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Abstract—This paper describes how the fusion of two 
different prognostic approaches produces a result that is 
more accurate and has more narrow uncertainty bounds than 
either approach alone. The fused prognostic estimate can be 
calculated by using both a physics-based as well as a data-
driven approach. The individual approaches can have a 
plurality of input sources such as component properties 
(e.g., material properties and usage properties), history of 
the component (current damage state and history of 
accumulated usage), future anticipated usage, damage 
propagation rates established during experiments, etc. 
Damage estimates are arrived at using sensor information 
such as oil debris monitoring data as well as vibration data. 
The method detects the onset of damage and triggers the 
prognostic estimator that projects the remaining life. 
Uncertainty, stemming from the variability observed during 
experiments, as well as modeling inaccuracies, are 
propagated to provide a distribution around the projected 
remaining life. It is desirable to keep the uncertainty interval 
as narrow as possible while truthfully considering their 
spread. In this paper, we introduce an approach to fuse 
competing prediction algorithms for prognostics. Results 
presented are derived from rig test data wherein multiple 
bearings were first seeded with small defects, then exposed 
to a variety of speed and load conditions similar to those 
encountered in aircraft engines, and run until the ensuing 
material liberation accumulated to a predetermined damage 
threshold or cage failure, whichever occurred first.  
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INTRODUCTION 

Reasoners attempt to analyze a variety of information  
sources towards a particular goal. In this case, the goal of 
the reasoner is to provide a remaining life estimate. To that 
end, it negotiates and aggregates independent information 
sources while taking their inherent uncertainty into account. 
The uncertainty varies as a function of time, the priors on 
reliability of the information sources, domain knowledge, 
among others 

There are numerous approaches to accomplish aggregation 
of information such as bagging and boosting [Freund and 
Schapire, 1999], Dempster-Shafer [Smets, 1994], model-
based approaches [Nelson and Mason, 1999], fuzzy fusion 
[Loskiewicz and Uhrig, 1994] or statistics-based approaches 
[Rao, 2000]. However, it has to be realized that the 
aggregation itself is only one function of the overall 
reasoner. In addition to combining information, it has to be 
ensured that the information that is being used provides the 
maximum information content. There are a number of issues 
that need to be dealt with prior to the actual aggregation. 
Specifically, the information needs to be checked for 
consistency, and it needs to be cleaned of outliers, noise, 
faulty or otherwise bad sensor information, it needs to be 
conditioned and formatted to allow a proper comparison. In 
addition to that, special cases need to be taken into account 
that, depending on the situation, should be done either 
before or after the actual aggregation step. To assist in these 
tasks, one can employ a sequential and parallel multi-
layered configurations strategy. Elements from this 
configuration strategy have been proven successful in 
diagnostic fusion environments within project IMATE 
[Ashby and Scheuren, 2000]. There, a hierarchical, multi-
layer architecture [Goebel et al., 2004] was demonstrated 
that implemented some of these concepts. Information from 
various diagnostic models and evidential information 
sources was combined and manipulated through a series of 
steps that increased and decreased the weight given to the 
information sources according to the strategies implemented 
in the respective layers of the fusion process.  
 
An approach more closely related to this paper is non-
parametric regression (NPR). Here, no assumptions about 
the underlying functional form are made. NPR is 
characterized by low bias (i.e, it can easily represent 
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underlying function) but at the expense of high variance 
(i.e., the model will change from realization to realization of 
the data). That in turn may change the response dramatically 
depending on data. The simplest idea is the k-nearest 
neighbor regression that results in good fit, but huge 
variance and discontinuous behavior. Kernel regression 
[Watson, 1964; Nadaraya, 1964] overcomes some of these 
shortcomings by locally weighting members closer to the 
value in question.  

