooth spline function to fit the data in Krumholtz [13] by using a MATLAB

function called csaps (see Fig. 1 in [2]), Tβ(t) is defined by

Tβ(t) =






( t
30)

3(1 − t−30
10 + (t−30)2

150 ), 0 ≤ t ≤ 30
1, 30 ≤ t ≤ 90

−( t−120
30 )3(1 + t−90

10 + (t−90)2

150 ), 90 ≤ t ≤ 120
0, 120 ≤ t ≤ 365

and it is periodically extended thereafter

Tβ(t + 365n) = Tβ(t), n = 1, 2, · · · .

12



The function g(x) is defined as

g(x) =
63

80.2

(
1 − x

63

)
, 9 ≤ x ≤ 63

and the function Tg(t) is defined as

Tg(t) = 0.2 + 0.8Tβ(t).

The function m(x, Q) is given by

m(x, Q) =






0.1 exp(−C/Q), 9 ≤ x ≤ 31
0.1 exp(−C/Q) − (0.023 − 0.1 exp(−C/Q))

×(x − 31)3(1 − 3(x − 32)(65 − 2x)), 31 ≤ x ≤ 32
0.023, 32 ≤ x ≤ 63

(3.3)

where the constant C will be prescribed later. The function Tm(t) is given by

Tm(t) = 2 − Tβ(t),

and finally the function ω(x) is given by

ω(x) =






2, 9 ≤ x ≤ 30
−2(x − 31)3(1 + 3(x − 30)(2x− 59)), 30 < x < 31
0. 31 ≤ x ≤ 63

The initial condition is given as

u0(x) =






0, 9 ≤ x ≤ 34
5(1 + x−38

4 )3, 34 < x < 38
5 + 15(x−38

4 ) + 15(x−38
4 )2 + 30(x−38

4 )3(x−46
4 ), 38 ≤ x ≤ 42

5(2 − x−38
4 )3, 42 ≤ x ≤ 46

0. 46 ≤ x ≤ 63

We note that not all the assumptions (H1)-(H6) outlined in the introduction are satisfied in

this example. However, our fifth order WENO scheme performs nicely and gives accurate

results with far fewer grid points than the second order schemes in [2] and [14]. In Fig. 3.2,

we plot the population density u at t = 365 using the fifth order WENO scheme with

N = 135 uniformly spaced grid points. In this simulation the constant C in (3.3) is taken as

2000 as in [2]. For the purpose of comparison, the simulation result using the second order

high resolution scheme in [14] with N = 540 uniformly spaced grid points is also plotted in

13



Fig. 3.2. We can observe that the WENO scheme gives better resolution than the second

order scheme even though the latter uses fourfold as many grid points. Comparing with the

second order box method using N = 730 grid points in [2], Fig. 4, we can see that the second

order box method in [2] performs similarly as the second order high resolution scheme in

[14], and the fifth order WENO scheme clearly outperforms both of them.

x

u(
x,
t)

10 20 30 40 50 600
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

t=365

Figure 3.2: Population density u as a function of the length at t = 365. Solid line: solution
of the fifth order WENO scheme with N = 135 uniformly spaced grid points; Circle symbols:
solution of the second order high resolution scheme [14] with N = 540 uniformly spaced grid
points.

In order to fully assess the resolution power of the high order WENO scheme for long

time simulation with coarse meshes, we simulate this model for 10 years and plot the total

population (the integral of the density u over the length) in Fig. 3.3, for two different values

of C in (3.3), namely C = 2000 for the left picture and C = 200000 for the right picture,

as in [2], Figures 7 and 12. For this test problem, we perform numerical tests with different

number of mesh points and report the results using the coarsest meshes of different numerical

14



methods to obtain the visually satisfactory resolution. We are pleasantly surprised to observe

that the WENO scheme with only N = 20 uniformly spaced grid points is enough to yield

the satisfactory resolution as shown in Fig. 3.3, while the second order high resolution scheme

in [14] needs N = 108 points to achieve comparable resolution.
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Figure 3.3: Evolution of the total population for ten years. Left: C = 2000; Right: C =
200000. Solid line: solution of the fifth order WENO scheme with N = 20 uniformly spaced
grid points; Circle symbols: solution of the second order high resolution scheme [14] with
N = 108 uniformly spaced grid points.

4 Concluding remarks

We have developed a fifth order explicit finite difference WENO scheme for solving a hierar-

chical size-structured population model with nonlinear growth, mortality and reproduction

rates, which contains global terms both for the boundary condition and for the coefficients in

the equations. Numerical results are provided to demonstrate the capability of this WENO

scheme in resolving smooth as well as discontinuous solutions. For smooth solutions the fifth

order WENO scheme achieves its designed order of accuracy. For discontinuous solutions,

the WENO scheme gives sharp and non-oscillatory discontinuity transitions. An application

of the scheme to a problem in computational biology for the evolution of the population of

Gambussia affinis indicates that the WENO scheme can achieve good resolution for long
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time simulation with very coarse meshes, hence it is much more efficient than lower order

schemes for such simulations.
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