 
Classical regression techniques (including kernel regression, 
MLP, RBF, splines, linear, etc.) assume perfect knowledge 
of y (both precise and certain). However, these techniques 
do not work optimally if knowledge of sensor measurement 
y is imprecise due to limited precision and accuracy of 
sensors, and if sensor measurement y is uncertain (e.g., due 
to sensor failure). The issue is exacerbated when there are 
multiple sensors with different sensitivities and reliabilities. 
In situations where the probe point is very different from 
that employed in the training set it might be desirable to 
have mechanisms to cast doubt on the validity of the output. 

Dempster Shafer regression [Petit-Renaud and Denoeux, 
2004] (DSR) provides a prediction of the output in form of 
a fuzzy belief assignment. This assignment is defined as a 
collection of fuzzy sets of values with associated masses of 
belief. The output is computed using a nonparametric, 
instance-based approach: evidence samples ei = (xi,mi) in 
the neighborhood of the input vector x are sources of partial 
information on the response variable. The evidence samples 
can be represented by a fuzzy belief assignment my[x, ei]. 
Relevance of the evidence with respect to y is assumed to be 
dependent on the dissimilarity to y. If x is “close” to xi 
according to a given metric ||.||, y is expected to be close to 
yi, which makes example ei quite relevant to predict the 
value of y. On the contrary, if x and xi are very dissimilar, 
example ei provides only marginal information regarding 
the value of y. Therefore, neighborhood evidence input 
elements are discounted as a function of their distance to x. 
They are then pooled using Dempster’s rule of combination. 
While the method can cope with heterogeneous training 
data, the more important characteristics in this context is the 
formalism for modeling both unreliable and imprecise 
information provided by multi-sensor systems. 

DSR determines the value of sensor measurement y at a 
given time by discounting the belief mass of each 
observation by: 

( )
( )2

2
ix x

ix x eφ γ
−

−
Θ− =

 
where: 

γ is a tuning parameter (usually >= 0.9) 
Θ is a scale parameter, commonly set using cross 
validation on training data 
 

Next, the discounted belief masses are combined using 
appropriate version of DS combination. When there are 
many data points, the computational overhead can become 
considerable. A remedy is using only the k-nearest 
neighbors to reduce the complexity of the calculation with 
little loss of accuracy. 

However, Dempster-Shafer regression does not, amongst 
other things, address how to integrate the future estimated 
variability of the estimators. 
 

Application to Bearing Damage 

During bearings operation, initially localized spalls can 
initiate that may grow and ultimately result in loss of 
function. Important factors affecting damage initiation and 
damage propagation are changes in bearing loads, speeds, 
and environment.  Lubrication, presence of material defects, 
surface degradation, and external contamination all factor in 
to the bearing environment. Subsurface fatigue cracks are 
induced at locations of peak shear stress, become surface-
connected, and lead to eventual liberation of material. It is 
important to assess the microstructural evolution, 
environmental embrittlement, cyclic hardening, and residual 
stress to calculate the propagation of bearing damage. The 
current state is determined by feeding direct sensor data and 
indirect parameters computed from sensor data into an 
ensemble of diagnostic algorithms as a basis for input to the 
fault-evolution and life models [Littles and Buczek, 2004]. 
The algorithms arrive at their conclusion either by direct 
measurement, models supported by measurements, or are 
simply triggered by measurements. The information sources 
that the reasoner relies on may be updated at different 
intervals during or between flights and may have different 
prediction horizons. 

Prognostics is about the estimation of remaining useful life 
under particular assumptions of future use. Sensor 
measurements provide instantaneous feedback on current 
damage levels and form the foundation for prognostic 
estimates. Ideally, features derived from sensor 
measurements would have monotonically changing 
properties that accurately reflect increasing component 
damage and be provided irrespective of external conditions. 
However, in practice this is nearly never the case: features 
reflect the noise inherent in sensed data and react differently 
during particular stages of damage evolution (e.g., some are 
useful for fault detection, but not for damage growth 
tracking).  

Oil debris monitor features, such as particle counts, have 
excellent tracking properties that are invariant to changes of 
environmental parameters [Dempsey et al., 2002]. However, 
they may be not as suitable to identify fault initiation 
because their resolution is too low for small damage levels. 
In addition, absolute counts can be misleading when 
material gets trapped over time and due to external 
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contamination. Better sensors for fault initiation and initial 
fault growth tracking may be vibration sensors that have the 
promise to pick up smaller damage levels. Features from 
various transforms such as Fourier, Hilbert, and Wavelets 
can be useful in detecting and categorizing incipient faults. 
The vibration sensor’s capacity for early detection comes at 
the price of sensitivity to environmental effects [Dempsey et 
al., 2002] that are sometimes difficult to quantify or correct. 
In an aircraft engine, and in particular under conditions of 
military use, these changes can be significant.  

It is thus expedient to aggregate vibration and oil debris 
information to take advantage of the benefits of both. The 
fusion of information from oil debris and vibration 
information, along with knowledge about system and 
machinery history can result in interactions that may 
improve the confidence about system condition [Byington 
et al., 1999]. Howard and Reintjes [Howard and Reintjes, 
1999] describe the benefits of using several information 
sources for fault detection, and discuss oil debris and 
vibration for helicopter gearboxes in particular. Byington et 
al. [Byington et al., 1999] describe a fusion technique that 
correlates the failure mode phenomena with appropriate 
features. Dempsey et al. [Dempsey et al., 2002] report on 
the use of fuzzy logic to integrate oil debris and vibration 
information for gearbox faults where the output was quasi-
action recommendations such as “OK, inspect, shutdown”. 

Prognostic Information Fusion 

Different approaches can be employed to estimate future 
damage. One is to model from first principles the physics of 
the system as well as the fault propagation for given load 
and speed conditions. Such a model must include detailed 
knowledge of material properties, thermodynamic behavior, 
etc. Alternatively, an empirical experience-based model can 
be employed wherein data from experiments at known 
conditions and component damage level are used to build a 
model for fault propagation rate. Such a model relies 
heavily on a reasonably large set of experiments that 
sufficiently explores the load and speed space. 
 
The two approaches for estimating future damage have 
various advantages and disadvantages. The physics-based 
model relies on the assumption that the fault mode modeled 
using the specific geometry, material properties, 
temperature, load, and speed conditions will be similar to 
the actual fault mode. Deviation in any of those parameters 
will likely result in an error that is amplified over time. In 
contrast, the experience-based model assumes that the data 
available sufficiently maps the space and that interpolations 
(and extrapolations) from that map can capture the fault rate 
properly. It can be beneficial to fuse the output of both 
methods to produce a more robust and more accurate result. 
Finding synergy in using different information sources to 
assess system states has a long tradition within the fields of 
multivariate statistics and pattern recognition.  
 

In addition to fusing a damage estimate, the associated 
uncertainty needs to be aggregated as well. This is a critical 
task because the resulting estimate needs to be within 
uncertainty bounds that allow for decision making at a 
desired risk level. If the uncertainty bounds are very wide, 
the resulting time-of-failure estimate at the acceptable risk 
level may be too early to provide any benefit to the 
decisioning process. That is, there would be no advantage of 
prognostics compared to a reactionary diagnostics system 
alone. Uncertainty bounds ideally are tight but need to 
reflect true output variability. 

Prognostic Fusion Techniques 

The aggregation of future damage estimates is not just a 
question of averaging the various values. Rather, the fusion 
method should be able to incorporate a number of different 
measures that inform about the reliability of the estimate, 
their expected accuracy, and various other uncertainty 
measures. These measures in turn may be a function of 
different variables such as time, where in the load/speed 
space the estimate is performed, known shortcomings or 
strength in some areas of that space, etc. In the example 
described by Orsagh et al. [Orsagh et al., 2003], 
performance improvement is accomplished when weights 
for the information sources are dynamically allocated 
depending on whether the component is considered early or 
late in its remaining useful life cycle. Garga et al. [Garga et 
al., 2001] describe a hybrid reasoning approach that 
integrates domain knowledge with test and operational data 
from an industrial gearbox. There, domain knowledge is 
expressed as a rule-base, and then used to train a 
feedforward neural network.  
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Figure 1 - Interactions of Integrated Bearing Reasoner 

Modules 
 

ARCHITECTURE 

As mentioned above, the prognostic reasoner considered 
here is really a set of reasoners that will operate at various 
times during and after the flight. Depending on the time 
during or after a mission, its tasks will vary from 
aggregation of damage information to supporting the 
calculation of a remaining life estimate.  There are two 
fundamentally different modes: one is a diagnostic mode 
that estimates the magnitude of the fault. Another is the 
prognostic mode that establishes a time horizon for 
remaining life. The two modes are described in more detail 
below: 
 
In-Flight and Post-Flight Diagnostic Modes: Using an in-
mission setting, features derived from vibration 
measurements and debris counts are used in transfer 
functions to provide a damage detection indicator. 
Specifically, an adaptive neuro-fuzzy inference scheme 
(ANFIS) was used that takes these information sources as 
input and gives fault presence likelihood fp as output: 
 

( )vibrationdebris featuresfeaturesffp ,=  
 
where  
 f = neuro fuzzy inference system. 
 
ANFIS is a technique invented by Roger Jang in 1993 
[Jang, 1993]. Any other suitable mapping function can be 

employed here as well, such as neural nets, support vector 
machines, random forests, etc. The detection algorithm is 
tuned to avoid false positives and to minimize late 
detection. If the output of the fault presence exceeds a fault 
detection threshold, the fault is declared present. 
 
Next (and only after the fault has been detected) a suite of 
transfer functions converts sensor-based features into 

equivalent damages vibrationdebris dd ˆˆ
, , for debris-based 

damage estimates and vibration-based damage estimates, 
respectively. Again ANFIS or other suitable mapping 
function can be employed. Specifically, we used ANFIS 
here: 

( )ii featuresfd =ˆ  
where 

i is either the debris information or the vibration 
information.  
 

Additional damage estimates come from an experience-
based tool (described in more detail below) as well as a 
physics-based tool. In parallel, quality estimates are 
provided for each estimate. The quality estimate is a 
subjective assessment for the goodness of the output.  
 
The diagnostic functions are displayed in the flowchart in 
Figure 2. 
 

TF1, the trending transfer function, converts data 
from the  vibration sensor into equivalent 
damage levels using the Neuro-Fuzzy inference 
scheme

TF2, the trending transfer function, converts data 
from the debris sensor into equivalent damage 
levels using the Neuro-Fuzzy inference scheme; 
based on data distributions, pdfs are calculated; 
based on output quality, quality estimates are 
assigned

A; the aggregation scheme 
scales the pdfs of the equivalent 
damage assessments by the 
subjective quality assessments, 
sums them up and normalizes 
them, then performs temporal 
Kernel regression to provide 
smooth output. Failing sensors 
are accommodated by scaling 
their confidence to zero

d̂

1̂d

2d̂

3d̂pdf of Physics based damage model estimate
quality assessments are assigned based on historical performance

estimated
accumulated
damage

TFd, the diagnostic transfer function, performs pattern recognition on 
sensor input to trigger spall presence using a Neuro-Fuzzy inference 
scheme that maps the input streams to membership functions, then
creates equivalent rules during the learning/training process that 
utilizes data from the steady state experiments

Vibration anomaly features
& quality assessment 

fp
Debris measurement

fault
presence

4d̂pdf of experience-based damage model estimate
& quality assessment

If initial fault presence is indicated the trending modules are triggered

•sensor validation modules establish whether sensors work properly
•potential problem is localized with pre-reasoner logic to a particular bearing

 

Figure 2 – Diagnostic Flowchart 
 
Next, an aggregator combines the information, trading off 
the quality estimates and fusing the pdf-based information. 
The fusion is the focus of this paper and will be described in 
more detail below. 
 
Prognostic Mode The prognostic models can be run either 
on-board or on-ground, depending on whether there is a 
need for short-term outlook (in which case the prognostic 
reasoner would be executed on-board) or whether there is a 
need for a longer-term outlook (in which case it makes more 
sense to run the prognostic reasoner on-ground). If a fault 
has been detected, the prognostic functions are executed on 
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a set of future missions. Specifically, missions characterized 
in part by sequences of load, speed, and ambient conditions 
are used as input to the physics-based spall propagation 
model as well as the experience-based model. In 
conjunction with the current damage state, the output of the 
spall propagation model will provide a damage profile into 
the future.  

The modeled damage over time and the quality assessment 
over time from each model are then forwarded to the 
aggregation module. Figure 3 illustrates the operation of the 
prognostic reasoner. Fundamentally, the prognostic reasoner 
supervises the execution of the different prognostic models, 
makes corrections where desired, and assigns a quality 
assessment. It then aggregates the different estimates. There 
are different ways in which the reasoner can operate based 
on user demand. In one instantiation, it will report both the 
profile of remaining life and information on whether the 
envisioned missions can be completed without exceeding 
the acceptable damage limit. In another instantiation, it will 
provide information back to the mission generation process 
to prompt for additional mission runs when damage limits 
have not been reached. The goal of executing the damage 
propagation model with additional runs is to determine the 
damage propagation profile and to find the remaining life 
limit. 
 
As mentioned before, if no fault has been detected, the 
prognostic module is bypassed and is replaced by fleet 
statistics that are compiled on bearing fatigue data. 
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Figure 3 - Prognostic Reasoner 

METHOD 

Below we will provide a detailed description of the method. 
We discuss preprocessing, assignment of quality estimates, 
estimation of variability, the experience-based prognostic 
model, aggregation of uncertainty, and postprocessing.  

Assignment of quality estimates 

In addition to the damage estimate, each model is assigned a 
quality assessment that can be interpreted as a subjective 
confidence. These confidences are computed based on a 
priori performance of the models. That is, the models may 
be known to have a different performance within different 
regions of the load-speed mission space. Additionally, the 
models may be known to produce biases at different 
damage levels or at different damage rate levels. Moreover, 
the further out into the future the prediction is being made, 
the less likely it is to be correct. While confidence intervals 
may capture the possible variability, the quality assessment 
captures other sources of uncertainty. If one takes into 
account the quality of the model (e.g., derived by examining 
performance of the model) for particular regions of the 
search space (or other factors, e.g., time), one has the 
possibility to exploit this additional information during the 
aggregation step which ultimately may result in better 
performance of the prognostics. This was discussed in detail 
in [Goebel et al., 2006]. 
 
Experience-based Prognostic Model 

Two models are fused in the prognostic reasoner, a physics-
based (PB) model and an experience-based (EB) model.  
 
The EB model is an empirical fit of data from seven 
experiments at five points in the speed and load space. Spall 
length is calculated: 

 
0

0: :

log10( ) ( )*

10
=

=

+ ∑
=

spallt
t dt current

l rate t dt

spalll  

where  
 ( ) ( )( , )10= f speed t load trate . 
 
Spall growth rate is exponential, with rate an empirical 
function of speed and load. Spall rate was calculated from 
the raw data, and a surface was fit using a relatively simple 
(to avoid unwanted distortions in the surface) neural 
network (two input nodes, two hyperbolic tangent hidden 
nodes, and one linear output node).  Figure 4 is a plot of the 
response of the model to individual test runs. Figure 5 is a 
plot of the response surface of the model showing the data it 
was modeled from; Figure 6 is another view of the response 
surface.  
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Figure 4 - Response of the model to individual test runs. 
Red is actual data, blue is model predicted spall length. 
Grey lines join tests with the same conditions.   
 

 
Figure 5 - Response surface of experience-based model 
showing raw data. 
 
 
 

 
Figure 6 - Response surface of experience-based model. 
 

Physics-Based Prognostics Model 

 
The PB model for the initiation and propagation of bearing 
fatigue spall uses historic and estimated future operating 
conditions to determine future bearing condition and returns 
a probability density function of the bearing remaining 
useful life. This model is based on first principles 
approaches such as damage mechanics to track material 
microstructure changes and eventual loss during the spall 
propagation phase. It takes into account material properties, 
bearing geometry, surface interaction, lubrication, and 
variable operating conditions. 
 
The physics-based model was developed by Sentient Corp 
[Marble et al., 2006]. We added on an error correction to 
the model at the time of prognostics. Due to the open-loop 
calculation of the PB model, the damage estimate at the 
time of prognostics may have an offset compared to the best 
damage of the reasoner. This may lead to a propagation of 
that bias throughout the prognostic horizon. To counteract 
that, the reasoner subtracts the bias of the PB-based mean 
estimate at the time of prognostics from the reasoner-based 
mean estimate at the time of prognostics. 

Aggregation 

The primary goal of the prognostic reasoner is to negotiate 
the different damage estimates and to decide whether 
another set of mission parameters needs to be executed for 
another damage estimate further in the future. A key to the 
reasoner’s performance is the ability to aggregate different 
measures of uncertainty. To this end, we propose a new 
method as described in the following. 
 
To properly aggregate multiple estimates of spall size, it is 
necessary to account for both model uncertainty and model 
quality assessment, as discussed above, and to 
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accommodate model updates at arbitrary (possibly different 
or asynchronous) updating intervals.  

All spall length estimates are put on a common time scale 
using interpolation, which accommodates different or 
asynchronous model updating times. Each estimate PDF is 
then discretized at each time interval over a finely divided 
(e.g., 1000 intervals) universe of discourse (at most 0% to 
100% of race length, but often much less, depending on the 
maximum non-zero values of all spall length estimate 
PDFs). The discretized PDF of each estimate is discounted 
by its unique time-dependent quality assessment values.  
 

ttt pdfqapdfdiscounted *_ =  
 
The discounted PDFs are aggregated using kernel 
regression (i.e., discounting events distant in time from the 
time currently being evaluated) using  
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Finally, the aggregate PDF is renormalized at each time 
interval, and the desired spall length percentiles are 
returned.   The basic concept is illustrated in Figure 7:  
  

a. raw pdfs b. Scaled by individual
confidences

c. Kernel Regression d. Normalized

σbounds

σbounds

a. raw pdfs b. Scaled by individual
confidences

c. Kernel Regression d. Normalized

σbounds

σbounds
 

Figure 7 – Aggregation Concept 
 

First, the raw probability density functions (Figure 7a) are 
scaled by the individual quality estimates (Figure 7b). Next, 
the PDFs are combined using kernel regression (Figure 7c) 
and normalized (Figure 7d). The resulting spread of the 
fused PDF is smaller than the original ones at the same level 
of risk (say, 3 σ) as illustrated in Figure 8. 

σ bounds

Original spread pdf 1
Original spread pdf 2
Aggregated spread pdf

σ bounds

Original spread pdf 1
Original spread pdf 2
Aggregated spread pdf

 

Figure 8 – Spread of original pdf’s and aggregated pdf 
 

Postprocessing 

Some output of the damage estimate transfer functions can 
be noisy. That in turn may result in suboptimal behavior in 
the fusion function. Specifically, it is undesirable to have 
non-monotonic behavior. To reduce noise and encourage 
monotonic properties, an adaptive filter was employed that 
is responsive to increases while being more cautious to 
downward changes of the input. Specifically, an exponential 
weighted moving average filter was employed where weight 
α was modified based on the situation at hand. The 
governing equation is: 
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Typical values for the threshold and fixed quantities are 
boundlower = 0.1 
boundupper = 0.99 
scalerdecay = 0.99 
scalerincrease = 1.02 
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  APPLICATION 

The prognostic reasoner has been tested in experiments that 
model a simulated, cyclic mission profile.  Figure 9 shows 
the assembled load and speed trajectories, which was 
reflective of about 40 cycles in the load-speed space, with 
dwells at certain set points. An indent was added to the 
outer race of a production bearing, which was then run 
under those conditions in a test rig. The bearing was 
examined several times during the course of the test, and 
actual spall length was recorded. The test ran to cage 
failure.  
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Figure 9 – Test Profile (load and speed) 
 
As mentioned before, the fundamental characteristic of the 
forward confidences is that they drop as a function of time. 
In addition, there is an a priori bias assigned to the different 
confidences, which in turn reflects the accuracy of the 
models as observed during testing. 
 

 

Figure 10 – Effect of future high speed and load conditions 
on remaining life estimates 

 
Subplots on the left side of Figure 10 show the load, speed, 

and temperature conditions as recorded during the tests. The 
bottom subplot of Figure 10 shows the output of the 
diagnostic reasoner. Specifically, spall is detected at t=58.0 
hours and indicated by setting the “Spall Present” flag to 
“1”. The prognostic forward mode can be executed at any 
time after fault initiation. Here, we choose to execute the 
prognostic functions at t=65 hours. The plot on the right 
side of Figure 10 shows the damage estimate prior to the 
prognostic estimate at t=65 hours which is the output of the 
diagnostic reasoner. In the graph, the green lines represent 
the 40th, 50th, and 60th percentiles, respectively. The pink 
lines represent the 10th, 20th, and 30th as well as the 70th, 
80th, and 90th percentiles. Finally, the red line represents the 
5th and 95th percentiles. The model can output any other 
percentile as well, such as the percentile associated with 3σ 
or any other risk limit. The prognostic reasoner assesses the 
damage from time t=65 hours forward, using the expected 
load and speed profile as input (to which the uncertainty 
was added as described earlier). The lines from t=65 hours 
and greater represent the output of the prognostic reasoner. 
In this experiment, actual cage failure occurred at t = 93 
hours. The prognostic estimate tripped the critical damage 
line in agreement with the experiments. A user could take 
action at a predetermined  risk limit. In case of the 95th 
percentile, this would equate to about tcritical =73 hours (i.e., 
where the 95th percentile crosses the critical damage line). 
That implies the equipment can be operated within the risk 
interval with these load and speed conditions for another 8 
hours. Since the prognostic horizon is dependent on the 
future speed and load, a different speed and load profile will 
allow the operator to influence the remaining life of the 
equipment. Consider the different load and speed profile 
shown in Figure 11. Here, lower loads and speeds are 
considered for the future. The prognostic horizon increases 
accordingly to a larger value, implying that the equipment 
can be used that much longer with the same level of risk. 
 

 
Figure 11 – Effect of future low load and speed conditions 
on remaining life estimates 

SUMMARY & CONCLUSIONS 

This paper describes how two fundamentally different 
methods can be aggregated to more reliably estimate 
remaining life and how their independent estimates can be 
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fused. One method uses first principles to model fault 
propagation through consideration of the physics of the 
system. The other method is an empirical model using data 
from experiments at known conditions and component 
damage level to estimate  condition-based fault propagation 
rate. These two approaches are fused in the prognostic 
mode to produce a result that is more accurate and more 
robust than either method alone. The fusion method 
employs a combination of damage PDFs, subjective quality 
assessments, and a kernel-based regression through time. 
The diagnostic reasoner uses the same fusion method but 
adds a debris-based damage estimate and a vibration-based 
damage estimate to the estimation suite. The diagnostic 
reasoner also detects spall based on a combination of debris 
and vibration features. Results from rig tests where a 
bearing was run under mission typical flight profiles were 
used to validate the approach. To that end, spall was 
initiated and bearing spall growth was carefully monitored. 
Results from these tests were compared to the prognostic 
estimates of the reasoner and found to be in close 
agreement. 
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